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Cette thèse est divisée en trois parties. Dans une première partie, on donne une description nouvelle des points récurrents par chaînes d'un système dynamique comme ensemble d'Aubry projeté d'une barrière ultramétrique. Cette approche permet de munir l'ensemble des composantes transitives par chaînes d'une structure d'espace ultramétrique expliquant leur topologie totalement discontinue, et de retrouver un théorème célèbre de Charles Conley concernant l'existence de fonctions de Lyapunov décroissant strictement le long des orbites non-récurrentes par chaînes. Dans une deuxième partie, on développe une théorie d'Aubry-Mather pour les homéomorphismes d'un espace métrique compact. On introduit dans ce cadre un ensemble d'Aubry métrique, puis topologique, ainsi qu'un ensemble de Mañé. Ces notions, plus fines que la récurrence par chaînes, permettent de mieux comprendre les fonctions de Lyapunov d'un tel système dynamique. Dans une dernière partie, on montre un résultat général de densité de certains contre-exemples au théorème de Sard pour lesquels l'ensemble des points critiques est un arc topologique et on donne des applications dynamiques de ce résultat. Celles-ci sont liées à des problèmes d'unicité, à constantes près, des solutions KAM faibles (ou solutions de viscosité) de certaines équations d'Hamilton-Jacobi.

Introduction

Lorsque l'on cherche à étudier le comportement d'un système dynamique, il peut être extrêmement intéressant de construire ou d'exhiber des fonctions possèdant une certaine monotonie le long des orbites de ce système. De telles fonctions sont appelées, de manière générale, des fonctions de Lyapunov. Celles-ci tirent leur nom du mathématicien russe A.M Lyapunov, qui les introduit pour la première fois à la fin du 19 ième siècle, pour étudier la stabilité de certains points d'équilibres d'équations différentielles. Les sous-niveaux d'une fonction de Lyapunov fournissent en effet des ensembles semi-invariants pour la dynamique, permettant de confiner les orbites et de détecter des propriétés qualitatives importantes comme l'attraction, la nonerrance ou encore la récurrence par chaînes. Réciproquement, une information sur la dynamique impose à son tour un certain nombre de contraintes aux fonctions de Lyapunov. De telles considérations permettent par exemple d'aborder certains problèmes d'unicité en théorie des équations aux dérivées partielles.

Dans cette thèse, nous montrons comment des idées issues de la théorie KAM faible permettent de construire des fonctions de Lyapunov et de préciser leurs interactions avec la dynamique. Bien qu'aucune connaissance préalable en théorie KAM faible ne soit nécessaire à sa lecture, un aperçu général de certaines grandes notions de cette théorie aidera à apprécier les nombreuses analogies qui ont fondé ces travaux : c'est le but de la première partie de cette introduction. Les deux parties restantes sont consacrées à une présentation des résultats obtenus durant cette thèse.

1 Théorie KAM faible et barrière de Peierls Considérons une variété compacte M , de classe C ∞ et sans bord. On notera par (x, v) un point du fibré tangent T M, avec x ∈ M et v ∈ T x M , l'espace tangent à M en x. La projection canonique π : T M → M est alors donnée par (x, v) → x. On notera similairement par (x, p) un point du fibré cotangent T * M , où p ∈ T *

x M est une forme linéaire sur T x M .

On supposera dans la suite que L : T M → R est un lagrangien de Tonelli, c'est à dire un fonction de classe C 2 , superlinéaire et strictement convexe dans les fibres. Les extrémales de L définissent alors un flot φ t sur T M appelé flot d'Euler-Lagrange. On notera H : T * M → R le hamiltonien associé à L par dualité convexe i.e défini pour tout (x, p) ∈ T * M par INTRODUCTION (x, v) → (x, ∂L(x, v)/∂v) est un difféomorphisme conjugant le flot φ t au flot hamiltonien φ * t de H. Nous renvoyons aux premiers chapitres de [START_REF] Fathi | Weak KAM theorem and Lagrangian dynamics[END_REF] pour une présentation détaillée de ces résultats.

Lorsque l'on étudie la dynamique d'un tel lagrangien de Tonelli, but premier de la théorie KAM faible, il est naturel de rechercher des ensembles invariants par le flot d'Euler-Lagrange φ t . Une méthode consiste alors à résoudre l'équation d'Hamilton- Malheureusement, comme expliqué dans [START_REF] Bost | Tores invariants des systèmes dynamiques hamiltoniens (d'après Kolmogorov[END_REF], de telles solutions existent rarement. On est alors amené, pour obtenir des résulats d'existence généraux, a développer une notion plus faible de solution : c'est un des objets de la théorie KAM faible.
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de Mañé et les sous-solutions u : M → R de H(x, d x u) = c(H) sont appelées sous-solutions critiques. On peut montrer que ces sous-solutions sont localement lipschitziennes donc presque partout différentiable par le théorème de Rademacher. De plus, si x ∈ M est un point de différentiabilité d'une sous-solution critique u : M → R, on a H(x, d x u) ≤ c(H).

Une sous-solution critique u : M → R est dite stricte en un point x ∈ M s'il existe une constante c < c(H) et un voisinage U de x tels que, pour presque tout y ∈ U , H(y, d y u) ≤ c.

A.Fathi et A.Siconolfi ont montré, voir [START_REF] Fathi | Existence of C 1 critical subsolutions of the Hamilton-Jacobi equation[END_REF], qu'il existait toujours une sous-solution critique C 1 à l'équation d'Hamilton-Jacobi, stricte en dehors d'un fermé optimal A de M , défini dans la section suivante. Plus récemment, P.Bernard [START_REF] Bernard | Existence of C 1,1 critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds[END_REF] a même montré qu'une telle solution pouvait être choisie de classe C 1,1 .

Les solutions KAM faibles sont des sous-solutions critiques particulières possèdant de nombreuses courbes calibrantes. Elles sont définies par la propriété additionnelle suivante : pour tout x ∈ M , il existe une courbe (u, L, c(H))-calibrée γ x :] -∞, 0] → M , de classe C 1 , telle que γ x (0) = x. Ces solutions correspondent aux points fixes du semi-groupe de Lax-Oleinik et leur existence est assurée par le théorème KAM faible de Fathi, voir [START_REF] Fathi | Weak KAM theorem and Lagrangian dynamics[END_REF]. On peut en fait montrer que les solutions KAM faibles coincident avec la notion usuelle de solution de viscosité de l'équation d'Hamilton-Jacobi H(x, d x u) = c(H). De plus, la constante critique c(H) est l'unique constante c telle que l'équation d'Hamilton-Jacobi H(x, d x u) = c admette de telles solutions KAM faibles. Nous renvoyons le lecteur à [START_REF] Fathi | Weak KAM theorem and Lagrangian dynamics[END_REF] pour plus de détails.

Ensemble d'Aubry et ensemble de Mañé

Si u : M → R est une sous-solution critique, c'est à dire si u est dominée par L + c(H) et si γ : R → M est une courbe (u, L, c(H))-calibrée, alors γ est nécessairement une extrémale de L. A toute sous-solution critique u : M → R, on associe ainsi le sous-ensemble Ĩ(u) de T M défini par 

Ĩ(u) = {(x, v) ∈ T M | γ (x,v) est (u, L, c(H))-calibrée} où γ (x,

La barrière de Peierls

On peut donner une définition alternative de l'ensemble d'Aubry projeté reposant sur la barrière de Peierls, introduite par Mather [21, page 1372]. Pour t > 0 on définit, suivant Mather, la fonction h t : M × M → R par Les propriétés (i) à (iii) permettent de définir, toujours suivant Mather [21, page 1370], une pseudo-métrique δ M sur A, définie par δ M (x, y) = h(x, y) + h(y, x).

L'ensemble quotient A M obtenu en identifiant les points de A à distance nulle pour δ M forme un espace métrique (A M , δ M ) appelé quotient de Mather. La fonction δ M est la pseudo-métrique de Mather.

La barrière de Peierls entretient également un rapport étroit avec les soussolutions critiques de l'équation d'Hamilton Jacobi, au travers des deux propriétés suivantes, voir [10, Chapitre V] ou [START_REF] Fathi | Existence of C 1 critical subsolutions of the Hamilton-Jacobi equation[END_REF] : Ces deux propriétés mènent à une formule de représentation de la pseudo-métrique de Mather à l'aide des sous-solutions critiques, voir [13, Lemme 2.7] : pour tout x, y ∈ A,

δ M (x, y) = max u 1 ,u 2 ∈SS INTRODUCTION
2 Une approche KAM faible de la théorie des fonctions de Lyapunov

Il existe de nombreuses définitions des fonctions de Lyapunov, variant d'un contexte à l'autre. Toutes ont cependant en commun la propriété de décroitre le long des orbites d'un système dynamique sous-jacent. Cette propriété simple ne requiert en particulier aucune hypothèse de différentiabilité. Nous adopterons donc la définition suivante. Soit (X, d) un espace métrique compact et h : X → X (resp. (ϕ t ) t∈R : X → X) un homéomorphisme de X (resp. un flot continu sur X.) On appelle fonction de Lyapunov pour h (resp. pour ϕ t ) toute fonction continue θ :

X → R vérifiant θ • h ≤ θ (resp. θ • ϕ t ≤ θ, pour tout t ≥ 0.
) Notez que les fonctions constantes sont des fonctions de Lyapunov, qualifiées de triviales. Dans la suite, nous nous concentrerons essentiellement sur le cas des homéomorphismes, puisque la plupart des résultats analogues concernant les flots peuvent s'obtenir en considérant leurs temps 1.

Ensemble neutre d'une fonction de Lyapunov et théorème de Conley

Une fonction de Lyapunov θ est utile si l'on peut donner une description à priori de son ensemble neutre, défini par

N (θ) = {x ∈ X | θ(h(x)) = θ(x)}.
Cet ensemble n'est jamais vide puisqu'il contient les points x où θ atteint son minimum. De plus, on a les inclusions suivantes

Fix(h) ⊂ Per(h) ⊂ Ω(h) ⊂ N (θ). Une constante α ∈ R est appelée valeur neutre de θ si θ -1 ({α}) ∩ N (θ) = ∅.
Si α n'est pas une valeur neutre de θ, le fermé F α de X défini par 

F α = {x ∈ X | θ(x) ≤
N (θ) = R(h).
De plus, la fonction θ est constante sur chaque composante transitive par chaînes et prend des valeurs différentes sur des composantes différentes.

Ce théorème montre en particulier que l'ensemble des composantes transitives par chaînes de h, muni de la topologie quotient, est totalement discontinu. La dynamique obtenue en collapsant les composantes transitives par chaînes ressemble alors à la dynamique du flot gradient d'une fonction de Morse puisqu'elle vérifie les propriétés suivantes :

(i) il existe une fonction de Lyapunov strictement décroissante le long des orbites non-constantes, (ii) l'ensemble des points fixes coïncide avec l'ensemble des points récurrents par chaînes, qui est totalement discontinu. L'étude de la dynamique de h peut donc se décomposer une partie "gradient" et une partie récurrente par chaînes : c'était la motivation initiale de Conley.

Dans le premier chapitre de cette thèse, on donne une démonstration du théorème de Conley basée sur l'utilisation d'une technique de barrière inspirée de la théorie KAM faible. Il est en effet possible de voir les points récurrents par chaînes de h comme ensemble d'Aubry (projeté) associé à la barrière de Conley S :

X × X → R + définie par S(x, y) = inf max i=0,..,n-1 d(h(x i ), x i+1 ) ,
l'infimum étant pris sur toutes les suites finies {x 0 , .., x n }, n ≥ 1, de points de X satisfaisant

x 0 = x, x n = y, R(h) = {x ∈ X | S(x, x) = 0}.
L'inégalité ultramétrique satisfaite par S S(x, y) ≤ max{S(x, z), S(z, y)} permet alors de munir, à la manière de la pseudo-métrique de Mather, l'ensemble des composantes transitives par chaînes de h d'une structure d'espace ultramétrique, expliquant sa topologie totalement discontinue. De plus, les fonctions S(x, •), x ∈ X, sont des fonctions de Lyapunov pour h qui, associées à l'ultramétricité, permettent de retrouver l'énoncé de Conley. Ces résultats sont ensuite étendus au cas plus général d'une application multivaluée sur un espace métrique séparable localement compact, permettant ainsi de retrouver certaines généralisations initialement dues à Hurley [START_REF] Hurley | Noncompact chain recurrence and attraction[END_REF].

Théorie d'Aubry-Mather d'un homéomorphisme

Lorsque l'on retire l'hypothèse d'intérieur vide sur les valeurs neutres d'une fonction de Lyapunov, il est tout à fait possible que l'inclusion R(h) ⊂ N (θ) ne soit pas satisfaite, même si la fonction θ est extrèmement régulière, comme le montre l'exemple suivant.
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Exemple 2.3. La flèche indique la direction de la dynamique, les points gras étant fixés.

Sur cet exemple, la fonction hauteur θ est une fonction de Lyapunov C ∞ . L'ensemble neutre de θ est réduit au demi-cercle de points fixes mais tous les points sont récurrents par chaînes. Notez que la fonction θ possède bien tout un intervalle de valeurs neutres.

Dans la deuxième partie de cette thèse, on introduit un compact invariant A d (h) de l'espace métrique (X, d), dépendant uniquement de h et de la métrique d, optimal au sens suivant :

(i) toute fonction de Lyapunov θ : X → R lipschitzienne pour d satisfait A d (h) ⊂ N (θ), (ii) il existe une fonction de Lyapunov θ : X → R lipschitzienne pour d satisfaisant A d (h) = N (θ).
Cet ensemble d'Aubry métrique pour h est le point de départ d'une théorie d'Aubry-Mather pour les homéomorphismes. Sa définition repose encore une fois sur l'utilisation d'une barrière, ici définie par

L d (x, y) = inf n-1 i=0 d(h(x i ), x i+1 ) ,
l'infimum étant pris sur toutes les suites finies {x 0 , .., x n }, n ≥ 1, de X vérifiant

x 0 = x et x n = y, A d (h) = {x ∈ X | L d (x, x) = 0}.
Puisque L d est positive et satisfait l'inégalité triangulaire 

L d (x, y) ≤ L d (x, z) + L d (z, y), la fonction symétrique L * d (x, y) = L d (x, y) + L d (y, x) définit une pseudo-métrique sur A d (h). L'espace métrique quotient (M d (h), L * d )
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Ce résulat est intéressant, puisqu'il permet en de construire des fonctions de Lyapunov non-triviales pour des dynamiques récurrentes par chaînes, comme dans l'example 2.3, ce qui n'était pas le cas du théorème de Conley. De plus, l'aspect métrique permet de distinguer certaines dynamiques identiques d'un point de vue topologique.

Exemple 2.5. On se place sur T = R/Z muni de la métrique plate usuelle. Soit K ⊂ T un ensemble de Cantor et soit ϕ : T → [0, +∞[ une fonction C ∞ telle que ϕ -1 (0) = K. On note h le temps 1 du flot du champs de vecteur X(x) = ϕ(x) ∂ ∂x .

Si la mesure de Lebesgue de K est nulle, alors

A d (h) = T et M d (h) est réduit à un point. Si la mesure de Lebesgue de K n'est pas nulle, alors A d (h) = K et M d (h)
est homéomorphe à K. Notez que dans les deux cas, tous les points sont récurrents par chaînes et qu'il n'y a qu'une seule composante transitive par chaînes.

Puisque toute fonction continue de X dans R est lipschitzienne pour une métrique adaptée, ces résultats permettent également de décrire l'ensemble Aus(h) des points récurrents généralisés de h, introduit par Auslander dans [START_REF] Auslander | Generalized recurrence in dynamical systems[END_REF] et défini par la propriété suivante :

(i) pour toute fonction de Lyapunov θ : X → R, on a Aus(h) ⊂ N (θ), (ii) il existe une fonction de Lyapunov θ : X → R avec Aus(h) = N (θ). Plus précisément, on a le théorème suivant : Théorème 2.6. On a

Aus(h) = d A d (h).
l'intersection étant prises sur toutes les métriques d compatibles avec la topologie de X.

L'ensemble des points récurrents généralisés d'Auslander joue donc le rôle d'ensemble d'Aubry topologique de h et le théorème 2.6 suggère la définition suivante de l'ensemble de Mañé :

Ñ (h) = d A d (h).
On démontre alors le résultat suivant :

Théorème 2.7. On a

Ñ (h) = Fix(h) ∪ R(h |X\int(Fix(h)) ), où R(h |X\int(Fix(h))
) désigne l'ensemble des points récurrents par chaînes de la restriction de h à X \ int(Fix(h)). Des fonctions de Lyapunov apparaissent naturellement en théorie KAM faible. Elles permettent de mieux comprendre la dynamique du flot d'Euler-Lagrange et de s'intéresser à des problèmes d'unicité des solutions KAM faible de l'équation d'Hamilton-Jacobi. Nous invitons le lecteur intéressé à consulter [START_REF] Fathi | On the Hausdorff dimension of the Mather quotient[END_REF]Section 4] pour une présentation détaillée. Nous nous consacrons ici au cas particulier des lagrangiens de Mañé.

Lagrangiens de Mañé

On considère une variété riemannienne compacte connexe (M, g), de classe C ∞ et sans bord, sur laquelle est définie un champ de vecteur X de classe C k , k ≥ 2. La norme d'un élément v ∈ T x M relativement à la métrique g sera notée ||v|| x et le flot de X sur M sera noté ϕ t . On notera π : T M → M la projection canonique de T M sur M .

Il existe une manière naturelle d'inclure la dynamique de X dans une dynamique lagrangienne en considérant le lagrangien L X : T M → R défini par

L X (x, v) = 1 2 ||v -X(x)|| 2 x .
On appelle L X le lagrangien de Mañé de X. C'est un lagrangien de classe C k , k ≥ 2, satisfaisant les hypothèses de Tonelli. On notera φ t son flot. L'ensemble d'Aubry associé à L X sera noté ÃX et l'ensemble d'Aubry projeté correspondant sera noté A X . L'ensemble de Mañé associé à L X sera lui noté ÑX . On a alors le résultat suivant, voir [13, proposition 4.13] :

Proposition 3.1. L'hamiltonien H X : T * M → R associé à L X est donné par H X (x, p) = 1 2 ||p|| 2 x + p(X(x))
et les constantes sont solutions de l'équation d'Hamilton-Jacobi

H X (x, d x u) = 0.
La constante critique c(H X ) est donc nulle. De plus on a

Ĩ(0) = Graph(X) = {(x, X(x)) | x ∈ X}, et la restriction φ t | Ĩ(0) du flot d'Euler-Lagrange à l'ensemble invariant Ĩ(0) est conju- gué (par π| Ĩ(0) ) au flot ϕ t de X sur M .
Puisque tous les points de ÃX sont récurrent par chaînes pour la restriction φ t | ÃX du flot d'Euler-Lagrange à ÃX , on déduit de la proposition précédente l'inclusion générale suivante :
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Propriété de Lyapunov des sous-solutions critiques

Si u : M → R est une sous-solution critique de H X (x,

d x u) = 0 on a, pour tout chemin γ : [a, b] → M , a ≤ b, de classe C 1 , u(γ(b)) -u(γ(a)) ≤ 1 2 b a || γ(s) -X(γ(s))|| 2 γ(s) ds.
Appliquée au flot ϕ t de X sur M , cette propriété montre donc que pour tout t ≥ 0

et tout x ∈ M , u(ϕ t (x)) -u(x) ≤ 0.
Toute sous-solution critique u de l'équation H X (x, d x u) = 0 fournit donc une fonction de Lyapunov pour le flot ϕ t de X sur M . De plus, si x ∈ X est un point de différentiabilité de u, on a H X (x, d x u) ≤ 0 i.e.

1 2 ||d x u|| 2 x + d x u(X(x)) ≤ 0.
En particuier, X • u(x) = d x u(X(x)) ≤ 0 avec égalité si et seulement si d x u = 0. On a donc la proposition suivante : Le champ de vecteur X se comporte donc comme un gradient pour toute soussolution stricte de l'équation H X (x, d x u) = 0.

Proposition 3.3 (Propriété de Lyapunov). Si u : M → R est une sous-solution critique de H X (x, d x u) =

Condition de disconnection de Mather

On dira que le lagrangien L X satisfait la condition de disconnection de Mather, voir [13, Section 4] si, pour toute sous-solution critique u et v de l'équation

H X (x, d x u) = 0, l'image (u -v)(A X ) est d'intérieur vide dans R.
Si L X satisfait la condition de disconnection de Mather, toute sous-solution critique u de l'équation H X (x, d x u) = 0 vérifie en particulier que l'image u(A X ) est d'intérieur vide dans R puisque 0 est une sous-solution critique de cette même équation.

Considérons alors une sous-solution critique u : M → R de classe C 1 , stricte en dehors de A X i.e. vérifiant H X (x, d x u) ≤ 0 avec égalité si et seulement si x ∈ A X . Une telle sous-solution existe d'après les travaux de A.Fathi et A.Siconolfi [START_REF] Fathi | Existence of C 1 critical subsolutions of the Hamilton-Jacobi equation[END_REF]Théorème 1.3]. Cette sous-solution fournit alors, d'après la proposition 3.3, une fonction de Lyapunov pour le temps 1 du flot de X sur M , dont l'ensemble neutre N (u) est contenu dans l'ensemble d'Aubry projeté A X . Si L X satisfait la condition de disconnection de Mather, l'image u(N (u)) est alors d'intérieur vide et d'après le lemme 2.1, on a R(ϕ 1 ) = R(X) ⊂ A X . Ceci montre le résulat suivant : INTRODUCTION Proposition 3.5. Si L X satisfait la condition de disconnection de Mather, on a A X = R(X).

Si le flot de X sur M est récurrent par chaînes, i.e. R(X) = M , et si L X satisfait la condition de disconnection de Mather, toute sous-solution critique u : M → R est donc nécessairement constante sur M puisque M est connexe et l'image u(M ) est alors totalement discontinue. En particulier, si L X satisfait la condition de disconnection de Mather et si le flot de M est récurrent par chaînes, les seules solutions KAM faibles de l'équation H X (x, d x u) = 0 sont les constantes. Réciproquement, si les seules solutions KAM faibles de l'équation H X (x, d x u) = 0 sont les constantes, on deduit de la proposition 2 que ÃX = Ñ . Puisque ÃX ⊂ Ĩ(0) ⊂ Ñ on a donc ÃX = Ĩ(0). Tous les points de ÃX étant récurrent par chaînes pour la restriction φ t | ÃX du flot d'Euler-Lagrange à ÃX , on déduit de la propositon 5.1 que R(X) = M . On a donc le théorème suivant, voir [13, Lemme 4.14] : Théorème 3.6. Si L X satisfait la condition de disconnection de Mather, les propriétés suivantes sont vérifiées :

(i) l'ensemble d'Aubry projecté A X est l'ensemble des points récurrents par chaînes du flot de X sur M , (ii) les constantes sont les seules solutions KAM faibles de l'équation

H X (x, d x u) = 0
si et seulement si le flot de X sur M est récurrent par chaînes.

En s'intéressant à la mesure de Hausdorff 1-dimensionnelle du quotient de Mather de ÃX , il est possible de montrer, voir [START_REF] Fathi | On the Hausdorff dimension of the Mather quotient[END_REF], que L X satisfait la condition de disconnection de Mather dès que Dim(M ) = 1, 2 et X est de classe C 2 ou Dim(M ) = 3 et X est de classe C k,1 avec k ≥ 3.

Fonctions dont l'ensemble des points critiques est un arc

Le théorème précédent répond donc, sous certaines conditions, à deux questions générales soulevées par A.Fathi dans [START_REF] Fathi | On the Hausdorff dimension of the Mather quotient[END_REF] :

Questions. Etant donné un lagrangien de Mañé L X : T M → R associé à un champs de vecteur X de classe C k , k ≥ 2, sur une variété riemannienne compact connexe M , (1) l'ensemble des points récurrents par chaînes du flot de X sur M coïncide-t-il avec l'ensemble d'Aubry projeté A X ? (2) peut on donner une condition sur la dynamique de X assurant que les seules solutions KAM faibles soient les constantes ? Si L X ne satisfait pas la condition de disconnection de Mather il est possible, en utilisant des contres-exemples de Whitney au théorème de Sard, de construire des exemples pour lesquels A X = R(X), voir [START_REF] Fathi | On the Hausdorff dimension of the Mather quotient[END_REF]Section 4.4]. La réponse à la première question est donc négative en général. On ne sait toujours pas cependant si la condition R(X) = M permet d'affirmer, sans l'hypothèse de disconnection de Mather, que les seules solutions KAM faibles soient les constantes. La troisième partie de cette thèse est ainsi motivée par la question sous-jacente suivante : Un tel énoncé incite donc à répondre par la négative à la question (Q) même s'il ne fournit pas de contre exemple à proprement dit. On conjecture qu'il est possible de trouver, dès que Dim(M ) ≥ n ≥ 2, une fonction non-constante u ∈ C n-1 (M, R) dont l'ensemble des points critiques est connexe. Pour n ≥ 4, une telle fonction u fournirait effectivement un contre exemple. En effet, si X est le champs de vecteur - 1 2 grad g (u), alors X est de classe C 2 , tous les point de M sont récurrents par chaînes pour le flot de X et u est une solution KAM faible non-constante de l'équation d'Hamilton-Jacobi H X (x, d x u) = 0. 
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Conley barriers and their applications 1 Introduction

The purpose of this paper is to shed a different light on chain-recurrence for dynamical systems on arbitrary separable metric space. The initial work of Conley [START_REF] Conley | Isolated invariant sets and the Morse index[END_REF] describes the structure of chain-recurrent points in terms of attractors of f and their basins of attraction. It is in line with the theory of dynamical systems done in the last fifty years, see for example [START_REF] Shub | Global stability of dynamical systems[END_REF]. The work of Conley is surveyed by Hurley [START_REF] Hurley | Noncompact chain recurrence and attraction[END_REF][START_REF]Lyapunov functions and attractors in arbitrary metric spaces[END_REF] where it is extended to the settings of arbitrary separable metric space. Moreover, in this work Hurley constructs a type of Lyapunov function which gives a good insight in the structure of chain-recurrent points. Here is a statement. Theorem 1.1. Let X be a separable metric space and f be a continuous map from X to itself. Then there exists a continuous function φ : X -→ R such that (i) The function φ is nonincreasing along orbits of f and is decreasing along orbits of non chain-recurrent points.

(ii) The function φ takes on distinct values on distinct chain-transitive components and sends the set of chain-recurrent points in a subset of the Cantor middlethird set.

The point of view taken in this paper is different and is inspired by the work of Fathi [START_REF] Fathi | Weak KAM theorem and Lagrangian dynamics[END_REF] in Weak KAM theory. We will associate a cost to chains in order to construct a barrier function, called a Conley barrier. Here are its main properties. Theorem 1.2. Let X be a compact metric space and f be a continuous map from X to itself. Then there exists a continuous function S : X × X -→ R + such that (i) For every (x, y) ∈ X 2 , we have S(x, y) = 0 if and only if for every ε > 0 there exists an ε-chain from x to y.

(ii) For every (x, y, z) ∈ X 3 , we have S(x, y) ≤ max(S(x, z), S(z, y)),

The existence of such a barrier allows to describe chain-recurrence only in terms of continuous functions and introduced an ultrametric structure on the set of chaintransitive components. This will lead to similar results as Hurley's ones, at least in the case of a separable locally compact metric space. For the sake of clarity, the first part of this paper is devoted to the compact case. Nevertheless, the compactness assumption is not essential to obtain a Conley barrier. This is the object of the second section. Moreover, we will deal with compactum-valued maps since this does not raise any new difficulty. Finally we highlight the link between chain-recurrence for the identity map on X and topological properties of X.

The compact case

Definitions and background

Throughout this section (X, d) will denote a compact metric space and f a continuous map from X to itself. Definition 2.1. Let (x, y) ∈ X2 and ε > 0. An ε-chain for f from x to y is a finite sequence (x 0 = x, ...,

x n = y), n ≥ 1, of X such that ∀i ∈ {0, .., n -1}, d(f (x i ), x i+1 ) < ε.
A point x in X is called chain-recurrent if for every ε > 0 there exists an ε-chain from x to x. We denote by R(f ) the set of chain-recurrent points of f . We define an equivalence relation on the set R(f ) by x y if and only if for every ε > 0 there are ε-chains from x to y and from y to x. The equivalence classes are called the chain-transitive components of f and the associated quotient space is denoted by R(f )/ .

It would be straightforward to verify that these notions are topological and do not depend on the metric d on X. In fact, it will be made clear in section 3. We now describe the main object of this paper. Definition 2.2. Let X be a compact metric space and f be a continuous map from X to itself. A Conley barrier for f is a continuous function S : X × X -→ R + with the properties that (i) For every (x, y) ∈ X 2 , we have S(x, y) = 0 if and only for every ε > 0 there exists an ε-chain from x to y.

(ii) For every (x, y, z) ∈ X 3 , we have S(x, y) ≤ max(S(x, z), S(z, y)).

With respect to property (i) any Conley barrier is in fact a barrier for chainrecurrence. The following simple lemma will be used many time.

Lemma 2.3. For every x ∈ X, we have S(x, f (x)) = 0.

Proof. For every x ∈ X and ε > 0, the chain (x, f (x)) is always an ε-chain from x to f (x). Thus we have S(x, f (x)) = 0 everywhere on X.

As stated in the following theorem, we can always find a Conley barrier for dynamical systems on compact metric space.

Theorem 2.4. Let X be a compact metric space and f be a continuous map from X to itself. Then there exists a Conley barrier for f . Proof. The proof of this theorem will be done in section 2.4.

Corollary 2.5. The set R(f ) is a closed subset of X.

Proof. It follows from property (i) of definition 2.2 that R(f ) = {x ∈ X, S(x, x) = 0}. Since S is continuous, this set is a closed subset of X.

Proposition 2.6. The subset R(f ) and the chain-transitive components are stable under f . Proof. First, we will show that

∀x ∈ R(f ), S(f (x), x) = 0. Let x ∈ R(f ). If f (x) = x,
there is nothing to prove. Therefore, we can assume that d(f (x), x) > 0. Let ε > 0 and consider η > 0 such that η < min(d(f (x), x), ε 2 ). Since x is chain-recurrent, there exists a η-chain

(x 0 = x, ..., x m = x) from x to x. The condition η < d(f (x), x) forces m ≥ 2. By continuity of f , reducing even more η if necessary, we can also assume that f (B(f (x), η)) ⊂ B(f 2 (x), ε 2 ). The chain (f (x), x 2 , ..., x m = x) is then an ε-chain from f (x) to x. Since ε is arbitrary, it follows that S(f (x), x) = 0. Now if x ∈ R(f ) then S(f (x), f(x)) ≤ max(S(f (x), x), S(x, f (x))) = 0 by lemma 2.3. Thus S(f (x), f(x)) = 0 and f (x) ∈ R(f ). Moreover, since S(x, f (x)) = S(f (x),
x) = 0 the points x and f (x) are in the same chain-transitive component. Thus the subset R(f ) and the chain-transitive components are stable under f . Before making S explicit, we are going to develop two consequences: an ultrametric distance on the set of chain-transitive components, and the existence of Lyapunov functions for f .

An ultrametric distance on the space of chain-transitive components

Pseudo-distance

In this section, we recall some general facts about pseudodistances. They will be used to endow the space of chain-transitive components with an ultrametric distance.

Definition 2.7. A pseudo-distance on a space E is a function

d : E × E -→ R + such that (i) For every x ∈ E, we have d(x, x) = 0.

THE COMPACT CASE (ii) For every x, y, z ∈ E, we have d(x, y) ≤ d(x, z) + d(z, y). (iii) For every x, y ∈ E, we have d(x, y) = d(y, x).

Let d be a pseudo-distance on E. We define an equivalence relation R on E by

xRy ⇐⇒ d(x, y) = 0.
We denote by E/R the set of associated equivalence classes. The following lemma is well-known so we omit its proof.

Lemma 2.8. The pseudo-distance d induces a distance d on the quotient space E/R. Moreover, if the space E is endowed with a topology making d continuous, then the quotient topology is finer than the topology defined by the metric d.

Remark 2.9. In the lemma above, if the pseudo-distance d satisfies the stronger

ultrametric inequality d(x, y) ≤ max(d(x, z), d(z, y))
then the distance d inherits of the same property and thus defines an ultrametric distance on the quotient space E/R.

Ultrametric distance induced by a Conley barrier on the set of chaintransitive components

The existence of a Conley barrier leads to the existence of a non-trivial ultrametric distance on the set of chain-transitive components. To see this, let us remark that the equivalence relation defined on the set of chaintransitive components can be formulated in the following way

x y ⇐⇒ max(S(x, y), S(y, x)) = 0.

The quantity Δ(x, y) := max(S(x, y), S(y, x))

is a symmetric expression in x and y and inherits of the ultrametric inequality satisfied by S. Thus, on the subset R(f ) = {x ∈ X, Δ(x, x) = 0} the function Δ is satisfying all axioms of an ultrametric pseudo-distance. As described in the previous section, it naturally induces an ultrametric distance Δ on the quotient space R(f )/ , i.e. on the space of chain-transitive components.

Corollary 2.10. Let X be a compact metric space and f be a continuous map from X to itself. Then the set of chain-transitive components with the quotient topology is a compact ultrametric space. We can take as a metric any ultrametric distance induced by a Conley barrier for f . In particular, this set is totally disconnected and Hausdorff.

Proof. The set of chain-recurrent points is closed in X and hence compact. Since the canonical projection

R(f ) p -→ (R(f )/ , quotient topology)
is continuous, the space (R(f )/ , quotient topology) is also compact.

Let Δ introduced above be an ultrametric distance induced by a Conley barrier on the set of chain-transitive components of f . Since Δ is continuous, it follows from lemma 2.8 that the quotient topology is finer than the ultrametric topology induced by Δ. Thus, in the following diagram the identity map

(R(f )/ , quotient topology) Id -→ R(f )/ , Δ
is a continuous bijection. Since the metric space R(f )/ , Δ is Hausdorff, the same goes for (R(f )/ , quotient topology). This set is thus a compact Hausdorff space. The identity map is then an homeomorphism and both topologies are the same. Since for an ultrametric distance every open ball is also closed, the set of chain-transitive components is totally disconnected.

Lyapunov functions

Definitions. We can use a Conley barrier to construct different types of Lyapunov functions for f . The following definition is used by Hurley, see [START_REF] Hurley | Noncompact chain recurrence and attraction[END_REF][START_REF]Lyapunov functions and attractors in arbitrary metric spaces[END_REF]. For general recalls about Hausdorff dimension, see [START_REF] Hurewicz | Dimension Theory[END_REF].

Definition 2.11. A strict Lyapunov function for f is a continuous function ϕ : X -→ R such that (i) For every x ∈ X, we have ϕ(f (x)) ≤ ϕ(x). (ii) For every x ∈ X \ R(f ), we have ϕ(f (x)) < ϕ(x).
A strict Lyapunov function is said to be complete if it satisfies the following additional property

(i') The function ϕ is constant on each chain-transitive component, takes on distinct values on distinct chain-transitive components and sends the subset R(f ) into a subset of R whose Hausdorff dimension is zero.

Our construction of Lyapunov functions will use a particular kind of functions, called sub-solutions of S. Here is the definition. Definition 2.12. Let S be a Conley barrier for f . A sub-solution for S is a continuous function u :

X -→ R such that ∀(x, y) ∈ X 2 , u(y) -u(x) ≤ S(x,

y).

A sub-solution is said to be strict if the inequality is strict as soon as x is not chain-recurrent for f . Lemma 2.13. Any sub-solution for S is nonincreasing along orbits of f and any strict sub-solution is decreasing along orbits of non chain-recurrent points. Thus any strict sub-solution for S is a strict Lyapunov function for f .

Proof. The proof follows from definitions and lemma 2.3.

The following lemma gives a fundamental example of sub-solutions.

Lemma 2.14. For every z in X, the function

S z : X -→ R x -→ S(z, x)
is a sub-solution for S.

Proof. Since a Conley barrier satisfies an ultrametric inequality, it also satisfies the triangle inequality. Thus for every x, y in X we have

S(z, y) ≤ S(z, x) + S(x, y)

which yields the wanted inequality.

Strict Lyapunov functions. We now construct a strict Lyapunov function for f . We will see later how sub-solutions of the type S x can in fact be used to construct a complete Lyapunov function for f . Theorem 2.15. Let X be a compact metric space and f be a continuous map from X to itself. There exists a sequence (x i ) i∈N of points of X and a sequence (η i ) i∈N of positive reals such that the series

ϕ = i∈N η i S x i
is a strict sub-solution for S, and thus a strict Lyapunov function for f .

Proof. Since the metric space X is compact, it is separable. Let (x i ) i∈N be a dense sequence in X and (η i ) i∈N be a sequence of positive reals such that i∈N η i = 1 . The continuous function S is bounded on the compact set X × X. Thus, the condition i∈N η i = 1 insures that the series i∈N η i S x i converges uniformly on X. Hence, it defines a continuous function ϕ on X. Moreover, the function ϕ is a sub-solution since a convex combination of sub-solutions is still a sub-solution. Now suppose that x ∈ X is not chain-recurrent. Then we have S(x, x) > 0 and thus S(x, y) -S(x, x) < S(x, y). By density of the (x i ) i∈N and continuity of S, we can find an integer j ∈ N such that S(x j , y) -S(x j , x) < S(x, y). Since the functions S x i are sub-solutions, we always have

∀i ∈ N, S(x i , y) -S(x i , x) ≤ S(x, y) it follows that ϕ(y) -ϕ(x) = i∈N η i (S(x i , y) -S(x i , x)) < i∈N η i S(x, y) = S(x, y)
Thus the function ϕ is a strict sub-solution for S and hence, a strict Lyapunov function for f .

Complete Lyapunov function

The construction of a complete Lyapunov function for f relies on the underlying ultrametric structure of the set of chain-transitive components. It strongly limits values taken by the sub-solutions S x , x ∈ X and will lead to functions with images of finite cardinality. The following lemma and corollary are thus fundamental. Lemma 2.16. For every x ∈ X, the function S x is constant in the neighborhood of each point of the set R(f

) \ {S(x, •) = 0}. Proof. Let x ∈ X and y ∈ R(f ) be such that S(x, y) > 0. Consider the open subset U x,y of X U x,y = {S(y, •) -S(x, y) < 0} ∩ {S(•, y) -S(x, •) < 0}.
Since y ∈ R(f ) we have S(y, y) = 0 and thus y ∈ U x,y . If z ∈ U x,y we have

S(x, z) ≤ max(S(x, y), S(y, z)) = S(x, y), S(x, y) ≤ max(S(x, z), S(z, y)) = S(x, z).
Thus S(x, z) = S(x, y) and S x is constant on U x,y .

Corollary 2.17. For every x ∈ X, the set {S(x, y), y ∈ R(f )} is countable. Moreover, the only possible accumulation point is zero. In particular, for every ε > 0, the function

θ ε • S x where θ ε (t) := max(t -ε, 0) takes a finite number of values on R(f ).
Proof. Let (x i ) i∈N be a dense sequence in X. Let x ∈ X. At each point of R(f ), the function S x is either 0 or constant in a neighborhood of that point. Thus, the set {S(x, y), y ∈ R(f )} is included in the set {S(x, x j ), j ∈ N} ∪ {0} and hence is countable. Now let α be an accumulation point of the set {S(x, y), y ∈ R(f )}. There exists a sequence (y n ) n∈N in R(f ) such that the sequence (S(x, y n )) n∈N admits α as a limit with S(x, y n ) = α, for every n ∈ N. By compactness of X, we can suppose that y n admits a limit y ∈ X. Since the set R(f ) is closed, we have y ∈ R(f ) and the continuity of S implies that α = S(x, y). If α is non zero then S x would be constant in the neighborhood of y. This would contradicts the fact that for every n ∈ N, S(x, y n ) = α. Thus α is zero.

We can now prove the existence of a complete Lyapunov function for f . Theorem 2.18. Let X be a compact metric space and f be a continuous map from X to itself. Then there exists a sequence (x n ) n∈N in X and a sequence (ε n ) n∈N of positive reals such that the series

ϕ = n∈N ε n θ 1 n+1
• S xn defines a complete Lyapunov function for f . Proof. For this proof, we will use lemma 5.1 of our Appendix. Let (x n ) n∈N be a dense sequence in X. Repeating each x n infinitely many times, we can suppose without lost of generality that for every k ∈ N the sequence (x n ) n≥k is still dense in X. It easily follows from the ultrametric inequality satisfied by S and the definition of the relation on the space of chain-recurrent points x y ⇐⇒ max(S(x, y), S(y, x)) = 0 that the functions S x for x in X are constant on each chain-transitive components. It follows from corollary 4.3 that for every x in X and every ε > 0 the function

θ ε • S x : X -→ R induces a function θ ε • S x
on the set of chain-transitive components with an image of finite cardinality. We will now apply lemma 5.1 of the Appendix to the space

A = R(f )/
together with the family θ 1 n+1

• S xn n∈N . We just have to prove that this family separates chain-transitive components. If x and y are in distinct chain-transitive components, we have for example S(x, y) > 0. Since S(x, x) = 0, the continuity of S and the density of the (x n ) n≥k for every k ∈ N, implies that we can find an integer n ∈ N such that 0 ≤ S(x n , x) < S(x n , y) -1 n+1 . Hence we have

θ 1 n+1 • S xn (x) = θ 1 n+1 • S xn (y). We conclude similarly if S(y, x) > 0. Thus, lemma 5.1 furnishes a sequence (ε n ) n∈N of positive reals such that the series n∈N ε n θ 1 n+1 • S xn converges on R(f )/ , separates points of R(f )/
and has an image in R whose Hausdorff dimension is zero. Each continuous functions θ 1

n+1

• S xn is bounded on the compact set X. Since the positive reals (ε n ) n∈N can be chosen arbitrarily small, we can also suppose that the non-negative series

ϕ = n∈N ε n θ 1 n+1 • S xn
converges uniformly on X. The fact that the series n∈N ε n θ 1 n+1

• S xn separates points of R(f )/ and has an image in R whose Hausdorff dimension vanishes precisely means that the function ϕ takes on distinct values on distinct chain-transitive components and sends R(f ) in a subset of R whose Hausdorff dimension is zero.

To complete the proof, we just have to show that ϕ is nonincreasing along orbits of f and decreasing along orbits of non chain-recurrent points. The first part is true since for every x ∈ X the sub-solution S x is nonincreasing along orbits of f and each

θ ε is monotonous. Now if x ∈ X \ R(f ), we have S(x, x) > 0. Since S(x, f (x)) = 0 and (x n ) n≥k is dense for every k ∈ N, we can find n ∈ N such that 0 ≤ S(x n , f(x)) < S(x n , x) - 1 n + 1 . Thus we have θ 1 n+1 • S xn (f (x)) < θ 1 n+1 • S xn (x) so that ϕ(f (x)) < ϕ(x).

Conley barrier

We now come to the construction of a Conley barrier. As a cost for chain, we will consider the maximum of the size of the different jumps. This leads to the following.

Definition 2.19. For every (x, y) ∈ X 2 , we set

S(x, y) := inf max i∈{0,..,n-1} d(f (x i ), x i+1 ) | n ≥ 1, x 0 = x, ..., x n = y .
We now prove that the function S is a Conley barrier for f .

Lemma 2.20. The function S satisfies the barrier property: for every (x, y) in X 2 we have S(x, y) = 0 if and only if for every ε > 0 there exists an ε-chain from x to y.

Proof. The property becomes clear with the following equivalent definition of S S(x, y) = inf{ε > 0 | there exists an ε-chain from x to y}.

Lemma 2.21. The function S satisfies the ultrametric inequality

∀(x, y, z) ∈ X 3 , S(x, y) ≤ max(S(x, z), S(z, y)).
Proof. Let x, y, z ∈ X and (x 0 = x, ..., x n = z), (z 0 = z, ..., z m = y) be two chains from x to z and from z to y. The concatenated chain provides a chain (y 0 = x, ..., y m+n+1 = y) from x to y and thus

S(x, y) ≤ max j∈{0,..,m+n} d(f (y j ), y j+1 ) ≤ max max i∈{0,..,n-1} d(f (x i ), x i+1 ), max j∈{0,..,m-1} d(f (z j ), z j+1 ) .
The result follows by taking the infimum on chains from x to z and then on chains from z to y.

Lemma 2.22. The function S is continuous.

Proof. Let x, x , y, y ∈ X. If (x 0 = x, ..., x n = y) is a chain from x to y, the chain ( x 0 , ..., x n ) obtained by replacing x n = y by y is a chain from x to y such that

max i∈{0,..,n-1} d(f ( x i ), x i+1 ) ≤ max i∈{0,..,n-1} d(f (x i ), x i+1 ) + |d(f (x n-1 ), y) -d(f (x n-1 ), y )| ≤ max i∈{0,..,n-1} d(f (x i ), x i+1 ) + d(y, y ).
Hence we get

S(x, y ) ≤ max i∈{0,..,n-1} d(f ( x i ), x i+1 ) ≤ max i∈{0,..,n-1} d(f (x i ), x i+1 ) + d(y, y ).
Taking the infimum on chains (x 0 , ..., x n ) from x to y we get S(x, y ) ≤ S(x, y) + d(y, y ).

THE COMPACT CASE

Similarly, replacing x 0 = x by x we have

S(x , y) ≤ S(x, y) + d(f (x), f(x )).
Exchanging role played by x, x and y, y , we thus get

|S(x, y ) -S(x, y)| ≤ d(y, y ), |S(x , y) -S(x, y)| ≤ d(f (x), f(x )).
It follows that

|S(x, y) -S(x , y )| ≤ |S(x, y) -S(x , y)| + |S(x , y) + S(x , y )| ≤ d(f (x), f(x )) + d(y, y )
and the continuity of S now follows from the continuity of f .

Remark 2.23. This last proof shows that every function

S x = S(x, •) is 1-Lipschitzian.
It follows that our Lyapunov functions are also Lipschitzian.

General construction

We would like to remove the compactness assumption made on X and to cover the case of compactum-valued maps, i.e. maps with values in the set Γ(X) of nonempty compact subsets of X. In fact, as we will see, the existence of a Conley barrier only requires the separability of the ambient metric space.

Hausdorff metric and compactum-valued map

We briefly recall the definition of the Hausdorff topology on Γ(X). For more details, see [START_REF] Sam | Continuum theory[END_REF].

Definition 3.1. Let (X, d) be a metric space. If K and K are two compact subsets of X, we define

D d (K, K ) = inf{ε > 0 | K ⊂ V d ε (K) and K ⊂ V d ε (K )} where V d ε (K) = {x ∈ X, d(x, K) < ε}. Proposition 3.2.
The function D d is a distance on the set Γ(X) of compact subsets of X. The topology it defines does not depend on the metric d used. It is called the Hausdorff topology on Γ(X).

Proof. The fact that the function D d is a distance is clear. It does not depends on the metric used since the convergence of a sequence K n to K can be expressed in a purely topological way. Indeed, the compactness of K implies that D d (K n , K) → 0 as n → +∞ if and only if (i) For every neighborhood V of K there exists N ∈ N such that for all n ≥ N we have K n ⊂ V .

(ii) For every x in K there is a sequence

(x n ) n∈N with x n ∈ K n such that x n → x as n → +∞. Definition 3.3. A compactum-valued map is a map from X to Γ(X).
It is said to be continuous if it is continuous for the Hausdorff topology on Γ(X).

Chain-recurrence on arbitrary separable metric space

In the settings of a noncompact metric space, the notion of chain-recurrence is usually defined using the set P of continuous functions from X to R * + instead of constants ε > 0. We thus keep topological invariance, see [START_REF] Hurley | Noncompact chain recurrence and attraction[END_REF]. The notion of U -chain now introduced gives a powerful way to avoid using this set P and emphasizes the fact that the notion of chain-recurrence is a purely topological one. Definition 3.4. Let U be an open covering of X. For A ⊂ X we set Remark 3.6. The notion of barycentric refinement will be used to generalize arguments involving triangular inequalities. Definition 3.7. Let (X, d) be a metric space and f : X -→ Γ(X) be a compactumvalued map. Given an open covering U of X and (x, y) in X 2 , a U -chain from x to y for f is a sequence

St(A, U) = U ∈ U A ∩ U = ∅ U. An open covering V of X is called an open refinement of U and is denoted by V ∝ U if for every V ∈ V there exists U ∈ U such that V ⊂ U . An open barycentric refinement of U is an open refinement V of U such that {St ({x}, V) , x ∈ X} ∝ U .
(x 0 = x, ..., x n = y), n ≥ 1, of X such that ∀i ∈ {0, .., n -1}, x i+1 ∈ St(f (x i ), U).
We define similarly the set R(f ) of chain-recurrent points, i.e. of points of X such that for every open covering U of X there exists a U -chain from x back to x. The chain-transitive components are similarly defined using the equivalence relation on R(f ) given by x y if and only if for every open covering U of X there exists U-chains from x to y and from y to x. Two points x and y in X will be said to be f -separated by U if there exists no U -chain for f from x to y. Remark 3.8. Any continuous map f : X -→ X can be seen as a continuous compactum-valued map since singletons are compact. Then, the previous definition just reduces to a sequence (x 0 = x, ...,

x n = y), n ≥ 1, of X such that ∀i ∈ {0, .., n -1}, ∃U ∈ U, f (x i ) ∈ U, x i+1 ∈ U.

Chain-recurrence adapted distance

From now on, f will denote a continuous compactum-valued map on a separable metric space (X, d). Our purpose is to construct a distance δ on X which allows to define chain-recurrence in the same way as in the compact case. We will follow a scheme given essentially in the work of Hurley, see [START_REF] Hurley | Noncompact chain recurrence and attraction[END_REF][START_REF]Lyapunov functions and attractors in arbitrary metric spaces[END_REF]. Definition 3.9. A metric δ on X is said to be chain-recurrence adapted for f if it defines the topology of X and if for every x and y in X the following assertions are equivalent:

(i) For every open covering U of X, there exists a U -chain from x to y.

(ii) For every number ε > 0, there exists an ε-chain for δ from x to y.

Remark 3.10. In the compactum-valued case, an ε-chain for δ is defined similarly with δ(f (x i ), x i+1 ) the distance from the point x i+1 to the compact subset f (x i ).

A central point in the construction of a chain-recurrence adapted distance is to show that the elements of the set 

E = (x, y) ∈ X × X |
∀x ∈ W x,y , f(x ) ⊂ St(f (x), V x,y ).
We first show that the open covering V x,y f -separates every point of W x,y from y. Let us suppose that for some x ∈ W x,y there exists a V x,y -chain

(x 0 = x , x 1 , ..., x n = y) from x to y. Since x 1 ∈ St(f (x ), V x,y ) we can find V 1 ∈ V x,y such that V 1 ∩ f (x ) = ∅, x 1 ∈ V 1 . Since V 1 ∩ f (x ) = ∅ and f (x ) ⊂ St(f (x), V x,y ), we can find V 2 ∈ V x,y such that V 2 ∩ f (x) = ∅, V 1 ∩ V 2 = ∅. Now, since V 1 , V 2 ∈ V x,y , V 1 ∩ V 2 = ∅ and V x,y is an open barycentric refinement of U x,y , we can find U ∈ U x,y such that V 1 ∪ V 2 ⊂ U . But then we have x 1 ∈ U and U ∩ f (x) = ∅, i.e. x 1 ∈ St(f (x), U x,y ).
Since the open covering V x,y is a fortiori an open refinement of U x,y , the chain (x 0 = x, x 1 , ..., x n = y) is thus a U x,y -chain from x to y, which is absurd. Thus the open covering V x,y f -separates every point of W x,y from y. Now let V x,y be an open barycentric refinement of V x,y . Let W x,y be any open set of V x,y containing y. Since V x,y is an open barycentric refinement of V x,y and y ∈ W x,y ∈ V x,y , a similar proof shows that if (x 0 , x 1 , ..., x n ) is a V x,y -chain starting in W x,y and ending in W x,y then the chain (x 0 , ..., x n-1 , y) is a V x,y -chain starting in W x,y and ending at y. Since the open covering V x,y f -separates every point of W x,y from y, we conclude that the open covering V x,y f -separates every point of W x,y from every point of W x,y .

In particular, we have shown that the subset E of X × X is open. The space X being metric and separable, the same goes for E which thus satisfies the Lindelöf property. We can thus extract from the open covering

W x,y × W x,y , (x, y) ∈ E of E a countable sub-covering W x i ,y i × W x i ,y i i∈N .
The family of associated open coverings (V x i ,y i ) i∈N provides the wanted countable family.

We will apply the following well-known lemma to the family (U l ) l∈N of open coverings furnished by the previous lemma to obtain the desired chain-recurrence adapted distance. Lemma 3.13. Given a countable family (U l ) l∈N of open coverings of X, there exists a metric δ on X that defines the topology of X and such that

∀l ∈ N, B δ x, 1 2 l , x ∈ X ∝ U l .
Proof. Let l ∈ N. Since any metric space is paracompact, we can find a partition of unity ϕ l U U ∈U l subordinate to U l such that the supports of the ϕ l U form a neighborhood finite closed covering of X, see [START_REF] Dugundji | Reprinting of the 1966 original[END_REF]Chapter VIII]. For any open set U in U l we set

ψ l U (x) := ϕ l U (x) sup U ∈U l ϕ l U (x)
.

The function ψ l U is well defined since the supports of the ϕ l U U ∈U l form a locally finite family and is continuous since the ϕ l U are. Moreover, we have 0 ≤ ψ l U ≤ 1 and thus the series l∈N 1 2 l max U ∈U l ψ l U (x)ψ l U (y) converges uniformly and defines a continuous function on X × X.

We then define

δ(x, y) := d(x, y) + l∈N 1 2 l max U ∈U l ψ l U (x) -ψ l U (y) .
The function δ is a distance. Let us show that it induces the topology of X. Since

d ≤ δ, if x n -→ x for δ then x n -→ x for d. Conversely, if x n -→ x for d then by continuity of the function (x, y) -→ l∈N 1 2 l max U ∈U l ψ l U (x) -ψ l U (y)
we have x n -→ x for δ. We now show the refinement property. Let l ∈ N and x ∈ X. Since the supports of the ϕ l U U ∈U l form a locally finite family there exists

U x ∈ U l such that ϕ l Ux (x) = sup U ∈U l ϕ l U (x).
We then have ψ l Ux (x) = 1. But then, for y ∈ B δ (x, 1 2 l ) we have

1 2 l 1 -ψ l Ux (y) ≤ 1 2 l max U ∈U l ψ l U (x) -ψ l U (y) ≤ δ(x, y) < 1 2 l .
Thus, we have 1ψ l Ux (y) < 1 and necessarily ψ l Ux (y) > 0, hence y ∈ U x . Thus B δ (x, 1 2 l ) ⊂ U x ∈ U l and the lemma is proved. We can now prove the following theorem.

Theorem 3.14. Let X be a separable metric space and f : X -→ Γ(X) be a continuous map. Then there exists a chain-recurrence adapted distance for f on X.

Proof. We apply the previous lemma to the f -separating family (U l ) l∈N of lemma 4.7 to obtain a distance δ on X that defines the topology of X. Let us prove that this distance is chain-recurrence adapted. For x, y in X we have to prove that the following assertions are equivalent (i) For every open covering U of X, there exists a U -chain from x to y.

(ii) For every number ε > 0, there exists an ε-chain for δ from x to y.

Let us suppose (i). The open coverings B δ (x , ε

2 ), x ∈ X , ε > 0, provides by triangle inequality ε-chains for δ from x to y. Since ε is arbitrary, it shows (ii). Conversely, let us suppose (ii). For every l ∈ N we have

B δ (x , 1 2 l ), x ∈ X ∝ U l .
Thus, every 1 2 l -chain for δ from x to y is in fact a U l -chain from x to y. Since the family (U l ) l∈N is a f -separating one, it shows (i).

Conley barrier

In the setting of a noncompact metric space, we define what a Conley barrier is using the notion of U-chains. Definition 3.15. Let X be a metric space and f : X -→ Γ(X) be a continuous map. A Conley barrier for f is a continuous function S : X × X -→ R + with the properties that (i) For every (x, y) ∈ X 2 , S(x, y) = 0 if and only if for every open covering U of X there exists a U-chain for f from x to y.

(ii) For every (x, y, z) ∈ X 3 , we have S(x, y) ≤ max(S(x, z), S(z, y)).

As in the compact case, we will show the following theorem.

Theorem 3.16. If X is a separable metric space and f : X -→ Γ(X) is a continuous map then there exists a Conley barrier for f .

Proof. According to theorem 3.14, there exists a chain-recurrence adapted distance δ on X for f . Since chain properties are fully described using the metric δ, it is enough to construct a continuous function S such that

(1) For every (x, y) ∈ X 2 , we have S(x, y) = 0 if and only if for every ε > 0 there exists an ε-chain for δ from x to y.

(2) For every (x, y, z) ∈ X 3 , we have S(x, y) ≤ max(S(x, z), S(z, y)).

The only difference with the compact case is that f is now a compactum-valued map. For every (x, y) ∈ X 2 , we thus define similarly S as

S(x, y) := inf max i∈{0,..n-1} δ(f (x i ), x i+1 ) | n ≥ 1, x 0 = x, ..., x n = y .
The distance from f (x i ) to x i+1 being understood as the distance of the point x i+1 to the compact set f (x i ). A similar proof than in the compact case then shows that

|S(x, y) -S(x , y )| ≤ δ(y, y ) + D δ (f (x), f(x )).
Thus the function S inherits of the continuity of f . The proofs of properties (1) and

(2) can now be readily adapted.

Ultrametric distance induced on the space of chain-transitive components

The fact that a Conley barrier induces an ultrametric distance on the set of chaintransitive components does not use compactness of X. Thus, the constructions of section 2.2 can be readily adapted. In particular, any Conley barrier furnishes an ultrametric distance on the set of chain-transitive components of f and the induced ultrametric topology is coarser than the quotient topology. Thus, we have the following.

Theorem 3.17. Let X be a separable metric space and f : X -→ Γ(X) be a continuous map. Then the set of chain-transitive components of f is Hausdorff and totally disconnected.

Nevertheless, contrary to the compact case, the ultrametric topology induced by a Conley barrier may differ from the quotient topology. A counterexample is given in section 4.2.

Lyapunov functions

Definitions. In the case of a compactum-valued map, the definitions of Lyapunov functions need to be slightly modified. Definition 3.18. Given a metric space X and a continuous map f : X -→ Γ(X), a strict Lyapunov function for f is a continuous function ϕ : X -→ R such that (i) For every x in X and every y in f (x), we have ϕ(y) ≤ ϕ(x).

(ii) For every x in X \ R(f ) and every y in f (x), we have ϕ(y) < ϕ(x).

A strict Lyapunov function is said to be complete if it satisfies the following additional property (i') The function ϕ is constant on each chain-transitive component, takes on distinct values on distinct chain-transitive components and sends the subset R(f ) into a subset of R whose Hausdorff dimension is zero.

The notion of sub-solution for a Conley barrier S is similarly defined. Moreover, proofs of lemma 2.13 and 2.14 are unchanged.

Strict Lyapunov function. Our construction of a strict Lyapunov function for f is still based on sub-solutions of the type S x for x ∈ X. The existence of a uniform bound for S is there replaced by the following lemma.

Lemma 3.19.

There is a countable open covering (U n ) n∈N of X such that for every x ∈ X and for every n ∈ N, the function S x is bounded on U n .

Proof. Let x ∈ X. By continuity of S x , there is an open neighborhood U x of x such that S(x, •) is bounded on U x . For x ∈ X we have ∀y ∈ U x , S(x , y) ≤ max(S(x , x), S(x, y)).

Thus the function S(x ,

•) is also bounded on U x . Since the metric space X is separable, it is Lindelöf . Hence, a countable sub-covering of the open covering {U x , x ∈ X} of X provides the wanted covering.

Corollary 3.20. For every sequence (x i ) i∈N of X, there exists a sequence (η i ) i∈N of positive reals such that the non-negative series i∈N η i S x i converges uniformly in the neighborhood of each points of X.

Proof. Let (U n ) n∈N be an open covering of X furnished by the previous lemma. Each function S x i , i ∈ N, is bounded on U 0 . Thus, there is a sequence (ρ 0 i ) i∈N of positive reals such that the series i∈N ρ 0 i S x i converges uniformly on U 0 . Similarly, there is a sequence (ρ 1 i ) i∈N of positive reals such that the series i∈N ρ 1 i S x i converges uniformly on U 1 . Moreover, reducing the ρ 1 i if necessary, we can also suppose that ρ 1 i < ρ 0 i . We thus construct using induction sequences (ρ k i ) i∈N , for k in N, such that 0 < ρ k+1 i < ρ k i and the series i∈N ρ k i S x i converges uniformly on U k . These both conditions then imply that the series i∈N η i S x i , with η i = ρ i i , converges uniformly on each U k , k ∈ N. The result follows since (U n ) n∈N is an open covering of X. Remark 3.21. If we define instead η i by min(ρ i i , 1 2 i+1 ), we can also assume that the series i≥1 η i converges and belongs to ]0, 1[. Thus, changing η 0 in 1 -i≥1 η i , we can suppose without lost of generality that i∈N η i = 1.

We can now prove the following theorem. Theorem 3.22. Let X be a separable metric space and f : X -→ Γ(X) be a continuous map. Then there is a sequence (x n ) n∈N of points of X and a sequence (η n ) n∈N of positive reals such that the series

ϕ = n∈N η n S xn
is a strict sub-solution for S and thus a strict Lyapunov function for f . Proof. As in the compact case, let us choose a dense sequence (x i ) i∈N of X. Let (η i ) i∈N be the associated sequence given by corollary 3.20. Thanks to remark 3.21, we can suppose that i∈N η i = 1. The same proof as in the compact case then shows that the function ϕ = i∈N η i S x i is a strict sub-solution for S and thus a strict Lyapunov function for f . Complete Lyapunov function. If we had an hypothesis of local compactness, the same tools as in section 2.3 can be used to construct a complete Lyapunov function. In particular, the proof of the following lemma did not use any compactness and is still valid. Lemma 3.23. Let X be a separable metric space. For every x ∈ X, the function S x is constant in the neighborhood of each point of the set R(f ) \ {S(x, •) = 0}. Corollary 3.24. Let X be a separable metric space. For every compact subset K of X and for every x in X, the set {S(x, y), y ∈ R(f ) ∩ K} is countable and the only possible accumulation point is zero. In particular, for every ε > 0, the function θ ε • S x where θ ε (t) := max(tε, 0) takes a finite number of values on R(f ) ∩ K.

Proof. The proof is the same as proof of corollary 4.3 once the set R(f ) has been replaced by R(f ) ∩ K. Theorem 3.25. Let X be a locally compact and separable metric space and f : X -→ Γ(X) be a continuous map. Then there is a sequence (x n ) n∈N of points of X and a sequence (ε n ) n∈N of positive reals such that the series

ϕ = n∈N ε n θ 1 n+1
• S xn defines a complete Lyapunov function for f . Proof. Let (x n ) n∈N be a dense sequence in X. Without lost of generality, we can suppose that for every k ∈ N the sequence (x n ) n≥k is still dense in X. Since X is locally compact, metric and separable, there exist a family (K n ) n∈N of compact subsets of X such that X = ∪ n∈N K n and for every n ∈ N, we have K n ⊂ Kn+1 . For every n ∈ N, each function θ

1 k+1 • S x k , k ∈ N, is bounded on the compact set 3. GENERAL CONSTRUCTION K n .
Using a diagonal process, we can find a sequence (η n ) n∈N of positive reals such that the series n∈N η n θ 1 n+1

• S xn converges uniformly on each K n and thus defines a continuous function on X.

As in the compact case, the functions θ ε • S x are constant on chain-transitive components and induce functions θ ε • S x on the quotient space R(f )/ . Thanks to corollary 3.24, for every (k, n) ∈ N 2 , the function θ 1 k+1

• S x k takes a finite number of values on R(f ) ∩ K n . We will now use lemma 5.1 with the set A = R(f )/ , the family (θ 1 n+1 • S xn ) n∈N and A n = p(K n ) where p denotes the canonical projection from R(f ) onto R(f )/ . As in the compact case, we easily verify that for every k ∈ N the family (θ

1 n+1 • S xn ) n≥k separates points of R(f )/ . Thus lemma 5.1 furnishes a sequence (ε n ) n∈N of positive reals such that the series n∈N ε n θ 1 n+1 • S xn converges on R(f )/ , separates points of R(f )/
and has an image of zero Hausdorff dimension in R. Since the positive reals (ε n ) n∈N can be chosen arbitrarily small, we can also assume that for every n ∈ N we have ε n < η n . Hence, the function

ϕ = n∈N ε n θ 1 n+1
• S xn converges uniformly on each K n , n ∈ N, and thus defines a continuous function on X. It is constant on each chain-transitive component, takes on distinct values on distinct chain-transitive components and sends R(f ) in a subset of R whose Hausdorff dimension is zero. The rest of the proof is now similar to the compact case. [START_REF] Bates | Toward a precise smoothness hypothesis in Sard's theorem[END_REF] The case f = Id X In the particular case f = Id X , a U -chain from x to y just corresponds to a sequence

(U i ) 0≤i≤n of open sets of the open covering U such that x ∈ U 0 , y ∈ U n , ∀i ∈ {0, .., n -1}, U i ∩ U i+1 = ∅.
In particular, a Conley barrier associated to the identity is symmetric. Chainrecurrence properties are then linked with the topology of X.

The quasicomponents

Definition 4.1. Let X be a topological space. Two points x and y of X are said to be separated in X if the space X can be split into two disjoint open sets U and V containing respectively x and y.

The relation not being separated defines an equivalence relation on X. The associated equivalence classes are called the quasicomponents of X. Two point x and y lie in the same quasicomponent if and only if every open and closed subset of X containing x or y contains both x and y. Thus, the quasicomponent of a point x coincides with the intersection of open and closed subsets of X that contain x. In particular, the connected component of x is included into the quasicomponent of x. Remark 4.2. In a compact space, the connected component of a point x coincides with the quasicomponents of x, see [START_REF] Hurewicz | Dimension Theory[END_REF]Chapter II]. Nevertheless, even if the space is locally compact, quasicomponents may be larger than connected components. See for example the counterexample of nested rectangle in [START_REF] Arthur Steen | Counterexamples in topology[END_REF].

The quasicomponents are essentially characterized by a Conley barrier associated to the identity, as shown in the following result. Lemma 4.3. Let X be a separable metric space. Then the quasicomponents of X coincide with the chain-transitive components of Id X .

Proof. We have to show that two point x and y are separated in X if and only if there exists an open covering U of X that Id X -separates x from y. Let us suppose that for every open covering U of X, there is a U-chain for the identity map from x to y. If x and y where separated in X say by U and V , the open covering {U, V } would leads to a contradiction. Conversely, let us suppose that there is an open covering U of X such that there is no U-chain for the identity map from x to y. Let U ∈ U be an open set such that x ∈ U . We consider the set

O = n∈N St n (U, U) where St n (U, U) = St(...St n times (U, U).., U).
The set O is open and we claim that the same is true for X \O. Indeed, let z ∈ X \O. If we denote by V an element of U such that z ∈ V , then V ⊂ X \ O. Moreover we have y ∈ X \ O since there is no U -chain from x to y for Id X . The points x and y are thus separated by the open subsets O and X \ O.

We then deduce the following corollary.

Corollary 4.4. Let X be a separable metric space and S be a Conley barrier for the identity map on X. Then two points x and y of X are in the same quasicomponent if and only if S(x, y) = 0.

If the metric space X is compact, the quasicomponents and the connected components of X coincide. We thus obtain the following known result, which follows from corollary 4.0.12. Theorem 4.5. Let X be a compact metric space. Then the set of connected components of X is an ultrametric space.

If some quasicomponent fail to be compact, the ultrametric topology induced by a Conley barrier may be strictly coarser than the quotient topology. Such an example is studied in the next section.

A counterexample

We consider the plane R 2 and for k ∈ N we set

D = {(0, y), y ≥ 0}, A k = 1 n , k + 1 2 , n ≥ 1 , X = k∈N A k D.

X

We endow the space X with the Euclidean topology inherited from R 2 . The space X thus obtained is a closed subset of R and hence is locally compact. Lemma 4.6. For every countable family

(V i ) i∈N of open sets of R 2 containing D, there is an open set V of R 2 containing D and such that ∀i ∈ N, X ∩ V i X ∩ V. Proof. We first construct a sequence (U k ) k∈N of open sets of R 2 such that (i) For every k ∈ N, {0} × [k, k + 1] ⊂ U k . (ii) For every k = l, U k ∩ A l = ∅. (iii) For every k ∈ N, there is n k ∈ N * such that 1 n k , k + 1 2 ∈ V k \ U k .
To insure the first two points, it is enough to choose U k contained in the strip

(x, y) , x ∈ R, k - 1 4 < y < k + 5 4 ⊃ {0} × [k, k + 1].
For the last point, we notice that the point 0, k + 1 2 lies in V k ∩ Āk . Thus there is an integer

n k > 0 such that 1 n k , k + 1 2 ∈ V k . We thus set U k = (x, y) ∈ R 2 | x < 1 n k , k - 1 4 < y < k + 5 4 . From (i), the open set V = k∈N U k contains D. Now let i ∈ N. By construction we have 1 n i , i + 1 2 / ∈ U i
and from (ii) we have

∀l = i, 1 n i , i + 1 2 / ∈ U l Thus 1 n i , i + 1 2 / ∈ X ∩ V while 1 n i , i + 1 2 ∈ X ∩ V i . We thus have X ∩ V i X ∩ V as assumed.
Corollary 4.7. The set of quasicomponents of the metric space X defined above is not metrizable. Hence, the topology induced by a Conley barrier for Id X on the set of quasicomponents is strictly coarser than the quotient topology.

Proof. The quasicomponents of X are the half line D and the singletons 1 n , k + 1 2 n≥1,k>0 . We will show that D does not admit any countable basis of open neighborhoods in the quotient topology.

Otherwise, let ( O i ) i∈N be such a basis. The inverse images by the canonical projection p provide a family (O i ) i∈N of open sets of X that contain D. Thus there is a family

(V i ) i∈N of open set of R 2 containing D and such that O i = V i ∩X = p -1 ( O i ).
According to lemma 4.6, there is an open set V of R 2 containing D such that for every i ∈ N, X ∩ V i X ∩ V . Since V contains D and since the quasicomponents of X \ D are reduced to singletons, we have p -1 (p(V )) = V ∩ X. Thus the set p(V ) is an open set that contains D. But for every i ∈ N the set p -1 

( O i ) = O i = X ∩ V i is not include in X ∩ V . Thus O i p(V )

Totally separated space

We can now also answer the following question: under which conditions are chaintransitive components of Id X reduced to singletons ? Definition 4.8. A topological space X is said to be (i) totally disconnected if connected components of X are reduced to singletons.

(ii) totally separated if two distinct points of X can always be separated.

(iii) of dimension 0 if every point of X have a basis of open sets with empty boundary.

We always have (iii) ⇒ (ii) ⇒ (i) and if X is a locally compact space, these notions coincide. In the general setting, they may be different, see [16, Chapter II].

Proposition 4.9. Let X be a separable metric space. Then the chain-transitive components associated to the identity are reduced to singletons if and only if X is totally separated.

Proof. It is corollary 4.4.

4. THE CASE F = ID X

Function series and Hausdorff dimension

In this section, we develop some general facts about the Hausdorff dimension of images of some particular function series. They are used to construct complete Lyapunov functions for f in section 2.3 and 3.6. Throughout this section, (f i ) i∈N will denote a family of real valued functions on a set A, such that either (i) For every i ∈ N, the set f i (A) is finite.

(ii) The family (f i ) i∈N separates points of A, i.e. for each a, b in A with a = b, there exists an

f i such that f i (a) = f i (b). or (i) A = ∪ n∈N A n . (ii) For every (k, n) ∈ N 2 , the set f k (A n ) is finite.
(iii) For every k ∈ N, the family (f k ) k≥n separates points of A.

Lemma 5.1. In both cases, there exists a sequence (ε n ) n∈N of arbitrarily small positive reals such that the series n∈N ε n f n converges on A, separates points of A and has an image of zero Hausdorff dimension in R.

Proof. We begin with the second case. Considering sets Ãn = ∪ k≤n A k instead of A n , we can suppose that ∀n ∈ N, A n ⊂ A n+1 .

Since for every (k, n) ∈ N 2 the set f k (A n ) is finite, we can construct using induction a sequence (ε n ) n∈N of positive reals such that

(i) ε 0 > 0, (ii) ∀n ∈ N, k≥n+1 ε k max An |f k | < 1 2 η n , (iii) ∀n ∈ N, k≥n+1 ε k max An |f k | < e -nνn ,
where

ν n = Card n k=0 ε k f k (A n )
and η n is the minimum of the distance between two distinct points of the finite set

n k=0 ε k f k (A n ).
If this image is reduced to a single point, we just set η n = 1. Note that the (ε n ) n∈N can be chosen arbitrarily small. Property (iii) implies that the series n∈N ε n f n converges uniformly on each A n and thus converges on A. Now, let a, b ∈ A be two distinct points of A. Since A = ∪ n∈N A n and A n ⊂ A n+1 , we can choose n large enough so that a and b lie in

A n . If k≤n ε k f k (a) = k≤n ε k f k (b) then by property (ii) we have k∈N ε k f k (a) = 36 5. APPENDIX k∈N ε k f k (b).
Otherwise, by hypothesis the family (f k ) k≥n+1 separates points of A, thus there is a first n 0 ≥ n + 1 such that f n 0 (a) = f n 0 (b). Hence we have

k≤n 0 ε k f k (a) = k≤n 0 ε k f k (b). Since a, b ∈ A n ⊂ A n 0 ,
we can conclude similarly. Thus the series n∈N ε n f n separates points of A.

Let us now prove that the set n∈N ε n f n (A) is a subset of R whose Hausdorff dimension is zero. Since this property is stable under countable union, it is enough to show that for every n ∈ N the set

k∈N ε k f k (A n ) has a zero Hausdorff dimension in R. Let n ∈ N. We write k∈N ε k f k (A n ) = k≤n ε k f k (A n ) + k≥n+1 ε k f k (A n ).
By property (iii), the subset k∈N ε k f k (A n ) can be covered by ν n balls of radius e -nνn . Since for every l ∈ N, A n ⊂ A n+l , we conclude that the subset k∈N ε k f k (A n ) can be covered by ν n+l balls of radius e -(n+l)ν n+l . Since

∀ρ > 0, ν n+l (e -(n+l)ν n+l ) ρ → 0, (l → +∞) the subset k∈N ε k f k (A n ) has a zero Hausdorff dimension.
For the first case of the lemma, we take A n = A for every n ∈ N and we construct similarly a sequence (ε n ) n∈N of positive reals. If a, b are two distinct points of A then by property (ii) there is a first

n ∈ N such that k≤n ε k f k (a) = k≤n ε k f k (b). Then, by construction of the sequence (ε n ) n∈N we have k∈N ε k f k (a) = k∈N ε k f k (b).
The end of the proof is now similar.

On the equivalence of chain-recurrence definitions

In this section, we give another definition of chain-recurrence which is used by Hurley in [START_REF] Hurley | Noncompact chain recurrence and attraction[END_REF] and we prove that it is equivalent to the U -chain approach. Throughout this section, (X, d) will denote a separable metric space and f a continuous map from X to itself. We will denote by P the set of continuous functions ε : X -→ R * + . The set P is introduced by Hurley in [START_REF] Hurley | Noncompact chain recurrence and attraction[END_REF] in order to keep topological invariance. Definition 5.2. Let x, y ∈ X and ε ∈ P. An ε-chain for f from x to y is a finite sequence (x 0 = x, ...,

x n = y), n ≥ 1, of X such that ∀i ∈ {0, .., n -1}, d(f (x i ), x i+1 ) < ε(f (x i )).
Remark 5.3. If X is compact, we only need to use constant ε > 0 instead of elements of P since any continuous function reaches its minimum on X. Definition 5.2 is thus a generalization of the compact case one.

As shown in the following proposition, this definition leads us to the same notion of chain-recurrence than definition 5.2. Proposition 5.4. Let x, y ∈ X. The following assertions are equivalent:

(i) For every ε ∈ P, there is an ε-chain from x to y.

(ii) For every open covering U of X, there is an U-chain from x to y.

APPENDIX

Proof. Let U be an open covering of X. A metric space is paracompact so there is a locally finite refinement Ũ of U. For U ∈ Ũ let

ε U (x) = d (x, X\U ) 2 and ε(x) = max U ∈ e U ε U (x)
with the convention that d(x, ∅) = 1. The function ε is well defined and continuous since the open covering Ũ is locally finite and each ε U is continuous. Moreover, this function is positive everywhere on X since U is an open covering of X. For an open set U ∈ U that realizes the maximum in the definition of ε(x), we have

B d (x, ε(x)) ⊂ U . Thus {B d (x, ε(x)), x ∈ X)} ∝ Ũ ∝ U
and every ε-chain from x to y provides a U-chain from x to y. It shows that (i) ⇒ (ii).

Conversely, let ε ∈ P. Then for every x ∈ X, there is an open neighborhood U x of x such that for every x ∈ U x we have ε(x ) > ε(x) 2 . Reducing U x , we can also suppose that U x ⊂ B d (x, ε(x)). We then consider the open covering U = {U x , x ∈ X} of X. Let (x 0 = x, x 1 , ..., x n-1 , x n = y) be a U-chain from x to y. For every i ∈ {0, ..., n-1} there is z i ∈ X such that f (x i ) and x i+1 lie in

U z i ∈ U. Since U z i ⊂ B d (z i , ε(z i )) we have d(f (x i ), x i+1 ) ≤ d(f (x i ), z i ) + d(z i , x i+1 ) ≤ 2ε(z i ) < 4ε(f (x i )). The chain (x, x 1 , ..., x n-1 , y) is thus a 4ε-chain from x to y. It shows that (ii) ⇒ (i). 38 5. APPENDIX Chapter 2
The Aubry-Mather theory of a homeomorphism

In collaboration with Albert Fathi 1 Neutral set of a Lyapunov function Throughout this paper, (X, d) will denote a compact metric space and h will denote a homeomorphism of X. A Lyapunov function for h is a continuous real-valued function θ : X → R such that θ • h ≤ θ i.e. the function θ is non-increasing along orbits of h. Constant functions are example of trivial Lyapunov functions. Given a Lyapunov function θ for h, we will say that a point x ∈ X is a neutral point of θ if θ(h(x)) = θ(x). We denote by N (θ) the set of neutral points of θ, that is,

N (θ) = {x ∈ X | θ(h(x)) = θ(x)}.
We define the neutral values of θ as the images under θ of neutral points. Notice that the neutral set of a Lyapunov function θ is never empty since minimums of θ are neutral points. The terminology of critical points rather than neutral points is sometime used but it may cause confusion. Indeed, when the function θ turns out to be differentiable, the set of critical points {x ∈ X | d x θ = 0} and of critical values θ({x ∈ X | d x θ = 0}) of θ as a differentiable function do not coincide with neutral points and neutral values, see example 1.3.

A Lyapunov function is useful if we can get an a priori description of its neutral set. Of course, the neutral set of a Lyapunov function always contains fixed points of h as well as periodic points or even non-wandering points Ω(h). Nevertheless, these inclusions may be strict.

Example 1.1. The arrows indicates the direction from x to h(x) and the bold points are fixed.

The non-wandering points are the two fixed points but any Lyapunov function must be trivial and therefore admits the whole circle as neutral set.

A famous theorem of Conley [7, Chapter II, Section 6.4] asserts that we can always find a Lyapunov function θ for h such that the neutral set of θ coincides with the chain recurrent set of h.

Theorem 1.2 (Conley).

There is a Lyapunov function θ : X → R with

N (θ) = R(h)
and such that the neutral values of θ are nowhere dense. Moreover, the function θ is constant on every chain transitive components and takes on different values on different chain transitive components. This result will turn out to be sharp because of the hypothesis made on the neutral values, see corollary 2.3. Nevertheless, in a general way, there is no relation between the neutral set of a Lyapunov function θ and the chain recurrent set of h. In particular, the assumption R(h) ⊂ N (θ) is in general wrong if the neutral values of θ do not have empty interior, even if the function θ is extremely regular.

Example 1.3. Here, every point is chain recurrent while the height function θ is a C ∞ Lyapunov function for which neutral points coincide only with the half circle made of fixed points.

Notice that the neutral values of the height function is then a whole non-trivial closed segment.

Section 2 is precisely devoted to the study of the (not so well known) link between chain-recurrence and neutral set of a Lyapunov function. As suggested above, the topology of the neutral values will be the relevant factor.

The main purpose of this paper is then to give sharp description of the neutral set of a Lipschitzian Lyapunov function in a general way. More precisely, we are going to construct a closed invariant subset A d (h) of X such that This goal is achieved in Section 4 with theorem 4.4. Since any Lyapunov function is Lipschitzian for an appropriate metric, these results also yield to a sharp description of the neutral set of any continuous Lyapunov function. This is the object of Section 5 and theorem 5.2. In particular, we recover the notion of generalized recurrence introduced by Auslander in [START_REF] Auslander | Generalized recurrence in dynamical systems[END_REF]. The definition of the set A d (h) is given in Section 3 and relies on a barrier, that is a continuous function

L d : X × X → [0, +∞[
satisfying the triangular inequality with a dynamical meaning in terms of recurrence.

A similar approach was already used in chapter 1, see also [START_REF] Pageault | Conley barriers and their applications: chain-recurrence and Lyapunov functions[END_REF], to give a new description of chain-recurrence and recover Conley's theorem with an appropriate barrier satisfying a stronger ultrametric inequality.

Chain-recurrence and neutral set

We recall from chapter 1 some facts about chain-recurrence. Let x, y ∈ X and let ε > 0. An ε-chain for h from x to y is a finite sequence {x 0 , ..., x n } in X such that x 0 = x, x n = y and, for every i ∈ {0, .., n -1}

d(h(x i ), x i+1 ) < ε.
We define a closed transitive relation P(h) on X in the following way: (x, y) ∈ P(h) if and only if, for every ε > 0, there is an ε-chain for h from x to y. A point x ∈ X is said to be chain recurrent for h if (x, x) ∈ P(h). We denote by R(h) the set of chain recurrent points of h. The relation P(h) becomes a preorder once restricted to R(h) and therefore induces an equivalence relation on R(h) in the following way:

x ∼ y if and only if (x, y) ∈ P(h) and (y, x) ∈ P(h). The corresponding equivalence classes are called the chain transitive components of h. They are closed invariant subsets of X. Notice that previous definitions do not depend on the metric d since X is assumed to be compact. Recall that if S denotes the Conley barrier associated to h i.e. Proof. Let (x, y) ∈ P(h) and assume that θ(y) ≥ θ(x). Let t ∈ [θ(x), θ(y)]. Since (x, y) ∈ P(h), for every ε > 0, we can find an ε-chain {x ε 0 , .., x ε nε } from x to y. Since θ(x) ≤ t ≤ θ(y), there is

S d (x, y) = inf{ max i=0,..,n-1 d(h(x i ), x i+1 ), n ≥ 1, x 0 = x, .., x n = y}, then we have (x, y) ∈ P(h) ⇔ S d (x, y) = 0 and in particular R(h) = {x ∈ X | S d (x, x) = 0}.
k ε ∈ {0, .., n ε -1} such that θ(x kε ) ≤ t ≤ θ(x kε+1 ).
(2.0.1) Moreover, we have

d(h(x kε ), x kε+1 ) < ε. (2.0.2)
Let ω θ be a modulus of continuity of θ. Since θ is a Lyapunov function for h, we get

θ(x kε+1 ) ≤ θ(h(x kε )) + ω θ (ε) ≤ θ(x kε ) + ω θ (ε). (2.0.3)
Let (x ∞ , y ∞ ) be an accumulation point of the the family (x kε , x kε+1 ) ε>0 as ε → 0.

Passing to the limit in 2.0.1, 2.0.2 and 2.0.3, we get

θ(x ∞ ) ≤ t ≤ θ(y ∞ ), h(x ∞ ) = y ∞ , θ(y ∞ ) ≤ θ(x ∞ ). Hence we have θ(x ∞ ) = θ(y ∞ ) = θ(h(x ∞ )) = t and thus x ∞ ∈ N (θ). Moreover, we have x ∞ ∈ I x,y as seen by considering chains {x ε 0 , .., x ε kε-1 , x ∞ } and {x ∞ , x ε kε+1 , .., x ε nε } when ε → 0.
Lemma 2.1 directly leads to the following proposition. Proposition 2.2. Let θ : X → R be a Lyapunov function for h and assume that θ(N (θ)) is totally disconnected. Then θ is non-decreasing with respect to P(h) i.e.

(x, y) ∈ P(h) ⇒ θ(x) ≤ θ(y).

Any function θ : X → R which is non-decreasing with respect to P(h) is constant on every chain transitive component of h. Since these components are invariant and partition R(h), we deduce the following corollary.

Corollary 2.3. Let θ : X → R be a Lyapunov function for h and assume that θ(N (θ)) is totally disconnected. Then

R(h) ⊂ N (θ).

Lemma 2.1 also leads to the following general result.

Proposition 2.4. Let θ : X → R be a Lyapunov function for h and let C be a chain transitive component of h. Then θ(C) is an interval and θ(C) = θ(N (θ) ∩ C).

Proof. Let t, t ∈ θ(C) with t ≤ t and let x, y ∈ C be such that θ(x) = t and θ(y) = t . Since C is a chain transitive component of h, we have C = I x,y and we deduce from lemma 2.1 and t ≤ t that [t, t ] ⊂ θ(N (θ) ∩ C). Hence θ(C) is an interval and θ(C) ⊂ θ(N (θ) ∩ C). The result follows. 

The d-Mather barrier and its Aubry set

In the sequel, a chain will denote a finite sequence {x 0 , .., x n }, n ≥ 1, of points of X. The integer n is called the length of the chain. A chain {x 0 , .., x n } is said to go from x to y if x 0 = x and x n = y. We will denote by C(x, y) the set of chains from x to y. We define the d-defect of a chain C = {x 0 , .., x n } by

l d (C) = n-1 i=0 d(h(x i ), x i+1 ).
The d-Mather barrier is the function

L d : X × X → [0, +∞[ defined by L d (x, y) = inf{C ∈ C(x, y), l d (C)}.
Main properties of the d-Mather barrier are gathered in the following proposition.

Proposition 3.1. The d-Mather barrier satisfies the following properties (i) for every x, y, z in X we have

L d (x, y) ≤ L d (x, z) + L d (z, y), (ii) for every x in X we have L d (x, h(x)) = 0,
(iii) for a given x in X we have

L d (x, x) = 0 ⇔ L d (h(x), x) = 0 ⇔ L d (h(x), h(x)) = 0,
(iv) for every x, y, z in X we have

|L d (x, y) -L d (x, z)| ≤ d(y, z),
and

|L d (x, y) -L d (z, y)| ≤ d(h(x), h(z)).
In particular, the d-Mather barrier is continuous.

Proof. Let x, y, z ∈ X. A chain from x to z and a chain from z to y can always be concatenated to obtain a chain from x to y. Triangular inequality (i) is a consequence of this remark. Property (ii) is straightforward by considering the chain {x, h(x)} from x to h(x). To prove property (iv), let C be a chain from x to y. The chain C obtained by changing the last term of C into z is then a chain from x to z such that d(y,z). The first part of property (iv) follows by taking the infimum on chains C from x to y. The second part is proved similarly. It remains to prove property (iii). Let ω be a modulus of continuity of h and let C = {x 0 , .., x n } be a chain from x to x. Concatenating the chain C with itself if needed, we can assume that n ≥ 2. The chain Ĉ = {h(x), x 2 , ..,

l d ( C) ≤ l d (C) + d(y, z). Hence we get L d (x, z) ≤ l d (C) +
x n } is then a chain from h(x) to x such that l d ( Ĉ) ≤ l d (C) + ω(l d (C)). Hence, if L d (x, x) = 0 then L d (h(x), x) = 0. Conversely if L d (h(x), x) = 0 we have 0 ≤ L d (x, x) ≤ L d (x, h(x)) + L d (h(x), x) = 0 and L d (x, x) = 0.
We prove similarly that L d (x, x) = 0 if and only if L d (x, h -1 (x)) = 0, which leads to property (iii).

THE D-MATHER BARRIER AND ITS AUBRY SET

The d-Aubry set of h is the subset A d (h) of X defined by

A d (h) = {x ∈ X | L d (x, x) = 0}.
It follows from proposition 3.0.5 that the d-Aubry set is a closed invariant subset of X. Moreover, since 0 ≤ S d ≤ L d we have

A d (h) ⊂ R(h).
Since the d-Mather barrier is non-negative and satifies the triangular inequality, we define a closed preorder d on A d (h) in the following way 

y d x ⇔ L d (x, y) = 0.

L d -domination and Lipschitzian Lyapunov function

A function u : X → R is said to be (K,L d )-dominated, K ≥ 0, or L d -dominated for short, if for every x, y in X we have

u(y) -u(x) ≤ KL d (x, y).
The function u is said to be strict at a point x ∈ X if the inequality is strict for every y ∈ X. The function u is then said to be strict on a subset A ⊂ X if u is strict at every point x ∈ A. Notice that an L d -dominated function cannot be strict at a point x ∈ A d (h) where L d (x, x) = 0. Moreover, we have the following.

Proposition 4.1. There is a Lipschitzian

L d -dominated function u : (X, d) → R which is strict outside A d (h).
Proof. Let (x n ) n∈N be a dense sequence in X. We set

u(x) = n∈N 1 2 n L d (x n , x).
The function u is well defined and continuous because L d is bounded on the compact set X × X. Using triangular inequality of L d we get, for every x, y ∈ X

u(y) -u(x) = n∈N 1 2 n (L d (x n , y) -L d (x n , x)), ≤ n∈N 1 2 n L d (x, y), ≤ 2L d (x, y).
Hence the function u is (2, L d )-dominated. It is also 2-Lipschitzian because for every n ∈ N we have

|L d (x n , y) -L d (x n , x)| ≤ d(x, y). It remains to show that u is strict outside the Aubry set A d (h). Let x ∈ X \ A d (h). We then have L d (x, x) > 0.
By density of the sequence (x n ) n∈N , there is at least one n ∈ N such that

L d (x n , y) -L d (x n , x) < L d (x, y) and thus u(y) -u(x) < 2L d (x, y).
Since any L d -dominated function is non-decreasing with respect to the preorder d , it is constant on every d-Mather classes. The following proposition is then straightforward. The link between L d -domination and Lyapunov functions is given in the following fundamental lemma. Proof. Let u : X → R be a continuous L d -dominated function. Then, for some K ≥ 0 and every x ∈ X, we have u(h(x))u(x) ≤ KL d (x, h(x)) = 0. Since u is continuous, it is a Lyapunov function for h. Conversely, let θ : (X, d) → R be a K-Lipschitzian Lyapunov function for h. Let x, y ∈ X and let C = {x 0 , .., x n } be a chain from x to y. We then have

θ(x i+1 ) -θ(x i ) ≤ θ(x i+1 ) -θ(h(x i )), ≤ Kd(h(x i ), x i+1 ).
If we sum these inequalities for i = 0 to n -1, we get θ(y)θ(x) ≤ Kl d (C). Taking infimum on chains C from x to y then leads to the desired result.

Theorem 4.4. Any Lipschitzian Lyapunov function θ : (X, d) → R satisfies

A d (h) ⊂ N (θ).
Moreover, there is a Lipschitzian Lyapunov function θ : (X, d) → R such that 

A d (h) = N (θ). Proof. Any Lipschitzian Lyapunov function θ : (X, d) → R is L d -dominated
(h) ⊂ N (θ). Let u : (X, d) → R be a Lipschitzian (K, L d )-dominated function which is strict outside A d (h).
u(h(x)) -u(x) < KL d (x, h(x)) = 0.
Hence N (u) ⊂ A d (h) and thus N (u) = A d (h).

Corollary 4.5. We have

A d (h) = θ∈L d (h) N (θ)
where L d (h) denotes the set of Lipschitzian Lyapunov function θ : (X, d) → R for h. Moreover we have

A d (h) ⊂ Fix(h) ∪ R h |X\int(Fix(h)) .
Proof. First part of the corollary follows from theorem 4.4. To prove the second part, it suffices to find a Lipschitzian Lyapunov function θ : (X, d) → R such that

N (θ) = Fix(h) ∪ R h |X\int(Fix(h)) .
By Conley's theorem, there is a Lyapunov function

θ : (X \ int(Fix(h)), d) → R for h |X\int(Fix(h)) such that N (θ) = R h |X\int(Fix(h)) .
In fact, Conley's construction can easily be done in the realm of Lipschitzian functions and there is no loss of generality to assume that θ is Lipschitzian. We can also refer to [24, Theorem 2.15, Remark 2.23]. The function θ can then be extended to the whole of X to a Lipschitzian function θ : (X, d) → R by

θ(x) = inf y∈X\int(Fix(h)) θ(y) + Lip(θ)d(x, y).
Notice that the function θ is still a Lyapunov function for h on X because the condition θ • h ≤ θ is automatically satisfied on the subset int(Fix(h)). Moreover, we have

N (θ) = Fix(h) ∪ R h |X\int(Fix(h)) ,
as desired.

Proposition 4.6. For every x, y ∈ A d (h), we have

L d (x, y) = sup θ∈L 1 d (h) θ(y) -θ(x), L * d (x, y) = sup θ∈L 1 d (h) |θ(y) -θ(x)|.
where

L 1 d (h) is the set of 1-Lipschitzian Lyapunov functions θ : (X, d) → R for h. Proof. Let x, y ∈ A d (h) and let θ ∈ Lip 1 d (X, R). It follows from lemma 4.3 that θ is (1, L d )-dominated and thus θ(y) -θ(x) ≤ L d (x, y). Hence, we have L d (x, y) ≥ sup θ∈Lip 1 d (X,R) θ(y) -θ(x).
For the converse inequality, consider the function

θ x = L d (x, •). It is a 1-Lipschitzian (1, L d )-dominated function for which L d (x, y) = θ x (y) -θ x (x) because L d (x, x) = 0. The equality L * d (x, y) = sup θ∈L 1 d (h) |θ(y) -θ(x)
| is proved similarly, using the fact that L d is non-negative. Proof. If every Lipschitzian Lyapunov function for h is constant then M d (h) is reduced to a point by the previous corollary. Conversely, suppose that M d (h) is reduced to point. The d-Aubry set A d (h) is then made of a single d-Mather class and any Lipschitzian Lyapunov function for h is constant on A d (h). Let θ : X → R be a Lipschitzian Lyapunov function for h. Since the alpha and omega limit set of every x ∈ X are contained in A d (h) where θ is constant and θ is a Lyapunov function for h, then θ is constant on X. Last part of the statement follows from theorem 4.4.

Example 4.9. We come back to example 3.2. If K has vanishing Lebesgue measure, we have A d (h) = T and there is only one d-Mather classe. Hence, any Lipschitzian Lyapunov function for h must be constant. If K has non-vanishing Lebesgue measure, we can find β > 0 such that

βλ Leb (K) -λ Leb (T \ K) = 0.
The function

θ(t) = t 0 (βχ K (s) -χ T\K (s))ds
then induces a Lipschitzian Lyapunov function for h on T such that

N (θ) = K = A d (h).
Notice that the function Idθ is nothing else than a so-called devil staircase. Now let x, y be two distinct points of K. The subset T \ {x, y} is made of two non-trivial segments I 1 and I 2 and one of them, say I 1 , must satisfies

λ Leb (I 1 ∩ K) > 0. We set K 1 = K ∩ I 1 . Let α > 0 be such that αλ Leb (K 1 ) -λ Leb (T \ K 1 ) = 0.
The function defined by

ψ(t) = t 0 (αχ K 1 (s) -χ T\K 1 (s))ds
is then a Lipschitzian Lyapunov function for h such that ψ(x) = ψ(y). The d-Mather classes of h are then reduced to singletons and M d (h) is homeomorphic to K. Remark 4.10. Contrary to Conley's theorem, we cannot assume that the function θ given by theorem 4.4 separates d-Mather classes i.e. induces a one-to-one map θ on M d (h). In that case, the function θ would induce a homeomorphism between M d (h) and the neutral values θ(N (θ)) of θ. But these set might have different topologies. In the previous example for instance, when K has non-vanishing Lebesgue measure, the d-Mather quotient of h is homeomorphic to K and hence is totally disconnected. Nevertheless, the neutral values of θ cannot be totally disconnected because every point is chain reccurent, see corollary 2.3.

Auslander set and Mañé set

Let D be set of all metric compatible with the topology of X. The Auslander set of h is the subset Aus(h) of X defined by The Mañé set of h is the subset Ñ (h) of X defined by

Aus(h) = d∈D A d (h).
Ñ (h) = d∈D A d (h).
In analogy with Aubry-Mather theory, we should have called Aus(h) the topological Aubry set of h but this set was already discovered by Auslander in the 1960's, see [START_REF] Auslander | Generalized recurrence in dynamical systems[END_REF]. He called it the generalized recurrent set and gave a description of it in terms of orbit prolongations, via transfinite induction. This set also appears in the book of Akin [1, Chapter I] as the generalized nonwandering set of h. The definition is different and uses the smallest closed and transitive relation containing the graph of h. A unified approach can be found in [START_REF] Akin | Generalized recurrence, compactifications, and the Lyapunov topology[END_REF].

Theorem 5.1. We have

Ñ (h) = Fix(h) ∪ R h |X\int(Fix(h)) .
Proof. The proof of his result is rather long and technical. We postpone it to Appendix.

There is a natural partition of the Auslander set Aus(h) by equivalence classes of the relation ∼ h given by: x ∼ h y if and only if x ∼ d y for every metric d ∈ D. The equivalence classes of the relation ∼ h are called the Mather classes of h. They are closed invariant subsets of X. The corresponding quotient space Aus(h)/ ∼ h is called the Mather quotient of h and will be denoted by M(h).

Theorem 5.2. Let L(h) be the set of Lyapunov functions for h. The family {N (θ) | θ ∈ L(h)} is stable by (finite or infinite) intersection and we have

Aus(h) = θ∈L(h) N (θ).
In particular, there is θ ∈ L(h) such that N (θ) = Aus(h).

Proof. Let F ⊂ L(h) be a non-empty subset of L(h). Since any compact metric space is second countable there is, see [9, theorem 6.3], an at most countable family

(d n ) n∈N in F such that θ∈F N (θ) = n∈N N (θ n ).
For every λ > 0 and θ ∈ L(h) we have λθ ∈ L(h) and N (λθ) = N (θ). Hence, we can assume that the family (θ n ) n∈N , is equi-bounded. The function

θ = n∈N 1 2 n θ n then satisfies θ ∈ L(h) and N (θ) = ∩ n∈N N (θ n ) = ∩ θ∈F N (θ)
. This shows that the family {N (θ) | θ ∈ L(h)} is stable by intersection. It follows from corollary 4.5 that

Aus(h) = d∈D A d (h) = d∈D θ∈L d (h) N (θ).

AUSLANDER SET AND MAÑÉ SET

Since any continuous Lyapunov function θ ∈ L(h) is Lipschitzian for the compatible metric

d θ (x, y) = d(x, y) + |θ(y) -θ(x)| we deduce that Aus(h) = θ∈L(h) N (θ).
Proposition 5.

Let L(h) be the set of Lyapunov functions for h. Any function θ ∈ L(h) is constant on every Mather class of h and therefore induces a continuous function θ on the Mather quotient M(h). Moreover, the family of functions { θ | θ ∈ L(h)} separates points of M(h).

Proof. Let θ : X → R be a Lyapunov function for h. The function θ is Lipschitzian for the compatible metric

d θ (x, y) = d(x, y) + |θ(x) -θ(y)|
Hence, the function θ is constant on every d θ -Mather class and is therefore constant on every Mather class. Let [x], [y] be two distinct Mather classes. For some metric δ on X, the δ-Mather classes of x and y are then different and by corollary 4.7, there is Lipschitzian (and hence continuous) Lyapunov function θ : (X, δ) → R such that θ(x) = θ(y).

Example 5.4. We consider again example 3.2. If K has non-vanishing Lebesgue measure, we have A d (h) = K = Fix(h) ⊂ Aus(h) and thus A(h) = K. Moreover, Mather classes of h are then reduced to singletons because it is already the case of d-Mather classes. Hence M(h) is homeomorphic to K. If K has vanishing Lebesgue measure, that dynamical system is topologicaly conjugated to the case λ Leb (K) > 0 and same conclusions hold. In particular, we can always find a continuous Lyapunov function θ for h such that N (θ) = K, even if K has vanishing Lebesgue measure. One can get also a direct construction of θ by using an appropriate devil's staircase.

Appendix

This section is devoted to the proof of theorem 5.1. The proof relies on the fact that any compact metric space can be embedded into a real infinite dimensional Hilbert space and on a contraction lemma. In the following, (H, || • ||) will denote a real infinite dimensional Hilbert space and Isol(X) will denote the set of isolated points of X. Since the final result we want to prove is obvious when X = Isol(X), we will suppose that X \ Isol(X) is not empty. Proof. Without loss of generality, we can suppose that a = 0. If b = a = 0, the identity map will do the job. Otherwise, let F be the orthogonal complement of the vector space spanned by b

A contraction lemma

H = F ⊥ ⊕ Rb.
A point of H will then be denoted by

(x, s), x ∈ F , s ∈ R. Let B ε , ε > 0, denotes the open ball in F of radius ε centered in 0. Let ε > 0 small enough such that B ε ×] -ε, 1 + ε[⊂ U. Let ψ : R → [0, 1] be a C ∞ function with support in ] -ε, 1 + ε[ and such that ψ |[0,1] = 1.
We denote by Φ the flow on R of the differential equation

• γ(t) = ψ(γ(t))
that is

∂ ∂t Φ(t, s) = ψ(Φ(t, s)), Φ(0, s) = s.
The flow Φ is defined for every time because the function ψ has compact support. Moreover, since

ψ |[0,1] = 1 we have Φ(1, 0) = 1. Let ρ : R → [0, 1] be a C ∞ function with support in ] -ε, ε[ and such that ρ(0) = 1. We set g(x) = ρ(||x|| 2 ). The function g is C ∞ and Supp(g) ⊂ B ε . We set ϕ(x, s) = (x, Φ(g(x), s)).
The map ϕ is then a diffeomorphim of H such that

Supp(ϕ) ⊂ B ε ×] -ε, 1 + ε[⊂ U
and ϕ sends a = (0, 0) to b = (0, 1). Moreover, since ϕ -1 (x, s) = (x, Φ(-g(x), s)), both diffeomorphisms ϕ and ϕ -1 are lipschitzian as g and Φ.

Lemma 

Id|| ∞ < ε, ||ϕ -1 -Id|| < ε.
Last, since every diffeomorphism ϕ k (resp. ϕ -1 k ) is Lipschitzian, so is ϕ (resp. ϕ -1 ).

Remark 6.3. The case where H is finite dimensionnal is well-known and slightly more involved, see [START_REF] Oxtoby | Diameters of arcs and the gerrymandering problem[END_REF], or [START_REF] Shub | Global stability of dynamical systems[END_REF] for the easier dim(H) ≥ 3 case.

Proof of theorem 5.1

We define the essential points E(C) of a chain C = {x 0 , .., x n } of X by

E(C) = {x k+1 ∈ C, 0 ≤ k ≤ n -1 | x k+1 = h(x k )}.
Lemma 6.4. Let F be a finite subset of X and let d be a metric on X defining the topology of X. There is ε(F ) > 0 such that

∀x ∈ F ∩ Isol(X), d(x, X \ {x}) ≥ ε(F ) > 0. 52 6. APPENDIX
Proof. If F ∩ Isol(X) = ∅, any positive ε(F ) will be fine. Otherwise, the set F ∩ Isol(X) consists in a finite number of isolated points of X. Take ε(F ) > 0 such that ∀x ∈ F ∩ Isol(X), B d (x, ε(F )) = {x}. Lemma 6.5. Let η > 0 and let d be a metric on X defining the topology of X.

There is ε(η) > 0 such that every essential point x of any ε(η)-chain for d satisfies d(x, X \ Isol(X)) < η.

Proof. Suppose the contrary. We can then find a sequence (C r ) r∈N of ε r -chains for d with ε r → 0 as r → +∞ and essential points

x kr ∈ C r such that d(x kr , X \ Isol(X)) ≥ η.
By compactness of X, we can assume that x kr → x ∞ as r → +∞. We then have

d(x ∞ , X \ Isol(X)) ≥ η.
Hence, the point x ∞ does not belong to the closed set X \ Isol(X) i.e. x ∞ is an isolated point of X. In particular, the converging sequence of essential points (x kr ) r∈N is eventually stationary to x ∞ . Hence, for r large enough we have

0 < d(x kr , h(x kr-1 )) = d(x ∞ , h(x kr-1 )) < ε r
and we deduce from ε r → 0 that the point x ∞ is not isolated in X, which is a contradiction.

Proposition 6.6. Let F be a finite subset of X and let x ∈ R h |X\int(Fix(h)) . Let d be a metric on X defining the topology of X. For any ε > 0, there is an ε-chain C = {x 0 , .., x n } for d such that (i) essential points of C are pairwise disjoint,

(ii) we have E(C) ∩ (F ∪ h(C)) = ∅,
(iii) we have x 0 = x and d(x n , x) < ε.

Proof. Let x ∈ R h |X\int(Fix(h)) . The set Y = X \ int(Fix(h))
is a compact metric space and the restriction h |Y induces an homeomorphism of Y such that Fix(h |Y ) has no interior in Y . Hence, working on the metric space Y instead, we can suppose that x ∈ R(h) and that Fix(h) has no interior. Let ε(F ) > 0 given by lemma 6.4. Let ε > 0. The homeomorphism h is uniformly continuous on X. Thus, there is η > 0 such that

sup d(x,y)<η d(h(x), h(y)) < min ε 3 , ε(F ) 2 .
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Moreover, we can suppose that 0 < η < ε 3 .

Let ε(η) > 0 given by lemma 6.5. Let ρ > 0 such that

0 < ρ < min η, ε(η), ε(F ) 2 .
Since the point x is chain recurrent, there is a ρ-chain C = {x 0 , .., x n } from x to x for d. Reducing the chain if necessary, we can suppose that ∀p, q ∈ {0, .., n -1}, p = q ⇒ x p = x q . (6.2.1)

Let x k+1 ∈ C, k ∈ {0, .., n -1}. If x k+1 ∈ E(C),
then by lemma 6.5 we can find a point y k+1 ∈ X \ Isol(X) such that

0 < d(x k+1 , y k+1 ) < η.
The existence of y k+1 also obviously holds if x k+1 ∈ X \ Isol(X). We thus define a new chain C = {x 0 , .., xn } from x to x in the following way:

x0 = x 0 = x
and for every k ∈ {0, .., n -1},

(1) if x k+1 ∈ E(C) or if x k+1 ∈ X \ Isol(X) then xk+1 = y k+1 ∈ X \ Isol(X) and d(x k+1 , y k+1 ) < η, (2) if x k+1 / ∈ E(C) and x k+1 ∈ Isol(X) then xk+1 = x k+1 .
Moreover, since points y k+1 are not isolated and Fix(h) has no interior, they can be chosen such that

y k+1 / ∈ F ∪ h( C) ∪ h -1 ( C). (6.2.2)
First, notice that for every k ∈ {0, .., n} we have

d(x k , x k ) < η < ε 3
and in particular d(x n , x) < ε. Moreover, for every k ∈ {0, .., n -1} we have

d(h(x k ), xk+1 ) ≤ d(h(x k ), h(x k )) + d(h(x k ), x k+1 ) +d(x k+1 , xk+1 ), < sup d(x,y)<η d(h(x), h(y)) + ρ + η < ε.
Thus, the chain C is an ε-chain for d satisfying property (iii). We now claim that the chain C satisfies property (ii Hence property (ii) is satisfied. Now, reducing the chain if necessary, we can assume that points of E( C) are pairwise disjoint, so that property (i) holds.

Proof of theorem 5.1. The inclusion

Ñ (h) ⊂ Fix(h) ∪ R h |X\int(Fix(h))
follows from corollary 4.5. Conversely, let x ∈ Fix(h) ∪ R h |X\int(Fix(h)) . If x ∈ Fix(h) then of course x ∈ Ñ (h). Hence, we will suppose that x ∈ R h |X\int(Fix(h)) . Any compact metric space can be embedded into the Hilbert's cube, see [START_REF] Hurewicz | Dimension Theory[END_REF]Theorem V.4]. Hence, there is no loss of generality to assume that X is a subspace of an infinite real dimensional Hilbert space (H, || • ||). Using induction, we will construct a sequence (F n ) n∈N of finite subsets of X and a sequence (φ n ) n∈N of Lipschitzian diffeomorphisms of H such that, for every n ∈ N,

(i) F n ⊂ F n+1 , (ii) φ n+1 |Fn = φ n |Fn , (iii) ||φ n+1 -φ n || ∞ ≤ 1 2 n+1 and ||φ -1 n+1 -φ -1 n || ∞ ≤ 1 2 n+1 , (iv) for every n ≥ 1, there is a chain {x n 0 = x, .., x n ln } in F n such that ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ln-1 k=0 ||φ n (x n k+1 ) -φ n (h(x n k ))|| ≤ 1 2 n , ||φ n (x n ln ) -φ n (x)|| ≤ 1 2 n , 6. APPENDIX
(v) both diffeomorphisms φ n and φ -1 n are Lipschitzian.

We set F 0 = {x}, φ 0 = Id. Suppose that the subsets F i and the diffeomorphisms φ i have been constructed for i = 0, .., n. We consider the metric

d(x, y) = ||φ n (x) -φ n (y)|| on X. Fix 0 < ε < 1 2 n+1
. By previous proposition used with the metric d, there is a chain

C n+1 = {x n+1 0 = x, .., x n+1 l n+1 } in X with the properties that (1) E(C n+1 ) ∩ (F n ∪ h(C n+1 )) = ∅,
(2) Points of E(C n+1 ) are pairwise disjoint, (3) for every k ∈ {0, .., l n+1 -1} we have

||φ n (x n+1 k+1 ) -φ n (h(x n+1 k ))|| < ε, (4) ||φ n (x n+1 l n+1 ) -φ n (x)|| < ε.
Using lemma 6.2 with the pairs

φ n (h(x n+1 k )), φ n (x n+1 k+1 ) , x n+1 k+1 ∈ E(C n+1 ),
and the finite set φ n (F n ), we can find a diffeomorphism ϕ of H such that both ϕ and ϕ -1 are Lipschitzian and (a) for every x n+1 k+1 ∈ E(C n+1 ),

||ϕ φ n x n+1 k+1 -ϕ φ n h x n+1 k || ≤ ε l n+1 . (b) ϕ |φn(Fn) = Id |φn(Fn) , (c) ||ϕ -Id|| ∞ < ε and ||ϕ -1 -Id|| ∞ < ε.
We set

φ n+1 = ϕ • φ n ,
and

F n+1 = F n ∪ C n+1 .
We then have, for ε > 0 small enough, 1. This complete the induction step and proves the existence of the families (F n ) n∈N and (φ n ) n∈N . By property (iii), the maps

l n+1 -1 k=0 ||φ n+1 (x n+1 k+1 ) -φ n+1 (h(x n+1 k ))|| ≤ l n+1 ε l n+1 < 1 2 n+1 , 2. ||φ n+1 -φ n || ∞ ≤ ||ϕ -Id|| ∞ < ε < 1 2 n+1 , 3. ||φ -1 n+1 -φ -1 n || ∞ ≤ Lip(φ -1 n )||ϕ -1 -Id|| ∞ ≤ ε Lip(φ -1 n ) < 1 2 n+1 , 56 6. APPENDIX 4. ||φ n+1 (x n+1 l n+1 ) -φ n+1 (x)|| ≤ ||φ n+1 (x n+1 l n+1 ) -φ n (x n+1 l n+1 )|| +||φ n (x n+1 l n+1 ) -φ n (x)|| +||φ n (x) -φ n+1 (x)||, ≤ 3ε < 1 2 n+1 ,
φ(x) = lim n→+∞ φ n (x), φ -1 (x) = lim n→+∞ φ -1 n (x),
are well defined. Since the convergences are uniform, they are both continuous and reciprocal one of each others. The map φ is thus an homeomorphism of H. Moreover, it follows from properties (i), (ii) and (iv) that for every n ≥ 1, the chain

{x n 0 = x, .., x n ln } satisfies ln-1 k=0 ||φ(x n k+1 ) -φ(h(x n k ))|| = ln-1 k=0 ||φ n (x n k+1 ) -φ n (h(x n k ))|| ≤ 1 2 n and ||φ(x ln ) -φ(x)|| = ||φ n (x n ln ) -φ n (x)|| ≤ 1 2 n .
Thus the chain obtained by changing x ln into x is a chain from x to x satisfying

ln-1 k=0 ||φ(x n k+1 ) -φ(h(x n k ))|| ≤ 1 2 n-1 .
Since n ≥ 1 is arbitrary we have x ∈ A δ (h) for the compatible metric δ(x, y) = ||φ(x)φ(y)||. and x ∈ Ñ (h).
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with C 1 (M, R) in the statement. Indeed, being a regular value is an open condition in the C 1 -topology and extrema of any Morse function, for instance, are separated by a regular value. The proof of theorem 1.1, which will take the subsequent three sections of this paper, is based on the very flexible tools developed by Körner in [START_REF] Körner | A dense arcwise connected set of critical points-molehills out of mountains[END_REF]. Applications in dynamics are given in the last section.

δ-Zig-zags

We use the standard euclidean norm || • || on R n . The closed line segment joining two points a and b in R n will be denoted by [a, b] and the unit interval of the real line will be denoted by I = [0, 1]. A path in R n will denote a continuous map γ : I → R n . A path γ is said to be a polygonal path if we can find a subdivision t 0 = 0 < t 1 < ... < t N = 1 of I such that the restriction of γ to every subinterval [t i , t i+1 ] is an affine map. Such a subdivision is then called adapted to γ. The minimal integer N appearing among all adapted subdivisions will be called the number of segments of γ. A polygonal arc is a one-to-one polygonal path. Let g : R n → R be a C 1 function and let δ be a positive real. A polygonal arc γ is said to be a δ-zig-zag for g if we can find a subdivision t 0 = 0 < t 1 < ... < t N = 1 of I adapted to γ and a sequence H 0 , .., H N -1 of hyperplanes of R n such that for every i ∈ {0, .., N -1} the following two properties hold

(1) we have γ(t i+1 ) -γ(t i ) ∈ H i , (2) 
for every t ∈ [t i , t i+1 ] and for every v ∈ H i we have

|d γ(t) g(v)| ≤ δ||v||.
This section is devoted to the construction of δ-zig-zags. The underlying heuristic idea is that "we can always climb a steep hill by cutting a zig-zag into the hillside" see [START_REF] Körner | A dense arcwise connected set of critical points-molehills out of mountains[END_REF]. The following lemma is a reformulation of [20, Lemma 3.1] in a high dimensional setting.

Lemma 2.1. Let [a, b] ⊂ R n , n ≥ 2,
be a closed line segment and let g : R n → R be a C 1 function. Given any neighbourhood U of [a, b] and any δ > 0, we can find a sequence of points a 0 = a, a 1 , .., a 2N = b in U and a sequence H 0 , .., H 2N -1 of hyperplanes of R n such that for every i ∈ {0, .., 2N -1} (i) we have a i+1a i ∈ H i , (ii) for every x ∈ [a i , a i+1 ] and for every v ∈ H i we have

|d x g(v)| ≤ δ||v||.
Proof. Let N > 0 to be chosen later. For k ∈ {0, .., N } we set

a 2k = a + k N (b -a)
and for k ∈ {0, .., N -1} we set

m k = a 2k+2 -a 2k 2 . Since dim(Ker d m k g) ≥ n -1 and n ≥ 2 we have dim(Ker d m k g) ≥ 1. Hence, we can find u k ∈ Ker d m k g such that ||u k || = 1.
We then set

a 2k+1 = m k + b -a 2 √ N u k .
Note that a 2k ∈ U for N large enough. Since dim(Ker d m k g) ≥ n-1, we can find two vector subspaces F 2k and F 2k+1 of the vector space Ker d m k g such that the following sums

H 2k = Vect R (a 2k+1 -a 2k ) ⊥ ⊕ F 2k , H 2k+1 = Vect R (a 2k+2 -a 2k+1 ) ⊥ ⊕ F 2k+1 ,
are orthogonal and define two hyperplanes of R n containing respectively the vectors a 2k+1a 2k and a 2k+2a 2k+1 . We now prove that property (ii) is satisfied for N large enough. Let x ∈ [a 2k , a 2k+1 ] and let

v = u + w ∈ Vect R (a 2k+1 -a 2k ) ⊥ ⊕ F 2k = H 2k .
We have

d x g(v) = d m k g(v) + d x g(v) -d m k g(v)
and since

||u k || = 1 and x ∈ [a 2k , a 2k+1 ] we have ||x -m k || ≤ ||a 2k -m k || + ||a 2k+1 -m k ||, ≤ b -a 2N + b -a 2 √ N . Thus |d x g(v)| ≤ |d m k g(v)| + M (N )||v|| where M (N ) = sup ||x-y||≤ b-a 2N + b-a 2 √ N ,y∈[a,b] ||d x g -d y g||.
The uniform continuity of the map dg in a neighbourhood of [a, b] then implies that for N large enough we have M (N ) ≤ δ 2 and then

|d x g(v)| ≤ |d m k g(v)| + δ 2 ||v||.
It thus remains to prove that for N large enough we have

|d m k g(v)| ≤ δ 2 ||v||. Since v = u + w ∈ Vect(a 2k+1 -a 2k ) ⊥ ⊕ F 2k and F 2k ⊂ Ker d m k g we have d m k g(v) = d m k g(u).
Since the sum is orthogonal we have ||u|| ≤ ||v|| so it just suffices to show that for N large enough we have

|d m k g(u)| ≤ δ 2 ||u||.
Since u ∈ Vect R (a 2k+1a 2k ) it suffices to show, using homogeneity, that for N large enough we have

|d m k g(a 2k+1 -a 2k )| ≤ δ 2 ||a 2k+1 -a 2k ||. But a 2k+1 -a 2k = m k -a 2k + a 2k+1 -m k , = m k -a 2k + b -a 2 √ N u k , (2.0.1) with u k ∈ Ker d m k g. Thus |d m k g(a 2k+1 -a 2k )| = |d m k g(m k -a 2k )|, ≤ sup [a,b] ||dg|| ||m k -a 2k ||. Since ||m k -a 2k || = b-a 2N , we have for N large enough sup [a,b] ||dg|| ||m k -a 2k || = sup [a,b] ||dg|| b -a 2N , ≤ δ 2 b -a 2 √ N - b -a 2N Now using 2.0.1 and ||u k || = 1 we have ||a 2k+1 -a 2k || ≥ b -a 2 √ N -||m k -a 2k ||, ≥ b -a 2 √ N - b -a 2N .
Hence for N large enough we have

|d m k g(a 2k+1 -a 2k )| ≤ δ 2 ||a 2k+1 -a 2k ||
as desired. To sum up, we have shown that for N large enough, for every x ∈ [a 2k , a 2k+1 ] and for every v ∈ H 2k we have

|d x g(v)| ≤ δ||v||.
Exchanging the role played by a 2k and a 2k+2 , the same proof shows the corresponding result for the segment [a 2k+1 , a 2k+2 ] with the hyperplane H 2k+1 . 

Proof. Let ε > 0. Since [a, b] is a convex subset of R n , the open neighbourhood V ([a, b]) of [a, b] defined by V ([a, b]) = {x ∈ R n | d(x, [a, b]) < ε}
is convex and included in U for ε small enough. Hence, we can assume that U is a convex neighbourhood of [a, b]. Let a 0 = a, a 1 .., a 2N = b and H 0 , .., H 2N -1 given by the previous lemma. For k = 0, .., 2N we set t k = k 2N and we set γ 1 (t k ) = a k . We now define γ 1 to be affine on every subinterval [t k , t k+1 ]. Since U is convex, we have γ 1 ⊂ U . The path γ 1 now satisfies all the desired properties except that γ 1 may fail to be one-to-one. Let consider a polygonal path γ ⊂ γ 1 from a to b with a minimal number of segments. Since a = b, the path γ can be one-to-one parametrized by I. Since for a sufficiently fine subdivision t 0 = 0 < t 1 < .. < t r = 1 of I every segment γ([t i , t i+1 ]) is included in some initial segment [a k i , a k i +1 ], the hyperplanes H 0 , ..., H 2N -1 can be used to check that the path γ does furnish a δ-zig-zag for g.

Results of this section are summed up in the following corollary.

Corollary 2.3. Let g : R n → R, n ≥ 2, be a C 1 function and let γ be a polygonal arc. Given any δ > 0, any ε > 0 and any neighbourhood U of γ, we can find a δ-zig-zag β ⊂ U for g such that β(0) = γ(0), β(1) = γ(1) and, for every t in I

||β(t) -γ(t)|| < ε.
Moreover, we can suppose that β ∩ Crit(g) = γ ∩ Crit(g).

Proof. Let t 0 = 0 < t 1 < .. < t N = 1 be a subdivision of I adapted to γ. Considering a finer subdivision if necessary, we can suppose that every segment γ([t k , t k+1 ]) has a diameter less than ε. Since γ is one-to-one, we can find open convex neighbourhoods U 0 , ..., U N -1 of segments γ([t 0 , t 1 ]), ..., γ([t N -1 , t N ]) such that the diameter of every U k is less than ε and

U l ∩ U m = ∅ for |l -m| > 1.
(2.0.2)

Using the uniform continuity of the map dg in a neighbourhood of γ, we can assume, reducing ε if necessary, that

||dg |U k || < δ whenever U k ∩ Crit(g) = ∅. (2.0.3)
By the previous lemma, we can find a δ-zig-zag β k in U k from γ(t k ) to γ(t k+1 ) for every k ∈ {0, .., N -1} . Note that by 2.0.3, we can assume that

β k = γ([t k , t k+1 ]) whenever U k ∩ Crit(g) = ∅ (2.0.4)
because in that case, any hyperplane containing the vector γ(t k+1 )γ(t k ) can be used to check that β k is a δ-zig-zag for g. We define a polygonal path β from γ(0) to γ(1) in the following way: starting with k = 0, follow the δ-zig-zag β k until it crosses the δ-zig-zag β k+1 and then follow β k+1 from this crossing point until it crosses β k+2 , etc... It follows from 2.0.2 and from the injectivity of every δ-zig-zag β k that the path β is one-to-one. It is then a δ-zig-zag for g as a concatenation of δ-zig-zags for g. 

([t r , t -]) is included in U r-1 . If t -> t x then x = γ(t x ) ∈ U r-1 , which contradicts U r-1 ∩ Crit(g) = ∅.
3 Alteration lemma (iv) for every x ∈ R n and every u ∈ R n , we have

|d x (g + h)(u)| < |d x g(u)| + (δ + η)||u||.
Proof. Without loss of generality, we can assume that

H = {x ∈ R n | x n = 0} R n-1
and that a = (0, .., 0), b = (1, 0, .., 0). For r > 0 small enough, the compact subset

C r = [-r, 1 + r] × [-r, r] n-1 is included in U . Let ε > 0 be such that 0 < ε < 1 and ε sup Cr ||dg|| < η 3 . (3.0.6)
We define two compact subsets of H by

K 1 = (x 1 , .., x n-1 , 0) ∈ C r , |∂ n g(x 1 , .., x n-1 , 0)| ≥ η 3 , K 2 = (x 1 , 0, .., 0), 0 ≤ x 1 ≤ 1, |∂ n g(x 1 , 0, .., 0)| ≥ η 2 .
Note that if K 2 = ∅ then conditions (i) to (iv) are satisfied for h = 0. So we can suppose that K 2 = ∅. As subsets of H, we then have K 2 ⊂ K1 and we can find a

C ∞ function ψ : H → I such that Supp(ψ) ⊂ K 1 and ψ |K 2 = 1. Let F : R → I be a C ∞ compactly supported function such that F (0) = 1 and -ε ≤ F ≤ 1. Let G : R n → R be a C ∞ function such that ||dG -dg|| ∞ < η 3 ε.
Let R > 0 to be chosen later. We set

h(x) = -(1 -ε)ψ(x 1 , .., x n-1 )∂ n G(x 1 , .., x n-1 , 0) 1 R F (Rx n ).
We will show that properties (i) to (iv) are satisfied provided only that R is large enough. Since F is compactly supported, we can find a constant M > 0 such that Supp(F ) ⊂ [-M, M ] and we have 

Supp(h) ⊂ Supp(ψ) × - M R , M R . ( 3 
∂ n h(x) = -(1 -ε)ψ(x 1 , .., x n-1 )∂ n G(x 1 , .., x n-1 , 0)F (Rx n ). Since ||(1 -ε)ψF || ∞ ≤ 1, we get for every x ∈ R n ∂ n h(x) = -(1 -ε)ψ(x 1 , .., x n-1 )∂ n g(x 1 , .., x n-1 , 0)F (Rx n ) +Δ 1 (x) (3.0.8) with |Δ 1 (x)| ≤ ||dG -dg|| ∞ < η 3 ε.
We can now prove property (ii). Let x = (x 1 , 0, .., 0) ∈ R n with 0 ≤ x 1 ≤ 1. Since F (0) = 1, we get from 3.0.8 that

∂ n (g + h)(x 1 , 0, .., 0) = ∂ n g(x 1 , 0, .., 0)[1 -(1 -ε)ψ(x 1 , 0, .., 0)] + Δ 1 (x).

ALTERATION LEMMA

We distinguish two cases. If (x 1 , 0, .., 0) / ∈ K 2 then |∂ n g(x 1 , 0, .., 0)| < η 2 and since 0 ≤ ψ ≤ 1 and |Δ 1 (x 1 , 0, .., 0)| < η 3 we have |∂ n (g + h)(x 1 , 0, .., 0)| < 5 6 η.

Otherwise, we have (x 1 , 0, .., 0) ∈ K 2 and ψ(x 1 , 0, .., 0) = 1. Thus ∂ n (g + h)(x 1 , 0, .., 0) = ε∂ n g(x 1 , 0, .., 0) + Δ 1 (x 1 , 0, .., 0).

Since ε has been chosen such that

ε sup 0≤x 1 ≤1
|∂ n g(x 1 , 0, .., 0)| < η 3

and |Δ 1 (x 1 , 0, .., 0)| ≤ ||dG -dg|| ∞ < η 3 , we get

|∂ n (g + h)(x 1 , 0, .., 0)| < 2 3 η.

In both cases, since the first n -1 partial derivatives of h can be made arbitrarly small for R large enough, we deduce from 3.0.5 that, for R large enough ||d (x 1 ,0,..,0) (g + h)|| < δ + η and property (ii) is satisfied. Let us now prove property (iv). We set

C(R) = sup x∈Supp(ψ)×[-M R , M R ]
|∂ n g(x) -∂ n g(x 1 , .., x n-1 , 0)|.

Since ∂ n g is continuous, we have

lim R→+∞ C(R) = 0.
Note that property (iv) is straightforward when x / ∈ Supp(h). Hence, we can suppose by 3.0.7 that x ∈ Supp(ψ)× -M R , M R . We then get from 3.0. which is property (iv). It now remains to prove property (iii). It suffices to show that for a given x ∈ Supp(h) we have d x g = 0 if and only if d x (g + h) = 0. In fact we will prove that for R large enough, we have Crit(g) ∩ Supp(h) = Crit(g + h) ∩ Supp(h) = ∅.

Let x ∈ Supp(h). Since Supp(ψ) ⊂ K 1 , we get from 3.0.7 that (x 1 , .., x n-1 , 0) ∈ K 1 and thus |∂ n g(x 1 , .., x n-1 , 0)| ≥ η 3 .

But then, for R large enough

|∂ n g(x)| ≥ η 3 -C(R) > 0
and Crit(g) ∩ Supp(h) = ∅. Now, using 3.0.9 and |1α(x)| ≥ ε we get, for R large enough and x ∈ Supp(h)

|∂ n (g + h)(x)| = |(1 -α(x))∂ n g(x) + Δ 2 (x)| ≥ η 3 ε -|Δ 2 (x)| ≥ η 3 ε -||dG -dg|| ∞ -C(R) > 0
because G has been chosen such that η 3 ε -||dG -dg|| ∞ > 0. Hence for R large enough we have Crit(g + h) ∩ Supp(h) = ∅, as desired. Following Körner, alteration lemma leads to the following corollary. Proof. Since γ is a δ-zig-zag for g, we can find a subdivision t 0 = 0 < t 1 < .. < t N = 1 of I adapted to γ and a sequence H 0 , .., H N -1 of hyperplans of R n such that for every i ∈ {0, .., N -1} we have (a) γ(t i+1 )γ(t i ) ∈ H i , (b) for every x ∈ [γ(t i ), γ(t i+1 )] and every v ∈ H i ,

|d x g(v)| ≤ δ||v||.
We can then apply the alteration lemma in sufficiently small disjoint neighbourhoods of the disjoint segments [γ(t i ), γ(t i+1 )], i ∈ {0, .., N -1} ∩ 2Z, to get a C ∞ function h 1 such that (1) we have Supp(h 1 ) ⊂ U and ||h 1 || ∞ < η 3 , (2) for every i ∈ {0, .., N -1} ∩ 2Z and every x ∈ [γ(t i ), γ(t i+1 )],

||d x (g + h 1 )|| < δ + η 3 ,
(3) we have Crit(g + h 1 ) = Crit(g), This last condition implies that the path γ is still a 2δ + η 3 -zig-zag for g + h 1 . We can thus apply again the alteration lemma in neighbourhoods of the disjoint segments [γ(t i ), γ(t i+1 )], i ∈ {0, .., N -1} ∩ (2Z + 1) with the function g + h 1 to get a C ∞ function h 2 such that (1') we have Supp(h 2 ) ⊂ U and ||h 2 || ∞ < η 3 , (2') for every i ∈ {0, .., N -1} ∩ (2Z + 1) and every x ∈ [γ(t i ), γ(t i+1 )], The function h = h 1 + h 2 now satisfies (i) and (iii).Property (iv) follows from (4) and (4 ) and property (ii) follows from (2), ( 2) and (4 ).

||d x (g + h 1 + h 2 )|| < 2 δ + η 3 , ( 3 
In this section, results of sections 2 and 3 are gathered to prove the main theorem, which will follow from the next proposition. Using induction, we will construct C 1 functions (g k ) k∈N , polygonal arcs (γ k ) k∈N and positive reals (ε k ) k∈N such that g 0 = g, γ 0 = γ, ε 0 = ε 2 and, for some constant C > 0 and every k ∈ N, Property (3) is then satisfied for k = 0. Suppose that the function g j , the arc γ j and the real ε j have been constructed for j = 0, .., k. Since g k is C 1 , it follows from (3) that we can find a neighbourhood U k of γ k such that U k ⊂ V 2ε k (γ k ) and We set g k+1 = g k + h k . The function g k+1g is compactly supported and we claim that, if the subset Crit(g) is finite, we can assume (γ k+1 , g k+1g) ∈ W k+1 . Indeed, suppose that the function g k+1 • γ k+1 is constant on J k . Since γ k+1 is an arc and the subset Crit(g) is finite, we can find t ∈ J k such that γ k+1 (t) / ∈ Crit(g). Since Crit(g) = Crit(g k ), we can then modify the function h k in a neighbourhood of γ k+1 (t) by adding a C ∞ compactly supported bump function, arbitrarly small in the C 1 topology, such that the function g k+1 • γ k+1 is no more constant on J k , without changing properties (a) to (d).

Since γ k+1 is an arc we also have γ k+1 ∈ O k+1 and since O k+1 and W k+1 are both open subsets, we can then find ε k+1 satisfying properties (6),( 7) and [START_REF] Conley | Isolated invariant sets and the Morse index[END_REF]. Property (4.0.12)

In the sequel, we will denote by Z(X) the set of points x in M such that X(x) = 0. Theorem 5.3 is then a direct consequence of the following two lemmas and theorem 1.1. Lemma 5.5. Let u : M → R be a C 1 function. There is a C ∞ vector field X on M such that u is a strong Lyapunov function for X and Crit(u) = Z(X).

Proof. Let g be any Riemannian metric on M . We will denote by •, x (resp. || • || x ) the scalar product (resp. the norm) induced by g on each tangent space T x M of M . We first defined a vector field X 1 on M by X 1 =grad u where the gradient is defined with respect to the Riemannian metric g. The vector field X 1 has then the desired properties except that X 1 is only continuous. Let X 2 be a C ∞ vector field defined on the open subset U = M \ Crit(u) of M such that for every x ∈ U we have

|d x u(X 2 (x)) -d x u(X 1 (x))| < 1 2 |d x u(X 1 (x))| = 1 2 || grad u(x)|| 2
x . This condition implies that d x u(X 2 (x)) < 0 everywhere on U . By a classical result, see for example [START_REF]Partitions of unity for countable covers[END_REF], there is a C ∞ function ϕ : M → [0, +∞[ such that ϕ -1 (0) = Crit(u) and (ϕ |U )X 2 can be extended by 0 to a C ∞ vector field X on M . It is then easy to check that the vector field X satisfies all the desired properties. Lemma 5.6. Let u be a strong Lyapunov function for X. If the subset Crit(u) is connected and if we have Crit(u) = Z(X) then every point of M is chain-recurrent under the flow of X.

Proof. Let x be a point of M . The usual omega limit and alpha limit sets of x with respect to the flow Φ X will be denoted by ω X (x) and α X (x). By compactness of M , the subset ω X (x) is nonempty. Let y be a point of ω X (x). Since u is a strong Lyapunov function for X, the function t → u(Φ X (t, x)) is nonincreasing. Being bounded from below, it admits a limit l x ∈ R when t tends to +∞. The continuity of u shows that u(y) = l x . Since the subset ω X (x) is invariant by the flow and y is arbitrary, we deduce that u(Φ X (t, y)) = l x for every t ∈ R. Hence d y u(X(y)) = 0 and d y u = 0. Thus ω X (x) ⊆ Crit(u). A similar proof shows that α X (x) ⊆ Crit(u). If Crit(u) = Z(X) then every critical point of u is fixed by the flow. Thus, if Crit(u) is connected, it is chain-transitive under the flow of X, see [START_REF]Chain recurrence, semiflows, and gradients[END_REF]Lemma 10]. Hence, for every x in M , the subsets ω X (x) and α X (x) intersect a common chain-transitive subset of M . This implies that every point of M is chain-recurrent under the flow of X.

Remark 5.7. If the subset Crit(u) is an arc along which the function u is nowhere locally constant then, for every x ∈ M , the subsets ω X (x) and α X (x) are reduced to points because they are connected subsets of Crit(u) on which u is constant. Hence, the trajectory φ X (t, x) of every point x ∈ M converges both in the past and in the future.

Remark 5.8. It would be very interesting to construct more regular examples of functions f with a connected set of critical points. They would lead to the existence of nonconstant weak KAM solutions for the Mañé Lagrangian associated to the vector field X = - 1 2 grad(f ), such that every points of M is chain-recurrent under the flow of X. Compare with [13, section 4.3, lemma 4.14].

APPLICATIONS IN DYNAMICS

  Jacobi H(x, d x u) = c, c ∈ R, puisque toute solution u : M → R de classe C 1 de cette équation fournit un graphe invariant, voir [10, Chapitre IV] : Théorème 1.1 (Hamilton-Jacobi). Si u : M → R est une solution C 1 de l'équation d'Hamilton-Jacobi H(x, d x u) = c, c ∈ R, alors l'ensemble Graph(du) = {(x, d x u) | x ∈ M } est invariant par le flot hamiltonien de H.

  v) : R → M est la projection sur M de l'orbite du flot d'Euler-Lagrange passant par le point (x, v) ∈ T M au temps t = 0. Le résultat suivant, voir [10, Chapitre 5], est une généralisation C 0 du théorème d'Hamilton-Jacobi et explique l'intérêt des sous-solutions strictes dans l'étude de la dynamique du flot d'Euler-Lagrange. Théorème 1.2. L'ensemble Ĩ(u) est non vide et invariant par le flot d'Euler-Lagrange. De plus, si (x, v) ∈ Ĩ(u), la fonction u est différentiable en x et on a (x, v) = L -1 (x, d x u) et H(x, d x u) = c(H). INTRODUCTION L'ensemble d'Aubry est le sous-ensemble à de T M défini par à = u∈SS Ĩ(u), l'intersection étant prise sur l'ensemble SS des sous-solutions critiques de l'équation d'Hamilton-Jacobi. C'est un graphe bi-lipschitzien au dessus de sa projection, invariant par le flot d'Euler-Lagrange. Important dans la compréhension des systèmes dynamiques lagrangiens, il a été découvert indépendament par Aubry et Mather en 1982 dans le cas des twist maps, puis dans toute sa généralité par Mather en 1988. L'ensemble d'Aubry projeté, noté A, est la projection sur M de l'ensemble d'Aubry Ã. Il vérifie les propriétés suivantes, voir [14] : (i) il n'existe aucune sous-solution critique u : M → R stricte en un point x ∈ A, (ii) il existe une sous-solution critique u : M → R qui est stricte en dehors de A. De plus, les solutions KAM faibles sont entièrement définies par leur restriction à l'ensemble d'Aubry projeté, puisque l'on a le résultat suivant, voir [10, Chapitre V] ou [11, théorème 1] : Théorème 1.3. Deux solutions KAM faibles qui coïncident sur A coïncident sur M . L'ensemble de Mañé est défini par Ñ = u∈SS Ĩ(u). Comme l'ensemble d'Aubry, l'ensemble de Mañé est un compact invariant par le flot d'Euler-Lagrange. De plus, on a le résulat dynamique suivant : Théorème 1.4 (Mañé). Chaque point du compact invariant à est récurrent par chaîne pour la restriction φ t | à du flot d'Euler-Lagrange et le compact invariant Ñ est transitif par chaînes pour la restriction φ t | Ñ du flot d'Euler-Lagrange.

  h t (x, y) = inf t 0 L(γ(s), γ(s))ds où l'infimum est pris sur les courbes γ : [0, t] → M , continues et C 1 par morceaux, vérifiant γ(0) = x, γ(t) = y. La barrière de Peierls est l'application h : M × M → R définie par h(x, y) = lim inf INTRODUCTION (i) pour tout x ∈ M , h(x, x) ≥ 0, (ii) pour tout x, y, z ∈ M , h(x, y) ≤ h(x, z) + h(z, y), (iii) on a A = {x ∈ M | h(x, x) = 0}.

  (a) si u : M → R est une sous-solution critique de l'équation d'Hamilton-Jacobi, alors pour tout x, y ∈ M , u(y)u(x) ≤ h(x, y). (b) pour tout x ∈ M , la fonction h(x, •) : M → R est une solution KAM faible de l'équation d'Hamilton-Jacobi.

Corollaire 3 . 4 .

 34 0 alors u est une fonction de Lyapunov pour le flot ϕ t de X. De plus, si x est un point de différentiabilité de u on a X • u(x) ≤ 0 avec égalité si et seulement si d x u = 0. Dans ce cas, on a H X (x, d x u) = 0. Si u : M → R est une sous-solution critique C 1 de l'équation d'Hamilton-Jacobi H X (x, d x u) = 0 alors pour tout x ∈ M on a X • u(x) ≤ 0 avec égalité si et seulement si d x u = 0.

14 3 .

 3 FONCTIONS DE LYAPUNOV EN THÉORIE KAM FAIBLE : L'EXEMPLE DES LAGRANGIENS DE MAÑÉ Chapter 1

Proposition 3 . 5 .

 35 In a metric space X, any open covering of X admits an open barycentric refinement. Proof. See for example [9, Chapter VIII, theorem 3.5].

  and this contradicts the fact that ( O i ) i∈N is a basis of open neighborhoods of D in the quotient.

  (i) any Lyapunov function θ which is Lipschitzian for the metric d satisfies A d (h) ⊂ N (θ), (ii) there is a Lipschitzian Lyapunov function θ for which A d (h) = N (θ).

Lemma 2 . 1 .

 21 Let θ : X → R be a Lyapunov function for h and let (x, y) ∈ P(h). If θ(y) ≥ θ(x) then [θ(x), θ(y)] ⊂ θ(N (θ) ∩ I x,y ), where I x,y = {z ∈ X | (x, z) ∈ P(h), (z, y) ∈ P(h)}.

Remark 2 . 5 .

 25 The fact that θ(C) is an interval is well known in the settings of flows because chain transitive component are then connected, see [8, Theorem 3.6D].

  The preorder d naturally induces an equivalence relation ∼ d on A d (h) by x ∼ d y if and only if x d y and y d x. The equivalence classes of ∼ d are called the d-Mather classes of h. It follows from proposition 3.0.5 that they are closed invariant subsets of X. Moreover, they form a partition of A d (h). The quotient space is called the d-Mather quotient of h and will by denoted by M d (h). The functionL * d (x, y) = max{L d (x, y), L d (y, x)}then induces a metric on M d (h), which defines the quotient topology. Moreover, the canonical projectionπ d : (A d (h), d) → (M d (h), L * d )is1-Lipschitzian. Indeed, for every x, y ∈ A d (h) we have |L d (x, y)| = |L d (x, y) -L d (x, x)| ≤ d(x, y). Example 3.2. Let T = R/Z endowed with the usual flat metric d. Let K ⊂ T be a Cantor set and let ϕ : T → [0, +∞[ be a C ∞ function such that ϕ -1 (0) = K. Let h be the time-one map of the flow of the vector field X(x) = ϕ(x) ∂ ∂x . If K has vanishing Lebesgue measure then A d (h) = T and M d (h) is reduced to a point. If K has non-vanishing Lebesgue measure then A d (h) = K and M d (h) is homeomorphic to K. Notice that in both cases every point is chain recurrent and there is only one chain transitive component.

Proposition 4 . 2 .

 42 Any (K, L d )-dominated function u : X → R is constant on every d-Mather classe and induces a K-Lipschitzian function on the d-Mather quotient (M d (h), L * d ).

Lemma 4 . 3 .

 43 Any continuous L d -dominated function is a Lyapunov function for h. Conversely, any K-Lipschitzian Lyapunov function forh is (K, L d )-dominated.

  Such a function exists by proposition 4.1 and is a Lipschitzian Lyapunov function for h by lemma 4.3. Moreover, for x ∈ X \ A d (h) we have

Proposition 4 .

 4 2 and lemma 4.3 then lead to the following corollary.

Corollary 4 . 7 .Theorem 4 . 8 .

 4748 Let L d (h) be the set of Lipschitzian Lyapunov functions θ : (X, d) → R for h. Any function θ ∈ L d (h) is constant on every d-Mather classes and induces a Lipschitzian function θ on (M d (h), L * d ). Moreover, the family of functions { θ | θ ∈ L d (h)} separates points of (M d (h), L * d ). We thus obtain a criteria for the existence of non-trivial Lipschitzian Lyapunov function in terms of the d-Mather quotient. The only Lipschitzian Lyapunov functions θ : (X, d) → R for h are the constants if and only if the d-Mather quotient M d (h) is trivial i.e. is reduced to a point. In that case, we have A d (h) = X.

48 5 .

 5 AUSLANDER SET AND MAÑÉ SET

Lemma 6 . 1 .

 61 Let a, b ∈ H and let U be an open neighborhood of the closed segment [a, b]. There is a C ∞ diffeomorphism ϕ of H with Supp(ϕ) ⊂ U such that both ϕ and ϕ -1 are Lipschitzian and ϕ(a) = b.

2 . 1

 21 that either p = k or k = 0 and p = n. If p = k then the equality xp = x p contradicts the fact that xk = x k . If k = 0 then the equality x0 = x 0 contradicts again xk = x k . In both cases we obtain a contradiction and thus xk+1 / ∈ h( C).

5 .

 5 φ n+1 |Fn = φ n |Fn , 6. both diffeomorphisms φ n+1 and φ -1 n+1 are Lipschitzian.

Corollary 2 . 2 .

 22 Let [a, b] ⊂ R n , n ≥ 2, be a closed line segment not reduced to a point and let g : R n → R be a C 1 function. Given any neighbourhood U of [a, b] and any δ > 0, we can find a δ-zig-zag γ for g such that γ ⊂ U , γ(0) = a and γ(1) = b.

1 i=1∂ 4 + 1 i=1∂ i g(x)u i + η 4 +

 1414 8 and ||(1-ε)ψF ||∞ ≤ 1 that ∂ n h(x) = -(1ε)ψ(x 1 , .., x n-1 )∂ n g(x)F (Rx n ) + Δ 2 (x) with |Δ 2 (x)| ≤ ||dG -dg|| ∞ + C(R). Since -ε ≤ F ≤ 1 and 0 ≤ ψ ≤ 1 we have -ε ≤ (1ε)ψF ≤ 1ε and thus ∂ n h(x) = -α(x)∂ n g(x) + Δ 2 (x) (3.0.9) with -ε ≤ α(x) ≤ 1ε. Let u = (u 1 , .., u n ) ∈ R n .Since the first n -1 sup norms of the partial derivatives of h can be made arbitrarly small for R large enough, we have from 3.0.9, for R large enough|d x (g + h)(u)| ≤ ni g(x)u i + (1α(x))∂ n g(x)u n + η |Δ 2 (x)| ||u|| ≤ (1α(x))d x g(u) + α(x) n-|Δ 2 (x)| ||u||. Since |1α(x)| ≤ 1 + ε, |α(x)| ≤ 1 and |Δ 2 (x)| ≤ η 3 + C(R),we get from 3.0.5 and 3.0.6 that for R large enough |d x (g + h)(u)| ≤ |d x g(u)| + (δ + η)||u||

Corollary 3 . 2 .

 32 Let g : R n → R, n ≥ 2, be a C 1 function and let γ be a δ-zig-zag for g. Then given any η > 0 and any open neighbourhood U of γ, we can find a C ∞ function h : R n → R such that (i) we have Supp(h) ⊂ U and ||h|| ∞ < η.

(

  ii) for every t ∈ I, we have ||d γ(t) (g + h)|| < 3δ + η,3. ALTERATION LEMMA(iii) we have Crit(g + h) = Crit(g), (iv) for every x in R n we have ||d x (g + h)|| < ||d x g|| + 3δ + η.

( 4 )

 4 for every x ∈ R n and every u ∈ R n ,|d x (g + h 1 )(u)| < |d x g(u)| + δ + η 3 ||u||.

  ') we have Crit(g + h 1 + h 2 ) = Crit(g + h 1 ), (4') for every x ∈ R n and every u ∈ R n , |d x (g + h 1 + h 2 )(u)| < |d x (g + h 1 )(u)| + 2 δ + η 3 ||u||.

Proposition 4 . 1 .

 41 Let g : R n → R, n ≥ 2, be a C 1 function and let γ be a polygonal arc in R n . Given any ε > 0 and any neighbourhood U of γ, we can find a C 1 function h : R n → R and an arc β such that (i) we have β(0) = γ(0), β(1) = γ(1) and for every t ∈ I||β(t)γ(t)|| < ε, (ii) we have Supp(h) ⊂ U and ||h|| ∞ < ε, (iii) we have Crit(g + h) = Crit(g) ∪ β and Crit(g) ∩ γ ⊂ β,Moreover, if the subset Crit(g) is finite, we can assume that the function g + h is nowhere locally constant along β.Proof. We set E = (C 0 (I, R n ), || • || ∞ ) and F = (C 0 c (R n , R), || • || ∞ ). Let (J k ) k≥1 be a countable family of nonempty open intervals of I such that, for every nonempty open interval J ⊂ I, there is k ≥ 1 with J k ⊂ J. For every k ≥ 1, we define O k = {γ ∈ E | min t,t ∈I\J k ||γ(t)γ(t )|| > 0},andW k = {(γ, h) ∈ E × F | the function (g + h) • γ is not constant on J k }.The subset O k is an open subset of E and the subset W k is an open subset of E × F . Moreover, a path γ ∈ E is an arc if and only if γ ∈ ∩ k≥1 O k and the function g + h is nowhere locally constant along γ if and only if (γ, h) ∈ ∩ k≥1 W k .

( 1 )( 4 )( 5 )

 145 γ k+1 (0) = γ k (0), γ k+1 (1) = γ k (1) and ||γ k+1γ k || ∞ < ε k , (2) ||g k+1g k || ∞ < ε k and ||dg k+1dg k || ∞ < Cε k , (3) for every t ∈ I, ||d γ k (t) g k || < Cε k , Supp(g k+1g k ) ⊂ V 2ε k (γ k ), Crit(g k+1 ) = Crit(g k ) and Crit(g k+1 ) ∩ γ k+1 = Crit(g k ) ∩ γ k , (6) 0 < 2ε k+1 < ε k , (7) B E (γ k+1 , 2ε k+1 ) ⊂ O k+1 .Moreover, if the subset Crit(g) is finite, we can add the following condition 4. PROOF OF THE MAIN RESULT

( 7 '

 7 ) B E (γ k+1 , 2ε k+1 ) × B F (g k+1g, 2ε k+1 ) ⊂ W k+1 . Let C > 0 be a constant such that sup t∈I ||d γ(t) g|| < C ε 2 .

sup x∈U k ||d x g

  k || < Cε k . (4.0.10)Let δ > 0 to be chosen later. By corollary 2.3, we can find a δ-zig-zag γ k+1 ⊂ U k for g k satisfying property (1) and such thatCrit(g k ) ∩ γ k+1 = Crit(g k ) ∩ γ k . (4.0.11)Let η > 0 to be chosen later. By corollary 3.2, we can find aC ∞ function h k such that (a) Supp(h k ) ⊂ U k and ||h k || ∞ < η, (b) for every t ∈ I, ||d γ k+1 (t) (g k + h k )|| < 3δ + η, (c) Crit(g k + h k ) = Crit(g k ),(d) for every x ∈ R n , ||d x (g k + h k )|| < ||d x g k || + 3δ + η.

( 3 )

 3 follows from (b) for δ and η small enough. Property (4) follows from (a) andU k ⊂ V 2ε k (γ k ).Property (5) follows from (c) and 4.0.11. Property (2) follows from (a) and (d) together with 4.0.10 for δ and η small enough. This finishes the induction step. It follows from (1) and (6) that the path γ k converges in E to a path β satisfying β(0) = γ(0), β(1) = γ(1) and, for every k ∈ N ||βγ k || ∞ ≤ +∞ n=k ε n < 2ε k .
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  α} est envoyé dans son intérieur par h. Cette propriété permet de montrer le critère important suivant :

	Lemme 2.1. Si les valeurs neutres de θ sont d'intérieur vide dans R alors on a
	l'inclusion
	R(h) ⊂ N (θ)

où R(h) désigne l'ensemble des points récurrents par chaînes de h.

INTRODUCTION Théorème 2.2 (Conley). Il existe une fonction de Lyapunov θ : X → R pour h, dont l'ensemble des valeurs neutres est d'intérieur vide dans R, satisfaisant

  obtenu en identifiant les points à distance nulle pour L

* d est appelé d-quotient de Mather de h. On a alors le résultat suivant : Théorème 2.4. Il existe une fonction de Lyapunov lipschitzienne non-triviale θ : (X, d) → R pour h si et seulement si M d (h) est non-trivial i.e. est non réduit à un point.

  il possible de trouver un champs de vecteur C k , k ≥ 2, sur une variété riemannienne compacte connexe M , tel que tous les points de M soient récurrents par chaînes pour le flot de X, bien qu'il existe une solution KAM faible v : M → R non-constante à l'équation d'Hamilton-Jacobi H X (x, d x u) = 0 ? Théorème 3.8. Soit M une variété C ∞ compacte connexe, sans bord avec Dim(M ) ≥ 2. L'ensemble des fonctions f ∈ C 1 (M, R) dont l'ensemble des points critiques est un arc i.e. est homéomorphe au segment [0, 1], est dense dans C 0 (M, R).

	INTRODUCTION
	Supposons qu'une telle solution v : M → R existe. Puisque deux solutions KAM
	faibles coïncidant sur A X coïncident sur M et que les constantes sont des solutions
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	points critiques est un connexe de M . Une telle fonction est bien évidement surpre-
	nante puisque les minimums et les maximums d'une fonction sont habituellement
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  Thus by continuity of f , we can find a neighborhood W x,y of x such that

there exists an open covering U of X which f -separates x and y can be obtained from a countable family of open coverings of X. Lemma 3.11. If the metric space (X, d) is separable then there exists a countable family (U l ) l∈N of open coverings of X such that for every (x, y) ∈ E there exists an open covering U k in (U l ) l∈N that f -separates x from y. Remark 3.12. Such a family will be called a f -separating family.

Proof. Let (x, y) ∈ E and U x,y be an open covering of X which f -separates x from y. We will show that there are open neighborhoods W x,y of x and W x,y of y and an open covering V x,y of X which f -separates every point of W x,y from every point of W x,y .

Let V x,y be an open barycentric refinement of the open covering U x,y . The compact subset f (x) is included into the open subset St(f (x), V x,y ).

  [START_REF] Bost | Tores invariants des systèmes dynamiques hamiltoniens (d'après Kolmogorov[END_REF].2 (Contraction lemma). Let {x k , y k }, k = 1, .., r, be pairs of points of H such that {x 1 , .., x r } are pairwise disjoint and {x 1 , .., x r } ∩ {y 1 , .., y r } = ∅. Let E be the vector space spanned by F ∪ {x 1 , .., x r } ∪ {y 1 , .., y r }. Since H is infinite dimensional, we can find a linearly independent family {v 1 , .., v r } orthogonal to E. For η > 0 small enough, the family {ỹ 1 , .., ỹk } defined by ỹi = y i + ηv i is then made of pairwise disjoint points of H such that {ỹ 1 , .., ỹk } ∩ (F ∪ {x 1 , .., x r } ∪ {y 1 , .., y r }) = ∅ and for every k ∈ {1, .., r},||ỹ ky k || < δ, ||ỹ kx k || < ε.Moreover, the closed segments [x k , ỹk ], k ∈ {1, .., r}, are disjoint and neither meet F nor {y 1 , .., y r }. Let U 1 , .., U r be disjoint open neighborhoods of the segments [x 1 , ỹ1 ], .., [x r , ỹr ] such that, for every k ∈ {1, .., r}, we haveU k ∩ (F ∪ {y 1 , .., y r }) = ∅.Since ||x kỹk || < ε, we can also suppose that every open subset U k has diameter less than ε. By the previous lemma, there are C ∞ diffeomorphisms ϕ 1 , .., ϕ r such that, for every k ∈ {1, .., r}, both ϕ k and ϕ-1 k are Lipschitzian, Supp(ϕ k ) ⊂ U k and ϕ k (x k ) = ỹk . We then set ϕ = ϕ r • ... • ϕ 1 .Since supports of the diffeomorphisms ϕ k are disjoint and do not meet the set F ∪ {y 1 , .., y r }, we haveϕ |F = Id |F

	Let F be a finite subset of H such that {x 1 , .., x r } ∩ F = ∅. Let ε > 0. Suppose that we have for every k in {1, .., r}, ||x k -y k || < ε. Then for every 0 < δ < ε we can find a C ∞ diffeomorphism ϕ of H such that ϕ |F = Id |F and for every k in {1, .., r}, ϕ(x k ) = ỹk , ϕ(y k ) = y k . Moreover, since supports of the diffeomorphisms ϕ k are disjoint and have diameter less than ε, we have ||ϕ(x and for every k ∈ {1, .., r}, ||ϕ -

k )ϕ(y k )|| < δ.

Moreover, we can suppose that both ϕ and ϕ -1 are Lipschitzian and

||ϕ -Id || ∞ < ε, ||ϕ -1 -Id || ∞ < ε. 6. APPENDIX Proof.

  ). Let xk+1 ∈ E( C). We distinguish two cases. If xk+1 54 6. APPENDIX is coming from case (1) i.e xk+1 = y k+1 then by 6.2.2 we do have xk+1 / ∈ F ∪ h( C). Otherwise, we are in case (2) i.e xk+1 = x k+1 , and Now, suppose that xk+1= h(x p ) ∈ h( C). Since h(x k ) = x k+1 = xk+1 , the injectivity of h implies that xp = x k . Since h(x k ) = xk+1 , the same argument implies that xk = x k .Now since xp ∈ h -1 ( C), we get from 6.2.2 that xp = x p . Thus we have x p = x k . Since k ∈ {0, .., n-1}, we deduce from 6.

	xk+1 ∈ Isol(X)
	and		
	h(x k ) = x k+1 .
	We then have		
	d(x k+1 , h(x k )) ≤ d(h(x k ), h(x k )),
	≤	sup	d(h(x), h(y)) < ε(F ).
		d(x,y)<η	
	Remember that xk+1 ∈ E( C) hence h(x k ) = xk+1 . Since xk+1 ∈ Isol(X), we deduce
	from lemma 6.4 that		
		xk+1 / ∈ F.

  Since every neighbourhood U k has a diameter less than ε, we can parametrize the δ-zig-zag β by the unit interval in such a way that ||β(t)γ(t)|| < ε for every Let r ∈ {0, .., N } be such that x ∈ γ([t r , t r+1 ]) and let t x ∈ [t r , t r+1 ] be such that x = γ(t x ). Since x ∈ Crit(g), it follows from 2.0.4 that we have β r = γ([t r , t r+1 ]). Since the δ-zig-zag β r is followed for a while during the construction of the δ-zig-zag β, we can find t -and t + with t r ≤ t -≤ t + ≤ t r+1 such that β ∩ β r = γ([t -, t + ]). To conclude the proof, it suffices to show that t -≤ t x ≤ t + . We prove that t -≤ t x , the proof of t x ≤ t + being similar. If r = 0 we have t -= t r and there is noting to prove. If r ≥ 1 and U r-1 ∩ Crit(g) = ∅, it follows from 2.0.4 that β r-1 = γ |[t r-1 ,tr] and again t -= t r . So we can suppose that r ≥ 1 and U r-1 ∩ Crit(g) = ∅. Since both points γ(t r ) and γ(t -) lie in U r-1 and since U r-1 is convex, we deduce that the segment γ

t in I. Reducind ε if necessary, condition β ⊂ U will now follow. It thus remains to prove that β ∩ Crit(g) = γ ∩ Crit(g). According to 2.0.4, a point of the δ-zig-zag β is either contained in some neighbourhood U k with U k ∩ Crit(g) = ∅ or is a point of the original path γ. Hence we have β ∩ Crit(g) ⊂ γ ∩ Crit(g). Now let x be a possible point of γ ∩ Crit(g).

  As we will now see, it is possible to alter a function in a neighbourhood of a δ-zigzag to obtain a function with a small differential in a neighbourhood of this δ-zigzag. The key alteration lemma 3.1 is essentially taken from[START_REF] Körner | A dense arcwise connected set of critical points-molehills out of mountains[END_REF] Lemma 3.3]. The difference with[START_REF] Körner | A dense arcwise connected set of critical points-molehills out of mountains[END_REF] Lemma 3.3] is that it can be done without adding or removing any critical point. In the sequel, the support of a real-valued function F will be denoted by Supp(F ) and the partial derivatives of a C 1 function h : R

n → R will be denoted by ∂ k h, k = 1, .., n. We recall that the closed line segment between two points a, b of R n is denoted by [a, b]. Lemma 3.1 (Alteration lemma). Let g : R n → R, n ≥ 2, be a C 1 function and let [a, b] be a closed line segment in R n not reduced to a point. Suppose that we can find an hyperplane H of R n and δ > 0 such that ba ∈ H and, for every x ∈ [a, b] and every v ∈ H, we have |d x g(v)| ≤ δ||v||. (3.0.5) Then given any η > 0 and any neighbourhood U of [a, b], we can find a C ∞ function h : R n → R such that (i) we have Supp(h) ⊂ U and ||h|| ∞ < η, (ii) for every x ∈ [a, b], we have ||d x (g + h)|| < δ + η, (iii) we have Crit(g + h) = Crit(g),
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Let M be a C ∞ connected closed manifold. For every k ∈ N, we denote by C k (M, R) the set of C k real-valued functions on M , endowed with the usual C k -topology. In this paper, we are interested in the set J ⊂ C 1 (M, R) of C 1 real-valued functions f on M satisfying (i) the subset Crit(f ) is an arc i.e. is homeomorphic to the unit interval I = [0, 1],

(ii) the function f | Crit(f ) is nowhere locally constant on Crit(f ).

The non-emptiness of J is not at all obvious and will follow from the main result of this paper. This fact is surprising because minima and maxima of any function f ∈ J are then connected by an arc of critical points and there is no other critical point. Actually, any function f ∈ J provides a so-called Whitney example i.e. a function that is not constant along an arc of critical points, and therefore violates conclusions of Sard's theorem. The first such example is due to Whitney [START_REF] Whitney | A function not constant on a connected set of critical points[END_REF] who constructed a C 1 real-valued function f on R 2 together with an arc γ of critical points of f such that f (γ(0)) = f (γ(1)). Modern approach of this result can be found in [START_REF] Hajłasz | Whitney's example by way of Assouad's embedding[END_REF]. Nevertheless, the function constructed by Whitney might have additionnal critical points outside the arc γ. In particular, there is no reason for the set of critical points of f to be connected. However, we shall prove the following.

Then J is dense in C 0 (M, R).

As mentioned above, it follows from Sard's theorem that any function f ∈ J is at most C dim(M )-1 . Notice also that the theorem becomes false if we replace C 0 (M, R) Property (i) is then satisfied by the choice of γ 0 and ε 0 . It follows from (2) and ( 6)

In particular, it follows from the choice of g 0 and

Therefore, we get from (4) that Supp(h) ⊂ V 2ε 0 (γ 0 ) = V ε (γ) and, reducing ε is necessary, property (ii) is satisfied. Since g k converges in the C 1 -topology to g + h and γ k converges to β in the C 0 -topology, we deduce from (3) and ε k → 0 that β ⊂ Crit(g + h). Moreover, it follows from 4.0.12 and

Hence, it follows from (4) and 4.0.14 that the sequence g k is eventually stationary in the neighbourhood of every point x / ∈ β. We then deduce from the first part of (5) that Crit(g + h) = Crit(g) ∪ β. The second part of (5) implies that every arc γ k contains the subset Crit(g 0 ) ∩ γ 0 = Crit(g) ∩ γ. Since γ k converges to β in the C 0 -topology, we thus get Crit(g) ∩ γ ⊂ β and property (iii) holds. Now, we get from 4.0.12 and (7) that β ∈ ∩ k≥1 O k i.e β is an arc. Moreover, if the subset Crit(g) is finite, we get from 4.0.13 and (7 ) that (β, h) ∈ ∩ k≥1 W k , i.e. the function g + h is nowhere locally constant along β.

We can now prove the main result. We recall the statement.

Proof. Let g ∈ C 0 (M, R). Since Morse functions are dense in C 0 (M, R), we can assume that g is a Morse function and hence has a finite number of critical points c 1 , .., c r , r ≥ 1. Since M is connected we can assume, pushing these points via isotopies if needed, that they all belong to the same coordinate chart (V, ϕ) with ϕ a C ∞ diffeomorphism such that ϕ(V ) = R n . Pushing again the points ϕ(c 1 ), .., ϕ(c r ) if needed, we can even assume that ϕ(c k ) = (k, 0, .., 0) for k = 1, .., r. Thus, there is an obvious polygonal arc from ϕ(c 1 ) to ϕ(c r ), namely γ(t) = (1t)ϕ(c 1 ) + tϕ(c r ). Choose U any compact neighbourhood of the arc γ. By the previous proposition, we can find a C 1 function h : R n → R, arbitrary small in the C 0 -topology, with Supp(h) ⊂ U , and an arc β ⊂ U such that Crit(g
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Moreover, we can assume that the function g • ϕ -1 + h is nowhere locally constant along β because the subset Crit(g • ϕ -1 ) is finite. Since the function h is compactly supported, the function f = g + h • ϕ, defined on V , can be extended by g to the whole manifold M and satisfies Crit(f ) = ϕ -1 (β) and f is nowhere locally constant along ϕ -1 (β). Moreover, the function f can be made arbitrary close to g in the C 0 -topology because h can be taken arbitrary small in the C 0 -topology.

Applications in dynamics

Throughout this section, the reader will be supposed to be familiar with the notion of chain-recurrence for a flow. Good references are [START_REF] Akin | The general topology of dynamical systems[END_REF][START_REF]Chain recurrence, semiflows, and gradients[END_REF]. Let M be a C ∞ connected closed manifold and let X be a C ∞ vector field on M generating a complete flow Φ X . A function u : M -→ R is said to be a strong Lyapunov function for X if it is C 1 and satisfies the following two properties (i) for every x in M , we have d x u(X(x)) ≤ 0, (ii) for a given x in M , we have d x u(X(x)) = 0 if and only if d x u = 0.

Note that in that case, the vector field X appears as gradientlike for u. Moreover, it follows from property (ii) that any strong Lyapunov function u for X is a Lyapunov function for the time-one map of φ X such that N (u) ⊂ Crit(u). Hence, we get from corollary 2.3 of chapter 2 the following result, see also [START_REF]Chain recurrence, semiflows, and gradients[END_REF]Proposition 4]. Hence, if every point of M is chain-recurrent under the flow of X and if a strong Lyapunov function u satisfies conclusion of Sard's theorem then it has to be constant on M . In particular, the following results of Bates [START_REF] Bates | Toward a precise smoothness hypothesis in Sard's theorem[END_REF] shows that u is constant whenever it is C dim(M )-1,1 .

Theorem 5.2 (Bates). Let n, m be positive integers with n > m and k

Nevertheless, we will see that if the density of the regular values fails, this conclusion may be wrong. In fact, theorem 1.1 can be used to construct counterexamples on any C ∞ closed and connected manifold M with dim M ≥ 2, as stated in the following result. Theorem 5.3. Let M be a C ∞ closed connected manifold with dim(M ) ≥ 2. There is a C ∞ vector field X on M and a non-constant C 1 strong Lyapunov function u for X such that every point of M is chain-recurrent under the flow of X. Remark 5.4. Such examples show in a dramatic way that the problem of regularizing Lyapunov functions cannot be solved only through Wilson's smoothing techniques [START_REF] Wilson | Smoothing derivatives of functions and applications[END_REF] but requires additional assumptions on the neutral values. Note that such weaker examples have already been constructed in [START_REF]Chain recurrence, semiflows, and gradients[END_REF] and [START_REF] Fathi | On the Hausdorff dimension of the Mather quotient[END_REF]Section 4.4].