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Abstract

There is a wide gap between the language of mathematics and its formalized versions.

The term “language of mathematics” or “mathematical language” refers to prose that

the mathematician uses in authoring textbooks and publications. It mainly consists

of natural language, symbolic expressions and notations. It is flexible, structured and

semantically well-understood by mathematicians.

However, it is very difficult to formalize it automatically. Some of the main reasons

are: complex and rich linguistic features of natural language and its inherent ambiguity;

intermixing of natural language with symbolic mathematics causing problems which

are unique of its kind, and therefore, posing more ambiguity; and the possibility of

containing reasoning gaps, which are hard to fill using the current state of art theorem

provers (both automated and interactive).

One way to work around this problem is to abandon the use of the language of math-

ematics. Therefore in current state of art of theorem proving, mathematics is formalized

manually in very precise, specific and well-defined logical systems. The languages sup-

ported by these systems impose strong restrictions. For instance, these languages have

non-ambiguous syntax with a limited number of possible syntactic constructions.

This enterprise divides the world of mathematics in two groups. The first group

consists of a vast majority of mathematicians whose rely on the language of mathematics

only. In contrast, the second group consists of a minority of mathematicians. They use

formal systems such as theorem provers (interactive ones mostly) in addition to the

language of mathematics.

To bridge the gap between the language of mathematics and its formalized versions,

we may ask the following gigantic question:

Can we build a program that understands the language of mathematics

used by mathematicians and can we mechanically verify its correctness?

This problem can naturally be divided in two sub-problems, both very hard:

1. Parsing mathematical texts (mainly proofs) and translating those parse trees to a

formal language after resolving linguistic issues.

2. Validation of this formal version of mathematics.

The project MathNat (Mathematics in controlled Natural language) aims at being

the first step towards solving this problem, focusing mainly on the first question.

For that, first, we develop a Controlled Language for Mathematics (CLM) which

is a precisely defined subset of English with restricted grammar and lexicon. To make

CLM natural and expressive, we support important linguistic features such as anaphoric

pronouns and references, rephrasing of a sentence in multiple ways, the proper handling

of distributive and collective readings and so on. The coverage of CLM at the moment

is yet rather small and to be improved as the project keeps evolving in future.

Second, we develop MathAbs (Mathematical Abstract language). It is a prover inde-

pendent formal language to represent the semantics of CLM texts preserving its logical

and reasoning structure. MathAbs is designed as an intermediate language between

CLM and the formal languages of theorem provers, allowing proof checking.
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Third, we propose a system that can automatically translate CLM to MathAbs,

giving a precise semantics to CLM. We consider that formalizing mathematics automat-

ically in such a formal language that has a precise semantics is an important progress

even if it can’t always be proof-checked.

This brings us to the second question for which we report a very limited work.

We only translate MathAbs to the first-order formulas. If we feed these formulas to

the automated theorem provers (ATPs), then fundamentally the ATPs should be able

to validate them sometimes. In other words, the resulting MathAbs document is not

completely verifiable for the moment, but it represents an opportunity for the mathe-

matician to write mathematical text (mainly proofs) without becoming expert of any

theorem prover.

Keywords: Computational linguistics, Language technology, Controlled languages, The

language of mathematics, Formalization, Formal systems, Validation, Proof checking.
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1.1 Problem Statement

Natural languages are ambiguous, complex and rich. These characteristics make their

formalization a very difficult task. In contrast, mathematics is written in a specific

scientific register which is evolved in centuries. However, we are concerned with its

most modern version and refer it as the “language of mathematics”. It is in fact the

prose that mathematicians use to author textbooks and publications. It mainly consists

of natural language, symbolic expressions and notations. It is flexible, structured and

semantically well-understood by mathematicians.

In principle, formalization of mathematics is possible; for instance in first-order

logic, in higher-order logic, or in set theory; using Hilberts’ system, natural deduction

or sequent calculus for proofs. However, it is very difficult to formalize mathematical

texts automatically. Some of the main reasons for this enterprise are:

• Although the natural language used in mathematical texts is simpler and restricted

to this particular domain, it still contains complex and rich linguistic features such

as the use of anaphoric pronouns and references, rephrasing and paraphrasing, dis-

tributive and collective readings which requires proper handling, etc. Furthermore,

the mathematical texts could be inherently ambiguous if not written carefully.

• The language of mathematics being a mixture of words and symbols is unique. It

poses many unique challenges such as: discovering the kind (∀, ∃) and ordering of

quantification of variables, discovering the type of mathematical variables and ob-

jects, and solving the precedence of mathematical equations and formulas. Failing

to address them would lead to the serious issue of ambiguity.

• To make the mathematical texts comprehensive and aesthetically elegant, math-

ematicians tend to omit obvious details. Such reasoning gaps may be quite easy

for a human to figure out but definitely hard to be filled by the current state of

art theorem provers.
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• In a similar way, more details given in mathematical texts for the purpose of

explanation might be useful for the reader but definitely pose problems for com-

puter assisted theorem provers. For instance, the automated theorem provers are

normally too sensitive to such details. It is mainly because of their inability to,

first, include what is necessary for proof checking, and second, exclude what is not

necessary (cf. §4.7 on page 79 for more details).

These problems convince a multitude of logicians and scientists that if not impossible,

automatic formalization of the mathematics in its textual form is far more difficult and

problematic. For instance, on the use of the language of mathematics, Frege expressed

his dissatisfaction in following words:

“. . . I found the inadequacy of language to be an obstacle; no matter how

unwieldy the expressions was ready to accept, I was less and less able, as

the relations became more and more complex, to attain the precision that

my purpose required.” ([Frege 1879], Preface).

This leads to the current state of the art in theorem proving, in which the language

of mathematics is given up and mathematical texts are sometimes manually formalized

in very precise and accurate systems using specific formalisms normally based on some

particular calculus or logic. It normally contains a lot of technical details of the underly-

ing formal system, making it not suitable for the human comprehension. Among others,

a classic example of such a work is Principia Mathematica [Whitehead & Russell 1962].

Although it is one of the first comprehensive works on formal mathematics, it leads to

the view that complete formalization is too extensive and perhaps uninteresting for a

mathematician. For instance, one of the authors, Russell expressed his experience in the

following words:

[. . . ] my intellect never quite recovered from the strain [of doing this

work]. I have been ever since definitely less capable of dealing with difficult

abstractions than I was before.

([Russell 1998, p. 155]; first published in 1967)

This leads to a bipolar enterprise in which the mathematicians rely upon the language

of mathematics; while the logicians use formal systems such as proof assistants and

theorem provers (both automated and interactive). This wide gap plagues both fields

and reduces the usefulness of computer assisted theorem proving in learning, teaching

and formalizing mathematics. In the light of the above discussion, we may ask the

following question:

Can we build a program that understands the language of mathematics

used by mathematicians in their published work and can we mechanically

verify its correctness?

The project MathNat (Mathematics in controlled Natural language) aims at being a

first step towards answering this gigantic question. It requires the handling of two very

hard problems:

1. Automatic Formalization: Parsing mathematical texts mainly proofs and trans-

lating their parse trees to a formal language after resolving linguistic issues. This
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formal language should be able to represent mathematics as close as possible to

the intentions expressed by the author and must be independent of any logic and

prover.

2. Validation of this formal version of mathematics.

This thesis attempts to answer the first question, which is related to the formalization

of the mathematical texts. The second question, which addresses validation, is answered

partially.

1.2 Contributions and Outline

The system MathNat in a nutshell is given in chapter 2. In this thesis, to treat the first

problem we develop the following components:

1.2.1 The Controlled language of Mathematics (CLM)

We would like to develop a grammar for the language of mathematics having reasonable

coverage but with some rich linguistic features described above. With it, we would like

to solve the problems of ambiguity, redundancy, scalability and complexity.

However, before doing anything we need to understand the language of mathematics

and its discourse really well. For that we allocate Chapter 3, in which we give a compre-

hensive survey of the language of mathematics with a focus on elementary mathematics.

After this survey, we develop a Controlled Language for Mathematics (CLM) with

the look and feel of textbook mathematics. It is a precisely defined subset of English

with restricted grammar, dictionary, style and predefined conventions. By doing this we

reduce the natural language side effects.

At the same time, to make CLM natural and expressive, we support some important

linguistic features such as anaphoric pronouns and references, rephrasing of a sentence

in multiple ways and the proper handling of distributive and collective readings. CLM

also support two patterns for ‘proof by case’ method. We describe the synopsis of CLM

grammar in Chapter 5. Whereas, the development of CLM is described in Chapters 6

and 7.

1.2.2 MathAbs - The Mathematical Abstract Language

We need a formal language which can faithfully represent the mathematical texts by

preserving their logical and reasoning structure. Such a formal language must be inde-

pendent of any logic, theory or prover because different logics1 and theories2 have their

merits and demerits for the formalization of mathematics. Since we intend to represent

the language of mathematics “as it is”, therefore it is better to postpone such decisions

till the phase of proof checking.

Having this in mind, we adapt new_command, a formal language which was orig-

inally developed in the DemoNat project [Thévenon 2005, Thévenon 2006] as an in-

termediate formalism between natural language proofs and the proof assistant PhoX

[Raffalli 2005]. For instance, we remove the PhoX dependencies and simplify the proof

1For instance, first-order, higher-order, predicative, impredicative, etc.
2For instance, different versions of set theories and type theories; and category theory.
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language by reducing the constructs to minimal. Further, we add the language of def-

inition and theorem. We also provide the semantics of MathAbs for axioms, defini-

tions, theorems and their proofs, which was not done before. We name it MathAbs

(Mathematical Abstract language).

MathAbs is intended only for machine manipulation and used as an intermediary

between the natural language of the mathematician and the formal language of the

logician. We give a detailed account of MathAbs including its motivation, syntax, formal

definition, semantics and completeness in Chapter 4.

1.2.3 The Host System MathNat

The CLM (Controlled Language for Mathematics) is an attribute grammar [Knuth 1968,

Deransart et al. 1988], which we implement in Grammatical Framework (GF)

[Ranta 2004, Ranta et al. 2010, Ranta 2011a]. This GF grammar of CLM only deals

will sentences having no discourse (we call it sentence level grammar). It means that

linguistic features such as anaphoric resolution are not yet applied. Similarly, logical

blocks such as axiom, definition, theorem, proof are simply the list of sentences in CLM.

It is the host system MathNat, which automatically builds the context from CLM

discourse and provides the above mentioned linguistic features. Also the host system

MathNat automatically translate CLM to MathAbs. This way the semantics of logical

blocks is restored. In this step the CLM is completely formalized. The procedure

of doing these various tasks such as context building, anaphoric resolution, discourse

building and providing semantics are described in Chapter 8.

We argue that formalizing mathematics in such a formal language that has a precise

semantics is an important progress even if it can’t always be checked by a prover3.

Furthermore, we claim that the narrative style of MathAbs makes the translation task

easier.

1.2.4 Proof Checking

The second hard problem is validation for which we report work with a very limited

scope. For instance, in the current implementation, we translate MathAbs to the first-

order formulas which could be given to the automated theorem provers for validation.

As described in the beginning of this section, proof checking of informal mathematical

text is problematic because of at least two reasons; first, the reasoning gaps; and second,

the relevance of reasoning justifications to the proof checking system.

We do not solve these problems. Therefore, validation of the first-order formulas

produced from the MathAbs will hardly be possible. It is because, currently, there is no

prover available which understands MathAbs. We describe these initial results in §4.7

of Chapter 4.

3By this we mean that there is currently no prover available which understands MathAbs.
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2.1 Introduction

As noted in Chapter 1, MathNat is a long term project which aims at being the first

step towards automatic formalization and verification of mathematical texts. It is also

obvious from Chapter 1 that there are many components and concepts we are going to

build in this thesis, which need to be explained. Worse, they are intermixed in such a way

that it is easy to get lost in details. So, the purpose of this chapter is to describe MathNat

in a nutshell. Each section described here will become a chapter subsequently. However

this chapter is not meant to be an exhaustive list of concepts and features we currently

support in MathNat. The MathNat architecture is given in figure 2.2 on page 8. An

overview of the system MathNat has been published in [Humayoun & Raffalli 2010b].

2.2 Analysis of the Language of Mathematics

The term “language of mathematics” or “mathematical language” refers to prose that

the mathematician uses in authoring textbooks and published material. Definitely, the

first step towards such work is to understand the language of mathematics and its

discourse well enough (cf. Chapter 3 for a detailed account). To get started, let us

consider a famous theorem (irrationality of
√

2) and its proof given in figure 2.1 as a

running example. In the process of explaining this example, we introduce many of the

basic concepts of the mathematical language.

We start with the macro view: the text in figure 2.1 is structured in theorem and

proof blocks. An unacquainted reader might need supporting axioms, definitions, lem-

mas, examples, etc, to understand it properly. These structured blocks are referred to

as “mathematical discourse”; a detailed account is given in §3.2.
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Theorem 43 (PYTHAGORAS’ THEOREM)
√

2 is irrational.

Proof. If
√

2 is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in positive integers a, b with (a, b) = 1. Hence a2 is even, and

therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2 and b is also even,

contrary to the hypothesis that (a, b) = 1. �

[Hardy & Wright 1975, pp.39–40]
Figure 2.1: A typical theorem and its proof.

The theorem block in figure 2.1, consists of a statement expressing a proposition.

In contrast, the proof is a collection of arguments which establishes the truth of this

theorem. Both are usually written in a narrative style.

There are various proof methods which can be used to prove a theorem, lemma,

or proposition. For instance, the use of a contradiction to prove the opposite to the

primary hypothesis in figure 2.1, suggests that the method “proof by contradiction” is

used. A detailed account on various proof methods is given in §3.2.4.1.

On a sentence level, the most prominent feature is the intermixing of text, symbols

and notations (cf. §3.3.1). For instance,
√

2, a2, etc, are symbols and (a, b) is a notation

which stands for “the greatest common divisor of a and b” in figure 2.1. Furthermore,

regarding the textual as well as symbolic mathematics1, [Ganesalingam 2009, page 10]

notes that the textual mathematics resembles the words of ordinary natural language

but has many differences; and similarly, symbolic mathematics resembles the artificial

languages but it behaves in a more complex way. Such intermixing of text and symbols

is unique and full of rich features. Some of them are following:

1. It is mostly written in an ASCII2 based typographic language called

LATEX[Lamport 1986]. For instance
√

2 is encoded as $\sqrt{2}$.

2. Dependence of text on symbols and symbols on text; for instance, variables a and

b are first used in equation 4.3.1 but introduced in the later part of the same

sentence. So, first, we have to interpret the second part and then the first part.

3. A label given to an equation (4.3.1). It is not used in this proof but it could be

used in a sentence such as “by substituting the value of b in equation 4.3.1, we get

...”, etc.

4. Implicit references; for instance, the use of ‘hence’ and ‘therefore’. If we look at the

second sentence of the proof: “Hence a2 is even, and therefore a is even.”, the clue

word “hence” suggests that the fact of “a2 being even” should be deduced from

all hypotheses which are introduced before. In contrast, the clue word “therefore”

only refers to the last fact. (also noted by [Zinn 2004, p. 79])

5. Similarly, anaphoric pronouns could also be found. For example, in statement “if

a and b are even then they have a common factor”, the use of “they” refers to

variables a and b.

1Like [Ganesalingam 2009], we use the term “textual mathematics” for the natural language part and

“symbolic mathematics” for the symbolic expressions and notations used in the mathematical texts.
2American Standard Code for Information Interchange.
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6. Distributive readings; for instance, the variables a and b being even. “even” is a

1–arity predicate which is applied on a and b in a distributive manner: “even(a) ∧
even(b)”. Similarly, we might have encountered a collective reading if the equation

4.3.1 would be given in a textual form: “a2 and 2b2 are equal”. “equal” is an

n–arity predicate, which is applied collectively: “equal(a2, 2b2)”.

7. Long sentences with complicated structure. For instance, only three sentences

prove this theorem.

8. Keeping the same arguments and line of reasoning, this text could easily be

rephrased in many ways. Such rephrasing is normally influenced by the writing

taste of an author and the level of details (s)he wants to present.

9. Sometimes variables are not introduced at all. For instance, c is used directly

without any introduction in the third sentence. However, variables similar to c

are sometimes defined globally at the beginning the textbook with the sentence

such as: “small letters such as a, b, c, . . . , x, y, z represent integers, except otherwise

explicitly mentioned”, etc.

10. Ambiguity in textual parts of mathematics, such as coordination ambiguity, word

sense ambiguity, attachment ambiguity, quantifier scope ambiguity, etc.

11. However, in terms of the use of natural language and its meaning (semantics),

mathematical language is somewhat simpler. It uses certain key phrases which

have definite meanings. For instance, statements “We assume that P”, “We con-

clude that P”, etc. Similarly it uses certain patterns which have definite meaning.

For instance, “If P then Q”, “For all P such that Q, R holds”, etc.

12. Symbolic conventions such as an optional use of times (×) operator for multipli-

cation (for instance, 2b2 means 2 × b2).

13. Another major symbolic convention is “precedence” in expressions. For instance,

a = 2c in figure 2.1 is interpreted as “equal(a, times(2, c))”. It is so because it is

an expression of elementary number theory where multiplication has higher prece-

dence than, let us say, equality. Precedence is context dependent. For instance, as

noted by [Sacerdoti Coen 2009], “equality on propositions (denoted by =, a nota-

tional abuse for co-implication) has precedence higher than conjunction (denoted

by ∧), which is higher than equality on set elements (also denoted by =), which

is higher than meet for lattice elements (also denoted by ∧). Thus A = B ∧ P can

be parsed either as (A = B) ∧ P (a conjunction of propositions) or as A = (B ∧ P )

(equality of lattice elements)”.

14. Similar to textual mathematics, symbolic mathematics is also highly ambiguous.

With conventions (cf. bullet 12 and 13), it tries to use the same few notations

over and over again for concepts that share similar properties or intuitive meaning.

For instance, symbol “−” in context of number theory subtracts two numbers, but

in set theory it sometimes gives the difference of two sets3 (which is intuitively

similar to subtraction).

A detailed analysis is given in Chapter 3. But how do we solve these issues? We

answer this in §2.4.

3Sometimes another symbol “\” is used.
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CLM Statements (§2.4)

Haskell Abstract Syntax Trees (AST)

MathAbs (§2.3)

First-order Formulas (§4.7) Various Theorem Provers

(Parsed by GF + BNFC) (§2.5)

(Host System MathNat in Haskell) (§2.5.2)

(Future work)

Figure 2.2: MathNat Architecture in a Nutshell

2.3 Semantics (Mathematical Abstract language: MathAbs)

Along with some of the linguistic difficulties we discuss so far in §2.2, there is another

problem associated with this proof; it contains reasoning gaps. In textual proofs4,

mathematicians tend to exempt obvious parts by performing many reasoning steps in

fewer steps (as it is done in proof given in figure 2.1). In contrast, they also tend to

perform fewer steps in many detailed steps for the purpose of explanation.

Logical systems such as natural deduction, sequent calculus, Hilbert systems, etc,

are not so natural for textual proofs because they do not allow such freedom. However,

mathematicians use the rules of these deduction systems5 freely and informally (but

always implicitly) in their textual proofs.

MathAbs (Mathematical Abstract language) on the other hand, is not based on any

specific logic, theory or proof assistant. Mathematical text in it is simply the same pieces

of arguments but without linguistic features and problems. Furthermore, it allows to

describe proofs which contain reasoning gaps.

MathAbs can represent theorems and their proofs along with supporting axioms and

definitions. However, analogous to mathematical texts, the language of proof is the most

significant part.

Similar to proof theory, we can divide mathematical arguments presented in a textual

theorem and its proof as follows: we assume facts (called assumptions or hypotheses),

we have goals which have to be proved, and we have deductions (also called as deduced

hypotheses or conclusions) which are first proved in one branch of the proof and then

used as hypotheses in the other branches (implicitly or explicitly).

We keep this section a bit informal by describing how our running example in figure

2.1 can be formalized in MathAbs. We defer it’s formal description to Chapter 4. To

get started, consider the theorem given in figure 2.1 and its equivalent MathAbs:

Theorem 43 (PYTHAGORAS’ THEOREM)
√

2 is irrational.

4This term refers to the proofs found in mathematical texts and hence may contain text, symbols

and notations.
5And the other rules which can be derived from them.
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Theorem_43_(PYTHAGORAS’_THEOREM). show
√

2 /∈ Q •;

The MathAbs’ semantics can be very well described as a tree:

. . .

Γ0 ⊢
√

2 /∈ Q (show rule)

In MathAbs’ semantics, a theorem and its proof are described as a tree of logical

rules. Theorem forms the initial sequent with some hypotheses6 and a goal. Related

axioms and definitions could have added as hypotheses in Γ0. Rule show adds or change

a goal in this tree and full-stop (•) marks the end of a sentence which is shown in the

proof tree with double line. Furthermore, the proposition “
√

2 is irrational” is translated

as “
√

2 /∈ Q”. Now consider the first sentence of proof from our running example.

Proof. If
√

2 is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in positive integers a, b with (a, b) = 1.

We divide it in two parts for future references:

Proof. If
√

2 is rational, then the equation a2 = 2b2 (4.3.1) is soluble
︸ ︷︷ ︸

First part

in positive integers a, b with (a, b) = 1
︸ ︷︷ ︸

Second part

.

First, we have to analyze the second part. Because it introduces a and b (with two

conditions: being positive and having no common factor) which are required to analyze

the first part. In MathAbs, we introduce variables with rule “let”7 and add hypothesis

with “assume”, as shown below. This translation is compositional, i.e. the meaning of

the whole is a function of its parts.

Proof. let a, b ∈ Z

assume (a > 0) ∧ (b > 0) ∧ (gcd(a, b) = 1)

These formulas are treated as predicates. Therefore, “(gcd(a, b) = 1)” is syntactic

sugar for “equal(gcd(a, b), 1)” and “a > 0” is an equivalent expression to “positive(a)”.

This MathAbs adds these variables and assumptions as hypotheses in the tree:

. . .

Γ1 ≡ (Γ0, (a, b ∈ Z), (a > 0) ∧ (b > 0) ∧ (gcd(a, b) = 1)) ⊢
√

2 /∈ Q
let, assume

Γ0 ⊢
√

2 /∈ Q(show)

For the purpose of readability, proof steps could be expanded or collapsed. (Every

rule equally matters). For instance the above tree could be expanded as follows:

. . .

Γ2 ≡ (Γ1, (a > 0) ∧ (b > 0) ∧ (gcd(a, b) = 1)) ⊢
√

2 /∈ Q
assume

Γ1 ≡ (Γ0, (a, b ∈ Z)) ⊢
√

2 /∈ Q
let

Γ0 ⊢
√

2 /∈ Q (show)

6It is Γ0 which is currently empty. But it may contain necessary axioms, definitions, propositions,

theorems, etc, that are needed to support this proof.
7We use “let to introduce universally quantified variables. To see how we decide the quantification

of a variable, see §4.6.
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The first part above, is of the form “if A then B. Of course it is the textual form of

“A ⇒ B”. Intuitively8, if we assume A then the statement to be deduced will be B. It

corresponds to “assume A deduce B” in MathAbs as shown below:

assume
√

2 ∈ Q

deduce a2 = 2b2 (4.3.1)

The rule deduce B is a short hand for:

{

show B trivial;

assume B . . .

}

It is a proof by case with precisely two cases, where “trivial” marks the end of the

proof for the active sequent. Intuitively, for each deduction, first we have to prove it as

a goal (the first case) and then we use it as an hypothesis for the rest of the proof (the

second case), as shown below:

trivial
Γ0 ⊢ B (as a goal, show)

. . .
Γ1 ≡ (Γ0, B) ⊢ main goal of the proof (assume)

deduce
Γ0 ⊢ main goal of the proof

Now combining both parts of the sentence results in the following MathAbs and
proof tree:

Proof. let a, b ∈ Z

assume (a > 0) ∧ (b > 0) ∧ (gcd(a, b) = 1)

assume*
√

2 ∈ Q

deduce a2 = 2b2 (4.3.1) •

trivial
Γ3 ⊢ (a2 = 2b2)

. . .

Γ4 ≡ (Γ3, (a2 = 2b2)) ⊢
√

2 /∈ Q
deduce

Γ3 ≡ (Γ2,
√

2 ∈ Q) ⊢
√

2 /∈ Q
assume*

Γ2 ≡ (Γ1, (a > 0) ∧ (b > 0) ∧ (gcd(a, b) = 1)) ⊢
√

2 /∈ Q
assume

Γ1 ≡ (Γ0, (a, b ∈ Z)) ⊢
√

2 /∈ Q
let

Γ0 ⊢
√

2 /∈ Q (show)

Note the rule assume marked with asterisk * in the above MathAbs and in the proof

tree. It is uncommon to separate hypothesis ((a > 0) ∧ (b > 0) ∧ (gcd(a, b) = 1)) from

the assumption that
√

2 ∈ Q. However it does not result into any logical fallacy. See

§4.5 on page 68 for further discussion.

There is another point worth mentioning. The procedure we have used to translate

the first sentence to its equivalent MathAbs also works for the arbitrary sentence, as

shown below:

1. Filter all the let variables and place them before any other rules occurring in that

sentence.

8More precisely, it uses (⇒ intro) rule of natural deduction; cf. 4.3 for a complete list of rules.
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2. Then place the conditions associated with these variables. For instance adjuncts,

“where” clauses, etc.

3. Then translate the rest of the sentence as it occurs. i.e. the things which appears

first should be translated (and placed in MathAbs) first.

Now consider the second sentence of the proof:

Hence a2 is even, and therefore a is even.

The clue word “hence” suggests that the fact of “a2 being even” should be deduced

from all hypotheses which are introduced before. Because each proof step is a logical

consequence of the previous steps, we simply translate it as “deduce even(a2)”.

In contrast, the clue word “therefore” suggests that “a being even” is solely based

on the fact that “a2 is even” (cf. §3.2.4 on page 37). Such justification could be given

as a Hint (for instance, by form even(a2) below) to MathAbs rules. The MathAbs of this

sentence would be as followed:

deduce even(a2)

deduce even(a) by form even(a2) •

It updates the proof tree as followed, where “even(a2)” in “deduce (even(a2))” rep-

resent a hint:

trivial
Γ4 ⊢ even(a2)

trivial
Γ5 ⊢ even(a) Γ6 ≡ (Γ5, even(a)) ⊢

√
2 /∈ Q

deduce(even(a2))
Γ5 ≡ (Γ4, even(a2)) ⊢

√
2 /∈ Q

deduce
Γ4 ≡ (Γ3, (a2 = 2b2)) ⊢

√
2 /∈ Q

The third sentence is too ambiguous to be understood of its own. So we rephrase it

as followed:

If a = 2c, then 4c2 = 2b2. If 4c2 = 2b2, then 2c2 = b2. Consequently,

b is even. If a and b are even then they have a common factor. It is a

contradiction to the hypothesis that (a, b) = 1. �

These are translated as followed, proceeded by some explanation.

let c ∈ TypeUnknown assume a = 2c deduce 4c2 = 2b2 •

assume 4c2 = 2b2 deduce 2c2 = b2 •

deduce even(b) •

assume even(a) ∧ even(b) deduce one_common_factor(a, b) •

show ⊥ by form gcd(a, b) = 1 •trivial •

First, we introduce c with a dummy type “TypeUnknown9” because it is not intro-

duced in the proof. Given the information about the other variables in proof, it may

seem appropriate to deduce the type of variable c. However such deduction is not al-

ways trivial. Furthermore, our account for semantics is yet to be complete as we only

rely on surface level information presented in the textual proofs. It means that we do

not deduce any information from types at this point. It should be connected to some

9In the rest of the thesis, we call it NoType.
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proof assistant to have complete semantics and reject interpretations which are wrong

(cf. §4.7).

Another point worth noting is: if a user gives an underspecified text, instead of

deducing that information, it might be a good idea to report it back to the user (specially

if it is an application used to teach mathematics to the students).

In the second line, first we assume the fact that 4c2 = 2b2. As it is already a deduced

fact and exists in the context, “assume 4c2 = 2b2” is simply ignored, and therefore,

instead of the above MathAbs, following is the MathAbs of above sentences:

let c ∈ TypeUnknown assume a = 2c deduce 4c2 = 2b2 •

deduce 2c2 = b2 •

deduce even(b) •

assume even(a) ∧ even(b) deduce one_common_factor(a, b) •

show ⊥ by form gcd(a, b) = 1•trivial •

In the third sentence, we translate “a common factor” as a predicate

“one_common_factor(. . .)”, stating that there exists a common factor for variables

a and b. In the fourth line, instead of using “deduce”, we use “show” as the proof is

about to be finished, and therefore, we do not need this fact as an hypothesis anymore.

Finally, square box (�) marks an end of proof and translated as “trivial” and “•”. A

complete proof tree is given in figure 2.3. But how do we verify this MathAbs? Different

possibilities are discussed in §4.7.

2.4 Syntax (The Controlled Language of Mathematics)

As we have seen in §2.2, linguistically rich features of mathematical language put forth

many obstacles and problems. So if not solved properly, they surely result into massive

ambiguity (leading to the problem of complexity) and wrong interpretations for our

grammar. One way to deal with these problems is to avoid them. But we cannot

do it always, specially when naturalness and expressiveness of the language is on stake.

Therefore, an alternate which is also a standard way, would be to define some conventions

that somehow resolve these problems.

We also need to restrict the grammar and dictionary, allowing fewer constructions.

It would help us in the following ways:

1. A language such as mathematics should be concise and strictly defined, because a

carefully defined grammar is easier to interpret.

2. From an engineering point of view, the grammar should be easier to manage and

update. This way, it would also be easy to avoid the issue of computational

complexity which may arrive for a very large grammar (mainly due to ambiguity).

So we develop the Controlled Language for Mathematics (CLM) as the syntactic

component. It is a computer processable subset of the language of mathematics having

restricted grammar, dictionary, style and predefined conventions. However, CLM is still

natural and expressive. We achieve this by supporting some rich linguistic features such

as anaphoric pronouns and references, rephrasing of a sentence in multiple ways and

the proper handling of distributive and collective readings. To give a taste, we rephrase

the text given in figure 2.1 in three ways as shown in figure 2.4. These versions are

processable in CLM. Furthermore, other rephrased versions are also possible.



2.4. Syntax (The Controlled Language of Mathematics) 13

trivial
Γ11 ⊢ a_cmn_fac(a, b)

trivial
Γ12 ⊢ ⊥

show(gcd(a, b)=1)
Γ12 ≡ (Γ11, a_cmn_fac(a, b)) ⊢

√
2 /∈ Q

deduceտ

trivial
Γ8 ⊢ (2c2 = b2)

trivial
Γ9 ⊢ even(b)

տ
Γ11 ≡ (Γ10, even(a)∧even(b)) ⊢

√
2 /∈ Q

assume
Γ10 ≡ (Γ9, even(b)) ⊢

√
2 /∈ Q

deduce
Γ9 ≡ (Γ8, (2c2 = b2)) ⊢

√
2 /∈ Q

deduceտ

trivial
Γ5 ⊢ even(a)

trivial
Γ7 ⊢ (4c2 = 2b2)

տ
Γ8 ≡ (Γ7, (4c2 = 2b2)) ⊢

√
2 /∈ Q

deduce
Γ7 ≡ (Γ6, c ∈TypeUnknown, (a = 2c)) ⊢

√
2 /∈ Q

let,assume
Γ6 ≡ (Γ5, even(a)) ⊢

√
2 /∈ Q

deduce(even(a2))տ

trivial
Γ3 ⊢ (a2 = 2b2) (show)

trivial
Γ4 ⊢ even(a2)

տ
Γ5 ≡ (Γ4, even(a2)) ⊢

√
2 /∈ Q

deduce
Γ4 ≡ (Γ3, (a2 = 2b2)) ⊢

√
2 /∈ Q (assume)

deduce
Γ3 ≡ (Γ2,

√
2 ∈ Q) ⊢

√
2 /∈ Q

assume
Γ2 ≡ (Γ1, (a > 0) ∧ (b > 0) ∧ (gcd(a, b) = 1)) ⊢

√
2 /∈ Q

assume
Γ1 ≡ (Γ0, (a, b ∈ Z)) ⊢

√
2 /∈ Q

let
Γ0 ⊢

√
2 /∈ Q (show in theorem)

Figure 2.3: Proof tree of theorem and proof given in figure 2.1. We rename

‘one_common_factor(a, b)’ as ‘a_cmn_fac(a, b)’ to fit the proof tree on the page.
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1. Theorem 43 (PYTHAGORAS’ THEOREM)
√

2 is irrational.

2. First Proof. If
√

2 is rational, then a2 = 2 ∗ b2 − (4.3.1), where a and b are positive

integers with gcd(a, b) = 1.

3. Hence a2 is even; and therefore a is even.

4. If a = 2 ∗ c, then 4 ∗ c2 = 2 ∗ b2.

5. If 4 ∗ c2 = 2 ∗ b2 then 2 ∗ c2 = b2.

6. Consequently, b is even.

7. It is contrary to our hypothesis. �

8. Second Proof. Suppose that
√

2 is rational. Let a and b be positive integers with

gcd(a, b) = 1. Then a2 = 2 ∗ b2 (4.3.1).

9. By the last equation a2 is even; and therefore, a is even.

10. So, we can assume that a = 2 ∗ c.

11. Substituting the value of a in equation (4.3.1) returns 4 ∗ c2 = 2 ∗ b2.

12. Dividing both sides by 2 yields 2 ∗ c2 = b2.

13. The last equation implies that b2 is even; and therefore, b is even.

14. It is contrary to the hypothesis that gcd(a, b) = 1. �

15. Third Proof. Assume that
√

2 is a rational number.

16. By the definition of rational numbers, we can assume that
√

2 = a/b where a and b are

non-zero integers with no common factor.

17. Thus, b ∗
√

2 = a.

18. Squaring both sides yields 2 ∗ b2 = a2 − (1).

19. It is clear that a2 is even because it is a multiple of 2.

20. So we can write a = 2 ∗ c, where c is an integer.

21. We get 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2, by substituting the value of a into equation (1).

22. Dividing both sides by 2, yields b2 = 2 ∗ c2.

23. Thus b is even because 2 is a factor of b2.

24. If a and b are even then they have a common factor.

25. It is a contradiction.

26. Therefore, we conclude that
√

2 is an irrational number.

27. This concludes the proof.

Figure 2.4: Three CLM processable versions of figure 2.1.
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1 "Theorem 43 (PYTHAGORAS’ THEOREM)" ‘sqrt(2)‘ is irrational.

2 "Proof" If ‘sqrt(2)‘ is rational, then ‘a^2 = 2 * b^2‘ -- (4.3.1)

3 where ‘a‘ and ‘b‘ are positive integers with ‘gcd(a,b)=1‘.

4 Hence ‘a^2‘ is even; and therefore, ‘a‘ is even.

5 If ‘a = 2*c‘, then ‘4*c^2 = 2*b^2‘.

6 If ‘4*c^2 = 2*b^2‘ then ‘2*c^2 = b^2‘.

7 Consequently, ‘b‘ is even.

8 It is contrary to our hypothesis. QED.

Figure 2.5: The First theorem and its proof of figure 2.4 as verbatim.

We give below a non exhaustive list of solutions against the issues we raised in §2.2.

We start with the document structure in CLM. It currently supports various blocks such

as “axiom”, “definition”, “theorem” and “proof”. A structural block is a non-empty list

(or sequence) of sentences. However, if these sentences in a block are not semantically

well-formed, suitable error messages are reported to the user.

As regards the typography, it is written in ASCII format. Instead of LATEX, we use

ASCIIMath10 to display symbolic expressions. It is quite similar to LATEX but allows to

render expressions on web pages. To illustrate it, we give the ASCII version of the first

example of figure 2.4 in current implementation, in figure 2.5.

Here “Theorem 43 (PYTHAGORAS’ THEOREM)” and “Proof” mark the start of a

theorem block and proof block respectively. The grammar could recognize the symbolic

parts without quotation marks (‘. . . ‘). We only need them to allow ASCIIMath script

to render symbolic parts properly in web browsers.

As regards the anaphoric references, they are supported in CLM. For instance, on

lines 2, 8 and 18 of figure 2.4, equations are referenced. These references are then made

available in the rest of the text to refer. Similarly, CLM also support implicit references.

For instance, “dividing both sides by 2” on line 12 of figure 2.4 implies that there is

an equation in some previous sentence (same hold for “squaring both sides” on line

18). Furthermore, CLM supports reference to equations, hypotheses, deductions and

statements (such as “by the last equation”, “by the first hypothesis”, “substituting the

value of a in equation 4.3.1”, etc).

As we’ll see in Chapter 3, anaphoric pronouns are also quite common in math texts.

Therefore, pronoun “it” and “they” are supported. However, to resolve them we follow

a naïve convention. i.e. they are always replaced by the latest singular or plural objects

in the discourse. For instance, in the statement on line 24, “if a and b are even then

they have a common factor”, the pronoun “they” refers to a and b.

In a similar vein, CLM supports rephrasing of a sentence in multiple ways. For

instance, instead of a conditional: “If A then B”, we may rephrase it as “Suppose that

A. Then B”. See bullet 2 of figure 2.4, which we rephrase in second proof (cf. bullet 8)

and in third proof (cf. bullets 2 and 3).

In bullet 3 and 13 of figure 2.4, we can see the following pattern of a mathematical

sentence (brackets show how we interpret it to solve the coordination ambiguity):

Pattern 1. Statement1; and Statement2; and . . . ; and Statementn.
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

(For referral purpose, we call this sequence “mathematical sentence”.)

10ASCIIMath homepage: http://www1.chapman.edu/~jipsen/mathml/asciimath.html
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In contrast, each statement (i.e. Statementi) in the above pattern may have the

following structure.

Pattern 2. Optional key phrase P1, P2, . . . , Pn−1(, and | , or) Pn
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸

(For referral purpose, we call this sequence “mathematical statement”.)

So, a mathematical statement is formed by a sequence of propositions Pi logically

connected with each other by “, (and|or)”, which is then concatenated to an optional

key phrase. An example of pattern 2 would be following, where “we assume that” is the

key phrase making it an assumption or hypothesis:

We assume that x is positive, y is negative , and z is even.

Note that each Pi of pattern 2, may also contain “(and|or)”. An example could be:

We assume that x is positive or negative
︸ ︷︷ ︸

P1

, y is negative
︸ ︷︷ ︸

P2

, and

z is even and positive
︸ ︷︷ ︸

P3

.

If we substitute the pattern 2 in pattern 1, we get the following detailed pattern for

the mathematical sentence:

Optional key phrase P1, P2, . . . , Pn−1(, and |, or) Pn ; and
Optional key phrase P1′ , P2′ , . . . , Pn′−1′(, and |, or) Pn′ ; and
. . . . . . . . . ; and
Optional key phrase P1′′ , P2′′ , . . . , Pn′′−1′′(, and |, or) Pn′′ .

As we can see, the semi-colons (;) are used to disambiguate between the mathematical

sentence and the mathematical statements11. Whereas the ‘, (and|or) ’ are used to

disambiguate between the mathematical statements and propositions Pi. Two example

mathematical sentences would be following, where the second one is rather superficial:

If a = 2c, then 4c2 = 2b2 ; and if 4c2 = 2b2 then 2c2 = b2 ; and therefore

b is even.

We assume that x1 is positive, x2 is negative, and x3 is even ; and we

assume that y1 is positive, and y2 is negative ; and therefore, we conclude

that x1 ∗ y1 ∗ x2 ∗ y2 is positive.

Note that we say nothing (yet) about the other kinds of ambiguity and notational

collision of symbolic math (cf. bullet 10 and 13 of §2.2). These topics are discussed in

§9.2.1.

11According to the pattern given here, a statement is itself a mathematical sentence. So, the distinction

we made between them is superficial and only for the purpose of addressing them in unambiguous

manner.
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2.5 Defining CLM

We develop CLM in two concrete steps. The first step consists of the sentence level

grammar developed in Grammatical Framework (GF) [Ranta 2004, Ranta et al. 2010,

Ranta 2011a]. Instead of context-free, it is an attribute grammar [Knuth 1968,

Deransart et al. 1988]. “Theoretically, GF is equivalent to PMCFG (Parallel Mul-
tiple Context-Free Grammars, [Seki et al. 1991]), which lies between mildly context-

sensitive and fully context-sensitive grammars” as stated by [Ranta 2011a, page

10]. It is specifically designed to describe domain-specific or controlled grammars

[Angelov & Ranta 2010].

However, the grammar designed in GF for CLM, only deals with syntax. It parses

individual sentences in the usual manner; therefore, we call it sentence level grammar.

For instance, a theorem or proof in GF grammar is only a list of sentences having no

connection. There are also many semantically motivated constraints which we do not

enforce in GF (i.e. at syntax level). As an example, consider the following sentences:

x and y are three positive numbers.

x has a common factor.

Linguistically they are well-formed statements; but logically ill-formed. For instance,

in the first sentence we should have written “two” instead of “three”; and in second

sentence, we should have mentioned more than one identifiers (we have only given one:

“x”).

Because GF is a limited programming language, it is not easy to enforce all such

constraints in it12. Therefore, as a second concrete step, we enforce them in the host

system MathNat (cf. §8.2).

The host system MathNat that is written in Haskell programming language

[Marlow 2010], also builds the CLM discourse, provides the miscellaneous linguistic fea-

tures (cf. §2.5.2 and §8.3) and gives semantics (cf. §2.3 and Chapter 4). We discuss

these steps in the following subsections.

2.5.1 Sentence Level Grammar

GF is a type-theoretical grammar formalism. Inspired by Curry’s distinction between

tectogrammatical and phenogrammatical structure [Curry 1961], every GF grammar has

two components: abstract syntax and concrete syntax. An abstract syntax defines an

ontology, or in other words, semantic conditions to form abstract syntax trees of a lan-

guage. In contrast, the concrete syntax is a set of linguistic objects (strings, inflection

tables, records) associated to abstract syntax trees, providing rendering and parsing. In

other words, it defines a mapping from abstract syntax to a language (and back, by

reversibility).

In order to introduce GF and CLM (in a short and quick manner), an example

grammar is presented for the following propositions taken from figure 2.5:

“
√

2 is irrational.”, “x is irrational.”, “It is irrational.”

12We can enforce some of such semantically motivated constraints using dependent types. But it

would make the abstract syntax quite complicated. For more reasons see §5.2 on page 93.
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1 Proposition ::= Subject "is" Type

2

3 Subject ::= Pron | SymbMath

4 Pron ::= "it"

5 SymbMath ::= String

6

7 Type ::= Irrational | Integer | Number | ...

8

9 Irrational ::= "irrational"

10 Integer ::= "integer"

11 ...

Figure 2.6: Context-free grammar for simple propositions

We first define it in context-free notation as shown in figure 5.1. For the sake of

readability, we keep these propositions very simple by not considering the plural subject

(i.e, the pronoun “they” and more than one variables: “x, y and z”, are not considered).

Therefore, we do not need number agreement.

The context-free grammar shown in figure 5.1 becomes a pair of abstract and concrete

syntax rules in GF. We give the rules for abstract syntax in figure 2.7. First, we need to

define these categories with keyword cat, as shown on lines 1. The keyword fun stands

for function declaration. In line 3, fun declares the function MkProp of type “Subject

-> Type -> Proposition”; meaning it takes two parameters (a subject and a type13)

and forms a proposition.

The arrow (->) is the usual function type arrow of programming languages. A

subject is formed by pronoun (as shown on line 6) and math symbol (as shown on line

7).

Next, we define the function (It) which belongs to the category pronoun (on line

8). We define the function Irrational of the category Type. In full CLM grammar,

we add types (e.g. integer, natural number, rational, set, group, proposition, etc) in a

similar fashion.

Finally, as shown on line 9, we treat symbolic mathematics as an uninterpreted string

(cf. MkSymb) in GF. An example of an abstract syntax tree in this grammar is:

MkProp (MkSymbSubj (MkSymb "sqrt(2)")) Irrational

Defining a formal grammar in GF is definitely possible. However, it comes with a

penalty in efficiency for parsing14. It is because GF is general enough to cover both

natural language grammars and formal language grammars. Of course this generality

has a price in terms of efficiency.

Therefore, we define the symbolic expressions for symbolic mathematics outside GF

as Labelled BNF grammar (LBNF). The host system MathNat, input this grammar to

BNF Converter tool (BNFC) [Forsberg & Ranta 2004, Forsberg & Ranta 2005]. BNFC

is a specialized tool for generating compiler front-ends15 from LBNF grammars. The

string in the above example ("sqrt(2)") is interpreted as the following abstract syntax

tree:
13It is a linguistic type which is not exactly similar to the notion of type in type theory.
14This penalty in efficiency is not huge now. It is because this observation is taken in 2008 and since

then GF is improved a lot. See §6.2 for some other reasons.
15More precisely, a lexer, parser, abstract syntax definitions and pretty-printer.
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1 cat Proposition; Subject; Type; Pron; SymbMath;

2

3 fun MkProp: Subject -> Type -> Proposition;

4

5 fun MkPronSubj : Pron -> Subject;

6 fun MkSymbSubj : SymbMath -> Subject;

7

8 fun It: Pron;

9 fun MkSymb: String -> SymbMath ;

10

11 fun Irrational : Type;

Figure 2.7: Abstract Syntax for simple propositions

EFun (Ident "sqrt") (EInt 2)

The host system MathNat separates category SymbMath into expressions (including

variables), equations, notations and formulas with semantic checks. It then seamlessly

integrates the parse trees of textual mathematics given by GF and parse trees of symbolic

mathematics given by BNFC tool. So the final abstract syntax is:

MkProp (MkSymbSubj (MkSymb (EFun (Ident "sqrt" ) (EInt 2))
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

Irrational

︸ ︷︷ ︸

To map this abstract syntax into its concrete syntax, we define the linearization

type (lincat) of each abstract syntax category (cat), and the linearization (lin) of each

abstract syntax function (fun), as shown in figure 2.8. In line 1, we say that all categories

are simply string records. To form the linearization of a proposition, in the function

(MkProp) on line 3, we select the string values of subject and type (with .s), and

concatenate them with the string “is” (using ++). In lines 5–6, we up-cast the pronoun

and the math symbols as subject. Then, we define the linearization of the functions It

and Irrational as string records on line 8 and 11 respectively. Finally, we define the

linearization of the function (MkSymb). It takes a string value (symb.s) and put around

two single quotes (‘...‘).

In this concrete syntax, the abstract syntax tree given on page 19 is linearized to:

{s = “‘sqrt(2)‘ is irrational”}

In this simple example, we avoided inflection, agreement or other complex morpho-

syntactic features. However, as we’ll see in Chapters 5, 6 and 7, GF allows more sophis-

ticated linearization rules (with records, finite functions and algebraic data types).

2.5.2 Restoring Discourse

It is possible to compile GF grammars (and Labelled BNF grammars) into code usable in

general purpose programming languages. For that GF provides an API which makes it

possible to access functionality such as linearize and parse as ordinary functions. When

the math text is parsed by GF, a list of sentence level abstract syntax trees (AST) is

produced. We recognize each AST by pattern matching and build the context from
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1 lincat Proposition, Subject, Type, SymbMath, Pron = {s:Str};

2

3 lin MkProp subj type = {s: subj.s ++ "is" ++ type.s};

4

5 lin MkPronSubj pron = pron ;

6 lin MkSymbSubj symb = symb ;

7

8 lin It = {s="it"};

9 lin MkSymb symb = {s= "‘" ++ symb.s ++ "‘"};

10

11 lin Irrational = {s= "irrational"};

Figure 2.8: Concrete syntax for abstract syntax given in figure 2.7

CLM discourse. The context is a collection of three tables containing information that

occurs in the mathematical texts as shown in the subsequent subsections.

2.5.2.1 Saving Information of Symbolic expressions, Equations and Pronouns

For an AST, we record every occurrence of symbolic expressions, equations, pronouns

and references. To explain the procedure, we give below the analysis of the first two

sentences (line 1–2) of figure 2.4.

For the first sentence, we record: its sentence number in the text; the object about

which we gather information (object is an anaphoric referent); its number (1 if singular,

length of the object if plural); whether it is universally quantified or existentially; is it

explicitly declared in the text by the user or implicitly by the system MathNat; and

finally, its type; as shown below:

Sentence No. Object Number Quantification Declaration Type

1.
√

2 1 None Explicit Irrational

In the quantification column above, we save “none” because
√

2 is a literal.

We may have more than one objects that occur in a sentence and therefore, record

them all. For instance, for the second sentence shown bellow,

“If
√

2 is rational, then a2 = 2 ∗ b2 − (4.3.1) where a and b are positive

integers with gcd(a, b) = 1”,

We record information in the following way. First, when the system reads “
√

2 is

rational”, it records the following information:

Sentence No. Object(s) Number Quantification Declaration Type

2.
√

2 1 None Explicit Rational

Then the system reads the equation “a2 = 2 ∗ b2 − (4.3.1)”. At this point we do not

have any information about a and b, so only partial information is stored. Also because

these two variables are not yet declared, MathNat implicitly declares them. (cf. first

two line below.)

We proceed further and record only the left hand side of the equation as a convention

(see §8.3 for the motivation of this convention). Therefore, information about a2 is

stored, as shown in the third line of the table below.
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Sentence No. Object(s) Number Quantification Declaration Type

2. a 1 QLet Implicit Unknown

2. b 1 QLet Implicit Unknown

2. a2 1 QLet Explicit Unknown

Note that in the quantification column above, we save “QLet” because a is quantified

by the MathAbs rule let.

Finally, MathNat reads the last part of this sentence. So we come to know that a, b

are integers and record this information. This information about a and b supersedes

the old information in the context regarding them (so the old information is no longer

available for anaphoric resolution).

Sentence No. Object(s) Number Quantification Declaration Type

2. a, b 2 QLet Explicit Integer

2. gcd(a, b) 1 QLet Explicit Unknown

This information allows us to support the following linguistic features:

Naive Anaphoric Resolution for Pronouns If a sentence contains the pronoun “it”, it

is replaced by the latest singular object appeared before in the context with a condition

that it should be declared explicitly (Explicit). E.g. the second “it” in sentence:

“it is clear that a2 is even because it is a multiple of 2.”

on line 19 of figure 2.4 is replaced by a2. Similarly, in sentence:

“if a and b are even then they have a common factor.”,

on line 24 of figure 2.4, the pronoun “they” is replace by “a and b”. Furthermore, the

information regarding number and type solves anaphora of the following kind:

“Let x, y, z be integers. [. . . ] Suppose that a + b + c > 0. assume that a

and b are positive numbers. [. . . ] They are three even integers.”

Note that, we save expressions collectively for each sentence. Therefore, the following

table is built for the above example sentences:

Sentence No. Object(s) Number Quantification Declaration Type

n + 1 x, y, z 3 QLet Explicit Integer

... ... any but not 3 ... ... ...

n + 2 x + y + z 1 QLet Explicit Unknown

k a, b 2 QLet Explicit Number

... ... any but not 3 ... ... ...

j They (x, y, z) 3 QLet Explicit Integer

The last pronoun “they” is replaced by the objects in the first row above: “x, y and

z”. It is because we lookup for the object(s) whose number field is ‘three’ and type field

is ‘integer’, as shown in the table.

Also note that the referent object in the third row: “x + y + z” is an expression (not

three separate variables). So that is why we did not resolve anaphora with this object.

It may seem a bit strange, explaining one of the reasons why we call this algorithm

‘naive’. This procedure is formally described in §8.3.1.1 on page 198.
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Naive Anaphoric Resolution for Demonstrative Pronouns Similarly, (number, type)

pair of the above table allows to solve the anaphora of demonstrative pronouns (“this”

and “these”). E.g. for a statement such as “this integer is positive”, we lookup the latest

object with (1, Integer) pair.

This procedure is skipped in Chapter 8 due to space limitations.

2.5.2.2 Saving Information of Logical Formulas

In §2.3, we have translated the statements of our running example into equivalent logical

formulas. We save this information in a second table of our context. This information

is useful in many ways as described below, as well as in bullet §1 of §4.6 on page 74.

For instance, for the first statement, we record its sentence number in the text,

logical formula and statement type, as shown below:

S# Logical Formula Statement Type

1.
√

2 /∈ Q Goal

In contrast, the second statement is recorded in parts as shown below:

S# Logical Formula Statement Type

2. (a, b ∈ Z) ∧ positive(a) ∧ positive(b) ∧ gcd(a, b) = 1 Hypothesis

2. a2 = 2 ∗ b2 Deduction

This information allows us to support the following linguistic features:

Anaphoric Resolution for References This table helps to solve the reference to hy-

potheses, deductions and statements. For instance, when we see a sentence such as “we

deduce that x + y = 2 ∗ (a + b) by the (first|last) hypothesis”, we solve it with a simple

lookup for the (first | last) hypothesis in the context which we have recorded. Similarly,

for a statement such as “we deduce . . . by the (first | last) deduction”, we lookup for

the (first | last) deduction in the context which we have recorded. And finally, for a

statement such as “we deduce . . . by the (first | last) statement”, we lookup for the (first

| last) hypothesis or deduction in the context which we have recorded. It is further

described in §8.3.6.2 on page 212.

2.5.2.3 Saving Information of Equations and References

Finally, we save the information regarding equations and their references in a third

table16. The first statement of text contains no equation, and therefore, there is nothing

to record. In the second sentence, we record the equations and their references shown

below:

S# Equation Reference

2. a2 = 2 ∗ b2 4.3.1

2. gcd(a, b) = 1 no reference

This information allows us to support the following linguistic features:

16These three tables collectively form the context. Indeed we can combine this information in a single

table. However, we found separate tables easier to manage and explain.
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Explicit References to Equation

1. Similar to the anaphoric resolution for logical formulas, we can solve anaphora

to the equation of the form “by the (last | first) equation, . . . ”, etc, with this

information. For instance, the sentence “By the last equation a2 is even; . . . ” on

line 9 and “The last equation implies . . . ” on line 13 of figure 2.4.

2. With available information, it is also possible to solve anaphora of references.

For instance the sentence such as “Substituting the value of a in equation (4.3.1)

returns 4 ∗ c2 = 2 ∗ b2” is interpreted as: “Substituting the value of a in equation

a2 = 2 ∗ b2 returns 4 ∗ c2 = 2 ∗ b2”.

Implicit References to Equation Operations such “multiplying both sides by . . . ”, “di-

viding both sides by . . . ”, “squaring both sides . . . ”, etc, implies that there is an equation

in some previous sentence. So we check this condition and if an equation is found, we

put it in place. For instance, we interpret the sentence on line 18 of figure 2.4: “squaring

both sides yields 2 ∗ b2 = a2 – (1)” as “squaring both sides of equation
√

2 ∗ b = a yields

2 ∗ b2 = a2 – (1)”.

This procedure is skipped in Chapter 8 due to space limitations.

2.6 Related Work

AutoMath [de Bruijn 1994] of N.d. Bruijn, is one of the pioneering works in which a

very restricted proof language was proposed. After that such restricted languages are

presented by many systems. For instance, the Mizar language[Trybulec et al. 1973], Isar

[Wenzel 1999] for Isabelle, the notion of formal proof sketches[Wiedijk 2003] for Mizar

and Mathematical Proof Language MPL [Barendregt 2003] for Coq.

Among all of these languages, Mizar has the strongest claim of resembling the declar-

ative style of the language of mathematics. However, Mizar or Formal Proof Sketches

(and all the languages mentioned above) are quite restricted, non ambiguous, and have

a programming language like syntax with a few syntactic constructions. Therefore, like

MathAbs, we consider them as intermediate languages between mathematical text and

proof checking system.

The MathLang project [Kamareddine & Wells 2008] goes one step further by sup-

porting the manual annotation of mathematical texts. Once the annotation is done

by the author, a number of transformations to the annotated text are automatically

performed for automatic verification. For instance, it has been tried to translate some

mathematical text from the core language of MathLang (called CGa) to the syntax of

three proof assistants (Mizar – formal proof sketches [Kamareddine et al. 2007], Coq

[Kamareddine et al. 2008] and Isabelle [Lamar et al. 2009]).

Although these translations are still in embryonic stage and the treated examples

have limited reasoning gaps17, they inspire us for the possibility of similar work in Math-

Nat. Therefore, in future, we would like to translate MathAbs of some mathematical

text in the language of theorem provers, such as Mizar [Trybulec et al. 1973], Isabelle

17It is mainly the first chapter of Landau’s book of analysis [Landau 1966]. However, in

[Lamar et al. 2009]) some mathematical text from contemporary abstract algebra.
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[Paulson 1994], HOL [Gordon & Melham 1993], Coq [Team 2010], etc. For the reason-

ing gaps, it will require the use of automatic tactics that these systems provide.

In conclusion, MathLang mainly focuses on the second question raised in the intro-

duction but neglects the treatment of the language of mathematics (for instance, its

parsing) completely.

The work of Hallgren and Ranta [Hallgren & Ranta 2000] presents an extension to the

type-theoretical syntax of logical framework Alfa, supporting a self extensible natural

language input and output. One of the authors, Aarne Ranta claims that:

“[This work] shows that texts consisting of definition and theorem block

can be made natural and readable”. [Ranta 2011b]

Like MathNat, its natural language grammar is developed in GF but it is not specif-

ically designed for the elementary mathematical texts. Also, it does not support the

grammar for textual proofs, as well as, neither it supports the rich linguistic features

as we do (such as anaphoric pronouns, anaphoric references, distributive and collective

readings, etc).

In historical perspective, the STUDENT system by Bobrow [Bobrow 1964] and

Nthchecker of Simon [Simon 1988, Simon 1990] are perhaps the pioneering works for

their times. The program STUDENT is a simple question answer system with a very

restricted English grammar.

In contrast, the Nthchecker by Simon [Simon 1988, Simon 1990] is probably the first

major serious work which tries to answer the question raised in the abstract. The system

works in three phases:

1. Lexical analysis

2. Sentence parsing i.e. each sentence is parsed independently.

3. Proof connector. It works in two parts:

(a) Combines the output from ‘mathematics parser’ (for symbolic mathematics)

and ‘sentence parser’.

(b) Refinement to the formal proof.

The system understands proofs from the book Elementary Theory of Numbers

[LeVeque 1965]. Its sentence parser parses 34 proofs. Whereas, the proof connectors

combines the output from sentence parser with mathematics parser for 15 proofs, as

stated by Simon (excerpts taken from [Simon 1990, page 17]):

“The proof connector’s rules are sufficient to parse 15 of the proofs.”

Among them two proofs are mechanically verified, as stated by Simon:

“The entire proofs of Theorem 1–1 and Theorem 2–3 do go through the

proof connector and theorem prover mechanically.”
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However, its linguistic and mathematical analysis seems shallow and ad-hoc. For

instance, the general account on the analysis of the language of mathematics is missing.

At the same time, it is not clear how the linguistic features such as anaphoric pronouns,

anaphoric references, distributive and collective readings, etc, are supported (if they

are supported at all). Finally, Simon does not build or use a linguistic theory for the

language of mathematics. Instead, as stated by Simon ([Simon 1990, page 19]):

“However we make no claims about this system as a linguistic theory, only

as a computationally effective device for deciphering the natural language

input.”

In recent times, Vip – the prototype of Zinn [Zinn 2004, Zinn 2006] is a promising

work. In his doctoral thesis and papers, Zinn gives a linguistic and logical analysis of

textbook proofs drawn from two textbooks. In the prototype Vip, Zinn develops an

extension of discourse representation theory (DRT) [Kamp & Reyle 1993] for parsing

and integrates proof planning techniques [Bundy 1996] for verification. The prototype

Vip can process two theorem with their proofs (nine sentences) from number theory

[Zinn 2004, page 166]. These are given below:

THEOREM 3 (EUCLID’S FIRST THEOREM). If p is prime and p | ab, then p | a or

p | b.

Suppose that p is prime and p | ab. If p ∤ ab then (a, p) = 1, and therefore, by theorem

24, there are an x and a y for which xa + yp = 1 or

xab + ypb = b.

But p | ab and p | pb, and therefore p | b. [Zinn 2004, page 146]

THEOREM 2-2. Every integer a > 1 can be represented as a product of one or more

primes.

Proof. The theorem is true for a = 2. Assume it to be true for 2, 3, 4, . . . , a − 1. If a is

prime, we are through. Otherwise a has a divisor different from 1 and a, and we have

a = bc, with 1 < b < a, 1 < c < a. The induction hypothesis then implies that

b =

s∏

i=1

p′

i, c =

t∏

i=1

p′′

i

with p′

i, p′′

j primes and hence a = p′

1p′

2 . . . p′

sp′′

1 . . . p′′

t . [Zinn 2004, page 155]

In our opinion, this coverage is too limited to verify the usefulness of the presented

concepts. Like Simon, Zinn tried to answer the two hard problems discussed in the

introduction (Chapter 1) at once. Therefore, he was also drifted towards giving the

treatment which is shallow rather than deep. In his own words:

“Our analysis, given the complexity of the task, had to be more shallow

than deep.” [Zinn 2004, page 164]

Instead of repeating ourself, we refer to [Ganesalingam 2009, 19–21] for an account on

shortcomings of this work.

Regarding the above two theorems and proofs, MathNat can parse the first one ‘as

it is’, and the second one partially. To be more precise, all the structural phrases in the

second proof are supported by MathNat, including the case markers ‘if’ and ‘otherwise’

for ‘proof by case’ method. The only unsupported feature is ellipses, for which a general

account requires further investigation (even in the work of Zinn).

Similar to the work of Zinn on proof checking, we may consider to integrate with

proof planning techniques [Bundy 1996] for verification in future.
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The Naproche system [Cramer et al. 2010b] is also based on an extension of DRT. Like

MathNat, Naproche translates its output to the first order formulas. Currently, it has a

quite limited controlled language without rich linguistic features. For instance, this work

only deals with the proofs taken from the first chapter of Landau’s book “Foundations of

Analysis” [Landau 1966] (also some proofs from group theory, and Burali-Forti paradox.

These proofs also have very limited controlled language). The writing style of this book

(and other proofs) is very simple, which we do not see in the other published books. For

instance, an excerpt from it is given below:

Axiom 1: 1 is a natural number.

Axiom 2: For every x, x′ is a natural number.

Axiom 3: For every x, x′ Ó= 1.

Axiom 4: If x′ = y′, then x = y.

Theorem 1: If x Ó= y then x′ Ó= y′.

Proof:

Assume that x Ó= y and x′ = y′. Then by axiom 4, x = y. Qed.

Theorem 2: For all x x′ Ó= x.

Proof:

By axiom 3, 1′ Ó= 1. Suppose x′ Ó= x. Then by theorem 1, (x′)′ Ó= x′. Thus by induction,

for all x x′ Ó= x. Qed.

. . .

MathNat can parse most of the text ‘as it is‘ from the first chapter of Landau’s book.

As regards the proof checking, Landau tries to make the text unambiguous and the

proofs presented in it do not have very big reasoning gaps. In this sense, like MathNat,

the problem of reasoning gaps is yet to be answered.

Having said that, their work on proof checking [Cramer et al. 2010a] is still worthy

to notice. It must be interesting to see how they manage to select the needed hypotheses,

definitions, axioms, etc, from the large poll.

As compared to the Naproche system and the work of Zinn, we did not use DRT

because we didn’t need its expressive power. Instead, we develop our own theory which

analyzes and then, compositionally treat the language of mathematics, as well as, its

discourse (as already discussed in §2.3. We will discuss it further in Chapter 4).

Another recent framework FMathL is proposed by Arnold Neumaier

[Neumaier & Schodl 2010]. It aims to provide a modeling and documentation

language for the working mathematician. The project is promising in its ambition but

still in its embryonic stage.

Finally, we refer to an article giving a comprehensive review for sys-

tems developed for natural language mathematical problems between 1959–2008

[Mukherjee & Garain 2008].

Theoretical Work

Aarne Ranta has done substantive theoretical work on the language of mathematics by

studying and formalizing it in Martin löf’s constructive type theory [Martin-Löf 1984].

[Ranta 1994, Ranta 1995, Ranta 1996, Ranta 1997, Ranta 2011b]. His work is mainly

concerned with studying the language of mathematics for small domains from linguistic

and logical perspective. In Ranta’s own words:
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“Following roughly the format of Montague grammar [see the collection

[Montague 1974]], I have been working within the constructive type theory

of Martin-Löf.”

The thesis of Mohan Ganesalingam is a recent work which gives a comprehensive,

detailed and convincing analysis of the language of mathematics from linguistics per-

spective; see chapter 2 and 8 of [Ganesalingam 2009]. It tries to give an analysis covering

all of pure mathematics (§1.1 of [Ganesalingam 2009]). However, only a brief account

for proof block is given. Similarly only a brief account is given for features such as

anaphora, definite descriptions and prepositional phrases.

We also try to give a comprehensive and in-depth analysis of the language of math-

ematics in Chapter 3. However, our analysis is inclined towards the logical aspects.

We discuss various structural blocks and linguistic features (such as anaphora, definite

descriptions and prepositional phrases) in a great detail. Like the analysis of Gane-

salingam, this chapter is also filled with a lot of examples, that we have taken from

various books on number theory, set theory, analysis and algebra; a complete list is

given in 3.4.

Ganesalingam proposes a convincing account for “mathematical types” (cf. chapter

5 of [Ganesalingam 2009]) that can sufficiently express the mathematical language. He

also propose a novel algorithm for typed parsing (cf. chapter 6 of [Ganesalingam 2009]).

However, it is a theoretical work which is not (yet) bound by practical considerations

about building a system. Therefore, it seems a bit early to see if his theoretical model

can be implemented in the current state of the art. We shall discus it further in Chapter

9.

Another idea that Ganesalingam proposes is the creation of new syntax from math

definitions instead of a manually added lexicon on compile time. However, it is not yet

clear to us how to implement such a mechanism.

Finally, it seems right to say that the work of Ranta and Ganesalingam is a ‘must

read’ to get a significant insight in this field.
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3.1 Introduction

The language of mathematics is a specific scientific prose which is evolved in centuries.

Mathematics has a reputation of being an exact science. Consequently, the language

that transmits it (i.e. the mathematical language) is also considered to be exact and

somewhat easier than the natural language. Ranta states this fact in following words:

Linguistically, the study of mathematical language rather than everyday

language is rewarding because it offers examples that have complicated

grammatical structure but are free from ambiguities. We always know

exactly what a sentence means, and there is a determinate structure to

be revealed. [Ranta 1994, p. 354]

Although, the natural language used in mathematical texts is simpler and restricted

to a particular domain, as we’ll see, it still contains complex and rich linguistic features.

We can divide mathematical language in two parts: the mathematical statements
and the prose of structural blocks i.e. definition, theorem, proof, etc. The mathematical

statements mainly represent atomic facts depending upon the mathematical domain in

consideration. For instance, for number theory we may have relations such as equality,
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inequality, etc and properties such as positiveness, evenness, etc. These facts are nor-

mally glued together by various connectives and quantifiers to form bigger statements.

For example in the following statement:

x is positive and even.

the conjunction ‘and’ is used to connect two atomic facts to form a bigger statement.

These facts are ‘x is positive’ and ‘x is even’. Mathematical statements and connectives

are further explained in §3.3.3.

In contrast, mathematical discourse is highly structured and highly personalized. We

can classify it in the prose of structural blocks, such as definition, axiom, proposition,

theorem, proof, lemma, remark, example, etc.

The role of a statement in mathematical discourse is defined by two things. First,

the structural block in which it appears and second, the specific clue word or phrase

which are added to the mathematical statement. For instance, if we add clue phrases

such as ‘suppose that’ to the above example statement and if it appears in definition,

theorem or proof, it will become an assumption. But if we add a phrase ‘prove that’

and if it appears in theorem, then it’ll become a statement that we need to prove. The

prose of different structural blocks refers to the discourse level; see §3.2 for details.

However, sometimes there is no clue word or phrase added to the statements but it

can still play a specific role in the discourse. For instance, in theorem 43 as shown in

figure 3.3 on page 34, there is a statement which we have to prove; it doesn’t matter if

a clue phrase such as ‘prove that’ is added or not, as shown below:

√
2 is irrational. vs. Prove that

√
2 is irrational.

Another example could be the following conditional statement in proof which is also

taken from figure 3.3 on page 34 and it has no clue word or phrase. Unlike the above

statement, it acts as a deduction. It is because it appears in the proof block.

If a = 2c, then 4c2 = 2b2, 2c2 = b2 and b is also even, [. . . ].

However, if it had appeared in the theorem block, it would be the statement that we

have to prove.

At sentence level, the language of mathematics consists of a fragment of natural

language along with symbolic expressions and notations. For instance, consider again

the above example sentence. The natural language parts are typeset as bold.

If a = 2c, then 4c2 = 2b2, 2c2 = b2 and b is also even, [. . . ].

The use of symbols in mathematical texts makes it easier to read and refer, and

make the form compact. For instance, the above statement with less symbols could be

as followed:

If a is equal to 2c, then 4c2 is equal to 2b2, 2c2 is equal to b2 and b is also
even, [. . . ].

Or naïvely, the above statement without any symbols at all could be as followed:
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If the first integer is equal to the double of the second integer,

then four times the square of the second integer is equal

to the double of the square of the third integer, the

double of the square of the second integer is equal to the

square of the third integer and the third integer is also even, [. . . ].

We defer further discussion on intermixing of text and symbols to §3.3.1.

The language of mathematics also contains anaphoric pronouns and references (cf.

§3.3.4 and 3.3.5), the possibility of rephrasing of a sentence in multiple ways (cf.

§3.3.6.2), distributive and collective readings (cf. §3.3.6.3). Interestingly, these fea-

tures extend to the symbolic expressions and notations as well in a novel way, which is

evident in almost all of the example texts given in this chapter. We also discuss symbolic

mathematics in §3.3.1.2 and textual mathematics in §3.3.1.1.

The language of mathematics may also contain graphics such as diagrams in geom-

etry and logic. However, we do not consider them in this thesis.

We proceed to the next section by describing the overall structure of the language

of mathematics.

3.2 Mathematical Discourse

The mathematical texts are normally presented in an axiomatic fashion. Mathematical

discourse is highly structured. It mainly consists of theorems, lemmas, propositions,

corollaries and their proofs along with some supporting axioms, definitions, remarks

and examples.

However it is rare to find all of these structural blocks in one text. It depends

on the level of formality intended by the author. In general, a text contains theo-

rems, lemmas, propositions and their proofs. While both definitions and axioms may

not be mentioned sometimes and taken as granted (e.g. see ([Hardy & Wright 1975],

etc). Sometimes axioms are mentioned but definitions are mostly omitted (e.g. see

[Jech 2000], [Lang 1997], [Landau 1966], etc) and sometimes definitions are mentioned

but axioms are mostly omitted (e.g. see [Baker 2009], [Landau 1958], [Hackman 2007],

[Burton 2007], [Jones & Jones 2007] etc)1. This enterprise also shows the flexibility

and high level of personalization that the language of mathematics offers for authoring

mathematical texts. We now give some details about these structural blocks.

3.2.1 Axiom

An axiom consists of a statement or a few, expressing a proposition or fact that is

considered to be true without a proof. We give a few excerpts from different math

books containing axioms in figure 3.1. We can observe two different styles for the same

axiom. The first author intermixes text and symbols. In contrast, the second author

uses text only.

3.2.2 Definition

A definition prescribes the meaning of a [symbol,] word or phrase in terms

of other [symbols,] words or phrases that have previously been defined or

whose meanings are assumed known. [Bagchi & Wells 1998]

1These omitted structural blocks are sometimes given informally.
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1.1. Axiom of Extensionality. If X and Y have the same elements, then

X = Y .

1.2. Axiom of Pairing. For any a and b there exists a set {a, b} that contains

exactly a and b. [Jech 2000, p. 12]

(1) Axiom of Extensionality. If two sets have the same elements, then they

are equal.

(2) Null Set Axiom. There is a set, ∅, which has no members.

(3) Axiom of Infinity. There is a set x such that ∅ ∈ x and such that {a} ∈ x

whenever a ∈ x. [Devlin 1993, p. 44]

Figure 3.1: Some axioms from mathematical texts

Similar to the axiom, it also defines a fact which is considered to be true without

a proof; and consists of a statement or a few. A definition extends vocabulary of the

language of mathematics. We give a few excerpts in figure 3.2. For instance, definitions

2.3, 2 and A.I.5 define relatively prime in different ways2. A definition may have some

or all of the following three parts:

The assumption part: It normally occurs in the beginning of a definition and declares

some variables on which the definition applies to. However it is rare to find an assump-

tion without some conditions, which is explained in ‘the condition part’ below. For

example, we declare integers a, b, m, n with some conditions on them, as shown in figure

3.2.

The statement containing symbol, word or phrase being defined: It has two parts: (1)

a symbol, word or phrase which is being defined and (2) other symbol, word or phrase

which has already been defined. Both parts are joined by clue phrases: ‘said to be’, ‘is

defined’, ‘is called’, etc. As an example, see ‘said to be’ in definition 2.3 of figure 3.2.

However similar to axioms, sometimes this statement can be a proposition, containing

no clue word or phrase. For example, the second sentence in definition 2.2 of figure 3.2.

The condition part: Both parts mentioned above are normally complemented by some

conditions; as evident by definitions 2.2, 2.3, 1.1.1. A condition is normally signaled by

clue word or phrase such as ‘if’ , ‘whenever’, ‘satisfying the following’, ‘such that’, etc.

Conditionals: By contrast, the above mentioned three parts sometimes also incorpo-

rated in a conditional statement in which the assumption part is given as a conditional

clause (i.e. between ‘if’ and ‘then’) and the main statement is given in the consequence

clause (i.e. after ‘then’). An example of such pattern is definition 2 of figure 3.2.

It is possible to give extra conditions in the consequence clause:

If a ∈ G has order n = mk then ak has order m, where m, k ≥ 1.

but these conditions may directly be added in the conditional clause as well:

If m, k ≥ 1 and a ∈ G has order n = mk, then ak has order m.

2More on rephrasing is given in §3.3.6.2
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Definition 2.2. Let a and b be given integers, with at least one of them different

from zero. The greatest common divisor of a and b, denoted by gcd(a, b), is

the positive integer d satisfying the following:

• d | a and d | b.

• If c | a and c | b, then c ≤ d. [Burton 2007, p. 21]

Definition 2.3. Two integers a and b, not both of which are zero, are said to

be relatively prime whenever gcd(a, b) = 1. [Burton 2007, p. 22]

DEFINITION 2: If (a, b) = 1, that is, if 1 is the only positive common divisor

of a and b, then a and b are called relatively prime.

[Landau 1958, p. 16]

A.I.5 Definition. The integers m, n = 0 are relatively prime if (m, n) = 1, i.e.,

if their only common factors are 1. [Hackman 2007, p. 03]

Definition 1.1.1. A set A is called an ordered set, if there exists a relation <

such that

• For any x, y ∈ A, exactly one of x < y, x = y, or y < x holds.

• If x < y and y < z, then x < z. [Lebl 2010, p. 21]

Figure 3.2: Some definitions from mathematical texts

There is another phenomena which appears in all structural blocks. It is the restate-

ment of some parts of a sentence for explanation. For instance, it appears in definition

2 (partially shown below) and it is triggered with a clue word ‘that is’.

If (a, b) = 1, that is, if 1 is the only positive common divisor of a and b

[. . . ]

3.2.3 Theorem

The theorem is a mathematical statement that we have to prove. Once it is proved, it

may be used freely as an established fact anywhere in the text. It may have following

two parts or only second:

The assumption part: A statement or more may occur in the beginning that assumes

some facts about the theorem, declares some variables and/or introduces some condi-

tions. For example, in theorem 1.17 of figure 3.3, we declare a prime number p and two

integers a and b.

The proposition we have to prove: The main part of the theorem is the proposition

that we have to prove. Following are such propositions:

If p | ab, then p | a or p | b. Theorem 1.17√
2 is irrational. Theorem 43

Further, a theorem or proposition given as an exercise to the reader may be aided

by a clue word or phrase such as ‘show that’, ‘prove that’, etc. Two example of such
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Theorem 1.17 (Euclid’s Lemma). Let p be a prime and a, b ∈ Z. If p | ab,

then p | a or p | b.

Proof. Suppose that p ∤ a. Since gcd(p, a) | p, we have gcd(p, a) = 1 or

gcd(p, a) = p; but the latter implies p | a, contradicting our assumption, thus

gcd(p, a) = 1. Let r, s ∈ Z be such that rp + sa = 1. Then rpb + sab = b and

so p | b. � [Baker 2009, p. 11]

Theorem 43 (PYTHAGORAS’ THEOREM)
√

2 is irrational.

Proof. If
√

2 is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in positive integers a, b with gcd(a, b) = 1. Hence a2 is even, and

therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2 and b is also even,

contrary to the hypothesis that gcd(a, b) = 1. �

[Hardy & Wright 1975, pp. 39–40]

Figure 3.3: Some theorems and their proofs from mathematical texts

propositions are following.

1-8. Show that if a prime p divides a product of integers a1 . . . an, then

p | aj for some j. [Baker 2009, p. 25]

Problem 3.11 Show that the function sign satisfies

sign(στ) = sign(σ)sign(τ) for all σ and τ in Sn. [Clark 2001, p. 28]

3.2.3.1 Lemma, Corollary and Proposition

At the level of prose theorem, lemma, corollary and proposition are same. It is also

evident from the mathematical texts shown in figure 3.4. Even in usage, the difference

between them is rather arbitrary and there does not exist any universally accepted

conventions. It is rather a matter of personal style.

However, as noted by [Bagchi & Wells 1998, p. 121]3, lemma, corollary and propo-

sition are normally considered logically subsidiary, easy to prove and having less impact

than a theorem. According to Nicholas J. Higham: “a lemma is an auxiliary result–a

stepping stone towards a theorem” [Higham 1998, p. 16].

Nevertheless, it is not completely true for a lemma. For example some of the very

powerful results in mathematics are represented as lemma. A few examples are following:

DuBois-Reymond lemma, Dehn’s lemma, Fatou’s lemma, Gauss’s lemma, Nakayama’s

lemma, Couchman’s Lemma, Zorn’s lemma, etc. An example lemma is shown in figure

3.4.

As regards the corollary, “it is a direct or easy consequence of a lemma, theorem

or proposition.” [Higham 1998, p. 16]. That means a corollary is deduced with a little

or no proof from a lemma, theorem, proposition or definition. For instance, in figure

3.4, corollary A.IV.8 is an example for which no proof is given and Corollary 2.5 is an

example for which a simple proof is given.

For a proposition, “[it] is less widely used than lemma and theorem and its meaning

is less clear. It tends to be used as a way to denote a minor theorem.” [Higham 1998,

p. 16]. An example text containing proposition is shown in figure 3.4.

3The paper [Bagchi & Wells 1998] only says it for lemma and corollary. But we consider it true for
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Lemma 1.11. Suppose that a, b ∈ N0 are coprime and n ∈ Z. If a | n and

b | n, then ab | n.

Proof. Let a | n and b | n and choose r, s ∈ Z so that n = ra = sb. Then if

ua + vb = 1,

n = n(ua + vb) = nua + nvb = su(ab) + rv(ab) = (su + rv)ab.

Since su + rv ∈ Z, this implies ab | n. �

[Baker 2009, p. 10]

A.IV.8 Corollary. For a prime number n all non-zero classes modulo n are

invertible. � [Hackman 2007, p. 14]

Corollary 2.5. The only automorphism of a well-ordered set is the identity.

Proof. By Lemma 2.4, f(x) ≥ x for all x, and f−1(x) ≥ x for all x. �

[Jech 2000, p. 18]

Proposition 1.1.9. Let x, y ∈ F where F is an ordered field. Suppose that

xy > 0. Then either both x and y are positive, or both are negative.

Proof. [. . . ] Without loss of generality suppose that x > 0 and y < 0.

Multiply y < 0 by x to get xy < 0x = 0. The result follows by contrapositive.

� [Lebl 2010, p. 24]

Figure 3.4: Mathematical texts showing proposition, lemma, corollary and their proofs (when

given)

3.2.4 Proof

A proof is probably the most important part of mathematical texts. It is a collection of

arguments presented to establish the truth of a theorem, lemma, corollary or proposition.

It mainly follows a narrative style and its structure mostly remains the same for all

mathematical domains. A proof block may have some of the following parts:

Restatements: Sometimes the statement that we have to prove is restated before its

proof. The reasons among many can be following. First, an author might want to break

it into smaller parts to prove one part at a time. Second, instead of this statement,

author might want to prove some other statement which is logically equivalent to it.

Following are some examples of restatements.

we have to prove only that D is unbounded. [Jech 2000, p. 428]

we have to prove that the least such multiple of p is p itself.

[Hardy & Wright 1975, p. 302]

Theorem 4. Let A and B be two sets. If A ∪ B = A ∩ B then A ⊆ B.

Proof. [. . . ] We shall prove that x ∈ A =⇒ x ∈ B, which by definition is

equivalent to the consequence of the theorem. [Goldberger 2002, p. 07]

In a similar way, restatements may also occur after its proof.

proposition as well.
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Assumptions or Hypothesis: Like the theorem, the assumption that can be called

the hypothesis as well, may occur in the proof. The most frequently used keywords

for assuming a fact are: ‘let’, ‘suppose that’, ‘assume that’, etc. In figure 3.4, first

statements of lemma 1.11 and its proof, and first two statements of Proposition 1.1.9

are assumptions. One of the most important functions of an assumption is to introduce

variable(s) and then define some properties on it, which is also evident from these

examples. More on variable scope could be found in §4.6.

Conclusions or Deductions: Conclusions are the main part of a proof in which we deduce

facts based on our assumptions, axioms, definitions, previously proved theorems, etc.

Conclusions are normally triggered by keywords such as ‘we conclude that’, ‘then’, ‘thus’,

etc. Furthermore, if a statement appears in a proof not having any kind of keyword,

most of the time it is a conclusion. Loosely speaking, most of statements other then

assumptions and restatements are conclusions.

Conditionals: As we have already described on page 32, conditional statements have

two clauses: the conditional clause (i.e. the part between ‘if’ and ‘then’) and the con-

sequence clause (i.e. the part after ‘then’). The conditional clause forms assumptions

and consequence clause forms conclusions. The fact that conditionals can introduce

assumptions is already been observed by many (cf. [Zinn 2006, p. 617], [Roberts 1989]

and [Frank & Kamp 1997]).

As an example, consider the conditional below which is taken from figure 3.3.

If
√

2 is rational
︸ ︷︷ ︸

Assumption

, then the equation a2 = 2b2 [. . .] with gcd(a, b) = 1
︸ ︷︷ ︸

Conclusion

.

[Hardy & Wright 1975, p. 40]

More on conditionals which are in fact implications is given in §3.3.3.

It is also worth noting that conditionals can easily be replaced by the keywords

used to describe an assumption and conclusion. For instance ‘Suppose/Let . . . ’ for

assumption and ‘Then . . . ’ for conclusion. In a similar way their converse is also

possible. More on such rephrasing is given in §3.3.6.2.

Justifications: A proof has a precise logical structure in which each statement follows

one or more of the following as justification.

• Some of the previous statements in the proof i.e. proof steps.

• Definitions or axioms.

• Theorems, propositions, lemmas or corollaries that has been proved.

These justifications are sometimes made explicit and sometimes left implicit. The

most frequently used keywords with explicit justifications are: ‘since’, ‘by’, ‘because’

and ‘by the fact that’, etc. A few example statements containing explicit justifications

are following in which justifications are enclosed in brackets or boldfaced:

Since su + rv ∈ Z
︸ ︷︷ ︸

, this implies ab | n. [Baker 2009, p. 10]

We shall prove that x ∈ A =⇒ x ∈ B, which by definition is equivalent to
the consequence of the theorem [Goldberger 2002, p. 07]
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By hypothesis
︸ ︷︷ ︸

, S must also contain (a − 1) + 1 = a, [. . . ]

[Burton 2007, p. 02]

By Lemma 2.4
︸ ︷︷ ︸

, f(x) ≥ x for all x, and f−1(x) ≥ x for all x.

[Jech 2000, p. 18]

Similarly, ‘from this’, ‘therefore’, ‘so’ and ‘hence’ can indicate implicit justifications.

According to our analysis of different texts and as noted by [Zinn 2004, p. 79] as well,

the first three4 are likely to refer to the last statement in the text, and the last seems

referring to all prior premises and asserted statements. For instance, see the use of

‘hence’ and ‘therefore’ in Theorem 43 of figure 3.3 on page 34. A few more examples

are given below:

If r were positive, then this representation would imply that r is a member

of S, contradicting the fact that d is the least integer in S (recall that

r < d). Therefore, r = 0, and so a = qd, or equivalently d | a.

[Burton 2007, p. 22]

Let r1 = f(a) and r2 = f(b). This implies that

a = nq1 + r1, 0 ≤ r1 < n

and

b = nq2 + r2, 0 ≤ r2 < n

Hence a + b = nq1 + r1 + nq2 + r2 = n(q1 + q2) + r1 + r2

[Clark 2001, p. 91]

3.2.4.1 Proof Methods

In this section, we describe some of the most commonly used methods of proof. Loosely

speaking, these proof techniques correspond to the laws of sequent calculus and natural

deduction (cf. §4.5).

Direct Proof: As noted by [Cupillari 2001, p. 12], a direct proof is based on the

assumption that the hypothesis contains enough information to allow the construction

of a series of logically connected steps leading to the conclusion. In addition to the

hypothesis, these steps may also be aided by the axioms, definitions, and earlier proved

theorems. There are no clue words to recognize a direct proof.

Proof by Contradiction: In this method, the contrapositive of conclusion is assumed.

Then using this hypothesis a contradiction is established. A famous example of ‘proof

by contradiction’ is the famous ‘irrationality of
√

2’ proof. Most of the proofs by con-

tradiction end at a phrase similar to: ‘This contradicts our assumption. Therefore, we

are forced to conclude that . . . ’, ‘It is contrary to the hypothesis that . . . ’, etc.

Proof by Case or Exhaustion: Sometimes to prove a theorem, we have to break the

problem in parts and then solve them one by one. Parsing this method poses a major

4[Zinn 2004, p. 79] do not include ‘so’ in this list.
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challenge of overcoming ambiguity (cf. §7.2.1.7). We describe some of the common

patterns along with some examples:

Pattern 1: In this pattern, each case starts with one or more assumptions as shown

below:

We have n cases.

Case 1: assumption(s) . . .

Case 2: assumption(s) . . .

. . .

Case n: assumption(s) . . .

Following are two typical examples of this pattern:

Theorem: For all integers x, the expression x2 − x is even.

Proof: Let x be an arbitrary integer. There are two cases to consider:

Either x is even or x is odd.

Case 1: Suppose that x is even. It follows that x2 is even. Because the

difference between two even numbers is even, we conclude that x2 − x is

even.

Case 2: Suppose that x is odd. Then x2 is odd. x2 − x is even because

the difference between two odd numbers is even.

So in either case, x2 − x is even. [Erickson & Heeren 2007, p. 10]

Similarly,

Proof:

Case I: Let a > 0, b > 0. . . .

Case II: Suppose that the assumption a > 0, b > 0 is not satisfied but that

a and b are still both Ó= 0. . . .

Case III: Let one of the two numbers be 0, say a = 0, so that b Ó= 0. . . .

[Landau 1958, pp. 15–16]

Pattern 2: Instead of having the above pattern, sometimes cases are introduced infor-

mally as shown below.

[. . . ] c Ó= 0; for otherwise we would have . . . .

In the case c > 0, the choice x = b, y = c accomplishes what we want.

In case c < 0, the choice x = −c, y = b does it. . . . [Landau 1958, p. 136]

Proof. The cases n = 0, 1, 2 clearly hold. We will prove the result by

Induction on n. . . . [Baker 2009, p. 19]

Pattern 3: A disjunction such as ‘either A or B . . . ’ in the following proof indicates

proof by case. A proof with a disjunction pattern always has two cases.

Either n is prime, when there is nothing to prove, or n has divisors between

1 and n. [. . . ] [Hardy & Wright 1975, p. 02]
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Pattern 4: Similarly, patterns such as ‘if-then’, ‘if-then-otherwise’ or ‘if-otherwise’ may

also indicate ‘proof by case’ method. A few examples of such case analysis are:

If p = n we are through. Otherwise we apply induction to the quotient

1 < n/p < n. [Hackman 2007, p. 08]

Pattern 5: Sometimes, bullet list is also used to represent cases as shown in the following

example:

Proof: By assumption, a Ó= 0.

1. If b = 0, then a =±1, since (a, 0) = 1; and hence a | e.

2. If b Ó= 0, let m be the smallest positive common multiple of the

relatively prime positive numbers . . .

[Landau 1958, p. 17]

Some proofs are only aided by one case; may be because the other case(s) can be

deduced from it or the proof for other case(s) is similar:

Proof. It is enough to consider the case in which b is negative. Then

| b |> 0, [. . . ] [Burton 2007, p. 18]

Proof by Mathematical Induction: Most of the proofs that use induction, include a

statement such as ‘induction on . . . ’, ‘We use induction to prove it’, etc. We give a few

examples:

Proof. Induction on n. Let p be the smallest divisor > 1 of n. It is a

prime number. If p = n we are through. Otherwise we apply induction to

the quotient 1 < n/p < n. [Hackman 2007, p. 08]

Proof. We will use Induction on n. We can easily verify the cases n = 1, 2.

Assume that the equations hold when n = k for some k ≥ 2.. . .

[Baker 2009, p. 19]

An induction proof is a special case of ‘proof by case’ method. In such a proof we

typically have one or more base cases and one or more inductive cases. It is also evident

by these example.

3.2.5 Remark, Example, Exercise

Apart from the above mentioned blocks, we may also find some other kinds of prose in

mathematical texts. It does not directly present mathematical facts. Instead it offers an

explanation to the reader. A few examples of such prose are: the miscellaneous discus-

sions (normally named as ‘remark’), examples and exercises that appear in mathematical

texts. However, propositions can also occur in this prose sometimes. For instance, a

proposition for which the proof is not given and left as an exercise. We will not discuss

them anymore; see [Bagchi & Wells 1998] for more details.
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3.3 Micro Structure of the Language of Mathematics

We now discuss the various characteristics of the language of mathematics at sentence

level that make it unique and hard to formalize.

3.3.1 Intermixing of Text and Symbols

As introduced in §2.2 and §3.1, textual mathematics is often intermixed with symbolic

expressions and notations. To be precise, it is hard to find statements that contain only

textual or symbolic material. Text and symbols complement each other in a way that

they cannot be studied separately. For instance, in the sentence below, variables a and

b are first used in equation 4.3.1 but introduced in the later part of the same sentence.

So we have to interpret the second part first and then the first part.

If
√

2 is rational, then the equation a2 = 2b2 (4.3.1) is soluble in

positive integers a, b with (a, b) = 1. [Theorem 43 of figure 3 at p. 34]

Abbreviation by symbols makes an argument compact, concise, and easier to read

and refer. In most of mathematical texts, symbols are encapsulated by natural language

text. However it could also be the other way around sometimes:

A ∩ B = {x : x ∈ A and x ∈ B} [Taylor 2010, p. 03]
⋂ A = {x : x ∈ A for all A ∈ A} [Ibid.]

{(x, y) ∈ N2 | x and y are coprime} [Ganesalingam 2009, p. 39]

The proportion of symbols in a mathematical text may vary from one domain to

another. It may also depend on the taste and writing style of the author. For instance,

one may prefer the statement: ‘let x be an integer’ as compared to the statement: ‘let

x ∈ Z’; although both are commonly used. See more rephrasing in §3.3.6.2.

As regards the predicates and functions5, [Ranta 2009b, pp. 17–18] notes that their

usage is also quite flexible. In general, most of the predicates are textual; e.g. x is even,

etc. However some conventional two place predicates are symbolic as well; e.g. equality

(=), inequalities (>, <), etc. Similarly, most of 2-place functions are also textual. For

instance, ‘greatest prime factor’, ‘common multiple’, etc. But some conventional two

place functions are symbolic also; e.g. +, −, etc.

3.3.1.1 Textual Part of Mathematics

First, the objects of study in mathematics are rather abstract in nature, and belong to

Platonic universe. That is why, it limits the use of pronouns to third person (cf. §3.3.4 for

details regarding anaphoric pronouns). Furthermore, these abstract objects are mostly

timeless and therefore the textual part of mathematics mostly contains present tense6.

Consequently, the morphology used in mathematics is quite simple and plays limited

role.

5We discuss them very briefly in §3.3.3
6An exceptions is the limited use of future tense in restatements mentioned in §3.2.4. Consider also

the following two examples:

We will prove the result by Induction on n. . . . [Baker 2009, p. 19]

The set of all n for which X1 + nA is an upper number contains a smallest integer, by Theorem 27; we
will denote it by u. [Landau 1966, p. 50]
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In semantics, the vocabulary and grammatical constructions used in mathematics

may have different meaning and interpretation than their normal usage in a natural

language. For instance the word ‘increasing’ in the following statement does not mean

the usual meaning found in English vocabulary. Instead, its semantic meaning must

have been defined.

If f is a differentiable function, then if f is increasing, f ′(x) > 0 for every

x. [Ranta 1996, p. 231]

3.3.1.2 Symbolic Part of Mathematics

Mathematics is full of symbols and notations ranging from simple ones (e.g. x + y,
√

2,

etc) to the complex ones (e.g. lim
n→∞

∫ b

n
f(x) dx,

k∏

n=1

n

n − 1
, etc). However these visu-

ally complex symbols are easily representable in linear typographic languages such as

LATEX[Lamport 1986].

Both symbols and notations can be read aloud as if they are written in natural

language. For instance, ‘x + y = 10’ could be read as ‘the sum of x and y is 10’ or ‘x

plus y equals 10’. Similarly, the statement mentioned in Theorem 1.17 of figure 3.3 on

page 34:

‘Since gcd(p, a) | p, . . . ’ [Baker 2009, p. 11]

could be read aloud as: ‘Since the greatest common divisor of p and a divides p, . . . ’. It

suggests that sometimes, a symbolic construction can play the same grammatical role

as its constituent natural language text. Following are some of its characteristics:

Notational collision: Symbolic mathematics is ambiguous in nature. It is based on the

collective intuition and wisdom of mathematicians. It tries to use the same few notations

over and over again for concepts that share similar properties or intuitive meaning. For

instance, symbol ‘−’ in context of number theory subtracts two numbers, but in set

theory it gives the difference of two sets (which is intuitively similar to subtraction). In

other words, mathematical notations and operators are heavily overloaded which may

cause notational collisions.

To solve this problem, written and unwritten conventions are heavily used. It is then

the combination of intuition, context, kind and conventions that allows to understand

a piece of symbolic mathematics unambiguously.

An optional use of operators: It is a special case of notational collision. Expression

‘ab’ evidently represents a product of variables a and b, in the following statement:

Let p be a prime and a, b ∈ Z. If p | ab, then p | a or p | b.

The symbol (·) or (×) is used whenever there is a danger for an expression to become

ambiguous or to be interpreted wrongly. For instance, if we would like mention a product

of numbers 12 and 2, instead of writing 122 we’ll write 12 · 2 or 12 × 2. This means ab

is simply a short hand for a · b or a × b.

However, a series of concatenated symbols does not always represent a product. For

instance, expression ABC contains three lexical items which represent a single triangle

in statement:
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Let ABC be a triangle.

Precedence and Conventions: When we write an expression from number theory such

as ‘x + y + z’, there are two possible interpretations: ‘(x + y) + z’, ‘x + (y + z)’. Both

are fine but majority of mathematicians would prefer the first to later as a convention

of left associativity.

However, in an expression such as ‘ab+c = d’, we must interpret it as ‘((a×b)+c) = d’.

It is so because multiplication has higher precedence than addition, and addition has

higher precedence than equality.

Precedence is context dependent. For instance, as noted by [Sacerdoti Coen 2009],

“equality on propositions (denoted by =, a notational abuse for co-implication) has

precedence higher than conjunction (denoted by ∧), which is higher than equality on

set elements (also denoted by =), which is higher than meet for lattice elements (also

denoted by ∧). Thus A = B ∧ P can be parsed either as (A = B) ∧ P (a conjunction of

propositions) or as A = (B ∧ P ) (equality of lattice elements)”.

But sometimes even context is not sufficient. We need to follow some con-

ventions to find the correct interpretation of symbolic mathematics. As stated by

[Sacerdoti Coen 2009], it is more likely that φ2(x) be interpreted as (φ ◦ φ)(x), but

sin2(x) be interpreted as (sin x)2. These conventions usually informs us about the

‘kind’ or ‘type’ of an object, which in return, helps us to give correct interpretation.

In conclusion, we need to analyze the ‘type’ of an object, the context in which that

object occurs and general conventions to understand a piece of symbolic mathematics

unambiguously.

This leads to the next section in which we shall discuss other kinds of ambiguity

which occur in the language of mathematics.

3.3.2 Ambiguity

Like natural languages, ambiguity is also a serious problem for mathematical language.

We have discussed ambiguity in §2.2 from a certain length. In this section we’ll describe

it in detail.

We start by a very common form of structural ambiguity, called coordination ambi-
guity. Consider a part of sentence taken from figure 3.3 on page 34:

If a = 2c, then 4c2 = 2b2, 2c2 = b2 and b is also even.

It is extremely ambiguous and there are many interpretations possible for it. First,

we need to solve the meaning of comma (,) used between two equations. Does it mean

‘and’? as shown below:

If a = 2c, then 4c2 = 2b2 and 2c2 = b2 and b is also even.

If the authors would have intended ‘and’, they must have used it explicitly, as they

have done in other part of the same sentence.

Does it mean that the second equation is a consequence of the first one? This view

seems to be in accordance with the logical structure of arguments presented in it. We

may have several ways to show this consequence in textual form. Two of them are

following:
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1. If a = 2c, then 4c2 = 2b2 which implies that 2c2 = b2 and b is also even.

2. If a = 2c, then 4c2 = 2b2 and if 4c2 = 2b2, then 2c2 = b2 and b is also

even.

However, these sentences are still ambiguous. We give below some of possible inter-

pretations for the first sentence only. Priority to interpret (i.e. precedence) is shown

with brackets.

• Two statements joined by ‘and’:

If a = 2c, then 4c2 = 2b2 which implies that 2c2 = b2

︸ ︷︷ ︸
︸ ︷︷ ︸

and b is also even.

︸ ︷︷ ︸

• A conditional statement whose conclusion part contains two textual statements

joined by ‘and’:

If a = 2c, then 4c2 = 2b2 which implies that 2c2 = b2

︸ ︷︷ ︸
and b is also even.

︸ ︷︷ ︸
︸ ︷︷ ︸

• A conditional statement whose conclusion part contains a statement (2c2 = b2 and

b is also even) which is a consequence of 4c2 = 2b2:

If a = 2c, then 4c2 = 2b2 which implies that 2c2 = b2and b is also even.
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

• And so on . . .

As we have seen that the meaning of comma in ‘4c2 = 2b2, 2c2 = b2’ can only be

understood if we look at the logical structure of this proof as well as the whole statement

carefully. It demonstrates the fact that we need an analysis which is not only linguistic
but also logical.

Consider two more statements given below. Both are ambiguous and their interpre-

tations are discussed in §3.3.3.2 and §3.3.3.3 respectively.

Let a | n and b | n and choose r, s ∈ Z so that n = ra = sb.

[. . . ] there are x and y such that xa + yp = 1 or xab + ypb = b.

Sometimes the coordination ambiguity is solved with the conventions. For instance,

‘A or B and C’ usually means ‘A or (B and C)’, ‘A and B implies A or C’ usually means

‘(A and B) implies (A or C)’ and ‘it is not the case that A and B or C’, usually means

‘it is not the case that ((A and B) or C)’. In fact this order of precedence corresponds to

logical connectives. The words used for logical connectives sometimes may have different

meaning. In that case, exception to such conventions usually occurs. See more details

in §3.3.3.

As regards the quantifier scope ambiguity, it normally occurs in statements as fol-

lowing:

Some point lies on every line. [Ranta 1994]

Every element of some set of natural numbers is prime.

[Ganesalingam 2009]
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[Ranta 1994] also notes that quantifier scope ambiguity does not occur in mathe-

matics because a strong convention of “translating quantifiers in the same order as they

appear” is used. However, reading some of the textbooks reveals that statement of this

kind (i.e. having implicit quantification) is not very common. It is because mathemati-

cians usually prefer to use variables to make it more precise and free of ambiguity.

[Ganesalingam 2009] gives an account of word sense ambiguity in mathematical

texts. He gives examples of two kind. The first is polysemy, whose examples could be

‘prime number’, ‘prime field’, ‘prime manifolds’, etc, having an intuitive connection with

the adjective prime. In contrast, the second is homonymy, whose examples could be:

‘normal subgroups’, ‘normal polynomials’, etc, having nothing in common.

And finally, structural ambiguity which occurs in proofs having multiple cases, as

shown in §3.2.4.1. We have seen some patterns which may help us to disambiguate.

But these patterns are often not so obvious, specially when cases are introduced infor-

mally. For instance, in pattern such as ‘either A or B’, ‘if-then-otherwise’, etc, linguistic

information can hardly disambiguate the branches. We also need information about

the logical structure and line of reasoning. Worse, there are so many ways to write

such proofs that it requires a lot of work to disambiguate between different patterns,

especially when we have nested sub-proofs.

3.3.3 Statements and Logical Operators

As mentioned briefly in §3.1, mathematical statements mainly represent atomic facts.

The atomic facts are formed by predicates7 and functions. They are also formed by

relations, properties and operations (sometimes). For instance, in elementary number

theory we may have relations such as ‘equality’, ‘inequality’, etc; we may have properties

such as ‘positiveness’, ‘evenness’, etc; and we may have operations such as ‘squaring both

sides’, ‘dividing the equation by x’, etc.

These facts are normally glued together by various logical connectives and quantifiers

to form bigger statements. They are mostly used in their textual form8. We describe

them below:

3.3.3.1 Negation (¬):

Negation can be represented by many clue words or phrases such as: ‘x is not positive’,

‘it is not the case that x is positive’, etc. However, “not” is mostly used for simple

predicates; whereas, “it is not the case that” is mostly used for complex statements.

3.3.3.2 Conjunction (∧):

Conjunction is represented by ‘and’. For instance, in proposition: ‘x, y and z are positive

and even’, it glues together six propositions as shown below:

positive(x) ∧ even(x)
︸ ︷︷ ︸

∧ positive(y) ∧ even(y)
︸ ︷︷ ︸

︸ ︷︷ ︸

∧ positive(z) ∧ even(z)
︸ ︷︷ ︸

︸ ︷︷ ︸

7Predicates are special case of functions in which a function can only return a boolean i.e. true or

false.
8The exception to this rule is the logical systems, which rejects the use natural language in favor of

formal languages.
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We have interpreted from left to right. But we can also do the opposite (i.e. right

to left):

positive(x) ∧ even(x)
︸ ︷︷ ︸

∧ positive(y) ∧ even(y)
︸ ︷︷ ︸

∧ positive(z) ∧ even(z)
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

Conjunction may also occur between statements. Consider the following statement

taken from Lemma 1.11 of figure 3.4 on page 35.

Let a | n and b | n and choose r, s ∈ Z so that n = ra = sb.

First of all, this sentence is ambiguous (cf. bullet 3.3.2 on page 43 in §2.2 and §9.2.1).

Only a careful analysis of the symbolic parts reveals that the first conjunction appears

in it has lower precedence than the keyword the ‘Let’, and should be treated as shown

below9:

Let divide(a, n) ∧ divide(b, n)
︸ ︷︷ ︸

and choose r, s ∈ Z so that n = ra = sb.

For the second, ‘and’ in the statement, we have two options. First, we can treat it as a

boolean conjunction as we did for the previous one. Second, we can also interpret it as a

sequential composition operator10. It is because it appears between two sub-statements.

These interpretations depend on the formalism in which we want to translate it. For

instance, it will be translated as boolean ‘∧’ in first order logic, as shown below (for

description of ∀ and ∃, see §3.3.3.6 on page 46):

∀a, b, n(. . . divide(a, n) ∧ divide(b, n)
︸ ︷︷ ︸

︸ ︷︷ ︸

∧ ∃r, s ∈ Z(n = ra
︸ ︷︷ ︸

= sb
︸ ︷︷ ︸

)

︸ ︷︷ ︸

)

But in MathAbs (cf. §2.3 and §4), we translate it in two commands (assume A

deduce B, where A is the first sub-statement and B is the second) as shown below:

let (a, b, n ∈ Their Corresponding Types) . . . assume divide(a, n) ∧
divide(b, n) deduce ∃r, s ∈ Z(n = ra = sb) •

3.3.3.3 Disjunction (∨):

It is represented by ‘or’ in natural language. e.g. x is positive or negative, etc. This

example statement can only be false if both of the two statements (i.e. x is positive, x

is negative) are false. This example can be represented as:

positive(x) ∨ negative(x)

In contrast, if we add a clue word ‘either’ forming: ‘either x is positive or negative’.

Then it means following:

(positive(x) ∧ ¬negative(x))
︸ ︷︷ ︸

∨ (negative(x) ∧ ¬positive(x))
︸ ︷︷ ︸

9We discuss such interdependence of text and symbols in §3.3.1
10In terms of C/C++/Java, instead of conjunction (&&), it could be considered as semicolon.
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The use of natural language in mathematics could be confusing at many occasions.

For instance, consider the disjunction that appears in the following statement:

[. . . ] there are x and y such that xa + yp = 1 or xab + ypb = b.

[Hardy & Wright 1975, p. 21]

Again, a careful analysis of symbolic parts (equations: xa + yp = 1, xab + ypb = b)

reveals that the first key phrase: ‘there are x and y such that’, has more precedence

than the disjunction ‘or’. Therefore, we must interpret it as:

there are x and y such that (xa + yp = 1) or (xab + ypb = b)
︸ ︷︷ ︸

︸ ︷︷ ︸

.

Further investigation also reveals that we can obtain the second equation from the

first one if we multiply b on its both sides. It means that this disjunction should be

taken as a consequence (i.e. implication, given below). Then, why Hardy & Wright uses

‘or’ instead of an implication (e.g. ‘which implies’) in this proof?

We can think of three reasons: First, the first equation is given only for the purpose

of explanation to an unacquainted reader. Therefore, Hardy & Wright use ‘or’ in its

informal sense, where it does not mean logical disjunction (∨). This leads to the second

reason: “or” in natural language could be used as a substitute to the phrase “in other

words”. Third, treating ‘or’ as a logical disjunction (∨) does not invalidate these equa-

tions. It is so because in the case when ‘A ⇒ B’ is true, ‘A ∨ B’ becomes equivalent to

B.

Finally, pattern such as ‘either A or B . . . ’ in a proof may also trigger proof by case

method, where A and B are arbitrary statements. (cf. §3.2.4.1).

3.3.3.4 Implication (⇒):

Implication is represented by conditionals in mathematical texts. The most common

pattern is: ‘if A then B’. However, other patterns such as: ‘B only if A’, ‘since, A then

B’, ‘because A, B’, ‘by the fact that A, B’, etc, also represent implication. We can

translate all these patterns to the logical formula: ‘A ⇒ B’.

In contrast, patterns such as ‘if-then’, ‘if-then-otherwise’ or ‘if-otherwise’ in proofs

may also trigger proof by case method (cf. §3.2.4.1).

3.3.3.5 Biconditional (⇔):

The formula ‘A ⇔ B’ is logically equivalent to the formula ‘(A ⇒ B) ∧ (B ⇒ A)’. In

textual form the patterns ‘if and only if’ or ‘iff’ represent it.

3.3.3.6 Quantifiers:

There are two kinds of quantifiers: universal and existential.

Universal Quantifiers: In mathematical language, universal quantification (∀) of vari-

ables is presented in two ways: explicitly or implicitly. Explicit universal quantification

is often represented by keywords: ‘for all’, ‘for every’, ‘for any’, ‘let’, ‘assume that’, ‘sup-

pose that’, etc. We again give some examples from those which are already introduced

in this chapter:
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1.2. Axiom of Pairing. For any a and b there exists a set {a, b} that

contains exactly a and b. [Jech 2000, p. 12]

Theorem 1.17 (Euclid’s Lemma). Let p be a prime and a, b ∈ Z.

[Baker 2009, p. 11]

Lemma 1.11. Suppose that a, b ∈ N0 are coprime and n ∈ Z.

[Baker 2009, p. 10]

Let n be an arbitrary positive integer. Assume that P (k) is true for all
positive integers k < n. [Erickson & Heeren 2007, p. 18]

Universal quantification may also be represented by articles (a, an, the) and numbers

as shown below:

A.I.5 Definition. The integers m, n = 0 are relatively prime if (m, n) = 1,

i.e., if their only common factors are 1. [Hackman 2007, p. 03]

Given two integers m, n ∈ Z we say that m divides n [. . . ]

[Baker 2009, p. 03]

The following example is worth noting because it demonstrates an important fact:

we can seemingly replace the variables by constants as we do for variable a below (a = 2).

It is called ‘universal instantiation’.

THEOREM 2–2. Every integer a > 1 can be represented as a product of

one or more primes.

Proof : The theorem is true for a = 2. [. . . ] [LeVeque 1965]

A statement or expression without any explicit universal quantification in discourse

is always implicitly quantified as universal (also noted by [Peters & Westerstahl 2006,

p. 34]). For instance, algebraic equalities as shown below, have implicit universal

quantifiers at the front:

Theorem. x + (y + z) = (x + y) + z.

Similarly, in the following statements variable c is not introduced, and therefore, it

is implicitly quantified as universal.

If a = 2c, then 4c2 = 2b2, 2c2 = b2 and b is also even, [. . . ]

[Hardy & Wright 1975, pp. 39–40]

It is worth noting that when a variable is universally quantified in a statement, it

remains available in the subsequent sentences of that block. For instance, when we say:

Let x be an integer. S1, S2, . . . , Sn (S is a sentence)

We interpret it as following, where S is an interpretation of S, and because each sen-

tence is a logical consequence of its previous sentence in a discourse, we add implications

between their interpretations.

∀x ∈ Z( (((S1 ⇒ S2) ⇒ . . .) ⇒ Sn) )
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Existential Quantifiers: Existential quantifier (∃) is often represented by ‘for some’,

‘there exists’, ‘there is’, etc, in natural language. For instance, consider the following

examples:

Given two integers m, n ∈ Z we say that m divides n and write m | n if

there is an integer k ∈ Z such that n = km;[. . . ] [Baker 2009, p. 03]

Suppose n is odd. Then n = 2k + 1 for some integer k.

There is a second kind of existential quantifier called ‘unique existential (∃!)’, for

which we add phrases such as ‘unique’, ‘one and only one’, etc. Here is an example:

Then there are unique natural numbers q, r ∈ N0 satisfying the two con-

ditions n = qd + r and 0 ≤ r < d. [Baker 2009, p.

02]

Similar to ‘universal instantiation’, we can also instantiate existentially quantified

variables. The keyword: ‘we take’ is used for it in most cases, but sometimes no keyword

is used. We give examples for both cases below:

THEOREM 1.2 (Long Division Property). Let n, d ∈ N0 with 0 < d. Then

there are unique natural numbers q, r ∈ N0 satisfying the two conditions

n = qd + r and 0 ≤ r < d.

PROOF. [. . . ] Notice that if r = n − qd, then

0 ≤ r = n − qd < (q + 1)d − qd = d.[. . . ] [Baker 2009, pp. 02–03]

THEOREM 1.3. [. . . ] Then there are unique integers q, r ∈ Z for which

r <| d | and n = qd + r.

PROOF. [. . . ] If r′ = 0 then we take q = −q′ and r = 0. [. . . ]

[Baker 2009, p. 03]

Finally, It is not always the keywords that decide whether a variable be quantified

universally or existentially. The logical status (i.e. whether a statement is an hypothesis,

deduction or goal) also matters. For instance, in the assumption:

We assume that there is an integer x such that [. . . ],

the variable x should not be existentially quantified, although the keyword ‘there is’

appears. Instead, it should be universally quantified (i.e. (∀x : Z(. . .))).

In contrast a goal (or a deduction) as following:

Then there is an integer x such that [. . . ],

the variable x should be existentially quantified (∃x : Z(. . .)).

The rules we follow for this translation are taken from the Gentzen’s sequent calculus

(more precisely the left and right rules for ∀ and ∃). For more details, see §4.6 on page

72.
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3.3.4 Anaphoric Pronouns

The use of anaphoric pronouns is quite frequent in the language of mathematics. In

general, pronouns refer to nouns, definite descriptions, variables, symbolic expressions,

statements and propositions. We can find following pronouns in mathematical texts:

‘it’, ‘itself’, ‘they’, ‘this’, ‘these’, ‘both’, ‘other’, ‘such’, ‘their’, etc. However this list is

not meant to be exhaustive. We describe their usage below with some typical examples

found in mathematical texts.

3.3.4.1 Pronouns referring to nouns, definite descriptions, variables and symbolic ex-
pressions:

First we highlight the use of ‘it’ with different examples. For instance, in the following

statement, ‘it’ refers to class F .

A class F is a function if it is a relation such that (x, y) ∈ F and (x, z) ∈ F

implies y = z. [Jech 2000, pp. 11–12]

Similarly, in the following statement, we have two pronouns, both refer to the ‘set’.

A set is finite if it has n elements for some n ∈ N , and infinite if it is not

finite. [Jech 2000, p. 14]

It is not difficult to imagine such statements as shown below, in which ‘it’ refer to

the set ‘A ∩ B’ and its textual form respectively:

The set A ∩ B is finite if it has . . .

The intersection of sets A and B is finite if it has . . .

We may also frequently find statements in which pronoun refers to a definite de-

scription. For instance in the following statement, ‘it’ refers to the description ‘smallest

integer’.

The set of all n for which X1 +nA is an upper number contains a smallest

integer, by Theorem 27; we will denote it by u. [Landau 1966, p. 50]

Another usage of ‘it’ could be seen in the following statements. The pronoun in the

first statement refers to ‘prime divisor’ and the pronoun in the second statement refers

to ‘smallest positive integer’.

1. So a must have a prime divisor, call it p. [Clark 2002, p. 31]

2.
By the Well-Ordering Property for N , S contains a smallest positive in-

teger, call it d. [Clark 2002, p. 25]

In a similar way, we now describe some typical usage of pronoun ‘they’. Its usage is

quite similar to ‘it’ with two exceptions. First, obviously, it refers to plural objects; and

secondly, it normally does not refer to propositions and statements.

For instance in the first example below, ‘they’ refers to variables x1, x2, x3, x4. While

in the second example, ‘they’ refers to variables t, t′. We can also note the anaphoric

usage of phrase ‘original pair’ which refers back to the pair given in the theorem of this

proof.
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. . . If m0 is even, then x1+x2+x3+x4 is even and so either (i) x1, x2, x3, x4

are all even, or (ii) they are all odd, or (iii) two are even and two are odd.

In the last case, let us suppose that x1, x2 are even and x3, xq are odd.

Then in all three cases . . . [Hardy & Wright 1975, p. 302]

Theorem 1.12 (The Chinese Remainder Theorem). Suppose n1, n2 ∈ Z+

are coprime and b1, b2 ∈ Z. Then the pair of simultaneous congruences

x ≡n1
b1, x ≡n2

b2, [. . . ]

Proof. [. . . ] To prove uniqueness modulo n1n2, note that if t, t′ are both

solutions to the original pair of simultaneous congruences then they satisfy

the pair of congruences t′ ≡n1
t, t′ ≡n2

t. [Baker 2009, p. 10]

In the following example, we highlight the use of ‘one’ and ‘other’ along with ‘they’

which refers to two integers.

Two integers have the same parity if they are both even or if they are

both odd. They have different parity if one is even and the other is odd.

[Clark 2001, p. 27]

The use of reflexive pronoun ‘itself’ is also common as shown below, where ‘itself’

refers to π.

Since λ ⊂ B, π maps every subset of λ onto itself, and so P (λ) ∩ M =

P (λ) ∩ B. [Jech 2000, p. 340]

The statements given below, highlight the use of ‘such’ in mathematical texts. Here,

quite evidently ‘such integers’ refers to such integers that are greater than 1 and has

no prime divisor. Similarly the second ‘such’ appearing in the last line refers to the

smallest element of S.

Assume there is some integer n > 1 which has no prime divisor. Let S

denote the set of all such integers. By the Well-Ordering Property there

is a smallest such integer, call it m. [Clark 2002, p. 31]

Now we give a few examples, highlighting the use of demonstrative pronouns. For

instance, in the following example we can see the use of ‘these’ among other pronouns,

where ‘these’ refers to u, v.

If u Ó= v, then using the Prime Ideal Theorem, one can find an ultrafilter

p on B containing one of these two elements but not the other.

[Jech 2000, p. 81]

While in the following example, ‘this’ refers to the number g(p−1)/2.

Notice that the power g(p−1)/2 satisfies (g(p−1)/2)2 ≡ 1. Since this number

is not congruent to 1 modulo p, Proposition 1.23 implies that g(p−1)/2 ≡p

−1. [Baker 2009, p. 15]

An interesting passage to quote would be the following which is full of different kinds

of anaphora. First of all, it is a proof by case which is described in §3.2.4.1. In the first

line, the use of ‘this’ (which could also be replaced by ‘it’) refers to the case condition

(a, n) > 1. More on pronouns referring to statements and propositions will appear in

the next section. Another instance of ‘this’ appears in the third line which refers to the

current case. Further, we can see that use of ‘both’ and ‘their’ which refer to p, q.
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Next consider the case where (a, n) > 1. This means that a is divisible by

p or q. If a is divisible by both, it is divisible by their product n, and the

result is trivial in this case. [. . . ] Consider the difference b = akφ(n)+1 − a.

Under our assumption it is trivially divisible by p.

[Hackman 2007, p. 33]

Sometimes it is not easy to resolve anaphora as the anaphoric statements which

look similar may refer to different objects. The only way to resolve them would be to

go deeper and look inside the statements, and then, take the decision based on their

semantics. Worse, there could be a lot of cases (if not infinitely many) to be captured in

such deep analysis. Anyways, in the first statement below, ‘it’ refers to a. In contrast,

in second statement ‘it’ refers to b.

Because a | p, it is a either prime or 1.

Since 2 | b, we conclude that it is even.

Finally, consider two more examples which are more convincing:

If a | b then it is prime or one. (‘it’ refers to a)

If a | b then it is not prime nor one. (‘it’ refers to b)

3.3.4.2 Pronouns referring to statements and propositions:

Pronouns referring to statements and propositions mostly occur in proofs. In a proof

each statement is mostly a consequence of previously stated statements. To show this

dependence, key phrases such as: ‘it shows that’, ‘it is easy to see that’, ‘it follows that’,

‘it is trivial’, ‘this means’, ‘it means that’, etc, are used. In all such key phrases, ‘it’,

‘this’, or ‘these’ mostly refer to the previous statement(s), condition(s) or proposition(s).

For instance, in the examples below, in the first example ‘it’ refers to the condition

n < e. While in the second example, ‘it’ refers to the fact that ‘α is transitive’.

Choosing n < e, it shows that (ape − 1)/(a − 1) ≡ 0(mod pe), hence the

period cannot be a smaller power of p. [Hackman 2007, p. 90]

If α ⊂ β, let γ be the least element of the set β − α. Since α is transitive,

it follows that α is the initial segment of β given by γ.

[Jech 2000, p. 19]

Similarly in the first example below, ‘this’ refers to the fact that q > q′. While, in

the second example, ‘each of these’ refers to both x > y and y < x. Finally, in the third

example, ‘this’ and ‘it’ refer to previous statements.

If q > q′, this implies d ≤ (q − q′)d,. . . [Baker 2009, p. 03]

Theorem 11: If x > y then y < x.

Proof. Each of these means that x = y + u for some suitable u.

[Landau 1966, p. 09]

Then by (4.2) we have n ≤ x < n + 1. This gives immediately that

⌊x⌋ ≤ x, as already noted above. It also gives x < n + 1 which implies

that x − 1 < n, that is, x − 1 < ⌊x⌋. [Hackman 2007, p. 14]
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Pronouns may also refer to algorithmic procedure in some proofs. Here is an example

text.

Proof. We begin by setting γ0 = γ and c0 = [γ0]. Then if

γ1 =
1

γ0 − c0
,

we can define c1 = [γ1]. Continuing in this way, we can inductively define

sequences of real numbers γn and integers cn satisfying . . .

[Baker 2009, p. 20]

Further, in the following example text, ‘this’ refers to a procedure which is informally

given in the previous sentence.

The idea is to divide up G into disjoint subsets of size H. We do this by

defining for each x ∈ G the left coset of x with respect to H, . . .

[Baker 2009, p. 37]

Not all occurrences of pronouns are anaphoric: However, sometimes their usage does

not necessarily refer to anything. Instead, they only appear as glue words whose sole

purpose is to just connect two statements or part of speech. We give a few examples

below.

Let f = {(x, y) ∈ W1×W2 : W1(x) is isomorphic to W2(y)}. Using Lemma

2.7, it is easy to see that f is a one-to-one function.

[Jech 2000, p. 18]

Theorem. For positive integers m, n

[m, n] =
mn

(m, n)
.

Proof. It is enough to compare the multiplicities of any prime p.

[Hackman 2007, p. 47]

3.3.5 Anaphoric References

Anaphoric references are quite frequent in mathematical texts. We can roughly divide

them in two: explicit and implicit as described below.

3.3.5.1 Explicit:

Sometimes symbolic expressions such as equations are tagged with references. It enables

us to refer back to them whenever needed in some other part of mathematical texts. We

present two examples in which equations are first tagged and then later referenced.

If
√

2 is rational, then the equation a2 = 2b2 (4.3.1) is soluble in positive

integers a, b with gcd(a, b) = 1. [. . . ]

(b) Second proof. It follows from (4.3.1) that b | a2, and a fortiori that

p | a2 for any prime factor p of b. [Hardy & Wright 1975, p. 40]
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Moreover, this rule must satisfy the condition

x = y =⇒ f(x) = f(y) (1.1)

[. . . ] Equality of ordered pairs is defined by the rule

a = c and b = d ⇐⇒ (a, b) = (c, d). (1.2)

[. . . ] Now implication (1.1) becomes

(a, b) = (c, d) =⇒ a ∗ b = c ∗ d. (1.3)

From (1.2) and (1.3) we obtain

a = c and b = d =⇒ a ∗ b = c ∗ d. (1.4)

[. . . ] [Clark 2001, pp. 01–02]

In a similar way, sometimes textual statements may also be tagged to refer later. An

example is the following theorem in which the hypothesis is tagged and referred later in

its proof.

Theorem 2.6. [. . . ]

(a) [. . . ]

(b) Whenever c | a and c | b, then c | d.

Proof. [. . . ] Given any common divisor c of a and b, we have c | d from

hypothesis (b) [Burton 2007, p. 24]

3.3.5.2 Implicit:

Mathematical texts are also full of implicit references. We present below some examples

to highlight different kinds of implicit references.

We start with the most common operations in number theory such as ‘squaring’, ‘di-

viding’, ‘factoring’, etc, which are proceeded and succeeded by equations. For instance,

in the following example, instead of writing ‘squaring both sides’, author mentions

‘squaring’ only. However the proceeding equation in the sentence indicates that there

must be an equation before it on which this operation is applied.

Suppose that
√

p =
a

b
for integers a, b. We can assume that gcd(a, b) = 1

since common factors can be canceled. Then on squaring we have p =
a2

b2

and hence a2 = pb2. [Baker 2009, p. 13]

In the example below, ‘hypothesis’ refers to the assumption given in the theorem.

Theorem 1: If a/b, then a/ − b, −a/b, −a/ − b, | a | / | b |.
Proof: By hypothesis we have b = qa; [. . . ] [Landau 1958, p. 11]

We may also have patterns such as:

‘(first| second | . . . | last) case’,

‘(first|last) (hypothesis | inequality | formula | deduction | statement)’,

‘each side of this equation’, etc.

Following are a few random examples without any further explanation.
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Raise both sides of this last equation to the pth power and expand to

obtain rpk−1(p−1) = (1 + apk−1)p ≡ 1 + apk(modpk+1)

[Burton 2007, p. 161]

From the last theorem, it is known that P (a) = P (b)(mod n).

[Burton 2007, p. 72]

Letting QR ≡ 1( mod M), and multiplying the last congruence by Rn,

we get . . . [Hackman 2007, p. 361]

Otherwise, the power of 2, if there is any, supplies a factor of 1 to the last
formula if l = 1; . . . [Landau 1958, p. 64]

Proof. Let us multiply the first congruence of the system by d, the second
congruence by b, and subtract the lower result from the upper. These

calculations yield . . . [Burton 2007, p. 81]

L � every p ∈ Pα forces ∃x(A(x)∧ ‖ x ‖= α). (25.20)

[. . . ]L � (p  ϕ)if and only if for every L-generic G ∋ p, L[G]  ϕ.(25.21)

[. . . ]But in view of (25.21) this last statement is equivalent to (25.20).

[Jech 2000, p. 492]

[. . . ] it is possible to find integers x and y such that d = ax + by. Upon

dividing each side of this equation by d, we obtain the expression

1 = (
a

d
)x + (

b

d
)y

[Burton 2007, p. 23]

3.3.6 Miscellaneous Features

3.3.6.1 The Length of the Sentence

Writing short and concise is a normal practice in mathematics. However, it is also not so

rare to find long sentences. To get the feeling, consider a few example sentences without

any further explanation.

1.

If a and b are relatively prime so that gcd(a, b) = 1, then Theorem 2.3

guarantees the existence of integers x and y satisfying 1 = ax + by.

[Burton 2007, p. 23]

2.

Suppose that
√

2 is a rational number, so
√

2 =
a

b
where a and b are non-

zero integers with no common factor (definition of a rational number).

[Wikipedia 2010]

3.
By the definition of rational numbers, we can assume that

√
2 =

a

b
where

a and b are non-zero integers with no common factor.

4.

Then by definition of the rationals, there exist non-zero integers p and q

such that
p

q
=

√
2, where p and q do not have common divisors (in other

words, p/q is in lowest terms). [Chan 2010, p. 03].
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5.
If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is also even, contrary to the

hypothesis that (a, b) = 1. [Hardy & Wright 1975, p. 40]

6.
If g is a primitive root modulo p2, where p is an odd prime, then it is also

one modulo every power pk, k ≥ 2. [Hackman 2007, p. 79]

Grammar modeling of such long sentences is an extra work if one parses general

patterns instead of tailor made sentences. It may also increases the complexity and

parsing time of the grammar. Furthermore, from an authors point of view who is writing

in a controlled language, it may be difficult to keep track of the available grammar11.

3.3.6.2 Rephrasing

Being able to rephrase sentences is a basic yet very powerful capability of natural lan-

guages12, which the language of mathematics also inherits. It can, not only rephrase a

textual statement to textual statement (could be more than one) but also rephrase it to

symbolic expressions and notations.

One of the most common pattern we found in mathematics text is conditionals

which can easily be rephrase as ‘since . . . then . . . ’, ‘because . . . , we conclude that . . . ’

or ‘let/suppose . . . then . . . ’ patterns. We have already mentioned the third pattern in

§3.2.4 on page 36. We also quote the same example given there.

If
√

2 is rational, then the equation a2 = 2b2 (4.3.1) is soluble in positive

integers a, b with gcd(a, b) = 1. ([Hardy & Wright 1975]:40)

Keeping the same arguments and line of reasoning, it can easily be rephrased in

many ways. Three possible rephrased statements could be following:

1.

Let a and b be two positive integers. Assuming that
√

2 is rational, the

equation a2 = 2b2 (4.3.1) is soluble with a condition that the greatest

common divisor of a and b is 1.

2.
Assuming that

√
2 is rational, we conclude that the equation a2 =

2b2 (4.3.1) is soluble in positive integers a, b with gcd(a, b) = 1.

3.
Suppose that

√
2 is rational. Then the equation a2 = 2b2 (4.3.1) is soluble

in positive integers a, b with gcd(a, b) = 1.

We have discussed the intermixing of text and symbols in §3.3.1. Symbols in textual

statements are sometimes embedded in a way that they could be replaced by natural

language part of speech (but on the expense of compactness) and vice versa. For instance

in the following example,

If c Ó= 0 and ca = cb, then a = b.

clauses such as ‘c is not equal to 0’, ‘ca is equal to cb’ (or alternatively ‘ca and cb

are equal’), ‘a is equal to b’ respectively can easily replace symbolic equations; hence

rephrasing the statement. Further, as given in §3.3.1, one may rephrase a statement

such as ‘let x be an integer’ to a statement such as ‘let x ∈ Z’ and vice versa.

11In general, this point could be raised for controlled languages as a whole by asking a question: ‘Is it

easy to write in a controlled language?’ We contribute our few cents regarding this in the Introduction

chapter.
12In a limited way, it is also a property of any formal language which distinguishes between syntax

and semantics.
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3.3.6.3 Distributive and Collective Readings

Distributive and collective reading are also common in mathematical texts. For exam-

ple, the statements such as ‘x, y are positive’ and ‘x, y are equal’ are distributive and

collective respectively.

Some collective readings could be ambiguous. Consider the statement ‘a,b,c are

distinct’. Are variables a, b, c pair-wise distinct or just some of them distinct?

Further, because collective readings require their subjects to be plural, statements

such as ‘x is equal’ never occur.

3.3.6.4 An optional Introduction of Variables

Normally a variable in first introduced in previous or the same sentence and then used.

However, variables are not introduced and directly used Sometimes. For instance, c is

used directly without any introduction in the third sentence of Theorem 43 in figure 3.3.

3.4 List of Mathematical texts used for analysis

1. Set Theory, 3rd edition by Thomas Jech. [Jech 2000]

2. Undergraduate Analysis, 2nd edition by Serge Lang. [Lang 1997]

3. Foundations of Analysis, 3rd edition by Edmund Landau. [Landau 1966]

4. Basic analysis - Introduction to Real Analysis. [Lebl 2010]

5. Algebra and Number Theory by Andrew Baker. [Baker 2009]

6. An Introduction to the Theory of Numbers, 4th edition by Hardy and Wright.

[Hardy & Wright 1975]

7. Elementary Number Theory by Edmund Landau. [Landau 1958]

8. Elementary Number Theory by Peter Hackman. [Hackman 2007]

9. Elementary Number Theory, 6th edition by David M. Burton. [Burton 2007]

10. Elementary Number Theory by Gareth Jones and J. Mary Jones.

[Jones & Jones 2007]

11. Elementary Number Theory by W. Edwin Clark. [Clark 2002]

12. Elementary Abstract Algebra by W. Edwin Clark. [Clark 2001]
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4.1 Introduction

MathAbs (Mathematical Abstract language) is a system independent formal language

for mathematical texts that represents its semantics, and preserves its logical and rea-

soning structure. By system independent, we mean that its formalism is not based on

any specific logic, theory or proof assistant.

Why must such a formal language be independent of any logic, theory or prover? It is

because different logics and theories1 have both merits and demerits for the formalization

of mathematics. Since we intend to represent the language of mathematics “as it is”, it

is better to postpone such decisions till we do proof checking.

MathAbs is intended only for machine manipulation and it is a part of MathNat.

Here, MathAbs is used as an intermediary between the natural language of the mathe-

matician and the formal language of the logician.

An overview is already given in §2.3. The aim of this chapter is to give a detailed

account of MathAbs. We give its motivation in §4.2, syntax in §4.3, formal definition

1Logics and theories such as first-order logic, higher-order logic, predicative logic, impredicative logic,

category theory, different versions of set theories, different versions of type theories, etc.
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and semantics in §4.4, completeness in §4.5 and proof checking in §4.7. Assigning the

right quantification to variables is a very important task which is given in §4.6. A typical

mathematical text and its MathAbs version is given in figure 4.1.

4.2 Why MathAbs

The use of an intermediate language between the language of mathematics and theorem

provers is not new. AutoMath [de Bruijn 1994] of N.d. Bruijn, is one of the pioneer-

ing works in which a very restricted proof language was proposed. Similarly, a recent

framework MathLang [Kamareddine & Wells 2008], proposes an intermediate language

named Core Grammatical aspect (CGa) which is a predecessor of Weak Type Theory

(WTT) and similar to AutoMath. MathLang supports the manual annotation of math-

ematical texts, instead of automatic formalization by parsing (as MathNat does). Once

the annotation is done by the author, a number of transformations to the annotated text

is automatically performed for automatic but partial verification in Mizar and Isabelle.

Like these languages, MathAbs acts as a mediator between the language of math-

ematics and the proof checking systems. However, unlike these languages, the content

representation of MathAbs is very close to the textual proofs. Furthermore, MathAbs

has a clear semantics for axioms, definitions, theorems and proofs. MathAbs follows

arbitrary rules of reasoning, having no dependence on any particular theory or logical

system. It attempts to represent the language of mathematics which may have reasoning

gaps faithfully. By “faithfully”, we mean that the formal version of mathematics is as

close as possible to the intentions expressed in the mathematical text. This language is

intended to be simpler and non-ambiguous than the language of mathematics found in

the published literature, so that we can interpret it strictly.

The proof language of MathAbs (which is its main aspect) is constructed by looking

at proofs in natural language and observing that mathematicians do not give the name

of the logical rules they use (except for induction and absurdity reasoning). Instead

they usually explain how the context is evolving, i.e. what the new hypotheses and the

current goals are; what justifications are given as evidence, etc. By “justifications”,

we mean those explanations or details whose purpose is to guide a reader about the

reasoning steps.

It is important to note that a wrong proof can still be represented in MathAbs.

It is so because, MathAbs is only a representation language, therefore, no validation

or proof checking is performed directly in MathAbs as opposite to proof systems like

natural deduction. However, due to the semantics of MathAbs §4.4, we can manually

trace a wrong proof step, and therefore, there are more chances to know in advance

that a certain proof will succeed or fail by the automated theorem provers. It allows to

define a term “valid” MathAbs. It is a MathAbs proof containing no invalid proof step

according to the semantics of MathAbs.

Note that, there is no question of considering semantic markup languages such as

ActiveMath, OpenMath, OMDoc, etc for this task. Generally, they are low level and

have no adequate language (with semantics) to deal with the reasoning expressed in

textual proofs. Therefore, the content representation of these languages is inadequate

for the textual proofs. See [Maarek 2007, pp. 41–43, 53–58] for a detailed account on

the shortcomings of these languages.
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4.2.1 Origin of MathAbs

MathAbs is an extension of a proof language: new_command. It was designed as an

intermediate formalism between natural language proofs and the proof assistant PhoX

[Raffalli 2005] in the DemoNat project2 [Thévenon 2005, Thévenon 2006].

In DemoNat, the work was mainly focused on the realization and development of

a proof assistant that can utilize justifications found in informal proofs, to reduce it’s

search space. However, this proof assistant was only developed partially, and therefore, it

is not beneficial for us in the context of the verification of MathAbs (cf. §4.7). Although

an automatic translation from informal proofs to new_command was proposed but it

has never been implemented. In this sense, MathNat is the successor of DemoNat.

The proof language new_command includes some of the standard commands of

PhoX and supports a proposition (formula) as a theorem statement. We adapt it after

removing such dependencies and simplify the proof language by reducing the constructs

to minimal. Further, we add a language of definition and theorem. We also provide the

semantics of MathAbs for axioms, definitions, theorems and their proofs, which was not

done before. We have published these new results in [Humayoun & Raffalli 2010a].

4.3 Syntax of MathAbs

MathAbs can represent theorems and their proofs along with supporting axioms and

definitions. On a macro level, a MathAbs’ document is a sequence of definitions, axioms

and theorems with their proofs. However, analogous to the language of mathematics,

the most significant part of MathAbs is the language of proof; while the definitions and

axioms are probably just a fraction.

A proof in MathAbs is described as a tree of logical (meta) rules. These rules are

arbitrary and do not necessarily have to be the rules of natural deduction or sequent

calculus. Intuitively, at each proof step, there is an implicit active sequent with some

hypotheses and one conclusion, which is being proved, and some other sequents to be

proved later. The math text explains how the active sequent is modified to progress

in the proof and some justifications (hints) may be given. A theorem forms the initial

sequent with some hypotheses and one goal, which is then passed to the proof. While

axioms and definitions are added in the initial sequent as hypotheses. The proof in

figure 4.1 is a shortened version (we have merged some rules) of the semantics of the

proof tree shown in figure 4.2.

Formally, a MathAbs’ document is a non-empty sequence of definitions, axioms and

theorems with their proofs. We use BNF notation to describe the syntax of MathAbs.

〈Document 〉 ::= 〈Math 〉 ; 〈Math 〉 ; . . .

〈Math 〉 ::= Axiom 〈Formula 〉
| Definition 〈Definition 〉
| Theorem 〈Theorem 〉 ; Proof 〈Proof 〉

An Axiom is simply a formula while the other constructs are described later in this

section. The language of 〈Formula 〉 is arbitrary (it is a parameter of MathAbs) and

subject to change from one mathematical domain to another. In first-order logic or set

theory, 〈Formula 〉 is simply a language for first-order formulas. However, it could be

2DemoNat homepage: http://wiki.loria.fr/wiki/Demonat
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second order or higher order formulas also (according to the contents of the mathematical

text).

It means, 〈Formula 〉 represents mathematical statements inside various structural

blocks (i.e. axiom, definition, theorem, etc); see figure 6.2 on page 109 for the supported

grammar for 〈Formula 〉 by MathNat. In contrast, the language of axiom, definition and

proof remain the same for all mathematical domains. See §4.3.1 for more details.

Consider the following axiom as an example, which is only a statement; while its

MathAbs is simply a 〈Formula 〉:

Axiom 1. 1 is a natural number.

Axiom 1. 1 ∈ Nat

The 〈Definition 〉, 〈Assignment 〉 and 〈Ident 〉 are defined below.

〈Definition 〉 ::= 〈Assignment 〉 〈Definition 〉
| define 〈Formula* 〉 as 〈Formula 〉

〈Assignment 〉 ::= let 〈Ident 〉:〈Type 〉
| assume 〈Formula 〉

〈Ident 〉 ::= 〈String 〉

Only function names with varying number of variables as parameter (e.g. f , f(x),

f(x, y), . . . ) are allowed in 〈Formula* 〉 as a left hand side of a definition. We will

explain more when giving the semantics in §4.4.

The 〈Assignment 〉 only deals with universal variables. In 〈Assignment 〉, let allows

to introduce a new variable in the sequent; while assume allows to add a new hypothesis

to deal with conditional definitions (e.g. the definition of division requires the divider

to be non zero). More details will appear later in this section, in the explanation of

〈Proof 〉 language. Two examples of definitions and their MathAbs translation could be

seen on lines 1–2 of figure 4.1.

The 〈Type 〉 which appears in 〈Assignment 〉 is also a parameter of MathAbs. In set

theory, a type would simply be a set; whereas in first order logic, it would be a predicate

symbol. In contrast, it also could have the linguistic characteristics: a 〈Type 〉 is a set

or predicate whose elements have a generic common name. e.g. Integer, Rational, etc.

We keep this notion of ‘type’ to save the linguistic information.

However, this notion does not exactly correspond to type theory and it is not even

very precise (for instance, linguistically it is not easy to decide whether prime is a type

or just a property of numbers). It is one of the main problems if we would like to

translate CLM to a typed framework such as Agda [Norell 2007a, Norell 2007b] or Coq

[Team 2010].

Following are the types supported in the current implementation of MathNat.

However note the use of 〈Ident 〉 below. It reveals that 〈Type 〉 is open to new constructs.

〈Type 〉 ::= Prop | Set | Integer

| Number | Rational | Irrational

| NoType | Nat | 〈Ident 〉
A theorem could have zero or more assignment statements, followed by a show

statement:
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〈Theorem 〉 ::= 〈Assignment 〉 〈Theorem 〉
| show 〈Formula 〉
| • 〈Theorem 〉

In theorems, as shown in §3.2.3 on page 33, introduction of variables and assump-

tions using the same language as in proofs is commonly found in mathematical texts.

Therefore, in the definition of theorem shown above, 〈Assignment 〉 is allowed to pre-

serve its NL structure. With rule show in the second line, we give the formula which

we need to prove. Finally, full-stop (•) marks the end of a sentence in theorem. This

information is kept to make the MathAbs’ theorem closer to the textual theorem. It

could be useful when we translate MathAbs to first-order formulas, or to the language

of various theorem provers.

Recall that we have already given three versions of the proof “irrationality of
√

2” in

Chapter 2 (figure 2.4 on page 14). Also, in §2.3, we explained MathAbs with the help

of a proof which is similar to the first and second version of proof given in figure 2.4.

However, the third proof is a bit large and its MathAbs is given in §4.9. We now give

another example theorem and its MathAbs in figure 4.1.

1. Definition 1 (divisibility). Let m and n be arbitrary integers with a condition

that m > 0. Then n is said to be divisible by m if there is a number q, such

that n = q ∗ m.

2. Definition 2 (evenness). An integer n is even if it is divisible by 2.

[. . . ]

3. Theorem. If x and y are two even integers then x + y is even.

4. Proof. By the definition of even numbers, we assume that x + y = 2 ∗ a + 2 ∗ b,

where a and b are integers.

5. We deduce that x + y = 2 ∗ (a + b) by the last statement.

6. Therefore, x + y is an even integer because it is a multiple of 2.

MathAbs:
1. Definition 1 (divisibility). let m, n : Z assume m > 0

define divisible(n, m) as ∃q : Number (n = q ∗ m)

2. Definition 2 (evenness). let n : Z define even(n) as divisible(n, 2)

[. . . ]

3. Theorem 1. let x, y : Z assume even(x) ∧ even(y) show even(x + y) •

4. Proof. let a, b : Z assume x + y = 2 ∗ a + 2 ∗ b by def Even_Number •

5. deduce x + y = 2 ∗ (a + b) by form x + y = 2 ∗ a + 2 ∗ b •

6.1. deduce multiple_of([x + y], 2)†

6.2. show even(x + y) by form multiple_of([x + y], 2) •

6.3. trivial

†In line 6, first, we deduce the justification i.e. multiple_of([x + y], 2), because

it is not in the list of available hypothesis. Then we deduce the whole statement.

However on line 5, we do not deduce the justification (x+y = 2∗a+2∗ b) because

it is already in the list of available hypothesis.

Figure 4.1: A typical text from elementary number theory and its MathAbs
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The language of proof is substantially richer than the language of theorem and

definition as shown below:

〈Proof 〉 ::= trivial 〈Hint 〉
| show 〈Formula 〉 〈Hint 〉 〈Proof 〉
| deduce 〈Formula 〉 〈Hint 〉 〈Proof 〉
| 〈Assignment 〉 〈Hint 〉 〈Proof 〉
| { 〈Proof 〉; 〈Proof 〉; . . . } 〈Hint 〉
| unfinished

| • 〈Proof 〉
Here are explanations of 〈Proof 〉 language constructs:

1. As mentioned earlier, let allows to introduce a new variable in the sequent. For

instance, “let x be an integer” is represented as “let x : Z”. Similarly, “prove that

∀x ∈ R P (x)” is represented as “let x : R show P (x)” (see §4.6 for more details).

2. Similarly, assume allows to add a new hypothesis in the sequent. For instance,

“let x be a positive even integer” is represented as “let x : Z assume positive(x) ∧
even(x)”.

3. show allows to change the conclusion of the sequent. It should be understood as

“it is enough to show” or “we must prove”. For instance, the sentence “prove that

x is a positive integer” is represented as “let x : NoType show x : Z ∧ positive(x)”,

if x is not declared in the previous statements. Similarly, the sentence “show that

there is an integer x such that x > 0” is represented as “show ∃x(x : Z ∧ x > 0).

4. trivial means that the proof of the active sequent is finished successfully. In mathe-

matical texts it would be represented by key phrases such as “this ends the proof”,

“it is trivial”, etc. However, such key phrases are not always given at the end of

a finished proof. In such case, we add the rule trivial at the end of the proof

automatically.

5. unfinished means that the proof of the active sequent is not finished but the rest

of proof will be provided by the user later. We add this rule only when the key

Γ3 ⊢ multiple_of([x+y],2)

6.3. trivial
Γ3, multiple_of([x+y],2) ⊢ even(x + y)

6.2. show(multiple_of([x+y],2))
Γ3, multiple_of([x+y],2) ⊢ even(x + y)

6.1. deduce
**

trivial
Γ2 ⊢ x+y=2∗(a+b)

**
6.1. deduce

Γ3 := (Γ2, x+y=2∗(a+b) ⊢ even(x + y)
5. deduce(x+y = 2∗a+2∗b)

Γ2 := (Γ1, a, b : Z, (x + y = 2 ∗ a + 2 ∗ b)) ⊢ even(x + y)
4. let, assume(Even_Number)

3. Γ1 ≡ (Γ0, x, y : Z, even(x) ∧ even(y)) ⊢ even(x + y) (let, assume, show)

Figure 4.2: Semantics of the proof in figure 4.1 as a proof tree. Justifications are given as

arguments to rules as η in assume(η). Γ0 is the initial context, which contains useful definitions

(including definition 1 and 2) and axioms, needed to validate this proof. Line numbers are given

at left hand sides of proof tree. Label (3.) represents the theorem formed by let, assume and

show in proof tree. Double bar in the proof tree represents full-stop (•). Proof tree is given in

two parts, where ** joins them.
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phrases such as “we will prove it later”, “The proof will be completed later”, etc,

are encountered in the textual proof.

6. full-stop (•) marks the end of a sentence in proof. This information could be

useful specially when we translate MathAbs in first-order formulas. Again, this

information is kept to make the MathAbs’ proof closer to the original proof in NL.

7. { 〈Proof 〉; 〈Proof 〉; . . . } is used for case analysis. It allows to split a proof in cases

to use proof-by-exhaustion method. By using split, the active sequent is replaced

by two or more sequents. 〈Proof 〉; 〈Proof 〉; . . . denotes a list with at least two

items which themselves are 〈Proof 〉. The scope of variables introduced by the

rule let covers all cases. So we don’t have to declare the same variable in different

branches. Consider the following example, showing a proof by case having 3 cases

and its MathAbs; complete example proof is given in figure 4.4 on page 77.

Proof. If n = 0 then m = 1. we can choose u = 0 . . .

Otherwise if m = 0 then n = 1 . . .

Otherwise there exist r and q such that . . .

Proof. {

let u, y : Z assume n = 0 show m = 1 trivial by form replace(u, 0). . . ;

assume n Ó= 0 assume m = 0 deduce n = 1 . . . ;

assume n Ó= 0 assume m Ó= 0 deduce ∃r, q(. . .)

} ;

8. deduce allows to deduce something from the existing hypotheses. In concrete

terms, deduce A . . . is a syntactic sugar for:

{ show A trivial ; assume A . . . },

where A is an arbitrary formula. It means that we distinguish two branches in

the proof by replacing the active sequent by two sequents. In the first branch we

prove a statement and then, in the second sequent, we use it as an hypothesis. For

instance, “. . . we conclude that x = 10.” is translated as “. . . deduce x = 10” which

is a syntactic sugar for

“. . . { show x = 10 trivial ; assume x = 10 . . . }”

Operations in MathAbs:

We have three important operations in MathAbs proof as shown below:

Branching We divide a proof in sub proofs by using split, deduce and trivial, where

trivial is zero-branch sub-proof.

Evolution We update the context by using let and assume and update the goal by using

show.
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Justifications 〈Hint 〉 appears in almost all constructs of MathAbs 〈Proof 〉. In informal

mathematical proofs, it is common to give some justification(s) for each statement or

proof step. In MathAbs, these justifications are also preserved and we call them 〈Hint 〉.
We define them as shown below:

〈Hint 〉 ::= by form 〈Formula 〉 〈Hint 〉
| by axiom 〈Ident 〉 〈Hint 〉
| by def 〈Ident 〉 〈Hint 〉
| by oper 〈Ident 〉 〈Hint 〉
| . . . 〈Hint 〉
| ǫ (empty)

〈Hint 〉 is quite liberal in the sense that it is open to new constructs as shown by (. . .

〈Hint 〉). Following are examples explaining them:

1. A formula e.g. even(a) in a sentence such as “since, a is even, a2 is even” (. . . deduce

even(a2) trivial by even(a))

2. A definition or axiom e.g. “we conclude that a is even by the definition of even

number” (. . . deduce even(a) trivial by def Even_Number)

3. An operation e.g. squaring both sides that should be translated into a prover

specific tactic or command.

At the time of translation from MathAbs to the language of a certain proof assistant,

it should be used as a supporting argument. However, a lot of work is required before

we can use them in proof checking using an automated theorem prover (ATP) or a proof

assistant. The reason for this enterprise is discussed in detail in §4.7 on page 79.

4.3.1 MathAbs and Extensibility

As it is evident from the MathAbs syntax and also from the short description in the ex-

planation of axiom in §4.3, the language of definition, theorem and proof remain the same

for all mathematical domains. In contrast, the language of 〈Formula 〉, which represents

mathematical statements, is arbitrary and subject to change from one mathematical

domain to another.

In other words, the language of axiom, definition and proof is universal in mathe-

matics; only the language for statement is domain dependent. That is why the various

proof methods such as “proof by induction”, “proof by contradiction”, “proof by case”,

etc, are also common to all mathematical domains. Hence, the above discussion leads

to the conclusion that the language of axiom, definition and proof in MathAbs is rather

complete. However, the language of 〈Formula 〉 should be extensible.

However, the language of 〈Formula 〉 is fixed for the moment. It means that it is

assumed to have all the formulas and predicate symbols we need (see definition 3 in §4.4

on page 65). Also note that, in §4.8, we suggest the introduction of meta variables as a

possible extension to the MathAbs in future.

4.4 The MathAbs Semantics

The semantic of a MathAbs document D is a pair (T(D),P(D)). T(D) is the theory of

the documents. It contains all of its axioms and definitions as set of formulas. It is used
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as an initial context in all proofs. The language of formula (〈Formula 〉) is open and

we assume it to be already defined. On the other hand, P(D) are the proved theorems

together with their proof-trees. In the definitions below, A and B are MathAbs formulas.

Definition 1 (Empty Document). As a base case, if the document D is empty then:

T(D) := {} P(D) := {}

Definition 2 (Axiom). Axioms are just added to the theory:

T(D; Axiom A) := T(D) ∪ {A} P(D; Axiom A) := P(D)

Definition 3 (Definition). D(θ) takes a definition θ to build a MathAbs formula expressing

the definition as an equivalence.

We define its semantics as follows:

1. D(let x:T θ) := ∀x:T D(θ)

This definition requires that the language of formulas allows universal quantifica-

tion.

2. D(assume H θ) := (H ⇒ D(θ))

This definition requires that the language of formulas contains implication.

3. D(define A as B) := (A = B),

where A and B are arbitrary formulas or terms. Recall that A should follow some

restrictions for it to be a definition as mentioned in §4.3 on page 60. However,

having no restrictions at all should be fine also; if the definitions are understood as

arbitrary equational axioms, possibly with some conditions which allow to handle

partial definition.

Remark: For the rule define we must take one of the following options:

• We should support equality on formulas.

• We should replace equality by equivalence and distinguish two kind of defi-

nitions.

We prefer to take the first option and allow equality for the language of formulas.

Now, we can give the semantics of definitions, which simply adds D(θ) in the

theory:

T(D; Definition θ) := T(D) ∪ {D(θ)}
P(D; Definition θ) := P(D)

Finally, note that MathAbs does not allow language extension explicitly in any way

(including by definition). The language of 〈Formula 〉 is assumed to contain all the func-

tions and predicate symbols needed, and definitions are treated as equational axioms.

It is mainly because, a reliable method to extend CLM statements, functions and predi-

cates for textual mathematics at run time with definitions is yet to be found. Therefore,

we see no point adding this support for MathAbs now. We think that considering defini-

tion as language extension and adding some language constructions to add new constant

symbols dynamically in MathAbs should be easy.
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Definition 4 (Sequent). The sequent is of the form: Γ ⊢ G, where Γ is the list of formulas

(containing assumptions/hypotheses, deduced facts, axioms and definitions). We call it

context. In contrast, G is a formula (the goal) which needs to be proved.

Definition 5 (Proof). A proof is an n-branch labeled tree, whose vertices are labeled with

3–tuple (sequents, rule name, hint) on every node. The leaves of proof are zero-branch

sub-proofs (trees). We use the term proof and proof tree synonymously to represent the

MathAbs proof.

To be more precise, we give below a drawing convention from the labeled proof tree

found in logic to the style normally used for the natural deduction and sequent calculus

proofs. Let Si be a sequent, Ri be MathAbs rule and HSi be 〈Hint 〉.

(S, R, HS)

(S1, R1, HS1)

(S3, R3, HS3)(S2, R2, HS2)

...

... R2(HS2)
S2

R3(HS3)
S3 R1(HS1)

S1
...

R(HS)
S

Definition 6 (Semantics of Proof). S(π; Γ ⊢ G) takes a proof π in MathAbs language

and an initial sequent (Γ ⊢ G), and build a proof tree whose conclusion is the initial

sequent.

We use the letter Γ for context that contains a list of variables with types and

formulas, letters H, G for formulas and η is for justification (〈Hint 〉). We add rules and

justifications as labels at the right side of the proof tree. We now give the semantics for

MathAbs proof:

1. π = let x : T η π′,

S(π; Γ ⊢ G) :=
S(π′; Γ, x : T ⊢ G)

let(η)
Γ ⊢ G

,

Here, (Γ, x : T) means that variable x with its type T is added in the context Γ as

an hypothesis and π′ is the rest of the proof.

2. π = assume H η π′,

S(π; Γ ⊢ G) :=
S(π′; Γ, H ⊢ G)

assume(η)
Γ ⊢ G

Here an arbitrary formula H is added in the context as an hypothesis.

3. π = show G2 η π′,

S(π; Γ ⊢ G1) :=
S(π′; Γ ⊢ G2)

show(η)
Γ ⊢ G1

Where G1 is the previous goal which is changed to the new goal G2.



4.4. The MathAbs Semantics 67

4. π = trivial η, S(π; Γ ⊢ G) := trivial(η)
Γ ⊢ G

5. π = unfinished, S(π; Γ ⊢ G) := unfinished
Γ ⊢ G

6. π = • π′, S(π; Γ ⊢ G) := S(π′; Γ ⊢ G)

i.e. full-stops has no semantics in MathAbs currently, and therefore, it is ignored.

Again, this information could be useful when we translate MathAbs to the lan-

guage of proof assistants or when we translate it to first-order formulas. In proof

tree we represent it with double bar (cf. figures 4.1, 4.2 and 2.3).

7. π = {π1, . . . , πn} η (i.e. split)

For all i ∈ {1, . . . , n}, we find a proof tree Ti such that:

S(πi; Γ ⊢ G) =
Ti ri

Γ ⊢ G
then

S(π1, . . . , πn; Γ ⊢ G) :=
T1 . . .Tn split(r1, . . . , rn, η)

Γ ⊢ G
We keep the information regarding rules applied in proof at this step in

split(r1, . . . , rn, η).

Remark: For all proof π and sequent (Γ ⊢ G) there is a unique proof tree T and

rule r such that: S(π; Γ ⊢ G) = T r
Γ ⊢ G

Strange proof trees using split rule: The above definition permits the following proof

trees, in which rules trivial and unfinished alone appear as a sub proof in the split rule.

For instance:

{subproof1; ...; trivial; ...; subproofn},

{subproof1; ...; unfinished; ...; subproofn}, etc.

First, such MathAbs proofs can never be generated by the CLM grammar. Second,

such a proof has the same semantics as the same proof with trivial or unfinished removed.

Critic on split rule: Consider the following MathAbs proof (where π is the rest of the

sub-proof): {show A trivial ; show B trivial ; assume A assume B π}. Unfortunately, it

contains an invalid step as shown in the following proof tree:

Γ ⊢ A Γ ⊢ B

π
Γ, A, B ⊢ C

Invalid
Γ, A ⊢ C

Γ ⊢ C

We do not yet know how to fix it. However, there are two points worth noting:

• It is quite hard to get this invalid rule from the textual proof.

• Instead of “assume A assume B” in the third branch, if we have “deduce A deduce

B”, we do not have this invalid step.

• Similarly, if we merge “assume A assume B” to “assume A ∧ B”, we can avoid this

invalid step.

Definition 7 (Theorem). D′(σ) takes a theorem σ and build its statement. This definition

is similar to D(θ) of definition 3 in some parts, hence the similar choice for the name.



68 Chapter 4. MathAbs - The Abstract Mathematical Language

1. D′(let x:T σ) := ∀x:T D′(σ)

2. D′(assume H σ) := (H ⇒ D′(σ))

3. D′(show A) := A

Definition 8 (Theorem with proof). Now, we give the interpretation of a theorem (σ)

with its proof (π) in a document (D):

T(D; Theorem σ; Proof π) := T(D)

P(D; Theorem σ; Proof π) := P(D) ∪ S(σπ,T(D) ⊢ D′(σ))

In this definition, the theory is not changed as mentioned in the first line (but we

could add the newly proved theorem in the theory). For theorem with proof (in second

line), we first compute D′(σ), which is the statement of the theorem. Then, we reuse the

definition of σ at the beginning of the proof (S(σπ, ...) in the second line above). It is

because, the theorem may contains the introduction of variables or assumptions, which

are intended to be available in its proof.

4.5 Completeness

By completeness, we mean that the language MathAbs is powerful enough to encode

any proof written using natural deduction. Various complete notions of proofs have

been proposed such as natural deduction, sequent calculus, Hilbert systems, etc. Math-

ematicians use their rules in textual proofs implicitly; even without knowing sometimes.

Here, we give a translation of natural deduction in MathAbs to establish its complete-

ness. For that, we first recall the rules of natural deduction for first order logic in figure

4.3. Note that this description also remain valid for higher order logic as well because

of two reasons: First, the rules of natural deduction for first order logic are similar

to the rules for higher order logic. Second, higher order logic can always be encoded

to the first order logic fundamentally (even when the translation is too cumbersome)

[Nour & Raffalli 2003, Prawitz 1965].

As far as we know, some of the rules we present here have rarely been considered

before (rules in the decomposition of ⇒–introduction and ∀–introduction). These rules

are translated in more than one rule by the semantics of MathAbs, as first noted in

the example given in §2.3 on page 10. Such decomposition of rules only occur because

textual proofs may contain the intermediate steps. A sentence such as “we assume A

and then we show B”3 is a typical example causing such intermediate steps as shown in

the ⇒-introduction rule below.

Such intermediate steps of textual proofs are harmless, and in general, can lead to

an interesting phenomenon. For instance, instead of the above example sentence, if we

consider: “we show B and then assume A”, it will lead to an invalid rule4 of MathAbs

as it inverts the commands assume and show (see bullet 1 below for the reason).

Due to the semantics of MathAbs (cf. §4.4), we can trace such invalid rules (of course

not compulsory). Therefore, there are more chances to know in advance for a proof if it

will succeed or fail, when given to the theorem prover (automated or interactive). Note

3Note that ‘and’ in this example is not a conjunction. Instead it is the sequential composition (like

a semi-colon in some programming languages), best translated as implication.
4Recall that arbitrary rules can be represented in MathAbs including those which are invalid.
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Axiom:
Γ, A ⊢ A

(ax)

Γ, A ⊢ C

Γ, A, B ⊢ C
(weakening)

Γ, A ⊢ B

Γ, A, A ⊢ B
(contraction)

Γ, A ⊢ B

Γ ⊢ A ⇒ B
(⇒ I)

Γ ⊢ A Γ ⊢ A ⇒ B

Γ ⊢ B
(⇒ E)

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A ∧ B

Γ ⊢ A
(∧E1)

Γ ⊢ A ∧ B

Γ ⊢ B
(∧E2)

Γ ⊢ A

Γ ⊢ A ∨ B
(∨I1)

Γ ⊢ B

Γ ⊢ A ∨ B
(∨I2)

Γ ⊢ A ∨ B Γ, A ⊢ C Γ, B ⊢ C

Γ ⊢ C
(∨E)

We have two rules for ⊥, both which eliminate it but introduce formula. RAA stands

for Reductio ad absurdum.

Γ ⊢ ⊥
Γ ⊢ A

(⊥E)
Γ, ¬A ⊢ ⊥

Γ ⊢ A
(RAA classic)

The formula “¬A” is an abbreviation for “A ⇒ ⊥”.

Γ ⊢ A(y) y not free in Γ

Γ ⊢ ∀x A(x)
(∀I)

Γ ⊢ ∀x A(x)

Γ ⊢ A(t)
(∀E)

Γ ⊢ A(t)

Γ ⊢ ∃x A(x)
(∃I)

Γ ⊢ ∃x A(x) Γ, A(y) ⊢ C y not free in Γ and C

Γ ⊢ C
(∃E)

Γ is the context; A, B, C are arbitrary formulas; x, y are any variables; t is any term.

Figure 4.3: The rules of Gentzen’s natural deduction (modified presentation of [David et al. 2001,

van Dalen 1980]).
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that, if a proof cannot be checked by the theorem prover (automated or interactive), it

does not necessarily mean that the proof is invalid. It might be the case that theorem

prover is unable to prove it due to some reason such as reasoning gaps (see §4.7.2 for

more details). In such cases tracing invalid rules could be useful.

It also demonstrates that MathAbs tries to faithfully represent the textual proofs; as

the later sentence does not seem to be accepted by mathematicians as well. So textual

proof and MathAbs’ seem to be in agreement on such examples.

This phenomenon is also interesting from a linguistic perspective. It means that

when the incorrect MathAbs’ interpretation for intermediate step of some sentence of

the textual proof is produced, there are strong chances that such a sentence is also

linguistically incorrect. So it seems that MathAbs’ interpretation of textual proofs may

somewhat give a little enlightenment to the linguistics of the language of mathematics.

1. ⇒ introduction

When the statement to be proved is of the form A ⇒ B, then after the step of

assuming A the statement to be proved will be B. This means that ⇒-introduction

may be represented as “assume A show B” (where the goal in the context is:

A ⇒ B).

Here is the MathAbs semantics, with somewhat bizarre yet valid rules:

...
Γ, A ⊢ B

2. show
Γ, A ⊢ A ⇒ B

1. assume
Γ ⊢ A ⇒ B

Using natural deduction, we now prove that each step of the above rules is valid.

First, consider the step 1 (assume):

ax
Γ, A ⊢ A Γ, A ⊢ A ⇒ B

(⇒E)
Γ, A ⊢ B

1. (⇒I)
Γ ⊢ A ⇒ B

Now the second step (show):

Γ, A ⊢ B
(contraction)

Γ, A, A ⊢ B
2. (⇒I)

Γ, A ⊢ A ⇒ B

So we have the formula A duplicated. But it does not make any problem as the

old A and new A are the same (contraction is admissible).

In contrast, if we translate sentence “we show B and then assume A”. Its MathAbs

“show B assume A” (where the goal in the context is: A ⇒ B) is correct as a whole.

However, for each step, the first rule is correct but the second rule is incorrect:

...
Γ, A ⊢ B

assume (incorrect in the natural deduction)
Γ ⊢ B show – correct but too weak (⇒I and weakening)

Γ ⊢ A ⇒ B
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2. ⇒ elimination (modus ponens):

This rule is translated as a split rule with two show constructs as “{ show A ⇒ B;

show A }”. The semantics is exactly the intended rule:

...
Γ, A ⊢ B

...
Γ ⊢ A

split(show,show)
Γ ⊢ A ⇒ B

3. ∀ introduction:

When the statement that need to be proved is of the form ∀xP (x), then after the

step ‘let y’ the statement to be proved will be P (y). So we represent ∀-introduction

as “let y : T show P (y)”. Of course the name of the variable in the let usually will be

the same as the name of the variable under the ∀ quantifier. Here is the semantics

of this proof:

...
Γ, y : T ⊢ P (y)

2. show
Γ, y : T ⊢ ∀x : T P (x)

1. let
Γ ⊢ ∀x : T P (x)

We see again that the usual rule of natural deduction is decomposed in two steps.

It may look strange but these steps are logically valid when y is not free in the

conclusion sequent of the proof.

Using natural deduction, we now prove that each step of the above rules is valid.

First the step 1 (let), as show below.

Γ, y : T ⊢ ∀x : TP (x)
∀E

Γ, y : T ⊢ P (y)
∀I

Γ ⊢ ∀x : TP (x)

Now the second step (show). Note that y, y′ does not occur freely in Γ and ∀x :

T P (x). Note that renaming and weakening are admissible:

Γ, y : T ⊢ P (y)
Renaming

Γ, y′ : T ⊢ P (y′)
Weakening

Γ, y : T, y′ : T ⊢ P (y′)
∀ I

Γ, y : T ⊢ ∀x : T P (x)

4. ∀ elimination:

It may be represented as “show ∀x : T P (x) by form replace(x, t)”, where “by form

replace(x, t)” is a justification 〈Hint 〉, to hold the value of the variable x.

...
Γ ⊢ ∀x : TP (x)

show(replace(x,t))
Γ ⊢ P (t)
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5. ∃ introduction:

Its translation is similar to ∀-elimination: “show P (t) by form replace(x, t)”. We

expect that t to be given immediately after ∃x : T P (x).

...
Γ ⊢ P (t)

show(replace(x,t))
Γ ⊢ ∃x : T P (x)

Remark: Natural deduction always gives the term t. In contrast, the textual

proofs often do not give t immediately after ∃x : T P (x); especially when it results

from a long computation. See bullet 3 of §4.6 on page 75 for more details and

alternates.

6. ∃ left rule of sequent calculus:

Instead of ∃-elimination rule of natural deduction, mathematicians implicitly tend

to use the left rule of sequent calculus in textual proofs. In fact, both rules are

logically equivalent (see theorem 1 on page 73 for its proof). Also the left rule of

sequent calculus is more natural for textual proofs.

∃ introduction at left (as an hypothesis) is represented as “let y : T assume P (y)”

Γ, ∃x : T P (x), y : T, P (y) ⊢ ∆
assume

Γ, ∃x : T P (x), y : T ⊢ ∆
let

Γ, ∃x : T P (x) ⊢ ∆

Again, the rule is decomposed, but correct if y is not free in the conclusion sequent.

In fact this rule is similar to the rule ∀ introduction (given in bullet 3 on page

71). Note that ∆ contains only one goal because of the restriction imposed by

MathAbs. Also note that at for all the rules of sequent calculus, on the left hand

side of the turnstile ⊢, we have assumptions and on its right hand side we have

goal.

7. The reader can easily complete this with the rules for other connectives and even

consider all Gentzen’s sequent calculus rules. The four rules among these help to

translate textual quantifiers to MathAbs, given in §4.6.

4.6 Translating Textual Quantifiers to MathAbs

Translating quantifiers which occurs in textual theorem and proof is not an easy task.

An introduction to this problem and examples from textual mathematics are already

given in §3.3.3.6. In this section, we describe how we translate them to MathAbs. We

already translated the ∀, ∃ introduction and elimination rules of natural deduction to

MathAbs in §4.5. Here we are going to add more details and also mention various

subtleties involved.

First and foremost, recall from bullets 1 on page 62 that we make the direct decla-

ration of new variables with the rule “let”. It is in fact the universal quantification of

the variable for the rest of the block (definition, theorem, proof, etc). For instance,
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Theorem 1. Prove that ∃ left rule of Gentzen’s sequent calculus is logically equivalent to

∃E rule of Gentzen’s natural deductions. Abbreviated as ∃ left ⇔ ∃E. (all other rules

being unchanged)

Proof.
(1) We prove that ∃ left ⇒ ∃E (i.e. complete):

Γ ⊢ ∃xP (x)

ax
Γ, P (y) ⊢ P (y)

Γ, P (y) ⊢ G ⇒I, ∀I
Γ ⊢ ∀x (P (x) ⇒ G)

∀E
Γ ⊢ P (y) ⇒ G

⇒E
Γ, P (y) ⊢ G

(∃ left)
Γ, ∃xP (x) ⊢ G

(⇒I)
Γ ⊢ ∃xP (x) ⇒ G

(⇒E)
Γ ⊢ G

(2) We prove that ∃E ⇒ ∃ left (i.e. correct):

ax
Γ, ∃xP (x) ⊢ ∃xP (x)

Γ, P (y) ⊢ G
weakening

Γ, ∃xP (x), P (y) ⊢ G
(∃ E)

Γ, ∃xP (x) ⊢ G

“Let x be a positive integer.” or “Suppose that x is a positive integer.”

Both are translated as: let x : Z assume positive(x)•

In general, we consider all the variables as universally quantified unless they are

explicitly specified as existentially quantified (also noted by [Peters & Westerstahl 2006,

p. 34]). In mathematical texts, variables are normally existentially quantified with key

phrases such as “there is/are”, “there exist(s)”, etc. However, these key phrases does

not always indicate an existentially quantified variable. Details are given in bullet 2

below.

In concrete terms, we translate quantifiers with the help of the following rules of the

Gentzen’s sequent calculus and natural deduction:

1. Statement containing universal variable as goal is in fact an easy case. It is

translated as “let”, as shown below using the ∀ right rule of sequent calculus:

Γ, y : T ⊢ P (y), ∆

Γ ⊢ ∀x : TP (x), ∆
(∀R)

Of course ∆ is empty in the context of MathAbs (cf. bullet 6 of §4.5). So the rule

becomes the same as ∀ introduction rule of natural deduction:

Γ, y : T ⊢ P (y)

Γ ⊢ ∀x : TP (x)

Therefore, by bullet 3 in §4.5, we translate it with the combinations of rules: let,

assume and show. Here are a few examples:
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Theorem. Prove that x is positive.

Logical formula as a goal: ∀x : NoType (positive(x))

MathAbs: Theorem. let x : NoType show positive(x)•

Theorem. If x > 0 then it is positive.

Logical Formula as a goal: ∀x : NoType ((x > 0) ⇒ positive(x))

MathAbs: Theorem. let x : NoType assume x > 0 show positive(x) •

Note that the equivalent logical formulas are only given for such occasions when

we need it directly instead of its MathAbs (for instance, anaphoric resolution).

Such an occasion could also be the following statements appearing later in the

proof:

Proof. Assume that the statement of the theorem is not true.

([Burton 2007, Theorem 1.1]),

Suppose that it is not the case that the statement of the theorem is true,

etc.

As an example, consider the following theorem and its proof, which is translated

in MathAbs afterwards:

Theorem. Prove that x is positive.

Proof. Suppose that it is not the case that the statement of the theorem

is true. ...

MathAbs:
Theorem. let x : NoType show positive(x) •

Proof. assume ¬∀x : NoType (positive(x))•...

Another point worth nothing is this following. If we have a negative statement of

the form:

Theorem. Prove that there does not exist an integer x such x + 1 = x.

It is translated as “¬∃ x : TP (x)” which is equivalent to “∀ x : T¬P (x)”. In

MathAbs, we keep it as: “show ∀ x : T¬P (x)” and do not translate it as “let x : T

show P (x)” (The difference between ∀x : T and let x : T is that: the former is

not available in the proof but the later is). It is because of the following principle

that:

“A negative statement cannot introduce a variable.”

2. Statement containing existential variable as an assumption is translated as a com-

bination of “let and assume” (cf. ∃ left rule of sequent calculus explained in bullet

6 of §4.5). An example with its MathAbs translation is shown below:

Suppose that there (is | exists) an integer x such that x > 0.

Logical formula as an assumption: ∃x : Z (x > 0).

MathAbs: let x : Z assume x > 0•
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3. Statement containing existential variable as goal is “show ∃x : TP (x)”, according

to the ∃ right rule of sequent calculus:

Γ ⊢ P (t), ∆

Γ ⊢ ∃x : TP (x), ∆
(∃R)

Again ∆ is empty, so the rule becomes the same as ∃ introduction rule of natural

deduction given in bullet 5 of §4.5:

Γ ⊢ P (t)
show(replace(x,t))

Γ ⊢ ∃x : TP (x)

This rule suggests that ∃x : TP (x) as a goal could be translated it as: “let

x : T ... show P (t) by form replace(x, t)”. In fact it could be translated to any

of these optional proof steps by the mathematician, where replace(...) is given as

justification (〈Hint 〉):

“let x : T ... show P (t) by form replace(x, t)”,

“let x : T ... show P (t) trivial by form replace(x, t)”,

“let x : T ... trivial by form replace(x, t)”, (the rule show not given)

Currently, we cannot utilize replace(x, t) in the proof checking. Because, we do

not translate justifications when translating MathAbs to first order formulas. The

reason is that: the automated theorem provers cannot handle them and it requires

further investigation how we can use these justifications to aid ATP for reducing its

search space of hypotheses and deductions. See §4.7 on page 79 for more details.

Also, the textual proofs do not give t immediately after ∃x : TP (x) often; espe-

cially when it results from a long computation. We cannot handle such proofs

(although they are quite rare). We cannot handle them because it involves the

introduction of meta-variables (i.e. existential variables) in MathAbs to take into

account the use of unknown variables. The main problem is that introducing

meta-variables prohibits to check each rule in the proof tree separately; as the

check becomes global.

Finally, it is also very important to note that none of the above mentioned forms
are compulsory. The mathematician usually skip them when the existential state-

ment given as a goal is obvious. This could be seen as a fix to the problem discussed

in the previous paragraph. Therefore, most of the time, the goal ∃x : T P (x) ap-

pears unchanged with the rule show (i.e. show ∃x : T P (x)). It means that

mathematicians usually do not decomposed it in the later proof steps. See figure

4.4 on page 77 for ∃x : TP (x) in action as a goal.

4. Statement containing universal variable as assumption is fundamentally similar to

the statement containing existential variable as goal given in bullet 3 (reasons of

this enterprise is given in subsequents paragraphs). Therefore, statement contain-

ing universal variable as assumption is translated as “assume ∀x : TP (x)” most of

the time. Here are a few examples:

Suppose that for all integers x and y, x ∗ y > 0. or

Assume that x ∗ y > 0, for all integers x and y.

Translated in MathAbs as: assume ∀x, y : Z (x ∗ y > 0) •
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Let n be an arbitrary positive integer. Assume that P (k) is true for all

positive integers k < n. ([Erickson & Heeren 2007, p. 18])

let n : Z assume positive(n)•

assume ∀k : Z (P (k) ∧ k < n ∧ positive(k)) •

The ∃ right rule and the ∀ left rule of sequent calculus are fundamentally inter-

changeable. For instance, consider ∀ left rule:

Γ, P (t) ⊢ ∆

Γ, ∀x : TP (x) ⊢ ∆
(∀L)

We can transform it to ∃ right rule if we take ∀x : T P (x) on the right side of the

turnstile. By doing so, it becomes ∃x : T ¬P (x), as shown below. It is a kind of

absurdity reasoning which can be done in textual proofs.

Γ ⊢ ¬P (t)

Γ ⊢ ∃x : T ¬P (x)
show(replace(x, t))

Because, now it is the same as the rule in bullet 3, ∀x : TP (x) as assumption

could be translated by any of these optional steps (in the later proof steps by

the mathematician; of course none of these appear when mathematicians do not

decomposed it in later proof steps):

“let x : T ... show ¬P (t) by form replace(x, t)”,

“let x : T ... show ¬P (t) trivial by form replace(x, t)”,

“let x : T ... trivial by form replace(x, t)”, (the rule show not given).

4.6.1 Simplifying MathAbs

As mentioned in bullet 8 on page 63, the rule deduce is simply a syntactic sugar. For

instance, “deduce A π” is a syntactic sugar for: { show A trivial ; assume A π }, where

A is an arbitrary formula and π is the rest of proof. The fact that the rule deduce is

treated as a goal in one branch and hypothesis in the other branch, may cause confusion

for the translation of quantifiers. Therefore, before proof checking (given in §4.7), we

simplify MathAbs by replacing the rule deduce with its equivalent rules. For this, we

apply the following procedure on MathAbs. Note that the keyword assumeC used in

the procedure below is just an auxiliary procedure (and it is not a MathAbs extension),

which is eventually replaced by the rule assume.

The procedure:

1. deduce A π ≡ { show A trivial ; assumeC A π}, where:

(a) assumeC ∃x : T (A) π ≡ let x : T assumeC A π

(b) assumeC (A ∧ B) π ≡ assumeC A assumeC B π (according to ∧left rule of

sequent calculus)

(c) assumeC A π ≡ assume A π (otherwise)

2. Some sanity checks to report warnings to give insight
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1. Theorem. Assume that m and n are relatively prime integers.

2. Suppose that either m Ó= 0 or n Ó= 0.

3. Then prove that there exist two integers u and v such that u ∗ n + v ∗ m = 1 holds.

4. Proof. If n = 0 then m = 1 because m and n are coprime.

5. We can choose u := 0 and v := 1.

6. Otherwise if m = 0 and n = 1 then we can choose u := 1 and v := 0.

7. Otherwise there exist r and q such that n = m ∗ q + r holds by euclidean division.

8. It is obvious that m and r are coprime and r < m.

9. So by induction hypothesis there are u′ and v′ such that u′ ∗ m + v′ ∗ r = 1 holds.

10. It implies that u′ ∗ m + v′ ∗ (n − m ∗ q) = v′ ∗ n + (u′ − v′ ∗ q) ∗ m = 1.

11. So we can choose u := v′ and v := u′ − v′ ∗ q.

MathAbs

1. Theorem. let m, n : Z assume coprime(m, n) •

2. assume m Ó= 0 assume n Ó= 0 •

3. show ∃(u, v : Integer)(u ∗ n + v ∗ m = 1) •

4. Proof. {

assume n = 0 deduce coprime(m, n) •

5. deduce m = 1 by form coprime(m, n) trivial by form replace(u, 0) by form

replace(v, 1) •;

6. assume n Ó= 0 assume m = 0 assume n = 1 trivial by form replace(u, 1) by form

replace(v, 0) •;

7. assume n Ó= 0 assume m Ó= 0 assume n Ó= 1

deduce ∃(r, q : NoType)(n = m ∗ q + r) by def Euclidean_Division •

8. let r : NoType deduce coprime(m, r) ∧ r < m •

9. deduce ∃(u′, v′ : NoType)(u′ ∗ m + v′ ∗ r = 1) by def Induction_Hypothesis •

10. let q, u′, v′ : NoType deduce u′ ∗ m + v′ ∗ (n − m ∗ q) = v′ ∗ n + (u′ − v′ ∗ q) ∗ m = 1•

11. trivial by form u := v′ by form v := u′ − v′ ∗ q •

} ;

Figure 4.4: A proof by case and its MathAbs explaining existential quantifier.
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Sanity checks: To explain the sanity checks, consider the following cases which are

problematic somehow, and we should report warnings:

Problem Case 1: deduce ((∃x : TA) ∧ (∃x : TB)) π

It is equivalent to:

{ show ((∃x : TA) ∧ (∃x : TB)) trivial ;

let x : T assume A let x : T assume B π

}

Which x should be available in the rest of proof π? Furthermore, it is hardly possible

to find a textual proof which uses the same variable in two existentially quantified

statements, which are then further connected by conjunction. Therefore, we send a

warning message, but at the same time, we make available the second x in π.

Problem Case 2: let x : T . . . deduce ((∃x : TA) ∧ B(x)) π

It is somewhat similar to the first case. Again, which x should be available in B(x)

and π? Similar to case 1, we send a warning message regarding the scope of x, but at

the same time, we make available the second x in B(x) and π.

Now we can translate textual quantifiers which occur as conclusion:

4.6.1.1 The Quantifier ∃x : TP (x) as deduction:

The rule deduce ∃x : TP (x) π (π is the rest of proof) is equivalent to:

{ show ∃x : TP (x) trivial ;

let x : T assume P (x) π (x is bound in this branch)

}

trivial
Γ ⊢ ∃x : TP (x)

π
Γ, x : T, P (x) ⊢ G

deduce
Γ ⊢ G

We present here two examples from figure 4.4 (line 7 and 9):

Example 1:

There exist r and q such that n = m ∗ q + r holds by euclidean division.

deduce ∃(r, q : NoType)(n = m ∗ q + r) by def Euclidean_Division•

Which is a short hand of:

{

show ∃(r, q : NoType)(n = m ∗ q + r) trivial by def Euclidean_Division ;

let r, q : NoType assume (n = m ∗ q + r)•. . .

}

Example 2:

So by induction hypothesis there are u′ and v′ such that u′ ∗m+v′ ∗r = 1.

deduce ∃(u′, v′ : NoType)(u′ ∗m+v′ ∗r = 1) by def Induction_Hypothesis•

It is a short hand of:
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{

show ∃(u′, v′ : NoType)(u′ ∗ m + v′ ∗ r = 1) trivial by def Induc-

tion_Hypothesis ;

let u′, v′ : NoType assume (u′ ∗ m + v′ ∗ r = 1)•...

}

4.6.1.2 The Quantifier ∀x : TP (x) as deduction:

The rule deduce ∀x : TP (x) π is equivalent to:

{

show ∀x : TP (x) trivial ;

assume ∀x : TP (x) π

}

In the first branch there is no point of writing let x : T show P (x) instead. Because

x is not used later in the same branch.

4.7 Proof checking

4.7.1 Proof checking using Automated Theorem Provers

We can translate MathAbs in first order or higher order formulas (with equality) for the

purpose of verification by the automated theorem provers (ATP). As a first prototype,

we have implemented a translation from MathAbs to its equivalent first-order formulas.

As we see in §2.3, we can represent MathAbs proof as a proof tree using arbitrary rules

(not just the rules of natural deduction or sequent calculus). Then, for each rule we can

produce a formula that justifies it. We can informally describe this translation with the

following pattern of MathAbs’ and proof tree, (complete and formal procedure is given

§4.7.1.4):

Theorem. show G0 •;

Proof. assume H1 show G1 •

deduce G2 . . . trivial •

Γ0, H1 ⊢ G2 show

...
Γ0, H1, G2 ⊢ G1 assume

3. deduce
Γ0, H1 ⊢ G1

2. show
Γ0, H1 ⊢ G0

1. assume
(Γ0 ⊢ G0)*

The theorem is labeled as * in the proof tree, where Γ0 is the initial sequent. As

already stated in figure 4.2 on page 62, it may contain necessary axioms, definitions,

propositions, theorems, etc, that are needed to support this proof. In contrast, G0 is

the initial goal given in the theorem by the show rule).

The proof starts from (Γ0, H1 ⊢ G0) labeled as (1). Goals G0 and G1 as shown in

label (2) could either be same (as in the example given in figure 4.1) or different5. After

5Mathematicians normally do it with a statement in proof of kind: “we shall prove that G1 holds

which is logically equivalent to G0”, etc.
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that, we have a command “deduce” (labeled as 3). It has two parts: the one shown at

left side that is complete, and the second shown at right side. It is also complete but

some proof steps are omitted here and shown with vertical dots (
... ).

The turnstile (⊢) and the line (single or double) are translated as the implication

(⇒). In contrast, the comma (,) is translated as the conjunction (∧). We produce one

formula for each rule. The rule deduce is an exception. It is a split with two branches,

containing two rules show and assume. Therefore, we produce two formulas for it.

4.7.1.1 The first rule in the proof

Let us consider the first rule in the proof (i.e. assume) in the proof tree as shown below:

Γ0, H1 ⊢ G0

1. assume
Γ0 ⊢ G0

We can directly translate it in the following first order formula. The most natural

translation would be the direct translation of the rule:

((Γ0 ∧ H1) ⇒ G0) ⇒ (Γ0 ⇒ G0)

We can make it compact with factorization. For that we can exchange the conjunc-

tion between Γ0 and H1 with implication, because of the following equivalence relation:

(A ∧ B) ⇒ C ≡ A ⇒ (B ⇒ C)

So the above first order formula becomes the following by factorizing Γ0:

Γ0 ⇒ ((H1 ⇒ G0) ⇒ G0)

4.7.1.2 The second rule in the proof

Γ0, H1 ⊢ G1

2. show
Γ0, H1 ⊢ G0

The direct translation of this rule is:

((Γ0 ∧ H1) ⇒ G1) ⇒ ((Γ0 ∧ H1) ⇒ G0)

And the above first order formula becomes the following by factorizing (Γ0 ∧ H1):

(Γ0 ∧ H1) ⇒ (G1 ⇒ G0)

4.7.1.3 The third rule in the proof

Γ0, H1 ⊢ G2 show Γ0, H1, G2 ⊢ G1 assume
3. deduce

Γ0, H1 ⊢ G1

This translation will explain how we translate an n−branch proof by case (the split

rule). Because deduce has exactly two branches, and therefore, it results in the following

two first order formulas:

• The first formula formed by the first case (the one at left hand side with show) is

following. Let us name it formula1:



4.7. Proof checking 81

(Γ0 ∧ H1) ⇒ G2

• The sub-formula formed by the second case is following. Let us name it formula2:

(Γ0 ∧ H1 ∧ G2) ⇒ G1

Then the second formula which is formed by both first and second case would be

(in short):

(formula1 ∧ formula2) ⇒ ((Γ0 ∧ H1) ⇒ G1)

And in detail:

(((Γ0 ∧ H1) ⇒ G2)
︸ ︷︷ ︸

∧ ((Γ0 ∧ H1 ∧ G2) ⇒ G1)
︸ ︷︷ ︸

)

︸ ︷︷ ︸

⇒ ((Γ0 ∧ H1) ⇒ G1)

︸ ︷︷ ︸

By boolean algebra, we can have the following formula:

(Γ0 ∧ H1) ⇒ ((G2 ∧ (G2 ⇒ G1)) ⇒ G1)

Because the command deduce G2 is a syntactic sugar of:

{ show G2 trivial ; assume G2 . . . }

It produces a lot of tautologies of the form (G2 ∧ (G2 ⇒ G1)) ⇒ G1 in the first-order

formulas. To reduce the work load of the Automated Theorem Prover (ATP) for proof

checking we have the following two options:

1. (a) Because we know that these tautologies are produced by the rule deduce, it is

possible to identify them. Therefore, we could remove them manually, before

sending the result to ATP for validation.

(b) However, we may also apply a SAT-solver on all the generated formulas as

preprocessor to filter such tautologies, and then, send the result to ATP for

validation.

2. As a second option, we can send these MathAbs equivalent formulas to ATP as it

is. of course, if all proof-steps are validated then the proof is valid and therefore,

establishes the truth of the theorem.

4.7.1.4 Generalizing Translation

Consider the following split rule having n branches in the form of a proof tree. All of

these branches terminate with trivial after some proof steps.

տ
... ր

Γ0, Γ1 ⊢ G1

տ
... ր . . . . . .

Γ0, Γ2 ⊢ G2

տ
... ր

Γ0, Γn ⊢ Gn

Γ0 ⊢ G0

As usual, the comma is translated as logical conjunction and turnstile is translated

as implication:

[((Γ0 ∧ Γ1) ⇒ G1) ∧ ((Γ0 ∧ Γ2) ⇒ G2) ∧ ... ∧ ((Γ0 ∧ Γn) ⇒ Gn)] ⇒ (Γ0 ⇒ G0)
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After factorizing:

Γ0 ⇒ [((Γ1 ⇒ G1) ∧ (Γ2 ⇒ G2) ∧ ... ∧ (Γn ⇒ Gn)) ⇒ G0]

We define Γ ⇒ A by induction on Γ.

Γ ⇒ A ≡







Empty context ⇒ A = A

(B, Γ′) ⇒ A = B ⇒ (Γ′ ⇒ A)

(x : T, Γ′) ⇒ A = ∀x : T(Γ′ ⇒ A)

Types as Predicates: We treat types as predicates (For instance, “
√

2 : Rational” as

“rational(
√

2)”). Also note that the variables introduced by let (e.g. let x, y : Z) are

available in any subsequent sentences (and hence in any subsequent formulas) in the

form “∀ x, y (int(x) ∧ int(y) ⇒ . . .) ”.

The notion of types used in the grammar is linguistic which is not exactly similar to

the notion of type in a given type theory. This is one of the main problems if we want

to translate CLM to a typed framework such as Coq[Team 2010] or Agda[Norell 2007a,

Norell 2007b].

Justifications: Finally, the justifications 〈Hint 〉, that are preserved in MathAbs are

removed from the first order translation. Because such justifications are too difficult to

handle with the current state of art ATP. See §4.7.2 for further details.

The translation from MathAbs to first order formulas for an example theorem and its

proof is given in §4.9.

4.7.1.5 An Alternate Approach

As an alternate approach, we could interpret rules collectively on full-stops in future

(i.e. at the end of each sentence). In other words, instead of producing a formula for

each rule, we could produce formula(s) for each full-stop.

So in MathAbs proof tree, each double bar (i.e. full-stop •) could be translated as

an implication. However, for the single bar we can do following:

1. let, assume and all their combinations are translated as conjunction

2. show/deduce after let/assume are translated as implication

The reason for the second bullet (above) is the following rephrasing of conditional

statements in the textual proofs:

If A then B.

Let A. Then B.

...

We give below the MathAbs pattern followed by the collapsed proof-tree on end of

sentences:

Theorem. show G0 •;

Proof. assume H1 assume H2 show G1 •

deduce G2 •. . . trivial •
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trivial
Γ0, H1, H2 ⊢ G2

...
Γ0, H1, H2, G2 ⊢ G1

2. deduce
Γ0, H1, H2 ⊢ G1

1. assume, assume, show
(Γ0 ⊢ G0)*

For the proof tree labeled as (1), we’ll have the following formula:

((Γ0 ∧ H1 ∧ H2) ⇒ G1) ⇒ (Γ0 ⇒ G0)

And the above first order formula becomes the following by factorizing Γ0:

Γ0 ⇒ ((H1 ∧ H2 ⇒ G1) ⇒ G0)

For the proof tree labeled as (2) we’ll have the following two formulas:

1. (Γ0 ∧ H1 ∧ H2) ⇒ G2

2. (((Γ0 ∧ H1 ∧ H2) ⇒ G2)
︸ ︷︷ ︸

∧ ((Γ0 ∧ H1 ∧ H2 ∧ G2) ⇒ G1)
︸ ︷︷ ︸

)

︸ ︷︷ ︸

⇒ ((Γ0 ∧ H1 ∧ H2) ⇒ G1)

︸ ︷︷ ︸

By factorization, we’ll have:

(Γ0 ∧ H1 ∧ H2) ⇒ ((G2 ∧ (G2 ⇒ G1)) ⇒ G1)

Recall the discussion regarding bizarre yet logically correct rules for the following

sentence in §4.5 on page 68.

We assume A and then we show B.

We also discussed that if we inverse both rules of MathAbs (assume, show) used in

the above sentence, we’ll have the following sentence which in mathematically as well

as logically incorrect (we know it from its MathAbs).

*We show B and then we assume A.

With this alternate approach of interpreting rules collectively at the end of each

sentence, we cannot reject this mathematically incorrect sentence. Because in the cor-

responding first order formula we have no way of knowing if it was “assume A show B

•” or “show B assume A •”, demonstrated by the following proof trees:

assume A show B •

Γ, A ⊢ B
assume, show

Γ ⊢ G

show B assume A •

Γ, A ⊢ B
show, assume

Γ ⊢ G

4.7.1.6 A Better Alternate Approach (May be)

Because of the shortcoming of the above alternate method, we can modify our approach

to the following:

We produce formula(s) for:

1. Each rule (except let, assume)
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2. Each full-stop (•)

So in MathAbs proof tree, all the combinations of assumption rules (let, assume)

are joined together with conjunctions. The rest of the procedure will remain the same.

Because of it, we can distinguish between “assume A show B •” and “show B assume

A •”.

Notwithstanding this, what seems natural and logical to us, does not necessarily
mean that it will be better for an ATP for verification (cf. 4.7.2). An example trans-

lating MathAbs to first order formulas is given in §4.9.

4.7.2 Proof Checking Limitations and Future Directions

Unfortunately, these first-order formulas (or even higher order formulas) can hardly be

validated because of the following reasons (but not limited to):

1. The reasoning gaps.

2. The reasoning details which do not match with underlining rules of the logic or

calculus of ATP.

3. Textual proofs never give the exact list of hypotheses and definitions necessary

at each step. Therefore, ATP need to search for the appropriate hypotheses,

definitions and axioms. However, such proof search will often fail because this

information can dramatically extend the search space of ATP.

4. Proofs similar to our running example contains equations. Guiding ATP with

justifications for equational reasoning is even more difficult. Because of it, we

need very strong equational reasoning which no ATP provides.

For the proof search problem, we should have a language for justifications, which not

only reflects the information of the textual proofs but can also be used by ATP. In our

opinion it will allow us to check more complex proofs. A starting point for such work

would be the paper “Premise Selection in the Naproche System” [Cramer et al. 2010a].

However it seems worth mentioning that this work only deals with the proofs taken

from the first chapter of Landau’s book “Foundations of Analysis” [Landau 1966]. The

writing style of this book is very simple, which we do not see in the other published

books. Landau tries to make the text unambiguous and the proofs presented in it do not

have very big reasoning gaps. Having said that, this work [Cramer et al. 2010a] is still

worthy to notice and see how they manage to select the needed hypotheses, definitions,

axioms, etc, from the large poll.

In contrast, the proof planning technique [Bundy 1996] could be employed. It also

guides the search for a proof in ATP. As a results it has a capacity to perform somewhat

better for mathematical texts (as demonstrated by Zinn in his dissertation [Zinn 2004],

but only on one proof).

In future, we would also like to translate MathAbs of some mathematical text in the lan-

guage of theorem provers, such as Mizar [Trybulec et al. 1973], Isabelle [Paulson 1994],

HOL [Gordon & Melham 1993], Coq [Team 2010], etc. For the reasoning gaps, it will

require the use of automatic tactics that these systems provide.

This approach is already employed in the work of MathLang

[Kamareddine & Wells 2008] in which they have tried to translate some math-

ematical text from its core language to the syntax of three proof assistants
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(Mizar [Kamareddine et al. 2007] or in formal proof sketches [Wiedijk 2003], Coq

[Kamareddine et al. 2008] and Isabelle [Lamar et al. 2009]).

Although these translations are still in embryonic stage and the treated examples

have limited reasoning gaps (the first chapter of Landau’s book of analysis) but inspires

us for the possibility of the similar work in MathNat.

4.8 Conclusion

In this chapter, we have given a detailed account of MathAbs, its formal definition and

semantics. The usefulness of an intermediary language between the natural language

of the mathematician and the formal language of the logician is evident. MathAbs is

a formal language which does not contain natural language elements at all, yet tries to

faithfully represent the language of mathematics. Furthermore, the view of a mathe-

matical proof as a way of explaining how the “context” evolves seems promising.

In terms of processing, it is intended to be simpler than the language of mathematics.

One does not have to learn MathAbs, as it is a part MathNat system and it is not visible

to the end-user.

To answer the question of MathAbs’ abstraction being expressive enough, the work

presented here seems adequate in principle. However in practice, we have formalized only

a few examples in MathAbs, which may not be sufficient to make a definite conclusion.

At least we can safely claim that the initial results seem very promising.

Other than the future directions that we have already mentioned, the introduction

of meta variables6 in MathAbs to take into account the use of known and unknown

variables would be worthwhile and interesting. However, such work will not be easy

because it prohibits to check each rule in a proof tree separately; as the check becomes

global.

4.9 Appendix

4.9.1 An Example:

We translate the theorem and its proof to first order formulas. This theorem and proof

is given in 2.4 on page 14.

1. Theorem 43 (PYTHAGORAS’ THEOREM)
√

2 is irrational.

2. Third Proof. Assume that
√

2 is a rational number.

3. By the definition of rational numbers, we can assume that
√

2 = a/b where a and b are

non-zero integers with no common factor.

4. Thus, b ∗
√

2 = a.

5. Squaring both sides yields 2 ∗ b2 = a2 − (1).

6. It is clear that a2 is even because it is a multiple of 2.

7. So we can write a = 2 ∗ c, where c is an integer.

8. We get 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2, by substituting the value of a into equation (1).

9. Dividing both sides by 2, yields b2 = 2 ∗ c2.

6Alternatively we can call them existential variables.
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10. Thus b is even because 2 is a factor of b2.

11. If a and b are even then they have a common factor.

12. It is a contradiction.

13. Therefore, we conclude that
√

2 is an irrational number.

14. This concludes the proof.

MathAbs

1. Theorem. show ¬
√

2 : Q

2. Proof. assume
√

2 : Q

3. let a, b : Z assume
√

2 = a/b assume positive(a) ∧ positive(b)

∧ no_cmn_factor(a, b) by def rational_Number

4. deduce b
√

2 = a

5. deduce 2b2 = a2 1 by oper squaring_both_sides(b
√

2 = a)

6. deduce multiple_of(a2, 2)

deduce even(a2) by form multiple_of(a2, 2)

7. let c ∈ Z assume a = 2c

8. deduce 2b2 = (2c)2 = 4c2 by oper substitution(a, 2b2 = a2)

9. deduce b2 = 2c2 by oper division(2, 2b2 = (2c)2 = 4c2)

10. deduce factor_of (2, b2)

deduce even(b) by form factor_of(2,b2)

11. deduce (even(a) ∧ even(b)) ⇒ one_cmn_factor(a, b)

12. show ⊥ trivial

Remarks:

• At line 6, first, we deduce the justification i.e. multiple_of(a2, 2), and then

deduce the whole statement. Same applies to 10.

• However, the above rule does not apply to definitional references and operations

as shown in 3, 5, 8, 9.

• We can safely ignore Line 13 and 14 of figure 2.4 because the proof is already

finished on line 12.

First Order Formulas:

2. ⊢ (rational(
√

2) ⇒ irrational(
√

2)) ⇒ irrational(
√

2)

3. Γ1 ⊢ ∀a,b((int(a) ∧ int(b) ∧
√

2 = a/b ∧ a, b > 0∧ gcd(a, b) = 1) ⇒
irrational(

√
2)) ⇒ irrational(

√
2)

where Γ1 ≡ rational(
√

2)

4. Γ2 ⊢ (b
√

2 = a ∧ (b
√

2 = a ⇒ irrational(
√

2))) ⇒ irrational(
√

2)*

Γ2 ⊢ b
√

2 = a

where Γ2 ≡ Γ1, ∀a, b (int(a)∧int(b) ∧
√

2 = a/b ∧ a, b > 0 ∧ gcd(a, b) = 1)
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5. Γ3 ⊢ (2b2 = a2 ∧ (2b2 = a2 ⇒ irrational(
√

2))) ⇒ irrational(
√

2)*

Γ3 ⊢ 2b2 = a2

where Γ3 ≡ Γ2, b
√

2 = a

6. Γ4 ⊢ (multiple_of(a2, 2) ∧ (multiple_of(a2, 2) ⇒ irrational(
√

2))) ⇒
irrational(

√
2)*

Γ4 ⊢multiple_of(a2, 2)

where Γ4 ≡ Γ3, 2b2 = a2

Γ5 ⊢ (even(a2) ∧ (even(a2) ⇒irrational(
√

2))) ⇒ irrational(
√

2)*

Γ5 ⊢ even(a2)

where Γ5 ≡ Γ4, multiple_of(a2, 2)

7. Γ6 ⊢ ∀c((int(c) ∧ a = 2c) ⇒irrational(
√

2)) ⇒ irrational(
√

2)

where Γ6 ≡ Γ5, even(a2)

8. Γ7 ⊢ (2b2 = (2c)2 = 4c2 ∧ (2b2 = (2c)2 = 4c2 ⇒irrational(
√

2))) ⇒ irrational(
√

2)*

Γ7 ⊢ 2b2 = (2c)2 = 4c2

where Γ7 ≡ Γ6, int(c) ∧ a = 2c

9. Γ8 ⊢ (b2 = 2c2 ∧ (b2 = 2c2 ⇒ irrational(
√

2))) ⇒ irrational(
√

2)*

Γ8 ⊢ b2 = 2c2

where Γ8 ≡ Γ7, (2b2 = (2c)2 = 4c2)

10. Γ9 ⊢ (factor_of(2, b2) ∧ (factor_of (2, b2) ⇒ irrational(
√

2))) ⇒ irrational(
√

2)*

Γ9 ⊢ factor_of(2, b2)

where Γ9 ≡ Γ8, (b2 = 2c2)

Γ10 ⊢ (even(b)) ∧ (even(b) ⇒ irrational(
√

2))) ⇒ irrational(
√

2)*

Γ10 ⊢ even(b)

where Γ10 ≡ Γ9, factor_of (2, b2)

11. Γ11 ⊢ ((even(a)∧ even(b) ⇒ one_cmn_factor(a, b)) ∧ ((even(a)∧ even(b) ⇒
one_cmn_factor(a, b)) ⇒ irrational(

√
2))) ⇒ irrational(

√
2)*

Γ11 ⊢ even(a)∧ even(b) ⇒ one_cmn_factor(a, b)

where Γ11 ≡ Γ10, even(b)

12. Γ12 ⊢ (⊥ ⇒ irrational(
√

2))

Γ12 ⊢ ⊥
where Γ12 ≡ Γ11, (even(a) ∧ even(b) ⇒ one_cmn_factor(a, b))

Remarks:

• Since deduce A is a syntactic sugar of { show A trivial ; assume A . . . }, it produces

a lot of tautologies of the form (A ∧ (A ⇒ B)) ⇒ B in the first-order formulas.

Where B is the main goal to prove. They are marked with * above.

• In proof, if we add in a sentence such as “proof by contradiction” this adds a

MathAbs command show ⊥ that would replace the conclusion irrational(
√

2)

by ⊥.

• The justifications such as “by def rational_Number” that are preserved in Math-

Abs were removed from the first order translation, because most of the automated

theorem provers are unable to use such justifications.

• In the above first order formulas, types are treated as predicates. See §4.7.1.4 on

page 82.
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5.1 Introduction

The Controlled Language for Mathematics (CLM) is a computer processable subset

of English for writing mathematics which is found in the mathematical texts. Since

mathematical language mainly consists of natural language, symbolic expressions and

notations, CLM supports a subset of symbolic mathematics as well. It is a precisely

defined subset of English with restricted grammar, dictionary, style and predefined con-

ventions.

We support numerous linguistic features such as anaphoric pronouns and references,

paraphrasing, rephrasing of a sentence, and the proper handling of distributive and

collective readings. Such features give CLM the impression of being informal though

the language is in fact formal and machine executable. Furthermore, the grammar

and example texts given in this chapter reveal the efforts that we made to parse real

mathematical texts. For a user, CLM does not presuppose any expertise in formal logic

or computational linguistics.

The aim of subsequent chapters is to describe the CLM grammar and its implemen-

tation in detail. It may benefit the reader in two ways: First, the grammar description

allows the user to remain within the scope of the grammar when writing mathematical

text in MathNat1. Second, its implementation allows the user to understand the inner

working of the grammar, extend it or even define similar grammars for other domains.

A brief introduction to GF was given in §2.5.1. In the following section, we motivate

its use and extend its introduction a little further. In Chapter 6, we describe and define

the micro level grammar for CLM. In contrast, we describe and define the macro level

1A useful tool in this respect could be the ‘auto-completion utility’ for parsing that GF provides.

But we do not use it in the current version of MathNat software. It is because the current version is

more like a parser rather than an interpretor. Until a dedicated MathNat shell is developed, we can use

GF shell for this purpose.
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grammar for CLM in Chapter 7. A reader unacquainted with GF must read a few

sections of Chapter 6 first. After that the reader may go back and forth from macro to

micro and from micro to macro level grammar. For that we give an overview of CLM

in §5.3.

Controlled languages usually simplify their constructions and interpretation using

conventions, which an author must follow. It is the same for CLM, whose conventions

are already mentioned in §2.4 and in §2.5.2 informally. Such conventions allow resolving

ambiguities and support various linguistic features. A somewhat formal description of

these conventions is given in §7.5.

Before we proceed to the next section, another point worth nothing is: there might

be other ways to define the same grammar. Similarly, there might be several ways in

which we can group the rules of the CLM grammar that we present in this chapter.

However, our classification presented here is mainly motivated by the simplicity, which

in return, makes the grammar easily explainable.

In the course of the next few chapters, we will sometimes use rather artificial ex-

amples. Such examples should not be taken as a weakness, but rather the worst case

scenarios. They usually do not occur often but we must prepare for them for the sake

of completeness.

Also note that the rules implemented in the next two chapters, may have many

similar variants which have not been implemented yet. Some of them could be added

with little effort. However, it is a never ending quest, and we had to stop the development

to write this report. Of course, the CLM will keep growing and evolving in future.

5.2 Grammatical Framework

There are many special purpose languages and formalisms designed for defining gram-

mars. One well-known such formalism is context-free grammar. However, the context-

free grammar can only express mathematical language for small and isolated fragments

(for instance, see [Ganesalingam 2009] for such a treatment). Nevertheless, it is also

true for any natural language grammar in general. It is because context-free grammar

cannot scale up easily to the richness of the language of mathematics (or the natural

language) in a working system which covers a large grammar. Even if it does, the im-

plementation would be rather inelegant, clumsy and difficult to manage. For instance,

in a context-free grammar the rich features such as agreement, case constraints, subcat-

egorization, selection, etc, cannot be represented compactly. So, it would be difficult to

avoid combinatorial explosion of implementation code for these features. Therefore, we

need an attribute grammar [Knuth 1968, Deransart et al. 1988] to capture the language

of mathematics in an effective, intuitive, elegant and manageable way. As a side note,

it is worth emphasizing that the problem is not really the context-free grammar but

rather its expressive power in terms of the compactness of the written grammar. We

need a high level language which offers more expressive power such as the attribute

grammar. Nevertheless, it has limitations as well which we elaborate in the course of

coming paragraphs.

As we discuss in §2.5, Grammatical Framework (GF) [Ranta 2004, Ranta et al. 2010,

Ranta 2011a], is a programming language for defining natural language grammars. It

allows describing attribute grammar. Moreover, it is a typed functional programming

language and a Curry-style categorial grammar formalism [Curry 1961] based on Martin-
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Löf’s dependent type theory [Martin-Löf 1984].

GF is specifically designed to describe domain-specific or controlled natural lan-

guage grammars. That is why we choose to implement CLM (Controlled Language for

Mathematics) in it; see the last paragraph of this section for a detailed list of reasons.

The grammar designed in GF for CLM only deals with syntax in a rather liberal way.

It means that in GF we do not treat semantically motivated constraints that appear on

micro and macro levels.

For the micro or sentence level grammar, we may have statements which are well-

formed linguistically but logically or mathematically ill-formed (cf. §2.5 and §8.2).

Sometimes, it is not easy (or preferred) to enforce such constraints in GF, because it is

not general enough such as Haskell or Java. Of course, we can enforce a lost of such

semantically motivated constraints using dependent types. But in some cases, it would

make the abstract syntax quite complicated. Therefore we enforce them in the host

system MathNat (cf. §8.2 for further details).

On the macro or document level, we have structural blocks such as theorem, proof,

etc. They have semantics that is hard to capture in an attribute grammar. There-

fore, we treat structural blocks in GF grammar as only lists of sentences. Instead,

we build the discourse of structural blocks, apply semantically motivated grammatical

constraints, provide the miscellaneous linguistic features and give semantics in the host

system MathNat (cf. Chapter 8).

A point worth noting is that: there is a difference between the expressive limitations

of GF (what we can implement in GF) and what we prefer not to implement in GF. We

do not want to capture semantics in the grammar anyway. It is because, when something

is rejected in GF, the error message is not personalized. But if we reject something in

the host system MathNat we can report a better and specific error message.

It is worth emphasizing that, GF is still best suited for our requirements. It is

because, there are only few frameworks which successfully can parse natural language,

and GF is one of them. There are also the following non-exhaustive reasons which make

it the best candidate:

• As we’ve already mentioned, it is specifically designed to describe domain specific

or controlled grammars [Angelov & Ranta 2010].

• It supports multilingual grammars. For multilingual grammars, it also provides

a resource library [Ranta 2009a] to ease this task. We do not use it yet but see

§9.2.3 for the future possibilities.

• Its syntax is compact and human friendly to code. Furthermore, the implemented

code easily scales up.

• It support auto-completion for parsing.

• It is under active development, therefore, it will get even better with the passage

of time, providing more robust parsing and better tools.

• There is an active community that can help.

5.2.1 Getting Started

To get started, we relate a typical excerpt of the grammar for a simple proposition

in context-free notation. It is only limited to describe propositions such as “they are
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even integers”, “it is a positive number”, etc. For the sake of readability, we keep this

excerpt very simple and ignore the number agreement between subject and attribute in

the context-free grammar which is presented in figure 5.1. We also ignore the number

parameter of Attribute, Type and Subject in the context-free grammar.

1 Proposition ::= Subject "is" Attribute

2

3 Attribute ::= Property Type

4

5 Property ::= "even" | "odd" | ...

6 Type ::= "integer" | "number" | ...

7

8 Subject ::= "it" | "they"

Figure 5.1: Context-free grammar for simple propositions

1 cat Proposition; Subject; Attribute;

2 cat Property; Type; Pron;

3

4 fun MkProp: Subject -> Attribute -> Proposition;

5

6 fun MkSubj: Pron -> Subject;

7 fun It: Pron;

8 fun They: Pron;

9

10 fun MkAttrib: Property -> Type -> Attribute;

11

12 fun Even: Property;

13 fun Odd: Property;

14 ...

15

16 fun Integer: Type;

17 fun Number: Type;

18 ...

Figure 5.2: Abstract Syntax for simple propositions

It becomes in GF a pair of an abstract and a concrete syntax rules. First we

give the rules for abstract syntax in figure 5.2. First, we need to define these

categories with keyword cat, as shown on lines 1–2. The keyword fun stands

for function declaration. So on line 3, fun declares the function MkProp of type

Subject -> Attribute -> Proposition; meaning it takes two parameters (a subject

and an attribute) and forms a proposition. The arrow -> is the normal function type

arrow of programming languages. A subject is formed by pronouns It or They, as shown

on lines 6 to 8.

Similarly, MkAttrib function forms an attribute with a Property and Type on line

7. Next, we define functions Even and Odd of category Property; and functions Integer

and Number of category Type. In full CLM grammar, we add properties (e.g. positive,

odd, distinct, equal, etc) and types (e.g. rational, natural number, set, proposition, etc)

in a similar fashion; more in Chapter 6.

To map this abstract syntax into its concrete syntax, we define a set of linguistic

objects corresponding to the above categories and functions as shown in figure 5.3. The

keyword lin stands for linearization. In lines 1–2, we say that categories Proposition

and Property are simply string records. Lines 4–5, show this fact for the linearization
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1 lincat Proposition = {s:Str};

2 lincat Property = {s:Str} ;

3

4 lin Even = {s ="even"};

5 lin Odd = {s ="odd"};

6

7 lincat Subject = {s:Str ; n:Number};

8

9 lin It = {s="it" ; n=Sg};

10 lin They = {s="they" ; n=Pl};

11

12 lincat Type = {s : Number => Str};

13 lincat Attribute = {s : Number => Str};

14

15 lin Integer = {s= table {

16 Sg => "integer" ;

17 Pl => "integers"

18 }

19 };

20 lin MkAttrib prop type = {s = table {

21 Sg => artIndef ++ prop.s ++ type.s!Sg;

22 Pl => prop.s ++ type.s!Pl

23 }

24 };

25

26 lin MkProp subj attrb = {s: subj.s ++ be.s!subj.n ++ attrb.s!subj.n};

27

28 oper be = {s = table {Sg => "is" ; Pl => "are"}};

29 param Number = Sg | Pl ;

Figure 5.3: Concrete Syntax for simple propositions
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of functions Even and Odd. In line 7, we describe the category Subject as a record

containing a string and a number (which can be singular or plural, as defined in the last

line).

Lines 9–10, define the linearization of the functions It and They. Here we mention

the fact that the function It is singular and the function They is plural, which will help

us to make the number agreement in other function linearizations.

The linearization of the categories Type and Attribute on lines 12–13, is an inflection

table (a finite function) from number to string, having one string value for each (singular

and plural). So the function Integer of the category Type, fills this table with two

appropriate values as shown on lines 15–19.

In a similar way, on lines 20–24, we define the linearization of the function MkAttrib.

For instance, for singular value, we select the string value of the category Property

(props) with (.s). Then, we select the singular string value of the category Type with

(type.s!Sg). The operator (++) concatenates these two strings along-with a space

between them. The artIndef makes an agreement for an indefinite article with the first

letter of next word; e.g. producing “an even integer” or “a positive number”.

Finally, to form the linearization of a proposition, in function (MkProp subj attrb)

on line 26 and 27, we select appropriate string values of table be (given on line 29)

and attribute (attrb) by an agreement of number with subject (be.s!subj.n and

attrb.s!subj.n respectively), and concatenate them with subject (subj.s).

If we parse the propositions such as “they are even integers” and “it is a positive

number”, we’ll get abstract syntax trees (AST) given in figure 5.4.

MkProp (MkSubj They) (MkAttrib Even Integer)

MkProp (MkSubj It) (MkAttrib Positive Number)

Figure 5.4: Abstract syntax trees (AST) of two simple propositions

5.3 Overview of CLM

We hereby present an overview of the controlled language of mathematics. It is an

almost complete skeleton of the grammar.

5.3.1 Macro Level

This section corresponds to Chapter 7 on page 155.

Theorem and its Proof: §7.2, page 155.

Proof: §7.2.1, page 156.

1. Restatements formed by rules:

(a) Page 157. Key phrases ShallProveThat (§7.2.1.1, page 157), Statements

(§6.3.6.1, page 144) and Subordinate (§7.2.1.1, page 158).

“we have to prove that x > y, x = y or x < y, where y is an integer”,

“it is sufficient to prove that x > y”, etc.
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(b) Page 158. Key phrases ShallProveThat (§7.2.1.1, page 157), EStatements

(§6.3.6.2, page 145) and Subordinate (§7.2.1.1, page 158).

“we shall prove that either x > y or y > z”, etc.

(c) Page 159. Key phrases ShallProveThat (§7.2.1.1, page 157), IfthenStmnt

(§6.3.7, page 146) and SubordinateIfThen (§7.2.1.1, page 159).

“it is sufficient to prove that if x ∈ A then x ∈ B where A ⊆ B”, etc.

2. Assumptions formed by rules:

(a) Page 159. Keyword ‘let’, LetStatements (§6.3.6.3, page 146) and

Subordinate (§7.2.1.1, page 158).

“let A and B be two sets, and A ⊆ B”,

“let m and n be relatively prime integers”,

“let m = n , and n = r”, etc.

(b) Page 159. Key phrases AsmThat, Statements (§6.3.6.1, page 144) and

Subordinate (§7.2.1.1, page 158).

“suppose that there are two integers u and v such that u ∗ n + v ∗ m = 1”,

“assume that
√

2 =
a

b
, where a and b are non zero integers with no common

factor”,

“we assume that x > a, x > b, and x > c, where a, b and c are integers”,

etc.

(c) Page 160. Key phrases AsmThat, EStatements (§6.3.6.2, page 145) and

Subordinate (§7.2.1.1, page 158).

“assume that either m and n are relatively prime, or they are not relatively

prime”, etc.

3. Assumptions with justifications formed by rules:

(a) Page 160. Some key phrases, Statements (§6.3.6.1, page 144),

Justifications (§6.3.9.3 on page 152) and Subordinate (§7.2.1.1, page

158).

“we suppose that
√

2 =
a

b
by the definition of rational number”, etc.

(b) Page 160. Some key phrases, Justifications (§6.3.9.3 on page 152),

Statements (§6.3.6.1, page 144) and Subordinate (§7.2.1.1, page 158).

“we can write that 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2 by substituting the value of a

into equation (i)”,

“by the definition of rational numbers, we suppose that
√

2 =
a

b
”, etc.

4. Deductions formed by rules:

(a) Page 162. Key phrases ConcludeThat (page 162), Statements (§6.3.6.1, page

144) and Subordinate (§7.2.1.1, page 158).

“we conclude that
√

2 is an irrational number”,

“it implies that m and r are coprime, and r < m”, etc.
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(b) Page 162. Key phrases ConcludeThat (page 162), EStatements (§6.3.6.2,

page 145) and Subordinate (§7.2.1.1, page 158).

“either
√

2 is an irrational number or
√

2 is not an irrational number”,

etc.

5. Deductions with justifications formed by rules:

(a) Page 163. Key phrases ConcludeThat (page 162), Statements (§6.3.6.1, page

144), Justifications (§6.3.9.3 on page 152) and Subordinate (§7.2.1.1,

page 158).

“a2 is even because it is a multiple of 2”,

“there exist q and r such that n = m ∗ q + r by euclidean division”,

“q divides r because r = n − m ∗ q”, etc.

(b) Page 163. Justifications (§6.3.9.3 on page 152), Statements (§6.3.6.1,

page 144), optional key phrases ConcludeThat (page 162) and Subordinate

(§7.2.1.1, page 158).

“because p|a ∗ b and p|p ∗ b it is clear that p|b”,

“by induction hypothesis, there are u′ and v′ such that u′ ∗m+v′ ∗r = 1”,

etc.

(c) Page 163. Justifications (§6.3.9.3 on page 152), key phrases ShowThat,

Statements (§6.3.6.1, page 144) and Subordinate (§7.2.1.1, page 158).

“dividing both sides by 2 and the fact that x is even, yields the result that

b2 = 2 ∗ c2”,

“the fact that x is even and y = x shows the result that y is even”, etc.

(d) Page 165. Statements (§6.3.6.1, page 144) (as justifications), Statements

(as conclusions) and Subordinate (§7.2.1.1, page 158).

“since A ⊆ A ∪ B, then x ∈ A ∩ B”,

“since A ⊆ A ∪ B and B ⊆ A ∪ B then A = B”, etc.

6. Miscellaneous proof Statements in §7.2.1.6 on page 166.

7. Proof by Cases in §7.2.1.7 on page 167.

Theorem: §7.2.2 on page 170.

1. Statement to prove formed by rules:

(a) Page 170. Universal or existential 〈Formula 〉 (figure 6.2 on page 109).

∀(x, y : Z) (even(x) ∧ even(y) ⇒ even(x + y))

∀(A, B : Set) ((A ∪ B = A ∩ B) ⇒ A ⊆ B)

∀x : Z (∃ y : Z(x + 1 = y)), etc.

(b) Page 171. Key phrases, (Statements(page 144) | EStatements(page 145)),

Subordinate (page 158).

“prove that there exists two integers u and v such that u ∗ n + v ∗ m = 1”,

“either x > y, x = y or x < y, where y is an integer”,

“show that x + y is even”, etc.
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(c) Page 171. Key phrases, (§6.3.7, page 146) and SubordinateIfThen (§7.2.1.1,

page 159).

“prove that if x ∈ A then x ∈ B”,

“show that if A ∪ B = A ∩ B then A ⊆ B”,

“if a is integer then there is no integer x such that a < x < a + 1”, etc.

(d) Page 172. Key phrases, an optional Typ (§6.3.1.5 on page 117), Exps (§6.2.1

on page 111), (Statements | EStatements | IfthenStmnt) and Subordinate.

“prove that for (all | every | arbitrary) integer[s] x, x is positive and even”,

“for (all | every | arbitrary) number[s] x and y, x is an element of y”, etc.

2. Assumptions in theorem on page 173. Same as ‘assumptions in proof’.

3. Miscellaneous key phrases for theorem statements on page 173.

Axiom: §7.3, page 173. We reuse all the statements from theorem for axiom after

removing the key phrases “(prove | show) that”).

Definition: §7.4, page 174.

1. Formed by conditional statements on page 175:

(a) Statements (§6.3.6.1, page 144) and Statement (§6.3.6, page 143)

“if x > 0 and y > 0, then we define x and y to be positive”,

“if x > 0 then x is positive”,

“if an integer n is divisible by 2 then it is even”, etc.

(b) Flipping the above categories.

“we define x and y to be positive if x > 0 and y > 0”,

“x is positive if x > 0”,

“we define an integer n to be even if it is divisible by 2”, etc.

(c) A different conditional.

“we define x and y to be positive iff x > 0 and y > 0”,

“x is positive only if x > 0”,

“an integer n is even if and only if it is divisible by 2”, etc.

2. Assumptions and ‘define’ statements on page 176.

5.3.2 Micro Level

Explanation of the categories at Micro Level. It corresponds to Chapter 6 on page 105.

1. Symbolic Mathematics in LBNF grammar defining expressions, equations and for-

mulas on page 105.

2. Symbolic Mathematics in GF grammar on page 110.

3. A list of symbolic expressions (Exps) on page 111.

“x, y and z”, “x + 2, x + y and z”, etc.
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4. The Equation (Equation) and its List (Equations) on page 112.

“x + y = 3, y > x and x + y < z”,

“x + y = 3, y > x or x + y < z”, etc.

5. A few low level constructs on page 113:

(a) Anaphoric Pronoun (Pron) is (‘it’ | ‘they’).

(b) Subject is (Exps | Pron).

(c) Demonstrative Pronoun (DemPron) is (‘this’ Typ | ‘these’ Typ).

(d) Quantity on page 115 is represented by two categories:

i. Quant is [(‘a’/‘an’ | ‘two’ | ‘three’ | . . . | ‘ten’ | ‘some’)].

ii. Quant1 is (‘no’ | ‘a’/‘an’/‘one’ | ‘two’ | ‘three’ | . . . | ‘ten’ | ‘some’).

(e) Type (Typ) is (Set | Integer | Number | Rational | Prime | . . . ). (page 117).

(f) Property is (Positive | Even | Odd | Finite | Coprime | Equal | Arbitrary

| . . . ). (page 117).

(g) List of properties: Properties1, Properties2 and EProperties. (page 119).

(h) Relational function2 is (Element | Factor | Square | Multiple | Divisor |
. . . ). (page 123).

6. Propositions (Proposition) in §6.3.2, page 124, formed by rules:

(a) Page 125. Subject, Quant, Properties1 and Typ.

“x is a positive even integer” or “x be a positive even integer”,

“it is an arbitrary positive integer” or “it be an arbitrary positive integer”,

etc.

(b) Page 131. Subject and Properties2.

“x is positive and even” or “x be positive and even”,

“x and y are even or odd” or “x and y be even or odd”, etc.

(c) Page 131. Subject and EProperties2.

“x and y are either even, odd or positive” or

“x and y be either even, odd or positive”, etc.

(d) Page 132. Subject, Relation and Exp.

“x is a divisor of y” or “x be a divisor of y”,

“x is not a multiple of y” or “x be not a multiple of y”,

“x, y and z are elements of x∗y ∗z” or “x, y and z be elements of x∗y ∗z”,

“x is a square of
√

x” or “x be a square of
√

x”, etc.

(e) Page 133. Subject, Rel2 and Exp.

“x divides y”,

“x does not multiply y”,

“x, y and z divide x ∗ y ∗ z”, etc.

2This term is used as a category (§6.3.1.8 on page 123). It has nothing in common with ‘relational

functions’ of mathematics (which can be written as the ratio of two polynomial functions).
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(f) Page 134. Optional noun adjuncts, which we add to the first three rules only

(a, b and c above).

7. Existential Statements (PropExist) in §6.3.3, page 136, formed by rules:

(a) Page 136. Quant, Properties1, Typ, Exps and Equations.

“there (exists | is) a positive number n such that n ∗ a > b”,

“there (do not exist | are no) even integers x, y and z such that x ∗ a > b,

y ∗ a > b (and | or) z ∗ a > b”, etc.

(b) Page 139. Properties1, Exps and Equations.

“there (exists | is) positive even n such that n ∗ a > b”,

“there (does not exist | is no) n such that na > b”,

“there (exist | are) positive x, y and z such that x ∗ a > b and y ∗ a > b”,

etc.

8. Relational Statements (PropRel) in §6.3.4, page 140, formed by rules:

(a) Page 140. Subject, QuantRel and Relation.

“x, y and z have a common factor”,

“they have some common multiples”,

“x, y and z have no common divisor”, etc.

(b) Page 141. Subject, Quant1, Relation and Exps.

“x, y and z have a common factor 2”,

“x, y and z have no common divisor d”, etc.

(c) Page 142. Above two functions without word ‘common’.

“n and m have a divisor d”,

“they have no factor 2”, etc.

and

“n and m have a divisor”,

“they have three factors”, etc.

9. Page 142. Equation with an optional reference (EqWithRef).

“x2 + y2 = (2 ∗ a + 1)2 + (2 ∗ b + 1)2 – (1)”,

“x2 + y2 = (2 ∗ a + 1)2 + (2 ∗ b + 1)2 – i”,

“x2 = (2 ∗ a + 1)2”, etc.

10. Statement is (Proposition | PropExist | PropRel | EqWithRef). (§6.3.6,

page 143).

11. The list of statements:

(a) Statements (§6.3.6.1, page 144).

Statement1[, . . . , Statementn−1 (, and |, or) Statementn]

(b) EStatements is a list of Statement having at least two elements. (§6.3.6.2,

page 145).
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Either Statement1, . . . , Statementn−1 or Statementn.

(c) A list LetStatements for ‘let’ statements. (page 146).

12. Conditional Statements (IfthenStmnt) is formed by two lists (Statements). (Page

146).

“if m and r have a common divisor d then it divides n”,

“if a = 2 ∗ c, and 4 ∗ c2 = 2 ∗ b2, and 2 ∗ c2 = b2 then b is even”

and a superficial conditional:

“if a is positive, b is negative, and c is even then x is even, y is odd, and

x ∗ y ∗ z = 10”, etc.

13. Take Statement (TakeStmnt) is formed by the list (Equations). (Page 147).

“we can choose x := 10”,

“we take a := x + 1, b := y + 1 and c := z + 1”, etc.

14. Justification is formed by (Statement | Operation | Anaphor | DefReference).

(Page 147).

(a) Operations as Justifications (Operation) are formed by rules:

i. Page 148. Rel1.

“(factoring | squaring | . . . ) [at] both sides”,

“taking (factor | square | . . . ) (at | from) both sides”.

ii. Page 148. Rel2 and Exp.

“(multiplying | dividing | . . . ) both sides by 2”,

“multiplying the equation by x”, etc.

iii. Page 148. Rel2, EqAnaphora and Exp.

“multiplying the last equation on both sides by 2”,

“multiplying the last equation by 2 at both sides”,

“dividing our first equation by x”, etc.

iv. Page 149. Rel3.

“taking factor from both sides”.

v. Page 149. Exp and (Equation | Reference).

“substituting [the value of] x in [equation] x = 2 ∗ b + 1”,

“substituting [the value of] x into [equation] (i)”, etc.

(b) Anaphoric References (Anaphor). §6.3.9.2 on page 149.

“the first statement”, “the last hypothesis”,

“our first equation”, “theorem 24”, “theorem”, etc.

(c) Reference to Definitions (DefReference). §6.3.9.3 on page 151.

“the definition of [even] number[s]”, “the definition of prime(s)”,

“the definition of euclidean division”, “induction hypothesis”, etc.
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15. A non-empty list of Justifications (Justifications). Page 152.

Parts in brackets {...} does not belong to Justifications.

“by the definition of positive numbers and by euclidean division, {we (con-

clude | assume) that . . . }”,

“by the last statement and by substituting x in y = x + 10, {. . . }”,

“by the first statement and because it is even”, {. . . }

“by the last statement, by substituting x in y = z ∗ x + 10 and because z

is positive, {. . . }”, etc.
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Micro Level CLM Grammar
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6.1 Introduction

As we describe in §2.5.1, we treat symbolic and textual parts of mathematics separately

in the implementation of the CLM grammar. We first describe the grammar for symbolic

mathematics in §6.2. Then we describe the grammar for textual mathematics in §6.3.

In the course of defining them, we’ll describe them in an abstract way, aided by

examples. It obeys the following conventions: A string value will always be in single

quotes ‘ ’. The convention [‘text’] means that ‘text’ is optional. The convention (‘text1’

| ‘text2’) means that both ‘text1’ and ‘text2’ are possible and dots (. . . ) means that

only a few constructions are given for the sake of brevity. The convention of writing

Text in typewriter face means that it is not a string value. Instead it is either a record,

category or function.

6.2 Symbolic Mathematics

As we described in §2.4, CLM is written in ASCII format. For typography of symbolic

mathematics, we use ASCIIMath1, which allows to render them properly on web pages.

To describe its typography in a source file, we give below an example statement taken

from figure 2.5 on page 15. However, it is worth mentioning that the grammar can

still recognize the symbolic parts if we omit quotation marks (‘. . . ‘). For instance, both

1ASCIIMath homepage: http://www1.chapman.edu/~jipsen/mathml/asciimath.html
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LATEX ASCII LATEX ASCII

Type Membership (∈) : Assignment (=) :=

Implication (⇒ or →) => Conjunction (∧) land

Disjunction (∨) lor Universal Quantifier (∀) forall

Existential Quantifier (∃) exists Equality (=) =

Not Equal (Ó=) != Predicate Divides |

Less than (<) < Greater than (>) >

Less than or equal (≤) <= Greater than or equal (≥) >=

Set Membership (∈) in Set Non-membership (/∈) !in

Subset Relation (⊂) sub Non Subset Relation (Ó⊂) !sub

Subset or Equal (⊆) sube Not subset or equal (Ó⊆) !sube

Union (∪) uu Intersection (∩) nn

Plus Symbol (+) + Minus Symbol (−) -

Times (∗) * Division /

Modulo % Power ˆ

Negation (¬) not

Figure 6.1: ASCII Symbol List for Symbolic Mathematics.

examples shown below are parsed by the host system MathNat. See figure 6.1 for the

symbol list of ASCIIMath for the formal grammar.

If ‘a = 2*c‘, then ‘4*c^2 = 2*b^2‘.

If a = 2*c, then 4*c^2 = 2*b^2.

As we described in §2.5.1 on page 18, we define the symbolic parts of mathematics

outside GF, as Labelled BNF grammar [Forsberg & Ranta 2004] (shown in figure 6.2).

Defining a formal grammar in GF is definitely possible. However, it comes with a slight

penalty in efficiency for parsing2. It is because GF is general enough to cover both

natural language grammars and formal language grammars. Of course this generality

has a price in terms of efficiency.

Second, the Labelled BNF grammar we define for symbolic mathematics is used “as

it is” for the MathAbs’ 〈Formula 〉 (cf. §4.3 on page 60), which saves us translating

from the Labelled BNF 〈Formula 〉 (shown as Formula in figure 6.2) to the MathAbs

〈Formula 〉.
Also, a specialized parser for symbolic mathematics has better and wider support

for various symbols.

Notwithstanding this, it is rather a minor technical issue, in which the current solu-

tion has only a slight advantage over the solution of defining the grammar for symbolic

mathematics directly in GF. The price we pay over these advantages is the loss of auto

completion support in parsing for symbolic mathematics.

The 〈Formula 〉 consists of the symbolic expression Exp and the equation Eq. How-

ever, the Labelled BNF grammar for symbolic mathematics shown in figure 6.2, does

not make any distinction between them. This distinction is enforced in the host system

as semantic checks (cf. §8.2.7 on page 189).

2This penalty in efficiency not huge now. It is because this observation is taken in 2008 and since

then GF is improved a lot.
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We decide to do so because the symbolic expression Exp is the subset of the equation

Eq in our grammar (cf. figure 6.2, more details in subsequent paragraphs). Therefore,

managing it as a single grammar turns out to be simpler and easier than having separate

grammars.

We now explain the Labelled BNF grammar shown in figure 6.2. Apart from the

labels (for instance, EType on line 1 of figure 6.2), a rule in LBNF is an ordinary

BNF rule, where the terminal symbols are enclosed in double quotes and nontermi-

nals are written without quotes. Precedence decreases from top to bottom. For the

same precedence, formulas are interpreted from right to left (i.e. left associative). See

[Forsberg & Ranta 2005] for a detailed technical report on Labelled BNF grammar.

Symbolic Expression in LBNF The symbolic expression Exp is mentioned in the LBNF

grammar by Formula8, Formula9, . . . , Formula13 (lines 27–47 in figure 6.2). We give

examples for each rule from bottom to top. For instance,

• Formula13 allows positive and negative variable, integer and decimals; booleans

(true and false); and negation:

– Rules on lines 45–48 in figure allow positive and negative numbers including

decimals such as 1, 2.3, 3, −(4), −(5.1), etc.

– Rules on lines 43–44 allow positive and negative variables such as x, −(x),

etc.

– Rules on line 42 allows negation of Formula13 such as ‘¬A’, ‘¬ divides(m, n)’,

etc.

• Formula12 allows predicates and functions:

– Rule on line 39 allows predicates and functions such as even(x) for “x is even”,

multiple(a, 2) for “a is a multiple of 2”, gcd(a, b) for “the greatest common

divisor of a and b” divides(x, y) for “x divides y”, etc.

– Rule on line 40 is mostly used by MathAbs to describe predicates and func-

tions such as ‘element_of([a, b], y, z)’ for “a and b are elements y and z”,

etc.

• Formula8–11 allows terms:

– Rule on line 37 allows power, e.g. x2, (x ∗ y)2, (x/y)1/2, etc.

– Rules on lines 33–35. allows multiplication, division and remainder, e.g. x ∗
y/y, etc. Because multiplication and division have the same precedence, we

interpret them from left to right. For example, x ∗ y/y is interpreted as

(x ∗ y)/y.

– Rules on lines 30–31 allow addition and subtraction. Agian, because they

have the same precedence, we interpret them from left to right. For example,

“x + y − z, is interpreted as: (x + y) − z”, “x2 − y + z is interpreted as:

((x2) − y) + z”, etc. We can also use this subtraction symbol for negative

numbers. For example: “x + (−y) + z”.

These symbols can also be used for sets, + for disjoint union and − for the

difference of two sets (see the last paragraph of the section on page 110 and

bullet 14 on page 7 respectively for some discussion).
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– Rules on lines 27–28 allow union and intersection for sets, e.g. “A ∩ B ∪ C,

interpreted as: (A ∩ B) ∪ C”.

Symbolic Equation in LBNF The symbolic equation Eq is mentioned in the LBNF

grammar by Formula5– Formula7 (lines 11–25 in figure 6.2) and by Formula (lines 1–2

in figure 6.2). Note that the term Eq is rather broad, covering equalities, inequalities

and some notions for sets (such as membership, subset, etc). We give examples for each

rule from bottom to top. For instance,

• Rules on lines 20–25 allow miscellaneous operators for sets such as membership,

subset, subset or equal, etc. e.g. “A ⊆ B ∪ C, interpreted as: A ⊆ (B ∪ C)”,

“x ∈ A”, “x ∈ A ∪ B ∩ C, interpreted as: x ∈ (A ∪ (B ∩ C))”, etc.

• Rules on lines 15–18 allows inequalities, e.g.

“x > y > z”, “x < y < z”, “x ≤ y”, etc.

• Rules on lines 11–13 allows equalities and predicate “divides”, e.g.

“x + y = 2 ∗ a + 2 ∗ b = 2 ∗ (a + b)”, “x Ó= y Ó= z”, “x|y”, etc.

• Rules on lines 01–02 allows assignment and type membership, e.g.

x := y, “x := y1/33 + 3 ∗ 2, interpreted as: x := (y1/33 + (3 ∗ 2))”,

x : Z, x, y, z : N, A, B : Set, etc.

In line 01, Type stands for linguistic types given in §6.3.1.5 on page 117.

Miscellaneous Symbolic Formulas in LBNF The miscellaneous symbolic formulas are

those which are only used by MathAbs currently. We mention them as Formula1–

Formula4 (lines 04–09 in figure 6.2). We give examples for each rule from bottom to

top. For instance,

• Rules on lines 08–09 allows Universal and existential quantifiers. e.g.

∀x, y(x, y ∈ N ⇒ x ∗ y > x + y),

∃u, v(u, v ∈ Z ∧ u ∗ n + v ∗ m = 1), etc.

Note that BVars in a list of variables (bound).

• Rule on line 06 allows conjunction, e.g. “A ∧ B”, “x = y ∧ x = z”, etc.

• Rule on line 05 allows disjunction, e.g.

“A ∨ B ∨ C”, interpreted as: “((A ∨ B) ∨ C)”, etc.

• Rule on line 04 allows implication, e.g.

“A ⇒ B ⇒ C, interpreted as: ((A ⇒ B) ⇒ C)”,

“x ∈ A∧x ∈ B ⇒ x ∈ A∩B, interpreted as: ((x ∈ A)∧(x ∈ B)) ⇒ (x ∈ (A∩B))”,

“A ∧ B ⇒ C ⇒ D ∧ E, interpreted as: “(((A ∧ B) ⇒ C) ⇒ (D ∧ E))”, etc.

Note that this description seems to suggest that it is possible to parse the expressions

which are semantically ill-formed. For instance, “¬(A ∩ B + x)”, “((A : Z) : Z) : Z”, etc.

It is true on the level of syntax, but in future, we will reject some of these expressions

with semantic checks as we do for various semantically motivated conditions in §8.2
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1 EType. Formula ::= Formula1 ":" Type ;

2 EAssign. Formula ::= Ident ":=" Formula1 ;

3

4 EImpl. Formula1 ::= Formula1 "=>" Formula2;

5 EDisj. Formula2 ::= Formula2 "lor" Formula3 ;

6 EConj. Formula3 ::= Formula3 "land" Formula4 ;

7

8 LUniv. Formula4 ::= "forall" BVars "(" Formula ")" ;

9 LExist. Formula4 ::= "exists" BVars "(" Formula ")" ;

10

11 EEq. Formula5 ::= Formula5 "=" Formula6 ;

12 ENotEq. Formula5 ::= Formula5 "!=" Formula6 ;

13 EDivides. Formula5 ::= Formula5 "|" Formula6 ;

14

15 ELthen. Formula6 ::= Formula6 "<" Formula7 ;

16 EGthen. Formula6 ::= Formula6 ">" Formula7 ;

17 ELthenEq. Formula6 ::= Formula6 "<=" Formula7 ;

18 EGthenEq. Formula6 ::= Formula6 ">=" Formula7 ;

19

20 SBelong. Formula7 ::= Formula8 "in" Formula8 ;

21 SNotBelong. Formula7 ::= Formula8 "!in" Formula8 ;

22 SSubsetEq. Formula7 ::= Formula8 "sube" Formula8 ;

23 SNotSubsetEq. Formula7 ::= Formula8 "!sube" Formula8 ;

24 SSubset. Formula7 ::= Formula8 "sub" Formula8 ;

25 SNotSubset. Formula7 ::= Formula8 "!sub" Formula8 ;

26

27 SUnion. Formula8 ::= Formula8 "uu" Formula9 ;

28 SIntersec. Formula8 ::= Formula8 "nn" Formula9 ;

29

30 EPlus. Formula9 ::= Formula9 "+" Formula10 ;

31 EMinus. Formula9 ::= Formula9 "-" Formula10 ;

32

33 ETimes. Formula10 ::= Formula10 "*" Formula11 ;

34 EDiv. Formula10 ::= Formula10 "/" Formula11 ;

35 EMod. Formula10 ::= Formula10 "%" Formula11 ;

36

37 EPower. Formula11 ::= Formula11 "^" Formula12 ;

38

39 EFun. Formula12 ::= Ident "(" [Formula] ")" ;

40 EFun1. Formula12 ::= Ident "(" "[" [Formula] "]" "," "[" [Formula] "]" ")" ;

41

42 LTrue. Formula13 ::= "true" ;

43 LFalse. Formula13 ::= "false" ;

44 LNot. Formula13 ::= "not" Formula13 ;

45 Var. Formula13 ::= Ident ;

46 NegVar. Formula13 ::= "(" "-" Ident ")";

47 EInt. Formula13 ::= Integer ;

48 EDec. Formula13 ::= Double ;

49 ENegInt. Formula13 ::= "(" "-" Integer ")" ;

50 ENegDec. Formula13 ::= "(" "-" Double ")" ;

Figure 6.2: Labelled BNF grammar for symbolic mathematics.
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on page 182). However, as a worst case, if some of such ill-formed formulas remain

undetected by semantic check, they will surely be detected at the proof checking stage.

As we saw in §3.3.1.2 on page 41, conventions are heavily used in symbolic mathe-

matics. The most prominent ones are the notational collision and precedence.

The most evident form of notational collision occurs when we omit an operator as a

convention (as we do in case of multiplication) and when we use the same operator for

different operations (as we do for “=”, which according to the context could represent

“equality” or an “assignment”). Therefore, we use following conventions:

1. “∗” for multiplication, e.g. x ∗ y.

2. “=” for equality, e.g. x = x ∗ y, x = y + 1, etc.

3. “:=” for assignment, e.g. x := y = 3 (boolean), x := y2/33 + 3 ∗ 2, etc.

As regards the precedence, it is not possible to define the precedence globally. There-

fore we only support the precedence legal for number theory, and somewhat for analysis

and set theory (as evident from figure 6.2). Precedence for other domains is missing and

the user must use brackets.

Finally, the grammar for Exp and Eq covers only those symbols and constructs that we

have encountered so far in the parsed example set (Appendix A on page 239). However,

if a symbol or notation is not supported by the grammar, it could be written using the

syntax of the function, allowed by CLM. For instance, the absolute value of a variable x

could be written as abs(x), x + y could be written as plus(x, y), etc. However, there will

be certain limitations. Most of the semantic procedures described in Chapter 8 on page

179 (such as semantics checks, context building, anaphoric resolution) will not work for

such notations.

Before we proceed to the next section, we must describe another limitation. We

cannot differentiate the same operator which may have different semantic meaning. For

instance, the operator “+” in “x + y for numbers” and “A + B for sets” (a notation for

disjoint union), are treated as “plus_symbol(x, y)” and “plus_symbol(A, B)” respec-

tively. The function “plus_symbol” is syntactic rather semantic, which means that, we

postpone its semantic analysis3 until we type-check its MathAbs in future.

6.2.1 Symbolic Mathematics in GF

In contrast to symbolic mathematics in LBNF, the grammar of symbolic mathematics

in GF is treated as a string. This string is parsed by the BNF tool separately. We start

by describing the grammar implementation of symbolic expressions: We define category

Exp for it (line 1 below), which simply takes a string and return Exp (line 2 below):

1 cat Exp ;

2 fun MkExp : String -> Exp ;

In its concrete syntax shown below, the first line defines the linearization of category

Exp as a record containing a variable s of type string (i.e. s : Str). In the second line,

we define the linearization of function MkExp. It takes a variable exp of type String and

returns a record for Exp which is ({s : Str}) . We select the string value of exp with

3Which could be “plus(x, y)” and “disjoint_union(A, B)” respectively.
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(exp.s) and concatenate it with quotes ("‘") using operator (++), to fill this record.

Note that s on line 1 and s on line 2 after ({) are the same; In line 1, we assign it a

type and later on line 2, we assign it a value of that type.

1 lincat Exp = {s : Str} ;

2 lin MkExp exp = {s = "‘" ++ exp.s ++ "‘" } ;

A List of Symbolic Expressions For instance, “a, b and c” in a statement such as: “we

suppose that a, b and c are positive integers”. To define it, we have to treat the following

three cases:

1. When there is only one element in the list, such as ‘x’, ‘x + y’, ‘x ∗ y + x’, etc.

2. When there are two elements separated by a conjunction4, such as ‘x and y’, ‘x+y

and y + z’, etc.

3. When there are more than two elements, such as: “x, y
︸︷︷︸

and z
︸︷︷︸

”,

“x1, x2, x3, x4
︸ ︷︷ ︸

and x5
︸︷︷︸

”, etc. From these two examples, we can separate the

list in two parts. The first part contains all the elements which are separated by

comma ‘,’ (i.e. the whole list except the last element). The second part contains

the last element which is attached to the rest of the list with a conjunction (‘and’).

Note that the conventional and usual list in the functional programming languages,

does capture this richness. For instance, using [Exp], we can produce one of the following

two patterns, but cannot combine them together:

• a, b, c.

• a and b and c.

GF overcomes it with special list formed in the GF resource grammar library (RGL)

[Ranta 2009a] using discontinuous constituents. For instance, among others RGL pro-

vides [AP] and [NP] for the lists of adjectival phrases and noun phrases respectively.

Like others, the list [NP] is rather a shortcut for defining a category ListNP, and at

least two functions BaseNP and ConsNP.

At the time of implementing lists for CLM, we were unaware of these lists provided

by RGL. Also our implementation for such lists is different than RGL because we do

not use discontinuous constituents. We now define our implementation for the list of

expressions below.

In GF, we can define our required list category (Exps) with the help of another

category (PExps) as defined in the first line of the following abstract syntax. The

category PExps stands for a partial or an intermediate list of expressions. The function

BaseExps on line 5, covers the first case shown above (bullet 1). It takes an expression

and makes it a list (Exps).

In contrast, the functions BasePExp and ConsExps cover the second case (bullet

2). First, BasePExp (which is the base case of an intermediate list) takes two Exp as

4We have restricted Exps to contain only a conjunction. A disjunction (‘or’) may occur in some other

lists.
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parameter and returns an intermediate list PExps. In line 6, this intermediate list is

then passed to function ConsExps, which returns the list Exps.

Finally, the functions ConsPExps and ConsExps cover the third case (bullet 3). First,

ConsPExps takes an expression and a list of intermediate expressions (PExps). It is then

given to ConsExps which returns the list Exps.

1 cat PExps ; Exps ;

2 fun BasePExps : Exp -> Exp -> PExps ;

3 ConsPExps : Exp -> PExps -> PExps ;

4

5 BaseExps : Exp -> Exps ;

6 ConsExps : PExps -> Exps ;

Here is the corresponding concrete syntax. Note that we can easily refactor it to

save space and share code. However, the purpose for the moment is to describe the code

in simplicity not compactly (But see refactoring in action on page 120).

1 lincat PExps = {s : Str } ;

2 Exps = {s : Str ; n : Number } ;

3 lin BasePExps x y = {s = x.s ++ "and" ++ y.s } ;

4 ConsPExps x xs = {s = x.s ++ "," ++ xs.s } ;

5

6 BaseExps x = {s = x.s ; n = Sg } ;

7 ConsExps xs = {s = xs.s ; n = Pl } ;

8

9 param Number = Sg | Pl ;

The second line describes the linearization of list Exps as a record having two values:

s of type string (s : Str) and n of type number (n : Number). The Number defined

on line 9 is an algebraic type. It has two constructors: Sg for singular and Pl for

plural5. The string s contains the textual form of the expression and the number n

contains information regarding its number (i.e. whether it is singular or plural).

The first line describes the linearization of the partial list PExps. It is a record

having one string value. Unlike Exps, the type Number is not needed here because PExps

is always plural.

The Equation and its List We define symbolic equation Eq exactly the same way as we

define Exp. However the list Eqs is somewhat different than Exps. In the list Exps, only

conjunction is allowed between elements, as shown below:

“x, y and z”, “x + 2, x + y and z”, etc.

But in the list Eqs, both conjunction and disjunction are allowed between elements,

such as:

“x + y = 3, y > x and x + y < z”,

“x + y = 3, y > x or x + y < z”, etc.

5In GF, param is a keyword for the algebraic types.
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The abstract syntax of Eqs is easily constructed from the abstract syntax of the list

Exps. First, we have to rename the function BasePExps with ConjPEqs, and then add

a new (but) similar function DisjPEqs (for disjunction). Finally, we have to replace

string “Exp” with “Eq” everywhere.

1 cat PEqs ; Eqs ;

2 fun ConjPEqs : Eq -> Eq -> PEqs ;

3 DisjPEqs : Eq -> Eq -> PEqs ;

4 ConsPEqs : Eq -> PEqs -> PEqs ;

5

6 BaseEqs : Eq -> Eqs ;

7 ConsEqs : PEqs -> Eqs ;

Its corresponding concrete syntax is rather straightforward:

1 lincat PEqs = {s : Str } ;

2 Eqs = {s : Str ; n : Number } ;

3

4 lin ConjPEqs x y = {s = x.s ++ "and" ++ y.s } ;

5 DisjPEqs x y = {s = x.s ++ "or" ++ y.s } ;

6 ConsPEqs x xs = {s = x.s ++ "," ++ xs.s } ;

7

8 BaseEqs x = {s = x.s ; n = Sg } ;

9 ConsEqs xs = {s = xs.s ; n = Pl } ;

Note that we omit the abstract syntax defining Eq, because of its similarity with

Exp). However, if Exp and Eq are exactly the same then why can’t we simply use the

category Exp for the equation also, especially when they are simply strings in GF? The

reason is as followed:

Recall that the 〈Formula 〉 in LBNF consists of the symbolic expression Exp, the

equation Eq and miscellaneous symbolic formulas. Having separate categories for ex-

pressions and equations in GF and using them in other GF rules for CLM, we record

these category slots and apply semantic checks to enforce, let us say an expression for

category Exp and equation for category Eq.

6.3 Grammar Implementation for Textual Mathematics

6.3.1 A Few Low Level Constructs

6.3.1.1 Anaphoric Pronoun

Anaphoric Pronoun is (‘it’ | ‘they’). In the abstract syntax, we define category Pron

and functions It and They as shown below:

1 cat Pron ;

2 fun It : Pron ;

3 fun They : Pron ;

In concrete syntax, Pron is a record, having the field s of type string and the field

n of type number. Further, we define the linearization of its functions and mention the

fact that It is singular and They is plural, to enable number agreement later.
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1 lincat Pron = {s : Str ; n : Number } ;

2 lin It = {s = "it" ; n = Sg} ;

3 lin They = {s = "they" ; n = Pl} ;

6.3.1.2 Subject

Subject is (Exps | Pron). The abstract is define as shown below:

1 cat Subject ;

2 fun MkExpsSubj : Exps -> Subject ;

3 MkPronSubj : Pron -> Subject ;

In the corresponding concrete syntax, we only need to up-cast these categories to

category Subject.

1 lincat Subject = {s : Str ; n : Number} ;

2 lin MkExpsSubj exps = exps ;

3 MkPronSubj pron = pron ;

As we can see, the category Subject is a nominal group (Noun Phrase), in which

we currently support nominatives only.

Note that, for the moment, only symbolic expressions and equations are supported

for object position. Anyway, in modern mathematics, natural language objects are not

used frequently. Nevertheless, in future, we must support them. It is because, in general,

natural language is a huge collection of less frequently used constructs. If we do not

support them, we end up having insufficient coverage.

A good starting point for such subjects and objects could be the constructions used

in the example below:

The conjunction of A and B implies their disjunction.

The conjunction of two propositions implies their disjunction.

...

So when we support such constructs mutually shared by subjects and objects, it

might be a good idea to give the current category Subject some other name (May be

NominalGroup having a field such as c:Case in its record with value c = Nominative).

6.3.1.3 Demonstrative Pronoun

Demonstrative Pronoun is (‘this’ Typ | ‘these’ Typ).

(Note that Type is a GF keyword. Therefore for the category for types, we use the

name Typ. It could be ‘integer(s)’, ‘number(s)’, ‘set(s)’, etc, defined on page 117). A

few examples of demonstrative pronouns could be:

“this integer”, “this number”, “these integers”, “these numbers”, etc.

In the abstract syntax, we define category DemPron and functions ThisType and

TheseType. These functions takes Typ as parameter, as shown below:
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1 cat DemPron ;

2 fun ThisType : Typ -> DemPron ;

3 fun TheseType : Typ -> DemPron ;

In concrete syntax, similar to Pron, DemPron is also a record, having the field s

of type string and the field n of type number. Further, we define the linearization of

its functions by combining string (‘this’ | ‘these’) with Typ, and mention the fact that

ThisType is singular and TheseType is plural, to enable the number agreement later.

1 lincat DemPron = {s : Str ; n : Number} ;

2 lin ThisType t = {s = "this" ++ t.s!Sg ; n = Sg} ;

3 lin TheseType t = {s = "these" ++ t.s!Pl ; n = Pl} ;

6.3.1.4 Quantity

We have defined two different kinds of quantities. As we see below, there is a little

difference between them. But it is important to make this distinction according to the

needs of the statements in which we use them.

• Quantity Quant is [(‘a’/‘an’ | ‘two’ | ‘three’ | . . . | ‘ten’)]. Note the brackets [ ... ]

around it. It means Quant can be empty.

• Quantity Quant1 is (‘no’ | ‘a’/‘an’/‘one’ | ‘two’ | ‘three’ | . . . | ‘ten’ | ‘some’).

Because it contains a value ‘no’, Quant1 cannot be used in negative statements.

Also it cannot be empty. Finally, unlike Quant, where we have two values ‘a’ or

‘an‘ for a singular, we may have three string values: ‘a’, ‘an’, or ‘one’ in Quant1.

Due to the similarities between these quantities, it is desirable to share the GF code

between them. So, we now define the common part of these two quantities, which both

will share:

1 cat QuantC ;

2 fun Two, Three, Four, Five, Six, ... , Ten, Some: QuantC ;

The category Quant1 requires an inherent parameter Number for the agreement.

Therefore, in the corresponding concrete syntax, the linearization of QuantC is a record

with fields: string and number, as shown in line 1 below:

1 lincat QuantC = {s : Str ; n : Number } ;

2 lin Two = {s = "two" ; n = Pl };

3 Three = {s = "three" ; n = Pl };

4 ...

5 Ten = {s = "ten" ; n = Pl };

6 Some = {s = "some" ; n = Pl };

The Quantity Quant, is the mostly used quantity and we define the extra functions

required for it, in the abstract and concrete syntax below:
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1 cat Quant ;

2 fun UseQuantC : QuantC -> Quant ;

3 One, Empty : Quant ;

4

5 lincat Quant = {s : Str ; n : Number };

6 lin UseQuantC qc = qc ; // up-cast

7 One = {s = artIndef ; n = Sg } ;

8 Empty = {s = "" ; n = Sg } ; // singular is meaningless here. Just filling the slot

It is used in statements such as following:

Let x and y be positive integers. (the function Empty is used)

Let x and y be two positive integers. (the function Two is used)

Let x be a positive integer. (the function One is used)

We use a general function artIndef in the linearization of One on line 7 (above). It

is defined in the GF RGL [Ranta 2009a], as shown below:

oper artIndef : Str = pre {"a"; "an"/strs {"a"; "e"; "i"; "o"}} ;

It is defined as an operation (oper). The oper is similar to lin (i.e. the linearization

of a function fun) but it can be used to define general functions that may be used in

other functions.

The oper artIndef makes an agreement for an indefinite article with the first letter

of the next word. It selects the article ‘an’ if it is followed by a vowel. Otherwise, it

selects the article ‘a’. For instance, “an even number”, “a positive number”, etc.

The Quantity Quant1 We define quantity Quant1 for AdjunctWith (cf. §6.3.2 on page

134) and for relational statements (cf. §6.3.4 on page 140).

Again, it contains a construct for value ‘no’, therefore, it cannot be used in negative

statements. Also, unlike Quant, it does not have a function Empty.

Note that the number feature we have saved will be used later to make number

agreement. For instance, when forming adjuncts such as “with no common factor”,

“with two common factors”, etc, the number feature of quantity (e.g. ‘no’, ‘two’) must

be in agreement with a relational function6 (e.g. ‘factor’ and ‘factors’) respectively.

We now give the abstract and concrete syntax below:

1 cat Quant1;

2 fun UseQuantC1 : QuantC -> Quant1 ;

3 No, OneQ1 : Quant1 ;

4

5 lincat Quant1 = {s : Str ; n : Number } ;

6 lin UseQuantC1 qc = qc ; // up-cast

7 No = {s = "no" ; n = Sg } ;

8 OneQ1 = {s = variants {artIndef ; "one"} ; n = Sg };

The variants construct of GF on line 8, expresses free variation. It allows function

OneQ1 to have two possible string values: (‘one’ | ‘a’ or ‘an’ depending on the first

character of the next word).

6This term is used as a category (§6.3.1.8 on page 123). It has nothing in common with ‘relational

functions’ of mathematics (which can be written as the ratio of two polynomial functions).
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Finally, note that for the functions fun in abstract syntax, it is not permitted to share

them between different categories. So we cannot use the same function, let us say, One

in place of OneQ1 (and add the missing information such as “one”).

Once the categories and functions are defined in the abstract syntax, we must define

their corresponding linearizations as well (with lincat and lin). For instance, we must

define linearization (lin) for One and OneQ1 separately. However, what we can do is to

define the shared oper functions for common functionality which could be then shared

by these functions. For instance, we have used the same oper (artIndef) in functions

One and OneQ1.

Note that the lincate type of categories QuantC, Quant and Quant1 are same. So

we can define a shared oper for them:

lincat QuantC, Quant, Quant1 = rec_quant ;

oper rec_quant : Type = {s : Str ; n : Number} ;

6.3.1.5 Type

The name Type is a GF keyword. Therefore, we use another name Typ for types.

Typ is (Prop | Set | Integer | Number | Tuple | Rational | Prime | . . . ). We define the

following abstract syntax for it:

1 cat Typ ;

2 fun Prime, Rational, Irrational, Number, Integer, Prop, Set : Typ ;

In the concrete syntax, Typ is an infection table (a finite function) from number to string

(Number => Str), labeled as s, having one string value for each (singular and plural)7.

In lines 2–6, we define the linearization of function Prime. We save two variants for

singular (‘prime’ and ‘prime number’) and two for plural (‘primes’ and ‘prime numbers’).

We add brackets ([ ]) around those token which contain spaces (cf. line 3 and 4 below).

1 lincat Typ = {s : Number => Str } ;

2 lin Prime = {s = table {

3 Sg => variants{"prime" ; ["prime number"] } ;

4 Pl => variants{"primes"; ["prime numbers"]}

5 }

6 };

7

8 Integer = {s = table {

9 Sg => "integer" ;

10 Pl => "integers"

11 }

12 };

13 ...

6.3.1.6 Property

Property is (Positive | Even | Odd | Finite | Coprime | Equal | Arbitrary | . . . ).

7We may also say that in the linearization of Typ, it is a record containing a variable s which has a

type table from number to string.
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We currently do not make any distinction between one-place and two-place properties

in the GF grammar for CLM. These properties usually correspond to distributive and

collective reading respectively. It is the host system MathNat which makes distinction

between them and accordingly treat them. It is further described in §6.3.2.1 on page

129.

We now give a reason for not making any distinction between one-place and two-

place properties in the GF grammar for CLM. The properties which are considered

two-place or collective, can also be used as one-place properties (but remains collective).

For instance, consider the collective property ‘equal’, in the following example:

1. Suppose that x, y and z are positive, even and equal.

Also, the above three properties are formed by a list. If we define them separately as

one-place and two-place properties, then how will we combine them in a list. Therefore,

we define all the properties as ‘one-place’.

Also note the properties ‘distinct’ and ‘coprime’ in the following two examples:

2. Suppose that x, y and z are positive and coprime.

3. Suppose that x, y and z are positive, distinct and coprime.

Both are collective yet inherently ‘one-place’ properties. For instance, we cannot say

“x is coprime to y” or “x is distinct to y” as we can say “x is equal to y”.

Also, in the second example when we say that ‘x, y and z are coprime’, it is clear

that these variables are pair-wise prime. But in the the third example, when we say that

‘x, y and z are distinct’, it is ambiguous. Are these variables pair-wise distinct or just

some of them are distinct? Currently we neglect such ambiguity and always translate

such properties in MathAbs as 2-arity predicates. As a conclusion, properties require a

deeper analysis and a better classification. It is yet to be done for CLM.

For the moment, defining properties in GF is quite straightforward as shown in the

abstract and concrete syntax below, followed by explanation:

cat Property ;

fun Positive, Negative, Arbitrary, Even, Odd, Finite, Equal, Coprime : Property ;

1 lincat Property = {s : Str } ;

2 lin Positive = {s = variants {["non zero"]; "non-zero"; "positive"} } ;

3 Negative = {s = "negative" } ;

4 Arbitrary = {s = "arbitrary" } ;

5 ...

The linearization of Positive on line 2 above can have three string variations: (‘non

zero’ | ‘non-zero’ | ‘positive’). Also note the function Arbitrary. It is used in statements

such as:

Let x be an arbitrary positive integer.

Syntactically the word “arbitrary” is an adjective similar to the linearization of other

functions (such as “positive”, “negative”, “even”, etc). However, semantically its role is

different as discussed in §6.3.2.1 on page 125.
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6.3.1.7 List of Properties

As per requirements of the high level constructs, we need three kinds of lists for

Property: Properties1, Properties2 and EProperties.

The list Properties1 is formed by the pattern: “[P1 P2 ... Pn]”, where P is a property.

These properties are separated by space. The brackets [ ] shows that this list can be

empty. Some of its examples are shown below, in which Properties1 are bold-faced:

“Let x be a positive even integer.”,

“Let x be a positive odd prime number.”,

“Let x be a number.” (no property), etc.

The list Properties2 is formed by the pattern: “P1, P2, ..., (and | or) Pn”. As we

can see the list is separated by comma and the words “and | or”. This list cannot be

empty. Some examples of this list is shown below, in which they are bold-faced:

“We assume that x is positive, even (and | or) odd.”,

“x is positive (and | or) negative.”, etc.

The list EProperties is formed by the pattern: “either P1, P2, ..., or Pn”. It also

cannot be empty. For instance,

“We assume that either x is positive, even or odd.”,

“Either x is positive or negative.”, etc.

First, we define the list Properties1. In GF, it is straightforward to define, as shown

in the abstract syntax below:

1 cat Properties1 ;

2 fun BaseProperties1 : Properties1 ;

3 ConsProperties1 : Property -> Properties1 -> Properties1 ;

And the concrete syntax:

1 lincat Properties1 = {s = Str } ;

2 lin BaseProperties1 = {s = "" } ;

3 ConsProperties1 p ps = {s = p.s ++ ps.s } ;

The BaseProperty takes an empty string and forms Properties1. In contrast the

ConsProperty simply joins a property with the list of property (Properties1), without

adding any other string, forming a list of the form, let us say, ‘positive even coprime’,

etc.

Note that, GF list such as [Property] is a short hand for the above category

Properties1. It has only a very slight advantage over this one: we can skip the func-

tions on lines 2–3 from the abstract syntax. But anyway we would have to provide their

linearizations in the concrete syntax as we do on line 2–3.
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Second, the list Properties2 is very similar to the list Exps in its structure (§6.2.1

on page 111). Therefore, due to the similarity between Exps, Properties2 and

EProperties in structure, we now generalize such lists. It would be the parametric

list similar to [Exp] and [Property] but modified to our requirements.

However, the abstract syntax for such categories remains unchanged. It is because,

we need these categories and functions to recognize, let us say, conjunction from dis-

junction for the denotational semantics of lists in the host system MathNat. Also,

intermediate categories such as PProperties, PEProperties and PExps has a varying

number of functions. If we make a common category for them. We’ll produce ill-formed

lists. Therefore, we cannot remove them.

The abstract syntax for Properties2 is shown below. It is similar to the list Exps,

with an additional function for disjunctions in line 3:

1 cat Properties ; PProperties ;

2 fun BaseConjPProperties : Property -> Property -> PProperties ;

3 BaseDisjPProperties : Property -> Property -> PProperties ;

4 ConsPProperties : Property -> PProperties -> PProperties ;

5

6 BaseProperties2 : Property -> Properties2 ;

7 ConsProperties2 : PProperties -> Properties2 ;

Similar to Exps and PExps, the linearizations of Properties2 and PProperties in

the concrete syntax should be define like this:

lincat Properties2 = {s : Str ; n : Number} ;

PProperties = {s : Str} ;

The linearization of Properties2 becomes the following, if we apply two polymorphic

records as an oper, general to all lists.

lincat Properties2 = List ;

oper List : Type = {s : Str ; n : Number} ;

Elem : Type = {s : Str} ;

We now define three low level functions (i.e. oper), followed by some explanation:

1 oper oneElemList : Number -> Elem -> List = \n,x ->

2 {s = x.s ; n = n } ;

3

4 twoElemList : Str -> Elem -> Elem -> List = \s,x,y ->

5 {s = x.s ++ s ++ y.s } ;

6

7 consList : Str -> Elem -> List -> List = \s,x,xs ->

8 {s = x.s ++ s ++ xs.s } ;

The function oneElemList takes Number and Elem (i.e. Number -> Elem on line 1

above) and returns the oper record List. After the equal sign (=) in line 1, we assign
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two variable names n and x to the Number and Elem mentioned above. These variables

are assigned to the number and string fields of the List record respectively.

In contrast, the function twoElemList takes a string and two elements

(Str -> Elem -> Elem) and returns the record {s:Str}.

The functions belonging to the list Properties2 and PProperties should be defined

like this:

lin BaseConjPProperties x y = {s = x.s ++ "and" ++ y.s } ;

BaseDisjPProperties x y = {s = x.s ++ "or" ++ y.s } ;

ConsPProperties p ps = {s = p.s ++ "," ++ ps.s} ;

BaseProperties2 x = {s = x.s ; n = Sg} ;

ConsProperties2 xs = {s = xs.s ; n = Pl} ;

It becomes following, with newly defined oper functions:

lin BaseConjPProperties x y = twoElemList "and" x y ;

BaseDisjPProperties x y = twoElemList "or" x y ;

ConsPProperties p ps = consList "," p ps ;

BaseProperties2 x = oneElemList Sg x ;

ConsProperties2 xs = oneElemList Pl xs ;

Or even more concise using partial application:

1 lin BaseConjPProperties = twoElemList "and" ;

2 BaseDisjPProperties = twoElemList "or" ;

3 ....

Third, we form the list EProperties. Recall that it must have two elements at mini-

mum and it allows to write the following pattern:

“either Property1, Property2, or Propertyn”.

Unlike Properties1 and Properties2 which are used in both positive and negative

statements (cf. high level constructs on page 124), we only support the list EProperties

for the positive statements. As far as our observation, its negation is not commonly found

in the mathematical texts. Therefore, it not worth the trouble to define the following

variations of EProperties for the negative statements:

x is either not even or odd. (negation is only applied on property ‘even’)

x is neither even nor odd. (both properties does not hold for x)

It is not the case that either x is even or odd.

(the negation of whole the statement)

Now, at minimum, we can build EProperties in two ways:

1. We form it by reusing PProperties in a function MkEProperties:

cat EProperties ;

fun MkEProperties : PProperties -> EProperties ;
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Because it takes PProperties as a parameter, only the constructions having fol-

lowing patterns are possible.

“Property1 (and | or) Property2”,

“Property1, Property2, . . . , (and | or) Propertyn”.

It means that the list cannot have a single element and it also cannot be empty;

we need both conditions for EProperties.

In its concrete syntax below, we define EProperties similar to other lists

for Property, as shown on line 1 below. In the linearization of function

MkEProperties, we simply add a string “either” on the head of the list, as shown

on line 2. The second part of this record (n = Number) gets the plural value,

because this list cannot have a single element or empty.

1 lincat EProperties = List ;

2 lin MkEProperties ps = oneElemList ("either" ++ ps.s) Pl ;

However, one problem still remains. It allows to write incorrect statements of the

form given below:

“*either Property1 and Property2”,

“*either Property1, Property2, . . . , and Propertyn”.

We have to reject them with the semantic checks (cf. §8.2). We use this solution in
the current implementation to reuse the code of the category PProperties, both

in GF and in the host system MathNat (the code written for the denotational

semantics).

2. However, there is another possibility. It is cleaner in a sense that we do not have

to apply semantic checks in the host system MathNat for it. But we need to do

a bit more work both in GF and in the host system MathNat (i.e. translation for

denotational semantics).

Similar to the category Properties2, we could create a new category EProperties

in the following way. As usual, PEProperties is an intermediate list. Base and

Cons functions of PEProperties (lines 2–3, below), makes the following two pat-

terns:

“Property1 or Property2”

“Property1, Property2, or Propertyn”

It is the function MkEProperties which adds the clue word ‘either’ at the head of

these patterns.

cat PEProperties ; EProperties ;

fun BasePEProperties : Property -> Property -> PEProperties ;

ConsPEProperties : Property -> EProperties -> PEProperties ;

MkEProperties : PEProperties -> EProperties ;
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6.3.1.8 Relational Function

Relational function8 is (Element | Factor | Square | Multiple | Divisor | . . . ). Due

to the morphological and lexical differences between them, we divide it in the following

three classes:

1. Relational function (Rel1) such as “square” or “factor”. Syntactically, these rela-

tional functions belong to the class of one-place predicates (or unary function).

For instance, we can say “squaring the equation” but cannot say “squaring the

equation by 2”. Similarly, we can say “factoring y” but cannot say “factoring y by

2”.

2. Relation function (Rel2) such as “multiple”, “divisor”. Syntactically, these rela-

tional functions belong to the class of two-place predicates (or binary function).

For instance, we can say “multiplying the equation by 2”, etc.

3. Relation function (or predicate) (Rel3) such as “element”. It is different than the

above relational functions in a sense that we cannot say “elementing” as we do

for others (“squaring”, “multiplying”, etc). For instance, we have to say “taking

element from both sides of the equation”.

These are mostly used in Operation (cf. §6.3.9.1 on page 148). In the abstract syntax,

we define three categories corresponding to the above three classes:

1 cat Rel1 ; Rel2 ; Rel3 ;

2 fun Factor, Square, ... : Rel1 ;

3 Multiple, Divisor, ... : Rel2 ;

4 Element, ... : Rel3 ;

In concrete syntax, Rel1 and Rel2 are records, having a table from number to string

(Number => Str) and a string field for the participle (part : Str) (such as “multi-

pling”, “squaring”, etc). In contrast, Rel3 does not have the string participle (“taking

element” instead of “elementing”).

In the code below, we first define oper structure rel for Rel3 (on lines 1 and 5).

Then we reuse it and extend its structure with participle (on line 2 using **) for Rel1

and Rel2 using the oper structure rel12 (line 4).

1 oper rel : Type = {s : Number => Str } ;

2 rel12 : Type = rel ** {part : Str } ;

3

4 lincat Rel1, Rel2 = rel12 ;

5 Rel3 = rel ;

For the linearization of functions, we define below two reusable oper functions. Note

that the first function is then also used in the second.

1 oper mkNumStrRec : Str -> Str -> rel = \sg,pl ->

2 {s = table {

8This term is used as a category (§6.3.1.8 on page 123). It has nothing in common with ‘relational

functions’ of mathematics (which can be written as the ratio of two polynomial functions).
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3 Sg => sg ;

4 Pl => pl

5 }

6 } ;

7 mkRel12 : Str -> Str -> Str -> rel12 = \sg,pl,part ->

8 {s = (mkNumStrRec sg pl).s ; part = part } ;

And use them as shown below:

1 lin Factor = mkRel12 "factor" "factors" "factoring" ;

2 ...

3 Divisor = mkRel12 "divisor" "divisors" "dividing" ;

4 ...

5 Element = mkNumStrRec "element" "elements" ;

6 ...

We can only find a single function for Rel3. However it seems reasonable to define it

separately with a hope to find other candidates in future. These categories also stresses

the irregularities of the natural languages as well as the controlled or domain specific

languages.

However, sometimes we do not need the above mentioned distinction between these

relational functions. So for that we combine them in a category Relation as shown in

the abstract syntax below.

1 cat Relation ;

2 fun MkRel1 : Rel1 -> Relation ;

3 MkRel2 : Rel2 -> Relation ;

4 MkRel3 : Rel3 -> Relation ;

In the concrete syntax shown below, we do not store the field for the string participle

for the linearization of Relation and reuse oper structure rel. In the linearization of

function MkRel1 and MkRel2, we simply reuse the oper function mkNumStrRec. As

its parameters we select the needed string value from the table with selection operator

(!). For instance, on lines 2–3 below, we retrieve the string value associated as singular

from the relational function table (r.s!Sg). In the linearization of the function MkRel3,

because the structure of record field of Rel3 and Relation is same, we simply pass the

whole record field as it is.

1 lincat Relation = rel ;

2 lin MkRel1 r = mkNumStrRec r.s!Sg r.s!Pl ;

3 MkRel2 r = mkNumStrRec r.s!Sg r.s!Pl ;

4 MkRel3 r = r ;

High Level Constructs

6.3.2 Propositions

We now proceed to build propositions (i.e. category Proposition) which we support for

positive and negative simple statements. These propositions are used to form theorem

statements, proof statements, axiom statements and definition statements, with minor

modifications. We define below several rules that construct the proposition.
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6.3.2.1 The First Rule for Propositions: Subjects, Types and Properties

It is formed by Subject, Quant9, Properties1 and Typ.

A few examples are given below. Note that the second example in each line below is not

valid alone. These must be prefixed by “let” to be linguistically as well as mathematically

correct10. Also note that the negative statements are not supported with “let”. So the

statement with * in examples below is rejected as semantic check.

“x is a positive even integer” or “x be a positive even integer”,

“it is an arbitrary positive integer” or “it be an arbitrary positive integer”,

“x and y are two integers” or “x and y be two integers”,

“
√

2 is not an integer” or “*
√

2 be not an integer (not supported)”, etc.

Its abstract syntax given below is self explanatory:

1 cat Proposition ;

2 fun MkPosProp1 : Subject -> Quant -> Properties1 -> Typ -> Proposition ;

In its concrete syntax, proposition is defined as a table of string values which depends

on the type of the statement (StmntType => Str), as shown below on line 1. The

StmntType differentiate the statement containing “let” and the rest, as defined on line

2.

In the linearization of MkPosProp1 on lines 4–9 below, we build a table containing

two string values for a proposition, one for the ‘let’ statement (LetStmnt) and the other

for the rest of statements. We simply do not want to repeat ourselves on line 5–6, and

therefore, we use variable obj. It is defined on line 8 and it simply combines quantity,

scope, list of properties and type. Furthermore, we make the number agreement between

subject and type using selection operator (!) as (tp.s!sbj.n).

In line 6, we use wild card (_), that matches anything (although there remains only

one case. i.e. RestStmnt). In this table field, we combine the string values of subject,

an oper function be and object obj. For the function be (which is defined on line 10–11,

using another function defined on page 123), we select its string value and make it in

agreement with the number of the subject using (be.s!sbj.n).

1 lincat Proposition = {s : StmntType => Str} ;

2 param StmntType = LetStmnt | RestStmnt ;

3

4 lin MkPosProp1 sbj qnt ps tp = {s = table {

5 LetStmnt => sbj.s ++ be.inf ++ obj ;

6 _ => sbj.s ++ be.s!sbj.n ++ obj

7 }

8 where {obj = qnt.s ++ ps.s ++ tp.s!sbj.n}

9 };

10 oper be : {s : Number => Str ; inf : Str } =

11 {s = (mkNumStrRec "is" "are").s ; inf = "be"} ;

As stated in §2.5, we do not reject ill-formed statements of the following form in GF.

Instead we reject them in the host system MathNat (cf. §8.2.1 on page 184).

9As per definition of Quant in §6.3.1.4 on page 115, strings: “no”, “few” and “all” are not allowed.
10An example of ‘let’ statement would be “let x be an even integer”.
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*Assume that x and y are three positive numbers.

One point worth emphasizing is: it is indeed possible to apply such constraints in

GF, but we prefer not to do so. The reason is already explained in the introduction

section of Chapter §5.2 on page 93. That is: we want to return a personalized error

messages.

Furthermore, there is a function Empty that belongs to the category Quant (cf.

§6.3.1.4 on page 115). It allows to write valid statements such as:

Let x and y be positive numbers.

But, as shown below, we can also write ill-formed statements in which an indefinite

article (a | an) is missing.

*Let x be positive number.

This could be seen as the problem of agreement between Subj and Quant. (These

ill-formed statements have the required agreement between subject and type). A few

more examples:

*Assume that it is three positive number.

*Assume that they are a positive numbers.

*Assume that x and y are a positive numbers.

The main problem is: any function of category Quant (i.e. One, Two, ..., Empty)

may appear with any function of category Subj (i.e. It, They and Exps). Indeed, we

can define some oper functions which reject such ill-formed sentences. But it would be

rather a bit lengthy, and without proper error messages. Currently, we reject then in

the host system MathNat as a semantic check (cf. §8.2.2 on page 185), which in return

allows to report a better error message.

In future, another possibility to explore would be to define an extra field in the list

Exps, which stores its length:

lincat Exps = {s : Str ; num : Num} ;

This way, the Quant is not a separate argument, but the list Exps ‘remembers’ its

size in the num field. However, it is more difficult to have a precise num for arbitrary size

of lists. Also, it is not clear how we will handle quantities such as ‘no’, ‘some’, etc.

The Role of Quantity and Property Arbitrary in Semantics: Let us name the prop-

erty Arbitrary as Scope. The role of quantity Quant and Scope in the above rule is

somewhat limited. Let us use the following examples to explain it.

Example set 1:

Let x and y be two arbitrary positive integers.

Let x and y be two positive integers.

Let x and y be positive integers.

The MathAbs translation of these three sentences is the same, as shown below:
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let x, y ∈ Z assume positive(x) ∧ positive(y) •

It is translated as a formula in first order logic, as shown below:

∀x, y(in(x,Z) ∧ in(x,Z)
︸ ︷︷ ︸

∧ positive(x)

︸ ︷︷ ︸

∧ positive(y)

︸ ︷︷ ︸

)

The keyword ‘arbitrary’ stresses the fact that x and y are universally quantified.

This intention is successfully conveyed even when the word “arbitrary” is not present

in the second and third sentence. It is because every variable which is not quantified

existentially is in fact, universally quantified (also noted by [Peters & Westerstahl 2006,

p. 34]). Now consider the following sentence:

Let x be an integer. . . . . Assume that x is an arbitrary integer. . . . .

let x : Z •. . . let x : Z •. . .

The variable x is universally quantified with ‘let statement’ first, and then, it is again

universally quantified with the keyword ‘arbitrary’, later in some statement. Note that

we introduce a new x in the second statement which is different from the variable x in the

first sentence. The CLM does not reject such duplication in the current implementation

because MathAbs is not yet proof checked and we let the theorem prover to decide if it

is a mistake or a valid step.

Another point worth mentioning regarding the example set 1 is the use of quantity

Quant in these sentences. For it, we do not need to add a predicate ‘two(x,y)’ in the

MathAbs translation of the above main example. It is because we take care of the

number agreement between the variables and the quantity Quant in the host system

MathNat (§8.2.1 on page 184), before the MathAbs translation phase. Furthermore,

from mathematician’s perspective, such statements are used to describe the variable

having some properties and their types. These are not at all intended for a comparison

between the variables and their quantity. This holds for Scope also. It means that we

do not need predicates such as: “arbitrary(x)”, “arbitrary(y)” (for the first statement

in above example set) in MathAbs.

It is also worth mentioning that property ‘arbitrary’ does not make sense in goal (i.e.

‘prove’ statements) and in deductions (i.e. ‘conclusion’ statements). This observation

is backed by the analysis of various mathematical texts mentioned in Chapter 3. See

§6.3.3.1 for more details.

Returning to our main topic, the grammar rules we have defined so far, only allow to

parse positive statements. To parse the negative statements, we have the following two

options:

1. We could introduce a parameter Polarity with two values: Positive

and Negative. Then we could define Proposition as table of table:

(Polarity => StmntType => Str). But note that the parameter is a low level

construct in GF which is only visible in the concrete syntax and therefore, it will

be lost in the host system MathNat (as we get only the abstract syntax there).

2. To overcome the above shortcoming, we could define Polarity as a category hav-

ing two functions Positive and Negative, and add it to the abstract syntax as

shown below (after renaming the function MkPosProp1 to MkProp1):
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cat Pol ;

fun Pos, Neg : Polarity ;

fun MkProp1 : Subject -> Pol -> Quant -> Properties1 -> Typ -> Proposition ;

The corresponding concrete syntax would be following:

lincat Pol = {s : Str} ;

lin Pos = {s = ""} ;

Neg = {s = "not" } ;

lin MkProp1 sbj pol qnt ps tp = {s = table {

LetStmnt => sbj.s ++ pol.s ++ be.inf ++ obj ;

_ => sbj.s ++ be.s!sbj.n ++ pol.s ++ obj

}

where {obj = qnt.s ++ ps.s ++ tp.s!sbj.n}

};

3. Alternatively, we can add a new function, let us say it MkNegProp1. It must be

similar to its positive twin (i.e. MkPosProp1) at the level of abstract syntax but

slightly different in the concrete syntax, as show below:

fun MkNegProp1 : Subject -> Quant -> Properties1 -> Typ -> Proposition ;

lin MkNegProp1 sbj qnt ps tp = {s = table {

LetStmnt => [] // nothing is produced for ‘let’ when it is negative

_ => sbj.s ++ be.s!sbj.n ++ "not" ++ obj

}

where {obj = qnt.s!sbj.n ++ ps.s ++ tp.s!sbj.n}

};

In our current implementation, we take the third approach with the following mo-
tivation. As we’ll see in §6.3.2 on page 134, we support the attachment of the optional

noun adjunct, only to the positive statements (see examples below). With this approach

it become easier to do so. It is because we can simply add the category for noun adjunct

to the function defined for positive statements (i.e. MkPosProp1) and let the function

MkNegProp1 without it.

But why would we add noun adjunct to the positive statements only? Because the

interpretation of negative statements with noun adjuncts become quite difficult and

unnatural. The main problem is to define the scope of negation and its effect on noun

adjuncts. Here are some example sets with noun adjuncts to demonstrate it (the asterisk

* means that we do not support them):

Let x, y and z be even integers with some common elements.

*Let x, y and z be not even integers with some common elements.

x, y and z are three even integers with some common elements.

*x, y and z are not three even integers with some common elements.
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We can assume that
√

2 and a
b are even where a and b are non-zero integers with

no common factor.

*We can assume that
√

2 and a
b are not even where a and b are non-zero integers

with no common factor.

Interpretation of Negation for Simple Propositions To show how we interpret the

negative propositions, we use the following superficial example and its MathAbs:

Assume that x and y are two arbitrary positive even integers.

let x, y : Z assume (positive(x) ∧ positive(y) ∧ even(x) ∧ even(y))

Now consider its negation:

Assume that x and y are not two arbitrary positive even integers.

With respect to the scope of negation, there are many interpretations possible. How-

ever, as we discuss on page 126, the role of quantity Quant and Scope is somewhat

limited. Therefore, we exclude both from the scope of negation, and it is only applied

on the properties and type. We translate this statement in MathAbs as shown below:

If x, y are already declared before the above example statement:

assume ¬((x, y : Z) ∧ positive(x) ∧ positive(y) ∧ even(x) ∧ even(y))

Otherwise:

let x, y : NoType assume ¬((x, y : Z)∧positive(x)∧positive(y)∧even(x)∧even(y))

Let us consider the same example as goal:

Prove that x and y are two arbitrary positive even integers.

let x, y : NoType show (x, y : Z ∧ positive(x) ∧ positive(y) ∧ even(x) ∧ even(y))

Now its negation and MathAbs (which is straightforward):

Prove that x and y are not two arbitrary positive even integers.

let x, y : NoType show ¬(x, y : Z ∧ positive(x) ∧ positive(y) ∧ even(x) ∧ even(y))

Distributive and Collective Readings: One problem still remains. How are we going to

differentiate between distributive and collective readings? We again have two options:

First option: We do not make any distinction between collective and distributive read-

ings in the syntax. It should be then taken cared in the host system MathNat as a

semantic check §8.2.3 on page 185.

We could effectively make this distinction in GF, but we prefer doing it in the host

system to be able to report a personalized error message in a situation when a singular

subject is given to the collective property (as shown in the following example). Of course,

the error reporting system of GF produces general messages. Whereas, we would like

to have rather personalized error messages at every occasion.

Collective properties being an n-predicate cannot be applied on a single variable (or

pronoun ‘it’), and therefore, we reject such sentences in the host system MathNat. Two

examples of such statement are:
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*Let x be equal.

*Assume that it is equal.

However, the problem with this approach is that we have to tag every property

being distributive or collective manually, in the MathNat code (as shown in §8.2.3 on

page 185). For instance, the property ‘equal’ is hard coded as collective, but ‘even’ as

distributive. We currently support this solution in the implementation.

Second option: We could have followed a convention of considering a property to be

collective by default. In case of a distributive property, a user must mention it with the

keyword ‘each’ as shown below in the example:

Let x, y and z, each be positive.

Here is the shortcoming: it forces user to write “each” every time she encounters a

distributive property.

To implement it in the above rules (cf. MkPosProp1 and MkNegProp1), we would

need a category, let us say it Reading, and two functions defined on it as shown below:

cat Reading ;

fun Distributive : Reading ;

Collective : Reading ;

The linearization of the above rules in the concrete syntax would be as shown bellow.

In it, the third line means that the linearization of function Collective is empty.

lincat Reading = {s : Str};

lin Distributive = {s = [", each"]} ;

Collective = {s = ""} ;

Now both functions (MkPosProp1 and MkNegProp1) would take six categories as

parameters. For instance consider the abstract syntax rule for function MkPosProp1

given bellow:

fun MkPosProp1 : Subject -> Reading -> Quant -> Properties1 -> Typ -> Proposition ;

And the linearization in the concrete syntax:

lin MkPosProp1 sbj reading qnt ps tp = {s = table {

LetStmnt => sbj.s ++ reading.s ++ be.inf ++ obj ;

_ => sbj.s ++ reading.s ++ be.s!sbj.n ++ obj

}

where {obj = qnt.s!sbj.n ++ ps.s ++ tp.s!sbj.n}

};
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6.3.2.2 The Second Rule for Propositions: Subject and Properties

In contrast to the first rule for propositions, we would like to form propositions in

which we define properties on subjects without giving their type. But, Quant is closely

associated with Typ linguistically. So if we omit Typ we must omit Quant also. Therefore,

we form the second rule with Subject and Properties2 (and there is no easy way to

merge it with the first rule for the purpose of good coding practices, other than defining

a new function). For instance,

“x is positive and even” or “x be positive and even”,

“x and y are even or odd” or “x and y be even or odd”,

“x and y are coprime” or “x and y be coprime”,

“they are not equal” or “*they be not equal”, etc.

(*We are aware that it is not common to find such a sentence in textbooks or published material but

we do not reject for the sake of completing this construction. It should not be a problem because

CLM is a controlled language.)

We define two functions: MkPosProp2 for positive propositions and MkNegProp2 for

negative, as shown in the abstract syntax below:

1 fun MkPosProp2 : Subject -> Properties2 -> Proposition ;

2 MkNegProp2 : Subject -> Properties2 -> Proposition ;

Its concrete syntax is also straightforward:

1 lin MkPosProp2 subj ps2 = {s = table {

2 LetStmnt => subj.s ++ be.inf ++ ps2.s ;

3 _ => subj.s ++ be.s!subj.n ++ ps2.s

4 }

5 } ;

6

7 MkNegProp2 subj ps2 = {s = table {

8 LetStmnt => [] // nothing is produced for ‘let’ when it is negative

9 _ => subj.s ++ be.s!subj.n ++ "not" ++ ps2.s

10 }

11 } ;

Interpretation of Negation The negation is applied on all properties as shown in the

MathAbs of this example11:

We conclude that x and y are not positive, even and coprime.

deduce ¬(positive(x) ∧ positive(y) ∧ even(x) ∧ even(y) ∧ coprime(x, y)

6.3.2.3 The Third Rule for Propositions: Subject and Properties for ‘either’

It is very similar to the previous rule (on page 131). It is formed by the Subject and

EProperties. Recall that EProperties cannot have less than two properties, Also

recall that it is only defined for the positive statements (cf. page 121 for reasons). For

instance,

11We assume that x and y are already declared in the text before this statement.
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“x and y are either even, odd or positive” or

“x and y be either even, odd or positive”, etc.

We define a function: MkPosProp3 for positive propositions as shown in the abstract

syntax below:

fun MkPosProp3 : Subject -> EProperties -> Proposition ;

Its corresponding concrete syntax is shown below:

1 lin MkPosProp3 subj ps2 = {s = table {

2 LetStmnt => subj.s ++ be.inf ++ ps2.s ;

3 _ => subj.s ++ be.s!subj.n ++ ps2.s

4 }

5 } ;

6.3.2.4 The Fourth Rule for Propositions: Subject, Relational Function and Expression

We form the fourth rule with Subject, Relation and Exp. For instance,

“x is a divisor of y” or “x be a divisor of y”,

“x is not a multiple of y” or “x be not a multiple of y”,

“x, y and z are elements of x ∗ y ∗ z” or “x, y and z be elements of x ∗ y ∗ z”,

“x is a square of
√

x” or “x be a square of
√

x”, etc.

Of course the use of Quant is also possible in this rule producing the following kind

of sentences (Quant is bold-faced), but we simply not use it without any specific reason.

x, y and z are three factors of x ∗ y ∗ z

We define two functions: MkPosProp4 for positive propositions and MkNegProp4 for

negative, as shown in the abstract syntax below:

1 fun MkPosProp4 : Subject -> Relation -> Exp -> Proposition ;

2 MkNegProp4 : Subject -> Relation -> Exp -> Proposition ;

Both rules are quite similar. Therefore, we only give the concrete syntax for

MkPosProp4 below.

fun MkPosProp4 subj rel exp = {s = table {

LetStmnt => subj.s ++ be.inf ++ rest ;

RestStmnt => subj.s ++ be.s!subj.n ++ rest

} where {rest = rel.s!subj.n ++ "of" ++ exp.s}

} ;
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6.3.2.5 The Fifth Rule for Propositions: Subject, Relational Function and Expression

We cannot say the following statements with the above rule:

“x divides y”,

“x does not multiply y”,

“x, y and z divide x ∗ y ∗ z”, etc.

Therefore, we form the fifth rule by Subject, Rel2 and Exp producing the above

examples. Note that these statements does not make sense if we add Rel1 and Rel3

along with Rel2.

We define two functions: MkPosProp5 for positive propositions and MkNegProp5 for

negative, as shown in the abstract syntax below:

fun MkPosProp5 : Subject -> Rel2 -> Exp -> Proposition ;

MkNegProp5 : Subject -> Rel2 -> Exp -> Proposition ;

In these rules, we need the values of third person singular (for instance, ‘divides’)

and plural (for instance, ‘divide’) for Rel2. But if we recall the concrete syntax of Rel2

from §6.3.1.8 on page 123, it is an oper record rel12, containing a table s (having two

string values: one for singular and the other for plural) and a participle part, as shown

below.

oper rel12 : Type = rel ** {part : Str} ;

(Recall that it means: oper rel12 : Type = {s : Number => Str ; part : Str})

For instance, we had implemented the function Divisor, in such a way that it

produces only three values: “divisor”, “divisors” and “dividing”, with the following

linearization:

lin Divisor = mkRel12 "divisor" "divisors" "dividing" ;

But we need two more inflected forms: the third person singular “divides” and third

person plural “divide”. Therefore, in the linearization of the category Rel2, we extend

rel12 with another table field named as p3 for the third person, as shown below:

lincat Rel2 = rel12 ** {p3 : Number => Str} ;

Then the linearization of the function Divisor becomes (of course we could have

defined an oper function for it):

lin Divisor = {

s = table {Sg => "divisor" ; Pl => "divisors" } ;

part = "dividing" ;

p3 = table {Sg => "divides" ; Pl => "divide" }

} ;
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In the concrete syntax of MkPosProp5 and MkNegProp5, we access these values with

(rel2.p3!subj.n) as shown below. We also use the third person singular and third

person plural values of verb ‘do’ (defined as oper do on lines 10–14 below), in the

linearization of function MkNegProp5. Further, the underscore (_) on line 2 and on line

7 is a wild card keeping the same values for LetStmnt and RestStmnt.

1 lin MkPosProp5 subj rel2 exp = { s = table {

2 _ => subj.s ++ rel2.p3!subj.n ++ exp.s

3 }

4 } ;

5 MkNegProp5 subj rel2 exp = { s = table {

6 _ => subj.s ++ do.p3!subj.n ++ "not" ++ rel2.p3!subj.n ++ exp.s

7 }

8 } ;

9 oper do : {p3 : Number => Str} = {p3 = table {

10 Sg => "does" ;

11 Pl => "do"

12 }

13 } ;

Similar to the oper function do, we need to define functions for other verbs as well

(for instance, “to exist” used in §6.3.3.1 on 136). Therefore, we define the following

general function to save the values of third person singular and third person plural.

1 oper mkP3 : Str -> Str -> {p3 : Number => Str} = \p3sg, p3pl ->

2 {p3 = table {

3 Sg => p3sg ;

4 Pl => p3pl

5 }

6 };

Now we can redefine the verb “do” as an oper function and can reuse this function

for other verbs as well, as shown below:

1 oper do : {p3 : Number => Str} = mkP3 "does" "do" ;

2 exist : {p3 : Number => Str} = mkP3 "exists" "exist" ;

3 ...

6.3.2.6 Optional Noun Adjuncts

With the above positive simple statements, an optional noun adjunct AdjunctWith

may appear. To be more precise, we add noun adjunct to the first three rules only (cf.
§6.3.2.1 on page 125, §6.3.2.2 on page 131 and §6.3.2.3 on page 131), because it does

not make sense with the fourth and fifth rule. As already stated before, for these three

rules we add noun adjunct to only positive propositions (i.e. MkPosProp1, MkPosProp2

and MkPosProp3).

For the moment, we construct noun adjuncts with the following three rules:

1. It is formed by Quant1 and Relation, resulting adjuncts such as “(with | having)

(a | one | two | some | . . . ) common element(s)”.
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An example of a positive statement with subordinate would be: “a and b are

non-zero integers with no common factor”.

In the abstract syntax, we define a category AdjunctWith (which is simply a string)

and function MkCmnRelPWith as shown below:

cat AdjunctWith ;

fun MkCmnRelAWith : Quant1 -> Relation -> AdjunctWith ;

And the concrete syntax:

lincat AdjunctWith = {s : Str} ;

lin MkCmnRelAWith q r = {s =

variants{"with"; "having"} ++ q.s!Pl ++ "common" ++ r.s!q.n

} ;

Of course, this rule only makes sense in the propositions which have at least two

expressions or a plural pronoun as a subject. It is because it contains the word

‘common’, as shown in the code above. See the end of this subsection for more

details.

2. Another rule is formed by Eq, forming adjuncts such as “(with | having) x > 0”.

We define the abstract and concrete syntax as shown below:

fun MkEqAWith : Eq -> AdjunctWith ;

lin MkEqAWith eq = {s = variants{"with"; "having"} ++ eq.s} ;

3. Finally to make the noun adjunct optional, we define EmptyAdj function as shown

below:

fun EmptyAdj : AdjunctWith ;

lin EmptyAdj = {s = "" };

Adding Noun Adjuncts to the Propositions

How AdjunctWith is added to the proposition? We demonstrate it by redefining the

abstract syntax of the first rule for propositions (§6.3.2.1 on page 125) below:

fun MkPosProp1 : Subject -> Quant -> Properties1 -> Typ -> AdjunctWith -> Proposition ;

Its concrete syntax as shown below, remains the same except that we add a variable

adjwth for AdjunctWith. In line 5, we access its string value from record with (.s) and

concatenate it with the rest of the string:

1 lin MkPosProp1 sbj q scp ps tp adjwth = {s = table {

2 LetStmnt => sbj.s ++ be.inf ++ obj ;

3 _ => sbj.s ++ be.s!sbj.n ++ obj

4 }

5 where {obj = q.s!sbj.n ++ scp.s ++ ps.s ++ tp.s!sbj.n ++ adjwth.s}

6 };
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Some example statements are following:

a and b are non-zero integers with no common factor,

a and b are non-zero integers with a Ó= b, etc.

Also note that such a noun adjunct which contains “common” (i.e. the function in

bullet 1 of §6.3.2.6 on page 135). It only makes sense to the propositions having at least

two elements in the expression list Exps as a subject. Similarly, it only makes sense for

pronoun They. It is demonstrated by the following ill-formed statements:

*a is a non-zero integer with no common factor,

*It is a non-zero integer with three common elements, etc.

We reject such statements in the host system MathNat (cf. §8.2.5 on page 188).

Again, we add noun adjunct to the first three rules only (cf. §6.3.2.1 on page 125,

§6.3.2.2 on page 131 and §6.3.2.3 on page 131), because adding it to the fourth and fifth

rules results into ill-formed sentences.

6.3.3 Existential Statements

We now proceed to build the positive and negative existential statements (PropExist).

As mentioned in §3.3.3.6 on page 46 and in §4.6 on page 72, the variables in these state-

ments are quantified on the information whether they appear as assumption, deduction

or goal (to see how we make these proof statements, we specifically refer to §7.2.1).

Nevertheless, we name them existential statements to be able to distinctly see them in

the host system MathNat and apply the appropriate quantification.

6.3.3.1 The First Rule for Existential Statements

It is formed by Quant, Properties1, Typ, Exps and Equations. For instance:

“there (exists | is) a positive number n such that n ∗ a > b”,

“there (do not exist | are no) even integers x, y and z such that x ∗ a > b, y ∗ a > b

(and | or) z ∗ a > b”, etc.

The rule seems similar to the rule 6.3.2.1 given on page 125. For instance, consider

the following statement formed by this rule:

Assume that x is a positive even integer.

With this rule, we can rephrase it to its logically equivalent statement:

Assume that there is an integer x such that x > 0 and even(x).

In the abstract syntax, we define category PropExist and two functions

MkPosExist1 (for positive existential statements) and MkNegExist1 (for negative ex-

istential statements), as shown below.

cat PropExist ;

fun MkPosExist1 : Quant -> Properties1 -> Typ -> Exps -> Equations -> PropExist ;
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We omit the implementation of function MkNegExist1 because it is very similar to

the implementation of function MkPosExist1.

The linearization of category PropExist is simply a string record. However the

linearization of function MkPosExist1 is straightforward but a bit lengthy. For instance,

on line 4, we make number agreement between verbs exist (defined on page 134 as

an oper function) and be (defined on page 125 as an oper function) with quantity

(exist.p3!q.n and be.s!q.n). The use of variants produces two string values: “there

exist(s)” and “there (is|are)”. We further combine them with quantity (q), properties

(props), type (t) and so on. For the type we make its number to be in agreement with

quantity.

1 lincat PropExist ;

2 fun MkPosExist1 q props t exps exp = {s =

3 "there" ++ variants {

4 exist.p3!q.n ;

5 be.s!q.n

6 } ++

7 q.s ++ props.s ++ t.s!q.n ++ exps.s ++ optComma ++

8 ["such that"] ++ exp.s

9 } ;

10 oper optComma : Str = variants{","; ""} ;

Note the oper function optComma which returns an optional comma. We will use it

at many places in this chapter and in the next chapter.

A Note on Its Interpretation:

Consider the following example:

There are x and y such that xa + yp = 1 or xab + ypb = b.

How should we interpret it? For instance, both interpretations shown below seems

fine:

1. There are x and y such that xa + yp = 1 or xab + ypb = b
︸ ︷︷ ︸

.

2. There are x and y such that xa + yp = 1
︸ ︷︷ ︸

or xab + ypb = b.

So as a convention, we consider existential statement having more precedence than

conjunctions and disjunctions appearing inside. Therefore, we interpret it as the first

one:

There are x and y such that xa + yp = 1 or xab + ypb = b
︸ ︷︷ ︸

.

However, if we would like to express the second interpretation, we should add a comma

before the disjunction “or”, as shown below (See §7.5 on page 176 to for a general

account of these conventions).

There are x and y such that xa + yp = 1
︸ ︷︷ ︸

, or xab + ypb = b.



138 Chapter 6. Micro Level CLM Grammar

A Note on Property “arbitrary” in Existential Statements:

The property “arbitrary” is mostly illegal with existential statements. Consider the

following existential statement with the property “arbitrary”:

*There exists an arbitrary integer x such that x > 0.

It seems strange, or even contradictory due to the use of “arbitrary” with existentially

quantified statement. Because, “arbitrary” can only fundamentally correspond to the

introduction of a fresh variable, which basically arise in two situations (cf. §4.6 on page

72):

1. When we want to prove a proposition with a universal quantifier (i.e. show ∀xP (x)

in MathAbs for a proposition P (x)).

2. When we want to use the fact that a proposition with an existential quantifier is

true (i.e. assume ∃xP (x) in MathAbs for a proposition P (x)).

But let us see some other examples before drawing any quick conclusions. Consider

the two statements below. They are made from two different rules yet seem to have the

same meaning. The first example uses the above statement.

Example set 1:

Assume that there exists an arbitrary integer x such that x > 0.

Assume that x is an arbitrary positive integer.

In contrast, consider the same statements but slightly modified. Are they similar in

meaning? Are they even correct logically?

Example set 2:

*We conclude that there exists an arbitrary integer x such that x > 0.

*There exists an arbitrary integer x such that x > 0.

*We conclude that x is an arbitrary positive integer.

*Prove that x is an arbitrary positive integer.

If we try to look for such statements where property “arbitrary” appears in existential

statements in the mathematical books, they are usually not found. In a similar way, we

do not find goals, deduction, conclusion containing the property “arbitrary” for simple

propositions (cf. §6.3.2 on page 124). i.e. statements similar to the last one in the

example set 2.

However, even if they do appear together (very rare), we find them highly difficult

to interpret. Therefore, we do not allow the property “arbitrary” when it appears in

the statements similar to the examples given in example set 2 (i.e. when they occur as

goals or deductions in existential and simple propositions), and reject them in the host

system MathNat (cf. 8.2.5 on page 188). In contrast, we allow the property “arbitrary”

when it appears in the statements similar to examples given in example set 1.

Interpretation of Negation in Existential Statements:

To show how we interpret the negative existential statements, we use the following false

example:
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Assume that there exists two integers x and y such that x > y and x Ó= y.

Its MathAbs is:

let x, y : Z assume (x = y ∧ x Ó= y) •

Now consider its negation and MathAbs, followed by some explanation:

Assume that there does not exist two integers x and y such that x = y and x Ó= y.

Logical Formula: ¬(∃ x, y : Z (x = y ∧ x Ó= y))

By De Morgan’s law: ∀ x, y : Z ¬(x = y ∧ x Ó= y)

MathAbs: assume ∀ x, y : Z ¬(x = y ∧ x Ó= y) •

Instead of using the actual logical formula in MathAbs, we utilize its factorized

version, in which negation is removed from the quantifier. It is because, we need the

scope of these variables to support linguistic features such as anaphora of variables and

references (cf. §2.5.2 on page 19).

Also, as we discuss on page 126, the role of category quantity Quant and category

Scope is limited. Therefore, we exclude both categories from the scope of negation as

we have already done for simpler propositions (see on page 129).

Now consider the same false example and its MathAbs as goal:

Prove that there exists two integers x and y such that x = y and x Ó= y.

show ∃ x, y : Z (x = y ∧ x Ó= y)

And now its negation:

Prove that there are no integers x and y such that x = y and x Ó= y.

Note that it is equivalent to ¬(∃ x, y : Z (x = y ∧ x Ó= y)) which by factorizing

becomes: ∀ x, y : Z ¬(x = y ∧ x Ó= y). It becomes following in MathAbs:

let x, y : Z show ¬(x = y ∧ x Ó= y) •

Again, the reason for this transformation is to be able to extract the correct quantifi-

cation. Also, we might need these variables in the proof, if they are not declared again.

However, if they are declared again in the proof, then that declaration will simply appear

on top of this declaration and be used in the rest of the proof.

6.3.3.2 The Second Rule for Existential Statements

We would like to define a rule similar to the first one but without Typ. If Typ does

not appear in the statement, Quant also does not make sense as demonstrated by the

following statement:

*There exist three x, y and z such that x ∗ a > b, y ∗ a > b and z ∗ a > b.

(It should be “three Typ x, y and z”, see the next rule)

So we cannot re-define it inside rule 1. Therefore, we form the second rule by

Properties1, Exps and Equations. For instance,

“there (exists | is) positive even n such that n ∗ a > b”,

“there (does not exist | is no) n such that na > b”,

“there (exist | are) positive x, y and z such that x ∗ a > b and y ∗ a > b”, etc.
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We define two functions MkPosExist2 (for positive existential statements) and

MkNegExist2 (for negative existential statements). In the abstract and concrete syntax

shown below, we give below only MkNegExist2 because both are quite similar.

fun MkNegExist2 : Properties1 -> Exps -> Equations -> PropExist ;

lin MkNegExist2 ps exps eqs =

{s = "there" ++

variants{ do.s!exps.n ++ ["not exist"] ;

be.s!exps.n ++ "no"

} ++

ps.s ++ exps.s ++ optComma ++ ["such that"] ++ eqs.s

} ;

6.3.4 Relational Statements

6.3.4.1 The First Rule for Relational Statements

A rather limited role for its coverage, we give the following statements, which are formed

by Subject, QuantRel and Relation. For instance,

“x, y and z have a common factor”,

“they have some common multiples”,

“x, y and z have no common divisor”, etc.

In the abstract and concrete syntax shown below, we define category PropRel and

a function MkPropRel1. Note that Quant1 defined on page 116 contains ‘no’. Therefore,

we do not need a function for negative statements.

1 cat PropRel ;

2 fun MkPropRel1 : Subj -> Quant1 -> Relation -> PropRel ;

1 lincat PropRel = { s : Str } ;

2 lin MkRelProp1 subj qnt rel = {

3 s = subj.s ++ has.s!subj.n ++ qnt.s ++ "common" ++ rel.s!qnt.n

4 };

5 oper has : {s : Number => Str} = mkNumStrRec "has" "have" ;

Note that on line 3 above, we select the value of relational function in accordance

with the quantification (rel.s!qnt.n).

But can we modify the above rule in a way that an optional Exp could be added at

the end forming the following example statements:

“n and m have a common divisor d”,

“they have no common factor 2”, etc.

Yes we can. But let us upgrade it for the following statements as well:

“n and m have two common divisors d and e”,

“n and m have two common divisors”,

“n and m have common divisors d and e”,

“they have no common factors 2 and 3”, etc.
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Now we should not. We explain the reason in subsequent paragraphs. Now we need

Subject, Quant1, Relation and a list of expressions (which allows an empty list). The

Quant1 must have an agreement with Relation. (So that we produce “two common

divisors”, but not “two common divisor”, etc.)

But the following three examples, reveal that the rule becomes very complex if we

insist on using a list for expressions which allows empty list:

n and m have two common divisors.

n and m have a common divisor d.

n and m have two common divisors d and e.

Such a list must have three possibilities, as shown in the above example respectively:

1. Empty (the names of these common divisors are not given)

2. One element (singular, d)

3. More than one elements (plural, d, e)

The category Quant1 can easily make agreement with the first case or the last two

cases; but not both at the same time. Therefore, instead of taking the pain of defining a

rule which becomes complex not only at GF level but also in the host system MathNat

for semantics, we form the following two rules:

1. Formed by Subject, Quant1 and Relation. (Already covered with the function

MkPropRel1.)

2. Formed by Subject, Quant1, Relation and Exps. (Defined in the next section.)

6.3.4.2 The Second Rule for Relational Statements

For the second rule in the above list, we combine Subject, Quant1, Relation and Exps

as shown below:

1 fun MkPropRel2 : Subj -> Quant1 -> Relation -> Exps -> PropRel ;

2

3 lin MkPropRel2 subj qnt rel exps = { s = subj.s ++ has.s!subj.n ++

4 qnt.s ++ "common" ++ rel.s!qnt.n ++ exps.s } ;

Note that on lines 3–4 above, we select the value of verb has in accordance with

subject (has.s!subj.n) and the value of relational function (Relation) in accordance

with quantity (rel.s!qnt.n). However the following examples demonstrate that it is

still a partial agreement.

*n and m have three common divisors d and e.

The quantity (three) must agree with the number of expressions (d, e).

*n has three common divisor d and e.

The word “common” only applies to plural subjects, but n is singular.

The subject must agree with quantity (three), as well as with the number of expres-

sions (d, e).
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In summary, two conditions must be fulfilled: (1) the agreement between Quant1 and

Exps and (2) Exps must have more than one elements. These conditions are applied in

the host system MathNat as semantic check (cf. §8.2.6 on page 188).

Note that the list Exps does not allow to have its elements (i.e. Exp) separated by

disjunction. Therefore, we do not have to consider the possibility of following ill-formed

statements:

*n and m have two common divisors d or e.

6.3.4.3 Two Generalized Rules for Relational Statements

The above two rules hard-code the word “common” for some statements that appears

in textual proofs. We define the same functions now without it. For instance,

“n and m have a divisor d”,

“they have no factor 2”, etc.

or

“n and m have a divisor”,

“they have three factors”, etc.

Again note that we cannot use variants in the concrete syntax for this variation.

Because we will unable to see this information in the host system. Therefore, we form

two rules:

1. Formed by Subject, Quant1 and Relation.

2. Formed by Subject, Quant1, Relation and Exps.

We define two functions MkGenPropRel1 and MkGenPropRel2. We only define

MkGenPropRel1 below.

fun MkGenPropRel1 : Subj -> Quant1 -> Relation -> PropRel ;

lin MkGenPropRel1 subj qnt rel = {

s = subj.s ++ has.s!subj.n ++ qnt.s ++ rel.s!qnt.n

} ;

However note that, we need to define somewhat similar semantic check for the func-

tion MkGenPropRel2 as we define for function MkPropRel2 (cf. §6.3.4.2 on page 141) in

§8.2.6 on page 188. We skip the implementation of its semantic check as well.

6.3.5 Equation with a Reference

Formed by Equation and Reference. For instance,

“x2 + y2 = (2 ∗ a + 1)2 + (2 ∗ b + 1)2 – (1)”,

“x2 + y2 = (2 ∗ a + 1)2 + (2 ∗ b + 1)2 – i”,

“x2 = (2 ∗ a + 1)2”, etc.

We define a category EqWithRef and a function MkEqWithRef. This function actually

combines equation and an optional reference, as shown below:
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cat EqWithRef ;

fun MkEqWithRef : Eq -> Ref -> EqWithRef ;

lincat EqWithRef = {s : Str} ;

fun MkEqWithRef eq ref = {s = eq.s ++ ref.s} ;

But we have not yet defined Ref. It is simply an optional String enclosed with optional

brackets, as shown in the following abstract and concrete syntax. Note that the word

optional is translated as a function NoRef.

cat Ref ;

fun MkRef : String -> Ref ;

NoRef : Ref ;

lincat Ref = {s : Str} ;

lin MkRef ref = {s = variants { ref.s ; "(" ++ ref.s ++ ")"} } ;

NoRef = {s = ""};

6.3.6 Statements

We now combine propositions, equations (with references), relational and existential

statements into one category labeled as Statement. The abstract and concrete syntax

is given below followed by some explanation:

cat Statement ;

fun MkPropStmnt : Proposition -> Statement ;

MkExistStmnt : PropExist -> Statement ;

MkRelStmnt : PropRel -> Statement ;

MkEqRefStmnt : EqWithRef -> Statement ;

1 lincat Statement = { s : Str } ;

2 lin MkPropStmnt prop = { s = prop.s!RestStmnt } ;

3 MkExistStmnt pexst = pexst ;

4 MkRelStmnt prel = prel ;

5 MkEqRefStmnt eqRef = eqRef ;

As shown above, Statement is simply a string record. Other than Proposition,

the remaining categories are also string records and therefore, directly up-cast to the

Statement. We choose Statement to be used as a general category in the macro level

grammar (cf. §7). It means that we’ll use its list (see §6.3.6.1) for most of the proof

statements such as assumptions (“we suppose that . . . ”, etc), deductions (“we conclude

that . . . ”, etc), goals (“prove that . . . ”, etc), etc. It also explains why we select the

string value associated with RestStmnt and ignore the field LetStmnt (which is used

only with ‘let’ statements given in the next paragraph) from the category Proposition

on line 2.

For the ‘let’ statements, we define a slightly different category labeled as

LetStatement. It is defined as shown below:
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cat LetStatement ;

fun MkPropLetStmnt : Proposition -> LetStatement ;

MkEqRefLetStmnt : EqRef -> LetStatement ;

lincat LetStatement = { s : Str } ;

lin MkPropLetStmnt prop = { s = prop.s!LetStmnt } ;

MkEqRefLetStmnt eqref = eqref ;

Note that the categories PropExist and PropRel would produce linguistically

ill-formed sentences if combined with ‘let’. Therefore, they are not available in

LetStatement. Here are two examples of this category when it is used in a proof

or theorem statements:

“let A and B be two sets”,

“let (x + y)2 = x2 + y2 + 2 ∗ x ∗ y”, etc.

The List of Statements

6.3.6.1 Statements

The category Statements is a non-empty list of Statement. It supports the following

pattern:

Statement1[, . . . , Statementn−1 (, and |, or) Statementn]

As we have seen in §2.4, we resolve the coordination ambiguity in above statements

by interpreting them as following:

Statement1 [, . . . , Statementn−1 (, and|, or) Statementn]
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸

Note the use of comma in “(, and |, or)” to resolve the ambiguity with the conjunction

and disjunction in different kinds of statements that can appear inside Statementi. An

elaborative example is the following in which we repeat the same statement three times:

There are x and y such that xa + yp = 1 or xab + ypb = b ,

there exists x1 and y1 such that x1a + y1p = 1 or x1ab + y1pb = b , or

there exists x2 and y2 such that x2a + y2p = 1 or x2ab + y2pb = b.

As already stated, this list is given to the various blocks, for instance, in proof block

to form proof statement (assumption, deduction, goal, proof by cases, etc), as shown

below for the above example (after some modification):

We conclude that there are x and y such that xa + yp = 1 or xab + ypb = b ,

x1 and y1 are positive even integers , and x1 divides y1.

or

Suppose that x is even, y is odd , and z is rational.

In terms of implementation, it is similar to the pattern of the category Exps and

Properties2 given on pages 111 and 119 respectively, and therefore, we define it in a

similar way:
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1 cat Statements ; PStatements ;

2 fun BaseAndPStatements : Statement -> Statement -> PStatements ;

3 BaseOrPStatements : Statement -> Statement -> PStatements ;

4 ConsPStatements : Statement -> PStatements -> PStatements ;

5

6 BaseStatements : Statement -> Statements ;

7 ConsStatements : PStatements -> Statements ;

We now give its concrete syntax, which seems quite straightforward to follow:

1 lincat Statements = List ;

2 PStatements = {s : Str } ;

3

4 lin BaseAndPStatements = twoElemList [", and"] ;

5 BaseOrPStatements = twoElemList [", or"] ;

6 ConsPStatements = consList "," ;

7

8 BaseStatements = oneElemList Sg ;

9 ConsStatements = oneElemList Pl ;

The function BaseStatements above, covers the case when we have only one element

in the list. In contrast, the ConsStatements covers the following four patterns:

1. Statement1 , and Statement2 (using function BaseAndPStatements).

2. Statement1 , or Statement2 (using function BaseOrPStatements).

3. Statement1, . . . , Statementn−1 , and Statementn

(using functions: ConsPStatements and BaseAndPStatements).

4. Statement1, . . . , Statementn−1 , or Statementn

(using functions: ConsPStatements and BaseOrPStatements).

6.3.6.2 EStatements

The category EStatements is a list of Statement having at least two elements. It

supports the following pattern:

Either Statement1, . . . , Statementn−1 or Statementn.

It is similar to the pattern of category EProperties given on page 121 and therefore

we define it in a similar way. For that we make use of category PStatements by defining

a function MkEStatements that takes it as a parameter as shown below in the abstract

syntax:

cat EStatements ;

fun MkEStatements : PStatements -> EStatements ;

In its concrete syntax below, we simply add the clue word ‘either’ in front:

lincat EStatements = {s = Str ; n = Number } ;

lin MkEStatements xs = {s = "either" ++ xs.s ; n = Pl } ;
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(Of course we can easily re-factor it in a way that we share the linearizations with

EProperties and other similar categories using oper functions.)

Either Statement1 , or Statement2.

Either Statement1, Statement2, . . . , or Statementn.

It fulfills one of our requirement: i.e. the list must have two elements at minimum.

We need this requirement because the clue word ‘either’ does not make sense when the

list is empty or has only one element. However, it allows to write statements of the form

given below, which we reject with the semantic checks (cf. §8.2).

*Either Statement1 , and Statement2.

*Either Statement1, Statement2, . . . , and Statementn.

6.3.6.3 LetStatements

Note that in Statements and EStatements, propositions for ‘let’ statements cannot

occur (defined in §6.3.2 on page 124). For that we define a non-empty list labeled as

LetStatements in which only propositions defined in §6.3.2 on page 124 are allowed. It

will allow us to write, let us say, proof statement of the form:

Let x be a positive integer , and y be a negative integer.

Let x = y , and y = z.

Let x = y , or x = z.

Because of its similarity with the category Statements, we omit its implementation

details.

6.3.7 Conditional Statement

The category IfthenStmnt is formed by two lists (Statements), as shown the following

pattern:

if Statement1[, Statement2, . . ., Statementn−1 ( , and | , or) Statementn] then

Statementi[, Statementii , . . ., Statementk−i ( , and | , or) Statementk].

For instance,

“if a and b are even then they have a common factor”,

“if m and r have a common divisor d then it divides n”,

“if a = 2 ∗ c, and 4 ∗ c2 = 2 ∗ b2, and 2 ∗ c2 = b2 then b is even”

and a superficial conditional:

“if a is positive, b is negative, and c is even then x is even, y is odd, and x ∗ y ∗ z =

10”, etc.

Its abstract and concrete syntax is rather straightforward as shown below:

cat PropIfthen ;

fun MkPropIfthen : Statements -> Statements -> PropIfthen ;

lincat PropIfthen = {s : Str} ;

lin MkPropIfthen st1 st2 = {s =

"if" ++ st1.s ++ optComma ++ "then" ++ st2.s} ;
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Again, as given in §2.4, we resolve the coordination ambiguity in IfthenStmnt by

interpreting them as following:

If P1, P2, . . . , Pn−1(and|or) Pn
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸

then Q1, Q2, . . . , Qn−1(and|or) Qn
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

.

6.3.8 Take Statement

The category TakeStmnt is formed by the list (Equations), as shown the following

pattern:

we [can] (choose | take | select) Equations.

For instance,

“we can choose x := 10”,

“we take a := x + 1, b := y + 1 and c := z + 1”, etc.

Its implementation is rather straightforward and therefore we skip it.

6.3.9 Justifications

As we see in Chapter 2 and 4, mathematical assertions are sometimes aided with justifi-

cations. Therefore, for justifications we define a category Justification. It is formed

by (Statement | Operation | Definition | Anaphora | DefReference) (the last four

are defined in the subsequent subsections), as shown below:

cat Justification ;

fun MkStmntJust : Statement -> Justification ;

MkOperJust : Operation -> Justification ;

MkAnphrJust : Anaphora -> Justification ;

MkDefRefJust : DefReference -> Justification ;

In the corresponding concrete syntax shown below, the Justification is a record

having two values: s of type Str and t of type JustifType. In line 6, we define algebraic

data type JustifType with two constructors: JstStmnt for justifications formed from

Statement and JstRest for the rest. We use this information in proof statements, for

instance, see §7.2.1.3 on page 160.

1 lincat Justification = {s : Str ; t : JustifType} ;

2

3 lin MkStmntJust st = {s = st.s ; t = JstStmnt} ;

4 MkOperJust oper = {s = oper.s ; t = JstRest } ;

5 MkDefJust df = {s = df.s ; t = JstRest } ;

6 ...

7 param JustifType = JstStmnt | JstRest ;
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6.3.9.1 Operation as Justifications

An operation (Operation) which is needed for Justification (§6.3.9 on page 147).

The coverage of these operations is very limited yet for the moment highly desirable

with respect to the textual proof of elementary number theory. It is formed in the

following ways:

The First Rule for Operational Justifications is formed by Rel1 (cf. given on page

123). For instance,

“(factoring | squaring | . . . ) [at] both sides”,

“taking (factor | square | . . . ) (at | from) both sides”.

Its abstract and concrete syntax is as shown below:

cat Operation ;

fun MkOper1 : Rel1 -> Operation ;

1 lincat Operation = { s : Str } ;

2 lin MkOper1 rel1 = { s = variants {

3 "taking" ++ rel1.s!Sg ++ variants{"at"; "from"} ++ ["both sides"] ;

4 rel1.part ++ variants{"";"at"} ++ ["both sides"]

5 }

6 } ;

Note that Rel1 contains a string field for participles (part : Str), which we access

on line 4 above.

The Second Rule for Operational Justifications is formed by Rel2 and Exp. For in-

stance,

“(multiplying | dividing | . . . ) both sides by 2”,

“multiplying the equation by x”, etc.

Its abstract and concrete syntax is as shown below:

fun MkOper2 : Rel2 -> Exp -> Operation ;

1 lin MkOper2 rel2 exp = { s = variants {

2 rel2.part ++ variants{"";"at"} ++ ["both sides by"] ++ exp.s ;

3 rel2.part ++ ["the equation by"] ++ exp.s;

4 }

5 } ;

The Third Rule for Operational Justifications is formed by Rel2, EqAnaphor and Exp.

For instance,

“multiplying the last equation on both sides by 2”,

multiplying the last equation by 2 at both sides”,

“dividing our first equation by x”, etc.
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The category EqAnaphor is not yet defined but from the above examples, we can

guess that it is the string: “the (last|first) equation”, defined in §6.3.9.2 on page 150.

Returning to our main topic, we define the abstract and concrete syntax this oper-

ation as shown below:

fun MkOper3 : Rel2 -> EqAnaphor -> Exp -> Operation ;

lin MkOper3 r2 eqa exp = { s = variants{

r2.part ++ eqa.s ++ variants{"on"; "at"} ++ ["both sides by"] ++ exp.s;

r2.part ++ eqa.s ++ "by" ++ exp.s;

r2.part ++ eqa.s ++ "by" ++exp.s ++ variants{"on"; "at"} ++ ["both sides"]

}} ;

The Fourth Rule for Operational Justifications is formed by Rel3. It is similar to the

first rule but still we record their difference in the abstract syntax. For instance,

“taking factor from both sides”.

It literally produces only the above sentence, because the category Rel3 has only

one function Factor for the moment. We define function MkOper4 as shown below:

fun MkOper4 : Rel3 -> Operation ;

lin MkOper4 rel3 = { s = "taking" ++ rel3.s!Sg ++ ["from both sides"]};

The Fifth Rule for Operational Justifications is formed by Exp and (Equation |
Reference).

For instance,

“substituting [the value of] x in [equation] x = 2 ∗ b + 1”,

“substituting [the value of] x into [equation] (i)”, etc.

We define two functions MkOper5 and MkOper6 as shown below:

fun MkOper5 : Exp -> Eq -> Operation ;

MkOper6 : Exp -> Reference -> Operation ;

lin MkOper5 exp eq = {

s = "substituting" ++ variants{""; ["the value of"]} ++ exp.s ++

variants{"in"; "into"} ++ variants{""; "equation"} ++ eq.s

} ;

MkOper6 exp ref = {

s = "substituting" ++ variants{""; ["the value of"]} ++ exp.s ++

variants{"in"; "into"} ++ variants{""; "equation"} ++ ref.s

} ;

6.3.9.2 Anaphoric Reference

As demonstrated in §3.3.5, both implicit and explicit anaphoric references are quite

common in mathematical texts. We define anaphoric reference (Anaphor) for statement,

equation and theorem. Typical patterns are following:
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1. (the | our) (first | last) (‘statement’ | ‘hypothesis’ | ‘deduction’ | ‘equation’ | ‘the-

orem’).

2. ‘theorem 24’, ‘theorem’, etc.

The category Anaphor combines EqAnaphor, StAnaphor and ThmAnaphor (defined in

subsequent subsections), as shown below:

cat Anaphor ;

fun MkAnaphor1 : EqAnaphor -> Anaphor ;

MkAnaphor2 : StAnaphor -> Anaphor ;

MkAnaphor3 : ThmAnaphor -> Anaphor ;

lincat Anaphor = {s : Str} ;

lin MkAnaphor1 eqA = eqA ;

...

Again, note that we need this information in the host system MathNat to solve

anaphoric pronouns and references, and therefore, must register it as categories and

functions to make it visible. We now define categories EqAnaphor, StAnaphor and

ThmAnaphor below.

But before we proceed, we could have defined the functions of these categories di-

rectly as the functions of category Anaphor. Of course both solutions are technically the

same and it is more like a matter of taste.

EqAnaphor The category EqAnaphor could be better explained by the following pat-

tern:

“(the | our) (first | last) equation”

It is defined as shown below:

cat EqAnaphor ;

fun MkFirstEq, MkLastEq : EqAnaphor ;

lincat EqAnaphor = { s : Str } ;

lin MkFirstEq = { s = variants {

["the first equation"] ;

["our first equation"]

}

} ;

MkLastEq = ...

StAnaphor The category StAnaphor could be better explained by the following pat-

tern:

“(the | our) (first | last) (statement | hypothesis | deduction)”

We define it in abstract syntax as shown below, but omit its concrete syntax.

cat StAnaphor ;

fun MkFirstSt, MkLastSt : StAnaphor ;

MkFirstHypoth, MkLastHypoth : StAnaphor ;

MkFirstDeductn, MkLastDeductn : StAnaphor ;
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ThmAnaphor The category ThmAnaphor could be better explained by the following

pattern:

“theorem 24”, “theorem”, etc.

We define its abstract and (rather simple) concrete syntax as shown below:

1 cat ThmAnaphor ;

2 fun MkThmAnaphor1 : String -> ThmAnaphor ;

3 MkThmAnaphor2 : ThmAnaphor ;

4

5 lincat ThmAnaphor = {s : Str} ;

6 fun MkThmAnaphor1 n = {s = "theorem" ++ n.s} ;

7 MkThmAnaphor2 = {s = "theorem"} ;

6.3.9.3 Reference to Definitions

A reference to the definition (DefReference) is needed for Justification (on page

147) and quite common in mathematical texts. It is formed in the following ways:

The First Rule for Reference to Definition is formed by an optional PropertyOpt and

Typ. For instance,

“the definition of [positive] integer[s]”,

“the definition of [even] number[s]”,

“the definition of prime(s)”, etc.

We first define PropertyOpt which has two functions:

cat PropertyOpt ;

fun MkPropOpt : Property -> PropertyOpt ;

MkEmptPropOpt : PropertyOpt ;

lincat PropertyOpt = { s : Str } ;

lin MkPropOpt p = p ;

MkEmptPropOpt = {s = ""} ;

And the function MkDef1 in the following abstract and concrete syntax which is self

explanatory.

cat DefReference ;

fun MkDef1 : PropertyOpt -> Typ -> DefReference ;

lincat DefReference = { s : Str } ;

lin MkDef1 p t = {s = ["the definition of"] ++ p.s ++ variants{t.s!Sg; t.s!Pl}} ;

The Second Rule for Reference to Definition is formed by literals:

(Euclidean_Division | Induction_Hypothesis | . . . ). These literals may have more

than one string values. For instance, the linearization of function Euclidean_Division

is both ‘Euclidean division’ and ‘the definition of Euclidean division’. We define them

in the following way:
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fun Euclidean_Division, Induction_Hypothesis, ... : DefReference ;

lin Euclidean_Division = {

s = variants{ ["euclidean division"] ;

["the definition of euclidean division"]

}

} ;

Induction_Hypothesis = {

s = variants{ ["induction hypothesis"] ;

["the definition of induction hypothesis"]

}

} ;

The List of Justifications

The category Justifications is a non-empty list of Justification. It supports the

following pattern:

• (because | since |...) Justification1[, . . . , (because | since |...)

Justificationn−1 and (because|since|...) Justificationn]

The category Justifications is used in some proof statements (cf. §7.2.1.3 on page

160 and §7.2.1.5 162). A few examples are following (the part in brackets {...} does not

belong to Justifications):

“by the definition of positive numbers and by euclidean division, {we (conclude

| assume) that . . . }”,

“by the last statement and by substituting x in y = x + 10, {. . . }”,

“by the first statement and because it is even”, {. . . }

“by the last statement, by substituting x in y = z∗x+10 and because z is positive,

{. . . }”, etc.

The key phrases “(because | since |...)” belongs to an oper function JustifPhr,

defined as shown below and followed by explanation:

1 oper JustifPhr : JustifType -> Str = \t -> case t of {

2 JstStmnt => variants {["by the fact that"]; "since"; "because"}

3 JstRest => "by" ;

4 } ;

In line 1, we use an algebraic data type JustifType in the operation JustifPhr.

It is defined in §6.3.9 on page 147. JustifType has two constructors: JstStmnt for

justifications formed by Statement and JstRest for the rest. The operation JustifPhr

takes JustifType as parameter and returns a string, as shown on line 1. In case of

value JstStmnt we return strings: “by the fact that”, “since” and “because”; otherwise

we return string “by”, as shown on lines 2–3 above.

It simply means that any one of three key phrases (“by the fact that”, “since” and

“because”) may appear with the Justification formed by the Statement as shown

below.
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“because x is positive”,

“since there is an x such that x > 0”,

“by the fact that x > 0”, etc.

In contrast, justifications formed by the rest of categories, the key phrase “by” is

added as shown below:

“by the last statement”,

“by substituting the value of x in equation the y = 2 ∗ x + 10”,

“by the definition of rationals”, etc.

In structure, the list Justifications is similar to the the categories Exps and

Properties2 given on pages 111 and 119 respectively, and therefore, we define the

abstract syntax in the similar way:

1 cat Justifications ; PJustifications ;

2 fun BasePJustifications : Justification -> Justification -> PJustifications ;

3 ConsPJustifications : Justification -> PJustifications -> PJustifications ;

4

5 BaseJustifications : Justification -> Justifications ;

6 ConsJustifications : PJustifications -> Justifications ;

However, the linearizations in the concrete syntax are a little different, as shown

below, and followed by explanation:

1 lincat Justifications = List ;

2 PJustifications = {s : Str}

3

4 lin BasePJustifications x y = { s = (JustifPhr x.t) ++ x.s ++ "and" ++ y.s };

5 ConsPJustifications x xs = { s = (JustifPhr x.t) ++ x.s ++ "," ++ xs.s };

6

7 BaseJustifications x = {s = (JustifPhr x.t) ++ x.s ; n = Sg} ;

8 ConsJustifications xs = {s = (JustifPhr xs.t) ++ xs.s ; n = Pl} ;

Note the use of JustifPhr in the above code. For instance, in the code (JustifPhr x.t)

given on line 4 and others, we get the appropriate key phrase[s] according to the

JustifType of x with (x.t).
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7.1 Introduction

As a whole, a CLM document is a collection of axioms, definitions, propositions (theo-

rems, lemma) and proofs, structured by specific keywords (Axiom, Definition, Lemma,

Theorem and Proof). The text following these keywords is a list of sentences obeying

different grammars (one for axioms, one for definition, etc). These grammars are not

completely independent and share a lot of common rules. For instance, we use the micro

level grammar (cf. Chapter 6) in almost all structural blocks with slight modifications.

7.2 Theorem and its Proof

A theorem and its proof are formed by two categories ThmStmnts and PrfStmnts, which

are lists of the theorem statement ThmStmnt and the proof statement PrfStmnt respec-

tively (given in subsequent sections).

We define a category ThmPrf and function MkThmPrf as shown below:

cat ThmPrf ;

fun MkThmPrf : ThmStmnts -> PrfStmnts -> ThmPrf ;

In its concrete syntax, we simply glue ThmStmnts and PrfStmnts together along

with the keywords “Theorem” and “Proof”, as shown below:

1 lincat ThmPrf = { s : Str } ;

2 lin MkThmPrf thm prf = {

3 s = "Theorem" ++ thm.s ++ "Proof" ++ prf.s

4 } ;
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7.2.1 Proof and its Statements

An introduction of proof block and its statements with respect to the mathematical

texts is given in §3.2.4 on page 35. In contrast, its semantics is given in §4.3 (on page

61) and in definition 6 on page 66.

In CLM, a proof is a non-empty list of proof statements (PrfStmnts). It simply

allows to write proof statements separated by full-stop. We describe it by the following

pattern.

PrfStmnt1. [PrfStmnt2. . . . PrfStmntn.]

Each proof statement in the above pattern (i.e. PrfStmnt1, PrfStmnt2, etc. Let us

call it PrfStmntk) allows to write complex proof statements of the following pattern:

PrfStmntk1
; and PrfStmntk2

; and . . . ; and PrfStmntkn
.

Note the use of semi-colon in “; and” to resolve the ambiguity between the

Statements and the proof statement (PrfStmntk) on the use of conjunction. We inter-

pret it as following:

PrfStmntk1
; and PrfStmntk2

; and . . . ; and PrfStmntkn
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

.

Two elaborative examples of such proof statement are following:

If p ∤ a then gcd(a, p) = 1 ; and therefore, by theorem 24, there are x and y such

that x ∗ a + y ∗ p = 1 or x ∗ a ∗ b + y ∗ p ∗ b = b.

The following example is rather superficial but explains the pattern well. The con-

junction “; and” may appear between different proof statements, the conjunction “, and”
(also disjunction “, or”) may appear between different statements (i.e. Statements) and

the conjunction “and” (also disjunction “or”) may appear inside the category Statement.

We suppose that x and y are positive integers , and z is an even integer ; and

we assume that x > y , and x = 1 ; and

therefore, we conclude that y = 0.

To implement it in the GF grammar, we can very well combine both patterns as shown

below:

PrfStmnt1. [(PrfStmnt21
; and . . . ; and PrfStmnt2n). . . . PrfStmntn.]

We define categories PrfStmnts and PrfStmnt simply as string records as shown in

the following concrete syntax:

lincat PrfStmnt, PrfStmnts = { s : Str } ;

To make the non empty list PrfStmnts, we define three functions in the abstract

syntax, as shown below.
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1 fun BasePrfStmnts : PrfStmnt -> PrfStmnts ;

2 ConsPrfStmnts : PrfStmnt -> PrfStmnts -> PrfStmnts ;

3 ConjPrfStmnts : PrfStmnt -> PrfStmnts -> PrfStmnts ;

The function BasePrfStmnts takes a proof statement and returns the list PrfStmnts,

covering the case when we have only one element in the list. The functions

ConsPrfStmnts and ConjPrfStmnts add the proof statement in the list PrfStmnts.

The concrete syntax given below reveals that the linearization of ConsPrfStmnts adds

a full stop and linearization of ConjPrfStmnts adds a semi-colon and a conjunction:

1 lin BasePrfStmnts prf = { s = prf.s ++ "."} ;

2 ConsPrfStmnts prf prfs = { s = prf.s ++ "." ++ prfs.s } ;

3 ConjPrfStmnts prf prfs = { s = prf.s ++ ";" ++ "and" ++ prfs.s } ;

The Proof Statement

A proof statement PrfStmnt is defined as followed:

7.2.1.1 Restatements

As described in §3.2.4 on page 35, we sometimes restate a goal or its logical equivalent,

which we ought to prove. We form restatements in three ways:

1. By some key phrases (labeled as ShallProveThat), Statements and Subordinate.

2. By key phrases ShallProveThat, EStatements and Subordinate.

3. By key phrases ShallProveThat, IfthenStmnt and Subordinate (slightly differ-

ent).

Instead of making another category which combines the Statements, EStatements

and IfthenStmnt, we prefer to define three separate rules in the abstract syntax. Be-

cause these categories already combine and reuse many other categories, it seems un-

necessarily complicated to combine them again for Haskell in the host system MathNat.

However, we share their code as much as possible in the concrete syntax. This argument
holds for most of the statements defined for theorems, proofs, axioms and definitions.

The First Rule for Restatement in Proof Statement is formed by key phrases

ShallProveThat, Statements and Subordinate. For instance:

“we have to prove that x > y, x = y or x < y, where y is an integer”,

“it is sufficient to prove that x > y”, etc.

We must define the operation function ShallProveThat and the Subordinate before.

The function ShallProveThat is a collection of some key phrases as shown below:

“we [(will | shall | have to)] (prove | show) that”, “let us (prove | show) that”, “it

is sufficient to (prove | show) that”.

Defining it is quite simple:
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1 oper shallProveThat : Str = variants{

2 "we" ++ variants{""; "shall"; "will"; ["have to"]} ++

3 variants{"prove"; "show"} ++ "that" ;

4 ["it is sufficient to"]++ variants{"prove"; "show"}++ "that" ;

5 ["let us"] ++ variants{"prove"; "show"} ++ "that" ;

6 };

In contrast, the category Subordinate is simply the list Statements, attached with

a bunch of key phrases. Its use is optional, as shown below with brackets ([...]).

[[,] (where | if | when | with the condition that | provided that) Stmnts.]

We define it as shown below:

cat Subordinate ;

fun MkSubord : Statements -> Subordinate ;

EmptySubord : Subordinate ;

Without surprise, the corresponding concrete syntax is:

lincat Subordinate = {s = Str } ;

fun MkSubord stmnts = { s = optComma ++ variants{

"where"; "when"; "if"; ["provided that"]; ["with the condition that"]

} ++ stmnts.s

} ;

EmptySubord = {s = ""} ;

Note that the function EmptySubord is an empty string making Subordinate op-

tional. Also recall that optComma is an oper function which adds an optional comma

(defined on page 137).

Returning back to our main rule, we define it as shown below:

cat PrfStmnt ;

fun MkRestmnt : Statements -> Subordinate -> PrfStmnt ;

In the corresponding concrete syntax, we simply have to glue Statements and

Subordinate together along with ShallProveThat key phrases. Also note that, we

do not need to access the function ShallProveThat with (.s) (on line 2 below), because

it is already a string (i.e. Str) instead of the string record (i.e. {s:Str})

lincat PrfStmnt = {s = Str} ;

fun MkRestmnt stmnts sbrd = {s = ShallProveThat ++ stmnts ++ sbrd.s} ;

The Second Rule for Restatement in proof Statement is formed by ShallProveThat

key phrases, EStatements and Subordinate.

For instance:

“we have to prove that either x > y, x = y or x < y, where y is an integer”,

“it is sufficient to prove that either x > y or y > z”, etc.
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Its implementation is similar to the first rule for restatements above (on page 157).

We just need to replace the category Statements with EStatements, as shown below

in the abstract syntax. We omit the concrete syntax because of their similarity.

fun MkERestmnt : EStatements -> Subordinate -> PrfStmnt ;

The Third Rule for Restatement in Proof Statement is formed by ShallProveThat

key phrases, IfthenStmnt and SubordinateIfThen.

For instance:

“it is sufficient to prove that if x ∈ A then x ∈ B where A ⊆ B” , etc.

Again, the corresponding implementation is similar to the first rule for restatements

on page 157 and we only need to replace the category Statements with IfthenStmnt.

Because of that we omit its implementation.

Note that the category SubordinateIfThen is the same as the category Subordinate

(defined on page 158). Recall that Subordinate is simply Statements, attached with

a bunch of key phrases. One of these key phrases is “if”, which may produce syntacti-

cally ill-formed sentences in the context of this rule (as shown in the example below).

Therefore we omit it from the definition of SubordinateIfThen.

*We shall prove that if x ∈ A then x ∈ B if A ⊆ B.

7.2.1.2 Assumptions

In a proof it is common to assume facts needed to prove the theorem (cf. 3.2.4 on page

36). These are also called hypotheses. An assumption or hypothesis is formed in many

ways as shown below:

The First Rule for Assumptions in Proof Statement is formed by the ‘let’ keyword,

LetStatements and Subordinate. For instance,

“let A and B be two sets, and A ⊆ B”,

“let m and n be relatively prime integers”,

“let m = n , and n = r”, etc.

We define a function MkLet as shown below:

fun MkLet : LetStatements -> Subordinate -> PrfStmnt ;

lin MkLet stmnts sbrd = {s = "let" ++ stmnts.s ++ sbrd.s } ;

The Second Rule for Assumptions in Proof Statement is formed by AsmThat key

phrases, Statements and Subordinate. For instance,

“suppose that A and B are two sets”,

“assume that m and n are relatively prime integers”,

“we can suppose that there are two integers u and v such that u ∗ n + v ∗ m = 1”,

“we suppose that
√

2 =
a

b
, where a and b are non zero integers with no common

factor”,

“we assume that x > a, x > b, and x > c, where a, b and c are integers”, etc.
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Its implementation is similar to the rule for let statements above (on page 159). We

just need to replace string “let” with AsmThat key phrases in the concrete syntax as

shown below.

fun MkAssume : Statements -> Subordinate -> PrfStmnt ;

lin MkAssume stmnts sbrd = {s = AsmThat ++ stmnts.s ++ sbrd.s} ;

Where, the operation function AsmThat is a collection of some key phrases as shown

below:

“(let | [we [can]] (suppose | assume) that | we can (write | say) that)”.

Defining it is also quite simple:

oper AsmThat : Str = variants{

variants{""; "we"} ++ variants{""; "can"} ++

variants{"suppose"; "assume"} ++ "that" ;

["we can"] ++ variants{"say"; "write"} ++ "that"

} ;

The Third Rule for Assumptions in Proof Statement Similar to the second rule, it is

formed by AsmThat key phrases, EStatements and Subordinate. For instance,

“suppose that either A and B are two sets , or A and B are positive integers”,

“we assume that either m and n are relatively prime, or they are not relatively

prime”, etc.

We omit its implementation because of its similarity with the second rule above (on

page 159). Of course we can combine it the second rule. But as already said, we gain

nothing in doing so, except unnecessarily complicating the abstract syntax.

7.2.1.3 Assumptions with Justifications

Although it is rare but we may have to give justifications (cf. §3.2.4 on page 36)

for an assumption to make sense. It is formed by some key phrases, Statements,

Justifications and Subordinate in the following two patterns:

1. (we (suppose | assume) that | . . . ) [,] Statements Justifications1 [,] [(where |
. . . ) Statements].

2. Justifications1 [,] (we (suppose | assume) that | . . . ) Statements [,] [(where |
. . . ) Statements].

Some examples of Assumptions with justifications are following:

“we suppose that
√

2 =
a

b
by the definition of rational number”,

1Recall that the key phrases: (because | since | by the fact that | by) are added in each element of

the list Justifications. See page 152.
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“we can write that 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2 by substituting the value of a into

equation (i)”,

“by the definition of rational numbers, we suppose that
√

2 =
a

b
”,

“by substituting the value of a into equation (i), we can write that 2∗b2 = (2∗c)2 =

4 ∗ c2 ”,

“we can write that a = 2 ∗ c by the definition of even numbers, where c is an

integer.”, etc.

Regarding the implementation of these patterns in the GF grammar, can we build

it in one function? Let us try the following abstract syntax:

fun MkAssumeJustif : Statements -> Justifications -> Subordinate -> PrfStmnt ;

Then the corresponding concrete syntax could use variants for both patterns as shown

below:

1 lin MkAssumeJustif stmnts jstif sbrd = {s = variants {

2 Linearization of pattern 1 showing stmnts before jstif and sbrd;

3 Linearization of pattern 2 showing jstif before stmnts and sbrd

4 }

5 } ;

However there is a problem with this approach. When the syntactical part is done,

this grammar is called by the host system MathNat. In it we can access only he abstract

syntax representing the ontology. The abstract syntax of function MkAssumeJustif

currently cannot indicate which pattern is actually used in the linearization. Therefore,

in case of appearing any of these patterns, we always see that the Statements part

appears first, and followed by Justifications part, which is then followed by the

Subordinate (i.e. Statements -> Justifications -> Subordinate).

However, the order in which these categories appear in these patterns are important

for the anaphoric resolution (cf. §2.5.2 and §8.3.1.1). We explain it with the help of

the following superficial examples:

Pattern 1: We assume that x ∗ y > 0 because it is positive
︸ ︷︷ ︸

Justifications

.

Pattern 2: Because it is positive
︸ ︷︷ ︸

Justifications

, we assume that x ∗ y > 0.

In the first example, pronoun “it” refers to x ∗ y, whereas in the second example it

refers to some object before this sentence. Therefore, we cannot merge these patterns

in one function.

Consequently, we define two functions for these two patterns in the following abstract

syntax:

fun MkAssumeJustif1 : Statements -> Justifications -> Subordinate -> PrfStmnt ;

MkAssumeJustif2 : Justifications -> Statements -> Subordinate -> PrfStmnt ;

And the corresponding concrete syntax is straight forward:



162 Chapter 7. Macro Level CLM Grammar

1 lin MkAssumeJustif1 stmnts jstf sbrd = {s =

2 AssumeThat ++ stmnts.s ++ jstf.s ++ sbrd.s};

3

4 MkAssumeJustif2 jstf stmnts sbrd = {s =

5 jstf.s ++ optComma ++ AssumeThat ++ stmnts.s ++ sbrd.s };

In line 2 and 4, we give the JustifType of justification in question to JustifPhr to

get the appropriate string value.

7.2.1.4 Deductions

As described in §3.2.4 on page 36, in a proof, deductions are the results which we deduce

from existing premises and known knowledge. We form deduction in two ways as shown

below:

The first rule for deduction in proof statement is formed by the ConcludeThat key

phrases, Statements and Subordinate. Some of the examples are following:

“we conclude that
√

2 is an irrational number”,

“it implies that m and r are coprime , and r < m”,

“it implies that there exist m and n such that m ∗ a + nb = r or 2 ∗ (m ∗ a + nb) = 2 ∗ r
︸ ︷︷ ︸

, and n < m”, etc.

Note that the anaphora of propositions (i.e. pronoun ‘it’ above) is not

resolved. It is because each step in the proof is a consequence of the

previous step(s).

The operation function ConcludeThat is a collection of key phrases as shown below:

“we (get | conclude | deduce) that”, “it is (clear | obvious | trivial | evident | easy to see)

that”, “it (implies | means) that”.

We omit its implementation because of its technical similarity with other operation

functions.

The corresponding abstract and concrete syntax is:

fun MkDeduce : Statements -> Subordinate -> PrfStmnt ;

lin MkDeduce stmnts sbrd = {s = ConcludeThat ++ stmnts.s ++ sbrd.s} ;

The second rule for deduction in proof statement Formed by the ConcludeThat key

phrases, EStatements and Subordinate.

For instance:

“we conclude that either
√

2 is an irrational number or
√

2 is not an irrational

number”, etc.

We omit its implementation because of the technical similarity with the first rule for

deduction given above.

7.2.1.5 Deductions with Justifications

It is common to give justification(s) for deduced facts. It is formed in the following

ways:
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The first rule for deduction with justifications in proof statement is formed by

ConcludeThat key phrases, Statements, Justifications and Subordinate, producing

the following pattern:

• [(we (conclude | deduce) that | . . . )] Statements [,] Justifications2 [,] [(where

| . . . ) Statements]

For example,

“a2 is even because it is a multiple of 2”,

“we get that 2 ∗ b2 = 4 ∗ c2 by substituting the value of a into equation (1)”,

“there exist q and r such that n = m ∗ q + r by euclidean division”,

“q divides r because r = n − m ∗ q”, etc.

We implement it as following:

fun MkDeduceJustif1 : Statements -> Justifications -> Subordinate -> PrfStmnt ;

lin MkDeduceJustif1 : stmnts jstfs sbrd = {

s = variants{ConcludeThat; ""} ++ stmnts.s ++ jstfs.s ++ sbrd.s} ;

The second rule for deduction with justifications in proof statement is formed by

Justifications, Statements, optional key phrases ConcludeThat and Subordinate,

producing the following pattern:

• (because | since | . . . ) Justifications [,] [(we (conclude | deduce) that | . . . )]

Statements [,] [(where | . . . ) Statements].

Examples of above pattern are:

“because b is positive and it is a multiple of 2, we conclude that b2 is even”,

“because p|a ∗ b and p|p ∗ b it is clear that p|b”,

“by induction hypothesis, there are u′ and v′ such that u′ ∗ m + v′ ∗ r = 1”, etc.

Because these patterns have the same structure (i.e. the categories will have the

same order in the abstract syntax), we can merge them to one rule as shown below.

fun MkDeduceJustif2 : Justifications -> Statements -> Subordinate -> PrfStmnt ;

lin MkDeduceJustif2 : js stmnts sbrd = {s =

js.s ++ optComma ++ variants{ConcludeThat; ""} ++ stmnts.s ++ sbrd.s

};

The third rule for deduction with justifications in proof statement is formed by

Justifications’, ShowThat3 key phrases, Statements and an optional Subordinate

forming the following patterns.

1. Justifications’ [,] (shows that | establishes that | . . . ) Statements [,] [(where

| . . . ) Statements].

2Recall that the key phrases: (because | since | by the fact that | by) are added in each element of

the list Justifications. See page 152.
3ShowThat key phrases are: (shows | establishes | yields | proves | returns | gives) (that | the (result

| fact) that).
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For example,

“squaring both sides shows that 2 ∗ b2 = a2 − (1)”,

“dividing both sides by 2 and the fact that x is even, yields the result that b2 =

2 ∗ c2”,

“the fact that x is even and y = x yields the result that y is even”,

“the fact that x is even yields the result that 2 divides x”, etc.

By observing the above examples, we can guess that for each element in the list
Justifications’, if it is formed by Statement, we add a phrase “the fact that”,
otherwise we add nothing.

In the implementation shown below, it is very similar to the implementation of

Justifications (on page 152). Therefore, instead of implementing another category

we reuse the category Justifications. But we need to modify its concrete syntax to

make it compatible to our new needs. Let us first recall its abstract and concrete syntax:

cat Justifications ; PJustifications ;

fun BasePJustifications : Justification -> Justification -> PJustifications ;

ConsPJustifications : Justification -> PJustifications -> PJustifications ;

BaseJustifications : Justification -> Justifications ;

ConsJustifications : PJustification -> Justifications ;

lincat Justifications, PJustifications = List ;

lin BasePJustifications x y = {

s = (JustifPhr x.t) ++ x.s ++ "and" y.s ; n = Pl

};

ConsPJustifications x xs = {

s = (JustifPhr x.t) ++ x.s ++ "," ++ xs.s ; n = Pl

};

BaseJustifications x = {s = (JustifPhr x.t) ++ x.s ; n = Sg} ;

ConsJustifications xs = {s = (JustifPhr xs.t) ++ xs.s ; n = Pl} ;

In the linearization of Justifications and PJustifications, instead of defining

them as oper record List (defined as: {s : Str ; n : Number}), we define them

as shown below:

oper JustifRec : Type = {s : JustPhrType => Str ; n : Number} ;

lincat Justifications, PJustifications = JustifRec ;

JustPhrType used above, is an algebraic data type for different types of Justifications

based on their usage in different rules. For instance, in the code below, the constructor

JustPhrs1 represents the linearization of the Justifications we have used so far4. In

contrast, we use the constructor JustPhrs2 in the current rule.

param JustPhrType = JustPhrs1 | JustPhrs2 ;

Similar to the oper function JustifPhr, we need another function needed for this

rule. But first we rename JustifPhr to JustifPhr1 for harmony in their names. Then

we define another function with the name JustifPhr2 as shown below:
4In the “Assumptions with Justifications”, and in the first and second rule of “Deductions with

Justifications”.
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oper JustifPhr1 : JustifType -> Str = \t -> JustifPhr t ;

JustifPhr2 : JustifType -> Str = \t -> case t of {

JstStmnt => ["the fact that"];

JstRest => "" } ;

Now we redefine the linearization of functions that belong to categories

Justifications, PJustifications. For that we first define an oper function mkJustif

use it the linearizations of all functions:

1 oper mkJustif : JustifType -> Number -> Str -> Str -> Str -> JustifRec =

2 \t,n,x,s,y -> {s = table {

3 JustPhrs1 => (JustifPhr1 t) ++ x.s ++ s ++ y.s ;

4 JustPhrs2 => (JustifPhr2 t) ++ x.s ++ s ++ y.s ;

5 } ;

6 n = n

7 } ;

8 lin BasePJustifications x y = mkJustif x.t Pl x.s "and" y.s ;

9 ConsPJustifications x xs = mkJustif x.t Pl x.s "," xs.s ;

10

11 BaseJustifications x = mkJustif x.t Sg x.s "" "" ;

12 ConsJustifications xs = mkJustif xs.t Pl xs.s "" "" ;

Note the use of empty strings ("") on lines 11–12 above. It just saves us from defining

one more oper function for these two functions.

Returning to our main topic, we now define the implementation of rule three. Note

the use of js.s!JustPhrs2 below to access the second type of justifications:

fun MkDeduceJustif3 : Justifications -> Statements -> Subordinate -> PrfStmnt ;

lin MkDeduceJustif3 : js stmnts sbrd = {

s = js.s!JustPhrs2 ++ optComma ++ ShowThat ++ stmnts.s ++ sbrd.s

} ;

A closer look to the rules two and three reveals that these two patterns have the same

structure. We mean that in these rules the categories have the same order in the abstract

syntax. Because only the abstract syntax is visible in the host system MathNat, merging

them in one rule does not raise any issue for the anaphoric resolution. So instead of

defining MkDeduceJustif3, we add its concrete syntax to the function MkDeduceJustif2

as variants:

fun MkDeduceJustif2 : Justifications -> Statements -> Subordinate -> PrfStmnt ;

lin MkDeduceJustif2 : js stmnts sbrd = {s = variants {

js.s!JustPhrs2 ++ optComma ++ variants{ConcludeThat; ""} ++ stmnts.s ++ sbrd.s ;

js.s!JustPhrs2 ++ optComma ++ ShowThat ++ stmnts.s ++ sbrd.s

};

The fourth rule for deduction with justifications in proof statement is formed

by Statements (as justifications), Statements (as conclusions) and an optional

Subordinate forming the following patterns.
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• since Statements[,] then Statements [,] [(where | . . . ) Statements].

For instance,

“since A ⊆ A ∪ B, then x ∈ A ∩ B”,

“since A ⊆ A ∪ B and B ⊆ A ∪ B then A = B”, etc.

Its abstract and concrete is shown below:

fun MkDeduceJustif3 : Statements -> Statements -> Subordinate -> PrfStmnt ;

lin MkDeduceJustif3 : js stmnts sbrd = {

s = "since" ++ js.s ++ optComma ++ "then" ++ stmnts.s ++ sbrd.s ;

};

7.2.1.6 Miscellaneous Proof Statements

1. The statement formed by TakeStmnt (on page 147) without adding anything fur-

ther. Therefore, its abstract and concrete syntax is very simple:

fun Take : TakeStmnt -> PrfStmnt ;

lin Take take = take ;

2. Key phrases such as (then | thus | so | therefore | now | in this case [,]) could be

added to any PrfStmnt with an exception that it cannot be the first statement in

the proof.

fun ThereforePrfSt : PrfStmnt -> PrfStmnt ;

lin ThereforePrfSt prf = {s = therefore ++ prf.s} ;

oper therefore : Str = (variants{"then"; "thus"; "so"; "therefore";

"hence"; "now"; ["in this case"]} ++ optComma) ;

For instance,

“therefore , we conclude that
√

2 is an irrational number”, etc.

3. Key phrases such as (it is trivial | this (ends | concludes) the proof | QED) termi-
nates a proof. However it is not always necessary to terminate a proof with such

key phrases as the system MathNat can figure out the end of a proof in many

cases.

4. Key phrase “we (will | shall) prove it later” terminates a proof as unfinished.

5. Key phrases such as (it is (a contradiction | impossible) | it cannot be possible) or

(it is contrary to (the | our) hypothesis), to trigger a contradiction.

6. The following pattern to trigger a contradiction with some justification(s).
[(the (fact | result) that)] Statements ((implies | is) a contradiction | is (impossible

| not possible) | cannot be possible).

For instance,

“the fact that x is positive implies a contradiction”,

7. There are some other statements as well which we cover in §7.2.1.7.
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7.2.1.7 Proof by Cases

‘Proof by case’ or ‘proof by exhaustion’ is an important proof method. As demonstrated

in Chapter 3 (§3.2.4.1, page 37), there are numerous patterns which are used in the

mathematical texts for proof by case method. However, CLM currently supports only

two with strict formating. We present below these patterns followed by some examples.

Pattern 1: We proceed by case analysis.

Case: Condition PrfStmnts [This ends the case.]

Case: Condition PrfStmnts [This ends the case.]

. . . . . .

Case: Condition PrfStmnts [This ends the case.]

[This was the last case.]

Consider the same theorem and its proof in this pattern:

Theorem. Assume that m and n are coprime integers. Assume that either m Ó= 0 or n Ó= 0. Prove

that there exist two integers u and v such that u ∗ n + v ∗ m = 1.

Proof. We proceed by case analysis.

Case: n = 0. In this case m = 1 because m and n are coprime. Therefore we can choose u := 0

and v := 1. This ends the case.

Case: m = 0 and n = 1. In this case we can choose u := 1 and v := 0.

Case: n Ó= 0 and m Ó= 0. By euclidean division there are r and q such that n = m ∗ q + r. It is

trivial that m and r are coprime and r < m. So there are u′ and v′ such that u′ ∗ m + v′ ∗ r = 1. It

implies that u′ ∗ m + v′ ∗ (n − m ∗ q) = v′ ∗ n + (u′ − v′ ∗ q) ∗ m = 1. So we can choose u := v′ and

v := u′ − v′ ∗ q.

Pattern 2:

If condition then PrfStmnts

Otherwise if condition then PrfStmnts

Otherwise if condition then PrfStmnts

. . . . . .

Otherwise PrfStmnts

Consider the same theorem and its proof in this pattern:

Theorem. Assume that m and n are relatively prime integers. Assume that either m Ó= 0 or n Ó= 0.

Prove that there exist two integers u and v such that u ∗ n + v ∗ m = 1.

Proof. If n = 0 then m = 1 because m and n are coprime. We can choose u := 0 and v := 1.

Otherwise if m = 0 and n = 1 then we can choose u := 1 and v := 0.

Otherwise there exist r and q such that n = m ∗ q + r by euclidean division. [. . . ] So we can choose

u := v′ and v := u′ − v′ ∗ q.

These patterns may have nested cases, and we can even intermix them in a proof.

The first pattern is simpler than the second one. In it, although the markers such as:

“This ends the case” and “This was the last case” are optional and there is a possibility

for such proofs to be ambiguous. But the marker such as “Case:” still allow us to decide

whether a proof branch is already completed or not. In a similar way when we have

nested cases, the marker “We proceed by case analysis” helps to disambiguate between

the nested cases.

Now let us consider the pattern two. In it the markers ‘if’ and ‘otherwise if’ allows us

to define the boundaries of a branch. But what should we do when another conditional
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appears inside a branch? It is better explained with the (superficial) example as shown

bellow:

Proof. Let x and y be integers.

If x ∗ y > 0 then it is positive. If there is an integer z such that it is equal to x ∗ y then z > 0.

Otherwise if x ∗ y = 0 then x = 0 or y = 0.

Otherwise x ∗ y < 0.

Which ‘if’ marks the boundary of this case? There is no way to disambiguate on

the basis of syntax and we need a very deep semantic analysis for it (which is a hard

problem). Because our disambiguation process is solely based on syntax, we are forced

to return two interpretations.

The first interpretation makes a new branch of the proof on first conditional. The

second conditional appears as a statement of this branch. The second interpretation

takes the first conditional as a normal proof statement. It is then the second conditional

that makes a first branch of proof by case. The situation gets more interesting when

we intermix both patterns (but necessarily ambiguous). See §8.3.11 on page 221 for the

disambiguation algorithm.

In the GF grammar, the specific statements for cases (i.e. case markers) are simply

treated as proof statements. It means that the result given by GF, after parsing a proof

(containing cases), is also a list of proof statements. We re-build case structure in the

host system MathNat by working on the abstract syntax trees of the proof statements.

Agian, see §8.3.11 on page 221 for the algorithm.

This approach is better because of various reasons, some of them are given below:

• Like bnf grammar, attribute grammar is also insufficient to capture the richness

of the proof by case method.

• If we still insist on defining an attribute grammar, we would not be able to parse

incomplete proofs.

• Using the approach mentioned above, incomplete proofs could be parsed and we

can return the error messages more precisely because we know the context at each

stage.

• We can reduce ambiguity with the semantics of the proof at runtime (if we plug-in

MathAbs to some proof assistant in the future).

We now define the specific statements for cases, as shown below:

1. Case markers for pattern 1:

• The function CaseAnls for “we proceed by [the] case analysis”

• The function Case that takes Statements to form condition:

fun Case : Stmnts -> PrfStmnt ;

lin Case conds = {s= "case" ++ variants{":"; "."} ++ conds.s};

• The function EndCase for “this ends the case”

• The function EndLastCase for “it was the last case”
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2. The statement formed by conditional IfthenStmnt (on page 146) and

Subordinate. It may also be used as a general proof statement. In fact, it is

the context which decides whether we consider it a start of a new branch in the

proof or just a simple statement. Its implementation is straight forward:

fun MkIfthen1 : IfthenStmnt -> Subordinate -> PrfStmnt ;

lin MkIfthen1 ifthen sbrd = {s = ifthen.s ++ sbrd.s} ;

3. The conditional statement formed by Statements and TakeStmnt and

Subordinate, as shown below in the abstract syntax:

fun MkIfthen2 : Stmnts -> TakeStmnt -> Subordinate -> PrfStmnt ;

For instance,

“if m = 0 and n = 1 then we can choose u := 1 and v := 0”, etc.

4. The conditional statement formed by IfthenStmnt, Statements and

Subordinate:

fun MkIfthen3 : PropIfthen -> Stmnts -> PrfStmnt ;

For instance,

“if n = 0 then m = 1 because m and n are coprime
︸ ︷︷ ︸

”, etc.

5. The otherwise statements:

• Formed by PrfStmnt. It is quite similar to the function ThereforePrfSt in

its structure:

fun Otherwise1 : PrfStmnt -> PrfStmnt ;

lin Otherwise1 prfStmnt = {s =

"otherwise" ++ optComma ++ prfStmnt.s} ;

For instance,

“otherwise we assume that x is positive”, etc.

• Formed by (Statements | EStatements) and Subordinate:

fun Otherwise2 : Statements -> Subordinate -> PrfStmnt ;

fun Otherwise3 : Statements -> Subordinate -> PrfStmnt ;

lin Otherwise2 stmnts sbord = {s =

"otherwise" ++ optComma ++ stmnts.s ++ sbord.s} ;

lin Otherwise3 estmnts sbord = {s =

"otherwise" ++ optComma ++ estmnts.s ++ sbord.s} ;

These statements are not allowed next to each other and with

ThereforePrfSt.
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7.2.2 Theorem and its Statements

An introduction of theorem block and its statements with respect to the mathematical

texts is given in §3.2.3 on page 33. In contrast, its semantics is given in §4.3 (on page

61) and in definition 7 on page 67.

In CLM, a theorem is a non-empty list of theorem statements (ThmStmnts). It

could be formed by the following pattern, in which it simply allows to write theorem

statements separated by full-stop:

ThmStmnt1. [ThmStmnt2. . . . ThmStmntn.]

(It is the host system MathNat which enforce the semantics of theorem. See §8.3.8 on

page 213 for more details.)

We define categories ThmStmnts and ThmStmnt simply as string records. Further, to

make the non empty list ThmStmnts, we define two functions in the abstract syntax, as

shown below.

lincat ThmStmnt, ThmStmnts = {s : Str} ;

fun BaseThmStmnts : ThmStmnt -> ThmStmnts ;

ConsThmStmnts : ThmStmnt -> ThmStmnts -> ThmStmnts ;

And the corresponding concrete syntax is very simple:

1 lin BaseThmStmnts thm = { s = thm.s ++ "."} ;

2 ConsThmStmnts thm thms = { s = thm.s ++ "." ++ thms.s } ;

The Theorem Statement

The theorem statement ThmStmnt is defined as follows:

7.2.2.1 Statement to Prove

The main part of the theorem is the proposition or statement that that we have to

prove. It is called the goal which we have to prove in the proof. It should be the final

statement in the theorem.

The first rule for goal in theorem The most basic way in which the theorem could be

written is symbolic, using 〈Formula 〉 directly (given in figure 6.2 on page 109). However,

there is a condition that 〈Formula 〉 must start with universal or existential quantifier.

In the GF grammar, it is simply defined as shown below:

fun MkThmSymb : SymbFormula -> ThmStmnt ;

fun MkSymbFormula : String -> SymbFormula ;

We can see that SymbFormula is a string. However, by defining this new category

(SymbFormula), we enforce it to be different from Exp and Eq. Therefore, the semantic

conditions can be applied distinctly in the host system MathNat. A few examples are

following:
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The formula: ∀(x, y : Z) (even(x) ∧ even(y) ⇒ even(x + y)), for statement:

“if x and y are two even integers then x + y is even”

The formula: ∀(A, B : Set) ((A ∪ B = A ∩ B) ⇒ A ⊆ B), for statements:

“for all sets A and B, if A ∪ B = A ∩ B then A ⊆ B”

The formula: ∀x : Z (∃ y : Z(x + 1 = y)), for statement:

“for all integers x, there is an integer y such that x + 1 = y”, etc.

The second and third rules for goal in theorem These are formed by miscellaneous key

phrases (given below), (Statements | EStatements) and Subordinate, and forms the

following pattern:

• [(prove | show) that] (Statements | EStatements) [,] Subordinate

Some example statements are:

“prove that there exists two integers u and v such that u ∗ n + v ∗ m = 1”,

“prove that either x > y, x = y or x < y, where y is an integer”,

“show that x + y is even”, etc.

Due to the similarity between these two rules, we give concrete syntax only for one

rule:

fun ThmProves : Statements -> Subordinate -> ThmStmnt ;

ThmEProves : EStatements -> Subordinate -> ThmStmnt ;

lin ThmProves stmnt sbrd = {s = ProveThat ++ stmnt.s ++ optComma ++ sbrd.s} ;

oper ProveThat : Str = variants{["prove that"]; ["show that"] ; ""} ;

The fourth rule for goal in theorem It is formed by miscellaneous key phrases (given

below), IfthenStmnt and SubordinateIfThen, and forms the following pattern:

• [(prove | show) that] IfthenStmnt [,] SubordinateIfThen

Where, the category SubordinateIfThen is defined in §7.2.1.1 on page 159. Some

example statements are:

“prove that if x ∈ A then x ∈ B”,

“show that if A ∪ B = A ∩ B then A ⊆ B”,

“if a is integer then there is no integer x such that a < x < a + 1”, etc.

It implementation is very similar to the above rules:

fun ThmProvesIfThen : IfthenStmnt -> SubordinateIfThen -> ThmStmnt ;

lin ThmProvesIfThen stmnt sbrd = {s = ProveThat ++ stmnt.s ++ optComma ++ sbrd.s} ;
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The fifth, sixth and seventh rule for goal in theorem These are formed by miscella-

neous key phrases (given below), an optional Typ, Exps, (Statements | EStatements |

IfthenStmnt) and Subordinate, and forms the following pattern:

• [(prove | show) that] for (all | every) [Typ] Exps , (Statements | EStatements |

IfthenStmnt) [,] Subordinate

Some example statements are:

“prove that for (all | every | arbitrary) integer[s] x, x is positive and even”,

“for (all | every | arbitrary) number[s] x and y, x is an element of y”,

“for (all | every | arbitrary) x and y, x does not multiply y”,

“show that for (all | every | arbitrary) a and b, there is n such that n ∗ a > b”,

“for (all | every | arbitrary) x and y, (x + y)2 = x2 + y2 + 2 ∗ x ∗ y”,

“for (all | every | arbitrary) a if it is an integer then there is no integer x such that

a < x < a + 1”, etc.

Of course we could have merged these rules with the second, third and fourth rule

respectively, but we prefer not to do so. Because there are no big gains. In this way

we avoid unnecessary complicated categories and make it simple. Anyway we share

concrete syntax between them as much as possible.

For GF, implementation we first need a new category for an optional Typ, labeled

as TypeOpt, as defined below:

cat TypeOpt ;

fun EmptyTOpt : TypeOpt ;

MkTOpt : Typ -> TypeOpt ;

In its concrete syntax the category TypeOpt is similar to Typ. In the linearization of the

function EmptyTOpt, both singular and plural values of its record table are empty. In

contrast the function MkTOpt simply resides Typ in it without any change.

lincat TypeOpt = {s : Number => Str } ;

fun EmptyTOpt = { s = table {_ => "" }} ;

MkTOpt type = type ;

We define below the fifth rule, which combines some key phrases, TypeOpt, Exps,

Statements and Subordinate.

1 fun ThmProvesR5 : TypeOpt -> Exps -> Statements -> Subordinate -> ThmStmnt ;

2 lin ThmProvesR5 t vars stmnt = {s = ProveThat ++

3 variants{

4 ["for all"] ++ t.s!Pl ++ vars.s ++ optComma ++ stmnt.s ;

5 ["for every"] ++ t.s!Sg ++ vars.s ++ optComma ++ stmnt.s ;

6 "for" ++ artIndef!vars.n ++ "arbitrary" ++ t.s!vars.n ++ vars.s ++ optComma ++ stmnt.s

7 } };

Note the lines 3–5 above. The phrase “for all” always needs the plural form of TypeOpt.

In contrast, the phrase “for every” always needs the singular form of TypeOpt. However,

in line 7, we need number agreement with TypeOpt. Also if the variable is singular then

we need an article between “for” and “arbitrary”. For instance:
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“for an arbitrary integer x, .... ”,

“for arbitrary integers x and y, .... ”

We apply a semantic condition that variables mentioned in the first part must be

used in the statement.

7.2.2.2 Assumptions in theorem

We construct the assumptions in the same way as we do for assumptions in the proof

(cf. §7.2.1.2 on page 159). Therefore, we only give below its abstract syntax:

Assumptions in theorem provides a starting point to the author for writing its proof.

Assumptions cannot be the last statement of the theorem.

fun MkThmLet : LetStatements -> Subordinate -> ThmStmnt ;

MkThmAssume : Statements -> Subordinate -> ThmStmnt ;

MkThmEAssume : EStatements -> Subordinate -> ThmStmnt ;

This abstract syntax indicates that all of the categories (such as Statements,

EStatements, LetStatements, Subordinate) are reused again. In a similar way the

corresponding concrete syntax is also reused from the assumptions given as proof state-

ment (show below after this paragraph). However, we need to define these functions to

record these theorem statements for denotational semantics and to linguistic features to

apply in the host system MathNat.

fun MkThmLet st sbord = {s = "let" ++ st.s ++ optComma ++ sbord.s } ;

MkThmAssume st sbord = {s = AssumeThat ++ st.s ++ optComma ++ sbord.s } ;

MkThmEAssume st sbord = {s = AssumeThat ++ st.s ++ optComma ++ sbord.s } ;

7.2.2.3 Miscellaneous Key Phrases for theorem statement

Key phrases such as (then | thus | so | therefore | now) could be added to any ThmStmnt

with an exception that it cannot be the first statement in the theorem. We define its

abstract syntax as shown below:

fun ThereforeThmSt : ThmStmnt -> ThmStmnt ;

7.3 Axiom

As described in §3.2.1, an axiom consists of a statement or a few, expressing a proposition

or fact that is considered to be true without a proof. In CLM, we reuse all the statements

from theorem for axiom after removing the key phrases “(prove | show) that”).

We would like to reuse the code written for theorem statements. One solution among

many would be to define a category AxThmGoalStmnt to save the statements given as

goal in theorem. But it will not contain the optional key phrases: “(prove | show) that”).

It is because we do not share these phrases in axiom.

As an example, we redefine the function ThmProvesR2 for the second rule given in

§7.2.2.1 on page 171, by removing the oper function ProveThat, as shown below.
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cat AxThmGoalStmnt ;

fun AxThmProvesR2 : Statements -> Subordinate -> AxThmGoalStmnt ;

lin AxThmProvesR2 stmnt sbrd = {s = stmnt.s ++ sbrd.s} ;

Similarly, for function ThmProvesR5 defined in §7.2.2.1 on page 172, we simply need

to change its output category from ThmStmnt to AxThmGoalStmnt and remove the use

of oper ProveThat from its concrete syntax:

1 fun AxThmProvesR5 : TypeOpt -> Exps -> Statements -> Subordinate -> AxThmGoalStmnt ;

2 lin AxThmProvesR5 t vars stmnt = {s = variants{

3 ["for all"] ++ t.s!Pl ++ vars.s ++ optComma ++ stmnt.s ;

4 ["for every"] ++ t.s!Sg ++ vars.s ++ optComma ++ stmnt.s ;

5 ["for arbitrary"] ++ t.s!vars.n ++ vars.s ++ optComma ++ stmnt.s

6 } };

Now from the category AxThmGoalStmnt, we can make the theorem statement as

shown below:

fun ThmProves : AxThmGoalStmnt -> ThmStmnt ;

lin ThmProves thm = {s = ProveThat ++ thm.s } ;

Note that, the assumptions in theorem (§7.2.2.2 on page 173) and the rest of theorem

statements (§7.2.2.3 on page 173) are usable as axiom statements without any changes.

But we must make an intermediate category, let us name it AxThmRestStmnt. So for

all the functions defined in §7.2.2.2 and §7.2.2.3, we must change the output category

from ThmStmnt to AxThmRestStmnt. Once it is done, we define function which convert

category AxThmRestStmnt to the category ThmStmnt for theorem statements.

For axiom statements we define functions which convert categories AxThmGoalStmnt

and AxThmRestStmnt to the category AxStmnt as shown below:

cat AxiomStmnt ;

fun MkAxiom1 : AxThmGoalStmnt -> AxStmnt ;

fun MkAxiom2 : AxThmRestStmnt -> AxStmnt ;

lincat AxStmnt = {s : Str };

lin MkAxiom1 ax = ax ;

lin MkAxiom2 ax = ax ;

As already stated, in CLM axiom block is exactly the same as theorem block. So

there implementations are also similar. Of course with an obvious difference: axiom

block starts with “Axiom” but theorem block starts with “Theorem”.

7.4 Definition

In CLM, a definition is somehow similar to axiom and theorem. In the GF grammar,

a definition is simply a list of definition statements DefStmnts which are separated by

full-stop as shown bellow:

DefStmnt1. [DefStmnt2. . . . DefStmntn.]
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As usual it is defined as shown below:

cat Definition ; DefStmnt ; DefStmnts

fun MKDef : DefStmnts -> Definition ;

lin MkDef defst = {s = "Definition." ++ defst.s };

Where the list DefStmnts is formed by the category DefStmnt (definition statement).

It is is defined as followed:

Conditional Statements For conditional statement we support following patterns:

1. “if Statement1[, Statement2, . . . , (and | or) Statementn] then [we define]

Statement”

It is similar to the conditional statement (IfthenStmnt) (cf. §6.3.7 on page 146)

with an exception of having only one Statement after the key phrase “then [we

define]”.

Following are a few examples,

“if x > 0 and y > 0, then we define x and y to be positive”,

“if x > 0 then x is positive”,

“if an integer n is divisible by 2 then it is even”, etc.

(the similar examples as the last two can be seen in figure 3.2 on page 33.)

We define it as followed:

fun MkDefCond1 : Statements -> Statement -> DefStmnt ;

lin MkDefCond1 conds consq = {s = "if" ++ conds.s ++ optComma ++

"then" ++ variants{["we define"]; ""} ++ consq.s} ;

2. If we flip categories of the above categories:

[we define] Statement if Statement1[, Statement2, . . . , (and | or) Statementn].

For example,

“we define x and y to be positive if x > 0 and y > 0”,

“x is positive if x > 0”,

“we define an integer n to be even if it is divisible by 2”, etc.

We only give its abstract syntax below:

fun MkDefCond2 : Statement -> Statements -> DefStmnt ;

Recall that it is important to define this flip of categories as a new rule. It is

because we need this order in the host system MathNat to solve the anaphoric

resolution.
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3. [we define] Statement (iff | only if | if and only if | if) Statement1[, Statement2,

. . . , (and | or) Statementn].

For example,

“we define x and y to be positive iff x > 0 and y > 0”,

“x is positive only if x > 0”,

“an integer n is even if and only if it is divisible by 2”, etc.

We define it as followed:

fun MkDefCond3 : Statement -> Statements -> DefStmnt ;

lin MkDefCond3 consq conds = {s = ["we define"] ++ consq.s ++ iff ++ conds.s} ;

oper iff : Str = variants{"iff"; ["if and only if"]; "only if"} ;

Assumptions Assumptions in definitions are the same as in theorems and proofs (for

instance, see §7.2.1.2 on page 159). A few examples are given in the next heading.

Define Statement It is formed by the Statement and the optional key phrase “we

define”.

A few examples containing assumptions and define statements are following:

“let x be an integer. assume that x > 0. we define x to be positive.”,

“let m and n be arbitrary integers with a condition that m > 0. Then n is said to

be divisible by m if there is a number q, such that n = q ∗ m.”,

“let n be an even integer. Then we define it to be divisible by 2”, etc.

It is important to note that the last statement in a definition must be a conditional
or a define statement.

7.5 Conventions

A controlled language simplifies the interpretation of its linguistics features by adopting

some conventions. In the course of the last few chapters we have seen that CLM is

no exception. It follows conventions for resolving anaphora and differentiating between

collective and distributive readings. We refer to §2.4, §2.5.2 and §8.3 for an account.

We have also seen some of the conventions that we define to remove ambiguity. In the

course of describing CLM grammar at macro and micro level, we have already discussed

some of these conventions. we now simply combined them below.

However, we consider these conventions as temporary hacks until we connect Math-

Nat to the proof assistant(s), to get type information (or boolean feedback in case of

untyped proof assistant such as Mizar[Trybulec et al. 1973]). More details are given in

§9.2.1 on page 234.
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7.5.1 Ambiguity

We combine different kinds of propositions and statements in §6.3.6 by forming the

category Statement. Many categories which form the category Statement allows con-

junctions and disjunctions. These are three examples:

x is arbitrary, positive and even.

y is a multiple of 2, 4 and 8.

There are x and y such that (x ∗ a + y ∗ p = 1) or (x ∗ a ∗ b + y ∗ p ∗ b = b).

Then we define a category Statements which is a non-empty list of Statement in

§6.3.6.1. It allows to write the following pattern for a mathematical sentence to solve

the ambiguity propositions and statements:

Statement1, Statement2, . . . ( , and | , or) Statementn.

Which we interpret as following:

Statement1, Statement2, . . . ( , and | , or) Statementn.
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

An elaborate example is the following in which we repeat the same statement three

times:

x is arbitrary, positive and even ,

y is a multiple of 2, 4 and 8 , and

there are x and y such that (x ∗ a + y ∗ p = 1) or (x ∗ a ∗ b + y ∗ p ∗ b = b).

(‘or’ is interpreted as implication as discussed in §3.3.3.3 on page 45)

When we use the list Statements in a theorem statement (ThmStmnt) or in a proof

statement (PrfStmnt, let us say as an assumption, our example becomes the following:

We assume that x is arbitrary, positive and even ,

y is a multiple of 2, 4 and 8 , and

there are x and y such that (x ∗ a + y ∗ p = 1) or (x ∗ a ∗ b + y ∗ p ∗ b = b).

But ThmStmnt in theorem block and PrfStmnt in proof block, may be a complex

statement as shown below:

ThmStmntk ≡ ThmStmntk1
; and ThmStmntk2

; and . . . ; and Thmtmntkn

PrfStmntk ≡ PrfStmntk1
; and PrfStmntk2

; and . . . ; and Prftmntkn

With the following interpretation:

PrfStmntk1
; and PrfStmntk2

; and . . . ; and PrfStmntkn
.

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸

Now our example become the following, if we do repetition:

We assume that x is arbitrary, positive and even ,

y is a multiple of 2, 4 and 8 , and

there are x and y such that (x ∗ a + y ∗ p = 1) or (x ∗ a ∗ b + y ∗ p ∗ b = b) ; and

therefore, we conclude that x is arbitrary, positive and even ,

y is a multiple of 2, 4 and 8 , and

there are x and y such that (x ∗ a + y ∗ p = 1) or (x ∗ a ∗ b + y ∗ p ∗ b = b).
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Consider now the real example, which is ambiguous but with conventions we are

able to diffuse the ambiguity:

If ¬p|a then gcd(a, p) = 1; and therefore, by theorem 24, there are x and y such

that xa + yp = 1 or xab + ypb = b.

And now the same example but having different interpretation because of (, or) at the

end:

If ¬p|a then gcd(a, p) = 1; and therefore, by theorem 24, there are x and y such

that xa + yp = 1 , or xab + ypb = b.

Also recall that the conditionals of the form:

If P1, P2, . . . , (and|or) Pn then Q1, Q2, . . . , (and|or) Qn.

are always interpreted as:

If P1, P2, . . . , (and|or) Pn
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

then Q1, Q2, . . . , (and|or) Qn
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸

.

(‘or’ is interpreted as disjunction)

Finally, as regards the attachments (subordinate clauses on page 158, abbreviated as

SCl below), we support the following pattern for a statement:

S1, S2, . . . , (, and | , or )Sn, (where|for|when|. . . ) SCl1, SCl2, . . . , ( , and | , or) SCln.

As usual, we interpret it as follows. This convention applies to all lists, the ones we

have mentioned and those we have not.

S1, S2, . . . , ( , and | , or)Sn
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

, (where|for|when|. . . ) SCl1, SCl2, . . . , ( , and | , or) SCln)
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸
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8.1 Introduction

In the course of this thesis, we have referred to the host system MathNat several times.

In this chapter we will describe it in detail.

GF grammar can be compiled into the low-level code called Portable Grammar

Format (PGF). The GF grammar in PGF format plays the same role as JVM byte code

plays for Java. It means that the GF grammar could be used in other general purpose

programming languages such as Haskell [Marlow 2010], Java, etc, with the help of GF

runtime system.
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GF provides an API to work on PGF grammar code (the API for Haskell is the

most up-to-date). For instance, rendering functions such as linearize and parse are

made available as ordinary Haskell functions. With the function parse, GF translates

the abstract syntax trees of the grammar into Haskell data objects, where the abstract

syntax is translated to an algebraic data type. It is beyond the scope of this work to

give an account of Haskell. We refer to [Marlow 2010] and Haskell homepage (http:

//haskell.org/) for further details.

As obvious from the introduction, the host system MathNat is a program written

in Haskell. Another reason for choosing Haskell is this: Functional languages are well

suited for symbolic or algebraic computation. Haskell provides rich functionality such

as higher order functions, pattern matching, type checking, etc. For instance, we need

to go through the algebraic data types produced by the GF abstract syntax, filter them,

apply different functionalities, and finally, build different tree or forest structures.

Regarding the LBNF grammar for symbolic mathematics, note that the BNF Con-

verter tool is a compiler front end, which was created as a “spin-off of GF, customizing

a subset of GF to combine with standard compiler tools” [Forsberg 2007, p. 51]. For it,

the compiler’s back-end could be written in Haskell. Therefore, along with GF gram-

mar, we also call the grammar for symbolic mathematics as Haskell data objects in the

host system MathNat.

8.1.1 The Overall Picture

On one hand we have CLM document which allows to write textual axioms, definitions,

theorems and proofs using the categories Axiom, Definition and ThmPrf. As mentioned

in Chapter 7, these categories are blocks containing the list of statements, having no

axiom, definition, theorem and proof semantics. On the other hand, we have MathAbs

document which allows to write formal axioms, definitions, theorems and proofs, having

a clear semantics as given in §4.4.

Our overall objective is to take CLM documents and translate it into MathAbs

document. In the process of doing so, we apply procedures such as:

1. Applying semantic checks on sentences

2. Building context

3. Applying linguistic features

4. Discourse building for each block (theorem, proof, etc)

5. Translating CLM document to MathAbs document

When the mathematical text from CLM grammar is parsed, a list of sentence level

Abstract Syntax Trees (ASTs) are produced. By sentence level, we mean that an AST

is produced for each sentence which is separated by full stop. We recognize each AST

by pattern matching on algebraic data types and apply the above mentioned procedures

one by one.

These procedures are not applied on the whole abstract syntax tree of the text at

once. Instead, these are applied on each of the sentences one by one. Even in each

sentence, these are applied on each statement recursively, forming a combined result

(i.e. the MathAbs rules) for sentence (recall that a sentence may be formed by a list of

statements). The result is updated with each sentence that appears next in the text.

This procedure is terminated when all the sentences are parsed and there is nothing left.
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8.1.2 The CLM Grammar in Haskell

As mentioned in Chapter 7, the categories ThmPrf, Axiom, Definition are blocks con-

taining the list of statements belonging to theorem, proof, axiom and definition respec-

tively. In CLM document, we allow to describe a list of theorems and proofs, list of

axioms and list of definitions (with a simple LBNF grammar). These lists are given to

the host system MathNat, where we apply specialized functions for context building,

block structure building, linguistic support and the translation to MathAbs. These pro-

cedures are somewhat interleaved. Therefore, we’ll explain them all in one (wherever

possible) to save time, space and effort (because in terms of programing and labor, going

through the abstract syntax again and again is expensive).

Let us concentrate on the theorem and proof block. It is formed by the category

ThmPrf as shown below:

cat ThmPrf ;

fun MkThmPrf : ThmStmnts -> PrfStmnts -> ThmPrf ;

In Haskell, it becomes as following:

data GThmPrf = GMkThmPrf GThmStmnts GPrfStmnts

First, the letter ‘G’ is prefixed to all constructs. The name of the category is assigned

to this new data type (i.e. GThmPrf). In contrast, the name of the function becomes

the name of its constructor (GMkThmPrf), where GThmStmnts and GPrfStmnts are other

data types.

Similarly, the category PrfStmnts is defined as shown below:

1 cat PrfStmnts ;

2 fun BasePrfStmnts : PrfStmnt -> PrfStmnts ;

3 ConsPrfStmnts : PrfStmnt -> PrfStmnts -> PrfStmnts ;

4 ConjPrfStmnts : PrfStmnt -> PrfStmnts -> PrfStmnts ;

In Haskell, it becomes the following. Again, on lines 2–4 below, note that the names of

the functions become the names of constructors:

1 data GPrfStmnts =

2 GBasePrfStmnts GPrfStmnt

3 | GConjPrfStmnts GPrfStmnt GPrfStmnts

4 | GConsPrfStmnts GPrfStmnt GPrfStmnts

Similarly, the category for proof statement PrfStmnt is formed by several functions.

We give some of them:

1 cat PrfStmnt ;

2 fun MkRestmnt : Statements -> Subordinate -> PrfStmnt ;

3 MkERestmnt : EStatements -> Subordinate -> PrfStmnt ;

4 MkLet : LetStatements -> Subordinate -> PrfStmnt ;

5 MkAssume : Statements -> Subordinate -> PrfStmnt ;

6 ...
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Of course, it becomes the following in Haskell:

1 data GPrfStmnt =

2 | GMkRestmnt GStatements GSubordinate

3 | GMkERestmnt GEStatements GSubordinate

4 | GMkLet GLetStatements GSubordinate

5 | GMkAssume GStatements GSubordinate

6 ...

We now take only one constructor from it (for instance, GMkAssume given on line 5

above) and try to go deeper in the data types GStatements and GSubordinate. As men-

tioned in §7.2.1.1 on page 158, the category Subordinate is simply the list Statements,

attached with a bunch of key phrases, defined as shown below, followed by the corre-

sponding Haskell data type:

cat Subordinate ;

fun MkSubord : Statements -> Subordinate ;

EmptySubord : Subordinate ;

data GSubordinate = GMkSubord GStatements | GEmptySubord

The data type for GStatements is a sophisticated list (cf. §6.3.6.1 on page 144) having

GStatement as elements. In Haskell, GStatement becomes the following (cf. §6.3.6 on

page 143):

1 data Statement =

2 GMkPropStmnt GProposition

3 | GMkExistStmnt GPropExist

4 | GMkRelStmnt GPropRel

5 | GMkEqRefStmnt GEqWithRef

We end this section here, but we go deeper in the construct GProposition in the

next section. We’ll also use these data objects in §8.3 for discourse building, applying

linguistic features and other procedures.

8.2 Semantic Checks

Most of the semantic checks are applied on various types of statements such as propo-

sitions, existential statements, relational propositions and equations (lines 2–5 above

respectively). We define these semantic checks in the subsequent sections.

But first, we show how they are plugged into the algebraic data type, let us say, on

proof statements (i.e. GPrfStmnt, defined above). We define the function chkPrfStmnt

(and similarly chkThmStmnt for theorem statement, chkAxStmnt for axiom statement

and chkDefStmnt for definition statement). It takes GPrfStmnt, the sentence number (to

return it in case of an error), and returns an error or nothing. We select its constructors

one by one by pattern matching:

1 Function name: chkPrfStmnt

2 Input: GPrfStmnt labeled as prf, Position labeled as sentence_no

3 Output: Error or nothing
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4 Procedure:

5 pattern matching on prf

6 IF prf is (GMkRestmnt stmnts subord) //constructor of GPrfStmnt

7 THEN apply function chkStmnts stmnts

8 apply function chkStmnts (get_stmnts_from_subordinate subord)

9

10 ELSE IF prf is (GMkERestmnt estmnts subord) //constructor of GPrfStmnt

11 THEN apply function chkEStmnts stmnts

12 apply function chkStmnts (get_stmnts_from_subordinate subord)

13

14 ELSE IF ....

15 ....

We omit its corresponding function (i.e. chkPrfStmnts) for proof block. It is because

it is simply made by applying the function chkPrfStmnt on GPrfStmnts using a higher

order ‘map’ function.

Similarly, we also omit the implementation of function chkThmStmnts. Because, it

also simply applies the function chkThmStmnt on GThmStmnts using a higher order map

function. The function chkThmStmnt, is defined below, which of course takes GStatement

as input:

1 Function name: chkStmnt

2 Input: GStatement labeled as stmnt, Position labeled as sentence_no

3 Output: Error or nothing

4 Procedure:

5 pattern matching on stmnt

6 IF stmnt is (GMkPropStmnt prop) //constructor of GStatement

7 THEN apply function (chkProp prop)

8

9 ELSE IF stmnt is (GMkExistStmnt exist) //constructor of GStatement

10 THEN apply function (chExistStmnt exist)

11

12 ELSE IF ....

13 THEN ....

14

15 ELSE IF stmnt is (MkEqRefStmnt eq)

16 THEN apply semantic check (eq is an equation) //not an expression or anything else

For the sake of completeness, we finally define the chkProp, which takes GProposition

as input. The data type GProposition represents simple propositions that are defined

in §6.3.2 on page 124. It becomes the following data type in Haskell (we only present

few for the moment, remaining will only be given if needed):

1 data GProposition =

2 GMkPosProp1 GSubject GQuant GProperties1 GType GAdjunctWith

3 | GMkNegProp1 GSubject GQuant GProperties1 GType

4 | GMkPosProp2 GSubject GProperties2 GAdjunctWith

5 ...

Whereas, GSubject is define as:

1 data GSubject = GMkExpsSubj GExps

2 | GMkPronSubj GPron
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Finally, the function chkProp:

1 Function name: chkProp

2 Input: GProposition labeled as prop, Position labeled as sentence_no

3 Output: Error or nothing

4 Procedure:

5 pattern matching on prop

6 IF prop is (GMkPosProp1 subj quant propts type adjnct) //constructor of GProposition

7 THEN

8 pattern matching on subj

9 IF subj is (GMkExpsSubj exps)

10 THEN

11 apply semantic check (all of elements in exps are expressions)

12 apply semantic check (agreement between exps and quants) //see coming subsection

13 apply all required semantic checks

14

15 ELSE IF subj is ...

16 ....

17

18 ELSE IF prop is (....) //constructor of GProposition

19 THEN ...

20 ....

All the semantic checks mentioned in Chapters 6 and 7 are plugged-in as shown

above. Also note that all these semantic checks are trivial pieces of code, offering no

insight except one: this shows how we actually apply some of the constraints in the host

system MathNat which might be hard to apply directly in the CLM grammar.

8.2.1 List of expressions and Quantity

In most of the rules for various statements (i.e. propositions, existential statements,

etc), we have to make an agreement as semantic check between number of elements in

the list of expression (GExps) and the quantity (GQuant). It is specifically stated in

§6.3.2.1 on page 126. This check allows us to reject statements of the following form:

*Assume that x and y are three positive numbers.

The number three in above example belongs to GQuant, which is roughly defined as:

data GQuant = GOne | GTwo | GThree | ... | GEmpty

Let us first define two helper function:

• quant2num which takes GQuant and returns integer:

GSome -> -1 (a hack; see line 8 in the code below), GEmpty -> 0, GOne -> 1, GTwo -> 2, ...

• exps2num takes the list GExps and returns its length as integer

Finally for agreement, we define function agrmntExpsQuant. It takes GExps, GQuant,

position (i.e. sentence number from the mathematical texts) and returns nothing if

they are in agreement. Otherwise it returns an error message mentioning the sentence

number. It can be described with the following Haskell like pseudo-code:
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1 Function name: agrmntExpsQuant

2 Input: GExps as exps, GQuant as quant, Position as sentence_no

3 Output: Error or nothing

4 Procedure:

5 qn = quant2num quant

6 en = exps2num exps

7 IF (qn==en) // length of GExps is equal to quantity

8 OR (qn==-1 and en>0) // quantity is GSome

9 OR (qn==0 and en>=1) // quantity is GEmpty

10 THEN return nothing

11

12 ELSE return an appropriate error with sentence_no

8.2.2 Pronoun and Quantity

We also have to make an agreement as semantic check between pronoun (GPron) and the

quantity (GQuant) (cf. §6.3.2.1 on page 126). This check allows us to reject statements

as shown below. Note that pronouns are in agreement with types:

*It is three positive number. (‘it’ in agreement with ‘number’)

*They are a positive numbers. (‘they’ in agreement with ‘numbers’)

We first define the helper function pron2num. It takes a pronoun and returns an

integer: (GIt -> 1, GThey -> 2).

For agreement, we define the following function. It takes a pronoun, quantity, line

number and returns nothing if there is an agreement. Otherwise it returns an appropriate

error message with the line number of that sentence.

1 Function name: agrmntPronQuant

2 Input: GPron as pron, GQuant as quant, Position as sentence_no

3 Output: Error or nothing

4 Procedure:

5 qn = quant2num quant

6 pn = pron2num pron

7 IF (qn==pn)

8 OR (qn>1 and pn==2) // Quantity not (GEmpty|GOne) and pronoun is ‘They’

9 OR (qn==0 and pn>=1) // Quantity is GEmpty and any pronoun

10 THEN return nothing

11

12 ELSE return an appropriate error with sentence_no

8.2.3 Collective properties

As mentioned in §6.3.2.1 on page 129, we need to reject those statements which applies

collective properties on a single variable (or on pronoun ‘it’), such as following:

*Let x be equal.

*Assume that it is equal.

We first need to tag each property being collective or distributive. We do it in Haskell

with data type (PropertType) and function (whichPropert). Note a convention on line

6 below. That is, instead of throwing an error, we set all the properties as Distributive

(with dots ...), which are not tagged manually in the code.
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1 data PropertType = Collective | Distributive

2

3 Function name: whichPropert

4 Input: GProperty as p

5 Output: PropertType

6 Procedure:

7 CASE p of

8 GEq, GCoprime -> Collective

9 GPositive, GNegative, GEven, GOdd, ... -> Distributive

We have many kinds of lists for category Property (to be precise: Properties1,

Properties2, EProperties). The difference between them is syntactical. Since the syn-

tax phase is covered with GF, here, we convert them to the usual list such as [Property]

(of course keeping the information if it was list separated by conjunction or disjunction,

etc). In the following pseudo-code, we assume that such conversion is already done.

Function name: chkExpsProps

Input: GExps as exps, [GProperty] as props, Position as sentence_no

Output: Error or nothing

Procedure:

IF the list props is empty then return nothing else do following:

IF ((length exps)>1) then return nothing else do following:

rest_of_props = props - first element

proptype = whichPropert (take_first_element props)

CASE proptype of

Distributive -> chkExpsProps exps rest_of_props //recursive call

Collective -> return error with sentence_no and the property which caused it

(i.e. take_first_element from the list rest_of_props)

We need another function for pronouns:

Function name: chkPronProps

Input: GPron as pron, [GProperty] as props, Position as sentence_no

Output: Error or nothing

Procedure:

IF the list props is empty then return nothing else do following:

IF pron is GThey then return nothing else do following:

rest_of_props = props - first element

proptype = whichPropert (take_first_element props)

CASE proptype of

Distributive -> chkPronProps pron rest_of_props //recursive call

Collective -> return error with sentence_no and the property which caused it

(i.e. take_first_element from the list rest_of_props)

Of course we can combine both functions for a higher category GSubject. Recall that

is define as:

data GSubject = GMkExpsSubj GExps | GMkPronSubj GPron

We can access GExp and GPron from it by pattern matching, as shown in the following

pseudo-code:
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Function name: chkExpsProps

Input: GSubject as subj, [GProperty] as props, Position as sentence_no

Output: Error or nothing

Procedure:

pattern matching on subj

IF subj is (GMkExpsSubj exps) then chkExpsProps exps props sentence_no

ELSE IF subj is (GMkPronSubj pron) then chkPronProps pron props sentence_no

ELSE return nothing

8.2.4 List of expressions or Pronouns with Noun Adjunct

We have described noun adjuncts in §6.3.2.6 on page 134. In Haskell it becomes the

following data type:

1 data GAdjunctWith =

2 GMkCmnRelAWith GQuant1 GRelation

3 | GMkEqAWith GEq | GEmptyAdj

Of course the noun adjuncts attach to various propositions, which contains a subject.

The function described on line 2 corresponds to bullet 1 in §6.3.2.6, must attach only

with the proposition having at least 2 expressions or a plural pronoun as a subject. This

check allows to reject the ill-formed statements such as:

*a is a non-zero integer with no common factor,

*It is a non-zero integer with three common elements, etc.

First, we define a function chkCmnExpsAdjnct which takes GExps and noun adjunct

as parameters:

Function name: chkCmnExpsAdjnct

Input: GExps as exps, GAdjunctWith as adjnct, Position as sentence_no

Output: Error or nothing

Procedure:

pattern matching on adjnct

IF adjnct is (GMkCmnRelAWith q rel) then do following:

IF (length exps)==1 then return an appropriate error with sentence_no

ELSE return nothing

ELSE return nothing

Now we define a similar function for pronouns:

Function name: chkCmnPronAdjnct

Input: GPron as pron, GAdjunctWith as adjnct, Position as sentence_no

Output: Error or nothing

Procedure:

pattern matching on adjnct

IF adjnct is (GMkCmnRelAWith q rel) then do following:

IF (pron is GIt) then return an appropriate error with sentence_no

ELSE return nothing

ELSE return nothing
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8.2.5 Statements with Property Arbitrary

As described in §6.3.3.1 on page 138, when the property “arbitrary” occurs in goals and

conclusions produced by the simple propositions and existential statements, we reject

them. Some of these need to be rejected statement are:

*We conclude that there exists an arbitrary integer x such that x > 0.

*We conclude that x is an arbitrary positive integer.

*Prove that x is an arbitrary positive integer.

Defining the function which does it is quite easy and straight forward, as shown in

the following pseudo-code:

Function name: rejectArbitrary

Input: GProperties1 as props, Position as sentence_no

Output: Error or nothing

Procedure:

IF props is empty list then return nothing

ELSE

prop = take_first_element props

pattern matching on prop

IF prop is GArbitrary then return appropriate error with sentence_no

ELSE recursive call to rejectArbitrary (props without prop) sentence_no

8.2.6 Quantity and List of Expressions

We need an agreement between quantity and the list of expressions for relational state-

ments given in §6.3.4.2 on page 141. It is very similar to the check given in §8.2.1 on

page 184, with an exception of having slightly different quantity Quant1 (cf. §6.3.1.4 on

page 115) and one extra condition. It is defined in Haskell as shown below:

data GQuant1 = GNo | GOneQ1 | GTwo | GThree | ... | GThen | GSome

There are two conditions that we must fulfill: (1) the agreement between Quant1

and Exps and (2) Exps must have more than one elements.

So let us define a helping function quant1toNum which takes GQuant1 and returns

integer: GNo -> 0, GOneQ1 -> 1, GTwo -> 2, ..., GSome -> -1. Recall that we already have

define a function exps2num which takes the list GExps and returns its length as integer.

Finally we define the main function agrmntQuant1Exps. It takes GQuant1, GExps,

position (i.e. sentence number from the mathematical texts) and returns nothing if they

are in agreement according to our conditions. Otherwise its returns an error message

mentioning the line number. It can be described with the following Haskell like pseudo-

code.

1 Function name: agrmntQuant1Exps

2 Input: GQuant1 as quant, GExps as exps, Position as sentence_no

3 Output: Error or nothing

4 Procedure:

5 qn = quant1toNum quant

6 en = exps2num exps

7 IF (en>1) // length of GExps is greater than 1
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8 THEN do following:

9 IF (qn==en) // length of GExps is equal to quantity

10 OR (qn==-1 and en>0) // quantity is GSome

11 OR (qn==0 and en>=1) // quantity is "no"

12 THEN return nothing

13 ELSE return an appropriate error with sentence_no

Fundamentally, the function remains the same as the function agrmntExpsQuant, except

one extra condition given on line 5 below. So we can re-factor it easily and use function

agrmntExpsQuant inside it. An example of the condition applied on line 9 is the following

sentence:

n and m have no common divisors d and e.

8.2.7 Expression, Equation and Symbolic Formula

As we have seen that symbolic expressions (Exp), equations (Eq) and symbolic formulas

(SymbFormula, cf. §7.2.2.1 on page 170) appear in many rules. These categories are

simple string records in the GF grammar and therefore, any 〈Formula 〉 may be given.

We need to assure with semantic checks, that the symbolic mathematics given to these

categories respects their specifications. We only define this check for expressions and

leave the other two checks because of their similarly in the procedure.

The symbolic expression Exp is mentioned in the LBNF grammar by Formula8,

Formula9, . . . , Formula13 (lines 27–47 in figure 6.2 on page 109). Note that these labels

(i.e. Formula8, ..., Formula13) are not visible in the abstract syntax. But we still can

recognize them by pattern matching on the the constructs that use them. For instance,

the constructs SUnion and SIntersec on lines 27–28 in figure 6.2 forms Formula8.

The data type for GExp in Haskell is given on line 1 below. We define a function

transExp, in the rest of the code, which translates this string containing expression to

〈Formula 〉 using BNFC parser.

1 data GExp = GMkExp String

2

3 Function name: transExp

4 Input: GExp as exp, Position as sentence_no

5 Output: Formula

6 pattern matching on exp

7 IF exp is (GMkExp (GString s)) then apply bnfc parsing on s

8 IF parse fails then return an appropriate error

9 ELSE save the result in formula

10 pattern matching on formula recursively

11 IF formula is one of (Formula8, Formula9,..., Formula13)

12 THEN ok ELSE return an appropriate error with sentence_no

There are many other semantic checks which we apply on CLM (as mentioned in

chapters 6 and 7. However, it does not seems necessary to define their trivial code here,

and therefore, we omit them.

8.3 Discourse, Linguistic Features and Others

An informal account on how we build discourse from the mathematical texts and support

linguistic features is given in §2.5.2. We now describe the procedures for discourse
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building, linguistic features and others in concrete terms. The format is somewhat

similar to the way we presented CLM grammar in Chapters 6 and 7. We will go through

the abstract syntax of CLM as a whole and describe these procedures for every category

and function. In our opinion this section must be read along with §2.5.2 on page 19.

We now fix some notations:

Context: Context is a 3-tuple (CV, ST, CE) where:

CV is a list of 6-tuple (Sn, List of symbolic objects [obj1, ..., objn], Number (1 for sin-

gular, n for plural), Quantification, How declared, Object(s) type). In CV, we record

necessary information such as every occurrence of symbolic expressions, left hand sides

of equations, pronouns and references.

1. Sn or Sn is the sentence number in the mathematical texts.

2. Symbolic object obj is a symbolic expression which we store as anaphoric referent.

3. Quantification is defined as:

data VarQuant = QUniv | QExists | QLet | QNo | QUndecided

Where, QUniv stands for Universal (i.e. ∀ x(...)), QExists stands for Existential (i.e.

∃ x(...)), QLet stands for the rule let (i.e. let x : ...)), QNo is used for number and

QUndecided for those expressions which mix variables having QUniv, QExists and

QLet quantification (see examples in appendix A on page 239).

4. How declared could have two values: Explicit for explicitly defined variables

and Implicit for those which are implicitly defined variables by the system. For

instance, “assume that x+y is a positive integer”. If x, y are not defined before (i.e.

they are not in the context) then both are implicitly defined by the system (i.e.

let x, y : NoType). Whereas, x + y is explicitly defined because of this statement.

It is defined as following for this chapter:

data HowDecl = Explicit | Implicit

5. Of course object type is the type of the object. For instance, x, y in the above

bullet have type “NoType”. Whereas, x + y has type “Integer”.

ST is a list of 3-tuple (Sn, logical formula, StType).

We use it to save information regarding logical formulas for each sentence, equivalent to

its MathAbs. This information is useful in many ways as described in §2.5.2.2 on page

22 and bullet §1 of §4.6 on page 74.

1. StType is statement type (whether it is an assumption, deduction, goal or justifi-

cation) as defined below:

data StType = Asm | Ddc | Prv | Justif
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We need this information to be able to use the same function for different types

of statements. For instance, StType is

Asm for a statement such as “suppose that x is a positive even integer”,

Prv for a statement such as “prove that x is not a positive even integer”,

Ddc for a statement such as “x and y are two integers” and

Justif for a statement such as “... because
√

2 is not an even integer”.

CE is a list of 3-tuple (Sn, equation, reference).

We use it to save information regarding equations and references (cf. §2.5.2.3 on page

22).

Micro Level CLM Grammar

We start this section by describing procedures for “high level constructs” of the micro

level grammar mentioned between §6.3.2 to §6.3.9.

8.3.1 Propositions

As already mentioned briefly on page 183, the simple propositions (i.e. category

Proposition) that are defined in §6.3.2 on page 124 becomes GProposition in Haskell,

and its rules become constructors, as shown below:

1 data GProposition =

2 GMkPosProp1 GSubject GQuant GProperties1 GType GAdjunctWith

3 | GMkNegProp1 GSubject GQuant GProperties1 GType

4 | GMkPosProp2 GSubject GProperties2 GAdjunctWith

5 | GMkNegProp2 GSubject GProperties2

6 | GMkPosProp3 GSubject GEProperties GAdjunctWith

7 | GMkNegProp3 GSubject GEProperties

8 | GMkPosProp4 GSubject GRelation GExp

9 | GMkNegProp4 GSubject GRelation GExp

10 | GMkPosProp5 GSubject GRel2 GExp

11 | GMkNegProp5 GSubject GRel2 GExp

Recall that:

• GSubject is either a list of expressions, i.e. GExps e.g. x, y and z, 2 ∗ x + y, etc,

or pronoun (GPron) e.g. it and they. (cf. §6.3.1.2 on page 114)

• GQuant is one, two, three, etc. (cf. §6.3.1.4 on page 115)

• GProperties1, GProperties2 and GEProperties are lists of properties. (cf.

6.3.1.7 on page 119). e.g.:

GProperties1: “positive even”, “arbitrary negative odd”, etc.

GProperties2: “positive, even (and | or) coprime”, etc.

GEProperties: “either x is positive, even or coprime”, etc.

• GType is integer, rational, prime, etc. (cf. §6.3.1.5 on page 117)

• GAdjunctWith is an optional noun adjunct. We have three rules for it. e.g. “having

a common element”, “with x > 0” or nothing, etc. (cf. §6.3.2.6 on page 134)
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• GRelation is element, factor, square, etc. (§6.3.1.8 on page 123)

We define a skeleton function mkProp for GProposition. It allows us to build context,

apply linguistic features and translate the Haskell data objects for CLM to something

which can easily be converted into MathAbs on the macro level. We give its pseudo-code

below, followed explanation in subsequent subsections:

(Note that, we simplify the input of these functions by not mentioning the sentence

number and statement type StType in input parameters. But they should be considered

to be accessible with labels sn and stype throughout this chapter.)

1 Function name: mkProp

2 Input: GProposition as prop, Context as cntxt

3 Output: Tuple (Context, [Assignment], [Assignment])

4 Procedure:

5 pattern matching on prop

6 IF prop is (GMkPosProp1 subj quant props1 tp adjnctW)

7 THEN (mkProp1 subj quant props1 tp adjnctW PPosit cntxt)

8

9 ELSE IF prop is (GMkNegProp1 subj quant props1 tp)

10 THEN (mkProp1 subj quant props1 tp GEmptyAdj PNeg cntxt)

11

12 ELSE IF prop is (GMkPosProp2 subj props2 adjnctW)

13 THEN (mkProp2 subj props2 adjnctW PPosit cntxt)

14

15 ....

16

17 ELSE IF prop is (GMkPosProp4 subj rel exp)

18 THEN (mkProp4 subj rel PPosit cntxt)

19

20 ELSE IF prop is (GMkNegProp4 subj rel exp)

21 THEN (mkProp4 subj rel PNeg cntxt)

22

23 ....

As we can see on lines 2–3 above, it takes GProposition, Context and returns a

3–tuple (Context, [Assignment], [Assignment]). The second and third element of

this tuple are lists of Assignment which is a part of MathAbs definition given in §8.3.9

on page 217:

LetF. Assignment ::= "let" [Ident] ":" Type ;

AssumeF. Assignment ::= "assume" Formula ;

As we can see, LetF allows us to declare variables. Ident used in it is simply a string.

Of course [Ident] means the list of identifiers. Type corresponds to the linguistic types

defined in §6.3.1.5 on page 117. Whereas, AssumeF allows to introduce hypothesis. The

first assignment list in 3–tuple (Context, [Assignment], [Assignment]) stores those

variables which are automatically declared. Whereas, the second assignment list stores

explicitly declared variables as well as other formulas. We demonstrate its with an

example:
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Suppose that x + y is a positive integer.

(assume that x and y are not declared, in other words, they are not in the

context)

First [Assignment] = [let x, y : NoType]

Second [Assignment] = [assume (x + y : Z) ∧ positive(x + y)]

Also note that, most of the functions in the host system MathNat returns this output.

Because with it, it is easy to distinguish between variable declarations (with constructor

LetF) and assumptions (with constructor AssumeF). In case when we don’t need this

distinction (in some cases of negative statements, prove statements, deductions and

justifications), we can easily extract formula from these constructs. See this happening

in macro level grammar in §8.3.7 on page 213.

Finally, we access the first constructor of GProposition on line 6 above by pattern

matching which is given in the next sub section, where subj is label for GSubject, quant

is label for GQuant, props1 is label for GProperties1, tp is label for GType and adjnctW

is label for GAdjunctWith.

8.3.1.1 The first rule for propositions

It is represented by the constructors given on lines 2–3 on page 191 in the definition of

data type GProposition. Here are few examples of this rule:

Assumptions:
Suppose that x is a positive even integer.

Let x and y be positive even integers.

Goals:
Prove that x is not a positive even integer.

Deduction:
x and y are two integers.

We conclude that
√

2 is not an even integer.

On lines 6–10 of function mkProp on page 192, we use function mkProp1 for both pos-

itive and negative propositions covered by this rule. The description of these functions

will be lengthy and therefore, one has to bear with us. We define it below:

1 Function name: mkProp1

2 Input: GSubject as subj, GQuant as quant, GProperties1 as props, GType as tp,

3 GAdjunctWith as adjnctW, Polarity as pol, Context as cntxt

4 Output: Tuple (Context, [Assignment], [Assignment])

5 Procedure:

6 pattern matching on subj

7 IF subj is (GMkExpsSubj exps)

8 THEN do following:

9 forms = mkExps2Forms exps

10 makeExpsTypeProps forms props tp adjnctW pol cntxt

11

12 ELSE IF subj is (GMkPronSubj pron)

13 THEN makePronTypeProps props tp adjnctW pol cntxt

As we see above, we do pattern matching to discover two cases of subject, shown in the

subsequent paragraphs.
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When subject is a list of expressions We are referring to lines 7–10 above. We first

define function mkExps2Forms used on line 9 above. It translates the list of expressions

coming for GF to the list of MathAbs formulas, as shown below:

Function name: mkExps2Forms

Input: GExps as exps

Output: [Formula]

Procedure:

forms = translate list exps to list of formulas using BNFC parser

apply semantic check that each element of forms is expression

apply semantic check that all the elements of forms are unique

report error with sn if any of these checks fail //sn = sentence number

return forms

We now define the function makeExpsTypeProps below which is used above in func-

tion mkProp1 on line 13.

1 Function name: makeExpsTypeProps

2 Input: [Formula] as forms, GQuant as quant, GProperties1 as props, GType as tp,

3 GAdjunctWith as adjnctW, Polarity as pol, Context as cntxt

4 Output: Tuple (Context, [Assignment], [Assignment])

5 Procedure:

6 pattern matching on adjnctW

7 IF adjnctW is GEmptyAdj //no adjunct

8 THEN (makeTypeProps forms props tp pol cntxt)

9

10 ELSE IF adjnctW is (GMkCmnRelAdjWith quantA rel) //e.g. no common factor

11 THEN (makeTypePropsCmnRel forms props tp quantA rel cntxt)

12

13 ELSE IF adjnctW is (GMkFunAdjWith eqwithRef) //e.g. with x>o

14 THEN (makeTypePropsFun forms props tp eqwithRef cntxt)

In the above function, we mainly cover three constructors of noun adjuncts described

in §6.3.2.6 on page 134, and given below.

No Noun Adjunct: The first case is given on lines 7–8 above, when no nouns adjunct

is given. Let us work on it first, and therefore, we now define function makeTypeProps

given above:

1 Function name: makeTypeProps

2 Input: [Formula] as forms, GQuant as quant, GProperties1 as props, GType as tp,

3 GAdjunctWith as adjnctW, Polarity as pol, Context as cntxt

4 Output: Tuple (Context, [Assignment], [Assignment])

5 Procedure:

6 pattern matching on props

7 ps = translate GF list property props to Haskell list property //i.e [Property]

8 IF ps is empty //no property is given

9 THEN mkTypeProps forms pol typ [] cntxt

10

11 ELSE do following:

12 IF (chkCollectiveProps forms ps)==True

13 THEN mkTypeProps forms pol typ ps cntxt

14 ELSE return an error that collective property must apply on at least two expressions
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There are two cases in the above function: the first case when we have an empty list

([]) for properties (i.e. the case when no property is given); and the second case when

properties are given. In it, on line 12, we make sure that if any of these properties are

collective then it must be applied to more than one expression. Otherwise we return

an error. Now, let us define mkTypeProps function used on line 10 above, for such

statements (“@” in cntxt@(cv,st,ce) is used as alias. Recall the definition of Context

from page 189):

1 Function name: mkTypeProps

2 Input: [Formula] as forms, GType as tp, [Property] as ps, Polarity as pol,

3 Context as cntxt@(cv,st,ce)

4 Output: Tuple (Context, [Assignment], [Assignment])

5 Procedure:

6 t = transType tp // translates GType to MathAbs type

7 (cv1, autoforms) = declSubVars forms cv

8 vars = extract all those elements of forms who are variables //e.g. x, y, z, etc

9 restforms = extract all the rest //e.g. x+y, x*y, sqrt(2), 4, etc

10

11 autoLet = mkLet autoforms NoType //simply makes "let autoforms:NoType"

12 asgnLet = search vars in cv1 for those already declared

13 IF not found THEN OK ELSE return a warning

14 in both cases compute (mkLet vars t) for asgnLet

15

16 (coll_ps, dist_ps) = separate collective and distributive properties from ps

17

18 cforms = FOR EACH i (1 to length coll_ps)

19 [p i(forms) | p i:coll_ps] //[equal(x,2*y),...]

20 cform = fold cforms with conjunction //equal(x,2*y) AND ...

21

22 dforms = FOR EACH i (1 to length dist_ps)

23 FOR EACH j (1 to length forms)

24 [p i(f j) | p i:ps, f j:forms] //[even(x),even(2*y),positive(x),positive(2*y),...]

25 dform = fold cforms with conjunction //even(x) AND even(2*y) AND positive(x) AND...

26

27 formula = IF pol is PPosit THEN (conjunction of cform and dform)

28 ELSE negation of (conjunction of cform and dform)

29 asgnAssume = mkAssume formula //simply makes "assume formula"

30

31 cv2 = add in cv1 (sn, forms, length forms, QLet, Explicit, t)

32 st1 = add in st (sn, formula, stype)

33 ce = remain unchanged because no equation in this statement

34 cntxt1 = (cv2, st1, ce)

35 return(cntxt1, [autoLet], [asgnLet]++[asgnAssume]) //++ combines two lists

On line 7 above, we use function declSubVars (defined at the end of this section). It

defines sub variables found in an expression given to be declared. For instance, when

we have a statement such as:

“let x be an even integer”

There is no sub variable to consider and the MathAbs would:

“let x : Z assume even(x)”

(If x is not found in the context. Otherwise we’ll give a warning as well along

with this MathAbs). Note the context on lines 31–33. For this statement we’ll add
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the following entries in CV and ST, whereas CE remains unchanged (suppose that this

statement also appears in proof block and its the second sentence of the theorem and

proof):

Sn Object Number Quantification How Declared Type

. . . . . . . . . . . . . . . . . .

2 x 1 QLet Explicit Integer

CV

Sn Logical Formula Statement Type

. . . . . . . . .

2 x : Z Hypothesis

ST

But instead of x, if the superficial expressions a + b and 2 ∗ x + yz are given:

“Suppose that a + b and 2 ∗ x + yz are even integer”

(With “let” we only allow variables, not expressions. Therefore, we

rephrase it.)

Then we need to consider sub expressions first (a, b and 2, x, y, z ). Suppose that a, z

are already defined in the text before and therefore, they are available in the context. But

others are not already defined. Then the function declSubVars, will return a 2-tuple:

(1) context variable (CV) in which these undefined variables are added now, and (2) the

list of these newly defined variables. The function mkTypeProps will use this list to define

them in Assignment: “let b, x, y : NoType”. After that the function mkTypeProps will do

the rest of the job: “assume (a + b : Z) ∧ (2 ∗ x + yz : Z) ∧ even(a + b) ∧ even(2 ∗ x + yz)”.

For this context will be:

Sn Object Number Quantification How Declared Type

. . . . . . . . . . . . . . . . . .

2 b 1 QLet Implicit NoType

2 x, y 2 QLet Implicit NoType

2 a + b, 2 ∗ x + yz 2 QLet Explicit Integer

CV

Sn Logical Formula Statement Type

. . . . . . . . .

2 (b, y, z : NoType) ∧ (a + b : Z) ∧ (2 ∗ x + yz : Z) ∧ even(a + b) ∧
even(2 ∗ x + yz)

Hypothesis

ST

Note in the above example, we separate variables and other expressions to make

“let” and “assume” respectively using the code on lines 8 and 9.

Also note the lines 18–25 above. we separate collective and distributive properties

and make functions by applying them on expressions in a collective and distributive

manner respectively.

Finally, again note the context on lines 31–33. As we have seen, we store the whole

expression in CV table (on line 31) as a convention. It seems a bit naive but there is no

established algorithm to decide which identifier an anaphoric pronoun refers to. In fact

in most of the cases this convention picks up the right referent.
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Function name: declSubVars

Input: [Formula] as forms, CV as cv

Output: 2-Type (CV, [Formula]

Procedure:

procedure stops when the list forms is empty

f = take first element of list forms

vars = get all variables from f

IF (vars is empty) //only literals

THEN recursive call to (declSubVars (forms-f) cv)

ELSE IF (vars==[f]) //no sub variables so it is taken care in mkTypeProps

THEN recursive call to (declSubVars (forms-f) cv)

ELSE do following:

nvars = lookup each element of vars in cv of cntxt and

filter those variables which are not declared

cv1 = add (sn, nvars, (length nvars), QLet, Implicit, NoType) in cv

(final_cv, rem_nvars) = recursive call to (declSubVars (forms-f) cv1)

return (final_cv, nvars ++ rem_nvars)

The second and third constructs of noun adjunct: On lines 11 to 15 in function

makeExpsTypeProps in §8.3.1.1 on page 194, the second and third constructs of

noun adjunct are given. We cover them with functions makeTypePropsCmnRel and

makeTypePropsFun. These functions are essentially defined in the similar way as we

have defined function makeTypeProps. The only difference is the treatment of extra

categories (of the second and third constructs of noun adjunct) in addition. For in-

stance, consider an example for the second rule:

We assume that a and b are non-zero integers with one common factor
︸ ︷︷ ︸

Noun adjunct

.

So we define makeTypePropsCmnRel and makeTypePropsFun in a way that they reuse

the function makeTypeProps. Let us demonstrate it for one function shown below. Note

the use of extra categories GQuant1 and Relation on line 2 and 3, to cover the second

construct of noun adjunct. Note that we do not need polarity for this function. Because

for noun adjuncts, negative statements are not supported (as already reported in §6.3.2.1

on page 128).

1 Function name: makeTypePropsCmnRel

2 Input: [Formula] as forms, GType as tp, [Property] as ps, GQuant1 as quantA,

3 Relation as rel, Context as cntxt (or (cv,st,ce))

4 Output: Tuple (Context, [Assignment], [Assignment])

5 Procedure:

6 ((cv1,st1,ce1), autoAsgn, asgn) = makeTypeProps forms tp ps stype sn cntxt

7 letAsgns = filter_let_statements from asgn (Empty if there is no ‘let’ in asgn)

8 formulas = IF (filter_assume_statements from asgn) is not empty

9 THEN remove_Assume_keyword from it

10 ELSE Empty

11

12 str_rel = mkStrRel rel

13 str_quant = transQuant1 quantA

14 cmnRelF = (transQuant1 quantA)++"_cmn_"++(mkStrRel rel)++"("++forms++")"

15

16 final_formula = IF formulas is empty THEN cmnRelF

17 ELSE (conjunction of formula and cmnRelF)

18
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19 assumeAsgns = [mkAssume final_formula] //simply makes "assume final_formula"

20

21 cv2 = cv1 //it remains unchanged

22 st2 = add in st (sn, final_formula, stype)

23 ce2 = ce1 //remain unchanged because no equation in this statement

24 cntxt2 = (cv2, st2, ce2)

25

26 return(cntxt2, autoAsgn, letAsgns++assumeAsgns)

The function mkStrRel on line 12, takes a relation and return a string:

GFactor -> "Factor", GSquare -> "square", etc.

Whereas, the function transQuant1 on line 13 takes Quant1 and returns string:

GOne -> "one", GTwo -> "two", etc.

Then in the next line we combine both functions with some other string literals to

produce string such as one_cmn_factor(x,y) for “x and y ... with a common factor”,

two_cmn_factor(a,b), etc.

In the if-condition on line 17, only two cases are possible: (1) the list is empty (2) or

the list has one element (i.e. formulas==[formula]). The only usage of the first case

is to encode the non-existence of formula (i.e. when list is empty).

On line 22, note that we ignore st1. Because it is produced by the function

makeTypeProps and therefore, contains half formula. To demonstrate this point, con-

sider again the example given on previous page:

We assume that a and b are non-zero integers with one common factor
︸ ︷︷ ︸

Noun adjunct

.

Result produced by function makeTypeProps:

(Context, [ ] (i.e. empty), [let a, b : Z, assume positive(b)∧ positive(b)])

Result added by function makeTypePropsCmnRel to the rule assume:

∧ one_cmn_factor(a, b)

We omit the implementation of function makeTypePropsFun which covers the third

construct of noun Adjunct (in the function makeExpsTypeProps on page 194).

When subject is a pronoun: On lines 13–14, of function mkProp1 on page 193, we are

in the case when the subject is pronoun. In this case we need to resolve the anaphora

for the pronouns. The procedure is already explained in §2.5.2 on page 19. But now we

define the pseudo-code (i.e. function makePronTypeProps) for this case:

(On line 3, note the data type Polarity. It could have two constructors: PPosit

for positive and PNeg for negative.)

1 Function name: makePronTypeProps

2 Input: GPron as pron, GQuant as quant, GProperties1 as props, GType as tp,

3 GAdjunctWith as adjnctW, Polarity as pol, Context as cntxt(co,st,ce)

4 Output: Tuple (Context, [Assignment], [Assignment])

5 Procedure:
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6 pattern matching on adjnctW

7 IF adjnctW is GEmptyAdj //no adjunct

8 THEN do following:

9 pattern matching on pron

10 IF pron is GIt

11 lookup a latest record in cv with conditions that object is:

12 singular (i.e. 1), declared explicitly, tp==co.record.type (if not type=NoType)

13 IF found (sn, [f], 1, VarQuant, Explicit, type)

14 THEN makeTypeProps [f] props tp pol cntxt

15 ELSE return an error with sn that anaphora is not resolve for ‘it’

16

17 ELSE do following: //GThey

18 lookup latest plural object in cv with conditions that object is:

19 (quant2n quant)== length of object (if quant is given), declared explicitly,

20 tp==co.record.type (if not type=NoType)

21 IF found (sn, forms, length forms, VarQuant, Explicit, type)

22 THEN makeTypeProps forms props tp pol cntxt

23 ELSE return an error with sn that anaphora is not resolve for ‘they’

24

25 ELSE IF adjnctW is (GMkCmnRelAdjWith quantA rel) //e.g. no common factor

26 THEN same procedure that we’ve define on lines 11-20 for function:

27 (makeTypePropsCmnRel forms props tp quantA rel cntxt)

28

29 ELSE IF adjnctW is (GMkFunAdjWith eqwithRef) //e.g. with x>o

30 THEN same procedure that we’ve define on lines 11-20 for function:

31 (makeTypePropsFun forms props tp eqwithRef cntxt)

On line 11, for a statement containing pronoun “it”, we lookup the latest obj of

(sn, obj, 1, any VarQuant, Explicit, type) from CV, with conditions that it is

singular (i.e. 1), it is declared explicitly, it should have the same type as the current

statement and the type should not be NoType. If these conditions are fulfilled, we

replace “it” with that obj. For instance, consider the following example:

a2 is even because it is a multiple of 2.

The pronoun “it” is replaced by a2 and we’ll get:

a2 is even because a2 is a multiple of 2.

In case if the type is mentioned and both types match, such as:

Let x be an integer. Assume that it is a positive integer.

The pronoun “it” is replaced by x. But we’ll send a warning that x is being declared

twice. However, consider the following case when the types are different:

Let A be a set. Assume that it is a positive integer.

The pronoun “it” will not be replaced by A, and we lookup in the records previous to

this in the context (in CV).
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For pronoun “they” we do following:

1. If no quantity (e.g. two, three, etc) is mentioned in the statement, we replace

pronoun “they” with the latest [obj1,...,objn] of (sn, [obj1, ..., objn],

n (i.e. length of list obj), VarQuant, Explicit, type) from CV with a

conditions that it is plural, declared explicitly, it has the same type as the current

statement and the type should not be NoType.

2. Otherwise, if there is a quantity Q mentioned in the statement then we replace

this pronoun with the latest [obj1, ..., objn] of (sn, [obj1, ..., objn], n,

VarQuant, Explicit, type) from CV with the above mentioned conditions as

well as one extra condition that Q = n.

To avoid being too long, we omit the implementation of the remaining four rules of

GProposition (on page 191). But see the appendix A on page 239 for these rules being

in action.

8.3.2 Equation with Reference

The category EqWithRef given in §6.3.5 on page 142 becomes GEqWithRef in Haskell,

and its rules become the constructors, as given below:

data GEqWithRef = GMkEqWithRef GEq GRef

Here are few examples of equations with references, where (a), 4.1 are references:

We assume that (x + y)2 = x2 + y2 + 2 ∗ x ∗ y – (a).

Squaring both sides yields that 2 ∗ b2 = a2 4.1.

We get that 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2 by substituting the value of a into

equation 4.1

We now define the function mkEqWithRef in pseudo-code:

1 Function name: mkEqWithRef

2 Input: GEq as eq, GRef as ref, Context as cntxt(cv,st,ce)

3 Output: Tuple (Context, [Assignment], [Assignment])

4 Procedure:

5 equation = parse eq with BNFC parser

6 check that an equation is given (semantic check)

7 vars = get_all_variables_uniquely equation //e.g. 2*x+y=2*x returns [x,y]

8 (cv1, autovars) = declSubVars vars cv

9 left_eq = left side of equation

10 lookup for a latest (sn, obj, 1, VarQuant, Explicit, type) with condition that left_eq==obj

11 t = if such record found then type else NoType

12 cv2 = add (sn, [left_eq], 1, QLet, Explicit, t) in cv1

13 st1 = add (sn, equation, stype) in st

14 ce1 = add (sn, equation, transRef ref) in ce

15 cntxt1 = (cv2, st1, ce1)

16 return (cntxt1, [mkLet autovars], [mkAssume equation])

On line 9, the choice of taking the left side of an equation to store for anaphoric resolution

is a bit naive. We follow this convention because of the reason that there is no established
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algorithm to decide which identifier an anaphoric pronoun refers to (cf. §3.3.4.1 on page

51). In fact taking the left side as a convention turns out to be a good decision for

many equations. Also note on line 12 that we always have a single element as a list of

referents. Here is the context for two examples:

We assume that (x + y)2 = x2 + y2 + 2 ∗ x ∗ y – (a).

(Consider x, y already available in the context as QLet and it is the 4th

sentence.)

Sn Object Number Quantification How Declared Type

. . . . . . . . . . . . . . . . . .

4 (x + y)2 1 QLet Explicit NoType

CV

But, if we consider x, y to be already available in the context, but x as QLet and y as,

let us say QExists, then the quantification in CV would be QUndecided. We give more

details at the end of this subsection.

Sn Logical Formula Statement Type

. . . . . . . . .

4 (x + y)2 = x2 + y2 + 2 ∗ x ∗ y Hypothesis

ST

Sn Equation Reference

. . . . . . . . .

4 (x + y)2 = x2 + y2 + 2 ∗ x ∗ y a

CE

And if we have a pronoun “it ” after this sentence, then pronoun “it” refers to (x+y)2:

We assume that (x + y)2 = x2 + y2 + 2 ∗ x ∗ y – (a). It is even.

Discussion on Quantification (VarQuant): The constructor QUndecided does not play

any role currently; the others (QLet, QExists, QUniversal) do. The data type

VarQuant, allows us to see if a variable is already defined or not. If it is defined then

we can see how it was quantified. This information is useful in a situation, that can be

better demonstrated by a superficial example:

Theorem. ...Then there exist two integers u and v such that ....

Proof. ... Assume that u and v are positive. ...

The variables u, v in the theorem are existentially quantified and bound. But of

course, they are available as anaphoric referents in the later statements. When u, v

from proof are analyzed, we lookup for them in the context. Because they are found as

existential variables, we send a warning regarding it (i.e. multiple declaration for same

variable names). However, u, v will be defined as: “let u, v : NoType assume positive(u)

∧ positive(v)”. But if we found this statement instead:

Theorem. ...Then there exist two integers u and v such that ....

Proof. ... Assume that they are positive. ...

Again We’ll send a warning but produce: “let u, v : NoType” assume positive(u) ∧
positive(v).
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8.3.3 Existential Statements

The category PropExist given in §6.3.3 on page 136 becomes GPropExist in Haskell,

and its rules become the constructors, as given below:

1 data GPropExist =

2 GMkPosExist1 GQuant GProperties1 GType GExps GEquations

3 | GMkNegExist1 GQuant GProperties1 GType GExps GEquations

4 | GMkPosExist2 GProperties1 GExps GEquations

5 | GMkNegExist2 GProperties1 GExps GEquations

We now define the function mkExistsProp. As usual, it allows us to build context,

apply linguistic features and translate the Haskell data objects for CLM to something

which can easily be converted into MathAbs on the macro level. The first rule of

existential statements is covered by lines 2–3 above, and the second, rule is covered by

lines 4–5 above.

We now define the skeleton function function mkExistsProp:

1 Function name: mkExistsProp

2 Input: GPropExist as exist, Context as cntxt

3 Output: Tuple (Context, [Assignment], [Assignment])

4 Procedure:

5 pattern matching on exist

6 IF exist is (GMkPosExist1 quant props1 tp exps equations)

7 THEN (mkExistsProp1 quant props1 tp exps equations PPosit cntxt)

8

9 ELSE IF exist is (GMkNegExist1 quant props1 tp exps equations)

10 THEN (mkExistsProp1 quant props1 tp exps equations PNeg cntxt)

11

12 ELSE IF exist is (GMkPosExist2 props1 exps equations)

13 THEN (mkExistsProp2 quant props1 exps equations PPosit cntxt)

14

15 ELSE IF exist is (GMkNegExist2 props1 exps equations)

16 THEN (mkExistsProp2 quant props1 exps equations PNeg cntxt)

Regarding the translation of existential statements into MathAbs, it is already dis-

cussed in §4.6. We will use those rules in the pseudo-code. It can also be observed

from §4.6 that we sometimes produce similar output for different statements (based on

polarity and statement type). Therefore, let us recap and see what parts of code could

be shared:

1. ∃ x : TP (x) as assumption: let x : T assume P (x) (quantification of x be QLet).

2. ¬(∃ x : TP (x)) as assumption: assume ∀ x : T¬P (x) (quantification of x be

QUniv).

3. ∃ x : TP (x) as goal: show ∃ x : TP (x) (quantification of x be QExists).

4. ¬(∃ x : TP (x)) as goal: We have two possibilities:

(a) let x : T assume ¬P (x) (Not possible because of the principle that a negative

statement cannot introduce a variable).

(b) assume ∀ x : T¬P (x) (quantification of x be QUniv).
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5. ∃ x : TP (x) as deduction: deduce ∃ x : TP (x) (quantification of x be QLet).

6. ¬(∃ x : TP (x)) as deduction: deduce ∀ x : T¬P (x) (quantification of x be QUniv).

So we would need three function: one for bullets 2, 4 and 6 (let us name it

mkForallP), second function for bullets 3 and 5 (let us name it mkExistsP), and third for

bullet 1 (let us name it mkLetAssumeP). They will be define and used in the subsequent

pages.

The first rule: It is covered on lines 6–7 and 9–10 above. Here is an example:

There exist three even integers x, y and z such that x ∗ a > b, y ∗ a > b

and z ∗ a > b.

We now define the skeleton function mkExistsProp1 for it. In it, we com-

bine the procedures defined for the first rule of simple propositions (cf. function

makekExpsTypeProps of §8.3.1.1 on page 194) and the equations (cf. §8.3.2). In the

following function, we first define existential variables with type and then apply it to a

list of equations.

On line 8 below, this semantic check is necessary because in existential formula only

variables should be allowed. For instance, it is fine to say ∃x : T(...); but it is illegal to

say: “∃ x + y : T (...)”, “∃ 3 : T (...)”, etc.

In contrast to the category ‘equation with reference’ (§8.3.2 on page 200), we have

to deal with a list of equations here. It is covered on lines 10–15 below. We now give

the example given on page 203 as an assumption:

Assume that there exist three even integers x, y and z such that x∗a > b,

y ∗ a > b and z ∗ a > b.

(Consider it to be the third sentence, and a being already defined as integer

with “let”.)

We get [x, y, z] in the list forms (on line 6 below). we get the list ps containing one

property in it: [even] (on line 7). Then on line 8, we check that all elements of list

[x, y, z] are variables, which is true.

On line 10, we get the list_eqs containing equations: [x∗a > b, y ∗a > b, z ∗a > b].

On line 11, we fold it with conjunctions, making it:

(x ∗ a > b) ∧ (y ∗ a > b) ∧ (z ∗ a > b).

On line 12, we get all the unique variables from equation_f, i.e. the above equation

that we have just created. These variables are: [x, a, b, y, z] (we have named this list

all_vars in the code below). On line 13, we subtract those variables from the list

all_vars which we are going to be declared as existentially quantified. We name this

subtracted list vars ([a, b]), and we will declare those variables automatically which are

not in the context (i.e. b) with “let b : NoType”. Also we add it to the context (line 14):

Sn Object Number Quantification How Declared Type

. . . . . . . . . . . . . . . . . .

3 b 1 QLet Implicit NoType

CV
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After that, as mentioned on line 15, from the above mentioned list equations (i.e.

[x ∗ a > b, y ∗ a > b, z ∗ a > b]), we extract their left sides and add them (i.e. [x ∗ a,

y ∗ a, z ∗ a]) to left_eqs. The remaining explanation is given after the functions:

1 Function name: mkExistsProp1

2 Input: GQuant as quant, GProperties1 as props, GType as tp, GExps as exps,

3 GEquations as eqs, Context as cntxt(cv,st,ce)

4 Output: Tuple (Context, [Assignment], [Assignment])

5 Procedure:

6 forms = mkExps2Forms exps cn

7 ps = translate props to normal list property //i.e [Property]

8 check that all elements of forms are variables (otherwise report error)

9

10 list_eqs = parse the lists eqs with BNFC parser

11 equation_f= fold list_eqs with conjunction or disjunction (determined by parse tree)

12 all_vars = get_all_variables_uniquely equation_f //e.g. 2*x+y=2*x returns [x,y]

13 vars = subtract elements of forms from all_vars

14 (cv1, autovars) = declSubVars vars cv

15 left_eqs = left sides of list_eqs

16

17 t = translate tp to MathAbs type

18

19 IF (chkCollectiveProps forms ps)==False

20 THEN return error that collective property must apply on at least two expressions

21 ELSE

22 do following:

23 IF stype==Asm AND pol==PPosit THEN

24 mkLetAssumeP equation_f forms t cntxt

25

26 ELSE IF stype==Asm AND pol==PNeg THEN

27 mkForallP equation_f forms t cntxt

28

29 ELSE IF stype==(Prv or Justif) AND pol==PPosit THEN

30 mkExistsP equation_f forms t cntxt

31

32 ELSE IF stype==(Prv or Justif) AND pol==PNeg THEN

33 mkForallP equation_f forms t cntxt

34

35 ELSE IF stype==Ddc AND pol==PPosit THEN

36 mkExistsP equation_f forms t cntxt

37

38 ELSE IF stype==Ddc AND pol==PNeg THEN

39 mkForallP equation_f forms t cntxt

We code the most important part of the above function in on lines 21–39 above. It

forms quantification and context. For our running example, we fall in the case described

on line 23, and therefore, handled by the function mkLetAssumeP given below:

1 Function name: mkLetAssumeP

2 Input: Formula as equation_f, [Formula] as forms, Type as t, Context as cntxt(cv,st,ce)

3 Output: Tuple (Context, [Assignment], [Assignment])

4 Procedure:

5 mathabs_forms = make MathAbs [let forms:t, assume equation_f]

6 logical_form = (forms:t => equation_f)

7 search forms in cv (if any one found then send warning of variable name reuse)

8 cv2 = add in cv1 (sn, forms, length forms, QLet, Explicit, t)
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9 lookup each element of left_eqs in cv2 for quantification and type:

10 IF they all have same quantification THEN assign it to eqs_q

11 ELSE assign QUndecided to eqs_q

12 IF they all have same type THEN assign it to eqs_t

13 ELSE assign NoType to eqs_t

14 cv3 = add in cv2 (sn, left_eqs, length left_eqs, eqs_q, Explicit, eqs_t)

15 st1 = add in st (sn, logical_form, stype)

16 FOR EACH eq : list_eqs

17 ce_n = add in ce one by one (sn, eq, no reference)

18 cntxt1 = (cv1, st1, ce_n)

19 return (cntxt1, autovars, mathabs_forms)

On line 5, we make output for our example:

[let x, y, z : Z, assume (x ∗ a > b) ∧ (y ∗ a > b) ∧ (z ∗ a > b)].

On line 6, the logical formula is:

“(b : NoType ∧ x, y, z : Z) ⇒ ((x ∗ a > b) ∧ (y ∗ a > b) ∧ (z ∗ a > b))”.

On line 7, we try to find x, y, z in the context cv, to send a warning of variable reuse

just in case they are already declared before. After that on line 8, we add then in the

context cv, as shown below:

Sn Object Number Quantification How Declared Type

. . . . . . . . . . . . . . . . . .

3 b 1 QLet Implicit NoType

3 x, y, z 3 QExists Explicit Integer

CV

On lines 9–13 above, we lookup each of [x∗a, y ∗a, z ∗a] in the context cv, and assign

QUndecided to eqs_q (because these elements do not have the same quantification); and

Integer to eqs_t (because they have the same type “integer”). Then of course, on line

14–15, we add them in the context (i.e. in CV, ST and CE):

Sn Object Number Quantification How Declared Type

. . . . . . . . . . . . . . . . . .

3 b 1 QLet Implicit NoType

3 x, y, z 3 QExists Explicit Integer

3 x ∗ a, y ∗ a, z ∗ a 3 QUndecided Explicit Integer

CV

Sn Logical Formula Statement Type

. . . . . . . . .

3 (b : NoType ∧ x, y, z : Z) ⇒ ((x ∗ a > b) ∧ (y ∗ a > b) ∧ (z ∗ a > b)) Hypothesis

ST

Sn Equation Reference

. . . . . . . . .

3 x ∗ a > b no

3 y ∗ a > b no

3 z ∗ a > b no

CE
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We give below the pseudo-code of the function mkForallP (without explanation and

examples), which is used three times in our main function mkExistsProp1 which we

define for the first rule.

1 Function name: mkForallP

2 Input: Formula as equation_f, [Formula] as forms, Type as t, StType as stype,

3 Position as sn, Context as cntxt(cv,st,ce)

4 Output: Tuple (Context, [Assignment], [Assignment])

5 Procedure:

6 mathabs_forms = make MathAbs [assume ∀forms:t (equation_f)]

7 logical_form = ∀forms:t (equation_f)

8 search forms in cv (if any one found then send warning of variable name reuse)

9 cv2 = add in cv1 (sn, forms, length forms, QUniv, Explicit, t)

10

11 lookup each element of left_eqs in cv2 for quantification and type:

12 IF they all have same quantification THEN assign it to eqs_q

13 ELSE assign QUndecided to eqs_q

14 IF they all have same type THEN assign it to eqs_t

15 ELSE assign NoType to eqs_t

16 cv3 = add in cv2 (sn, left_eqs, length left_eqs, eqs_q, Explicit, eqs_t)

17 st1 = add in st (sn, logical_form, stype)

18 FOR EACH eq : list_eqs

19 ce_n = add in ce one by one (sn, eq, no reference)

20 cntxt1 = (cv1, st1, ce_n)

21 return (cntxt1, autovars, mathabs_forms)

We omit the implementation of function mkExistsP and other rules due to space

limitations.

Take Statement as Proof Statement The proof statements containing the category

TakeStmnt in given is bullet 1 of §7.2.1.6 on page 166. Instead of translating it to

MathAbs, our aim is to show the use of constructor QExists of Quantification. We

start by an example:

1. We can choose u := 1 and v := 0.

This statement suggests that there must be an existential statement appeared in the

theorem as a goal (cf. bullet 3 of §4.6 on page 72). For instance:

2. Prove that there exist two integers u and v such that u ∗ n + v ∗ m =

gcd(n, m).

(Such theorem and its proof is already given in Chapters 4 (figure 4.4 on page 77)

and 7 (§7.2.1.7 on page 167). See more in Appendix A on page 248 and page 251).

When we encounter the second statement, the variables u, v are recorded with the

construct QExists in the Quantification field. Now, when we encounter the first

statement later in the text, we lookup these variables in the context CV, and impose

the condition that these variables in the first statement also be quantified with the

constructor QExists. Otherwise we treat them as usual let variables.
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8.3.4 Statement and its lists

We combine propositions, equations (with references), relational and existential state-

ments into one category called Statement as shown in §6.3.6 on page 143. In Haskell

Statement becomes:

1 data GStatement =

2 GMkPropStmnt GProposition //covered in §8.3.1 on page 191

3 | GMkExistStmnt GPropExist //covered in §8.3.3 on page 202

4 | GMkRelStmnt GPropRel //omitted

5 | GMkEqRefStmnt GEqWithRef //covered in §8.3.2 on page 200

We simply define a function with combines all of them together:

1 Function name: mkStmnt

2 Input: GStatement as stmnt, Context as cntxt

3 Output: Tuple (Context, [Assignment], [Assignment])

4 Procedure:

5 pattern matching on stmnt

6 IF stmnt is (GMkPropStmnt prop) //GProposition as prop

7 THEN mkProp prop cntxt

8 ELSE IF stmnt is (GMkExistStmnt eprop) //GPropExist as eprop

9 THEN mkExistsProp eprop cntxt

10 ELSE IF stmnt is (GMkEqRefStmnt eq) //GEqWithRef as eq

11 THEN mkEqWithRef eq contxt

12 ELSE IF ....

13 THEN ....

In a similar way, we define function for LetStatement (but reusing as much code as we

can).

We now define a function mkStmnts for list of statements (Statements). It will be

extensively used in the macro level grammar (§8.3.7) for the list of statements. Recall

that in the GF grammar, we make such lists in two parts: the part containing n − 1

elements separated by comma (partial list, in case of Statement it is PStatements);

and the part containing nth element. Both are joined by conjunction or disjunction

(using constructs). However, we do not go into the technicalities of partial statements

(PStatements) and how we discover if it is a list separated by conjunction or disjunction

(or exclusive disjunction in case of EStatements, §6.3.6.2 on page 145). We simply

consider it to be done, as shown on lines 5–6 below.

On lines 7–10, we apply mkStmnt to each element of Statements, and combine the

results in a way that:

1. The MathAbs formulas for these elements are nicely folded on conjunction or

disjunction (or exclusive disjunction in case of EStatements, See §6.3.6.2 on page

145).

2. Context is properly updated from first statement to the final statement. Note that

the ST in context should not be updated for each statement in the list Statements.

Instead, as shown on line 13, we add formula produced on line 11.

1 Function name: mkStmnts

2 Input: GStatements as stmnts, Context as cntxt
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3 Output: Tuple (Context, [Assignment], [Assignment])

4 Procedure:

5 list_stmnts = convert stmnts to normal Haskell list

6 logical_op = extract the logical operator from stmnts

7 FOR EACH stmnt i:list_stmnts

8 ((cv i+1,st i+1,ce i+1), autoAsign i, asign i) = mkStmnt stmnt i cntxt i

9 let i = extract all Let rules from asign i

10 formula i = extract formulas attached to rule Assume from asign i

11 formula = fold formula i with logical_op

12

13 final_st = add in st (sn, formula, stype)

14 final_context = (final cv i+1, final_st, final ce i+1)

15

16 return (final_context, autoAsign i++let i, [mkAssume formula])

We now give an example and demonstrate this procedure on it:

We conclude that m and r are coprime
︸ ︷︷ ︸

Statement 1

, and r < m
︸ ︷︷ ︸

Statement 2

.

Suppose that m, r are already declared in the context as integers. Of course the

key phrase “we conclude that” belongs to the proof block and it is not the part of

Statements. The following context and MathAbs will be formed for it:

Sn Object Number Quantification How Declared Type

. . . . . . . . . . . . . . . . . .

n m, r 2 QLet Explicit Integer

n r 1 QLet Explicit Integer

CV

Sn Logical Formula Statement Type

. . . . . . . . .

n coprime(m, r) ∧ (r < m) Deduction

ST

Sn Equation Reference

. . . . . . . . .

n r < m no

CE

MathAbs: assume coprime(m, r) ∧ (r < m)

8.3.5 Conditional Statement

As mentioned in §6.3.7 on page 146, conditional statements takes two list of statements,

as show below in Haskell data type:

data GPropIfthen = GMkPropIfthen GStatements GStatements

The function we define, simply go through both GStatements and record the occurrence

of each object(s) for CV. For the equations occurring in these lists of statements are stored

in CE as usual. It is ST, which will different result. If we have the logical formula A

for the first list of statement (i.e. Statementsi folded by conjunction, disjunction, or
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exclusive disjunction) and the logical formula B for the second list (i.e. Statementsj

folded by conjunction, disjunction, or exclusive disjunction), then logical formula for

conditional statement is A ⇒ B. But MathAbs would be “assume A deduce B”. (or

assume A deduce B based on the block):

1 Function name: mkPropIfthen

2 Input: GStatements as cnds, GStatements as rsults, Context as cntxt(cv,st,ce)

3 Output: Tuple (Context, [Assignment], [Assignment])

4 Procedure:

5 (cntxt1, auto1, asign1) = mkStmnts cnds cntxt

6 ((cv2,st2,ce2), auto2, asign2) = mkStmnts rsults cntxt1

7

8 formula_cnds = extract formula from asign1

9 formula_rsults = extract formula from asign2

10 logical_formula = formula_cnds => formula_rsults

11

12 final_st = add in st (sn, logical_formula, stype)

13 final_context = (cv2, final_st, ce2)

14

15 return (final_context, auto1++auto2, asign1++[mkDeduce formula_rsults])

Consider the following example:

If x and y are two even integers then x + y is even.

Assume that x, y are not declared by let before. Otherwise we must return

a warning as well.

The context will be following:

Sn Object Number Quantification How Declared Type

. . . . . . . . . . . . . . . . . .

n x, y 2 QLet Explicit Integer

n x + y 1 QLet Explicit NoType

CV

Sn Logical Formula Statement Type

. . . . . . . . .

n (x, y : Z ∧ even(x) ∧ even(y)) ⇒ even(x + y) Deduction

ST

Nothing to add in CE.

MathAbs: let x, y : Z assume even(x) ∧ even(y) deduce even(x + y)

Consider another example:

If a = 2 ∗ c, and 4 ∗ c2 = 2 ∗ b2, and 2 ∗ c2 = b2 then b is even.

Consider a, b, c to be declared as integers by let.

The context will be following:
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Sn Object Number Quantification How Declared Type

. . . . . . . . . . . . . . . . . .

n a 1 QLet Explicit Integer

n 4 ∗ c2 1 QLet Explicit NoType

n 2 ∗ c2 1 QLet Explicit NoType

n b 1 QLet Explicit Integer

CV

Sn Logical Formula Statement Type

. . . . . . . . .

n ((a = 2 ∗ c) ∧ (4 ∗ c2 = 2 ∗ b2) ∧ (2 ∗ c2 = b2)) ⇒ even(b) Deduction

ST

Sn Equation Reference

. . . . . . . . .

n a = 2 ∗ c no

n 4 ∗ c2 = 2 ∗ b2 no

n 2 ∗ c2 = b2 no

CE

MathAbs: assume (a = 2∗c)∧(4∗c2 = 2∗b2)∧(2∗c2 = b2) deduce even(b)

8.3.6 Justifications

Justifications are defined in §6.3.9 on page 147. In Haskell it becomes the following data

type:

1 data GJustification =

2 GMkStmntJust GStatement

3 | GMkOperJust GOperation

4 | GMkDefJust GDefinition

5 | GMkAnphrJust GAnaphor

6 | GMkDefRefJust GDefReference

Similar to Statement and its list Statements, we have the list Justifications (defined

on page 152). Furthermore, we define function mkJustif and mkJustifs respectively for

these data objects. We omit the implementation of function mkJustifs, but mkJustif

is defined as shown below. But in its output the last element of tuple is Hint instead

of [Assignment]. Hint is first defined on page 64, as part of MathAbs proof language.

Like [Assignment], Hint is also a list, but it terminates with construct NoHint, as

shown below in the LBNF format grammar:

FormHt. Hint ::= "by" "form" Formula Hint ;

OperHt. Hint ::= "by" "oper" Ident Hint ;

....

NoHint. Hint ::= ; //empty

The first constructor of justification is formed by statements (Statement). Therefore,

we reuse the function mkStmnt as shown on line 8 below. Consider the following example,

in which justification is formed by a statement:

“We conclude that a is even because a2 is even
︸ ︷︷ ︸

Justification

.”
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Suppose that a is already declared as integer. Context and automatically defined

variables (which is none for our example) for justification remain the same (except that

the statement type stype is Justif now). The only difference is the last element of the

output tuple. It is a Hint now. So on line 9, we get the formulas from [Assignment],

and on lines 10–11, we make Hint from it. For this example, it is “FormHt even(a2)

NoHint”. Consider another example translation: On line 9, in case we input “[let v : T,

assume A]”, the function will return [v : T, A], and the hint would be “FormHt v : T

(FormHt A NoHint)”.

1 Function name: mkJustif

2 Input: GJustification as justif, Context as cntxt

3 Output: Tuple (Context, [Assignment], Hint)

4 Procedure:

5 pattern match on justif

6 IF justif is (GMkStmntJust stmnt) //GStatement as stmnt

7 THEN

8 (cntxt1, auto1, asgn1) = mkStmnt stmnt cntxt (with stype=Justif)

9 hintfs = get_formulas_from_Asgns asgn1

10 FOR hintf:hintfs (1 to n)

11 hint = FormHt hintf 1(FormHt hintf 2 ... (FormHt hintf n NoHint)))

12 return (cntxt1, auto1, hint)

13

14 ELSE IF justif is (GMkOperJust oper) //GOperation as oper

15 THEN transOperation oper cntxt

16

17 ELSE IF justif is (GMkDefJust df) //GDefinition as df

18 THEN return (cntxt, [], DefHt (transDef df) NoHint)

19

20 ELSE IF justif is (....)

21 THEN ....

22

23 ...

Coming back to the example sentence given above, we produce following context

(nothing to add in CE, therefore, it is omitted) and MathAbs for it:

Sn Object Number Quantification How Declared Type

. . . . . . . . . . . . . . . . . .

n a 1 QLet Explicit Integer

n a2 1 QLet Explicit NoType

CV

Sn Logical Formula Statement Type

. . . . . . . . .

n even(a) Deduction

n even(a2) Justification

ST

MathAbs: deduce even(a) by formula even(a2)

(Of course, “by formula even(a2)” is the linearization of FormHt even(a2)

NoHint)

This brings us to the explanation of other constructors starting from line 14 in the

function above. These constructors are briefly explained in the following subsections:
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8.3.6.1 Operations as justifications:

Operations as justifications (i.e. Operation) is in given §6.3.9.1 on page 148.

The first rule for operational justifications is formed by Rel1. For instance,

Squaring at both sides
︸ ︷︷ ︸

Operation as justification

, we get (a + b)2 = 4 ∗ c2

Clearly, there is nothing to be saved in the context for this justification. First, we

apply a semantic check that there is an equation somewhere behind this sentence. Then

finally we produce the MathAbs:

MathAbs: deduce (a + b)2 = 4 ∗ c2 by oper squaring_both_sides(latest equation

before this sentence)

The second rule for operational justifications is formed by Rel2 and Exp. For instance,

Multiplying both sides by 2
︸ ︷︷ ︸

Operation as justification

yields the result that b2 = 2 ∗ c2.

The literal 2 is saved in CV for the justification. Again, first, we apply a semantic

check that there is an equation somewhere behind this sentence. Then finally we produce

the MathAbs:

MathAbs: deduce b2 = 2 ∗ c2 by oper multiplying_by_2(latest equation before this

sentence)

We omit the rest of rules. See Appendix A for their examples.

8.3.6.2 Anaphoric Reference

It described in §2.5.2.2 on page 22. Later, as mentioned in §6.3.9.2, typical patterns for

anaphoric references supported by CLM are:

1. (the | our) (first | last) (statement | hypothesis | deduction | equation | justifica-

tion).

2. theorem 24, theorem, axiom, definition, etc.

References given in bullet 1 are solved; but reference to theorem, definition, axiom,

etc, mentioned in bullet 2 are left as it is.

We use CV and CE tables, to know the (first | last) hypothesis, deduction, conclusion,

equation, justification, etc. For instance, consider the following example:

Since a2 and b2 are non zero integers, we conclude that a2 is even. By the

last deduction, a is even.

Here “last deduction” refers to “even(a2)”. See appendix A on page 239 for more

examples.
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The rest of categories

To avoid being too long, we omit the implementation of the rest of categories defined

in Chapter 6. However, with examples given in appendix A on page 239, it seems to be

easy to imagine this implementation. Of course, the MathNat source code is also made

available for interested readers.

8.3.7 The Macro Level Grammar

The Math Document

The macro level grammar is defined in Chapter 7 on page 155. As stated before, the

MathNat document in CLM is a collection of axioms, definitions, theorems and proofs,

structured by specific keywords (i.e. Axiom, Definition, Theorem and Proof).

With a simple LBNF grammar, we describe a list of theorems and their proofs, list of

axioms and a list of definitions. These lists are given to the host system MathNat, where

(as already stated and defined for micro level grammar) we apply specialized functions

for context building, block structure building, linguistic support and the translation

to MathAbs. Because these procedures are somewhat interleaved. Therefore, we have

already explained them all in one to save time, space and effort (because going through

the abstract syntax several time is expensive).

Let us concentrate on the function for a theorem and its proof for the moment,

which is of course applied on a list of theorems and their proofs with higher order map

function. For each block structure, let us say, theorem and its proof, we start the analysis

with an empty Context which evolves while examining the AST of each sentence. This

procedure is repeated until we reach the end of the text in that block.

8.3.8 Theorem

Basically, we have already build most of the machinery for linguistic features and de-

notational semantics. In the blocks such theorem and proof we just have to put things

together.

We start here the context building procedure with theorem block. Similar to the

data type GPrfStmnts given in §8.1.2 on page 181, the theorem block is represented

by the data type GThmStmnts. Analogous to its GF code (where it is simply a list of

theorem statements in §7.2.2 on page 170), which is defined as:

data GThmStmnts =

GBaseThmStmnts GThmStmnt

| GConsThmStmnts GThmStmnt GThmStmnts

Similarly, GThmStmnt is formed from the corresponding GF code given in §7.2.2 on

page 170, as shown below. Note that each constructor above correspond to a GF function

defined between §7.2.2.1 to §7.2.2.3 (pp. 170–173).

data GThmStmnt =

GMkThmSymb GSymbFormula

| GThmProves GStatements GSubordinate

| GThmEProves GEStatements GSubordinate

...
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We now describe the function buildThmStmnts. Basically its a map function which

applies function buildThmStmnt on the the list of theorem statements. Therefore, it

takes the list GThmStmnts and Context, and returns a 2–tuple (Context, Theorem), as

shown below in the pseudo-code.

Function name: buildThmStmnts

Input: GThmStmnts as thmstmnts, Context as cntxt

Output: Tuple (Context, Theorem)

Procedure:

pattern matching on thmstmnts

IF thmstmnts is (GBaseThmStmnts thmstmnt)

THEN

(cntxt1, thm) = buildThmStmnt thmstmnt cntxt

return (cntxt1, thm)

ELSE IF thmstmnts is (GConsThmStmnts thmstmnt thmstmnts)

THEN

(cntxt1, thm) = buildThmStmnt thmstmnt cntxt

(cntxt2, thms) = buildThmStmnts thmstmnts cntxt1

updated_thm = update thm with thms

return (cntxt2, updated_thm)

As we can see, its main purpose is to update theorem (Theorem), which is finally returned

in the output above. It is the MathAbs theorem whose definition is given in §4.3 on

page 61. We can define it as LBNF grammar as shown below:

TAssgn. Theorem ::= Assignment Theorem ;

TShow. Theorem ::= "show" Formula ;

TEnd. Theorem ::= "---" ;

TFullStop. Theorem ::= "." Theorem ;

As we can see, Theorem above is also a list, which terminates on two constructs:

TShow and TEnd. TShow corresponds to the theorem statements which we ought to

prove (given in §7.2.2.1). Whereas, TEnd is not a part of the definition of Theorem given

in §4.3. Instead, it is just a placeholder in this tree. It is removed from MathAbs at

the final step of translation. The construct TAssgn corresponds to the assumptions in

the theorem (given in §7.2.2.2). The construct Assignment used in it is already defined

on page 192. It makes “let” and “assume” in MathAbs theorem and Proof. Finally, the

construct Formula used in these other constructs is defined in figure 6.2 on page 109.

The above LBNF code for Theorem corresponds to the following abstract syntax,

which is of course accessible in the host system MathNat.

data Theorem = TAssgn Assignment Theorem

| TShow Formula | TEnd | TFullStop Theorem

As evident from the pseudo-code of function buildThmStmnts, the main function for

building context for theorem statements is buildThmStmnt, which we define below. It is

a long function, covering all theorem statements defined in §7.2.2 by pattern matching.

1 Function name: buildThmStmnt

2 Input: GThmStmnt as thm, Context as cntxt
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3 Output: Tuple (Context, Theorem)

4 Procedure:

5 pattern matching on thm

6 IF thm is (GMkThmSymb symbForm) //first rule for goal in theorem

7 THEN (procedure_first_rule_goal_thm symbForm sn cntxt)

8

9 ELSE IF thm is (GThmProvesR2 stmnts subord) //second rule for goal

10 THEN (procedure_second_rule_goal_thm stmnts subord cntxt)

11

12 ELSE IF thm is (GThmProvesR3 eitherStmnts subord) //third rule for goal

13 THEN (procedure_third_rule_goal_thm eitherStmnts subord cntxt)

14 ....

15 ELSE IF thm is (GMkThmLet letStmnts subord) //first rule for assumption

16 THEN (procedure_first_rule_assume_thm stmnts subord cntxt)

17

18 ELSE IF thm is (GThereforeThmSt thm1) //rule for miscellaneous key phrases

19 THEN (procedure_rule_misc_keyphrases_thm thm1 cntxt)

20 ....

For the following sections and subsections, assume that each of them are accessed

by pattern matching in the skeleton function buildThmStmnts defined on page 215.

Therefore, these forthcoming sections and subsections should be treated as procedures,

and each returns a tuple (Context, Theorem).

8.3.8.1 Statement to Prove

The first rule for goal in theorem As we have seen in §7.2.2.1 on page 170, this rule is

directly formed by symbolic formulas. We omit its implementation and directly jump

to the following example to explain it:

The formula: ∀(x, y : Z) (even(x) ∧ even(y) ⇒ even(x + y)), for statement:

“if x and y are two even integers then x + y is even”

In theorem, it should be the only statement:

Theorem. show ∀(x, y : Z) (even(x) ∧ even(y) ⇒ even(x + y))

This formula in MathAbs remains unchanged:

Theorem. show ∀(x, y : Z) (even(x) ∧ even(y) ⇒ even(x + y))

And its context would be following. Note that in CV, only quantified variables are

added. Even nested quantifiers including those which are deep inside the formula.

Sn Object Number Quantification How Declared Type

1 x, y 2 QUniv Explicit Integer

CV

Sn Logical Formula Statement Type

1 ∀(x, y : Z) (even(x) ∧ even(y) ⇒ even(x + y)) Goal

ST

Nothing to add in CE.

So the output of this procedure is : (Context, show A), where A is an arbitrary

logical formula. Consider another example below, in which we have both universal and

existential variables:
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Theorem. ∀x : Z ∃y : Z(x + 1 = y)

As usual this formula in MathAbs remains unchanged. However, we give QUndecided

quantification to them in CV. Note that like other statements, x, y is added here together

in one line, and therefore, they will be available as referents together.

Sn Object Number Quantification How Declared Type

1 x, y 2 QUndecided Explicit Integer

CV

Sn Logical Formula Statement Type

1 ∀x : Z ∃y : Z(x + 1 = y) Goal

ST

Sn Equation Reference

1 x + 1 = y no

CE

The second rule for goal in theorem As we have seen in §7.2.2.1 on page 171, it is

formed by some key phrases, list of statements (i.e. Statements) and subordinate (i.e.

Subordinate, defined on page 158). Some example statements are:

“prove that
︸ ︷︷ ︸

key phrase

there exists two integers u and v such that u ∗ n + v ∗ m = 1
︸ ︷︷ ︸

Statements

︸︷︷︸

Subordinate(empty)

”,

“show that
︸ ︷︷ ︸

key phrase

x + y is even
︸ ︷︷ ︸

Statements

, where x and y are positive integers
︸ ︷︷ ︸

Subordinate

”, etc.

We define below a function procedure_second_rule_goal_thm for this rule as men-

tioned on page 215. Recall that the stype (i.e. statement type) from this rule is Prv

(i.e. Goal).

1 Function name: procedure_second_rule_goal_thm

2 Input: GStatements as stmnts, GSubordinate as subord, Context as cntxt

3 Output: Tuple (Context, Theorem)

4 Procedure:

5 pattern matching on subord

6 IF subord is GEmptySubord //i.e. Empty subordinate

7 THEN

8 (cntxt1, auto, asgns) = mkStmnts stmnts cntxt

9 formula = get formula from the list asgns

10 thm = mkAsgnPrvThm (auto,form)

11 return (cntxt1, thm)

12

13 ELSE IF subord is (GMkSubord sbrd) //GStatements as sbrd

14 THEN

15 (cntxt1, auto1, asgns1) = mkStmnts stmnts cntxt (with stype Prv)

16 (cntxt2, auto2, asgns2) = mktmnts sbrd cntxt1 (with stype Asm)

17 form = get formula from the list asgns1

18 thm = mkAsgnPrvThm (auto1++auto2++asgns2,form)

19 return (cntxt1, thm)

This code is quite easy to follow and it mostly uses the already defined functions.

On line 10, we use a function mkAsgnPrvThm. It takes a list of assignment (i.e. rules
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let and assume) and a MathAbs formula and simply forms rules: let assume show. For

instance, in case of input: ([let v1 : T1, let v2 : T2, assume A, assume B], formula), the

output be: let v1 : T1 let v2 : T2 assume A assume B show formula.

When subordinate is not empty, as shown in the second example above and on line

13 of the above function, it acts as an assumption in the discourse. Therefore, on line

16, we call mkStmnts function with stype equals to Asm. As described on page 158,

Subordinate is formed from Statements. Therefore, we can use function mkStmnts for

it.

Assignments such as auto1, auto2 and asgns2 forms the rules let, assume. Whereas,

asgns1 contains our goal. For instance, consider the second example again:

Theorem. Show that
︸ ︷︷ ︸

key phrase

x + y is even
︸ ︷︷ ︸

Statements

, where x and y are positive integers
︸ ︷︷ ︸

Subordinate

.

Theorem. let x, y : Z assume positive(x) ∧ positive(y) show even(x + y) •

And the context be:

Sn Object Number Quantification How Declared Type

1 x + y 1 QLet Explicit NoType

1 x, y 2 QLet Explicit Integer

CV

Sn Logical Formula Statement Type

1 (x, y : Z) ∧ positive(x) ∧ positive(y) Hypothesis

1 even(x + y) Goal

ST

Nothing yet in CE.

8.3.8.2 Assumptions in Theorem

As mentioned in §7.2.2.2 on page 173, there are many ways in which we can describe

assumptions in theorem block. In fact we have already seen few examples in the de-

scription of micro level grammar (between pages 191 to 213). So we omit them also.

8.3.9 Proof

The proof block in the GF grammar is a list of proof statements GPrfStmnts given in

§8.1.2 on page 181. Whereas, in MathAbs proof is a tree as described in §4.3 on page

61. We give below the LBNF grammar for it:

1 Trivial. Proof ::= "trivial" Hint ;

2 Show. Proof ::= "show" Formula Hint Proof ;

3 Deduce. Proof ::= "deduce" Formula Hint Proof ;

4 Assgn. Proof ::= Assignment Hint Proof ;

5 Split. Proof ::= "{" [Proof] "}" Hint;

6 Unfinished. Proof ::= "unfinished" ;

7 FullStop. Proof ::= "." Proof ;

8 End. Proof ::= "---" ;

As we see, Proof is a tree, which terminates on three constructs: Trivial,

Unfinished and End. Similar to constructor TEnd of theorem, End is also a placeholder

for empty nodes. Both are removed from the MathAbs at the final step of translation.
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Proof statements (GPrfStmnts), many

Intermediate proof language ([IProof]), a few, contains case markers

MathAbs proof language (Proof), same as [IProof] (no case marker but split rule)

Figure 8.1: CLM grammar to MathAbs

However, we first translate the list of proof statements GPrfStmnts to an interme-

diate proof language, let us say [IProof]. Similar to the list GPrfStmnts, the list

[IProof] is a linear list of proof statements. Instead of a tree, it is a list. So we do not

need the constructor End as the proof language does. We also do not have split rule (cf.

bullet 6 on page 63). Instead, we have many case markers which allows us to build the

split rule during case analysis (again in §8.3.11 on page 221). We add extra ‘I’ to every

construct, as shown below:

ITrivial. IProof ::= "trivial" Hint ;

IShow. IProof ::= "show" Formula Hint ;

IDeduce. IProof ::= "deduce" Formula Hint ;

IAssgn. IProof ::= Assignment Hint ;

...

The difference between the list of proof statements GPrfStmnts and the list [IProof]

(and of course with Proof) can be described as a “many to one” relation. For instance:

we may have n ways to describe a statement in CLM; most of them are translated

to different abstract syntax trees. Whereas, all of them are translated to a few rules

in [IProof] (i.e. ILet, IAssume, IDeduce, etc, which later correspond to the rules

of MathAbs proof such as let, assume, deduce, etc, respectively). In figure 8.1, we

summarize their relation. We summarize their relation in figure 8.1.

Analogous to the functions buildThmStmnts and buildThmStmnt, we first de-

fine skeleton functions transPrfStmnts and transPrfStmnt. The implementation

of transPrfStmnts is omitted because it is simply made by applying the function

transPrfStmnt on GPrfStmnts using a higher order map function. Whereas, the func-

tion skeleton transPrfStmnt is described below:

1 Function name: transPrfStmnt

2 Input: GPrfStmnt as prf, Context as cntxt

3 Output: Tuple (Context, [IProof])

4 Procedure:

5 pattern matching on prf

6 IF prf is (GMkAssume stmnt sbord)

7 THEN (procedure_for_this_rule stmnt sbord cntxt)

8 ....

9 ....
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Again, for the following subsections, we assume that each of them are accessed

by pattern matching. Therefore, these forthcoming subsections should be treated as

procedures, and each returns a tuple (Context, [IProof]). However, we only discuss

assumptions and deductions with justifications.

8.3.9.1 Deductions with Justifications

These are mentioned in §7.2.1.5 on page 162.

The first rule for deduction with justifications in proof statement is formed by some

key phrases, Statements, justifications and Subordinate. Here are few example:

“(empty)
︸ ︷︷ ︸

key phrase

a2 is even
︸ ︷︷ ︸

Statements

because it is a multiple of 2
︸ ︷︷ ︸

Justifications

(empty)
︸ ︷︷ ︸

Subordinate

”,

“we get that
︸ ︷︷ ︸

key phrase

2 ∗ b2 = 4 ∗ c2
︸ ︷︷ ︸

Statements

by substituting a in equation 1
︸ ︷︷ ︸

Justifications

where c is an integer
︸ ︷︷ ︸

Subordinate

”,

“there exist q and r such that n = m ∗ q + r by euclidean division”,

“q divides r because r = n − m ∗ q”, etc.

We define a function for this rule below. Note the order in which we call other

functions in this function. To ensure the correct context building, this order should be

in accordance with the order in which these categories appear in the text. Also note

that it is very important because the algorithm for anaphoric resolution always uses text

order.

1 Function name: rule1_deduction_with_justifications

2 Input: GStatements as stmnts, GJustifications as justifs, GSubordinate as subord,

3 Context as cntxt@(cv,ce,st)

4 Output: Tuple (Context, [IProof])

5 Procedure:

6 pattern matching on subord

7 IF subord is GEmptySubord //i.e. Empty subordinate

8 THEN

9 (cntxt1, auto1, asgns) = mkStmnts stmnts cntxt (with stype Ddc)

10 (cntxt2, auto2, hints) = mkJustifs justifs cntxt1

11

12 formula = get formula from the list asgns

13 deduce_rule = [IDeduce formula hints]

14 iprfs = make [IProof] with (auto1++auto2) deduce_rule

15 return (cntxt2, iprfs)

16

17 ELSE IF subord is (GMkSubord sbrd) //GStatements as sbrd

18 THEN

19 (cntxt1, auto1, asgns1) = mkStmnts stmnts cntxt (with stype Ddc)

20 (cntxt2, auto2, hints) = mkJustifs justifs cntxt1

21 (cntxt3, auto3, asgns2) = mktmnts sbrd cntxt2 (with stype Asm)

22

23 formula = get formula from the list asgns1

24 deduce_rule = [IDeduce formula hints]

25 iprfs = make [IProof] with (auto1++auto2++auto3++asgns2) deduce_rule

26 return (cntxt2, iprfs)
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In case of example (assume that equation 1 is “2 ∗ b2 = a2” and a is equal to
√

2 ∗ b.

Also assume that that a, b are already defined as integers):

“we get that
︸ ︷︷ ︸

key phrase

2 ∗ b2 = 4 ∗ c2
︸ ︷︷ ︸

Statements

by substituting a in equation 1
︸ ︷︷ ︸

Justifications

,

where c is a positive integer
︸ ︷︷ ︸

Subordinate

”

Its MathAbs is:

let c : Z assume positive(c)

deduce 2 ∗ b2 = 4 ∗ c2 by oper substitution(a, 2 ∗ b2 = a2)

The context will be:

Sn Object Number Quantification How Declared Type

n c 1 QLet Implicit NoType

n 2 ∗ b2 1 QLet Explicit NoType

n a 1 QLet Explicit Integer

n c 1 QLet Explicit Integer

CV

Note that when we encounter the equation “2 ∗ b2 = 4 ∗ c2”, the variable c is not yet

defined and therefore, it is automatically define in the first row. Later when we discover

its declaration in subordinate, the fourth row suppresses its old declaration.

Sn Logical Formula Statement Type

n 2 ∗ b2 = 4 ∗ c2 Deduction

n c : Z ∧ positive(c) Hypothesis

n substitution(a, 2 ∗ b2 = a2) Justification

ST

Note that in MathAbs, the hypothesis in second row appears first. But in the table

below, this order does not matter. So we add them as they appear in the text.

Sn Equation Reference

n 2 ∗ b2 = 4 ∗ c2 no

CE

8.3.10 Theorem and its Proof

As already said in §8.1.2 on page 181, we have a category ThmPrf for theorem and its

proof in our CLM implementation in the GF grammar. Of course it becomes following

in Haskell:

data GThmPrf = GMkThmPrf GThmStmnts GPrfStmnts

The CLM data object GThmPrf should be translated to the MathAbs’ data object

for theorem and its proof, given below:

ThmPrf. Math ::= ThmLabel Theorem ";" "Proof." Proof ";" ;
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Where ThmLabel is simply a string label, which allows us to write labels such as:

“Theorem 1.3.”, “Theorem.”, etc.

We define the following function which works on GThmPrf and adds a MathAbs

theorem and proof in a MathAbs document (which is formed by [Math]).

1 Function name: transThmPrf

2 Input: GThmStmnts as gthms, GPrfStmnts as gprfs

3 Output: [Math]

4 Procedure:

5 (cntxt_thm, thm) = buildThmStmnts gthms emptyCntxt

6 (cntxt_prf, iprfs) = transPrfStmnts gprfs cntxt_thm

7 prfs = buildProof iprfs emptyTree emptyEnv

8 thmprfs = [mkThmPrf thm prf thmLabel prfLabel | prf <- prfs]

9 return thmprfs

On lines 5–6, we use already defined functions for theorem and proof blocks (i.e.

buildThmStmnt and transPrfStmnts). The function transPrfStmnts returns the list

of intermediate proof constructs ([IProof]) with context cntxt_prf.

As we have seen that this context has helped us to support various linguistic features

including anaphoric resolution. When the function transPrfStmnts ends, proof state-

ments are already translated to the intermediate proof language IProof (which is very

similar to the MathAbs proof language) and all of the linguistic features are applied.

Therefore, we no longer need this context for the final procedure buildProof on line 7.

The procedure buildProof is for the case analysis for ‘proof by case’ explained in

the next section. On line 7, the list of intermediate proof statements iprfs is given to

this function along with some other empty environments to produce the final proof tree

(in both case: when the proof in consideration has a case structure, and when it has

not).

The output of this function could be more than one proof for those proofs which

requires case handling. Because proof with cases can be ambiguous having more than

one interpretation. So on line 8, we select each proof from this list of proofs (i.e.

prf <- prfs) and simply put them together with MathAbs theorem one by one, and

return again a list: [Math]. We explain it further with the following pattern which has

at least two interpretations:

Theorem. Theorem Statement

Proof. [Proof statements]

If condition then ... . If condition then ... . Otherwise ... .

[Proof statements]

In the first interpretation, we attach the ‘otherwise’ case to the first conditional, and

in the second interpretation, we attach it to the second conditional. In both interpreta-

tions of this proof we simply attach the same theorem block.

8.3.11 Case Analysis for Proof by Cases

The grammar we support for proofs having cases is given in §7.2.1.7 on page 167. As

mentioned there, in the current algorithm, we only try to disambiguate cases with case

markers. We recognize case markers with various sentences, treated as proof state-

ments in CLM (see page 168). Consequently, this translation is called from the function
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transPrfStmnt given in §8.3.9 on page 219. The GF implementation of these specific

rules is also given on page 168.

Also Recall the definition of [IProof] from §8.3.9 on page 217. It is an intermediate

proof language which contains case markers as well. We now describe the proof

statements for cases and their equivalent constructs in [IProof] side by side between

brackets (...), as shown below:

Pattern 1:

We proceed by case analysis.

Case: (IStartCaseAnls) Condition (ICondMarker) PrfStmnts [This ends the case. (IEndCase)]

Case: (IStartCase) Condition (ICondMarker) PrfStmnts [This ends the case. (IEndCase)]

. . . . . .

Case: (IStartCase) Condition (ICondMarker) PrfStmnts [This ends the case. (IEndCase)]

[This was the last case. (IEndLastCase)]

IStartCaseAnls above shows that it is the first case.

Pattern 2:

If (IIfCaseAnlys) condition (ICondMarker) then PrfStmnts

Otherwise if (IOtherwiseIfC) condition (ICondMarker) then PrfStmnts

Otherwise if (IOtherwiseIfC) condition (ICondMarker) then PrfStmnts

. . . . . .

Otherwise (IOtherwiseC) PrfStmnts

Other than these case markers, the following rules may also trigger an end of case:

“This ends the proof”, “It is trivial”, etc, —–> ITrivial

“we will prove it later”, etc, —–> IUnfinished

To build these case structures, we use a data structure Zipper1 [Huet 1997] and

modify it to our needs. A Zipper is a forest of trees with path. It provides an easy

way to move between the sibling, child and parent nodes of the structure. Here is the

description of some functions used in pseudo code:

• addinTree: adds a tree at the current focus of zipper.

• insertDown: inserts a child node in the zipper data structure. This new child

becomes the current tree in focus. e.g. (insertDown End prfZipr) adds an

empty proof tree (End) as the first child in prfZipr zipper.

• scope: returns the tree in focus.

• insertRight: inserts a tree as sibling to the right of the current position. This new

tree becomes the current tree. Note that we do not have the function insertLeft.

Consequently, we impose the restriction that the current case is always on the right

most branch.

• root: returns the top-most parent of the given location.

• depth: if it is greater than zero then we have children (i.e. there are case structures

in our environment. How many? It could be determined by the number depth.)

1http://hackage.haskell.org/cgi-bin/hackage-scripts/package/rosezipper
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• fstBranch returns the first branch of our case analysis.

The algorithm to build case structure is a bit long and tedious. We present here a

simplified implementation of a few cases below, in the form of pseudo code. For that the

function buildProof takes the list [IProof], a zipper data structure for MathAbs Proof

(ProofLoc), a zipper data structure for the environment in which only above mentioned

case markers are stored as a list (EnvLoc) and returns a list of MathAbs Proofs ([Proof]).

It returns a list because the case structure may also result into more than one proof if

the input is ambiguous. However, in §8.3.11.2 on page 225, we’ll come to know that this

ambiguity is often temporary.

1 Function name: buildProof

2 Input: [IProof] as iprfs, ProofLoc as prfLoc, EnvLoc env //(two zippers)

3 Output: [Proof]

4 Procedure: ...

We now describe both zippers one by one followed by an example. The zipper EnvLoc

is forest of lists, defined as shown below:

type Env = [IProof]

data EnvLoc = ELoc {

list :: Env // The currently selected list

, lefts :: [Env] // Siblings on the left, closest first

, rights :: [Env] // Siblings on the right, closest first

// The contexts of the parents for this location

, parents :: [([Env], Env, [Env])] //[(lefts, list, rights)]

}

At any point in the procedure buildProof, EnvLoc gives access to previously stored

case markers. That is why we call it environment. For instance, the labels list, lefts

and rights give access to the current case analysis in consideration. Whereas, the label

parents gives access to all the parent levels of case analysis.

For building a proof, we mostly consider the current proof statement (i.e. IProof)

and 1 to n most recent case markers in our environment to decide about where we shall

place the coming proof statements in our zipper for proof (i.e. ProofLoc).

The zipper ProofLoc is a forest of proof trees. It remembers the paths to build the

list of proofs later. The ProofLoc also gives access to the proof trees that we have build

so far. Note that it is made by Proof, and therefore, it does not contain case markers

but split rule(s) (see page 63 to recall its definition). The zipper ProofLoc is defined as

shown below:

data PrfLoc = PLoc {

ptree :: Proof // The currently selected proof tree

, plefts :: [Proof] // Siblings on the left, closest first

, prights :: [Proof] // Siblings on the right, closest first

// The contexts of the parents for this location

, pparents :: [([Proof], Proof, [Proof])] //(plefts, ptree, prights)

}

We now give an example, followed by its EnvLoc and PrfLoc.
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Proof. Proof Statements

If condition1.1 then ... . It is trivial.

Otherwise if condition1.2 then ... . We proceed by case Analysis.

Case: condition2.1 ... . It is trivial. This ends the case.

(we are here: label 1 )

Case: condition2.2 ... . This ends the case. This was the last case.

Otherwise ... . (we are here: label 2 )

First, the environment tree formed by EnvLoc zipper will contain case markers in

the following fashion for the label 1 and label 2 respectively. Note that nothing will be

saved in it except the case markers:

root: IIfCaseAnlys (indicating pattern 2)

[IIfCaseAnlys,ITrivial] [IOtherwiseIfC,IStartCaseAnls (indicating pattern 1)]

[IStartCaseAnls,ITrivial,IEndCase (here)]

Environment tree for label 1

root: IIfCaseAnlys (indicating pattern 2)

[IIfCaseAnlys,ITrivial] [IOtherwiseIfC,IStartCaseAnls (indicating pattern 1)]

[IStartCaseAnls,ITrivial,IEndCase] [IStartCase,IEndCase,IEndLastCase]

[IOtherwiseC (here)]

Environment tree for label 2

As we saw, EnvLoc is a tree of lists. So when we fetch the “current tree in focus”, we

get a list. Also it is evident from the example that case markers are added in the tree

in such a way that the latest added case marker is always the last element. We access

it with the function last2.

We now show the proof tree built by the proof zipper PrfLoc for this example. It

contains proof statements in the following fashion. Note that only case markers are

stored in it:

root: MathAbs rules for proof statements, split rule

node MathAbs rules for conditional, ..., Trivial MathAbs rules for IOtherwiseIfC, split rule

MathAbs rules for IStartCaseAnls, ... , Trivial (here)

Proof tree for label 1

2In actual code, it is the opposite: the latest added case marker is always the last element for the

purpose of efficiency, and hence accessed with the function first.
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root: MathAbs rules for proof statements, split rule

rules for conditional, ..., Trivial rules for IOtherwiseIfC, split rule

rules for IStartCaseAnls, ... , Trivial rules for IStartCase, ... , Trivial

rules for IOtherwiseC, ..., (here)

Proof tree for label 2

Note for subsequent pages: To avoid the confusion between the case of the ‘proof by

case’ method and the case in phrases such as “in this case, we do ...”, we rephrase the

later as “in this possibility, we do ...”.

8.3.11.1 Consider the possibility, when the current element in [Iproof] is not a case
marker:

When the current element of the list [IProof] is not a case marker, it is a normal

proof statement. Therefore, we add it in the ProofLoc, in our tree in focus (the current

scope), as shown in the proof trees below.

root: rules for proof statements, split rule (indicating pattern 1 or 2)

. . . ..., split rule (indicating pattern 1 or 2)

. . . current scope (here)

. . .

root: rules for proof statements

. . .

current scope (here)

Proof trees built by the proof zippers

5 iprf = take first element of iprfs

6 IF iprf is one of the following rules:

7 let, assume, deduce, show, take, fullstop

8 THEN do following:

9 prf = translate iprf to the rule of MathAbs proof

10 prfLoc1 = addinTree prf in prfLoc

11 // recursive call for the remaining iproof statements (i.e. iprfs - iprf)

12 buildProof (iprfs - iprf) prfLoc1 env

8.3.11.2 Consider the possibility, when the current element of [IProof] is a condi-
tional statement:

Here, we check the environment env which contains all the case markers that have

already occurred in the textual proof. We have five possibilities to consider as shown

below.

Consider the first possibility, when no case marker is found in the environment env

before this conditional (i.e. env is empty), as shown by the following pattern:

[Usual proof statements such as assumptions, deductions, ...] If condition

then ... .
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Note that conditional is shown as a last statement. It is because this conditional

is in focus, and we always lookup in backward direction in the list [IProof] (using

environment), but never in forward direction.

We always add a sub proof as shown in the example and on line 16 in the pseudo
code below. Because if the remaining proof statements in the list [IProof] contain case

markers such as “otherwise if”, “otherwise”, etc, then the new branch(es) to the proof

will be added later.

However, if this conditional turns out to be a normal statement (i.e. it is not followed

by statements containing the case markers “otherwise if” or “otherwise”) then, it will

be a proof which have only one branch. In other words, it will be a proof without case

analysis, and therefore, on this proof we will apply flattening. To explain it further, we

use the following example proof:

Suppose that p is prime and p divides a ∗ b. If p ∤ a then gcd(a, p) = 1.

[(proof statements)]

MathAbs:
let p ∈ Prime assume p | a ∗ b •

{ assume p ∤ a deduce gcd(a, p) = 1 •[(proof statements)] }

Recall that in MathAbs, we represent branches by split rule (represented by curly

brackets {...}; see page 63). For instance, if we have two branches then the MathAbs

will be:

... {Sub-proof 1 ; Sub-proof 2}

If the proof turns out to have only one branch in split rule(s) as we have discussed

above, then we apply flattening to such a tree by removing split rule(s), as following:

Proof {Sub-proof 1} ≡ Proof Sub-proof 1

Proof {Sub-proof 1 { Sub-proof 2 {...} }} ≡ Proof Sub-proof 1 Sub-proof

2 ...

For the example given above, the MathAbs would be:

let p ∈ Prime assume p | a ∗ b •

assume p ∤ a deduce gcd(a, p) = 1 •....(usual steps)

13 ELSE IF iprf is IIfCaseAnlys THEN

14

15 IF (scope env) is empty THEN

16 insertDown End prfLoc //i.e. an empty sub proof

17 insertDown IIfCaseAnlys env

Note that other than adding an empty sub proof on line 16, we did nothing for

the conditional. It is because the function transPrfStmnts on page 221, has already

translated the conditional to the combination of IProof rules: (ILet, IAssume, (IShow

or IDeduce). Of course, they will be translated to the combination of MathAbs rules:

let, assume, (show or deduce) respectively by the procedure on lines 5–12 above.
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Consider the second possibility, when there is a conditional statement in the envi-

ronment env, as shown by the following pattern (this conditional is encapsulated in

brackets):

[proof statements] (If condition then ...) [proof statements] If condition

then ... .

Similar to the first possibility, we add an empty sub proof for this conditional.

Because it may be a case inside case. Of course, we cannot be sure with the information

in hand and wait for the remaining proof statements to occur. Then we’ll be able to

decide if we should apply flattening to this proof of not. The proof tree built by the

ProfLoc is:

MathAbs rules for proof statements, split rule (indicating pattern 2)

rules for proof statements (1st branch by 1st conditional), split rule (pattern 2) by 2nd conditional

rules for proof statements (first branch produced by the 2nd conditional)

Recall that for environment, we access the list in focus with function scope and latest

added case marker with function last (as shown on line 19 below). We use ‘caseMarker’

as a placeholder on line 18 below. We define a placeholder because we will refer to the

same procedure again, but for different ‘caseMarker’:

18 caseMarker = IIfCaseAnlys

19 ELSE IF (last (scope env)) is caseMarker THEN

20 newprfLoc = (insertDown End prfLoc)

21 newenv = (insertDown caseMarker env)

22 buildProof (iprfs except iprf) newprfLoc newenv

Consider the third possibility, when there is an “otherwise if” case marker in the envi-

ronment env (i.e. there is an “otherwise if” statement before the current conditional). It

means we already have encountered at least one case analysis. So we check the depth of

the zipper, which must be greater than 0. Also we must have the first branch produced

by “if” case marker. We check both of these conditions in pseudo code below on line 25.

Note that in the code: “(last (scope (fstBranch env)))”, the function fstBranch

returns the zipper with first sibling in focus. Then scope gets the list, and first returns

its first element (i.e. the earliest case marker).

23 ListCaseMarker = [IOtherwiseIfC, IOtherwiseC]

24 ELSE IF (last (scope env)) is (caseMarker in ListCaseMarker) THEN

25 IF (depth of prfLoc>0) AND (first (scope (fstBranch env))) is IIfCaseAnlys THEN

26 same procedure given on lines 20-22

27 ELSE return a warning that ‘caseMarker before "if"; nested case analysis expected.’

Similarly, consider the possibility of an “otherwise” case marker in env. These two

possibilities could be demonstrated by the following pattern:

1. [proof statements] (Otherwise if condition then ... .) [proof statements] If condi-

tion then ... .
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2. [proof statements] (Otherwise ... .) [proof statements] If condition then ... .

Again, we trigger a new case level with this conditional. So its implementation is

similar to the second possibility. We show proof tree for the first bullet above:

MathAbs rules for proof statements, split rule (indicating pattern 2)

First branch by conditional . . . Branch by ‘otherwise if’, split rule (indicating pattern 2)

First branch by conditional

Consider another similar possibility, when case markers: IStartCaseAnalys,

IStartCase are in the environment env, forming the following patterns:

1. [proof statements] (we proceed by case analysis. Case: condition ... .) [proof

statements] If condition then ... .

2. [proof statements] (Case: condition ... .) [proof statements] If condition then ... .

Note that the code remains the same as given on lines 23–27 above; except two

changes:

1. The list ListCaseMarker becomes equal to [IStartCaseAnls, IStartCase]

2. On line 25, for the second check, we confirms that the first element of the first

sibling (i.e. case) is IStartCaseAnls.

It is not necessary to perform the check in the second bullet if the caseMarker

in consideration from the list ListCaseMarker is IStartCaseAnls. It is because

IStartCaseAnls is already the first case. However, checking this condition does not

harm in any way.

Finally, the rest of possibilities, (i.e. IEndCase, IEndLastCase, ITrivial,

IUnfinished), they should not be here. Because they show that the current branch

is already finished. Consequently, no statement (i.e. iprf) including conditional cannot

be here. Therefore, if the above mentioned case markers appear, we return an error:

28 ELSE return error that ‘a pattern is given which is not supported.’

8.3.11.3 Consider the possibility, when the current element of [IProof] is an
“otherwise if” statement:

Consider the first possibility, when no case marker is found in the environment env

before this case marker. In this case we return an error:

29 ELSE IF iprf is IOtherwiseIfC THEN

30 IF (last (scope env)) is empty THEN

31 return error that ‘"if" case marker is missing’
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Consider the second possibility, when the case marker IIfCaseAnlys (i.e. a condi-

tional) is found the environment. There could be following possibilities:

(If condition ...) Otherwise if condition ...

If condition ... (If condition ...) Otherwise if condition ...

If condition ... If condition ... (If condition ...) Otherwise if condition ...,

and so on.

To know if there are any other conditionals before case marker IOtherwiseIfC, we

keep looking the parent nodes as on line 40 in the pseudo code below, and check it

further recursively on line 42.

If there are conditionals before, then it is ambiguous to decide where the branch

produced by the current case marker “otherwise if” should attach. Therefore, for n

conditionals behind this case marker, we produce n different interpretations.

For instance, in case of the third pattern above, we produce following interpretations:

1. If condition ... If condition ...

If condition ... Otherwise if condition ...
︸ ︷︷ ︸

.

2. If condition ...

If condition ... If condition ... Otherwise if condition ...
︸ ︷︷ ︸

.

3. If condition ... If condition ... If condition ... Otherwise if condition ...
︸ ︷︷ ︸

.

32 caseMarker = IIfCaseAnlys

33 ELSE IF (last (scope env)) is caseMarker THEN

34

35 prfLoc_a = (insertRight End prfLoc) //an empty sub proof

36 env_a = (insertRight caseMarker env)

37 prf_a = buildProof (iprfs except iprf) prfLoc_a env_a

38

39 IF prfLoc has a parent prfLoc1 AND env has a parent env1 AND

40 (last scope env1) is caseMarker THEN

41

42 prf_n = buildProof iprfs prfLoc1 env1 //recursive call

43 return (prf_a++prf_n)

44

45 ELSE return prf_a

Consider the third possibility, when case marker IOtherwiseIfC is found before “oth-

erwise if”, as shown by the following pattern:

If condition then ... . [Otherwise if condition ... .] (Otherwise if condition

... .) Otherwise if condition ... .

Unlike the above possibility it is not ambiguous. Therefore, we add a branch to

the right of the current tree in focus (lines 49–50 below). Also, as we have done in

other possibilities, we lookup the first branch and confirms that it is formed by “if” case

marker (line 47):
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46 caseMarker = IOtherwiseIfC

47 ELSE IF (last (scope env)) is caseMarker AND

48 (first (scope (fstBranch env)) is IIfCaseAnlys) THEN

49

50 prfLoc_a = (insertRight End prfLoc) //an empty sub proof

51 env_a = (insertRight caseMarker env)

52 buildProof (iprfs except iprf) prfLoc_a env_a

Consider the fourth possibility, when case marker IOtherwiseC is found before “oth-

erwise if”, as shown by the following pattern:

If condition then ... . [Otherwise if condition ... .] (Otherwise ... .)

Otherwise if condition ... .

The case marker IOtherwiseC implies that we are in the last case of pattern 2.

Therefore, there must be “if” or “otherwise if” statement before in the environment at

the same case level (i.e. “otherwise” must have sibling branches containing case(s) “if” or

“otherwise if”). However, it should have already been checked when we have processed

this statement (as we do on line 48 above). Therefore, for the purpose of clarity and

because the case marker IOtherwiseC cannot be attached here as branch (sibling), we

will not talk about this case level in subsequent paragraphs anymore.

We now extend the above mentioned pattern a bit more:

. . .

1. If condition ... . [Otherwise if condition ... .](could be more above)

2. If condition ... . [Otherwise if condition ... .] (Otherwise ... .)
︸ ︷︷ ︸

(most recent case marker in scope տ)

3. Otherwise if condition ... .(we are on this case marker)

For our possibility in hand (i.e. “otherwise if” case marker on line 3 above), there

must be at least one “if” or “otherwise if” statement as parent in the environment (line

1).

As we have seen in second and third possibilities on previous pages, when the case

markers “if” and “otherwise if” are the most recent in the environment, we follow two

different strategies. Therefore, we have to take this into account here, and have two

possibilities as well:

1. When there is an “if” as the most recent case marker in the parent of the environ-

ment. Then follow the procedure in the second possibility on page 229.

2. When there is an “otherwise if” as the most recent case marker in the parent of

the environment. Then follow the procedure in the third possibility on page 229.

We omit its implementation.

Consider the fifth possibility, when one of the case markers (IStartCase | IEndCase

| IEndLastCase) is the most recent. For instance, in case of IStartCase case marker,

we could have following pattern:
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If condition ... . [Otherwise if condition ... .]

We proceed by case analysis. Case: condition ... .

[Case: condition ... .]

(Case: condition ... .) (most recent case marker in scope)

Otherwise if condition then ... . (we are on this case marker)

Fundamentally, it is similar to the fourth possibility and it is treated in a similar

way. Therefore, we omit the implementation.

Consider the sixth possibility, when the case markers behind “otherwise if” is

IStartCaseAnls, as shown in the following pattern:

If condition ... . [Otherwise if condition ... .]

(We proceed by case analysis. Case: condition ... .)

(most recent case marker in scope)

Otherwise if condition then ... . (we are on this case marker)

It means that pattern 1 here has only one case. We do not allow it and return an

error.

Recall that proof statements: ITrivial, and IUnfinished are also recorded in the

environment. Therefore, consider the seventh possibility when the case marker behind

“otherwise if” is one of above proof statements. In this case we simply look behind these

case markers in the environment and recursively call the same function again.

Note that it is important to record ITrivial and IUnfinished as case markers. It

is because, they can indicate an ‘end of case’. Also, if we encounter all ‘end case’ markers

for a case in pattern 1 such as: ITrivial, IEndCase, IEndLastCase, then all of them

must be translated to only one rule (i.e. trivial) in a proof. It becomes easier to do it by

recording ITrivial and IUnfinished in the environment.

Other than the above mentioned possibilities, if the most recent case marker is other

than above case markers, we return an error that ‘ “if” case marker is missing before

“otherwise if” case marker.’

8.3.11.4 The case when the list [IProof] is empty

It means we have reached the end of proof. We lookup our environment and consider

the following possibilities:

If the environment is empty, then this proof is a linear proof. Consequently, our proof

tree does not contain the split rule (i.e. no ‘proof by case’). We simply collect this proof

from the ProfLoc zipper.

If the environment is not empty, then we simply collect all branches on each level from

the zipper ProfLoc, and build proof tree. If this proof is incomplete, we find out in the

process of building the proof tree, and report an appropriate reason.
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8.3.11.5 The rest of cases

The rest of cases are built in a similar way. That is at each step, we look backward and

build all the possible proofs.

pattern 1 causes more ambiguities than pattern 2. It is because, we always know

its last case with the ‘otherwise’ case marker. But in pattern 1, ‘IEndLastCase’ case

marker is optional. When it is not given we have more ambiguity.

8.3.12 The rest of blocks, categories, statements and rules

We omit the implementation of the rest of blocks, categories, statements and rules

defined in Chapter 7 due to space limitations.
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9.1 Results

We repeat the two very hard problems raised in the introduction chapter:

1. Automatic Formalization: Parsing mathematical texts (mainly proofs) and trans-

lating their parse trees to a formal language after resolving linguistic issues. This

formal language should be able to represent mathematics as close as possible to

the intentions expressed by the author and must be independent of any logic and

prover.

2. Validation of this formal version of mathematics.

The project MathNat (Mathematics in controlled Natural language) aims at being a

first step towards addressing these problems. However, this thesis attempted to answer

the first question: the formalization of the mathematical texts. Whereas, the second

problem is answered partially in a very limited way.

The partial results we achieved so far are encouraging. It seems possible to develop a

system which scales up to the mathematical texts for elementary mathematics. However,

it would clearly require a lot of time, effort and man power (i.e. linear efforts).

As a first step, we analyzed the language of mathematics in Chapter 3 and gave a

comprehensive survey with a focus on elementary mathematics. After this survey, we

developed a controlled language CLM. It has the look and feel of textbook mathematics

and it supports some rich linguistic features (Chapters 5, 6 and 7).

We have tried to develop this grammar in such a way that it is modular and easily

scalable. We also support the method ‘proof by case’ with two patterns.

This supported linguistic features turns out to be very useful (as demonstrated by

the examples). They add flexibility in the language and increases the expressive power.

Anaphoric resolution of pronouns and references is naive yet very useful.



234 Chapter 9. Concluding Remarks

The MathNat system is still a prototype and it can formalize only a handful of

examples mainly from elementary number theory and analysis. However, with the best

of our knowledge, this number is equally comparable (if not better) than what other

related systems can parse (for evidence, see Appendix A).

However, as soon as we add examples from other branches of mathematics, the

MathNat may face the danger of becoming insufficient to cope with. The only way

to tackle this problem would be to add examples from various branches of mathematics

and then adapt the system MathNat to the new challenges when they occur.

Notwithstanding this, a careful reading of any math book is sufficient to realize that

developing a system which even allows to write math texts from a single branch is itself

a challenging task. Therefore, in our opinion, if a system succeed to provide a grammar

which allows to write, let us say, around thirty different enough mainstream textual

proofs1 is a huge success.

9.2 Limitations and Future Directions

9.2.1 Ambiguity

As we have seen in §2.5.1 and in Chapters 5, 6 and 7, type plays no part at syntax level

(i.e. in the GF implementation of CLM). Therefore, we expect typing information to be

provided by the semantics module. This approach is called “semantic type approach”.

This way the grammar in GF remains cleaner, easier to extend and scale up easily in

future.

However, this approach clearly over-generates. For instance, statement such as “Sup-

pose that the set A is positive.” is successfully parsed by our GF grammar for CLM.

Similarly, we have the problem of notational collisions in symbolic mathematics. For

instance, we cannot differentiate operator “+” in “x + y for numbers” and “A + B for

sets” as we do not know the type of these variables2. Therefore, we translate them as

“plus(x, y)” and “plus(A, B)” respectively, which is incorrect (except if the proof system

allows overriding). Furthermore, we cannot correctly define precedence for more than

one domain as we do not know the types yet.

In contrast, as noted by [Ganesalingam 2009], “typed parsing” of artificial languages

in the current state of art is not adequate for the language of mathematics. He also

demonstrates that “type casting” and “type coercion” in its usual manner are two grave

problems for mathematical language. There is a trade-off between type-safety and ex-

pressibility. For instance, if the grammar supports typed parsing, a lot of extra rules

are required to cover those categories which cannot be combined by type coercion. Of

course the situation becomes worse for a bigger grammar in comparison to the smaller

grammar. It is because, it would require more efforts to manage it and scale it up.

Three Possible Solutions:

First: Ganesalingam proposes a convincing account for “mathematical types” (cf.

chapter 5 of [Ganesalingam 2009]) that can sufficiently express the mathematical lan-

1As regards the content of these proofs, they should be the taken from mainstream text which

mathematicians usually write; not the text which is too simple and somewhat rigid.
2x, y being of type “number” and A, B being of type “set”. However, we only get one parse tree for

them. It is because we do not define “+” for numbers and sets separately.
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guage. He also propose a novel algorithm for typed parsing (cf. chapter 6 of

[Ganesalingam 2009]). However, it is a theoretical work and it seems too early to see if

his theoretical model captures well what we find in practice in the language of mathe-

matics.

In the context of MathNat, if we consider implementing this algorithm, it would be

in the host system MathNat rather than in the CLM grammar, as we do for various

semantic constraints in Chapter 8. If we consider each stage (or module) as a function,

then this approach would be four functions:

Untyped Syntax → Type checking
︸ ︷︷ ︸

Syntax

→ Semantic Constraints → MathAbs
︸ ︷︷ ︸

Semantics

In contrast to the MathAbs of our examples which is not type checked, MathAbs in

the above diagram is type checked.

Typed parsing algorithm also demonstrate that type checking of mathematical lan-

guage is a lot of work. It seems that implementing it is perhaps equivalent to designing

a simple proof assistant.

Second: An alternate to Ganesalingam’s “typed parsing”, one can use “dependent

types”, which GF supports. These dependent types may allow to do typed incremental

parsing (on going work). It requires further investigation but the dependent types may

suffice in theory. An overall view of the system then would be:

Typed Syntax (with dependent types)
︸ ︷︷ ︸

Syntax

→ Semantic Constraints (if any) → MathAbs
︸ ︷︷ ︸

Semantics

Due to the typed syntax (with dependent types), we do not need to type check the

MathAbs in the above diagram. Because typed ill-formed sentences should have already

rejected by the typed syntax. However, implementing dependent types for the language

of mathematics is not trivial. According to Ranta:

“[...] parsing intertwined with type checking can be theoretically under-

stood via the use of dependent types [...] But it is not yet a piece of

technology that can be called easy; building a natural language interface

that uses GF’s dependent types is still a research project.”

Ranta defines easy as:

“Easy problems are ones that can be solved by well-known techniques”.

[Ranta 2011b]

It may also be a lot of work perhaps equivalent to designing a simple proof assistant.

Third: As we have seen, both solutions above are research problems and may require a

lot of work. Therefore, instead of doing it at grammar level (with dependent types) or as

a semantic check (with Ganesalingam’s typed parsing), it could be postponed to the type

checking of MathAbs. When MathAbs is plugged into a proof assistant (abbreviated as

PA in diagrams below), we can simply ask for types rather than doing it ourselves (the

use of bidirectional arrow is explained near the end of this section):

Untyped Syntax
︸ ︷︷ ︸

Syntax

⇄ Semantic Constraints ⇄ MathAbs ⇄ Type checking by PA
︸ ︷︷ ︸

Semantics
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In case of an untyped theory such as ZF set theory and proof assistants which are

untyped (such as Mizar [Trybulec et al. 1973]), we can send types as predicates:

Untyped Syntax
︸ ︷︷ ︸

Syntax

⇄ Semantic Constraints ⇄ MathAbs ⇄ Boolean output by PA
︸ ︷︷ ︸

Semantics

However, if we do not want to plug-in a proof assistant and prefer doing it ourselves,

we can add another program doing type checking of MathAbs and reject such type-

incorrect statements in semantics phase.

Untyped Syntax
︸ ︷︷ ︸

Syntax

⇄ Semantic Constraints ⇄ MathAbs ⇄ Type checker of MathAbs
︸ ︷︷ ︸

Semantics

However, in a worst case scenario, we may receive too many parse trees which are

translated in too many versions of MathAbs. In this case the program may take too

long to process them all. Currently, GF does not allow to reject trees (if we want) on

the fly according to our semantics.

As noted by Ranta [Ranta 2011b]: “Because of intertwining parsing and type check-

ing, the usual pipe-lined techniques are insufficient for automatically formalizing arbi-

trary mathematical text”. Therefore, instead of unidirectional arrow: →, we use bidi-

rectional arrow (⇄). The first step for an intertwined pipe-line would be to develop an

interactive interpretor instead of a compiler.

Finally, whatever method we choose, it mostly remains future work. We currently

like the third approach and would like to plug MathAbs to major proof assistants. Until

then, we minimize the over-generation with the following measures:

9.2.1.1 Notational Collisions:

1. To differentiate operator “+” in “x + y for numbers” and “A + B for sets”, until

we have a fully effective type system for MathAbs, we can employ a naïve type

system to disambiguate. By naïve, we mean that it would not be complete or

perfect (theoretically or practically). It is enough if it works for most common

cases. (also a future work).

2. We use different symbol for similar notations to disambiguate (whenever possible),

as we already do for multiplication (i.e. x ∗ y instead of xy).

9.2.1.2 Precedence:

It is difficult to get precedence right for a large grammar. CLM supports basic precedence

for elementary number theory and the rest is enforced by brackets mainly.

9.2.1.3 New symbols and notations:

New symbols and notations which are not part of formal grammar should be represented

by functions. E.g. absolute | a | could be represented as a function “abs(a)”. However,

note the limitation of this approach. For instance, if we represent equality (x = y) and

addition (x+y) as functions: ‘equal(x, y)’ and ‘plus(x, y)’, the system will consider both

as expressions and the semantic checks and linguistic features will be applied accordingly.
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9.2.2 Proof Checking

As a first prototype, we translated MathAbs to its equivalent first order formulas for the

purpose of verification by the automated theorem provers (ATP). Unfortunately, these

first-order formulas can hardly be validated because of the reasons mentioned in §4.7.

In this sense, we have answered the problem of validation partially.

However, we sufficiently explained the various reasons which makes it a hard problem.

We also set some preliminary directions for the future work. For instance, we argued

that there is a need of such ATP which can use the justifications found in textual

proofs. In our opinion, it will allow us to reduce the search space, which in return will

help us to check textual proofs. We also would also like to translate MathAbs of some

mathematical text in the language of famous theorem provers.

9.2.3 Multilingual CLM

An abstract syntax in GF defines an ontology3 which is independent of language de-

tails, forming abstract syntax tree. As we have seen, it is the concrete syntax which

contains linguistic information and maps abstract syntax to a language (and back by

reversibility). We may have multiple concrete syntax for an abstract syntax, allowing

multilingual translation. For instance consider the abstract syntax tree below which is

first given in §2.5.1 on page 17:

MkProp (MkSymbSubj (MkSymb "sqrt(2)")) Irrational

As we have already seen, its concrete syntax in English is:

{s = “ ‘sqrt(2)‘ is irrational”}.

Similarly, its concrete syntax in French would be:

{s=“ ‘sqrt(2)‘ est irrationnel”}.

It’s grammar for French could be easily defined as shown in figure 9.1. Similarly, its

concrete syntax in German and Urdu would be following respectively:

{s=“ ‘sqrt(2)‘ ist Irrationale”},

{s=“ÿ�ï
f

�
�£� A

�	K Q�

�	
«'‘sqrt(2)‘ ”}, transliteration: ‘sqrt(2)‘ ġaēr nāṫiq hae.

Writing such multilingual grammar from scratch could be expensive in terms of

time, effort and expertise. Therefore, we can make this task easy with the use of

GF resource library [Ranta 2009a]. GF resource library is linguistic oriented, general

purpose grammar which tries to cover the general aspects of a language. It may allows

us to develop multilingual CLM with a limited linguistic knowledge.

Finally, we can think of multilingual translation in MathNat with a limitation that

the anaphoric resolution of pronouns will not work for all the languages. It is because

the anaphoric resolution of pronouns may require some extra linguistic knowledge in

some languages, which is not present in English (such as gender in French). Also,

when translating from English to French, it will not be possible to correctly translate

pronouns. However, when translating from French to English, we’ll have no problem.

Also note that, this translation will be performed on GF level (i.e. the abstract

syntax of CLM), and hence, MathAbs will not be involved.

3Anything that is definable in type theory.
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1 lincat Proposition, Subject, Type, SymbMath, Pron = {s:Str};

2

3 lin MkProp subj type = {s: subj.s ++ "est" ++ type.s};

4

5 lin MkPronSubj pron = pron ;

6 lin MkSymbSubj symb = symb ;

7

8 lin It = {s="il"};

9 lin MkSymb symb = {s= "‘" ++ symb.s ++ "‘"};

10

11 lin Irrational = {s= "irrationnel"};

Figure 9.1: Concrete syntax for French for the abstract syntax given in figure 2.7

9.2.4 Generation from MathAbs

If we suppose that a translation link from MathAbs to various proof assistants is estab-

lished, we can think of the possibility of trivial text generation for formalized proofs. We

can think of a translation in which the rules are translated with some simple rules. For

instance, the simplest rule would be to translate all the MathAbs rules in one statements

which are separated by full-stops. For instance:

• “let a, b ∈ Q •”, can always be translated in a specific statement, such as “let a

and b be rational.”.

• “assume A show B •”, can always be translated in “if A then B.”.

• ...

In our opinion, even a very simple and naive translation could be useful.



Appendix A

A Few Selected Examples

Contents
A.1 Irrationality of

√
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

A.1.1 First Version: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

A.1.2 Second Version: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

A.1.3 Third Version: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

A.1.4 Fourth Version: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

A.2 Second Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

A.3 Third Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

A.4 Fourth Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

A.4.1 First Version: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

A.4.2 Second Version: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

A.5 Fifth Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

A.6 Sixth Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

A.7 Seventh Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

A.8 Eighth Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Introduction

In this appendix we give a number of example theorem and proofs which are supported

by CLM. These examples are also available in “mathnat/examples” directory1 (if you

download the MathNat software).

In each theorem and proof, we resolve the linguistic issues and add the anaphoric

referents besides these anaphoric pronouns and references in brackets [. . . ]. Also these

anaphoric pronouns and references are boldfaced.

In §2.5.2, page 19 and §8.3 on page 189, we have fixed some notations for the context.

Some of the notations used here could be a bit different. For instance, in quantification

(QNo ≡ None, QUndecided ≡ –) and in Type (NoType ≡ Unknown). We do not display

the rule full-stop (•) in the MathAbs because each sentence is already separated by new

line.

A.1 Irrationality of
√

2

A.1.1 First Version:

1. "Theorem" Prove that
√

2 is irrational.

1In it, for each example file let us say 1.1.nat, we have 1.1.output file containing its output produced

by MathNat.
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2. "Proof" Suppose that
√

2 is a rational number.

3. By the definition of rational numbers, we can assume that
√

2 = a/b where a and

b are non-zero integers with no common factor.

4. Thus, b ∗
√

2 = a.

5. Squaring both sides [of b ∗
√

2 = a] yields that 2 ∗ b2 = a2 (1).

6. a2 is even because it [a2] is a multiple of 2.

7. So we can write that a = 2 ∗ c, where c is an integer.

8. We get that 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2 by substituting the value of a into equation

(1) [2 ∗ b2 = a2].

9. Dividing both sides [of 2 ∗ b2 = a2] by 2, yields the result that b2 = 2 ∗ c2.

10. Thus b is even because 2 is a factor of b2.

11. If a and b are even then they [a and b] have a common factor.

12. It is a contradiction.

13. Therefore, we conclude that
√

2 is an irrational number.

14. This concludes the proof.

Context:

CV: Expression context

Sn Object Number Quantification How Declared Type

1
√

2 1 QNo Explicit Irrational

2
√

2 1 QNo Explicit Rational

3 a 1 QLet Implicit NoType

3 b 1 QLet Implicit NoType

3
√

2 1 QNo Explicit Rational

3 a, b 2 QLet Explicit Integer

4 b ∗
√

2 1 QLet Explicit NoType

5 2 ∗ b2 1 QLet Explicit NoType

6 a2 1 QLet Explicit NoType

6 It [a2] 1 QLet Explicit NoType

6 2 1 QNo Explicit NoType

7 c 1 QLet Implicit NoType

7 a 1 QLet Explicit Integer

7 c 1 QLet Explicit Integer

8 2 ∗ b2 1 QLet Explicit NoType

8 a 1 QLet Explicit Integer

9 2 1 QNo Explicit NoType

9 b2 1 QLet Explicit NoType

10 b 1 QLet Explicit Integer

10 2 1 QNo Explicit NoType

10 b2 1 QLet Explicit NoType

11 a, b 2 QLet Explicit Integer

11 they [a, b] 2 QLet Explicit Integer

13
√

2 1 QNo Explicit Irrational
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ST: Logical Formulas

Sn Logical Formula Statement Type

1 ¬
√

2 : Q Goal

2
√

2 : Q Hypothesis

3 def_rational Justification

3 (a, b : Z) ∧ positive(a) ∧ positive(b) ∧ no_cmn_factor(a, b) ∧ (
√

2 =
a/b)

Hypothesis

4 b ∗
√

2 = a Deduction

5 squaring_both_sides(b ∗
√

2 = a) Justification

5 2 ∗ b2 = a2 Deduction

6 even(a2) Deduction

6 multiple_of(a2, 2) Justification

7 c : Z ∧ a = 2 ∗ c Hypothesis

8 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2 Deduction

8 substitution(a, 2 ∗ b22 = a2) Justification

9 division(2, 2 ∗ b2 = a2) Justification

9 b2 = 2 ∗ c2 Deduction

9 b2 = 2 ∗ c2 Deduction

10 even(b) Deduction

10 factor_of(2, b2) Justification

11 (even(a) ∧ even(b)) ⇒ one_cmn_factor(a, b) Deduction

12 False Deduction

13 ¬(
√

2 : Q) Deduction

CE: Equations

Sn Equation Reference

3
√

2 = a/b No

4 b ∗
√

2 = a No

5 2 ∗ b2 = a2 1

7 a = 2 ∗ c No

8 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2 No

9 b2 = 2 ∗ c2 No

MathAbs:

1. Theorem. show ¬
√

2 : Q

2. Proof. assume
√

2 : Q

3. let a, b : Z assume
√

2 = a/b assume positive(a) ∧ positive(b)

∧ no_cmn_factor(a, b) by def Rational_Number

4. deduce b ∗
√

2 = a

5. deduce 2 ∗ b2 = a2 1 by oper squaring_both_sides(b ∗
√

2 = a)

6. deduce multiple_of(a2, 2)

deduce even(a2) by form multiple_of(a2, 2)

7. let c ∈ Z assume a = 2 ∗ c

8. deduce 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2 by oper substitution(a, 2 ∗ b2 = a2)

9. deduce b2 = 2 ∗ c2 by oper division(2, 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2)

10. deduce factor_of (2, b2)

deduce even(b) by form factor_of(2,b2)

11. deduce (even(a) ∧ even(b)) ⇒ one_cmn_factor(a, b)

12. show ⊥ trivial
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ASCII Version:

1. "Theorem" Prove that ‘sqrt(2)‘ is irrational.

2. "Proof" Suppose that ‘sqrt(2)‘ is a rational number.

3. By the definition of rational numbers, we can assume that ‘sqrt(2) = a/b‘ where

‘a‘ and ‘b‘ are non-zero integers with no common factor.

4. Thus, ‘b*sqrt(2) = a‘.

5. Squaring both sides yields that ‘2*b^2 = a^2‘ (1).

6. ‘a^2‘ is even because it is a multiple of ‘2‘.

7. So we can write that ‘a = 2*c‘, where ‘c‘ is an integer.

8. We get that ‘2*b^2 = (2*c)^2 = 4*c^2‘ by substituting the value of ‘a‘ into equation (1).

9. Dividing both sides by ‘2‘, yields the result that ‘b^2 = 2*c^2‘.

10. Thus ‘b‘ is even because ‘2‘ is a factor of ‘b^2‘.

11. If ‘a‘ and ‘b‘ are even then they have a common factor.

12. It is a contradiction.

13. Therefore, we conclude that ‘sqrt(2)‘ is an irrational number.

14. This concludes the proof.

A.1.2 Second Version:

Its a variant of example 1.

1. "Theorem." Prove that
√

2 is an irrational number.

2. "Proof" Suppose that
√

2 is a rational number.

3. We suppose that
√

2 = a/b by the definition of rational number, where a and b

are non zero integers with no common factor.

4. Thus,
√

2 ∗ b = a.

5. We get that 2 ∗ b2 = a2 – (i) by squaring both sides [of
√

2 ∗ b = a].

6. Since a2 and b2 are non zero integers, we conclude that a2 is even.

7. By the last deduction [of even(a2)], a is even.

8. We can write that a = 2∗c by the definition of even numbers, where c is an integer.

9. We get that 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2 by substituting the value of a into equation

(i) [of 2 ∗ b2 = a2].

10. Dividing both sides [of 2∗b2 = (2∗c)2 = 4∗c2] by 2, yields the fact that b2 = 2∗c2.

11. Because it [b2] is positive and b is a multiple of 2, we conclude that b2 is even.

12. If a and b are even, then they [a, b] have a common factor.

13. The fact that they [a, b] have a common factor implies a contradiction.
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Context:

CV: Expression context

Sn Object Number Quantification How Declared Type

1
√

2 1 QNo Explicit Irrational

2
√

2 1 QNo Explicit Rational

3
√

2 1 QNo Explicit Rational

3 a, b 2 QLet Explicit Integer

4
√

2 ∗ b 1 QLet Explicit NoType

5 2 ∗ b2 1 QLet Explicit NoType

6 a2, b2 2 QLet Explicit Integer

6 a2 1 QLet Explicit Integer

7 a 1 QLet Explicit Integer

6 a 1 QLet Explicit Integer

8 c 1 QLet Explicit Integer

9 2 ∗ b2 1 QLet Explicit NoType

9 a 1 QLet Explicit Integer

10 2 1 QNo Explicit NoType

10 b2 1 QLet Explicit Integer

11 it [b2] 1 QLet Explicit Integer

11 b 1 QLet Explicit Integer

11 2 1 QNo Explicit NoType

11 b2 1 QLet Explicit Integer

12 a, b 2 QLet Explicit Integer

12 they [a, b] 2 QLet Explicit Integer

13 they [a, b] 2 QLet Explicit Integer

ST: Logical Formulas

Sn Logical Formula Statement Type

1 ¬
√

2 : Q Goal

2
√

2 : Q Hypothesis

3 def_rational Justification

3 (a, b : Z) ∧ positive(a) ∧ positive(b) ∧ no_cmn_factor(a, b) ∧ (
√

2 =
a/b)

Hypothesis

4
√

2 ∗ b = a Deduction

5 2 ∗ b2 = a2 Deduction

5 squaring_both_sides(b ∗
√

2 = a) Justification

6 (a2, b2 : Z) ∧ positive(a2) ∧ positive(b2) Justification

6 even(a2) Deduction

7 last deduction [even(a2)] Justification

7 even(a) Deduction

8 c : Z ∧ a = 2 ∗ c Hypothesis

9 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2 Deduction

8 substitution(a, 2 ∗ b22 = a2) Justification

10 division(2, 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2) Justification

10 b2 = 2 ∗ c2 Deduction

11 positive(b2) ∧ multiple_of(b, 2) Justification

11 (even(b2) Deduction

12 even(a) ∧ even(b) ⇒ one_cmn_factor(a, b) Deduction

13 one_cmn_factor(a, b) Justification

12 ⊥ Deduction

CE: Equations

Sn Equation Reference

3
√

2 = a/b No

4
√

2 ∗ b = a No

5 2 ∗ b2 = a2 i

8 a = 2 ∗ c No

9 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2 No

10 b2 = 2 ∗ c2 No

MathAbs:
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1. Theorem. show ¬
√

2 : Q

2. Proof. assume
√

2 : Q

3. let a, b : Z assume
√

2 = a/b assume positive(a) ∧ positive(b)

∧ no_cmn_factor(a, b) by def Rational_Number

4. deduce
√

2 ∗ b = a

5. deduce 2 ∗ b2 = a2 i by oper squaring_both_sides(
√

2 ∗ b = a)

6. deduce (a2, b2 : Z) ∧ positive(a2) ∧ positive(b2)

deduce even(a2)

7. deduce even(a) by form even(a2)

8. let c : Z assume a = 2 ∗ c

9. deduce 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2 by oper substitution(a, 2 ∗ b2 = a2)

10. deduce b2 = 2 ∗ c2 by oper division(2, 2 ∗ b2 = (2 ∗ c)2 = 4 ∗ c2)

11. deduce positive(b2) ∧ multiple_of(2, b)

deduce even(b2)

12. deduce (even(a) ∧ even(b)) ⇒ one_cmn_factor(a, b)

13. show ⊥ by oper one_cmn_factor(a, b) trivial

ASCII Version:

1 "Theorem" Prove that ‘sqrt(2)‘ is an irrational number.

2 "Proof" Suppose that ‘sqrt(2)‘ is a rational number.

3 We suppose that ‘sqrt(2) = a/b‘ by the definition of rational number, where

4 ‘a‘ and ‘b‘ are non zero integers with no common factor.

5 Thus, ‘sqrt(2)*b = a‘.

6 We get that ‘2*b^2 = a^2‘ - (i) by squaring both sides.

7 Since ‘b^2‘ and ‘a^2‘ are non zero integers, we conclude that ‘a^2‘ is even.

8 By the last deduction, ‘a‘ is even.

9 We can write that ‘a = 2*c‘ by the definition of even numbers, where ‘c‘ is an integer.

10 We get that ‘2*b^2 = (2*c)^2 = 4*c^2‘ by substituting the value of ‘a‘ into equation (i).

11 Dividing both sides by ‘2‘, yields the fact that ‘b^2 = 2*c^2‘.

12 Because it is positive and ‘b‘ is a multiple of ‘2‘, we conclude that ‘b^2‘ is even.

13 If ‘a‘ and ‘b‘ are even, then they have a common factor.

14 The fact that they have a common factor implies a contradiction.

A.1.3 Third Version:

1. Theorem 43 (PYTHAGORAS’ THEOREM)
√

2 is irrational.

2. Proof. If
√

2 is rational, then a2 = 2 ∗ b2 − (4.3.1), where a and b are positive

integers with gcd(a, b) = 1.

3. Hence a2 is even; and therefore a is even.

4. If a = 2 ∗ c, then 4 ∗ c2 = 2 ∗ b2.
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5. If 4 ∗ c2 = 2 ∗ b2 then 2 ∗ c2 = b2.

6. Consequently, b is even.

7. It is contrary to our hypothesis.

Context:

CV: Expression context

Sn Object Number Quantification How Declared Type

1
√

2 1 QNo Explicit Irrational

2
√

2 1 QNo Explicit Rational

2 a 1 QLet Implicit NoType

2 a2 1 QLet Explicit NoType

2 a, b 2 QLet Explicit Integer

2 gcd(a, b) 1 QLet Explicit NoType

3 a2 1 QLet Explicit NoType

3 a 1 QLet Explicit Integer

4 c 1 QLet Implicit NoType

4 a 1 QLet Explicit Integer

4 4 ∗ c2 1 QLet Explicit NoType

5 4 ∗ c2 1 QLet Explicit NoType

5 2 ∗ c2 1 QLet Explicit NoType

6 b 1 QLet Explicit Integer

ST: Logical Formulas

Sn Logical Formula Statement Type

1 ¬
√

2 : Q Goal

2
√

2 : Q ⇒ ((a, b : Z) ∧ positive(a) ∧ positive(b) ∧ (gcd(a, b) =
1) ∧ (a2 = 2 ∗ b2))

Hypothesis

3 even(a2) Deduction

3 even(a) Deduction

4 a = 2 ∗ c ⇒ 4 ∗ c2 = 2 ∗ b2 Deduction

5 4 ∗ c2 = 2 ∗ b2 ⇒ 2 ∗ c2 = b2 Deduction

6 even(b) Deduction

7 ⊥ Deduction

CE: Equations

Sn Equation Reference

2 a2 = 2 ∗ b2 4.3.1

4 a = 2 ∗ c No

4 4 ∗ c2 = 2 ∗ b2 No

5 4 ∗ c2 = 2 ∗ b2 No

5 2 ∗ c2 = b2 No

MathAbs:

1. Theorem. show ¬
√

2 : Q

2. Proof. let a, b : Z assume positive(a) ∧ positive(b) ∧ (gcd(a, b) = 1) ∧ (
√

2 : Q)

deduce a2 = 2 ∗ b2

3. deduce even(a2) deduce even(a)

4. let c : NoType assume a = 2 ∗ c deduce 4 ∗ c2 = 2 ∗ b2

5. assume 4 ∗ c2 = 2 ∗ b2 deduce 2 ∗ c2 = b2

6. deduce even(b)

7. show ⊥ trivial
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ASCII Version:

1 "Theorem 43" ‘sqrt(2)‘ is irrational.

2 "Proof" If ‘sqrt(2)‘ is rational, then ‘a^2 = 2*b^2‘ - (4.3.1), where $a$

3 and $b$ are positive integers with ‘gcd(a,b)=1‘.

4 Hence ‘a^2‘ is even; and therefore ‘a‘ is even.

5 If ‘a=2*c‘, then ‘4*c^2 = 2*b^2‘.

6 If ‘4*c^2 = 2*b^2‘ then ‘2*c^2 = b^2‘.

7 Consequently, ‘b‘ is even.

8 It is contrary to our hypothesis.

A.1.4 Fourth Version:

1. "Theorem 43"
√

2 is irrational.

2. "Proof" Suppose that
√

2 is rational.

3. Let a and b be positive integers with gcd(a, b) = 1.

4. Then a2 = 2 ∗ b2 (4.3.1).

5. By the last equation [of a2 = 2 ∗ b2] a2 is even; and therefore, a is even.

6. So, we can assume that a = 2 ∗ c.

7. Substituting the value of a in equation (4.3.1) [of a2 = 2∗b2] returns 4∗c2 = 2∗b2.

8. Dividing both sides [of 4 ∗ c2 = 2 ∗ b2] by 2 yields 2 ∗ c2 = b2.

9. The last equation [of 2 ∗ c2 = b2] implies that b2 is even; and therefore, b is even.

10. It is contrary to the hypothesis that gcd(a, b) = 1.

Context:

CV: Expression context

Sn Object Number Quantification How Declared Type

1
√

2 1 QNo Explicit Irrational

2
√

2 1 QNo Explicit Rational

3 a, b 2 QLet Explicit Integer

3 gcd(a, b) 1 QLet Explicit NoType

4 a2 1 QLet Explicit NoType

5 a2 1 QLet Explicit NoType

5 a 1 QLet Explicit Integer

6 c 1 QLet Implicit NoType

6 a 1 QLet Explicit Integer

7 a 1 QLet Explicit Integer

7 4 ∗ c2 1 QLet Explicit NoType

8 2 1 QNo Explicit NoType

8 2 ∗ c2 1 QLet Explicit NoType

9 b2 1 QLet Explicit NoType

9 b 1 QLet Explicit Integer

10 gcd(a, b) 1 QLet Explicit NoType
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ST: Logical Formulas

Sn Logical Formula Statement Type

1 ¬
√

2 : Q Goal

2
√

2 : Q ⇒ ((a, b : Z) ∧ positive(a) ∧ positive(b) ∧ (gcd(a, b) =
1) ∧ (a2 = 2 ∗ b2))

Hypothesis

3 even(a2) Deduction

3 even(a) Deduction

4 a = 2 ∗ c ⇒ 4 ∗ c2 = 2 ∗ b2 Deduction

5 4 ∗ c2 = 2 ∗ b2 ⇒ 2 ∗ c2 = b2 Deduction

6 even(b) Deduction

7 ⊥ Deduction

CE: Equations

Sn Equation Reference

2 a2 = 2 ∗ b2 4.3.1

4 a = 2 ∗ c No

4 4 ∗ c2 = 2 ∗ b2 No

5 4 ∗ c2 = 2 ∗ b2 No

5 2 ∗ c2 = b2 No

Its MathAbs and ASCII Version is omitted.

A.2 Second Example

1. "Theorem" If p is prime and p | a ∗ b, then p | a or p | b.

2. "Proof" Suppose that p is prime and p divides a ∗ b.

3. If ¬ (p | a) then gcd(a, p) = 1 ; and therefore, by theorem 24, there are x and y

such that x ∗ a + y ∗ p = 1 or x ∗ a ∗ b + y ∗ p ∗ b = b.

4. We conclude that p | b because p | a ∗ b and p | p ∗ b.

5. (an alternate ending: Because p | a ∗ b and p | p ∗ b we conclude that p | b).

Context:

CV: Expression context

Sn Object Number Quantification How Declared Type

1 p 1 QLet Explicit Prime

1 a 1 QLet Implicit NoType

1 b 1 QLet Implicit NoType

1 p 1 QLet Explicit Prime

1 p 1 QLet Explicit Prime

1 p 1 QLet Explicit Prime

2 p 1 QLet Explicit Prime

2 p 1 QLet Explicit Prime

2 a, b 2 QLet Explicit NoType

3 p 1 QLet Explicit Prime

3 gcd(a, b) 1 QLet Explicit NoType

3 x, y 2 QExist Explicit NoType

3 x ∗ a + y ∗ p 1 – Explicit NoType

3 x ∗ a ∗ b + y ∗ p ∗ b 1 – Explicit NoType

4 p 1 QLet Explicit Prime

4 p 1 QLet Explicit Prime

4 p 1 QLet Explicit Prime
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ST: Logical Formulas

Sn Logical Formula Statement Type

1 p : Prime ∧ divide(p, a ∗ b) Hypothesis

1 divide(p, a) ∨ divide(p, b) Goal

2 p : Prime ∧ divide(p, a ∗ b) Hypothesis

3 ¬divide(p, a) Hypothesis

3 gcd(a, p) = 1 Deduction

3 ∃(x, y : NoType) (x ∗ a + y ∗ p = 1 ∨ x ∗ a ∗ b + y ∗ p ∗ b = b) Deduction

4 divide(p, b) Deduction

4 divide(p, a ∗ b) ∧ divide(p, p ∗ b) Deduction

CE: Equations

Sn Equation Reference

3 gcd(a, p) = 1 No

3 x ∗ a + y ∗ p = 1 No

3 x ∗ a ∗ b + y ∗ p ∗ b = b No

MathAbs:

1. Theorem. let a, b : NoType let p : Prime assume divide(p, a ∗ b) show divide(p, a) ∨
divide(p, b) ;

2. Proof. let p : Prime assume divide(p, a ∗ b)

3. assume ¬divide(p, a) deduce gcd(a, p) = 1 deduce ∃(x, y : NoType) (x ∗ a + y ∗ p =

1 ∨ x ∗ a ∗ b + y ∗ p ∗ b = b) by thm theorem_24

4. deduce divide(p, a ∗ b) deduce divide(p, p ∗ b)

deduce divide(p, b) by form divide(p, a ∗ b) by form divide(p, p ∗ b) trivial ;

Note: in line 4, we first deduce the justifications and then use them in the main

proof statement.

ASCII Version:

"Theorem" If ‘p‘ is prime and ‘p | a*b‘, then ‘p|a‘ or ‘p|b‘.

"Proof" Suppose that ‘p‘ is prime and ‘p‘ divides ‘a*b‘.

If ‘not p | a ‘ then ‘gcd(a,p)=1‘ ; and therefore, by theorem 24, there are ‘x‘ and ‘y‘

such that ‘x*a + y*p = 1‘ or ‘x*a*b + y*p*b = b‘.

We conclude that ‘p|b‘ because ‘p|a*b‘ and ‘p|p*b‘.

A.3 Third Example

1. "Theorem" Assume that n and m are integers.

2. Suppose that either n! = 0 or m! = 0.

3. Prove that there exist two integers u and v such that u ∗ n + v ∗ m = gcd(n, m).

4. "Proof" If n = 0 then gcd(n, m) = m.

5. In this case we can choose u := 0 and v := 1.

6. Otherwise if m = 0 then we can choose u := 1 and v := 0.
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7. Otherwise there are r and q such that n = m ∗ q + r holds by euclidean division.

8. Let us prove that gcd(n, m) = gcd(m, r).

9. We assume that n and m have a common divisor d.

10. d divides r because r = n − m ∗ q.

11. If m and r have a common divisor d then it [d] divides n.

12. It is trivial that m and r are coprime and r < m.

13. So by induction hypothesis there are u′ and v′ such that u′ ∗ m + v′ ∗ r = 1.

14. It implies that u′ ∗ m + v′ ∗ (n − m ∗ q) = v′ ∗ n + (u′ − v′ ∗ q) ∗ m = 1.

15. Therefore we can choose u := v′ and v := u′ − v′ ∗ q.

Context:

CV: Expression context

Sn Object Number Quantification How Declared Type

1 m, n 2 QLet Explicit Integer

2 m, n 2 QLet Explicit Integer

3 u, v 2 QExistential Explicit Integer

3 u ∗ n + v ∗ m 1 – Explicit Integer

4 n 1 QLet Explicit Integer

4 m, n 2 QLet Explicit Integer

5 u, v 2 QExistential Explicit Integer

6 m 1 QLet Explicit Integer

6 u, v 2 QExistential Explicit Integer

7 r, q 2 QExistential Explicit NoType

7 n 1 QLet Explicit Integer

8 m, n 2 QLet Explicit Integer

9 m, n 2 QLet Explicit Integer

9 d 1 QLet Explicit NoType

10 d 1 QLet Explicit NoType

10 r 1 QExistential Explicit NoType

10 r 1 QExistential Explicit NoType

11 m, r 2 – Explicit NoType

11 d 2 QLet Explicit NoType

11 It(d) 1 QLet Explicit NoType

11 n 1 QLet Explicit Integer

12 m, r 2 – Explicit NoType

12 r 1 QExistential Explicit NoType

13 u′, v′ 2 QExistential Explicit NoType

13 u′ ∗ m + v′ ∗ r 1 – Explicit NoType

14 u′ ∗ m + v′ ∗ (n − m ∗ q) 1 – Explicit NoType

15 u, v 2 QExistential Explicit Integer



250 Appendix A. A Few Selected Examples

ST: Logical Formulas

Sn Logical Formula Statement Type

1 (m, n : Z) Hypothesis

2 (m! = 0 ∧ ¬(n! = 0)) ∨ (¬(m! = 0) ∧ n! = 0) Hypothesis

3 ∃ u, v : Z (u ∗ n + v ∗ m = gcd(m, n)) Goal

4 (n = 0) ⇒ (gcd(m, n) = m) Deduction

5 u := 0 ∧ v := 1 Deduction

6 (¬(n = 0) ∧ (m = 0)) ⇒ (u := 1 ∧ v := 0) Deduction

7 ¬(n = 0) ∧ ¬(m = 0) ∧ ∃ r, q : NoType (n = m ∗ q + r) Deduction

8 gcd(m, n) = gcd(m, r) Goal

9 one_cmn_divisor([m, n], d) Hypothesis

10 (r = n − m ∗ q) ⇒ divides(d, r) Deduction

11 one_cmn_divisor([m, n], d) ⇒ divides(d, n) Deduction

12 coprime(m, n) ∧ (r < m) Deduction

13 ∃ u′, v′ : NoType (u′ ∗ m + v′ ∗ r = 1) Deduction

14 u′ ∗ m + v′ ∗ (n − m ∗ q) = v′ ∗ n + (u′ − v′ ∗ q) ∗ m = 1 Deduction

15 u := v′ ∧ v := u′ − v′ ∗ q Deduction

CE: Equations

Sn Equation Reference

2 m! = 0 No

2 n! = 0 No

3 u ∗ n + v ∗ m = gcd(m, n) No

4 n = 0 No

4 gcd(m, n) = m No

6 m = 0 No

7 n = m ∗ q + r No

8 gcd(m, n) = gcd(m, r) No

10 r = n − m ∗ q No

12 r < m No

13 u′ ∗ m + v′ ∗ r = 1 No

14 u′ ∗ m + v′ ∗ (n − m ∗ q) = v′ ∗ n + (u′ − v′ ∗ q) ∗ m = 1 No

MathAbs:

1. Theorem. let n, m : Z

2. assume (n! = 0 ∧ ¬m! = 0) ∧ (¬n! = 0 ∧ m! = 0)

3. show ∃(u, v : Z) (u ∗ n + v ∗ m = gcd(n, m))

4. Proof. { assume n = 0 deduce gcd(n, m) = m

5. trivial by form u := 0 by form v := 1 ;

6. assume ¬(n = 0) assume m = 0 trivial by form u := 1 by form v := 0 ;

7. assume ¬(n = 0) assume ¬m = 0 deduce ∃(r, q : NoType) (n = m ∗ q + r) by def

Euclidean_Division

8. show gcd(n, m) = gcd(m, r)

9. let d : NoType assume cmn_divisor_of([d], n, m)

10. deduce r = n − m ∗ q

deduce divide(d, r) by form r = n − m ∗ q

11. assume cmn_divisor_of([d], m, r) deduce divide(d, n)
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12. deduce coprime(m, r) ∧ r < m

13. deduce ∃(u′, v′ : NoType) (u′ ∗ m + v′ ∗ r = 1) by def Induction_Hypothesis

14. deduce u′ ∗ m + v′ ∗ (n − m ∗ q) = v′ ∗ n + (u′ − v′ ∗ q) ∗ m = 1

15. trivial by form u := v′ by form v := u′ − v′ ∗ q };

Everything else for this example is omitted.

A.4 Fourth Example

A.4.1 First Version:

1. Theorem. Assume that m and n are relatively prime integers.

2. Suppose that either m Ó= 0 or n Ó= 0.

3. Then prove that there exist two integers u and v such that u ∗ n + v ∗ m = 1 holds.

4. Proof. If n = 0 then m = 1 because m and n are coprime.

5. We can choose u := 0 and v := 1.

6. Otherwise if m = 0 and n = 1 then we can choose u := 1 and v := 0.

7. Otherwise there exist r and q such that n = m ∗ q + r holds by euclidean division.

8. It is obvious that m and r are coprime and r < m.

9. So by induction hypothesis there are u′ and v′ such that u′ ∗ m + v′ ∗ r = 1 holds.

10. It implies that u′ ∗ m + v′ ∗ (n − m ∗ q) = v′ ∗ n + (u′ − v′ ∗ q) ∗ m = 1.

11. So we can choose u := v′ and v := u′ − v′ ∗ q.

See figure 4.4 on page 77 for MathAbs. Everything else for this example is omitted.

A.4.2 Second Version:

1. "Theorem" Assume that m and n are relatively prime integers.

2. Suppose that either m! = 0 or n! = 0.

3. Show that there are two integers u and v such that u ∗ n + v ∗ m = 1.

4. "Proof" We proceed by case analysis.

5. Case: n = 0.

6. In this case m = 1 because m and n are coprime.

7. Therefore we can select u := 0 and v := 1.

8. Case: m = 0 and n = 1.
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9. In this case we can select u := 1 and v := 0.

10. Case: n! = 0 and m! = 0.

11. By euclidean division there are r and q such that n = m ∗ q + r.

12. It is trivial that m and r are coprime and r < m.

13. So there are u′ and v′ such that u′ ∗ m + v′ ∗ r = 1.

14. It implies that u′ ∗ m + v′ ∗ (n − m ∗ q) = v′ ∗ n + (u′ − v′ ∗ q) ∗ m = 1.

15. So we can select u := v′ and v := u′ − v′ ∗ q.

Everything else for this example is omitted.

A.5 Fifth Example

1. "Theorem" Let x be a rational number.

2. Prove that −5 <= |x + 2| − |x − 3| <= 5.

3. "Proof" We proceed by the case analysis.

4. Case: x <= −2.

5. In this case, |x + 2| − |x − 3| = −(x + 2) − (−(x − 3)) = −5.

6. Therefore, −5 <= |x + 2| − |x − 3| <= 5.

7. Case: −2 < x <= 3.

8. Therefore, |x + 2| − |x − 3| = |x + 2| − (−(x − 3)) = 2 ∗ x − 1.

9. Because, −2 < x <= 3, we get that −4 < 2 ∗ x <= 6 and −5 < 2 ∗ x − 1 <= 5.

10. So, we conclude that −5 <= |x + 2| − |x − 3| <= 5.

11. Case: x > 3.

12. In this case, |x + 2| − |x − 3| = (x + 2) − (x − 3) = 5.

13. Therefore, −5 <= |x + 2| − |x − 3| <= 5.

MathAbs:

1. Theorem. let x : Q

2. show −5 <= abs(x + 2) − abs(x − 3) <= 5

3. Proof. {

4. assume x <= −2
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5. deduce abs(x + 2) − abs(x − 3) = −(x + 2) − (−(x − 3)) = −5

6. deduce −5 <= abs(x + 2) − abs(x − 3) <= 5 trivial ;

7. assume ¬(x <= −2) assume −2 < x <= 3

8. deduce abs(x + 2) − abs(x − 3) = x + 2 − (−(x − 3)) = 2 ∗ x − 1

9. deduce −4 < 2 ∗ x <= 6 ∧ −5 < 2 ∗ x − 1 <= 5 by form −2 < x <= 3

10. deduce −5 <= abs(x + 2) − abs(x − 3) <= 5 trivial ;

11. assume ¬(−2 < x <= 3) assume ¬(x <= −2) assume x > 3

12. deduce abs(x + 2) − abs(x − 3) = x + 2 − (x − 3) = 5

13. deduce −5 <= abs(x + 2) − abs(x − 3) <= 5 trivial

} ;

ASCII Version:

"Theorem" Let ‘x‘ be a rational number. Prove that ‘-5 <= |x+2| - |x-3| <=5‘.

"Proof" We proceed by the case analysis.

Case: ‘x <= -2‘.

In this case, ‘|x+2| - |x-3| = -(x+2) - (-(x-3)) = -5‘.

Therefore, ‘-5 <= |x+2| - |x-3| <= 5‘.

Case: ‘-2 < x <= 3‘.

Therefore, ‘|x+2| - |x-3| = |x+2| - (-(x-3)) = 2*x - 1‘.

Because, ‘-2 < x <= 3‘, we get that ‘-4 < 2*x <= 6 ‘ and ‘-5 < 2*x -1 <= 5‘.

So, we conclude that ‘-5 <= |x+2| - |x-3| <=5‘.

Case: ‘x>3‘.

In this case, ‘|x+2| - |x-3| = (x+2) - (x-3) = 5‘.

Therefore, ‘-5 <= |x+2| - |x-3| <= 5‘.

Everything else for this example is omitted.

A.6 Sixth Example

1. "Theorem" Let A and B be two sets. If A ∪ B = A ∩ B then A ⊆ B.

2. "Proof" We assume that A ∪ B = A ∩ B.

3. It is sufficient to prove that if x ∈ A then x ∈ B.

4. We suppose that x ∈ A.

5. Since A ⊆ A ∪ B, then x ∈ A ∪ B.

6. Assume that x ∈ A ∩ B because A ∪ B = A ∩ B.

7. By the fact that A ∩ B ⊆ B, we conclude that x ∈ B.

8. This concludes the proof.
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MathAbs

1. Theorem. let A, B : Set assume A ∪ B = A ∩ B show A ⊆ B

2. Proof. assume A ∪ B = A ∩ B

3. let x : NoType show x ∈ A ⇒ x ∈ B

4. assume x ∈ A

5. deduce A ⊆ A ∪ B

deduce x ∈ A ∪ B by form A ⊆ A ∪ B

6. assume x ∈ A ∩ B by form A ∪ B = A ∩ B

7. deduce A ∩ B ⊆ B

deduce x ∈ B by form A ∩ B ⊆ B

8. trivial

Everything else for this example is omitted.

A.7 Seventh Example

1. "Theorem" If x and y are two positive odd integers then x2 + y2 is even.

2. "Proof" Let x and y be two positive odd integers.

3. We suppose that x = 2 ∗ a + 1 and y = 2 ∗ b + 1 by the definition of odd numbers.

4. Then x2 + y2 = (2 ∗ a + 1)2 + (2 ∗ b + 1)2 .

5. By the last equation we have x2 + y2 = 2 ∗ (2 ∗ (a2 + b2 + a + b) + 1).

6. Therefore, we deduce that x2 + y2 is even because it is a multiple of 2.

MathAbs: We give MathAbs in verbatim to show exactly how the MathAbs’ output

look like:

1. "Theorem" let x:Integer let y:Integer

assume positive(x) land positive(y) land (odd(x) land odd(y))

show even(x^2 + y^2) ;

2. "Proof" let x:Integer let y:Integer

assume positive(x) land positive(y) land (odd(x) land odd(y))

3. let a:NoType let b:NoType assume x = 2*a + 1 land y = 2*b + 1 by def Odd_Numbers

4. deduce x^2 + y^2 = (2*a + 1)^2 + (2*b + 1)^2

5. deduce x^2 + y^2 = 2*(2*(a^2 + b^2 + a + b)+ 1)

by form x^2 + y^2 = (2*a + 1)^2 + (2*b + 1)^2

6. deduce multiple_of([x^2 + y^2], 2)

deduce even(x^2 + y^2) by form multiple_of([x^2 + y^2], 2)

trivial ;

Everything else for this example is omitted.

A.8 Eighth Example

See figure 4.1 on page 61.
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