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Abstract

Proof assistants offer a formal framework for formalizing and mechanically checking mathe-
matical knowledge. Moreover, due to the numerous applications that follow from formal methods,
the scientific production being formalized and verified by such tools is constantly growing. In that
context, the organization and the classification of this knowledge does not have to be neglected.
Coq is a proof assistant well-suited for program certification and mathematical formalization,
and for seven years now it has featured a module system that helps users in their development
processes. Modules provide a way to represent theories and offer a namespace management that
is crucial for large developments. In this dissertation, we advance the module system of Coq by
putting the emphasis on the two latter aspects. We propose to unify both module implementation
and module type into a single notion of structure, and to split our module system in two parts.
We have, on one hand, a namespace system that is able to define extensible naming scopes and
to deal with renaming, and on the other hand a structure system that describes how to combine
and to form structures. We define a new merge operator that, given two structures, builds the
resulting structure by unifying components of the former two. In that dual system, a module is
the association of a sub-namespace and a pair of structures, it acts as concrete declared theory.
Furthermore, we adopt an applicative semantic for higher-order functors that allows a precise
propagation of information. We show that this module system is a conservative extension of the

underlying base language of Coq and we present the on-going implementation.
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Introduction

Program correctness is a crucial need in an increasingly computerized society. It is now well
admitted that specifying the behavior and the properties of programs is the first fundamental step
of program developments. Furthermore, with the help of a formalized mathematical language,
one can show that the refinement steps going from the specifications to the software realization
preserve the desired behavior of the program. In this proof process, the computer can be a good
ally for finding or verifying the demonstration of a property. Mechanized Mathematics Systems
(MMS) are software that can answer to such needs. They implement logics well suited for the
specification and the demonstration of programs. In the late 60’s and early 70’s, Nicolaas Govert
de Bruijn and Robin Milner devised Automath and LCF, respectively. These programs lay the
foundation of a new kind of MMS, called proof assistants. Since then, proof assistants have been
an intensive research area and a wide variety of them has been implemented. For instance, Mizar,
NuPrl and Coq are successors of Automath, whereas HOL, PVS and Isabelle are successors of
LCF.

Today, these tools are mature enough to ensure the correctness of medium sized programs
or protocols, and to formalize non trivial mathematics. As shown by some recent works or on-
going projects, such as the CompCert and Concurrent C Minor compilers [37, 29|, the formal
proof of the four colors theorem [23], or the flyspeck project!, proof assistants can scale up to
the “proving-in-the-large” challenge?. However, it still requires a great amount of work, and the
development efforts need to be shared between a group of researchers. In that context, proof
assistants need to provide tools to facilitate organization and reuse of existing mathematical
development. There are different approaches to manage theories in a proof assistant. We extract
from them two mainstream trends that are the axiomatic method used for instance in PVS, and
module systems used for instance in Coq.

For now seven years, the Coq proof assistant has provided a module system. This module
system has been formally studied and implemented by Jacek Chrzaszcz |31, 11]. It is closely
related to Objective Caml’s (Ocaml) module system designed by Xavier Leroy [34, 36]. It extends
the Coq proof assistant with module, signature, and functor constructions. Modules can package
objects of the proof assistant, and hence give a meta notion of theory. Signatures are interface for

modules. Functors act as functions from modules to modules. This module system has helped

lyspeck: formal proof of the Kepler conjecture, ongoing project by Thomas C. Hales et al.
By analogy to the “programming-in-the-large” challenge stated by Frank DeRemer and Hans Kron in [16].
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Coq users to develop large modular libraries. However, this system has been originally designed
for programming languages, and hence there are many perspectives of evolution in order to fit
in the context of a proof assistant.

In this PhD dissertation, we propose an overhaul of the module system of Coq. The new
module system consists of two parts. On one hand, we introduce a namespace system that
is able to define extensible naming scopes and to deal with renaming. The originality of the
namespace system is that it allows to build an alternative name-space from the one defined by
the compilation units (i.e. modules) of the development. On the other hand, we define a structure
system that describes how to combine structures. Here by notion of structure we refer to the

3. In that context, a

unification of both notions of module implementations and module types
module is defined by the association of a sub-namespace and a pair of structures. In order to
combine structures, we define a new merge of structures operator that, given two structures,
builds the resulting structure by unifying components of the two formers. Finally, we adopt
the OCaml applicative semantic for functors [35] in order to have a more precise propagation of
typing informations at instanciation time. We formalize our module system in four steps where
each step defines a system extending the previous one. In the first system, we extend the base
language with the notion of namespace. In the second system, we add first-order modules by
extending the first sytem with our new notion of structures. In the third one, we add a new
merge operator on structures. In the final one, we consider higher-order structures and functors.
By giving a translation from each system to its predecessor, we prove that our module system is
a conservative extension of the base language of Coq.

The outline of this dissertation is organized as follows, in Chapter 1 we present some existing
proof assistants together with their respective solution to manage theories. In Chapter 2, we
focus on the Coq proof assistant, its original module system and our proposition to evolve it.
In Chapter 3, we give an incremental formalization of our module system, where each steps is
proved to be a conservative extension of the previous one. We propose in Chapter 4 interresting
technical extensions of our module system that are a part of the concrete implementation. Then
in Chapter 5, we describe the implementation of the module system in the Coq proof assistant.

Finally we give concluding remarks and further research perspectives.

3 Also known in ML as structures and signatures.



Chapter 1

Proof assistants and theory

management

A Mechanized Mathematics System (MMS) is a fammily of software that offers a framework to
formalize mathematical proofs. We distinguish two kinds of software in this family. The first
one comes from the wish to have a fully automatic process of proof search. This can be done
thanks to logics that are "sufficiently weak" to be automated. These tools are called automated
theorem provers. The second one groups the proof assistants. They rely on more expressive and
powerful logics that prevents automation. In those systems, the user builds a proof that will be
checked by the proof assistant. Due to their expressiveness, proof assistants become more and
more popular for mathematical formalizations and program verifications. In that context, the
amount of knowledge being formalized and mechanically checked is constantly growing. Hence,
proof assistants need to provide tools to facilitate organization and reuse of existing mathematical
development. In this chapter, we investigate tools integrated in proof assistants that address this

1ssue.

1.1 Formal Proofs and Proof Assistants

Proof assistants are a part of the MMS family, they are interactive programs that help the user
to develop formal mathematics. They implement expressive logics that allow powerful reasoning
scheme. In such frameworks, the user is able to specify a problem, propose a proof for it, that
will finally be checked by the proof assistant. In order to build proofs, users have access to a
set of procedures, called tactics, that construct pieces of proofs. Tactics can either be general or
specific to a domain. For instance, a general tactic can be either a tactic that tries to apply an
already proven lemma or a tactic that performs proof search with the respect of a database of
applicable lemmas. In the other hand, a specialized tactic can be a tactic that proves equalities
in the Presburger arithmetic.

Depending on the paradigm on which the proof assistant is built, the proof produced by tactics is

either immediately accepted as correct, or is reverified by a proof-checker independent from the

11
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tactics. These two different approaches are closely related to the design of LCF and Automath,
respectively. Let us do a small review of some existing proof assistants. We present on one hand
three proof assistants (IMPS, Isabelle, and PVS) based on the “LCF approach”, and two provers
(Agda, Coq) based on the Curry-Howard isomorphism.

IMPS implements a many-sorted simply type theory called LUTINS [20]. This type theory
contains partial functions and allows subtypes to be included within types. Proofs in IMPS are
interactively constructed using a natural style of inference based on the sequent calculus. IMPS
builds a data structure, called a deduction graph, which records all the actions and results of
a proof attempt. The user is only allowed to modify a deduction through the application of
primitive inferences that are akin to inference rules. Most primitive inferences formalize basic

laws of predicate logic and higher-order functions.

PVS is based on classical, typed higher-order logic [44]. The system allows the definition
of predicate subtypes that can be used to introduce constraints on types (e.g. the type of
prime numbers). These constrained types may incur proof obligations (TCCs) during type-
checking. As in IMPS, PVS provides a collection of primitive inference procedures that are
applied interactively within a sequent calculus framework. User-defined procedures can combine
these primitive inference procedures. Proofs constructed from these tactics are accepted without

rechecking.

Isabelle is a generic prover, it implements a meta-logic called Isabelle/Pure that allows the
formalization of the syntax and inference rules [57]. The most commonly used instantiation is
Isabelle/HOL, for Higher-Order Logic. The core logic is implemented according to the so-called
“LCF approach”, hence proofs can only be constructed by a small set of primitive inference
rules. However, explicit proof terms are also available and can be checked by independent proof
checker [7]. The proof language of Isabelle is called Isar, it is a declarative language which aims

to be a tradeoft between primitive proof objects and the natural language.

Agda implements an extension of Martin-Lof type theory [9]. The main concern of Agda is to
provide a dependently typed functional programming language. Thanks to the Curry-Howard
isomorphism and dependent types, Agda can be used as a proof assistant, allowing to prove
mathematical theorems and to run such proofs as algorithms. Hence, writing a proof in Agda is

done as writing a program.

Coq is also a proof assistant based on the Curry-Howard isomorphism [17]. It implements the
predicative Calculus of Inductive Constructions. Hence, Coq supports polymorphism, dependent
types, inductive type definitions and a hierachy of type universes. Note that the latter is hidden
to the user through the implementation of the typical ambuiguity [30, 27]. Proofs are objects of

the underlying logical formalism and they are built with the help of tactics. Once built, proofs are
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checked by an independent type-checker, called the kernel. Note that there are other proof assis-
tants that implement the Calculus of Inductive Constructions such as Matita |3, 2] and Lego [19].

Let us say a few extra words about the Curry-Howard isomorphism. In 1958 Curry noticed
that typing derivations in simply typed lambda calculus corresponds to natural deduction proof
in minimal propositional logic. Moreover, in 1965 Tait saw the correspondence between the
computation rule of the lambda calculus, and cut elimination. More precisely, it turned out that
normal proofs correspond to lambda terms in normal form and that the cut elimination theorem
corresponds to normalization property of the simply typed lambda calculus. Quite a few more
logics have their lambda calculus counterparts. For instance, second-order propositional logic
corresponds to Girard’s system F'. This phenomenon is called the Curry-Howard isomorphism:
it establishes the correspondence between propositions and types, proofs and terms, provability
and inhabitation, proof normalization and term reduction. In a proof assistant based on the
Curry-Howard isomorphism such as Coq or Agda, stating a theorem amounts to writing a well-
formed type, and proving this theorem is nothing else but finding a term, whose type corresponds

to the theorem in question.

1.2 Theory management in Proof Assistants

The organization and the classification of the knowledge is a human habit. Let us take, the
illustration of a library to introduce the basic concepts that we need to manage mathematical
development in a proof assistant. In a library, books are grouped by topic, sub-topic and books
themselves are divided into several chapters. Suppose that we want to consult a book on group
theory. We are in the library, we go to the mathematical department, we find the algebra
bookcase, then the row of group theory, and finally we take a book called “the handbook of
group theory”. We can first remark here that we have followed a path where each step has a
name. Hence our first essential concept is the faculty to name things and furthermore names
should be able to represent a path from a general set of knowledges to a specific one. Now,
with the help of our book, we want to check if the set of permutations of three letters together
with the composition of permutation defines a group. Unless we are lucky, we will not find this
specific group in our book. In fact we find an abstract definition of a group: a set equipped with
a binary operation that must satisfy some axioms. In the book, all the theorems or lemmas rely
on this abstract definition which can be refined or extended for some specific properties (e.g.
the cardinal of the set must be a prime number). If we want to benefit from all the properties
stated in the book for our concrete example, we need to instantiate the abstract definition of
groups. Concretely, it means that we give the definition of the set, the definition of the binary
operation and then we prove the axioms. This example gives us our second essential concept
which is composed by both abstraction and instantiation and as a consequence theorem reuse.

Mostly all proof assistants take care of providing tools to manage developments. There exists

different approaches to solve this issue. Here, we extract two mainstream trends. The first one is
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the axiomatic method that comes from the mathematical world. The second one is the module
system that comes from the programming language world. As we will see these approaches

answer differently the challenge of theory management.

1.2.1 The Axiomatic Method

The aim of the axiomatic method is to represent a mathematical model as a set of axioms
expressed in a given language. Take for instance, the Peano axioms in a second-order logic
language. Hence, a theory is given by a formal language (a logic) and a set of axioms. Theorems
of a theory are logically derived from its axioms. As far as we know, the organization and
the presentation of the mathematics with the axiomatic method take its basis in the Euclid’s
Element. Indeed, he gives an axiomatic presentation of Fuclidean geometry and number theory.
Many centuries later (1800s), the axiomatic method regained interest. For instance, take the
Principia Mathematica of A. Whitehead and B. Russell, or The Foundation of Geometry of
Hilbert.

Nowadays, it is commonly admitted that they are two different ways of using the axiomatic
method, and somehow the two previous instances highlight it. They are generically called the
little theory and the big theory approaches of the axiomatic method [21]. In the big theory
approach, a body of mathematics is entirely represented in one powerful and highly expressive
theory, and all reasoning is performed within this theory. It is the approach followed in Principia
Mathematica, indeed the authors attempted to derive all mathematical truths from a well-defined
set of logical axioms. Today, a big theory appreciated by mathematicians is Zermelo-Fraenkel
set theory. In the little theory approach, a body of mathematics is represented as a network of
theories. Bigger theories are composed of smaller theories and theories are linked by interpre-
tations. In this approach the reasoning is distributed over the network of theories. A theory
interpretation is a syntactic translation between a source theory to a target theory. This trans-
lation maps axioms of the source theory to theorems of the target theory. Interpretations fulfill
different purposes. First it allows theorems of the source theory to be reused in the target theory.
Second, a theory interpretation from a theory T to a theory 7’ demonstrates the consistency of
T relative to 7', and also the decidability of 7 modulo the decidability of 7’ [56]. Finally, it
can be used to establish if a formula is independent from a given theory. In the The Foundation
of Geometry, Hilbert uses the little theory approach to study relations of independence among

subsets of axioms.

Theory and theory interpretation in proof assistants

Imps implements the little theory approach [21]. An IMPS theory is constructed from a
(possibly empty) set of subtheories, a language, and a set of axioms. The subtheory relation and
theory interpretation are ways to relate theories. The subtheory relation is induced by theory
extensions. The theory interpretation coincides with the definition given before, unless that the

translation also generates a set of obligations that must be proven as theorems of the target
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theory. The following examples illustrate some relations on theories definable in IMPS:
e FExtension: the theory of monoids can be extended to the theory of groups.

e [nterpretation: one builds a theory interpretation, from the metric space theory to the
normed space theory, by interpreting the distance function of the metric space as the

function (z,y) — ||z — yl|.

o [Interpretation as instantiation: considering a theory of abstract module over a ring and a
theory of real arithmetic (formalized as a field), one obtains a theory of abstract real vector

by instantiating the ring of the module theory with the field of reals.

A PVS theory consists of a theory name, a list of formal parameters, an assumption part,
and a theory body [45]. The theory body is the main part of the theory, consisting of top-level
theory importations, axioms, and theorems. The assumption part gives constraints over the
current theory, which have to hold for any instance of the theory. Internally, the assumptions
are the same as axioms. FExternally, they generate obligations which must be proved for each
import of the theory.

The importation mechanism is similar to the extension mechanism of IMPS. PVS provides
two notions related to theory interpretation: parameterized theory and explicit theory interpreta-
tion. A parameterized theory in PVS is parameterized by generic types and constants specified
in the formal parameter list. A generic type parameter is an uninterpreted type. Axioms are
simulated by the assumptions over these formal parameters. This provides a way of presenting

abstract theories. For instance, an abstract theory of groups is defined as follows:

group[G: TYPE, o : [G, G -> G], e: G, inv: [G -> G]]: THEORY
BEGIN
ASSUMING
a, b, c: VAR G
assoc : ASSUMPTION a o (boc¢) = (aob) oc

ENDASSUMING
leftcancellation : THEOREM .

END group

An instance of a group can be imported by providing all actual parameters of group theory

corresponding to the formal parameters, like grouplint, +, 0, -] for a concrete instantiation
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over natural numbers. This actually supplies a translation from the abstract (source) theory
to the concrete (target) theory. The assumptions are then checked to generate TCCs (type
correctness conditions) which are essentially proof obligations. Once the TCCs are proved, an
interpretation is built and all interpreted theorems of the abstract group theory are available in
the (target) theory importing it.

The explicit interpretation mechanism is similar to the theory parameterization mechanism,
where axioms replace the corresponding assumptions. An explicit mapping is specified for un-
interpreted types and constants of the source theory into the current theory. The interpreted
theorems are considered proved and available for use if they are proved in the abstract theory.

The group example above can then be reformalized as follows:

group: THEQORY
BEGIN
G: TYPE
o: [G, G ->G]

assoc : AXIOM FORALL a, b, ¢c: ao (boc) =(aob)oc

END group

and an explicit interpretation over the group of natural numbers is written now group{{G :=
int, + := +, 0 := 0, - := -}}. One advantage of using mappings instead of parameters is
that not all uninterpreted entities need to be mapped at import time, whereas for parameters
either all or none must be given. On contrary IMPS, PVS has also extended parametric theories
to take theories as parameter. For example, we may have a theory group_homomorphism of group

homomorphism that takes two groups as parameter:

group homomorphism[Gl, G2: THEORY groupl: THEQRY
BEGIN
x, y: VAR G1.G
f: VAR [G1.G -> G2.G]
homomorphism?(f): bool = FORALL x, y: f(x o y) = f(x) o £(y)

END group homomorphism
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One notes that symbol names are qualified by the theory names (e.g. G1.G and G2.G). Effec-
tively, two copies of the group theory are parameters of the generic theory group homomorphism.
Theory interpretations are used as parameter passing mechanisms. Two different theory inter-

pretations can be provided as instantiation of the theory group homomorphism.

Isabelle The theory concept for Isabelle is locales. They were initially designed to provide
scopes that locally fix variables, assumptions, definitions and pretty-printing syntax [33]. For

instance, we define a locale that fixes a context for partial order:

locale partial_order =

fixes le :: "’a = ’a = bool" (infixl "C" 50)

assumes refl [intro, simpl: "x C x"
and anti_sym [introl: "[| xC y; y C x |[] = x = y"
and trans [trans]: "[|l xCy; yCz |] = x C z"

This locale has a parameter le and an implicit type parameter ’a and it declares the axioms
for reflexivity, antisymmetry and transitivity of le. A locale definition also generates a locale
predicate, which is basically a predicate that represents the locale in the meta-logic of Isabelle.
On the contrary of PVS or IMPS, definitions and theorems can be added a posteriori in the

locale. For instance, we add to the locale the following definition:

definition (in partial_order)
less :: "’a = ’a = bool" (infixl "C" 50)
where "(x C y) = (x CynNx#y)"

This definition adds at top-level the definition partial_order.less lifted over the locale pred-
icate and it also adds the conclusion of the definition as less_def in the locale. As in PVS,
locales have their own notion of locale extension (aka import). For instance, one extends the

locale partial_order to a lattice or to a total_order locales.

locale lattice = partial_order +
assumes ex_inf: "3 inf. is_inf x y inf"

and ex_sup: "3 sup. is_sup x y sup"
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begin
definition meet
definition join ...

end

This gives the possibility of defining a hierarchy of locales [4]. One notes that the extension of
locale is generalized into a merge of locale expressions. Locale expressions are either a name of a
locale (as in the example) or a name of the locale plus some renaming. if 11 and 12 are two locale
expressions then 11+12 denotes the merging of the two locales. At this stage, the hierarchy of
locale is basically a DAG where each edge represents the extension of a source locale to a target
locale. Since the notion of locale is very similar to the notion of little theory, a theory interpreta-
tion for locale has been added to Isabelle [5]. This locale interpretation is achieved through two
commands. The first, sublocale interprets a source locale in the context of a target locale. The
other, interpretation instantiates parameters and replaces definitions of a locale. For instance,

a total order can be seen as a lattice:

sublocale total_order C lattice

For this interpretation we need to prove that the assumptions of the lattice are provable in the
context of a total order. However, the assumptions that comes from the partial order locale are
discharged since both source and target locales inherit from the partial order locale.

The instantiation of a locale is achieved through the interpretation command. For exam-
ple, we instantiate the partial order locale on the natural numbers, simultaneously we give an

effective value for the le parameter and replace the less definition.

interpretation nat: partial_order "op < :: [nat, nat] = bool"

where "partial_order.less op < (x::nat) y = (x < y)"

Once again, proof obligations are generated to checkout if the actual instantiation fulfill the
conditions imposed by the axioms. As a matter of facts, interpretation links between locales
entail cyclicity in the hierarchy of locales. In that context, the dependency graph of locales is

maintained with the help of a development graph [4]. It helps to discharge automatically proof
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obligations implied by the dependencies (cf. sublocale example) and it manages dynamically
the propagation of theorems through dependencies. Finally, the addition of constructive type

classes, that works well in combination with with locales, increases the modularity of the system.

1.2.2 Module Systems

Module systems are more recent and come from the world of programming languages. Their
very first role in programming language was to answer the challenge of programming-in-the-
large. The approach followed by module systems is closely related to the old adage “Divide et
impera”. Indeed, modules allow to split a large program development into several pieces of code
as independent and as general as possible. In that sense, a module system achieves the separa-
tion of concerns for program developments. A module is typically a pair formed by an interface
and an implementation. An interface expresses the elements that are provided and required by
the module. The implementation gives the realization of the elements declared in the interface.
Classical examples of imperative programming languages that provide such module systems are:
C, the Modula family or Ada. Although, Ada [55] and Modula-3 [10] offer supports for generic
modules (e.g. modules abstracted over types or values), they can only perform some basic oper-
ations on modules. On the other hand, most all ML dialects [42, 36] (Ocaml, SML/NJ, Moscow
ML...) offer a much more powerful module language. The basic constructions of ML module
systems are structures, signatures and functors. A structure is a sequence of type, value, and
substructure bindings. A signature serves as interface for a structure, it is a list of specifications
that assigns a type for each value component and either an abstract or manifest type specification

for each type component. For instance take the following structure and signature in SML syntax:

signature Int_Set =
sig

type elem = int

type set
val emptyset : set
val insert : elem -> set -> set
val mem : elem -> set -> bool
end
structure IntSet : Int_Set =
struct

type elem = int
type set = int list
let emptyset = []
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let insert e s = e::s

let mem e s = ...

end

The signature Int_Set contains a manifest type specification type elem = int and an abstract
one type set. The structure IntSet is sealed by the signature Int_Set (i.e. : Int_Set),
and provides an implementation for all mentioned component in it. In order to use such a
module, one has to project out the component using the dot notation (e.g. IntSet.t). Since,
the type set is specified abstractly in the signature, clients of the module will only be able to
build values of type set by using the associated values and functions (i.e. emptyset, insert...).
This kind of signatures mixing abstract and manifest type specifications are called translucent
signatures |24, 34]. Together with opaque sealing, they enable a good trade-off between data
abstraction and type information propagation.

Functors are functions from modules to modules. They allow to build modules that depends
on module parameters, and hence they enable modules to be reused on different instantiations of
its parameters. If we go back to the previous IntSet example, we note that the implementation
of set is quite independent from the type of the elements stored in the sets. Hence, we can give
a generic version of the implementation of sets over the type of the elements if and only if the
elements are comparable. First, we define a signature that specifies the minimal information

needed to build an implementation of sets:

signature Ordered_Type =

sig

type t

val cmp : t -> t -> order
end

Then, we define the functor Set as the structure depending on a parameter of signature

Ordered_Type:

functor Set (X : Ordered_Type) =
struct

type elem = X.t
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type set = elem list
let emptyset = []
let insert e s = e::s

let mem e s = ... 1if X.cmp...

end

Now having a generic implementation of sets, the client can instantiate the functor on a concrete
module that matches the Ordered_Type signature. One can refer to Appendix A for a more

detailed presentation and history of the ML module system.
Now, we do a review of proof assistants that use a module system to manage theory:
Agda The module system of Agda is very simple. It has for main purpose the handling of

name-space. In a sense it looks like the module systems of Modula-2 or Ada. A module is

defined by a list of parameters and a set of definitions and submodules. For instance:

module Main where

module N where
data type Nat : Set where
Zero : Nat
Suc : Nat -> Nat
IsZero : Nat -> Set
IsZero Zero = True

IsZero (Suc n) = False

module L (A : Set) where
datatype List : Set where
nil : List
cons : A -> List -> List

The indentation delimits the scope of a module. In order to access to a field of a module,
one has to use the dot notation (e.g. N.IsZero). The scope of a module can be opened, and
thus making accessible its content without qualifying it. Parameterizing a module has the effect

of abstracting the parameters over the definitions in the module. However, parameters can
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also be globally instantiated. For instance, in the scope of the module main, one can write:
module M = L N.Nat. Finally, Agda proposes two name modifiers, one for hiding the name of a
field, and the other for renaming it. For instance, while opening a module one can rename fields

as following: open N renaming (IsZero to foo).

Lego The module system of Lego [48, 47| developed by Randy Pollack is roughly the same as
the one defined in Agda. The most relevant difference is that modules are considered as first-
class objects. However, they have a unique uninformative type, namely THEORY. Hence the only
thing that can do a function that takes a parameter of type THEORY is to give it back. As in

Agda, the module system of Lego is essentially used for name-space management.

Coq The Coq proof assistant offers different vectors of modularity for mathematical develop-
ments that are: a module system [12], a type class mechanism a la Haskell [54], and dependent
records in conjunction with coercion graphs [51, 22]. One notes that the two last features are
derived from inductive types constructions and hence are first class objects. The module system
is basically the Ocaml module system with a generative functor semantic (we give a more precise
presentation in Chapter 2). As expected, it allows to define signatures, modules and functors.
These constructions are able to package heterogeneous objects. In other words, they can contain
regular definitions, axioms, inductive type definitions, but also non-logical objects (e.g. pretty-
printing syntax, databases of hints for proof search...). Coq has its own compiler that produces
bytecode. Hence, another interesting contribution of the module system is that modules are con-
sidered as compilation unit and thus it provides mechanisms to quickly load libraries. The main
drawback of this module system is that modules are not first-class values. Indeed, the system
is built on top of the base language of Coq, and consequently the module language is clearly
separated from the base language. However, we can put in perspective this limitation. The
other vectors of modularity mentioned above can substitute modules when first class objects are
needed. Furthermore, the type-checking algorithm of the base language is certified and need to
stay relatively simple. In view of this fact, extending module computation to make module first
class as done in [24]*, or adding packaged module constructions into terms of the base language

as done in [50]| would complicate the certification and would decrease the reliability of Coq.

1.3 Conclusion

We have presented different proof assistants together with their respective solutions to manage
theories. These solutions can be classified in two main families that are the axiomatic method and
the module system. When theorems are dynamically propagated through interpretation links, as
in Isabelle, the axiomatic method seems to be a better tool for theorem reuse than module sys-
tems. On the other hand, in PVS or IMPS, interpretations are equivalent to first-order functors.

Module systems are more adequate for the management of the name-space and the non-logical

“moreover this approach can lead to undecidability of type-checking.
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features of the proof assistant. Indeed, the clear separation between module constructions and
base language constructions allows to have a meta notion of theory. Consequently, it enhances
the proof assistant with features that are orthogonal from the base language. Finally, modules

are also useful for the development of libraries since they can be used as compilation units.
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Chapter 2
The Coq proof assistant

In this chapter, we focus on the Coq proof assistant, its underlying logic language and its module
system. Afterwards, we discuss about limitations of the actual module system and give our

solutions to make it more “proof assistant compliant”.

2.1 The formal language of Coq

2.1.1 Pure Type Systems

We give the definition of Pure Type System (PTS) introduced by Terlouw and Berardi [6]. Given
C a countable set of constants, and V a countable set of variables, one defines the syntactic class

of pseudoterms for pure type systems as follows:
tL,T:=v | (t1te) | w: Tt |Vo:Th.Ta | ¢

Concretely, a pseudoterm is either a variable, an application of two pseudoterms, an abstraction,
a product, or a constant. One defines the notion of environments, written F, as a finite sequence
of declarations of the form v : T

Then, one defines the notion of 3-reduction, written >z, as the following relation:
(AT, t)t1 >g {v/ti}t

and one denotes =g the transitive, symmetric, reflexive and congruent closure of this relation.
Finally, one defines the triple (S,.4, R) where:

e S, the set of sorts, is a subset of C.
e A, the set of axioms, is composed of pair (s,s’) € S x S.

e R, the the set of rules, is a set of sort triplet (s1,$2,83) € S xS x S.

25
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A PTS is characterized by the triple (S,.4, R), and by the following typing system that defines
the two judgements E'+ ok and EF¢:T.

Exv/E Env/Acc ENV/INSERT
NV/EMPTY EFok (v:T)€E EFok EFT:s sc8
F ok ErFv:T E;(v:T)F ok
TERM/AX TERM/APP
E |- ok (s1,82) € A Ert:Y:UT Eru:U
EF s1:s9 EF (tu):{v/u}T
TERM/LAMBDA TERM/PROD
EEYv:T,U:s E;(v:-T)Ft:U EFT:s (s1,s2,53) € R E;(v:T)FU: s
EF-) v :Tt:Yv:T,U EFYv:T,U: s3
TERM/CONV
EFU:s Ert:T EFT=3U
Er-t:U

The judgement FE + ok means that the environment E is well-formed (i.e. it assigns correct types
to variables). The judgement E F ¢ : T means that t is of type T in E.

Adding Definitions

Adding the possibility to abbreviate terms in PTS is a natural extension and has been formally
studied in [52]. Concretely, one adds new entries of the form (v : T' := t) in the environment.

One also defines the two following rules to add and access a definition in the environment:

Env/Acc ENV/INSERT
Ei;(v:T:=t); Ey ok EF ok Ert:T
Erov:T E;(v:T:=t)F ok

In order to use the definitions, one defines the new reduction rules ¢:
Eyy(v:T:=t);EaFvDst

and one denotes =g the transitive, symmetric, reflexive and congruent closure of this relation.

Consequently, the conversion rule becomes:

TERM/CONV
ErRU:s EEt:T EFT =35U

ErHt:U
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Adding Inductive Types

An inductive type definition is a package containing names and types of mutually defined induc-
tive types and constructors [46, 13]. One denotes an inductive definition as a pair of sequences
of declarations: (E! := E¢), where Ef = vy : Ty;... ;v : Ty, and E€ = ky : Uy;...;ky : U,. The

rules that describe the introduction of an inductive type definition are the followings:

ENV/INSERT/IND
EFTj:s; Vjiell.. k] ENnv/Acc/IND
E;E'+U,:s Vgel...n Ey; (B! .= E°); Ey I ok
0 Vacll...nl POS(E! := E°) ok )i B
E;(E! := E° F ok Ey; (Bl == E°); By b v : T}

ENv/Acc/CONSTRUCTOR
Ey; (ET .= E°); By F ok
Ei; (B' = E%); Bo b ki : U

where the side condition POS(E! := E°) is a “positivity” predicate syntactically defined on the
kinds of inductive types and types of constructors. In this Phd dissertation, we restrict our
description of inductive type definitions to constructions that are needed for modules. This
is why, we do not describe here the positivity predicate, eliminations rules and destructors. A

complete description can be found either in the Coq Reference Manual [17] or in literature [46, 13].

2.1.2 The Predicative Calculus of Inductive Constructions

The A-calculus implemented in Coq [17] is specified by the following set of sorts, axioms and

rules:
S = {Prop, Type,|i € N}
A = {(Prop, Type;), (Type;, Type, 1)}
R = {(s,Prop,Prop), (Prop, Typey, Typey),

(Type;, Type;, Typeg |i < k,j < k)}

Remark that the Typey constant is denoted by Set in the user front end of Coq.

In the general PTS formalization we did not take in account a universe hierarchy. Following
the fact that any inhabitant of an universe indexed by ¢ is also an inhabitant of the universe in-
dexed by ¢+ 1, we extend the convertibility relation to the order, denoted by <gs, and inductively

defined as follows:

1. if EFt; =gs ta then Bt <gs to
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2. if 1 < j then E+ Type; <gs Type,
3. for any ¢ € N, E I Prop <gs Type;
4. it EFT =5 U and E; (v:T)F Ty <gs Uy then E Vv : T, T <gs Vv : U, U;

Now, the conversion rule becomes a subtyping rule:

TERM/SUB
E-U:s Er-t:T EFT <gsU

ErHt:U

One notes that the exact subtyping relation in Coq is <gs,¢, where ¢ is the reduction for fixpoints
and “match...with” constructions, and ¢ is the reduction associated to local definitions defined

as follows:

Etlet z :=wuin t > t{x/u}

2.2 The original module system of Coq

In his Phd dissertation, Courant [15] has formally studied the extension of PTS by a module
system. He designed a system called MC that stands for Module Calculus. MC extends PTS
with modules, functors, and signatures together with specialized reductions for functor applica-
tions and module accesses. In MC, modules are considered as anonymous second class objects.
Unlike ML dialects, the base language (here PTS) makes no distinction between types and val-
ues and it has some strong properties (e.g. strong normalization of terms). Thereby, mostly all
ML’s module system issues do not hold. In that context, Courant has built a system that is
conservative with respect to the base language, strongly normalizing and that verifies the subject
reduction property. He also showed that the type inference is decidable and that his system has
the principal type property.

The module system implemented in Coq by Chrzaszcz [11, 12] is a restriction of MC. In
his Phd dissertation, he argues that an anonymous module calculus does not fit well when
considering inductive definitions and rewriting rule definitions. Thereby, he restricts the class
of module expressions to the class of paths. In that context, all complex module expressions
need to be named before being used in a term. In the following, we first illustrate the basic

constructions of his system, and then we give a shortened version of its formalization.

2.2.1 Basic constructions

We first give a subset of the concrete Coq syntax for fields, modules and module types:
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o [Fields:

FI := PARAMETER statement. | DEFINITION statement := term. | AXIOM statement.
| INDUCTIVE statement := ind_ def.
| NOTATION abbrev := term | HINT hintkey label.

FM = FI| LEMMA statement. PROOF. ... QED.

e Modules:
M := MODULE label |: Ie|. FMy. FMs. ... FM,. END label.
| MODULE label |: Ie] := Me.

e Module Types:
I := MOobDULE TYPE label. FI;. FI,. ... FI,. END label.
| MoODULE TYPE label := Ie.

e Paths:
P = label| P.label

e Module expressions:
Me = P

e Module type expressions:
le = P

One remarks that: lemmas are not allowed in module types, a module is optionally sealed by a
module type expression (i.e. [: Ie]), and module and module type expressions are restricted to

paths.

Modules

A module encapsulates a list of fields. It is always a named object. For instance, take the

following module in Coq syntax:

MODULE M.
DerINITION T : Set := nat.
DErFINITION e : T := O.
DEFINITION op : T — T — T := plus.
EnD M.
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The module M contains three definitions: T, e, and op. If we want to project one of these
definitions we use the dot notation (e.g. M.T).
Signatures

A signature corresponds to a type of a module. For instance, a possible type for the module M
could be:

MobDULE TYPE Sig.
DEFINITION T : Set := nat.
PARAMETER e : T.
PARAMETER op : T — T — T.
END Sig.

Note that this signature both hides the value of fields e¢ and op, and makes transparent the

definition of T. For instance, we can seal a copy of the module M by the signature Sig as follows:

MODULE P : Sig := M.

In that context, the implementation (e.g. M) given for the module P’ is hidden and the only
information available is the one defined in the signature. Consequently, the term P.op P.e P.e
is not reducible and the statement M.e = P.e is not provable. We say that the signature is
translucent because it contains both abstract and defined fields, and that the sealing is opaque

since implementation details are not propagated.
Functors

We extend the concrete syntax to take in account functor definitions:

e Modules:
M  ++= MODULE label (Xy:Ie1)... (Xy:1ey)[: Ie]. FMy. FMs. ... FM,. END label.

e Module Types:
I ++= MobpuLE TYPE label (Xy:Iey). .. (Xy:1e,). FIi. Fly. ... FI,. END label.

e Module expressions:
Me ++4+= P Py...P,
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Functors are functions from modules to modules. Analogously to modules, functors are typed
by functorial signatures. For instance, the following functor takes as argument a module X of

type Sig and returns a structure containing three fields 7, e, and op:

MoDULE F (X:Sig).
DEFINITION T := X.T .
DEFINITION ¢ := X.e.

DEFINITION op := fun zy => X.op y x.
EnND F.

A type for this module could be:

MobpuLE TYPE FS (X:Sig).
PARAMETER T.
PARAMETER e : T.

PARAMETER op : T — T — T.
END FS.

Functors can be applied to concrete modules:

MobDuLE K := F M.

Finally, functors are generalized to the higher-order case, which means that a functor can take a

functor as argument. Take, for instance:

MODULE H (X:Sig) (Y : FS) := Y X.

The functor H takes a module X and a functor Y and returns the application of Y to X.
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2.2.2 A shortened formalization
Syntax and Specifications

The base language on which the module system is built is the one given in Section 2.1 ®. As
Courant, Chrzaszcz adopts the notion of specification. A specification is a syntactic object
attached to each variable in environments, structures, and signatures. It gives all informations
available about a variable. The variable declaration v : T' given in Section 2.1.1 is now written
v : Ty(T) where Ty(T') is called an abstract specification, and the definition v : T := ¢t becomes
v: Eq(t: T) where Eq(t : T) is called a manifest specification.

Following [24], the formal syntax makes the difference between labels visible from the exterior
of a structure, and a-convertible binders used inside a structure. Hence, a declaration is written:
v >wv: S, where v denotes the external label, v the internal binder and S the specification.

The rules for building correct environments are split into abstract formation rules that assume
correct specifications, and concrete rules that build correct specifications (abstract or manifest).

We first give rules that build correct environments E - ok:

. ENV/AcC ENvV/INSERT
NV/EMPTY EF ok (v>v:S)eE E ok EF S :spec
F ok Etrov:S E;(v >wv:S)F ok

In the above rules, the judgement F F S : spec means that S is a correct specification in the

environment E.

The syntax of specifications is the following:

S = Ty(¥)|Eq(¢: )

¢ = t|P
b = T|I
E := s|modtype

We use the symbols ¢, 1, and = to make notations uniform for both term specifications and
module specifications. For term specification, they stand for term ¢, type T and PTS sort s,
respectively. For module specification, they stand for module path P, module type I and a sort
modtype, respectively. The new sort modtype is used in judgements of the form F + I : modtype,

whose meaning is that the module type I is correct. The following rule scheme builds correct

°In his Phd dissertation, Chrzaszcz also consider rewriting definitions
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specifications:
Ty/Form EqQ/ForM Ty/SAT
Ervy:= Ero¢: Ero¢:vy E+Ty(v) : spec
EF Ty(v) : spec EFEq(¢:1): spec EtF ¢:Ty(y)
EQ/saT
Er¢~¢ Er-¢ v E+Eq(¢: 1) : spec

Et+ ¢ :Eq(¢:v)

where &~ denotes in one hand =gs when ¢ and ¢ are terms, and in the other hand the syntactic

equality when ¢ and ¢’ are module paths.

Modules and Module Types

In order to introduce the formal syntax and the typing rules for modules and module types, we

give the following examples in Coq syntax together with their translation into formal syntax:

MopUuLE TYPE I
PARAMETER T : Set.
PARAMETER e : T
PARAMETER op : T -> T -> T.
EnD I

This module type [ is expressed as follows in the formal syntax:
Sig
T >wp : Ty(Set)
e > vy : Ty(vy)
op >ws : Ty(vy — v — v1)
End
We define a module that implements the module type I:

MODULE P : L
DEFINITION T : Set := nat.
DEFINITION e := O.
DEFINITION op := plus.
EnD P.
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This module P is written as follows in formal syntax:
P>w:
Ty(Sig
T >y : Ty(Set)
e >ws: Ty(vy)
op >y : Ty(vy — v — v1)
End) :=
Struct
T > w5 : Eq(nat : Set) := nat
e >wg: Eq(0: v5):=0
op > vy : Eq(plus : v5 — vs — v5):= plus
End
The syntax of structures and signatures is the following:

e Signatures:

I := Sigvi> vy :851...v, > vy, : S, End

e Structures:
M := Structvil> v;:S51:=m...v,> v, :S,:=mEnd

e Implementations:
m = t|M|P

The rules used for forming correct module types and typing structures are given by the fol-
lowing rule scheme:
Sic/ForM
E v :851,...,v,: 5, F ok
EFSigwvy : S1,...,vy ¢ Sy End : modtype

S1G/STRUCT
EtSigvy ¢ S,...,v, S, End : modtype
Vke[ln] E,UlZS,...,’kalisk,ll—mk:SK

E F Structwvy : S1:=mq,...,vp : Sy :=mypEnd : Sigvy : S,..., v, : Sy End

S1G/ACCES
Erp:Sigvy:S1,...,v, : S, End

EFpv:S;

In S1G/STRUCT, P; represents the implementation of the field v;. When v; is a term field, then P;
is a term. And, when v; is a module field then P; is either a structure, a path, or an application

of paths.
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Subtyping

The subtyping relation, denoted by <:, decides if a module type is more precise than another.
Given two module types I1 and Is, we say that Iy is a subtype of Iy if I; defines at least the
same fields as I, and if the fields of I; are more (or as) precisely specified that the ones of Is.

For instance, we have:

MobuLE TYPE 1.

DEFINITION T : Set := nat. MoDULE TYPE L.

PARAMETER e : T ' PARAMETER T : Set.

PARAMETER op : T-> T -> T. = PARAMETER e : T
END L. END L.

The rule for signature subtyping is defined as follows:

S1G/SUB
EFSigvy: S1,...,v, 1 Sy, End : modtype
E+ Sigvy:S1,...,v), : S End : modtype
W, vy S, ..o}
E,,v1:81,...,05: Sp vy 2 Sy Vkell...n]
EtFsSigv;:Si,...,v,: Sy End <: Sigo) : S7,...,v,: S, End

Strengthening

At this stage of the formalization, the following module definition does not type-check:

MobpuLE P’ : (I wiTH DEFINITION T:= P.T) := P.

where (I WITH DEFINITION T:= P.T) is syntactic sugar for:

MopuLE TYPE I
DEFINITION T : Set := P.T.
PARAMETER e : T
PARAMETER op : T -> T -> T.
END I

It is explained by the fact that the type of P is not a subtype of the module type I wiTH
DEFINITION T:= P.T. More formally, the following subtyping judgement does not hold:
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Sig T : Ty(Set), e : Ty(T), op : Ty(T — T — T) End
<
Sig T :Eq(P.t: Set), e: Ty(T), op : Ty(T - T — T') End

Indeed, on the right hand-side of the subtyping relation the field T' is more precise than the
corresponding one in the left hand-side. This is explained by the fact that we are not able to
derive the principal type for a module path (in our example it concerns the type derived for the
module path P). By principal type, we mean the minimal type that we can give to the path with
respect of the subtyping relation. The solution is to consider the notion of strengthening [34].
This notion expresses that if a certain module path P is of type I then this path is also of type
I/p (i.e. I strengthened by P). Where /P is described as follows:

Sigv1:51,...,vn : Sp End)p = Sig vi/py, 1515+ Vn  Snjp, End
Eq(¢:¢)p = Ea(¢:¢,p)
Ty(¥);p = Ea(P:¢)p)
T)p = T

The strengthening operation recalls, to some extent, the n-expansion of a product (e.g a product
t is m-expanded to pair(fst t,snd t)). Here each field of the signature is manifestly equal to its
own projection.

Finally, we add the following rule in our typing scheme:

STR
EFP:I
ErP:1)p

Functors

Take, the following functor definition in Coq syntax:

MoDULE F (X:I).

DEFINITION T := X.T.

DEFINITION e := X.e.

DEFINITION op := funxy => X.op y .
END F.

It is expressed in formal syntax as follows:

F : FunSig(X : I)Sig T : Eq(X.T : Set), e : Eq(X.e: X.T), op :
Eq(A\ry...: X.T — X.T — X.T) End :=
Functor(X : I)Struct T : Eq(X.T : Set) :— X.T, e: Eq(X.e: X.T):—X e,
op:EqAxy...: X.T - X.T — X.T):= Azy... End
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We extend the formal syntax with Functor and FunSig constructions:

e Signatures:
I ++ = FunSig(v:I)I

e Structures:
M ++ = Functor(v:I)M

In order to derive well-formed functorial signatures, well-typed functors and well-typed path
applications, we add the following rules in our typing scheme:

Funsic/ForMm

E+ I : modtype E ;v :Ty(l;) F Iy : modtype

E - Funsig(v : I1)I5 : modtype

Funsic/FuNcTOR
Ev:Ty(li1)Fm: I E F Funsig(v: I1)l2 : modtype

E b Functor[v : Ii|m : Funsig(v : I1)I>

Mob/App
EF p:Funsig(v: )l Erp: L
Etpp : L{v/p'}

We also extend the subtyping relation, in the classical covariant/contravriant way, in order to

consider functorial signatures:
Funsic/SuB
ErIy < I E,v:Ty(I}) F I <: I}
E & Funsig(v: I1)Iy <:Funsig(v : 1)1}

Finally, the strengthening on functorial signatures has no effect and hence is defined as following:

(Funsig(v: I1)I2)p = Funsig(v:Ii)lo

Conservativity

We give the sketch of the conservativity proof done by Chrzaszcz. He argues that a closed (i.e.
without axioms) Coq development corresponds to a structure typable in the empty environment.
In order to simplify the conservativity proof, he assumes that the structure has the following

form:
Struct

v Dy St i=my.. v, Doy Sy = my, (1)
Vptl D Upt1 @ Sptl i = Mpy1. .. Vg Dok 2 Sk i= my (2)
vv:Ty(T) =1t (3)

End
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The part (1) is the modelling phase, it contains only term definitions and inductive type def-
initions. The part (2) is the proof development phase, it contains definitions of any kind and
in particular module and functor definitions. The part (3) is the final theorem. Moreover, he
assumes that

Vi v:Sii=my...v, D> v, Sy i=m,ET s

in other words, the final statement is typable in the environment of the modelling phase. He
calls a such structure: a formal development, and he calls a classic formal development, a for-

mal development where the proof development does not contain any module or functor definition.

Now, the conservativity result can be expressed as follows:

Theorem 1 Every formal development can be transformed into a classic formal development

with the same modelling phase and the same final theorem.

The proof is built in two steps. The first step is the evaluation of module expressions into a
weak head normal form. A module expression is in weak head normal form if it is a path, a
structure or a functor. He defines an ewal function that, given a formal development, evaluates
iteratively from left to right each module components of the development. Once a module
component is evaluated, it is given its principal signature. The second step is the flattening
of module components. Given an evaluated formal development, he proceeds from right to left
and eliminates the last module component. A first-order module components is replaced by its

sub-components and a functorial module component is simply removed.

Conclusion

The system implemented by Chrzaszcz provides modules as second class objects. Module ex-
pressions are strictly restricted to paths and functors are considered generative. This design
recalls some existing ML module systems and as a matter of facts this system can be viewed
as an adaptation for Coq of the system designed by Leroy in [34]. The main difference in Coq
is that there is no distinction between values and types, hence a module only contains a static
part. In that context, one could think that Coq and its module system support separate compi-
lation. However, the fact that Coq implements the typical ambiguity prevents the achievement

of separate compilation [14].

2.3 DMotivation for an evolution of the module system

For six years, the original module system of Coq has shown its usefulness for structuring large
developments, it has helped to the realization of modular libraries, like FSets, Numbers, and
many user contributions. However, this system has been historically designed for ML, and is not
fully adequate for Coq. In the following, we present and illustrate its limitations, and introduce

our solutions to improve it.
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2.3.1 An unified account for signatures and implementations of modules

Considering the statement that module types and module implementations can contain the very
same objects in Coq, we claim that the classical dichotomy between them is not anymore relevant.

As an illustration, we can define in the original system the following modules and module types:

MoDULE TYPE S. MODULE M.
PARAMETER T : Set. PARAMETER T : Set.
PARAMETER op : T->T->T. PARAMETER op : T ->T-> T.
NOTATION "z o y" := (op z y). NOTATION "z o y" := (op z y).

END S. END M.

MoDULE TYPE S MODULE M.
DEFINITION T : Set := nat. DEFINITION T : Set := nat.
DEFINITION op (zy: T): T := 1z + . DEFINITION op (zy: T): T :=z + y.
NoOTATION "z 0 y" := (op z y). NOTATION "0 y" := (op 1 y).

EnD 5. EnD M’

This is explained by the fact that we have, on contrary of ML, no distinction between types and
values. Hence, we now consider a unique notion of structure that unifies both module type and
module implementation constructions. Furthermore, as the notion of specification has no real
counterpart in the concrete implementation of the Coq module system, we abandon it and we go
back to the classical notion of parameters and definitions. Now, we write (...) in place of both
Sig...End and Struct...End, and we call the resulting system structure-based. The structure

corresponding to the module type S is now written:

S=(T:Set,op:T—T—T)

and the module M’ is written:

M' (T : Set:=nat,op: T =T — T := dzy.(pluszy))

=(T:Set:=nat,op: T —-T — T := dxy.(plusz y))

We also give a higher-order structure counterpart for the constructions Funsig and Functor.

Take for instance, the following functor:
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MODULE F (X:S).
DerFiNiTION T := X.T .
DEFINITION op := X.op.

EnND F.

that is written in the structure-based system:
F:(X:8)=(T:Set:=XT,op:T—T—T:=X.0p)

=X:8)=T:Set:=XT,op:T—-T—T:=X.0p)

This new approach has two main impacts for the module system of Coq. First, it allows a
simpler implementation due to a unique notion of structure. Secondly, it allows to treat uniformly

the different operators on modules and module types by transferring them onto structures.

2.3.2 Higher-order functors

The original module system lacks the principal signature property for higher-order functors. For

instance, take the following module definitions:

MODULE TYPE S.

PARAMETER % : nat. MoDULE H (X : S).
END S. DEFINITION z : nat := X.z.
END H.
MobDULE TYPE FS (X: S).
PARAMETER z : nat. MobpurLe M.
END FS. DEFINITION z : nat := 1.
END M.

MODULE App (X:S)(F:FS) := F X.
MODULE K := App M H.

The inferred signature for the module K is: Sig z : Ty(nat) End and do not mention that
the field 2 is equal to 1. This is due to the fact that the system has inferred the signature
Funsig(X : S)Funsig(F : F'S)Sig x : Ty(nat) End for the higher-order functor App. Obviously,
the signature of App is not precise enough. Indeed, it does not specify that the output of the
functor App is the result of the application F' X. This behavior makes higher-order functors
totally useless.

The fully transparent signature for higher-order functors is a well-known problem for the

ML community and different solutions has been proposed to solve it [35, 49, 18]. We adopt
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in our new system, Leroy’s applicative functor semantic [35]. We explain our choice by the
following reasons. First, in our module system, the syntactic class of module expressions is
strictly restricted to module paths. Hence, we are not able to apply a functor to an anonymous
structure and consequently we do not loose the principal type property. Second, being pragmatic,
we think that Leroy’s approach is the easiest one for a concrete implementation in Coq. Finally,
Coq’s modules are extracted toward Ocaml’s modules and this is more convenient to keep the
same semantic for functors.

Adopting this semantic for our system implies that path applications are now a part of the
syntactic class of module paths. Hence, we can strengthen the structure inferred for App by the
path F' X. The functor App has now the following structure (X:S)=(F:FS)= (z : nat := (F X).x)
for both signature and implementation. Finally, the module K binds the following structure
(x : nat :== (H M).x) where (H M).x reduces to 1.

2.3.3 More flexible operators on structures

Our new structure-based system allows to make operators, that usually work separately on mod-
ules and module types, uniform. These operators are module type refinement (WITH), module or
module type inheritance (INCLUDE), and functor application. In order to treat uniformly these
operators, we need to be able to extract the structure corresponding to a module type definition

or a module definition. We do it as follows:

e A module type corresponds to a structure abbreviation, hence we unfold the module type

definition to the corresponding structure.

e A module is defined by a path and a pair of structures where the first one stands for the
type of the module and the other for its implementation. The structure corresponding to
the module definition is the “type structure” strengthened by the path of the module. In

other words, the structure extracted from a module corresponds to its principal type.

For instance, take the following module type and module:

MoDULE TYPE S.
PARAMETER T : Set.
END S.

MODULE M : S.
DEFINITION T : Set := nat.

DEFINITION e : = 0.
END M.
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The extracted structure is (T : Set) for S, and (T : Set := M.T) for M.

Now, we define a new “merge of structure” operator, in order to recover both INCLUDE and
WITH operators. Given two structures, this operator scans these structures comparing two fields
at a time. If two fields are equally labelled, it projects in the resulting structure the most precise
one. The other remaining fields, that are disjointly labelled, are simply injected in the resulting
structure. To decide which field is more precise we use the subtyping relation. Concretely, a term
definition is more precise than a term parameter if the type of the definition is convertible (i.e.
<gs) to the type of the parameter. A term definition is more precise than another definition if the
type of the first one is convertible to the type of the second, and if the bodies of both are strictly
convertible (i.e. =gs). The same algorithm is performed to select module fields. However, in

that case we use the structure subtyping relation. For instance, take the two following module

types:

MoDULE TYPE S.
PARAMETER 1T : Set.
DEFINITION D : nat := 0.
PARAMETER F : T -> nat.

END S.

MobuLE TYPE 5.
DEFINITION T : Set:= bool.
PARAMETER D : nat.
DEFINITION F (2:T) :=match z with | True => D | False => 1 end.
DEFINITION 7 := F True.
END §".

The merge of S and S’ gives the structure:
(T : Set:=bool, D :nat :=0,F:T = nat:=Xx:T..., Z:nat := Ftrue)

Note that we need to prevent the merge operator from producing structures that can contain
diverging definitions. For instance, the merge of the structures (x : Set, y : set := z) and
(y : Set, x : set := y) needs to be rejected. This issue is well-known in mixin system |1, 28]. To
solve it, one could compute the dependency graph and check if the graph resulting of a merge
is acyclic. In our work, we impose the merge operator to verify if equally labeled fields of the
two structures are declared in the same order. This restrictive condition implies acyclicity of the
graph. However, it reduces the domain for the merge operator. For instance, (z : Set, y : set :=

nat) and (y : Set, x : set := bool) can not be candidate for a merging. The main advantage
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is that this condition is quite simple, easily implementable, and is hence a better solution for a
proof assistant.

The merge operator only works on first-order structures. However, the merge of two higher-
order structures is easily done by distributivity of functor abstractions over the merge operator.

Take as example the two following functors that extend a given module parameter with distinct
fields:

MODULE F (X:S).

INcLUDE X.

DEFINITION foo : Type := ...
EnND F.

MODULE G (X:S).

INcLUDE X.

DEFINITION bar : Type := ...
EnD G.

Using + as symbol for merging, we merge the functors F' and G as follows:

MODULE FG (Y:S):= (F Y)+(G Y).

Thanks to the strengthening, the parts of F and G, that are inherited from X, are merged as
expected. The structure extracted from (F' Y) (resp. (G Y)) is strengthened by the path (F' Y)
(resp. (G Y)), and in the context enriched by the module parameter Y, both (¥ Y).T and
(G Y).T reduce to Y.T.

Lastly, this structure-based system allows a more liberal use of modules and module types
since both constructions can be reified to structures. Hence a module type, which is basically a
structure abbreviation, can be used to implement a module, and reciprocally a module can be
used as a module type. Moreover, the merge operator is defined on structures and thus works

transparently on modules or module types.

2.3.4 Dynamic namespace

A module system is a great tool to manage name-space but it lacks a kind of extensibility. By

extensibility, we mean to add a posteriori objects in the scope of a qualifier. To illustrate, take the
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List module from the standard library of Coq. Let suppose that for our personal development,
we want to extend it with new functions, lemmas and notations. We have no other way than
creating a module with a dummy name, like ListExt, importing the module List and then writing
down our new objects. Hence, in the rest of our development we will have two distinct qualifiers
List and ListExt to access objects that are of the same concern.

In this dissertation, we propose a new notion of namespace. It allows the user to distinguish
between the name-space imposed by the modular structure of a development, and an ontological
name-space that groups, under chosen qualifiers, objects of the same concern. Indeed, the name-
space induced by the modular structure of a set of developments is somehow constrained by
the compilation scheme. With the help of this new meta-notion of namespace, one can organize
names in a more coherent way. We also use them to give alternative names for an object.
For instance, one proves a lemma plus_comm that states the commutativity of the addition in
the natural numbers. This lemma can inhabit different part of the name-space: in Natural as
plus _comm, in CommutativeOp as nat_plus_com, in AbelianGroups. Nat as commutativity...

Considering this new notion of namespace, we split our module system in two parts. The
first sub-system handles the name-space while the second handles structure manipulations. More
concretely, the namespace system allows to define qualifiers and aliases, while the structure sys-
tem manages the formation of structures by means of merging, parameterization and application.
A module definition is built by the association of a local namespace and a pair of structures:
one for signature, the other for implementation. In this new approach, we drop the classical
distinction between internal variables and external labels: all declarations in environment or in
modules are globally identified. The main advantage of a global identification of objects is that
it reduces, in the concrete implementation, the amount of substitutions to compute and to apply
when manipulating module objects. It is important to note that we have to take care in the

formalization to not override already existing global identifiers.

2.3.5 A notion of sharing for non-logical objects

Another important task of the module system of Coq is to package together logical and non-
logical objects. We call non-logical objects, all objects that are not forming a part of the base
language. Typical examples are pretty-printing syntax (notations), databases for automation, or
tactics. A Coq development is thus composed of a set of modules where each of them contains
logical objects and non-logical objects of the same concern.

The sharing for logical object, induced by the modular structure of the development, is
handled through the module system itself. Indeed, the strengthening and the WITH construction
allow to add sharing constraints, while the conversion of the base language is able to solve them.
However, giving a similar notion of sharing for non-logical objects has never been studied. These
objects can be seen as tools, and they globally form the proof development machinery. They work
outside of the Coq kernel, and they give an interface to manipulate terms and to interact with

the core typing system. For obvious security issues, they manipulate an abstracted structure
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of terms. Thereby, most of them do not work modulo conversion, and are not able to decide
if two names actually point to the same logical object. For instance, take the following small

development:

MoODULE P.
PARAMETER z y : T.
AXIOM foo : z=y.
HINT RESOLVE foo.

END P.

MoDULE K:=P.
LEMMA bar : K.z=K.y.

PROOF.

rewrite P.foo.

In this example, we define a module P that contains two parameters of the same type, an axiom
that states the equality of them, and a hint for the database of the AuTO tactic. Then we

duplicate this module into the module K. The structure corresponding to K is:
(K.x : Type := P.x, K.y : Type := P.x, K.foo : K.x = K.y := P.foo)

In the lemma bar, the tactic rewrite fails because it does not find, in the current goal, a sub-term
that matches P.x and that can be rewritten in P.y. Another drawback is that the hint appears
twice in the database of applicable lemmas, one occurrence for P.foo and the other for K.foo.
At first sight, it does not seem so harmful, but for a big development with a substantial amount
of hints, those duplications penalize proof search (i.e. it increases the branching of proof search
trees). In this work, we compute an equivalence relation on names in order to derive canonical
names for each logical object. Thus, every proof tool works on those canonical names, making
naming issues transparent for both user and proof development machinery. In that context, the
rewrite succeeds because internally the goal K.z=K.y is translated to P.z=P.y, and the hint is
not anymore duplicated since hints are now only registered for canonical names.

Even if this relation can be subsumed by the d-reduction, we think that it is relevant to com-
pute it. Indeed, it simplifies the work of non logical objects independently of the conversion that
can be too strong or inefficient in many cases. Furthermore, the computation of this equivalence
relation only relies on module derivations. Hence, the sharing problem for non-logical objects is

solved independently from base language computations.
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2.4 Contributions

The main contribution of this thesis is to propose an overhaul of the module system of Coq with
original features to organize knowledge and to build modular developments.
Context

e We had experience feed back on the original module system from users. For instance, the
generative semantic of functor is not adequate in many cases, the lack of sharing at the
level of the proof writing machinery is annoying, the module system is too restrictive and

the dichotomy between module and module type need to be leveled...

e Modules are second class objects, they are in complement of other vectors of modularity

that are derived from inductive types.

e Modules answer the “proving-in-the-large” (e.g. organize library, name-space manage-
ment...), while type classes answer the “proving-in-the-small” (ad-hoc polymorphism, au-

tomatic construction of instances...)

e Modules can package heterogeneous objects: definitions, parameters, inductive types, non-

logical objects....

Realization

e We unify both module implementation and module type into a single notion of structure.

e We provide a new merge operator on structures, that subsumes both structure refinement

and structure inclusion.
e We adopt an applicative semantic for functors, in the sense of the one found in OCaml.

e We formalize a new notion of namespace that allows to give alternative name scopes from

the ones implied by the modular hierarchy.

e We build successively four systems and we prove the conservativity of each system with

respect to its predecessor.

e We present a new equivalence relation on names, called A, that provides sharing for non-

logical features of Coq.

e We describe the on-going implementation of our module system in the Coq proof assistant.



Chapter 3

An incremental construction of the

module system

In this chapter, we give an incremental formalization of our module system. The base language
is the Calculus of Constructions with namespace. Namespace gives the capacity of qualifying
constant names through the dot notation. We choose to build successively four systems where
each system is an extension of its predecessor. In the first one, we add the possibility to rename
declarations in the environment by managing a set of alternative names for a given declaration.
In the second one, we add first-order modules with the help of the structure construction. In the
third one, we add a merging operator on structures. Finally, in the last system, we generalize

our structure construction to the higher-order case, enabling the declaration of functors.

3.1 The base language B

This first system extends C'C,, with namespace, we call this system B for base language. Here,
we permit ourself to qualify names of definitions and parameters (i.e. global axioms). We
distinguish, in the environment, the variables bounded in lambda abstractions or in products

from global axioms.

3.1.1 Syntax and typing rules

We consider that p ranges over a set P called the set of qualifiers, x ranges over a set X’ called
the set of identifiers, and v ranges over a set V called the set of variables. We add a new syntactic

construction called path that corresponds to qualified name (i.e. qualifiers separated by dots).

47
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Syntax:

e Paths:
P .= Top|Pp

e Terms:

t,u, T, U = v|Pzx| v:Tt|Yo:T.U|(tu)|s

o Tields:
e = (Pxz:T)|(Px:T:=t)

e Environments of declarations:
E = e€|E,e|E,(v:T)

e Namespaces:

N = Top | N P

The Top qualifier corresponds to the initial path. The syntax of terms is quite similar to the one
given in Section 2.2, except that identifiers are now qualified by paths. An environment of decla-
rations is a list of fields and term variables. Fields are either parameters or definitions. We give
a fully qualified identifier for each parameter and definition. Finally, a namespace represents the
list of available paths. We call environment a pair composed by an environment of declarations

and a namespace. We denote such an environment by E|N.

Judgements E|N + J:

The system B defines the following judgements:

E|N F ok The environment is well-formed.
E|NEt:T The term ¢ has type T.
E|NFT <gsT'  The term T is a subtype of T".
E|NFt=pst The term ¢ is convertible to ¢'.

Conversion and subtyping are defined as in Chapter 2.

In the following, we use the statement (P.x : T') € F that means that E is either of the form
E\,(Px:T),Es or Ey,(Px:T:=t),Ey. Weuse (Px:T) € FE (resp. (Px:T:=t)€ E)in
order to denote that E is of the form Fy,(P.x :T), Ey (resp. Eq,(Px: T :=t), Es).
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Typing rules:

e The TERM class rules derive judgements of the form E|N F¢:T

TERM/AX TERM/APP
E|N F ok (s1,s2) € Az E|NtFt:Yo:UT  E|NFu:U
E|NF s1: 59 E|NF (tu) : {u/v}T
TERM/LAMBDA

EINEYo:TU:s E (v:T)|INkt:U
EINFX N :Tt:Yv:T.U

TERM/PROD
E|\NET: s (s1,82,83) € Prod  E,(v:T)|INFU: s

E|NEFYv:T.U: s3

TERM/SUB TERM/AcCC
E|NFU:s EINFt:T E\NFT<gU E|N ok (Px:T)eFE
E|NEt:U E|\NFPx:T
TERM/ VAR
E|N F ok (v:T)eE
E|INtFwv:T

e The ENV class rules derive judgements of the form F | N F ok

ExV/E ENV/VAR

NV/EMPTY E|NFok E|NFT:s seS

¢, Top F ok E,(v:T)|NF ok
ENV/PAR

E|NFok E|NFT:s seS PeN
E,(Px:T)|NF ok

ENv/DEF ENV/NAMESPACE
E|NFok  E|NEt:T PelN E|NkFok PeN  Pp¢N
E,(Px:T:=t)|NF ok E|N :: Ppt ok

This typing system is the base language for our further extensions. We denote by E|N kg J a

derivation in this typing system. The contribution in this system is of course the addition of the
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namespace part in the environment. The namespace is here represented as a list of paths, but
it can be seen as a tree labeled by qualifiers. This notion allows us to have a naming discipline
and it is obvious that a such extension does not modify the expressiveness of the base language
of Coq. Hence, we claim that there exits a renaming p that assigns qualified identifiers to fresh
identifiers such that if E|N kg J then p(E) Foe, p(J).

3.1.2 Adding an alternative name layer, the system Bz

In this section, we enhance system B so that we are able to associate a set of qualified identifiers
to a given declaration in the environment. Basically, a declaration has a principal name, which
is the one given in the environment of declarations, and a set of alternative names which are
declared in the namespace part of the environment. We associate to each path declared in the
namespace a set that maps alternative names to principal names. We call them indirection sets.

We denote this new system by Bz.

Extension of the syntax:

e Namespaces:
N = ToplZ] | N :: P[T]

e Indirection sets:
Z = €¢|Z,(Px+ Px)

Notations:

e N(P.z) is the qualified identifier associated to P.x in the namespace N/. Either N is of the
form Nj :: P[Zy, (P’ .2’ + P.x),Z5] :: N3 and then N(P.x) = P'.2’, or P.x does not belong
to the domain of A and then N (P.x) = P.x.

o Ip.(N) (resp. Z.(N)) is the indirection set which codomain is equal to P.xz (resp. P.x if
e=(Px:T:=t)ore=(Px:T)) in the namespace N. We denote it by Zp, (resp. Z)
when the namespace argument is easily inferable. We write dom(Zp(N')) the domain of
the indirection set Zp,(N).

e For all namespaces NV, we denote by N* the namespace N where all indirections have been
removed (i.e. VP, 3 (P|Z] e N) < (Ple] € N*)).

e N+ (P.x + P'.2') denotes the addition of the indirection (P.z + P’.z') to the namespace
N. If N is of the form N7 = P'[Z] = N, then N + (Px <+ P.a) is
N o P'[Z,(Px < P'.2")] :: Na.
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Extension of typing rules:
We add the following rule in the ENV class rules:

ENvV/INDIRECT
E|N | ok (Px:T)€eFE P'eN
E|N + (Px «+ P'.2')F ok

And we modify the rule used to access a declaration in the environment:

TERM/AcCC
E|NkFok NP 2)y=Px (Pz:T)eE
EINFP I T

Finally, we adjust the d-reduction in order to consider indirections:

DeLra/DEF
E|N ok  N(P.2')=Pu (Pz:T:=t)e E

E|NFP .2 >st

DEeLTA/PAR
E|NFok NP .a2)y=Px Pua'+#Px (Px:T)€E
E|NF P .2 >s P

Remark 3.1.1 Let E|N be an environment such that (P.x : T) € E , we have:
VP 2 e dOm(Ip_x(N))7 E’N - P a2 =86 Px

since E is of the form Ey,(P.x : T :=1t),Ey (resp. E1,(Px:T),FE3), and P.x and P'.x" have t

as common reduct (resp. P.x is the reduct of P'.2’).

In this system, we add support for renaming by enhancing the namespace part of the en-
vironment with indirection sets. Now, our notion of namespace not only gives us the available
qualifiers, but also gives us alternative naming views on the environment of declarations. Of
course at this stage of the formalization this could be achieved by declaring a new definition in
the environment of declarations for each indirection in the namespace. However, as we have seen
in the Chapter 2, we want to have a naming management that works independently from the

concrete development that is here represented by the environment of declarations.
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Now, we show that we can safely remove one indirection from a given derivation of the sys-
tem Br.
Lemma 3.1.1 Suppose that
o E is of the form FEy,(Px:T :=t), s
o N is of the form Ny :: P'[I,(P.x < P'.2'),I5] :: N3
Let o be the substitution {P'.x'/P.x}, we have:
(1) if E\N & J, then Ey,(Px: T :=t),0F2| N1 :: P11, 15] - No - oJ.
(2) if EIN Fu:U, then E|N F u=gs ou.

Proof. (1) By induction on the derivation F|N F J, we inspect the last rule used in the
derivation. Most of the cases are directly proved by induction hypothesis, thereby we focus on
the TERM/AcCC rule and the conversion.

Suppose that the last rule of the derivation is:

TERM/ACC
E|NFok  N(P.2)=Px (Pz:T)eFE
E|NFP.a T

By induction hypothesis we have Ey,(P.x : T := t),0Ey | N7 :: P'[T1,T5] = No F ok, and we
know that N(P.z) = Px and (P.x : T) € E, thus we can use the rule TERM/AcCC to derive
E\,(Px:T:=t),0Ey| Ny :: P'[11,T5] : No - Px: T.

Suppose that J is of the form u =g5 v’. The interesting cases are: (a) v = P'.2’ and v/ = t,
(b) u = P2’ and v = Pz, (¢) u = P'.2’ and v/ = P'.2/. For (a), we need to prove that
Ei,(Px:T:=t),0Ey| N1 : P'[11,T,] :: Na = P.x =gs t which corresponds to one d-reduction
step. For (b) and (c) we conclude by reflexivity of =gs.

(2) By induction on the derivation of E|AN F w : U, most cases are directly proved by in-
duction, as in (1) we concentrate ourself on the rule TERM/AccC. We consider the case when
the conclusion is E|N + P'.2’ : T, and we conclude on E|N + P'.a’ =5 P.x since P'.z’ and
P.x have t as common reduct.

U

We can prove a similar lemma if the considered field is a parameter :
Lemma 3.1.2 Suppose that

e E is of the form Ey,(P.x:T),E

e N is of the form Ny :: P'[Iy,(P.x < P'.2'), 5] :: N
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Let o be the substitution {P'.x'/P.x}, we have:
(1) if E\N & J, then Ey,(Px:T),0Ey | N1 :: P'[T1,T5) :: Na bk oJ.
(2) if E\INFu:U, then E|N b u=gs ou.

Proof. The proof is similar to the one of lemma 3.1.1.

3.1.3 Translation from B7 to B

In this section, we prove that we can safely remove indirection sets from any derivations up
to renaming. To do it, we first define a binary relation <, between well-formed environments
of the systems B and Bz. This relation is parameterized by a substitution that cumulates the
indirections of the Bz environment, and states that if two environments are in relation then their

environment of declarations contains the same set of declarations.

Definition 3.1.1 Let p be a substitution that maps qualified identifiers to qualified identifiers,
we define inductively the binary relation <, between environments of the systems B and Bz, with

the following constructors:

EMPTY INDIRECT
(E|N) <, (E'|NV)
(e|Top)s, <y (e|Top)s (E|N + (Px «+ P'.a")) <, pro/pay (B'|N)
DEF
(E|N) <, (E'|N)
(B,(Px:T:=1t)|N)<,(E, (Px:pT :=pt)|N)
PAr VAR
(E|N) <, (E"|N) (E|N) <, (E'|N)
(E,(Px:T)|N) <, (E,(Px:pT)| N (B,(v:T)|N) <, (E' (v:pT)|N")

NAMESPACE

(E|N) < (E'|N')
(E|N ::P)<, (E"|N":: P)

Remark 3.1.2 The relation <, is functional.

Lemma 3.1.3 For all environments E|N and E'|N', such that E|N <, E'|N" for some p,
we have N' = N*.
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Proof. By construction of the relation, we see that it is true for the constructor EMPTY and,
that the property is preserved by the constructors INDIRECT and NAMESPACE.
O

Lemma 3.1.4 For all environment E | N, and judgement J such that we have: a deriwation of
E|N bp, J, there exists E' and p such that we have

o (E|N) <, (E'|NY)
° E/’./\/* l_BPJ
o if J is of the form t : T then E|N Fp, t =5 pt

Proof. By induction on the number of indirections declared in the namespace N. We use
Lemmas 3.1.1 and 3.1.2 to build the substitution p and to conclude.
O
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3.2 Adding structures and first-order modules, the system M

In this system we add a new syntactic construction called structure. Basically, a structure is a
list of fields associated to a sub-namespace, where fields are term declarations or module declara-
tions. A structure is built relatively to a path, and when we associate the structure to the path
we define a module. The outline of this section is the following, we first extend the system Bz in
order to consider structures and modules, we call this system M. Then, we consider a rule that
allows to extract the structure corresponding to a module path, and we prove that this rule is
admissible in the system M. After, we consider a system equivalent to M in term of expressive-
ness, called M /g, where modules are always declared with a fully transparent signature. Finally,
we prove that modules can be “flattened” in any environment, and we give the translation from

the system M g to the system Br.

3.2.1 Extension of the syntax and the typing rules

Extension of the syntax:

o Fields:
e ++= P:S|P:5:=95

e Structures:

S = (er...en|N)

In this system we have two new kinds of declarations that are module definitions (P : S" := S)
and module parameters (P : 5).
In the rest of this section, we use for a path P = Top.p: ...p, the notation P’.P” in order to

exhibit a prefix P’ which can range from Top to Top.p: ... pn.

Definition 3.2.1 Let P and P’ be two paths, we define recursively the path substitution { P’/ P},

abbreviated below by o, on structures, fields, namespaces and terms as following:

o On paths:
oP' .P'"=pPPpP'

oP" = P" (P is not a prefix of P")

o On structures:

oley...en|N)=(oer...0e,|0N)
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e On fields:
o(P"z;: T :=t)=0P".x;: 0T := ot
o(P'x;:T)=0P"x;:0T
o(P":8:=5)=0P":05 =08

o(P":S)=0P":0S8

Note that the name part of a declaration is also substituted.

e On namespaces:
o(N :: P"[Z]) = (oN) :: o P"[0Z]

o(Z,(P".2" + P".2")) = (¢I),(cP".a" + oP".2")

e On terms:
ov ="

o8 =35
oP"x=(ocP")x
ol :Tt=M:oTl.ot
oYv:T.U =Yv:0T.cU

o(tu) = (ctou)

Definition 3.2.2 (Set of bounded qualified identifiers QI) Given ¢ that is either a structure, an
environment, or a field, we denote by QI(¢) the set of bound qualified identifiers in ¢.

o Qualified identifiers bounded in a structure or an environment:

QI(e) ={}
Ql(er,....en|N)= | dom(Z,) | QI(e:)

P[Z,]eN i€[l...n]
QI((er...en|N)) = | dom(z,) | QI(es)
PZ,)eN i€[l...n]

o Qualified identifiers bounded in a term declaration :
QI(Px:T)={Pa}

QI(Px:T:=t)={Px}
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o Qualified identifiers bounded in a module declaration:
QI(P: S) = QI(S)
QI(P:S:=5)=QI9)

Definition 3.2.3 (Set of free qualified identifiers FQIp) Given a term t, we denote by FQIp(t)
the set of free qualified identifiers prefized by the path P occurring in the term t:

FQIp(v) ={}
FQIp(P.P'.x) = {P.P.x)}
FQIp(P') = {} (P is not a prefiz of P’)
FQIp(hv: Tt) = FQIp(T) U FQIp(1)
FQIp(vo : T,U) = FQIp(T) U FQIp(U)
FQIp(t t2) = FQIp(t) U FQIp(t2)
Definition 3.2.4 (Estension of FQIp to structures and fields) Given a structure S (resp. a

field e), we denote by FQIp(S) (resp. FQIp(e)) the set of free qualified identifiers prefized by
the path P occurring in the structure S (resp. in the field e):

FQIp({er...en|N)) = |J FQIp(e;)

i€[l...n]

FQIp(P': S :=8") = FQIp(S) UFQIp(S)
FQIp(P': S) = FQIp(S)
FQIp(Pl.x: T :=t) = FQIp(T) U FQIp()
FQIp(P.z: T) = FQIp(T)

We abbreviate FQIr,, by FQI.

New Judgements:

We define a counterpart for structures and fields of the subtyping relation defined on terms. We

denote by C this subtyping relation. The following new judgements are considered in the system

M:

E|N F S:struct  The structure S is well-formed.
EINEFP:S The module P has type S.

E|NFE S CS The structure S is a subtype of S
E|INF e Cey The field e; is a subtype of e
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Extension of the typing rules:

We define the typing system M to be the system Bz extended with the following set of typing

rules:

e The STRUCT class rule derives judgements of the form E|N F S : struct

STrUCT/ENV
E.e1,...,en | N P:: Np ok Prefix(P,{e1 ...e, | Np))

E|N ::PF (e1...e,|Np) :struct

We build a structure from a part of a well-formed environment. The Prefix condition means
that the name of each field e; is prefixed by P, and that all paths declared in N, are also
prefixed by P. More formally:

Prefiz(P,{e1...e, | Np)) =VP .x € QI({ey...e, | Np)), P'.x is of the form P.P".x

We implicitly assume that the rule STRUCT /ENV captures the minimal subset eq, ..., e, | Np
of the environment such that VP'.x € QI(E |N), P is not a prefix of P’.

e We extend the ENV class, to consider the new module declarations:

ENv/MODPAR
E|NtFok  E|N: Pk S:struct

E,(P:S)|NF ok

ENv/MODDEF
E|N F ok
E|N :: PE Sy :struct E|N :: PE Sy : struct E|N ::PF S CS,

E,(P:Sy:=51)|NF ok

We can add in the environment a module parameter or a module definition. A module
definition (P : S := S1) is composed by a pair of structures, where the structure So acts

as the signature of the module, and the structure S acts as its implementation.

It is important to note that structures are derived relatively to paths, and as we have seen
in the rule STRUCT/ENV, all names of fields of structures are prefixed by theirs associated

paths. Hence, a module only encapsulates a namespace and a set of fields that belong to
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its naming scope.

To illustrate the rules STRUCT/ENV and ENV/MODDEF, we take the following interactive

module defined in the empty environment and written in Coq syntax:

MobDuLE M.

PARAMETER T : Type.

DEFINITION id : T -> T := fun (z:T) => =
END M.

We briefly describe the derivation of the module M. We start with the well-formed empty
environment, we apply the rule ENV/NAMESPACE to add the valid path Top.M. We add
successively the parameter T'op.M.T and the definition Top.M.id using the rules ENV /PAR
and ENV/DEF respectively. Then, we apply the rule STRUCT/ENV to encapsulate the two
declarations in a structure under the path Top.M. Finally, we use the rule ENV/MODDEF
to add the module in the environment. In that example, the structure that acts as the

signature of M is the same as the one used for implementation.

We think that this approach mixing namespace and structure actually reflects precisely the

concrete implementation of interactive modules construction in the kernel of Coq.

e The MoD class rules derive judgements of the form F|N + P: S

Mob/Acc Mob/FIELD
E|NEFok (P:S)eE E|NEP:{(e1...en|Np) (PP :S)€e(er...en)
E|NEFP:S E|NFPP:S
Mob/SuB
EINFP:S E|N:#kS#cs?
E|NEFP:S

One notes that if we have E|N F P : S, then we have either:

— P is a submodule of some module P’ such that E|N F P': {e1...e, | Np/). We can
write the path P as P'.py...pn.p, where P’ .py...p, is a valid path in Nps and the
path P.p;...py,.pis bounded in (ey...ey).
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— P is a module bounded in the environment E, and hence P = Top.p; ...p,.p with

Top.p1 ...pn a valid path of N.

The rule MOD/SUB roughly says that we can always see a module as a less precise module.
Note that since we globally identify fields, the subtyping judgment needs to be derived
under a fresh path. This is the role of the symbol # which denotes an always fresh path.
If S is a structure associated to the path P then S# is the substituted structure {P/#}S.

e The SUB class rules derive judgements of the form E|N' F S C Sand E|NF ¢ Ce

SuB/STRUCT
E|NF{e1...en|N7) :struct E|NF (e ...el |N2) :struct ANy C N
dp:[l...ml—[1...n] Vie[l...m] Eer,....en| N NF ey Ceéf

E|NFE (e1...en|N1) C (€] ...eh, | Na)

SuB/DEF/DEF SuB/PAR/PAR
E|N|—t:55u E|./\/’|—T§,35U E|./\/’|—T§,35U
E|\NE (Paz:T:=t)C (Pz:U:=u) E|NE (Pxz:T)C (Px:U)
SuB/DEF/PAR Sus/MobpD/MoDP
EbFT <gsU E|N = #+5Fcst
E|NF (Pz:T:=t)C(Pxz:U) E|NE (P:5:=5)C(P:85;)
Sus/MopD/MobD

E|N:#rStcst E\N:#rsfcst E|\N:#r-sfcs?
E|NE (P:5:=25) C(P:85:=5y)

Sus/MopP /MoDP
E|/\/::#|—S#§S;¢
E|NF(P:S)C(P:5s)

The rules of the class SUB give an algorithm for structure subtyping. The main rule is

SUB/STRUCT and in premise of this rule we have:

— Two well formed structures (e; ...e, | N7) and (€] ...el, | N2)

— The namespace N3 is a subset of the namespace AN7. It means that:
VP[Z] € N2,3T', P|T'| e Ny AV(P'.2’ + Px) € Z,(P' .2’ + Pax)eT

— An injective mapping ¢ that maps fields of the second structure to fields of the first

one, such that their respective name parts are equal.

— m derivations of field subtyping.
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The other rules SUB/*/* define the subtyping relation on fields.

o We extend the TERM class, in order to consider term field projections:

TERM/FIELD
E|INEP:{e1...en|Np)  NUNp(P"z)=PP.x (PP.x:T)€e (e1...ep)
EINFP'z:T

The rule TERM/FIELD says that if the qualified identifier P”.x is internally (i.e. in Np)
or globally (i.e. in N) redirected to to the field (P.P".z: : T') of the module P, then we can
access to the indirection.

e Finally, we extend the d-reduction given in Section 3.1 with:

DELTA/FIELDDEF
E|NEP:{(e1...e5|Np)
(NUNp)(P".x)=PP.x (PP .x:T:=t)€ {e1...ep)

E|NFP' x5t

DELTA /FIELDPAR
E|NEP:{(e1...e,| Np)
(NUNp)(P".x)=PP.x P'.x#+ PP .x (PP .2:T) € (e1...ep)

E|NF P25 PP

We define a measure D on structures that correspond to the depth in term of imbricated module.

Definition 3.2.5 Measure on structure D(S):

D({er...en|N)) = max(D(e1),...,D(en))
D(P:S=8) = 14D(9)
DP:S) = 1+D(S)
D(Pa:T:=t) = 0
D(Px:T) = 0

Some basic metatheory
First, we show that an environment contains only correct declarations.

Lemma 3.2.1 Let E be the list of declarations eq, ..., e,. All derivations of e1,... e, | N - ok
contain as sub-derivation Vi = 1...n, the deriwation of ey, ...,e;—1 |N' & ok for some N' C N

and the derivations of:
e c1,...,ei 1 |N'FEt:T (resp. T :s) when e; is of the form P.x : T :=t (resp. P.xz:T).

e c,....,e;_1| N PE S :struct when e; is of the form P : S.
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e c,...,e;_1|N' i PH S :struct, eq,...,ei—1 |N':: P S’ :struct, and eq,...,e;—1 [N
P S CS when e; is of the form P: S := 5.

Proof. By induction on the derivation of eq,...,e, | N F ok. We inspect the last rule of the
derivation. For the rules ENv/DEF, ENv/PAR, ENV/VAR, ENV/MODDEF, and ENV/MODPAR,
this is easy to prove since it is stated on the premise of each rule. For the rules ENV/NAMESPACE
and ENV/INDIRECT, the size of the namespace is smaller in the premise than in the conclusion,

and hence the derivation must contain one of the previous rules.

0

Lemma 3.2.2 For all environment E | N and judgement J, every derivation of E|N + J con-
tains a derwation of E|N F ok.

Proof. By induction on the derivation. If J is ok then the lemma trivially holds. In all other
rules, that do not conclude by a well-formed environment, there is at least one premise which
environment is either equal to E | N or extends it. Thus, we can conclude by induction hypothesis,

or if the environment is an extension of the environment of the conclusion by Lemma 3.2.1.

O

In the following, we state some properties on qualified identifiers appearing in terms and fields.

Lemma 3.2.3 For all environment E|N, judgement t : T such that E|N + t : T, we have
FQI(t) € QI(E|N) and FQI(T) C QI(E|N).

Proof. Tt is straightforward by induction on the derivation of E|N Ft:T.

Lemma 3.2.4 For all environment E|N :: P, structure (ej ...en | Np) such that E|N :: P+
(e1...en | Np) : struct, we have for all e; of the form (P.P'.x : T) or (P.P.x : T = t),
FQI(Q) - Q[(E, €1...€6—1 ‘./\/’ m P NF*’ +I€1---67:—1)'

Proof. By construction, the last rule of the derivation is STRUCT/ENV, and we conclude by
Lemmas 3.2.1 and 3.2.3.
0

We give a variant of the previous lemma for free qualified identifiers restricted to the head

path of the namespace.

Lemma 3.2.5 For all environment E|N and path P such that E|N :: P F (e1...e, | Np) :
struct, we have for all e; of the form (P.P'.x : T) or (PP.x : T := 1),
FQIp(e;) CQI(er,....ei—1 | Np+TLey e, )
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Proof. By construction, the last rule of the derivation is STRUCT/ENvV. We know that
FQIp(E|N) is the empty set and we conclude by Lemma 3.2.4.
O

Lemma 3.2.6 For all environment E| N, and path P such that E|N + P : {ej...e, | Np), we
have for all e; of the form PP.x : T or (PP.ax : T := t), we bhave
FQIP<62‘) C QI(el cee €1 ’NP* + I€1-~-€i—1>

Proof. By induction on the depth of the module P in the environment. We show, by Lemma 3.2.1
that, there exists E' | N7, such that '[N’ :: P {e1...e,|Np) : struct and we conclude by
Lemma 3.2.6.

O

We then show that we can rename a path of the namespace from an arbitrary derivation.

Lemma 3.2.7 For all environment E|N, judgement J, paths P and P’ such that P € N,
P ¢ N and E|N + J, we have {P/P'}E |{P/P'YN +{P/P'}J

Proof. By induction on the derivation E|N F J. For the TERM and ENV class rules, we
have to check that the possible path conditions on premise of the rules are still verified and we
conclude by induction hypothesis. For STRUCT/ENV, in a similar way, we remark that the prefix
condition is still verified. For MoD/SUB, if P = # then we substitute it by a fresh path P’.

O

Now, we state a weakening lemma for our system.

Lemma 3.2.8 For all environments Eq, Ey, E3, and namespaces N1, No, and N3 such that
QI(E2|N2) and QI(Es | N3) are disjoint, if we have Ey, Es | N1UN> = ok and Ey, E3 | N1UN3 F
J for some judgement J, then we have E1, Fo, E3| N1 UN2 UN3 = J.

Proof. By induction on the derivation of E1, E3| N1 UN3 E J. Let us look at the last rule of

the derivation.

e ENV class rules:
For ENV/EMPTY, both F; and FEj3 are empty and we need to show that Ey | N2 b ok,

which is an assumption of the lemma.
For ENv/DEF

El,Eg\/\/iU./\/’gl—ok El,Eg\/\/iU./\/’gl—t:T PeNiUN,
El,Eg,(P.$ZT:: t)|N1 UN3|_ ok

By applying the induction hypothesis to the premise of the rule, we have Fy, Eo, B3| N7 U
No UN3 F ok and Ey, By, E5| N1 UNy; UN3 = ¢ T. Since the condition on namespace
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is still satisfied, we can use the rule ENV/DEF and we obtain Ej, Fs, Es,(Px : T :=
t) |N1 UN, UNg F ok.

We can do a similar proof for the others ENV/* rules.

e TERM class rules:
For TERM/AcCC

El,E3|N1 UN3 F ok M UNg(P/..I‘/) =Px (P.x:T) € Fi, F5
FEq, Es ‘Nl UN3 P T

We need to consider two cases: we have either (P.x : T) € Ey, or (Px : T) € Es.
However, in both cases we can use the induction hypothesis on the premise of the rule to
get By, E9, B3| N1 UN3 UN3 F ok, and since the domains of each namespace are disjoint
we have N7 U N2 UN3(P'.2’) = P.a. Finally, by the rule TERM/AcCC we get the desired

conclusion.

The other TERM/* rules are dealt by induction hypothesis.

e MoD class rules:
The rules MoD/Acc and MoOD/FIELD are dealt as their counterpart in the TERM class.
For the rule Mop/SuB:

El, B3| NiUN3sFP:S  Ei, FEs| (N UN3) = #F 8% C 8%
El,E3’N1 UN3 = pP:Ss

We apply induction hypothesis on the premise, since # is a fresh path the namespace
(M UN2 UN3) i # is valid. We apply the rule MOD/SUB to get the desired conclusion.

e For STRUCT and SUB classes, the lemma holds by induction hypothesis.

Transitivity of C

Proposition 3.2.1 For all environment E|N, and term declarations e, €', and ¢, if E|N +
eCe and E|NFée Cé”, then E|NFeCeé.

Proof. We prove it by analyzing the four possible cases for the term declarations e, ¢/, and €”,
and we conclude by transitivity of <gs and =gs.
]

Now, we state the transitivity for structure subtyping.
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Lemma 3.2.9 For all environment E | N, and structures Sy, Sa, and Ss, if E|N F S; C Ss
and E|N + Sy C Ss, then E|N F S; C Ss.

Proof. Suppose that S1 = (e1...e,|N1), S2 = (€] ...ep, | N2), and S3 = (€] ..., | N3). By
construction, the last rule used in the derivations of E|N F S; C Sy and E|N F Sy C Ss is
SUB/STRUCT. The premises of the rule state that No C N7, N3 C N>, and:

d:[1...ml—[l...n] Vie[l...m] Eyet,. o egiy-1 [N N1+ Ty ey Foeg) € €

¢ [l...p|—[1...m)] Viell...p] E,é,.. ->€iz>'(i)—1 | N 2 N +I€/1me/¢,(i)_1 = e;j(i) Cel

Let ¢" : [1...p] = [1...n] = ¢' 0 ¢, we prove by induction on the structure length p that:

Vi € []. .. p] E.e,..., €/ (3)—1 ‘N b N*l —|—I€1_._e¢,, H €4/ (4) - e;/

(i)—1
We reason by cases on the form of ey, eﬁb,(i), and e]. If they are term declarations, then
we conclude with the Proposition 3.2.1. If they are module declarations, then we conclude by
induction hypothesis.

O

Finally, we give a “weakening by subtyping” lemma.

Lemma 3.2.10 For all environments E1 and Es, fields e and €, if we have
e Fi,e, Bo|(Mi+Z.)UNy H J
o Fi,¢' | N\ +Zu+ ok
e Fi1|MiFé CeandZ. C Ty

then we have Ey,e',Ey| (N1 4+ Ze) UNo F J.

Proof. By induction on the derivation of Ey, e, Eo | (N1 +Z.) UN3 - J. We denote by E | N the
environment E1, e, Ey | (N1 +Z.)UN3, and by E’ | N/ the environment E1, €', Ey | (N1 +Ze ) UNs.
For the rules of the class TERM, we only do the proof for TERM/AcC, since the others are
directly proved by induction hypothesis.

TERM/AcCC
E|Ntok  N(P.a')=Px (Px:T)eFE
E|\N+-P 2T

Suppose that e is of the form (P.x : T) (resp. (P.x : T :=t)), and €' is of the form (P.x : T")
or (Px: T :=1t) (resp. (Px:T :=1)). We have by induction hypothesis that E'| N’ - ok,
we apply the rule TERM/AccC and we obtain E' |N' = P'.a’ : T' (1) since Z, C Z.,. We know
by inversion on the hypothesis E1 | N F €' C e that Ey | N1+ T <g; T. Thus, by Lemma 3.2.8
we have E' |N' = T <gs T (2). We apply the rule TERM/SUB on (1) and (2), and we get
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E'|\N'+-P .o :T.

For the rule of the class MOD, we do the proof for MoD/Acc, the other are directly proved
by induction hypothesis.

Mob/Acc
E|N | ok (P:S)eFE
E|NEP:S

Suppose that e is of the form P : Sy := Sy (resp. P : Sy), and € is P : S| := Sy (resp.
P :S{or P:S]:=S;3 for some S subtype of S7). We know by inversion on the hypothesis
B[N b e Cethat By [Ny = # F S)% C §*. By induction hypothesis we have E'| N’ b ok
and by Lemma 3.2.8 we have F' | N’ :: # + Si# C S#. We apply the rule Mobp/Acc and the
rule MoD/SUB to get the desired conclusion.

For the conversion: reflexivity, symmetry, transitivity and DELTA/PAR are proved by induc-
tion hypothesis. Now, suppose that J is P.x =gs t, e is of the form (P.z : T :=t), and €’ is
of the form (P.x : T' := t'). We know by inversion on the hypothesis F1| AN F ¢ C e that
Ei | N1t =5 t. By Lemma 3.2.8, we have E' | N’ - t' =35 t. By the rule DELTA /DEF, we
have E' | N’ = P.x =5 t/, and hence we conclude by transitivity of =gs.

The rules of the classes SUB and ENV are proved by induction hypothesis.

3.2.2 An admissible rule for the STRUCT class

In order to be able to extract a structure from a module path, we add the following rule to our

system:

STRUCT/PATH
E|N:PrP:S
E|N = P'= ({P/P'}S) pip : struct

In STRUCT/PATH, we substitute the whole structure by {P/P’}. This substitution replaces all
occurrences of the path P by P/, as well in the fields as in the local namespace of the structure
S. We also strengthen the structure with the path P, we use the notation /P’ > P in order to
keep a trace of the path that is used to build the considered structure. Strengthening a structure
by a module path means that we enforce the term declarations, contained in the structure, to be
d-equivalent to the corresponding ones in the module. This operation is defined recursively on

structures and fields as following:
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A structure strengthened by P is the structure were each field is strengthened by P:

(e1...ep |N>/P,>P = <€1/P'>P~-€n/P’|>P |N>

A term definition or a term parameter, identified by P’.P”.x and strengthened by P, become a

term definition where the body is manifestly equal to the qualified name P.P".x:
(P'.P'x:T:=t)ppp= (P .P'x:T:=PP'x)

(P'.P"x:T)pop= (P .P'x:T:=PP"x)

A module definition or a module parameter, identified by P’.P” and strengthened by P, become

a module definition where the signature is strengthened by P.P”:

(P/.P” : S = S/)/P’I>P = (P/.P” . S/P/.PIIDP.P// = S,)

(P/.P,/ . S)/p/[>p = (P,.P,/ . S/P’.P”I>P.P” = S/P’DP‘P”)

In the rest of the dissertation, we use for strengthening the usual notation, /P, by keeping im-
plicit the P’'t> part.

Lemma 3.2.11 Suppose that:
e EINFP:5
o E,(P:S)|NF ok where S = ({P/P'}S")/pr
then we have VP".x € QI(S) :
E,(P:S)INFP'x>s ({P/P}P")x
Proof. By definition of strengthening.

O

Before proving the admissibility of the rule STRUCT/PATH, we prove some auxiliary lemmas.
They state that, if an environment contains a declaration and its strengthened version, then in
every derivation, containing this environment, we can substitute the former declaration by its

strengthened version.
Lemma 3.2.12 Let suppose that:

e By |MiFPx:T and Ex | N1 BT <gs T’



68 Chapter 3. An incremental construction of the module system

e F1,Es|NMUNoE Plix: T and Ey, E2 | NtUNs b Plo>s P
Let o be the substitution {P.x/P'.x},
if B, Es, Es ’./\/i UN, UNg FJ (1), then Eq, By, 0F;3 ‘./\/’1 UNy UNg FoJ (2)

Proof. We denote (1) as E|N  J and (2) as E' | N F ¢J. By induction on the derivation of
E|NFJ.

Critical cases are TERM/AcC and the conversion.

For the rule ENv/Acc, if the conclusion is E|N + Pax : T, then we have to prove that
E'|N + Pz : T. By induction hypothesis we have E'|N F ok, we can use TERM/ACC to

access the constant P’.z and use TERM/SUB to obtain the desired conclusion.

For the conversion, the transitivity and the symmetry of =5 are proved by induction hypoth-
esis. For the reflexivity, if we have E|N F P.x =5 P.z, then we need to show that E'|N
P'.2 =5 P'.zz, which is trivial. For DELTA/DEF or DELTA /PAR, we conclude by the hypothesis
E'|N b P'.z>5 Px of the lemma.

O

Lemma 3.2.13 Let suppose that we have two sets of qualified identifiers Py.x1,... Py.x, and
Pl.xy...P).x, such that Vi € [1...n]:

o Ei|NiF Pia;:T; and By | N1 FT; <gs T}
o I, Fy ‘./\/’1 UNMNs - P{.wi : Tz'/ and E1, Es ’./\/1 UNy Pi/..% >s Pi.x;

Let o be the set of substitutions U {P,.x/P.x},
i€[l...n]

’ZfEl,EQ,E3|N1 UNy UN3 + J, then El,EQ,UE3|N1 UMy UN3 FoJ

Proof. By induction on the number of qualified identifiers. We conclude by Lemma 3.2.12.
O

Now, we prove that the rule STRUCT/PATH is admissible. Intuitively, it means that we can
perform a global structure renaming, by renaming each field of the module, one by one, and by

replacing the global substitution {P/P’} by a set of qualified identifiers substitutions.

Lemma 3.2.14 For all environment E, module path P and namespace N :: P’,
if E|N :: P’ P:{ey...en|Np), then

E.{P/P'}er/p...{P/P'}en/p|N : P':: {P/P'}Np - ok
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Proof. We denote by o the substitution {P/P'}. We prove that E,oe1,p...0en/p|N = P
oNp b ok by induction (a) on the structure length i, and by induction (b) on D({e; ...e, | Np))
the depth of imbricated modules j.

For ¢ = 0 and j = 0, we need to prove that E|N :: P i oN,* F ok. We apply the
Lemma 3.2.2 on the hypothesis of the lemma, and we get E|N :: P’ F ok. Now, we use
the the rule ENV/NAMESPACE to add successively the valid paths of oNV,* and we conclude on
E|N :: P ::oN," F ok.

Suppose that for i = k and j = 0, the property E,oei/p...0ep/p|N == P oN,* = ok
holds. We denote by Ej the current environment and by N the current namespace and we
prove the property for i = k + 1:

If exy1 is a definition P.Pgiq.2541 : T =t (resp. a parameter P.Pyyi.2541 : T), then OCkt1/p
is the definition P'.Pyyq.2y1 : 0T := P.Pyyq.7p 1.

We apply the Lemma 3.2.8 on the hypothesis of the lemma and we get:

Ep [Ny = P:le...en|Np)

We apply the rule TERM/FIELD and we derive:

Ek ‘./\/’k l_ P.Pk-+1.$k+1 N T

By Lemma 3.2.6, we have FQIp(T) C QI(e;...ex|oNp*). We denote the latter set by

By Lemma 3.2.11, we have:

We apply the Lemma 3.2.13 on the sets of qualified identifiers P.Py.x) and P’.Pj.xy, and
on the derivation of Ej | Ny = P.Pyi1.2x41 : T, we obtain:

Ek ‘Nk F P.Pk+1.l‘k+1 : O'iT

where o; is the substitution {P.Py.xy/P’.Py.xy}.

Since FQIp(T) C QI(ey...e,|oNp®), o;T is syntacticly the same term as T, we have
Ek ’Nk [ P.Pk+1.xk+1 o7l

Finally, we apply the rule ENV/DEF to add the new declaration in the environment and
the rule ENV/INDIRECT to add the indirections.

Suppose that for i = k and j = m, the property E,oe1/p...oex/p|N 2 P’ a/\f]éC F ok holds.
We denote by Ej the current environment and by A the current namespace and we prove the
property fori =k+1and j =m+ 1:

Let ex1 be a module P.Pyy1 : (€kt1,1 - - - €k+1,m | NpP.P,,,) of depth m.



70

Chapter 3. An incremental construction of the module system

First, note that FQIp(ex+1) C QI(er...ex [ NE)UQI(ers1). Indeed, ey 1 is a submodule

of P and hence it also declares fields which name parts are prefixed by P.

From Ej | Ni F ok we use the rule ENV/NAMESPACE to build:

Ep| Ny P'.Pyyq ok

We apply the rule Mon/FI1ELD on the hypothesis of the lemma to access the module
P.Pyyy, and by Lemma 3.2.8 we obtain:

Ek ’Nk . P/-Pk+1 H P.P],H_] : <€k+1,1 e €k+17m |NP_Pk+1>

Since P.Py.1 is a module of depth m, we have by induction hypothesis (b):
Ekva/€k+1,l/p.]3k+1a e 7U/€k+1,m/ppk+1 | N it PPy U/NP-Pk+1 = ok
where o/ = {P'.Py11/P.Pri1}.
We apply the rule STRUCT/ENV, and we get:
Ep| Ny PPy <a'ek+1,1/P.Pk+1 .. U’€k+1’m/P.Pk+1 |o'Np.p,,,) : struct (1)

At this point, we have:

FQIp((o'ert11,pp,,, - O k+1m/pp, ., | T NPP,)

QI(€1€k|NII§>

We apply the Lemma 3.2.13 on the two sets of qualified identifiers P.Py.x and P’.Py.xg,

and on the derivation of (1), we obtain:

/ / / /
Ex| Ny :: PPy b (o0 €k+11/p.p,.,, - Ti0 €k+lm/pp,,, |0i0’ Np.p,,,) : struct

where o; is the substitution {P.Py.xy/P’.Py.xy}.

Here, the substitution o;0’ is equivalent to the substitution o, since we have substituted

in the submodule every free qualified identifiers prefixed by P.

Finally, we apply the rule ENV/MODDEF to add the new declaration in the environment,
and the rule ENV/INDIRECT to add the indirections.
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3.2.3 Removing Sealing: the system M g

In this section we define the system Mg to be the system M with the following restricted
ENV/MODDEF rule:

ENv/MODDEF
E|N F ok E|N :: PE S :struct

E,(P:S:=8)|NF ok

This version of ENv/MODDEF gives a fully transparent signature to each module definition.
This alternative rule does not modify the expressiveness of the system. Indeed, thanks to the
MoOD/SUB rule we can postpone the sealing of the module by a more restrictive structure at
access time. We define first a relation between environments of the system M and M g and
then we show that if E'|AN Fq J then there exists an environment E' | N7 in relation with E | N
such that E' [N Faq s J.

Definition 3.2.6 We define inductively the binary relation T between environments of the sys-

tems Mg and M, with the following conslructors:

EMPTY INDIRECT
(E'|N') E(E|N)
(e|Top)pm E (€] Top) m, s (E'|N"+ (Px« P.2))C(E|N + (Px« P.2))
DEr PAR
(E'|N)E(EIN) (E'|N') E(EIN)
(E',(Px:T:=t)|N")C (E,(Px:T:=t)|N) (E',(Px:T)|N")C(E,(Pxz:T)|N)
VAR NAMESPACE
(E'|N) E (E|N) (E'|IN) E (E|N)
(E',(v:T)IN)YC (E,(v:T)|N) (E'|N'"::PYC(E|N :: P)
MobP

(E' e, ... |IN" 2P Np)C (E,e1,...,en | N 2 P Np)
(E',(P:(e)...en [N IN)E(E,(P:(er...en|Np)) |N)

MopD
(E' é),...;e, |IN" =P Np)C(E,e1,...,en| N = P Np)
E'|N":: Ptp S struct E'|N':Plkple)...e,|N))CS
(E',(P:S:={e}...en | Np)IN)

(E,(P:{e1...en|Np):={e1...en|Np))|N)
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Remark 3.2.1 The relation C is functional.
Remark 3.2.2 All derivation of the system Mg are valid in the system M.

Lemma 3.2.15 For all environments E'|N' and E|N, if (E'|N') C (E|N), then for all
qualified identifier P.x and term T and t, we have (Px : T) € ' < (Px :T)€FE or
(Px:T:=t)e B/ <— (Pax:T:=t)€E .

Proof. By construction of the relation C.

Lemma 3.2.16 For all environments E' | N" and E |N, path P, and structures S, S’ and S” if
(E',(P:S" =S |N)C(E,(P:S:=95)|N), then E'"|N" : Pty SC S

Proof. By induction on D(S). Suppose that S = (e1...e,|Np) and S" = (e} ...}, | N]).

For D(S) = 0, we know by construction of C that (E',ef,...,e,|N" == P = Np) C
(E,e1,...,en| N = P :: Np). By induction on the structure length n and with the help of
the Lemma 3.2.15, we easily show that the field e; is syntactically the same field as e}. Hence,
we conclude by reflexivity of the relation C.

We suppose the property to be true for D(S) = n and we do the proof for D(S) =n+ 1. As
in the previous case, we have that each term fields of the structures S and S’ are syntactically
equal, and hence for each e; of the form (P.P'.xz : T) or (P.P'.x : T := t), we trivially have
e; C €}. Now if the considered fields is a module fields then we conclude by main induction
hypothesis since the rule SUB/STRUCT is applied on a smaller structures.

O

Lemma 3.2.17 For all environment E' | N, judgement J, if E'|N" baq J, then there exists an

environment E | N such that:
o (E'|N)C(EIN)

e For all (P : S := S') € E'|N' there exists (P : S" = §") € E|N such that
E/’N, l_./\/l Sl/ g S/

o if J is of the form (¢} ...e), | Np) : struct, then there exists a structure (ey ...en |Np)
such that E|N Fa,g (e1...en|Np) @ struct and (E',ej,... e, [N = P i Np) T
(E,e1,...,en| Nt P Np).

e for all other judgement J we have E | N FM/S J
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Proof. By induction on the derivation of E' | N” Fq J.
For the rules of the class ENv, we only do the proof for the case ENV/MODDEF:

E/‘N/ l_./\/l ok
E'|N":: Ptp Sy cstruct E'|N":: PFp Sy :ostruct E'|N'"::PFp S C S
E',(P:Sy:=81)| N Fapok

Suppose that S1 = (€} ...¢€], | Np), by induction hypothesis we have that there exists E|N,
E"|N" and a structure (ej...e,|Np) such that (E'|N') T (E|N), (E"|N") C (E|N),
E|N tm s ok and E" [N Fpq 6 (e1...en | Np) @ struct. Since the relation C is functional then
we have that (E” | N”) and (E'|N') are the same environment. We use the rule ENvV/MODDEF
of the system M g and we get E, (P : (e1...en |Np) = (e1...e, | Np)) [N Fp s ok. By con-
structor MODD we have that the environments are in relation. finally, we apply the lemma 3.2.16
and we obtain E' |N" b (e1...e, | Np) C 5.

For the rules of the class MoD, we only do the proof for the rule Mop/Acc:

E'|N'Fpok (P:S)eE
E'|N'FpyP:S

We need to consider two cases: E’ is either of the form FE{,(P : S),E or
E{, (P : S :=95'),F),. Both cases are dealt similarly, thus we only do the module definition
case. We have by induction hypothesis that there exists E|N such that (E'|N') C (E|N),
E|N Fpm,s ok, (P: 8" :=8") and E'|N" Fpq S” C S Hence, we conclude by applying the
rule Mob/Acc and MobD/SuB.

The rules of the classes TERM and SUB are directly proved by induction hypothesis.

3.2.4 Translation from M g to Br

In this section, we show that every term judgement (¢ : T') derived in the system Mg can be
derived in the system Bz. In order to prove this conservativity statement, we show that the
last module of the environment can be flattened and then we build a function that, given an

environment of the system Mg, flattens every module fields.

Flattening Modules

First, we show that we can remove the last module in the environment and replace it by its

sub-fields and its sub-namespace. We consider derivations of the system M g.
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Lemma 3.2.18 Let E|N = E1,(P : S := S), E2| N1 UNs,, where Ey does not contain any
module declaration and S is (e1...e, |Np). Let E'|N" = Eq,e1...,en, Ea| (N1 2 P i Np)UN3,
we have for any judgement J different from P : S, if E|N &+ J then E'|N" F J.

Proof. By induction on the derivation of E|N + J.

e EnNv class rules:
Suppose that the last rule of the derivation is ENV/MODDEF. By hypothesis of the
lemma, we deduce that FE5 is the empty environment, since it cannot be of the form
ely... e, (P S :=5"). Hence, we have E1, (P : S :=5)|N; I ok and we need to show
Ey,e1...,eq | N7t P Np | ok. By inversion on the premise Eq [N :: P S : struct of
ENV/MODDEF, we get Ey,eq,...,e, | Ni 2 P N, ok.

Suppose that the last rule of the derivation is ENv/DEF, then E, is of the form
EL,(P'.x : T :=t). We apply induction hypothesis on the premise of the rule, and we
get:

— Ey,er...,en, E5 | (N1 o P Np)UNa E ok

— El,el...,en,Eél(J\/'l = P ::Np) UNs Ft:T.
We now apply the rule ENV/DEF to get E' | N’ | ok.

The others rules from the class ENV are dealt similarly.

e MOD class rules:
Suppose that the last rule of the derivation is Mop/Acc:

E|NFok (P :S)€eE
EINFP S

We have by hypothesis of the lemma that (P’ : S") € F;. We apply induction hypothesis
on the premise of the rule and we use the rule MoD/Acc to derive E' | N+ P': S’
Suppose that the last rule of the derivation is Mop /FIELD:

Mobp/FIELD
E|\NEP (.. .e | Np) (P'.P:S")e (e ...€,)
E|NFP.P: S

We have either P = P’, P is a prefix of P’, or P is not a prefix of P’.

— If P = P’, then by Lemma 3.2.2 we have E | N F ok, and by induction hypothesis
we have E'|N' F ok. We know from the premise of the rule MoD/FIELD that
(P.P;: S") € (e1...ey), thus we have (P.P; : §') € E’. Finally, we use the rule
Mob/Acc on E'| N’ F ok and we obtain obtain E' | N+ P.P;: S’



3.2. Adding structures and first-order modules, the system M 75

— For both cases P is a prefix of P’, or P is not prefix of P’, we conclude by induction

hypothesis.

e TERM class rules:
We only do the proof for the rule TERM/FIELD, the others are easily proved by induction
hypothesis:

TERM/FIELD
E|NtE P :ley...en|Np)  Np(P.Pa'y=PPjx (PPjx:T)€ (e1...ep)
E|N®FP. P2 T

We have either P = P/, P is a prefix of P’, or P is not a prefix of P’.

— If P = P’, then by Lemma 3.2.2 we have F |N F ok, and by induction hypothesis
we have E' | N F ok. We know that N'(P.P;.2') = P.Pj.x since N' =N :: P :: Nps
and (P.Pj.z; : T) € E'. Thus we apply the rule TERM/ACC and we obtain E' | N/ -
PP T.

— For both cases P is a prefix of P/, or P is not prefix of P’, we conclude by induction

hypothesis.

We can do a similar lemma for module parameters.

Lemma 3.2.19 Let E := Ey,(P : S),Ey| N1 UNa, where Ey does not contain any module
declaration and S is (e1...e, | Np). Let E' := Ey,e1...,en, Eo| (N7 = P :: Np) UNa, we have
for any judgement J, E|N & J implies E' | N+ J (unless J is P : S).

Proof. The proof is the same as for Lemma, 3.2.18

Translation

Now, we define a function flatfen that takes an environment of the system M g and returns an
environment of the system Bz, such that if E|N g ,s J where J is either a judgement of the
form ¢ : T, U <gs T, or ok, then E|N tp, J. This function operates iteratively from right to
left on the environment of declarations. If the last declaration is a term declaration, then the
function accumulates it in the Bz environment, and if the last declaration is a module declara-
tion, then the function flattens it. In the following, we use the symbol || to split the environment

between the M g part and the accumulated Bz environment.
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For term declarations, we simply accumulate the declaration in the outputted environment:
(1)  flatten(Ey, Px : T || Eo | N) = flatten(E1 || Pa : T, Eo | N)

(2)  Aflatten(Ey, P.x : T :=t|| B2 | N) = flatten(E1 || Px : T :=t, Ea | N)

For a module parameter declaration, we use the Lemma 3.2.19 to decompose the module decla-

ration into the declarations of its sub-fields and we add its sub-namespace in the global one:

(3) flatten(Ey, P : {e1...en | Np) || E2|N) = flatten(En, e1, ... ey || B2 | N 2 P:: Np)

For a module definition, we use the Lemma 3.2.18 to decompose the module:
(4) flatten(E1, P :{e1...en|Np):={(e1...en | Np) || E2|N) =

flatten(Eq, €1, ... e || B2 | N 2 P i Np)

Finally, the function terminates when the environment of declarations at left hand-side of || is

empty:
flatten(e|| E2 | N) = Eo | N

This function obviously terminates. We can take as lexicographic measure the pair composed
by:

e The measure Dg defined as follows:

DE(el,... en) = DE(€1)+—|—DE(€n)
DE(< 6n|N>) = DE(€1)+...+DE(€n))

DE(P S:=8) = 1+Dg(S)
Dg(P:S) = 1+Dg(5)

Dg (Px T:=t) = 0
Dp(Pax:T) 0

It corresponds to the sum of the depth of each module (and sub-module) defined in the

environment, it decreases in rules (3), and (4), and remains constat in (1) and (2).

e The number of fields in the environment on the left of ||, that decreases in rules (1), and

(2).

Lemma 3.2.20 For all environment E | N, and judgement J of the formt : T, U <gs T, or ok,
if E|N Fm, s J then flatten(E|N) Fa g J.
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Proof. By induction on Dg(E). If Dg(E) = 0 then it is trivial since the function flatten is the
identity. For the induction case, we conclude by the flattening Lemmas 3.2.18 and 3.2.19.
O

Lemma 3.2.21 For all environment E | N, and judgement J of the form t : T, U <gs T or ok,
if E|N Fm,q J then flatten(E|N) g, J.

Proof. By Lemma 3.2.20, we have flatten(E | N') Fam,s J. Now, we show by induction on the
derivation of flatten(E |N) Fam g J that flatten(E|N) bp, J. All cases are directly prove by

construction or by induction hypothesis.
O
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3.3 Adding a merge operator on structures

In this section, we extend the system M with a new operator on structures, called the merge

operator.

3.3.1 Extension of the typing rules

We add a new judgement, E | N+ S; W Sy ~» S3, that means that in the environment E | N the
merging of the structures S; and Sy yields the structure S3. The merge operator, denoted by W,
allows to derive well-formed structure (i.e. judgement of the form F |N + Ss : struct). Let us

define this operator by adding a new set of rules MERGE and a new STRUCT rule:
STRUCT/MERGE
E|N :: PF {ey...en|Np) :struct E|N Pk (e)...e, | N'p):struct
E|N =Pk {ep...en|Np) W (ef...el IN'p)~ (e ...e} |N"p)
E|N = PF (] ...ef [ N"p) : struct

If we have two well-formed structures and the merging of them is successful, then the result is a
well-formed structure.
Now, we give the typing scheme that describe the algorithm of structure merging. It is given by

the following MERGE class of rules:

MERGE/EMPTY

E‘Nl—<€‘/\/’1> W <€‘./\/’2>’\/9<6’N1UN2>

MERGE/LEFT
PathCond(ey | Ze,, S)
E,e1 [N +Ze Fea...en | N1) W S~ (e... el | N3)

EINF(e1...en| N1 +Te)) W S~ {egely...ef | N3+ TLe,)

MERGE/RIGHT
PathCond(é] | L., 5)
E,e'llN—&—Ie/l FS W (eh...el, |No) ~ (e ...ef | N3)
EINES W (€]...e, [No+To) ~ (ereh ... e [N+ L)

MERGE/MATCH
name(e1) = name(e}) Loy =Te, ULy
ENFe W ei~el  Eel IN+Zab(e2...en|N1) W (e)...ep, | Na)~ (e ... e | N3)

EINF(er..cen|[Ni+Te)) W (€] ep, [No+Tor) ~ (e . e [ N3 + L)

The merging of two structures is done incrementally according to the fields of the structures.
The PathCond(ey |Ze,,S) is the boolean predicate (QI(e;) U dom(Ze,)) N QI(S) = e. In other
words, the set composed by the qualified identifiers of the field e; and all their indirections is
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disjoint from the set of qualified identifiers declared in the structure S.
We extend this operator to fields. Basically, it takes two fields and projects the most precise one

according to the subtyping relation.

MERGE/FIELD /RIGHT MERGE/FIELD /LEFT
E]Nl—eggel E\Nl—elgeg
E|NEFe W ey~ e E|NEe W e~ e

3.3.2 Admissibility of the merge operator
Now, we show that the rule STRUCT/MERGE is a redundant rule of the system M.

Lemma 3.3.1 For all environment E and fields e and ¢’ if Ete W € ~¢€”, then E+ ¢’ Cé
and B+ €’ Ce.

Proof. 1t is clear that the definition of the + operator on fields coincides with the subtyping.

Indeed, it only selects the most precise field between e and €’ using the subtyping relation.
O

Lemma 3.3.2 For all environment E | N, path P, and structure {(ey ...e, |Np) if E|N = P+
(e1...en | Np) : struct, then E,eq,...en | N =2 P:: Np = ok.

Proof. By induction on the derivation of E|N :: P+ (e1...e, | Np) : struct.
If the last rule of the derivation is STRUCT/ENV then it is trivial.
If the last rule of the derivation is STRUCT/MERGE:

STRUCT/MERGE
E|N = PrE (... |N') istruct  E|N = PE (e ...el | N") : struct
E|N = PF{ ... INY W (e]...eh |IN") ~ (e1...en | Np)
E|N :: PF (e1...en|Np) :struct

We have by induction hypothesis that E, e} ...e} [N :: P :: N' F ok (1) and E,ef...e) | N =
P :: N | ok (2). By Lemma 3.2.1, we deduce that E |N :: P F ok, and hence we are able to
build E | N :: P :: N = ok by successive applications of the rule ENV/NAMESPACE.

We denote by E; | N; the environment:

Eel,....e;|N P Np+TL.,

and we prove by induction on the derivation of E|N :: Pt (e} ...e} |[N') W (] ...el |[N") ~
(e1...en | Np) that foralli € {1...n}, 7€ {0...k} and [ € {0...m} such that

Bi[Ni b (€l e INj 1) & (eir e ING) ~ (eirn e en | NG+ Teys )

where ./\/;H =N"+1. e (resp. N, = N 1 T

: . e ), we have the three following
G410 I+1%m

properties:
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(i) E;|N;F ok

(i) Eiy€jiqse ey [N+ T, o b ok

15
sas " "
(iil) Ei,efy 1. em | Ni+ Lep, ey, Ok

First, we prove it for ¢ = 1 in order to illustrate the proof process. In fact, we use Lemma 3.2.10
(weakening by subtyping) to simulate a MERGE/MATCH step, and Lemma 3.2.8 (weakening) to
simulate a MERGE/LEFT or MERGE/RIGHT step.

By Lemma 3.2.1 applied on (1) and (2), we have E, ¢} [N :: P N + T I ok and E, €] [N =
Pt Nj +Zn = ok. We consider the 3 following cases:

o [MERGE/MATCH]: If name(e}) = name(ef) and E|N == P :: Np F €] W €] ~ e by
Lemma 3.3.1 we have E|N = P NjiFe Cejand E|N = P NjEe Ceéf.
We have by construction that Ze, = Zo UZy.
We apply Lemma 3.2.10 on (1), €}, and e; (resp. (2), €/, and e;), and we get:

— (ii) for j =1, E,e1, €y, ..., 65 [ N1+ Ly oo I 0k

'''''

— (ili) for I =1, E,er,e5...,en [N+ Loy en = ok .
By Lemma 3.2.1 applied on either (ii) or (iii), we get (i) E1 | N F ok.

o [MERGE/LEFT]: If PathCond(e} | L, (€7 ... ep, [N")), then e is €.
Hence, we get (ii) for j = 1 from (1), and by Lemma 3.2.1 we get (i).
Finally, by Lemma 3.2.8 applied on (2), we get (iii) for [ = 0:

Eer el ... eq | N PN+ ook

e [MERGE/RIGHT]: is the symmetric of [MERGE/LEFT].

We consider (i), (ii) and (iii) true for some ¢, j an [ in their respective domain, and we prove

them for 7 + 1:
Eit1|Nig1 F <€;‘+1 o G;c |/\G{+1> W <€2/+1 e z/jr1> ~ (€i+2. .- €n |N; +I€i+2z-~~:€n>

o [MERGE/MATCH]: If name(e} ;) = name(ej, ;) and E; [N; el @ ey~ eit1.
By Lemma 3.3.1, we have E; | N; F e;41 C e;-_H and E; [N eir1 Cef, .
We apply Lemma 3.2.10 on the induction hypothesis (ii), and fields 63‘+1’ and e; 1 (resp.(iii),

e/ 1, and e;;1), and we get for i 4 1:

— (i) for j = j+ 1, Eiy1,€; 4, ..., e, | N1+ Lo o F ok

j1 6k

— (111) forl =141, Ei+1,61,62/_i_1 ... ,e;'n |N1 +I€;’+17“'7€',r;7, F ok .

By Lemma 3.2.1, we deduce the property (i) E;+1 | N1 F ok.
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o [MERGE/LEFT]: If PathCond(e}, \Ie;“, (e 1---em|Ni1)), then e;q is €y
By induction hypothesis, we get (ii) for i + 1 and j = j + 1.
By Lemma 3.2.1, we deduce (i) E;11 | N1 F ok.
Finally by Lemma 3.2.8, we get (iii) Eit1,€],;...,en, [Nit1 + Loy el

o [MERGE/RIGHT]: is the symmetric of [MERGE/LEFT].
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3.4 Adding higher-order structures, the system HM

In this system we generalize the structure construction to the higher-order case, we call this
system HM. A higher-order structure is a structure parameterized by module variables. Con-
sequently, we introduce the notion of functor, which corresponds to higher-order module. As
announced in the Chapter 2, we adopt an applicative semantic for functor. The remainder of
this section is the following, we first present the extension of the syntax and the typing rules,
then we show that d-reduction is weakly-normalizing with respect to the applicative semantic of

functors, finally we show that the system H.M is conservative with respect to the system M.

3.4.1 Extension of the syntax and the typing rules

Extension of the syntax

P ++= v|(PP)
S ++= (v:9)=S5

E ++= E,(v:95)

The syntactic class of path is extended with path variable v, and path application (P P). The
(v:S) = S syntactic construction corresponds to higher-order structure. Finally, environments

are list of fields, term variables and module variables.

Extension of the typing rules

e We extend the ENV class in order to consider module variable introduction:
ENnv/MODVAR
E|N:PFok E|N:P:vk S:struct
E,(v:S)|N :: (Pv)F ok

Here, the structure S is built relatively to the path variable v, and can be either higher-
order or first-order. When introducing a module variable the head path of the namespace

is applied to the path variable.

e We extend the STRUCT class with a rule to form higher-order structure:

STrRUCT/FUN
E,(v:8)|N : (Pv)E Sy :struct
E|N ::PF (v:S)= 5] :struct

The rule STRUCT/FUN says that if we have a well-formed structure S built under the path

(Pwv) in the environment containing the considered module variable, then we can build the
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higher-order structure (v : S) = S; well-formed under the path P.

e We extend the MOD class in order to consider a paths application as a path:

Mobp/App
EINEP :(v:5)= S5 EF Py: Sy E\/\/'::#l—S’;‘#/PZQS;éé

E’Nl— (Pl PQ) : {’U/PQ}S

Given a higher-order module P; and a module P, that fulfills the input of P, we can
build the path (P P») typed by the output structure of Pj, where the path variable v is
substituted by P5. The subtyping derivation is done under a fresh path, and we strengthen
the structure S;’é by P, in order to consider the most structure type for the module path Ps.

o We extend the subtyping relation, in order to consider higher-order structures:

SuB/FuN
E|N:P:vE S CS E,(v:S)|N::(Pv)F S C8]
EIN=:PF@w:8)=8C(:5)=5]

The subtyping relation on higher-order structure is defined in the usual

contravriant/covariant way.

e Finally, we extend the strengthening on high-order structures:

((’U : S) = Sl)/P = (’U : S) = 51/(pv)

We define a measure on structure, that is a combination of both depth and arity of the structure.
Definition 3.4.1 Measure on structure pu(S):
p((v:8)=98) = 1+u(S)+nu(s)
n
pller-en|N)) = 14> ples)
i=1

p(P:S:=5" = uS)
p(P:S) = p(S)

wPx:T:=t) = 0
p(Px:T) 0
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In order to illustrate the system H.M, take the following functor in Coq syntax:

MODULE F (v : S).
DEFINITION d := 0.t .
EnD F.

We assume that S is the abbreviation for the structure (v.t : Type; | €). The structure corre-

sponding to the signature and the implementation of the functor is in formal syntax:
(v:(v.t:Type;| €)) = ((Top.Fv).d: Type; :=v.t|¢€)

Note that the field of the body of the functor is qualified by the path application (Top.F v). We
briefly describe the derivation of the functor F. We consider a well-formed environment E | N.
We apply twice the rule ENV/NAMESPACE to insert the path T'op.F" and the path variable v. We
apply the rule TERM/AX and ENV/PAR to add the parameter (v.t : Type;) in the environment,
we get:

E,(v.t:Type;) | N :: Top.F :: vk ok

Now, we use the rule STRUCT/ENV, and ENV/MODVAR to add the module variable in the
environment:

E,(v:{(vit:Type;)| €))|N :: (Top.Fv) F ok

We apply the rule MoOD/AcCC to access the module variable v, the rule TERM /FIELD to access the
parameter v.t, and then we apply the rule ENV/DEF to add the definition
(T'op.F v).d : Type; := v.t in the environment:

E,(v:{(vit:Type;)| €)),(Top.Fv).d: Type; :==v.t) | N :: (Top.Fv)F ok

We now apply the rule STRUCT/ENV and STRUCT/FUN to derive the higher-order structure

given previously.
E|N ::Top.Ft (v:{(vit:Type;i| €)) = ((Top.Fv).d: Type; :=v.t|€) : struct
Finally, we apply the rule ENV/MODDEF to add the module definition in the environment.

Now, we illustrate the path application, take for instance the following module:

MODULE M.
DEFINITION { := nat.
ENnD M.
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We want to access the definition (Top.F Top.M).d. We use the rule MoD/AcC to access both
modules Top.F and T'op.M. We can apply the rule MoD/APP since we have :

(#.t: Typey :=Top.M.t| e) C (#.t:Type;| €)
We obtain:
E|NF (Top.FTop.M) : {((Top.F Top.M).d : Type; := Top.M.t| €)

Note that the field d in the structure is qualified by the excepted path. Finally, we use the
rule TERM /FIELD to access the desired definition. On the contrary of most module systems, no

substitutions are needed for field projections.

3.4.2 Normalization of the /-reduction in presence of applicative functors

The applicative semantic for functor leads path applications to appear in terms. Hence, a
0-reduction step (rules DELTA/FIELDDEF and DELTA/FIELDPAR) can involve the typing of
module path applications. In a such context, we need to show that terms are normalizing with
respect to the d-reduction. This property is useful for the translation from the system HM to
the system M, since it allows to remove a large part of path applications in terms. In order to
prove that every well-typed term in the system HM is weakly normalizing, we inspire ourself

from the proof done for the simply typed A-calculus in [32].

Characterization of terms in § normal form

We denote by NF; the set of term in § normal form. We give an inductive characterization of

NF; relatively to an environment as follows:

SORT PAr VAR

E|NFseS E|N F ok (Px:T)eEFE E|N F ok (v:T)eE

E|N | s eNFy E|N F Px € NF; E|N kv e NF;
LAam

E|IN+TEeNF; E,(v:T)|NFteNFs
E|NF X : Tt e NFs

ProD App
E|N|—T€NF5 E,(U:T)|NI—U€NF5 E|N|—tENF5 E\Nl—ueNFg
E\Nl—Vv:T.UENF(; E|N|—(tu)eNF5
MPAR

EINEP:(e1...eq| Np) (PP .x:T)eler...en)
E|NF PPz NF;
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We extend NF; with modules and fields. Term parameters always belong to NFs, term defini-
tions belong to NFy if and only if their body belongs to NFg. Finally, modules belongs to NFy
if and only if all fields of the module belong to NFj.

FIELD/DEF MOoD
E|N FteNF; Vie[l...n], E|N F e € NF;

E|NF (Px:T) e NF; E|NF (Px:T:=t) e NF; E|NFP:{eg...en|N)eNF;

FIELD/PAR

MobFuN
E,(v:S)|NF (Pv):S €NFs

E|NEP:(v:8)= S €NF;

Weakly-normalizing terms

We define t | (t is weakly d-normalizing) inductively by :

E|N |t € NF; E|NFt>st E|NEY]
E|NEt] E|NEt]

We extend | on structures and fields. Term parameters always normalize, term definitions
normalize if and only if their body normalizes. Finally, modules normalize if and only if all fields

of the module normalize.

MENV
E,(P:S:=8),E'|INUN'"Fok E|N:PEFS|

E,(P:S=8),E'|[NUN'FP:S|

MboT
E|NEFP:(e1...eq|Np) | (P.P;:S)e(er...ep)

E|NFPP:S|

MAPP
EINFP :(v:8)=>S] E|NFP:S | FE|N:#F{v/P}s"]

E|N|_ (Pl PQ) : {U/PQ}Si

STRUCT
Vie[l...n] Eyer,...,e; 1 |INUN_{Fel

E|NF(e1...en|N') |
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STRUCTFUN FIELD/PAR FiELD/DEF
E,(v:S)INFS"| E|NFt]
EINFw:8 =5 E|NE(Px:T)| E|NE(Px:T:=t)|
FIELD/MoD
E|N:PES|

E|NF(P:S[=51

Lemma 3.4.1 For all environment E | N, terms t and T, and qualified identifiers P.z and P .z,

such that we have:
e EINFPa:T, N(Px)=P .2, (Pa:t:=T)eFE
e EINEFt]|

then we have E|N + P.x |

Proof. By rule DELTA/DEF, we have F|N + P.x >5 t, and hence we conclude on E |N + Pz |
by construction.
O

Lemma 3.4.2 For all environment E|N, terms t and T, such that E|N + t : T and for all
P.x; € FQI(t), E|N & P.x; |, we have E|N 1t .

Proof. By induction on the structure of the term ¢. If ¢ = s for some s € S or t = v then it
is trivial. If ¢ = Pj.x; then we have E|N F t | by hypothesis. If ¢ = (uj uz) then we have by
induction hypothesis that E |N F uy | and E|N F uy |. Let o’ (resp. «”) be the 6 normal form
uy (resp. ug), then we have F|N F (v/u”) | and hence E|N -t |. The other cases are dealt
similarly.

O

Lemma 3.4.3 If E|IN F P : {(ey...ex|Np) |, then VP.P'.x € QI({e1...e,|Np))
E|NFPP.x|

Proof. By construction, P.P’.xz points either to an axiom and then E|N + P.P'.x |, or to
a definition which body normalizes and then E|N + P.P'.x |. If P.P'.z is an indirection
that belongs to the domain of Ap then we get the result by the rule DELTA/FIELDDEF or
DELTA /FIELDPAR.

[l
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In the following, we use an alternative characterization of syntactic class of paths:

P::T0p|v|P.p\PFZ

Hence, without loss of generality a path can always be written as P(?i).P’ , where P is of the
—)

form Top.py...pn O V.p1...Dn, P; is a vector of general paths and P’ is a general path. This

notation highlights the outermost path application. We also need to be able to discriminate

paths with respect to path applications, to do it we define the notion of pure and impure path.

Definition 3.4.2 (Impure and pure paths)

- -
Let P be a path, we say that P is impure if and only if P = P'(F;).P" where P, is not the empty
vector. We call pure path a path P such that P=Top.p1...p, or P=v.p1...Dp.

Definition 3.4.3 (Impure and pure qualified identifier)
Let P.x be a qualified identifier, we say that P.x is impure (resp. pure) if and only if P is impure

(resp. pure).
Now we show that normalizability is closed under path application and module path substitution.

Lemma 3.4.4 If EINF P : (v:851) = Sy} and E\N+ P : 5 |, then E|IN + PP :
{v/P'}Ss |

Proof. By induction on the size of the functor P, u((v : S1) = S2). We need to prove
that the hypothesis of the lemma implies E|N :: # + {’U/P’}SfE 1. Hence, it is sufficient to
prove that every term subfield of the latter structure normalizes. More formally, we need that
E'|N" + {v/P'}e | where e is the considered term field and E’'| AN’ is the environment built
from the decomposition of the structure {v/P’ }52# .

If the considered field is a term parameter, then we get the result by construction. In
case of a term definition with term ¢ as body, we know that ¢ | and we want to prove that
{v/P'}t |. Let t' be the normal form of ¢, we use the Lemma 3.4.2 to reason on the form
of the qualified identifiers P”.x € FQI(¢'). Note that before the substitution these qualified
identifiers point to parameters since t' is the normal form of . Without loss of generality,
we have P”".x = P;.P5...P,.7' where each P; is either qualifiers separated by dots, or a path
application. Considering that each intermediate path P; ... P; has type S;, we prove by induction
on n, for all ¢ E' | N+ {v/P'}P;...P;: {v/P'}S; |.

For ¢ = 1, we consider the following cases for P;
e (var) P = v, we have by hypothesis that E|N - P": 5" |.

e (app) P = 0(1\7) where M are general module paths.
In order to prove that E' | N' {’U/P/}U(M) : {v/P'}S1 |, we use an additional induction
on the length of ]\—4>
If this length is null then we have P’ : S’ | by hypothesis.
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Otherwise, let M= A?M”, we have E' | N' - {U/P’}v(]\?) (08" = {v/P'}Sy .
Suppose that E' | N = M" : Sy, we have that E'|N' = M” : Sy | by constructor
MAPP.

Now, if M" contains at least a path application, then we have by main induction hypothesis
E'\N'"FA{v/P}M" : {v/P'} Sy | since u(Spyn) < p((v: S1) = Sa). In the other case M”
is either a variable or a pure path, and then we have E’ ]Jl/;’ F{v/P}M" : {v/P"}Sy |
by construction. Having a normalizing functor {v/P’}v(M’) and a normalizing module

{v/P'} M" we use the main induction hypothesis to get the desired conclusion.

We suppose the property to be true for ¢ = k, and we prove it for i = k + 1. We consider the

following cases for Pyyq:
e (dot) Pyy1 =p1...pn, by constructor MDOT.

_>
e (app) Pyr1 = P"(M), by induction hypothesis and constructor MDOT we have:
s
E'N\N'EP...Pp.P": (v :58")= 5,1

We do the proof by induction on the number of arguments as in the previous case, and
we conclude by main induction hypothesis since the considered functor is smaller than the

functor P.

Lemma 3.4.5 For all environment E|N and terms t and T such that E|N bt : T we have
E|INFt].

Proof. By induction on the structure of the term ¢. If ¢ is an impure qualified identifier then
we use Lemmas 3.4.3 and 3.4.4, and for all other cases we get the result either by definition or
by induction hypothesis.

O

Algorithmic content of the proof of weak-normalization:

Now, we extract, from the proof of weak-normalization, a function nfs that takes an environ-
ment and a term and returns the term in 6 normal form. Without loss of generality, we consider
that all fields of the environment are in § normal form. In the following program, we use the

notation e€ \,F to denote the membership modulo indirections of the field e to the environment F
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This first part comes from the induction on the term structure in Lemma 3.4.5:

nfs(E | N,v) = v

nfs(E | N, s) = s

nfs(E | N, P.x) = if (Pa:T) €y E then N(P.x)
nfs(E | N, P.x) = if (Px:T:=t) €y Ethent
nfs(E|N, v :Tt) = Xv:nfsg(E|N,T)nfs(E,v:TI|N,t)
nfs(E|N,Vv:T.U) = Yo: ofs(E|N,T)nfs(E,v: T|N,U)
WGEIN,(tw) = (als(E| N, 1) afs(E, |N.u))

For module access (Lemma 3.4.3), we consider the two cases pure or impure path:

nfs(E|N,PP.z) = HE|NFP:(e...e,|Ny) and P is pure then
if (P.P.2:T) €y, (e1...en) then Np(P.P'.z)
if (PP x:T:=t) €y (e1...en) thent

nfs(E|N,PP.x) = UE|NEFP:(e1...e,|Np) and P = PO(P) Py is impure then
let P:(e})...eh | Np) =nfs(E|N,P:(e1...e,|Np))
if (P.P'.x:T) €y, (€ ...€p) then Np(P.P'.x)
if (PPx:T:=t) €y (€...€,) thent

Path applications normalization (Lemma 3.4.4) is decomposed in two cases dot and app:

nfs (E | N, Py(P). P, — i E|NF Py(P): S then
dot(uf3(E | N, Po@) $), Pe)
-
w5 (E|N,Py(P):S) = €E|NFPR:(v:5)=5 and E|NF P : 8 then

Py(P) : subst (E|N,vp,...subst(E| N, v, nfs(E| N, Py : 81),8)...)

The auxiliary function subst takes as argument an environment, a path variable, a normalized
module, and the object to substitute that can be either a structure, a field, or a term. This

function returns the ¢ normal form of the substituted object. we denote by o the substitution
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{v/P}:

On structures:
subst(E |N,v,P:S,{e1...en |N")) =
(subst(E |N,v,P: S,e1)...subst(E|N,v,P: S e,)| oN")
subst(E | N,v, P : S, (v1: S1) = S2) =
(v1 :subst(E | N,v, P :S,51)) = subst(E | N,v, P : S,52)

On fields:
subst(E |N,v,P:S,(P':S51:=853)) =
(P’ :subst(E | N,v,P:S,51) :=subst(E|N,v,P:5,52))
subst(E |N,v, P : S, (P":51)) = (0P :subst(E|N,v,P:85,51))
subst(E |N,v,P:S,(P'.x:T:=t)) =
(P .z : subst(E|N,v,P:S,T) :=subst(E |N,v, P:S,t))
subst(E |N,v,P: S, (P'.x:T)) = (oP'.x:subst(E|N,v,P:5,T))

On terms:

subst(E | N, v, P : S, t) = nfs(FE|N,ot)
The auxiliary function dot:

dot(E|N,P:{ey...en|Np), P =
If P’ is pure and (P.P':S) € {e1...ey,) then (P.P':S)

dot(E|N, P (e1...en | Np), Po(P).P) =
-
if E|NFEPPy:(v;:5;) =5 and E|N F P;: S] then
dot(E | N, P.PO(?Z-) : subst(E | N, vy, . ..subst(E | N, v, nfs(E|N, Py : S7),5)...), P')

3.4.3 Translation from HM to M

Removing Sealing: the system HM g

As in Section 3.2, we modify the rule ENv/MODDEF so that a transparent signature is given to
the module definition:

ENV/MODDEF
E|N :: PE S :struct

E,(P:S:=8)|NF ok

The system HM with this restricted ENV/MODDEF rule is denoted HM g. As we have done
for the systems M and M5 , we can prove that both systems are equivalent in term of ex-
pressiveness, since we can always postpone the subtyping check done in premise of the rule
ENV/MODDEF at access time.
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Removing functors:

In this section, we prove that the system HM g is conservative with respect to the system M.
Without loss of generality, we consider environments of the system HM g where there is no
“interactive functors in construction”. For instance, we consider the following environment where

the functor is declared:
(Top.F:(v:S)= ((Top.Fv)x:T :=t...))|Top

but not this one:
(v:8),(Top.Fv)x:T:=t,...|Top: (Top.Fv)

This restriction allows us to avoid some tedious namespace renaming during the translation.

Definition 3.4.4 Let E| N be an environment, we say that the environment is functorialy closed
if and only if the environment of declarations E does not contain any module variable declarations

and the namespace N' does not contain path variable declarations.

As we have done for previous systems, we define a binary relation between functorialy closed
environments of the system HM g and environments of the system M. Basically, a HM g
environment is in relation with its translated M environment. The translation removes functor
declaration, keeps from applied functors a renamed form of the axioms they declare, and ac-
cumulates a substitution to propagate this renaming. To do it, we compute the substituted ¢
normal form of each terms. If the result is an impure qualified identifier then it means that the
latter points to an axiom declared within a functor. Hence, we give it a fresh pure name, we add
it in the M environment, and we update the substitution. To illustrate this translation take the

following development:

MODULE F (v : S).

PARAMETER a : Type.

DEFINITION b := (fun z : a) => v.t.
EnD F.

MODULE M.
DEFINITION ¢ := Type.
EnD M.

DEFINITION al := (F M).a.
DEFINITION b1 := (F M).b.

We suppose that S is the abbreviation for the structure containing the field PARAMETER ¢ : Type.
We build in parallel the HM ;g environment and the M environment:



3.4. Adding higher-order structures, the system HM 93

e we start from the empty environments and empty substitution.
e we add the functor F'in the HM g environment, the M environment stays empty.

e we add the module M in the HM g environment, and we add its 6 normal form in the M

environment.

e we compute the substituted 6 normal form of (F M).a. It gives the impure qualified
identifier (F' M).a, we add in the M environment the parameter (Top.a : Type) and we
extend the substitution with {(FM).a/Top.a}. Now, we add the substituted § normal
form of the definition T'op.al in the M environment and its original form in the HM g

environment.

e we compute the substituted § normal form of (F M).b. It gives (fun z : Top.a) => Type
which do not contain any impure qualified identifier, hence we can add the corresponding

definition in M environment and its original form in the HM g environment.

Definition 3.4.5 Let p be a substitution that maps impure qualified identifiers to pure qualified

identifiers, we define inductively the binary relation < between environments of the system M

p
and functorialy closed environments of the system HM g, with the following constructors:

EmMPTY
(e| Top) m < (€| Top)rm,s
RENAME
E|N < E'\N"  E'|N'Fym,s P T
p
P".2" = p(nfs(P'.2")) P".2" impure T = p(nfs(E"|N',T")) FQI(T) are pure
E,(Px:T)|N < E'|N'

pAP" 2" | P.ac}

The empty environments are in relation. The RENAME constructor is the most important one. It
adds in the environment of the system M a parameter that replaces a parameter defined within
a functor. If we have an environments E | N of the system M in relation with the environment
E'| N of the system HM /g such that we have:

e a derivation of P'.z/ : T" in HM s

e the substituted § normal form of P’.z’ is an impure qualified identifier, this condition
implies that P”.2” is a parameter defined within a functor, and that this parameter has

not been renamed yet.

e a term 7 which is the substituted d normal form of 7", and that only contains pure qualified

identifier
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then we have that the environment of M extended with the parameter (P.x : T), for some path

P chosen within A" and  a fresh identifier, is in relation with the former environment of HM /5.

PAR

E|N < E'|\N'
P
E'NN " Fym,;s T' s T = p(nfs(T7)) FQI(T) are pure
E,(Px:T)|N < E' (Px:T)|N'
p

DEF
E|N

E'"|N' FrM s t T T = p(nfs(T")) = p(nfs(t)) FQI(T) and FQI(t) are pure
E,(Px:T:=t)|N < E (Px:T :=t)|N
)

For term parameter and definition, the environments are in relation if the M environment con-

tains the substituted § normal form of the declaration in the HM ;g environment.

NAMESPACE INDIRECT
EIN < E|N EIN <  FE|N
p p
E|N P < E'|N":: P E|N < E'|N'+ (Px + P'.2')
p p

Indirections are not considered in the environment of M since they are always eliminated in the
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d normal form of a term.

MobpPFunN
E|N < E'|N'
p

E'|N' P Faam, g S 1 struct S higher-order structure
E|N < E' (P:S)|N'
p

MobpDFuUN
E|N < E'|\N'
p

E'|N': P Fam s S ¢ struct S higher-order structure
E|N < E (P:S:=98)|N

P

MobP

E.e1,...,en | N = P N, < E' e, ....e |N' =P Np
P

E,(P:(e1...en|Np)) N < E(P:{e)...ep | Np)) N
o

MopnD
E.ei,...;en| N PN, <E' e, ..;ep, [N =P Np
P

E,(P:(e1...en|Np) = (el...en]/\/p)ﬂ./\/% E(P:{e)...en | Np)i=(e)...en, IND) N

Finally, for module parameters and definitions, functors are not added in the M environment
while first-order modules are. The difference in term of structure length, in the constructors

MoDP and MobDD, comes from the possible presence of sub-functor fields and renamed param-
eters.

Lemma 3.4.6 For all environments E' | N" and E | N, if there exists p such that E|N < E'| N7,
)

then for all qualified identifier P.x and term T’ such that (Px : T') € E', we have (P.x :
p(nfs(T)) € E

Proof. By construction of the relation <.
p
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Lemma 3.4.7 For all environments E' | N' and E | N, if we have :
o F'|N' Fm, g Ok and E|N ok

o E|N < E'|N' for some p
p

o E'|N'"Faipm g Pridel .. e, |Ny) with P a pure path

then we have: (1) E|N Fap P i (e1...en|Np) for some structure (eq...e,|Ny), and (2)
for all qualified identifier P.P'.x and term T' such that (P.P'.x : T') € (¢} ...¢€},), we have
(P.P'.z: p(nfs(T)) € {e1...ep)

Proof. By construction of the relation <, we see that the property (1) is induced by the
P
constructors MODP and MoDD and by applying the Lemma 3.4.6 on their premise we get the

property (2).
t

Lemma 3.4.8 For all environments E'|N" and E|N, terms t and T, if we have
o E'|N"Fopm,q ok and E|N Fpq ok

e there exists p such that E|N < E"| N’
p

o F'|N' l_HM/St:T
then we have E|N Faq p(nfs(t)) : p(nfs(T))

Proof. By induction on the derivation of E' [N Faaq, 4 nfs(t) : nfs(T). If the last rule of the
derivation is TERM/AX then it is trivial. If the last rule of the derivation is one of the following
TeErRM/LAMBDA, TERM/PROD, or TERM/APP, then we conclude by induction hypothesis.

Suppose that the last rule is TERM/ACC:

E' N Fapm, 5 0k (Px:T) el
E' [N bym,s Pa: T

with Pz = nfs(t) and 7" = nf5(T). We know that P.x points to an axiom in the environment E’
or else it would not be in § normal form. By Lemma 3.4.6, we have (P.xz : p(T")) € E. Hence,
we conclude on E | N Faq Px: p(T) by applying the rule TERM/AcCC.

Suppose that the last rule is TERM/FIELD:

TeERM/FIELD
E'N"Fym,s Piler...e, [Np) (PP a:T) e (e ..ep)
E'|N' FrMm PP .x:T
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with P.P'.x = nfs(t) and 77 = nfs(T). We know that P.P’.xz points to an axiom in the structure
(e1...en) or else it would not be in § normal form. Here, we need to consider two cases: P is

either a pure path or an impure path.

e If P is an impure path. We have by construction, that p(P.P'.z) = P".2’ and (P".a’ :
p(T)) € E. We apply the rule TERM/Acc on E| N ok and we get E | N by P72/ @ T,

o If P is a pure path. We have by Lemma 3.4.7 that E|N Fya g P : (e1...en | Np) and
(P.P'.x: p(T") € (e1...en | Np)) . We use the rule TERM/FIELD and we conclude on
E|\N bty PP .x:p(T).

Lemma 3.4.9 For all environment E' | N, such that E'|N" -y ¢ ok, there exist p and E|N
such that E\N < E'|N" and E|N Fq ok;
p

Proof. By induction on the derivation of E' | N 4,4 ok.

e If the environment is empty then it is trivial.

e If the last rule of the derivation is either ENV/NAMESPACE or ENV/INDIRECT then we

conclude by induction hypothesis.

o If the last rule of the derivation is either ENV/DEF or ENv/PAR. We do the proof for
ENV/PAR, the case ENV/DEF is dealt similarly.

E/|N/|—7_[M/Sok E/‘N/FHM/ST:S seS PeN
E', (P :T) | N Faym, s ok

In order to be able apply the Lemma 3.4.8 on E' | N" Fan o T ¢ s, we need to enrich the p
and E| N, obtained by induction hypothesis on the derivation of E'|N" by, ok, with
the renamed parameters that correspond to the impure qualified identifiers that appears
freely in nfs(E' |[N',T).

Let T” be the § normal form of T, and let P be the set of impure qualified identifiers that
appear freely in T". We prove by induction on the on the cardinal of P that there exists

Epar and ppe, such that E, Ep, [N < E'|N" and pppe,(T") contains only pure qualified
PPpar
identifier. If the cardinal of P is 0 then we take Fj,q = € and ppq, the empty substitution.

We suppose the properties to be true for P of cardinal n and we do the proof for n + 1.
Suppose that P,y1.2p41 € P and E' | N/ Faum,s Prs1-Tpgr @ Tpgr where Ty is in 6

normal form. We have two easy cases:
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— if pppar(Prn+1-Zn41) is a pure qualified identifier then, we have already renamed and
added the corresponding parameter in the M environment. Hence, we conclude by

induction hypothesis.

— if pppar(Th41) contains only pure qualified identifiers then we conclude on:

E, Epary(P-x, : pppaT(Tn—i-l)) ‘N < E/‘N/
pppar{Pnt1.-@ny1/Pa’}
by constructor RENAMES. We have that pppar{Pnt1-Znt1/P.2’}(T") contains only

pure qualified identifier by construction.

Now, if pppar(Th+1) contains impure qualified identifiers, then we recursively do the process
above for T,,+1 and P the set of impure qualified identifiers that appear freely in T,,41.We
get that there exists E, 1 and p,41 such that

E,Epar, Eni [N < E'|N
PPparPnti

and ppparpn+1(Tht1) contains only pure qualified identifier. By constructor RENAME we
can add the renamed and substituted parameter (P.x’ : ppparpn+1(Tn41)) in the M environ-
ment. This recursive process terminates for the same reason as the § reduction normalizes
(i.e. induction on the size of the functor and nested induction on the form of the impure
path).

Now that we have built the right M environment E, E,,, | N and substitution pppe,, we
apply the Lemma 3.4.8 and we get:

E, Epar |N Fm pppar(T/) : S
Finally, we apply the rule ENV/PAR to build the desired well-formed environment.

o If the last rule of the derivation is either ENv/MODDEF or ENV/MODPAR then we need
to consider two cases, either we add a higher-module or we add a first-order module.
If we add a higher-module then we get the result by induction hypothesis. Suppose that
the last rule is ENv/MODPAR and the module parameter is a first-order module:

ENv/MODPAR
E'|N' Faam, g 0k E'|N':P FHM, (€} ...el | Np) : struct
E (P:{...e |Np)) N '_7-[/\/(/5 ok

By inversion on the premise we have that E', e}, ..., e, [Nt P Np Fam ¢ ok, hence
we have by induction hypothesis that there exists p and E,eq,..., e, |N @ P :: Np such
that

E,eq,....eq | N 2 P Np b ok (1)

SHere we take the qualifier P that is valid in A/ by construction, and a fresh identifier ’. It is important to

choose the qualifier used for the translated field (i.e. P.z : T'), in order to respect the first-order module hierarchy.
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and

7677’1,

E,el,...,en|j\/::P::Np%E/,e/l,... PN PN (2)
We apply the rule STRUCT/ENV and ENV/MODPAR on (1) and we get:
E,(P:{e1...en|Np)) | N Fa ok
We apply the constructor MODP on (2) and we get:
E,(P:<€1...€n‘NP>)|N%El,(PI (e ..er |INpY) N/

The case ENV/MODDEF is dealt similarly.

Corollary 3.4.1 For all environment E'|N", terms t and T, if E'|N" byp,q t © T and
nfs(E" | N',T) contains only pure qualified identifier, then there exists a substitution p and an
environment E | N such that E|N < E'|N" and E |N bt p(nfs(t)) : nfs(T).

p
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Chapter 4

Extensions of the system

In this chapter, we give extensions of the module system that are a part of the concrete imple-
mentation. In a first time, we describe how to extend the system with structure abbreviations,
that roughly correspond to signature abbreviations. Then, we give a formal description of the A-
equivalence introduced in Section 2.3.5. This new relation allows to quotient the namespace and
derive canonical names. Finally, we introduce a new inlining notion that allows, when applying

a functor, the automation of J-reduction of qualified identifier selected by the user.

4.1 Structure abbreviations

The first main extension of our system is to take in account a new kind of fields that corresponds
to named structures, called structure abbreviation. Since our system is based on the unique
notion of structure, the abbreviations are used in two ways. The first one is the most common,
and corresponds to signature abbreviation that are reused for sealing. The second one is more
specific to our approach. It allows to build step by step a concrete implementation of a given
theory. In other words, we start from a structure that specifies abstractly a theory. Then using
merge and application, we successively derive intermediate named structures, containing defined
fields, that finally correspond to instantiations of the former theory. Now, these fully defined
structures can be used to define modules, and the intermediate structures can be used either as

starting points for other theory instantiations or as precise translucent signatures.

Syntax
e++=(P=25)

A structure abbreviation is a part of the syntactic class of fields. It is the association of a

path and a structure.

101
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Typing rules

ENV/ABBREV STRUCT/ABBREV
E|N :: PE S :struct E|N::P'Fok (P=S)eFE
E,(P=8)|N I ok E|N :: P'F{P/P'}S : struct
STrRUCT/MODFIELD

E|N =P FP:lep...en|Np) (PP;=S5)€e(e1...ep)
E|N :: P'+{P.P,/P'}S : struct

STRUCT/APP
E|NFE (v:S)= S :struct E|NEP:S, E|/\f::31(5£|—523/‘#]32QS?E

E|NF {v/P}S : struct

SUB/ABBREV/ABBREV
E|N:PFHSCS  E|N:PrSCS
EINF(P=S)C(P=295)

The ENV/ABBREV rule adds a new structure abbreviation in the environment when the structure
is well-formed under the abbreviation path. Both STRUCT/ABBREV and STRUCT/MODFIELD
rules allow to recover the structure corresponding to an abbreviation. Finally, the new SUB rule
is added to consider subtyping derivation that involves structure abbreviation fields. Here, we
do not require the two structures to be equal but only to be mutual subtype. With the help
of the antisymmetry of the relation <gs, this induces that all term fields of the structure are

equivalent. However, the fields can be declared in a different order.

The strengthening has no effect on structure abbreviation fields, hence we extend it as follows:

(P'=58)p = (P'=S)

Concluding remark

Structure abbreviation is essential for Coq users. Beside the classical code factorization that it
provides, it allows a new way to build concrete structures through “refinement steps”. At first
sight, one might think that the addition of structure abbreviations could lead to undecidability
of module type-checking as it was proven for the translucent sum calculus [24, 38]. However, this
is not the case here because this result clearly depends on the design space of the module system.
In fact, it occurs when the module language and the base language are not separated [50]. In
this work, we build a module system where structures and modules are second class objects and
hence the base language and the module language are clearly separated . Furthermore our base
language offers an oracle (=gs and <g;) that determines if two terms are convertible or subtype.

Hence, it allows to build a quite straightforward algorithm to check structure subtyping.
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4.2 A-equivalence

We have presented in Section 2.4, the scope of this new equivalence relation on names called
A. Tt allows the proof writing machinery to reason modulo sharing constraints implied by the
modular structure of the development. We have introduced this notion in [53], and we have
implemented it in Coq v8.3. Basically, this relation is computed thanks to the strengthening
steps of the module system, and is propagated through functor applications by an extended path

substitution.

Syntax:

We modify the syntax of term declarations so that their name parts hold the A-equivalence

information:

e:=Px>Px:T|Px>Px:T:=t|P:S|P:S:=9

The rest of the syntax is unmodified. Now, a term field is named by two qualified identifiers.
On the left hand side of > we still have the usual principal qualified identifier, and on the right

hand side we have the canonical qualified identifier.

Integration in the system M:

We show how to compute A-equivalence in the first-order module system. First, we illustrate it

by the following example:

MoDULE P.
DEFINITION z : T := ...
DEFINITION y: U := ...
LEMMA foo : ...

EnD P.

MoDULE K:=P.

MoDULE M.
INCLUDE K.
LEMMA bar : ...

EnD M.

In this development, we have:

e 3 module P that defines three fields
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e a module K that is a copy of P
e a module M that extends the module K

It is clear that P.x, K.z and M.z (respectively y and foo) are three names that stand for the

same definition. Hence, in our formal syntax those modules are written as follows:

P : (Px>Px:T:=...,Py>Py:T:=..., Pfoor>P.foo:...|e)
=(Pax>Px:T:=...,Py>Py:T:=..., Pfoor> P.foo:...|¢€)

K : (Kxp>Px:T:=Px, Ky>Py:T:= Py, K.foor>P.foo: ... |e)
=(K.axr>Px:T:=Px, Ky> Py:T:= Py, K.foor>P.foo: ... |€)

M : (Mz>Pz:T:=Kzx, My>Py:T:=Ky,..., Mbart> M.bar: ... |e)
=(Maxr>Px:T:=Kx, My>Py:T:=K.y,..., Mbart> M.bar : ...|¢)

We see that we keep the canonical qualified identifier of each fields when we invoke the rule
STRUCT/PATH:

STRUCT/PATH
E|N:P-P:S
E|N = P+ ({P'/P}S),p: : struct

In this rule, the path substitution {P’/P} changes the domain of the name of each field. Hence,
in order to keep the canonical part, we adapt the behavior of path substitutions towards our new

naming management.

Definition 4.2.1 Let o be a path substitution, the new behavior of the path substitution is defined

as follows:

o On module fields, structures, and namespaces the path substitution is defined as in the
original Definition 8.2.1.

o On term fields:
o(Px>P.ax:T:=t)=0cPxr>P.x:0T :=o0t

o(Px>P.a:T)=ocPx>P.a:oT

Canonical names propagation:

If we consider the merge operator, then we need to propagate canonical names through the merg-

ing process. Take the following module types that extend the previous example:
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MobuLE TYPE S.
PARAMETER z : T.
PARAMETER y : U.
PARAMETER foo :...

END S.

MODULE TYPE 5i.
MoODULE A:=P
EnD S;.

MODULE TYPE S5.
DECLARE MODULE A:S.
MoDULE B:=A.

END S,.

Regarding our new STRUCT /PATH rule, the fields z, y and foo of the module S;.A (resp. S3.B)
have P.z, P.y and P.foo as canonical names (resp. So.A.xz, S2.A.y and Sy.A.foo0).
Now, we define S3 to be the merge of S7 and Ss:

MoDULE TYPE S3 := 51 + 5.

The structure bound by the path Sj is :

(S3.A4:(S3.Ax> Px:T:=Px, S3Ay>Py:T:=Py,...):=(...),
S3.B: (S3.B.x> Px:T:=53Ax, S3.By> Py:T :=53.Ay,...):=(...)

Remark that the fields of the module B have not anymore canonical identifiers prefixed by
A. The equivalence between the names of S3.A and P has been propagated in the whole struc-

ture.

We define the class of A set and a function collect that extracts A sets from structures and
fields. A A set is a set of pairs of qualified identifiers, each pair gives qualified identifiers that

are A-equivalent.

A:=¢| A, (Px>P.x)
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e collect on structures:

collect({ey ...en | N)) = U collect(e;)

€{l..n}
collect(((v: S) = S")) = collect(S")

e collect on module fields and structure abbreviations:

collect((P : S :=5")) = collect(S)
collect((P : S)) = collect(S)
collect((P = S) = {}
e collect on term fields:
collect((P.x > Pl.x : T :=1t)) = {(Px> P .2)}
collect((P.x > P'.x : T)) = {(P.x> P 1)}

Finally, in order to propagate the information contained in A sets, we define the operator A 1
on structures and fields as follows:

e On structures:

AT<61€n|N> = <AT€1AT6n|N>
At ((v:S)=29" = =(w:A18)=A1Y

e On module fields and structure abbreviations:

At (P:S:=8) = (P:A1S=A1S)
AT(P:S) = (P:A1S)
At(P=5) = (P=AtS)
e On term fields:
At (Pas>Pa:Ti=t) = (Pas>AP2):T:=t)
At(Pe>Pao:T) =  (PasAP.a):T)

where A(P'.z) is P".x (resp. P'.x) if (P'.x > P".x) € A (resp. if not).
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Now, we can modify the rules of the class MERGE so that canonical names are propagated:

MERGE/MATCH
name(e1) = name(e}) Tew =TI, ULy ENtFe W e ~ef,A
E,el IN+ Tk (e2...en|N1) W (eh...ep, | Na) ~ (e ... e | N3)
E|NF{er...en| M +T1,) W (e’l...e/m]/\/g-i-IeQM<6’1/,AT6/2’...AT6%|N3+26/{>

MERGE/FIELD /RIGHT MERGE/FIELD /LEFT
E’Nl—(ngel E\Nl—elgeg
E|N Fe1 W ey~ eg,collect(es) E|N kel W ey~ eq,collect(eq)

We modify the rules STRUCT/APP and MOD/APP in order to perform the same kind of canonical

name propagation:

STRUCT/APP
E|NE (v:851)= S : Struct
E|NFP:S;,  E|N:u#b ST, C{o/P}S{ A= collect(P: Sy)

E|NF A1 ({v/P}S) : Struct

Mob/Arp
E\N}—Pl:(v:Sl):S
EF PS8y E|Nu#b S, C{o/P}Sf A= collect(P: Sy)

E‘Nl— (Pl PQ) : A T ({U/PQ}S)

Concluding remarks

In this section, we have added the layer of canonical names, thus we need to determine the
scope of use of each layer (i.e. principal names, alternative names, canonical names) in the
implementation of Coq. First, the kernel of Coq that corresponds to the type checker of the base
language only use principal names. Indeed, alternative names are just aliases for principal names,
and thus computation (aka conversion) does not need to be aware of their existence. Identically,
canonical names and A-equivalence are shortcuts for d-equivalence, so it is not useful to integrate
this notion in computation steps as d-reduction is already a part of it. For his part, the user has
access to both principal and alternative names depending on which namespace scope he uses.
Finally, the proof writing machinery use all of them. For instance, tactics like auto or rewrite
need to work on canonical names’. Whereas, notations need to work on alternative or principal
name, since different notations, depending on the namespace scope, can be used for one logical

object. We describe in the Chapter 5 our concrete solutions to provide this layered namespace.

"This is also the case for a large part of databases, like hints, type class instances..., and tools like search

pattern
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4.3 Inlining at functor application

In order to complete our toolbox that controls the § relation of the base language, we introduce
a new notion of inlining®. This notion allows to enforce the d-reduction of a given qualified

identifier. To illustrate the purpose of inlining, take the following functor:

MoDULE TYPE Ordered Type.
PARAMETER ¢ : Type.
PARAMETER eq It : t — t — Prop.
PARAMETER eq_refl : Vx : t,eqr .

(* eq_sym, eq_trans, lt_trans, lt_strict *)
END Odered Type.

MODULE SetList (X: Ordered Type) .
DEFINITION elt := X.1.
DEFINITION ¢ := list elt.
DEFINITION emply : { := nal.
DEFINITION is_empty (l:t):= match | with ... .

(* operations on set and their specification *)
END SetList.

Now, if we want to instantiate our functor SetList on Peano natural number (nat), which is a
part of the standard library, we need to build a named module that implements Ordered Type.
Indeed, we have no notion of anonymous module as the one we can find in ML module systems.
Hence, we need to duplicate the definitions, that are useful to instantiate the SetList functor,

into a module as follows:

MobpULE TyYPE Nat_ OT.
DEFINITION ¢ := nat.
DEFINITION eq :— @eq nat.
DEFINITION It :=lt nat.

END Nat_ OT.

®Based on experiments done by Claudio Sacerdoti Coen in the implementation of Coq.
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In that context, if we instantiate our functor SetList to the module Nat OT, the fields of the
resulting structure will mention Nat_ OT.t, Nat_ OT.eq and Nat OT.lt. However, it would have
been preferable to have nat, and the standard notation for eq and It nat which are parts of the
standard library. In other words, we need to have a way of inlining some definitions at functor
applications. To do it, we add the keyword INLINE that specifies in the module parameter of a

functor which fields are to inline. For instance, we write the module type Ordered Type as follows:

MODULE TYPE Ordered Type.
PARAMETER INLINE ¢ : Type.
PARAMETER INLINE eq It : t — ¢ — Prop.
PARAMETER eq_refl : Va1 t,eqr .

END Odered Type.

This extension is easy to set up in our module system. We need to add a mark on term parameter
that are chosen to be inlined and we modify the STRUCT/APP (resp. MOD/APP) as follows:

STRUCT/APP
E|NE (v:851)= S :Struct
E|NFP:S,  E|N:u#b ST, C{o/P}S{ A= collect(P: Sy)

E|NE A1 (to{v/P}S): Struct

Where ¢ is the substitution { P.Py.x1 /t1, ..., P.P,.xy,/t,} if and only if each field v. P;.x; is marked
inline in S7, and for each P.P;.z; we have E | N+ P.P,.xz; >4 t;.

Concluding remarks

As we have seen in this section, the inlining allows to remove intermediate names that are
not always relevant for a development. The inlining is performed by enforcing the §-reduction of
chosen qualified identifiers. Together with the A-equivalence, they realize a toolbox that controls

the d-equivalence and eases the naming management for users.
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Chapter 5
Implementation in Coq

In this chapter, we first give a short presentation of the module system of the last release of the
Coq proof assistant (i.e. version 8.3). This system has been implemented as part of my Phd work
and is mainly a subsystem of our new module system. Then, we present the implementation of our
new module system formally described in Chapters 3 and 4. The status of this implementation

is still experimental and is not completely finished, in particular for the namespace part.

5.1 A short presentation of the module system of Coq 8.3

The last release of the Coq proof assistant is the version 8.3. The module system provided by this
release is a subsystem of our new one. It provides the unification of structures and signatures,
an extended INCLUDE operator, the WITH operator ?, the A-equivalence, and the inlining at

functor applications.

Syntax

More formally the syntax is the following:

°The WITH operator has been initially implemented by J. Chrzaszcz and extended by C. Sacerdoti.
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e Paths:

P = Coq|Pp|v

o Tields:

e = Px:T|Pzx:T:=t|

P:S|P:S:=58|P=S

e Structures:
S = (er...en) | (v:9)=9

e Environments of declarations:
E = €|Ee|E (v:T)

e Namespaces:

N = Coq|N:P

An environment is composed of an environment of declarations and a namespace. On the con-
trary of the namespace notion defined in Chapter 3, the namespace part only represents paths
of modules that are currently built interactively. All the rules of the class ENv (cf. Chapter 3)
use the head path of the namespace as qualifier in order to insert the object, considered within
the rule, in the environment. In this version, the functors are considered generative, hence there
is no MoD/APP rule and the strengthening has no effect on higher-order structures (cf. Chap-
ter 3). However, we have implemented an original include operator for higher-order structures.

We define it by the following inference rule:

StrUCT/INCFUN
E|N :PF {e1...e,) : struct
E|N :PF(X1:51)=...= (X, :5,) = (e]...€},) : struct
Vie[l...n] E|N:Pu#tler...e))” C{Xiz1 i1/P}SF
E|N P& {er...en{Xiz1..n/P}e) ... {Xi=1.n/P}e.,) : struct

Given a well-formed first-order structure and a well-formed higher-order structure under the
path P, if the first-order structure fulfils the input of the higher-order structure, then we can
combine the first-order structure together with the output structure of the higher-order one. This
approach is quite unusual and is only possible in this version of our module system. Indeed, it does
not have applicative functors and always derives structures in normal form. In that context the

path substitution {X;/P} corresponds to the following set of substitutions at qualified identifiers
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level:
U {X;.P'.x/P.P .z}
X;.P'2e€QI({e1...en))
This operator underlies the reformulation of both libraries Numbers and Structures'®, that are
included in the standard library of Coq. Indeed, this include operator helps to solve sharing in
diamond-like development. To illustrate it, take the following example where we encapsulate,
within a module type, an axiomatization of a given theory, and where we build a functor that

derives properties from this axiomatization:

MoDULE TYPE AzTheory.
PARAMETER T : Type.
PARAMETER foo : T.
PARAMETER bar : T — T — T .

END AzTheory.

MODULE BaseProp (X:AzTheory).

END BaseProp.

We continue our development with two functors that independently derives more properties from

BaseProp:

MOoDULE Propl (X:AzTheory).
MoDULE Base := BaseProp X.

END Propl.

MODULE Prop2 (X:AzTheory).
MoDULE Base := BaseProp X.

END Prop2.

10The modular library Numbers has been initially formalized by Evgeny Makarov, and reformulated by Pierre

Letouzey and the library Structures has been written by Pierre Letouzey.
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Finally, we group both functors into a single one:

MOoODULE Final (X:AzTheory).
MobuLE PI := Prop! X.
MobDULE P2 := Prop2 X.

END Final.

Due to the generative semantic of functors, if the modules P1.Base and P2.Base define inductive
types or abstract fields, then the latter and the terms depending on them are not convertible.
The first solution is to linearize the development. In other words, we instantiate the functor
Prop1 within the module Prop2, and we instantiate the functor Prop2 within Final. The main
drawbacks of this approach are the violation of the separation of concern, and the addition of
a substantial numbers of imbricated modules. Indeed, in the previous version of the Numbers
library, the modular structure of the final module had a depth of about 10 imbricated modules.
Now, with the help of our single notion of structures and our extended include operator, we do

as follows:

MoDULE TYPE BaseProp (X:AzTheory).

END BaseProp.

MoODULE Propl (X:AzTheory) (Base:BaseProp X).
END Propl.

MODULE Prop2 (X:AzTheory) (Base:BaseProp X).
END Prop?2.

MoODULE Final (X:AzTheory).
INcLUDE X <+ BaseProp <+ Propl <+ Prop2.

END Final.
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First, we modify the functor BaseProp into a module type, without changing its content. Then,
we parameterize Propl and Prop2 by BaseProp X, and we remove the Base submodule. Finally,
we group everything in the final functor. The notation “<+” is syntactic sugar for a chain of
include, and means that we first include X, then we include BaseProp... In the Final functor,
the functor BaseProp is instantiated by the fields inherited from X. The functors Prop! and
Prop2 are both instantiated by the fields inherited from X and BaseProp.

Finally, this include operator can also be used to associate non-logical object such as nota-
tions, hints and tactics to a given structure. We give an example inspired from the standard

library:

MobuULE TYPE EqLt.
PARAMETER ¢ : Type.
PARAMETER eq : t — t — Prop .
PARAMETER It : t — t — Prop .
EnND EqLt.

MobULE TYPE EqLtNotation (X:EqLt).
INFIX "==" := eq (at level 70, no associativity).
NOTATION "z ~= y" := (eq 2 y) (at level 70, no associativity).
INFIX "< := E.It.
NOTATION "z > y" := (y<z) (only parsing).
NOTATION "z < y < 2" := (z<y A y<z).
EnND EqLtNotation.

The higher-order structure EgLtNotation can be used to add notations to any structure or module
that have the three fields £, eq, and It

MobpuULE Nat  OT’ := Nat_ Ot <+ EqLtNotation.

5.2 Implementation of the new system

The Coq proof assistant is written in Objective Caml. The system has about 180.000 lines of

code organized in about 350 files. The source tree is divided into the following directories:

kernel: implementation of the type-checkers for both pCIC and module system. This is the

critical part of the system and it represents 8% of the whole code.
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library: interface of the global environment and management of both stack of objects for back-

tracking and synchronization of various tables of objects.
parsing: management of the abstract syntax trees and of pretty-printing.
interp: translation from syntax trees to untyped terms and untyped structure expressions.
pretyping: analysis of untyped terms.
proofs: management of interactive proofs.
tactics: implementation of predefined tactics and of the language of tactics.
toplevel: interactive loop.
checker: independent type-checker.

The implementation of our module system mostly concerns the kernel and the library. In the

following we first describe our modifications in the kernel, and then those concerning the library.

5.2.1 In the kernel

The modules that are of interest for us are the following:
e Names defines the type of paths, constant names, inductive names and namespaces.
e Entries defines the type of untyped terms, structures and modules.
e Declarations defines the type of typed terms, structures and modules.
e Mod_subst defines types of path substitutions and A-equivalence.
e Mod_Typing implements the module and structure type-checking algorithm.

e Modops implements auxiliary functions on structures and modules such as strengthening

and error reporting functiouns.
e Subtyping implements the subtyping algorithm.

e Safe_Typing is the interface between the kernel and the rest of the program. It defines

the type of well-formed environments.

Names

Let us first describe the type of paths that is transparently defined in the module Names:
type module_path =

| MPfile of dir_path

| MPbound of mod_bound_id
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| MPapp of module_path * module_path
| MPdot of module_path * label

Here, the constructor MPfile stands for a compilation unit path and a value of type dir_path
is a list of names in reverse order. For instance, in the standard library the module List has the
path MPfile([List,Lists,Coq]l)!!. The constructor MPbound represents module path variables,
mod_bound_id is the type of unique names: it is a name associated to an integer and it allows

to generate fresh names. Finally, MPapp and MPdot are the regular constructors for module paths.
Then, we define the type kernel_name that represents the qualified identifiers:
type kernel_name = module_path * dir_path * label

It is opaquely defined and it is composed of a module path and a label, the dir_path part
represents the list of opened sections. Since, modules can not be defined within sections, we will
consider this part empty. Now, we define the type of qualified identifier for constants (i.e. term

parameters and term definitions) and for mutual inductive type definitions:
type constant = kernel_name * kernel_name * kernel_name
type mutual_inductive = kernel_name * kernel_name * kernel_name

Both types are triplet of kernel_name, the first projection corresponds to the principal name,
the second one to the canonical name (c.f. Chapter 4), and the third one is the alternative name

considered by the user. Finally, a namespace is a set of valid paths and a map of kernel_name.
type namespace =MPset.t * kernel_name KNmap.t

Beside, the usual constructor and destructor functions for these types, we define three orders for
the types constant and mutual_inductive together with the three corresponding instantiations
of functors Map.Make and Set.Make. The first order is based on the principal name, it is mostly
used for the kernel part of Coq. The second one is based on the canonical name, it is devoted to
tables of non-logical objects. The third one is based on the alternative name. For instance, the
Map.Make module instantiated with the principal name order is used to implement the environ-
ment of declarations, whereas the Map.Make module instantiated with the canonical name order

is used, beyond others, in the implementation of the auto tactic.

1We use Coq as initial path in the implementation, whereas in our formalization we have used Top.
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Entries

This module defines the types of untyped fields and untyped structure expressions. The type of
fields is the following:

type specification_entry =
| SPEconst of constant_entry
| SPEmind of mutual_inductive_entry
| SPEmodule of module_entry
| SPEmodtype of structure_entry

A field is either a term definition (or parameter), a mutual inductive type definition, a mod-
ule definition (or parameter), or a module type definition (i.e. a structure abbreviation). The

type of untyped structure expressions is the following:

and struct_entry =
MSEident of module_path
MSEfunctor of mod_bound_id * module_struct_entry * struct_entry

I
I
| MSEwith of struct_entry * with_declaration
| MSEapply of struct_entry * struct_entry

I

MSEmerge of structure_entry list
and structure_entry = struct_entry * bool

A structure expression is either a path, a higher-order structure, a structure refinement, an

2 or a merge of structures. The type structure_entry associates to a structure

application!
expression a boolean flag that is true if the considered expression is a module expression and
false if it is a module type expression. Hence, a merge of structures can consider heterogeneous
structure expressions. Finally, the type for untyped module definition is a pair of optional struc-

tures:

and module_entry =
{mod_entry_type : structure_entry option;

mod_entry_expr : structure_entry option}

If mod_entry_type is Nome, then it corresponds to an unsealed module definition. If

mod_entry_type is None, then it corresponds to a module parameter.

12The application considered here is for module type application, the module path application is indeed included

in the MSEident constructor.
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Declarations

Now, we give the typed versions of fields and structure expressions as they are defined in the

module Declarations

type structure_field_body =
| SFBconst of constant_body
| SFBmind of mutual_inductive_body
| SFBmodule of module_body
| SFBmodtype of module_type_body

and structure_body = (label * structure_field_body) list

and struct_expr_body =
| SEBident of module_path
| SEBfunctor of mod_bound_id * module_type_body * struct_expr_body
| SEBstruct of structure_body
| SEBwith of struct_expr_body * with_declaration_body

A structure expression is either a path, a higher-order structure, a first-order structure or a
structure refinement'3. The bodies of a module or of a module type definition are defined as

follows:

and module_body =
{mod_mp : module_path;
mod_expr : struct_expr_body option;
mod_type : struct_expr_body;
mod_type_alg : struct_expr_body option;

mod_constraints : constraints;
mod_delta : delta_resolver;
mod_namespace : namespace}

and module_type_body =
{typ_mp : module_path;
typ_expr : struct_expr_body;
typ_expr_alg : struct_expr_body option ;
typ_constraints : constraints;
typ_delta : delta_resolver;

typ_namespace : namespacelt

13We keep the structure refinement construction for OCaml extraction purpose.
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These types are very similar. The mod_mp (resp. typ_mp) field is the path of the definition.
The mod_expr field is the optional implementation of the module, and the typ_expr field is the
abbreviated structure. The mod_type field is the signature of the module definition. For both
types we optionally keep an algebraic version of the structure expression for Ocaml extraction
purpose. Finally, the inferred universe constraints, A-equivalence information and namespace

are stored in their respective fields.

Mod _subst

This module defines path substitutions and the § toolboxr (aka A-equivalence and inlining). It
also gives the support for lazy application of path substitutions. The type, that encodes our ¢

toolboz, is called delta_resolver and is defined as follows:

type delta_hint =
| Inline of constr option
| Equiv of kernel_name

| Prefix_equiv of module_path

type delta_key =
| KN of kernel_name
| MP of module_path

type delta_resolver = delta_hint Deltamap.t

A value of type delta_resolver maps a value of type delta_key to a value of type delta_hint.
The inlining is represented through the association of a kernel name with an optional Coq term
(i.e. constr). The A-equivalence is represented either globally by mapping a path to another
path, or, one by one, by mapping a kernel name to another kernel name. To illustrate the delta

resolver, take the three following modules:

MobDULE P := M.

MODULE M.
PARAMETER foo : T.
MobuULE K.
PARAMETER bar : T.
INCLUDE M.

EnD M.
PARAMETER bla : T.

EnD K.
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The module M has an empty delta resolver, the module P has a delta resolver that maps the
module path P to the module path M, and the module K has a delta resolver that maps K.foo
(resp. K.bar) to M.foo (resp. M.bar). Indeed, in the case of module inclusion (or module
merging), we can not factorize the delta resolver since it would capture in our example the name
K.bla.

Path substitutions are represented through a mapping from module path to a pair formed of

a module path and a delta resolver:
type substitution = (module_path * delta_resolver) MPmap.t

In the codomain of a substitution, the domain of the delta resolver is intended to be prefixed by
the module path. Hence, the delta resolver can be seen as an extension of the substitution. This
extension is used to propagate the A-equivalence, and to perform inlining of constants.

Finally, the module Mod_Subst gives support for lazy application of path substitutions. It is

is implemented through the following type and functions:

type ’a substituted =
| LSval of ’a

| LSlazy of substitution list * ’a

val from_val : ’a -> ’a substituted
val force : (substitution -> ’a -> ’a) -> ’a substituted -> ’a
val subst_substituted : substitution -> ’a substituted -> ’a substituted

For obvious performance reasons, the lazy application of path substitutions is used on Coq
terms. The type ’a substituted represents either a value of type ’a, or a pair composed of a
value and a list of substitutions. The function subst_substituted adds a substitution in the
list of substitutions. The function force performs a sequential composition of the substitutions
stored in the list, and applies it on the value. The sequential composition of substitutions is

performed by the following function:

val join : substitution -> substitution -> substitution

that depends on two other important functions that perform a substitution on the domain or

codomain of a delta resolver:

val subst_dom_delta_resolver :
substitution -> delta_resolver -> delta_resolver
val subst_codom_delta_resolver :

substitution -> delta_resolver -> delta_resolver
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Subtyping

This module implements the subtyping algorithin, formalized in our system by the rules of the
class SUB, and it also implements the rules MERGE/FIELD /LEFT and MERGE/FIELD/RIGHT.

The function for subtyping checks is :
val check_subtypes : env -> module_type_body -> module_type_body -> constraints

As in the formalization, the subtyping algorithm is decomposed in five functions check_*, one
for structures and the others for each kind of fields: module, module type, constant, inductive.
If the subtype checking is successful then the function returns the set of constraints collected
from each call of the conversion oracle (<gs,¢). One can refer to [27] for information about the
inference of universe constraints.

The merge rules are split in four functions merge_*, one for each kind of fields. They take
two fields of the concerned kind, and return the most precise one and a set of constraints using

the corresponding check_x* function.

Mod typing and Modops

These modules are devoted to the type checking of the module system. The core of the typing
algorithm is in the module Mod_typing, this algorithm is derived from the one implemented in
Ocaml [36], notably for the typing of path applications. The module Modops implements auxiliary
functions that are nonetheless important for type-checking. We have the strengthening function
and substitution functions over structures and fields, both of them are used for higher-order
structure applications, and we have a function that perform both substitution and strengthening
in parallel, this function implements a part of the rule STRUCT/PATH.

For type-checking concern, the module Mod_typing exports three functions, that are:

val translate_module : env -> module_path -> bool -> module_entry

-> module_body

val translate_module_type : env -> module_path -> bool -> structure_entry

-> module_type_body

val translate_struct_entry : env -> module_path -> bool -> structure_entry
-> struct_expr_body * struct_expr_body option *

delta_resolver * namespace * Univ.constraints

These functions take as arguments an environment, a module path that correspond in our for-
malization to the head path of the namespace, a boolean which is a flag to block or authorize

inlining and finally an untyped entry. They result is a typed declaration for module and mod-
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ule type. The function translate_struct_entry returns the typed structure expression, which
needs to be in normal form (i.e. either of the form SEBstruct or of the form SEBfunctor), an

algebraic structure expression, and the inferred resolver, namespace and constraints.

The typing of a structure merging is performed by the private function:
val merge_structure_entry : env -> module_path -> bool -> structure_entry list

The algorithm is the same as the one presented in Chapter 3, unless that it handle a n-ary
structure merging. It proceeds as follows: first it translate the list of untyped structure expres-
sion using the function translate_struct_entry, then it merges structures of the obtained list
from left to right. At each merge of structures step, it checks if the namespaces are coherent
(i.e. overlapping indirections point to the same principal name), and then it builds the resulting

structure by merging each subfields with the help of Subtyping.merge_* functions.

Safe Typing

The interface between the kernel and the rest of Coq is the module Safe_typing. It defines
the abstract type safe_environment which corresponds, in our formalization, to a well-formed
environment. It provides functions that implement the rules of the class ENv (i.e. the rules for

building well-formed environment). These functions are named add_:

val add_constant
label -> constant_entry -> safe_environment ->

constant * safe_environment

val add_mind :
label -> mutual_inductive_entry -> safe_environment ->

mutual_inductive * safe_environment

val add_module
label -> module_entry -> bool -> safe_environment ->

module_path * delta_resolver * safe_environment

val add_modtype
label -> structure_entry -> bool -> safe_environment ->

module_path * safe_environment

they all take as argument a label, an untyped entry, a safe environment, and return a safe
environment. For modules we also return the delta resolver associated to the module, so that it

can be propagated at the level of non-logical objects.
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Safe_Typing also implements interactive modules and module types, this has been done by
Jacek Chrzaszcz [11]. The interactive building is implemented through the pair of functions
start_module (resp. start_modtype) and end_module (resp. end_modtype). The function
start_module corresponds to the rule ENV/NAMESPACE, and the function END  MODULE im-
plements both STRUuCT/ENV and ENv/MoDDEF. For instance, take the following interactively

built module:

Coq < MODULE M.
Interactive module M started.
Coq < DEFINITION T := nat.
T is defined.

Coq < DEFINITION z := 0.

z 1s defined.

Coq < END M.

M is defined.

We suppose that the environment before the interactive module is E | A, and that we define
the module M in the Top namespace. The command MODULE adds the path Top.M in the
environment: E|N :: Top.M, then the definition are added with the add_definition function,
they implicitly use the current path as qualifier:

E,(Top.M.T : Set := nat), (Top.M.z : nat := 0) | N :: Top.M

The END command gathers the structure, here ((Top.M.T : Set := nat), (Top.M.z : nat :=
0) | €), backtracks to the former environment, E'| N, and adds the module in this environment,
E(Top.M : S := S)|N with S the considered structure. The mechanism of interactive module
building has not change much since its original implementation. The backtracking mechanism
and the stack of safe environment is well explained in [11] and hence we do not explain it again
here. However, we have added supports for the § resolver, and namespace. When calling the
start_module function, we associate to the path an empty 0 resolver value and an empty names-
pace value. While building the module we cumulate the inlining and the namespace informations
given by the user, and A-equivalence inferred by the type-checker. When calling the end_module
function, these values are packaged together with the structure value in a module_body value.
Our notion of structure allows us to perform an interesting modification in term of memory
sharing. If a module built interactively is not sealed, then both implementation and signature of
the module are given the same physical structure, this sharing is treated carefully and is stable

under path substitutions.
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Finally, we have added the basic include operator that works only for first order structures:

val add_include : structure_entry -> bool -> safe_environment ->

delta_resolver * safe_environment

This function uses Mod_typing.translate_struct_entry to translate the untyped structure
entry, checks if the resulting structure is first-order and then adds each fields one by one in the

current interactive module together with the inferred delta resolver and namespace.

5.2.2 Outside the kernel

An important part of the implementation of the module system is done outside of the kernel
part of Coq. While the kernel implementation part deals with type-checking and logical objects
packaging into modules, the library part of the implementation deals with non-logical objects
packaging and sharing. To some extent, the implementation in the library part is similar to
the one done in the kernel. Indeed, we have to provide for non-logical objects: path substitu-
tions, merge, interactive and non-interactive module constructions... We first describe briefly the

modules that are of interest for our implementation:

e Libobject and Lib defines the type of generic objects and manages the stack of objects.

e Summary registers the declaration of global tables, and keep them synchronized with respect

to backtracks of the system.
e Declaremods implements the module operations on the non-logical features of Coq.
e Library implements the compilation and the load of module (vo files).
e Nametab manages the name visibility.

e Global contains the reference to a safe environment and re-export the Safe_typing inter-

face.

The three modules Libobject, Lib and Summary do not changed much since their original adap-
tation for the module system done by Chrzaszcz. This triptych handles through a stack of objects
the backtracking mechanism '*. The definition of generic objects is done in the Libobject mod-
ule. The summary mechanism periodically stores the state of the system, in order to have an
efficient backtracking mechanism. The implementation of these three modules are well explained
in [11].

Declaremods

The module Declaremods implements a counterpart for the Library part of the implementation

of the Safe_typing.add_%, Safe_typing.start_x and Safe_typing.end_x functions. When

'4Corresponding to the Back and Reset commands
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the user starts an interactive module (resp. module type) the function
Declaremods.start_module is called. This function calls the Global.start_module in order
to start the module in the global environment and the function Lib.start_module to put a
special mark on top of the stack of objects and to store the state of the system. During the inter-
active module construction the objects defined by the user are pushed on top of the stack. When
the module is ended, the function Declaremods.end_module is called. This function gather the
objects defined within the module by invoking the function Lib.end_module. If the module is
sealed by a structure expression then it retrieves the objects associated to it with the function
get_substobjs. Then it calls the function Global.end_module to end the module in the envi-
ronment and to retrieve the delta resolver associated to the module. Finally, the delta resolver
information is propagated on all objects through an extended path substitution (cf. Mod_Subst)
and objects are packaged into a module object pushed on top of the stack. The path substitu-
tion is the identity if the module is unsealed. If the module is sealed by a structure expression
then the path substitution is defined as the mapping from the path associated to the structure
expression to the path of the module.

For non interactive module the function Declaremods.Declare_module is called, the mecha-
nism is similar to the one done in End_module except that the objects associated to the module
are retrieved through the get_substobjs function for both module implementation and sealing.

The function get_substobjs allows to compute the objects associated to an untyped struc-
ture expression. To some extent it works as the function Mod_typing.translate_struct_entry.
The objects associated to a module path are stored in the modtab_substobjs table. We have
implemented an experimental merge_objs function in order to perform the merging of structure
at non-logical objects level.

Finally, we have added support for the include operator, this done by the
Declaremods.add_include function. Given the untyped structure entry, it retrieves the cor-
responding objects with the help of get_substobjs, substitutes them so that they are now
associated to the current interactive module or module type, and finally packages them into an

“include” object that is pushed on top of the stack.

A-equivalence in the proof machinery

We have seen earlier that we provide maps and sets implementations in the module Names based
on canonical names. It allows us to provide table that work modulo J-equivalence. Indeed,
given a ¢ class of names, non-logical objects associated to the whole class are stored only for the
canonical name. However this is not sufficient for the proof machinery to work transparently over
name issues. We have adapted the implementation of discrimination nets used for the auto tactics
so that it works modulo A-equivalence. We have also adapted some approximations of terms,
such as constr_pattern, so that for a given term its approximation only use canonical names.
Hence when a tactic searches for a pattern in a given term, this is made modulo A-equivalence

without modifying the implementation of the tactic.
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5.3 User front end

In this Section, we describe how users interact with the new module system.

5.3.1 Impact of the structure-based system

The unification of module implementations and module types allows a more liberal use of the
system. Indeed, modules type are not anymore only considered as interfaces, they are now struc-
ture abbreviations. On the contrary of the previous module system, lemmas and theorem can
now be proven interactively within module types. For instance, take the following module type

that defines the inductive type of list together with functions and lemmas related to it:

MobpuLE TyYPE MyList Theory.
INDUCTIVE List (A : Set) : Set :=
| nil : List A
| cons : A — List A — List A.
FIXPOINT foo : ...
LEMMA bar : ...

END MyListTheory.

At this point, our theory of list is not declared as a module and hence the components of this
theory are not projectible. However, it is quite simple to declare it, since structure abbreviations

can be used as module implementations:

MODULE Lists := MyListTheory.

Now, because of strengthening, all copies of the Lists module will create new convertible instances
of Lists and all non-logical objects, such as hints, associated to one of these instances will be
shared among all instances. On the other hand , if we want to create a new instance of our list
theory, that is not convertible to the Lists one and that does not share non-logical objects, then
we simply redeclare MyListTheory as a new module.

This approach is more interesting for higher-order structures. To some extent, it allows us to

have both generative and applicative functors. For instance, take the following functorial module

type:
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MobpuLe TYPE MyTheory( X : S ).
INDUCTIVE T : Set :=
| C1: T
| C2: T—T

END MyTheory.

We can declare this high-order structure within a module, and given a module M that imple-

ments S we can instantiate the resulting functor:

MOoODULE P := MyTheory.
MobuLE P1 := P M.
MoDULE P2 := P M.
MODULE P8 := MyTheory M.

Here, we have that P1.C1 is convertible to P2.(C1 because, thanks to the strengthening, both
reduces to (P M).C1. However, the module P3 declares a new inductive type, and hence P3.C1
is not convertible to both P1.C1 and P2.C1.

Reciprocally, module expressions can be used as module types. It allows to extract the principal
signature of a module expression and binds it to a structure abbreviation. With the help of the

INCLUDE operator, it can also be used to add sharing constraints within a module type.

5.3.2 Merge of structures

The merge of structure operator offers new ways to combine structures. Coq provides a n-ary
merge of structure operator. It can be given an arbitrary mixture of module and module type

expressions.

5.3.3 The 4-toolbox

The é-toolbox is composed of the A-equivalence and the inlining. The A-equivalence works
transparently for the user, it permits to handle the sharing of non-logical objects and it allows
tactics to work transparently other name equivalence issues. However, the inlining is directed by
the user, he has to choose which fields we want to be inlined at functor applications and he can

eventually prevent inlining by prefixing the application with the symbol !.
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5.3.4 Namespaces

Namespaces are not yet fully implemented in Coq, however we give here the basic constructions
and some example of use. There is two kinds of namespaces: we have the global namespace
that correspond to top-level paths and theirs indirections, and local namespaces that are defined

within modules.

Global Namespaces

Global namespaces are used to give an alternative name management to the one defined by the
modular hierarchy of a development. For instance, the Coq standard library could be equipped
with a global namespace containing the paths, Lists, Natural, Integer... and this namespace
could collect with the help of indirection the main definitions and lemmas stated for each theory
in the standard library. Then in other developments this namespace could be extended giving
the possibility to have a unique qualifier for objects of the same concern. For instance, we can
imagine to have a special preamble file devoted to the declaration of the global namespace as

follows:

(* File preamble.ns *)

NAMESPACE Foo.
NAMESPACE Foo.Bar.
EXTENDS Clog. List.
EXTENDS OtherDev. Theory.

We could add new valid qualifiers in the global namespace, and extend some existing one. Of
course a such new feature in Coq asks a lot of engineering to be able to solve conflicting indirec-

tions in diamond-like development.

Local Namespaces

A local namespaces is a namespaces defined within a module, it can not be extended with indi-
rections outside of the scope of the module. It can be used to provide qualified names to some
components of a module without defining a submodule. For instance, they can be handy to

provide naming scope for Coq records which are basically inductive types:

NAMESPACE  Group.
RECORD G (M : Type) : Type :=make_g{
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op: M —- M— M id: M;
assoc :...;
inv: ot

END Group.

Now, the Group qualifier can be used in the current module, to qualify the name of lemmas and

definitions that are related to groups.

LEMMA unique_inv IN Group : ...

We could also think to use them for collecting automatically generated definitions and lemmas

such as inductive elimination schemes and proof obligations.

5.4 Concluding remarks

We have presented the module system of the latest release of Coq, and we have described the
on-going implementation for the module system presented in this dissertation. The module
system of Coq v8.3 has been used to reformulate a part of the standard library!®, and it has
been admitted that the extended include operator and the structure based system was useful for
it. On the implementation side, the remaining work is to integrate namespaces and applicative
functors outside of the kernel and to provide support for global namespaces as sketched in the
Section 5.3.

15FSets, Structures, Numbers and a part of ZArith.



Conclusion

We have presented different proof assistants together with their respective solutions to manage
theories. We have seen that module system is a well adapted solution for theory management.

We have presented a new module system for the Coq proof assistant. The originality of
this work resides in our new approach to manage the name-space and to combine structures.
While keeping some ML module system features, we claim that this new module system is more
adequate for theory management. Indeed, the namespace system allows the user to have different
naming views on a development, and the structure-based system is more handy and more liberal
for combining theory in a step by step fashion.

We have proved, through an incremental construction, that our module system is a conserva-
tive extension of the underlying base language. The steps considered in this construction are the
following: we have defined first a trivial extension of the base language by adding the possibility
of qualifying declarations in the environment, and we have considered the possibility of giving
alternative names to such declarations. We have called this system Bz. We have proved that
alternative names can be removed from an arbitrary derivation. The second system, called M,
is an extension of Bz, where we have added a new notion of structures. In that context, we are
able to recover the notion of module by associating a sub-namespace and a pair of structures.
Then, we have investigated two admissible extensions of M, the first one simulates module re-
naming and the other one realizes the operator of structure merging. We have shown that a
derivation in the system M can be translated to a derivation in the system Bz with the same
conclusion by flattening modules. Finally in the last system, called HM, we have extended M
with higher-order structures and applicative functors. We have proved that the d-reduction is
weakly normalizing and we have given the algorithm extracted from this proof. This result was
necessary to eliminate path applications in terms, and hence to prove the conservativity of this
last extension with respect to M.

Moreover, we have introduced a more technical extension of our system, that we have infor-
mally called the d-toolboz. This extension allows to have a simplified control over the sharing
constraints implied by modular constructions, and to select fields that need to be unfolded at
functor application.

Lastly, we have presented the module system that we have implemented for the latest release
of Coq, and we have described the on-going implementation for the module system presented in

this dissertation. The priority work is of course to finalize this implementation and to perform
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some extensive testing. But we can already say that the new namespace notion offers some
interesting perspectives in term of new features for the Coq proof assistant. For instance, we
could allow module renaming through the use of namespace. A such feature is useful to lighten
modular development where some modules are duplicated only to give them a more adequate
name. This extension would be easily implementable and would not modify our formalization
since it could be performed by renaming each sub-fields of the module.

We could also extend namespaces to higher-order namespaces. By higher-order namespaces,
we mean to define paths parameterized by path variables, that can produce regular paths at
instantiation. As an illustration, take a development which purpose is to formalize a theory
parameterized over a given abstract specification of a theory. Such a development ends up with
a functor, and clients of this development can instantiate the final functor in order to get the
concrete theory. This corresponds for example to the design of the Numbers development of the
standard library of Coq. The notion of higher-order namespace would allow to define alternative
name-spaces that depend on the argument of the functor. Hence, when instantiating the functor
with a concrete module, a namespace coherent with the module argument would be created
and would be filled with the different logical and non-logical objects that are outputted by the
functor. It would give a process of contextual name generation.

Finally, it could be interesting to investigate the unification of namespace and the section
mechanism of Coq. This could allow to have local contexts associated to valid paths of the
namespace. To some extent, this new construction would act as the original notion of Locales in
Isabelle (i.e. without interpretation and development graph) and could be an alternative to the

use of modules in some cases.



Appendix A: Notes on the ML module

system

The idea of giving a module system for ML arise in the early 80’s. MacQueen [39] gives a first
description of such a module system, introducing the basic concept of structures, signatures and
functors. He axes his research on inheritance and sharing. The approach taken by SMIL’90,
has been formally studied by Macqueen [40]| and Harpper et al. [26, 25]. They advocate the
use of dependant type to model dependency and parameterization. Structures are tuples, paths
are projections, functors are lambda abstractions and signatures corresponds to product types
and strong sum types. While this approach answers several modular aspects of programming
(propagation of type equations, the dot notation, and sub-structure and functor dependencies), it
does not support type abstraction. Indeed, in SML’90 the sealing is transparent, that is, sealing
a module with signature does not hide the definition of any visible type definition.

At the same time, Mitchell and Plotkin [43] use existential types to give an account for
abstract data types. Existential types provide a logical foundation for type abstraction, and
hence allow an opaque approach for data abstraction. However, a value of existential type is
not as flexible as a classical M. module. Indeed, in order to use a value v of type Jda.T', one
must "open" the value as open v as [a,z] in u, since there is no dot notation as in ML module
system. In that example, the scope of the abstract type « and of the associated function z
(of type T') is restricted to u. On the other side, the scope of values and types provided by a
module is program wide. Finally, both approaches have their limits, the transparent approach
propagates too much type information loosing any hope in data abstraction, whereas the opaque
approach is too much restrictive and hence prevent any form of sharing.

The dichotomy between the opaque approach and the transparent approach has been solved,
in the 90’s, with the notion of translucent signature and opaque sealing, independently given by
Harpper and Lillibridge [24] and Leroy [34]. In both work, the notion of signature is enriched so
that a signature can contain both abstract and manifest type components. However, these two
works differ in the design of the module system. Leroy’s modules are second-class, in the sense
that the module language exists on a separate plane from the “core” language. Whereas, Harpper
and Lillibridge’s modules are first-class, they do not make any distinction between the “core” and
the module languages, this approach make the type-checking undecidable. Both module systems

support higher-order functors, however the propagation of type informations is not satisfying for
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them. For instance, take the following functors written in SML syntax:

signature SIG = sig type t ... end

functor Apply (F : SIG -> SIG) (X : SIG) = F(X)
functor Ident (X : SIG) = X
structure Arg : SIG = struct type t = int ... end

structure Resl = Apply(Ident) (Arg)
(* Resl.t != Arg.t *)

structure Res2 = Ident(Arg)

(* Res2.t = Arg.t *)

Apply takes a functor argument F of signature SIG -> SIG and a structure argument X of sig-
nature SIG and it applies F to X. Ideally, Apply (F) (X) should be semantically indistinguishable
from F(X). However, this turns out not to be the case, in both systems. In fact, the type of
the structure outputted by the functor Apply is SIG. Hence , if we apply Apply to the identity
functor Ident, and to the structure Arg, then the result Resl has type SIG as well, giving us no
indication that its type component t is in fact equal to Arg.t.

One approach to remedying this problem was proposed by MacQueen and Tofte [41] and
incorporated into the SML/NJ compiler. Their solution is to “re-type-check” the body of the
Apply functor at every application, exploiting knowledge of Apply’s actual arguments to propa-
gate more type informations. However, in the context of separate compilation, it is inapplicable,
as Apply’s implementation may not be available. A more satisfying solution has been proposed
by Leroy in [35]. He proposes an “applicative” semantics for functors as an alternative to Stan-
dard ML’s “generative” semantics. It allows to give fully transparent signatures for higher-order
functors. In Leroy’s formalism, the syntactic class of paths is extended with path applications,
and functor applications appearing in type paths must be in named form. Hence in the previous
example, the output signature of the functor Apply is sig type t= F(X).t ... end. However,
in the general case when we allow functor applications to anonymous module as it is the case
in OCaml, the module system does not have anymore the principal type property [36]. More
recently, Russo [49] designed a type system that supports applicative functors and that allows
modules to be used as first-class values. Instead of amalgamating the features of both module
and core in a single language, he provides constructs for packing module values as core values
and opening core values as module values, allowing programs to alternate between modules and

core level computation.
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1 Syntax

P .= Top|v| Pp| (PP)

t,u, T, U = v|Pzx| v:Tt|Yo:T.U|(tu)|s
N := Top[Z] | N :: P[T]

7z = €|Z,(Px <+ Pux)

e = Px:T|Px:T:=t|

P:S|P:S:=58|(P=2S5)

S = (e1...en,N) | (v:S5)= 8

E = €| Ee|E,(v:T)| E,(v:S)

2  Judgements

E|NF:T
E|NFt =gty
E|NFT <5 T
E|NE S :struct
E|NFP:S
E|NES] W Sy~ S3
E]Nl—el W eg ~ e3
E|INE S CS,
E|NFe Ce

The structure S is well-formed.
The module P has type S.

The merge of S1 and 5o yields S3.
The merge of e; and ey yields es.
The structure S7 is a subtype of S
The field e; is a subtype of e
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3 Typing rules

e The TERM class rules derive judgements of the form E|N F¢: T

TERM/AX TERM/APP
E|N F ok (s1,82) € Az E|NFt:Yo:UT  E|NFu:U
E|NF s1: 59 E|NF (tu): {u/v}T
TERM/LAMBDA

EINFYv:T,U:s E,(v:T)|INFt:U
EINEF XN T t:Yo:T,U

TERM/PROD
E|NET:s (s1,82,83) € Prod  E,(v:T)|INFU: s

E|NEFYv:T,U : s3

TERM/SUB
E|NFU:s EINFt:T E\NFT<gU
E|NFt:U
TERM/ACC TERM/VAR
E|NtFok  N(P.2)=Px (Px:T)eFE E|N F ok (v:T)eE
E|NFP 2T EINFov:T
TERM/FIELD

EINEP:(ei...en|Np)  Np(PP.z)=PP'x (PP"x:T)€(e1...ep)
E|N+ PP .x:T

TERM,/FIELDIND
EINEP:{e1...en|Np) N(P.z)=PP'z (PP"x:T)€(e1...en)
E|NFP.x:T
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e The ENv class rules derive judgements of the form E | N F ok

v/ ENV/VAR

NV/EMPTY E|NFok E|NFT:s seS

€| Top - ok E,(v:T)|NF ok
ENv/PARr

E|NFok E|NFT:s seS PeN
E,(Pxz:T)|N I ok

ENv/DEF
E|N F ok E|NFt:T PeN

E,(Pxz:T:=t)|NF ok

ENv/MODVAR
E|N:PFok E|N:P:uvk S:struct
E,(v:S)|N :: (Pv)F ok

ENv/MODPAR
E|N:PFok  E|N: Pk S:struct

E,(P:S)|NF ok

ENv/MODDEF
E|N :: PFok
E|N :: PE Sy :struct E|N :: PE Sy :struct E|N ::PE S CSy
E,(P:Sy:=51)|NF ok

ENV/NAMESPACE ENV/INDIRECT
E|NFok PeN  Ppé¢N E|NFok PzeE P eN

E|N :: Ppt ok E|N U (Px + P'.2') I ok
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e The STRUCT class rules derive judgements of the form E|N F S : struct

STrUCT/ENV
E,e1,...,en, |N 2 P NptF ok Prefiz(P, {e1 ...en | Np))

E|N :: PF (e1...en|Np) :struct

StrUCT/FUN
E,(v:8),N : (Pv)F Sy :struct

E|N :PF (v:S5)= 5] :struct

STRUCT/MERGE
E|N Pk {eg...en|Np):struct  E|N ::PF(e)...e,|N'p):struct
E|N =Pk {er...en|Np) W (e ...el,,N'p)~ (e] ...}, N"p)
E|N = PFE{(ef...ef|N"p) :struct

STRUCT/APP
E|Nt (w:$)=S:struct  E|NFP:S, E[Nuz#ES],,CSf

E|N F {v/P}S : struct

STRUCT/PATH
E|N:PFP:S
E|N : Pk ({P/P’}S)/P/ : struct

e The MoD class rules derive judgements of the form E|N F P: S

Mon/Acc
E|N F ok (P:S)eE
E|NEFP:S

Mob/FIELD
E|NEP:(e1...en|Np) (P.P':S)€e(er...en|Np)
E|NF PP :S

Mob/SuB
E|NFP:S E|N:u:#Fs#*cst
E|INFP:S

Mobp/APpp
E|NFP:(v:8)=S5 EFP:S E|N:#kSE, csf

E‘N}—(Plpg){v/Pg}S
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e The MERGE class rules derive judgements of the form E|N F S; W Sy~ Sz or E|N F

e1 W e~ e3

MERGE/EMPTY

EINF{(e|N1) W (e|N2) ~ (e| N1 UN3)

MERGE/LEFT
PathCond(ey | Ze,, S)
E,e1 | N+ T, Flea...en | N1) W S~ (ey...ep | N3)

E‘Nl—<61...6n‘f\/’1 —|—I€1> W S~ <€1...€Z’N3+Iel>

MERGE/RIGHT
PathCond(e} ]Iell, S)
E,e/1|N+Ie/1 S W (ehy...el, | N2)~ (e ...ef | N3)
EINES W (e]...e, [No+To) ~ (e .. e [ N3+ L)

MERGE/MATCH

name(e1) = name(e}) T =TI, ULy E|NFe W e~ e

E el [N +Zont{ez...en|N1) W (eh...ep, [ No) ~ (e5...ep | N3)
EINF(er...en|Ni+Te) W (€] .. e | No+Tor) ~ (e ... el | N3 + Lon)

MERGE/FIELD /RIGHT MERGE/FI1ELD /LEFT
E|N|‘€2g€1 E|N|—€1g€2

E‘Nl—elLﬂeQ’\»tﬁQ E|N|—€1Hﬂ€2’\»€1
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e The SUB class rules derive judgements of the form E|N F S; C Sy or E|N Fe1 C e

SUB/STRUCT
EINF (e1...en|Ni)struct  E|NF (€]...€, | Na) :struct Ny C N
¢:[1...m]—=[l...n] Vie[l...m] E,ei,...,en| N Nt ey Ce

E|NF (e1...en|N1) C (] ...eh, | No)

SuB/FuN
EN::PuzovkESCS  E/(v:S)N:(Pv)k S CS)
EIN:PF@:8)=8C(:5)=5

SuB/DEF/DEF SuB/PAR/PAR
E\J\/’l—t:/&;u E‘NFTSB(;U E]NI—TS&;U
EINF(Px:T:=t)C(Px:U:=u) E|NF (Px:T)C (Px:U)
SuB/DEF/PAR Sus/MobpD/MoDP
EFT <s5U E|N = #1+Sf Csf
E|NF(Pz:T:=t) C(Pxz:U) E|NF(P:5 :=8) C(P:S3)
Sus/MobpD/MobD

E]./\/‘::7£,EF,S'#§S;’éﬁ E|/\/::#FS§EgSff74 E\./\/’::#FSZféQS;éﬁ
E|NE(P:5:=95;) C(P:S5:=54)

Sus/MopP /MoDP
E|N = #+F SFcst
E|NE(P:51)C(P:5s)
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e The DELTA class rules defines the § reduction relation:

DELTA /DEF
E|NFok  N(P.2')=Pz (Px:T:=t)e E
E‘./\/’F P2 >st

DELTA/PAR
E|NtFok  N(P.2')=Pz P2’ # Px (Px:T)€EFE
E|NF P .2 >s Px

DEeLTA/FIELDDEF
E|NEP:{e1...en|Np)
(NUNp)(P".x)=PPx (PP .x:T:=t)€{e1...en)

E|NFP'z>st

DEeLTA/FIELDPAR
E|NEP:(e1...en|Np)
(NUNp)(P".x)=PP.x P".x# PP .x (PP .2:T)€ (e1...ep)

E|NFP' 255 PP .2
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