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Abstract

In this thesis, we propose and study new algorithms and data structures

for model checking �nite-state, concurrent systems. We focus on techniques

that target shared memory, multi-cores architectures, that are a current

trend in computer architectures.

In this context, we present new algorithms and data structures for exhaustive

parallel model checking that are as e�cient as possible, but also �friendly�

with respect to the work-sharing policies that are used for the state space

generation (e.g. a work-stealing strategy): at no point do we impose a

restriction on the way work is shared among the processors. This includes

both the construction of the state space as the detection of cycles in parallel,

which is is one of the key points of performance for the evaluation of more

complex formulas.

Alongside the de�nition of enumerative, model checking algorithms for many-

cores architectures, we also study probabilistic veri�cation algorithms. By

the term probabilistic, we mean that, during the exploration of a system,

any given reachable state has a high probability of being checked by the

algorithm. Probabilistic veri�cation trades savings at the level of memory

usage for the probability of missing some states. Consequently, it becomes

possible to analyze part of the state space of a system when there is not

enough memory available to represent the entire state space in an exact

manner.

[Keywords:] Parallel Model Checking, Concurrent algorithms and data

structures, Formal Methods, Formal Veri�cation and Temporal Logic.



iv



Acknowledgements

It is a pleasure to thank those who helped me to make this thesis possible.

I will never forget these last three years, they have changed my perspectives

about life in general.

First of all, I would like to thank Dr. François Vernadat and Dr. Bernard

Berthomieu for giving me this chance. I had never considered myself to

enroll into a Doctorate program before they invited me and for that I will

always be grateful to them. Dr. Vernadat has always been more than a

friend, his support was paramount to accomplish this thesis. The same can

be said for Dr. Berthomieu, whose experience and knowledge allowed me

to achieve many of my goals. Thank you again for this chance, for your

support, for your advices and for all the exchanges we had during these

three years.

I owe my deepest gratitude to my supervisor, Dr. Silvano Dal Zilio, whose

encouragement, guidance and support from the very beginning to the end

that helped me to overcome all the obstacles for obtaining this thesis. Thank

you for the trust and also by giving me the complete freedom to decide the

directions of my work. Without his wisdom and experience, this thesis

would not have been possible. I do not only consider him as an outstanding

professional, but also as an example to be followed. I found in him the right

balance between life and work. It has been an honor to work with him.

I extend my thanks to Dr. Jean-Marie Farines, whose encouragement made

me considered a graduate career in Computer Science. Since my under-

graduation, he has supported me in many ways. Thank you for the advices,

this thesis itself is the result from one of your advices.

I would also like to thank the Dr. Radu Mateescu and Dr. Fabrice Kor-

don for having reviewed this work and for their careful comments. All the



remarks were of great importance to improve this document. I extend my

thanks to Dr. Jean-Paul Bodeveix, Dr. Eng. Patrick Farail, members of

the examining committee of this thesis.

I would like to show my gratitude to Dr.Alexandre Hamez, Dr.Didier Le

Botlan and Dr. Sakkaravarthi Ramanathan for helping me in correcting

this document.

I acknowledge the Topcased project for their �nancial support. They pro-

vided me all the tools that were necessary to achieve my goals.

I am indebted to many of my colleagues who supported me during these

last three years. I will never forget our co�ee breaks where we discussed

so di�erent subjects, so many debates about the world, future, humanity,

etc... Thank you Dr.Florent Peres, Dr.Pierre-Emmanuel Hladik, Camille

Cazeneuve, Jorge Gomez Montalvo, Nouha Abid, Dr.Riadh Ben Halima,

Dr. Luiz Douat, Johan Mazel, Nguyen Xuan Hung, Dr.Med Mehdi Jatlaoui,

Dr.Franck Chebila, Guillaume Kremer, . . . These moments I spent with you

were crucial to my personal and professional development. It was great to

share experiences and knowledge with interesting people like you.

I would also like to thank my family for the support they provided me

through my entire life. They are for sure my living force, I can not tell

how many times I found in them the strength to continue my work. I must

acknowledge my father Roberto Elias Saad, my mother Neli Tacla Saad, my

brother Fábio Tacla Saad and my sisters Bruna Tacla Saad and Marina Tacla

Saad. Without your love and encouragements I would not have �nished this

thesis.

Lastly, I o�er my regards and gratitude to all of those who supported me in

any respect during the completion of this thesis.



Contents

List of Figures vii

Glossary xi

1 Introduction 1

2 Model Checking � Related Work 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 What is Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 State Graph and Kripke Structure . . . . . . . . . . . . . . . . . 11

2.2.2 Temporal Logic Formula . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Parallel Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Parallel Computers . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Chronology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Parallel State Space Construction . . . . . . . . . . . . . . . . . . 22

2.3.4 Parallel LTL Model Checking . . . . . . . . . . . . . . . . . . . . 29

2.3.5 Parallel CTL Model Checking . . . . . . . . . . . . . . . . . . . . 35

2.4 Probabilistic Veri�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.2 Compact Hash Table . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Parallel State Space Construction . . . . . . . . . . . . . . . . . . 42

2.5.2 Parallel Model Checking . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.3 Probabilistic Veri�cation . . . . . . . . . . . . . . . . . . . . . . . 46

iii



CONTENTS

3 Parallel State Space Construction 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Algorithms Overview . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 General Lock Free Approach . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Shared and Local Data . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Di�erent Phases of the Algorithm . . . . . . . . . . . . . . . . . . 52

3.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.4 Discussion about the experiments . . . . . . . . . . . . . . . . . . 62

3.3 Mixed approach: Localization Table based algorithm . . . . . . . . . . . 63

3.3.1 Localization Table . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Comparison With Other Algorithms and Tools . . . . . . . . . . . . . . 73

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Parallel Model Checking With Lazy Cycle Detection � MCLCD 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 List of Supported Properties � the LRL Logic . . . . . . . . . . . . . . 82

4.3 Some Graph Theoretical Properties . . . . . . . . . . . . . . . . . . . . . 84

4.4 A Model Checking Algorithm with Lazy Cycle Detection . . . . . . . . . 87

4.4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.2 Model Checking Reachability properties � E (ψ ∪ φ) . . . . . . . 90

4.4.3 Model Checking Liveness Properties � A (ψ ∪ φ) . . . . . . . . . 90

4.4.4 Model Checking the Leadsto Property � ψ  φ . . . . . . . . . 99

4.5 Correctness and Complexity of our Algorithms . . . . . . . . . . . . . . 101

4.6 Parallel Implementation of our Algorithm . . . . . . . . . . . . . . . . . 108

4.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7.1 Speedup Comparison Between RG and RPG Algorithms . . . . 111

4.7.2 Comparison with a Standard Algorithm . . . . . . . . . . . . . . 114

4.7.3 Conclusion About the Experiments . . . . . . . . . . . . . . . . . 116

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

iv



CONTENTS

5 Probabilistic Veri�cation: Bloom Table 127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Probabilistic Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.1 Bloom �lter and Compact Hash Table . . . . . . . . . . . . . . . 130

5.2.2 Bloom Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3 Probabilistic Veri�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 Conclusions 149

A Experiments 155

A.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.2 Parallel State Space Construction . . . . . . . . . . . . . . . . . . . . . . 155

A.3 Probabilistic Veri�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B Mercury 169

B.1 Technical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.2 Mercury Con�gurations for Exhaustive Exploration . . . . . . . . . . . 172

B.3 Mercury Con�gurations for Probabilistic Exploration . . . . . . . . . . 173

B.4 Mercury Con�gurations for Parallel Model Checking . . . . . . . . . . 174

B.5 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.5.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

C Résumé en Français 181

C.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

C.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

C.3 Contribuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.4 Sommaire : Brève Description de la Thèse . . . . . . . . . . . . . . . . . 187

C.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Bibliography 195

v



CONTENTS

vi



List of Figures

2.1 Model Checking development cycle. . . . . . . . . . . . . . . . . . . . . . 11

2.2 Semantics of LTL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Semantics of CTL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Shared memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Distributed memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 State space models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Spin multi-core speedup analysis (Hol08). . . . . . . . . . . . . . . . . . 28

2.8 Example of the sequential depth-�rst search post-order of vertices. (BBS01) 30

2.9 Illustration of some operations on a Bloom �lter. . . . . . . . . . . . . . 39

2.10 Parallel model checking algorithms for shared memory machines. . . . . 45

3.1 Parallel memory organization. . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Shared and private data overview. . . . . . . . . . . . . . . . . . . . . . 52

3.3 Phases alternation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Collision resolution with local AVl trees. . . . . . . . . . . . . . . . . . . 57

3.5 Speedup analysis for PH 12 and FMS 7 models. . . . . . . . . . . . . . . 58

3.6 Occupancy rate for PH 12 with 16 processors. . . . . . . . . . . . . . . . 58

3.7 Collision analysis for FMS 7 and PH 12. . . . . . . . . . . . . . . . . . 59

3.8 Threshold analysis using 16 processors for PH 12 and FMS 7. . . . . . 60

3.9 Comparison of Di�erent Implementations. . . . . . . . . . . . . . . . . . 62

3.10 Algorithm overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.11 Insertion in a Localization Table. . . . . . . . . . . . . . . . . . . . . . . 67

3.12 Shared and private data overview. . . . . . . . . . . . . . . . . . . . . . 67

3.13 Speedup analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.14 Collisions vs load factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



LIST OF FIGURES

3.15 Performance vs load factor. . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.16 Algorithms selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.17 Comparison of Di�erent Implementations. . . . . . . . . . . . . . . . . 74

3.18 Average Speedup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.19 Mean-Standard Deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 List of Supported Formulas. . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Successful Reverse Graph backward traversal for A (ψ ∪ φ). . . . . . . . 94

4.3 Unsuccessful Reverse Graph backward traversal for A (ψ ∪ φ). . . . . . . 94

4.4 Successful Reverse Parental Graph backward traversal for A (ψ ∪ φ). . . 97

4.5 Unsuccessful Reverse Parental Graph backward traversal for A (ψ ∪ φ). . 99

4.6 Leadsto a b where a is ψ and b is φ. . . . . . . . . . . . . . . . . . . . 99

4.7 Worst-Case Example for the RPG Version (edges in red are in the reverse

parental graph). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.8 Formulas and Models in our Benchmark. . . . . . . . . . . . . . . . . . . 120

4.9 PH with Reverse algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 121

4.10 PH with Parental algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 121

4.11 Exploration and cycle detection speedup analysis for PH model. . . . . . 121

4.12 Peg with Reverse alg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.13 Peg with Parental alg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.14 Exploration and cycle detection speedup analysis for Peg model. . . . . 122

4.15 TK with Reverse algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 123

4.16 TK with Parental algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 123

4.17 Exploration and cycle detection speedup analysis for TK model. . . . . . 123

4.18 TK_M with Reverse alg. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.19 TK_M with Parental alg. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.20 Exploration and cycle detection speedup analysis for TK_M model. . . 124

4.21 Simpli�ed graph for Peg-Solitaire (13 tokens). . . . . . . . . . . . . . . . 125

4.22 Simpli�ed graph for TK_M (2 stations). . . . . . . . . . . . . . . . . . . 125

4.23 PH model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.24 SK model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.25 TK model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.26 TK_M model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

viii



LIST OF FIGURES

4.27 PEG model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 Probabilist Algorithms Comparison. . . . . . . . . . . . . . . . . . . . . 132

5.2 Illustration of the insertion operation on a Bloom Table. . . . . . . . . . 134

5.3 Bloom Table and second storage coupling. . . . . . . . . . . . . . . . . . 134

5.4 Insertion operation on a Bloom Table with multiple possible insertions. . 136

5.5 Bloom Table Analysis for di�erent number of hash functions k. . . . . . 138

5.6 Comparison between Bloom Table and Bloom Filter for di�erent number

of hash functions k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.7 Relation k and f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.8 Relation k and q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.9 Parallel probabilistic veri�cation algorithm overview. . . . . . . . . . . . 140

5.10 Bloom �lter and Bloom Table Results. . . . . . . . . . . . . . . . . . . . 142

5.11 Bloom �lter and Bloom Table Results for Sokoban model. . . . . . . . . 144

5.12 Number of rejected elements for Sokoban model. . . . . . . . . . . . . . 145

5.13 Bloom �lter and Bloom Table Results for Solitaire model. . . . . . . . . 145

5.14 Number of rejected elements for Solitaire model. . . . . . . . . . . . . . 146

5.15 Probability vs Number of Keys for Peg and Sokoban models. . . . . . . 146

5.16 Bloom �lter vs Bloom Table Execution Pro�le Overview. . . . . . . . . . 147

A.1 Benchmark Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2 Parallel State Space Construction for the Sokoban and Peg-Solitaire models.157

A.3 Parallel State Space Construction for the Fifteen and FMS models. . . . 158

A.4 Parallel State Space Construction for the Frog and Hanoi models. . . . . 159

A.5 Parallel State Space Construction for the Kanban and PH models. . . . 160

A.6 Probability vs Execution Time. . . . . . . . . . . . . . . . . . . . . . . . 161

A.7 Probability vs Rejected States. . . . . . . . . . . . . . . . . . . . . . . . 162

A.8 Bloom Filter and Bloom Table Results for Fifteen model. . . . . . . . . 163

A.9 Number of rejected elements for Fifteen model. . . . . . . . . . . . . . . 163

A.10 Bloom Filter and Bloom Table Results for FMS model. . . . . . . . . . . 164

A.11 Number of rejected elements for FMS model. . . . . . . . . . . . . . . . 164

A.12 Bloom Filter and Bloom Table Results for Frog model. . . . . . . . . . . 165

A.13 Number of rejected elements for Frog model. . . . . . . . . . . . . . . . . 165

A.14 Bloom Filter and Bloom Table Results for Hanoi model. . . . . . . . . . 166

ix



LIST OF FIGURES

A.15 Number of rejected elements for Hanoi model. . . . . . . . . . . . . . . . 166

A.16 Bloom Filter and Bloom Table Results for Kanban model. . . . . . . . . 167

A.17 Number of rejected elements for Kanban model. . . . . . . . . . . . . . . 167

B.1 Mercury Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.2 Memory Layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.3 Mercury Con�gurations (we use † to signal our new algorithms). . . . 173

B.4 Algorithms selected for benchmark comparison. . . . . . . . . . . . . . . 175

B.5 Mercury usage syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.6 Mercury options for di�erent versions. . . . . . . . . . . . . . . . . . . 176

B.7 Mercury options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

x



Glossary

BFS Breadth-First Search Algorithm, 30
BT Bloom Table, 46, 131

CTL Computation Tree Logic, 13

DAG Directed Acyclic Graphs, 85
DFS Depth-First Search Algorithm, 30

KS Kripke Structures, 12

LRL Leadsto-Reachability-Liveness Logic, 83
LT Localization Table, 43, 62
LTL Linear Temporal Logic, 13
LTS labelled transitions systems, 12

MCLCD Model Checking With Lazy Cycle Detection,
44, 87

MIMD Multiple Instructions Multiple Data, 18

Nested-DFS Nested Depth-First Search Algorithm, 30
NOW Network of Workstations, 21

PG Parental Graph, 86, 89

RG Reverse Graph, 89

SCC Strongly Connected Components, 30
SIMD Single Instruction Multiple Data, 18
SISD Single Instruction Single Data, 18
SPMD Single Program Multiple Data, 22

xi



Glossary

xii



Chapter 1

Introduction

�Computer programming is an art, because it applies accumulated knowledge to the

world, because it requires skill and ingenuity, and especially because it produces

objects of beauty. A programmer who subconsciously views himself as an artist will

enjoy what he does and will do it better.�

Donald Knuth

In this thesis, we propose and study new algorithms and data structures for model

checking �nite-state, concurrent systems. We focus on techniques that target shared

memory, multi-cores architectures, that are a current trend in computer architectures.

Model checking is a valuable formal veri�cation method that can be used to avoid

the presence of logical errors. In that respect, model checking contributes to improving

the safety of embedded systems (and also to improve the level of trust that we can put

in them). This is an important goal. Embedded systems are increasingly present in our

everyday life and we cannot deny the major impact they have on our societies. Some of

these embedded systems�such as those found in the aeronautic or nuclear domains for

example�are classi�ed as critical, meaning that a failure or a malfunction can result in

the injury (or even the death) of the people involved, irreversible damage to equipment,

or environmental catastrophes. We can list some outstanding examples of catastrophic

failures that have attracted the attention of the public in their time (see (Neu92) for a

list of incidents):

� Therac-25 (1985-1987): Between June 1985 and January 1987, a computer-controlled

radiation therapy, the Therac-25, severely overdosed six patients due to a software
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1. INTRODUCTION

coding issue (Lev95).

� Ariane 5 (1996): On June 4, 1996, the inaugural launch of the European Ariane

5 rocket ended in a blast! This failure, caused by a malfunction in the control

software, was essentially to blame on an internal software exception during execu-

tion of a data conversion from 64-bit �oating point to 16-bit signed integer value

(L+96).

� NASA Mars Path�nder (1997): On July 1997, the martian rover started losing

information due to several system resets. The system was restarted due to a

problem of priority inversion and resulted in delays in relaying data, shortening

the duration of the mission (C+98).

The market demands for more e�cient and automated solutions has pushed the

complexity of embedded systems to levels never imagined before. For instance, we now

develop airplanes that �y longer, with less maintenance time, and using less fuel. The

level of e�ciency we experiment today is, without doubts, one of the chief achievements

of the past decade. However, these achievements come with a price, since systems get

more and more expensive to develop (and the probability of successfully completing a

new technological project decreases). Although there is no o�cial information about

the productivity of embedded software engineers�nor a precise way of computing this

metric� in some critical domains like avionics, software engineers are expected to pro-

duce no more than one line of code per day on average. Moreover, these �gures do not

take into account the heavy burden of tests and certi�cation activities that such systems

are subject to. The use of model checking can help improve this situation, especially

since it is supposed to catch errors early during the design phase of a system, before

they become very expensive to �x.

Since the pioneering works of Edmund M. Clarke and Allen Emerson, and of Joseph

Sifakis and Jean-Pierre Queille, in the early 1980's, model checking has been success-

fully used in practice to verify applications such as complex sequential circuit designs

(BCL+94) and communication protocols (JH93). Model checking techniques are at-

tractive because they o�er an automatic solution to check whether a model of a system

meets its requirements. For instance, it does not require hand constructed proofs like

with approaches based on Floyd-Hoare style logics, that can be quite tedious and hard

2



to scale. Another reason for the growing interest in the use of model checking tech-

niques is that they can be easily integrated into a standard development cycle; they

not only help �nding errors, but can also provide counter-examples (execution traces)

when the system model violates any of its requirements. Later, with the seminal paper

(ACD90) from Alur et al., model checking techniques have made their �rst steps into

the analysis of real time systems. Altogether, the model checking approach has emerged

as a prominent tool for the design and development of critical, real time systems.

Even though model checking o�ers a �push button� approach to check �nite systems,

the size of the state spaces built during veri�cation may grow exponentially large as

the complexity of the system increases. Hence, in many cases, model checking may

be infeasible in practice. This drawback, known as the state explosion problem in

the formal methods community, is one of the main challenge faced by model checking.

Despite the fact that considerable progress has been made at the theoretical level�for

instance with the de�nition of symbolic model checking and partial orders techniques�

there are still classes of systems that cannot bene�t from these advanced methods. For

example, for models that combine real time constraints, dynamic priorities and data

variables. In these cases, we still need to go back to using explicit-state, enumerative

model checking techniques.

The main motivation of this PhD thesis is to develop new algorithms and data

structures to take advantage of the improvements recently made at the hardware level;

namely the advent of a�ordable, multiprocessor, shared memory servers. Basically, we

attack the state explosion problem through the use of brute force! (But not without

cunning.) Since the mid 2000's, the major chip-makers have acknowledged a possi-

ble end to Moore's law (the Moore's wall), that shaped the evolution of the Personal

Computer's architecture based on an increase of the processors frequency. This is a

rationale for shifting their attention to multi-core processor architectures, bringing par-

allel computing technologies to even the simplest of computers: Even netbooks and

smartphones have dual core processor nowadays. Furthermore, with the populariza-

tion of server-based computing and virtualization technologies (servers hosting multiple

virtual machines), we now have access to a�ordable multiprocessors machines�that is

with many multi-core processors�that provides the opportunity to access very large

amount of shared (primary storage) memory.
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Alongside the de�nition of enumerative, model checking algorithms for many-cores

architectures, we also study probabilistic veri�cation algorithms. By the term proba-

bilistic, we mean that, during the exploration of a system, any given reachable state

has a high probability of being checked by the algorithm. As a consequence, we accept

that some reachable state of the system may not be inspected: While this technique

cannot be used to prove the absence of errors, it can be very e�cient when we try to

�nd counter-examples. Probabilistic veri�cation trades savings at the level of memory

usage for the probability of missing some states. Basically, the idea is to use hash values

instead of an accurate representation of a state value. Consequently, it becomes pos-

sible to analyze part of the state space of a system when there is not enough memory

available to represent the entire state space in an exact manner.

Brief Description of the Thesis Work

The contributions of this thesis can be divided into three main axes: (1) parallel con-

struction of the state space; (2) parallel model checking algorithms; and (3) probabilistic

veri�cation methods.

Chronologically, we started our work by studying new algorithms and data struc-

tures to construct the state space in parallel. The key points to design an e�cient

parallel algorithm for shared memory machines are the data structure used to store the

set of explored states and the work-load strategy employed to distribute data. We pro-

pose two novel approaches based on an optimized data structure: we use independent

(distributed) data dictionaries in conjunction with a shared, probabilistic data structure

to dynamically distribute the state space.

Our �rst contribution for parallel state space construction is a speculative algo-

rithm (SZB10) where the states are stored in local data sets, while a shared Bloom

Filter (Blo70) is used to dynamically distribute the states. Due to the probabilistic

character of the Bloom Filter (false positives are possible), we propose a multiphase al-

gorithm to perform exhaustive, deterministic, state space generation. Next, we improve

on our previous design and replace the Bloom Filter by a dedicated data structure,

the Localization Table (TSDZB11). This table is used to dynamically assign newly

discovered states and behaves as an associative array that returns the identity of the

processor that owns a given state. With this approach, we are able to consolidate a
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network of local hash tables into an (abstract) distributed one, removing the need for a

multiphased algorithm. Our preliminary results are very promising, we observe perfor-

mances close to those obtained using an algorithm based on lock-less hash tables (that

may be unsafe) and performs well when compared to some classical parallel algorithms.

Another contribution of this thesis consists in the de�nition of a new data structure

for probabilistic, formal veri�cation. After our experiments with parallel state space

construction, we studied an enriched Bloom Filter speci�cally designed for probabilistic

veri�cation. We propose a new probabilistic data structure, named Bloom Table, that

ful�lls a gap we identi�ed between the use of the hash compact and Bloom �lter data

structures. Our Bloom Table not only delivers a small probability of false positive but

also improves the time complexity by reducing the number of necessary hash functions.

For instance, only two hash keys are needed to deliver a probability of 10−5 using only

16 bits per state. ( A Bloom �lter requires the use of 6 hash keys to achieve similar

results.) While Bloom Tables are not inherently a concurrent data structure, we devised

our algorithms in order to take advantage of parallel, shared-memory architectures.

Finally, we present two new algorithms for parallel model checking that supports a

speci�c subset of Computation Tree Logic (CTL). In this context, the strategy used to

detect cycles is one of the key points of performance for the evaluation of more complex

formulas. Our main objective is to propose algorithms that are as e�cient as possible,

but also �friendly� with respect to the work-sharing policies that are used for the state

space generation (e.g. a work-stealing strategy): at no point do we impose a restriction

on the way work is shared among the processors. This includes both the construction

of the state space as the detection of cycles in parallel. We contribute with a �practical�

approach where cycles are detected only at the last stage. We circumvent all the com-

plexities imposed by the detection of cycles in parallel by not doing it explicitly. We

present two �avors of our algorithm, one that has linear time complexity and another

one that trades a lower memory usage for a bigger time complexity. The di�erence

between these implementations resides in the graph structure stored during the state

space exploration. We consider two cases: (1) the case where we have access to the

complete state space graph (actually the reverse graph), that is we store all the transi-

tions in memory; and (2) we only have access to one �parent� for each state. While it

is common to �nd algorithms for CTL model checking that do not require the reverse

transition relation to be stored in memory (transitions are regenerated when necessary),
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this approach is not appropriate when it is not possible (or very expensive) to compute

the reverse transition relation of a model. This is, for example, the case when we deal

with models combining real-time constraints or data variables.

Before we conclude this section, we would like to emphasize that the contributions of

this thesis are not limited to the model checking domain. De facto, the data structures

proposed in this work are of interest for any application that performs graph exploration,

cycle detection and probabilistic (or lossy) storage in parallel.

Outline

The previous section gives a brief chronological presentation of our work. We review

more precisely the contributions of our work in Section 2.5, after we describe the related

work. For the remainder of this thesis, we decided to change the presentation order to

improve the quality of the manuscript. The section about parallel model checking is

placed before probabilistic veri�cation in order to follow a more natural presentation.

We give a brief summary of the contents of the chapters of this document.

Chapter 2 Related Work: In this chapter we present the context of this thesis. We

brie�y present model checking�in a very general way�and then delves into pre-

vious works more relevant for the context of this thesis. We start with related

work for parallel and distributed model checking. We try to stress out, in this

section, the importance to optimize cycles detection in order to obtain an e�ective

parallel model checking solution. Then, we deal with the most signi�cant works

for probabilistic veri�cation, notably the ones based on the probabilistic struc-

tures supertrace, multihash and hash compact. We conclude this chapter with a

detailed presentation of the contributions made in this thesis.

Chapter 3 Parallel State Space Construction: This chapter describes our approaches

for parallel state space construction. We concentrate our e�orts on an approach

that is scalable, without imposing any restrictions on the way work is distributed

among the processing units. In this chapter, we state the main guidelines of our

algorithms such as the distribution of memory and work-sharing techniques. This

section is followed by the presentation of our (speculative) algorithm, which is a

general lock free algorithm for parallel state space construction. We try to stress
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the general nature of our approach by giving the results of experiments performed

using di�erent data structures (such as AVL trees and hash tables) for the local

dictionaries. Then, we give an enhanced version that replaces the Bloom Filter

with a specialized data structure called a Localization Table. This solution im-

proves over our previous version because the small shared memory space not only

distribute data but also keeps track of the distribution. Before concluding, we

give a comparative study of our enhanced version with other solutions already

proposed in the literature.

Chapter 4 Parallel Model Checking With Lazy Cycle Detection: Based on the

work we presented at Chapter 3, we de�ne and analyze two new algorithms for

parallel model checking that supports a sub-set of CTL formulas. Our main ob-

jective is to propose e�cient algorithms that do not prevent the use of particular

work-sharing policies, that is to say, do not impose any restriction on the way

work is shared among the processors during the state space construction and the

�property veri�cation� phases. In addition, we also focus our e�orts in providing

new approaches that requires less memory spaces. To conclude this chapter, we

study a set of experiments results obtained with our prototype implementation.

Chapter 5 Probabilistic Veri�cation: The main objective of this thesis is to pro-

pose new methods to deal with the state explosion problem. While we base most

of our work on an enumerative, explicit-state approach, we realized during the

thesis that our data structures could be adapted in order to �t the context of

probabilistic veri�cation algorithms. In particular, we identi�ed the existence of

a gap between two of the most successful data structures for probabilistic veri�-

cation, Bloom Filter and hash compact. Roughly speaking, the probabilistic data

structure we present in this chapter delivers a better result than the hash compact

algorithm when we have less than 40 bits of information per state to represent

the state space. On the other hand, our solution improves the execution time

when compared to a classical approach based on Bloom Filters because it o�ers a

better result without increasing the number of hash functions used. (In fact, our

proposition requires only 16 bits per state for an e�ective state space coverage and

is beaten by the Bloom Filter only when there are less than 6 hash keys available

per state.) We present a theoretical analysis of our data structure together with
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an analytical comparison with related solutions. Before concluding, we present

empirical results obtained from a large set of experiments in order to demonstrate

the e�ectiveness of our approach.

Chapter 6 Conclusion: We conclude the thesis by de�ning possible lines for future

work.
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Chapter 2

Model Checking � Related Work

� An expert is a man who has made all the mistakes which can be made in a very

narrow �eld.�

Niels Bohr

In this chapter, we start by presenting model checking brie�y, in a very general way,

and then we concentrate more deeply on the particular works that are the most relevant

for the context of this thesis.

This chapter is organized as follows. Section 2.1 introduces this chapter. We give

a general presentation of model checking and temporal logic in Section 2.2. Next,

we present in section 2.3 the related work for parallel and distributed model check-

ing. We decided to present both approaches for model checking because�even if

unintentionally�the algorithms proposed in the distributed cases in�uenced the ap-

proaches followed for the parallel case. Moreover, we try to stress out in this section the

importance of e�cient parallel algorithms to detect cycles in order to obtain an e�ective

parallel model checking solution.

In Section 2.4, we study the related work for probabilistic veri�cation, most notably

the works based on the use of probabilistic structures such as the Bloom Filter and the

Compact Hash Table.

We conclude this chapter in Section 2.5, where we list the contributions of this

thesis.
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2.1 Introduction

Model Checking (CE82, QS82) has emerged as a promising automated approach to

check whether a system model meets its requirements. Roughly speaking, it has the

same impact as performing an exhaustive test, using symbolic evaluations, where every

possible scenario is checked for correctness. It may be generically characterized as an

inference procedure that decides if a structure M satis�es a given speci�cation (logical

formula) φ, abbreviated as M � φ.

Model checking techniques are attracting, more and more, the attention of the in-

dustries; mainly because they o�er a �push button� solution for the veri�cation of �nite

systems. Unlike with Floyd-Hoare(Cla08) style logic, the model checking approach does

not require hand constructed proofs, that can be quite tedious and hard to scale. In

addition, model checking uses the expressiveness of temporal logic's to express complex

concurrency properties in an elegant and simple fashion. Another positive aspect of

model checking is the fact that a counter example is provided when the speci�cation is

not satis�ed.

Since it was �rst proposed by Edmund M. Clarke and Allen Emerson in (CE82) and

Joseph Sifakis and Jean-Pierre Queille in (QS82), model checking have been successfully

used in practice to verify applications such as complex sequential circuit designs and

communication protocols. Although model checking o�ers a �push button� approach to

verify �nite system, there is still a large gap between possible (or decidable) and feasible.

Indeed, there are many cases in which it is not possible to perform the veri�cation of

a �nite system due to the state explosion problem. That is, the number of states

that should be inspected can grow exponentially larger in function of the complexity

of the system. So large indeed that is goes beyond the available computing resources.

The state explosion problem is one of the main challenges faced by model checking

researchers.

Despite the fact that considerable progress have been made�such as symbolic model

checking or partial-order techniques�there are still classes of systems that cannot ben-

e�t from these progress on the algorithmical side. For these systems, a classical�

exhaustive state�enumerative approach is still the most appropriate.

In this thesis, the idea is to take bene�t of recent advances on the hardware side

to improve enumerative model checking techniques. Indeed, we now have access to
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computers with larger memory space and to multi-core architectures that makes feasible

the veri�cation of larger models, in a reasonable amount of time.

2.2 What is Model Checking

One of the reason for the adoption of model checking techniques is that it can be easily

integrated into the development cycle used when developing complex systems. It not

only helps in the task of �nding errors early (during the conception), but it also provides

counter-examples to explain these errors.

Figure 2.1 depicts a simpli�ed overview of the testing cycle using Model Checking

techniques. The approach itself can be divided into three phases: (1) the model de-

scription is explored until saturation and all possible states are enumerated and stored

in a graph structure; (2) the desired property is checked for correctness over the graph

structure; (3) if the property is not veri�ed, a counterexample may be provided to re-

produce a path leading to the given error. This testing cycle repeats until all properties

are veri�ed by the model.

Model
Verification

YesNo

Description:
Architecture
and Behavior

Desired
Proprieties

Figure 2.1: Model Checking development cycle.

2.2.1 State Graph and Kripke Structure

The structure commonly used to represent the set of enumerated states are Kripke

structures (KS) or labelled transitions systems (LTS). They di�er basically by the infor-

mation annotated over the states: in a KS, states are annotated with so-called atomic

propositions while in LTS states and/or transitions are annotated with actions. In the

reminder of this work, we use only the kripke structures representation.
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Kripke Structures: A Kripke structure (KS ) is a triple KS(S,R, s0), where S is a

(�nite) set of states, R is a transition relation over S, and s0 ∈ S is the initial

state. A Kripke Structure is also generally associated to an interpretation function,

I : S → 2AP , that maps every state s ∈ S to a subset of atomic properties. The

size of KS is de�ned as |S|+ |R| where, |S| denotes the cardinality of the set S.

Some de�nitions of Kripke Structure consider a set of possible initial states, and not

only one single state, but this does not change the expressivity of the model. Also, some

de�nitions require that the transition relation R be left-total, meaning that every state

in the KS has a successor: for all s ∈ R there is s′ ∈ R such that s R s′. We should also

choose this convention in this thesis, adding a �loop� transition s R s′ if needed. In this

case, we de�ne a deadlock as a state s whose sole successor is itself and that satis�es

the atomic property dead (that is I(s) = dead).

When we ignore the atomic properties, the Kripke Structure is basically a directed

graph, also often called the state graph of the system.

The model checking problem may be formalized as follows (Cla99), where the def-

inition of the entailment relation � depends on the choice of the temporal logic. We

discuss temporal logic in the next section.

Model Checking: Given a Kripke structure KS(S,R, s0) corresponding to a �nite-

state system, an interpretation function I : S → 2AP , and a temporal logic formula

F over the atomic properties in AP , �nd the set of all states s ∈ S such that the

relation K, s � F holds. We often simply say that F holds in s.

2.2.2 Temporal Logic Formula

Temporal logic formula (Cla99) is a powerful tool to express the behavior of reactive

systems. A temporal logic is an example of modal logic, that is a formal framework able

to qualify the truth of a judgment. In a modal logic, the truth of a judgment depends

on where, or when, the judgment is held.

A temporal logic expresses properties over the possible (future, current or past)

transitions in a reactive system. It has proved to be useful to express the behavior of

this class of systems because they de�ne non explicit time operators, such as eventually

and never, which can describe the ordering of events in time without introducing time

explicitly.
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Temporal logics come in di�erent �avors that di�er, basically, by the modalities

(operators) used in the logic and the semantics of these modalities.

We de�ne two of the most common temporal logics: Computation Tree Logic (CTL)

and Linear Temporal Logic (LTL). They di�er in how they handle branching in the un-

derlying Kripke structure. Linear-time logic expresses events along a single computation

path. In contrast, branching-time logic takes into account all possible paths from a given

state.

The choice for linear or branching-time logics depends on the kind of speci�cations

and systems that need to be analyzed, both have their advantages and their �eld of

application; branching-time logics are better for reactive systems and linear-time logics

when only path properties are of interest.

In our work on a model checking algorithm, we propose a new parallel algorithm for

a subset of CTL formulas that can also be de�ned using LTL (see Chapter 4 for more

details).

Linear Temporal Logic (LTL)

Linear Temporal Logic (Cla99) is composed of �ve basic temporal operators used to

describe properties of a path through the tree; the X operator means �next time� and

requires that the property holds in the second state of the path; the F (G) means

�eventually� (�always�) and requires that the property holds at some (at every) state

on the path; the U means �until� and combines two properties, it holds if there is a

state on the path where the second property is true and the �rst property holds for

every preceding state on the path; the R means �release� and it is the logical dual of

the U operator. Let p be a state property over the set AP of atomic propositions, LTL

formulas are constructed as follows:

φ ::= p | ¬φ | φ1 ∨ φ2 | X(φ) | U(φ, ψ) | R(φ, ψ) | F (φ) | G(φ)

LetM(S,R, I) be a Kripke structure over AP ; a �nite path is a non-empty sequence

π = 〈s0, s1, ..., sn−1〉 of states s0, s1, ..., sn−1 ∈ S such that (si, si+1) ∈ R for all 0 ≤ i <
n − 1; n is the length of path π, denoted |π|; an in�nite path is an in�nite sequence

π = 〈s0, s1, ...〉 of states in S such that (si, si+1) ∈ R for all i ≥ 0. We denote πi for the

i-th state in path π and πi as the tail of the path starting at πi (〈πi, πi+1, ...〉). We call
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a path in M maximal if it can not be extended. The semantic of LTL is presented in

Figure 2.2.

π � p i� p ∈ I(π0)
π � ¬φ i� π 2 φ

π � φ1 ∨ φ2 i� π � φ1 or π � φ2

π � X(φ) i� |π| > 1 and π1 � φ

π � U(φ, ψ) i� there is a k, 0 ≤ k < |π|, with
πk � ψ and for all i, 0 ≤ i < k, πi � φ

Figure 2.2: Semantics of LTL.

The rest of temporal operators are in fact abbreviations, they are reduced from the

U operator. The operator F is the abbreviation of U when the �rst property is always

true (F (φ) = U(true, φ). The operator G can be obtained from the negation of F

operator (G(φ) = ¬F (¬φ)) because it is su�cient to prove that a property always holds

as long as its complement never happen. Finally, the R operator, which is the dual of

U , is reduced to R(φ, ψ) = ¬U(¬φ,¬ψ).

Computation Tree Logic (CTL)

Computation Tree Logic (CTL)(BPM83, CE82, EC80) di�ers from LTL because it

supports path quanti�ers. CTL formulas have the form QL where Q stands for one

of the path quanti�ers A or E, and L for the linear-time operators, which are the

same supported by LTL. These path quanti�ers provide universal (A) or existential E)

quanti�cation over the paths from a given state. Note that LTL formulas consist of Af

formulas where f is a path formula which holds only state subformulas made of atomic

properties. CTL formulas are constructed as follows:

φ ::= p | ¬φ | φ1 ∨ φ2 | X(φ) | AU(φ, ψ) | EU(φ, ψ) | AF (φ) | EF (φ) | AG(φ) | EG(φ)

Let M be a Kripke structure, a path is an in�nite sequence (s0, s1, ...) such that

∀i[(si, si+1) ∈ R] where si ∈ S. The notation M, s0 � f means that formula f holds at

state s0 in structure M ; we simply write s0 � f when the structure M is understood.

The semantic of CTL is presented in Figure 2.3.
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s0 � p i� s0 ∈ L(p)
s0 � ¬f1 i� ¬(s0 � f1)

s0 � φ1 ∨ φ2 i� s0 � φ1 or s0 � φ2

s0 � EX(φ) i� s1 � φ for some state s1 such that (s0, s1) ∈ R
s0 � AX(φ) i� s1 � φ for all state s1 such that (s0, s1) ∈ R

s0 � EU(φ, ψ) i� for some path s0, s1, ...

∃i[i ≥ 0, si � ψ ∧ ∀j[0 ≤ j < i⇒ sj � φ]]
s0 � AU(φ, ψ) i� for all path s0, s1, ...

∃i[i ≥ 0, si � ψ ∧ ∀j[0 ≤ j < i⇒ sj � φ]]

Figure 2.3: Semantics of CTL.

Just like LTL, the F modalities can be expressed using the U operator, AF (φ) =

AU(true, φ) and EF (φ) = EU(true, φ). The G modalities can be de�ned as the duals

of the F modalities, AG(φ) = ¬EF (¬φ) and EG(φ) = ¬AG(¬φ).

It is important to mention that CTL is a subset of a more expressive logic called

CTL∗ (CES86), indeed CTL di�ers from CTL∗ because each temporal operator X, F ,

G, U , and R must be immediately preceded by a path quanti�er. Moreover, CTL is a

particularly simple fragment of the modal µ-calculus(EJS93), CTL modalities can be

expressed by means of �xpoint formulas.

2.2.3 Model Checking

Global and Local

The model checking problem can be speci�ed in two ways: local and global. The local

model checking problem determines whether a single state satis�es a given property

over a given structure (Kripke Structures or labelled transitions systems). By contrast,

the global model checking problem determines if a property is satis�ed by all states.

The local model checking is usually preferred for the formal veri�cation of software

and hardware systems because the property of interest is often expressed with respect to

a speci�c initial state. In addition, these applications su�er from the well known state-

explosion problem when the number of states grows exponentially with the number of

components (or variables for software). Hence, the use of local model checking helps

to address this problem because it might not need to explore the complete structure in

order to decide whether the property holds for the initial state.
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For other applications which the state-explosion problem is not signi�cant and the

property of interest is not related to a particular state, the global model checking is

more interesting because it gives knowledge about all the states of a structure.

Global model checking: Given a �nite model structure, M , and a formula φ, deter-

mine the set of states in M that satis�es φ.

Local model checking: Given a �nite model structure, M , a formula φ, and a state

s in M , determine whether s satis�es φ.

Automata-theoretic approach and Semantic Approach

The model checking problem can be solved by di�erent techniques depending on the

structure (model) and the logics considered. These techniques di�er by the manner

they inspect the structure; semantic approaches iteratively compute the semantics of

the formula over the structure in a inductive manner; automata-theoretic approaches

reduce the model checking problem into the inclusion problem between automatons.

The semantic approach (Cla99, MSS99) was the �rst algorithm proposed for model

checking (Clarke et al. in (CE82)) in general. In its simplest form, the algorithm deter-

mines the set of states S that satisfy a given (CTL) speci�cation f by labeling each state

s with the set label(s) of subformulas of s which are true in s. The algorithm iterates

through a series of stages until the complete formula had been operated; the algorithm

presented in (CES86) has time complexity linear in the length of the formula (|f |) and
the size of the state transition graph (O(|f | · (|S|+ |R|))). The semantic approach can

also be accomplished through the iterative characterization of �xpoints, it allows the

evaluation of modal µ-calculus formulas (EJS93). However, the complete evaluation of

µ-calculus formulas has an exponential worst-case time due to the alternated nesting of

least and greatest �xpoints.

The automata-theoretic approach (Cla99, MSS99) reduces the model checking prob-

lem to the automata language acceptance. Let A and B be the system and the speci�-

cation automatons, roughly speaking, the model checking problem is reduced to check

whether the system A satis�es the speci�cation when L(A) ⊆ L(S). Wolper et al.,

in(Wol86), was the �rst to propose this approach for linear temporal logic formulas,

they successfully bridged the gap between system models and logic formulas by reduc-

ing the model checking to the emptiness problem, which is the problem of checking
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that none of the sequences accepted by the negation of the speci�cation automaton is

accepted by the system automaton. (Let ¯L(S) be the complement of L(S), the lan-

guage acceptance can be rewritten as L(A) ∩ ¯L(B) = ∅.) E�cient algorithms for LTL

model checking are known, one uses the Tarjan`s depth �rst search algorithm (Tar71)

for �nding strongly connected components for deciding emptiness check in linear time

complexity (O(|S|+|R|)). There is an alternative algorithm (CVWY92) that performs a

nested depth �rst search whenever an accepting state is found. Both algorithms can be

performed on-the-�y, returning errors faster and without exploring the complete state

space. However, the latter is more appreciated by its smaller memory footprint when

performed on-the-�y.

Probabilistic and Exhaustive

Exhaustive model checking is preferable in comparison with probabilistic because it is

the only approach capable of asserting the error free character of a system. Probabilistic

veri�cation can only assert that a given error exists, but never the opposite. However,

computer resources (i.e. memory) are at price, and sometimes there are not enough

resources for an exhaustive exploration of the system state space. In such cases, being

able to explore only a portion is still interesting. This approach was �rst proposed by

Holzmann (Hol93) in the context of communication protocols and rapidly spread in

academia and industry.

2.3 Parallel Model Checking

The main motivation of this thesis it to perform explicit parallel model checking on

multiprocessor machines. In this section, we present all the relevant related work for

parallel model checking. Even though we are interested in shared memory architecture,

we also decided to present the literature for distributed memory machines because they

can be easily implemented into shared memory machines, indeed some of the available

solutions we have nowadays were �rst developed targeting distributed memory machines.

This section is divided as follows. We start with a brief presentation of parallel

computers at Section 2.3.1. Next, we give a chronological review of the literature for

parallel model checking in Section 2.3.2. Our motivation with this chronological study

is to show that model checking solutions have being driven by the hardware market
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industry. Section 2.3.3 presents the di�culties and the proposed solutions for the state

space construction in parallel, usually the �rst step for model checking. Finally, solu-

tions for parallel model checking are presented according to the kind of properties they

support, Section 2.3.4 presents the related solutions for LTL and Section 2.3.5 for CTL

parallel Model Checking.

2.3.1 Parallel Computers

A parallel computer can be characterized as a collection of processing elements that

communicate and cooperate to solve large problems. It is expected to reach faster

speed and also to be more cost-e�ective than a high performance single processor.

Parallel computers can be characterized by the way information stream on the sys-

tem. One of the most popular classi�cation scheme is the Flynn's Taxonomy of computer

architecture. (See (El-04) for a complete presentation of parallel computer architecture.)

The Flynn's Taxonomy categorizes a parallel computer into four classes based on this

notion of information stream � instruction and data. The operations performed by a

processor are de�ned as part of the instruction stream. The data stream is the data

exchanged between the processor and the memory.

SISD (Single Instruction Single Data) : a single processor executes a single in-

struction stream over a single data. Parallelism may be recovered in this model

using pipe-lining instructions.

SIMD (Single Instruction Multiple Data) : in this model, all processors execute

the same program in lockstep, such that at each �time unit� all active processors

are executing the same instruction with di�erent data. Parallelism is exploited by

applying simultaneous operations across large sets of data.

MIMD (Multiple Instructions Multiple Data) : this is the less-constrained model.

Each processor may execute an instruction or operate on data di�erent from those

executed or operated by any other processor during any given time unit. A MIMD

architecture can be de�ned as a computer system consisting of multiple processing

units; connected via some interconnection network; with an additional software

layer to make processing units interoperate. There are two main types of inter-

connection networks:
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� shared memory: coordination among processes is accomplished through global

memory shared among all processes. If all processes access the memory in the

same way, it is considered an UMA (Uniform Memory Access) architecture.

In the case where each processor has part of the memory attached and the

access time depends on the distance to the processor owner, it is classi�ed

as NUMA (Non-Uniform Memory Access). Finally, a COMA (Cache-Only

Memory Architecture), is a computer architecture such that local memories

at each node is only used as cache.

Interconnection Network

M M M M

P P P P

Figure 2.4: Shared memory.

� message passing: in this model, there is no shared memory space among

the processors and communication is provided through exchange of messages

instead of memory access.

Interconnection Network

M M M M

P P P P

Figure 2.5: Distributed memory.

In the context of this thesis, we deal with MIMD shared memory computer systems.
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Measuring the Performance

The measure of performance employed in this work is the equal duration model (El-04).

We consider this model more appropriate for the parallel programming style we adopted,

which is the Single Program Multiple Data (SPMD). We explain the choice for this

model in details at Section 2.5.

The equal duration model assumes that a given task can be divided into n equal

subtasks and there are n available processors to execute each one of them. Let ts be

the time needed by a single processor to execute the complete task, we can assume that

tn = ts
n is the time taken for each one of the n processors to execute the subtasks. Since

this model is based on the assumption that all processors perform simultaneously, then

the time taken for all n processors to execute all n subtasks is tN = ts
n . We can de�ne

the speedup factor as the ratio between the sequential time (ts) divided by the time

taken by all n processors tN , as follows:

Sp = speedup factor

Sp =
ts
tN

=
ts
ts/n

Sp = n (linear speedup)

Notice that this model does not take into account all the implicit overheads from the

parallel architecture such as communication, synchronizations, etc. A more elaborated

model can be achieved if we consider an extra time tc incurred by all these overheads

for the total execution time tm.

Sp = speedup factor with overhead

Sp =
ts
tN

=
ts

ts
n

+ tc

=
n

1 + n · tc
ts

ξ =
1

1 + n · tc
ts

(e�ciency)

The equation shows that the overhead incurred by the parallel architecture a�ects

signi�cantly the speedup factor. For instance, if tc � ts then the potential speedup

factor is ts/tc � 1 and depends on the time lost by the incurred overheads. For the

rest of this thesis, we consider that tc is not signi�cant (tc � ts) and the potential

speedup factor depends on the time taken for all n processors to execute the task

(tN ). Furthermore, we de�ne another measure of performance called e�ciency (ξ).
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The e�ciency measure is the normalization of the speedup factor and is obtained by

dividing the speedup factor by n. (The e�ciency measure is equal to 1 if the overhead

time (tc) is ignored.)

Finally, we consider two kinds of speedup factors: relative and absolute.They di�er

basically by the implementation used to obtain the sequential time ts. The relative

speedup considers the same parallel implementation but using only one processor; The

absolute speedup takes into account the most optimized sequential implementation. See

(El-04) for a complete presentation of performance analysis for multiprocessor computer

architecture.

2.3.2 Chronology

The advent of new technologies, or when they become a�ordable, enables the develop-

ment of new solutions. It is not surprising that Model Checking development has been

following the hardware improvements for decades. Since its early stage of development

at 1980s, the hardware improvements on the domain of the processor's clock frequency

have partially guided the community to focus on sequential algorithms, searching for a

time and space e�cient solution. At that time, parallel machines were suitable only for

large laboratories due to their high costs and, by consequence, they were not available

to everyone.

Later at 1990s, with the popularization of technologies like the Network of Worksta-

tions (NOW), Model Checking made its �rst steps into parallel computing motivated

by the large (distributed) memory spaces available. This technology became popular

because it allowed the a�ordable construction of cluster by using commodity comput-

ers. At the beginning, several solutions were proposed to only tackle the analysis of

safety properties due to the inherent di�culties in redeploying the e�cient sequential

algorithms. The �rst attempts to perform more elaborated properties had already un-

derstood that e�ciency solutions for parallel Model Checking would require speci�c

algorithms and not the reimplementation of the sequential ones.

In mid 2004, a shift in the hardware industry had brought the discussion of e�-

cient parallel algorithms back, the major chipmakers announced that they were shifting

their attention from the processors frequency to the multi-core CPU technology. Al-

though the number of embedded transistors are still following the Moore`s prediction

law (M+98), it is no longer interesting to continue increasing the processors frequency
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due to physical limitations, the energy necessary to cool the processors becomes com-

mercially prohibitive. Hence, larger spaces of shared memory would require more time

to be covered because the processors clock-speed will no longer follow the predicted

Moore`s curve. Since then, new algorithms have been speci�cally proposed for multi-

core and multi-processors machines but, even if some of these algorithms scale well,

they still do not match the levels of e�ciency achieved by the sequential ones.

2.3.3 Parallel State Space Construction

Parallel and Distributed state space construction have been studied in various con-

texts and di�erent solutions have been proposed. A majority of these solutions adopt a

common approach: they can be considered as an �homogeneous� parallelism and they

follow a SPMD (Single Program Multiple Data) programming style. The SPMD ap-

proach is commonly used to accomplish coarse-grained parallelism and it requires an

explicit data and work assignation by the programmer to each processor. Another char-

acteristic about SPMD programs is that the work executed by the threads is typically

�homogeneous� in the sense that all threads perform concurrently the same steps.

A common approach to assign work and data is to partition the state space into

several chunks, one for each processor available, through a slicing function. This solution

is more common on distributed memory environments; they all follow almost the same

architecture but di�er by the nature of the slicing function, i. e. static or dynamic.

In contrast, solutions based on shared memory architectures are more concerned with

synchronizations among processors, memory consistency and overheads caused by the

extended use of locking systems (mutual exclusion for memory access).

Irregular Problem

The parallel community classi�es the parallel state space construction as an irregular

problem because of the irregularity of its structure, i.e., the cost to operate this kind of

structure is not exactly known or is unknown in advance. As a consequence, the parallel

execution of such problems may result in a bad load balancing (GRV95, EL08).

In (EL08), the authors explain that the characteristics of the model under consid-

eration have a key in�uence on the performance of a parallel algorithm because it may

result in extra overhead during the exploration task. Figure 2.6 shows two examples

of models that result in di�erent load balancing. Figure a) shows a model where the
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parallel exploration will perform like a sequential one, incapable of speedups. Figure b)

is the ideal model where every node has more than one successor and, by consequence,

enough work will be available to use all processors.

a) Sequential b) Parallel

Figure 2.6: State space models.

Sequential State Space Construction

Before looking at the parallel state space construction algorithms, we present the clas-

sical sequential algorithm for state space exploration.

The Sequential State Space Construction is the simple and well-known reachability

graph algorithm. It starts from the initial state (s0) by exploring until saturation (forall

s′ successors of s) all possible successor states. Every new state found (if s′ /∈ S ) is

stored in the state graph (S = S ∪ s′). The sequential algorithm is shown in Listing 2.1.

1 function VOID r e a c h ab i l i t y (s0 : s ta te , KS : Kripke St ructure )

2

3 Set S ← new Set (s0 ) ;

4 Stack W ← new Stack (s0 ) ;

5 while (W i s not empty ) do

6 s ← W. pop ( ) ;

7 f o ra l l s ' s u c c e s s o r o f s in KS do

8 i f ( s ' /∈ S) then

9 // s' is a new state

10 S ← S ∪ {s ' } ;

11 W. push ( s ' )

12 endif

13 endfor ;

14 endwhile

Listing 2.1: Sequential State Space Construction algorithm.
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Distributed Memory

Several of the mechanisms proposed for distributed architectures rely on slicing func-

tions, i.e. Proc : S ⇒ {0, ...., N − 1} where Proc(s) is the owner of state s among N

processors. They di�er basically by the nature of this function in order to provide both

locality and balance. Balance can be measured as spatial or temporal balance: spatial

balance means that each processor will receive an equal amount of states; temporal

balance means that each processor will be busy most of the time. Locality measures

the fact that states which are �related� during the computation should be assigned to

nearby processes (typically, the successors of a state should be handled by the same

processor). Locality is desired to reduce communication overheads.

We can classify these slicing functions by the manner they are computed. We call

user-provided de�nition when the partition function relies on the user expertise about

the system. In (CGN98), Ciardo et al. proposed a partition function based on the

stochastic Petri Nets structure in order to achieve both locality and balance, they take

into account just a small set of places called control set (P). The idea is that any

transition �ring that does not involve a place in P corresponds to a state transition

between two markings assigned to the same processor, otherwise this transition will

correspond to a cross-arc and the new marking will be assigned to another processor.

The disadvantage of this approach is that there is no automatic way to suggest this

control set, therefore the technique relies on the user intuition to select the set of places

that is part of the control set. Similar approaches were presented in (LS99, RBC+06,

CCM01).

There is another family of solutions based on dynamic functions (ADK97, LV01,

KM05) that tries to deliver homogeneous spatial distribution without the burden of

previous knowledge about the system. In general, dynamic load balancing techniques

recompute a new partition function whenever the memory utilization of one processor

di�ers more than a �xed percentage. The loading balance phase estimates how much

memory each processor has to give/receive to its neighbors. In the end, a new parti-

tion function is created and broadcasted to all processors. In contrast, there are some

solutions that rely on previous analysis for extracting relevant information to slice the

state graph. In (OPE05), the authors try to minimize the cross-arcs by computing a

small approximation of the state space. From this prediction, it is possible to extract
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the shape of the original system and the relations among the states. A more elaborated

mechanism is presented by Nicol et al. (NC97) where they explore heuristic methods to

control the distribution of data after an initial random walk.

Finally, there is a group (HKTL07, GMS01, SD97, Pet03, HBB99, BHV00) that does

not take into account any structural information from the model and are based only in a

mathematical function to partition the graph. These solutions divide the graph through

a hash function that takes into account only the spatial balance. As a consequence,

it does not handle cross-arcs and may su�ers from communication overhead. Even

though the standard deviation � measure used to analyze the quality of the physical

distribution of states � is smaller than 1% of the mean value, they are highly in�uenced

by the employed static function and the set of chosen examples. Nevertheless, static

slicing function is the most used solution, it can be con�rmed by the number of available

tools (DiVine (BBCR10), Murphi (SD97), CADP (GMS01) and UPPAAL (BHV00))

that employ this technique to distribute the state space.

The anatomy of a basic distributed algorithm can be resumed by the pseudo-code

presented below (HBB99):

� all processors start their exploration program;

� processor i, for which i := Proc(initial), starts to explore successor states;

� upon generation of a state s′ from s:

� the allocation for s′ is computed: j := Proc(s′)

� if j = i then state s′ is handled locally;

� if j 6= i then s′ and (s ⇁a′) are sent to proc. j;

� all processors process the states received from others, as well as those gener-

ated locally;

� the algorithm terminates when each process has no more states to be explored.

Shared Memory

The main advantage shared memory architecture o�ers over distributed memory is that

it provides a shareable memory space for concurrent manipulation, thus obviating the

need of passing messages among the processors. As a consequence, there is no need for
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a slicing function to partition the state space because the storage structure is shared

among the processors. However, it imposes other di�culties related to data consistency

and synchronization operations to manipulate the shared data. Data consistency is

mandatory to assure that a certain processor is accessing the most recent update of the

global data. Consequently, synchronization techniques to guarantee mutual exclusive

access must be implemented. Nonetheless, to achieve high degree of parallelism, the

share of global data that is locked for mutual exclusion must be kept small because

synchronization operations are usually time-consuming.

A smaller number of solutions target shared memory machines (HKTL07, Hol08,

HB07, IB02, LvdPW10, ADK97, AKH97). They di�er mainly by the shared data

structure employed and by the work-load strategy chosen to distribute work among

the processors. Di�erent data structures impose di�erent locking mechanisms, without

mention that the locking grain also plays a signi�cant performance role.

Allmaier et al. (AKH97) was one of the �rst to address the parallel state space

construction on a shared memory machine and the only one that used a data struc-

ture di�erent from hash tables. They circumvent the consistency problem of shareable

spaces by using locking variables to protect the shared storage structure. They used a

Balanced-tree to store the states with a method called splitting-in-advance to reduce

the number of data locking, allowing a better concurrent access. The major di�culty

with this structure is when an insertion happens into a full node, which forces the node

to split into two parts. One of the keys is sent to the parent node, which may also split.

This propagation may repeat until it reaches the root vertex. Consequently, a common

back to the root propagation is an important point of overhead because it forces the

use of several locking variables. The splitting-in-advance method consists in splitting

immediately each full node while crossing the Balanced-tree on the way down, regard-

less of whether an insertion will take place or not. Since non-full nodes serve as barrier,

back propagation does not occur because parent nodes can never be full. The result

is that each processor holds at most one lock at time. In addition, locking variables

are also used to protect the shared stack responsible of load balance, following a work

sharing scheduling paradigm where new work is distributed to underutilized processors.

Although the implementation of Allmaier et al. reports nearly optimal speedups,

the problem of using B-tree's or AVLtrees is the inherent logarithmic time complexity,

which can arti�cially improve the results. Of course, there is an old debate of data
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structures and such an analysis is not so simple. However, we believe that hash tables

are more appropriated for parallel state space construction, it is not surprising that just

a few solutions use trees instead of hash tables. (There is also the work from Bollig et

al. (BLW01) for distributed memory machines that uses balanced trees to store the set

of explored states.)

The rest of the literature for shared memory machines is based on the use of hash

tables to store the states. An example are the DiVinE and Spin multi-core versions,

which are the state of the art tools for parallel model checking. DiVinE (BBCR10)

for multi-core machines follows their distributed design, they use a static partitioning

scheme to distribute the states where each process owns a private hash table.

The parallel version of Spin (HB07, Hol08) makes use of a shared hash table pro-

tected by a �ne-grained locking technique where only speci�c parts (that contain a

newly generated state) of the hash table are locked. This work has been recently ex-

tended with a lock-less shared hash table based on atomic primitives (LvdPW10) (CAS

�Compare & Swap) in the LTSmin tool. In this work, Laarman et al. proposed a lock-

less hash table where locks are emulated with atomic primitives in a separated array.

They have for each table slot a write status bit that is handled atomically (EMPTY,

WRITE and DONE).

Furthermore, we can also mention the work of Inggs et al. (IB02), which use an

�unsafe� lockless shared hash table to store the set of explored states . This work

implements a hash table without any mutual exclusion locks. The authors emphasize

that the duplication caused by the lack of a locking strategy is not relevant compared

to the parallel computation power available and that no state will be ignored. All these

works report good results, for some models they have speedups close to optimal. Figure

2.7 depicts the speedup analysis for the Spin multi-core presented in (Hol08).

Regarding the work load strategy used by the hash table based solutions, we have

basically three main approaches: static-slicing, work stealing and stack-slicing. Like

we mentioned before, DiVinE is based on the static-slicing strategy which follows the

same guidelines as the distributed solutions presented before. This static partition

strategy is not best suited for shared memory machines because most of the time ( 1
N ,

where N is the number of processors) a processor will have to give away a recently

found state. However, this approach allows to achieve satisfactory results with a simple

implementation.
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Figure 2.7: Spin multi-core speedup analysis (Hol08).

Following a less restrictive approach than DiVinE, we have Inggs et al. (IB02) that

proposed a parallel algorithm for state exploration based on the work stealing schedul-

ing paradigm to maintain a dynamic load balance without a blocking phase. The base

concept behind this paradigm is that underutilized processors attempt to �steal� work

from other processors. This implementation uses a two-queue structure per processor

and a hash table to store visited states. The two-queue structure consists in a private

and a shared queue that are used to store unexpanded states. Every time a process

has no more unexpanded states in its private queue, it has to acquire the mutual ex-

clusion lock to check over its own shared queue for a state. If no state is found, the

processor starts searching through all other shared queues until it �nds a nonempty

queue or �nds that all shared queues are empty. Finally, the results reported show that

e�ciency of the work stealing load balance strategy depends on the division of the state

graph (number of successors) and the size of the shared queue. From the experiments

presented, optimum results are achieved when the shared queue size of each processor

is equal to the branching degree of the graph or one more.

Holzmann et al.(HB07, Hol08) and Laarman et al. (LvdPW10) employed the stack-

slicing paradigm to share work among the CPUs. They use shared queues to connect

the CPUs into a logical ring structure where each CPU can hand o� work only to its

right neighbor. The advantage of using a logical ring architecture connecting the CPUs

is that each work queue has only one reader and one writer, removing the need for locks
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on these structures. The hando� mechanism is controlled by a default depth at which

a state transfer to another CPU takes place.

Laarman et al. presented a comparison among Spin, DiVinE and LTSmin in (LvdPW10)

using a multiprocessor machine. They observed that LTSmin reports better results than

both Spin and DiVinE; the �locking emulation� mechanism proposed by Laarman et al

proved e�ective when compared to Spin, however it should be take into account that

Spin is designed speci�cally for multi-core machines; DiVinE is penalized by its choice

of design, it is built over the static partition work-load.

Before concluding this section, it would be interesting to establish a comparison

between stack-slicing and work-stealing strategies for dynamic work-load. Actually, as

far as we know, there is no work in the literature (model checking or high performance

computing community) that does such a comparison. What concerns the model checking

domain, we believe that this choice is related to the level of complexity expected and

accepted by the developers. Stack-slicing has an advantage in this aspect, unlike work-

stealing, it does not require locks to protect the stacks used to share work. However,

we believe that work-stealing can spread work faster because a given processor can

acquire work from anyone, in contrast with the stack-slicing which spreads work from

one processor to another following a logical ring. This feature is interesting for state

space construction because we do not know its structure in advance. For instance,

consider a state space that alternates its structure between sequential and concurrent

path actions.

2.3.4 Parallel LTL Model Checking

In this section we present the related literature for parallel LTL model checking. The

parallel algorithms that support Linear Temporal Logic formulas follow the sequen-

tial Automata-Theoretic approach (Wol86). The di�culty in this case is to determine

whether an accepting state is part of a cycle.

One of the most e�cient solution for sequential Model Checking uses the Tarjan`s

algorithm (Tar71) to �nd all strongly connected components (SCC); the emptiness

problem is reduced to check if an accepting state is part of a SCC; it can be done in

linear time in the size of the system but it may incur in extra memory consumption

since the states must be stored explicitly for the computation of SCCs.
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Another e�cient solution and broadly used is (CVWY92) which uses a nested depth

�rst search (Nested-DFS) algorithm to �nd if an acceptance state is reachable from

himself; every accepting state found by the �rst search triggers a second one to �nd if

it is part of a cycle.

Although both Tarjan`s and Nested-DFS algorithms are e�cient and simple to im-

plement, they are hard to perform in parallel because they depend on the sequential

depth-�rst search post-order of vertices. It can be illustrated with the example taken

from (BBS01) and presented in the Figure 2.8. It is not possible to guarantee that

the cycle through the accepting node C will be found by the Nested-DFS algorithm

if the parallel DFS exploration does not preserve the DFS order of visited states. For

instance, if the nested search starts �rst from node A, node C will be �agged and the

cycle ignored. This problem is inherently sequential and cannot be performed e�ciently

in parallel (see (Rei85) for a complete discussion).

Figure 2.8: Example of the sequential depth-�rst search post-order of vertices. (BBS01)

The di�culty to �nd good parallel algorithms for LTL Model Checking can be linked

to the fact that ��nding a cycle in a graph is an inherently sequential problem� (a claim

linked to the fact that the edge maximal acyclic subgraph problem is P-complete, see

problem A.2.18 in (GHR95)). In this section we present all relevant solutions for parallel

LTL Model Checking according to theirs characteristics, we divided them into DFS order

and BFS/arbitrary order solutions.

None of the parallel solutions proposed for LTL Model Checking are so e�cient like

the sequential ones because of the di�culty to assert that an accepting state is part of a

cycle. In this section we present all relevant solutions for parallel LTL Model Checking

according to their characteristics, we divided them into DFS order and BFS/arbitrary

order solutions.
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DFS order

The �rst parallel algorithm for LTL Model Checking was presented by Barnat et al.

(BBS01) and was based on a previous work from Lerda et al. (LS99) to deploy the Spin

Model Checker on a cluster. Barnat et al. instrumented their exploration engine with

a dependency structure in order to keep the sequential depth �rst post-order for the

evaluation of accepting cycles: �A nested DFS procedure is allowed to begin from a seed

S if and only if all seeds below S have already been tested for cycle detection� (BBS01).

This strategy to preserve the sequential post-order comes with the price of undesired

synchronizations for the dependency structure, moreover, only one nested DFS procedure

is allowed at a time. This work targets distributed memory machines (NOW cluster)

and makes use of a �generic� static function to distribute work; it was designed to tackle

models otherwise untreatable by a single workstation. Hence, execution time (speed

up) is not the main concern and only results about the capacity to check bigger models

are reported.

The inherent di�culties to keep the sequential DFS order had driven some authors

to try a di�erent approach in order to keep the nested search �local�, i.e., in a single node

(or processor). In (BBC02) and (Laf02), a special static partition function based on the

never claim automaton (negation of the Buchi Automaton) is used to �localize� cycles.

The main objective is to �... distribute states such that all states of a strongly connect

component (or equivalently a cycle) belong to the same equivalence class ...� (Laf02).

Hence, all states that belongs to a given cycle will be part of the same equivalence

class. Assigning each of these classes to only one node is enough to ensure correctness

for the nested DFS since the sequential DFS traversal order is still respected within

an equivalence class. The main drawback of this technique is that the never claim

automaton, obtained from LTL formulas, does not hold a signi�cant number of SCC

and, by consequence, do not generate a su�cient number of equivalence class. (For

instance, some formulas may hold only one SCC.)

Next we give some information about three important algorithms that belong to the

category of DFS algorithms.

[spin multi-core] Another relevant work that seeks for a simpler approach is

(HB07) which uses the notion of irreversible transitions to partition the state space
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into disjoint subsets. This work was speci�cally conceived for the multi-core technol-

ogy and proposes a dual-core extension of the Spin model checker. They use these so

called irreversible transitions to trigger the nested DFS search; these transitions give

two approximately equal and disjoint sets of states when they separate the �rst from

the second search. This design uses only two CPUs, one for each DFS search, and use

the irreversible transitions to send work from the �rst to the second CPU. The main

advantage of this work is that �... The complexity remains linear in the size of the num-

ber of reachable system states, with the same constant factor as applies to the standard

nested depth-�rst search�. Although this approach is not scalable for more than two

processors, the authors present it as simple and e�ective solution for dual-core (two

CPUs) machines.

[swarm] Another solution for distributed LTL model checking was proposed by

Holzmann et al. in (HJG08b, HJG08a). The idea is to have multiple independent

instances (workers) of the problem following di�erent exploration heuristics. The main

objective is to �nd errors quickly and not to verify the complete state space. The design

is simple, each worker follows a di�erent exploration strategy�i.e., a DFS, BFS or a

random order of exploration�until one of them �nds an error.

[mc-ndfs] Recently, swarm had been extended for multi-core architectures in (LLP+11)

and named multi-core nested DFS (mc-ndfs). They propose a multi-core version with

the distinction that the storage state space is shared among all workers in conjunction

with some synchronization mechanisms for the nested search. The basic idea is to share

information in the backtrap of the nested search. Thus, when a worker backtracks from

the nested search, the state involved will be globally ignored through a global coloring

scheme, pruning the search spaces for all workers i. Even if in the worst-case each pro-

cessor might still traverse the whole graph (O(N · (S + R)) where N is the number of

processors), this work goes one step further to propose an on-the-�y algorithm because

the time complexity is still linear in the size of the graph.

Concerning the reported results, as expected, mc-ndfs is fast and scales well when-

ever there is an accepting cycle, otherwise, it su�ers a signi�cant loss of performance.

The authors justify this loss of performance due to the lack of coloring sharing, �... in

the worst case (no accepting cycles) no work is shared between � processors.
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BFS/Arbitrary order

The research group that develops DiVinE is one of the most active team and one of the

few to propose a di�erent approach for parallel LTL model checking. They introduced

a series of four algorithms (BCKP01, BBC03, BCMS04, CP03) not based on the DFS

order, these algorithms are indeed based on breath �rst or arbitrary exploration order.

Although they were initially developed for distributed memory machines, the DiVinE

team, in (BBR07), reused these algorithms in a search for a good candidate for shared

memory machines.

[negc] The �rst algorithm to follow a di�erent exploration order was presented in

(BCKP01) based on the negative cycles detection (negc). The problem is reduced to

�nding negative length cycles in the directed graph obtained from the synchronization

of the system with a weighted Buchi automaton. In this case, all edges out-coming from

accepting states are assigned with -1 and all others with 0, consequently, �negative cycles

will simply coincide with accepting cycles and the problem of Buchi automaton empti-

ness reduces to the negative cycle problem� (BCKP01). They propose a distributed

method to solve this problem and compare the results with their previous distributed

nested DFS algorithm (BBS01). Despite the fact that it has a theoretical worst-case

time complexity in O(R ·S), the algorithm outperformed (BBS01) (DFS based) because

this new algorithm allows for a higher degree of asynchronous parallelism, instead of all

the strict synchronizations imposed by the dependency structure in (BBS01).

[bledge] Later, Barnat et al., in (BBC03), proposed a distributed memory algorithm

named back-level edge (bledge) based on computing the distance between a vertex, u,

and the root following a BFS exploration. This distance is denoted d(u). Indeed, a

necessary condition for a path in a graph to be a cycle is that it has two vertices, u

and v, following each other such that v is closer to the source than u; an edge (u, v) is

called a back-level edge if and only if d(u) ≥ d(v). The algorithm computes the BFS

distance to detect back-level edges and then check the presence of cycles following a

DFS search. The algorithm has a time complexity of O(S · (S +R)) and requires some

synchronizations to ensure that incorrect distances are never assigned to vertices due

to the non-deterministic character of the exploration order in parallel.

[map] Another work that follows the BFS exploration order is themaximal accepting

predecessors (map) (BCMS04). This work is based on the observation that all vertices
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on a cycle have exactly the same predecessors: if two vertices belong to the same cycle

then they have the same set of predecessors and they belong to this set.

It is not necessary to consider the complete set of vertices in this case, since we are

only interested by the accepting states of the automaton. Moreover, it is not necessary to

consider all the predecessors of a vertex; the algorithm proposes to use a representative

subset of states, called the maximal accepting predecessors, obtained from a presupposed

linear ordering of vertices.

A drawback is that the set of maximal accepting predecessors may have to be up-

dated dynamically. An advantage is that the algorithm is not bound to a speci�c

traversal order, it does not depend on the sequential DFS postorder. The algorithm

works in iterations and has a time complexity of O = (A2 · S), where A is the number

of accepting states.

[owcty] Cerná et al. in (CP03) proposed an algorithm to detect fair cycles that has

linear time for weak LTL speci�cations but has a quadratic worst case complexity. In

brief, �the language of the automaton is nonempty if and only if the graphs corresponding

to the automaton contains a reachable fair cycle, that is a cycle containing at least one

state from every accepting set ...�. It was inspired from the symbolic algorithm called

One Way Catch Them Young (owcty) (FFK+01), it �rst computes an approximation

of the set of states that contain all fair components and after re�nes it by successively

removing unfair components until it reaches a �xpoint. Although it has a better time

complexity in average when compared to the algorithms based on the nested DFS, this

work is not on-the-�y and requires several synchronizations in order to re�ne the set of

states. It has a time complexity of O = (h · (S +R)) where h is the height of the SCC

quotient graph.

The results reported using the distributed version of the owcty algorithm could not

match the performance of the distributed nested DFS (BBS01) mainly because of the

amount of messages and synchronizations required by the distributed implementation.

However, it is a good choice for shared memory machines because there is no need to

exchange messages and the synchronizations can be achieved just by using barriers and

lock regions; a prototype version is presented in (BBR07) and the results reported are

very good when compared to other similar algorithms (BCMS04, BBC03, BCKP01).

Moreover, (BBR07) addresses the analysis of a shared memory candidate for LTL model

checking; all these algorithms were originally developed for distributed machines.
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[owcty + map] The state of the art algorithm for parallel LTL model checking

was presented by Barnat et al. in (BBR09), they proposed an on-the-�y algorithm

by combining the owcty and map algorithms. The alliance of these two techniques

resulted in �a parallel on-the-�y linear algorithm for LTL model checking of weak LTL

properties�. (Weak LTL properties are those expressible by an automata that has no

cycle with both accepting and no-accepting states on its path.) Since owcty requires the

complete exploration of the state space to work, the accepting cycle detection procedure

frommap is employed but without the re-propagation of accepting predecessors in order

to maintain the time complexity linear. On the other hand, if the limitedmap procedure

fails to �nd an accepting cycle, the rest of the algorithm executes the original owcty.

Until recently, the results obtained with owcty + map indicated that the most

appropriate parallel on-the-�y solution would be an heuristic algorithm following a

di�erent exploration order than DFS. However, new algorithms such as mc-ndfs are

showing that under some circumstances, it is possible to achieve a better result following

an adapted nested DFS approach. (LLP+11) depicts a comparison between mc-ndfs

and owcty + map for models with and without cycles. For models with accepting

cycles, mc-ndfs �nds counter-examples faster than map+owcty due to its depth-�rst

on-the-�y nature, otherwise, in some cases owcty + map is faster with a factor of 10

on 16 cores. It is still early to state which one is the best. Meantime, we would like to

remind that the worst case scenario for mc-ndfs is in fact the case when the formula

is valid, hence, this solution is more adapted to �nd errors fast and not to check if the

property is valid.

2.3.5 Parallel CTL Model Checking

In this section, we present the parallel explicit algorithms for CTL model checking. In

addition, we also present parallel algorithms for model checking the alternation free

µ-calculus, denoted L1
µ, because of its close relationship to CTL.

CTL model checking can be classi�ed into global and local algorithms. Global

algorithms are more suitable to be executed in parallel because cycles can be detected

later, indeed, they do not depend on the sequential DFS exploration order because cycles

are checked after the complete construction of the state space. While local algorithms

decide the problem through a depth-�rst search, they have the advantage of being on-

the-�y.
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The �rst work proposed in this context was for L1
µ, presented by Bolling et al. in

(BLW01), in terms of games (EJS93, Sti99) where the moves correspond to paths in

the �game graph� (the Cartesian product of the states s with the formula φ). Similar

approaches are presented in (BCY02) and, reformulated in terms of solving alternating

boolean equation systems (BESs), in (JM05).

Bell et al., in (BH04), propose a distributed version of (CES86). It is based on a

labeling procedure and uses the parse tree of the CTL formula to evaluate sub-formulas.

The labeling procedure is carried in a distributed manner, a given state is labelled only

by its owner following the static slicing strategy used to distribute the states.

In (BLW02), Bollig et al. extend their previous work (BLW01) and propose a

parallel local algorithm for L1
µ which circumvents the sequential DFS limitation of their

initial algorithm by omitting the detection of cycles. This work follows the same idea

of �coloring a game graph� but de�nes a backward color propagation process. Another

distributed on-the-�y algorithm was presented in (JM06) where the authors extended

their previous work (JM05) on the resolution of BESs. All these works were targeting

distributed memory machines and used a static partition to construct

In contrast with the number of solutions proposed for distributed memory machines,

just two solutions were conceived for shared memory machines.

[pmc] Inggs et al. (IB06) give the �rst work speci�cally developed for shared mem-

ory machines and implemented as part of the automata-driven parallel model checker

called PMC. It is similar to (BLW01) but it di�ers in the way winning positions are

determined. They use a formalism called Hesitant Alternating Automata (Kup95) to

represent the formula speci�ed in CTL∗. New games are played locally every time a

game position is revisited in order to decide if it is an in�nite play (cycle) or part of a

di�erent path. For implementing this algorithm, the authors decided not to use locks

and therefore to accept a duplication of work.

[(PW08)] Finally, there is (PW08) for shared memory machines based on game

graphs. It proposes a parallel algorithm to solve the two-player parity games (Wil01),

which is equivalent to model checking for µ-calculus.
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2.4 Probabilistic Veri�cation

Probabilistic veri�cation trades memory for the probability of missing some states. The

main idea behind this technique is the use of hash values instead of the state value

itself, just like a lossy compression strategy where collisions are inevitable. As a result,

it becomes possible to analyze part of the state space when there is not enough memory

available to represent it in an exact manner. It does not solve the problem of state

explosion but it helps to �nd errors of models previously considered intractable due

to memory restrictions. We present below all the signi�cant probabilistic veri�cation

works that are related to our proposition.

The �rst probabilistic technique for model veri�cation was introduced by Holzmann

(Hol93) with the supertrace algorithm. It was the �rst work to explore the use of hash

values without collision resolution for veri�cation purpose. It brought the possibility of

error testing with good coverage (≈ 98% of the state space) when traditional approaches

fail. The e�ectiveness of this algorithm comes from the data structure used to encode

the set of visited states, which is the well known Bloom Filter (Blo70) instrumented

with two hash functions. This method is memory e�cient because states are stored

using only two bits, one for each function.

The Bloom Filter has been also used in the multihash algorithm introduced later by

Wolper and Leroy (WL93). TheMultihash algorithm improves the exploration coverage

by increasing the number of hash functions used by the �lter. However, the time

complexity becomes signi�cant due to the additional generation of hash values and their

respective memory accesses over the �lter. Some solutions have been proposed to deal

with the overhead related to the generation of multiple hash values (DM04, KM06) but,

as far as we know, nothing has been done to decrease the number of memory accesses.

Moreover, using more hash functions reduces the memory e�ciency of the �lter because

it uses more bits per state.

Another set of celebrated solutions are based on the use of Compact Hash Tables,

which are capable of increasing the coverage using the same amount of memory but

under some circumstances. The idea was �rst introduced by Wolper and Leroy (WL93)

and named hash compact algorithm. They argue that storing compressed states (hash

values) instead of bits and using a collision resolution scheme for the values stored

are enough to deliver a smaller probability of omissions using the same memory space.
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Nevertheless, it is not as memory-e�cient as the Bloom Filter because it requires (rec-

ommended) 64 bits per state for an e�ective coverage. In addition, this algorithm

requires a prior knowledge of the state space size in order to dimension the hash table.

The memory issue was enhanced later by Stern and Dill (SD95) on the improved hash

compact algorithm. They argued that Wolper and Leroy analysis could be improved

if the probability took into account the calculation of the hash and compressed values

independently. Subsequently, Stern and Dill (SD96) proposed a variant of their im-

proved hash compact algorithm where the probability of false positives is computed by

reasoning about a longest path in the breadth-�rst search tree of the reachable states.

We will skip a comparison with this speci�c method because we are interested with

solutions that are not so complex to parallelize. Indeed, it is costly to respect a given

exploration order when the state space construction is performed by a parallel algorithm

(see (GHR95) for a list of inherently sequential problems.).

It is important to understand that these solutions are complementary. Dillinger

and Manolios (DM04) argue about the categorization of these methods according to

the possible estimation of the state space size. The supertrace algorithm is the most

suitable when the state space size is completely unknown. The hash compact holds

the best coverage when we know the size rather accurately. Finally, when the size is

roughly estimated, a Bloom Filter instrumented with more than two hash functions

gives a better result. Below, we present these two data structures.

2.4.1 Bloom Filters

A Bloom �lter (Blo70) is a space-e�cient data structure for encoding set membership

that is very popular in database and network applications. General theoretical results

on Bloom �lters can be found in (BMM02), while (DM04) focus more on their use for

probabilistic veri�cation. Several variants and extensions have been proposed in the

literature. To mention a few, Counting Bloom �lter (BMM02) uses bytes instead of bits

to support the delete operation. Spectral Bloom Filter (CM03) is capable of encoding

the estimates of frequencies. Bloomier Filter (CKRT04) allows the association of an

arbitrary function for a subset of elements where the probability of omissions is zero,

for all other elements it accepts a small rate of false positive answers. (See (BMM02)

for a survey.) In the following, we assume that S is the set of elements (states) we want

to store in the Bloom Filter, where |S| = N is the number of elements in S.

38



2.4 Probabilistic Veri�cation

Bloom �lters support two operations: insertion of an element in the set and test

that an element is in the set. A �lter B of dimension M is implemented as a vector of

M bits and is associated with a series of k independent hash functions (hi)i∈1..k with

image in the interval 0..M − 1. An empty set is represented by a vector with all bits

set to 0. Insertion of the element x in B is performed by setting the bits hi(x) of the

vector to 1 for all i in 1..k. Reciprocally, to query whether an element y is in B, we test

that the bits (hi(y))i∈1..k are all set to 1 in the vector. If it is not the case, then we are

sure that y is not in the set encoded by B. If all the bits are set to 1, we cannot be sure

that the element y was inserted in B. Nonetheless, we can compute the probability for

y to have been inserted; in the case where y is actually not in the set, we say we have

a false positive; Moreover the parameters of the Bloom Table can be chosen so as to

obtain an arbitrarily low probability for false positives.

In Fig. 2.9 we illustrate insertion and query operations on a Bloom �lter with size

M = 16 and k = 3. Starting from an empty set (above), we show the result after the

insertion of two elements, x and y. In this example, we have h1(x) = 3, h2(x) = 7 and

h3(x) = 9 (actually, the order in which the functions in (hi(y))i∈1..k are ran through is

not important). Element z is an example of false positive.

Figure 2.9: Illustration of some operations on a Bloom �lter.

The probability for an element to be a false positive is a function of the dimension,

M , the number of hash functions, k, and the number of elements inserted in B so far.

We can assume that all the elements in the set S have already been inserted, so this

last parameter is equal to N . We assume that the k hash functions are independent

and perfectly random. As a consequence, for any element x and index i ∈ 1..k, the

probability for hi(x) to be di�erent than some �xed index of B is (1− 1
M

). Therefore,
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after the insertion of N elements (that is k.N writes in the vector), we have the following

probability that a given bit is not set (0).

p′ = (1− 1
M )k.N ≈ e−

k.N
M

In the following, we assume that M � 1 and that the inequality k.N < M is valid.

Therefore, we can safely use e−
k.N
M as an approximation for (1− 1

M )k.N . The assumption

k.N < M is natural. Indeed, it means that there is enough room in the vector B to

never write twice at the same position (considering the most favorable case, where each

computed hash values are di�erent).

Now, the probability for a given bit to be already set to 1 after N insertions is 1−p′.
Since the probability of false positive is also the probability of �nding k bits already set

to 1 after N insertions, we have that:

PBloom = (1− p′)k ≈ (1− e−
k.N
M )k (1).

A more detailed discussion on this result in given in (BMM02), where it is also shown

that, for �xed values of N and M , there is a value of k that minimizes the probability

PBloom. Hence, there is a way to compute a most e�cient value for k if we have a rough

estimate of the value of N , that is the size of the state space.

2.4.2 Compact Hash Table

Another celebrated data structure for probabilistic veri�cation is the hash compact table.

It was introduced by Wolper and Leroy (WL93) as an alternative scheme to obtain a

small probability of collisions. They proposed the use of a smaller hash table set with

the number of necessary entries. The name hash compact comes from the use of hash

values instead of the state-description. They argued that this setup instrumented with

a collision resolution scheme is su�cient to guarantee very low probability when more

than 64 bits are available per state.

From (WL93), considering a hash table of Mh entries where each slot has w bits

size and assuming that the overhead required to resolve collisions is negligible, the

probability of non omission (pno) for the insertion of N elements is

Pno ≈ e−
N2

2w .
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Note that the memory used by the table is of size Mh · w. The probability of

omissions for the hash compact table can be presented as

Ph.compact = (1− pno) ≈ (1− e−
N2

2w ) (2).

2.5 Contributions

Before presenting our contributions, it is important to introduce the main guidelines

of our work. In this thesis, we perform the formal veri�cation of �nite state systems

modelled using Petri Nets (Mur89). This means that, in our case, a state is a marking,

that is a tuple of integers.

Our algorithms have been developed with more complex formalisms in mind, for

instance including data, time, etc. We adopted the SPMD programming style and we

implemented our algorithms and data structure as part of Mercury, an open-source

model checker for multiprocessor machines developed during this thesis (see appendix

B).

Section 2.5.1 presents our contributions for parallel state exploration. We propose

two approaches: a general speculative algorithm that operates between two phases�

exploration and collision resolution�to compute the (exhaustive) state graph of the

system; and a mix of distributed and shared hash tables where collisions are solved

on-the-�y.

Section 2.5.2 presents our contributions for a practical parallel model checking where

�cycles� are detected lazily. The main advantage of our approach is that we devise a

new algorithm compatible with di�erent types of state classes abstractions that stores

only one transition per state.

Section 2.5.3 presents our contributions on the probabilistic veri�cation of �nite

systems. We propose a novel probabilistic data structure, called the Bloom Table, that

�lls a gap between the hash compact and Bloom �lter. The Bloom Table is better suited

than the Bloom Filter for building concurrent data structures (and algorithms) because

it requires less accesses to memory for an equivalent probability of collisions and an

equivalent memory consumption.

Finally, we want to stress that the contributions of this thesis are not limited to the

domain of formal veri�cation. De facto, the algorithms and data structures proposed
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in this work are of interest for any application that performs graph exploration, cycle

detection and probabilistic (or lossy) storage in parallel.

2.5.1 Parallel State Space Construction

We presented in section 2.3.3 the related work for distributed and parallel state space

construction. The key points to design an e�cient parallel algorithm for shared memory

machines are the data structure used to store the set of explored states and the work-

load strategy used to distribute the work (or the states) among the processing units.

In this thesis, we propose two algorithms for parallel state space construction that

follow two main principles. The algorithms should be based on a:

� dynamic distribution of data, without prior partitioning; and

� local data spaces (exclusive write and shared read) for storing the states with

only a small, global/shared (read and write) data space for synchronizing the

computation.

Our �rst contribution is a speculative algorithm that relies on a novel way to dis-

tribute the state space. Our algorithm dynamically assigns states to processors, in the

same way we dynamically assign work to processors using a work-stealing strategy. It

di�ers from hash partitions based solutions, i.e. DiVinE multi-core (BBCR10)), where

states are assigned statically.

States are stored in local data sets, while a shared Bloom �lter is used to dynamically

distribute the states. We take advantage of the fast response time and space e�ciency

of Bloom �lter in order to limit undesired synchronizations and increase the locality of

memory access. Due to the probabilistic character of the Bloom Filter data structure,

we propose a multiphase algorithm to perform exhaustive, deterministic, state space

generations. The algorithm iterates between two phases, exploration and collision res-

olution, until all possible collisions have been checked and, by consequence, all states

have been found.

Our design is original compared to the related solutions (BBCR10, HB07, LvdPW10,

IB02), because we do not rely on a unique, big hash table shared among all processors,

or a distributed hash table where data is statically assigned. In fact, we build an

hybrid algorithm between distributed and shared hash tables where data is dynamically
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distributed, according to a probabilistic globally shared structure, and states are stored

locally in a distributed fashion (local sets are independent). Our algorithm is quite

general and can be adapted to accept di�erent kinds of data structures for local sets.

For example, we have already experimented both AVL trees and hash-tables. This work

was presented on the 9th International Workshop on Parallel and Distributed Methods

in Veri�cation (PDMC 2010) (SZB10).

The second algorithm proposed in this thesis improves on our previous design and

replaces the Bloom Filter by a dedicated data structure, the localization table. This table

is used to dynamically assign newly discovered states and behaves as an associative array

that returns the identity of the processor that owns a given state. With this approach, we

are able to consolidate a network of local hash tables into an (abstract) distributed one

without sacri�cing memory a�nity�data that are "logically connected" and physically

close to each others�and without incurring performance costs associated to the use

of locks to ensure data integrity. This work was published in the 10th International

Symposium on Parallel and Distributed Computing (ISPDC 2011) (TSDZB11).

Our contributions are twofold. First, for the formal veri�cation community, we

de�ne new algorithms for parallel state space construction. Our algorithms are able to

exploit parallelism in all possible cases and, unlike algorithms based on slicing functions

or heuristic rules, is compatible with dynamic load-balancing techniques. Although

we have implemented with the work-stealing approach, nothing prevents our design to

work with other strategies such as stack-slicing. Second, for the parallel computing

community, we propose new candidates for concurrent hash maps.

Our multiphased algorithm supports di�erent types of data structures (AVLs, hash-

tables, etc) for local storage without major changes on the global locking mechanism.

Indeed, our speculative approach attenuates the burden for data consistency from the

local data structure and shifts it to the iterative character of the algorithm. Moreover,

our improved algorithm proposes a new way to use independent (distributed) hash

tables as a single shared concurrent hash map; the combination of local hash tables

with the localization table provides an interesting implementation for concurrent hash

maps that may be useful in other situations.
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2.5.2 Parallel Model Checking

We presented in Section 2.3.4 and 2.3.5 an overview of the literature for parallel model

checking. We tried to emphasize the need for an e�ective parallel cycle detection strat-

egy in order to obtain an e�cient parallel algorithm. The veri�cation of more elaborated

formulas requires the use of e�cient algorithms to detect the presence of cycles, such as

the use of the Strong Connected Components (SCC for short) abstraction, i.e. (Tar71),

or the �nested-DFS� (CVWY92) algorithm. These algorithms are hard to parallelize be-

cause they heavily rely on following a particular order when exploring the state graph

(for example a DFS order).

We believe that searching only for e�cient1, on-the-�y, parallel solution misses part

of the problem. Indeed, to obtain a good complexity in practice, it is also important to

be able to bene�t from useful work-sharing policies during the complete model checking

process; not only during the state space construction.

With the same idea to focus on �pragmatic� optimizations, we also focus on ap-

proaches that require less memory space. Our main goal is to propose a solution that is

suitable for any state class abstraction without taking into account neither the structure

of the model nor its symmetry.

We make the following contributions in the domain of algorithms for parallel model

checking.

We de�ne a new algorithm, that we call MCLCD for Model Checking Algorithm

with Lazy Cycle Detection. This algorithm is �compatible� with the parallel state space

generation techniques described in Chapter 3. By compatible, we mean that we base

our approach on the same set of hypotheses; actually, we should say the same absence of

restrictions. First, we follow an enumerative, explicit-state approach. We assume that

we are in the least favorable case, where we have no restrictions on the models that can

be analyzed. For instance, we cannot rely on the existence of a symbolic representation

for the transition relation, such as with symbolic model checking. Next, we make no

assumptions on the way states are distributed over the di�erent local dictionaries (we

assume the case of a non-uniform, shared-memory architecture). Finally, we put no

restrictions on the way work is shared among processors, that is to say, the algorithm

1E�cient in the sense of �with a good theoretical, worst-case complexity�; such as linear in the size

of the state graph for example.
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should play nicely with traditional work-sharing techniques, such as work-stealing or

stack-slicing.

We propose two versions of MCLCD: a �rst version based on a reverse traversal

of the state graph, called RG, where we need to explicitly store the transitions of the

system; and a second version, RPG, where we only need to store a spanning subgraph.

The RG version has a linear time and space complexity, in O(|S|+ |R|), while the RPG
version has a time complexity in O(|S| · (|R| − |S|)) and a space complexity in O(|S|).

The main advantage of the RPG version is to provide an algorithm that is e�cient

in memory and independent of the choice of states classes abstraction. Figure 2.10 lists

our algorithms among related solutions for parallel model checking that have already

been implemented on shared memory machines.

Algorithm Time Complexity Logic Supported

map O(|A|2 · |S|) LTL

owcty O(h · |S|) LTL

negc O(|R| · |S|) LTL

bledge O(|S| · (|S|+ |R|)) LTL

mc-ndfs O(N · (|S|+ |R|)) LTL

MCLDCD-RG O(|S|+ |R|) sub-CTL

MCLCD-RPG O(|S|2 + |R|2)) sub-CTL

Figure 2.10: Parallel model checking algorithms for shared memory machines.

Our algorithms follow the classical semantic approach proposed by Clarke et al. in

(CES86), with the distinction that we only support a subset of CTL formulas. (We

indicate in conclusion of Chapter 4 how this restriction could be lifted). We follow

an approach based on labeling states, like with (BH04) and (BLW01, BLW02) in the

context of game automata. We choose a semantic approach because we believe that it

is more appropriate for a parallel algorithm with dynamic work-load strategies.

Finally, we implemented our algorithms using the work-stealing strategy both for

the state space construction phase and the property validation (cycle detection) phase.

Related works (HB07, LvdPW10, IB02) use dynamic workload policies for the parallel

state space construction only, they do not employ any kind of work-load approach dur-

ing cycle detection: Holzmann et al. perform the nested search in a exclusive allocated

process; Inggs et al. perform (independent) local cycle detection procedures whenever a
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node was revisited; and Laarman et al. propose an on-the-�y algorithm where each pro-

cess performs its own nested search and shares information only to avoid the repetition

of nested searches.

2.5.3 Probabilistic Veri�cation

Our main contribution for probabilistic veri�cation is the de�nition of an enriched Bloom

Filter, named Bloom Table (BT ), that is more e�cient when we have a rough estimation

of the size of the state space. This solution not only delivers a small probability of

omission but also improves the execution time by reducing the number of necessary

hash functions.

The main di�erence of our structure, when compared to the classical Bloom Filter,

is that we use a vector of �q-bits word� (with q = 8 in general) instead of a vector of only

bits. Succinctly, a BT with m slots is associated to a sequence of k independent hash

functions (hi)i∈1..k, with values in 1..m, and another hash function, key , that computes

values of size k.q bits. To insert a value x inside the BT , the hash-value returned by

key(x) is sliced into k sub-words of size q and inserted in the BT at each position

hi(x) for i in 1..k. Hence, what we obtain is a blend between a Bloom Filter�insertion

requires writing in a vector at multiple positions�and a hash-table�insertion may fail

because the necessary slots are �lled with values di�erent than what is expected.

We position our contribution between the Compact Hash Table based solutions and

the classical Bloom Filter. The probabilistic data structure we propose delivers a better

result than the (improved) hash compact algorithm using less than 40 bits per state.

On the other hand, our solution improves the time complexity when compared to the

classical Bloom Filter because it o�ers a better result without increasing the number of

hash functions used whenever there are 16 bits available per state.
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Chapter 3

Parallel State Space Construction

� Program testing can be a very e�ective way to show the presence of bugs, but is

hopelessly inadequate for showing their absence.�

Edsger W. Dijkstra

In this chapter we present our novel techniques to perform enumerative parallel state

space construction. This chapter is organized as follows. Section 3.1.1 presents the main

guidelines of our algorithms such as memory space emplacements and work-sharing

techniques. In Section 3.2 we present our general lock free algorithm for parallel state

space construction. Section 3.3 presents a devised version based on a mixed approach

of distributed and shared hash tables. Before concluding in Section 3.5, we compare in

Section 3.4 our approaches with solutions already proposed in the literature.

3.1 Introduction

Veri�cation via model checking is a very demanding activity in terms of computational

resources. While there are still gains to be expected from algorithmic methods, it is

necessary to take advantage of the advances in computer hardware to tackle bigger

models. Obviously, the use of a parallel architecture is helpful to reduce the time

needed to check a model because it divides the computation over several processing

units instead of one. Another reason, important as well, is the possibility to access a

large amount of fast-access memory.

In this chapter we address the problem of generating the state space of �nite-state

transition systems, often a preliminary step for model checking. In this thesis, we
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analyze and propose two novel algorithms for enumerative state space construction

targeted at shared memory systems, that are multiprocessor architectures where the

memory space can be accessed by all processors. The basic idea behind such algorithms

is pretty simple: take a state that has not been explored (a fresh state); compute its

successors and check if they have already been found before; iterate. A key point is

to use an e�cient data structure for storing the set of generated states and for testing

membership in this set. With a shared memory architecture, the state space is sliced

among all processors and additional e�orts are required to ensure data integrity. This is

generally obtained through the use of low-level concurrency control mechanisms such as

locks and barriers. In the following, we present two algorithms based on novel techniques

to construct the state space in parallel without making heavy use of locks.

3.1.1 Algorithms Overview

Our algorithms are based on the same simple design: the global state space is stored

in a set of local containers (e.g. hash tables), each controlled by a di�erent processor,

while only a small part of the shared-memory is used for coordinating the state space

exploration. This is close in spirit to algorithms based on distributed hash tables, with

the distinction that we choose to dynamically assign states to processors, that is, we do

not rely on an a-priori static partition of the state space.

The main goal of our design is to circumvent the use of locks to protect the local

sets by using a lock-less data structure as the shared memory space. Locks are only

used for the work-stealing strategy. Moreover, we adopt an �homogeneous� parallelism,

which follows the Single Program Multiple Data (SPMD) programming style, such that

each processor performs the same steps concurrently. Figure 3.1 brie�y presents the

memory scheme of our design.

Our �rst algorithm is a parallel exploration algorithm that constructs the state

space in a speculative manner. Strictly speaking, an approximate and relatively small

image of the global state space is shared among all processors (or workers). Due to the

approximate nature of this image, the algorithm iterates between two phases, exploration

and collision resolution, in order to obtain an exhaustive description of the state space.

We call this algorithm �General Lock Free Approach� because its operation mechanism

completely isolates the local data structures, enabling the transparent use of di�erent
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Figure 3.1: Parallel memory organization.

local structures (e.g. AVL trees, hash tables, etc) without the use of locks. This

algorithm is presented in detail at Section 3.2.

Inspired by our �General Lock Free Approach�, we devised a new algorithm based

on an original data structure, called Localization Table, that goes one step further

on the mixed use of distributed and shared hash tables for shared memory machines.

We developed an algorithm that enables the use of distributed hash tables as a single

shared concurrent hash map. Unlike our previous algorithm, this new approximate data

structure can be used to �nd the processor that owns a given data item � a state in

our case � and not only to assert if the object was already found. This simple addition

signi�cantly enhances the performance of our previous algorithm and also simpli�es its

logic. We give more details about this algorithm in Section 3.3.

Work-Sharing Techniques

Concerning the dynamic work load, our algorithms rely on two di�erent work-sharing

techniques to balance the work load between processors. We use these mechanisms

alternately during the exploration phase depending on the processor occupancy. First,

we use an active technique very similar to the work-stealing paradigm of (IB02). This

mechanism uses two stacks per processor: a private stack that holds all states that

should be worked upon; and a shared stack for states that can be borrowed by idle

processors. This shared stack is protected by a lock to take care of concurrent access.

The second technique can be described as passive and has the bene�t to avoid useless
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synchronization and contention caused by the active technique. In the passive mode,

an idle processor waits for a wake-up signal from another processor willing to give away

some work instead of polling other shared stacks. The shift between the passive and

active modes is governed by two parameters:

� the private minimum workload, which de�nes the minimal charge of work that

should be kept private. The processor will share work only if the charge in its

private stack is larger than this value;

� the share workload, which de�nes the ratio of work that should be added in the

shared stack if the load in the private stack is larger than the private minimum

workload.

Our implementation of the work-stealing paradigm is interesting in its own way

since it di�ers from (IB02) by its use of unbounded shared stacks and the use of a

�share workload� parameter.

3.2 General Lock Free Approach

Our �rst proposition is a speculative algorithm based on two data structures: a lock-

free, shared Bloom �lter to coordinate the data distribution; and local sets � we use

AVL trees in our implementation � to explicitly store the data. We take advantage of

the fast response time and space e�ciency of Bloom �lter in order to limit undesired

synchronizations and increase the locality of memory access.

The use of a shared Bloom �lter avoids requiring a critical section when writing

on local state spaces without sacri�cing data integrity. The bene�ts of this design are

better scalability on the number of processors and less contention on memory access.

Bloom �lters have already been applied for the probabilistic veri�cation of systems;

they are compact data structures used to encode sets, but in a way that false positives

are possible, while false negatives are not. (See the description of �Bloom Filters� in

Section 2.4.1).

We circumvent the probabilistic nature of Bloom �lters by proposing an original

multiphase algorithm to perform exhaustive, deterministic, state space generation. In

the �rst phase (exploration), the algorithm is guided by the Bloom �lter until we run

out of states to explore. During this phase, states found by a processor are stored locally
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in two AVL trees: one for states that, according to the Bloom �lter, have already been

generated by another processor; the other for fresh states. Since the Bloom �lter may,

in rare cases, falsely report that a state has already been visited (what is called a false

positive), we need to give a special treatment to these collision states. This is done in

the consecutive phase (collision resolution) that takes care of collisions among possible

false positives. The algorithm concludes with a termination detection phase when there

are no more states to explore and no collisions to resolve.

Concerning the operations performed over the shared Bloom �lter, we decided for

non-protected access to increase the throughput. In the worst case, concurrent accesses

lead to duplicated states. For instance, two processors may compete for the same series

of slots if they are inserting the same state, what de�nes a classic situation of date race.

In our understanding, we do not consider the duplication of states as a problem because

they are compensated by the extra computing power of parallel architecture. Our main

concern is to ensure that all states have been explored.

This section is divided as follows. The memory model of our algorithm is given

in Section 3.2.1. In Section 3.2.2, we discuss the exploration, collision resolution and

termination phases of our algorithm. Finally, we examine experiments performed on a

set of typical benchmarks in Section 3.2.3.

In the remainder of the text, we assume that there are N processors and that each

processor is given a unique id, which is an integer in the interval 0..N − 1.

3.2.1 Shared and Local Data

Our objective is to design a solution adapted to typical shared memory architectures.

This means that, in addition to the common di�culties related to shared memory

architecture (ensuring data consistency; reducing contention on shared data access;

. . . ), we should also consider the case of Non-Uniform Memory Access architectures

(NUMA), where the latency and bandwidth characteristics of memory accesses depend

on the processor or memory region being accessed (see Sec. 2.3.1). To improve locality,

states generated by a processor are stored in one of two possible local AVL trees, the

state tree or the collision tree. This corresponds to one of the two following cases.

Assume that processor i generates a new state s. If a query on the Bloom �lter answers

that s has not been visited before, the processor may continue generating new states

from s. In this case we add s to the state tree of processor i. If the query is positive
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� state s may have been visited before � we add s to the collision tree. States in

the collision tree will undergo a special treatment to take into account possible false

positives.

Each processor also manages two stacks of unexplored states for work-sharing: a

local stack for storing its private work and a shared stack for sharing work with idle

processors. Accesses to the shared stack are protected by locks to prevent di�erent

processors from requesting the same work. Finally, a shared vector is used to store the

current state of processors (either idle or busy) in order to detect termination. Figure

3.2 illustrates the shared and local data structures used in the algorithm.

P1 Shared Work Stack

BLOOM FILTER

Local LocalShared

Private Work Stack

State Tree

Collision Tree

Processor 1

Private Work Stack

State Tree

Collision Tree

Processor 2

P2 Shared Work Stack

Shared Vector

Pr.1 IDLE    Pr.2 BUSY

Figure 3.2: Shared and private data overview.

3.2.2 Di�erent Phases of the Algorithm

As mentioned before, our solution makes use of a shared Bloom �lter to test whether

a state may have already been discovered before. To overcome the problem with false

positives, our algorithm iterates between an exploration phase and a collision resolution

phase before concluding with a termination detection phase.

The exploration phase takes great advantage of the strong points of a multiprocessor

architecture because the shared space is small and all work is done locally. On the

opposite, the collision resolution phase puts a lot of stress on the architecture: each

processor has to compare the elements in its collision tree with the state tree of all the

other processors. As a consequence, the goal is to favor the exploration phase and to

reduce the number of iterations. Figure 3.3a) shows the characteristic timeline of phase

alternations that we are aiming at. Figure 3.3b) depicts graphically the alternation

of phases between exploration and collision resolution. Since iterations are directly
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related to the probability of false positive, it is important to dimension the Bloom �lter

correctly. In our experiments, we typically observe fewer than 3 iterations.

0 5 10 15 20

Exploration State

Colision State

Termination State

Collisions
To Analyze?

False Positive
Found?

Yes

No 

Yes

No 

Termination
Detect ion

Exploration

Collision
Resolution

a)Timeline of phases alternation. b)Flowchart of phases alternation.

Figure 3.3: Phases alternation.

In the remaining of this section, we de�ne each phase of our algorithm using pseudo-

code. Variable SS indicates the current phase of the algorithm. The data structures

used in the algorithm are composed of shared and local elements. Shared variables are:

(1) the Bloom Filter BF, used to test whether a state had already been discovered or

not; (2) the bitvector V, that stores the state of the processor (0 for idle and 1 for

busy); and (3) the shared stacks Shared_Stack [0], . . . , Shared_Stack [N-1]. Processor-

local variables are the private stack, private_stack, of unexplored states and the two

local AVLs: state_tree, to store states discovered by this processor; and collision_tree,

to store potential false positives.

Exploration

We give the pseudo-code (Listing 3.1) related to the exploration phase below. The explo-

ration phase proceeds until no new states can be added to the Bloom Filter BF. During

the exploration, all states appointed by BF as already discovered are stored locally in

the collision_tree. On the opposite, all newly discovered states are stored locally in the

state_tree. Although concurrent accesses to BF may seldom result in extra work (state

duplication), this is negligible compared to the gain in performance due to the use of a

lock-free data structure. Computation switches to the collision resolution phase when

all processors are idle and there is at least one non-empty local collision_tree. After a
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complete iteration, unresolved collisions (false positive) are specially tagged as a means

to bypass the BF membership test at this phase. We give more details on unresolved

collisions in the description of the next phase.

Collision Resolution

The search for collisions (the same state generated in two distinct processors) is done

concurrently by each processor through the comparison of its collision_tree with the

state_tree of every other processors. This operation can be implemented e�ciently.

Indeed, since all these data structures are lexicographically sorted (we use AVL trees for

storing states), collisions can be e�ciently resolved by comparing trees as ordered lists

starting by the leftmost state of each tree. (Figure 3.4 illustrates the synchronization

of one collision tree with all state trees.) During this phase, all processors are granted

with the read access to the private collision_trees and state_trees.

The advantage of this approach to solve collisions is that if a colliding state s is

smaller than a given state of a state_tree, no more states of this state_tree need to

be compared with s. During the collision resolution, a state found in the state tree

of another processor, say Pi, can be safely deleted from collision_tree: it is a "real"

collision and it is currently processed by Pi. If the state does not appear in the state tree

of another processor then the state is the result of a false positive in the Bloom �lter.

As a consequence, it will be directly inserted into the private stack of the processor to

be expanded during the following exploration phase. We will also mark this state with a

special tag to avoid testing it against the Bloom �lter a second time. For this reason, if

more than one processor �nd the same false positive, it will result in duplicated states in

state space. We prefer to duplicate these states because it would require a complete pass

over the false positives found in order to remove the duplicated ones. This operation

would demand another synchronization of all N processors. Listing 3.2 presents the

pseudo-code for the collision resolution phase.

Termination Detection

This phase is responsible for checking if the state space construction should end. Termi-

nation detection performs a simple test on the states of the processor and consumes no

resources. Assume we arrive in the termination detection phase from the exploration

phase, then we can �nish the construction if the collision_tree in all processors are
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1 while SS = Explorat ion and at l e a s t one proce s s i s busy do

2 while pr ivate_stack i s not empty do

3 s ← pop ( pr ivate_stack ) ;

4 i f s i s not in BF or s i s marked with a s p e c i a l tag then

5 search_and_insert s i n to s ta t e_tree ;

6 l e t {s1 , . . , sj , . . . , sn} ← s u c c e s s o r s ( s ) where

7 j ← shared_work_load x n

8 i f s i z e ( pr ivate_stack ) > private_work_load then

9 // Protected action by locks

10 i n s e r t {s1 , . . . , sj} in my shared_stack ;

11 i n s e r t {sj+1 , . . . , sn} in my pr ivate_stack

12 // Share a percentage of new work

13 i f some proc e s s o r i s s l e e p i n g then

14 wake him up

15 endif

16 else

17 i n s e r t {s1 , . . . , sn} in my pr ivate_stack

18 endif

19 end l e t

20 else i f s i s not in s ta t e_tree then

21 search_and_insert s i n to c o l l i s i o n_ t r e e endif

22 endif

23 endwhile

24 //private stack is empty

25 i f my shared stack i s not empty then

26 transfer work from my shared stack to pr ivate_stack

27 else

28 look for a non empty shared_stack to transfer work ;

29 i f a l l shared_stacks empty and at l e a s t one p ro c e s s o r busy then

30 ente r in to s l e e p mode ;

31 endif

32 endif

33 endwhile

34 //Everybody is idle

35 //Protected action by locks

36 SS ← Co l l i s i o n Reso lut ion ;

37 wake up and sync a l l p r o c e s s o r s and ente r C o l l i s i o n Reso lut ion phase ;

Listing 3.1: Exploration phase algorithm pseudo-code.
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1 l e f tmos t [ 0 . .N] ← l e f tmos t s t a t e s from s ta t e_tree [ 0 . .N] ;

2 not_larger [ 0 . .N] ← { true , . . . , t rue } ;

3 found ← f a l s e ;

4 c o l l i s i o n ← l e f tmos t s t a t e from c o l l i s i o n_ t r e e ;

5 while c o l l i s i o n i s not empty do

6 while not found and l e f tmos t 6= { ∅ , . . . , ∅ }
7 f o ra l l i in 0 . .N do

8 i f not_larger [ i ] then

9 i f c o l l i s i o n i s sma l l e r than l e f tmos t [ i ] then

10 //No more comparisons for this collision

11 not_larger [ i ] ← f a l s e

12 e l s i f c o l l i s i o n i s l a r g e r than l e f tmos t [ i ] then

13 l e f tmos t [ i ] :← next ordered element from s ta t e_tree [ i ]

14 else // collision == leftmost[i]

15 found :← t rue ;

16 break f o ra l l

17 endif

18 endif

19 endforall

20 endwhile

21 i f not ( found ) then

22 i n s e r t c o l l i s i o n in to pr ivate_stack and mark as a s p e c i a l s t a t e

23 endif

24 c o l l i s i o n ← next ordered element from c o l l i s i o n_ t r e e

25 endwhile

26 // No more collision to resolve

27 i f pr ivate_stack i s not empty then

28 // Protected action by locks

29 SS ← Explorat ion

30 endif

31 i f one p ro c e s s o r i s s t i l l busy then

32 ente r in to s l e e p mode

33 else

34 wake up and sync a l l p r o c e s s o r s ;

35 i f SS = Explorat ion then

36 ente r Explorat ion phase

37 else

38 ente r Termination Detect ion phase

39 endif

40 endif

Listing 3.2: Collision resolution phase algorithm pseudo-code.

56



3.2 General Lock Free Approach

P1 Colision Tree P2 State Tree PN State Tree

Figure 3.4: Collision resolution with local AVl trees.

empty. In the case we arrive in termination detection phase from the collision resolu-

tion phase, then we can �nish the construction if the private_stack of all processors are

empty.

3.2.3 Experiments

We implemented our algorithm as part of our prototype model checker calledMercury

(Appendix B). In brief, we used the C language with Pthreads (But97) for concurrency

and the Hoard Library (BMBW00) for parallel memory allocation. We developed our

own library for Bloom �lters with support for concurrent insertion. Experimental results

presented in this section were obtained on a Sun Fire x4600 M2 Server, con�gured with

8 dual core opteron processors and 208GB of RAM memory, running the Solaris 10

operating system. We worked with a 512MB Bloom �lter (n = 4.109 bits) and 6

chained hash-functions (k = 6). These parameters are dimensioned for examples of up

to 5.108 states, with a small rate (≈ 2%) of false positives.

The �nite state systems chosen for this benchmarks are classical examples of Petri

Nets taken from (MC99). Together with the perennial Dining Philosophers, we also

study the examples of the Flexible Manufacturing System (FMS) and the Kanban Sys-

tem, where the �rst one is parametrized by the number of subnets and the following

two by the weights in their initial marking. We give several results detailing the per-

formance of our implementation. While speedup is the obvious criterion when dealing

with parallel algorithms, we also study the memory trade-o� of our approach and report

on experiments carried out to choose the dimension of the Bloom �lter.
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speedup

FMS 7 PH 12

# proc. (6.107 states) (3.107 states)

Time (s) Speedup Time (s) Speedup

1 3132 � 2046 �

2 2048 1.52 1414 1.44

4 1075 2.91 744 2.75

6 723 4.33 510 4.01

8 564 5.55 386 5.30

10 460 6.80 312 6.55

12 384 8.15 269 7.60

14 338 9.26 232 8.81

16 313 10 218 9.38

Figure 3.5: Speedup analysis for PH 12 and FMS 7 models.

Speedup

Figure 3.5 gives the observed relative speedup of our algorithm when generating the state

space for 12 philosophers (PH 12) and FMS 7 with a di�erent number of processors. We

give the relative speedup (see Sec. 2.3.1), measured as the ratio between the execution

time using N processors (tN ) and the time of the same algorithm on one processor (ts).

Figure 3.6 depicts the system occupancy rate, throughout the duration of the state

space computation, for the PH 12 model using all the available processors. The oc-

cupancy rate measures the utilization of the machine CPUs. The �gure shows high

occupancy rate1 (≈ 92%) for our algorithm, except for a small interval that corresponds

to the transition between the exploration and the collision resolution phases. For this

experiment, only one pass over the exploration and the collision resolution phases is

enough to generate the complete state space. The termination detection phase happens

after the collision resolution phase was �nished and no false positive was found.

Figure 3.6: Occupancy rate for PH 12 with 16 processors.

1The slightly execution time di�erence is a consequence of the overhead generated by the pro�ling

tool.
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Time-Memory Trade-o�

Figure 3.7 gives results on the number of collision nodes (see Section 3.2.1) used on

the FMS 7 and PH 12 examples. We also give the amount of memory required for

the collisions tree. The results show an increase of the memory footprint when the

number of processors increase. The intuition behind these numbers is quite simple:

due to the strong symmetry of the example, if we add more processors, we increase

the probability of di�erent processors �nding the same state, that is the probability

of creating a collision node. As shown with the experiments, the number of collisions

generated by our algorithm may be 3 to 4 times greater than the number of states in

the worst case (16 processors). What is observed is a general trade-o� between memory

space and computation time that is often found in parallel algorithms. It should be noted

that the use of traditional optimizations, such as partial-order or symmetry reduction

techniques, would reduce the number of collisions.

FMS 7 PH 12

(6.107 states) (3.107 states)

# proc. # collision Ex. Ma # collision Ex. Mb

tree nodes (GB) tree nodes (GB)

2 5.107 1.0 3.107 1.5

4 9.107 1.8 6.107 3.0

6 11.107 2.2 8.107 4.0

8 14.107 2.8 9.107 4.5

10 14.107 2.8 10.107 5.0

12 16.107 3.2 11.107 5.5

14 16.107 3.2 11.107 5.5

16 16.107 3.2 12.107 6.0

aExtra Memory Estimation = collisions ∗ 20
bExtra Memory Estimation = collisions ∗ 50

Figure 3.7: Collision analysis for FMS 7 and PH 12.

A parallel algorithm often trades additional memory space for better execution time.

Nevertheless, it is very important to maintain this additional memory usage at an ac-

ceptable level. In our case, this means limiting the number of collisions. A straightfor-

ward way to deal with this problem is to force the early start of the collision resolution
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3. PARALLEL STATE SPACE CONSTRUCTION

phase as soon as one of the processors reaches a given threshold of collisions states.

We can compare this strategy with familiar memory management techniques, such as

garbage collection. The choice of the good value for the threshold is a trade-o� between

execution time and memory usage.

FMS 7 PH 12

# Th. (6.107 states) (3.107 states)

T.(s)a Gain Mb Exp.� Col. T.(s) Gain Mc Exp. � Col.

1.106 762 .43 .3 .37 � .63 284 .76 .8 .58 � .42

2.106 488 .68 .6 .56 � .44 237 .91 1.6 .71 � .29

3.106 384 .86 .9 .64 � .36 242 .89 2.4 .72 � .28

4.106 369 .90 1.2 .64 � .36 226 .95 3.2 .77 � .23

5.106 346 .96 1.6 .68 � .32 226 .95 4.0 .79 � .21

6.106 370 .90 1.9 .68 � .32 222 .97 4.8 .80 � .20

7.106 331 1.00 2.2 .77 � .23 228 .94 5.6 .81 � .19

8.106 332 1.00 2.6 .75 � .25 229 .94 6.4 .82 � .18

9.106 328 1.01 2.8 .73 � .27 219 .98 7.2 .87 � .13

10.106 337 .99 3.2 .76 � .24 219 .98 8 .85 � .15

∞ 334 1 3.2 .76 � .24 216 1 6 .87 � .13

aExecution Time in seconds
bmaximal extra memory required N × Th × 20 bytes
cmaximal extra memory required N × Th × 50 bytes

Figure 3.8: Threshold analysis using 16 processors for PH 12 and FMS 7.

We study the impact of the threshold value on the overall performance in Figure 3.8.

With this strategy, the maximal extra memory required by our algorithm is given by the

formulaN×Th×SS , whereN is the number of processors used; Th is the threshold; and

SS is the size of the state representation (20 bytes for FMS 7 and 50 bytes for PH 12).

Column Gain and M depict the relative variation of performance and extra memory

required for di�erent values of the threshold for the FMS 7 and PH 12 models using 16

processors. For both models, the experiments show that threshold values above 4.106

lead to almost no penalty (Gain ≈ 1): we observe a drop of performance below 10%

(Gain = 0.90). In addition, the extra memory required by the collisions for threshold

value of 4.106 is capped at 1.2 GB instead of the 3.2 GB used in our previous experiment
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with the FMS model (see Figure 3.7).

The last column in the table of Figure 3.8, labeled �Exp. �� Col.�, splits the total ex-

ecution time into the time spent in the exploration and collision resolution phases. The

results show an inverse correlation between the ratio of times spent in these two phases

and the overall performance: we observe that the speedup decreases when this ratio

increases. The intuition behind these numbers is quite simple; with smaller thresholds,

there are not enough �newly discovered states� during the exploration phase to com-

pensate for the time spent during the collision phase. As a matter of fact, we observe

good time ratio between exploration and collision phases in the experiments without

memory recycling (threshold value of ∞). For instance, for both models, a threshold of

107 gives almost the same pro�le than using no memory recycling.

Comparison: AVL vs Hash Tables

We conclude this section of experiments with a comparison between two implementa-

tions of our algorithm. We called our approach as �general� because it enables the use of

di�erent data structures for local storage. Now, we present a comparison between two

di�erent implementations of our algorithm, AVL and Table (see Figure 3.9). AVL stands

for the straightforward implementation described in Section 3.2, using AVL Trees as

local sets. Table is the same algorithm where AVL trees have been replaced by local

hash-tables. Both implementations have their advantages and disadvantages. The AVL

implementation proved slower than the other solution. This result is not enough to

dismiss the use of AVL. Indeed, while the high algorithmic cost associated to this data

structure is a handicap, the choice of AVL has also some bene�ts. For instance, the use

of a sorted data structure in AVL simpli�es the collision resolution phase, where the

state in each local collision tree should be compared against all the other collision trees;

this may make the AVL solution faster when there are many collisions (hence it could

be superior when the number of processors increase). By contrast, Table performs the

exploration phase faster than AVL but requires the pre-allocation of the table. Even

though it can be attenuated with resizing strategies, nothing can be done regarding the

extra size required for an e�cient use; it is known that hash tables performs well when

the load factor is around 0.51. Hence, It will impose a signi�cant extra memory use

depending on the state size.

1Ratio between the number of states in the hash table and its size (number of entries)
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Execution Time (s) with 16 processors

Model AVL Table

Kanban 9
2547 1319

38.107 states

FMS 8
2003 953

24.107 states

PH 13
1306 836

14.107 states

Legend for the algorithm name abbreviations

AVL Local AVL Trees as dictionaries

Table Local Hash Tables as dictionaries

Figure 3.9: Comparison of Di�erent Implementations.

3.2.4 Discussion about the experiments

The experiments conducted with the preliminary implementation of our algorithm show

promising speedups on a set of typical benchmarks. While the performance of the

algorithm depends on the �geometry� of its input � for instance its concurrency degree �

we have consistently obtained good results. For example, we routinely observe e�ciency

values1 over 70% while keeping the extra memory needed with our algorithm at a

constant level.

Our strategy to force the early start of the collision resolution phase proved to be

memory e�cient, it allowed us to limit the memory used to store the collisions. However,

for the model checking domain, this extra memory used by the collision trees may be

the di�erence between a complete or an incomplete run of the algorithm. Consequently,

we decided to propose an extension where collisions are solved on-the-�y in order to get

rid of both the collision trees and the collision resolution phase.

This new algorithm demands �exible data structures, capable of enhancing both

the performance and the memory footprint of our algorithm. Next section presents our

improved version, where we replaced the shared Bloom Filter by a specialized proba-

bilistic data structure that not only dynamically assigns states but also keeps track of

the distribution. Hence, whenever a processor �nds an old state, it is possible to recover

its owner and to resolve on-the-�y if it is a false positive or not.

1E�ciency is computed as the ratio between speedup, tN , and the number N of processors.
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3.3 Mixed approach: Localization Table based algorithm

This section presents an improved version of our previous algorithm where collisions

are solved on-the-�y. Based on our general (speculative) approach, we devised a new

algorithm where data distribution and coordination between processes is made through

a special structure called localization table (LT ), that is a lock-less, thread-safe data

structure that approximates the set of states being processed. The localization table

is used to dynamically assign newly discovered states and behaves as an associative

array that returns the identity of the processor that owns a given state. With this

approach, we are able to consolidate a network of local hash tables into an (abstract)

distributed one without sacri�cing memory a�nity � data that are "logically connected"

and physically close to each others � and without incurring performance costs associated

to the use of locks to ensure data integrity.

The LT is used to test whether a state has already been found and, if so, to keep

track of the location � the processor id � where the state is held (see Figure 3.10).

The work performed by each processor is pretty simple: generate a state using the

model of the system, say s, and check in the LT where it could have potentially been

assigned. If s is a newly discovered state, it will be assigned to the processor who

generated it. Otherwise, the LT will return the location where the state s is assigned,

say LT(s). This approach has the advantage of isolating the local hash tables; each

processor has exclusive write access to its local table, whereas concurrent read accesses

are unrestricted. Another advantage is that we can easily resize local hash tables, as

needed, without blocking the entire exploration. For this new algorithm, we choose to

use only hash tables because they perform the state space exploration faster than AVL

trees. (See the comparison between AVL trees and Hash tables at Section 3.2.3.)

Localization Table

Hash
    Table

Pn
Hash 
    Table

P1

New or Old ?

New [ni l ]  or
Old [Process ID]

Figure 3.10: Algorithm overview.
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One of the advantages of our design is to be thread-safe: operations on a LT are

simple and can be implemented using primitive atomic actions. (We de�ne primitive

atomic actions as CPU instructions that are guaranteed to be completed without being

interrupted by the actions of another thread. This kind of instruction is supported by

the majority of x86 processors today.) Another advantage is the small memory footprint

of the LT . Furthermore, di�erently from our general approach, this new algorithm does

not duplicate work , i.e., states. To summarize, our goal is to combine the advantages

of distributed and shared hash tables for parallel state space construction in a single

algorithm. We describe more precisely how the LT is implemented in Section 3.3.1.

Section 3.3.2 gives some pseudo-code and further explanations about the algorithm we

developed to use our novel LT . In Section 3.3.3, we examine experiments performed on

a set of typical benchmarks.

3.3.1 Localization Table

Storing the relation (s,LT(s)) � associating each state, s, with the processor identi�er

that owns it � in a single table would require a very large amount of memory. Actually,

it would defeat the need to store the states themselves. Instead, the idea is to use a

notion of a key associated to a state and to store the association between keys and

processors. In our implementation, keys are computed using hash-functions and we will

use a scheme based on multiple keys.

A localization table is essentially a �table� that associates a processor id � a value in

1..N � to every key in the table. A straightforward implementation is to use an integer

vector for the underlying table.

We can implement the table using a vector V of size n and, for computing the key

of a state, an independent hash function, h, with image in 1..n. In this case, we can

check if a state s has already been found by looking into the table of processor V [h(s)].

While this implementation is simple, its disadvantage is that it is not possible to ensure

a �ne dynamic distribution of the states if h is not uniform. Indeed, if processor id1

�nds a new state, s, such that V [h(s)] = id2, then we need to transfer s between the

two processors. A solution is to increase the size of the vector � but this has a direct

impact on the memory consumption � or to use better hashing functions � but this has

an impact on the performances.
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3.3 Mixed approach: Localization Table based algorithm

We propose another implementation of the localization table that improves upon

the choice of a vector. Inspired from our previous experience with a Bloom Filter (BF ),

the idea is to use a �nite family of hashing functions h1, . . . , hk. To test if a state s is

in the LT , we search if the key h1(s) is in LT . If it is not, we know that the state is

fresh. If LT(h1(s)) = id1 then we check if s is in the local table of processor id1. If it

is not the case, we continue searching with the key h2(s) and so forth.

This is only a rough description of how the LT works. Next, we de�ne more formally

the operation of our data structure. In particular, we explain how to deal with states

that are not in the processors LT(h1(s)), . . . ,LT(hk(s)), that we call collision states.

By convention, our algorithm will route a collision state to the last processor found,

that is LT(hk(s)).

A Localization Table, L, is de�ned by two parameters: its size n; and a family of k

independent hashing functions h1, . . . , hk with image in 1..m , where we choose m such

that n� m (see the discussion about the ratio n/m in Section 3.3.3).

A localization table L of size n is an array of size n containing pairs of the form

(p, d), where p is a processor id (p ∈ 1..N) and d is a key (d ∈ 1..m). To look for values

inside of L, we use a �xed surjective function map, from 1..m to 1..n. Hence, to check

the value associated to the key hi(s), we look in the array L at index map(hi(s)).

Initially, an empty LT is an array initialized with the value (0, 0). Assume that the

processor id attempts to insert a state s into L. The function takes as input a state

and a processor id and returns a pair made of: a status, to determine if the element

is new (or old); and the identi�er of the processor who owns the state. The insertion

operation is performed by looking successively at the elements with index map(hi(s))

in L for all i ∈ 1..k. There are four possible cases at each step:

� if L[map(hi(s))] = (0, 0) then we know for sure that the state is fresh (it has never

been added before). We can stop our iteration and write the pair (id , hi(s)) in L.

This can be done using an atomic compare and swap operation;

� if L[map(hi(s))] = (id ′, d) and d 6= hi(s) then we cannot decide if the state s has

been found and we continue to the next iteration, with the key function hi+1;

� if L[map(hi(s))] = (id ′, hi(s)) then we answer that s is in the local table of

processor id ′ with high con�dence. With this approach, states with the same
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1 function t e s t_or_inse r t ( s : s ta te , id : 1 . .N) : ( s tatus , my_id)

2 ( id , d ) ← ( 0 , 0 ) ;

3 for i in 1 . . k do

4 ( id , d ) ← LT[map(hi ( s ) ) ] ;

5 i f ( id , d ) = (0 , 0 ) // the slot is empty means that s is fresh

6 then LT[map(hi ( s ) ) ]← (my_id ,hi ( s ) ) ;

7 return (new ,my_id ) ;

8 e l s i f d = hi ( s ) // the state s may already be in processor p

9 then return ( old , id ) ;

10 endif

11 endfor

12 //state s is a collision � assign it to processor d;

13 return ( old , id ) ;

Listing 3.3: Insertion in the Localization Table

hash value are not handled at the LT level. In our algorithm, these collisions will

be spotted when the processor tries to recover the state from the local table of id ′.

In order to keep the consistency of the LT and to prevent states from being stored

more than once, we choose to assign s to the processor id ′ and this is handled like

a collision state;

� if we cannot decide after checking the values of L[map(hi(s))] for i ∈ 1..k, we also

say that s is a collision state and we choose to assign s to the processor id ′ such

that L[map(hk(s))] = (id ′, d).

These fours steps are de�ned in Listing 3.3 by the function test_or_insert(s, my_

id) using pseudo-code.

The operation for checking whether a state s is already in the LT is very similar

to the insertion function. We test successively if there is an index i ∈ 1..k such that

L[map(hi(s))] = (id i, hi(s)), stopping if one of the positions in L is empty. If this is the

case, we know that s is not in the LT . If we �nd no match after k attempts, then we

consider that s is a collision state that belongs to idk.

In Figure 3.11 we illustrate the insertion and test operation for three data items: x,

y, and z; performed in this order by the processors P1, P2 and P3. The �gure displays

a LT of size n = 4 with two independent hash functions h1 and h2. We assume that

k = 2 and m = 31. The insertion of x requires only one operation since the slot at

position map(h1(x)) is initially empty. As a result the slot is associated to processor P1

for elements with key 17. Element y is inserted at the second attempt, since the slot in
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position map(h1(y)) is already �lled and that h1(y) 6= d1. Finally, element z cannot be

properly inserted � it is a collision � and it is assigned to processor P2.

h1(x)         = 17
map(h1(x))= 1 

P1

h1(y)         = 21
map(h1(y))= 1 

P2 h2(y)         =  20
map(h2(y))=   4 

P2

d  = 17
p  =   1

d  = 20
p  =   2

  1   2   3  4

h1(z)         =  25
map(h1(z))=   1 

P3 h2(z)         =  28
map(h2(z))=   4

P3
<< Co l l i s ion  >>

d  =   0
p  =   0

d  =   0
p  =   0

Figure 3.11: Insertion in a Localization Table.

3.3.2 Algorithm

In this section, we give a high-level view of our algorithm described by the pseudo-

code of Listing 3.4. Figure 3.12 describes the shared and local data structures used

in the algorithm. Each processor manages a �private work� stack of unexplored states

and a local hash table to store the states assigned to him. The shared values are: the

Localization Table; one bitvector of size N to store the state of the processors (idle or

busy), used to detect termination; N stacks � one for each processor � for the work

sharing technique described in Section 3.1.1; and �nally N collision stacks used to route

collisions states to their correct processors.

Local
Shared

Private Work Stack

Pr. 1

Local Hash Table

Local

Private Work Stack

Pr. 2

Local Hahs Table

LOCALIZATION TABLE

Shared Vector

P1 Shared Work Stack

P1 Collision Stack

P2 Shared Work Stack

P2 Collision Stack

Pr.1 IDLE   Pr.2 BUSY

Figure 3.12: Shared and private data overview.
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The state space exploration proceeds until no new states can be added to the LT

and all stacks are empty. Given a state s, a processor, say my_id, will check the LT

to test whether s is new and, otherwise, who is the owner of s. This information is

returned by a call to the function test_or_insert(s, my_ id). During the exploration,

states that are labeled as new by the LT are stored in the local table of the processor.

On the opposite, if the LT returns an owner id, then the process performs a look-up

operation over the local table of processor id to check if the state is really there. If

the state is not found, we can tag it as a collision state and add it to the collision

stack of processor id. Collision states are speci�cally tagged since they bypass the LT

membership test and are directly inserted in a local table. When the private work stack

is empty, work is transferred from shared work and collision stacks; if they are also

empty, the processor may �steal� work from others (as described in Section 3.1.1). The

LT is implemented using an atomic �compare and swap� primitive, while locks are only

used to protect the access to the other shared data structures � the shared work and

collision stacks � which are not resource contention points.

Finally, termination can be easily detected by testing the vector recording the states

of processors; the algorithm may safely �nish if there is no more state to explore, that

is if the stacks of all the processors are empty and if all the processors are idle.

3.3.3 Experiments

We also implemented our algorithm as part of our prototype model checker calledMer-

cury (Appendix B). The implementation followed our previous general approach with

the distinction that we replaced the Bloom �lter by our LT . We developed a library

for the Localization Table with support for concurrent insertions. The Experimental re-

sults presented here are obtained using the same machine, a Sun Fire x4600 M2 Server,

con�gured with 8 dual core opteron processors and 208GB of RAM memory, running

the Solaris 10 operating system.

For this benchmark, we used models taken from two sources. We have three clas-

sical examples: Dining Philosophers (PH); Flexible Manufacturing System (FMS); and

Kanban � taken from (MC99) � together with 5 Puzzles models: Peg-Solitaire (Peg);

Sokoban; Hanoi; Sam Lloyd's puzzle (Fifteen); and 2D Toads and Frogs puzzle (Frog)

� taken from the BEEM database (Pel07). All these examples are based on �nite state

systems modelled using Petri Nets (Mur89). This means that, in these cases, a state is a
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1 while ( one proce s s s t i l l busy )

2 while ( Proc [my_id ] . pr ivate_stack not empty )

3 do s ← remove s t a t e from Proc [my_id ] . pr ivate_stack ;

4 i f s not tagged as c o l l i s i o n

5 then ( s tatus , id ) ← LT. te s t_or_inse r t ( s ,my_id ) ; //Concurrent access to LT

6 else ( s tatus , id ) ← (new , my_id ) ; //Collision state

7 endif

8 i f s t a tu s = old

9 then i f s not in Proc [ id ] . l o ca l_tab l e

10 then tag s as c o l l i s i o n ;

11 add s to Proc [ id ] . c o l l i s i o n_ s t a c k ;

12 endif

13 else

14 add s to Proc [my_id ] . l o ca l_tab l e ;

15 l e t {s1 , . . , sj , . . . , sn} ← s u c c e s s o r s ( s ) where

16 j ← shared_work_load x n

17 i f s i z e ( pr ivate_stack ) > private_work_load then

18 // Share a percentage of new work

19 // Protected action by locks

20 i n s e r t {s1 , . . . , sj} in my shared_stack ;

21 i n s e r t {sj+1 , . . . , sn} in my pr ivate_stack ;

22 i f some proc e s s o r i s s l e e p i n g then

23 wake him up endif ;

24 end i f

25 else

26 i n s e r t {s1 , . . . , sn} in my pr ivate_stack ;

27 end i f

28 end l e t

29 endif

30 endwhile

31 //private stack is empty

32 i f my co l l i s i o n_ s t a c k i s not empty then

33 transfer work from my co l l i s i o n_ s t a c k to pr ivate_stack

34 endif

35 i f my shared_work_stack i s not empty then

36 transfer work from my shared_work_stack to pr ivate_stack

37 endif

38 i f my pr ivate_stack i s empty then

39 look for a non empty shared_stack to transfer work ;

40 i f a l l shared_stacks empty and at l e a s t one p ro c e s s o r busy then

41 ente r in to s l e e p mode ;

42 endif

43 endif

44 . . .

45 endwhile

Listing 3.4: Algorithm pseudo-code
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marking, that is a tuple of integers. Our algorithm may be adapted to other formalisms,

for instance including data, time, etc.

With our computer setup, we are able to tackle examples with approximately 10

billions of states, but we selected models with less than 500 millions of states in order

to complete our experiments in reasonable time. (A complete run of our benchmark

takes more than a week to �nish.)

We study the performance of our implementation on di�erent aspects. While speedup

is the obvious criteria, we also study the memory footprint of our approach and the

physical distribution of states among processors.

Speedup and Physical Distribution

In Fig. 3.13 we give the observed speedup of our algorithm on a set of examples. We

give the absolute speedup (see Sec. 2.3.1), measured as the ratio between the execution

time using N processors (tN ) and the time of an optimized, sequential version (ts).

Our implementation delivers some promising speedups. The results also show di�erent

behaviors according to the model. For instance, our e�ciency may vary between 90%

(Hanoi model) and 51% (Kanban model), whereas the system occupancy rate1 is con-

sistently over 95%. Clearly, the algorithm depends on the �degree of concurrency� of

the model � it is not necessary to use lots of processors for a model with few concurrent

actions � but this is an inherent limitation with parallel state space construction (EL08),

which is an irregular problem.

Concerning the use of memory, we can measure the quality of the distribution of the

state space using the mean standard deviation (σ) of the number of states among the

processors. In our experiments, we observe that the value of σ is quite small and that it

stays stable when we change the number of processors (see Fig. 3.19). For instance, we

have σ ≈ 1.5% for the Hanoi model and σ ≈ 7% for Kanban. The di�erence between

values of σ can be explained by the di�erence in the �degree of concurrency�. It may also

be a�ected by the processor's performance, that is, a processor that handles �simpler

states�� states whose transition �ring involves a small number of operations �may

dynamically assign more states than others. Finally, our experiments are also a�ected

by the Non-Uniform Memory Access (NUMA) architecture of our machine, where the

1The occupancy rate measures the utilization of the machine CPUs
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Figure 3.13: Speedup analysis.

latency and bandwidth characteristics of memory actions depend on the processor or

memory region being accessed.

Localization Table Con�guration and Memory Footprint

The LT data structure is con�gured using two parameters: its dimension (n) and the

number of hash-functions keys (k). The values of these parameters have an impact on

the performance. If the dimension is too small, the LT will get quickly saturated and the

number of collision states exchanged between processors will increase. It is important

to keep the number of collisions as low as possible because they increase the size of

the collisions stacks. Moreover, it also a�ects the execution time due to the overhead

necessary to deal with these stacks, without mention that a new state erroneously sent

as a collision will have its discovery delayed.

Ideally, a LT of size n is su�cient for a space of n states. However, hash functions

are not perfect (uniform), which a�ects our structure just like with standard hash table.

In our experiments, we observe that LT behaves well for load factors (ratio between the

number of states in the LT and its dimension) lower than 0.7.

In Fig. 3.14, we display the ratio (in percentage) between the number of collisions
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Figure 3.14: Collisions vs load factor.

exchanged and the size of the state space, on the Kanban model (≈ 4.108), for three

di�erent values of the load factor and for di�erent values of k. This Fig. also depicts

the absolute number of collisions for each experiment. As expected, smaller load factors

give results with smaller number of collisions. For instance, we have approximately

58.105 collisions exchanged (ratio of 1.5%) when LT is set with n = 230 ≈ 109 (load

factor of 0.36) and k 5 8.

Figure 3.15: Performance vs load factor.

Likewise, in Fig. 3.15 we show the impact of di�erent load factors (choice of the

size of the LT ) on the execution time of the algorithm for a �xed model. Once again,

we observed that our LT gives better results when the load factor is in average smaller

than 0.7. Consequently, smaller load factors have a better overall performance because

the number of collisions exchanged by the processors is reduced.

For the speedup results given in this Section, we have adjusted the dimension of
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the LT to obtain load factors smaller than 0.5 for every models and we have chosen to

limit ourselves to at most four hash-functions keys (k ≤ 4). We decided to �x these

settings beforehand in order to not arti�cially improve our results and also to show the

memory e�ciency of our solution. To illustrate this point, we may observe that in the

experiments of Fig. 3.15, the size of the LT is of 1GB (that is approximately one billion

data items) for a load factor of 0.36, which is the only signi�cant memory overhead used

by our solution.

3.4 Comparison With Other Algorithms and Tools

Before concluding this chapter, we present a comparison with other solutions proposed

in the literature. We developed our own implementation of some classical parallel

algorithms based on the use of hash tables. We have implemented these algorithms

as part of Mercury (see Appendix B) . In Fig. 3.16, we brie�y describe the di�erent

implementations used for this comparison.

Name Description Reference

G-AVL General variant instrumented GENERAL

with local AVL trees as dictionaries

G-Table General variant instrumented GENERAL

with local Hash Tables as dictionaries

LT Distributed Table instrumented MIXED

with our Localization Table

Vector Vector of integers like structure: Localization MIXED

Table with only one key

Static States are distributed using (SD97)

a static slicing function

Lock-less Lock-less shared hash table as (IB02)

the shared space

TBB Unordered hash map as the shared space, (Rei07)

from Intel-Threading Building Blocks library

Figure 3.16: Algorithms selected.

Comparison With Other Algorithms

We present in Figure 3.17 a comparison of our algorithms general (G-AVL and G-

TABLE) and mixed (LT and VECTOR) for the same set of experiments we presented in
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Figure 3.9 . The results obtained with our algorithm instrumented with LT are at least 4

times better. These results show that our strategy to eliminate the collision resolution

phase is not only bene�t for the memory footprint but also for the performance as

a whole. Indeed, solving collisions on-the-�y is more e�cient because the collision

resolution phase is resource intensive, both in terms of memory and performance.

Execution Time (s) with 16 processors

Model G-AVL G-Table LT Vector

Kanban 9
2547 1319 363 444

38.107 states

FMS 8
2003 953 209 227

24.107 states

PH 13
1306 836 179 189

14.107 states

Figure 3.17: Comparison of Di�erent Implementations.

Figure 3.18 shows the average (absolute) speedups1 for the di�erent implementations

presented in Figure 3.16. The Lock-less implementation has the best performance but

it is an unsafe solution, since states may be skipped (BR08). All the other implementa-

tions are safe. We include the results for Lock-less since it provides a good reference

for performance. Our algorithm (LT) performs better than all the other implementa-

tions for all models. As we mentioned earlier, the di�erence in performance between

Vector and LT is mainly due to the non-uniformity of hash functions. This di�erence

is signi�cant especially for Sokoban and Kanban models (see the load factor analysis

for the Kanban model at Fig 3.15). Concerning Static, an explanation for the better

performances is that we exchange less states between processors: in some experiments

with Static, we can observe that up to 96% of the states have not been found by

their owner. The gain in performance compared to TBB (based on a lock-less, non-lossy

hash table found in the Intel-TBB (Rei07)) may be explained by the adequacy of our

data structure to our targeted application (state space generation). Indeed, in this

application, we have many more reads than writes (state spaces have more transitions

than states). The LT has several bene�ts in this case: (1) it delivers a low complexity

mechanism to grant exclusive write access for the local hash-table; (2) the structure is

1The average speedup is the mean of all speedups achieved by a given implementation for all models.
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cache-friendly since data are stored in-place (avoiding pointers); and (3) the use of local

hash tables improves memory a�nity, which is important for NUMA machines.
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Figure 3.18: Average Speedup.

Concerning the memory distribution, we display the average mean-standard devia-

tion for all implementations in Fig. 3.19. The results show that the best distribution,

by far, is from the Static version. We can observe that all other implementations have

similar distributions. (The anomalous values for N = 16 can be explained by the fact

that, in this case, we use all the processors of our computer.) In the context of this

work, we use no heuristics to ensure an uniform partition of states, so the quality of

the distribution depends on the model �degree of concurrency� and the performance of

processors. The rest of this benchmark is given at Appendix A.

Comparison With Other Tools

We have also compared our implementation with �state of the art� veri�cation tools

that provide a parallel implementation. We looked both at the Spin and DiVinE tools.

We give some performance results but it is di�cult to make a fair comparison. For one

thing, it has proved di�cult to port available implementations on the con�guration used

for our experiment. For instance, our benchmark with DiVinE and Spin are based on
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Figure 3.19: Mean-Standard Deviation.

Linux instead of Solaris, which means that we take advantage of more e�cient libraries.

On the other hand, a major discrepancy lies in the fact that we compare an algorithm

with a tool. For instance, we do not make use of any �general optimizations� techniques,

such as local caches, data-alignment optimizations, etc. Also, while Spin works with

compiled models, we currently use interpreted models. DiVinE accepts both models

but we use their interpreted variant for this comparison.

After these words of caution on the signi�cance of the comparison, we give some

results obtained on the Sokoban model. Using the parallel version of Spin on our

benchmarks, we observe a maximum speedup of 3.6 using 8 cores (73s). Nonetheless,

the sequential performance of Spin (264s) is about 3 times better than our prototype

implementation of LT. In our experiments, LT is marginally faster than Parallel Spin

when both are running on 12 cores and is faster using the 16 available cores. The

computation for Spin is of 81.2s for 12 cores and 82.3 for 16 cores, while we generate

the state space in 80s with 12 cores and 64s with 16 cores using LT.

Concerning DiVinE � whose sequential performance is about 40% better than our

prototype implementation � LT matches the performance of DiVinE when both are

using 10 cores and outperforms it of about 20% using 16 cores. More precisely, the

76



3.5 Conclusions

running time for DiVinE is of 96.5s with 10 cores � while LT time is of 96s � and 84.9s

with 16 cores. It is possible to connect this result with the comparison given in Fig. 3.18.

Indeed, DiVinE is based on a static slicing function to distribute the states � as in the

Static implementation of Fig. 3.16 � and the di�erence of performance between LT

and Static is of about 30% on 10 cores and of almost 70% for 16 cores.

These preliminary results against two of the most popular parallel model-checker

are very encouraging since we have only a prototype implementation of LT.

3.5 Conclusions

In this chapter we presented two novel algorithms for parallel state space construction

target at shared memory multiprocessor machines. We built our work over an inno-

vative memory design; we used distributed sets structures to store the states locally

and a small shared memory space to manage the dynamic distributions of states. Our

approach takes into account spatial balance by dynamically assigning states to proces-

sors and managing states locally. Based on this unique design, we proposed two vari-

ants: a general (speculative) algorithm�where collisions are solved using inter-process

synchronization�and a mixed algorithm, where collisions are solved on-the-�y. Our

experimental results show that the mixed version is the best choice in practice.

In the context of our experiments, we worked more speci�cally with system described

by Petri Nets. Nonetheless, our algorithms are quite general and could be applied to

di�erent formalisms for describing �nite transition systems (or �nite abstractions of

in�nite-state models): we only require a simple way to represent states and a func-

tion to generate successors. While we provide an implementation that works with an

explicit representation of states, our work can be applied alongside with traditional op-

timizations for reducing the state space size, such as partial-order and state compression

techniques. We consider a black-box approach which is orthogonal to the representation

details of the state space.

A �rst implementation of our mixed algorithm (LT based) shows promising results

as we observed speedups consistently better than with other parallel algorithms. For

instance, our experimental results show that e�ciency varies between 90% and 50%,

depending on the �degree of concurrency� of the model. In addition, our memory foot-

print is almost negligible when compared to the total memory used for storing the state
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space. For example, in the worst case (the Kanban model, with 25GB) we consume

less than 4% of the memory for the LT and the di�erent stacks used by our algorithm.

That is approximately 1GB of memory.

The same benchmark also shows that our implementation fares well when compared

with related tools. Indeed, our experiments show that our solution performed very

well against an industrial strength lock-less hash table, the concurrent hash map im-

plementation provided in the Intel-TBB. This may be explained by the fact that we

provide a concurrent data structure for encoding sets that is optimized for the case

where deletions are very rare and the same item may be inserted several times, whereas

the Intel-TBB provides a general implementation. This is very encouraging since we ob-

tained these results with minimal optimizations (i.e. without resorting to global caches,

data-alignment optimizations, etc.), so there is still room for improvements. Altogether,

our solution ful�lled our goal of having both the best temporal and spatial balance as

possible.

For future works, we are experimenting a new version of our algorithm where LT

is used to de�ne a kind of lazy locking policy strategy. The idea behind is to grant

write access to all processors for any of the local hash table as long as they lock the

table completely. We extended the local hash tables with lightweight locks which are

controlled by a shared LT . So, every time a processor �nds a state, and if it is a new

state then it gets directly the lock for its own table and the right to insert it locally.

Otherwise, LT returns the possible owner (hash table) for ownership veri�cation. If

after checking, it �nds out that the state is indeed a new one, the processor who found

the given state tries to lock that table in order to insert the state. If the processor

fails to get the lock, it gives away and send it as an LT collision. Our preliminary

experiments show that we can obtain similar (or sometimes slightly better) results but

using a smaller LT . To give actual �gures, in this case we can use a LT of 1MB in

contrast with the 1GB used in some of our experiments. We still have many open

questions about this new version and therefore it is early to say it is a better/usable

solution.
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Chapter 4

Parallel Model Checking With Lazy

Cycle Detection � MCLCD

�Simplicity is a great virtue but it requires hard work to achieve it and education to

appreciate it. And to make matters worse: complexity sells better.�

Edsger W. Dijkstra

In this chapter we present two new algorithms to perform model checking in parallel.

This chapter is organized as follows. Section 4.1 introduces the main guidelines of

our algorithms. In Section 4.2 we de�ne the set of logical formulas supported in our

approach. After the de�nition of basic results on graph theory, we describe our parallel

algorithms using pseudo-code in Section 4.4. We study the fundamental properties�

complexity, termination, soundness, . . .�in Section 4.5. Before concluding, we give a

set of experimental results performed with our prototype implementations in Section

4.7.

4.1 Introduction

We describe and analyze a new parallel model checking approach that is compatible

with the parallel state space generation techniques described in Chapter 3. By compat-

ible, we mean that we base our approach on the same set of hypotheses; actually, we

should say the same absence of restrictions. First, we follow an enumerative, explicit-

state approach. We assume that we are in the least favorable case, where we have no

restrictions on the models that can be analyzed. For instance, we cannot rely on the
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existence of a symbolic representation for the transition relation, such as with symbolic

model checking. Next, we make no assumptions on the way states are distributed over

the di�erent local dictionaries (we assume the case of a non-uniform, shared-memory

architecture). Finally, we put no restrictions on the way work is shared among pro-

cessors, that is to say, the algorithm should play nicely with traditional work-sharing

techniques, such as work-stealing or stack-slicing (see the discussion in Sect. 2.5.2).

We decided to de�ne our own parallel algorithm for model checking instead of trying

to parallelize existing, state-of-the-art, sequential algorithms. We can give a simple,

theoretical justi�cation to support our choice. In the sequential case, many e�cient

model checking algorithms rely on the computation of Strongly Connected Components

(SCC) or, at least, rely on following a speci�c order when exploring the state space

graph�generally a Depth-First Search (DFS) or breadth-�rst search order. This is the

case, for example, in most of the automata-theoretic approaches for model checking

LTL1. These algorithms rely on e�cient methods to detect the presence of cycles in a

graph, such as Tarjan's algorithm (Tar71) or �nested-DFS� (CVWY92). While this class

of sequential algorithms are very e�cient�their complexity is linear on the size of the

state graph�they do not lend themselves to parallelization. Indeed, it is known since

the 1980's that �depth-�rst search is inherently sequential� (Rei85), more precisely, that

it is related to problems that are P-space complete. This gives strong evidence that

trying to parallelize this class of automata-theoretic, sequential, algorithms is not the

right way to go, at least if we expect a signi�cant speedup.

We can give a second justi�cation, that is more related to the implementation choices

made in our work. Indeed, algorithms that rely on exploring the state space graph in

a speci�c order go against our requirement that the state space exploration should be

friendly to traditional work-sharing techniques.

Based on these observations, we decided to follow an alternative approach that we

call semantic model checking . This is the approach initially proposed by Clarke and

Emerson (CE82, Cla99) for CTL model checking. In its simplest form, a semantic

algorithm works by labeling each state of the system with the �sub-formulas� of the

initial speci�cation that are true for this given state. Labels are computed iteratively

1We use the term automata-theoretic to denote algorithms in which model checking is reduced to

composing the system with an automaton that accepts traces violating the speci�cation; and then using

graph algorithms to search for a counterexample trace.
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until we reach a �x-point, that is until we cannot add new labels. Similar algorithms

are also used for evaluating modal µ-calculus formulas (EJS93) (if we leave out the

extra-complexity involved with modal �xpoint alternation).

To obtain an e�cient parallel model checking algorithm, we decided to limit our-

selves to a restricted subset of temporal logic formulas. We made the choice of a subset

of formulas, expressible both in CTL and LTL, that is equivalent to the requirement

speci�cation language supported by Uppaal (BDL04). This subset includes formulas

for expressing basic invariant and reachability properties, but also more complex prop-

erties, such as ψ  φ, meaning that every state where ψ holds eventually �leads to� a

state where φ holds.

Our approach is quite simple. The algorithm is based on two separate steps: (1)

a forward, constrained exploration of the state graph�where we start labeling each

state with local information�followed by (2) a backward traversal�where we propagate

information towards the root of the state graph�to check if the resulting graph has an

in�nite path. (We can avoid the case of dead states�states without successors�by

adding a trivial loop to each such state.) It should be observed that, since we work with

�nite state systems, any in�nite path includes at least one cycle. This remark explains

why, in the remainder of this chapter, we will often focus our attention on the problem

of identifying a cycle in a graph.

We propose two versions of our algorithm that di�er by the way we store the state

graph in memory. In the �rst version, we assume that, for every reachable state, we

have a constant time access to the list of all its "parents". Basically, it means that we

store the reverse graph (RG) structure of the state space1. In the second version, we

assume that we have access to only one of the parents, meaning that we may have to

recompute some transitions dynamically. We say that the second version is based on a

reverse parental graph (RPG).

The advantage of this second version is to save memory space. The gain in memory

space can be very important; something we have experienced in our experiments. In-

deed, if we use the symbol S to denote the number of states (vertices) in the graph, the

size of the data structure for our �rst algorithm is of the order of O(S2), in the worst

case, while it is of the order of O(S) for the second version.

1In the context of this work, we prefer to use the inverse of the transition relation because we

propagate labels from a state to its parents
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4.2 List of Supported Properties � the LRL Logic

Model checking is a problem with two variables: it depends both on (1) the formal

language used to express the models, and (2) the theoretical framework used to express

the speci�cation of the system. In this thesis, we follow a classical approach in which

properties are expressed using temporal logic formulas.

Several approaches for model checking exist in the literature, supporting a di�erent

set of temporal logics. Linear Temporal Logic (LTL) and Computation tree logic (CTL)

are the most popular options, mainly because there exist e�cient algorithms; algorithms

with a linear time complexity in the size of the state graph.

While sequential algorithms for model checking are a well-studied research subject,

we believe that it is still early to claim that the problem is settled in the parallel case.

Indeed, to the best of our knowledge, there is no good parallel algorithm that: covers a

�complete logic� (such as the whole of LTL or CTL); has a linear, worst-case complexity

which does not duplicate work; and provides a good speedup independent if the property

holds or not.

In the context of our work, we do not try to de�ne a parallel algorithm with all

these good properties and favor speedup. We decided to trade o� the expressiveness of

the speci�cation language for a better parallel complexity. Furthermore, in the case of

the second version of our algorithm, we are willing to abandon our requirement over the

linear, worst-case complexity of the algorithm. We show with our experimental results

that this may prove a good choice in practice.

We limit ourselves to a restricted subset of temporal logic formulas that corresponds

to the requirement speci�cation language supported by Uppaal (BDL04). This speci�-

cation language includes formulas for expressing basic reachability, safety and liveness

formulas and can be expressed as a subset of CTL formulas, with the distinction that

we follow a local, instead of global, model checking semantic; that is to say, we are

interested by properties that are valid for the initial state, and not from any other given

state.

We give the list of supported properties below, with a simple explanation for each

property. We use the symbols φ, ψ, . . . to denote predicates, that is statements that

may be true or false depending only on the state on which they are evaluated1.

1Since we de�ne a general model checking algorithm, we do not specify exactly what is the language

82



4.2 List of Supported Properties � the LRL Logic

� E3(φ): this property expresses the possibility for φ to hold. The property is

valid if there is a path, starting from the initial state, that reaches a state where

φ holds. This corresponds to the formula EF φ in CTL (note that we are only

interested by the validity of this formula for the initial state).

� E2(φ) : this property expresses that φ holds potentially always. The property is

valid if there is an in�nite path, starting from the initial state, where φ holds for

every state s in the path. This corresponds to the formula EGφ in CTL.

� A3(φ) : this property expresses that φ always eventually holds. The property

is valid if, for every path starting from the initial state, there is a state where φ

holds. This corresponds to the formula AF φ in CTL. The property A3(φ) is true

if E2(¬φ) is false.

� A2(φ) : this property expresses that φ is an invariant ; it always holds. The

property is valid if, for every reachable state, φ holds. This corresponds to the

formula AGφ in CTL. The property A2(φ) is true if E3(¬φ) is false.

� ψ  φ : the leadsto property expresses that from every state where ψ holds,

eventually φ will hold. This corresponds to the formula AG (ψ ⇒ AF φ) in

CTL. This is the only property that corresponds to a CTL formula with nested

modalities.

� E (ψ ∪ φ): the reachability property is valid if there is a path, starting from the

initial state, such that ψ holds until we reach a state where φ holds. This is an

extension of the possibility property since E3(φ) is equivalent to E (True ∪ φ).

This property is not part of Uppaal's speci�cation language and encompasses the

formulas E3(φ) and A2(φ).

� A (ψ∪φ): the liveness property is valid if for every path, starting from the initial

state, the predicate ψ holds until we reach a state where φ holds. This is an

extension of the eventuality property since A3(φ) is equivalent to A (True ∪ φ).

This property is not part of Uppaal's speci�cation language and encompasses the

formulas A3(φ) and E2(φ).

of predicates. This parameter may be changed depending on the underlying languages used to de�ne

the models.
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We call our speci�cation language LRL, for Leadsto-Reachability-Liveness. As we

said in the description of LRL, every property corresponds to an equivalent CTL for-

mula. LRL is strictly less expressive than CTL. In particular, the language does not

allow the nesting of formulas (modalities are always applied to predicates). Nonetheless,

we believe that our speci�cation language is expressive enough for many practical cases;

the choice of this language by the designers of Uppaal gives at least some support to

the claim that this subset provides a good balance between expressiveness and e�ciency.

Formal Semantics of LRL. Next, we de�ne the semantic of our speci�cation lan-

guage with respect to a given Kripke structure, KS, using an entailment relation. The

de�nition is very similar to the traditional presentation of the semantic of CTL for-

mulas. We use a Kripke structure KS = (S,R, s0) to represent the behavior of the

system. We use S to denote the set of states, s0 ∈ S to denote the initial state, and R

to denote the transition relation between states in E. We use the symbol τ to de�ne an

in�nite sequence of states (a trace) s0 · s1 · . . . such that siRsi+1 for all i. Finally, we

use the notation (S,R, s0) � F to denote that formula F holds for the Kripke structure

(S,R, s0) and s � φ to denote that the predicate φ holds for s. Considering the di�erent

equivalences between properties that we already gave, we simply need to de�ne the

semantics for the formulas E (ψ ∪ φ), A (ψ ∪ φ), and ψ  φ.

(S,R, s0) � E(ψ ∪ φ) i� for some path τ = s0 · s1 · . . .
∃i[i ≥ 0 ∧ si � φ ∧ ∀j[0 ≤ j < i⇒ sj � ψ]]

(S,R, s0) � A(ψ ∪ φ) i� for all path τ = s0 · s1 · . . .
∃i[i ≥ 0 ∧ si � φ ∧ ∀j[0 ≤ j < i⇒ sj � ψ]]

(S,R, s0) � ψ  φ i� for all path τ = s0 · s1 · . . .
∀i[(i ≥ 0 ∧ si � ψ)⇒ ∃j[i < j ∧ sj � φ]]

Before de�ning our model checking algorithm, we give some simple results from

graph theory that will be useful to prove the soundness of our approach.

4.3 Some Graph Theoretical Properties

Our model checking algorithm is based on an iterative exploration of the state space

graph. The goal is to prove that a given invariant is valid for every in�nite path in the

state space. Since we work with �nite state systems, any in�nite path includes at least
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one cycle. Hence, in the remainder of this chapter, we will often focus our attention on

the problem of identifying a cycle in a Kripke structure. To this end, we need to de�ne

some properties of Directed Acyclic Graphs (DAG).

To give an example; to check the property A3(φ) on a Kripke structure KS, it

is enough to generate the subset KSφ of KS obtained by �stopping� our exploration

whenever we �nd a state s where φ holds. Then, the property is true if KSφ is a DAG;

otherwise there would be a cycle of states in KS where φ never holds.

De�nition 4.3.1. A �nite Directed Graph G(V,E) is an ordered pair (V,E) comprising

a �nite set V of vertices and a �nite set E of edges, (vi, vj), such that vi and vj are in V

for all edges. A �nite Directed Acyclic Graph (DAG) is a �nite directed graph G(V,E)
with no cycles, that is there is no way to �nd a sequence of edges v0 · . . . · vn+1 such

that (vi, vi+1) ∈ E for all index i in 0..n and v0 = vn+1.

We prove that, in a �nite DAG, there is always at least one vertex that has no

children (what we call a leaf ) and one vertex without parents (what we call a root). In

the following, we say that a leaf has out-degree zero and that a root has in-degree zero.

Lemma 4.3.1. In a �nite DAG G(V,E) there exists at least one vertex in V with

in-degree zero and at least one vertex in V with out-degree zero.

Proof. The proof is by contradiction on the de�nition of a maximal path in G. We say

that τ = v1 · . . . · vn is a proper path in G if all the vertices in τ are di�erent. We say

that τ is a maximal path if it is a proper path and if there are no proper path of size

n+ 1. If the in-degree of v1 is not equal to zero, then there exists a vertex w ∈ V such

that (w, v1) ∈ E. If w is a vertex in τ then we have found a cycle, which contradicts

the fact that G is a DAG. Otherwise, w · τ is a proper path of G of size n + 1, which
contradicts the fact that τ is maximal. Following a similar reasoning, we can show that

the out-degree of vn is necessarily zero.

We give another property related to leaves in a DAG. Our algorithm mostly relies on

the following observation: a �nite graph is acyclic if, whenever we recursively remove

all the leaves, we eventually end up with an empty graph. By recursively removing

the leaves, we mean removing a leaf from the graph�together with all its incoming

edges�and starting over with the remaining graph. The procedure stops when no more

nodes can be removed.
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Actually, we use a slightly stronger property and rely on the fact that it is enough

to stop removing leaves when all the vertices have in-degree zero (the graph has only

root nodes). This property is expressed by Theorem 4.3.2.

Theorem 4.3.2. A �nite directed graph G(V,E) is a DAG if and only if, by recursively

removing the leaves, we �nally end up with a graph that only has root nodes.

Proof. The property is trivial if G is the empty graph.

Otherwise, assume G0 is a �nite DAG with n + 1 vertices. By lemma 4.3.1, we

know that there is at least one vertex l0 in G0 that is a leaf. If we remove this vertex

and its incoming edges from G0, the resulting graph G1 is a �nite DAG with n vertices

(removing a vertex cannot introduce a cycle). We can repeat this operation to obtain

a sequence (Gi)i≤n of �nite DAG with less and less vertices. Therefore, the graph Gn
has only one vertex and this vertex is a root. Actually, there is an index k ≤ n, that is
the smallest value such that all the vertex in Gk have in-degree zero.

To prove the other direction, we assume that we have a �nite sequence of graphs

Gi(Vi, Ei), with i ∈ 0..n, such that G0 = G, all the vertices in Gn are roots, and we

obtain the graph Gi+1 by removing one leave from Gi. Let li denotes the vertex removed

from Gi. The rest of the proof is by contradiction. Assume we have a cycle in G, that

is to say, there is a path τ = v0 · . . . · vm+1 such that (vi, vi+1) ∈ E for all index i in

0..m and v0 = vm+1. Let vj be the �rst vertex in τ to be erased from the graph; that

is, there is an index k ∈ 0..n such that vj = lk and all the other states in τ are in Gk+1.

On one hand, the vertex vj is well-de�ned. Indeed, if no vertex from τ is ever erased,

then the path τ is also a path in Gn, which contradicts the fact that all the vertices in

Gn have in-degree zero. On the other hand, since vj is a leaf in Gk, this contradicts the

fact that there is an edge from vj to one of the vertex in τ . In consequence, the graph

G as no cycles.

To conclude this section, we study properties of Parental Graphs, that is a spanning

subgraph such that all the nodes, except the root(s), have an in-degree of one.

De�nition 4.3.2. We say that a directed graph, PG(Vp, Ep), is a parental graph of

G(V,E) if: (1) PG is a subgraph of G that has the same vertex set (that is Vp = V

and Ep ⊆ E) and (2) for every vertex v ∈ V , if v is not the root in G then v has an

in-degree of one in PG.

To obtain a parental graph PG, from a directed graph G, it is enough to keep only

one edge coming in for every vertex in G and delete the others. Also, if G is acyclic,
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then all its parental graphs are acyclic. (Actually, in this case, the parental graph is a

spanning tree of the reverse graph.)

The following theorem states an important connection between a graph and its

parental graphs: if PG is a parental graph of (the �nite directed graph) G, then the

set of leaves of PG subsumes the leaves of G. Indeed, a leaf of G is necessarily a leaf of

PG, but the opposite may be false. Thus, we can also conclude that G has necessarily

some cycles if we fail to �nd an out-degree zero vertex in PG that is also in G.

In the following sections, we will use the leaves of a parental graph PG as a set of

candidates�an approximation�for �nding the leaves of G, saving us from testing all

the nodes in the graph.

Theorem 4.3.3. Let G be a �nite directed graph and PG be a parental graph of G. If

the graph G is acyclic then PG has at least one leaf that is also a leaf in G.

Proof. LetG be a �nite directed graph and PG be a parental graph ofG. By Lemma 4.3.1,

since G is acyclic, there is at least one leaf in G; Moreover, since PG is a subgraph of

G, a vertex of out-degree zero in G must also have out-degree zero in PG (a parental

graph has less edges). Therefore the leaf in G is also one of the leaf of PG.

A corollary of this property is that the relation between G and PG is �stable� when

we remove the same leaf from both graphs. This property ensures that it is sound to

use a parental graph when we recursively remove all the leaves from a graph.

Corollary. Assume v is a zero out-degree (leaf) node in G; when we remove the vertex

v from PG, we obtain a parental graph of the graph obtained after removing v from G.

In this chapter, we will essentially work with reverse graphs and reverse parental

graphs.

De�nition 4.3.3. The reverse graph of a directed graphG(V,E) is the graphG−1(V,E−1)
such that the edge (u, v) is in G if and only if the edge (v, u) is inG−1. A reverse parental

graph of G is a parental graph of G−1.

4.4 A Model Checking Algorithm with Lazy Cycle Detec-

tion

Our parallel algorithms for model checking, named MCLCD (for Model Checking With

Lazy Circle Detection), is based on two separate steps: (1) a forward exploration of the
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state graph (in collaboration with the state space construction), where we label each

state with some �local� information; followed by (2) a backward traversal�and label

propagation phase�to check if the resulting graph is a DAG.

In the second step, we do not explicitly look for cycles (like in a �nested-DFS�

approach for example). We rather follow a �lazy approach� in order to avoid all the

inherent complexities related to the parallel detection of cycles. The second step can

be easily implemented in parallel, each processing unit updating the labels of its own

states.

A �rst optimization is to constraint the state space exploration in order to generate

only the portion of the state graph that is important to prove or disprove the spec-

i�cation. This approach is quite similar to techniques for on-the-�y model checking

because, for some class of formulas, we can sometimes disprove the speci�cation before

generating the complete state space. For example, in the case of reachability formulas,

such as the invariant formula A2(φ), we will of course stop exploring as soon as we �nd

a state satisfying the predicate ¬φ.
The backward traversal is performed only for safety and liveness formulas; it is not

necessary for reachability formulas. We de�ne these di�erent classes of formulas in

Figure 4.1 and list, for each formula, whether they involve a backward step.

Formula Interpretation Forward Backward Classi�cation

E (ψ ∪ φ) E (ψ ∪ φ) x Reachability

A (ψ ∪ φ) A (ψ ∪ φ) x x Liveness

E3(φ) E (True ∪ φ) x Reachability

A3(φ) A (True ∪ φ) x x Liveness

E2(φ) ¬A3(¬φ) x x Safety

A2(φ) ¬E3(¬φ) x Safety

ψ  φ A2(¬ψ ∨A3φ) x x Liveness

A2A3(φ) true φ x x Liveness

Figure 4.1: List of Supported Formulas.

This algorithm is not very original. We already said that this is, basically, the

semantic approach initially proposed by Clarke and Emerson (CE82, Cla99) for CTL

model checking. The same remark applies to the computation of the ��xed point� in

parallel. Our main contribution, from the algorithmic viewpoint, is the de�nition of
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a version of this algorithm based on the reverse parental graph. To the best of our

knowledge, this approach is totally new. Indeed, most model checking algorithms for

CTL avoid to store the transition relation explicitly. But these approaches always rely

on some assumptions about the models, for instance that it is possible to compute the

�reverse� transition relation e�ciently. We do not make this assumption in our case (this

assumption is not valid, for example, with models that mix real-time constraints and

data variables). We still de�ne a version of our algorithm based on the reverse transition

graph because it is useful to prove the soundness of our method and for studying the

theoretical complexity.

From the interpretation of formulas listed in �gure 4.1, we see that it is enough to

provide a model checking procedure for only three formulas: (reachability) E (ψ ∪ φ),

(liveness) A (ψ ∪ φ), and (leadsto) ψ  φ. We describe our model checking procedure

for each of these three cases.

4.4.1 Notations

We assume that we perform model checking on a Kripke system KS(S,R, s0). We will

use, interchangeably, the notation KS for the Kripke structure (S,R, s0) and for the

directed graph (S,R), also called the state graph.

The expression |S| is used to denote the cardinality of S (and therefore the number

of reachable states), while |R| is the number of transitions. Inside asymptotic notations

(big O notations) we will simple use the symbols S and R when we really mean |S| and
|R|.

We assume that every state s ∈ S is labeled with a value, denoted suc(s), that

records the out-degree of s in KS. The value of suc(s) is set during the forward

exploration phase. Initially, suc(s) is the cardinality of the set of successors of s in KS,

that is suc(s) = |{s′ | s R s′}|. We decrement this label during the backward traversal

of the state graph; when the value of suc(s) reaches zero, we say that s is cleared from

the state graph. In our pseudo-code, we use the expression suc(s).dec() to decrement

the value of the label suc for the state s in KS, and the expression suc(s).set(i) to set

the label of s to some integer value i.

When we deal with the reverse parental graph version of our algorithm, we assume

that we implicitly work with one particular parental graph of KS, denoted PKS. In
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this case, we assume that every state s ∈ S is also labeled with a value, denoted sons(s),

that record the out-degree of s in PKS. We also label each state s ∈ S with a state,

denoted father(s), that is the predecessor of s in PKS. (The label father(s) makes

sense only if s is not s0, the initial state of KS.)

Initially, the value of sons(s) is equal to zero. The value of this label will be in-

cremented during the forward exploration of KS, when we build PKS (that is, we

select the transitions from KS that will be stored in PKS). This operation is denoted

sons(s).inc() in our pseudo-code. We will decrement the value of sons(s) during the

backward traversal phase.

4.4.2 Model Checking Reachability properties � E (ψ ∪ φ)

To check the formula E (ψ ∪ φ), we basically search for states satisfying the predicate

φ in the state graph. More precisely, we stop exploring a path whenever we �nd a

state such that (1) φ holds or (2) ¬ψ ∧ ¬φ holds. In the �rst case, we can stop the

exploration and return that the property is true. Otherwise, we stop the exploration on

this path because the property does not hold. The exploration continues over the set

of unexplored paths until (1) or (2) holds. The property is false if (1) never holds.

We give the pseudo-code for checking the formula E (ψ ∪ φ) in Listing 4.1. The

inputs are the atomic properties ψ and φ and the initial state (or vertex) s0. The

algorithm uses a stack, W, to store the �working states� (that corresponds to paths that

still need to be explored) and a set, S, to store the states that have already been visited.

The algorithm returns true as soon as the property φ is found, otherwise, it returns

false.

The function is the same for the two versions of our algorithm; based on the reverse

graph or the reverse parental graph data structure.

4.4.3 Model Checking Liveness Properties � A (ψ ∪ φ)

To check the formula A (ψ ∪φ), we basically search for states satisfying the predicate φ

in the state graph. Like for reachability properties, we stop exploring a path whenever

we �nd a state such that (1) φ holds or (2) ¬ψ ∧ ¬φ holds.

If we �nd an occurrence of case (2), we now at once that the property is false. In

the other case, we start a second phase, after the forward exploration is over, in order

to detect cycles. We call this second phase the clearing phase, because it consists in
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1 function BOOL check_e (ψ : pred , φ : pred , s0 : s t a t e )

2 Set S ← new Set (∅) ;

3 Stack W ← new Stack (s0 ) ;

4 while (W i s not empty ) do

5 s ← W. pop ( ) ;

6 i f ( s � φ) then

7 return TRUE

8 e l s i f ( s � ψ ) then

9 f o ra l l s ' s u c c e s s o r o f s in KS do

10 i f ( s ' /∈ S) then

11 // s' is a new state

12 S ← S ∪ {s ' } ;

13 W. push ( s ' )

14 endif

15 endfor

16 endif

17 endwhile ;

18 return FALSE

Listing 4.1: Algorithm for the formula E (ψ ∪ φ)

recursively removing the leaves node from the graph. This process ends either when

we �nally reach the initial state (which means the property is true), or when no states

with zero out-degree can be found (in which case we know that there is a cycle). The

validity of this process is a direct corollary of Theorem 4.3.2.

To give an example of how this algorithm works, we can consider the case of the

formula A3(φ) (that is A (True∪φ)). In the �rst step, we stop exploring a path whenever

we �nd a state where φ holds. The forward exploration ends when all possible paths

have been explored and none of them violates the constraints, i.e., φ eventually holds

for all paths. Then we start removing the nodes with out-degree zero from the graph.

The �rst �leaves� in the graph are necessarily states where the predicate φ holds. Next,

we also remove states that have had all their successors removed. We can give a simple

explanation of the validity of this method. Indeed, at each step we remove states

belonging to the set X de�ned by the following recursive equation: a state s is in X

if either (1) s � φ, or (2) all the successors of s are in X. Basically, we compute the

semantics of the modal µ-calculus formula µX.(φ ∨ [True]X), that is equivalent to the

LRL formula A3(φ).

We give the pseudo-code for checking the formula A (ψ ∪ φ) in Listing 4.2. Like in

the previous case, the inputs are the atomic properties ψ and φ and the initial state s0.
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1 function BOOL check_a (ψ : pred , φ : pred , s0 : s t a t e )

2 Stack A ← new Stack (∅) ;

3 // Start with the forward exploration

4 i f forward_check_a (ψ , φ , s0 , A) then

5 // If all forward constraints are respected, start the backward phase

6 return backward_check_a (s0 , A)

7 else

8 // We found a problem during the forward exploration

9 return FALSE

10 endif

Listing 4.2: Algorithm for the formula A (ψ ∪ φ)

The algorithm uses a stack, A, to collect the states where φ holds during the forward

exploration phase. The algorithm also uses two auxiliary functions, forward_check_a

and backward_check_a, that are de�ned later. The implementation of these two func-

tions depend on the version of the algorithm that we use. We start by studying the case

where we use the Reverse Graph data structure and then the Reverse Parental Graph.

Algorithm for the reverse graph version � RG

We give the pseudo-code for the function forward_check_a in Listing 4.3. The last

parameter of this function, A, is a stack that is used to collect the �leave nodes� of the

state graph; the states where φ holds. These states will be the starting points in our

backward traversal of the graph.

The function forward_check_a basically performs the same operations than the

function check_e of Section 4.4.2, with some minor di�erences. More precisely, the

function does not return when we �nd a state where φ holds. Instead, we continue our

exploration on other paths of the state graph. On the opposite, we stop the exploration

and return false whenever we �nd a state where both φ and ψ do not hold or a dead

state where ψ holds.

During the forward exploration phase, we label each state s with a value that is

the number of successors of s in the initial state graph (the Kripke structure). During

the backward traversal phase of the algorithm, we will decrement this value each time

we remove a successor of s. Intuitively, a state can be removed as soon as it is tagged

with zero. We never actually remove a state from the graph. Instead, when a processor
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1 function BOOL forward_check_a (ψ : pred , φ : pred , s0 : s ta te , A : Stack )

2 Set S ← new Set (∅) ;

3 Stack W ← new Stack (s0 ) ;

4 while (W i s not empty ) do

5 s ← W. pop ( ) ;

6 i f ( s � φ) then

7 // we clear state s from KS

8 suc ( s ) . s e t (0 ) ;

9 A. push ( s )

10 e l s i f ( s � ψ ) then

11 // we tag s with its number of successors

12 suc ( s ) . s e t ( number o f s u c c e s s o r s o f s in KS ) ;

13 // check if s is not a dead state

14 i f ( suc ( s ) = 0)

15 return FALSE

16 endif

17 // and continue the exploration

18 f o ra l l s ' s u c c e s s o r o f s in KS do

19 i f ( s ' /∈ S) then

20 // s' is a new state

21 S ← S ∪ {s ' } ;

22 W. push ( s ' )

23 endif

24 endfor ;

25 else return FALSE

26 endif

27 endwhile ;

28 return TRUE

Listing 4.3: Forward exploration for the formula A (ψ ∪ φ) with Reverse Graph
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changes the label of a state s to 01, we also decrement the labels of all the parents of s

in the graph. Hence the choice of storing the reverse of the transition function in the

data structure.

As an example, we show the result of a backward exploration for two Kripke struc-

tures, G and Gc in Figure 4.2 and 4.3. The graph Gc is obtained by adding an edge

to G (pictured in red) that results in the presence of a cycle. In each �gure, we show:

(1) the graph; (2) the resulting reverse graph with the initial labeling of each node; and

(3) the result of the clearing phase. In the last case, a red cross means that the state is

cleared, while a simple mark is used for states that have been updated.

Figure 4.2 gives an example of a successful backward traversal, while �gure 4.3 gives

an example of an unsuccessful clearing phase.

a

b c

d e f

2

22

0 0 0

2

22

0 0 0

0 0

0

Graph G. RG from G. RG backward traversal.

Figure 4.2: Successful Reverse Graph backward traversal for A (ψ ∪ φ).
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2
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Graph Gc with a cycle. RGc from Gc. RGc backward traversal.

Figure 4.3: Unsuccessful Reverse Graph backward traversal for A (ψ ∪ φ).

Listing 4.4 gives the pseudo-code for the function backward_check_a, that imple-

ments the clearing phase. We start by clearing all the states in A which are, by construc-

tion, states s such that suc(s) is zero. When a state is cleared, we decrement the label

of all its parents (suc(s′).dec()) and check which ones can be cleared (suc(s′) == 0).

1We assume that the decrementing operations are done in parallel.
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1 function BOOL backward_check_a (s0 : s ta te , A : Stack )

2 while (A i s not empty ) do

3 s ← A. pop ( ) ;

4 // the property is true if we reach the initial state

5 i f ( s = s0 ) then

6 return TRUE

7 endif

8 // otherwise we check if the predecessors of s can be cleared

9 f o ra l l s ' parent o f s in KS do

10 suc ( s ' ) . dec ( ) ;

11 i f ( suc ( s ' ) = 0) then

12 A. push ( s ' )

13 endif

14 endfor

15 endwhile ;

16 return FALSE

Listing 4.4: Backward exploration for the formula A (ψ ∪ φ) with Reverse Graph

The algorithm stops if the initial state, s0, can be cleared or if there are no more state

to update.

Algorithm for the reverse parental graph version � RPG

We give the pseudo-code for the forward exploration function, forward_check_a, in the

case of the parental graph version (see Listing 4.5).

The di�erence, in this case, is that we only have access to the reverse parental graph

data structure. As a consequence, we can only access one of the parents of a state in

constant time (what we call the father of the state). In our implementation, we choose

as father for a state s′, the �rst state, say s, that leads to s′ in the exploration. But the

algorithm could work with any other choice.

For the clearing phase, we rely on the parental graph structure to �propagate� the

cleared states toward the root of the state graph. We give the pseudo-code for the

backward traversal phase in Listing 4.6. The algorithm iterates between two behaviors,

clearing and collecting. The clearing behavior is similar to the pseudo-code for the RG

algorithm (see Listing 4.4), with the di�erence that we decrement only the father of a

state and not all the predecessors. When there are no more labels to decrement�and

if the initial root is not yet cleared�the algorithm starts looking for states that can be

cleared. For this, we test all the states s such that sons(s) == 0; that is, such that all
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1 function BOOL forward_check_a (ψ : pred , φ : pred , s0 : s ta te , A : Stack )

2 Set S ← new Set (∅) ;

3 Stack W ← new Stack (s0 ) ;

4 while (W i s not empty ) do

5 s ← W. pop ( ) ;

6 i f ( s � φ) then

7 suc ( s ) . s e t (0 ) ;

8 A. push ( s )

9 e l s i f ( s � ψ ) then

10 suc ( s ) . s e t ( number o f s u c c e s s o r s o f s in KS ) ;

11 // check if s is not a dead state

12 i f ( suc ( s ) = 0)

13 return FALSE

14 endif

15 f o ra l l s ' s u c c e s s o r o f s in KS do

16 i f ( s ' /∈ S)

17 // then s is the father of s' PKS

18 S ← S ∪ {s ' } ;

19 f a th e r ( s ' ) . s e t ( s ) ;

20 sons ( s ) . i nc ( ) ;

21 W. push ( s ' )

22 endif

23 endfor ;

24 else return FALSE

25 endif

26 endwhile ;

27 return TRUE

Listing 4.5: Forward exploration for the formula A (ψ ∪ φ) with Reverse Parental Graph
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the sons of s have been cleared. In this case, to check if s can be cleared, we have to

recompute all its successors in KS (because this information is not stored in the RPG)

and to check whether they have been cleared also (if their suc label is zero).

The advantage of this strategy is that we do not have to consider all the states in

the graph, just a subset of it. Indeed, we know from Theorem 4.3.3 that this subset is

enough to test the presence of a cycle. At the opposite, the drawback of this approach is

that we may try to clear the same vertex several times, which may be time consuming.

We show the result of the backward propagation phase for two di�erent cases in

�gures 4.4 and 4.5. In each diagram, the vertices are decorated with the pair of labels

(suc, sons).

a

b c

d e f

2,2

2,2

0,00,00,0

2,1

2,2

2,2

0,00,00,0

2,1

1,1

1,0
0,0

0,0

0,0

Graph G. RPG from G. RPG backward traversal.

Figure 4.4: Successful Reverse Parental Graph backward traversal for A (ψ ∪ φ).

Figure 4.4 gives an example of a successful backward traversal. Initially, the stack

A contains the states d, e, f. After they are removed, we have sons(b) = 0, suc(b) = 1

and � (c) = sons(c) = 0. Then state c can be cleared. At this point, we have only

one zero in-degree node, b, in the reverse parental graph. We need to recompute one

transition to retrieve the fact that e is a successor of b. Since e was already removed,

we can �nally clear b and then reach the initial state a.

We give an example of unsuccessful backward traversal in Figure 4.5. Unlike the

previous case, when the backward propagation ends, we have two zero in-degree node

in the parental graph, namely b and e. Since suc(b) = suc(e) = 1, we cannot clear any

of these states. Therefore the process ends and, by Theorem 4.3.3, we know that there

must be a cycle in Gc.

97



4. PARALLEL MODEL CHECKING WITH LAZY CYCLE DETECTION
� MCLCD

1 function BOOL backward_check_a (ψ : pred , φ : pred , s0 : s ta te , A : Stack )

2 over ← FALSE

3 while ( not over )

4 while (A i s not empty ) do

5 //Clearing

6 s ← A. pop ( ) ;

7 // the property is true if we reach the initial state

8 i f ( s = s0 ) then

9 return TRUE

10 endif ;

11 // otherwise we check if the father of s can be cleared

12 s ' ← f a t h e r ( s ) ;

13 sons ( s ' ) . dec ( ) ;

14 suc ( s ' ) . dec ( ) ;

15 i f ( suc ( s ' ) = 0) then

16 A. push ( s ' )

17 endif

18 endwhile

19 //Collecting

20 // if we have no more states to clear in A we try to �nd

21 // candidates among the states with no children in PKS

22 f o ra l l s such that sons ( s ) = 0 and suc ( s ) 6= 0 in KS do

23 i f t e s t ( s ) then

24 suc ( s ) . s e t (0 ) ;

25 A. push ( s )

26 endif

27 endforall

28 i f (A i s empty ) then

29 //No good candidate was found, end backward search

30 over ← TRUE

31 endif

32 endwhile ;

33 return FALSE

34

35 function BOOL t e s t ( s : s t a t e )

36 f o ra l l s ' s u c c e s s o r o f s in KS do

37 i f suc ( s ' ) 6= 0 then

38 // at least one successor is not cleared

39 return FALSE

40 endif

41 endfor

42 return TRUE

Listing 4.6: Backward exploration for A (ψ ∪ φ) with Reverse Parent Graph
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Graph Gc with a cycle. RPGc from Gc. RPGc backward traversal.

Figure 4.5: Unsuccessful Reverse Parental Graph backward traversal for A (ψ ∪ φ).

4.4.4 Model Checking the Leadsto Property � ψ  φ

To check the formula ψ  φ, we need to prove that there is no cycle that can be reached

from a state where ψ holds, without �rst reaching a state where φ holds. Indeed,

otherwise, we can �nd an in�nite path where φ never holds after an occurrence of ψ.

Figure 4.6 gives an example of graph for which the formula is valid.

This observation underlines the link between checking the formula ψ  φ�locally,

for the initial state�and checking the validity of A3(φ)�globally, at every state where

ψ holds. As a consequence, we can use an approach similar to the one used for liveness

properties in the previous section. The main di�erence is that, instead of clearing the

initial state, we have to clear all the states where ψ hold.

a

b b

DAG

a

b b

DAG

Figure 4.6: Leadsto a b where a is ψ and b is φ.

We give the pseudo-code for checking the formula ψ  φ in Listing 4.7. Compared
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1 function BOOL check_leadsto (ψ : pred , φ : pred , s0 : s t a t e )

2 Stack A ← new Stack (∅) ;

3 Stack P ← new Stack (∅) ;

4 forward_check_leadsto (ψ , φ , s0 , A, P) ;

5 return backward_check_leadsto (A, P)

Listing 4.7: Algorithm for the formula ψ  φ

1 function void forward_check_leadsto (ψ : pred , φ : pred ,

2 s0 : s ta te , A : Stack , P : Stack )

3 Set S ← new Set (∅) ;

4 Stack W ← new Stack (s0 ) ;

5 while (W i s not empty ) do

6 s ← W. pop ( ) ;

7 i f ( s � φ) then

8 suc ( s ) . s e t (0 ) ;

9 A. push ( s )

10 else

11 suc ( s ) . s e t ( number o f s u c c e s s o r s o f s in KS ) ;

12 i f ( s � ψ ) then

13 P. push ( s )

14 endif ;

15 f o ra l l s ' s u c c e s s o r o f s in KS do

16 i f ( s ' /∈ S) then

17 S ← S ∪ {s ' } ;

18 W. push ( s ' )

19 endif

20 endfor ;

21 endif

22 endwhile ;

23 return void

Listing 4.8: Forward exploration for the formula ψ  φ with Reverse Graph

to the algorithm for liveness, we use an additional parameter, P, that is a stack where

we collect all the states such that ψ holds. Another di�erence is that we need to explore

the state graph totally (we say that leadsto is a global property).

Algorithm for the reverse graph version � RG

We give the pseudo-code for the function forward_check_leadsto in Listing 4.8. The

function adds to the stack A (resp. P) all the state where φ (resp. ψ) holds. During

the forward exploration, we also set the states in A as cleared (we set the label suc to

zero) because they will be the starting points for our backward traversal.
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1 function BOOL backward_check_leadsto (A : Stack , P : Stack )

2 while (A i s not empty ) do

3 s ← A. pop ( ) ;

4 f o ra l l s ' parent o f s in KS do

5 suc ( s ' ) . dec ( ) ;

6 i f ( suc ( s ' ) = 0) then

7 A. push ( s ' )

8 endif

9 endfor

10 endwhile ;

11 while (P i s not empty ) do

12 s ← P. pop ( ) ;

13 i f ( suc ( s ) 6= 0) then

14 return FALSE

15 endif

16 endwhile ;

17 return TRUE

Listing 4.9: Backward exploration for ψ  φ with Reverse Graph

We give the pseudo-code for the backward traversal in Listing 4.9. Again, the code

is similar to the backward traversal for the liveness case. The main di�erence is in the

termination condition: the function returns true if all the states in P have been labeled

as cleared.

Algorithm for the reverse parental graph version � RPG

The algorithm for forward and backward analysis with the Reverse Parental Graph are

similar to the previous cases.

Backward traversal (see �gure 4.11) starts from the accepted vertices and terminates

when there is no more vertex to clear (set its out-degree to zero). It returns true if all the

seeds vertices are cleared. Its implementation is similar to the pseudo-code presented

at �gure 4.6, the algorithm iterates between two phases: clearing and collecting.

4.5 Correctness and Complexity of our Algorithms

In this section, we give a correctness proof for the MCLCD algorithm. We also study the

complexity of our algorithm in the sequential case. We more speci�cally study the case
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1 function void forward_check_leadsto (ψ : pred , φ : pred ,

2 s0 : s ta te , A : Stack , P : Stack )

3 Set S ← new Set (∅) ;

4 Stack W ← new Stack (s0 ) ;

5 while (W i s not empty ) do

6 s ← W. pop ( ) ;

7 i f ( s � φ) then

8 A. push ( s ) ;

9 suc ( s ) . s e t (0 )

10 else

11 suc ( s ) . s e t ( number o f s u c c e s s o r s o f s in KS ) ;

12 i f ( s � ψ ) then

13 P. push ( s )

14 endif ;

15 f o ra l l s ' s u c c e s s o r o f s in KS do

16 i f ( s ' /∈ S) then

17 S ← S ∪ {s ' } ;

18 f a th e r ( s ' ) . s e t ( s ) ;

19 sons ( s ) . i nc ( ) ;

20 W. push ( s ' )

21 endif

22 endfor

23 endif

24 endwhile ;

25 return void

Listing 4.10: Forward exploration for ψ  φ with Reverse Parent Graph
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1 function BOOL backward_check_leadsto (ψ : pred , φ : pred ,

2 s0 : s ta te , A : Stack , P : Stack )

3 over ← FALSE

4 while ( not over )

5 while (A i s not empty ) do

6 //Clearing

7 s ← A. pop ( ) ;

8 // we check if the father of s can be cleared

9 s ' ← f a t h e r ( s ) ;

10 sons ( s ' ) . dec ( ) ;

11 suc ( s ' ) . dec ( ) ;

12 i f ( suc ( s ' ) = 0) then

13 A. push ( s ' )

14 endif

15 endwhile

16 //Collecting

17 // if we have no more states to clear in A we try to �nd

18 // candidates among the states with no children in PKS

19 f o ra l l s such that sons ( s ) = 0 and suc ( s ) 6= 0 in KS do

20 i f t e s t ( s ) then

21 suc ( s ) . s e t (0 ) ;

22 A. push ( s )

23 endif

24 endforall

25 i f (A i s empty ) then

26 //No good candidate was found, end backward search

27 over ← TRUE

28 endif

29 endwhile ;

30 // the property is true if all the state in P are cleared

31 while (P i s not empty ) do

32 s ← A. pop ( ) ;

33 i f ( suc ( s ) 6= 0) then

34 return FALSE

35 endif ;

36 endwhile ;

37 return TRUE

38

39 function BOOL t e s t ( s : s t a t e )

40 f o ra l l s ' s u c c e s s o r o f s in KS do

41 i f suc ( s ' ) 6= 0 then

42 // at least one successor is not cleared

43 return FALSE

44 endif

45 endfor

46 return TRUE

Listing 4.11: Backward exploration for ψ  φ with Reverse Parent Graph
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of the liveness formula A (ψ ∪ φ). The results obtained for this case can be generalized

to our whole logic.

The correctness of our algorithm is based on the fact that the computation will stop

(and return the boolean value FALSE) if there is at least one cycle in KS, that is to

say, we cannot perform a complete backward traversal and reach the initial state.

Theorem 4.5.1 (Termination). The MCLCD algorithm, for model checking the logic

LRL on a �nite Kripke Structure, terminates for all inputs.

Proof. We only consider the case for the formula A (ψ∪φ), that is the function check_a.
The other cases are similar. We prove the termination of check_a by proving the ter-

mination of the two functions that it calls: forward_check_a and backward_check_a.

The function forward_check_a (see for instance Listing 4.3 for the RG case) gen-

erates a subset of the state graph by pruning all the transitions after a state where

φ holds. At each iteration of the function, we consider a di�erent state taken from a

stack�denoted S in the pseudo-code�that contains a subset of the reachable states.

Since the state graph is �nite, the function will always terminate.

For the function backward_check_a, termination follows from the fact that, at each

iteration, we decrement the value of at least one of the labels suc(s).

Theorem 4.5.2 (Completeness). If the system KS satis�es the formula F then the

MCLCD algorithm returns the boolean value TRUE when run with the value (KS,F ).

Proof. We only consider the case for the formula A (ψ∪φ). The proof is essentially the

same for the RG and RPG cases. (The two algorithms have a similar behavior; only

their complexity di�er.) We assume that KS � F and study the result of the expression

check_a(ψ, φ, s0).

By the de�nition given in Section 4.2, we have KS � A (ψ ∪ φ) if and only if

(INV): for all maximal path τ = s0 · s1 · . . . in KS there is an index i such that

si � φ ∧ ∀j[0 ≤ j < i⇒ sj � ψ].
First, we prove that the call to forward_check_a(ψ, φ, s0, A) returns TRUE. The

proof is by contradiction. Let us assume that the forward exploration returns FALSE

(we know that the forward exploration terminates). Hence, there must be a path τ =
(si)i∈1..n such that si � ψ ∧ ¬φ for all i < n and sn � ¬ψ ∧ ¬φ. Since we can always

extend this path into a maximal path of KS, this contradicts (INV). Therefore, the

forward exploration must succeeds.

In the remainder of this proof, we assume that KSf denotes the subset of the state

graph generated during the forward exploration and that Ainit is the set of states s
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such that suc(s) = 0. It is exactly the states with out-degree zero in KSf and the set

of states in KSf where φ holds. By construction, since at least one state must satisfy

φ, the set Ainit is not empty. Also, the parameter A is set to Ainit when we start the

backward exploration phase.

Now, we consider the backward exploration for the reverse graph case. Let Ai
denotes the set of states that are cleared in KSf after the ith iteration of the while

loop in the call to backward_check_a. The sequence of sets (Ai)i∈1..n can be de�ned

by the following induction: (1) A0 = Ainit , and (2) for all i > 0, we have Ai+1 =
Ai ∪ {s‖∀s′.s R s′ ⇒ s ∈ Ai}. Since it is an increasing sequence, bounded by the �nite

set S, it �nally reaches a limit, Af ⊆ S. If we use the terminology de�ned in Sect. 4.3,

S \ Af are exactly the states that are left in KSf when we recursively remove all the

cleared states.

To prove that the backward exploration also succeeds, it is enough to show that

KS � A (ψ ∪ φ) entails s0 ∈ Af . From (INV), we have that KSf must be a DAG.

Otherwise we could �nd a maximal path in which φ never holds. Therefore, by Theo-

rem 4.3.2, we have s0 ∈ Af , as needed.

Theorem 4.5.3 (Soundness). If the MCLCD algorithm returns TRUE for a given pair

(KS,F ) of a Kripke Structure and a LRL formula then KS � F .

Proof. Once again, we only give the proof in the case where F is the formula A (ψ∪φ).
The proof is essentially the same for the RG and RPG cases. (The two algorithms have

a similar behavior; only their complexity di�er.)

Let us assume that the call to check_a(ψ, φ, s0) returns TRUE. Then the forward

and backward exploration must both succeeds.

We assume that KSf is the subset of the state graph computed during the forward

exploration. By construction, the predicates ψ holds for all the states in KSf except

for its leaves, where φ holds.

Next, we show that if the backward exploration succeeds then KSf is a DAG. The

proof is the same than with Theorem 4.5.2 and makes use of the other part of the

equivalence given by Theorem 4.3.2

Since KSf is a DAG, all the maximal paths in KSf must eventually reach a state

where φ holds. Therefore, since each maximal path in KS is necessarily an extension

of a maximal path in KSf , the same property is true with KS, which means that

KS � A (ψ ∪ φ).

Next, we study the worst-case complexity of our algorithms. We obtain di�erent

results for the RG and RPG versions of the MCLCD algorithm. (Recall that, inside
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asymptotic notations, we use the symbols S and R when we really means |S| and |R|.)

Theorem 4.5.4 (Complexity). The worst-case time complexity of the algorithm is in

the order of O(S + R) for the RG version and in the order of O(S · (R − S)) for the

RPG version.

Proof. In the worst-case, we need to perform both a forward and a backward exploration.

The complexity of the forward exploration is trivially bounded by the size of the state

space: in the worst-case, we need to explore all the states and test all the transitions.

Hence the complexity of this �rst phase is (linear) in O(S +R).

The complexity of the backward exploration depends on the underlying data struc-

tures used to encode the Kripke structure. For each version of our algorithm, the worst

case is when the property is true.

If we rely on a reverse graph structure�and if we assume that the property is true�

then we need to clear all the states in the graph and, for every transition (edge) in the

reverse graph, we need to update the label of its head. Therefore, the complexity of the

backward exploration is also O(S+R) in the worst case. That is, the overall complexity

is in O(2 · (S +R)) for the RG version of our algorithm. This result is consistent with

the complexity of the CTL model checking algorithm de�ned in (CES86), that has a

time complexity of O(|φ| · (S + R)), where |φ| is a measure of the complexity of the

speci�cation. Indeed, in our case, the most complex formula (the leadsto property) has

complexity 2.

The analysis is quite similar for the version based on the reverse parental graph.

The main di�erence is that we may have to recompute some transitions in KS several

time. At least, we need to recompute all the transitions whose �inverse� is not stored in

the reverse parental graph.

Since a Kripke structure is a weakly connected graph, we have that |R| > |S| and
that |R| − |S| + 1 is a bound to the number of transitions not stored in the RPG. At

each iteration, we need to test the successors of the states, s, such that sons(s) = 0.
This is in order to �nd the zero out-degree node in the Kripke structure, that is, the

states s such that suc(s) = 0. In the worst case, we may have to re-compute all the

transitions that are not stored in RPG.

We clear at least one state and remove at least one transition at each iteration of

the backward check function. Therefore, there is at most |S| − 1 iterations and, at the

ith iteration, there is at most |S| − i states that are not cleared and |R| − |S| − i + 1
transitions that may need to be re-computed. Thus, the complexity of our algorithm,

for the ith iteration, is bounded by (|S| − i) + (|R| − |S| − i + 1). As a consequence,
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the complexity of the backward traversal can be bounded by the following expression,

which is in O(S · (R− S)).∑
i∈1..|S|−1

(|S| − i) + (|R| − |S| − i+ 1) = 1/2.|S|.(|S| − 1) + (|R| − 3/2.|S|+ 1).(|S| − 1)

= (|R| − |S|+ 1).(|S| − 1)

5
0,0

1
4,4

2
3,0

3
2,0

4
1,0

Figure 4.7: Worst-Case Example for the RPG Version (edges in red are in the reverse

parental graph).

Since the number of transitions is bounded by |S|2, we obtain a complexity in the

order of O(S2) for the RG version and of O(S3) for the RPG version. We can show

that this is an asymptotic tight bound for the complexity of the backward exploration.

In the case of the RPG version, we give an example of state graphs such that the

complexity is asymptotically equivalent to S3 (up to a constant). In Fig. 4.7, we give

an example of a state graph, with 5 states, that fall in the �worst complexity� case.

Following the same structure than in this example, we can build a family of graphs KN

with N states and 1/2.N.(N − 1) transitions (for any N > 2); KN is a directed graph

with N vertices that has the maximum possible number of edges for a DAG.

The backward exploration on KN will require N − 1 iterations. Actually, when

we remove the only leave in the graph KN we obtain the graph KN−1. A more precise

analysis of the behavior of the backward exploration of the graph KN gives a complexity
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that is a factor of N3 + O(N); if we denote C(N) the complexity for the graph KN

then we have the relation C(N + 1) = 1/2.N.(N − 1) +N + C(N).

In conclusion, we have shown that the RG version of the algorithm has a time

complexity that is a factor of |S| better than the RPG version. At the same time, the

space complexity is better for the RPG version than for the RG version by the same

factor: the space complexity is in O(S) for the RPG version and in O(S2) (or O(S+R))

for the RG version. Note that this is a complexity result for the worst-case, obtained

using a family of graphs with unbounded degree. (The maximal degree of graph KN

is N − 1.) In particular, we can expect a smaller di�erence in time complexity if we

consider that the out-degree of the state space is bounded.

4.6 Parallel Implementation of our Algorithm

While we consider a Random Access Machine (RAM) model for the complexity results

given in the previous section, we have not speci�cally �xed the abstract computational

model that is used to interpret the semantics of our pseudo-code. Most particularly,

we can easily adapt the same code to a Parallel RAM model, following the Single

Program Multiple Data (SPMD) programming style that we adopted for our algorithms

in Chapter 3.

In a SPMD context, all processing units will execute the same functions, as de�ned

in Sect. 4.4. Following this approach, the forward exploration phase and the cycle

detection (backward traversal) phase can both be easily parallelized. Then, for the

model checking function themselves�for instance the function check_a�we only need

to synchronize the termination of the forward exploration with the start of the backward

label propagation. At each point, a processing unit can terminate the model checking

process if he can prove (or disprove) the validity of the formula before the end of the

exploration phase.

We consider a shared memory architecture where all processing units will share the

state space (using the mixed approach that we introduced in Section 3.3) and where

the working stacks are partially distributed (such as the stacks W, A and P used in our

pseudo-code). For most of our pseudo-code, it is enough to rely on atomic �compare and

swap� primitives to protect from parallel data races and other synchronization issues;

typically, compare-and-swap primitives will be used when we need to test the value of a
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label or when we need to update the label of a state (for instance with expressions like

sons(s).dec()). Together with the compare-and-swap primitive, we use our combination

of distributed, local hash tables with a concurrent localization table to store and manage

the state space.

For the RG version of the algorithm, we can ensure the consistency of our algorithm

by protecting all the operations that manipulate a state label. (We made sure, in our

pseudo-code, that every operation only a�ects one state at a time.)

The parallel version of RPG is a bit more complicated. This problem is related to

the behavior collection, that needs to check all the successors of a given state to see if

they are cleared. First, this operation is not atomic and it is not practical to put it

inside a critical section (it would require a mutex for every state). If two processors

collect the same state, then the father of this state will be decremented two times

(later) at the clearing procedure. Second, the collection operation must be performed

after all processors have �nished the clearing operation, otherwise, Theorem 4.3.3 can

not be applied to our algorithm. For instance, if the processors are allowed to perform

asynchronously both clearing and collection operations, then a state may be forgotten

to be collected because one of its successors has not been cleared yet.

We solve the parallel issues for RPG through the synchronization of all processors

before both clearing and collection operations. The synchronization ensures that no

states will be forgotten to be collected. Then, we take advantage of our distributed

local hash tables to avoid the concurrent access problem. Each processor is restricted

to perform the collection operation over the states stored in its own table.

To conclude with the parallel version of our algorithm, we use a work-stealing strat-

egy (see Sect. 3.1.1) to balance the work-load between the di�erent phases of our algo-

rithm. During the exploration phase, we use the same strategy than in our algorithm for

parallel state space construction, where each processor holds two stacks for unexplored

states (one private stack and one shared stack). For the backward traversal, we use the

same idea of two stacks for the accepted vertices (the stack called A in our pseudo-code);

whenever a thread has no more vertex to clear, it tries to �steal� non-cleared vertices

from other processors.
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4.7 Experimental Results

We have implemented several versions of our model checking algorithm as part of our

prototype model checkerMercury (Appendix B). They are built on top of our previous

algorithm for parallel state space exploration (see Sect. 3.3). We basically follow the

same guidelines than in our implementation of state space generation: we use the C

language with Pthreads (But97) for concurrency and the Hoard Library (BMBW00) for

parallel memory allocation. We use our Localization Table to store the set of explored

states. Experimental results presented in this section were obtained on a Sun Fire x4600

M2 Server, con�gured with 8 dual core opteron processors and 208GB of RAM memory,

running the Solaris 10 operating system.

For this benchmark, we selected some of the models already used in Section 3.3.3.

Figure 4.8 lists the formulas and models selected for our experiments. We choose

the Dining Philosophers (PH), the Token Ring (TK), the Peg-Solitaire (Peg) and the

Sokoban (SK) models in order to have di�erent types of state graphs for the veri�cation.

The PH and TK benchmarks are classical models that are very well-suited for veri�-

cation methods based on partial order techniques due to their high degree of interleaving

and symmetries. The puzzle models (Peg and SK) have an opposite behavior and have

graphs structures that �are almost� DAG.

For each model, we list the formulas that have been checked and give an informal

description of the speci�cation. In each case, we try to have a mix of valid and invalid

properties. We experimented with all the formulas: reachability (E3φ), safety (A2φ

and E2φ), liveness (A3φ) and leadsto (ψ  φ). Actually, our tool uses an equivalent

ASCII syntax: E<>, A<>, E[], A[], and ==> for the modalities in LRL and - phi for

the negation on predicates. We also use a special predicate, dead, to denote the states

without successors.

For the model TK, we experimented with two di�erent versions: one that is simply

called TK, which is the classical Token Ring example, where starvation is possible�a

process can be perpetually denied access to the service (�token�)�and a second version,

that we call TK_M, which is a modi�ed model that avoids the resource starvation

problem. Similarly to our previous analysis, all these examples are based on �nite state

systems modeled using Petri Nets (Mur89).

110



4.7 Experimental Results

The rest of the section is divided in two main parts. First, we perform a speedup

analysis of our model checking program. We also try to analyze how our new approach

for detecting cycles participate to the total speed-up of the method. Finally, we present

a broader comparison of the two solutions proposed in this chapter with a third variant

where we do not store the transitions, that is to say, only the states are stored and the

reverse transition relation is are re-computed dynamically during the backward phase.

4.7.1 Speedup Comparison Between RG and RPG Algorithms

We analyze the speedup of our parallel model checking algorithm for the benchmark

described in Figure 4.8. We give the relative speedup and the execution time for the

reverse and reverse parental graph versions our algorithm. In addition, we also give the

separate speedup obtained in each phase of the algorithm�during the exploration (for-

ward) and cycle detection (backward) phases�in order to better analyze the advantages

of our approach.

Experimental Results for the Dining Philosophers Model � PH

We give the speedup analysis for the Dining Philosophers (PH) in Figures 4.9 and 4.10:

we display the speedup and the execution time for di�erent con�gurations, from 1 to

16 processors, and for both versions of our algorithm. Each diagram has one line chart

for each kind of formulas. The results are fairly good, with an average e�ciency of 65%

for the reverse version and 56% for the parental version.

We can explain the abnormal behavior for the reachability formula E <> by the

fact that the algorithm is very fast in this case�it takes less than one second to �nish

in average�and therefore the results are prone to experimental �uctuations. (We can

use Fig. 4.23 to compare the execution time for the di�erent formulas.)

Although we could expect the parental algorithm to have a very good speedup�it

has more opportunities to bene�t from the parallelism�the relative speedup for the

RPG version is not as good as the one obtained by the RG version. This surprising

result is partially linked to the fact that the sequential execution time (execution time on

one processor) is signi�cantly lower for the parental version than for the reverse version.

On of the reasons explaining this behavior is that the forward exploration phase of the

RPG algorithm is much faster (there is less information to write in memory).
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We try to pinpoint more precisely what is the impact of our two di�erent versions

on the performance in Figure 4.11. We give several bar charts where we decompose the

speedup into three separate values: the speedup for the forward exploration phase, the

speedup for the backward exploration phase (cycle detection), and �nally the overall

speedup. For a better view of the impact of each phases, we display the �cumulative�

execution time in Fig. 4.23, obtained when checking the PH model with 16 processors.

For the PH model, we can observe that, in both variants, the speedup for the

exploration phase is: (1) much more important than the one obtained in the cycle

detection phase; and (2) almost equal or slightly better than the total speedup. We

remind the reader that there is no cycle detection phase when we model-check the

formulas E<> or A[].

Concerning the RG algorithm (the top graph from Fig. 4.11), we observe that the

speedup for the cycle detection phase is very poor for the PH model. This can be

explained by the fact that this phase is very short (we can see in Fig. 4.23 that the time

spent in this phase is negligible compared to the time spent in the forward exploration)

and do not create enough work for several processors; which means that our work

stealing strategy has no e�ect. The results are more interesting for the Peg model, that

we study later.

Concerning the RPG algorithm (the lower graph in Fig. 4.11), we observe better

speedups for the cycle detection phase, with values slightly superior to 4 when using 16

processors. We also observe that, for more than 10 processors, the execution time of the

RPG and the RG versions are almost identical (see Fig. 4.9 and 4.10). Like with the RG

version, the speedup of the algorithm for the PH model mostly comes from the forward

exploration phase. In particular, we observe that the e�ciency of the exploration phase

is the key factor for the performance of the algorithm.

Experimental Results for the Peg Solitaire Model � PEG

We performed the same kind of analysis with a model corresponding to the puzzle game

Peg-Solitaire (see Fig. 4.12 and 4.13). This model o�ers a good benchmark for our

method because the state graph of the system is acyclic. In this benchmark, we only

consider one speci�cation, that is an instance of liveness property (A<> dead).

Like in the previous case, we give the �cumulative� execution time in Fig. 4.27,

obtained when checking the PEG model with 16 processors.
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Our results with the PEG model contrast with the ones obtained with the Dining

Philosophers. We observe very good speedups for both versions of our algorithm (with

an e�ciency of 75%). Also, it is interesting to remark that, even though the relative

speedups for the RG and RPG versions are similar, there is a signi�cant di�erence

between their execution time.

Figure 4.14 gives the speedup achieved by the exploration and cycle detections

phases independently. We can see that the cycle detection phase has a bigger impact

and better speedups. For instance, we have a speedup of approximately 11 for 16

processors for both versions. We can explain this behavior by the fact that, for the

formula that we check on the PEG model, we need to completely explore the state

graph. It means that the occupancy rate of the processors is better in this example and

therefore we take bene�t from our work stealing strategy. This is an evidence that our

approach is optimized for the worst case scenario when model checking a system, that

is for the case when the property is true.

Experimental Results for the Token Ring Models � TK and TK_M

Finally, we give the results for a model corresponding to the Token Ring protocol. We

consider two versions of the protocol. TK stands for the classical �implementation�,

where starvation is possible. TK_M is a modi�ed version, without starvation, which

means that �whenever a process requires a resource, it will eventually be granted the

right to use it�.

In our benchmark, the most interesting speci�cation is related to starvation, that is

an example of the leadsto property: wait_1 ==> cs_1. We also consider two examples

of safety property: A[] - (cs_1 + ... + cs_22 > 1) and E[] - (cs_1 + ... +

cs_22 = 0). For these two examples, the �rst formula do not require a backward

exploration phase.

Our results are given in Fig. 4.15, 4.16 and 4.17 for the TK model and Fig. 4.18,

4.19 and 4.20 for the TK_M model.

This example is interesting because we can compare the performance of our algo-

rithms using: state spaces that are very similar; using the same formula; but with a

speci�cation that is true in one case and false in the other.

Figures 4.15 and 4.16 show the speedup and execution time for the three formulas

given in Fig. 4.8 for the TK model. We observe similar results than with the PH model:
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the two versions have similar parallel execution time and the total speedup is mainly

dominated by the (forward) exploration phase. Like with the PH model, we can explain

these results by the fact that the cycle detection phase is very short and stop before

completely exploring the state space.

Figures 4.18 and 4.19 show the results of a similar experiment for the TK_M model

but with a small number of stations, 20 instead of 22. We decided to reduce the number

of stations due to the long runtime necessary for the execution with small number of

processors, i.e. the sequential time for the parental algorithm is around 12000 seconds

for this experiment.. Like we mentioned before, the formula wait_1 ==> cs_1 is valid

for TK_M , that is to say, we need to explore the complete state graph in the backward

exploration phase. This explain why, in this case, the results are more similar to the

PEG case than to the PH case.

There are some di�erences though. The execution time of the RPG version is sig-

ni�cantly slower and does not scales well for TK_M. We can explain this loss of perfor-

mance by the number of iterations in the backward exploration. For the PEG model,

our algorithm requires 29 iterations and almost one billion transitions are re-computed.

for the TK_M model, while the algorithm requires 98 iterations to re-compute 2 · 109

transitions. The di�erence is quite important, especially since the TK models has four

times less states than PEG. ( TK_M has 5 · 107 states and 4 · 108 transitions; PEG has

2 · 108 states and 22 · 108 transitions.)

This di�erence in behavior can be explained by the in�uence of the state space's

�shape� on the algorithm. To give a good idea of what is intended by the notion

of �shape� in this context, we display in see Fig. 4.21 and 4.22 the state graphs for

simpli�ed versions of PEG (only 13 pegs) and TK_M (only 2 stations). Comparing the

state graphs for TK_M and PEG, we see that there are less opportunities with TK_M

to clear a large number of states in the same iteration.

4.7.2 Comparison with a Standard Algorithm

In this section, we compare our approach with a �standard� algorithm for model checking

CTL. We assume that we know how to e�ciently compute the predecessors of a state

in the state graph, that is, that we can directly compute the reverse transition relation.

This is true for the models used in our benchmarks, because we know how to easily

compute the inverse of a transition in a Petri Net.
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In this case, we can simply use the same code than for the RG version of the MCLCD

algorithm, but compute the predecessor relation instead of relying on the reverse graph.

Since we do not need to store the transition relation, we call this new version of our

algorithm NO_GRAPH. The NO_GRAPH version of the algorithm is interesting for

several reasons:

� Obviously, it is even more memory e�cient than the RPG version. This means

that we have the same bene�ts than the RPG version for the forward exploration,

that is, a good speedup due to the fact that we write less information on memory.

We also have the same bene�ts than the RG version for the cycle detection phase,

that is, we will never have to re-compute the transitions;

� We can reuse the same data structures and synchronization patterns than in our

implementations of the RG and RPG versions. We also use exactly the same

models, expressed in the same modelling language. This means that we can really

compare algorithms and not only implementations

� Finally, NO_GRAPH is a �standard� algorithm, that is representative of the

current state of the art for semantic-based model checking algorithms.

Next, we give experimental results comparing our implementation of the three ver-

sions of the MCLCD algorithm (RG, RPG and NO_GRAPH) using 16 processors on

our test machine. Figures 4.23 to 4.27 give a series of bar charts where we put in evidence

the time required for each phase of the algorithm (exploration and cycle detection).

For the Dining Philosophers (PH) and the Sokoban (SK) models, we observe that:

(1) NO_GRAPH has the best execution time; (2) the time spent in the forward phase

is the same for NO_GRAPH and RPG; and (3) the RPG algorithm matches the RG

algorithm because its gain in performance during the forward exploration exceeds is loss

of performance during the cycle detection.

The second observation is not surprising since the forward phase is almost the same

for the RPG and NO_GRAPH versions. (RPG should be a little bit slower than

NO_GRAPH because we need to store one additional pointer in each state for the

father, but this is not noticeable.)

We perform a similar comparison with our two models for the Token Ring protocol

(TK and TK_M). As in the previous case, the performances of the versions are essen-

tially the same for the A[] and E[] formulas. We can even observe that, for the TK
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model and the E[] formula, RPG beats NO_GRAPH. The same is true in the case of

the PEG model (see Fig. 4.27).

The result is far more di�erent for the leadsto formula (==>). We remind the reader

that, in this case, the formula is false for TK and true for TK_M. We observe that the

execution time with RPG are around 7 times slower than with NO_GRAPH.

4.7.3 Conclusion About the Experiments

We have observed two main categories of behaviors in the analysis of our experimental

results. We have examples of complete backward traversal and examples of negligible

backward traversal.

Negligible backward traversal We put in this category the examples where the time

spent in the backward exploration phase is negligible compared to the overall

execution time. This is the case, for instance, if the speci�cation is false and the

cycle detection phase terminates early. In this category of experiments, there is

no signi�cant di�erences between RG and RPG. This is mainly because the gain

in performance during the forward exploration phase outweighs the extra work

performed during the cycle detection phase.

Complete backward traversal. We put in this category the examples where the cy-

cle detection phase needs to run through all the state space. We observed a

signi�cant di�erence in performance between the RG and RPG versions in this

case. The extra work performed by the RPG version becomes the dominant fac-

tor, up to a point where it accounts for nearly all the execution time. We also

observed that, in this case, the �shape� of the state graph has a strong impact

on the performance of the algorithm; in particular, the RPG algorithm does not

scale well when the backward traversal phase requires a lot of iterations between

the clearing and collecting steps.

We can draw some conclusions from these benchmarks. The RG version of our

algorithm appears to be the best choice when we expect to spend a non-negligible

part of the execution time in the cycle detection phase. When the backward phase is

short, the NO_GRAPH and RPG versions are a good choice. This is in particular

true with reachability properties (because we only perform the forward phase), but also
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if we expect the property to be false (because we expect the cycle detection phase to

terminate early).

The RPG is still interesting with very large state spaces, when we do not have enough

memory to store the complete transition relation. We can observe, when we compare the

RPG and NO_GRAPH versions, that the time lost re-computing the same transitions

several time may not always be too much of a drawback. We see with the PEG model

that RPG is substantially better than NO_GRAPH, while the opposite is true for the

TK_M model.

A real advantage of the RPG version is to impose no restrictions on the models

that are checked. Several model checking algorithms rely on the fact that the transition

relation needs not be stored. Very often, this optimization is based on the fact that it

is possible to compute the reverse transition relation1. But this is not always practical,

or even possible. This is the case, for example, when model checking Timed Petri

Nets (MF76) using State Class Graphs, a common abstraction for representing a Kripke

Structure with real-time constraints; Given a state class, it is only possible to compute

a superset of the predecessors. More generally, computing the reverse transition relation

is not possible for systems that manipulate data variables. In this case, RPG is the best

solution.

To conclude, both RG and RPG can be useful; RPG being the good choice if we

are limited by the memory space or we expect the speci�cation to be true. Although

RPG may requires a lot more computations, it can be applied on models that are not

tractable with the reverse graph version. For instance, we performed an experiment

with the European Peg-Solitaire game (37 pegs) with our setup (208GB of RAM).

The state space of this model has 3.109 states and 3.1010 transitions. Assuming that

each transition would use 8 bytes of memory to store the reverse relation between two

given vertices, we would need at least 240GB of memory only to store the edges of

this graph. On the opposite, we only need 15GB to store the states and we can check

this example with RPG (with the speci�cation A<> dead) in 19,662 s, divided in 3,817 s

for the exploration phase (less than 20% of the computation time) and 15,845 s for the

cycle detection phase.

1There are also solutions based on recursive traversals of the state graph, but they essentially store

the transition relation in the stack, rather than the heap.
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4.8 Conclusions

In this chapter, we have described some ongoing work concerning parallel model checking

algorithms for �nite state systems. This is, chronologically, the last work that was

performed during this PhD thesis. For this reason, it is also the chapter that has the

most opportunities for future work.

We have based our approach on three main principles:

� Thou shalt not restrict the modelling language: we only need to be able to compute

the successors of a state;

� Thou shalt not restrict the way states are distributed : because we should be able

to reuse the same algorithm with di�erent state space construction methods; and,

�nally

� thou shalt no put restrict the way work is shared among processors: because the

algorithm should play nicely with traditional work-sharing techniques, such as

work-stealing or stack-slicing.

We de�ne two versions of a new algorithm, called MCLCD, that supports speci�ca-

tion expressed in a subset of CTL. Our algorithms are based on a standard, semantic

model checking algorithm for CTL that speci�cally targets parallel, shared memory ma-

chines. We de�ned two versions of the same algorithm: a Reverse Graph (RG) version,

that explicitly stores the transition relation in memory; and a Reverse Parental Graph

(RPG) version, that only requires a �spanning subtree� of the transition relation.

We show that the RG version has a linear time and space complexity (O(S + R)),

while RPG that has time complexity in O(S·· (S −R)) and space complexity in O(S).

In these expressions, S stands for the number of reachable states in the system and R

for the number of transitions. If we interpret these complexity results using only the

number of states�we have R in O(S2)�it is clear that RPG trades computation time

(in O(S3) for RPG against O(S2) for RG) for memory space (in O(S) for RPG against

O(S2) for RG).

De facto, we use the reverse parental graph structure as a mean to �ght the state

explosion problem. In this respect, this approach has a similar impact than algorithmic

techniques like sleep sets (used with partial orders methods), but with the di�erence
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that we do not take into account the structure of the model. Moreover, our approach

is e�ective regardless or the formalism used to model the system.

Our prototype implementation shows promising results for both the RG and RPG

versions of the algorithm. The choice of a �labeling algorithm� based on the out-degree

number has proved to be a good match for shared memory machines and a work stealing

strategy; for instance, we consistently obtained speedups close to linear with an average

e�ciency of 75%. Our experimental results also showed that the RPG version is able

to outperform the RG version for some categories of models.

For future works, we are studying an improved version of our algorithms that sup-

ports the complete set of CTL formulas. Actually, we already have what is needed to

model-check the whole of CTL. Indeed, we can follow the approach proposed by Clarke

for CTL model checking (CES86) and reduce the problem of checking a �nested� for-

mula Φ to the problem of checking |Φ| basic formulas. In this context, |Φ| is an integer

value measuring the complexity of the formula Φ�or the number of �sub-formulas� in

Φ�and basic formulas correspond to the formulas E(φ ∪ ψ) and E2(φ)1. A naive im-

plementation of this approach would be to manage |Φ| copies of our labels (sons and

suc) in parallel, but this could have an adverse e�ect on the memory consumption. At

the moment, we are still considering several strategies for model checking CTL formulas

using a bounded number of labels.

1we do not consider the modality next in this discussion but it is not di�cult to add it in our

framework.
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Model Formula Description Results

Sokoban(SK)

7· 107 states

18· 107 trans.

E<> win The Game has a wining

move

true

E[] - win There is an in�nite match. true

Philosophers

(PH)

14· 107 states

17· 108 trans.

E<> gr1 /\ gl1 A philosopher can eventu-

ally eat.

true

A<> (gr1 /\ gl1) A philosopher will eventu-

ally eat.

false

E[] - (gr1 /\ gl1) A philosopher may never

eat.

true

A[] - ((gr1 /\ gl1)

/\(gr2 /\ gl2))

Two philosophers cannot

both eat at the same time

(mutual exclusion).

true

(wl1 /\ wr1) ==>

(gl1 /\ gr1)

Whenever a philosopher

wants to eat, then eventu-

ally it will eat (starvation)

false

Solitaire

(33 pegs)

(PEG)

18· 107 states

15· 108 trans.

E<>(peg_1 +...

+ peg_33 = 1)

There is a sequence of

moves leading to a win-

ning position (only one

peg left).

true

A<> dead Every sequence of moves

eventually end in a dead

position (no more pegs to

remove).

true

Token Ring

(22 stations)

(TK/TK_M)

23· 107 states

22· 108 trans.

wait_1 ==> cs_1

No process should wait in-

de�nitely to enter its crit-

ical section.

(TK)

false

(TK_M)

true

A[] -(cs_1 + ...

+ cs_22 > 1)

We cannot have more than

one process in critical sec-

tion at any time.

true

E[] -(cs_1 + ...

+ cs_22 = 0)

We can �nd a scenario

where no process enters its

critical section.

true

Figure 4.8: Formulas and Models in our Benchmark.
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Figure 4.9: PH with Reverse algorithm.
Figure 4.10: PH with Parental algorithm.

Figure 4.11: Exploration and cycle detection speedup analysis for PH model.
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Figure 4.12: Peg with Reverse alg. Figure 4.13: Peg with Parental alg.

Figure 4.14: Exploration and cycle detection speedup analysis for Peg model.
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Figure 4.15: TK with Reverse algorithm. Figure 4.16: TK with Parental algorithm.

Figure 4.17: Exploration and cycle detection speedup analysis for TK model.
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Figure 4.18: TK_M with Reverse alg. .
Figure 4.19: TK_M with Parental alg. .

Figure 4.20: Exploration and cycle detection speedup analysis for TK_M model.
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Figure 4.21: Simpli�ed graph for Peg-Solitaire (13 tokens).
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Figure 4.22: Simpli�ed graph for TK_M (2 stations).
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Figure 4.23: PH model.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

reverse

parental

no_graph

reverse

parental

no_graph

E
xe

cu
tio

n 
T

im
e(

s)

 Execution Time for model SOKOBAN 

exploration
cycle detections

E<>E[]

Figure 4.24: SK model.
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Figure 4.25: TK model.
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Figure 4.26: TK_M model.
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Chapter 5

Probabilistic Veri�cation: Bloom

Table

� Beware of bugs in the above code; I have only proved it correct, not tried it.�

Donald Knuth

In this chapter, we describe a new data structure for probabilistic state space gen-

eration. In the context of this work, we use the term probabilistic to mean that, during

the exploration of a system, any given reachable state has a high probability of being

checked by the algorithm. As a consequence, we accept that some reachable state of the

system may not be inspected; but this loss of accuracy is generally counterbalanced by

the fact that probabilistic veri�cation algorithms require less computing space. It does

not solve the problem of state explosion but it helps to �nd errors of models previously

considered intractable due to memory restrictions.

This chapter is organized as follows. Section 5.1 introduces the domain of probabilist

veri�cation of formal models. We de�ne our Bloom Table data structure in Section 5.2.

In Section 5.3, we use our novel data structure to perform the probabilistic state space

generation, we give several experimental results that are compared to the theoretical

analysis introduced in Section 5.2. Finally, in Section 5.4, we conclude this chapter with

a discussion about its advantages and disadvantages.
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5.1 Introduction

This idea of a probabilistic veri�cation algorithm was �rst proposed by Holzmann

(Hol93) in the context of the veri�cation of communication protocols. Basically, the

idea is to store the �hash� of a state (i.e. one or multiple hash keys) instead of the whole

state itself. There are di�erent ways to store these hash keys, each combination of these

choices leading to a di�erent algorithm. Two main categories of choices emerge: storing

hash keys as positions in a vector (as it is the case with Bloom �lter and Holzmann's

supertrace algorithm); and storing hash keys directly as values (as it is the case in the

hash compact algorithm). We have a straightforward gain in memory if the amount

of information needed for encoding the hash keys, say h bits, is less than the size of

representing one state. On the other hand, we may believe that a newly generated state

has already been found if we have a collision; that is two states having similar hash

keys. This is the only source of errors. Therefore, we have a small probability of missing

a state if the size of the state space is small compared to 2h (and provided we use good

hash-functions).

Probabilistic veri�cation has been extensively studied and several solutions has been

proposed. Some of the most successful tools in this domain rely on Bloom �lters, a

celebrated data structure for implementing set membership. This structure delivers

a good trade-o� between state space coverability and memory used. It is a compact

structure for set membership testing where the probability of omission�false positive

results�depends on the number of hash functions used and the ratio of the number

of inserted elements with its dimension. However, high coverability (low probability

of omissions) comes at a price, since it may require the use of a large number of hash

functions. Consequently, it will increase the execution time because it requires the

generation of a larger number of hash values and, by the same way, a larger number of

memory access to the �lter. Another problem with the use of a Bloom Filter is that

the precision of the �lter�and therefore the coverability ratio of the algorithm�may

be inadequately poor if its parameters is not well tuned with respect to the number of

entries.

We propose an optimized data structure based on the notion of Bloom Filter (see the

description of �Bloom �lters� in Section 2.4.1). We present and analyze a new proba-

bilistic veri�cation scheme based on an enriched Bloom Filter, named Bloom Table (BT
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for short). When compared to simpler hash-based techniques, this new data structure

is able to increase the probability of generating the whole state space of a system�what

we call the coverability ratio, or the accuracy of the algorithm�provided when we have

a rough estimate of the size of this state space. If we �x the maximal amount of mem-

ory that can be used during the state space generation, our algorithm based on Bloom

Tables will have a better accuracy, without a signi�cant impact on performances, and

in particular without involving the use of a large number of intermediate hash function.

Our results show that only two hash functions are enough for a probability of omissions

close to 10−5, where a �classical� approach based on Bloom Filters needs around 5�6

hash functions to achieve a similar result.

The main di�erence of our structure, when compared to the classical Bloom Filter,

is that we use a vector of �words� instead of a vector of bits. (We rede�ne the term

word as the vector slot size in bits.) Succinctly, a BT with M slots is associated to a

sequence of k independent hash functions (hi)i∈1..k, with values in 1..M , and another

hash function, key , that computes values of size k.q bits. To insert a value x inside the

BT , the hash-value returned by key(x) is sliced into k sub-words of size q and inserted in

the BT at each position hi(x) for i in 1..k. Hence, what we obtain is a blend between a

Bloom Filter�insertion requires writing in a vector at multiple positions�and a hash-

table�insertion may fail because the necessary slots are �lled with values di�erent than

what is expected. A signi�cant di�erence with hash table, and the main drawback of our

structure, is that we cannot easily adapt the hash table's collision resolution strategies

(such as separate chaining or open addressing) in the case of a failed insertion.

In a Bloom Table, test membership is successful if the concatenation of the k sub-

words found at position hi(x), for i in 1..k, matches key(x). Otherwise the test fails.

Consequently, the BT divides the chances of omissions by a factor of 2k.q when compared

to a Bloom �lter (that is the probability for key(x) to be equal to a random sequence

of k.q bits). Moreover, setting up the data structure is simple. Knowing the amount of

memory available (T ), the size of the �words� in bits (q) and the number of hash keys

(k), the maximal number of elements that can be inserted in the BT is N =
T

k.q
. In

addition, we can adjust the number of bits used per element if there is an estimation

of the number of states to be encoded�since increasing the value of q leads to a better

accuracy.
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5.2 Probabilistic Data Structure

Before de�ning the Bloom Table data structure (section 5.2.2), we compare both Bloom

�lter and Compact hash table data structures in order to show the advantages of our

work.

5.2.1 Bloom �lter and Compact Hash Table

Before de�ning our Bloom Table, we compare the advantages and disadvantages of the

Bloom �lter and Compact Hash Table for implementing (probabilistic) test membership

algorithms. (See the description of �Bloom �lters� and �Compact hash table � data

structures in Section 2.4.1 and Section 2.4.2, respectively.)

We de�ne the notion of �hash signature� of a data structure as the ratio between

the size of the hash computed and the number of bits e�ectively used; it helps us to

de�ne a measure of memory e�ciency because it shows how many bits of information

are implicitly stored per bit used. To compute the hash signature of a structure, we take

the size of the hash function used divided by the number of bits necessary to insert a new

element . The hash signature is a measure of the conciseness (memory space e�ciency)

of the algorithm. Nonetheless, we cannot only rely on this measure to compare data

structures. Indeed, it does not take into account the implicit sharing mechanism that

occurs in structures like the Bloom Filter, where the representation of di�erent states

can have one or more bits in common.

We assume that S is the set of elements that should be inserted in these data

structures, where N is the cardinality of S. We consider: (1) an approach based on a

Bloom �lter of dimension Mb = 2m�a vector of Mb bits�with Mb � N , and (2) a

version of the hash compact algorithm based on a hash table of size Mh = 2h, storing

hash keys encoded using w bits. To compare data structures that have a similar memory

footprint, we suppose that Mb ≈Mh.w.

The supertrace or multihash algorithms o�er a good trade-o� between coverage and

memory used because they have a �hash signature� of size HSBloom Filter = m per bit

used. However, it renders di�cult to decide if a given element is a false positive when

all bits are set because there is no information attached to these bits. By contrast, hash

compact does not promote any kind of memory sharing and delivers a smaller �hash

signature� per bit used. It explicitly assigns a �word� of size w bits for a given state
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in order to reduce the number of false positives. The hash signature in this case is

HSHash Compact = h+w
w , which is the hash computed (h bits) to map the state into the

hash table plus the state hash value (w bits) divided by the w bits used. Comparing

the hash signature of both structures, HSBloom Filter > HSHash Compact , the Bloom

�lter is more memory e�cient than the Compact hash table because it carries more

information per bit used, meantime, Compact hash table has a smaller number of false

positive when a minimum amount of bits is available per state. So, increasing the size

of the value stored may reduces the number of false positives but increases the memory

requirements. Our interpretation of this comparison is that we can obtain a new data

structure (Bloom Table) with an intermediate hash signature between Bloom �lter and

Compact hash table, being more memory e�cient than Compact hash table and having

a smaller rate of false positives than Bloom �lter.

Fig.5.1 compares BT with supertrace (BF), hash compact (HC) and improved hash

compact (HCI) algorithms using the same amount of memory (231 = 268MB) for dif-

ferent number of entries. (See the presentation of BF, HC and HCI at Section 2.4) This

�gure helps us to position our contribution; the hash compact algorithm is e�ective

when the states are stored using at least 64 bits values (3.4 107

231 bits); the improved hash

compact delivers a better result than hash compact but it needs at least 40 bits per

state (5.3 107

231 bits) � conversely, the result is not signi�cant for any number of entries

above 5.3 107 (see improved hash with 32 bits); the classical Bloom �lter with 2 hash

functions is the most memory-e�cient (2 bits per state); the BT data structure, con-

�gured with 2 hash functions with a �word� of 8 bits size, gives the lower probability of

omissions using only (k · q = 2 · 8) 16 bits per state.

5.2.2 Bloom Table

Our Bloom Table is a natural blend of the Bloom �lter and the Compact hash table

data structures. The goal is to keep a good accuracy and a low space complexity in the

cases where the number of elements that need to be inserted is approximately known.

When compared to these two data structures, we conceived BT as an extension of the

Bloom �lter that has a better hash signature than Compact hash table (hash compact)

and a smaller number of false positives than supertrace and multihash while using the

same amount of memory.
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Figure 5.1: Probabilist Algorithms Comparison.

A Bloom Table B is a vector of �words�, instead of bits. We use q to denote the

size (in bits) of each word and M for the size of the vector, also called the dimension

of B. As with Bloom Filters, a BT is also associated to a series of k independent hash

functions ((hi)i∈1..k) with image in 0..M − 1. The values of q,M and k are parameters

of the Bloom Table. Finally, a BT is also associated to a hash function key , with image

in 0..(2k.q − 1). The role of key is to produce values that can be easily transformed

into k di�erent words of size q. The key function will be used to attach small pieces of

information when inserting a new element; to help decrease the rate of false positives.

An empty Bloom Table is represented by a vector with all positions set to 0q, that is

the q-bit word all made of 0's. The operation of inserting a new element x in the Bloom

Table B is simple. We compute the value of key(x) and �slice� the result into k words

of size q, say w1, . . . , wk
1. Next, we insert the word wi at position hi(x) in the vector

B for each index i in 1..k. We only insert a word at a position where the vector was

empty�its value is equal to 0q�so as to never overwrite previous information. Another

successful case is if the value found in the vector�the resident value�is already equal

to wi. We say that we have a partial collision. The insertion procedure is deemed

successful if all k pieces are inserted. Otherwise, we say that the insertion is incomplete.

1We assume that each of these words is di�erent from 0q.
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The membership test follows a similar logic. To test if an element x is in B, we

collect the words at position h1(x), ..., hk(x) and compare their concatenation to the

value of key(x). The test is successful if the two values are equal.

We consider di�erent cases of insertions and tests. This distinction is important

since we will obtain di�erent probabilities of omissions depending on the number of

�words� that were successfully inserted. There are four possible status for insertion:

� Complete: when all slots are set, at least one word is inserted, and all the resident

values match;

� (Possible) False Positive: when all slots are already set and all the resident values

match. This case is similar to the omission mechanism that we described with

Bloom Filter.

� Incomplete: when at least one slot could not be set and the resident value do not

match;

� Not Possible: when all slots are already set and none of the resident values match;

In Figure 5.2 we depict the insertion operation for three elements (x, y and z in this

order) in a Bloom Table with (k = 2) two independent hash function h1 and h2. We also

test the membership of an element (f). For the other parameters of the BT , we have

a dimension M = 16 and a size of words q = 3 bits. For convenience, we use an octal

notation for the words inserted in B so, for instance, 6 stands for the word 110 and 23

is the concatenation of the two q-bits words 010 and 011. The �gure shows a successful

insertion for an element x such that key(x) = 15, h1(x) = 3 and h2(x) = 9. It also

shows two unsuccessful tests: the insertion of y is incomplete because there is at least

one slot that could not be inserted (w(y)1 = 2 and the value of B at position h1(y) = 9

is 5); the insertion of z is not possible because none of the slots can be inserted. Finally,

the element f is cataloged as a false positive because all slots are already set and all

the values match.

In our implementation of Bloom Table�used for the probabilistic algorithm de�ned

in Section 5.3�we consider that elements de�ned as incomplete or not possible are not

part of the set encoded by the BT . Instead, we add a secondary data structure to

the BT to store these �failed insertions�. These elements are stored separately not to

degrade the probability of BT due to their inability to insert the complete sliced key.

133



5. PROBABILISTIC VERIFICATION: BLOOM TABLE

0   0  1   0   0   0   0   0   5   0   0   0   0   0   0   3

1     2      3     4      5      6      7      8      9     10    11    12    13   14    15    16

(Incomplete)

(False Positive)

(Complete)

(Not Possible)

h(z)[     ]h1(z) = 3
h2(z) = 9
key(z) = 56

h(f)[     ]h1(f )  = 9
h2(f )  = 16
key(f)  = 53

h(y)[     ]h1(y)  = 9
h2(y)  = 16
key(y)  = 23

h(x)[     ]h1(x)  = 3
h2(x)  = 9
key(x)  = 15

Figure 5.2: Illustration of the insertion operation on a Bloom Table.

This second data structure�or over�ow table�may be probabilistic or �exact�. We

could also choose a cache table instead. In the context of this work, we choose an exact

one (Hash Table) in order to better analyze the results of our algorithm. Even though

these elements are stored outside of the Bloom Table, it is not problematic. For every

failed membership test (when all slots are set and at least one slot does not match),

we forward the membership query to the over�ow table. Figure 5.3 gives a simple

�owchart representing the operations of a BT in conjunction with a second storage

device for incomplete insertion and partial match tests.

Bloom Table 

Overf low
      Table

S

Not 
   Complete

Insert ion of an element

Insertion 
    Complete? Bloom Table 

Overf low
      Table

S

Partial 
     Match

Membership Test

Match 
   Test?

Figure 5.3: Bloom Table and second storage coupling.

Our motivation for not considering incomplete elements as part of the BT is to

decrease the probability of omissions. For instance, assume we accept elements with only

one (sub-word) failed insertion out of k, then the probability of omissions is multiplied

by a factor of approximately k.2q. Additionally, the size of the over�ow table can be

kept to a small fraction of the size of the BT when the accuracy of the BT is good.

In our experiments, for instance, we show that with a right choice of parameters, the
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size of this over�ow table is less than 1% of the size of the BT . In the next section, we

present a simple extension to Bloom Table that can help reduce the size of the over�ow

table.

Bloom Table with Multiple Possible Insertions

We want to insert as many as possible elements in the BT in order to avoid �lling

the over�ow table. To this end, we extend the operations of the Bloom Table using a

mechanism similar to the open addressing strategy used in some hash tables implemen-

tations. The idea is to allow multiple attempts for �nding empty slots in the vector

when inserting a new element. At each attempt, we try to insert the word at a new

position. We use f to denote the maximum number of attempts that are allowed.

Our strategy is simple, we associate to each one of the k words a set of f independent

hash functions, (hji )i∈1..k,j∈1..f . The �basic� Bloom Table described in the previous

section corresponds to the case where f = 0.

In a BT with f possible insertions, B, the operation of inserting a new element x

is as follows. We compute the tuple of words (w1, . . . , wk) using the key function. For

insertion of the word wi, we try each slot in B at the positions given by hji (x) for all

index j in 1..f in this order. We write wi in the �rst slot that is empty (whose value is

0q) or whose resident value is wi. The insertion will fail if none of these f position is

eligible.

With this extension, each �word� has f chances to �nd an empty slot or a match.

This strategy helps to increase the number of elements inserted completely, that is,

elements whose key can be completely reconstructed from the BT . Figure 5.4 shows

the complete insertion of two elements, y and z, in a BT with f = 2. These two

elements were classi�ed as incomplete or not possible in Figure 5.2 because some (or

all) of the �words� in key(y) = {w1 = 2, w2 = 3} and key(z) = {w1 = 5, w2 = 6}
not match. From Figure 5.4, the insertion of the element y is performed at the second

attempt (h1·2(y) = 11) of the �rst piece w1 = 2 of its key (key(y)) because it had failed

to insert it at the slot h1·1(y) = 9. The insertion of the element z is analogous, it is

successful after one additional attempt for each piece w1 and w2. Later, at Section 5.3,

our experimental results show that the portion of rejected elements (stored outside) is

smaller than 1% of the total of inserted elements.
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Figure 5.4: Insertion operation on a Bloom Table with multiple possible insertions.

5.2.2.1 Probability of omissions

In this section, we study the probability of a false positive in a Bloom Table. We

consider the case of inserting a random element, say x, in a Bloom Table where N

elements have already been inserted. The goal is to provide an analytical expression,

PBT , that approximate the probability for the insertion to report that x is a false

positive. (Note that we are not able to identify if x is an omission or an element that

was already inserted.) The probability PBT will be a function of N = 2n, the dimension

of the table M = 2m, the number of hash functions k, the number of possible attempts

f , and the word size q. Later, at Section 5.3, we show the coherence of our analysis by

comparing with actual results obtained from our experiments.

First, we consider the case of the �basic� Bloom Table (f = 0). An element x is a

false positive in the Bloom Table B if the following two conditions are simultaneously

true: (1) for each index i in 1..k, the BT has a resident value at position hi(x) (that

is di�erent from 0q); and (2) the value of B[hi(x)] is equal to wi (using the same

notations than in Section 5.2.2). Therefore, PBT is the product of two probabilities:

(1) the probability that the k slots related to x have already been written, which is the

probability of omission for a Bloom Filter (PBloom) that we computed in Section 2.4.1;

and (2) the probability for k random words of q bits length to be equal to some given

tuple w1, . . . , wk, that is (1/2q−1)k. (This last probability is not simply 2−q.k, since we

need to rule out the case of a random word being equal to 0q.) Like in the case of

Bloom �lters, we can safely assume that M � 1 (the Bloom Table is su�ciently large)
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and that the inequality k.N < M is valid. In this case, we have

PBT = PBloom .(1/2q−1)k

≈ (1− e−
k.N
M )k.(1/2q−1)k

≈

(
(1− e−

k.N
M )

2q − 1

)
k

The formula giving the probability of false positive for a Bloom Table reveals the

dual behavior of the data structure. In the case q = 1, we �nd that the BT has the

same behavior than a Bloom Filter. On the other hand, if q > 1 and all k slots are set,

we �nd that the behavior of the Bloom Table is close to a Compact hash table, with an

omission rate of approximately 2−q.k.

Now, we consider our technique of multiple insertions to avoid as much as possible

elements from being stored outside. (Remind that we use a kind of open addressing

strategy but limited to f attempts per slot.) So, every time a slot is already taken (not

empty) and the residual value does not match, BT tries another slot up to f chances.

Before continuing, it is reasonable to assume that these f chances are in fact mutually

exclusive events, as long as no new slot is set. From this assumption, we de�ne an upper

bound probability of omissions for the non-ideal BT . With this in mind, we de�ne two

auxiliary variables: β and α. β is the probability to �nd a non empty slot after the

insertion of N elements (β = 1− e
−k·N

M ) and 1− α is the probability that the residual

value does not match (1 − 1
2q = 1 − α). Considering that an attempt to insert a slot

fails if and only if it �nds a non empty slot whose value does not match, the probability

of a given chance i (P (fi)) to fail is

α = 1
2q−1

β = 1− e
−k·N

M .
P (fi) = β.(1− α)

P (f1 ∪ f2 ∪ · · · ∪ fn) = P (f1) + P (f2) + · · ·+ P (fn)

Hence, the upper bound probability of omissions PBT consists in f−1 failed attempts

(β.(1 − α)) to �nd a match before the f th one, which is a match (β.1). Taking into

account that we had a failed match (1− α) before we try the f chances, we have:

PBT ≈ PBloom .

(
(1− α) + (f − 1).(β.(1− α)) + β

α

)k
Without loss of generality, we assume 1−α ≈ 1. Consequently, we get the following

probability for BT
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1− α ≈ 1

PBT < PBloom .

(
1 + (f − 1).(β) + β

α

)k
PBT < PBloom .

(
1 + f.(1− e−

k.N
M )

2q − 1

)k
which is the rate of omissions for BT using k sets of f hash functions each one.

Now, we depict a series of �gures to present a graphical analysis of the probability

PBT , and also, to put in evidence how it is a�ected by the parameters k, q and f . For all

of these �gures, we used a theoretical BT of size M = 228, words of q = 8 bits size and

N = 107 elements. This setup is not a coincidence, we decided for these values because

they are similar to one of the experiments we present later at Section 5.3. These �gures

help us to establish a comparison between our theoretical and empirical values.
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Figure 5.5: Bloom Table Analysis for di�erent number of hash functions k.

Figure 5.5 compares the probability of omissions for the ideal (f = 0) and the non

ideal BT varying the number of hash functions k (or sets). For the non-ideal BT , we

use up to 9 extra chances (f = 9). We also depict the probability for the Bloom Filter

using the same amount of memory � a theoretical Bloom Filter of size M = 231. Note

that increasing the number of keys (k) improves the probability of omissions, but on

the other hand, the di�erence between the ideal and the non-ideal BT becomes more

signi�cant due to our strategy of f chances. Indeed, a good choice for f and k is a trade
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o� between a low probability of omissions in conjunction with a low rate of rejected

elements (elements forward to the over�ow table).

P(Bloom Table) < P(Bloom Filter)
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Figure 5.6: Comparison between Bloom Table and Bloom Filter for di�erent number of

hash functions k.

Figure 5.6 presents a theoretical comparison between a classical Bloom Filter and

a non ideal BT with f = 9 chances; the highlighted area illustrates the region where

BT delivers a smaller probability of omissions using fewer hash functions. Later, on

Section 5.3, our results con�rm this theoretical comparison and show that only two hash

functions are enough for a probability of omissions closer to 10−5; a classical �lter needs

around 5�6 hash functions to achieve the same result.

Figure 5.7 and Figure 5.8 clarify the relationship between k, f and q. These �gures

highlight some curves which have the same probability but with di�erent parameters.

Figure5.7 show that the probability of omission degrades with f . Indeed, the number

of f chances must be carefully chosen not to signi�cantly worsen the results. On the

other hand, higher values for the parameter f avoids the undesirable problem of rejected

elements. At Section 5.3, we try three di�erent values for f (4, 9 and 14) in order to

show how this parameter can in�uence the behavior of the structure in general.

Figure 5.8 presents the relation between the number of keys (k) and the size of the

word in bits (q). Increasing the size of the word decreases the probability of omissions

because it reduces the chances of collisions, on the other hand, it increases the number

of bits used per element. In our experiments, we choose to use words of one byte size

(q = 8) for matters of simplicity.

139



5. PROBABILISTIC VERIFICATION: BLOOM TABLE

Analysis f vs k

Probabilty
  0.0001
   1e-06
   1e-08
   1e-10
   1e-12

 1  2  3  4  5  6

Number of keys k

 1

 5

 25

N
um

be
r 

of
 c

ha
nc

es
 f

Figure 5.7: Relation k and f .
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Figure 5.8: Relation k and q.

5.3 Probabilistic Veri�cation

In this section, we go back to our initial motivation, that is the formal veri�cation of

systems. We present an application of Bloom Tables as a data structure in a probabilistic

veri�cation algorithm. The algorithm is based on the algorithm for exhaustive state

space exploration we presented at Section 2.3.3. It starts from the initial state (S :=

Initial;) by exploring until saturation (for each a ∈ Enabled(s) do) all possible successor
states (snew := NewState(s, a)). Every new state found (if snew /∈ S ) is stored in the

state graph (S := S∪ {nnew}) with their input arcs (s ⇁a snew). So, the key point

for probabilistic veri�cation is the data structure used to encode the approximate set

of generated states.

Local Shared

Private Work Stack

Pr. 1
P1 Shared Stack P2 Shared Stack

Hash Table

Second Storage

BLOOM TABLE

Private Work Stack

Pr. 2

Figure 5.9: Parallel probabilistic veri�cation algorithm overview.

Following the guidelines of this thesis, we implemented a parallel version of this

algorithm in order to take bene�ts from the performance gain o�ered by multiprocessor
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architectures. The parallel implementation is obtained by using a thread-safe concurrent

version of our Bloom Table, to store the visited states, and the �work-stealing� strategy

to distribute work among the processors. Our parallel implementation is based on our

work for parallel exhaustive state space generation (see chapter 3). Like we mentioned

before, in this work we decided for a shared hash table as the over�ow table in order to

best analyze the results. Figure 5.9 depicts an abstract view of the algorithm design.

Experimental Results

We implemented our algorithm as part of our prototype model checker called Mer-

cury (Appendix B). In brief, we used the C language with Pthreads (But97) for

concurrency and the Hoard Library (BMBW00) for parallel memory allocation. We

developed our own library for the Bloom Table with support for concurrent insertions

and we used Bob Jenkins's hash function (Jen97) to generate hash keys from states.

The experimental results presented here are obtained using a Sun Fire x4600 M2 Server,

con�gured with 8 dual core opteron processors and 208GB of RAM memory, running

the Solaris 10 operating system.

For our experiments, we used the same set of models we experimented with our

parallel state space construction algorithm (Section 3.3.3). We have three classical ex-

amples: Dining Philosophers (PH); Flexible Manufacturing System (FMS); and Kanban

� taken from (MC99) � together with 5 Puzzles models: Peg-Solitaire (Peg); Sokoban;

Hanoi; Sam Lloyd's puzzle (Fifteen); and 2D Toads and Frogs puzzle (Frog) � taken

from the BEEM database (Pel07). All these examples are based on �nite state systems

modeled using Petri Nets (Mur89).

For each one of the models selected for our benchmark, we performed a comparison

experiment with a Bloom Filter using the same amount of memory used by the Bloom

Table where MBF = q ·MBT slots. For the Bloom �lter experiments, we tried three

di�erent setups for the number of hash functions k; we performed the supertrace (k = 2)

for performance comparison; we also experimented k = 5 and k = 8 for state space

coverage comparison. For the Bloom Table, we used slots of 8 bits size (q = 8) and

di�erent setups for m, k and f ; we performed testes using k = {2, 3} and f = {4, 9, 14}
to observe the relation between state space coverage and rejected elements from BT ,

which are the elements stored outside of BT .
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The complete benchmark is given at Appendix A. We carried out several experiments

to analyze the rate of omissions (pomissions = 1− States Found
States Total ), the execution time and

the the rate of rejected elements (States RejectedStates Total ). In brief, Bloom Table delivers smaller

probabilities of false positive in a shorter execution time when compared to the Bloom

�lter. Our strategy of multiples insertion f signi�cantly reduces the number of elements

inserted at the over�ow table (rejected elements). Below, we give a detailed presentation

for two experiments among them (Sokoban and Peg-Solitaire).

Legend

k number of keys

m
Filter size in bits (|M | = 2m)

Om. States
Rate of omitted states

Om = (1− States Found
States Total )

T Time in seconds

f number of chances

Rej.
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Rej = (States RejectedStates Total )
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a)Bloom �lter Results. b)Bloom Table Results.

Figure 5.10: Bloom �lter and Bloom Table Results.

Figure 5.10.a) depicts the experiments for Sokoban and Solitaire models using the

Bloom �lter data structure. For each model, we tried di�erent setups (k and M) with

the purpose to achieve high coverage (pomissions ≈ 10−5). The coverage is improved

increasing the number of independent hash keys (k) used by the �lter. Although it

allows to omit less states without increasing the use of memory, it impacts signi�cantly

on the time spent by the algorithm to explore �all possible states�. For instance, the

experiments running with k = 8 for both models took practically twice of the time when
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5.3 Probabilistic Veri�cation

using k = 2. Moreover, we observe that high coverability (10−5) is achieved with at

least 5 keys.

Figure 5.10.b) presents the results for the same experiments but using our Bloom

Table. We performed di�erent experiments for each model in order to show the impact

of k and f over pomissions(Om. States) and the memory used (M · q). The number of

keys k has a factual impact over the probability of omissions. From k = 2 to k = 3,

we can notice the slight improvement of pomissions from 10−6 to 10−7, respectively.

However, the number of elements rejected by BT also increases, the rate of elements

stored outside goes from 1.5% to 13% of the complete state space when f = 4; these

are the elements forward to the over�ow table and which are not considered as part of

BT. This increase on the number of rejected elements is due to the load factor ld, which

goes from 0.52 to 0.78. Indeed, only 4 chances are not enough to �nd an empty slot.

The main weakness of our approach is the number of rejected elements. They have

a negative impact over the memory used because it requires additional memory space

to store these states. From 5.10, we performed experiments using di�erent values for

f (4, 9 and 14) in order to keep this weakness at an acceptable level. The increase in

the number of chances from 4 to 9, 14 has a positive impact on the number of elements

encoded by BT . For instance, the number of reject elements for the Sokoban model

using f = 9, k = 2 and M = 228 is almost negligible (Rej = 0.04%). In addition, the

number of omitted states (pomissions) remained virtually unchanged; there is a small

depreciation, but the order remains the same (10−6).

Figures 5.12 and 5.11 illustrates the results we presented at Figure 5.10 for the

Sokoban model. Figure 5.11 depicts the relation between the probability of omission

with the execution time. The lines from this �gure highlight experiments that use the

same con�guration, i.e., the same dimension (m,M = 2m) and, in the case of BT , the

same number of chances f . The number of hash keys k used for each experiment is

given close to the concerning point. We tried two setups for the BT size m; for the

experiments performed using mBT = 228, we have a load factor of ld = 0.52 when k = 2

and of 0.78 when k = 3; for the experiments performed using mBT = 229, we have a

load factor of 0.26 when k = 2 and of ld = 0.39 when k = 3. For the Bloom �lter, we

also experimented two setups, mBF = 31 and mBF = 32. For the remind of this section,

MBF = 2mBF stands for the Bloom �lter size and MBT = 2mBT for the BT size.
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5. PROBABILISTIC VERIFICATION: BLOOM TABLE

The results reported at Figure 5.11 are consistent with the theoretical analysis we

presented in Figure 5.6, where we showed that the Bloom �lter would need at least

5�6 hash keys to achieve a similar probability. For instance, note that all Bloom �lter

results with mBF = 31 and k 6 5 are above the BT experiments that used the same

amount of memory (mBT = 28).

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 80  100  120  140  160  180  200  220

P
ro

ba
bi

lit
y 

of
 o

m
is

si
on

s

Execution Time(s)

Probability vs Execution Time(s)

Bloom Table m=28 f=4

2

3

Bloom Table m=28 f=9

2

3

Bloom Table m=28 f=14

2

3

Bloom Table m=29 f=4

2

3

Bloom Table m=29 f=9

2

3

Bloom Table m=29 f=14

2

3

Bloom Filter m=31

2

5

8

Bloom Filter m=32

2

5

8

Figure 5.11: Bloom �lter and Bloom Table Results for Sokoban model.

Concerning the number of rejected elements, Figure 5.12 gives an overview for the

experiment with the Sokoban model. The rate of rejected elements decreases signi�-

cantly with the increase of f . Regarding the di�erence between the experiments using

2 or 3 keys (k), it is a consequence of the load factor, i.e., the ratio between the number

of elements inserted and the number of available places.

Figures 5.13 and 5.14 depicts the same analysis but for the Solitaire model. We tried

again two setups for the BT sizem; for the experiments performed usingmBT = 229, we

have a load factor of ld = 0.67 when k = 2 and of ≈ 1 when k = 3; for the experiments

performed using mBT = 230, we have a load factor of 0.33 when k = 2 and of ld = 0.50

when k = 3. The number of rejected elements are smaller than 10% whenever ld < 0.7.

For the same load factor, these number of rejected elements is smaller than 1% when

k = 2 and f = 9 or f = 14. Furthermore, excepted when ld ≈ 1, the experiments
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Figure 5.12: Number of rejected elements for Sokoban model.
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Figure 5.14: Number of rejected elements for Solitaire model.

with f = 9 and f = 14 reduced the number of rejected elements without degrade the

probability of omissions. As might be expected, the strategy to increase the number of

chances f does not signi�cantly improve the number of elements encoded at BT for the

experiments with high load factors (ld ≈ 1).
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Figure 5.15: Probability vs Number of Keys for Peg and Sokoban models.

Figure 5.15 presents graphically the experiments performed for the Solitaire and

Sokoban models using the Bloom Table. It compares the obtained experimental results
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with the theoretical probability (PBT ) presented in section 5.2.2.1. From these graphs,

the values obtained for the experiments using k = 3 and f = {4, 9, 14} are close to the

theoretical ones, by contrast, there is almost no di�erence for the experiments using

k = 2. Indeed, our theoretical analysis de�nes an upper bound when the load factor

between the number of used and available slots is heavily loaded. For such a case, the

nth element inserted will certainly need to try all f chances until it �nds an appropriate

slot. As an illustration, the Solitaire model with k = 2 uses a total of 30.107 slots (if

all states are inserted) among |MBT | = 229 slots, which means a load factor of 0.69; for

k = 3 we have a load factor close to 1. In addition, heavy load factor also a�ects the

rate of rejected elements.

Figure 5.16: Bloom �lter vs Bloom Table Execution Pro�le Overview.

Finally, we present a brief comparison of the execution pro�le of both data struc-

tures. Figure 5.16 depicts the execution pro�le (in seconds) for both Bloom �lter (k = 8

andmBF = 31) and Bloom Table (k = 2,mBT = 28 and f = 14) for the Sokoban model.

We present the time spent divided into four main groups: search and insert operations

over the data structure, selection of enabled transitions, operation to �re a transition

and others. BT spends fourth of the time needed by the Bloom �lter to execute the

operations of searching and inserting.

5.4 Conclusions

In this chapter, we presented and analyzed a novel probabilistic data structure for set

encoding inspired from the Bloom �lter data structure. The main di�erence of our

structure is that we use a vector of small pieces (�words�) of information instead of
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bits. This small modi�cation allowed us to enhance the probability of the Bloom Table

without making use of a large number of keys.

The empirical results we presented in this chapter demonstrated that our data struc-

ture performs well and high coverage is achieved without make use of several hash

functions, indeed only two are enough. We also show that our strategy of f �chances�

can successfully decrease the number of rejected elements allowing us to encode more

elements at BT . For instance, less than 1% of elements are stored at the over�ow table

when BT is set with nine additional chances (f = 9). In addition, when compared

to the Bloom �lter, our data structure achieved similar or better results in a shorter

execution time, up to 50% better.

Concerning the use of an over�ow table to store the elements rejected by BT , like

we mentioned, we decided for an hash table (elements are stored in full size) in order

to better analyze our results. However, nothing prevents us from replacing the over�ow

table with a probabilistic structure or a cache table or even a disk based database (since

less than 1% of the membership tests are forward to the over�ow table).

For future works, we want to investigate the probabilistic veri�cation of more com-

plex formulas, such as safety and liveness formulas. The probabilistic veri�cation tool

that we implemented in this PHD thesis supports only reachability formulas. We be-

lieve that it is interesting to use probabilistic tools for �nding errors and we encourage

its use in premature stages of the development cycle of critical system. A possible suite

of tests could rely on probabilistic veri�cation in the early stages and exhaustive in

later stage. The probabilistic veri�cations tests performed early would not require deep

levels of abstraction to reduce the number of states due to their e�ciency in terms of

memory. Abstractions would be necessary for the exhaustive tests performed later in

the development cycle.
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Chapter 6

Conclusions

� We can only see a short distance ahead, but we can see plenty there that needs to be

done.�

Alan Turing

This thesis describes our e�orts to perform model checking of �nite systems on

multiprocessors and multi-core machines. We proposed new data structures and novel

algorithms that are applied to three main application domains: parallel state space

construction, parallel model checking and probabilistic veri�cation.

Obviously, we want to bene�t from the increased computing power brought by multi-

core machines. Moreover, the transition to concurrent model checking algorithms seems

unavoidable. There is no doubt that all model checking tools will run on multi-core

computers; for the simple reason that every new computer�of reasonable power�is

equipped with multi-core processors1.

Apart from the gain in performance, we are also very much interested in the huge

amount of fast-access memory provided by current multiprocessor servers; like the one

used in our experiments. Recall that all the experimental results presented in this

manuscript have been performed on a server with 208GB of RAM�we a�ectionately

called the machine Brutus�quite an increase compared to the 8�32M available to the

�rst model checking tools in the 1980s.

In Chapter 3 of this thesis, we describe new algorithms to perform exhaustive,

explicit, state space construction in parallel. Our work is build on a unique design,

1Actually, we already have users asking for a concurrent version of the model checking toolbox

tina (BB04).
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that is based on a dynamic distribution of states and the use of lock-less concurrent

data structures. Chapters 4 and 5 describe new approaches to perform parallel model

checking and probabilistic veri�cation that are built on top of this parallel state space

generation infrastructure.

We see exhaustive model checking and probabilistic veri�cation as two complemen-

tary approaches. On one hand, probabilistic methods should be considered whenever

we try to �nd counter-examples to a speci�cation. On the other hand, our exhaustive

approach is more appropriate in the last phases of the conception of (the model of) a

system, or when we need to check complex speci�cations. For this reason, we optimized

our model checking algorithm, called MCLCD, for the case where the speci�cation is

true.

We propose memory e�cient algorithms for the two approaches. Indeed, we believe

that memory is the most important resource for (explicit) model checking. This is the

reason why we put a lot of e�orts on reducing the memory usage; even if it means

trading memory space for computation time. For example, we de�ne a version of our

MCLCD algorithm that do not require to store the transition relation of a system. We

believe that the solution we propose in this context is original.

Likewise, we de�ne a new data structure for probabilistic veri�cation, called BT ,

that requires only 2 bytes per state in average, while still o�ering a very good coverage.

(This data structure has also been designed in order to be �friendly� for concurrent

programming). For example, with BT , we have a 10−5 probability of missing a state in

a system with one billion states and using 2.5GB of memory. It is not possible to reach

the same accuracy using the �hash-compact� approach and the same amount of mem-

ory. Similarly, a �Bloom Filter� approach using two hash-keys will have an accuracy in

the order of 10−2 − −10−3 with the same setup. More than 5 hash keys are necessary

to obtain an accuracy of 10−5 but, in this case, the computation is slower than with BT .

Next, we summarize the contributions of this thesis.

[Parallel State Space Construction]

In Chapter 3, we de�ne two new algorithms for parallel state space construction. We

believe that our contributions are of interests in several domains. In the formal veri�-

cation domain, we de�ne new algorithms for parallel state space construction. In the
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parallel computing domain, we propose new lock-less data structures for concurrent

hash maps.

Our approach is based on the use of distributed, local dictionaries (for storing states)

and a probabilistic data structure (e.g. Bloom Filters) for dynamically assigning the

states to a process.

We propose two algorithms: a general (speculative) algorithm�where collisions are

solved using inter-process synchronization�and a mixed algorithm, where collisions are

solved on-the-�y. Our experimental results show that the mixed version is the best

choice in practice.

The main innovation is the de�nition of a data structure, named Localization Table

(LT ), that is used to coordinate a network of local hash table in order to obtain an

e�cient concurrent hash map.

We observe very good speedups in our experimental results. The speedup for the

mixed algorithm is consistently better than with other parallel algorithms. We also show

that our implementation performs well when compared with related tools; we show that,

in our algorithm, it is better to use the localization table than the concurrent hash map

provided by Intel-TBB (an industrial strength lock-less hash table).

We believe that our Localization Table can be of great interest outside of the domain

of parallel model checking. For this reason, we are planning to provide a functional API

of our distributed hash table�completely self contained�that could be used in other

situations and that will require only minimal con�guration.

[Parallel Model Checking]

In Chapter 4 we de�ne an algorithm for model checking CTL formulas. We choose

a semantic-based algorithm�adapted for concurrent, shared memory architectures�

because we believe that it is more appropriate for a parallel algorithm with dynamic

work-load strategies.

We have two versions of this algorithm: a �rst version based on a reverse traversal

of the state graph, called RG, where we need to explicitly store the transitions of the

system; and a second version, RPG, where we only need to store a spanning subgraph.

The RG version has a linear time and space complexity, in O(S + R) (where S is the

number of states and R the number of transitions), while the RPG version has a time

complexity in O(S · (R − S)) and a space complexity in O(S). The main advantage of
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the RPG version is to provide an algorithm that is e�cient in memory and independent

of the choice of states classes abstraction.

Our prototype implementation shows promising results for both the RG and RPG

versions of the algorithm. The choice of a �labeling algorithm� has proved to be a

good match for shared memory machines and a work stealing strategy; for instance, we

consistently obtained speedups close to linear with an average e�ciency of 75%. Our

results also show that the RPG algorithm is able to match the performance of RG for

some type of models.

We believe that the two versions of the algorithm are complementary. RG is the best

choice whenever there is enough memory to store the complete state graph, otherwise,

RPG should be used despite its higher time complexity.

For future works, we are studying an improved version of our algorithms that sup-

ports the complete set of CTL formulas.

[Probabilistic Veri�cation]

The last technical chapter of this thesis, chapter 5, is dedicated to a new approach for

probabilistic veri�cation. We de�ne a new data structure inspired from our work on the

localization table and compare it with the Bloom Filter and Compact Hash Table data

structures. The main di�erence of our structure, when compared to the classical Bloom

Filter, is that we use a vector of �w-bits words� instead of a vector of bits.

When compared to simpler hash-based techniques, our Bloom Table is able to in-

crease the probability of generating the whole state space of a system provided when

we have a rough estimate of the size of this state space.

Our experimental results show that our data structure performs well and results

in a good coverage of the state space without requiring too many operations on hash

functions. (In our experiments, 2 hash-functions are generally enough.) Additionally,

when compared to the use of a Bloom Filter, our data structure achieve similar or better

results with a shorter execution time, sometimes by a factor of 2.

For future works, we want to investigate the probabilistic veri�cation of more com-

plex formulas, such as safety and liveness formulas. The idea is to be able to use

probabilistic veri�cation methods, at the same time than exhaustive model checking
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algorithm, without any restriction on the speci�cation. Probabilistic veri�cation tech-

niques will be used early in the development cycle, while model checking will be use to

�certify� the absence of errors at the model-level
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Appendix A

Experiments

This appendix presents all the experiments we performed for probabilistic veri�cation

and parallel state space construction. Section A.1 describes the set of models used in

our benchmarks. Section A.2 presents all the experiments we performed for parallel

state space construction (see Chapter 3). In Section A.3, we give all the experiments

we performed for probabilistic veri�cation (see Chapter 5).

A.1 Models

The �nite state systems chosen for our benchmarks were taken from two sources. We

experiment three classical examples of Petri Nets from (MC99) together with 5 Puzzles

models from the BEEM database (Pel07). Figure A.1 presents all selected models

highlighting their respective version. The �rst column illustrates the abbreviations used

fallowed by a brief description. The version chosen for each model was motivated by

the number of states, we selected models with less than 5.108 states. The last columns

gives the source from where each model was extracted.

A.2 Parallel State Space Construction

In Chapter 3, we presented two algorithms for parallel state space construction. In

Section 3.4, we presented a comparison of our mixed variant with other algorithms

proposed on the literature. We reported the average results we obtained on our set of

experiments. Below, we depict in details each experiment giving the absolute speedup,

the physical distribution of states and the execution time between 6 to 16 processors.
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Model Description Parameter Source

States

PH Dining 13 subnets (MC99)

14.107 Philosophers

FMS Flexible initial marking (MC99)

24.107 Manufacturing System weight 8

Kanban Kanban System initial marking (MC99)

38.107 weight 9

PEG Peg-Solitaire version=2, (Pel07)

18.107 Game crossways=1

Sokoban Computer version=2 (Pel07)

7.107 Maze Game

Hanoi Tower of n=17 (Pel07)

38.107 Hanoi puzzle

Fifteen Sam Lloyd's cols=4, (Pel07)

23.107 �fteen puzzle rows=3

Frog 2D Toads and n=6, (Pel07)

53.107 Frogs puzzle m=5

Figure A.1: Benchmark Examples.
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Figure A.2: Parallel State Space Construction for the Sokoban and Peg-Solitaire models.
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Fifteen FMS
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Figure A.3: Parallel State Space Construction for the Fifteen and FMS models.
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Figure A.4: Parallel State Space Construction for the Frog and Hanoi models.
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Figure A.5: Parallel State Space Construction for the Kanban and PH models.
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A.3 Probabilistic Veri�cation

In Chapter 5 we introduced and analyzed a new probabilistic data structure called

Bloom Table. In this section, we report the set of experiments we performed in the

context of probabilistic veri�cation. For each model, we performed a comparison exper-

iment with a Bloom Filter using the same amount of memory used by the Bloom Table

where MBF = q ·MBT slots. For the Bloom �lter experiments, we tried three di�erent

setups for the number of hash functions k; we performed the supertrace (k = 2) for

performance comparison; we also experimented k = 5 and k = 8 for state space cover-

age comparison. For the Bloom Table, we tried several experiments in order to analyze

the impact of di�erent load factors (m) over the parameters k and f . We used slots

of 8 bits size (q = 8) and di�erent setups for m, k and f ; we performed testes using

k = {2, 3} and f = {4, 9, 14}.

For these experiments, the load factor is obtained by the equation

ld =
k.n

m

where k is the number of keys, n the number of states inserted and m the number

of available slots.
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Figure A.6: Probability vs Execution Time.
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Figure A.6 compiles together all the experiments we performed (each di�erent color

represents an example) and compares the results achieved using the Bloom �lter (tri-

angles) and the Bloom Table (dot circles) data structures. This �gure shows the rate

of omissions (pomissions = 1− States Found
States Total ) and the execution time for each experiment.

We observe the predominance of Bloom �lter results (triangles) in the upper right, in

contrast with the Bloom Table results (dot circles) on the bottom left. This �gure shows

brie�y that, for the our benchmark, Bloom Table delivers smaller probability of false

positive in a shorter execution time. Later, we give a more detailed presentation for

each experiment.
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Figure A.7: Probability vs Rejected States.

Figure A.7 depicts the relation among the parameter f = {4, 9, 14} (number of

chances), the rate of rejected elements (States RejectedStates Total ) and the probability to omit a

single state for the experiments we performed. The experiments with f = 9 and f = 14

are more predominant on the left side. So, the parameter f allows BT to encode

more elements and, by consequence, less elements are inserted into the over�ow table.

The experiments placed at the upper right corner show a worsening of their relative

probabilities with the increase of the number of chances because of the load factor

between BT and the number of entries, more explanations are given below (Figure

5.10).
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� Fifteen: Figures A.8 and A.9 depicts the probabilistic experiments for the Fif-

teen model. We tried two setups for the BT sizem; for the experiments performed

using m = 229, we have a load factor of ld = 0.85 when k = 2 and of ≈ 1 when

k = 3; for the experiments performed using m = 230, we have a load factor of

0.42 when k = 2 and of ld = 0.64 when k = 3. The number of rejected elements

are smaller than 10% whenever ld < 0.9. For the same load factor, the number of

rejected elements are close to 1% when k = 2 and f = 9 or f = 14.
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Figure A.8: Bloom Filter and Bloom Table Results for Fifteen model.
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Figure A.9: Number of rejected elements for Fifteen model.
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� FMS: Figures A.10 and A.11 depicts the probabilistic experiments for the FMS

model. We tried two setups for the BT size m; for the experiments performed

using m = 229, we have a load factor of ld = 0.89 when k = 2 and of ≈ 1 when

k = 3; for the experiments performed using m = 230, we have a load factor of

0.44 when k = 2 and of ld = 0.67 when k = 3. The number of rejected elements

are smaller than 15% whenever ld < 0.9. For the same load factor, the number of

rejected elements are close to 5% when k = 2 and f = 9 or f = 14.
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Figure A.10: Bloom Filter and Bloom Table Results for FMS model.
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Figure A.11: Number of rejected elements for FMS model.
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� Frog: Figures A.12 and A.13 depicts the probabilistic experiments for the Fifteen

model. We tried two setups for the BT size m; for the experiments performed

using m = 231, we have a load factor of ld = 0.49 when k = 2 and of ld = 0.74
when k = 3; for the experiments performed using m = 232, we have a load factor

of 0.24 when k = 2 and of ld = 0.37 when k = 3. Regarding the experiments, the

number of rejected elements are smaller than 1% for all the experiments where

f = 9 or f = 14, independent of load factor.
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Figure A.12: Bloom Filter and Bloom Table Results for Frog model.
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Figure A.13: Number of rejected elements for Frog model.
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� Hanoi: Figures A.14 and A.15 depicts the probabilistic experiments for the Hanoi

model. We tried two setups for the BT size m; for the experiments performed

using m = 230, we have a load factor of ld = 0.7 when k = 2 and of ld ≈ 1 when

k = 3; for the experiments performed using m = 231, we have a load factor of

0.35 when k = 2 and of ld = 0.53 when k = 3. For the experiments where ld < 7,
the number of rejected elements are smaller than 1% for all whenever f = 9 or

f = 14.
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Figure A.14: Bloom Filter and Bloom Table Results for Hanoi model.
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Figure A.15: Number of rejected elements for Hanoi model.
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� Kanban: Figures A.16 and A.17 depicts the probabilistic experiments for the

Kanban model. We tried two setups for the BT size m; for the experiments

performed using m = 230, we have a load factor of ld = 0.7 when k = 2 and of

ld ≈ 1 when k = 3; for the experiments performed using m = 231, we have a load

factor of 0.35 when k = 2 and of ld = 0.53 when k = 3. For the experiments where

ld < 7, the number of rejected elements are smaller than 1% for all whenever f = 9
or f = 14.
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Figure A.16: Bloom Filter and Bloom Table Results for Kanban model.
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Figure A.17: Number of rejected elements for Kanban model.
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Appendix B

Mercury

In this section, we describe our prototype software, called Mercury, that has been de-

veloped in order to experiment di�erent approaches for Parallel State Space construction

and Parallel Model Checking. All the algorithms implemented in Mercury follow a

SPMD approach, such that each processor executes the same program. Mercury has

been developed to be highly modular and extensible. The software is composed of

separate, interchangeable modules that accept di�erent memory layouts (shared/local

data) and synchronization mechanisms. Moreover, the software view of states is ab-

stract and can be easily extended to take into account data structures and time classes.

Altogether, we experimented 11 versions, two for probabilistic, six for exhaustive state

space construction and three for parallel model checking (subset of CTL formulas).

B.1 Technical Description

Mercury is implemented using the C language with Pthreads (But97) for concurrency

and the Hoard Library (BMBW00) for parallel memory allocation. Except for the Con-

current Hash Table from the Intel-TBB framework (Rei07) (that is used to perform

benchmarks), we implemented our own libraries for the data dictionaries. It is instru-

mented to support Bob Jenkins's hash function (Jen97). For all our experiments, we

used binaries generated using the Oracle Sun compiler (cc); we currently support Oracle

Solaris operating system.

Mercury is designed to accommodate di�erent con�gurations. As we mentioned

before, the performance of a parallel algorithms is strongly linked to the concurrent
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data structures that are used (data dictionaries in our case). In the context of this

project, we considered a modular architecture in order to experiment with di�erent

dictionaries and layouts. We have �ve di�erent classes of modules (we give an overview

of the relations between modules in Figure B.1):

Figure B.1: Mercury Modules.

1. A parser and lexical module to interpret the model. We currently accept Petri

Net models expressed in the .net format (the same format that is used in Tina).

2. A graph exploration engine module to de�ne the strategy for exploring the graphs

(e.g. DFS or BFS). The module is also in charge of implementing the work-sharing

strategies, see Chapter 3.

3. A data type module to de�ne the representation of states. We have experimented

with di�erent representation for markings. This module will also be used when

we extend our models with data and time.

4. The dictionaries modules, that de�ne the di�erent concurrent data structures used

in our algorithms.

5. A model checking module that enables the exploration engine module to verify

more elaborated formulas, see Chapter 4.

6. A printer module to output the state graph.

Each module is completely isolated from the others and they are all composed to-

gether through a common interface. A given con�guration is obtained by assembling
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together a set of modules. The con�gurations distinguish one from another by select-

ing a di�erent dictionary from the dictionaries module. We schematize the two memory

layouts used byMercury in Figure B.2. The �rst one, Figure B.2-a), is the layout com-

monly used in shared memory algorithms, such that there exist only one data dictionary,

completely shared among all processors. The second one, Figure B.2-b), is an exper-

imental layout inspired from the distributed algorithms. It consists of a small shared

space supplemented by local dictionaries to store the states. This layout is optimal

for Non-Uniform Memory Architectures (NUMA), where the latency and bandwidth

characteristics of memory accesses depend on the processor or memory region being

accessed, since it lessen inter-processor communications.

a) Shared Memory Layout.

b) Mix of Distributed and Shared Memory Layout.

Figure B.2: Memory Layouts.

We brie�y describe di�erent con�gurations that have been tested with Mercury.

In this context, a con�guration stands for a choice among all the possible modules of-

fered byMercury and, most importantly, a choice of data structure (in the dictionaries

module). We have �ve con�gurations that correspond to exhaustive (deterministic) al-

gorithms; three corresponding to already existing algorithms (used for benchmarking)

and two corresponding to algorithms that we de�ned (SZB10, TSDZB11). Two other

con�gurations correspond to �probabilistic algorithms'. We summarize all the imple-

mented versions in a table (see Figure B.3) that lists the dictionaries and layouts used

in each case.
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B.2 Mercury Con�gurations for Exhaustive Exploration

We de�ne �ve con�gurations of Mercury that correspond to exhaustive algorithms:

Static, Lockless and TBB are classical implementations and had been included as

part of our experiments to evaluate their temporal and space balance. From the ob-

servations of these classical solutions, we proposed two novel implementations, Gen-

eral and Vector/Dist, that corresponds to the algorithms described in Chapters 3

(see (SZB10, TSDZB11)).

Static Partition (Static): The static hash partition is an implementation of the algo-

rithm de�ned in (SD97) and described in Section 2.3.3. Several tools use a similar

algorithm due to its simplicity. It was implemented using local Hash Tables and

use a hash function for statically distributing the states (the slicing function).

This con�guration is safe, meaning that all the state space is generated.

Lockless Hash Table (Lockless): This version is a simple implementation using an

�unsafe� Hash Table as the global shared dictionary, that is a global hash-table

whose access is not protected by a lock. Due to the absence of locks, it is not

possible to ensure the data integrity and, as consequence, data may be lost: this

con�guration is unsafe. We experimented this version in order to establish a

performance limit, since this algorithm does not su�er from any synchronization

penalties.

Concurrent Hash Table (Safe) (TBB): This con�guration is similar to the Lockless

Hash Table version but use a commercial implementation of a safe, concurrent,

lock-less hash table (the Intel Threading Building Blocks ((Rei07)) as the shared

dictionary. This con�guration is safe.

General Lock-Free (General): this con�guration corresponds to the multiphase algo-

rithm described in (SZB10) (see Section 3.2). This con�guration is safe.

Localization Table Guided (Vector/Dist): this con�guration corresponds to the �asyn-

chronous� algorithm described in (TSDZB11) (see Section 3.3). This con�guration

is safe. This implementation has two variants (Vector/Dist) that di�er by the

con�guration parameters of the localization table.
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Name Description Exh. Prob. Safe Layout

General† A shared Bloom �lter x x b)

complemented by local dictionaries

Dist† Distributed Table instrumented x x b)

with our Localization Table

Vector† Localization Table replaced x x b)

by a simple Vector of integers

Static States are distributed according x x a)

to a static Hash function

Lockless Lockless shared hash table as x a)

the shared space

TBB Unordered hash map as the shared space, x x a)

which is part of the Intel-threading blocs library

Bloom Bloom Filter for the x a)

shared dictionary

BTable† Bloom Table for the x a)

shared dictionary

Figure B.3: Mercury Con�gurations (we use † to signal our new algorithms).

B.3 Mercury Con�gurations for Probabilistic Exploration

We conducted several experiments on parallel, probabilistic state space construction

usingMercury. We de�ne two con�gurations based on the use of a �probabilistic� data

structure in order to save memory space. Obviously, the drawback of this approach is

that it is not possible to have full con�dence on the outcome of model checking, since

the actual state space may not be completely explored. Nonetheless, a �probabilistic

veri�cation result� may still be helpful to �nd errors in a model and some model checking

tools (most notably the Spin tool) provide this facility.

Bloom Filter (Bloom): this con�guration follows the shared memory layout (see Fig-

ure B.2-a) and use a shared Bloom Filter for the dictionary. All states are com-

pressed in hash values and symbolically stored at the Filter. For �well dimen-

sioned� Bloom �lters (and for acceptable performances), we typically explore 98%

of the state space.

Bloom Table (BTable): inspired from Bloom Filter, we have de�ned a novel prob-
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abilistic structure with a better coverage ratio. This new structure is actually

an enriched Bloom Filter instrumented to prevent the insertion of false positives

values. In this implementation, potential false positives are explicitly stored in a

separated dictionary. (See Chapter 5 for a complete presentation of the BTable

data structure.)

B.4 Mercury Con�gurations for Parallel Model Checking

We extended Mercury engine with the Model Checking with Lazy Cycle Detection

technique (MCLDC) presented at Chapter 4 for parallel model checking. Our prelimi-

nary implementation with Mercury supports the sub-set of CTL formulas depicted at

Section 4.2. Internally, Mercury stores the state space in one of the three accepted

graph structures: Reverse, Parental and No_graph. They di�er basically by the number

of edges they store per vertex.

� Reverse: The Reverse graph RG from a given graph G(S,E) consists of a triplet

RG(S,R) where R is binary reverse relation of the edges from E.

� Parental: The Parental graph (RPG(S, P )) is an abstraction of Reverse where

only the parental relations are stored in R, all other edges are discarded.

� No_graph: The No_Graph is an implementation where none of the relation be-

tween vertices are stored, only the set of generated states are stored. This idea is

available whenever is possible to establish the reverse relation function between

vertices.

Mercury uses RG and RPG graph structures only when the backward traversal is

necessary, and each one of them has its advantages. The use of a graph structure like

RG allows MCLDC to have linear time complexity even running in parallel (O(|S| +

|E|)). By contrast, RPG helps MCLDC to save memory by reducing the number of

edges (the number of edges is equal to the number of vertices), on the other hand the

time complexity is no longer linear (O(|S|2 + |E|2)). (See Chapter 4 for a complete

presentation of the MCLDC technique.)
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B.5 Installation

As we mentioned, Mercury is a prototyping tool that supports 8 di�erent con�gura-

tions (6 for exhaustive and 2 for probabilistic model checking). For each one of them

� and for e�ciency reason � we generate a di�erent binary executable using the tool

builder dmake. A normal compilation is achieved by calling dmake with one of the

parameters listed in Figure B.4. This table shows the respective parameter for each

implementation.

Name Conf

Bloom dmake -f Make�le CONF=Parallel_Bloom clean

BTable dmake -f Make�le CONF=Parallel_Probabilistic clean

General with

Hash Table dmake -f Make�le CONF=Parallel_local_Hash_Table clean

General with

AVL Tree dmake -f Make�le CONF=Parallel_local_Tree clean

Static dmake -f Make�le CONF=Parallel_Static clean

Vector � Dist dmake -f Make�le CONF=Parallel_local_Dist_Hash_Table clean

Lockless dmake -f Make�le CONF=Parallel_Hash_Table_Lockless clean

TBB dmake -f Make�le CONF=Parallel_Hash_Table_TBB clean

Model Checking dmake -f Make�le CONF=Parallel_MC clean

Figure B.4: Algorithms selected for benchmark comparison.

B.5.1 Usage

Mercury binaries are command-line programs (see Figure B.5). A normal execution

is performed by giving the optional �ags followed by a valid input �le. As input, it

accepts only textual Petri Net models written using the .net format (the same that is

used by Tina). By default it outputs a textual description of the system.

The exploration of a system will normally generates a textual output, except if the

option -aut is given. In this case,Mercury will generate a transition system in textual

mode. A second group of options can be used to de�ne some initial parameters of the

algorithm. They are useful when the user can provide an approximate value for the size

of the state space. A summary of all supported options are presented in Figure B.7.
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usage: mercury [-h | -help] [-p] [-R] [-th n]

[-bls n] [-blk n] [-hts n] [-smode 0-1]

[-f 'formula'] [-graph 0-2]

[-v | -q | -aut ]

[infile] [outfile]

Figure B.5: Mercury usage syntax.

Mercury supports di�erent versions for the parallel state space construction (see

Figure B.6). For each version, Mercury can be invoked with speci�c options to boost

the execution. These options may be used to specify initial parameters like the hash

table size, the bloom �lter size, the number of hash function keys insertions, etc. In

practice, the defaults value chosen for these parameters have been carefully selected so

has to obtain good performances in our test machine (default parameters may have to

be changed depending on the multiprocessor computers that is used). We can list, for

each con�guration, the set of �ags that are supported.

Name Supported Flags

Bloom -h,-help,-p,-R,-th,-bls,-blk,-NET,-v,-q,-aut

BTable -h,-help,-p,-R,-th,-bls,-blk,-NET,-v,-q,-aut

General -h,-help,-p,-R,-smode,-th,-hts,-bls,-blk,-NET,-v,-q,-aut

Static -h,-help,-p,-R,-th,-hts,-NET,-v,-q,-aut

Vector � Dist -h,-help,-p,-R,-th, -hts, -bls,-blk,-NET,-v,-q,-aut

Lockless -h,-help,-p,-R,-th,-hts,-NET,-v,-q,-aut

TBB -h,-help,-p,-R,-th,-hts,-NET,-v,-q,-aut

Model Checking -h,-help,-p,-R,-th, -hts, -bls,-blk, -f 'formula',

-graph (0|1|2), -NET,-v,-q,-aut

Figure B.6: Mercury options for di�erent versions.
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FLAGS WHAT DEFAULT

-h | -help this mode

-p just parses and check input

parallel configurations for Localization Table: 0

-smode 0 ASYNCHRONOUS

-smode 1 SYNCHRONOUS

-smode 2 MIXTE

-smode 3 STATIC

-th n number of threads 2

bloom configurations:

-bls n Bloom Filter Size in bits 32

-blk n number of Bloom Keys 8

bloom probabilistic:

-blevels n number of chances 3

-bdc n size difference(in bits) in cascade 1

-baprox n approximate number of keys

-bifp ignore false positive states

Memory configurations:

-hts n Hash Table Address Size in bits 25

-sc n (0|1|2|3) State Compression 0

0:No_Compression 1:Huffman 2:RLE 3:LZ7

Work Load Sharing Options:

-adp adaptative work load enabled

CTL model Checking:

-f 'formula' enable ctl mchecking for the given formula

-graph (0|1|2) Type of graph

0:Reverse 1:Parental 1:No Graph

input net format flags:

-NET textual net input

-tts textual net with data input

output format and options flags:

-v | -q textual output (full | digest) -v

files:

infile input file (stdin if -) stdin

outfile output file (stdout if - or absent) stdout

Figure B.7: Mercury options.
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Annexe C

Résumé en Français

C.1 Abstract

Nous proposons de nouveaux algorithmes et de nouvelles structures de données pour

la véri�cation formelle de systèmes réactifs �nis sur architectures parallèles. Ces travaux

se basent sur les techniques de véri�cation par model checking. Notre approche cible

des architectures multi-processeurs et multi-c÷urs, avec mémoire partagée, qui corres-

pondent aux générations de serveurs les plus performants disponibles actuellement.

Dans ce contexte, notre objectif principal est de proposer des approches qui soient à

la fois e�caces au niveau des performances, mais aussi compatibles avec les politiques

de partage dynamique du travail utilisées par les algorithmes de génération d'espaces

d'états en parallèle ; ainsi, nous ne plaçons pas de contraintes sur la manière dont le

travail ou les données sont partagés entre les processeurs.

Parallèlement à la dé�nition de nouveaux algorithmes de model checking pour ma-

chines multi-c÷urs, nous nous intéressons également aux algorithmes de véri�cation

probabiliste. Par probabiliste, nous entendons des algorithmes de model checking qui

ont une forte probabilité de visiter tous les états durant la véri�cation d'un système.

La véri�cation probabiliste permet des gains importants au niveau de la mémoire uti-

lisée, en échange d'une faible probabilité de ne pas être exhaustif ; il s'agit donc d'une

stratégie permettant de répondre au problème de l'explosion combinatoire.

[Mots-clés :] Model Checking en Parallèle, Algorithme et Structure de Données

concurrents, Méthode Formelle, Véri�cation Formelle et Logiques Temporelles.
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C.2 Introduction

Dans cette thèse, nous proposons et étudions de nouveaux algorithmes et structures

de données pour la véri�cation formelle de systèmes �nis, plus spéci�quement les tech-

niques de model checking. Nous nous concentrons sur des techniques qui ciblent les

machines multi-processeurs et multi-c÷urs à mémoire partagée, qui sont une tendance

actuelle.

Model Checking est une méthode de véri�cation formelle utilisée pour assurer l'ab-

sence d'erreurs de logique. À cet égard, le model checking contribue à l'amélioration

de la sécurité des systèmes embarqués (et aussi pour améliorer le niveau de con�ance

que nous pouvons mettre en eux). Ceci est une réussite importante. Les systèmes em-

barqués sont de plus en plus présents dans notre vie quotidienne et nous ne pouvons

nier l'impact majeur qu'ils ont sur nos sociétés. Certains de ces systèmes embarqués �

comme ceux trouvés dans les domaines de l'aéronautique ou du nucléaire � sont classés

comme critiques, ce qui signi�e qu'une panne ou un dysfonctionnement peut entraîner

un dommage corporel (ou même le décès) des personnes impliquées, des dommages ir-

réversibles à l'équipement, ou des catastrophes environnementales. Nous pouvons énu-

mérer quelques exemples remarquables de défaillances catastrophiques qui ont attiré

l'attention du public en leur temps (voir (Neu92) pour une liste des incidents) :

� Therac-25 (1985-1987) : Entre Juin 1985 et Janvier 1987, une machine de radio-

thérapie contrôlé par ordinateur, le Therac-25, overdose sévèrement six patients

en raison d'un problème de codage de son logiciel de contrôle (Lev95).

� Ariane-5 (1996) : En juin 1996, le lancement inaugural de la fusée européenne

Ariane-5 s'est terminé dans un échec total ! Cet échec, provoqué par un dysfonc-

tionnement dans le logiciel de contrôle de guidage, a été essentiellement causé par

une exception interne pendant la conversion de données �ottante en 64 bits à 16

bits (L+96).

� La NASA Mars Path�nder (1997) : En Juillet 1997, le rover Mars Path�nder

a commencé à perdre des informations en raison de plusieurs redémarrages du

système. Le système a été redémarré en raison d'un problème d'inversion des

priorités, ce qui a raccourcis la durée de la mission (C+98).

Les demandes du marché pour des solutions plus e�caces et automatisées ont poussé

la complexité des systèmes embarqués à des niveaux jamais imaginé auparavant. Par
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exemple, nous construisons des avions qui consomment moins de carburant, volent plus

longtemps et dont la durée de maintenance est moindre qu'auparavant. Le niveau d'ef-

�cacité que nous expérimentons aujourd'hui est, sans doute, une des réalisations princi-

pal de la dernière décennie. Toutefois, ces réalisations ont un prix, puisque les systèmes

coûtent de plus en plus cher à développer (et la probabilité de réussir un nouveau projet

technologique diminue). Bien qu'il n'existe aucune information o�cielle sur la produc-

tivité des ingénieurs logiciels embarqué - ni d'une façon précise de calcul de ce métrique

- dans certains domaines critiques comme l'avionique, les ingénieurs logiciels ne pro-

duisent pas plus d'une ligne de code par jour en moyenne. Par ailleurs, ces chi�res ne

prennent pas en compte le lourd fardeau des tests et des activités de certi�cation aux-

quels ces systèmes sont soumis. L'utilisation de model checking peut aider à améliorer

cette situation car cela aide à détecter les erreurs pendant la phase de conception d'un

système, avant qu'elles ne deviennent très coûteuses à réparer.

Depuis les travaux pionniers de Edmund M. Clarke et Allen Emmerson, et de Jo-

seph Sifakis et Jean-Pierre Queille, au début des années 1980, le model checking a été

utilisé avec succès dans la véri�cation de certaines applications telles que la conception

des circuits intégrés (BCL+94) et des protocoles de communication (JH93). Les tech-

niques de model checking sont attrayantes car elles o�rent une solution automatique

pour véri�er si un système (modèle valide) répond à ses exigences. Par exemple, il ne

nécessite pas des preuves construite à la main, comme c'est le cas avec les approches

fondées sur des logiques de style Floyd-Hoare qui peut être assez fastidieux et di�cile de

passer à l'échelle. Une des autre raison de l'intérêt croissant pour l'utilisation des tech-

niques de model checking est qu'elles peuvent facilement être intégrées dans un cycle

de développement standard ; elles peuvent non seulement aider à trouver des erreurs,

mais peuvent également fournir des contre-exemples (les traces d'exécution) lorsque le

modèle du système viole certaines de ses exigences. Au �nal, l'approche model checking

s'est révélé être un outil important dans la conception et le développement de systèmes

critiques.

Même si les techniques de model checking o�rent une approche �push button� pour

la véri�cation des systèmes �nis, la taille de l'espace des états construits durant la véri�-

cation peut croître de façon exponentielle par rapport à l'augmentation de la complexité

du système. Ainsi, dans de nombreux cas, cette technique peut se révéler inutilisable

en pratique. Cet inconvénient, connu comme le problème d'explosion des états, est l'un
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des principaux dé�s dans le domaine du model checking. Malgré le fait que des progrès

considérables aient été réalisés sur le plan théorique �par exemple avec la dé�nition de

méthodes symboliques et des techniques d'ordres partielles� des classes de systèmes ne

peuvent pas béné�cier de ces méthodes avancées. Par exemple, pour des modèles qui

combinent contraintes de temps réel, des priorités dynamiques et de données externes.

Dans ces cas, nous avons encore besoin de revenir à l'utilisation des techniques classiques

de model checking énumératives où les états sont stockés de manière explicite.

La motivation principale de cette thèse est de développer de nouveaux algorithmes

et structures des données a�n de pro�ter des améliorations récemment apportées au

niveau du matériel (hardware) ; à savoir l'avènement d'un coût abordable des serveurs

de mémoire partagée (machines multi-processeurs). Fondamentalement, nous attaquons

le problème d'explosion des états à travers l'utilisation de la force brutale ! Depuis le

milieu des années 2000, les principaux fabricants de puces ont reconnu une possibles

�n à la loi de Moore en ce qui concerne l'augmentation de la fréquence d'horloge du

processeur (�the Moore's wall�). Par conséquence, l'industrie de hardware ont déplacé

leur attention vers des architectures de processeur multi-c÷urs, apportant la technologie

de la computation parallèle même au plus simple des ordinateurs : même les netbooks

et les les smartphones ont un processeur dual core de nos jours. De plus, avec la vul-

garisation de l'informatique basée sur le serveur et les technologies de virtualisation

(serveurs hébergeant de multiples machines virtuelles), nous avons maintenant accès

pour un prix abordable à des machines multiprocesseurs �avec de nombreux proces-

seurs multi-core� ce qui o�re la possibilité d'accéder à de grands espaces de mémoire

partagée de façon plus e�cace.

Parallèlement à la dé�nition de nouveaux algorithmes pour les machines multi-core,

nous étudions aussi des algorithmes de véri�cation probabiliste. Par le terme de pro-

babiliste, nous voulons dire que, pendant l'exploration d'un système, n'importe quel

état atteignable a une forte probabilité d'être visité par l'algorithme. En conséquence

nous acceptons que certains états joignables du système ne puissent pas être inspec-

tés : cette technique ne peut pas être utilisée pour prouver l'absence d'erreurs, elle peut

être très e�cace quand nous essayons de trouver des contre-exemples. La véri�cation

probabiliste échange l'économie au niveau de la mémoire utilisée pour la probabilité de

manquer certains états. Fondamentalement, l'idée est d'utiliser des valeurs de hachage

au lieu d'une représentation exacte d'état. Par conséquent, il devient possible d'analyser
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une partie de l'espace d'état d'un système où il n'y a pas assez de mémoire disponible

pour représenter l'espace d'état entier de manière exacte (énumérative).

C.3 Contribuition

Les contributions de cette thèse peuvent être divisés en trois axes principaux : (1)

la construction de l'espace d'état en parallèle, (2) des algorithmes de model checking en

parallèle, et (3) des méthodes de véri�cation probabilistes.

Chronologiquement, nous avons commencé notre travail en étudiant de nouveaux

algorithmes et structures de données pour construire l'espace d'état en parallèle. Les

points clés pour concevoir un algorithme e�cace en parallèle pour les machines à mé-

moire partagée sont la structure de données utilisée pour stocker l'ensemble des états

explorés et la stratégie de partage de travail employée pour distribuer les états. Nous

proposerons deux nouvelles approches basées sur une structure des données optimisée :

nous utilisons des structure des données indépendants (distribués) en conjonction avec

une structure partagée probabiliste pour distribuer dynamiquement l'espace d'état.

Notre première contribution pour la construction de l'espace d'état parallèle est un

algorithme spéculatif (SZB10) où les états sont stockés dans des ensembles de données

locales, tandis qu'un Bloom Filter (Blo70) partagé est utilisé pour distribuer dynami-

quement les états. En raison du caractère probabiliste du Bloom Filter (faux positifs

sont possibles), nous proposons un algorithme qui opère en phase, a�n d'e�ectuer une

génération exhaustive et déterministe de l'espace d'état. Ensuite nous améliorons notre

conception précédente et nous remplaçons le �ltre de Bloom par une structure de don-

nées dédiée, appelée par nous de Localization Table (TSDZB11). Ce tableau est utilisé

pour attribuer dynamiquement les états récemment découverts et se comporte comme

un tableau associatif qui retourne l'identité du processeur qui possède un état donné.

Avec cette approche, nous sommes en mesure de consolider un réseau de tables des ha-

chages locales dans une distribué, supprimant la nécessité d'un algorithme qui opère en

phase. Nos résultats préliminaires sont très prometteurs, on observe des performances

proches de ceux obtenus en utilisant un algorithme basé sur une table de hachage non

protégée (risques probables d'incohérences) et se comporte bien par rapport à certains

algorithmes parallèles classiques.
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Notre deuxième contribution est la présentation de deux nouveaux algorithmes de

model checking en parallèle, qui prennent en compte un sous-ensemble spéci�que de

la logique Computation Tree Logic (CTL). Dans ce contexte, l'un des points clés de

performance pour l'évaluation de formules plus complexes est la stratégie utilisée pour

détecter des cycles dans le comportement du système. (Par exemple, un comportement

qui se répète indé�niment). Notre objectif principal est de proposer des algorithmes qui

ne sont pas seulement e�caces mais aussi �amical� à l'égard des politiques de partage

du travail qui sont utilisées pendant la génération de l'espace d'états en parallèle (par

exemple la stratégie �work-stealing�) : à aucun moment nous imposons une restriction

sur la façon que le travail est partagé entre les processeurs. Cela inclut la construction

de l'espace d'états comme la détection de cycles en parallèle. Nous contribuons à une

approche pratique où les cycles sont détectés uniquement à la dernière étape. Nous

contournons toutes les complexités imposées par la détection de cycles en parallèle en

ne le faisant pas explicitement. Nous présentons deux approches de notre algorithme,

celui avec une complexité temporelle linéaire et un autre qui échange une plus faible

utilisation de la mémoire pour une complexité temporelle plus grande. La di�érence

entre ces implémentations réside dans la structure utilisée pour stocker l'espace d'états

traversés. Nous considérons deux cas : (1) le cas où nous avons accès au graphe de

l'espace d'état complet (en fait le graphe inverse), nous stockons toutes les transitions

dans la mémoire, et (2) nous avons seulement accès à un parent pour chaque état. Alors

il est commun de trouver des algorithmes pour le model checking de formules CTL qui

ne nécessitent pas de stocker en mémoire la relation de transition inverse (les transitions

sont régénérées lorsque nécessaire), cette approche est pas inapproprié quand il n'est pas

possible (ou très cher) de calculer la relation de transition inverse d'un modèle. C'est par

exemple le cas quand nous traitons avec des modèles combinant les contraintes temps

réel, la priorité entre les transitions ou lorsque le système est étendu avec des données

externes.

Une autre contribution de cette thèse c'est la dé�nition d'une nouvelle structure

de données pour la véri�cation formelle probabiliste. Après nos expériences avec la

construction de l'espace d'état en parallèle, nous avons étudié une version enrichie de

la structure Bloom Filter spécialement conçue pour la véri�cation probabiliste. Nous

proposons une nouvelle structure probabiliste de données, nommée Bloom Table, qui
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remplit une lacune que nous avons identi�ée entre l'utilisation de la structure des don-

nées Hash Compact et le Bloom Filter. Notre Bloom Table ne fournit pas seulement

une faible probabilité de faux positifs, mais améliore également la complexité du temps

en réduisant le nombre de fonctions de hachage nécessaires. Par exemple, seulement

deux clés de hachage sont nécessaires pour livrer une probabilité de 10−5 en utilisant

uniquement 16 bits par l'état. (Un Bloom Filter nécessite l'utilisation de 6 clés de ha-

chage pour atteindre des résultats similaires.) Alors que les Bloom Tables ne sont pas

intrinsèquement une structure de données conçue pour l'utilisation concurrente, nous

avons imaginé nos algorithmes a�n de pro�ter d'une architecture parallèle à mémoire

partagée.

Avant de conclure cette section, nous tenons à souligner que les contributions de

cette thèse ne sont pas limitées au domaine model checking. De facto, les structures

des données proposées dans cet ouvrage sont intéressantes pour toute application qui

e�ectue l'exploration de graphe, la détection de cycle ou le stockage probabiliste (ou

avec pertes) en parallèle.

C.4 Sommaire : Brève Description de la Thèse

La section précédente donne une brève présentation de notre travail. Ci-dessous,

nous donnons un bref résumé du contenu des chapitres présents dans ce document.

Chapitre 2 Related Work : Dans ce chapitre, nous présentons le contexte de cette

thèse. Nous présentons brièvement le model checking�d' une manière très générale�

puis nous plongeons dans la littérature pertinente au contexte de cette thèse. Nous

commençons par les travaux de model checking distribué et parallèle. Nous es-

sayons de mettre en évidence l'importance d'optimiser la procédure de détection

des cycles a�n d'obtenir une solution parallèle e�cace. Ensuite, nous présentons

les solutions les plus signi�catives pour la véri�cation probabiliste, notamment

celles basées sur les structures probabilistes supertrace, multihash et hash com-

pact. Nous concluons ce chapitre par une présentation détaillée de la contribution

de cette thèse.

Chapitre 3 Parallel State Space Construction : Ce chapitre décrit notre approche

pour la construction de l'espace d'états en parallèle. Nous concentrons nos e�orts

sur une approche qui est évolutive, sans imposer aucune restriction sur la façon
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dont le travail est réparti entre les processeurs. Dans ce chapitre, nous indiquons

les principales directives de nos algorithmes tels que la distribution de la mémoire

et les techniques de partage du travail. Cette section est suivie de la présentation

de notre algorithme (spéculative), qui est un algorithme général non bloquant

pour la construction d'espace d'états en parallèle. Nous essayons de souligner le

caractère général de notre approche en donnant les résultats de nos expériences,

e�ectuées en utilisant di�érentes structures de données (comme les arbres AVL

et les tables de hachage) pour les structures de données locales. Ensuite nous

donnons une version améliorée qui remplace le Bloom Filter par une structure

spécialisée appelée Localisation Table. Cette solution améliore notre version pré-

cédente parce que non seulement elle fait la distribution dynamique des données,

mais également assure le suivi de la distribution. Avant de conclure, nous mon-

trons une étude comparative de notre version améliorée avec d'autres solutions

déjà proposées dans la littérature.

Chapitre 4 Parallel Model Checking With Lazy Cycle Detection : Basé sur les

travaux que nous avons présentés au chapitre 3, nous dé�nissons et analysons

deux nouveaux algorithmes pour les techniques de model checking en parallèle

qui prennent en charge un sous-ensemble de formules CTL. Nos principaux objec-

tifs sont de proposer des algorithmes e�caces, qui n'empêchent pas l'utilisation de

certaines stratégies de partage dynamique du travail, c'est-à-dire qu'ils n'imposent

pas de restriction sur la façon dont le travail est partagé entre les processeurs lors

de la construction de l'espace d'état ni pendant la phase de véri�cation de la for-

mule CTL fourni. De plus, nous nous intéressons également au développement de

nouvelles approches qui nécessitent moins d'espaces de mémoire. Avant conclure

ce chapitre, nous étudions un ensemble de résultats obtenus avec nos approches.

Chapitre 5 Probabilistic Veri�cation : L'objectif principal de cette thèse est de

proposer de nouvelles méthodes pour traiter le problème d'explosion de l'état.

Alors que la plus grande partie de notre travail se base sur une approche énumé-

rative, nous avons réalisé au cours de cette thèse que nos structures de données

pourraient être adaptées au contexte des algorithmes de véri�cation probabiliste.

En particulier, nous avons identi�é l'existence d'un écart entre les deux struc-

tures de données les plus rependues pour la véri�cation probabiliste, Bloom Filter

et Hash Compact. Grosso modo, la structure de données probabiliste que nous
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présentons dans ce chapitre o�re un meilleur résultat que Hash Compact lorsque

nous avons moins de 40bits d'information par état pour représenter l'espace d'état.

D'autre part, notre solution améliore le temps d'exécution par rapport à une ap-

proche classique basée sur les Bloom Filters car elle o�re un meilleur résultat

sans augmenter le nombre de clés de hachage utilisées. (En e�et, notre proposi-

tion nécessite que 16bits par état pour atteindre une couverture e�cace de l'espace

d'état ; un Bloom Filter nécessite au moins 6 clés de hachage par état pour obtenir

un résultat similaire.) Nous présentons une analyse théorique de notre structure

de données avec une comparaison analytique des solutions similaires. Avant de

conclure, nous présentons les résultats obtenus à partir d'un ensemble d'expé-

riences a�n de montrer l'e�cacité de notre approche.

Chapitre 6 Conclusion : Nous concluons cette thèse en dé�nissant les lignes pos-

sibles des travaux futurs.

C.5 Conclusion

Dans cette thèse, nous avons présenté nos e�orts pour réaliser le model checking de

systèmes �nis sur les machines multi-processeurs et multi-core. Nous avons proposé de

nouvelles structures de données et de nouveaux algorithmes qui sont appliqués à trois

domaines d'application principaux : la construction de l'espace d'état en parallèle, les

techniques de model checking et la véri�cation probabiliste.

Évidemment nous voulons pro�ter de la puissance de calcul accrue apportée par

les machines multi-cores. Par ailleurs, la transition vers des approches parallèle pour la

véri�cation formelle nous semble inévitable. Il ne fait aucun doute que tous les outils

de model checking se dérouleront sur les ordinateurs multi-core ; pour la simple raison

que chaque nouvel ordinateur est équipé d'un processeur multi-core.

Outre le gain en performance, nous sommes également très intéressés par l'énorme

quantité de mémoire d'accès rapide fournie par les serveurs multiprocesseurs actuels ;

comme celui utilisé dans nos expériences. Rappelons que tous les résultats expérimen-

taux présentés dans ce manuscrit ont été e�ectués sur un serveur avec 208 Go de RAM

�a�ectueusement appelée Brutus� laquelle représente une augmentation signi�cative

par rapport au 8− 32M à la disposition aux premiers outils de model checking dans les

années 1980.
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Dans le chapitre 3 de cette thèse, nous avons décrit de nouveaux algorithmes pour

e�ectuer la construction exhaustive de l'espace d'état en parallèle. Notre travail est

construit sur une conception unique, qui est basée sur une distribution dynamique des

états et de l'utilisation de structures de données non bloquant. Les chapitres 4 et 5

décrivent nos nouvelles approches pour e�ectuer les techniques de model checking ex-

haustive et probabiliste en parallèle, lesquelles sont construites sur le dessus de notre

algorithme pour la construction de l'espace d'états en parallèle.

Nous comprenons que les approches exhaustive et probabiliste sont complémentaires.

D'une part, les méthodes probabilistes devraient être considérées quand nous essayons

de trouver des contre-exemples à une spéci�cation donnée. D'autre part, notre approche

exhaustive est plus appropriée dans les dernières phases de la conception d'un système,

ou quand nous avons besoin de véri�er les spéci�cations complexes. Pour cette raison,

nous avons optimisé notre algorithme de model checking, appelé MCLCD, pour le cas

où la spéci�cation est vraie.

Nous proposons des algorithmes e�caces pour la mémoire ces deux approches. En

e�et, nous croyons que la mémoire est la ressource la plus importante pour les techniques

de model checking. Il s'agit de la raison pour laquelle nous avons concentré nos e�orts

sur la réduction de l'utilisation de la mémoire, même si cela signi�e la négociation d'un

temps de calcul plus élevé en retour d'une utilisation d'un espace mémoire plus réduit.

Par exemple, nous dé�nissons une version de notre algorithme MCLCD qui ne nécessite

pas de stocker la relation complète de transition d'un système donnée.

Nous dé�nissons aussi une nouvelle structure de données pour la véri�cation pro-

babiliste, appelé Bloom Table, qui nécessite que 2 octets par état en moyenne, tout en

o�rant une très bonne couverture. (Cette structure de données a également été conçue

pour être conviviale pour la programmation concurrente). Par exemple, avec Bloom

Table que utilise seulement 2.5GB de mémoire, nous avons une probabilité de 10−5 de

manquer un état dans un système avec un milliard états. Il n'est pas possible d'at-

teindre la même précision en utilisant la structure de données hash-compact avec la

même quantité de mémoire. De même, un Bloom Filter avec deux clefs de hachage aura

une précision de l'ordre de 10−2-10−3 avec la même con�guration. Plus de 5-6 clés de

hachage sont nécessaires pour le Bloom Filter a�n d'obtenir une précision de 10−5 mais,

dans ce cas, le calcul est plus lent que avec BT.

Ci-dessous, nous résumons les conclusions de cette thèse.
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[Construction de l'espace État en parallèle]

Au chapitre 3, Nous dé�nissons deux nouveaux algorithmes pour la construction

de l'espace d'état parallèle. Nous croyons que nos contributions sont intéressant dans

plusieurs domaines. Dans le domaine de la véri�cation formelle, nous dé�nissons de nou-

veaux algorithmes pour la construction de l'espace d'état en parallèle. Dans le domaine

du calcul parallèle, nous proposons de nouvelles structures de données concurrentes non

bloquant.

Notre approche est basée sur l'utilisation d'un ensemble des structures de données

locaux (pour le stockage des états) et d'une structure de données probabiliste (par

exemple Bloom Filter) pour gérer la distribution dynamique des états entre les proces-

seurs. Nous proposons deux algorithmes : un général (spéculative) �où les collisions

sont résolues à l'aide de synchronisations intra-processus� et un algorithme mixte plus

spécialisé où les collisions sont résolues à la volée. Nos résultats expérimentaux montrent

que la version mixte est le meilleur choix dans la pratique.

La principale innovation est la dé�nition d'une structure de données, nommé Loca-

lization Table, qui est utilisée pour coordonner un réseau de tables de hachage locales

a�n d'obtenir une structure de données concurrent et e�cace.

Nous observons des bonnes accélérations dans nos résultats expérimentaux. L'accé-

lération de l'algorithme mixte est toujours meilleur que d'autres algorithmes parallèles.

Nous avons également montré que notre mise en oeuvre se comporte bien par rapport

aux outils similaires ; nous montrons aussi que, dans notre algorithme, il est préférable

d'utiliser notre Localization Table que la structure concurrent fournie par Intel TBB.

Nous croyons que notre Localization Table peut être d'un grand intérêt en dehors

du domaine de la véri�cation formelle. Pour cette raison, nous prévoyons de fournir une

API fonctionnelle de notre structure de données concurrent complètement autonome, qui

pourrait être utilisé dans d'autres situations et qui ne nécessitent que une con�guration

minimale.

[Model Checking parallèle]

Dans le chapitre 4, nous dé�nissons un algorithme pour le model checking de for-

mules CTL. Nous choisissons un algorithme fondé sur la sémantique et adapté aux
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architectures de mémoire partagée, parce que nous croyons qu'il est plus approprié pour

une application parallèle doté d'une politique dynamique de distribution de travail.

Nous avons développé deux versions de cet algorithme : une première version basée

sur le graphe reverse de l'espace d'états, appelé RG, où nous avons besoin de stocker

explicitement toutes les transitions du système et une deuxième version, RPG, où nous

avons seulement besoin de stocker un sous-graphe couvrant.

La version RG a une complexité en temps linéaire et en espace, en O(S + R) (où

S est le nombre d'états et R le nombre de transitions), tandis que la version RPG a

une complexité en temps de O(S · (R − S)) et une complexité spatiale en O(S). Le

principal avantage de la version RPG est de fournir un algorithme qui est e�cace dans

la mémoire et indépendante du choix des classes d'abstraction de l'espace d'états.

Notre mise en oeuvre montre des résultats prometteurs pour les versions RG et

RPG de notre algorithme. Le choix d'un algorithme d'étiquetage s'est révélé être un

bon match pour les machines à mémoire partagée et pour la politique de contrôle de

charge dynamique work-stealing ; par exemple, nous avons obtenu des accélérations

près du linéaire avec une e�cacité moyenne de 75%. Nos résultats montrent aussi que

l'algorithme RPG est en mesure d'égaler la performance de RG pour un certain type

de modèles.

Nous croyons que les deux versions de l'algorithme sont complémentaires. RG est

le meilleur choix quand il y a assez de mémoire pour stocker complètement le graphe

reverse, sinon, RPG devrait être utilisé malgré sa complexité élevée en temps. Pour nos

travaux futurs, nous étudions une version améliorée de nos algorithmes qui prend en

charge tout l'ensemble des formules CTL.

[Véri�cation probabiliste]

Le dernier chapitre technique de cette thèse, le chapitre 5, est dédié à une nouvelle

approche pour la véri�cation probabiliste. Nous dé�nissons une nouvelle structure de

données inspirée de nos travaux avec la Localization Table et nous la comparons avec

les structures probabilistes Bloom Filter et Hash Compact. La di�érence principale

de notre structure, par rapport au Bloom Filter, est que nous utilisons un vecteur de

�w-bits mots� au lieu d'un vecteur de bits.
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Lorsque notre Bloom Table est comparé à de simples techniques de hachage, Bloom

Table est en mesure d'améliorer la probabilité de générer l'espace d'état complet d'un

système fourni quand nous avons une estimation de la taille de cet espace d'états.

Nos résultats expérimentaux montrent que notre structure de données fonctionne

bien et il est possible d'obtenir de bonne couverture de l'espace d'état sans exiger de

nombreuses opérations de fonctions hachage. (Dans nos expériences, deux clés sont gé-

néralement su�santes.) Par rapport à l'utilisation d'un Bloom Filter, notre structure

de données peut atteindre des résultats semblables ou de meilleurs avec un temps d'exé-

cution plus court, parfois par un facteur de 2.

Pour les travaux futurs, nous voulons étudier la véri�cation probabiliste de formules

plus complexes, comme la sûreté et les formules de vivacité. L'idée est d'être capable

d'utiliser des méthodes de véri�cation probabiliste en même temps que les algorithmes

exhaustifs de model checking, sans aucune restriction sur la spéci�cation. Les techniques

de véri�cation probabilistes seront utilisées au début du cycle de développement, tandis

que le model checking exhaustive sera utilisé pour �certi�er� l'absence d'erreurs au

niveau du modèle
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