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Summary / Résumé

Edge states are 1-dimensional transport channels, emerging in quantum wells in
the integer Quantum Hall regime, with remarkable properties of chirality and
quantum coherence. In this thesis we present the idea of manipulating electronic
currents mixed over two co-propagating edge channels, and discuss its potential
impact for quantum interferometry and transport of spin-qubit states.
We introduce the characteristics of edge states and evaluate the effect of local,

non adiabatic potentials and their efficiency to transfer charge between two chan-
nels. We show that sharp potential variations whose energies are smaller than the
Landau gap provide weak mixing, and we identify some experimental strategies
that can achieve good mixing percentages.
We develop numerical techniques of simulation to model existing experiments

that employ mixed edge channels, and analytical methods in order to treat the
effect of Coulomb interactions between edge states in a future spin-interferometry
experiment.

Les états de bord sont des canaux de transport unidimensionnels qui se dévelop-
pent dans des puits quantiques en régime d’Effet Hall entier, avec de remarquables
propriétés de chiralité et de cohérence quantique. Dans cette thèse nous présen-
tons l’idée d’une manipulation de courants électroniques mettant en jeu le mélange
de deux canaux de bord co-propageants, et nous discutons son impact potentiel
pour l’interférométrie quantique et le transport de qubits de spin.
Nous présentons les caractéristiques des états de bord et évaluons l’effet de

potentiels locaux et non-adiabatiques, et de leur efficacité pour transférer la charge
entre les deux canaux. Il est montré que des variations rapides du potentiel,
d’amplitude plus petite que le gap de Landau, donnent lieu à un faible mélange,
et nous identifions des stratégies expérimentales permettant d’atteindre un bon
pourcentage de mélange.
Nous développons des techniques de simulation numérique afin de modéliser de

expériences qui mettent en jeu des canaux avec mélange, ainsi que des méthodes
analytiques permettant de traiter les interactions coulombiennes entre états de
bord, en vue de futures expériences d’interférométrie de spin.
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1 Edge States in the Integer
Quantum Hall Effect

This chapter provides a general introduction to the physical system
which is the main object of discussion of the following chapters: the
edge states in 2-dimensional electron gases in the integer Quantum Hall
regime. We will also briefly present the transport properties of these
states by means of the Landauer-Buttiker scattering formalism which
will be used as an underlying paradigm of reference for calculation of
currents throughout this thesis.

1.1 Quantum Playground: Semiconductor
Nanostructures

With the standardization of the nanofabrication procedures of semiconductor het-
erostructures, 2-dimensional electron gases (2DEGs) became the most common
and practical framework of choice for research on quantum transport: current
nanotechnology is able to provide arbitrarily large disorder-clean samples where
electrons are completely confined on a plane, in a geometry that can be controlled
with high precision at the local level, and where the many effective theories for
the electron dynamics are now very close to the realistic description of the nan-
odevices.
In this thesis we will be concerned with one particular setting among the many

possible transport configurations with 2DEGs1, where the 2D-metal is maintained
at very low temperature in the presence of an applied High magnetic fields per-
pendicular to the plane. In this situation the so called Integer Quantum Hall
(IQH) regime is achieved, and we refer to the nanostructure as to a (quantum)
Hall bar.

1.1.1 Phenomenology of 2DEGs at High Magnetic Fields

The IQH regime manifests itself as a spectacular transport anomaly in the con-
ductance and resistance of the 2DEG: in a four-terminal geometry, while varying
the magnetic field the longitudinal resistance is zero except for some sharp spikes,

1For a review on transport in Nanostructures, see Refs. [1, 2]
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1 Edge States in the Integer Quantum Hall Effect

Figure 1.1: Top panel: pictorial view of the classical 2DEG when a strong per-
pendicular magnetic field is applied. Cyclotron orbits are closed in the
bulk while they are “skipping” along the edge. The red hatching rep-
resents some localized smooth potential fluctuation. Bottom panel:
quantum view of the IQH effect, chiral (unidirectional) channels con-
nects the terminal, irrespective of the localized smooth perturbations.

in correspondence of which the transverse resistivity (or Hall resistivity, measured
with voltage probes through Ohm relation) jumps between constant values.
This originally puzzling behavior becomes clear when the quantum theory of

the independent electrons on a plane is considered. Indeed, as it will be precisely
formalized in Section 1.2, the quantization of transport observables and their
mutual relation is a direct consequence of two facts

1. The energy spectrum of an unconfined 2DEG at High magnetic fields be-
comes quantized with energy levels (Landau Levels) equispaced and highly
degenerate.

2. At any energy, current-carrying extended states states exists at the edge of
the 2DEG, while in the bulk the individual electron states are quantized.

The first point is a straightforward result of the Quantum Mechanical solution of
the single-electron problem: the eigenspectrum of the 2DEG Hamiltonian results
in energies of the form

En = ~ωc(n+
1

2
) , (1.1)
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1 Edge States in the Integer Quantum Hall Effect

for n = 0, 1, . . . , where ~ωc = ~ |e|B/m is the cyclotron energy. The second
point is intuitive, as the classical picture of charged particles (of charge e) with
velocity ~v in a magnetic field ~B, predicts that the electron would follow a circular
orbit due to the Lorentz force F = e(~v × ~B). In this sense the electrons in the
bulk are “localized” within a region of the cyclotron orbit diameter,2 which in the
quantum regime is of the order of the so called magnetic length lB =

√
~/ |e|B.

At the edge, classically the electrons follow skipping orbits, i.e. they bounce on
the confinement barrier and continue to move along the edge in a given direction
without possibility of changing the sign of their drift velocity (See Fig.1.1). In
the quantum world, the quantizations of this motion leads to the existence of edge
states (ES) [4, 5]: 1-dimensional gapless energy states which represents chiral3
electronic currents.
This thesis is about investigating and exploiting the extraordinary features of

these states, used as transport channels for electronic currents. As we will dis-
cuss in the following, the ES are dispersionless channels which are topologically
protected from backscattering, and energetically decoupled by the incompressible
bulk states. In the following sections we will also discuss how these 1D chan-
nels are also stable against smooth variation on the electrical potential, how they
can be split coherently and how their trajectory and chemical potential can be
controlled by means of metallic gates.

1.1.2 Relevant Mesoscopic Scales

In order to set a common ground for the understanding of the rest of this work,
it is important to familiarize with the values and the meaning of the physical
parameters which characterize the IQH regime and the edge channels. In this
thesis we are concerned with 2DEGs in a condition where the number of Landau
Level which are occupied at ground state (the so called Filling Factor 4, indicated
as ν) is either 2 or 4, and the exact value of the Fermi energy of the 2DEG is
usually such that it is half-way in between two quantized energies5.
Table 1.1 list some important quantities which are used extensively in this

thesis and in the literature dealing with mesoscopic physics and IQH transport in
Gallium Arsenide heterostructure (GaAs).
Useful physical insights can be gained by comparing typical energy and length

scales. In the following sections we will discuss the conditions of adiabaticity with

2These states might contribute to the current in the system depending on the amount of
disorder present in the Hall bar. We will disregard completely this opportunity by considering
sufficiently clean samples in regimes where percolation through impurities is not relevant [3].

3The word “chiral” used for ES refers to the fact that the current carried by these states flow
only with a given sign in the direction parallel to the edge of the sample.

4For the reader which is already familiar with the IQH effect, we note at this point that we
are considering spin-resolved edge states, as detailed in the Sections 1.2.

5Experimentalist use to refer to this condition as “setting the working point at the middle of
the ν-th IQH plateau”

6



1 Edge States in the Integer Quantum Hall Effect

Physical Quantity Symbol Expression Typical Value

magnetic length lB ( ~
|eB|)

1
2=25.6√

B
nm 12 nm

cyclotron energy ~ωc ~ |e|B
m

=1.728×B meV 5 meV

Zeeman energy εZ µgBz 0.1 meV

thermal energy kBT kBT 10−3 meV

Fermi energy εF
ν
2
~ωc (middle of plateau) 5− 10 meV

electronic density n ν
2πl2B

1011 cm−2

Fermi velocity vF See Eq.(1.10) 105ms−1

Table 1.1: Typical Scales in IQH mesoscopic experiments, such as the ones dis-
cussed in this thesis. Typical magnetic field for achieving the IQH
regime in GaAs-based 2DEG is about 5T.

respect to sharp variations of potentials in space, but it is also a good idea to keep
in mind that the unit of energy ε = ~ω of 1 meV in terms of kBT corresponds
to a temperature of 11.6 K, and to a frequency ω of 1.52 THz. These rates and
temperatures have to be compared with energies and times of the considered effects
in the models, in order to be able to understand whether approximate regimes
such as “steady state transport” or “zero temperature” are indeed justified.

1.2 Wavefunctions of Edge Channels

In order to get acquainted with the phenomenology of IQH edge channels, in this
section we will neglect the spin degree of freedom of the electrons and consider
spin-degenerate edge channels. The latter are determined through the solutions
of the time-independent Schrödinger equation (SEQ) HΨ(x, y) = EΨ(x, y) with
the single-electron Hamiltonian (in Landau gauge6) given by

H =
~2

2m
[− ∂2

∂x2
+ (−i ∂

∂y
+
|e|Bz

~
x)2] + V (x) , (1.2)

where e and m are, respectively, the electron charge and the effective electron
mass, Bz is the perpendicular magnetic field. A confinement potential V (x) as-
sures the existence of chiral channels. This will be taken to be an infinite “hard
wall” (hard-wall) as a first approximation

V (x = 0) = V (x = L) =∞ . (1.3)

6The Landau Gauge where the vector potential ~A = (0, x|e|Bz~−1, 0) is the most convenient
choice for the system that we study, which is a rectangular Hall bar where edge states
propagate in the y direction and the system is confined in the x direction.
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1 Edge States in the Integer Quantum Hall Effect

1.2.1 Solutions of the Schrödinger Equation

Being the Hamiltonian translational invariant in the y direction, the eigenfunc-
tions of Eq.(1.2) can be expressed as scattering states Ψ (x, y) = ψ(x)eiky, so that
the time-independent Schrödinger equation reduces to

[− ∂2

∂x2
+ (k + βx)2 − ε]ψ (x) = 0 , (1.4)

where β = l−2
B = |e|Bz/~ is the inverse magnetic length squared, ε = 2mE/~2 =

2β (E/~ωc) is the rescaled effective energy. Note that edge states are transport
channels defined at a precise energy εF , so what we need to solve is the SEQ
at fixed energy ε. The energy of the first LL corresponds to E = ~ωc/2, which
translates in ε = β. The solutions for the transverse eigenfunction ψ subject to
a potential described in Eq.(1.3) can be expressed in analytic form in terms of
parabolic cylinder functions Da(x) [6, 7]:

ψ (x) = N1D ε
2β
− 1

2
(k
√

2/β + x
√

2β) +N2D− ε
2β
− 1

2
(ik
√

2/β + ix
√

2β) ≡ ψk (x) ,

(1.5)
where N1 and N2 should be chosen to satisfy the hard-wall boundary conditions
ψ (x = 0) = ψ (x = L) = 0, and the probability normalization

´
dx |ψk(x)|2 = 1.

At a given energy only few real wave-numbers k satisfy Eq.(1.5). This is clearly
illustrated by the calculation of the energy bands εn (k) of the system, obtained
by solving numerically the equation Eq.(1.4) spanning a given range of real wave-
numbers k. The intersection of the dispersion bands with the energy lines εn (k) =
εF defines the wave-number of the edge states (see Fig.1.2).
We note that for L = ∞, Eq.(1.5) has still a normalizable solution, since the

presence of the magnetic field is sufficient to provide an effective confinement
potential unbounded from above. The cyclotron-resolved edge state modes for a
semi-infinite 2DEGs are then [8]

ψk (x) = NkD ε
2β
− 1

2
(k
√

2/β + x
√

2β) . (1.6)

A complete forward-moving solution of the SEQ at a given energy can be rep-
resented as an expansion over all the modes

Ψ (x, y) =
∑

k

ak [Nke−ikyψk(x)] . (1.7)

These modes satisfy the orthogonality relation for k 6= k′ [9]
ˆ
ψk(x)ψk′(x)∗(k + k′∗ + 2β) = 0 . (1.8)

The current density of a complete solution of the SEQ (defined through the
continuity equation ∂

∂t
|Ψ (x, y, t)|2 = −~∇· ~J (x, y, t) in the direction of propagation

8



1 Edge States in the Integer Quantum Hall Effect

y is

Jy(x) ≡ ~
m
Im
ˆ

Ψ(x, y)∗(∂y + βx)Ψ(x, y) =
∑

k

akvF (k) , (1.9)

while in the transverse direction the current is zero. The introduced Fermi velocity
vF (k) can be calculated7 as

vF ≡
1

~
∂E

∂k
=
eBz

m

ˆ
ψk(x)2(k + βx)dx . (1.10)

Figure 1.2: Edge States dispersion bands and transverse wavefunctions profiles for
ν = 2 and ν = 4. Left panel: energy dispersion for a semi-infinite
hard-wall confinement potential model. Spin-resolved (spin ↑ in red,
spin ↓ in blue) dispersion relations are plotted, and their intersections
with the energy levels E = ~ωc and E = ~ωc/2 are highlighted. Zee-
man energy has been taken to be 8.5 times smaller than the cyclotron
gap, for clarity of the figure. Right panel: profiles of ψk(x) corre-
sponding to the states highlighted in the left panel. Normalization of
the wavefunction in arbitrary units. The dashed lines in the top-right
panel correspond to the outer edge channel (n = 0) for ν = 4. In
these examples the magnetic length is 0.12 nm. All plots shown in the
figures has been computed by numerically solving the SEQ. Note that
bands and wavefunctions for cyclotron resolved edge channels (not
shown) lie in between the red and blue curves of the panels.

7We note that in this hard-wall model vF is different for each mode (vF ≡ vF (k)).
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1 Edge States in the Integer Quantum Hall Effect

Numerical Solution of the Schrödinger Equation In this thesis we will opt
for a numerical solution of the SEQ following the technical strategy detailed in
the appendix of Ref. [10]. In practice we discretize Eq. (1.4) in the x variable
(x ≡ xn, with n = 1, 2 . . . N). By exploiting the very definition of derivative
∂xψ(x) = limε→0 η

−1(ψ(x + ε
2
) − ψ(x − ε

2
)) and fixing η to a given discretization

step a (so that xn = na) small with respect to the scales of variation of the
wavefunction, we can replace in Eq.(1.4)

∂2ψ

∂x2
−→ ψ(xn+1) + ψ(xn−1)− 2ψ(xn)

a2
, (1.11)

so that the SEQ in terms of wavefunction vector components ψ (xn) is cast in
terms of a linear system which can be solved with standard methods[48]

a−2




f(x1) −1 0 . . .
−1 f(x2) −1 . . .

0
. . .

. . . −1 f(xN−1) −1
−1 f(xN)







ψ(x1)
ψ(x2)

...
ψ(xN−1)
ψ(xN)




=




0
0
...
0
0



, (1.12)

where f(xn) = a2(xn + k)2 − ε+ 2.

1.2.2 Spin-Resolved Edge Channels

The introduction of the Spin degree of freedom in the Hamiltonian is realized by
adding a term (the Zeeman Hamiltonian) to Eq.(1.2)

∆H = gµB

(
~σ · ~B

)
, (1.13)

where g is the gyromagnetic factor, or g-factor (and µB = e~/2m is the Bohr
magneton). This dimensionless constant physically represents the proportional-
ity factor between the electronic angular momentum and its magnetic moment.
g for free electrons can be computed exactly with high precision by means of
Quantum Electrodynamics, but in a solid state environment it heavily depends
on the material which hosts electrons, and on the effects of external fields. In Gal-
lium Arsenide heterostructures under standard conditions its value is measured
as −0.44,8 but in the IQH regime its value depends as well on the bulk-filling
factor due to interactions effects, and its effective value (usually denoted as g?)
can become as big as 20 [12, 13, 14].
The definition of g is somewhat more complicated when considering electrons

at the edge of 2DEGs, where the spin-resolved ES are degenerate in energy. The
same effects that renormalize the g-factor in the bulk are influenced by the shape
of the confinement potential, and contribute to determine crucial parameters such
as the spatial separation of the edge channels and their Fermi velocity.

8g is operatively defined as the energy gap necessary to flip a spin from one Landau level in
the bulk, and can be measured in a number of way, exploiting optics or temperature effects.
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1 Edge States in the Integer Quantum Hall Effect

Figure 1.3: Left panel: fixing a given g, in the hard-wall-model the wave-number
separation increases with increasing perpendicular magnetic field. The
corresponding linear increase in the edge state separation ∆X and
decrease in the overlap γ is very small. Top right panel: physical
separation of edge channels computed with Eq.1.26, for different g.
The dashed line is the α = 0 approximation (soft potential). Bottom
right panel: transverse function overlap decreases with increasing g,
as the channels are further away (see also Fig.1.2). All plots shown in
the figures has been computed by using Eq.(1.6).

In order to discuss ES-transport in the non-interacting limit, it is a useful
prescription to map the effect of the interactions by considering the effect of ∆H
independently from the confinement, bearing in mind that the effective g-factor
used in ∆H is a phenomenological parameter which is in general much larger than
the bare one, and its value is chosen so to reproduce the physics at the edge.
Once these considerations are made, the model is only mildly complicated by

the electronic spin. The perpendicular magnetic field Bz which is at the origin of
the IQH determines the Zeeman Energy Gap of the system εZ = 2µgBz, which
will influence the band spectrum. The new analytic eigenfunctions for the ES are
indeed:

Ψσ(x, y) = eikσyψk(x, ε+ σεZ) , (1.14)

where we explicitly wrote the energy dependence of the wavefunction ψk(x, ε)
which defined through Eq. (1.6). At fixed energy, for a given spin-projection σ,
there will be a set of wave-numbers kσ.
The spin-resolved bands εσ(kσ) can be computed and the difference between

11



1 Edge States in the Integer Quantum Hall Effect

spin-resolved wavevector,∆k = k↑ − k↓, can be determined by solving ε↑(k↑) =
ε↓(k↓) = εF (we did this in Fig.1.2 and 1.3). Quantities such as ∆k and the
wavefunction overlap γ =

´
dxψk↑(x)ψ∗k↓(x) are related with the spatial separation

of edge channels (see Section 1.3.3) and will be important for the periodic poling
effect, discussed in Section 2.2.3 and tested in Section 3.3.

1.3 Edge State Transport Properties and
Interferometry

The scattering approach [15] describes quantum electronic transport in a meso-
scopic system in terms of its transmission coefficient T (ε). It physically represents
the probability of the transfer of individual electrons (or electronic wavemodes),
which are considered to be independent and non-interacting, through the device.

1.3.1 Landauer-Buttiker Formalism and the Scattering
Matrix Approach

In its simpler formulation the approach is founded on a calculation for the steady
state current, based on the existence of reservoirs where local equilibrium is at-
tained, and which are conceptually considered the sources and drains of forward-
moving/backward-moving modes (see Fig.1.4). The result is the Landauer-Buttiker
(LB) formula for the current between reservoirs L (left) and R (right)

I =
e

π~

ˆ +∞

−∞
dε[fL (ε)− fR (ε)]T (ε) . (1.15)

The distribution functions fi (ε) describing the local equilibrium of the reservoir
are

fi (ε) =
1

1 + exp
(
ε−µi
kBT

) . (1.16)

For typical sources/drains this is the Fermi distribution function which includes
the effect of the temperature T and the chemical potentials µi whose relative
differences define the non-equilibrium current.
In the LB-approach the measured current is interpreted as the flow of the excess

carriers, determined by the imbalances (voltage bias) of chemical potentials of
source/drain reservoirs.
For small bias µL−µR = eV and temperature T ' 0 (compared to the equilib-

rium Fermi energy εF ) we can approximate the LB formula to

I =
2e2

h
T (εF )V (1.17)

12



1 Edge States in the Integer Quantum Hall Effect

Where the transmission coefficient T (εF ) is now proportional to the total con-
ductance of the system.

Figure 1.4: Conceptual view of the scattering approach: scattering amplitudes are
defined by modes of the leads, which are connected to the reservoirs.
The modes in the leads are divided in forward-moving (e.g.arrow point-
ing to the right in the L reservoir) and backward-moving (e.g. arrow
pointing left in L).

1.3.2 Current from the Scattering Amplitudes

Once we modeled the electric contacts as reservoirs, the quantity T (ε) phenomeno-
logically encodes all the microscopic details of the probed transmission channel.
In non-interacting models the transmission coefficient is directly linked to the so-
lution of the SEQ in the region between the source and the drain. As clear from
the Eq.(1.17), we are interested in the solutions at fixed energy εF .
In the scattering approach this zone is considered to be connected to the

reservoirs through perfect, semi-infinite conducting waveguides (leads). In these
“asymptotic” regions, the propagating electronic modes are perfectly defined be-
cause of the translational invariance in the y direction. For lead i, the electronic
mode characterized by quantum number k has the form9

Ψi
k(x, y; εF ) = ψk (x) eiky . (1.18)

For k ∈ R, the mode will be propagating, and can be either forward-mover or
backward-mover with respect to the scattering region (see Fig.1.4, top panel).
A complete solution of the SEQ in the one lead region can be written as

Ψi(x, y; εF ) =
∑

k

Mkψk (x) eiky . (1.19)

9In this section we are using the symbol ψk(x) for generic transverse wavefunctions of the
leads, while in previous sections this symbol was reserved to ES defined in Eq.(1.6). This
is because edge states are indeed the transverse wavefunctions defining lead modes in the
scattering approach applied to IQH system, as detailed in Section 1.3.3.
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1 Edge States in the Integer Quantum Hall Effect

This general form of the solution in all regions will be considered as the output
of the evolution of an incoming (forward-mover in region L) electronic mode in
the source lead:

ψLq −→
∑

κ

tqκψ
R
κ +

∑

k

rqkψ
L
k . (1.20)

An analogous relation can be written for an incoming mode in region R.
The amplitudes of superposition of the resulting wavefunctions expanded over

the modes of the leads define the transmitted (tqκ) and backscattered (rqk) modes.
Unitarity of the evolution implies the unitarity of the Scattering Matrix S, which
encodes the linear relation between incoming modes and transmitted/backscattered
modes. By collecting right (left) movers modes in vectors denoted as [~ψi→] ([~ψi←])



[
~ψL→

]
[
~ψR←

]

 = S



[
~ψR→

]
[
~ψL←

]

 =

(
t r̃
r t̃

)

[
~ψR→

]
[
~ψL←

]

 (1.21)

SS† = I (1.22)

Where t, t̃ are transmission (sub-)matrices and r, r̃ are reflection matrices.
An explicit example of the construction of the Scattering Matrix from a micro-

scopic Hamiltonian will be given in Section 2.1.

The Scattering Solution For non-zero magnetic field, the total current in the
direction of propagation at equilibrium is defined as in Eq.(1.9) for the y direction.
In one lead it would be

I itot =

ˆ
dxJy(x) =

~
m

ˆ L

0

dxIm[Ψi(x, y; εF )∗(
∂

∂y
+ βx)Ψi(x, y; εF )] . (1.23)

Computing this current in the right lead with the input ansatz of one mode
characterized by wave-number q (1.20) leads to

IRq (y) =
∑

κ

|tqκ|2
vF (κ)

L
, (1.24)

where vF is defined as in Eq.(1.10).
The Landauer Formula (1.15) is obtained by statistically weighting the contri-

butions of each incoming mode a, q with a factor that consists of the product of
the occupation probability (1.16) and the density of states.10

While the physical interpretation of this scattering approach is transparent,
the magic of turning a complicated physical problem of dynamics of an open
quantum system into a calculation of simple observables does not come for free.
In order to connect Eq.(1.20) to time-dependent quantum mechanics we need
10the density of states in 1D, for a linear dispersion is just L[2π~vαF (k)]−1.
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1 Edge States in the Integer Quantum Hall Effect

to make many assumptions (independent channels, ideal stationary transport...)
and approximations (mean field Hamiltonian, closed infinite system and pure
state...) [16].
In Chapters (2),(3) we will apply the LB formula (and equivalent forms) for

computation of steady-state (i.e. time-independent) currents in the limit of zero-
bias, so that the non-equilibrium aspect of the problem is reduced to the minimum.
A more general framework for calculating transport observables without making
all the assumptions of the scattering approach will be reviewed in Chapter 4.

1.3.3 Non-interacting Transport Model for Edge Channels

The scattering formalism described in the previous section applies to general quan-
tum conductors in the presence of magnetic fields, and it is therefore adaptable
for the scattering states defined by edge channels as studied in the previous chap-
ter. Some comments are nevertheless necessary to understand how the special
characteristics of the ES reflect on the LB approach.
First, the localization of the scattering states on the edges of the conductor,

whose width L is considered to be much larger than lB, makes it hard for local,
point-like scattering centers to introduce any backscattering, as discussed in Sec-
tion 1.1. This formally means that, unless we have extended scattering regions in
the scattering zone, the elements of the reflection submatrices r and r̃ in Eq.(1.21)
are likely to be exponentially vanishing as L increases, up to becoming completely
negligible for large L. This will allow us, in scattering effective models, to discuss
only transmission properties and exploit the fact that the sequential application of
several transmission matrices is just the product of the matrices (see for example
Section 2.2.1).
A second technical point that we would like to stress is that in the presence

of magnetic field the k-wave-numbers are not proportional to the proper momen-
tum observables, and indeed their value is dependent on the boundary conditions
Eq.(1.3).11 By fixing the hard-wall in the reference system where it is located at
x = ±L

2
, the ES solutions of the Schrödinger equation are symmetric (see Fig.2.1

picturing scattering in a IQH system) so that incoming and outcoming scattering
states are identified by the same absolute value of the real wave-number k, with
opposite sign.

Selective Population of Edge Channels As discussed in the previous sections,
ES are current-carrying proper solutions of a closed quantum mechanical problem,
so the existence of a steady-state current is not necessarily a non-equilibrium
phenomenon. Accordingly to the scattering approach, when the IQH system is
contacted to electrodes, the edge channels have now to equilibrate their state with

11On the contrary, the wave-number difference ∆k between two ES has a direct physical mean-
ing, as it will be enlightened in Section 2.2.3.
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1 Edge States in the Integer Quantum Hall Effect

the chemical potentials of these contacts. The interpretation of the LB formula
(1.15) is that the ES which leave a given contact gets filled up to the energy
defined by the bias of the contact, while the ES entering in a given contact get
lost and equilibrate12 [68].

Figure 1.5: Central panel: when a high voltage is applied, one Landau band
is warped so that its intersection at the Fermi level localizes the ES
outside the gate region. The black horizontal line represents the Fermi
level. Left panel: the gate region is unbiased and the ES are max-
imally close in k-space (and in real space). Right panel: pictorial
view of the cross-gate technique: under the gate only one channel
(1) is allowed to propagate: the outer (2) ES is necessarily reflected.
Purple channels are biased with the chemical potential of the bottom
contact, wile blue channels are at equilibrium with the top contact.
Band curves in the left/right panels have been obtained by numerically
solving the SEQ.

The extraordinary feature that is peculiar to the transport with ES comes from
the fact that, differently to the “standard” non-interacting system at B = 0, the
wavefunctions of the states traveling in opposite directions are macroscopically
separated, so any local perturbation on the channel can in principle act only on
states with a definite sign of the velocity. This leads also to the property of
12In reality the proper understanding of how and where the voltage drop occurs in the Hall

bar is still an open problem. However, for the sake of computation of current signals from
terminal to terminal, at low voltage biases, the non-interacting picture described here and
used in the following sections is simple and accurate.
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1 Edge States in the Integer Quantum Hall Effect

absence of backscattering which has been introduced in Section 1.1.1: the edge
channels are forced to bypass in some way whatever local perturbation, as in the
local vicinity there is no density of states for reflected, propagating states.
These two effects are exploited in the cross-gate [19, 20] technique: during nano-

fabrication of the device, vast regions of the 2DEG can be covered by a metallic
gate which will be electrically polarized so to energetically interdict the passage
of electrons belonging to a given sub-band. Effectively, the regions below the
gate are maintained to a bulk filling factor lower than the one determined by the
Fermi energy and the magnetic field (see Table 1.1). From a technological point
of view, this results in the opportunity to separate adjacent co-propagating ES
by an arbitrarily large distance, and to address each channel separately with local
elements of the nanocircuit. One of the most useful applications of this technique
is the so-called selective population of edge channels: each ohmic contact that
injects or detects carriers can access independently each channel. This is pictured
in Fig.1.5 for a two-terminal device 13. By computing the energy bands under
the effect of a lateral potential step (which mimics the effect of the gate) we show
that the edge channels do separate in k-space at the Fermi energy. As it will be
clarified in the next section, the difference in wave-numbers results in a separation
in space, so the outer edge 1 is allowed to cross the gate maintaining the chemical
potential defined by the bottom contact. After passing the middle-region the two
co-propagating ES will be associated to different voltage bias.
While the real electrostatic effect which allows to filter out and energetically

deflect some channels is likely to be more complicated at high bias due to capaci-
tance effects [21], this technique works very well at low bias and will be explicitly
used in the following sections, or its use will be implied wherever the channels
must be addressed individually for the transport measurement/calculation.

Adiabatic Transport and Confinement Potential Since we are dealing with
1-dimensional channels whose wavefunctions are localized close to the edges of
the 2DEG, it seems physically important to understand whether these states are
overlapping in space or are physically separated (adjacent). We already observed
that the typical variation scales of the lobes between the zeros of the transverse
wavefunctions are of the order of lB. The guiding center of the wavepackets on
the ES can be defined as

〈x〉 ≡
ˆ
x |ψk(x)|2 dx =

vF
ωc
− kl2B , (1.25)

(we used Eq.(1.8)) so that the average separation between edge channels is

∆X = 〈x1〉 − 〈x2〉 ' l2B(1 + α)∆k , (1.26)
13The dip in the N=1 Landau level edge band which is observed in the central panel of Fig.1.5 is

related to a feature of the eigenenergies of the non-interacting electron problem in a infinite
system at B 6= 0 in the presence of a high potential step [17], called “Landau Gap Reduction”.
If the gate region is very close to the confinement potential, this effect is not observed.
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1 Edge States in the Integer Quantum Hall Effect

where α is a small correction factor which depends on the local slope of the
potential bands. For states in the bulk (infinitely flat bands) α = 0, and ∆k
determines completely the separation between the localized states. For the hard-
wall potential we observe a linear dispersion relation which results in a small
change in the Fermi velocity between the modes and thus a non-zero α. For smooth
confinement potentials, however, a semi-classical treatment[5], and a general local
flat-band approximation leads to the adiabatic following of the equipotential lines

Enkσ ' ~ωc(n+
1

2
) + σµgB + V (〈x〉 = kl2B) , (1.27)

which leads to a Fermi velocity expression which is independent of on n and σ,
but depends on the local slope of the confinement potential

vF '
1

eB

∂V

∂ 〈x〉 . (1.28)

A consequence of these estimates, which has been used several times to estimate
the physical separation between the channels in experimental works, is that (for a
smooth linear potential) the spatial separation of the ES can be rapidly evaluated
by an energy-balance argument: the external confinement field must work against
the energy gap in order to make the channels degenerate in energy:

e
∂V

∂x

∣∣∣∣
x=k̄l2B

∆X = ∆ε . (1.29)

While it is experimentally very tricky to measure the edge state separation for
spin-resolved ES, several solid hints can be extrapolated for cyclotron-resolved
ES [22]. If we consider V (x) to be linear all over the region, we could use the
experimental value of ES separation δXc for ∆ε = ~ωc to deduce by proportional-
ity the ∆X for spin-resolved channels: ∆X ' εz

~ωc δXc. For spin-resolved channel
these estimates leads to typical separation between the ES of some hundreds of
nanometers.

1.3.4 Edge State Interferometry

While the interference effects of coherent electrons in mesoscopic devices have al-
ways been one of the main sources of research interest since the fabrication of the
first 2DEG, the field of edge-state coherent interferometers is relatively recent,
and emerged manifestly with the groundbreaking experiment of M. Heiblum et
al. in 2003 [23]. While several more complicated interferometric setups have al-
ready been fabricated and tested [24, 25], the simpleMach-Zehnder Interferometer
(MZI) is a still actively explored scheme, both experimentally and theoretically,
and several surprising details concerning the coherence and the non-equilibrium
dynamics of the interfering electrons are still puzzling the scientific community
(see [141, 28] and Chapter 4 of this thesis).
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In Fig.1.6-a we show the basic idea of a MZI: a “beam” of electrons traveling
in a IQH edge channel is coherently divided by a beamsplitter, which effectively
delocalizes each electronic wavepacket on two different paths of the interferometer.
The two trajectories are joined after some distance (which is different for each of
the two possible paths), and the splitted wavepacket is recombined by a second
beamsplitter.
The relative phase difference ∆φ between the edge states controls the trans-

mission amplitude for each of the two possible output channels after the second
beamsplitter. If we do not consider Coulomb interactions, this phase mainly de-
pends on the relative lengths of the channels (kinetic phase difference), on their
different characteristics (difference in Fermi velocities), and on the total external
magnetic field flux enclosed by the two trajectories (Aharonov-Bohm phase).

Figure 1.6: a) Schematics of a MZI: two input channels (red) and two output
channels (blue) are highlighted. b) Recent experimental realization
of a MZI (Figure taken from Ref. [25]) where it is clear that the
output channels are counter-propagating and necessarily separated in
space c) figure adapted from Ref.[26] of a scalable MZI that exploits
interference and mixing of co-propagating ES (BS1 and BS2 are the
channel couplers, MG is a lateral gate meant to tune Φ = ∆φ).
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The resulting coherent delocalization of the electronic current over two separate
channels, tunable through ∆φ, suggests that MZI-schemes could be exploited as
an interesting unitary “quantum gate” acting on dual-rail flying-qubit quantum
information procedures [29].

Mixing between Co-propagating Channels and Spin-interferometry The
“standard” implementation of the Quantum-Hall MZIs makes use of different phys-
ical edges of the 2DEG in order to define the two interfering paths, and employs
metallic constrictions known as quantum point contacts (QPC) as beamsplitters
(See Fig.1.6-b); these choices usually result in a 2DEG device with an inherent
topological impossibility to make use of the quantum information carried out by
the two output channels for further single-qubit manipulation.
Ref. [26] discusses a conceptual extension of the typical architecture of MZIs

that uses adjacent co-propagating edge channels as quantum states (i.e. rails),
and generic inter-channel elastic scatterers as beamsplitters. Control on the rela-
tive phase ∆φ of these channels is possible by physically separating the channels
through adiabatic cross-gate separation in specific regions discussed in Section
1.3.3 (Fig. 1.6-c). This interferometry scheme has the great benefit to be straight-
forwardly scalable, so that the outcoming state can be processed in sequence by
an arbitrary number of MZI.
The question of how to implement the inter-channel coupling of these device is

one of the central motivations of this thesis, and we will discuss in chapters 2-3
several strategies of quantum-engineering for the implementation of these beam-
splitters either for cyclotron-resolved or spin-resolved ES. For the former, we will
study the influence of abrupt variation of the local electric potential landscape
which will break the adiabatic transport regime discussed in Section 1.3.3. For
the latter will study spin-coupling mechanisms, such as external in-plane magnetic
fields.
We would like to note that for spin-resolved channels the realization of a scal-

able MZI would be particularly interesting, since the resulting spin-interferometer
would be a mesoscopic analogous of the Stern-Gerlach Interferometer (SGI, see
Fig. 1.7) which is often evoked as a the fundamental Gedanken device for discus-
sion of interparticle entanglement (spin and orbital state) and for considerations
about the measurement problem [30] of quantum-mechanics.
SGI have been realized and tested with neutrons [32], but their realization in

mesoscopic physics proves very challenging, despite the many different proposals [33,
31].
In addition to the fundamental study of quantum interference, the coherent

control of the electronic spin degree of freedom provides a qubit which can be
physically transferred in space. This is an attractive opportunity for the field
of spin-based quantum computing [34], as the ES have been recognized as ideal
channels for the routing of electronic “flying qubits” [35], and several schemes of
quantum information processing have been proposed in the literature [36].
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Figure 1.7: Top panel: figure adapted from Ref.[30]: the “classic” Stern-Gerlach
experiment. By means of an inhomogeneous magnetic field a given
spin projection is decomposed in components in a rotated basis whose
relative phase is controlled. Bottom panel: Quantum Gate equiva-
lent of a SGI: the transverse magnetic field acts as a unitary operation
on the spinor (α, β) resulting in a qubit rotation.
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2 Channel Mixing Induced by
Electric and Magnetic
Potentials

In this chapter we employ the Mode-Matching method for the determi-
nation of the scattering matrix associated to a simple non-homogeneous
potential. We study the charge transfer between two cyclotron-resolved
edge channels by means of a sharp potential variation in the propaga-
tion region of the edge states. We also discuss the effect of several of
such potential inhomogeneities and the importance of the phase differ-
ences acquired by the electrons between scattering events for determin-
ing the amount of channel mixing. We also present different strategies
for obtaining a significative coupling of the channels.

2.1 The Mode-Matching Method and Evanescent
States

Given a solution Ψ of the translationally invariant Hamiltonian (1.18), the nor-
malizability of this form of wavefunction implies that k must be real, otherwise
the wavefunction will explode exponentially in one direction, and will be expo-
nentially damped in the other. However, in the scattering approach these states
are solutions of the SEQ (1.4) only in some region of space (right or left lead): so
the exponentially damped solutions, called evanescent states, must be considered
for properly finding the stationary wavefunction.
To be more precise, given the energy Ei of one region, the solutions whose k

has zero imaginary part are associated to propagating longitudinal wave-functions
which correspond to the 2Pi edge-state channels (Pi = ν).1 If we consider the
reference frame setting the hard-wall at x = ±L

2
, we can identify Pi real positive

wave-numbers {kin; n = 1, · · · , Pi} that describe propagating right-going channels
{ψRin (x); n = 1, · · · , Pi}, and Pi real negative solutions {−κin; n = 1, · · · , Pi} that
describe propagating left-going channels {ψLin (x); n = 1, · · · , Pi}. Such modes are
responsible for the electronic transport in the sample in the asymptotic limit, but

1Notice that since Ei differs in the two regions, PI and PII need not to coincide (see Section
2.2.2).
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Figure 2.1: The scattering regions for a single non-adiabatic potential step (x ∈
[−L/2, L/2]). Along the longitudinal direction y a step potential U(y)
is introduced to induce coherent mixing among the propagating modes.
Its effect is accounted as a global energy shift between the solutions
of the Schrödinger equation in the two regions, as pictured on the
dispersion band curves of the edges drawn on the background of the
figure (the horizontal line that intersects the bands indicates the Fermi
energy).

all modes contribute to the definition of the S matrix.
One way to construct explicitly the Scattering matrix, is to use theMode Match-

ing (MM) method [10], which relies on the basic quantum mechanical fact that
each wavefunction of a given Hamiltonian must be continuous and differentiable
in every point of the space. To make things more explicit, if we consider y = 0
as the boundary between two regions (I and II, also pictured in Fig.2.1) of the
scattering zone:

ΨI (x, y = 0) = ΨII (x, y = 0) ,

∂yΨ
I (x, y = 0) = ∂yΨ

II (x, y = 0) . (2.1)

These equations are readily translated on matching conditions for the eigen-
modes of the regions I and II, as we are detailing now. In a given scattering
region i, a generic solution of the SEQ can be written as

Ψi (x, y) =

Pi∑

n=1

ainψ
Ri
n (x) eik

i
ny +

Pi∑

n=1

binψ
Li
n (x) e−ik

i
ny +

Qi∑

n=1

cinψ̄
i
n(x)eik̄

i
ny (2.2)

where the last summation is performed over the set of the evanescent modes
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Figure 2.2: Left panel: Illustration of the numerical procedure for determination
and development of propagating and evanescent solutions of the SEQ .
The code solves the transcendental equation (1.5) to find the solutions
of the SEQ in the complex k-plane (continuous and dashed lines repre-
sent respectively the real and imaginary part of the parabolic cylinder
functions in Eq.(1.5)). The ordering of complex wave-numbers on the
scattering matrices is highlighted by blue lines and the red line repre-
sent the ansatz point as initial condition for the numerical search of
solution of the equation. Right panel: pictorial view of the evanes-
cent (imaginary and oscillatory damped), and propagating scattering
states which have to be matched in order to find the proper steady
state solution.

ψ̄in which solve the Schrödinger equation (1.2) with complex wave-numbers k̄in.
We stress that in principle this last contribution should include infinitely many
terms since infinite are the evanescent solutions of Eq.(1.4) associated with a
given selected energy eigenvalue Ei. However, to make the problem treatable
numerically we limit the number Qi to only include those evanescent modes ψ̄in
whose k̄n lies within a finite radius from the origin of the complex plane (see
Fig.2.2).2
Let us consider first the case where there is the same filling factor in the two

regions (i.e. PI = PII = P ), and focus on the scattering process associated with
right-moving electrons coming from the left lead with given mode number j ∈
{1, 2, · · · , P}. The scattering amplitudes tnj (rnj) that couple such incoming

2the exact number being determined under the condition that the final result of any computa-
tion does not vary significantly if extra evanescent modes are added in the expansion – for
our simulations described in Section 2.1.1 this corresponds to Qi ' 20.
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mode with the transmitted (reflected) modes in the channel n can then be directly
identified with the coefficients aIIn (bIn) obtained from Eq.(2.2) while imposing the
matching conditions of Eq.(2.1) as long as we multiply these coefficients by the
inverse square root of the Fermi velocity (see Eq.(1.24)) in order to ensure the
unitarity of the final S matrix.
The number of unknowns is given by 2(P + Q), since, although not entering

in the scattering matrix, the coefficients relative to evanescent waves (cIn and cIIn )
must be found. The 2(P+Q) equations needed to determine them can be obtained
by expanding the functions ψRin (x), ψLin (x) and ψ̄in(x) in the first N/2 = (P +Q)

Fourier modes ϕn =
√

1
L

sin
(

2nπx
L

)
as follows:

ψRin (x) =

N/2∑

j=1

αinj sin

(
2jπx

L

)
for 1 ≤ n ≤ P , (2.3)

ψLin (x) =

N/2∑

j=1

βinj sin

(
2jπx

L

)
for 1 ≤ n ≤ P , (2.4)

ψ̄in(x) =

N/2∑

j=1

γinj sin

(
2jπx

L

)
for 1 ≤ n ≤ Q , (2.5)

the coefficients αinj corresponding to right-going modes, βinj to left-going modes,
and γinj to evanescent modes. At the end of the simulation we check that the num-
ber of Fourier Modes used in the expansion is sufficient to properly describe all
propagating, oscillatory damped and evanescent modes that contribute apprecia-
bly to the scattering matrix. In Figure 2.3 we show some Fourier expansions of
edge modes at ν = 4. It is evident that for the simulated Hall bar (whose width is
about 10lB) having more than 10 modes in the expansion is already sufficient for
properly characterize all evanescent states with a non-zero real part of k. Purely
imaginary3 evanescent states are not supposed to be important, since they do not
exist in the limit of a large Hall bar. Our results for a finite-width Hall bar are
relevant for the semi-infinite case, since the contribution of the purely imaginary
evanescent modes which are considered (which are only partially well described
as shown in Fig.2.3), is neglectable for the calculation of the resulting scattering
matrix.
By multiplying by ϕl and integrating over x, Equations (2.3)-(2.5) can be re-

casted in the following N ×N matrix equation

3To be more precise, the states which do not show any oscillatory behavior are ’purely imagi-
nary’ only in the reference frame where the hard-wall is located at x = ±L/2. In Figure 2.2,
these states are shifted along one line parallel to the imaginary axis.
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∑P
n

(
aIn~α

I
nl − aIIn ~αIInl

)

∑P
n

(
kIna

I
n
~αInl − kIIn aIIn ~αIInl

)


 =



BII −BI CII −CI

B̃II −B̃I C̃II −C̃I







~bIIn
~bIn
~cIm
~cIIm




(2.6)
where for i = I, II, ~αinl ≡ (αin1, α

i
n2, . . . , α

i
nN)T , ~bin ≡ (bi1, b

i
2, . . . , b

i
P ), ~cin ≡

(ci1, c
i
2, . . . , c

i
Q), and Bi, Gi denote the matrices containing the Fourier coefficients,

namely (Bi)nl ≡ βinl and (Ci)nl ≡ γinl respectively, while B̃i and C̃i denote the
matrices of elements (B̃i)nl ≡ kinβ

i
nl and (C̃i)nl ≡ kinγ

i
nl.

Figure 2.3: Illustration of the Fourier-modes expansion of the propagating (up-
per set of panels) and evanescent modes (middle and bottom panels).
The Fourier coefficients for the representation of the localized modes
are represented in the Histogram at the right side of each panel (See
Eqs.2.3-2.5). For the purely imaginary mode (numbered 16th in the
example, with reference to the ordering pictured in Fig.2.2) the num-
ber of considered Fourier modes is not sufficient to properly represent
the real and imaginary part of the wavefunction (see text).

This linear problem can be solved numerically so that the resulting coefficients
allow a full reconstruction of the wave-function in all regions through Eq. (2.2).
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The same analysis holds when PI 6= PII with the only important requirement that
the linear system in Eq.(2.6) is determined, i.e. that PI + QI ≡ PII + QII. An
example of such a configuration is presented in section 2.2.2 where we will assume
PI = 1 and PII = 2.

2.1.1 The single non-adiabatic potential step

In this section we shall discuss the results obtained for the scattering amplitudes
in the case of a Hall bar with either one or two open edge channels (cyclotron
resolved). The simple version of the MM method as discussed in the previous
section implies that there exist two regions in the scattering zones where we can
solve the SEQ for the propagating and evanescent states. This is the case for a
scatterer that consists of a sharp potential step, so that the transported electrons
experience a sudden jump between regions where the SEQ looks the same, but
with two different effective energies: EI = E and EII = E + ∆E (See Fig.(1.4),
bottom panel). This non-adiabatic potential variation is the simplest prototype
of a “mixer”, as it breaks the translational invariance of the SEQ with minimal
impact on the nature and the shape of the propagating state (as long as ∆E is
sufficiently small), so its analysis is important for fundamental reasons. However,
the implementation of such local, short-scale potential variations is, in principle,
within the experimental reach of cutting-edge technology, for example, through:
i) precise impurity implantation by means of focused ion beam [37, 38, 40], AFM
induced oxidation [39], cleaved-edge overgrown technique[41, 42].

Two regions with equal filling factor Let us now consider the case of two edge
channels (PI = PII = 2) on each side of the step potential, aiming at evaluating
the channel mixing probabilities |t12|2 and |t21|2 representing the probability for
transmission from inner (2) to outer (1) ES and vice-versa, respectively. By setting
L = 6.7lB, we make sure that the reflection probabilities are negligible. More
precisely, fixing the energy of the incoming electrons at 1.7~ωc above the first LL,
we found that the only non-vanishing, though very small, reflection coefficient
is |r22|2 ∼ 10−3. In Fig.2.4 the channel mixing probability |t12|2 is plotted as
a function of the potential barrier height ∆E in units of ~ωc: |t12|2 increases
monotonically with increasing ∆E, taking a value of the order of few percent only
for a step potential as high as 0.7~ωc . If there is non-zero reflection probability,
|t21|2 slightly differs from |t12|2 but for a sufficiently large channel the effect is not
appreciable.

In the limit of small step height ∆E � ~ωc, an analytical estimation of
t12 is possible by means of perturbation theory. For instance assuming a po-
tential which represents a sharp jump followed by an exponential smooth tail,
U (y) = −∆EΘ (y) e−y/L, by taking the limit L −→ ∞ one can verify that, up
to a phase factor, the channel mixing amplitude t12 can be approximated (Born
approximation, valid at first order in ∆E [16]) to:
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2 Channel Mixing Induced by Electric and Magnetic Potentials

t12 = L
〈ΨI

k1
(EI) |U(y)|ΨII

k2
(EI)〉

i~
√
vF (k1)vF (k2)

=
1√N12

∆E

kI1 − kII2

ˆ
dx ψIk1 (x)ψ∗IIk2

(x) , (2.7)

where N12 =
∣∣∣
´ L/2
−L/2 dx|ψIk1(x)|2(βx+ kI1)×

´ L/2
−L/2 dx

′|ψIIk2 (x′)|2(βx′ + kII2 )
∣∣∣ is the

normalization factor that ensures the unitarity of the scattering matrix. We
checked that the curve reported in Fig.(2.4) is fitted by the Eq.2.7 very close to
the origin, but a full numerical calculation is necessary to capture the nonlinear
behavior.

Figure 2.4: Left panel: |t12|2 percentage, for the case PI = PII = 2, as a function
of the height of the potential step ∆E. In the inset: scattering phase
shift as a function of the potential step height for a single edge channel.
Right panel: Charge density |Ψ(x, y)|2 of the scattering solution to
the step problem is plotted in the case of a sharp step potential with
PI = 2 where electrons are injected from region I in channel 1 (a) and
channel 2 (b). Vertical lines represent the position of the potential
step (y = 0), so that region I is on the left hand side and region
II is on the right hand side. Bright areas in region I correspond to
the high probability density of incoming electrons exhibiting, in the
transverse x-direction, one lobe, for injection from channel 1, and two
lobes, for injection from channel 2. In region II the probability density
relative only to the transmitted electronic wave functions with channel
mixing is plotted, i.e. the contribution to the wave functions due to
the amplitudes t11 (for panel (a)) and t22 (for panel (b)) has been
subtracted for clarity.

As a check we also consider the case of a single edge channel (PI = PII = 1).
Here we have verified that the reflection probability |r11|2 is completely negligible,
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2 Channel Mixing Induced by Electric and Magnetic Potentials

within the numerical accuracy, as long as L is greater than 6.5 lB. Current con-
servation therefore implies that one can write t11 = e−iφ: the incoming electron
acquires a phase due to the non-adiabatic step.
In Fig.(2.4) we show the phase φ in radians as a function of the potential step

height ∆E in units of ~ωc. The energy of the impinging electrons E is set to
0.8~ωc (i.e. 0.3~ωc above the first LL). The phase shift φ increases monotonically
nearly reaching the value π/8 for the highest step considered. In the same figure
we plot the electron probability density |Ψ(x, y)|2 in the case of two edge channels
in region II (PII = 2), where we highlight the density relative to the crossed
transmissions t12 and t21 (the contribution of the evanescent modes allows the
non-trivial matching which is apparent right after the potential step).

2.2 Strategies of Coherent-Mixing of Edge
Channels at Equilibrium

The conclusion of the previous numerical calculation is that a single very sharp
potential variation does not mix appreciably the channel nor it introduces a sub-
stantial phase shift on a single channel, as long as it is localized and of weak
intensity compared to the Landau gap. As a natural extension to the previous
study we consider what happens when we increase the number of mixers and/or
we increase the intensity of the mixing potential.

2.2.1 Several Potential Steps

A possible strategy to achieve a channel mixing of the order of 50% is to place sev-
eral potential steps in series. This is in principle possible by using nanopatterning
techniques to realize a sequence of top gates following the non-adiabatic steps .
Assuming a typical magnetic lengths of about 10 nm, a few tens of potential steps
could be obtained over a length of some microns.
A simple evaluation of the channel-mixing transmission probability can be done

by assuming that, after the sharp step, the potential smoothly goes to zero (see
Fig.2.5). In doing so, after the mixing occurring at a potential step, the elec-
trons in the two channels freely propagate along the potential tail to the next
potential step accumulating a relative phase. Once all reflections due to the large
separations between steps are suppressed, the total transmission matrix t(M) of
a series of M steps is (up to a global phase) the product of the transmission ma-
trices of the individual steps (of height ∆Ei) plus tails, which include the phase
φi accumulated while propagating past the step i:

t(M) =
M∏

i=1

(
t11 (∆Ei) e

iφi t12 (∆Ei) e
−iφi

t21 (∆Ei) e
iφi t22 (∆Ei) e

−iφi

)
. (2.8)
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Figure 2.5: Top panel: schematic view of the sequential placement of several
non-adiabatic steps, which acts independently. Bottom panel: |t12|2
as a function of the number of scatterers M for different potential
heights (blue: 0.72~ωc, purple: 0.4~ωc, brown: 0.2~ωc). Bottom
left: assuming that each individual phase-adjusting gate is tuned to
maximize the mixing. Bottom right: assuming random phases φi
accumulated between the steps. Numerical error on unitarity of the
S-matrix might induce variations of the order of 1%. The curves rep-
resent the average over 2000 random configurations (phases uniformly
distributed from 0 to 2π).

The phase φi depends both on the details of the adiabatic tail of the step
and on the distance xi between the steps. It turns out that even a few steps can
increase dramatically the channel mixing probability |t12(M)|2 and that the latter,
due to interference effects, very much depends on the set of phases {φi}i=1,M .
For example, 50% mixing can be achieved with four potential steps of height
∆E ' 0.72~ωc, or with 10 potential steps of height ∆E ' 0.4~ωc. The control
of the phases φi, in order to tune the channel mixing, can be obtained by placing
lateral finger gates in the region of the tail of the potentials. The role of these
additional gates is to modify the lateral confinement potential in such a way to
alter the distance xi traveled by the electrons propagating between two steps.
Indeed, due to the large difference (ki1 − ki2), even a small variation of xi (of the
order of 1/10 of the magnetic length) results in a very significant variation of the
phase difference between the modes φi = (ki1−ki2)xi ' 1. In Fig.2.5 the maximum
(over φi) channel mixing probability |t12(M)|2 (obtained numerically) is plotted
as a function of the number of potential steps for three different values of step
height, namely 0.2~ωc, 0.4~ωc and 0.72~ωc.
It is interesting to consider the situation where the phase differences φi are not

controlled and take random values. In this case for every M one can average
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the channel mixing probability over a given number of configurations of the set
{φi}i=1,M , with φi ∈ [0, 2π]. We plotted |t12(M)|2 averaged over 2000 configura-
tions for different values of step height. We notice that equilibration (50% mixing)
is reached for a large enough M .

2.2.2 High-Potential Steps

An alternative possible strategy for obtaining a significant channel mixing consists
in fixing PI = 1 and setting ∆E large enough so that in region II two edge channels
are open (PII = 2). In this case the incoming electrons will be split between the
two edge channels available in region II, according to the values of the transmission
amplitudes t21 and t11 (see Fig.2.6).

Figure 2.6: Left panel: pictorial view of the edge channels for a device whose
scattering regions lie at different filling factors. From the transport
point of view, flying electrons from the bottom contact see the opening
of a new channel after the mixing step. Right panel: |t12|2 in the
case where PI = 1 and PII = 2 for four different values of energy of the
incoming electrons (pictured as dashed lines in the inset) as a function
of the potential step height ∆E, which spans the energies indicated
on the shaded area on the inset.

In order to qualitatively characterize the effect, Fig.2.6 shows the probability
|t21|2 for some indicative values of incident energy E spread all over the energy
gap, and as a function of the energy step ∆E. For all the curves channel mixing
exceeds 15 %, reaching about 30 % for E = 1.6~ωc and E = 1.7~ωc.
We emphasize that this setup might be used to create the initial coherent su-
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perposition of wave-packet on the two edge channels which are needed for the
interferometer of Ref. [26], but it is not scalable in the sense that we cannot
apply two of these device in sequence as for the strategy described in the previous
Subsection.
In Section 3.1.1 we will use this simple device as a model to test a numerical

technique and we will compute the charge density relative to the produced mixing
by a strong non-adiabatic potential step.

2.2.3 Electronic Periodic Poling

In Section 2.2.1 we observed how dramatic the effect of being able of individually
control the phase differences that acquire the electrons while moving along the
edge channels can be. However, it would be technologically challenging to intro-
duce several phase adjusters in-between the potential steps. If each scatterer in
the strategy discussed in Section 2.2.1 is independent, this would result in a quite
long and complex device, whose very presence would introduce several external
noise sources that can spoil the coherence of the charge transfer.
In this section we go beyond the requirement of the independent potential step

by examining the effect of a series of “closely-spaced” potential steps. Numeri-
cally we would need to concatenate scattering matrices including also counter-
propagating and evanescent states, so the amplification effect due to the increase
in number of scatterers would not be straightforward to analyze, let alone the
impossibility to individually address independently the phase of the states living
in the channels, when the potential jumps are closely-packed.
While in the next chapter we will develop numerical methods to deal with the

problem in its full generality, it is however tempting to exploit the regularity of
the evolution of the eigenmodes of the system when the non-adiabatic potential
variations are equally-spaced, as a method of “phase control”. In other words,
we can formally analyze the effect of a periodic, non-adiabatic potential variation
along the propagation direction of two edge channels. The question we address is
the following: is there an optimal spatial periodicity for which a set of N scattering
centers guarantee a large mixing (as it is the case for the effect described in
Fig.2.5)?
Following the Born approximation as in Eq.(2.7), we can evaluate the perturba-

tive effect of U(y) = ∆E cos(2πy/λ)Θ(y)Θ(y− 2∆Y ) for small ∆E, as a function
of the periodicity λ and of the total length of the periodic modulation L

t12(λ) ' M12

i~
√
vF (k1)vF (k2)

[ei∆k∆Y sin[(∆k + 2π
λ

)∆Y ]

(∆k + 2π
λ

)

+ e−i∆k∆Y sin[(∆k − 2π
λ

)∆Y ]

(∆k − 2π
λ

)
] , (2.9)

whereM12 represents the “overlap integral” M12 = ∆E
´
dxψk1(x)ψ∗k1(x).
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The function t12(λ) presents a pronounced peak for4:

λ? =
2π

∆k
(2.10)

The intensity of the peaks is proportional to ∆E, and depend linearly on the
length of the modulation L, however it must be recalled that Eq.(2.9) is valid as
long as the final result is � 1. The resonant condition defined by the periodicity
of the modulation as in Eq.(2.10) is achievable with current nanotechnology only
for ∆k . 10 nm−1, since a modulation whose period in smaller than some tens of
nanometers would not be possible in practice. Bearing in mind the considerations
in sections 1.2.2-1.3, we can then conclude that coupling cyclotron resolved edge
channels would not be possible, while λ? for spin-resolved ES is of the order
of some hundreds of nanometers, well within the fabrication capabilities of the
laboratories.
In order to induce charge transfer between spin-resolved ES, electric modulation

would not be sufficient, as U(y) does not mix orthogonal spin-states. We are nat-
urally lead to exploit local modulation implemented by in-plane magnetic fields,
whose formal action of the spin Hilbert space is defined by Eq.(1.13). By noting
~B‖(x, y) = Bx(x, y)x̂ + By(x, y)ŷ = Θ(y)Θ(y − L)[Bx(x)x̂ + By(x)ŷ] cos(2πy/λ),
and neglecting the anti-resonant term proportional to ei∆k∆Y , first-order pertur-
bation theory gives now:

|t↑↓(λ)|2 ' e2

4m2

(MBx
↑↓ + iMBy

↑↓ )2

vF (k1)vF (k2)
× sin2[(∆k − 2π

λ
)∆Y ]

(∆k − 2π
λ

)2
, (2.11)

whereMBi
↑↓ =

´
dxψk↑(x)ψ∗k↓(x)Bi(x). The striking observation is that the value

of t↑↓(λ) at resonance is proportional to ∆Y , so it can become very large if the
modulation is extended over a long region. Of course if t↑↓ is not a small number,
first order perturbation theory is no longer justified, but this divergence of the
approximate result hints at the existence of a coherent amplification effect.
In section 3.3 we will indeed confirm with numerical techniques that this ap-

proximate result is indeed the foundation of a solid physical effect5 which survives
in the full non-perturbative solution, and that can practically used to achieve
mixing among co-propagating edge channels.

4in principle, there is a resonance also for λ? = − 2π
∆k , but in the we assume k1 > k2 and λ of

course positive!
5We note that our approach is based on the same physical mechanism that drives the periodic
poling technique adopted in optics to enforce quasi-phase-matching conditions between op-
tical beams of orthogonal polarization which are co-propagating in a nonlinear crystal [43].
This scheme is also related to the superlattice-modulation technique [44, 45, 46] used to cou-
ple counter-propagating spin-degenerate modes via modulation of the electric potential in
narrow channels and to the modification of electron transport in the presence of magnetic
superlattices.
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3 Numerical Simulations and
Modeling of Coherent
Transport Experiments

In this chapter we introduce the numerical technique of Recursive Green’s
Functions and we present our simulations of two experiments which test
coherent mixing among co-propagating edge states. One study concerns
a Scanning Gate Microscopy experiment aiming to characterize the
channel equilibration due to disorder between cyclotron-resolved edge
states. The second numerical work features the simulation of an mea-
surement of mixing through the periodic poling technique implemented
by in-plane magnetic fields acting on spin-resolved edge channels.

3.1 Numerical Methods on Tight-Binding Models

Following the finite-element discretization prescriptions of Sec. 1.2.1, the approx-
imate version of the SEQ for a 2DEG at zero magnetic field can be written as
[1]

εFψ
n
m = −a−2t(ψmn+1 + ψmn−1) +

−a−2t
(
ψm+1
n + ψm−1

n

)
+

+(Vmn + 4a−2t)ψnm , (3.1)

where a = xn+1 − xn = ym+1 − ym is the discretization step, ψmn = Ψ (xn, ym) are
the local values of the wavefunction on the introduced square lattice, Vmn is the
local value of the external potential at (xn, ym) and t = ~2/2m. Equation (3.1) is
the an eigenvalue equation for a Tight-Binding Hamiltonian

H =
∑

<ij>

Aij |ψ(ri)〉 〈ψ(rj)| , (3.2)

where ri,j are coordinate vectors, and the sum runs over first-neighbors of a 2D-
lattice and |ψ(ri)〉 are “localized orbital” states. This correspondence is valid
assuming that the on-site matrix elements Aii are taken to be 4t + Vii and the
hopping matrix elements are A<ij> = t.
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3 Numerical Simulations and Modeling of Coherent Transport Experiments

Magnetic Field and Spin-dependent Hamiltonian Adding the effect of a mag-
netic field on a tight-binding system is possible simply by modifying the param-
eters of the Hamiltonian (3.2). The appropriate way to discretize the minimal
coupling substitution prescription (~p → ~p − e ~A, where ~A is the magnetic vec-
tor potential, and ~p the momentum operator) goes under the name of Peierls
Substitution, and consists of the transformation of the hopping elements

t −→ te
−i e~

´ r2
r1

~A·dl
. (3.3)

The integral is meant to be made along a line connecting two lattice sites r1 =
(x, y, z) and r2 = (x′, y′, z′). 1 We note that if the lattice is strictly 2-dimensional,
only the magnetic field component Bz will enter in the kinetic Hamiltonian. For
homogeneous Bz in Landau gauge the Peierls substitution takes the convenient
form

tBnm = tnme
−i e~Ba

2m . (3.4)

The spin-degree of freedom is easily included in the discretized Hamiltonian by
doubling the number of states, which in the position basis means to duplicate
the whole device by creating two sublattices2. Introducing a local magnetic field
in an arbitrary direction is now possible through the coupling of the Zeeman
Hamiltonian ∆H defined in Eq.(1.13), which in discretized notation is translated
into the terms

∆Hnm = gµ(Bx)nm(
∣∣ψm↑n

〉 〈
ψm↓n
∣∣+
∣∣ψm↓n

〉 〈
ψm↑n
∣∣)

+ igµ(By)nm(
∣∣ψm↑n

〉 〈
ψm↓n
∣∣−
∣∣ψm↓n

〉 〈
ψm↑n
∣∣)

+ gµ(Bz)nm(
∣∣ψm↑n

〉 〈
ψm↑n
∣∣−
∣∣ψm↓n

〉 〈
ψm↓n
∣∣) . (3.5)

The Bz-part is easily accounted by a Zeeman-energy shift in each on-site ele-
ment, and does not couple the two sublattices. The in-plane fields Bx and By are
instead hopping elements between sublattices (see Fig.3.1) at the same spatial site
(n,m).
To summarize, a finite-size quantum Hall bar can be numerically modeled set-

ting up a lattice on which a tight-binding Hamiltonian is defined appropriately.
In the following sections we will formalize the procedures for computing transport
observables.

3.1.1 Recursive Green’s Functions Technique

The fact that a tight-binding Hamiltonian can be written in block-tridiagonal form
can be exploited by using a numerical technique, the recursive Green’s functions

1In the limit r1−r2 = a� lB , adding these phase factors to the hopping elements is equivalent
to stating that the amplitudes for propagation along two different trajectories between two
points in space differ by the Aharonov-Bohm phase [47].

2With the correct re-ordering, the complete matrix has now a block-diagonal form
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(RGF) method,3 for calculations of local and non-local observables.
The most common way to implement the efficient calculation starts with the

definition of the numerical retarded Green’s function of the system (at energy ε,
and expressed on a basis of ordered lattice sites i, j)

Gij(ε) ≡ [(ε−H)−1]ij . (3.6)

The meaning and usefulness of retarded Green’s functions will be discussed
in section 4.2, but for the sake of this chapter we note that the continuum ver-
sion of these operators (Gij(ε) → G(ri, rj; ε)) satisfies the Lippmann-Schwinger
equation[16]

Ψ(~r, ε) = Ψ0(~r, ε) +

ˆ
d~r′G(~r, ~r′; ε)V (~r′)Ψ0(~r′, ε) , (3.7)

where Ψ is the wavefunction of the system, V (~r) is a single-particle potential
(which includes the confinement), and Ψ0 is the steady-state solution of the time-
dependent Schrödinger equation for a time in the infinite past (i.e. the input state
ψLq of Eq.(1.20) in the LB formalism).
Depending on the specific algorithm, from the Hamiltonian matrix H of the

system we extract one “basic” H0 , which is the Hamiltonian of a simple subsystem
whose Green’s function can be computed easily

g0
ij = (ε−H0)−1

ij , (3.8)

then we couple this subsystem with the rest of the discretized system, by re-writing
the SEQ as a Dyson equation [68]

Gij = g0
ij +

∑

mn

g0
imtmnGnj , (3.9)

which makes clear that if the hopping elements t connects only first neighbors in
the discretized lattice, we can implement this extension of the system one step per
time (recursively)4. This means that we can consider at each cycle only two sub-
systems: the compound system from step 1 up to step n− 1, and the subsystem
n which has to be coupled by means of Eq.(3.9).
For clarity in this Section we will consider the standard implementation of the

RGF, where subsystems are “slices” of a rectangular two-terminal (L/R) device
(see Fig.3.1)5.

3This computational scheme sometimes have different name in the literature (the decima-
tion/renormalization procedure, the transfer matrix approach...).

4We will denote the hopping coefficients with low indices as in tmn when we want to refer to
single matrix elements, coupling two lattice sites. We use superscripts as in tn1,n2 when we
want to indicate the hopping matrix that connects two subsystems.

5We note that generalization of the procedure to multi-terminal systems in arbitrary planar
geometry is possible while maintaining the Landau Gauge everywhere.

36



3 Numerical Simulations and Modeling of Coherent Transport Experiments

Figure 3.1: Pictorial representation of a tight-binding Hamiltonian. Left panel:
spin sublattice (red,blue) where on-site energies (u), hopping en-
ergies (t) and in-plane Zeeman coupling B‖ are highlighted Right
panel: symbolic structure of the coupling between Hamiltonian
“slices” through the hopping matrices tn,n+1

By denoting as GS(n)
m,l the Green’s function from slice m to slice l, computed

considering the system from the first slice up to slice n > m, l, the general
recursion relations are

GS(n)
n,n = [ε−Hn − tn,n−1G

(n−1)
n−1,n−1t

n,n−1]−1 ,

G
S(n)
m,l = G

S(n−1)
m,l +G

S(n−1)
m,l tn−1,nGS(n)

n,n t
n,n−1G

S(n−1)
n−1,l ,

GS(n)
m,n = G

S(n−1)
m,n−1 t

n−1,nGS(n)
n,n . (3.10)

This procedure can be done in a number of ways, all equivalents [57, 1], de-
pending on which symmetries of the system we want to exploit to make the code
more efficient. As pictured in Fig.3.1, the standard approach for two-terminal
systems is to consider the Hamiltonian divided in slices of the same number of
sites, and connect the slices by some hopping matrices (which also contains the
Peierls phases Eq.(3.4) and transverse magnetic couplings Eq.(3.5)).
These cycle (3.10), which can be computed forward (n → n + 1) or backward

(n → n − 1) allow the computation of the Green’s function matrices between
two arbitrary points in the lattice, r1 = (n1,m1) and r2 = (n2,m2): Gr1r2 =

[G
S(N)
m1m2 ]n1n2 where N > n1, n2 represents the last slice of the system.
The experiments that we simulate measure currents in Hall bars which will be

flowing between electrodes, so the finite-size simulated region can be interpreted as
a scattering zone for well defined source and drains, as in the Scattering approach
for transport (Section 1.3.1). This means that the simulated Hall bar needs to be
attached to lead regions which are defined as semi-infinite translation invariant
systems, maintained in a non-equilibrium condition so that steady-state transport
is well defined. The value of the Green’s function matrix of these homogeneous
semi-infinite regions (denoted as Glead) on the boundary sites that are connected
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to the scattering inhomogeneous region can be computed exactly by analytical or
numerical methods [50].

Current and Charge Density Observables As it will be further detailed in
section 4.2.2, the scattering formalism can be linked to the Green’s functions
derived from a microscopic Hamiltonian. For non-interacting systems, there exist
indeed Fisher-Lee relations[49] that link the total transmission coefficient between
two leads L and R (TRL) to the retarded Green’s functions defined in Eq.(3.6):

TLR(ε) =
∑

rL,r
′
L

∑

rR,r
′
R

ΓLrL,r′L ·GrLrR(ε) · ΓRrR,r′R ·G
†
r′Rr
′
L
(ε) , (3.11)

where rL and rR (as r′L and r′R) are lattice sites connected respectively to the
leads L,R by means of the lead-system matrices ΓLrL,r′L

and ΓRrR,r′R
(see Fig.3.2).

These matrices Γ can be computed by considering the iteration cycles as in
Eqs.(3.10) where now the system Green’s functions G are connected to the sur-
face of the semi-infinite lead. Indeed it can be shown that there is the following
relation for the lead-system matrices (see Fig.3.2) holds

Γjrjr′j
= −2Im[

∑

xj

∑

x′j

txj ,rj ·Glead
j (xj, x

′
j) · tx

′
l,r
′
j∗] . (3.12)

If instead of computing the total transmission from lead to lead (3.11) we wanted
to compute the individual transmission amplitudes between the modes of the
leads, this is possible by a change of basis of the lead Green’s function matrices
from the “lattice site-representation” to the “wavemode representation” [1]. In the
IQH regime, we can however individually measure single edge modes by means of
the cross-gate technique (section 1.3) which is easy to implement numerically by
raising the onsite energies of some regions up to locally forbid the transmission
of the outer ES, so this change of basis is not in principle necessary as long as
we are interested in the square modulus of transmission amplitudes for each edge
channel.
The computation of the total Green’s function from L to R, through Eq.(3.11),

is sufficient in order to compute the current from lead to lead, which is a global
property of the system. We might however be interested in local properties, such
as the charge density.
If the system is at equilibrium, and is characterized by a distribution function

(1.16) we can write the local charge density as

ρ(rn) = − 1

π

ˆ +∞

−∞
ImGret(rn, rn; ε)f(ε)dε , (3.13)

where Gret is the Green’s function of the total system attached to the leads,
evaluated in a single site rn. In computational terms, we find the discretized
version of Gret by means of Eq.3.9 (see Fig.3.2): we need to evaluate GS(L,i−1) and
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Figure 3.2: Schematics of a two-terminal system on a lattice. Left panel: picto-
rial view of the calculation procedure for the numerical local charge
density (3.13) Right panel: pictorial view of the coupling due to
system-lead matrices Γjrjr′j

(3.12)

GS(i+1,R) and couple these partial Green’s functions with two cycles of iteration
(3.10) to gii defined as in Eq.(3.8).

Smooth potential steps With reference to Section 2.1, the RGF technique
allows to simulate the scattering from an abrupt electric potential barrier in a
very simple way, but differently from the MM-method in its standard formulation
(for the calculations of the currents) it does not give a straightforward access to
the complex scattering matrix of the barriers. More precisely, the charge-densities
obtained through ρ(x, y) = |Ψ(x, y)|2 from the steady-state solution of the MM
procedure (such as the one calculated with the MM-method in Fig.2.4), should
be equal to the RGF simulation of an equivalent finite-size system.
In Figure 3.3, we show an example of a two-terminal Hall bar where the source

and drain are separated by a high potential step, as those considered in Section
2.2.2, i.e. we allow the potential variation to be as large as to change the local
filling factor of the underlying 2DEG. The abrupt opening of a new channel, and
the consequent change of the number of propagating eigenmodes after crossing
the step, allow the incoming wavepacket to delocalize itself over the two channels
in region II, as shown in Fig.2.6.
The RGF technique allows us to easily address the effect of the smoothening of

the step and to describe the cross-over to the adiabatic regime occurring when the
potential varies over a length which is larger than the magnetic length. Numeri-
cal simulations are performed by replacing the sharp step with a potential of the
form U(y) = −∆E/(ey/d + 1), where d is the characteristic length (width) of the
potential. In Fig. 3.3 density plots of the probability density are shown when elec-
trons are injected from the left in channel 1 for three different values of d, namely
d = 0.5lB (a), d = 1.3lB (b) and d = 3.5lB (c). Vertical lines represent the center
position of the step potential. For d = 0.5lB, there are beatings on the right hand
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Figure 3.3: Left panel: Charge density plot for the case where PI = 1 and PII = 2
with a smooth step potential characterized by a width d. Vertical lines
correspond to the center position of the step potential. Panel (a),
(b) and (c) are relative to, respectively, d=0.5, 1.3 and 3.5 magnetic
lengths (see corresponding profile of U(y) in the images on the right
panels).

side of the barrier which correspond to the coherent superposition of electronic
waves over the two edge channels6 (the period of the oscillations corresponds to
2π divided by the difference of the wave-numbers of the two outgoing modes,
as expected). Such beatings are progressively suppressed as the barrier becomes
smoother, eventually disappearing for d = 3.5lB (see Fig. 3.3c), when the edge
channel injected from region I is totally transmitted to region II without mixing.
All simulations that we have performed confirm the picture of a crossover from
the channel mixing situation to the adiabatic regime, reached when the potential
step varies over a scale of a few magnetic lengths.

Numerical Details and Computation Time In order to perform the calcula-
tions of this thesis work with the RGF method, distinct approaches and numerical
packages have been used. The results obtained with the MM technique have been
verified and extended to smooth steps making use of an adaptation of a code
(written in Fortran-95) used also in Refs.[52]. It exploits the RGF iteration by
implementing the Dyson Equation slice-by-slice as detailed in the text above,

6It is worthwhile noting that the plot relative to d = 0.5lB is indistinguishable from the plot
relative to a sharp edge, which has been computed by means of the MM method.
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leads Green’s functions are computed numerically and only the total transmission
from lead to lead is computed. For the simulations of the experiment that will
be described in the next Section 3.2, we worked on an adaptation of a Fortran-77
RGF code which was originally used in Refs.[54]. It implements the decima-
tion/renormalization procedure by working directly on the Hamiltonians instead
of the Green’s functions, and allows one to optimize the system-lead matching by
individually resolving the modes in the leads[50].
For the modeling of the experiment presented in Sections 3.3, we modified in-

stead the open-source package KNIT for tight-binding simulations[57], adapting
it for a spinful four-terminal IQH system. This program, written in C++ and in
Python, implements a recursion cycle which acts on single lattice sites, instead of
decimating chains of sites per iteration step. This allows great flexibility concern-
ing the geometry of the device. The modes in the leads are not resolved by means
of a change-of-basis/projection procedure, but they are individually addressed by
simulating the cross-gate technique (see as an example the simulation pictured in
Fig.3.12).7

3.2 Scanning Gate Microscopy and Edge States
Equilibration

The quest to fabricate a coherent beamsplitter for co-propagating edge channels,
which is the building block of the interferometry proposal of Fig.1.6, has begun
at NEST laboratory of Scuola Normale Superiore di Pisa, with some experiments
aiming to characterize the coherent transfer of charge between adjacent cyclotron-
resolved edge states. In one of them [58], the experimentalists were able to locally
influence the transport occurring in a four-terminal 2DEG in the Quantum Hall
regime at ν = 4 by means of the Scanning Gate (SG) technique [59], and thus
to obtain for the first time spatially-resolved maps of the equilibration process
occurring between co-propagating edge states corresponding to different LLs.
Fig.3.4 shows the top view of the experimental device and the conceptual scheme

of the transport measurement. The 2DEG is maintained in the cyclotron-resolved
IQH regime by a perpendicular magnetic field of 3.2T (lB = 14.3nm). The exper-
iment is conducted at a temperature of 0.4K, so the thermal energy is negligible
with respect to the Landau gap (5.7meV , see Tab.1.1). The idea is to selectively
bias one channel which is then coupled for a certain length with an adjacent co-
propagating unbiased ES (the “probe” channel). This length can be continuously

7We note that all these three codes suffer from a numerical instability that occurs if the leads
are too wide. The nature of this technical problem that arises in RGF methods when high
magnetic fields are considered is well known, and some (quite involved) workarounds exists
in the literature [50]. However, for the work described in this thesis the codes have been
used for reasonably narrow leads and we checked that these problems do not occur for our
calculations.
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varied by means of a suspended tungsten gate (SG-tip), which provides a potential
barrier for the biased channel, which is adiabatically reflected and measured in
one ohmic contact. The probe channel is finally measured, and any excess current
that is present on the channel must necessarily be a result of charge transfer which
occurred in the region where the two co-propagating channels were adjacent.

Figure 3.4: Top panel: schematics of the experimental device considered. The
biased channel (red) is forced to co-propagate next to another edge
channel (first blue, then pink) by exploiting the cross-gate technique.
The numbers under the gates (yellow regions) represent local filling
factors. The position of the SG-tip (orange circle) determines the
length of interaction of the two ES. Bottom left panel: SEM picture
of the QPC over which the SG-tip is scanned (gray zones correspond
to the metallic gates). The red rectangle is the confined transport
zone which will be simulated and where the equilibration effect will
take place. Bottom right panel: Landauer-Buttiker scattering mod-
elization of the transport experiment: the yellow zone represents the
scattering matrix (see Eq.(1.21)). t12 is the transmission amplitude
from biased channel 2 (at the left of the scattering zone) to the un-
biased channel 1 (at the right of the scattering zone) which is then
measured.

Differently from other edge channel equilibration experiments performed at sim-
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ilar experimental conditions [55, 56], the transport characteristics of the device
are highly tunable, since the charge transfer occurs in a narrow region defined
inside a QPC defined by two side gates separated by 1µm (see Fig.3.4).
The biased channel is excited by a small constant voltage superimposed with

a sinusoidal low-frequency AC signal (lock-in technique). V = VDC + δV sin(ωt)
. If VAC is small enough that the transmission coefficients T (ε + eVDC) ' T (ε +
eVDC + eVAC) and the thermal energy are irrelevant, the measured conductance
G = δI/VAC is (see Eq.(1.15))

G =
2e2

h
[T12(eVDC) + T22(eVDC)] . (3.14)

Figure 3.5: Left panel: schematics of the conductance map scanning, the total
current carried from the two incoming edge channels is measured, and
depends on the position of the tip. Center panel: experimental
conductance map, dark regions represent low current signal. When
the tip is in points such as the red spot, two ES contribute to the
conductance, when it is in the blue spot only one channel is measured,
while when the tip is in the green spot both channels are reflected. The
blue trajectory indicates a possible path of scanning in which a single
channel is transmitted and one is reflected. Right panel: example of
a simulated conductance map with a tight-binding approach (numbers
in the axes represent lattice sites. The lattice spacing is a = 2.4nm).
The inhomogeneities which are visible at the center of the maps are
due to the presence of fixed strong impurities as detailed in the text.

We simulated the Hall bar with a discretized numerical model which is much
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smaller in width than the experimental bar (41 sites, resulting in a total width of
about 98 nm, or ' 7 lB), but captures the essential physics of the transport in the
narrow channel of the QPC. The channels are defined by hard wall confinement
potentials, and the spin-degree of freedom is not resolved in the experiment, so
that there is no need to introduce a sublattice as explained in Section 3.1.
The SG tip effect on the 2DEG is modeled as a Gaussian potential [63], with

a characteristic width σ sufficiently large to make sure that it is not coupling the
channel by itself (i.e. it is considered adiabatic on the scale of lB). The inten-
sity of the field generated by the tip is taken to be of the order of 2~ωc, such to
block completely deplete the electron gas underneath and thus block the transport
among the two terminals if the SG-tip is in the middle of the channel. The Gaus-
sian shape of the SG-tip potential has a width of σ = 45nm. In Fig.3.5 we show
the “conductance maps” of the constriction: both incoming channels are biased by
VDC , and the total conductance (3.14) is measured as a function of the position
of the SG-tip potential on the 2DEG. Despite the small transverse extension of
the channel, and the effective rescaled potentials of the tip and the impurities,
simulations are able to reproduce the effect of selectivity of the channels which are
transmitted/reflected. Depending on the intensity and the position of the Gaus-
sian bump, the tip can locally induce a filling factor smaller than 4, effectively
reflecting some channels back to the source.
The main objective of the experiment consisted in a current measurement which

is performed with only one (channel 2 in Fig.3.4) of the two incoming ES biased
with VDC = 100µV and VAC = 50µV , so that in terms of the LB formalism
the measured conductance is the crossed transmission coefficient evaluated at the
Fermi energy

G ' 2e2

h
T12(εF ) . (3.15)

.
Previous theoretical expectations for IQH edge channels [21] indicate that at

low temperature and low bias, static unscreened potential fluctuations (which are
expected to be originated by the donor layer [62] or lattice imperfections) are the
main source of charge transfer among the channels. This idea is consistent with
the visible inhomogeneities in the experimental conductance maps presented in
Fig.3.5, and with previous similar experimental results in the literature [155], so
we introduce in the model Hall bar localized “impurities” that are meant to couple
the co-propagating channels. Relying on the results discussed in Chapter 2 and
Section 3.1.1 for estimating the effect of narrow high potential steps, these strong
fixed impurities are modeled as “sharp” Gaussian potentials, whose intensity is of
the order of the cyclotron gap ~ωc and whose characteristic width is σ ' lB '
15nm.8

8It is important that this width is not too small with respect to the ES separation in order
to induce some coupling, since the impurity scattering rate is exponentially suppressed with
the distance between the channels [61].
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Figure 3.6: Top left panel: example of a simulated lattice with some fixed
strong impurities (blue points) distributed randomly on the propaga-
tion channel. The Gaussian profile of the impurity potential is shown
in the background (the strong ellipsoid at the end is the tip potential).
The stretched shape is due to the aspect ratio of the simulated Hall-
bar, whose size is 0.90µm×600µm. Bottom left panel: transmission
coefficient |t12|2 corresponding to the top panel when scanning with the
tip on an horizontal trajectory: each strong impurity mixes randomly
the channels. The transient spikes between the step-like structure are
artifacts due narrow channel effects, since the tip potential plus the
impurity induces a spurious reflection. Bottom right panel: exam-
ple of a potential density plot of some fixed impurities (blue) with
low-intensity fluctuating disorder (green points). Top right panel:
example of how the transmission probability looks like once a given
disorder configuration is included.

Dephasing and Disorder-Averaging In Section 2.2.1 we discussed the effect of
a series of arbitrary scattering centers on the transmission amplitude between two
incoming chiral IQH edge modes, and we found that the result strongly depends
on the relative phase between the two channels at each scattering event. This
scenario is indeed confirmed also in our 2D tight-binding simulations. In Fig.3.6
we show the effect in the mixing of a series of strong impurities in the regions
where the two edge channels propagate. Each scatterer is responsible for a jump
in the conductivity, but the actual amount and sign of charge transfer depends
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on the details of the potential.9
We need to acknowledge that the real transport system is millimetric in size

and includes many more gates than our simulated system. This complexity can
produce several sources of phase-averaging (thermal smearing, self-averaging...[2])
and/or decoherence (structured impurities, electron-electron interactions... [71,
72]) which are not present in our numerical model, but are likely to affect the
current measurement.
These effects of decoherence or phase-averaging might be accounted effectively

in calculations by evaluating the average transmission of many simulations run
with the same fixed strong scatterers plus an additional random configuration of
weak scatterers, or background impurities, which influences the mixing effect of
the strong impurities differently for each system realization.

Figure 3.7: Spatially resolved channel equilibration, comparing experimental re-
sults, tight-binding simulations and incoherent exponential fit. The
theoretical curve has been obtained as an average over 200 indepen-
dent realizations of the disorder (see text for parameters and details).
Fixed strong impurities positions (indicated as right arrows in the
curve) have been placed on purpose in the region of channel propaga-
tion with reference to the inhomogeneities visible in the conductance
maps (see Fig.3.5)

More precisely, superimposing to the strong impurities a fixed “perturbative”
9Being the channel narrow, we carefully placed the strong impurities in regions sufficiently close
to the measured edge channels so to be sure that they wouldn’t couple the modes on one
edge with the counterpropagating modes in the other edge (backreflection). This condition
is violated only when the tip potential adds up to the strong impurity potential (see the
spikes in Fig.3.6).
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disordered landscape of weak impurities still generates a non-monotonic trans-
mission current signal (see Fig.3.6). The weak impurity background effectively
randomizes the phase differences between the strong scattering centers, in the
sense that the final value of the fully coherent transmission amplitude, after a
given distance of propagation, strikingly depends on the microscopic details of the
impurity spatial configuration encountered by the electrons propagating along the
channels.
As already observed in section 2.2.1, the average among the possible phases

acquired during propagation in the channels restores a monotonic increasing be-
havior of the mixed current as the number of scatterers gets bigger, which is
intuitive from a classical point of view. The experimental findings (Fig.3.7) of the
previously presented scanning-gate experiment suggest that there is some phase-
averaging mechanisms going on, since after 1µm of propagation the curve has a
smooth monotonic behavior (which can be compatible with a classical exponen-
tial equilibration model [22]). There are however visible bumps in the curve which
hints the relevance of a coherent process in the mixing process.
Our conclusion is that in the elastic limit, when we introduce some averaging

mechanisms over the phases of the ES in the system, the generic simulated model
seems to reproduce the basic physics of the equilibration process.
Future experiments will study the noise and will loop the ES trajectories in a

tunable interferometric setup, and will be able to make more conclusive claims
about the nature of the dephasing mechanisms which are indistinguishable in
standard current measurements [23].
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We demonstrate an innovative quantum Hall circuit with variable geometry employing the movable electrostatic
potential induced by a biased atomic force microscope tip. We exploit this additional degree of freedom to identify
the microscopic mechanisms that allow two co-propagating edge channels to equilibrate their charge imbalance.
Experimental results are compared with tight-binding simulations based on a realistic model for the disorder
potential. This work provides also an experimental realization of a beam mixer between co-propagating edge
channels, a still elusive building block of a recently proposed new class of quantum interferometers.
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I. INTRODUCTION

Suppression of backscattering and a very large coherence
length are the characteristic properties of edge states1

in the quantum Hall (QH) regime at the basis of the
newly developed quantum electron interferometry. In
this field a number of breakthroughs have appeared in
recent years, such as the experimental realization of
Mach-Zehnder,2–5 Fabry-Pérot,6 and Hanbury-Brown-Twiss7

electron interferometers. In these devices the electronic
analog of a beam splitter is obtained by a quantum point
contact, a powerful tool which we have recently used to
study the electron tunneling between counterpropagating
edge states.8–11 The constantly growing flexibility in the
practical realization of QH nanostructures stimulates further
investigations and different designs that are often inspired by
quantum optics. One particularly appealing possibility is to
exploit interference of co-propagating edge channels since it
allows the concatenation of several interferometers.12 Within
this architecture, a beam splitter can be realized by sharp,
localized potentials capable of inducing coherent interchannel
scattering; see, e.g., Refs. 13–17. Appropriate design of such
interferometers requires the detailed understanding of the
physics of co-propagating edges.

Several groups18–22 measured charge transfer and the
electrochemical potential imbalance equilibration between co-
propagating edge channels. Müller et al.18 and Würtz et al.21

interpreted their results in terms of classical rate equations,
while only very recently the contribution of coherent effects
in the equilibration process has been considered.23,24 In these
experiments, two co-propagating edge channels originating
from two Ohmic contacts at different potential meet at the
beginning of a common path of fixed length d where charge
transfer tends to equilibrate their voltage difference.21 At
the end of the path the edge channels are separated by a
selector gate and guided to two distinct detector contacts.
Consequently, while these setups yield valuable information
on the cumulative effect of the processes taking place along
the whole distance d, they make it impossible to link charge
transfer to local sample characteristics.

In order to shed light on this issue, in this paper we
present a different approach to scanning gate microscopy
(SGM) that allows us to investigate the spatial evolution of the

interchannel scattering between co-propagating edge states in
the QH regime with unprecedented spatial resolution. Here,
the SGM tip is used not merely as a probe, but as an active
component of a complex device which permits one to address
quantum structures whose dimensions can be tuned during
the measurement. For this purpose, we implemented a special
QH circuit with variable geometry, in which the length of the
interaction path can be continuously changed by positioning
the biased tip of the SGM (see Fig. 1). This movable tip
introduces a new degree of freedom for transport experiments,
since it allows us to continuously control the size of a single
component of the device under investigation during the same
low-temperature measurement session. For large values of d

our findings are consistent with the results of Refs. 18, 19, 21,
and 22; i.e., the bias imbalance shows an exponential decay
whose characteristic length is the equilibration length �eq.
For small d, however, we are able to reveal by a direct
imaging technique the effect of individual scattering centers in
transferring electrons among co-propagating edges. Numerical
simulations of the device based on the Landauer-Büttiker
formalism25,26 show that interchannel scattering can occur
while coherence is maintained, suggesting the possibility that
such mechanisms could be used as the basic ingredient to
build simply connected, easily scalable interferometers along
the lines proposed in Ref. 12.

II. EXPERIMENTAL DETAILS

The samples for this study were fabricated starting from an
Al0.33Ga0.67As/GaAs heterostructure with a two-dimensional
electron gas (2DEG), which is confined 55 nm under-
neath the surface. Its electron sheet density and mobility
at low temperature are n = 3.2 × 1015 m−2 and μ = 4.2 ×
102 m−2/V s, respectively, as determined by Shubnikov–de
Haas measurements.

The Hall bar was patterned via optical lithography and wet
etching. Ohmic contacts were obtained by evaporation and
thermal annealing of a standard Ni/AuGe/Ni/Au multilayer
(10/200/10/100 nm). All gates were defined by electron-beam
lithography and consist of a Ti/Au bilayer (10/20 nm). Two
nominally identical devices (S1 and S2) were produced, as
outlined in Fig. 2.
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FIG. 1. (Color online) Schematic drawing of the key idea behind
our experiment: The SGM tip is used to actively control the edge
trajectories to obtain a continuously tunable interaction region length
d . This allows a spatially resolved analysis of the equilibration
process.

Our measurements were performed with the 2DEG at bulk
filling factor νb = 4 (B = 3.32 T). At such field, the effective
distance between edge states separated by the cyclotron gap
(h̄ωc = 5.7 meV) is of the order of 100 nm, as we showed in
our previous measurements on a similar sample.27 In general,
in a sample with a given confinement profile the interedge
channel distance is proportional to the energy gap between
Landau levels. Since the Zeeman gap is of the order of 0.1 meV
(we assume g∗ = −0.44),28 the distance between Zeeman-
split edge states is so small that they cannot be resolved in
our experiment. Thus here we consider pairs of Zeeman-split
edges as one individual channel carrying 2G0 ≡ 2e2/h units
of conductance. Finally, since we work at νb = 4, two spin-
degenerate edge channels are populated.

The SGM system is mounted on the cold finger (base
temperature 300 mK) of a 3He cryostat.27 The sample tem-
perature, calibrated with a Coulomb blockade thermometer,
is 400 mK. The maximum scanning area of the SGM at
300 mK is 8.5 μm × 8.5 μm. The coarse and fine control of the
tip-sample position is provided by a stack of piezo-actuators.

FIG. 2. (Color online) Scheme of the experimental setup. Three
Schottky gates are used to independently contact two co-propagating
edge channels and to define a 6-μm-long and 1-μm-wide con-
striction. Using the SGM tip it is possible to selectively reflect
the inner channel and define a variable interedge relaxation region
length d .

The sample is mounted on a chip carrier positioned on top of
the piezo-scanner. The SGM tip was obtained by controlled
etching of a 50-μm-thick tungsten wire. This resulted in tips
with a typical radius of about 30 nm. The tip was then glued on
a quartz tuning fork, which allowed us to perform topography
scans by controlling the oscillation amplitude damping due
to the tip-sample shear force. Due to the close tip-sample
proximity, during the topography scans both the tip and the
gates are temporarily grounded in order to avoid shorts. On
the other hand, during the SGM measurements the tip (biased
at the voltage Vtip = −10 V) is scanned about 40 nm above
the heterostructure surface, in order to avoid both accidental
contacts between the biased tip and the gates and to keep the
tip-2DEG distance constant, irrespective of the topographic
details.

The cryostat is equipped with a superconducting magnet
coil which provides magnetic fields up to 9 T. The whole
setup is decoupled from the laboratory floor by means of a
system of springs in order to damp mechanical noise. Images
are processed with the WSXM software.29 In all conductance
maps shown in this paper, the effect of the series resistance
of both the external wires and the Ohmic contacts has been
subtracted.

The geometry of the QH circuit is determined by the
electrostatic potential induced by three Schottky gates and
the SGM tip. The upper left gate in Fig. 2 defines a region
with local filling factor g = 2, which selects only one of
the two channels propagating from contact 1 at voltage V

and guides it toward contact 2. When this is grounded, an
imbalance is established between edge channels at the entrance
of the constriction defined by the two central gates at local
filling factor g = 0. The two channels propagate in close
proximity along the constriction, which is 6 μm long and
1 μm wide. In our experiments, we suitably positioned the
depletion spot induced by the biased tip of the SGM so that
the inner channel is completely backscattered, while the outer
one is fully transmitted. As a consequence, the two channels
are separated after a distance d that can be adjusted by
moving the tip. Since the outer edge was grounded before
entering the constriction, the detector contact B will measure
only the electrons scattered between channels, while the
remaining current is detected at contact A.

III. RESULTS

The peculiar geometry of this QH circuit implies that
all measurements critically depend on the ability to set
the edge configuration so that the inner edge is perfectly
reflected while the outer one is fully transmitted. To this
end, we first performed topography scans [Fig. 3(a)] yielding
a reference frame to evaluate the relative position of the
tip with respect to the confining gates in the subsequent
SGM scans. Then we performed calibration scans aimed at
establishing tip trajectories ensuring that the inner channel is
indeed completely backscattered, while the outer one is fully
transmitted (edge configuration as sketched in Fig. 2). In these
scans, a small ac bias (50 μV) was applied to source contact 1,
while contact 2 was kept floating so that both channels at the
entrance of the central constriction are at the same potential and
carry the same current I1 = I2 = 2G0V . Figure 3(b) shows a
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FIG. 3. (Color online) (a) Topography scan of device S1. (b)
Calibration scan: The SGM map refers to the differential conductance
signal measured at contact B when contact 2 is floating. Vtip =
−10 V. (c) Conductance profiles measured along the green (left panel)
and the blue (right panel) line in (b). (d) Imaging of the interchannel
equilibration (contact 2 grounded). (e) SGM measurement at zero
magnetic field, with dc source bias V = 100 μV. (f) Finite bias
equilibration signal measured along the trajectory determined by
means of the calibration scan. There is a clear correlation between
the steps in the equilibration curves and the position of scattering
centers in the SGM scan at zero magnetic field. Furthermore, we
observe an enhancement of the equilibration steps with increasing
bias.

map of the differential conductance GB = ∂IB/∂V measured
at contact B by standard lock-in technique and obtained by
scanning the biased tip inside the constriction. The color plot
of Fig. 3(b) can be interpreted as follows: when the tip is far
from the constriction axis both channels are fully transmitted
to the drain contact B and the measured total conductance
is GB = 4G0. By moving the tip toward the axis of the 1D
channel, the inner edge channel is increasingly backscattered
and the conductance decreases until we reach a plateau for
GB = 2G0 [left panel of Fig. 3(c)]. This plateau is due to
the spatial separation δ between the two edge channels. In
fact, once the inner channel is completely backscattered, it
is necessary to move the tip approximately 2δ further before
reflection of the outer one occurs, as discussed in Refs. 30
and 27. Thus the tip trajectory ensuring the desired edge
configuration (Fig. 2) was determined as the locus of the
middle points of the plateau strip [blue line in Fig. 3(b)]. As
shown in the right panel of Fig. 3(c), the conductance along this
trajectory is constant and equals the conductance of a single
channel, i.e., 2G0.

Next, we imaged the interchannel differential conductance.
The two edge channels entering the constriction were im-
balanced by grounding contact 2. In this configuration, at
the beginning of the interaction path, only the inner channel
carries a nonzero current, i.e., I1 = 2G0V , where V is
the source voltage. The electrochemical potential balance is
gradually restored by scattering events that take place along
the interaction path, which yields a partial transfer of the
initial current signal from the inner to the outer channel.
The device architecture allowed us to detect both transferred
electrons and reflected ones by measuring the current signal
at contacts B and A, respectively. We verified that the sum of
currents measured at A and B is constant and always equal
to 2G0V .

Figure 3(d) shows the SGM map of the interchannel
differential conductance GB at zero dc bias. The key feature of
this scan is the monotonic increase of the scattered current as a
function of the interaction distance d. This can be directly
observed in Fig. 3(f), where we show several finite-bias
conductance profiles acquired along the trajectory determined
in the previous calibration step. For a given value of d,
the dramatic enhancement of the equilibration for finite dc
bias is consistent with the results obtained by means of I-V
characteristics in samples with fixed interaction length.21 In
particular, for dc bias of the order of the cyclotron gap, h̄ωc =
5.7 meV, the differential conductance reaches its saturation
value GB = G0, which corresponds to a transmission proba-
bility T12 = 0.5, i.e., IA = IB .

All curves in Fig. 3(f) are characterized by sharp steps in
some positions. This behavior was confirmed by measure-
ments on other devices, which showed the same stepwise
monotonic behavior, albeit with different step positions. This
indicates that the scattering probability is critically influenced
by local details of each sample, e.g., by the location of
impurities that can produce sharp potential profiles whose
effect in the QH interchannel scattering can be revealed by
the SGM technique.31 In order to correlate the presence of
scattering centers with the steps in the conductance profile, we
performed SGM scans at zero magnetic field [Fig. 3(e)]. Such
a scan provides a direct imaging of the disorder potential and
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can identify the most relevant scattering centers (see Refs. 32
and 33 for similar scanning probe microscopy investigations).
A comparison between Figs. 3(e) and 3(f) shows a clear
correlation between the steps in the conductance profiles
with the main spots in the disorder-potential map. This is
the central finding of the present work and establishes a
direct link between the atomistic details of the sample and
the interchannel transport characteristics. Such correlation
is impossible to detect with standard transport measure-
ments and requires the use of scanning probe microscopy
techniques.

It is important to note that interchannel transmission is
nearly zero up to the first scattering center. This indicates
that impurity-induced scattering is the dominant process
equilibrating the imbalance, while other mechanisms that were
invoked in literature, such as the acoustic-phonon scattering,
have only a negligible effect for short distances, in agreement
with the theoretical findings of Ref. 19. We also observe
that the step amplitude is suppressed when the length of the
interaction path d is bigger than about 3 μm.

IV. DISCUSSION

In view of possible applications to QH interferometry, it
is necessary to determine the degree of coherence of the
position-dependent, interchannel differential conductance. For
this reason we make use of a theoretical model which accounts
for elastic scattering only and restrict our analysis to the zero-
dc bias case. The system is described through a tight-binding
Hamiltonian, where the magnetic field is introduced through
Peierls phase factors in the hopping potentials. According to
the Landauer-Büttiker formalism,25,26 the differential conduc-
tance is determined by the scattering coefficients, which are
calculated using a recursive Green’s-function technique. Apart
from a hard-wall confining potential, electrons are subjected
to a disorder potential consisting of a few strong scattering
centers on top of a background potential. Scattering centers
are modeled as Gaussian potentials whose positions (which
are different from device to device) are deduced from SGM
scans in the constriction at zero magnetic field [Fig. 3(e)
shows one example]. The height of the Gaussian potentials
is of the order of the cyclotron gap and their spatial variation
occurs on a length scale of the order of the magnetic length
(�B ≈ 15 nm). The background potential is modeled as a large
number of randomly distributed smooth Gaussian potentials,
whose height is of the order of one tenth of the cyclotron gap.
The conductance is finally calculated averaging over a large
number of random configurations of the background potential
to account for phase-averaging mechanisms which are always
present in the system.

Figure 4 shows results of our simulations (solid blue line),
together with the experimental data from device S2 for V = 0
(filled black dots) and an exponential fit (dashed green line).
For short distances the computed conductance exhibits steps in
correspondence to the scattering centers (positions indicated
by red arrows in Fig. 4), while at larger distances it presents
a monotonic behavior where the steps are washed out by the
averaging over the background. Both regimes are consistent
with the experimental data.

FIG. 4. (Color online) Results of the tight-binding simulations for
the zero-bias case: the inter-channel, zero-temperature differential
conductance (solid line) compared with experimental data from
device S2 (filled dots). From the exponential fit (dashed line) we
deduce an equilibration length �eq = 15 μm. The position of strong
scattering centers in the simulation is indicated by red arrows.
Comparison of the curves in Figs. 3 and 4 demonstrates that the
position of the jumps changes from sample to sample and critically
depends on the specific distribution of the scattering centers in each
sample, which is the main finding of our paper.

In Fig. 4 we also compare our experimental data with
the exponential behavior GB = G0(1 − e−d/�eq ) which was
reported previously.18,21 For short d, there is a discrepancy
between the experimental conductance profile and the expo-
nential curve, due to the discreteness of the scattering centers.
On the other hand, for larger distances our experimental
data are well fitted by the exponential curve. We would
like to underline that here we actually directly verify this
exponential behavior, by continuously tuning the interaction
length d. In previous works, the equilibration length �eq was
extracted from four-wire resistance measurements at fixed
d, assuming an exponential dependence.18,19,21,34 From our
data we obtain an equilibration length �eq = 15 μm, which
is of the same order of magnitude as values reported in
literature.34

We also performed measurements at bulk filling factor
νb = 2, so that the electron transfer takes place between two
spin-split edge channels. In this case we did not observe
equilibration at zero bias, consistent with the fact that typical
equilibration lengths reported in literature for νb = 2 are of
the order of millimeters.18 In view of possible applications
such as beam splitter it is therefore advantageous to work at
νb = 4 since one needs to achieve a coherent mixing with an
interaction path as short as possible.

In conclusion, we used the biased tip of a SGM as an active
component of a QH circuit which implements a tunable beam
splitter to mix co-propagating edge states. The ability to control
the interaction path length allowed us to identify the micro-
scopic mechanisms governing interchannel electron scattering.
From the comparison of several conductance profiles [such as
the one shown in Fig. 3(f)] acquired with different devices,
we can conclude that scattering induced by impurities is the
key process that enables charge transfer between the channels.
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This conclusion is supported by theoretical simulations. This
allows application of this device as a beam splitter in the
simply connected Mach-Zehnder interferometer proposed in
Ref. 12 and opens new possibilities in quantum electron
interferometry.
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3.3 Non-homogeneous Magnetic Fields and
Mixing of Spin-Resolved Edge Channels

As detailed in Sections 1.2.2, in order to induce any mixing between spin-resolved
edge channels, we need some mechanism of coupling with the spin degree of free-
dom, such as spin-orbit effect or local non-perpendicular magnetic fields (Eq.(1.13)).
The former is an intrinsic effect of 2DEGs based on GaAs, but it is very weak

and it’s hard to control for IQH edge states [51].10 The latter is instead within
the reach of nanotechnology: mesoscopic magnetic gates can be fabricated on the
top of the heterostructure[77], so to produce in the 2DEG weak magnetic fields
in the x and y direction.

Figure 3.8: Left panel: pictorial view of the measurement setup. The outer ES
is plotted as a blue line, the inner ES (which is biased at voltage V )
is plotted in right. G1 and G2 are two gates used for the cross-gate
technique, and a single array of fingers is drawn (at voltage VG) Right
panel: actual optical microscopy view of the nano-device, where the
transport channel is interrupted by four independent finger arrays .The
distance λ between the fingers in each array corresponds also to the
width of each individual nanomagnet.

In order to test the periodic poling mixing strategy described in section 2.2.3,
and thus being able to build a proper beamsplitter for co-propagating spin-resolved
edge states, experimentalists managed to fabricate several arrays made of many
equally spaced magnetic fingers (see Fig.3.8 for details) individually made by a
ferromagnetic metal (Cobalt) on top of a 2DEG. Each array is defined by the
periodicity of its modulation λ and consists of a number N of nanomagnets such
that Nλ ' 6µm. The arrays are independent since they are spaced apart several

10Indeed there is experimental evidence that magnetic impurities are the dominant mechanism
for equilibration in spin-resolved ES [78]
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3 Numerical Simulations and Modeling of Coherent Transport Experiments

tens of micrometers, and can be individually deactivated by applying a large
negative voltage on the fingers (see section 3.3.1).
When an array is activated, electronic transport along the edge channels is

influenced by the local fringing field generated by this set of nanomagnets, which
provides a non-negligible in-plane component of the global magnetic field ~B, as
discussed in the next paragraph. As in the experiment described in Section 3.2,
the spin-resolved ES can be individually populated and measured with the cross-
gate technique (see Section 1.3), so that the charge transfer between the channels
can be measured as excess current carried on the outer/inner ES.

Fringing field of Cobalt magnetic fingers We can approximate the magnetic
field generated by a single magnetic finger as that of an equivalent orthorhombic
structure lying over the mesa for half its length. Due to the linearity of Maxwell’s
equation, we can compute the field generated by a rectangular magnetized sheet
(extending by a in x direction, and by b in the y direction, and with uniform
magnetizationM is taken to be in the z direction) as sum of contributions of rect-
angular regions where the magnetostatic field has simple analytical solution ([75]
and see Fig.3.9). If z0 is the distance of the magnetic sheet from the 2DEG, we
have11

Bsheet
i=x,y,z (x, y, z0) = Bsi (

a

2
+ x, b+ y, z0) + Bsi (x−

a

2
, y, z0) +

− Bsi (x−
a

2
, b+ y, z0)− Bsi (

a

2
+ x, y, z0) (3.16)
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Bsy (a, b, z) =
M

4π
ln

(√
b2 + z2

z

√
a2 + z2 + a√

a2 + b2 + z2 + a

)
(3.18)

Bsz (a, b, z) = −M
4π
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(3.19)

The magnetic field generated by a solid finger of cobalt of height h can be mod-
eled then as Bi (x, y, z0) = Bsheet

i

(
x, y, z0 + h

2

)
−Bsheet

i

(
x, y, z0 − h

2

)
(see Fig.3.10).

The case of an infinitely long finger in the y direction (b → ∞) is a good
approximation for the field on the region far away from the edge of fingers (see
Fig.3.11c). In this region the magnetostatic field has then zero B∞y component,
while the other transverse component reads [76]

B∞x (x) =
M

4π
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2
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2
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2
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2
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2
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2
)2

]
) . (3.20)

11The saturation magnetization of Cobalt at low temperature is about 1.8T [76].
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Figure 3.9: Left panel: scheme for calculation of the magnetic field of Cobalt
fingers (Reference to Eqs.3.16-3.19). Right panel: pictorial view of
the two components of the fringing field. Dashed rectangles are meant
to be section (in the z-x plane) of the Cobalt finger.

Figure 3.10: Vector plot of the B‖ magnetic field generated by one magnetic finger.
Left panel: vector field Bx + By projected on the 2DEG. Right
panel: individual contributions of both component of the vector
field. The rectangular projection of the magnetic finger (a = 0.2µm,
b = 0.5µm, h = 0.12µm, z = 0.16µm) is shown in red. For transport
models, it should be considered that the finger extends beyond the
mesa (shaded zones in right panels and region under the white line
in left panel).
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We can then easily compute the total transverse field generated by a complete
set of N magnetic fingers, seen by electrons which are transmitted in regions under
the array or just outside the array (See Fig.3.11).12

Figure 3.11: In-plane magnetic field generated by 15 cobalt fingers extending on
the mesa for 50 nm, with a periodic spacing of λ = 400 nm. Top
left panel: magnetic field profile for Bx (blue line) compared to
By (dashed gray) calculated 10 nm from the edge of the mesa. Red
markers indicate regions covered by the fingers. Bottom left panel:
magnetic field profile calculated at 20 nm after the end of the rect-
angular fingers on the mesa. By (blue line) is now bigger than Bx

(gray dashed line). Right panels: density plots of Bx and By for
the considered finger array.

Not considering the small intensity variations and the effects at the beginning
and at the end of the array, the magnetic modulation under the finger goes as13

B‖ ' B∞x (x) ' B0
‖ sin

(
2πx

λ

)
, (3.21)

12The in-plane field varies in a range of about 0.1T, so the mutual dipolar interaction between
the finger is negligible compared to the magnetization imposed by the large external field
Bz.

13We should note that there is also a periodic contribution of the perpendicular component
B∞z (x). Its contribution adds up to the Zeeman term of the Hamiltonian and can influence
locally the wave-number separation ∆k . The variation of the Zeeman energy due to this
field is however so tiny (µeV ) that its effect can be neglected in first approximation (See
Section 1.13).
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while the modulation in the region outside the finger arrays takes the form

B‖ ' By (x) ' B0
‖ + δB‖ cos

(
2πx

λ

)
, (3.22)

where B0
‖ is of the order of 0.05T and δB‖ considerably smaller as shown in

Fig.3.11.

3.3.1 Coherent Mixing of Spin-Resolved Channels

According to the Born approximation, we can estimate the effect of the transverse
potential in order to induce coherent mixing as described in Section 2.2.3.
Being the field of sinusoidal form (3.21)-(3.22), the transmission coefficient |t12|2,

approximated by Eq.(2.11) has a peak for resonant periodicity λ (2.10). We per-
formed numerical simulations by modeling a four-terminal device (see Fig.3.12,
upper panel) with magnetic fingers of different spacings and varying the effec-
tive strength of B‖. The simulation results confirm that the non-perturbative
solution of the scattering problem maintains the qualitative features described by
Eq.(2.11).
As already discussed in the previous section, the tight-binding numerical model

is also very well suited to study the impact of random inhomogeneities in the
system such as magnetic disorder or imperfections in the finger spacings. We
introduced in the simulations different types of disorders, such as local random
variations of the Zeeman energy in each site, as well as uncertainties on the finger
width, spacing and intensities. As long as the average value of fluctuating pa-
rameters is the same as the value of reference of the non-averaged simulation, all
resonance patterns obtained proved very similar to the ideal case, unless the fluc-
tuations were so huge as to destroy completely the regularity of the device. In the
coherent non-interacting limit, this result provides confidence that static-disorder
cannot realistically introduce qualitative variations upon our result.
In Fig.3.12 we also present the results of the experiment for the mixing of the

channels under the action of a single array of fingers separated by λ=200 nm, 286
nm, 333 nm, 400 nm, 500 nm.14

We observe non-zero values of the transfer current for the arrays corresponding
to λ = 400 and λ = 500. It should be noted that such a non-monotonic de-
pendence in periodicity is necessarily a proof that a coherent effect (such as the
one described in our model) is acting. Indeed as shown for the mixing model in
Section 2.2.1, the concatenation of several weak mixers provide a “classical” linear
amplification of the mixing, unless a precise control of the phases accumulated
between the scattering centers is achieved. In the framework of the previously

14In the simulations we can arbitrarily vary λ by performing different runs, each with a spacing
differing up to the lattice step a. At the contrary, in the experiments each λ corresponds to
a different previously nano-fabricated device
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Figure 3.12: Top panel: example of a simulated Hall bar with seven fingers,
where the color density corresponding to |Bx| is plotted in color-
code (see also Fig.3.11). Bottom left panel: Experimental results
demonstrating the selectivity of the engineered charge transfer with
respect to λ. The dashed line represents a guide to the eye indi-
cating a resonance occurring for a periodicity in between λ = 500
nm and λ = 400 nm Bottom right panel: theoretical resonance
pattern from RGF calculations, for different values of

∣∣B‖
∣∣ (from

B‖ ' Bz/100 to B‖ ' Bz/5). The qualitative shape of the resonance
is consistent with first order perturbation theory (see Section 2.2.3).

described periodic poling effect, this result hints at a coherent resonance with a
maximum intensity lying between λ = 400 and λ = 500. This is reproduced in
our simulations by fixing the effective15 g−factor to be about 1.8, which sets the
resonant ∆k = 2πλ−1 = 13.8 µm−1.
If the resonance is ultimately due to the periodic poling effect, the experimen-

tal findings seem to indicate the presence of a large broadening of the theoretical
resonant peak. Indeed in the real experiment we expect the situation to be compli-
cated by dephasing effects (temperature, phonon emission, structured magnetic
impurities), and elastic/inelastic influence of Coulomb interactions. The main

15Experimental results about the temperature-dependence of the channel equilibration also
confirm that the effective spin-gap at the edge is much higher than the bare one (see our
paper at the end of the Chapter for the measurements).
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contribution of these neglected effects will be both to renormalize the parameters
(as it is the case of the inclusion of the renormalized g? approach, discussed in
Section 1.2.2) or to blur the interference effects, such to produce the observed
broadening.

Electric Potential Effect and Magnetic Mixing The Cobalt nanomagnets are
metallic bars that can be electrostatically polarized. The applied voltage VG
will influence the 2DEG under the fingers, and it is reasonable to assume that
the nanomagnets will act as top gates as described in Section 1.3.3. The band
lifting triggered by increasing voltage on the fingers will influence the spatial
arrangements of the channels and will eventually completely expel them from the
finger region.
Still disregarding the Coulomb interactions, we can identify two main effects

which play a role in the channel mixing with the application of gate voltage:

• The local mixing magnetic field Bx and By depends strongly on the path
taken by the edge channels, and thus on VG.

• The local wave-number difference ∆k (and thus the resonance condition
Eq. (2.10)) depends on the local spatial separations of the channels, which
depends on VG.

The experimental results show that in the region of interest VG influences the
mixed current in a very non-linear way (See Fig.4 of the submitted paper attached
at the end of the present Section). While a realistic modeling of the experiment
would imply to consider the exact finite-range electric potential generated by the
Cobalt fingers we can discuss some properties of idealized models in order to
understand the appearance of multiple resonances in the experimental results.
In Fig.3.14 we show the local ∆k defined between two ES under an extended gate

region of finite transverse extension (the finger is considered to be translational
invariant in the y direction, for this reason we will refer to the wave-number
separation as ∆k∞ for this model). This long gate is considered to be deposited
over the magnetic fingers, so that the edge channel experience a periodic magnetic
modulation and a uniform electrostatic potential in the propagation direction.
Transport in such a device has not been experimentally tested yet at the time of
writing, however the first prototypes have already been fabricated (see Fig.3.13).
On the lattice, we approximate the effect of increasing VG by increasing rigidly

the local onsite energy under the gate regions, so that there is a maximum in
∆k∞(VG) corresponding to the situation where the outer ES is completely expelled
from the finger region while the inner ES is still energetically allowed to lie under
the finger. At high voltage the simple model predicts that both ES are expelled.
The applied gate voltage provides a strong confinement potential comparable to
the impenetrable hard wall at the end of the lattice, so that ∆k∞(VG � 1) '
∆k∞(0).
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Figure 3.13: Top panel: planar plot of the charge density of the outer edge chan-
nel expelled by a large gate region extending on the mesa by the
length d on a simulated Hall bar (high VG case). Left bottom
panel: a) at small VG, the ES are expected to propagate under the
gate region. b) there is an intermediate value of VG for which one
edge channel is expelled from the gate region (i.e. case (c)) and one
still propagates under (see also section 1.3.3) Right bottom panel:
Scanning-Electron-Microscopy image of an experimental device con-
sisting of a large top-gated region of gold under which magnetic fin-
gers of cobalt are fabricated.

We immediately see in this simple uniform model that, depending on the char-
acteristics of the gate and the spacing of the fingers, the resonance conditions Eq.
(2.10) can be met for different values of VG. This is clarified in Figure 3.14, where
we calculate the transfer current as a function of VG for different periodicity of the
magnetic fingers, and we explicitly show that peaks occur16 where ∆k(VG) meets
the resonant condition Eq.2.10.
In the performed experiment, the actual electric field generated by the Cobalt

fingers is not uniform, but it is periodic with the same periodicity as B‖. Experi-
mentalists are also able to vary the external perpendicular magnetic field Bz and
so to map the full dependence of the transferred current for a given array of fingers
as a function of Bz and VG. Increasing Bz is expected to influence the overlap of
the wavefunctions (see Fig. 1.3 in Section 1.2.2) and in general to increase the
coherence of the ES.17

16all curves show several multiple resonance which are invisible at the present scales since they
represent the effect of secondary peaks of the interference pattern whose mixing is . 0.01%

17It is an experimental fact that in MZI the visibility of oscillations generally increase as Bz
increases [79].
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Figure 3.14: The appearance of multiple resonances while increasing VG, for differ-
ent devices. Horizontal lines in each panel represent current signals
(in a rescaled notation) for the transfer current for nanoarrays of dif-
ferent λ (the red line corresponds to the transfer current for λ = 400
nm). The blue curve represents the resonance condition λ = 2π/∆k
computed for ∆k = ∆k∞(VG). Different panels correspond to differ-
ent lengths d of the top gate (see Fig.3.13).

Following the semi-classical picture where the edge states are considered to
adiabatically follow the equipotential lines (Section 1.3.3) we can define a periodic
local wave-number k̄i(Bz) +ki (x, VG, Bz) for each channel[18]. Eq.(2.11) becomes

t12 ∝M (VG, Bz)

ˆ L

0

ei∆k̄(VG,Bz)xeiφ(x,VG,Bz)B‖ (VG, x, Bz) dx , (3.23)

where φ(x, VG, Bz) =
´ x

0
[k1 (ξ, VG, Bz)− k2 (ξ, VG, Bz)] dξ is a monotonically in-

creasing function representing the phase accumulated thanks to local variation
of the potential with respect to the translational invariant phase. We are thus
introducing a new important periodicity in the transition amplitude: the period
p for which φ(x+ p, VG, Bz) = φ(x, VG, Bz) + 2π. The dependence on the parame-
ters of φ(x, VG, Bz) is highly non-trivial, but preliminary investigations on simple
models (such as the one just presented in Fig. 3.14 which consists in φ = 0 and
∆k̄ = ∆k∞(VG)) are all consistent with the appearance of multiple resonances.
Further research is in progress in order to shed light on the interplay and influence
of Bz and VG in the current signal for understanding experimental results.
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Topologically-protected edge states are dissi-
pationless conducting surface states immune to
impurity scattering and geometrical defects that
occur in electronic systems characterized by a
bulk insulating gap [1–4]. One example can be
found in a two-dimensional electron gas (2DEG)
under high magnetic field in the quantum Hall
(QH) regime [5, 6]. Based on the coherent
control of the coupling between these protected
states [7, 8], several theoretical proposals for
the implementation of information processing ar-
chitectures [9–11] were proposed. Here we in-
troduce and experimentally demonstrate a new
method that allows us to controllably couple co-
propagating spin-resolved edge states of a QH in-
sulator. The scheme exploits a spatially-periodic
in-plane magnetic field that is created by an ar-
ray of Cobalt nano-magnets placed at the bound-
ary of the 2DEG. A maximum charge/spin trans-
fer of 28 ± 1% is achieved at 250 mK. This result
may open the way to the realization of scalable
quantum-information architectures exploiting the
spin degree of freedom of topologically-protected
states.

Spin-resolved edge states (SRESs) in a clean two-
dimensional electron gas (2DEG) in the integer quantum
Hall (QH) condition are characterized by very large re-
laxation [12, 13] and coherence [7] lengths and are consid-
ered promising building blocks for the design of coherent
electronics circuitry. Well-established experimental tech-
niques based on the use of external top gates make it pos-
sible to spatially separate edge states in the 2DEG: they
can be selectively populated at the source, coherently
guided along different paths and easily read out. In par-
ticular these systems represent ideal candidates for the
implementation of dual-rail quantum-computation archi-
tectures [14–16]. Here, the qubit is encoded in the spin
degree of freedom that labels two distinct co-propagating,
energy-degenerate edge channels of the same Landau
level (LL) at the same physical edge of the 2DEG.

A key element for the realization of such architecture is
a coherent beam splitter that makes it possible to prepare
any superposition of the two logic states, thus realizing
one-qubit gate transformations. This requires the abil-
ity to induce controlled charge transfer between the two
co-propagating edge channels. Since SRESs are orthog-
onal eigenstates propagating at different wave vectors,

however, any local external perturbation capable of in-
ducing such inter-edge charge transfer must both flip the
spin and provide a suitable momentum transfer ∆k. We
achieved this by introducing a spatially-periodic in-plane
magnetic field B‖ of periodicity λ along the edge-state
propagation direction x (see setup in Fig. 1a). Indeed,
the small inter-edge charge transfer produced by a single
magnetic step can be amplified to a sizable extent by con-
structive interference when a periodic sequence of such
steps is employed. As discussed in the Methods section,
even for small values of B‖ a pronounced enhancement
in inter-edge transfer does occur at resonance conditions,
namely when the period of the modulation (λ) matches
the wave-vector difference of the two spin resolved edge
channels (∆k), i.e.

λres =
2π
∆k

. (1)

Importantly, an experimentally-accessible λres of hun-
dreds of nanometers can provide the relatively small ∆k
between the two spin-resolved edge channels. [Note that
the mixing of spin-degenerate, energy-degenerate edge
channels belonging to different LLs would require a spa-
tial modulation with periodicity on order of 5 Å that
is practically impossible to engineer]. Our approach is
based on the same physical mechanism that drives the
periodic poling technique adopted in optics to enforce
quasi-phase-matching conditions between optical beams
of orthogonal polarization which are co-propagating in a
nonlinear crystal [17]. This scheme is also related to the
superlattice-modulation technique [18–20] used to couple
counter-propagating spin-degenerate modes via modula-
tion of the electric potential in narrow channels and to
the modification of electron transport in the presence of
magnetic superlattices [21].

The in-plane oscillatory field B‖ was created by an ar-
ray of n Cobalt nanofingers placed at the boundary of
the mesa where the 2DEG is confined (Fig. 1a). The
resulting magnetization of the Cobalt nanomagnets is
aligned along the applied perpendicular magnetic field
B (Fig. 1a), if B is large enough [22, 23]. The actual
value of the oscillatory B‖ can reach 50 mT in the prox-
imity of the fingers and it decays away from the array
(see Fig. 1b). Even such a small B‖ can induce a sizable
inter-edge coupling at resonance (1) (see upper panel of
Fig. 3). Importantly, edge states can be reversibly un-
coupled from the fingers simply deflecting them far away
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FIG. 1: Operation principle of coupling of spin-
resolved edge states and measurement scheme. a)
Schematic representation of the Cobalt nano-magnet array
at the mesa boundary. The Cobalt fingers (blue bars) pro-
duce a fringing magnetic field (yellow lines) resulting in an
in-plane magnetic field B‖ at the level of the 2DEG (textured
gray) residing below the top surface. The oscillatory parallel
field of the nano-magnet array induces charge transfer be-
tween the spin up (red line) and spin down (blue line) edge
channels at resonance in the QH regime (see Methods). b)
Density plot of the modulus of the in-plane magnetic field
around the nano-magnet fingers at the level of the 2DEG.
c) Schematic measurement set-up used to separately contact
SRESs at filling fraction ν = 2 (number of filled LLs) and
detect spin resolved currents I↑ and I↓ after artificial mixing
by the nano-magnet array. The spin up channel (red line) is
excited by a voltage V, while spin down channel (blue line) is
grounded (denoted by G). The edge states can be reversibly
decoupled by negatively biasing the array with a voltage Vg,
such that the edge channels are deflected far away and do
not sense the in-plane field B‖. d) Optical image of the de-
vice showing four sets of nano-magnet arrays with different
periodicity λ placed serially at the mesa boundary. Zoomed
region is the scanning electron microscopic image of Cobalt
nano-magnet array of periodicity λ = 400 nm with gold con-
tact. The array is nearly 6 µm long and has an overlap on
the mesa of about 200 nm.

deep into the 2DEG by negatively biasing the array with
a voltage Vg (Fig. 1c). As shown in (Fig. 1d), we fabri-
cated eight independent series of fingers (four of them are
on the other side of the mesa and therefore not visible in
the microscope image of Fig. 1d). Each set is character-
ized by a different periodicity λ and by a different number
n of elements, while keeping the total spatial extension
of the modulation region nearly constant, ∆X ' 6.2 µm.
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FIG. 2: Working parameters in the quantum Hall
regime at filling factor ν = 2. a) Plot of the two ter-
minal magneto-current (2TMC) measured at a temperature
of 250 mK with an a.c. voltage excitation of V = 25.8 µV
at 17 Hz. The value of magnetic field B = 4.75 T, indicated
by an arrow, is used to place the 2DEG approximately at
the center of the ν = 2 plateau. b) Plot of the currents I↑
(red) and I↓ (red and blue curves, respectively) measured at
the current terminals red and blue (Fig. 1b) with the voltage
VG applied to the gates G1 and G2 at ν = 2 and with the
voltage Vg applied to the array and equal to Vg = -3 V. The
value of VG is set to V ∗G, indicated by an arrow, for separately
contacting the spin resolved edge channels (see Fig. 1b). c)
Temperature dependence of I↑ (red) and I↓ (blue) currents
shows enhancement of relaxation between spin resolved edge
channels with increasing temperature. Thermally mediated
mixing of currents becomes negligible at T = 250 mK.

The quantity ∆k that defines the resonant condi-
tion (1) depends on the Zeeman energy but is also af-
fected by the details of the edge confinement poten-
tial. A simple estimate of ∆k between spin-resolved edge
states at filling factor ν = 2 can be made for the case
of adiabatic dynamics and a linear confinement poten-
tial [12, 24, 25] leading to λres ≈ 360 nm at 4.75 T (see
supplementary material).

We measured the two-terminal magneto-current
(2TMC) at T = 250 mK in order to locate the plateau
associated with a number of filled LLs in the bulk ν equal
to 2 (see Fig. 2a). The working point was set in the center
of the plateau, i.e. at B = 4.75 T. The two SRESs can be
separately contacted as schematically shown in Fig. 1c by
negatively biasing the gates G1 and G2 at a voltage V ∗G,
such that the filling factor below the corresponding top
gates becomes ν = 1 and one edge channel only is allowed
underneath the gates. The actual V ∗G value can be deter-
mined by measuring the currents I↑ and I↓ as a function



3

0 . 1
0 . 2

0 . 8
0 . 9

1 2 1 6 2 0 2 4 2 8 3 2

 

 2π/ λ  ( µm - 1 )

Cu
rre

nt 
(nA

)

4 . 6 4 . 8 5 . 0

0 . 1

0 . 2

 

 

Tra
nsf

err
ed 

cur
ren

t (n
A)

B  ( T )

1 2 1 4 1 6
0 . 0

0 . 1

0 . 2

 

Tra
nsf

err
ed 

cur
rne

t (n
A)

2 π/ λ  ( µm - 1 )

FIG. 3: Measurements of the coupling of spin-resolved
edge states. Upper panel: Red data points and blue data
points correspond to the transmitted currents I↑ and trans-
ferred current I↓, respectively, as a function of the inverse
periodicity of the activated set of nano-fingers. All data have
been measured at the working point B = 4.75 T and T = 250
mK. The measured transferred current I↓ is guided by a
dashed line which demonstrates selectivity of nano-magnet
at periodicity between λ = 400 nm and 500 nm. The in-
set shows the theoretical prediction of the transferred cur-
rent based on the Landauer-Büttiker transport formalism (see
methods). Lower Panel: measured transferred current I↓ as
a function of the perpendicular magnetic field B (here the
periodicity of the activated nano-finger is λ = 400 nm).

of VG (see Fig. 2b), when a bias voltage V = 25.8 µV
is applied to electrode V (see Fig. 1b). When inter-edge
coupling is suppressed by applying Vg = −3 V to all
the nanofingers, we find that spin up electrons are en-
tirely transmitted (yielding a current I↑ of about 1 nA,
as expected for a single channel of unit quantized resis-
tance h/e2 ≈ 25.8 KΩ), while the spin down current I↓
is nearly zero for V ∗G = −0.47 ± 0.08 V (see Fig. 2b).
Note that these results show the absence of significant
spin flip processes over the distance of about 100 µm
traveled by the co-propagating SRESs when the mag-
netic fingers are deactivated [12, 13]. For completeness,
Fig. 2c shows the dependence of the currents I↑ and I↓
on temperature: SRESs fully relax only for T ∼ 1.6 K
(1/kBT ≈ 7.2 meV−1), while edge mixing becomes neg-

ligible at our working point T = 250 mK. Moreover, an-
alyzing our data as in Refs. [12, 13] we can conclude that
the relaxation length is of order of 1 cm at T = 250 mK.

Coupling can be activated at a chosen set of fingers
by increasing its bias Vg from −3 to 0 V, while keep-
ing all other arrays at Vg = −3 V. In these conditions,
the SRESs are brought close to the selected array only
and exposed to its oscillatory in-plane field B‖. The up-
per panel of Fig. 3 shows the highest measured I↑ (red
points in the plot) and I↓ (blue points) values when cou-
pling occurs at several different individual arrays (one at
a time) as identified by their 2π/λ value. Since inter-edge
coupling leads to charge transfer between the two spin-
resolved edge channels it results in a decrease of I↑, with
the consequent increase of I↓ while the total current re-
mains constant at about 1 nA. Note that current transfer
is significant only for a specific interval of λ values (blue
and red dashed curves are a guide for the eye). Moreover
the intensity of the transfer depends on λ consistently
with the theoretical prediction based on the Landauer-
Büttiker transport formalism [30] (see Methods and sup-
plementary materials, results are shown in the inset to
Fig. 3): for our configuration a resonance peak is pre-
dicted to occur at λres between 400 and 500 nm and
its width is inversely proportional to ∆X. Importantly,
if the fingers were an incoherent series of scatterers one
should expect a monotonic λ-dependence of the charge
transfer [29], while the observed non-monotonic selective
behavior of the current suggests an underlying construc-
tive interference effect. For the case of λ = 400 nm,
the lower panel of Fig. 3 shows the dependence of trans-
ferred current I↓ on the perpendicular magnetic field B
when the latter spans the ν = 2 plateau (see Fig. 2).
The monotonic decrease of I↓ is a consequence of two
combined effects that induce a suppression of the charge
transfer: (i) the ratio B‖/B decreases as B is increased,
so that the net effect of the in-plane magnetic modula-
tion is weakened; (ii) the magnetic length decreases with
increasing B, causing the reduction of the spatial overlap
of the transverse wavefunctions.

Apart from activating/deactivating the various nano-
finger sets, the voltage Vg can also be used as an ex-
tra control to adjust the resonant condition of the de-
vice. Figure 4 shows the measured transfer current I↓
as a function of Vg and B for the array of periodicity
λ = 400 nm (similar data were obtained for different val-
ues of λ, see supplementary material). The pronounced
features present for intermediate values of Vg show that
the coupling between SRESs can be controlled and am-
plified. Remarkably, a charge transfer of 28 ± 1% was
achieved at B = 4.5T with Vg ≈ −1.1 V. At large neg-
ative Vg’s the two edge states are pushed away from the
region where the magnetic fringe field is present and, as
expected, the coupling vanishes.

The same Fig. 4 reveals some additional resonances
occurring at specific values of Vg. A non-monotonic de-



4

0 . 0 0 0

0 . 0 6 0 0 0

0 . 1 2 0 0

0 . 1 8 0 0

0 . 2 4 0 0
0 . 2 9 0 0

- 2 . 5 - 2 . 0 - 1 . 5 - 1 . 0 - 0 . 5

4 . 6

4 . 7

4 . 8

4 . 9

Tra
nsf

err
ed 

cur
ren

t (n
A)

 

 

V g  ( V )

B (
T)

0 . 0
0 . 1
0 . 2

0 . 8
0 . 9

 

 

 

Cu
rre

nt 
(nA

)

FIG. 4: Tuning of the coupling between spin-resolved
edge states with gate voltage and magnetic field. Up-
per panel: Dependence of the transmitted current I↑ (red
curve) and transferred current I↓ (blue curve) upon the volt-
age Vg applied to activated nano-finger set (data taken for the
nano-finger set with λ = 400 nm and for B = 4.75 T). For
Vg < −2.0 V the nano-finger are effectively decoupled from
the edges and are not able to induce a net transferring of cur-
rent (off-regime); for Vg ' 0 instead the edges feel the pres-
ence of the nano-fingers and a non-zero transfer of current is
evident. For intermediate values of Vg a series of pronounced
peaks in I↓ are evident. Lower panel: contour plot of I↓ upon
Vg and B (again data taken for the nano-finger set of period-
icity λ = 400 nm). The horizontal line indicates the center of
the ν = 2 plateau (B = 4.75 T).

pendence of the local value of ∆k on Vg leading to the
resonant condition (Eq. 1) at different values of Vg can be
invoked to explain these features. A system simulation
shows that a local change of the confinement potential
in the proximity of the associated nano-fingers modifies
the relative distance of the edge states and hence the
local value of ∆k in a non-monotonic way (see supple-
mentary material). More precisely, for low Vg values fin-
gers act as top gates for the underlying edge states: the
transverse distance between SRESs (and hence ∆k) can
locally increase and reach a maximum as Vg gets neg-
ative, since the inner and outer edge states are pushed
away from the finger region, one after the other. As we
further increase Vg the transverse distance between the
SRESs increases again. It is worth stressing, however,
that the process just described is not necessarily smooth:
electron-electron interaction may in fact induce abrupt
transitions in SRESs distances when the slope of the ef-
fective local potential decreases below a certain critical
value which depends on the details of the sample proper-

ties [31, 32]. Moreover, the functional dependence of the
potential induced by Vg upon the longitudinal coordinate
x presents also an oscillatory behavior with periodicity λ.
As a consequence of the adiabatic evolution of the edges,
their transverse distance will also show such oscillations.
A detailed modeling of the observed resonance features
would require to take fully into account these effects and
is beyond the scope of the present paper. However it
clearly deserves further investigation as it represents a
positive feature of the system, since any value of the mod-
ulation periodicity λ has typically more than one value
of Vg that can fulfill the resonant condition Eq. (1).

In conclusion, the present experiment is an example of
controlled coupling of topologically protected edge states
driven by quantum interference with potential impact on
future quantum-information technologies.

METHODS

Experimental methods: The device was fabricated on
one-sided modulation-doped AlGaAs/GaAs heterostruc-
ture grown by molecular beam epitaxy. The two dimen-
sional electron gas (2DEG) resides at the AlGaAs/GaAs
heterointerface located 100 nm below the top surface.
The 2DEG has a spacer layer of 42 nm, which separates
the 2DEG and the Si δ-doping layer above it. The 2DEG
has nominal electron density of 2 × 1011/cm2 and low-
temperature mobility nearly 4 × 106 Vcm/s. The mesa
and mesa markers were defined by e-beam lithography
and wet chemical etching after AuGe/Au Ohmic-contact
fabrication. The Cobalt nano-magnet array was defined
at the mesa boundary of the 2DEG (Fig. 1a and d) using
e-beam lithography and thermal evaporation of 10 nm Ti
followed by 110 nm Co. Au contacts to the magnet array
and gates G1 and G2 were also fabricated (Fig. 1c and
d). A series of eight different arrays of fingers at different
periodicities (specifically λ = 500 nm, 400 nm, 333 nm,
286 nm, 250 nm, 222 nm, 200 nm, and 182 nm) were
fabricated.

Transport measurements were carried out in a He3
cryo-system with a base temperature of 250 mK equipped
with 12 T superconducting magnet. An ac voltage exci-
tation of 25.8 µV at 17 Hz was applied and the transmit-
ted current (Fig. 1c) was measured by standard lock-in
techniques using the current to voltage preamplifiers.

Theoretical approach: The Hamiltonian describing an
electron in a 2DEG subject to a strong perpendicular
magnetic field B in an arbitrary transverse confining po-
tential Vc(y) is H = (p + eA)2/2m∗+Vc(y)− 1

2gµBBσz,
with p = (px, py) the effective electron mass m∗ =
0.067 me, and g∗ is the effective g-factor of the material.
We worked in the Landau gauge A = (−By, 0) and sepa-
rated the orbital motion in a longitudinally propagating
(along x) term and a transverse part. The eigenstate
ψnkσ(x, y) = |σ〉 exp(ikx)χnk(y)/

√
L describes an elec-
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tron in the nth LL with momentum k (L is the length of
the Hall bar in the x-direction), spin projection along z-
axis σ ∈ {↑, ↓} and with eigenenergy well approximated
by εnkσ = ~ωc(n+ 1/2) +Vc(k`2B)− g∗µBBσ/2, in terms
of the cyclotron frequency ωc = eB/m∗ and the magnetic
length `2B = ~/eB. We are concerned only with transport
along a given edge of the sample mediated by the spin-
resolved edge states of the lowest LL, |Ψ↑〉 ≡ |ψ0,k↑,↑〉 and
|Ψ↓〉 ≡ |ψ0,k↓,↓〉. The values k↑ and k↓ are determined by
the degeneracy condition EF = ε0,k↑,↑ = ε0,k↓,↓. These
states represent the asymptotical scattering states for the
localized potential ∆H(x, y) = −g∗µB ~B‖(x, y) · ~σ/2 in-
duced by a nano-magnet array, with ~B‖(x, y) being the
in-plane magnetic field component generated by the fin-
gers (an analogous contribution along the vertical direc-
tion can be neglected due to the homogeneous strong
component active on the whole sample). In the Born ap-
proximation, the transmission amplitude for scattering
off the engineered perturbation can then be expressed as
t↑↓ = (L/i~v)〈Ψ↓|∆H|Ψ↑〉 yielding a transferred current
I↓ = (e2V/h)|t↑↓|2 (in this expressions v is the group
velocity of the edge states, while V is the bias volt-
age). For an array of periodicity λ and longitudinal ex-
tension ∆X, we approximate the longitudinal field as
~B‖(x, y) = By(y) cos(2πx/λ)ŷ for x ∈ [−∆X/2,∆X/2]
and zero otherwise (for simplicity the x̂ component of
~B‖ has been neglected). The corresponding transmission
amplitude becomes:

t↑↓ ≈ ig∗µB〈By〉
∆X
4~v

sin((2π/λ−∆k)∆X/2)
(2π/λ−∆k)∆X/2

, (2)

with ∆k = k↑ − k↓ the momentum difference of the
two edge states, and 〈By〉 =

∫
dyBy(y)χ1,k↑(y)χ1,k↓(y).

This expression clearly shows that at resonance (i.e.
λ = 2π/∆k), the transfer is maximum, whereas away
from the resonance condition the transmission amplitude
decreases rapidly. We verified numerically that the res-
onance condition identified by the first-order calculation
presented above coincides with the exact solution of the
scattering problem (see supplementary material). The
resulting current profile is shown in the inset to the up-
per panel of Fig. 3. In the real experiment we expect
the resonance condition to be affected by static disorder
and/or inelastic effects induced, e.g., by the finite tem-
perature and Coulomb interactions. These effects can be
included in the analysis resulting in a broadening of the
current peak versus 2π/λ.
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4 Interactions in Spin-Resolved
Transport

In this final chapter we introduce an analytical model (Chiral Tomonaga
Luttinger Liquid) describing interacting spin-resolved edge states. We
discuss a possible tunneling experiment where the spin-state and the
energy of transported electrons can be completely filtered before and
after propagating on edge channels, and we evaluate the effect of the
interactions on the steady state current by means of the non-equilibrium
Green’s function formalism.

4.1 Effective Model of Interactions between Edge
States

The analytical non-interacting model for ES used in Chapters 1-2 makes it clear
that the physics of transport in edge channels is mainly one-dimensional, as the
features of the models that involve the existence of a second dimension are all
phenomenologically accountable in a set of parameters (wavefunction overlap in-
tegrals, effective ∆k...) defined on a 1D scattering theory. We have furthermore
shown that this theory is corroborated by the numerical approach used in Chapter
3, where the ES solutions completely emerge from a 2D discrete inhomogeneous
Hamiltonian, yet the physics seems to be very well described by approximate
phenomenological models.
The models and numerical calculations treated in the previous chapters could

in principle be extended by considering the proper form and effects of many-body
Coulomb interactions in the 2DEG under high magnetic fields. This is possible in
2D if we accept to work with heavy numerics [80]. For the sake of understanding
the physics, what we need is an effective theoretical model that includes Coulomb
interactions in the transport dynamics.
By always bearing in mind that the LB theory of ES transport worked spectac-

ularly well for describing the physics of the vast majority of experiments since the
discovery of IQH effect, in this section we will review the experimental and the-
oretical grounds about the current investigation of Coulomb interactions in edge
channels, and we will motivate the choice of a 1D Tomonaga-Luttinger model as
the framework of choice for interacting ES (at ν = 2).
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4.1.1 Effects of the Interactions in the IQH channels

As discussed in Section 1.1, the electron gas is completely incompressible in the
bulk, as the quantum picture of a 2DEG in a strong magnetic field predicts a
collapse of the continuous electronic DOS in delta peaks at Landau energies, so
that the Fermi level is not pinned at ~ωc(n+ 1

2
). An incompressible liquid does not

screen interactions, so the long range character of the Coulomb potential can be
neutralized mainly by the metallic surrounding. We already mentioned in Section
1.2.2 that interactions can still have a non-negligible effect at ν = 2, as they
influence the g-factor of the system, leading to a possibly enormous “exchange
enhancement” of this constant.
At the edge of the Hall bar the situation is more complicated since the den-

sity of the electron liquid must fall to zero due to the confinement potential (or
the end of the mesa). From a purely classical electrostatic level, we can already
infer that Coulomb interactions can have a dramatic effect. In their celebrated
work, D. Chklovskii et al. [92] indeed observed that a mean field treatment of the
interaction (Hartree potential or Thomas-Fermi theory [95]) alone is already suffi-
cient to obtain ES which are not one-dimensional Fermi liquids, but compressible
stripes of finite width1. This is unavoidable for smooth confinement potentials,
but if the strong confinement is falling off over nanometric scales, Dempsey and
Halperin[101] have first shown that this edge reconstruction is suppressed at ν = 2,
due to the exchange energy between electrons of opposites spins, which stabilizes
the existence of one-dimensional channels at the edge, at a physical separation
which is in general larger than the one predicted by non-interacting theory.
In addition to the possibility of changing the very nature of the ground state of

edge channels, and influence all parameters relevant for LB theories such as the
Fermi velocity [94], the effect of the interaction on the dynamics of transport in
ES is even more complicated, since the electrons on the wide edge can in principle
excite transverse collective modes [96], and there is no clear indication on what
could be the good form and the intensity of the effective two-body interaction
potential of propagating particles in the ES.

The Chiral Tomonaga Luttinger Model We decide to focus on interacting
effective one-dimensional models, implicitly assuming either that the confinement
potential is sufficiently sharp to justify narrow, incompressible ES, or that the
presence of the compressible stripes does not influence strikingly the transport,
which occurs at the edge of the stripes2. If we take the non-interacting model

1These compressible regions can indeed screen the realistic interaction of injected electrons on
the channel, making the effective description of transport models even more complex.

2This is a strong assumption from the theoretical point of view. Many experimental facts are
however supporting the view that the pinning effects due to the existence of the stripes are
not extremely relevant for effective transport models (unless high-bias is concerned [137]).
For tunneling contacts, a zero bias peak in the tunneling density of states is never observed,
and it is expected that for transport of single-particles occurring at energies over the Fermi

69



4 Interactions in Spin-Resolved Transport

described in Chapter1, and we disregard the effect of the transverse wavefunctions,
we can write the Hamiltonian of the system in the second quantized notation (see
Fig.4.1)3

H0 =
∑

σ

∑

k

~vσF (k − kσF )c†kσckσ , (4.1)

where σ =↑, ↓≡ (+1,−1). In the following the difference between the spin-resolved
wave-numbers will be denoted as ∆k = k↑F − k↓F , and between the spin-dependent
Fermi velocities as δv = v↑F − v↓F .
Coulomb interactions between two chiral 1D channels should add this generic

term to the Hamiltonian [65]

Hint =
1

2L

∑

σ,σ′

∑

q,p

∑

k

[Uσσ′(q, p, k)c†qσc
†
pσ′c(p−k)σ′c(q+k)σ] , (4.2)

where Uσσ′(q, p, k) represents the interaction potential between electrons projected
on the same edge channel (σ = σ′) or on different edge channels (σ = −σ′).
When it comes to deal with interactions, the choice of working with 1D edge

channel, from a theoretical point of view can heavily benefit of the experience
maturated in the theoretical field of study of Luttinger liquid theory. Indeed it
is a well known fact that the quasiparticle picture of Fermi liquid theory breaks
down in one dimension for arbitrary interaction strength [82], and excitations
of the Fermi sea are expressed in terms of bosonic collective charge and spin
fluctuations.4
Following recent approaches [103, 104, 105, 106], the model defined by Hedge =

H0 +Hint can be inscribed in the Tomonaga Luttinger (TL) model as long as we
assume that the effective interaction of electrons on the ES couple charge density
fluctuations, and not individual electron operators. Physically, this is the case if
we are interested only in the long-wavelength properties of the system, or if the
exchange of momentum occurs between states which are close to the Fermi surface
(so that in the interaction potential Uσσ′(k, p, q) we put q, p = kσF ), or also if we
approximate the interaction within the Hartree-Fock approach [97, 160].
If σ̄ = −σ, the interacting TL Hamiltonian in k-space is given by

HTL
int =

1

2L

∑

σ

∑

q,p

[U1(k)c†qσc
†
pσc(p−k)σc(q+k)σ + U2(k)c†qσ̄c

†
pσc(p−k)σc(q+k)σ̄] . (4.3)

level, as in the setup that is described in Section 4.2.1, the unoccupied states available for
transport are compatible with a 1D transport model.

3There are some technicalities concerning what is the physical Hilbert space of the TL
model [66]. It should be noted that we are considering H0 to be normal ordered, i.e. we
subtract the energy of the filled Fermi sea (which is the right-mover band filled up to kσF ),
which represents the vacuum of the creation/annihilation operators.

4The few approaches that have been advanced [97, 110, 98] to study the effective transport
model for the wide edge, are also describing the transport in terms of bosonic collective
modes, and are completely compatible with the chiral Luttinger liquid picture in the zero-
width limit.
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Figure 4.1: Left panel: schematics of the bands of the 1D model from which the
chiral TL model is derived. v↑F and v↓F correspond to the two different
slopes of the tangent of the bands at Fermi energy εF . Right panel:
the eigenmodes of the chiral TL model if v↑F = v↓F : the collective
charge and spin modes are delocalized on both edge channels, but one
is charged and “fast” while the other is neutral and “slow” (see text).

4.1.2 Solution of the Model through Bosonization

We can re-write the Hamiltonian Eqs.(4.1),(4.3) in terms of density operators

ρσ(k) =
∑

q

c†qσc(q+k)σ , (4.4)

which follow a Bose statistics ([ρσ(k), ρσ′(k
′)] = kδ(k − k′)δσσ L

2π
) in the physical

Hilbert space [84]. Due to the linear dispersion, the non-interacting part H0 can
also be written in terms of these operators so that the total Hamiltonian turns
out to b

Hedge '
2π

L

∑

k>0

∑

σ

~vσFρσ(k)ρσ(−k) (4.5)

+
1

2L

∑

k>0

∑

σ

[U1(k)ρσ(k)ρσ(−k) + U2(k)ρσ(k)ρσ(−k)] .

We now introduce the total charge and spin densities operators s(k) = 1√
2
(ρ↑(k)−

ρ↓(k)) , and ρ(k) = 1√
2
(ρ↑(k)+ρ↓(k)), and we re-express the Hamiltonian in terms

of these fields by doing a canonical transformation (Bogoliubov rotation). In or-
der to make the bosonic nature of the operators more explicit, we denote s(k) =√
L |q| (2π)−1[Θ(k)sk + Θ(−k)s†k] and ρ(k) =

√
L |q| (2π)−1[Θ(k)ρk + Θ(−k)ρ†k],
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where now the operators ρ and s obey canonical bosonic commutation rules. The
Hamiltonian now takes the for

H =
1

2π

∑

k>0

vch(k)kρ†kρk +
1

2π

∑

k>0

vsp(k)ks†ksk

+
∑

k>0

(~δv)k[s†kρk + ρ†ksk] . (4.6)

If δv = 0 we would have already diagonalized the Hamiltonian in terms of two
bosonic modes ρ and s (and that would correspond to the so-called spin-charge
separation5 [122]). We need to implement a second Bogoliubov rotation, defining
the modes ρk = Ak cos θk − Bk sin θk and s(k) = Ak cos θk + Bk cos θk. In terms
of this operators, which are still fully Bosonic, for θk = 1

2
arctan[2δv/(U2(k))] the

Hamiltonian is finally quadratic

H =
∑

k>0

v+(k)kA†kAk +
∑

p>0

v−(k)kB†kBk , (4.7)

where the dispersion relations are

v± (k) = v̄ +
U1(k)

π
± 1

2

√
δv2 +

U2(k)2

π2
, (4.8)

where v̄ = (v↑F + v↓F )/2.

fermionic Correlators The general single-particle Green’s function can be com-
puted thanks to the Mattis-Mandelstam formula [84] applied to our quadratic
Hamiltonian, which states that the fermion annihilator operator in real space can
be written as6

ψσ(x) ≡ lim
α→0

F̂√
2πα

e−ik
σ
F x exp[

∞∑

k=0

√
2π

kL
e−

αp
2 (eikxρσ(k)− e−ikxρσ(−k))] , (4.9)

where the bosonic density operators are defined in Eq.(4.4) (and can be straight-
forwardly related to the eigenmode operators A, B) and the Klein Factors F̂ are
fermionic “dummy” operators whose role, in the limit of an infinite 1D system,
is just to ensure the proper anti-commutation relations {ψσ(x, t), ψσ′(x

′, t)} =
δ(x− x′)δσσ′ .
The Ground state with respect to which we evaluate expectation values is a

Fermi sea at zero temperature:
∑

k

〈
c†kσckσ

〉
= f(ε) = Θ(−εF ).

5vch and vsp are the spin/charge dispersion relations, whose expression is easily deduced from
the more general formula Eq.(4.8), for δv = 0.

6Note that in this chapter, since the model is strictly 1D, the x variable will always refer to
the coordinate along the direction of propagation, differently from previous chapters where
the axis of propagation was the y axis.

72



4 Interactions in Spin-Resolved Transport

Exploiting the Gaussian Identity valid for zero-temperature expectation values
of exponential of bosonic operators A(k), A†(k) multiplied by c-numbers α and β,

〈
e

P
k αkA

†(k)e
P
k βkA(k)

〉
= e

P
k αkβk〈A†(k)A(k)〉 = e

1
2

P
k αkβk , (4.10)

we obtain finally [103]
〈
ψ (x, t)ψ† (0, 0)

〉
= iG>

0σ (x, t)F+ (x, t)F− (x, t)Sσ (x, t) , (4.11)

where we isolated the bare greater Green’s function (see next Section)

G>
0σ (x, t) =

1

2π

eik
σ
F x

x− v̄t+ i0+
, (4.12)

the slow and fast mode components (m = 1, 2)7

Fm = exp

[
−
ˆ ∞

0

dp

2p
e−rpKm(x, t)

]
, (4.13)

and a “spin part” which is non-zero only if δv 6= 0

Sσ = exp

[
−σ
ˆ ∞

0

dp

2p
e−rp sin θpKm(x, t)

]
, (4.14)

where Km(x, t) = (eip(x−v̄t)−eip(x−vm(p)t)), and θp is the Bogoliubov rotation angle
used in the diagonalization of the Hamiltonian (see previous paragraph).

4.1.3 Single-Particle Green’s Functions and Diagrammatics

Conventions and Useful identities for Green’s Functions We start by sum-
marizing some useful definitions and identities concerning Green’s functions. In
the following sections we will indicate with the calligraphed notation G only the
Green’s functions belonging to the TL-model computed in section 4.1.2, while we
will use the symbol G when describing Green’s functions in general.
We already introduced in section 3.1.1 the “matrix” version of the retarded

Green’s function. Its corresponding definition by means of second-quantization
formalism (i.e. ψσ are fermionic operators) is

Gret
σ (x, t) = −iΘ(t)

〈{
ψσ (x, t) , ψ†σ (0, 0)

}〉
. (4.15)

For non-interacting electrons the linear-dispersion model presented at the begin-
ning of this chapter give

Gret
0σ (x, t) = −iΘ(t)δ(x− vσF∆t)eik

σ
F x . (4.16)

7We use alternatively the continuum or the discrete version of the momentum expansion,
related by

∑
k F (k) = L

2π

´
dkF (k).
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As anticipated in the previous Section, for the following calculations, we will
need the so-called non-equilibrium Green’s functions

G<
σ (x, t) = i

〈
ψ†σ (0, 0)ψσ (x, t)

〉
−→ G<

0σ(x, t) =
eik

σ
F x

x− vσf t− i0+
, (4.17)

G>
σ (x, t) = −i

〈
ψσ (x, t)ψ†σ (0, 0)

〉
−→ G>

0σ(x, t) =
eik

σ
F x

x− vσf t+ i0+
, (4.18)

as well as the time-ordered Green’s function (or electron propagator), which is
defined by

GT
σ (x, t) = θ (t)G>

σ (x, t) + θ (−t)G<
σ (x, t) . (4.19)

The calculation of transport quantities at steady state will benefit from being
able to represent the Green’s functions in the energy/momentum representation,
through Fourier transforms such as8

G (k, ω) =

ˆ +∞

−∞
dt

ˆ +∞

−∞
dxe−i(kx−ωt)G (x, t) . (4.20)

In this representation it will be of foremost importance to state and exploit the
fluctuation-dissipation theorem (FDT) which at equilibrium connect the greater/lesser
Greens functions with the spectral function Aσk(ω)=− 1

π
ImGret

σ (k, ω)

G<
σ (k, ω) = iΘ(−ω)Aσk(ω) G>

σ (k, ω) = −iΘ(ω)Aσk(ω) , (4.21)

where we assumed the distributions functions f(ω) defined in Eq.(1.16) to be eval-
uated at T=0 (and εF has taken to be 0).

Green’s Functions for the Interacting ES In order to evaluate the correlators
analytically, as customary in these cases, we “artificially” introduced a momentum-
cutoff r in the integrals and a regularization cutoff 0+ in the bare green’s function.9
In calculations r will be considered finite but small so that in the integrals we can

neglect the scale of variation of Ui (p) and the curvature of the dispersion relation
of the physical model10. This means in real space that the “bare” interactions can
effectively be considered local (delta-like) in the space direction of propagation.

8Inverse Fourier transforms are defined accordingly, introducing (2π)−1 factors where necessary.
9We would like to point-out that, as reviewed by Solyom [86], the bosonization procedure
allows to obtain results for the Green’s function without the necessity to introduce these
physical cut-offs since algebraic identities for the Tomonaga-Luttinger model are determined
as a function of a single parameter α which is taken to zero at the end of the calculations
to ensure proper commutation relations (see Eq.(4.9)). However, formally introducing a
finite-range exponential suppression of the interactions (in momentum space) with constant
interaction parameter results in formulas equal to those of constructive bosonization where
α is simply replaced by the cut-off r.

10This automatically implies that Ui(p) do not diverge for p → 0, which is not the case for
unscreened Coulomb interactions, which diverge logarithmically [104]. It is however very
much likely that the interaction is screened and regularized by the metallic surroundings or
the compressible stripes.
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So we can write U1 (p) /π ' w, U2 (p) /π ' u (these asymptotic values are often
denoted in the g-ology literature as g4‖ and g4⊥) and θp ' θ0. We may note that
the intraedge interaction w enters in the equations simply by adding itself to the
average Fermi-velocity. We include this renormalization in the following notation
considering v̄ to include the effect of the intraedge interaction.
Within these approximations, noting v± = v̄ ± u, we obtain the following ana-

lytical form for the retarded Green’s function

Gretσ (x, t) = Θ(t)[G>σ (x, t)− G<σ (x, t)] (4.22)

=
Θ (t)

2πi
eik

σ
F x[
∏

j=+,−

g (x, t, r)

(i (x− vjt) + r)
1
2

+jσδ
+ (x→ −x, t→ −t)] ,

where we introduced the spin-asymmetry parameter δ = 1
2

sin θ0 and the quasi-
particle weight function g (x, t, r) = (i(x− v̄t)+r)(i(x− v̄t)+0+)−1. We note that
while for δ = 0 the “usual” spin/charge mode decomposition is perfect, if δ . 1

2

we are in the limit of strong asymmetry between spin-resolved channels, and the
fast/slow modes are associated mainly with a particular spin-projection, since one
of the two spin-charge peak will be strongly enhanced and the other strongly sup-
pressed (see Fig.4.3) [151, 154, 153]. The spin dependency is manifested as well
in the wavevector separation ∆k = k↑F − k↓F , which is straightforwardly connected
with the real-space separation of the edge channel (see Section 1.2.2).
In Fig.4.3 we show several plots of G>σ (X, τ), which physically represent the

probability amplitude of propagation of an electron from a point x = 0 at time
τ = 0 to a point x = X at point τ = t. The effect of the interaction cutoff is
analyzed in the pictured example: the quasiparticle contribution (peak at v̄t = X)
corresponding to the total absence of spin-charge separation is visible only for r
sufficiently large. For r 6= 0, at small distances of propagation, the quasiparticle
contribution is so large that it smears out completely the peaks due to the fast
and slow modes. For the transport calculations we will focus on the situation
where r = 0 (“totally screened quasiparticle”) and X is sufficiently large as to
make distinguishable the effect of the collective modes (right panel of Fig.4.3).
We note that the Fourier transforms of the non-equilibrium Green’s functions
G>σ (x, ω) and G<σ (x, ω) have an analytical form in terms of Confluent Hypergeo-
metric Functions [85]. For r = 0+

G>σ (x, ω) =
iΘ (ω)

2π
e
i[kσF+ω( 1

v2
)]x

Φ[
1

2
+ σδ, 1, ixω(

1

v1

− 1

v2

)] , (4.23)

whereΦ (a, b, z) is the Kummer’s confluent hypergeometric function11. By ex-
ploiting the relation Φ (a− b, b,−z) = ezΦ (a− b, b,−z) it can be shown that∣∣G>↑ (x, ω)

∣∣ =
∣∣G>↓ (x, ω)

∣∣ (see Fig.4.3) but the spin-dependence, which is only a

11Eq.(4.23) is already normalized (by choosing proper momentum/energy cutoffs) such that
G>σ (x = 0, ω) = −iΘ(ω)

´
A(k, ω)(2π)−1dk = 1
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Figure 4.2: Left panel: |G>σ (x, t)| calculated with r = 0.1 (see Eqs.(4.12)-(4.14))
for different distances (Units are such that vσF = 1 ± δv, and δ =
1
5
). Right panel: |G>σ (x, t)| with r = 0, δ = 1

5
, for spin up (blue)

and down (red) for distances of 100 and 500 nanometers. Times are
measured in hundreds of nanoseconds. Interactions parameters, for
both panels are the same as discussed in the text and as in Fig.(4.3).

phase in the space-energy representation, is non trivial in time. One nice property
of the analytical form of G>σ is the functional equivalence between ω and x, which
always appear as ωx, so its algebraic decay in energy is the same as the decay
with increasing distances. Indeed in the asymptotic limit

|G>σ (x� 1, ω)|2 ' |ωxp−|2δ−1 , (4.24)

with p− =
(
v̄2−u2

u

)
. The divergences of the Green’s function for t = x/v± de-

termine the fundamental frequency oscillation periods in the Fourier transform
Gretσ (x, ω) [123, 105].
We would like to point-out that, restricting our study to 1D fermions of the TL

of a single branch (the “right movers”), the Retarded/Advanced Green’s functions,
both bare12 and dressed by the interactions, obey the “chirality identities”

Gret (x, ω) = 0 for x < 0 (4.25)

and equivalently Gadv(x, ω) = 0 for x > 0. This leads to the very useful identity
for positive coordinates: GR (x, ω) = G> (x, ω)−G< (x, ω) which allows analytical
calculation of retarded Green’s functions. We would like to point-out also that
for ω > 0 the following relation hold

Gret (x, ω) = G> (x, ω) for x > 0, ω > 0 (4.26)

12That is the Fourier transform of Eq.(4.16), i.e. GR0σ(x, ω) = −iΘ(x)(2πvσF )−1 exp[i(kσF +
ω/vσF )x].

76



4 Interactions in Spin-Resolved Transport

These identities have also strong consequences in deriving the Quantum Kinetic
Equations discussed in the next section.

Physical parameters for the interacting ES model As thoroughly discussed in
Chapter 1, typical effective models of narrow edge states that include interaction
effects find a separation of the order of the magnetic length lB ' 10nm (at ν =
2 with B ' 5T ) which means that ∆k ' l−1

B . This difference in k-numbers
enters in all Green’s functions just as a global phase eiδkx, so its effect is energy
independent13. At fixed distance x, ∆k provides a fixed phase difference between
the two channels, whose effect on transport (within our setup described in the
next Section) can be totally compensated by an appropriate phase difference δφ =
φL − φR between the injection and detection basis, as it will be discussed in the
next Section. For this reason, ∆k is irrelevant for the sake of evaluating the effect
of interactions in spin-interferometry , and we will set ∆k = 0 in all our following
numerical evaluations.
As we will see in more detail in Section 4.2.4, the spin-asymmetry is a crucial

parameter for determining the interferometric pattern. In the non-interacting
models discussed in Chapter 1, the dispersion bands are likely to have very similar
slope in a hard-wall model, and in general the dependence of vF on the wave-
number through Eq. (1.10) is very small, so v̄/δv � 1. It is however very hard to
have a realistic idea on what might be the spin-asymmetry between the channels
in interacting models also in the hard-wall confinement limit as the bands are
heavily influenced by the interactions [101]. In the following we will consider the
test-case of δ = 1/5 (i.e. a deviation of about 10% from the average value v̄).
Intra-edge interaction w and inter-edge interaction u must be of the same order

of magnitude, with u in principle smaller due to the physical separation between
the edge states, of the order of lB. All previous assumptions lead to consider
vF > w & u, but we stress that all these parameters depend non-trivially on the
details of the nanostructures such as the presence of the metallic surrounding that
can screen the interactions. In order to make calculations we take w ' u ' vF/2,
so: v+ ' 2vF (fast mode) and v− ' vF (slow mode). The quasi-particle weight is
1 for r → 0+, and in this case the transport is dominated by the collective modes.
The temperature will be taken to be zero, which with our parameters means

that kBT . 10−6eV .
Considering Fermi velocities of the order of 105ms−1 (see Table 1.1) , and

propagation distances of some microns,14 we expect these peaks should occur at
energies ε = ~ω of the order of hundreds of µeV . Maximum energy for which
the TL model is justified is εmax . ~ωC ' 10−3eV , so we expect interesting

13It is obviously true that the physical separation influences the transport through the effective
interaction parameters u and w.

14We remind that at ν = 2 the coherence length is expected to be of the order of tens of
microns [25]
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Figure 4.3: |G>
σ (x, ε)| is plotted for u = w = vF

2
, δ = 1

5
. The oscillating pattern

follows the periods ∆ω = 2π
x

v+v−
v−±v+ . The function profile for x =0.1,

0.2, 0.3, 0.4, 0.5 µm has been highlighted. The Green’s function has
been normalized so to respect the sum rule on the spectral function
−2
´
ImGretσ (x = 0, ω) dω

2π
= 1.

dynamical transport features to arise in the energy window where the chiral TL
model is valid.

Effective Interactions We finally turn the attention to the effective Coulomb
interaction in the TL model. The bosonization procedure that we employed for
the Green’s functions is an algebraic shortcut to unveil some remarkable mathe-
matical properties of the TL model that can also be discovered by diagrammatic
perturbation analysis on the electron-electron interactions.
In a diagrammatic interacting theory, which will be very quickly reviewed in

Section 4.2.2 for an electronic transport problem,15 the effective interaction is the
formal “propagator” which connects two Fermionic Green’s functions, which is
usually indicated in diagrams as a thick wiggled line. The perturbative develop-
ment given can be arranged for the interaction propagators in recursive relations
in the spirit of Dyson’s equations, and one striking consequence of linear disper-
sion relation is that the effective interaction among electrons is exactly given by
the result given by the diagrammatic Random-Phase-Approximation (RPA) on
the interaction lines (see Fig.4.4). Noting the irreducible polarization bubble as
Πσ = Πσ (k, ω) [66], RPA dictates the absence of vertex corrections in the po-
larization, so that the interaction lines are only renormalized by the irreducible
bubbles. In our chiral TL model we can even replace the interacting polarization

15The reader which is totally unfamiliar with this theoretical method is advised to skip this
paragraph and return later after having acquaintance with the language and formalism.
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Figure 4.4: Diagrammatic view of the Dyson’s equation for the interaction prop-
agators. Single wiggles represent bare interactions (u for σ = σ′ or
w for σ 6= σ′) while double wiggled lines represent full propagators
D (4.28)-(4.29). Irreducible polarization bubbles are actually the free
ones Πσ = Π0

σ described in Eq.(4.27).

bubble with the bare ones [87]

Π0
σ (k, ω) = − i

~

ˆ
dp

2π

ˆ
dε

2π
GT
σ0(k + p, ω + ε)GT

σ0(p, ε)

=
1

2π~
(k − kσF )

ω − vσF (k − kσF ) + i0+sign (ω)
. (4.27)

The “bare” interactions u and w get renormalized and generate the following
effective interactions for same (D‖) or different spins (D⊥):

Dσ,−σ
⊥ (k, ω) =

u+ uw (Πσ − Π−σ)

(1− wΠσ) (1− wΠ−σ)− u2ΠσΠ−σ
(4.28)

Dσ,σ
‖ (k, ω) =

w − w2Πσ + u2Π−σ
(1− wΠσ) (1− wΠ−σ)− u2ΠσΠ−σ

(4.29)

In the following sections we will need the effective interactions for ω = 0.
We note that Π0

σ (k, ω = 0) = − (2π~vσF )−1, which means that the renormalized
interactions w̃ and ũ remain local in space, but are in general weakened with
respect to their bare values. To get an idea, for u = w = vF/2 and δv ' vF/5, at
first order in δv we get ũ↓↑ = w̃↑↑ ' 0.45vF , ũ↑↓ = w̃↓↓ = 0.42vF . For δv 6= 0, the
effective interactions are manifestly spin-dependent.

4.2 Calculation of Electronic Current and
Spin-Interference

In Section 1.3.4 we presented the scalable MZI and we explained how spin-resolved
injection would be a straightforward way to obtain the delocalization on ν = 2
ES. Using nanomagnetic spin-mixer devices such as the ones described in Section
3.3 would be perfect for setting up a practical spin-interferometer. However, for
the sake of a theoretical analysis that includes interactions, the dynamical effects
of a structured nanostructure consisting of an array of magnetic fingers would be
very complicated to describe.
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We notice however that two co-propagating channels of the same length char-
acterized by different Fermi velocities are supposed to naturally induce different
phase shifts on the electronic states travelling through them. As it is intuitive for
non-interactive electrons (see Section 4.2.2), it is formally equivalent to consider
two channels of different lengths or two channels of different vσF , so that if δ 6= 0
we can fabricate an interferometer without the necessity of spatially separate the
trajectories of the co-propagating ES, if we have a way to create a superposition
of spin-states at the entrance of the channels and we to filter out a given spin
direction at the exit.
For this reason in this section we decided to focus on studying the properties of

an idealized setup which allows arbitrary spin-state injection on spin-asymmetric
edge channels and perfect spin-state filtering of the electronic current.

4.2.1 Spin-Resolved, Energy-Resolved Gedanken
Experiment

The idealized setup (shown in Fig.4.5) consists of two non-interacting QDs which
are weakly tunnel-coupled to an IQH Hall bar which is maintained at a given
chemical potential εF by strong coupling with distant grounded ohmic contacts.
QDs are in contact with non-interacting electron reservoirs at chemical potential
µR and µL so that we can define a steady-state tunneling current ILR from the left
lead to the right lead, passing through the QDs L and R, and the edge channel.
The QDs are tuned so to provide single resonant energy levels εL and εR in the

transport window of the system (see Fig.4.5), so that they can be represented by
the following Hamiltonian

Hd
L = εLd

†
LdL Hd

R = εRd
†
RdR , (4.30)

(di are fermionic operators representing the charge occupation of the level of the
dot). If we set µR = εF and eV > εF , because of chirality the only non-zero
current in the system will be originated from dot L and will be drained either
by the reservoir of dot R or by the distant ohmic contact 2. We are of course
interested in the current passing through the right QD, defined as

IR = e
d

dt

(
d†RdR

)
. (4.31)

If we include spin into the picture, the energy of the resonant levels εi=R,L
becomes spin-resolved (εi↑ = εi↓ + ∆) due to Zeeman energy and Coulomb block-
ade so that a single spin projection is allowed in the transport window (say ↓),
while transport of ↑ (possible in principle through cotunneling) is exponentially
suppressed at low temperature and for large ∆ .16

16Spin-blockade transport effects of this kind are behind what is called “Spin-to-charge
conversion” in the literature [117, 142], and they are nowadays very well controlled
experimentally [116, 150].
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Figure 4.5: Setup of the gedanken experiment. Left panel: Planar view of
the four-terminal device, reservoirs are Ohmic contacts 1,2 and the
shaded regions under the quantum dots L,R are reservoirs maintained
at chemical potential µL and µR. Contacts 1,2 are intended to be
very far from L,R, ideally at infinity, and they are grounded. Only
the reservoir connected to L is biased with respect to the ground.
White arrows indicate the only non-compensated electronic currents.
Right panel: Energy level view of the transport experiment. Trans-
port occurs through resonances present in the quantum dots which
are accessible within the transport window determined by the bias
eV. Zoom inset: the tilted arrows represent the magnetic fields in
the dots (see Eq.(4.34)), which allow only one spin-projection in an
arbitrary basis to be transmitted in the propagation region.

We imagine that it’s experimentally possible to orient the magnetic field acting
on the dot along an arbitrary direction in space (defined by Euler’s angles θ and
φ). The energy levels would be eigenstates with respect to the new spin direction
|↗〉 = cos

(
θ
2

)
|↑〉+ eiφ sin

(
θ
2

)
|↓〉. In other words only an electron with spin state

(θi, φi) and energy εi would be allowed to tunnel through the dot i and contribute
to IR. This gedanken situation would define the spin-resolved, energy-resolved
steady state transport problem object of this work. This situation is reproduced
by the following model Hamiltonian

H = Hd
R +Hd

L +HRes
R +HRes

L +HTR +HTL +

+ HTE
R +HTE

L +Hedge , (4.32)

where the reservoir Hamiltonians are just free Fermi liquids (electronic operators
ck), tunnel coupled (by means of tunnel amplitudes labeled Tk) to the quantum
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dots

HRes
i =

∑

k

(εk − µi) c†kck , (4.33)

HT i =
∑

k

(
Tkc

†
kdi + T ?k d

†
ick

)
,

which as previously explained are transmitting a specific spin projection on the
edge through tunneling

HTE
i = ti

∑

σ

V σ
i ψσ(xi)d

†
i + h.c. , (4.34)

where V ↑i = cos θi
2

V ↓i = sin θi
2
eiφi represent the spin projection on the Bloch-

sphere, and ψσ(xi) is the wavefunction of an electronic state (whose spin projec-
tion is σ) defined on the edge, that has been defined in the Hamiltonian Hedge

(see Section 4.1).

Experimental Considerations We would like to point out that it is not realistic
to have local and strong magnetic fields such to define a proper arbitrary basis in
the quantum dots of our setup, but such strong static fields have been introduced
in the model in order to have a simple treatment of the electronic transport.
However it is now technologically possible to prepare locally an electronic spin-

state in quantum dots by mean of Electron Spin Resonance [114], and to measure
its spin state by means of spin-dependent tunneling rates [115, 116]. It is also
experimentally demonstrated that tiny quantum dots can be coupled to the edge
states reliably in such a way to filter the energy of the incoming wavepackets [141].
All the time-dependent procedures necessaries for spin-state preparation can in
principle be coupled with time-resolved single-electron injection in edge channels [112].
Keeping in mind these technological considerations, we can assess the steady

state transport calculation described in this Chapter as an approximation of a
realistically achievable time-dependent transport procedure.17

Moreover, we mention that while our idealized setup has in mind planar, gate-
defined quantum dots and GaAs 2DEGs, our calculations might be as well relevant
for conceptually similar future experiments in systems employing tunneling by
suspended Tips in surface 2DEGs[162], Graphene[51], Topological insulators[161,
166] or clean Nanotubes [167] .

17The typical timescales of operation of the external field required for the spin-state preparation
are at least one order of magnitudes smaller (µs) than the inverse tunneling rates in the
weak coupling regime (10−5s), so in first approximation the steady model where the spins
are polarized by local constant fields is relevant.
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4.2.2 Non-Equilibrium Green’s Function Formalism for the
Current

The current ILR is straightforwardly computed by the LB formalism (see Eq.(1.15))
if the system is non-interacting, once the transmission coefficient between the leads
L,R is defined

ILR =
e

h

ˆ
dω

2π
[fL (ω)− fR (ω)] ρL (ω) ρR (ω)T (ω) . (4.35)

This transmission coefficient physically represents the probability amplitude of
arrival of an electron wavepacket traveling at fixed energy ω, and we already
observed in Section 3.1.1 that in non-interacting system it’s connected to a mi-
croscopic model through the Fisher-Lee formula (see Eq.(3.11))

T (ω) = |tR|2 |tL|2
∑

sσ

ΓsσG
ret
0s (x, ω)Gadv

0σ (−x, ω) , (4.36)

with Γsσ = V σ
R (V s

R)∗ V s
L (V σ

L )∗ and G
ret/adv
0 are the non-interacting retarded /

advanced Green’s functions defined on the edge channels, properly normalized in
order to give unit probability current flux.
As it will be detailed in Section 4.2.4, this formula can be easily understood in

the non-interacting limit as the amplitude of a double projection of a spin-state
performed by the injector/detector quantum dots. The initial spin state injected
on the edge channel is |ψin(x = L)〉 = V ↑L |↑〉+ V ↓L |↓〉. After propagation the spin
components might have accumulated a phase difference ∆ϕ due to different path
lengths or different channel velocities |ψin(x = R)〉 = V ↑L |↑〉 + V ↓Le

i∆ϕ |↓〉. The
state can tunnel in the detector quantum dot, with amplitudes V ↑,↓R : |ψdotR〉 =(
V ↑LV

↑
R + V ↓Le

i∆ϕV ↓R

)
|d〉. We need to take the modulus square of this state to

evaluate the probability of occupation of the dot, obtaining “direct” terms Γσσ
and “interference” terms Γσ,−σ. The phase difference ∆ϕ will play a role in the
crossed transmission coefficient (see Eq.4.52).
The Fisher-Lee formula is a useful relation which is valid only in the non-

interacting weak-bias regime, while the gedanken experiment presented in the
previous section considers interacting electrons injected at energies εL and εR
which can be, in principle, well above the Fermi level. In order to obtain a close
expression for the current in terms of computable observables for arbitrary bias
and many-body interactions, we need to turn our attention to a more complex
Green’s function theory.

Observables from the Keldysh Contour Following the early works of Car-
oli and Nozieres [120], Meir and Wingreen [69], we express the non-equilibrium
tunneling current in mesoscopic devices in terms of the non-equilibrium Green’s
functions G< and G> defined in Section 4.1.3. Their computation is achievable
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to arbitrary order in perturbation theory by means of a diagrammatic quantum
field theory (QFT) technique originally developed by Keldysh, whose application
to non-equilibrium transport problem has become a standard for steady-state
current calculations [70].
The idea is based on the observation (originally made by Schwinger) that the

Gellman-Low theorem for ground-state expectation values (with respect to H0)
of operators in equilibrium QFT (at T=0 for simplicity) is generalizable for time-
dependent Hamiltonians [67]. This theorem (together with Wick’s theorem) de-
fines the diagrammatic expansion in terms of the Taylor series of the time-ordered
evolution operator Tt exp[−i

´ +∞
−∞ H ′(t)dt], where H ′(t) = eiH0tH ′e−iH0t is a time-

independent Hamiltonian in the interaction picture, and Tt{. . . } indicates time-
ordering of the operators inside the brackets.18

For explicitly time-dependent Hamiltonians H′(t) (which are in principle nec-
essary to define steady state non-equilibrium transport, see Section 1.3.2), the
formula that initiates the perturbative expansion (or alternatively the diagram-
matic series) reads

〈Ô(τ0 . . . )〉K = Z−1
0 〈Tτ{e−i

´
KH

′(τ)dτ Ô(τ0 . . . )}〉 , (4.37)

where the expectation value is still taken with respect to H0, and Z0 is formally
just a normalization factor meant to cancel the disconnected diagrams of the
expansion (Cancellation Theorem).
In Eq.(4.37) the time variables τ and τ0 are taken on the Keldysh Contour K

(see Fig.4.6), i.e. over an unphysical one-dimensional manifold where times are
orderly labeled from −∞ to an arbitrarily large τ̄ (+∞), and then back to −∞.
The first part of the ordered infinite line from −∞ to τ̄ determines the upper
branch of the contour (times on this line are labeled with a + superscript, e.g.
t+), while the second part (from τ̄ to −∞) is the lower branch (times are labeled
t−).
Contour-ordered Green’s functions are just observables composed by electronic

operators whose times live on K. There exist analytical continuation rules that
allow to express regular Green’s functions in terms of contour-ordered Green’s
functions, so Eq.(4.37) can indeed be used to compute useful quantities.
In particular, greater Green’s functions19 are

G>(x, τ1 − τ2) ≡ GK(x, τ−1 − τ+
2 ) , (4.38)

where GK is the Green’s function obtained through Eq.(4.37), for Ô(τ1, τ2) =
ψ(τ1)ψ†(τ2).
The analytical continuation rules that lead to Eq.(4.38) can be extended to

products and τ -convolutions of Green’s functions (Langreth’s theorem), such as
18We will not remind thoroughly the diagrammatic technique here. For a complete review,

including Feynman rules for constructing diagrams, see However ref.[65].
19Lesser Green’s functions have a similar relations with + and − inverted, and retarded Green’s

functions can be computed by means of Gret(t) = Θ(t)[G>(t)−G<(t)].
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Figure 4.6: Keldysh Contour K . τ1 lives on the lower branch (τ−1 ), τ2 lives on
the upper branch (τ+

2 ). As detailed in textbooks such as Ref. [70],
G<(t2 − t1) = GK(x, τ+

2 − τ−1 ) and G>(t1 − t2) = GK(x, τ−1 − τ+
2 )

the ones that arise in the diagrammatic expansion of Eq.(4.37). For example, for
GK(τ0 − τ ′0) we obtain the Dyson equation in K, which has the generic form

GT (τ0 − τ ′0) = GT
0 (τ0 − τ ′0) +

ˆ
K
dτ1

ˆ
K
dτ2G

T
0 (τ0 − τ1) ΣT (τ1 − τ2)GT (τ2 − τ ′0)

(4.39)
(we omitted spatial variables for clarity and generality, and we noted ΣT the
generic contour-ordered self-energy of the system).20 Noting as ? the contour-
time convolution integrals21, the greater G>(t0 − t′0) is then

G> = G>
0 + [Gret

0 ? Σret ? G<] + [Gret
0 ? Σ< ? Gadv] + [G<

0 ? Σadv ? Gadv] , (4.40)

where t0 and t′0 are now defined on the physical timeline. For steady-state
transport calculations it is useful to use the time-Fourier transformed version
of Eq.(4.40), so that convolutions in time are replaced by products in the fre-
quency domain. By manipulating the resulting equation, and eliminating some
terms proportional to G<

0 which vanish at steady-state [70], we are left with the
famous Keldysh Equation (KE)

G>(ω) = Gret(ω)Σ>(ω)Gadv(ω) . (4.41)

The Dyson’s equations for the retarded Green’s functions are instead analyt-
ically continued from the contour ordered ones by maintaining completely their
structure:

Gret(ω) = Gret
0 (ω) +Gret

0 (ω)Σret(ω)Gret(ω) . (4.42)

In the next subsection we show how the full knowledge of G> and Gret is suffi-
cient to compute the current at lowest perturbative order for the setup described
in Section 4.2.1, and all the complexity of the problem will be contained in the
definitions of the self energies.
20The diagrammatic equation previously shown in Fig.4.4 has also this form, where Σ is repre-

sented by Π.
21I.e.G1 ?G2 =

´
K dτG1(τ0−τ1)G2(τ1). Also summations on spin-indices is implicit, respecting

the conservation rules.
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4.2.3 Current Formula and the Non-Crossing Approximation

In the previous discussion on the diagrammatic theory we didn’t comment on
the explicit form of the self-energies. Formally speaking, the self-energies are
summations of diagrams which represent the influence of the perturbations on
the base Hamiltonian HTL

0 (i.e. the effect of the vertices of the theory). In our
transport problem, the perturbative vertices are those defined by HTL

int (4.3) and
HTE
i (4.34).
When Coulomb interactions or other many-body effects are taken into account

the scattering picture is likely to be completely spoiled. Indeed, LB-like for-
mulas can be usually recovered in the presence of interactions only if they are
approximated as one-body potentials. For Coulomb interactions the presence of
the particle-hole continuum makes this task in principle impossible even for weak
interactions [119]. Despite these discouraging considerations, here we will show
that, due to the chiral properties of our system, in the “high energy” elastic regime
for small tunneling amplitudes we can apply the so-called “non crossing approxi-
mation” (NCA) to recover a LB-like formula Eq.4.35, which embodies also some
non-perturbative effects of interactions.22

The NCA (widely used in the context of electron-phonon coupled systems)
states that the self-energy due to the tunneling Hamiltonian and the self-energy
due to electron-electron interactions are completely decoupled. More clearly, the
total self-energy of the electron on the channel would be23

Σtot = (ΣtL + ΣtR + Σint) + Σcr . (4.43)

The first two terms in the parenthesis are the tunneling self-energies due to
the coupling to the dots. The third term is the self-energy due to Coulomb
interactions, while Σcr represent the crossed irreducible diagrams between the
tunneling and the interaction vertices. Neglecting this last self-energy (which has
non-vanishing contributions at order |ti|2, see later) is the NCA. Dependencies on
frequency and position are implicit in Eq. (4.43), but note that we assume the
tunneling process to be local in space: Σt

i (x̄, x̄′;ω) ∝ δ (x̄− x̄′) δ (x̄− xi) Σ̃T
i (ω).

Although the examined setup is a four-terminal system, due to the bias configu-
ration is arbitrary to evaluate the current in the right dot or left dot, as long as we

22As long as we stay perturbative at lowest order in the tunneling amplitudes, in principle
it is not necessary to introduce further approximations since the Bosonization technique
allows an exact calculation of the four-fermions correlation functions that result out of the
exact perturbative treatment [152]. Despite the existence of analytical results, the current
formulas are quite involved to deal with, both numerically and at the interpretative level, for
the single-branch TL model with spin. Simplifications exists instead for tunneling in IQH
systems for ν ≤ 1 [99], and between interacting counter-propagating edge channels [100, 148].

23We remind that in our setup we can disregard the four-terminal nature of the transport as
the ohmic contacts 1 and 2 are grounded and placed at infinity, so their effect is included
when we take expectations value over the ground state of Hedge.
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keep only terms at order |tR|2 |tL|2 in perturbation theory.24 If we take the NCA
as granted (see later for justifications), following the standard approach detailed
in textbooks such as Ref.[70], the tunneling current IL might be written in terms
of the local density of states as long as we take into account at the lowest non-
vanishing order in the tunneling amplitude tR the full expression of the Green’s
functions25

IL =
e

h
|tL|2

∑

σσ′

V L
σ V

L∗
σ′

ˆ
dω

2π
[G>

σσ′(xL, xL; ω)g<L (ω)−G<
σσ′(xL, xL; ω)g>L (ω)] .

(4.44)
We immediately note that in our idealized setup, the reservoir+dot Green’s

functions gL at zero temperature are g<L (ω) = iΘ (eV − ω) ρLδ (ω − εL~−1) and
g>L (ω) = −iΘ (ω − eV ) ρLδ (ω − εL~−1) so for positive εL < eV we can already dis-
regard the second part of the equation in the parenthesis. This means that the cur-
rent can be expressed in terms of the diagrammatic expansion of G>

σσ′(xL, xL; ω)
alone.
The interacting Green’s function, calculated in Section 4.1.3 through the Bosoniza-

tion procedure, can be formally expressed by a Dyson’s expansion

GTσ (x, x′) = GT
0σ (x, x′) +

ˆ
dx̄dx̄′GT

0σ (x, x̄) ? ΣT
int (x̄, x̄′, σ) ? GTσ (x̄′, x′) . (4.45)

Still on the contour, as long as we stay at order |tR|2 , we can rewrite Dyson’s
equation for the full Green’s function in terms of the tunneling self-energies and
GT only

GT (x, x′) = GT
0 (x, x′) +

ˆ
dx̄dx̄′GT

0 (x, x̄) ? ΣT
tot (x̄, x̄′) ? GT (x̄′, x′) . (4.46)

By applying the KE, after time Fourier transform, the greater component reads

G<(xL, xL;ω) =

ˆ
dx̄dx̄′Gret(xL, x̄;ω)Σ<

tot(x̄, x̄
′;ω)Gadv(x̄′, xL;ω) , (4.47)

where the real-time Green’s functions Gretand Gadv have been immediately iden-
tified with their interacting counterparts Gret and Gadv, since for Eq.(4.25) their
24We note that the proper treatment of transport should include self-energies concerning all

four terminals in order to be consistent with total current conservation in this chiral system,
but if stick to the present perturbative calculation in the limit of a very long Hall-bar
we can avoid discussing about ohmic contacts 1,2. It is however important to note that
these terminals must be present in the real experiment, otherwise the “channel” would be
formally a closed system where energy relaxation doesn’t occur. This is indeed also verified
experimentally [111].

25Green’s functions with double spin indices imply that their perturbative development can
in principle result in a non-zero propagator from spin σ to spin −σ. But of course when
electronic operators are evaluated on the Fermi sea, spin conservation implies that Gσσ′ =
Gσδσσ′ .
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contribution at order |tR|2 is zero. This simplification states that the only contri-
bution of Eq.(4.47) to the current at this order comes by considering Σtot = ΣtR.
The final formula for the current at order |tR|2 |tL|2 has a simple term which

looks like Eq.4.35-4.36 where the Green’s functions are now the interacting ones26

IRL =
e

h
|tR| |tL|2 ρRρL

∑

sσ

ΓsσGrets (X; ε)
[
Gretσ (X, ε)

]∗ (4.48)

where X = xL − xR, ε = εR = εL and Gret follow the Dyson equation Eq.(4.45)
(for retarded functions instead of time-ordered functions). Eq.(4.48) is a very
general one for chiral system weakly coupled to the tunneling contacts.27

We stress that despite Eq.(4.48) looks like a simple generalisation of the LB
non-interacting formula, its validity in an interacting system is not a standard
result. In our setup, this form is a consequence of the elastic transport regime, of
the technical simplifications due to chirality, of the assumption of weak tunneling
and of the application of the NCA approximation.

Crossed contributions and elastic current We would like to point out that
the NCA approximation as in Eq.(4.43) gives a purely elastic contribution to the
current. Indeed if εR 6= εL the product of the two density of states of the quantum
dots will give zero, unless some broadening of the resonance line is introduced.
So the crossed diagrams which we neglected are responsible for all the inelastic
current passing through the device. One question remains: do the disregarded
“crossed contributions” have an important influence also in the elastic case?
We can evaluate some crossed contributions in the elastic limit in order to

estimate the validity of NCA, thanks to some diagrammatic properties of the TL
model. In Fig.4.7 we give a diagrammatic view of Eq.(4.48), and we made clear
what type of diagrams we are excluding by implementing the NCA.
Diagrams as those of type a) in Fig.4.7 are irreducible vertex corrections to the

tunneling self-energy.28

We can also choose to retain the terms of type b) in Fig.4.7, which give rise to a
“reducible” contribution of the diagrammatic expansion of GT

σσ′(xL, xL; ω). Since
we are working in the elastic limit, this contribution is formally equivalent to the
first order diagrams of type-a. Once the contour-ordered convolution integrals are
analytically continued in real-time, and Fourier transformed to frequency domain,

26A similar result has been obtained also in Ref.[124], where the NCA was applied for a non-
chiral spinless TL liquid.

27In the following we will resum all the interactions in the diagrammatic theory by exploiting
the solution of the TL model. However at this stage, the form of the interaction is still to
be specified through Eq.(4.45).

28We note that while we would be tempted by the diagrammatic structure of the current di-
agrams of type (a) to use Ward’s identities for the interacting vertex and apply them for
dressing the tunneling self-energy. However, these identities strongly rely on charge/spin
conservation, and are likely to be inappropriate for the simplification of vertex corrections
of local tunneling vertices in a four-terminal geometry such as the one of our setup.
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the crossed correction would result in the sum of many products of six Green’s
functions of the form

δG>
σσ′ =

´
dxdx′Gret

σ (xL − x; εL)Gret
σ (x− xL; εL)

×Dret
σσ′(x− x′;ω = 0)V R

σ′ V
R∗
σ′ g

ret
R (εR)

×G<
σ′(x

′ − xR; εR)Gadv
σ′ (xR − x′; εR) + . . . . (4.49)

Figure 4.7: Left panel: G (xixi, ω) contribution to the elastic current IRL is visu-
alized in terms of diagrams implementing diagrammatic non-crossing
approximation (NCA, shown in red) and corrections. The thick arrows
represent fully interacting Green’s function with a give spin-index.
Double wavy lines are renormalized propagators of the interaction
(see Fig.4.4). All Fermionic Green’s functions are considered to be
evaluated at the same energy ω. The shaded circles are the tunneling
self-energy relatives to dot R (a) some examples of irreducible correc-
tions to the NCA. The first order diagram is equivalent do diagram of
type-b. (b) reducible corrections to the NCA that can be evaluated.
The NCA is assumed to be valid in the Fermionic loops which are not
affected by diagrams of type a. (c) high-order irreducible corrections
to the NCA which are disregarded. Right panel: δG>/ |G>|2 for
X =0.25 (blue), 0.5 (purple), 1 (brown) µm. The parameters are the
same as Fig. 4.3, and the effective interaction for these examples has
been taken to be the maximum between ũ and w̃.

First, we note that the interaction propagator Dσσ′ (x, x
′;ω) is enforced to be

evaluated at zero energy by the NCA, because of the energy conservation at the

89



4 Interactions in Spin-Resolved Transport

vertex with fermionic lines. It is then proportional to δ (x− x′) as discussed in
Section 4.1.3. Second, we observe that in principle the diagrams that we consider
can give also an inelastic contribution, but we will limit ourselves to the study of
the elastic case ε = εR = εL since otherwise also the higher-order diagrams might
be quantitatively relevant.
Terms such as those of type c) in Fig.4.7 are of higher order in the renormalized

interactions, and can be thus neglected in first approximation if ũ and w̃ are
smaller than vF + δv. In this sense we are introducing a further approximation
in the model, which is considered to be weakly interacting, but still exhibits non-
perturbative effects.
The Green’s functions labels in Eq.(4.49) can be finally found by means of

the chirality identities Eq. (4.25): among all possible combinations the only
contributing term to δG>

σσ′(xL, xL; εL) is

δG>
σσ′ = V R

σ′ V
R∗
σ′ Dσσ′

ˆ xR

xL

dx
∣∣GRσ (xL − x; ε)

∣∣2 ∣∣GRσ′ (x; ε)
∣∣2 g<R (ε) . (4.50)

Note that the prefactor to the integral (4.50) encodes the only spin dependence of
the correction, since the “transmission coefficients”

∣∣GRσ (x; ε)
∣∣2 are spin indepen-

dent as detailed in Section 4.1.3.
In Fig.4.7 we plot the contributions of this term as a function of the energy for

several distances. It is immediately evident that at fixed distance X, for high-
enough energy these corrections becomes less important. However the importance
of this contributions grows with X, as it’s clear from the integration boundaries.
For the chosen parameters in the Figure it is easy to see that, for energies bigger
than 0.5 meV with respect to εF , the contribution is less than 10% to the total
signal and thus can be neglected. For energies close to εF , the contribution might
be important for long propagation distances, this is why we consider the present
theoretical work to be quantitatively valid only for “hot” electrons.

4.2.4 Spin-Interference

Eq.(4.48) can be rewritten in the form

T (ω) = [cos2 θL
2

cos2 θR
2

+sin2 θL
2

sin2 θR
2

]M(ω)+
1

2
sin(θL) sin(θR)Re[eiδφF (ω)]

(4.51)

where M (ω) =
∣∣GRσ (L, ω)

∣∣2 and F (ω) = GR↓ (L, ω)GR↑ (L, ω)∗.
In the non-interacting case the transmission coefficient reads M0 (ω) = 1 and

the interference term is

F 0 (ω) = exp
[
i
(
δk + δv/

(
v2
F − δv2

)
ω
)
L
]
. (4.52)
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This total transmission coefficient illustrates the interferometric nature of the
idealized setup that we are studying: sweeping the configurations of the magnetic
fields of the injector and detector dots we get oscillations, as well as energy de-
pendence of the transport due to interactions. In particular if we fix θ = θR = θL
we define a proper spin-basis of transport, and we can think of the current as a
signature of the quantum-state transfer probability of spin-states oriented on a
given axis in space (flying spin qubits).
We expect the interactions to introduce some non-trivial effects of the phase

between the channels, so we are mostly interested in studying the current oscil-
lations that we obtain changing the δφ variable, which is a direct measure of the
relative phase accumulated between the two spin-states after propagation through
the channel.
As a working example we fix θ = π/2, which means that we are symmetrically

coupled to both spin channels on the Hall bar (or alternatively, we are transporting
spin qubits on the X direction on the Bloch sphere). Then the transmission
coefficient of this spin state, by means of Eq.(4.51), will oscillate in δφ as

TX (ω) = −1

2
[M (ω) + cos(δφ)ReF (ω)− sin(δφ)ImF (ω)] (4.53)

We can immediately see that if δv = 0 the interference pattern has a very simple
δφ dependence (See Fig. 4.8). The effect of the interactions is just a damping of
the transmission which oscillates with energy, indicating a loss of the signal which
is transferred to other energies (by inelastic processes).
If δ 6= 0 the interference term F (ω) introduces an energy dependence on the

oscillations even in the non-interacting case, as expected since for u = 0 the
difference in Fermi velocities can be directly mapped in difference in “effective
path length” in the interferometer. The constructive/destructive interference will
then depend on the absolute value of the kinetic energy as predicted by Eq.4.52.
For interacting channels the relevant velocities for the modes to propagate are

v+ and v−, which reduce to vF + δv and vF − δv only for u = w = 0. This means
that the period of oscillation, and the slope of the resonance in the (φ, ε)-plane
are controlled by the u and w interaction parameters,29 and the interferometric
pattern can be significantly different from the non-interacting one (See Fig. 4.8).
We discover then a very relevant impact of the interactions in the interferome-

ter: the frequency and the shape of the oscillations is strongly dependent on the
interactions, so that in principle a spin-interferometric experiment could give very
accessible information (through the interferometric pattern) on the characteristics
of the interaction between the ES (see Section 4.1.1). As discussed at the begin-
ning of the Chapter, these interaction parameters are directly tunable through
the control of the confinement potential, and in principle the inter-edge interac-
tion w can be completely canceled in regions by separating edge channels by the
29Although the intra-edge interaction determines the oscillations at long distances, the intra-

edge interaction w is important for the progressive energy decrease of the signal.
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Figure 4.8: Left panel: Most-likely trajectory of the electronic state in the polar
plane represented by the phase-angle φ, as a function of the distance
of detection (or equivalently the energy of detection). The trajectory
is defined by the φ which gives maximum of the current signal J(ω)
computed through Eq.(4.48) for a given ε/x. Right panel: Elastic
transmission coefficient for θR = θL = π

2
(lighter colors are closer to

unity, darker closer to zero), in functions of energy and the phase
difference φ = φR − φL. Parameters of the model are the same as
Fig.4.3, and crossed contributions to the current has been neglected
(the plots start at 0.3 meV of the Fermi energy, so the NCA is justified)

cross-gate technique (Sect. 1.3.3) so that a real experiment could in principle test
our predictions and understand under which exact conditions the presented chiral
TL model is fully valid, with great benefit for future effective modeling of IQH
transport experiment.

Coherence and Quantum Information While this gedanken electronic device
is interesting per se, it would be interesting to rephrase the transport problem
in terms of basic quantum information theory, in order to answer the question of
whether hot electrons traveling on interacting chiral edge channels can faithfully
transfer spin-quantum information from one physical point to another, as desired
in some quantum computing setups.
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This task seems quite involved, as the final state of the electronic system after
propagation is a collective, delocalized mode, so it’s not clear whether the quantum
information of interest can be easily isolated from the many-body state (this
would be even more complicated in presence of inelasticity). We will not address
this interesting problem here in its proper generality. We will limit ourselves to
interprete the current formula as if the energetic electronic quasiparticle state and
its spin would be well defined at the moment of injection and detection, as in the
non-interacting case.
We are not formally introducing an external “bath” in our many-body problem,

but we are interested only in some property (the spin) so there are many degrees
of freedom of the system that can act as an environment. If we consider the
transport of the quantum state from one point (dot L) to another (dot R) as a
quantum gate, the transfer can be considered perfect as long as we interpret the
decrease of the signal due to the coefficients Γsσ as a probability of outcome on
the result of the projection measurements of the qubit on the spin state that we
want to transfer.30

The initial state of the electron injected in the channel has a well defined energy
and spin |ε〉 |s〉. After propagation the electron is decomposed on the Fermi Sea
which is left in a complex state consisting of many particle-hole excitations, that
we picture effectively by considering that at the time of measurement we have
different probabilities of finding the original electron in a given energy and spin
state |ε′〉 |s′〉. This is clearly an oversimplified model, as in 1D the interacting
eigenstates are collective waves, so this ansatz for the final state it’s not necessarily
exact even in the elastic limit.31 In this single-particle view, the measured current
signal can be interpreted as a projection measurement of this final state on the
energy and spin subspaces corresponding to the configuration of dot L.
We can formalize this interpretation by considering the current signal as the

expectation value of the operator

ÎLR ≡
(

I + ~σ · n̂
2

)
⊗ |ε〉 〈ε| , (4.54)

where the first term is projection on the spin-direction n̂ (acting on the two di-
mensional Hilbert space of electronic spins, spanned by states |σ〉 = |↑〉 , |↓〉), and
the second term represents a projection on the states of the many-body electron
system which are degenerate at some energy ε. Formally this “energy projection”
is responsible of a suppression for the signal since the final state has only a finite

30See also the discussion on the non-interacting interpretation of the Fisher-Lee formula
Eq.(4.36), on page 83.

31Note however that in the high-energy limits there are indications, for spin-less chiral Lut-
tinger liquid, that the single-particle Green’s functions can be very well approximated by
semiclassical Green’s functions where interactions are treated at the mean-field level[163].
By extension we might expect that at high energies also the spinful model will match the
semiclassical limit where electronic quasiparticles are well-defined.
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probability to be found in a given energy state at the time of measurement. How-
ever, the spin evolution due to the interaction is independent from this energy
measurement because the Coulomb interaction Eq.(4.2), which is the only term
in the Hamiltonian which could provide dephasing, does couple symmetrically to
both spin-channels.
If the total density matrix of the system is ρtot, then

〈
ÎLR

〉
= TrεnTrσ

[
ρtotÎLR

]

= Trσ [τS (P~n)], where

τS = 〈ε| ρtot |ε〉 =
∑

σσ′

τσσ′ |σ〉 〈σ′| , (4.55)

and we obtain

〈
ÎLR

〉
= cos2

(
θ

2

)
τ↑↑ + sin2

(
θ

2

)
τ↓↓ +

1

2
sin θ[eiφτ↑↓ + e−iφτ↓↑] , (4.56)

Note that τS is not the reduced density matrix of the system, as indeed it doesn’t
satisfy the identity τ↑↑ + τ↓↓ = 1. We can however normalize it and indeed obtain
the reduced density matrix of the system which is at a given energy state ε and a
given spin state n̂:

ρS,ε =
τS

Tr (τS)
. (4.57)

The quantity Tr (τS) is indeed the probability of measuring the electron in a given
energy state.
When dealing with qubits, the coherence of an initially pure state is typically

evaluated by observing how its capability of interfering disappears with increasing
time [157]. By analogy with quantum optics, in our steady-state transport equa-
tion we can test the spatial coherence[164], i.e.look at how the coherent properties
of the current disappear as we increase the propagation distance (or equivalently
the energy, because of Eq.(4.23)).
By making these considerations, looking at our steady-state solution Eq.(4.51),

within the limits of our analogy it seems appropriate to identify the probabilities
and the coherences of the density matrix ρσσ

′
S,ε appearing in Eq.(4.56) with the

transport coefficients M(ω) and F (ω). By making this correspondence we obtain

ρS '
(

cos2
(
θ
2

) F (ε)
2M(ε)

sin θeiφ

F (ε)∗

2M(ε)
sin θe−iφ sin2

(
θ
2

)
)

. (4.58)

We can now observe that in this interpretation we do not have “spin-decoherence”
stricto-sensu. Despite F (ε)

M(ε)
being a non-trivial complex function,

∣∣∣ F (ε)
M(ε)

∣∣∣ is always
a constant equal to unity, and has no energy dependence. We stress that the
absence of dephasing in the elastic limit relies on a single-particle ansatz for the
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final electronic state, which has to be verified or improved by more detailed the-
ories. Furthermore these considerations are also a consequence of the fact that
interactions do not couple asymmetrically to the spin-sector of the Hilbert Space.
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Edge states are transport channels which emerge in 2-dimensional electron gases
under high-magnetic fields (“the integer Quantum Hall regime”). Because of their
properties of topological protection, chirality and coherence, these states received
much attention by the condensed matter community, which recognized their po-
tential for exchange of quantum-information (flying qubits) in coherent nanoelec-
tronic devices.
In this thesis we explored the unprecedented opportunity of controlling the

quantum transport of electronic wavepackets delocalized over two co-propagating
edge channels, which could lead to some new interesting applications for quan-
tum interferometry (a scalable Mach-Zehnder interferometer) and transport of
spin-qubit states. Adjacent chiral channels in wide Hall bars are usually indepen-
dent and selectively populated, but there are several indications that the channels
might be coupled in a coherent way by means of abruptly varying electric po-
tentials, or external localized magnetic fields. We explored this idea by assessing
the effectiveness of several mechanisms of coherent mixing between edge states
which might be either spin-degenerate or spin-resolved, and we examined the ex-
perimental attempts to realize such couplings by developing simulations that aim
to explain the features of transport of electrons mixed between more than one
channel.
In the first chapter of the thesis we introduced in detail the edge states a the

properties of edge states and the analytical models that can be used to describe
their physics. The non-interacting theory has been used to properly evaluate the
effect of sharp potentials (local, non-adiabatic variations of the energy landscape in
the electron gas) that are supposed to be able to coherently mix the channels. We
explained the Landauer-Buttiker transport model for edge states and conventional
and new, non-conventional interferometric setups.
In the second chapter we computed the scattering-matrices of these sharp “po-

tential steps”, carefully matching the propagating and evanescent solutions of the
Schrödinger equation in a 2-dimensional model of the Hall bars. The numeri-
cal results of this mode-matching technique show that potential variations whose
energies are smaller than the Landau gap are able to mix only few percent of
the current. However some architectural strategies are identified in order to tune
the mixing up to be useful for quantum-information purposes; more precisely we
discussed the effects of high-energy steps, of the sequential operation of several
independent mixers, and of the constructive interference effect that might arise
by controlling the electronic phases during propagation (for example through the
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periodic poling technique).
The mode-matching technique was improved in chapter 3 of the thesis, which

presented a numerical approach based on Green’s functions (and still the Landauer-
Buttiker formalism) which is applied to evaluate the cross-over to adiabaticity of
electric potentials and to model two experiments which have been conducted at
NEST laboratory of Scuola Normale Superiore di Pisa. In one experiment, the
charge transfer between two spin-degenerate edge channels of variable length is
measured by means of the scanning gate technology. Simulations of the disordered
Hall bar are able to reproduce the main features of the experimental finding, and
to deduce the presence of dephasing effects in the system. As for the second ex-
periment, we numerically modeled spin-resolved edge channels which are under
the influence of periodic nanomagnets. We confirmed the results of first-order
perturbation theory with simulations, and we analyzed the interplay of the effect
of an electric potential applied together with the periodic magnetic modulations
in order to predict useful effects for future electronic spin-interferometers.
Finally we deepened the study of spin-state transport in edge channels by exam-

ining the effect of Coulomb interactions among electrons in chapter 4. An effective
1-dimensional model of interacting edge states based on the Tomonaga-Luttinger
model has been presented and its properties were derived by the bosonization
technique. By means of non-equilibrium Green’s function formalism for quantum
transport in interacting regions, adapted to high-energy interacting chiral edge
channels through the application and assessment of the non-crossing approxima-
tion, a spin-interferometry idealized transport experiment has been discussed. We
found that the interactions can have a strong influence on the interferometric pat-
tern.
We conclude the thesis document by attaching a list published articles, pre-

prints and works in progress which resulted out of the work during the Ph.D
program carried out at CNRS/UJF Institut NEEL, SISSA and Scuola Normale
Superiore.
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and works in progress

Published Papers

1. Edge channel mixing induced by potential steps in an integer quan-
tum Hall system, D. Venturelli, V. Giovannetti, F. Taddei, and R. Fazio,
D. Feinberg, G. Usaj and C. A. Balseiro , Phys. Rev. B 83, 075315 (2011)
[chapter 2 and 3]

2. Spatially resolved analysis of edge-channel equilibration in quan-
tum Hall circuits, Nicola Paradiso, Stefan Heun, Stefano Roddaro, Davide
Venturelli, Fabio Taddei, Vittorio Giovannetti, Rosario Fazio, Giorgio Bi-
asiol, Lucia Sorba, and Fabio Beltram, Phys. Rev. B 83, 075315 (2011)
[printed in chapter 3]

Pre-prints (submitted)

1. Controlled coupling of spin-resolved quantum Hall edge states,
Biswajit Karmakar, Davide Venturelli, Luca Chirolli, Fabio Taddei, Vit-
torio Giovannetti, Rosario Fazio, Stefano Roddaro, Giorgio Biasiol, Lu-
cia Sorba, Vittorio Pellegrini, and Fabio Beltram [printed in chapter 3,
arXiv:1106.3965v1]

2. Dissipative spin dynamics near a quantum critical point: Numer-
ical Renormalization Group and Majorana diagrammatics, Serge
Florens, Axel Freyn, Davide Venturelli, Rajesh Narayanan [not discussed in
the thesis, arXiv:1106.2655v1]

Under Preparation

1. Spin-interferometry of hot electrons in integer quantum Hall edge
channels, Davide Venturelli, Denis Feinberg [chapter 4]
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