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Introduction

It has been realized in the last decade that confined ultracold atomic gases offer the
possibility to manipulate coherently entangled many-body quantum states. In particu-
lar, a major advantage provided by these type of systems is the high degree of control
of the relevant experimental parameters, due to the ability of tailoring traps of various
geometry [1, 2] and of tuning the interatomic interactions [3]. This has a large interest
for applications in quantum information and quantum technology. Recent advances have
concerned applications to quantum simulators [4] and high-sensitivity atom interferome-
try, which can be used for enhancing the precision in atomic clocks and in magnetic field
sensors [5–9].

In the latter field, very promising results have been recently demonstrated with the
use of a Bose Josephson junction (BJJ) [5–9]. Such a system is formed by two modes
of a Bose-Einstein condensate, which may correspond either to two internal states of the
condensed atoms in a single potential well or to two spatially separated wave functions
in a double well. In an atom interferometer, the two modes of the condensate are left
evolving under the interaction with the physical quantity to be measured, which causes a
relative phase shift ϕ on the two modes. From measurements on the output state, e.g. of
the relative population of the two modes, the phase shift can be estimated. The Schwinger
representation [10] connects the creation and annihilation operators âi and â

†
i (for i = 1, 2)

of the bosons in the two modes to the three components of a collective angular momentum
operator Ĵ = (Ĵx, Ĵz, Ĵz), in terms of which the operations composing the interferometric
sequence can be described.

It has been proposed [11, 12] and experimentally demonstrated [7–9, 13] that Bose
Josephson junctions allow for the creation of atomic squeezed states, in which the quantum
fluctuations of the collective angular momentum operator in a certain direction are reduced
to the expense of the fluctuations in another direction. Such non classical states can be
used in an interferometric protocol to improve the phase sensitivity ∆ϕ reducing it below
the shot-noise limit ∆ϕ ∝ 1/

√
N - the limit that one obtains using classical states, N

being the number of bosons [14, 15]. This prediction has been recently experimentally
demonstrated in a Bose Josephson junction by C. Gross et al [8].

A further enhancement of the precision in atom-interferometry has been predicted to
be reached by the use of macroscopic superpositions of atomic coherent states [15, 16].
These are highly entangled states, in which a macroscopic number of particles is found in
a coherent superposition of different possible states - the “components” of the superpo-
sition. These states are often familiarly referred to as “Schrödinger’s cat states”, and in
particular two-component superpositions are also known from other quantum information
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contexts as GHZ states [17–20]. Incidentally, macroscopic superpositions are predicted to
be a fundamental resource in quantum communication and quantum computation [21],
and their experimental realization would also serve as a fundamental test for quantum
mechanics at the macroscopic scale. In quantum interferometry, the phase uncertainty
which could be reached with the use of these states scales like 1/N , and corresponds to
the “Heisenberg limit” - the highest possible phase sensitivity which can be reached with
linear interferometry [15, 16].

The experimental realization of these states is however challenging, because of their
fragility with respect to decoherence effects induced by particle losses [22, 23], phase noise
- due to stochastic fluctuations of the energies of the two modes [24, 25], collisions with
thermal atoms [26, 27], interaction with the electromagnetic field [28, 29], and random
fluctuations of the trapping potentials [30]. The two former phenomena, in particular, are
the main noise sources in the experiments of Ref. [8, 9, 13].

In this thesis, we study protocols for the creation, detection and exploitation in atom
interferometry of atomic squeezed states and macroscopic superposition in Bose Josephson
junctions, in the presence of phase noise and particle losses.

After introducing in Chap.1 the system under study - the Bose Josephson junction
- and its main features, we address in Chap.2 how squeezed states and macroscopic su-
perpositions can be created in a BJJ by means of dynamical and adiabatic methods, in
the absence of external noise sources. We especially focus on dynamical protocols. We
first demonstrate the formation of macroscopic superpositions during the dynamics of the
BJJ which follows a quench of the coupling between the two modes; then, we address an
optimal control protocol, with the goal of lowering the time of formation of the super-
position states. In Chap.3 we study how macroscopic superpositions can be detected by
means of repeated measurements of the collective angular momentum operator in various
directions, which is an observable accessible in the experiments. In Chap.4 we address
the applications to quantum metrology, studying the degree of usefulness for sub-shot
noise interferometry of the quantum state produced during the quenched dynamics of the
BJJ. Finally, in Chap.5 we address the effect of phase noise and particle losses on the
above-mentioned protocols. We analyze how the presence of noise affects the formation
of squeezed states and macroscopic superpositions, studying in detail the decoherence
processes to which the latter states undergo.

The results presented in this thesis have been the subject of four scientific publica-
tions in Physical Review A [24, 25, 31, 32], and of one preprint recently submitted for
publication [33].

Les gaz d’atomes ultrafroids offrent la possibilité de manipuler de façon cohérente
des états intriqués à beaucoup de particules. En particulier, un avantage relevant de ce
type de systèmes est l’énorme capacité à contrôler les paramètres expérimentaux, tels
que la forme du piège [1, 2] ou la force des intéractions inter-atomiques [3]. Cela a
un grand interêt pour les applications en information quantique. Des progrès récents
ont concerné les simulateurs quantiques [4] et l’interférométrie atomique à grande
sensibilité, qui peut être utilisée pour augmenter la précision des horloges atomiques
et des capteurs magnétiques [5–9].

Dans ce dernier champ d’application, des résultats expérimentaux très promet-
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teurs ont été achevés à l’aide d’une jonction Josephson bosonique (BJJ) [5–9]. Ce
système est formé par deux modes d’un condensat de Bose-Einstein, qui peuvent cor-
respondre soit à deux états internes distincts des atomes condensés, soit aux deux
fonctions d’ondes d’atomes séparés spatialement, dans un double puits de potentiel.
En interférométrie atomique les deux modes du condensat évoluent sous l’effet de
l’interaction avec la quantité physique à mesurer; cela cause un déphasage relatif ϕ
des deux modes. à partir de mesures sur l’état de sortie, par exemple de la différence de
population entre les deux modes, le déphasage peut être estimé. La représentation de
Schwinger [10] relie les opérateurs de création et annihilation âi et â

†
i (avec i = 1, 2)

des bosons dans les deux modes aux trois composantes d’un opérateur de moment an-
gulaire collectif Ĵ = (Ĵx, Ĵz, Ĵz), en termes du quel les opérations qui composent la
séquence interférométrique peuvent être décrites.

Il a été proposé [11, 12] et expérimentalement démontré [7–9, 13] que les jonctions
Josephson bosoniques permettent de créer des états atomiques comprimés, c’est-à-dire
des états dans lesquels les fluctuations quantiques du moment angulaire collectif selon
une certaine diréction sont réduites, au détriment des fluctuations dans la direction
perpendiculaire. Ces états non-classiques peuvent être utilisés dans une séquence in-
terférométrique pour améliorer la sensibilité de phase ∆ϕ en la réduisant au dessous
de la limite quantique standard ∆ϕ ∝ 1/

√
N , c’est-à-dire la limite qu’on obtient en

utilisant des états classiques, N étant le nombre de bosons [14, 15]. Cette prédiction a
été récemment démontrée expérimentalement avec une jonction Josephson bosonique
par C. Gross et al [8].

Il a été prédit qu’il est possible d’obtenir une augmentation supplémentaire de la
précision à l’aide de superpositions macroscopiques d’ états cohérents [15, 16]. Celles-
ci sont des états hautement intriqués, dans lesquels les atomes se trouvent dans une
superposition d’états macroscopiquement différents, les composantes de la superposi-
tion. Ces états sont familièrement appelés “chats de Schrödinger”, et en particulier
des superpositions à deux composantes sont aussi connus dans d’autres contextes en
information quantique comme états GHZ [17–20]. Par ailleurs, il est prédit que les
superpositions macroscopiques sont une ressource fondamentale pour les communi-
cations quantiques et pour le calcul quantique [21], et leur réalisation expérimentale
serait aussi une épreuve pour la mécanique quantique à échelle macroscopique. En
intérférométrie atomique, la sensibilité de phase qui pourrait être achevée à l’aide de
ces états suit la lois d’échelle 1/N , ce qui correspond à la “limite d’Heisenberg”, c’est-
à-dire la meilleure sensibilité qui peut être atteinte par interférométrie linéaire [15, 16].

La réalisation expérimentale de ces états est néanmoins difficile, à cause de leur
fragilité face aux effets de décohérence induits par des pertes de particules [22, 23], par
le bruit de phase (dû aux fluctuations stochastiques des énergies des deux modes) [24,
25], par des collisions avec des atomes thermiques [26, 27], des interactions avec les
champs électromagnétiques [28, 29], ou des fluctuations des potentiels réalisant le
piège [30]. En particulier, les deux premiers phénomènes sont les sources principales
de bruit dans les expériences de Refs. [8, 9, 13].

Dans cette thèse nous étudions des protocoles pour la création, la détection et
pour l’exploitation en interférométrie atomique d’états comprimés d’une part et des
superpositions macroscopiques d’autre part, dans les jonctions Josephson bosoniques,
en présence de bruit de phase et pertes des particules.
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Après avoir introduit dans le premier chapitre le système étudié, la jonction
Josephson bosonique, et ses caractéristiques principales, nous étudions dans le chapitre
2 comment des états comprimés et des superpositions macroscopiques peuvent être
créés dans une BJJ par des méthodes dynamiques et adiabatiques, en absence de bruits
extérieurs. Nous nous focalisons particulièrement sur les protocoles dynamiques. Nous
commençons par démontrer que des superpositions macroscopiques peuvent être créées
pendant la dynamique qui suit un arrêt soudain du couplage (une “trempe”) entre les
deux modes; par la suite, nous étudions un protocole de contrôle optimal, dans le
but de réduire le temps de formation des superpositions. Dans le chapitre 3 nous
étudions comment les superpositions macroscopiques peuvent être détectées à l’aide de
mesures répétées du moment angulaire collectif selon différentes directions, qui est une
observable accessible dans les expériences. Dans le chapitre 4 nous abordons les appli-
cations à la métrologie quantique, en étudiant le degré d’utilité pour l’interférométrie
en dessous de la limite quantique standard de l’état quantique produit pendant la dy-
namique de la BJJ. Enfin, dans le chapitre 5 nous abordons l’effet du bruit de phase
et de la perte de particules sur les protocoles mentionnés plus haut. Nous analysons
comment la présence de bruit affecte la formation des états comprimés et des super-
positions macroscopiques, en étudiant en détail le processus de décohérence auxquels
ces derniers sont subjets.

Les résultats présentés dans cette thèse ont fait l’objet de quatre publications sci-
entifiques dans Physical Review A [24, 25, 31, 32], et d’une pré-publication [33]
récemment soumise.



Contents

1 The Bose Josephson Junction 1

1.1 Quantum gases: an overview . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Trapping quantum gases . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Probing quantum gases . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The Bose Josephson junction: experimental realizations . . . . . . . . . . . 6

1.3 Theoretical description: modeling the BJJ . . . . . . . . . . . . . . . . . . . 7

1.3.1 The external BJJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Internal BJJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Mapping onto a spin model . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Rewriting the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Fock states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.3 Atomic coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.4 Experimental implementations of the observables . . . . . . . . . . . 14

1.5 Ground state properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 Ground state of the model . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.2 Momentum distribution for the external BJJ . . . . . . . . . . . . . 17

1.6 The semi-classical limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6.1 Semi-classical Hamiltonian and equations of motion . . . . . . . . . 19

1.6.2 Dynamical regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Creation of entangled states in a Bose Josephson junction 27

2.1 Multiparticle entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Criteria for multiparticle entanglement . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Linear entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Relevant multiparticle entangled states in a BJJ . . . . . . . . . . . . . . . 30

2.3.1 Coherent spin squeezing and squeezed states . . . . . . . . . . . . . 30

2.3.2 Macroscopic superpositions of coherent states . . . . . . . . . . . . . 31

2.3.3 Fock states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Adiabatic protocols for the creation of entangled states in BJJs . . . . . . . 33

2.4.1 Spin squeezing in the ground state . . . . . . . . . . . . . . . . . . . 34

2.4.2 Ground state of the attractive BEC . . . . . . . . . . . . . . . . . . 34

2.5 Dynamical protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Creation of squeezed states and macroscopic superpositions of phase
states by a quenched dynamics of the BJJ . . . . . . . . . . . . . . . 35

v



vi CONTENTS

2.5.2 Dynamical creation of macroscopic superpositions in a BJJ: semi-
classical argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.3 Controlled dynamical creation of macroscopic superpositions in a BJJ 40

3 Detection of macroscopic superpositions 45

3.1 Quasi-probabilities distributions in phase space . . . . . . . . . . . . . . . . 45

3.1.1 Husimi distribution Q . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 P representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 W representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Detection of macroscopic superpositions . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Distributions of the eigenvalues of angular momentum operators in
the equatorial plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Quasi-probability distribution in spin variables . . . . . . . . . . . . 55

4 Exploitation of useful entangled states 61

4.1 Atom interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 The general interferometric procedure . . . . . . . . . . . . . . . . . 61

4.1.2 Use of squeezed states in atom interferometry . . . . . . . . . . . . . 64

4.1.3 Cramér-Rao lower bound and quantum Fisher information . . . . . 64

4.1.4 Interplay usefulness in phase estimation and entanglement . . . . . . 67

4.2 Optimum coherent spin squeezing and quantum Fisher information . . . . . 70

4.3 Quantum Fisher information and spin squeezing in the ground state . . . . 70

4.3.1 Non-coupled modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Non-interacting atoms . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.3 Intermediate regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Quantum Fisher information and coherent spin squeezing during the quenched
dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Decoherence of useful entangled states 79

5.1 Phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.2 Effect of phase noise on the visibility . . . . . . . . . . . . . . . . . . 83

5.1.3 Effect of phase noise on multicomponent macroscopic superpositions
of phase states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.4 Quantum Fisher information and coherent spin squeezing during the
quenched dynamics of the BJJ . . . . . . . . . . . . . . . . . . . . . 90

5.2 Particle losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Master equation for one-body particle losses . . . . . . . . . . . . . . 98

5.2.2 Exact solution of the one body-losses master equation by the char-
acteristic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.3 Effect of particle losses on the visibility . . . . . . . . . . . . . . . . 101

5.2.4 Effect of particle losses on squeezed states . . . . . . . . . . . . . . . 102

5.2.5 Effect of one-body losses on macroscopic superpositions of phase states102

5.3 Treating phase noise and particle losses at the same time . . . . . . . . . . 107

6 Conclusions and perspectives 109

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Prospective views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



CONTENTS vii

6.2.1 Efficient reconstruction of macroscopic superpositions via measure-
ment of the momentum distribution . . . . . . . . . . . . . . . . . . 113

6.2.2 Particle losses and comparison with the experiments . . . . . . . . . 114
6.2.3 Controlled creation of cat states in the presence of atom losses and

phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.4 Dynamics in optical lattices . . . . . . . . . . . . . . . . . . . . . . . 115

A Detection of macroscopic superpositions 117

A.1 Generating function of the distributions of the angular momentum opera-
tors eigenvalues for macroscopic superpositions and incoherent mixtures of
phase states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 Effect of time noise in the reconstruction of the probability distribution Pφ(r)118
A.3 Rewriting the quasi-probability distribution f(x, y) . . . . . . . . . . . . . . 119
A.4 Connection with the Wigner function . . . . . . . . . . . . . . . . . . . . . . 120

B Coherent spin squeezing and quantum Fisher information 121

B.1 Demonstration of Eq.(4.39) for the spin squeezing parameter . . . . . . . . 121
B.2 Determination of the time t∗ when the optimization direction of the Fisher

information changes in the absence of noise . . . . . . . . . . . . . . . . . . 122

C Quantum Fisher information and coherent spin squeezing at thermal

equilibrium 125

C.1 Squeezing at T = 0, K = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C.2 Quantum Fisher information and coherent spin squeezing at thermal equi-

librium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.2.1 Limiting case I: K = 0, λ = 0 . . . . . . . . . . . . . . . . . . . . . . 127
C.2.2 Limiting case II: χ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 128
C.2.3 Intermediate regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C.3 Remarks on the validity of the two-mode model . . . . . . . . . . . . . . . . 130

D Decoherence effects induced by phase noise 133

D.1 Partial suppression of phase noise by spin-echo pulses . . . . . . . . . . . . 133
D.2 Husimi distribution of a two-component macroscopic superposition in the

presence of phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
D.2.1 Regime of validity of the approximation . . . . . . . . . . . . . . . . 136

D.3 Squeezing as a function of the angle under the action of phase noise . . . . 136
D.4 Decoherence of a NOON state and a phase cat state under phase noise . . . 137

E Decoherence effects induced by particle losses 141

E.1 Solution of the Master equation by the characteristic method . . . . . . . . 141
E.2 Full Husimi function for cat states in the presence of particle losses . . . . . 142
E.3 Decoherence of a NOON state and a phase cat state under particle losses . 142

E.3.1 Solution of the master equation by the method of the characteristics 142
E.3.2 Decoherence of a NOON state via the method of quantum jumps . . 144

E.4 Solution for two body losses . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Bibliography 147



Chapter 1
The Bose Josephson Junction

In this chapter we present the system studied in this thesis: a Bose Josephson Junction
(BJJ). This system, made out of bosons which can occupy two modes, is realized by
coupling two trapped Bose-Einstein condensates, allowing for an exchange of particles
between them. As we will briefly recall in the following, the name “Josephson” comes
from the analogous superconducting system, in which Cooper pairs tunnel through two
weakly coupled superconducting electrodes [34].

After a general introduction on quantum gases, we review the possible experimental
realizations of a BJJ. Then, we detail its theoretical description within the two-mode
approximation, presenting the ground state properties of this model. Among them, we
especially discuss the fluctuations of the number operator describing the population im-
balance between the two-modes and the momentum distribution; these results have been
published in Ref. [31]. Finally, we introduce the semi-classical approximation for the BJJ.

Dans ce chapitre, nous présentons le système étudié: la jonction Josephson
bosonique (BJJ). Ce système, composé par des bosons qui peuvent occuper deux
modes, est réalisé en couplant deux condensats de Bose-Einstein piégés, permet-
tant un échange de particules entre eux. Comme on le rappellera brièvement dans
la suite, le nom “Josephson” est donne par analogie au système supraconducteur,
dans lequel des paires de Cooper peuvent passer par effet tunnel entre deux électrodes
supraconductrices faiblement couplées [34]. Aprés une introduction générale sur les
gaz quantiques, nous rappelons les possibles réalisations expérimentales d’une BJJ.
Ensuite, nous détaillons sa description théorique dans le cadre de l’approximation à
deux modes, en présentant les propriétés de l’état fondamental de ce modèle. Parmi
celles-ci, nous discutons en particulier les fluctuations de l’opérateur nombre qui
décrit le déséquilibre de population atomique entre les deux modes de la jonction;
ces résultats ont été publiés en Ref. [31]. Enfin, nous introduisons l’approximation
semiclassique pour la BJJ.

1



2 The Bose Josephson Junction §1.1

1.1 Quantum gases: an overview

Quantum gases are ultracold metastable vapors of alkali atoms in the quantum degenerate
regime. For such vapors the atomic density n and the thermal De Broglie length λdB =
√

~2

mKBT
satisfy the relation nλ3 & 1. In this regime, since the thermal wavelength is

comparable to the inverse inter-particle density, Boltzmann statistics does not apply and
quantum mechanics is required for a proper description of the system. We use the term
“metastable” in the sense that thermodynamic equilibrium, under these conditions of
temperatures and pressure, corresponds to the solid phase for alkali atoms; to keep the
gaseous state, atoms need to be kept at very low density (which prevents three-body
collisions to happen), and far from any material wall, which would favor the formation of
molecules.

In a non-interacting Bose gas, as an effect of its quantum statistics, at low temper-
atures all the particles “condense” in the lowest energy state. This can be understood
as follows [35]. The average occupation of the single particle levels ǫi in an ideal gas of
bosons follows the distribution ni(µ, T ) = 1/(eβ(µ−ǫi)), in the grand-canonical ensemble.
The chemical potential µ is bounded from below by ǫ0 to prevent negative occupation
numbers. When µ approaches ǫ0, the occupation of the lowest energy level N0 ≡ n0
diverges (see figure 1.1). The chemical potential is fixed by the normalization condition
NT (µ, T ) ≡ ∑

i 6=0 ni(µ, T ) = N − N0. When the value of NT (µ = ǫ0, T ) is larger than
N , then the normalization condition is satisfied for values of µ < ǫ0, and the occupation
of the ground state is negligible (see again figure 1.1). Since NT (µ = ǫ0, T ) is growing
monotonously with T , this happens at high temperatures. When NT (µ = ǫ0, T ) < N ,
in order to satisfy the normalization condition it is required that µ ∼ ǫ0, leading to a
macroscopic occupation of the lowest level. The condition for such a “condensation” is
hence given by NT (µ = ǫ0, TC) = N , which defines the critical temperature [35].

Such a condensation in energy space, known as Bose-Einstein Condensation (BEC), has
been theoretically predicted by Bose and Einstein in 19251 and experimentally achieved
with a weakly-interacting gas for the first time in 1995 (seventy years later) for Rubid-
ium [36] and Sodium [37], for which Eric Cornell, Carl Wiemann and Wolfgang Ketterle
earned the 2001 Nobel Prize in Physics. In subsequent years, many other atomic species
have been condensed (namely 7Li, 40Ca, 4He, 39K, 41K, 133Cs, 174Yb, 52Cr, 84Sr, 86Sr,
88Sr, H).

A rough estimate of the critical temperature below which the atomic gas undergoes
the BEC transition can be given via dimensional arguments: for a uniform gas of free
particles in the degenerate regime, the relevant quantities are the particle mass m, the
density n, and the Plank constant h = 2π~. The only way to combine them to form an

energy is ~2n2/3

m , which has to be compared to the energy kBTC , so that the estimate for
the critical temperature gives

TC = c
~
2n2/3

mkB
, (1.1)

where c is a dimensionless constant and its numerical value turns out to be approximately
3.3 for a Bose gas confined in a three dimensional box [35]. In experiments, however,
the typical confinement is rather harmonic. Let us indicate with ω0 the frequency of the
harmonic potential. The density of the gas in the cloud can be estimated as n ∼ N

R3 , where

1Bose’s paper dealt with photons; Einstein extended Bose’s treatment to massive bosons.
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Figure 1.1: Number of particles out of the condensate NT and number of particles in
the condensate N0 as a function of the chemical potential µ in the ideal gas model, from
Ref. [35].

N is the number of particle and R ∼
(

kBT
mω2

0

)1/2
is the size of the atomic cloud; then the

transition temperature is obtained substituting this expression for the density in Eq. (1.1)

kBTC = C1~ω0N
1/3, (1.2)

where the constant C1 is of the order of unity 2.
In practice, atomic gases are not ideal but often weakly interacting. The atomic

interaction potential between atoms is the standard Van der Waals one, with a hard-
core repulsive part at short distances, which results from the Coulomb repulsion of the
two electronic clouds, and a weak attractive contribution at larger distances due to the
dipole-dipole interactions. However, at very low temperatures, interactions are properly
accounted by the s-wave scattering length a, as higher partial-wave contributions would
require to overcome the centrifugal barrier and are hence negligible. Under the diluteness
condition na3 ≪ 1 a partial condensation takes place in a level modified with respect to
the non-interacting ground state [35], but depleted even at T = 0 by a fraction ∝

√
na3.

In what follows, we will always suppose that the diluteness condition is fulfilled.
Typical parameters necessary to observe BEC involve temperatures of 10 − 100 nK

and densities of the order of 1013 − 1014cm−3 (quite low compared to the typical density
of molecules in air at atmospheric pressure and room temperature, of about 1019 cm−3).
Typically, these densities correspond to a number of atoms of 103−106 confined in spaces
of linear dimension of 10 µm−1 mm. The lifetime of an atomic condensed cloud is about
10 seconds; this enables one to measure both static and dynamical properties before loss
mechanisms, which we will discuss in Sec. 5.2, eventually destroy the condensate.

1.1.1 Trapping quantum gases

In order to achieve the densities and temperatures required to observe the BEC, one has to
cool and to trap atoms. In typical experiments, the starting point is a room temperature

2A more rigorous calculation of the critical temperature for atoms confined in a three dimensional
harmonic potential can be found in [35] and provides kBTC = C1~(ω1ω2ω3)

1/3N1/3, where ωi is the
angular frequency corresponding to the i direction and C1 ≃ 0.94.
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Figure 1.2: Splitting of the hyperfine levels of Rb as a function of the magnetic field.

atomic gas which is first pre-cooled to about 10 µK with a laser, then transferred into a
magnetic trap, and finally cooled down to hundreds of nK via evaporative cooling. The
way of combining the steps of cooling and trapping varies from experiment to experiment,
but the physical principles exploited are generally based on the interaction of atoms with
electric and magnetic fields. A review of these methods can be found, for example, in [38].
We briefly review here the main mechanisms underlying the trapping of alkali atoms, as
this will allow us to introduce some notions which will be useful in the rest of the thesis.

1.1.1.a Hyperfine structure and magnetic traps

Magnetic trapping of neutral atoms relies on the use of the interactions of their spin
properties with inhomogeneous magnetic fields. Alkali atoms have a simple electronic
configuration, characterized by closed shells except for the outermost, occupied by a single
electron. As the orbital momentum is zero in the ground state, the total electronic angular
momentum J is equal to 1/2; the nuclear spin I depends on the isotope. Hence, there are
two possibilities for the resulting total angular momentum: F = I ± 1/2. In the absence
of an external magnetic field, the interaction between the nuclear spin and the outermost
electron one (the hyperfine interaction, Hhf = A ~I · ~J , where A is the relevant coupling
constant) removes the degeneracy of the two configurations.

When an external magnetic field is applied (say in the ẑ direction) the total Hamilto-
nian is

H = A ~I · ~J + 2µB Jz B(~r) (1.3)

where µB is the Bohr magneton. Since ~I · ~J = 1/2 (I2 + J2), the eigenstates of the
hyperfine Hamiltonian are eigenstates of J2, I2, F 2 and Fz. Treating the magnetic field as
a perturbation, to first order the corrections to the energy levels are

〈F,mF |2µBJzB|F,mF 〉 = gL µBmF B ≡ −µF B (1.4)

where gL is the Landé factor andmF is the eigenvalue of Fz. The resulting splitting of
87Rb

levels is depicted in figure 1.2. We obtain from Eq. (1.4) that the magnetic contribution to
the energy provides a potential energy −µiB, where −µi can be either positive or negative,
depending on the unperturbed hyperfine state. When the magnetic field is inhomogeneous,
if the magnetic moment is positive, the atom is driven to regions of higher field (these
states are referred to as “high-field-seeker”), while if it is negative, it will move towards
regions of lower field (“low-field-seeker” states). Since the modulus of a static magnetic
field cannot have a maximum in vacuum, high-field seeker states can never be magnetically
trapped - they can be optically trapped, though. Thus, the task of constructing a magnetic
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trap relies on the design of magnetic field configurations with a local minimum, e.g. a
quadrupole potential. Recently a versatile way of implementing magnetic trapping has
been provided by atom chips [39]. These are miniaturized current conductors which allow
for the generation of magnetic fields of almost arbitrary geometry. They can also combine
with optical methods, allowing for the generation of special potentials such as lattices,
potential barriers, and single- or double-well potentials. They have been recently used for
matter-wave interferometry [40], or for the generation of atomic squeezed states [9, 41, 42].

1.1.1.b Optical traps

Another option for trapping atoms is the use of optical traps. These are based on the
following principle. Since the wavelength of the laser radiation is much larger then the
atomic size, the interaction of the atom with the laser field can be treated with high
accuracy in the dipole approximation, and can be expressed as

V (~r, t) = − ~D · ~E(~r, t), (1.5)

where ~D is the electric dipole and ~E(~r, t) is the time-dependent oscillating electric field.
The interaction given above produces a polarization α(ω) of the atom oscillating with the
same frequency as the electric field. Because of the Stark effect, atomic levels undergo
a shift which can be calculated with second order perturbation theory and which can be
regarded as an effective potential

U(~r) = −1

2
α(ω)E2(~r, t), (1.6)

where the time average is taken because the frequency of the laser field is much higher
than the inverse typical time of the atomic motion. If the intensity of the radiation field
varies with the position, the interaction energy above gives rise to a force. The sign of the
polarizability and hence of the energy shift depends on the frequency of the radiation, and
turns out to be positive above the characteristic dipole resonance frequency and negative
below, so that the atom will be attracted or repelled from the regions of higher field,
depending on the frequency of the laser. Hence, by focusing a laser beam with frequency
detuned in such a way that the energy of a ground state atom has a minimum in space,
it is possible to trap the atoms.

The main advantage of optical traps is that the trapping is not limited to specific
magnetic states (as it is in the case of magnetic traps). As we will detail in Sec.1.2, this
has allowed to study spinor Bose-Einstein condensates, i.e. mixtures of atoms condensed
in different hyperfine states. A second advantage is the following: the interaction strength
can be tuned by applying a magnetic field through the so called “Feschbach resonances” [3,
38]; this has been largely exploited in the experimental realizations of bosonic condensates
and also allowed to condense fermionic pairs, since interactions between fermions can be
adjusted to form weakly bound molecules [43, 44]. This is achieved by applying a uniform
magnetic field to atoms in an optical trap. Thus, this technique is impractical in magnetic
traps, where the inhomogeneity of the field is necessary for trapping. Note however that
tunable interatomic interactions have been recently achieved with atoms in a magnetic trap
in the experiment of Ref. [9, 41], via manipulation of the spatial modes of the condensate
(see discussion in Sec.1.3.1, in particular Eq.(1.20)).
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1.1.2 Probing quantum gases

Quantum gases are most directly probed by accessing to their density profile. One way to
measure the density is absorption imaging of an atomic cloud released from the trap and
allowed to expand freely [45]. Light at a resonant frequency is shone across the cloud and
is absorbed passing through it; thus, by measuring the absorption profile, one can obtain
information about the density distribution. Note that this is a “two-dimensional column
density profile”, in the sense that the density is integrated over the direction of the light
beam: if the light beam is directed along x, one can measure n(y, z) =

∫

dxn(x, y, z).
This method is destructive, since absorption of light changes the internal state of atoms
and heats the cloud significantly. To study time-dependent phenomena, it is therefore
necessary to prepare a new cloud for each time point (“shot”).

If the expansion occurs in absence of interactions, the density profile after the expan-
sion at times t much larger than the inverse of the oscillator frequencies related to the
confinement, ωit ≫ 1, is proportional to the momentum distribution of the cloud before
the expansion (“time of flight” imaging). A demonstration of this fact, as well as the
discussion of the interacting case, are discussed for example in Ref. [35, 46]. This is of-
ten exploited to obtain the initial momentum distribution of the atomic cloud, with the
further advantage that measurements performed after the expansion of the condensate
provide a gain in spatial resolution.

An alternative technique is phase-contrast imaging. This exploits the fact that the
refractive index of the gas depends on its density, and therefore, by allowing a laser beam
which is passed through the gas to interfere with a reference one, one can gain information
on the density profile of the gas by looking at the interference fringes produced. An
advantage of this method is that it is almost non destructive, and it is therefore possible
to study time-dependent phenomena using a single cloud.

1.2 The Bose Josephson junction: experimental realizations

The realization of the Josephson effect with cold atoms has been theoretically proposed
by J. Javanaien in 1986 [47] (ten years before the BEC realization), who suggested that
“when two traps containing the condensates are brought close to each other, an oscillatory
exchange of particles governed by the phase of the macroscopic wave functions of the two
atomic gases should result.”. The analogy with the superconducting Josephson effect has
been pursued in theoretical references [48–50], and in the experimental work of Ref. [51]
(see also Sections 1.6.1.c and 1.6.2.c).

The first experimental realization of a Josephson junction with bosons confined in a
double-well potential was obtained in 2005 by Albiez et al. [52]. In their experiment,
the double-well potential was realized by superimposing a three-dimensional harmonic
confinement and a one-dimensional optical lattice, thus optically trapping a thousand of
87Rb atoms. This system undergoes the name of “external Bose Josephson Junction”, since
the two relevant modes correspond to the lowest-energy spatial modes in each well. Other
experiments realizing an external BJJ via optical trapping are reported in Ref. [51], while
a magnetic atom chip-based double-well potential has been realized in the experiment of
Ref. [42].

Another possible experimental realization of a BJJ consists of trapping in a single
harmonic potential a mixture of 87Rb atoms in two distinct hyperfine states, which can be
coupled by means of a resonant radiofrequency-microwave field. This realizes an “internal
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BJJ”. Such a system has been experimentally achieved for the first time at JILA [53],
and has been later available also in Heidelberg [8] and in Munich [9, 41].

In both the external and the internal BJJs, the accessible observables are typically
the number imbalance between the two modes, obtained by absorption imaging as de-
scribed in Sec.1.1.2, and the “phase coherence” between the two modes, i.e. the relative
phase between the wave functions of the atoms in the two modes. The latter property
is typically probed by fitting a time-of-flight density profile with a cosine function (see
Sec. 1.1.2, Eqs.(1.44) and (1.55) and Refs. [54, 55]). Note that in each realization of such
an experiment the momentum distribution displays oscillations, which lead to the extrac-
tion of a specific value of the phase [54, 56, 57]. Roughly, this happens because in the
thermodynamic limit the eigenstates of the momentum distribution have a well-defined
phase [54], and hence a “phase” is built up in the measurement process even if the two
condensates were initially independent; if this is the case, the phase obtained fluctuates
from shot to shot. Hence, the determination of the existence of a well-defined relative
phase between the two modes requires averaging over many realizations of the described
experiment 3.

In the remainder of this thesis, when having in mind experimental aspects, we will focus
more specifically on the Heidelberg experimental setups, described in Refs. [13, 52, 57]
(external BJJ) and [8, 61, 62] (internal BJJ).

1.3 Theoretical description: modeling the BJJ

We now introduce the theoretical model suitable for describing the system presented in
the previous section. Its description in the quantum regime requires in principle the use
of the general many-body Hamiltonian, describing a system of interacting bosons in an
external potential Vext(~r). However, by means of the two-mode approximation on the field
operator, its expression can be considerably simplified. We present here the derivation of
the Hamiltonian in the two-mode approximation, following Refs. [35, 63].

1.3.1 The external BJJ

Let us first focus on an external Bose Josephson junction. We start from the general
many-body Hamiltonian,

H =

∫

d3r
~
2

2m
∇Ψ̂†(~r)∇Ψ̂(~r) + Ψ̂†(~r)Vext(~r)Ψ̂(~r) +

+
1

2

∫

d3r

∫

d3r′Ψ̂†(~r)Ψ̂†(~r′)U(r − r′)Ψ̂(~r)Ψ̂(~r′) (1.7)

where Ψ̂(~r), Ψ̂†(~r) are bosonic field operators satisfying the standard commutation relation
[

Ψ̂(~r), Ψ̂†(~r′)
]

= δ3(~r − ~r′), and U(r − r′) is the interaction potential. We may consider

for simplicity an external double-well potential Vext resulting from the superposition of a
three-dimensional harmonic confinement and a cosine potential, i.e.

Vext(~r) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2 +

V0
2

(

1 + cos

(

2πx

d

))

, (1.8)

3Properly speaking, no hermitian operator is associated to the phase [58–60], and the notion of a
“well-defined” phase is better formulated in terms of coherent state, as we shall define in Sec.1.4.3
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Figure 1.3: A schematic representation of the double well potential.

with d a parameter defining the spatial periodicity of the potential, typically amounting
to a few micrometer. Such an external potential is sketched in Fig.1.3. At the bottom of
each of the two central wells, the cosine potential can be expanded to the quadratic order,
leading to an effective local harmonic potential with an effective frequency along the axes
of the double well ω2

xeff
= ω2

x +
V04π2

md2dw
. The single particle levels in such a double-well

potential satisfy the Schrödinger equation

(

− ~

2m
∇2 + Vext(~r)

)

φ(~r) = Eφ(~r). (1.9)

If the tunneling through the barrier is negligible, the solution is given by two degenerate
levels φ1,2(~r) = φ0(~r − ~r1,2) (where ~r1,2 are the coordinates of the center of each well),
each of them being the displacement of φ0(~r), corresponding to the ground state of a
three-dimensional harmonic oscillator with frequencies ωxeff , ωy, ωz. We will indicate the
energy of these two levels with E0. The inclusion of tunneling across the barrier lifts the
degeneracy. Treating the tunneling K with degenerate perturbation theory, the energy
eigenstates are given by the symmetric and antisymmetric combinations

φ±(~r) =
1√
2
(φ1(~r)± φ2(~r)) , (1.10)

with corresponding eigenvalues E± = E0 ∓K.

Now let us come back the many-body problem. Due to the diluteness of the gas,
the average distance between two particles is large with respect to the scattering length
a, and the microscopic details of the interaction potential do not need to be specified
anymore. We can therefore replace the true potential U(r) by an effective one Ueff (r)
without affecting the analysis of the macroscopic properties of the gas, provided that
the effective potential leads to the same scattering length. It is common to adopt as an
effective potential the contact pseudo-potential

Ueff (~r − ~r′) = gδ(~r − ~r′). (1.11)

The parameter g is connected to the s-wave scattering length a in the Born approximation
by

g =
4π~2a

m
. (1.12)
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Using Eq. (1.11), the Hamiltonian of the system becomes

H(t) =

∫

d3r[
~
2

2m
∇Ψ̂†(~r)∇Ψ̂(~r) + Ψ̂†(~r)Vext(~r)Ψ̂(~r) +

g

2
Ψ̂†(~r)Ψ̂†(~r)Ψ̂(~r)Ψ̂(~r)]. (1.13)

Now, in the two-mode approximation we describe the many-body state of the system by
giving the occupation number of the two single particle states (1.10); this allows to write
the field operator in the form

Ψ̂(~r) = â+φ+(~r) + â−φ−(~r), (1.14)

where we introduced the annihilation operators â±(t) =
∫

d3rφ∗±(~r)Ψ̂(~r, t). By means of
the simple transformation â1,2 =

1√
2
(â+ ± â−) we are able to rewrite the field operator as

Ψ̂(~r) = â1φ1(~r) + â2φ2(~r), (1.15)

where â1,2 annihilate particles in wells 1, 2. Substituting Eq.(1.15) in the Hamiltonian
(1.13) and integrating over the spatial degrees of freedom we obtain

Hext = E1â
†
1â1 + E2â

†
2â2 +

U1

2
â†1â

†
1â1â1 +

U2

2
â†2â

†
2â2â2 −K(â†2â1 + â†1â2) (1.16)

where we have discarded the terms involving the overlap of the two modes. The parameters
entering in Eq.(1.16) are given by

Ei =

∫

d3r
~
2

2m
(∇φi(~r))2 + φ2i (~r)Vext

Ui = g

∫

d3rφ4i (~r)

K = −
∫

d3r
~
2

2m
(∇φ1(~r)∇φ2(~r)) + φ1(~r)φ2(~r)Vext

(1.17)

Hamiltonian (1.16) is a two-sites Bose Hubbard Hamiltonian, and has been extensively
used to study the properties of bosonic Josephson junctions (see for instance Ref. [63]).

1.3.1.a Validity of the two-mode approximation

As it was implicit in the previous discussion, two approximations are actually involved in
the two-mode approximation [63]. The first is that the tunneling is weak (which allows
to treat it pertubatively at the single particle level), so that the single particle energy
spectrum is given by the first two levels well separated from the higher ones. The second
one is that interactions are weak enough so that they do not affect considerably the single
particle orbitals φ1,2(~r). Taking the case of isotropic wells ωxeff ≈ ωy ≈ ωz ≡ ω0, this is
a good approximation if both the tunneling energy and the interaction energy are much
smaller with respect to the trap frequency ω0, which characterizes the oscillations of the
condensate within each trap, i.e.

K ≪ ~ω0

NUi ≪ ~ω0. (1.18)
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For the temperature not to excite higher levels we have also to assume the requirement
kBT ≪ ~ω0.

If the interactions are not so weak, an improvement over such an approximation is
obtained by taking as orbitals φi(~r) the time-independent solutions of the Gross-Pitaevski
equation (see Sec.1.6) with N/2 atoms in each well, normalized to unity [48]. In a further
improvement, time-dependent orbitals are considered, which provides the parameters K
and χ with a dependence on the mode occupation, and leads them to vary during the
dynamical evolution [23].

A comparison of the two-mode model with the full quantum dynamics derived from the
Hamiltonian in Eq.(1.7) via a MCTDHB analysis (multiconfigurational time-dependent
Hartree for bosons) has been carried out in Refs. [64, 65] for a one-dimensional Bose
Josephson junction, with the result that the two-mode dynamics qualitatively reproduces
the full quantum dynamics in a vast regime of the parameters.

1.3.2 Internal BJJ

For the internal case, the derivation of the two-mode model is analogous. The main
difference with the external case is that the cross-interaction term, involving the overlap
of the two different atomic-species orbitals φ1,2(~r), cannot be neglected in this case, since
both of the two species are trapped in the the same harmonic potential. Furthermore, the
scattering length of atoms in different hyperfine states can be in principle different for the
two species, i.e. a11 6= a22 a priori (which is e.g. the case of the states |F = 1,mF = 1〉
and |F = 2,mF = −1〉 of 87Rb, used in the experiment of Ref. [8]). On the other
hand, this allows us to assume that the spatial mode of the two hyperfine states is the
same, i.e. φ1(~r) ≃ φ2(~r) ≃ φ0(r), the latter being the spatial mode of the harmonic
potential. Furthermore, the K parameter represents here the coupling with microwave
and radiofrequency fields, which can be tuned both in amplitude and phase. In the basis
of the two hyperfine levels, the dipole operator in Eq.(1.5) reads ~D = ~d(â1

†â2+ â2
†â1). By

decomposing also the oscillating electrical field ~E = ~E+ + ~E− with ~E± = ~E0e
±i(~k·~r−ωt), if

the field is resonant for the hyperfine transition, in the rotating-wave approximation we are
left with V = −(Kâ1

†â2+K∗â2
†â1), where we identified K = −~d · ~E+ and K∗ = −~d · ~E−.

Hence, in this case the Hamiltonian is

Hint = E1â
†
1â1 + E2â

†
2â2 +

U1

2
â†1â

†
1â1â1 +

U2

2
â†2â

†
2â2â2 + U12â

†
1â1â

†
2â2 −Kâ†1â2 +K∗â†2â1

(1.19)
with interaction parameters given by

Ui = gii

∫

d3rφ4i (~r) ≈ gii

∫

d3rφ40(~r)

U12 = g12

∫

d3rφ21(~r)φ
2
2(~r) ≈ g12

∫

d3rφ40(~r), (1.20)

where gij = 4π~2aij/m.

1.4 Mapping onto a spin model

The two-mode Hamiltonians (1.16) and (1.19) derived in the previous section can be
mapped on a spin Hamiltonian, by means of the Schwinger representation [10]. After
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presenting this mapping, we introduce the state basis which are suitable to describe the
system, and which we will extensively use throughout the present thesis.

1.4.1 Rewriting the Hamiltonian

In the Schwinger representation [10], a system of N two-mode bosons can be mapped on
a system of N 1/2-spins. This mapping, suggested for the BJJ in Ref. [63], is based on
the identification of the two modes of the BJJ, accessible to each of the N bosons, with
two spin states, ±1/2. As a consequence, a collective angular momentum operator can be
defined in terms of the creation and annihilation operators of the bosons in the each of
the two modes. The ladder operators are defined as

Ĵ+ = a†1â2

Ĵ− = a†2â1, (1.21)

leading to

Ĵx =
Ĵ+ + Ĵ−

2

Ĵy =
Ĵ+ − Ĵ−

2i

Ĵz =
â†1â1 − â†2â2

2
. (1.22)

In particular, the operators thus defined satisfy the usual commutation relations
[

Ĵi, Ĵj

]

=

iǫijkĴk where ǫijk is the Levi-Civita symbol, as well as the Heisenberg uncertainty relation

∆J2
i ∆J

2
j ≥ 1

4
〈Ĵk〉2, (1.23)

where ∆J2
i = 〈Ĵ2

i 〉 − 〈Ĵi〉2 is the variance of the operator Ĵ2
i . From Eq.(1.22) we can

interpret the operator Ĵx as the tunneling operator, Ĵy as the current operator and Ĵz
as the population imbalance between the two wells, i.e. the relative number operator; in
the following we will often omit the adjective “relative”, referring to Ĵz simply as to the
“number operator”.

By means of Eq.(1.22), both Hamiltonians in Eq.(1.16) and Eq.(1.19) can then be
mapped on the spin-like Hamiltonian

Ĥ = χĴ2
z − λĴz − 2KĴx (1.24)

where we have discarded a constant factor depending on the total number of particles. For
the external BJJ χ is the half of the sum of the interaction energies Ui in the two modes,
whereas for the internal BJJ χ = (U1 + U2)/2 − U12, also depending on the inter-species
interaction U12. In both cases, λ is related to the difference ∆E = E2 − E1 between the
energies of the two modes and to the difference of the interactions by

λ = ∆E + (N − 1)(U2 − U1)/2. (1.25)

We have considered here that the coupling in Eq.(1.19) is real and positive, in order
to map both the Hamiltonians in the same expression (1.24). Note however that in
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the internal BJJ case it is possible to exploit, if needed, the phase of the complex field
K = |K|e−iγ to engineer a more general form of the coupling term, leading from Eq.(1.19)

to Ke−iγ â†1â2 +K∗eiγ â†2â1 = −|K|(Ĵx cosφ − Ĵy sinφ). We will use this property of the
internal BJJ in Chap.2, to provide a protocol for the efficient generation of macroscopic
superpositions. For the sake of completeness, we also mention that in the external BJJ
setup engineering a negative coupling constant K is also possible, by applying a drive to
the trapping potential [66, 67].

For λ = 0 the Hamiltonian (1.24) belongs to a class of models introduced in nuclear
Physics by Lipkin, Meshkov and Glick [68], and also correspond of the continuous-kick
limit of the kicked top model [69].

1.4.2 Fock states

Supposing that the total number of bosons N = a†1a1 + a†2a2 is constant4, the dimension
of the Hilbert space is N +1. A basis for the Hilbert space is provided by the Fock states
|n〉 ≡ |n1 = N/2+n, n2 = N/2−n〉 (also called “Dicke states”), which are the eigenstates
of the number imbalance operator, i.e. they satisfy the equation

Ĵz|n〉 = n|n〉. (1.26)

The variable

n =
n1 − n2

2
(1.27)

represents hence the imbalance in the occupations of the two modes, and is bounded by
−N/2 ≤ n ≤ N/2. For small imbalance n ≪ ±N/2, such states represent fragmented
states of the condensate, i.e. states in which the two single-particle wave functions φ1(~r)
and φ2(~r) are both macroscopically occupied. As the two wave functions are in this case
spatially separated, the phase coherence over the spatial extent of the entire system is
lost [70].

1.4.3 Atomic coherent states

Another useful set of states for such a model is given by SU(2) coherent states (also referred
to as “atomic coherent” states or “Bloch states”). In what follows we briefly review their
possible equivalent definitions and their main properties, following Refs. [71, 72].

1.4.3.a Definition

SU(2) coherent states are defined in terms of the Fock states (1.26) as

|θ, φ〉 =
N/2
∑

n=−N/2

(

N
N
2 + n

)
1
2 αn+

N
2

(1 + |α|2)N
2

|n〉 ≡ |α〉 (1.28)

with α = e−iφ tan θ/2, where the conventions for two angles are defined in figure 1.4. An
equivalent expression for the same state is

|θ, φ〉 =

(

cos θ2 â
†
1 + sin θ

2e
−iφâ†2

)N

√
N !

|0〉, (1.29)

4This hypothesis will be released in Chapter 5, where we will treat particle losses.
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Figure 1.4: Bloch sphere and convention for the two angles θ and φ.

from which it is apparent that in a coherent state all of the atoms occupy the same
one-particle state cos(θ/2)φ1(~r) + sin(θ/2)e−iφφ2(~r). It is therefore a macroscopically
occupied state, which realizes the closest classical analog, similarly as quantum optics
coherent states.

1.4.3.b Visualization

A coherent state can be visualized as a circle on the Bloch sphere, whose center coordinates
is given by the expectation values of the angular momentum operators, i.e.

〈θ, φ|Ĵx|θ, φ〉 =
N

2
sin θ cosφ

〈θ, φ|Ĵy|θ, φ〉 =
N

2
sin θ sinφ

〈θ, φ|Ĵz |θ, φ〉 = −N
2
cos θ ≡ n. (1.30)

Since the quantum fluctuations (the variance) of the angular momentum operators in
each direction in the plane tangential to the sphere in the point 〈θ, φ| ~J |θ, φ〉 are given by
(∆Ji)

2 = N/2, as an order of magnitude for the radius of the circle we can take σ =
√
N .

Such fluctuations are isotropic and “minimal”, in the sense that they satisfy Eq. (1.23)
with the equal sign.

From the third line in Eq.(1.30) we see that the angle θ is related to the number
imbalance variable n by a cosine function (see also Fig.1.4). For example the coherent
state with θ = 0, i.e. at the south pole of the Bloch sphere, corresponds to the maximally
unbalanced Fock state |n = −N/2〉, while coherent states with θ = π/2 lie on the equator
and correspond to an average symmetric occupation of the two modes. The latter set of
states will be referred to in what follows as phase states.

From Eq.(1.29) we see that the angle φ is the phase difference between the two-modes.
This is better understood in the semi-classical limit of the two-mode BJJ model, which
will be developed in Sec.1.6.
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1.4.3.c Non orthonormality

The set of states introduced is not orthonormal but overcomplete [71, 72]. Indeed, the
overlap of two coherent states is given by

〈θ′
, φ

′ |θ, φ〉 =
(

(1 + α∗α′)2

(1 + |α|2)(1 + |α′|2)

)
N
2

, (1.31)

which tends to δ(θ − θ′)δ(φ − φ′) only in the large N limit.

1.4.3.d Coherent states as displacement of a reference state

Like their analog in quantum optics, SU(2) coherent states can be obtained from a refer-
ence state, for example the above mentioned south pole of the Bloch sphere |n = −N

2 〉,
via the action of a displacement operator [72], i.e.

|θ, φ〉 = e−iθĴr |n = −N
2
〉 ≡ R̂(ζ)|n = −N

2
〉, (1.32)

with ζ = θ/2e−iφ,
Ĵr = Ĵx sinφ− Ĵy cosφ = ~J · r̂ (1.33)

and r̂ being the unit vector identifying the direction

r̂ = sinφx̂− cosφŷ. (1.34)

Hence, each atomic coherent state is the minimal eigenstate of the angular momentum op-
erator rotated with respect to Ĵz by an angle θ around the direction r̂. Indeed, multiplying
each member of Eq. (1.26) for n = −N/2 by R̂(ζ) and inserting the identity R̂(ζ)−1R̂(ζ)
in the first member, we obtain

R̂(ζ)ĴzR̂(ζ)
−1|θ, φ〉 ≡ Ĵr|θ, φ〉 = −N

2
|θ, φ〉. (1.35)

Equation (1.35) is analogous to the quantum optics equation â|α〉 = α|α〉, in the sense that
it is an eigenstate equation for the angular momentum operator (annihilation operator)
Ĵr (â).

1.4.4 Experimental implementations of the observables

Arbitrary rotations of the kind (1.33) can be experimentally implemented, in principle
both in the external and internal set-up. This requires switching off the interatomic
interaction, i.e. setting χ = 0. In the external model, this can be done by exploiting the
Feschbach resonance technique. In the internal set-up, because of the combination of the
scattering lengths aij of the different atomic species in Rubidium, it is found that typically
χ is very small, and Feschbach resonances are rather employed when non-zero interactions
are desired [8, 62]. Then one exploits the linear part of the Hamiltonian Eq.(1.24), to evolve
the state during a time which matches the desired angle of rotation [73]. In particular, in
the internal set-up this is done in a very fast and controlled way by tuning the amplitude
and the phase of the resonant field coupling the two modes. More severe limitations in
the speed of such operations apply for the external BJJ setup [62].

As a consequence, the angular momentum operator is an observable accessible in ex-
periments for each generic direction: this can be achieved by measuring the population
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imbalance Ĵz between the two modes after proper rotations of the state over the Bloch
sphere [74]. For instance, the measurement of the angular momentum operator in a di-
rection contained in the equator as in Eq.(1.33) on the quantum state |ψ〉 is achieved by
measuring Ĵz on the rotated state eiπJx/2eiφJz |ψ〉.

1.5 Ground state properties

In this section we briefly review the properties of the ground state of the Bose Josephson
junction, in the different regimes of the parameters of Hamiltonian (1.24). We present in
particular the calculation of the number fluctuations and of the momentum distribution.

1.5.1 Ground state of the model

Let us define the dimensionless parameter

Λ = χN/(2K). (1.36)

Following Ref. [57, 75], three different regimes of the parameters can be distinguished, in
which the ground state of the BJJ has different qualitative properties.

• Rabi regime: Λ ≪ 1 (strong coupling)

When the two modes are strongly coupled, a well defined relative phase is established
between them, while the number imbalance operator is fluctuating. By this, we mean
that in this regime the ground state is close to a phase state. To be convinced of
this point, let us consider the limiting case Λ = 0. In this limit, from Eq.(1.24) it
is clear that the energy is minimal for the maximal eigenstate for the Ĵx operator,
satisfying Ĵx|N/2〉x = N/2|N/2〉x, i.e.

|ψGS〉 = |N
2
〉x = |θ = π

2
, φ = 0〉 = |α = 1〉, (1.37)

which coincides with the phase state parameterized by α = 1, as expressed by the
last equality. The ground state (1.37) can be visualized in the left panel of Fig. 1.5.
In this regime the number fluctuations amount to ∆Jz =

√
N/2.

• Fock regime: Λ ≫ N2 (strong interactions)

In the strongly interacting regime, the ground state is close to a Fock state. In
the limiting situation Λ → ∞, the ground state is easily determined by completing
the square in Eq.(1.24), leading to the Hamiltonian in the non coupled regime H =

χ
(

n− λ
2χ

)2
. The ground state in this case is the Fock state minimizing the energy,

and hence it depends on the integer value of the energy imbalance between the two
modes renormalized by the interactions, i.e.

|ψGS〉 =
{

|n = Int
[

λ
2χ

]

〉 if | λ2χ | < N
2

|n = ±N
2 〉 resp. for λ

2χ >
N
2 or λ

2χ < −N
2 .

(1.38)

In particular, for λ = 0 the ground state is the symmetric Fock state |n = 0〉 = |n1 =
N/2, n2 = N/2〉, also said Twin-Fock state [76]. In this regime, the number operator
has zero fluctuations, while the phase is completely undefined (see the right panel
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Figure 1.5: Visualization of the ground state of the BJJ on the Bloch sphere, as well as
distribution of the number operator in the various regimes of the parameters at λ = 0,
taken from Ref. [62].

in Fig. 1.5). In Sec. 3.1 we will be able to reformulate this in terms of the shape of
the Husimi distribution of a Fock state, which is a “crown”, completely isotropic in
the φ angle, and with a value of θ given by the last equation in the set (1.30).

• Josephson regime: 1 ≪ Λ ≪ N2

This intermediate regime is characterized by reduced number fluctuations, while the
phase coherence is still quite large (see the middle panel in figure 1.5) [57, 62]. We
shall see in Section 2.4.1 that the ground state of the BJJ in this regime is a squeezed
state.

1.5.1.a Phase diagram of the number fluctuations

In order to have a “pictorial view” of the different regimes for the ground state, we present
in Fig.1.6 the plot of the number fluctuations in color scale, calculated numerically as a
function of the ratio between the coupling and the interactions, and of the asymmetry of
the BJJ λ. These findings are contained in our work Ref. [31]. The black/blue colors cor-
respond to low number fluctuations, while red-yellow colors indicate high fluctuations. We
see that this figure exhibits lobes, reminiscent of the phase diagram of the Bose-Hubbard
model [77, 78], in which the fluctuations of the number n in the plane of the chemical
potential and the strength of the atomic interactions show the Mott-insulator/superfluid
transition. Note however that our system does not display a real phase transition but
rather a “crossover”, because it involves only two modes, and hence the lobes are not
bounded by a line which separates the two phases. Furthermore, lobes do not refer to the
number of particles in each mode, but to the atomic population imbalance between the
two modes at constant total number of atoms. The presence of lobes is a consequence
of the double degeneracy of the spectrum of the Hamiltonian (1.24) in the regime of
strong interactions. Indeed, at half integer λ/(2χ) two degenerate Fock states minimize
the energy, resulting in enhanced number fluctuations. Note also that the size of the lobes
increases with increasing imbalance λ. This effect is a direct consequence of the effective
nonlinear Josephson coupling, which decreases as λ/(2χ) approaches N/2 (see Eq.(1.53)),
and is absent in the analogous diagram for superconducting Josephson junctions. The
green curve represents an analytical calculation of the number fluctuations, obtained by
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Figure 1.6: Relative number fluctuations in color scale as a function of the parameters
λ/(2χ) (x-axes) and N2/(2Λ) = 2KN/χ (y-axes), for N = 12 bosons. The green line
corresponds to the value of the number fluctuations of 0.2. From Ref. [31]

treating the coupling perturbatively to the second order, leading to

〈∆Ĵ2
z 〉 =

(

K

χ

)2
[

(

N
2 − n̄0

) (

N
2 + n̄0 + 1

)

E+
+

(

N
2 + n̄0

) (

N
2 − n̄0 − 1

)

E−

]

(1.39)

with and n̄0 ≡ Int [λ/(2χ)] and E± = ±2(n0 − n̄0)− 1 (see also appendix C.1).

1.5.2 Momentum distribution for the external BJJ

As we have anticipated in Sec.1.2, the coherence of the system is reflected in the presence
of fringes in the momentum distribution. Let us now demonstrate this for the external
BJJ. With the use of Eq.(1.15), the one-body density matrix of the system in the two-mode
approximation is given by

ρ(~r, ~r′) = 〈Ψ̂†(~r)Ψ̂(~r′)〉 =
2
∑

i,j

φ∗i (~r)φj(~r′)〈âi†âj〉. (1.40)

The momentum distribution is properly defined as the Fourier transform of the one-body
density matrix with respect to the relative variable ~r − ~r′ [35], and is thus given by

n(~p) =
1

2π3

∫

d~rd~r′e−i~p(~r−
~r′)ρ(~r, ~r′), (1.41)

where we have set ~ = 1. Substituting the one-body density matrix (1.40) in Eq.(1.41)
leads to

n(~p) =

2
∑

i,j=1

(

1

2π3/2

∫

d~re−i~p~rφ∗i (~r)

)(

1

2π3/2

∫

d~r′ei~p
~r′φj(~r′)

)

〈âi†âj〉 =

=

2
∑

i,j=1

F [φi(~r)]F [φj(~r′)]
∗〈âi†âj〉, (1.42)
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Figure 1.7: Visibility ν/2 evaluated on the ground state and as a function of the parameter
N2/(2Λ) = 2KN/χ for different values of N , and λ = 0.

where F [h(r)] denotes the Fourier transform of the function h(r). In the symmetric
configuration, the spatial wave functions on each mode are expressed by φ1,2(~r) = φ0(~r ±
d
2 î), and their Fourier transform can be easily computed as φ1,2(~p) = F [φ0(~r ± d

2)] =

e±ipx
d
2φ0(~p), where we chose the axes along the two condensates being the x-axes, and

where φ0(~p) = F [φ0(~r)] is the Fourier transform of the mode. Then, substituting the
previous expression in Eq. (1.42) and using Eq.(1.21) we obtain

n(~p) = |φ0(~p)|2(N + eipxd〈Ĵ+〉+ e−ipxd〈Ĵ−〉), (1.43)

where we have used the fact that φ0 is an even function. With the help of Eqs. (1.22), we
can finally rewrite the momentum distribution (1.43) as

n(~p) = |φ0(~p)|2(N + 〈Ĵx〉 cos (pxd)− 〈Ĵy〉 sin (pxd)). (1.44)

In the ground state, there is no current flowing across the two wells and 〈Ĵy〉 is zero.
Therefore, from Eq. (1.44), we see that the presence or absence of fringes in the momentum
distribution is determined by the expectation value of 〈Ĵx〉, and we expect deviations from
the smooth gaussian shape when 〈Ĵx〉 is not zero. This quantity, renormalized by N/2, is
indeed called the “coherence factor” or “visibility”, and is denoted as [14, 57]

ν =
〈Ĵx〉
N/2

. (1.45)

This is not surprising due to the first equality in Eq.(1.30), which shows that 〈Ĵx〉 is
proportional to the cosine of the phase. Hence, it is maximal in the Rabi regime in which
the ground state is a phase state (〈Ĵx〉 = N/2), while it is zero in the Fock regime in which
the phase is completely undetermined. In figure (1.7) we show the numerical evaluation
of the visibility of the system 〈Ĵx〉/N and as function of the ratio N2/(2Λ) = 2KN/χ, for
λ = 0.

In Fig. 1.8 we present instead a numerical evaluation of the longitudinal momentum
distribution ν(px) =

∫

dpydpzn(~p) for different values of the parameter Λ. We see that,
according to Eq.(1.44) and to the considerations on the visibility, the momentum distri-
bution exhibits fringes in the coherent regime of high coupling, reflecting the existence of
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Figure 1.8: Momentum distribution for different values of the parameter N2/(2Λ) =
2KN/χ ≡ γ; the distribution exhibits fringes in the coherent regime while interference
effects are washed out when the coupling is small. We used N = 10, χ = 1, K =
10−4χ, 10−2χ, 10−1χ. As single particle wave function we choose the gaussian φ0(~r) =
1/c3e(x

2+y2+z2)/(2σ2) normalized to unity, with c = (
√
πσ)1/2 and σ = d/10.

a well defined relative phase between the two condensates, while interference effects are
washed out when the coupling is small.

The phase diagram for the fluctuations 〈∆Ĵ2
x〉 of the “coherence factor” is complemen-

tary with respect to Fig. 1.6, as presented in Fig. 1.9. That is of course because of the
underlying uncertainty principle expressed by Eq.(1.23).

1.6 The semi-classical limit

1.6.1 Semi-classical Hamiltonian and equations of motion

Let us now address the mean field approximation. If the number of particles is large, the
fluctuations are negligible with respect to the expectation value of the physical observables,
so that we are allowed to treat the field operator as a c-number, i.e.

Ψ̂(~r, t) → ψi(~r, t). (1.46)

This complex field is also called the order parameter or the condensate wave function.
The replacement (1.46) in the Hamiltonian (1.13) leads to the energy functional E =
∫

d3r[ ~
2

2m |∇ψ|2 + Vext|ψ|+ g
2 |ψ|4], which by using a variational principle generates the

equation [35]

−~
2∇2

2m
ψ + Vextψ + g|ψ(r)|2ψ = i~∂tψ. (1.47)

This non-linear time-dependent Schroedinger equation for the wave function of the con-
densate is known as the “Gross-Pitaevskii” equation (GPE). It has been originally derived
in Refs. [79] and [80], and it is the main theoretical tool for investigating nonuniform dilute
Bose gases at low temperatures. One should not confuse the solution of the GPE ψ(r),
which is normalized to the total number of particle in the condensate, with the many-body
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Figure 1.9: Fluctuations 〈∆Ĵ2
x〉 in color scale as a function of the parameters λ/(2χ)

(x-axes) and N2/(2Λ) = 2KN/χ. For N = 12 bosons.
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wave function of the system, readily obtained from ψ(r) taking the symmetric product

ΨMB(~r1, ~r2..., ~rN ) =

(

1√
N
ψ(~r1)

)(

1√
N
ψ(~r2)

)

.....

(

1√
N
ψ( ~rN )

)

, (1.48)

and which is normalized to unity [35].
In terms of the creation and annihilation operators, the replacement (1.46) amounts

to the identification
âi → 〈âi〉 ≃

√
nie

iθi ≡ ψi (1.49)

where ni and θi are the number of particles and the phase of the condensate in each mode.
With this prescription, the field operator ψ̂ in Eq. (1.15) is replaced by the classical field

ψ(~r, t) = ψ1(t)φ1(~r) + ψ2(t)φ2(~r). (1.50)

Substituting the explicit two-mode expression for ψ given in Eq.(1.50) in the GPE,
the time evolution of the particle numbers n1,2 and of the phases θ1,2 in each condensate
can be derived [48]. In order to proceed further, it is convenient to define the relative
variables

n =
n1 − n2

2
φ = θ2 − θ1, (1.51)

so that n represents the classical imbalance in the atomic population of the two wells,
coinciding with the definition in Eq.(1.27), and φ is the relative phase between the two
condensates. In terms of these variables, the semi-classical equations of motion are

∂tn = −2K

√

(

N

2

)2

− n2 sinφ (1.52a)

∂tφ = 2χ

(

n− λ

2χ

)

+K
2n

√

(

N
2

)2 − n2
cosφ (1.52b)

in which n and φ are regarded as commuting variables, conjugate in the classical sense
of Poisson bracket, and in which the parameters K,χ and λ are defined as in Secs.1.3
and 1.4. This is a good approximation in the strongly coupled (Rabi) regime, and for
N ≫ 1. The corresponding semi-classical Hamiltonian is

H = χn2 − λn− 2K

√

(

N

2

)2

− n2 cosφ. (1.53)

1.6.1.a Equivalent derivation

An equivalent way of obtaining the semi-classical Hamiltonian (1.53) (and consequently
Eqs. (1.52a) and (1.52b) is projecting the Hamiltonian Eq.(1.24) on the coherent state
Eq.(1.28), leading to 〈θ, φ|Ĥ|θ, φ〉. Using the expectation values (1.30), by evaluating also
〈θ, φ|Ĵ2

z |θ, φ〉 = n2 (1− 1/N) +N/4 we obtain

〈θ, φ|Ĥ|θ, φ〉 = χn2
(

1− 1

N

)

− λn− 2K

√

(

N

2

)2

− n2 cosφ, (1.54)
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where we used that N sin θ/2 =
√

(N/2)2 − n2, from Eq.(1.24).

Equation (1.54) reproduces to O (1/N) the mean field result Eq.(1.53) (the inessential
constant term χN/4 has been discarded). In particular, the equivalence of the coupling
operator projected over coherent states as in Eq.(1.30), together with the coupling part
of the semi-classical Hamiltonian (1.53) justifies the interpretation of the φ angle of an
atomic coherent state as the physical phase difference of the junction in the semi-classical
limit, as anticipated in Sec.1.4.3.

1.6.1.b Semi-classical momentum distribution

Similarly, by using the expectation values Eq.(1.30) we can obtain from Eq.(1.44) the
momentum distribution in the semiclassical limit

n(~p) = |φ0(~p)|2(N + 2

√

(

N

2

)2

− n2 cos (φ+ pxd)), (1.55)

as can be found in Ref. [54]. We see that, as we expected, the momentum distribution in
the semiclassical limit shows maximal fringes, corresponding to the Rabi regime.

1.6.1.c Analogy with the superconducting case

By adding a constant term irrelevant for the dynamics, we can rewrite the semi-classical

Hamiltonian (1.53) as H = χ
(

n− λ
2χ

)2
− 2K

√

(

N
2

)2 − n2 cosφ. We can then note the

similarity of Eq.(1.53) with the Hamiltonian of a superconducting Josephson junction in
a Cooper-pair box circuit (SJJ) HSJJ = EC (n− ng)

2 −EJ cosφ [81], where the charging
energy EC can be identified with the interaction energy χ, the role of the gate parameter
ng = CgVg/(2e) is played by λ, and the tunneling energy EJ can be obtained by linearizing
the square-root term in (1.53), leading toKN . The presence of the latter term in Eq.(1.53)
represents the main difference with the superconducting case, in which strong charge
imbalances are suppressed by the external circuit, and one can only access the linear
regime. As a consequence, the classical SJJ system maps on the problem of a rigid
pendulum, while the BJJ maps on the non-rigid pendulum, in which the length of the
pendulum depends on its momentum. This new feature is responsible for a rich variety of
dynamical regimes which are absent in the superconducting case, and which we recall in
the following sections.

1.6.2 Dynamical regimes

The full solution of Eqs.(1.52a), (1.52b) can be given in terms of jacobian elliptic functions
and can be found in Ref. [49]. Let us restrict to the symmetric case λ = 0, and describe
briefly the main features of such a solution. Before doing so, we need two ingredients: the
structure of the fixed points of the system and the notion of Macroscopic Quantum Self
Trapping (MQST), which we introduce below.

1.6.2.a Fixed points

The fixed points of the system, defined as the values of the number and phase variables
which remain constant during the evolution if chosen as initial conditions, can be easily
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identified by imposing ∂tφ = 0 and ∂tn = 0 in the equations of motion (1.52a),(1.52b).
Depending on the parameter Λ defined in Eq.(1.36), this yields the fixed points

(i)F0 = (θ = π/2, φ = 0), stable;

(ii)Fπ = (θ = π/2, φ = π), stable if Λ < 1 (Rabi regime) unstable if Λ > 1 (Josephson

regime); in the latter case, two stable fixed points are located at

(iii)F± =

(

n± = ±
(

N

2

)

√

1− 1

Λ2
, φ = π

)

(Josephson regime only).

(1.56)

Indeed, at Λ = 1 a bifurcation occurs in the model and the fixed points of the system
change.

1.6.2.b Macroscopic quantum self trapping

Let us introduce the rescaled variable z = 2n/N , and rescale the Hamiltonian (1.53) by
the factor KN , obtaining the Hamiltonian given in Ref. [48]

Hsc =
H

KN
=

Λ

2
z2 −

√

1− z2 cosφ. (1.57)

Under certain conditions, trajectories in which the number imbalance can not be reduced
to zero, i.e. for which the equation z(t) = 0 has no solution, are allowed. This regime is
known as macroscopic quantum self-trapping. The condition to enter this regime can be
found using the fact that the energy is conserved during the evolution, i.e.

Hsc(0) =
Λ

2
z(0)2 −

√

1− z(0)2 cosφ(0) =
Λ

2
z2 −

√

1− z2 cosφ (1.58)

which, solved for z2, gives

z2 =
2

Λ2

[

(ΛHsc(0) − cos2 φ)± | cosφ|
√

cos2 φ− 2ΛHsc(0) + Λ2
]

; (1.59)

asking for z = 0 then leads from (1.59) to the condition

ΛHsc(0) − cos2 φ = ∓| cosφ|
√

cos2 φ− 2ΛHsc(0) + Λ2, (1.60)

which after some algebras leads to |Hsc(0)| = | cos φ|. It is then clear that for

Hsc(0) > 1 (1.61)

Eq.(1.60) has no solution, i.e. z(t) = 0 cannot be satisfied at any time (the other condition
H(0) < −1 has to be discarded because it is not allowed by Eq.(1.58)). The condition for
the MQST therefore is (1.61).

1.6.2.c Dynamical regimes

We shall now review in what follows more in detail the possible trajectories associated to
the different regimes [48, 49, 61].

In the in the Rabi regime (Λ < 1), small oscillations around the two fixed points F0

and Fπ are allowed. Their frequency can be obtained by linearizing Eqs.(1.52a,1.52b),
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leading respectively to ω0 = 2K
√
1 + λ for the oscillations around F0 (blue trajectories

in Fig.1.10a) and to ωπ = 2K
√
1− λ for the oscillations around Fπ (red trajectories in

Fig.1.10a) .
For Λ > 1, entering the Josephson regime, the trajectories around Fπ become broader

(red trajectories in Fig.1.10b), while small oscillations around F± appear (green trajecto-
ries in Fig.1.10b), which are an example of self-trapped trajectories as discussed in Sec.
1.6.2.b.

From Eq.(1.58) we see that for Λ > 2, the condition for the MQST (1.61) can be
fulfilled with no need for the phase to be confined to a small interval around π, and then
other MQST trajectories appear (orange trajectories in Fig.1.10c), in which the phase is
growing with the time. For this reason these trajectories are known as “running states”,
and they are the analog of the AC Josephson effect in superconducting junctions [34, 51].

An experimental verification of all of the regimes presented above is given in Ref. [61],
from which Fig. 1.10 is taken.

1.6.2.d Equation of the separatrix

From the above discussion, it is clear that for each value Λ > 1 there exists a special
trajectory which separates the macroscopic quantum self-trapping trajectories from the
oscillations in which the number imbalance can take the zero value. This special trajectory
passes through Fπ, is eight-shaped and is called the “separatrix” (black line in Figs. 1.10
b and c). The equation of the separatrix can be found from the MQST condition given
in Eq.(1.61). By using the third line in Eq.(1.30) and the fact that

√

(N/2)2 − n2 =
N sin θ/2, from Eq.(1.58) we find that the condition (1.61) translates in terms of the
variable θ and φ into

Λ

2
cos2 θ −

√

1− cos2 θ cosφ = 1, (1.62)

or, by solving for sin θ,

| sin θ| = − 1

Λ
cosφ± 1

Λ

√

cos2 φ− 2Λ + Λ2 (1.63)

(for Λ ≥ 2 only the plus sign can be taken, while for Λ < 2 both signs are allowed). The
separatrix can be exploited to produce macroscopic superpositions of coherent states, as
will be detailed in Chapter 2.
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Figure 1.10: Experimental observation of the dynamical regimes of the BJJ, from Ref. [61].
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Chapter 2
Creation of entangled states in a Bose

Josephson junction

In this chapter we focus on the creation of entangled states in Bose Josephson junctions.
After introducing in Sec. 2.1 the notion of multiparticle entanglement and some criteria
for its detection in bosonic systems, we will consider some specific entangled states, such
as squeezed states, macroscopic superpositions of coherent states and Fock states. We
will then explain how it is possible to create such entangled states in a BJJ. We will
first briefly review the protocols to realize adiabatically squeezed states and macroscopic
superpositions of coherent states. Then, we will discuss how a known protocol leading
to the formation of squeezed states can be extended to create macroscopic superpositions
of coherent states [31]. The latter result has been the subject of our work Ref.[31]. An
improved protocol involving optimum control will be finally presented; more details about
this work can be found in our pre-print Ref. [33]

Dans ce chapitre nous nous focalisons sur la création d’états intriqués dans les jonc-
tions Josephson bosoniques. Après avoir introduit en Sec. 2.1 la notion d’intrication
pour des systèmes à grand nombre de particules et quelques critères pour sa détection
dans les systèmes bosoniques, nous considérerons quelques états intriqués en par-
ticulier, tels que les états comprimés, les superpostions macroscopiques d’états
cohérents, et les états de Fock. Ensuite nous expliquerons comment il est possible de
créer ces états dans une BJJ. Nous rappellerons d’abord les protocoles permettants
de réaliser de façon adiabatique les états comprimés et les superpostions macro-
scopiques. Ensuite, nous discuterons comment un protocole dynamique connu qui
permet de créer des états comprimés peut être étendu pour générer des superposi-
tions macroscopiques d’états cohérents [31]. Ce dernier résultat a fait l’objet de notre
publication Ref.[31]. Un protocole amélioré basé sur le contrôle optimal sera enfin
présenté; plus de détails sur ce travail peuvent être trouvés dans la pre-publication
Ref. [33].

27
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2.1 Multiparticle entanglement

In this thesis we use the following definition multiparticle entanglement [12, 82]: a general
density matrix ρ̂ describing the state of the N atoms in the BJJ is said to be entangled if
it cannot be written as a separable density matrix, i.e. if

ρ̂ 6= ρ̂sep, (2.1)

where
ρ̂sep =

∑

k

pkρ̂
(1)
k × ρ̂

(2)
k . . . ρ̂

(N)
k , (2.2)

each density matrix ρ̂
(i)
k referring to the ith-boson, and pk ≥ 0 being a probability such that

∑

k pk = 1. Note that the states appearing in the definition (2.2) are symmetric for the
exchange of particles. Indeed, the (N + 1)-dimensional Hilbert space which accounts for
our system of indistinguishable bosons in the two-mode approximation is the restriction
to the symmetric subspace of the Hilbert space of all the possible 2N states which would
be obtained with N distinguishable two-mode particles (“qubits”).

The definition in Eq.(2.2) leads to consider as entangled some states for which the
non-separability is due to the symmetrization over the particles of the bosonic state. This
point has been a source of confusion and controversy [83–85]; some comments related to
this issue will be given in Sec.2.3.3.

Note also that a coherent state of the form (1.28) is separable according to the definition
above, since by (1.32) it can be written as a product state, despite the fact that it is non-
separable according to the bipartition on the modes of the BJJ (see table 2.3.3).

2.2 Criteria for multiparticle entanglement

Motivated by the fact that in the experiments only few moments 〈Ĵki 〉 of the total distribu-
tion of the angular momentum operators are typically accessible, a full set of inequalities
allowing to witness entanglement by means of first and second moments only has been
derived in Ref. [82]. These inequalities regroup several criteria which were derived inde-
pendently [12, 86]. Violation of any of the following inequalities implies entanglement:

〈Ĵ2
x〉+ 〈Ĵ2

y 〉+ 〈Ĵ2
z 〉 ≤

N(N + 2)

4

(∆Ĵx)
2 + (∆Ĵy)

2 + (∆Ĵz)
2 ≥ N

2

〈Ĵ2
i 〉+ 〈Ĵ2

j 〉 −
N

2
≤ (N − 1)(∆Ĵk)

2

(N − 1)
[

(∆Ĵi)
2 + (∆Ĵj)

2
]

≥ 〈Ĵ2
k 〉+

N(N − 2)

4
. (2.3)

These inequalities identify in the space of the expectation values 〈Ĵ2
x〉, 〈Ĵ2

y 〉, 〈Ĵ2
z 〉 a “polyp-

tote”, represented in Fig.2.1 for N = 6 particles. If a state lies outside the polyptote, i.e.
if it violates one of the inequalities in Eq.(2.3), then it is necessarily entangled according
to the definition (2.1), however inside the polyptote both separable and entangled states
can be found. These inequalities are however complete in the macroscopic limit in the
sense that no other entangled states can be detected with only first and second moments
(see also remarks in Sec.4.1.4).
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Figure 2.1: Polyptote delimiting the set of entangled states. The points which lie outside
the polyptote violate one of inequalities in Eq.(2.3) and are hence entangled according to
the definition (2.1) (from Ref. [82]).

We remark that the inequalities (2.3) were originarily derived for a general state of
N -qubits, not necessarily symmetric like in the case of our states of indistinguishable
particles. In Ref. [82] it has been proven that the inequalities in Eq.(2.3) can not only
detect bipartite entanglement (i.e. the non-separability of the reduced density matrix
ρ̂A,B = tri=1...N,i 6=A,B[ρ̂]), but they can also detect entangled states which have a separable
two-body density matrix, despite the fact that they are based on first and second moments
only [82]1.

A quantity which serves to estimate the number of non-separable particles by disposing
only of first and second moments as in Eq.(2.3), the depth of entanglement, has been
introduced in Ref. [87].

We stress that the criteria provided by Eqs. (2.3) are not restricted to pure states,
but they are valid for a general density matrix.

Finally we mention that these inequalities have been recently generalized to the case
of a system of N -“qudits” (i.e., individual particles which can occupy more than two
states) [88].

2.2.1 Linear entropy

We just mention here an entanglement measure commonly used for pure states, which
quantifies the bipartite entanglement of a subsystem ρ̂A = trB ρ̂ with the rest of the system,
ρ̂B = trAρ̂. This is known as the Von Neumann Entropy SN (ρ̂A) = −tr(ρ̂Alogρ̂A) [30, 89],
satisfying SN (ρ̂A) = SN (ρ̂B). The linearization of SN (ρ̂A) leads to the linearized entropy

SN (ρ̂A) = 1− tr(ρ̂2A). (2.4)

1To illustrate this fact, a non-symmetric state of distinguishable particles was chosen in Ref. [82]. We
note that this is also true for the W state, which will be discussed in Sec.2.3.3; such a state belongs rather
to the symmetric (bosonic) subspace, is genuinely multipartite entangled and is detected by the inequalities
(2.3).
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Taking the subsystem to be a single particle, the linearized entropy can be related to the
expectation values of collective spins as [69]

SN =
1

2

[

1− 4

N2
(〈Ĵx〉2 + 〈Ĵy〉2 + 〈Ĵz〉2)

]

. (2.5)

Its values range from 0 for separable states to 1/2 for maximally entangled states.

2.3 Relevant multiparticle entangled states in a BJJ

We focus in the following on specific entangled states such as squeezed states, macroscopic
superpositions of coherent states and Fock states, introducing their main features.

2.3.1 Coherent spin squeezing and squeezed states

Let us introduce the coherent spin squeezing parameter ξn̂ as in Ref. [12]. This parameter
is related to the angular-momentum fluctuations along the direction n̂ according to

ξ2n̂

[

ρ̂in, Ĵn

]

=
N(∆Ĵn)

2

〈Ĵp1〉2 + 〈Ĵp2〉2
, (2.6)

where

p̂1 = cosφ x̂+ sinφ ŷ

p̂2 = − cos θ sinφ x̂+ cos θ cosφ ŷ + sin θ ẑ (2.7)

are the unit vectors perpendicular to

n̂ = sin θ sinφ x̂− sin θ cosφ ŷ + cos θ ẑ, (2.8)

and 〈·〉 = tr(·ρ̂in) is the expectation value in state ρ̂in.
A state ρ̂in is said to be coherent spin squeezed, or simply squeezed in the direction n̂

if the corresponding coherent spin squeezing parameter satisfies

ξ2n̂

[

ρ̂in, Ĵn

]

< 1. (2.9)

Hence, in a squeezed state the fluctuations of the angular momentum operator are reduced
in a certain direction, at the expense of the orthogonal direction, so that the uncertainty
principle Eq.(1.23) is still satisfied with the equal sign, as it happens for squeezed states
in quantum optics.

As pointed out in Ref. [82], the squeezing criterion Eq.(2.9) is equivalent to the last
inequality in Eq.(2.3) in the limit of large number of particles. Hence, squeezed states are
multiparticle entangled in the sense of Sec.2.1, which was earlier demonstrated in Ref. [12].

Squeezed states have been realized in BJJ systems in the experiments of Refs. [6, 8, 9,
13]. In Sec.4.1.2 we will see how squeezed states can be employed in atomic interferometry
to overcome classical limits of precision. In this context, it is common to express squeezing
in decibel, i.e. ξ2dB = 10 log10 ξ

2.
In order to quantify the intrinsic correlations of a quantum state, regardless of the

direction in which the correlations are manifest, we will introduce an optimized version of
the coherent spin squeezing parameter in Sec.4.2.
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2.3.1.a Other definitions of spin squeezing

An alternative definition of spin squeezing has been introduced by Kitagawa and Ueda in
Ref. [11]. According to their definition, the state is squeezed in a certain direction n̂ if

ξ2U,n̂

[

ρ̂in, Ĵn

]

=
4(∆Ĵn)

2

N
. (2.10)

In the case in which the direction of minimal fluctuations is the ẑ direction, the state
is said to be “number squeezed” [13, 90]. According to this definition, any Fock state
is squeezed along the ẑ direction, including the coherent states at the poles. The main
difference with respect to the definition in Eq.(2.6) is indeed that in (2.10) the expectation
value of the spin in the direction perpendicular to the one of squeezing does not appear in
the denominator, and hence the “coherence” of the state, meaning the expectation value
of the total spin 〈Ĵ〉, is not taken into account. The two definitions coincide when the
expectation value of the spin operators in the perpendicular directions is maximal, i.e.
when 〈Ĵp̂1〉2 + 〈Ĵp̂2〉2 = N2/4, as can be seen by comparing Eq.(2.6) and (2.10). Note
that when this is not the case the two definitions may instead lead to drastically different
results. Consider for example a coherent state, say the phase state |θ = π/2, φ = 0〉; for
this state the coherent spin squeezing (2.6) is minimized in the (yOz) plane and its value
is ξ2y = ξ2z = 1. The incoherent version (2.10) instead allows to take the direction x̂ as
minimizing direction, leading to best squeezing ξ2U,x = 0.

We remark furthermore that the condition analogous to Eq.(2.9), i.e.

ξ2U,n̂

[

ρ̂in, Ĵn

]

< 1, (2.11)

generally does not imply entanglement. A counter-example is indeed provided by any
coherent state, e.g. the ones at the poles, which are number squeezed but separable.
However, if Eq.(2.11) is satisfied for a certain direction n̂ and simultaneously 〈Jn〉 = 0,
then it implies entanglement in the sense of Eq.(2.1) [86]. This can be seen by noticing
that for symmetric states 〈Ĵ2

x〉+ 〈Ĵ2
y 〉+ 〈Ĵ2

z 〉 = N(N +2)/4, so that the second inequality
in Eq.(2.3) can be rewritten as

4(∆Jn)
2

N
≥ 1− 4〈Jn〉2

N2
, (2.12)

the violation of which renders the criterion Eq.(2.11) provided 〈Jn〉 = 0.

It has also been demonstrated that violation of Eq.(2.12) for symmetric states consti-
tutes a necessary and sufficient condition for bipartite entanglement. As a corollary, for
the states which satisfy 〈Jn〉 = 0, the condition (2.11) is also a necessary and sufficient
condition for bipartite entanglement, which is not the case for Eq.(2.9).

2.3.2 Macroscopic superpositions of coherent states

In the context of this thesis, we will designate with the term macroscopic superposition a
superposition of two or more coherent states. Since in each coherent state all the atoms
are in the same one-particle state as described in Sec 1.4, then a superposition of coherent
states is a superposition of macroscopically distinguishable configurations, also said a
“Schrödinger’s cat state”. We will often use this equivalent more familiar designation in
the following.
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For example, the state

|ψNOON〉 =
1√
2
(|θ = 0, φ = 0〉+ |θ = π, φ = 0〉) (2.13)

is the superposition of the two coherent states at the poles of the Bloch sphere. Such a
state is also know as a “NOON state”, because of its equivalent expression on the basis of
the mode occupation |n1, n2〉, which gives |ψNOON〉 = 1/

√
2(|N, 0〉+ |0, N〉). The rotation

of the previous state by π/2 around an axes in the (x0y) plane leads to the two-component
“phase cat state” 1√

2
(|θ = π/2, φ〉+ |θ = π/2, φ+π〉) i.e. the superposition of two coherent

states located on the equator of the Bloch sphere. In particular, rotation around the y
axes leads to the state

|ψPHASE〉 =
1√
2
(|θ = π/2, φ = 0〉+ |θ = π/2, φ = π〉). (2.14)

Such states are highly entangled. The NOON state is maximally entangled both in
the sense of the bipartition on the BJJ-modes and on the particles, i.e. according to
the definition (2.1) (see Table 2.3.3). The other two-component cat states, such as the
two-component phase cat state (2.14), are maximally entangled on the particles and in
the sense of a bipartition according to a combination of the modes which depends on the
coherent states composing the superposition, as expressed by Eq.(1.29).

Two-component macroscopic superposition states are known from other contexts as
GHZ states (see [17–20] and references therein). They are maximally entangled states
according to many entanglement measures, e.g. the linearized entropy defined in Eq.(2.5),
which takes the maximal value SN = 1/2; indeed, since such states are genuinely N -
entangled, then each single particle is (maximally) entangled with the others. They also
maximize the quantum Fisher information, an entanglement parameter which will be in-
troduced in Sec.4.1.3. Note however that for N > 2 the definition of a multipartite
entanglement measure is not univocal, and there exist multipartite entanglement mea-
sures for which such states are not the maximally entangled ones, such as the geometric
entanglement [91, 92] or the “Quantumness” [93].

Macroscopic superpositions do not violate any of the equations (2.3). This is because,
as recalled in Sec.2.2, such inequalities are based on expectation values depending only on
two-body correlations between particles of the state, which for the NOON or GHZ states
are consistent with those of a separable state (contrarily to W states). Information from
N -order moments like 〈ĴNk 〉 is needed to verify entanglement in a N-particle macroscopic
superposition (see also Chap. 3).

2.3.3 Fock states

The Fock states introduced in Eq.(1.26) are also entangled in the sense of Eq.(2.1) (indeed
they violate the third inequality in Eq.(2.3)), except for n = ±N/2, where one recovers the
coherent states at the poles of the Bloch sphere, which are separable as already mentioned.
For example, in the Fock states labeled by n = ±N/2∓1 all the particles except one occupy
the same of the two modes, which leads in first quantization to

|n = N/2− 1〉 = 1√
N

(|2; 1; 1; 1; ...1〉 + |1; 2; 1; 1; ...1〉 + ...+ |1; 1; 1; 1; ...2〉), (2.15)

where we have taken the case n = N/2 − 1. Such a state is know as a W state [94], and
is also genuinely N -particle entangled. Increasing the number of “excitations” allows to
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Phase state (α = 1) Twin-Fock state Phase cat state

(â†1 + â†2)
N |0〉 â

†N
2

1 â
†N

2
2 |0〉 (â†N1 + â†N2 )|0〉

Eq.(1.28) Eq.(1.26) Eq.(2.14)

two-mode entanglement yes no yes

N -particle entanglement no yes yes

Table 2.1: Entanglement of a phase state, a Fock state and a macroscopic superposition
with respect to the bipartition on the modes or on the particles.

span the other Fock states, reaching half way the symmetric state (in the sense of the
population of the two modes), i.e. the Twin-Fock state |n = 0〉. For N = 2, the latter
state reads in first quantization

|ψ〉 = 1√
2
(|1; 2〉 + |2; 1〉) . (2.16)

Eqs. (2.15) and (2.16) allow us to stress that such states are not entangled in the sense
of a partition on the two modes, but in the sense of the partition on the particles, due to
the symmetrization of the bosonic state [76, 85, 95] (see table 2.3.3). Some authors in the
quantum information community use different definitions with respect to Eq.(2.1), and
reject that Fock states are “entangled”, claiming that the correlations coming from the
symmetrization of the wave function of indistinguishable particles are “unphysical” [20,
83]. The main reason for this is that such correlations cannot be exploited to do quantum
computation since individual particles cannot be individually addressed, nor could be Bell
inequalities violated (see [85] and references therein). Furthermore, such correlations do
not affect the physical observables when the particles are taken far apart each other [10].
However other authors [76, 85] stress the fact that entanglement due to the symmetrization
can be a useful resource every times that “collective local operations” only are required,
i.e of the type

Ĵk =
N
∑

i=1

σ̂
(i)
k . (2.17)

instead of “local” operations σ̂
(i)
k

2. An example of a quantum information protocol in
which only collective local operations are required is phase estimation, which will be
discussed in Sec.4.1.3. The issue of the entanglement for indistinguishable particles in this
context, as well as the dependence of the correlations on the spatial distance between the
two modes when also internal degrees of freedom are involved are discussed in Ref. [85].

2.4 Adiabatic protocols for the creation of entangled states

in BJJs

We now review methods for the generation of entangled states in a BJJ, starting with
adiabatic methods.

2Note that the nomenclature “local” for operation of the type σ̂
(i)
k was introduced for spin systems, in

which i labels the spin site, individually addressable (see e.g. [76]). However in the external Bose Josephson
set-up the operators σ̂x,y are non-local in the sense of space, i.e. it is not true that the matrix element

over eigenstates of the position 〈~r|σ̂x,y |~r
′

〉 is proportional to δ(~r − ~r
′

).
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2.4.1 Spin squeezing in the ground state

As can be seen in Fig.1.6, the ground state of the BJJ in the regime in which the interac-
tions are dominant with respect to the tunneling (see Sec. 1.5.1) is number squeezed. With
the numerical values considered in the figure for the total number of particles, N = 12, the
number squeezing condition Eq.(2.11) reads (∆Jz)

2 < 3 , always satisfied in the regime
plotted in the figure. Indeed only in the limiting case in which the interactions are zero
the state would not be number squeezed, reaching its worst value ξ2U,z = 1 for the phase
state |θ = π/2, φ = 0〉 (α = 1), corresponding to the ground state in the Rabi regime. In
particular Fock states, yielding the ground state along the x axes of the diagram presented
in the figure, are also number squeezed according to the definition in Eq.(2.10).

It can be shown that in the squeezing regions the ground state is indeed coherent spin
squeezed [96]. A plot of the coherent spin squeezing leads to a result qualitatively similar
to Fig.1.6. On the axes λ = 0 of the diagram in Fig.1.6, the coherent spin squeezing in
the ẑ-direction decreases from 1 for the phase state |θ = π/2, φ = 0〉, corresponding to the
Rabi regime, to zero, deeply inside the Fock regime. Despite the fact that the coherence
of the state goes to zero at K = 0, the coherent spin squeezing reaches a minimum value
when the ground state becomes eventually a Fock state. This will be demonstrated in
Sec.4.3, where we will discuss the implications of ground state squeezing for quantum
metrology.

Hence, one could think of preparing the state as a coherent state, and then lowering
the coupling between the two modes adiabatically, entering the squeezing regime. In an
external BJJ the decrease of the coupling between the two modes can be realized by
increasing the barrier separating the two wells. The conditions for adiabaticity of the
splitting process have been discussed in Ref. [97], in which the spatial dependence of the
mode functions on the form of the potential has been taken into account with a variational
ansatz. An experiment of this type has been performed with an external BJJ by the
group of M. Oberthaler in Heidelberg, as reported in Ref. [13], leading to a squeezing of
ξ2z = −3.8dB. 3. The measurement of the number fluctuations and of the coherence factor
allowed to experimentally determine both the coherent spin squeezing and the Ueda spin
squeezing. The dependence of the actual squeezing on the ramping time has also been
addressed in the same work (see also Ref. [90] for further discussions). Limitations due to
the temperature are discussed in Ref. [62], and will be also addressed in Appendix C.

2.4.2 Ground state of the attractive BEC

A macroscopic superposition of two coherent states (Eq.(2.13)) can be in principle created
by preparing the system in a coherent state and by tuning the interatomic interactions
adiabatically to strongly negative values [28, 98, 99]. This could be achieved by exploit-
ing Feschbach resonances, as recalled in Chap.1. Indeed, the ground state of the model
Hamiltonian (1.24) in the regime of strongly attractive interactions and for symmetric
modes λ = 0 is exactly the NOON state; this is easily understood noticing that in this
regime the energy is minimized by the configurations in which all the atoms occupy the
same mode, and the two situations corresponding to the maximal occupation of each of
the two modes are degenerate.

3Technically this result has been achieved with a slightly less shallow harmonic potential, which leads
to the occupation of six neighboring wells. The analogous measurement for the rigorously double-well
set-up leads to −2.3dB
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However this method suffers from some disadvantages. For instance, the strength of
the interactions should not increase above a critical threshold, otherwise the gas becomes
unstable, and collapses under the effect of the attraction among the atoms [28, 98]. On the
other hand, since the first excited state is separated from the ground state by an energy
χ, too weak an interaction renders perfect adiabaticity difficult to reach. Issues related to
the experimental feasibility of such a protocol are discussed in Ref. [98].

2.5 Dynamical protocols

2.5.1 Creation of squeezed states and macroscopic superpositions of
phase states by a quenched dynamics of the BJJ

Let us now address how one can dynamically create squeezed states and macroscopic
superpositions of coherent states in a BJJ by a quenched dynamics. Let us take as initial
state a coherent state, |α〉. We focus for the moment on the case of an even total number
of particles, and λ = 0 (symmetric modes). Let us consider the situation where a “quench”
occurs, i.e. the coupling between the two modes is suddenly switched off. Then the system
evolves under the interaction part of the Hamiltonian only, i.e.

H = χĴ2
z . (2.18)

Equation (2.18) is analogous to the Kerr Hamiltonian in quantum optics Hkerr ∝ n̂(n̂−1),
where n̂ is the photon number [95, 100]. Note also that the Hamiltonian (2.18) conserves
the number operator. Hence, the dynamics takes place on a parallel of the Bloch sphere
corresponding to the angle θ which parameterizes the initial coherent state, i.e. such that
α = e−iφ tan θ/2. In particular, if we take as initial state the phase state |θ = π/2, φ =
0〉 = |α = 1〉, which as we have seen corresponds to the ground state of the BJJ in the
Rabi regime, the dynamics is restricted to the equator of the Bloch sphere.

A qualitative picture of the dynamics of the state under the action of the Hamiltonian
(2.18) view from the top of the Bloch sphere is given in Fig.2.2. By using the expansion
of the coherent state on the Fock states given in Eq.(1.28) the action of the time evolution
operator on the state can be expressed as

|ψ(t)〉 = e−iχĴ
2
z t|α〉 =

N/2
∑

m=−N/2

(

N
N
2 +m

)1/2 αm+N
2

(1 + |α|2)N
2

e−iχm
2t|m〉. (2.19)

As it can be seen from Eq.(2.19), the state of the system is periodic as a function of time.
Indeed, when all the phases e−iχm

2t are equal to 1, the BJJ is found in the initial coherent
state. This happens for Teven = 2π/χ ≡ T . Decomposing the time evolution operator as

e−i(χtĴz)Ĵz allows us to discuss qualitatively the effect of the atomic interactions on the
initial coherent state. This operator indeed performs a rotation around the z-axes, but
with a speed which depends on Ĵz. To fix the ideas, consider e.g. the case of an initial
phase state with α = 1, i.e. placed on the equator of the Bloch sphere. In a semi-classical
picture in which the uncertainty associated to the initial coherent state is assimilated to a
classical distribution of points, the result is that points above the equator evolve rotating
in one direction, while points under the equator are rotated in the other direction; the
farther they are from the center, the faster is their evolution. Hence, as a result, the state
is stretched along the equator of the Bloch sphere. This leads at short times to a coherent
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Figure 2.2: Dynamics of the state on the parallel at angle θ of the Bloch sphere (top view)
under the action of the Hamiltonian (2.18), taken from Ref. [95].

spin squeezed state (see panel (b) in Fig.2.2). The value of the squeezing parameter as
well as the direction of optimization have been determined in Ref. [11]. In section 4.4
we will present an equivalent derivation of these results. As a consequence of this phase
diffusion, the visibility ν(t) introduced in Eq.(1.45) decreases, and a simple calculation
yields (here for α = 1)

N

2
ν(t) = 〈Ĵx〉t =

N

2
cosN−1

(2πt

T

)

. (2.20)

At later times, the classical distribution of points fills the entire parallel of the Bloch
sphere (see panel c) of Fig.2.2). Quantum-mechanically, interference effects take place. Let
us discuss this point more in detail, considering specific times corresponding to fractions
of the period T as tq = T/(2q), with q an even integer. From Eq.(2.19), the state at times
tq is given by

|ψ(tq)〉 =
N/2
∑

m=−N/2

(

N
N
2 +m

)1/2 αm+N
2

(1 + |α|2)N
2

e−i
πm2

q |m〉. (2.21)

Let us denote the phase factor in the previous expression by e−i
πm2

q ≡ Uq(m). The
function Uq(m) is periodic in m with period q, as can be readily verified by evaluating

explicitly Uq(m+ q) = e
−iπ(m+q)2

q = (−1)qe
−iπm2

q = Uq(m). Therefore the function Uq(m)
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can be expanded according to the discrete Fourier series4

Uq(m) =

q−1
∑

k=0

e−i
2πkm

q uk (2.22)

with

uk =
1

q

q−1
∑

m=0

gk(m), (2.23)

where we have defined gk(m) = e
−iπm2

q e
i 2πkm

q . These coefficients can be re-written by

noticing that
∑q−1

m=0 gk(m) =
∑q−1

m=0 gk(m + k) = ei
πk2

q
∑q−1

m=0 g0(m). Hence we obtain
from Eq.(2.23)

uk = u0e
iπ k2

q (2.24)

where we have defined u0 = 1/q
∑q−1

m=0 g0(m) = 1/q
∑q−1

m=0 e
−iπm2

q . Substituting expres-
sions (2.22) and (2.24) in Eq.(2.21) and exchanging the two sums we obtain

|ψ(tq)〉 = u0

q−1
∑

k=0

ck|e−i
2πk
q α〉 (2.25)

where we defined ei
πk(N+k)

q = ck. Hence, the system at times tq is found in a superposition
of coherent states, located symmetrically on the parallel of the Bloch sphere at azimutal
angle θ - the equator if α = 1. This result has been published in our work [31], and
simultaneously in Ref.[101].

This effect was first described for quantum-optics coherent states by B. Yurke in
Ref. [102], and in the context of superconducting Josephson junctions by C. C. Gerry [103].
The formation of macroscopic superpositions of coherent states has also been addressed in
optical lattices trapping cold atoms in the N -sites Bose-Hubbard model in Ref. [104] (see
also discussion in Chap.6). For example, at time t2 the system is in the two-component
macroscopic superposition

|ψ(t2)〉 =
1√
2

(

e−iπ/4|α〉 + eiπ/4(−1)N/2| − α〉
)

; (2.26)

for α = 1, this is a “phase cat” state, which only differs from Eq.(2.14) by the presence of
a relative phase between the components (see also panel g) in Fig.2.2).

The expression of the macroscopic superpositions with an odd number of components
q analogous to Eq.(2.25) is

|ψ(tq)〉 = ũ0

q−1
∑

k=0

c̃k|e−i
2πk
q

−iπ
q α〉

ũ0 =
1

q
e

iπN
2q

q−1
∑

m=0

e−i
πm(m−1)

q

c̃k = ei
πk(N+k+1)

q . (2.27)

4The general definition is the following: if f(n) = f(n + L), then f(n) =
∑L−1

k=0 e
−i 2πkn

L uk with

uk = 1
L

∑L−1
n=0 e

i 2πkn

L f(n)
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As a special case, note that Eq. (2.27) for q = 1 yields a coherent state reversed with
respect to the initial one, i.e. rotated by π (see also panel i) in Fig.2.2), appearing at a
half of the period t1 = T/2. Such a time interval is said “revival” time because at t1 the
visibility given in Eq.(2.20) takes the initial value 1.

The higher is the number of components of cat state of the form (2.25),(2.27), the
shorter is the time at which it appear. For instance, for α = 1 we can estimate time
of formation of the “first” (in chronological order) multicomponent superposition by
the following simple argument: the largest number of phase states of size

√
N/2 (see

Sec.1.4.3.b) which can be put on the equator of the Bloch sphere of radius N/2 is
qmax ≃ 2πN/

√
N = 2π

√
N . The time of formation of the multicomponent superposi-

tion with the highest number of phase states is tfs = T/(2qmax), leading to

tfs ∼ T/
√
N. (2.28)

Since a decrease in the visibility (2.20) is associated to the appearance of cat state, the
time tfs is also known as phase diffusion time.

Other cat states can form at other fractions of the period, e.g. at times t̃q = T/(2q +
1) [31]. Note that in the case of an odd total number of particles N , the period is
Todd = π/χ = T/2 [101]. The times of formation of cat states correspond to the ones of
the even−N case; the components of these states are however rotated in the parallel of
the Bloch sphere with respect to the even case [25, 101].

As a final remark, we point out that states similar to the ones described by Eqs.(2.25)
and (2.27) are generated in the dynamics of an ensemble of N two-level atoms in a dis-
persive cavity [105].

2.5.1.a Effect of an asymmetry on the BJJ parameters

We discuss here the effect of an imbalance λ, describing an asymmetry of the two modes
of the BJJ as defined in Eq.(1.25), over the creation of cat states. This is readily found by
noticing that the interaction part χĴ2

z and the asymmetry part λĴz in the Hamiltonian
(1.24) commute. Hence, the state in the presence of imbalance is given by

|ψ(t)〉λ = e−iφ(t)Ĵz |ψ(0)(t)〉, (2.29)

where |ψ(0)(t)〉 is the state of the symmetric two-mode system at time t under the
action of the Hamiltonian (2.18), as given in Eq.(2.19), and where we have defined
φ(t) ≡ −

∫ t
0 dτλ(τ), taking into account a possible time-variation of the asymmetry pa-

rameter λ. From Eq.(2.29) one deduces that at each time t the effect of such an asymmetry
is a rigid rotation of the state around the z-axes of the Bloch sphere (i.e., in the equatorial
plane for the initial coherent state with α = 1) with respect to the symmetric case, by an
angle which depends on time.

Consider as an example the sinusoidal driving λ(t) = λ0 + δ sin(ωt). Using Eq.(2.29),
the angle of rotation of the cat state formed at time tq is given by φ(tq) = −tq(λ0 +
δ(1 − cos(ωtq))/(ωtq)). In particular, for frequency and drive amplitudes such that the
condition φ(tq) = 2π is matched, the q-component cat state is formed as if no drive were
applied5.

The effect of a stochastic fluctuation of the asymmetry λ on the formation of macro-
scopic superpositions of phase states will be explicitly considered in Sec.5.1.3.

5In Ref. [67] such a sinusoidal drive has been studied for the external BJJ in the context of transport,
by looking at the time-averaged transferred population after preparing the system in an initial state in
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2.5.2 Dynamical creation of macroscopic superpositions in a BJJ: semi-
classical argument

A protocol for the dynamical creation of a NOON state has been suggested in Ref. [108].
Contrarily to the proposal for the creation of macroscopic superpositions of phase states
presented in Sec.2.5.1, such a protocol makes use of a non-zero coupling between the two
modes of the BJJ. The prediction is based on a semi-classical argument, relying on the
mean-field dynamics of the system introduced in Sec.1.6, and is briefly reviewed here
below.

Let us consider as initial state of the quantum dynamics a coherent state identified by
the angles (θ = π/2, φ = π), i.e. the phase state |α = −1〉, which is centered in Fπ (see
Eq.(1.56)). As recalled in Sec. 1.4.3.b, the width associated to its fluctuations is σ =

√
N .

In the semi-classical picture introduced in Sec.2.5.1, such a state can be viewed as a cloud
of points evolving according to the classical trajectories. As we have seen in Sec.1.6, for
Λ > 1 (Josephson and Fock regime) the separatrix passes across Fπ. Hence in this regimes
the initial wave packet evolves along the separatrix by splitting into two outgoing parts,
one stretching towards the northern hemisphere of the Bloch sphere, and the other one in
the southern part.

Depending on the value of the parameter Λ defined in Eq.(1.36) the following two
qualitatively different situations can occur. As can be seen from Eq.(1.63), in the strong
coupling regime, for 1 ≤ Λ ≤ 2, the maximal separation of the two outgoing wave packets
is obtained for sin θ[φ = π], i.e. for θ± = ± arcsin 2−Λ

Λ (see the separatrix in Fig.1.10b),

corresponding qualitatively to a superposition of two coherent states 1/
√
2(|θ+, φ = π〉+

|θ−, φ = π〉) [108]. In the weak coupling regime, i.e. for Λ ≥ 2, the maximal separation is
obtained at sin θ[φ = 0], which gives cos θ+ = 2/Λ

√
Λ− 1 (see the separatrix in Fig.1.10c),

leading to a superposition of two Fock states of the form 1/
√
2(|n = N/2 cos θ+〉 + |n =

−N/2 cos θ+〉) [108].
Precisely at Λ = 2 the separatrix touches the two poles of the Bloch sphere, leading to

the best possible superposition state, i.e. the NOON state given in Eq.(2.13) (note indeed
that for this value of Λ we obtain θ+ = π) [33, 108].

The time Tc that it takes for a point initially in Fπ to travel along the separatrix and
reach one of the poles of the Bloch sphere is [108]

Tc ≃
χ ln(8N)

N
, (2.30)

which can be taken as an estimation of the time of formation of the macroscopic super-
position.

The accuracy of the semi-classical argument presented above has been checked by per-
forming a quantum calculation of the time evolution of the system under the Hamiltonian
(1.24) with parameters corresponding to Λ = 2 and λ = 0 [108]. A calculation of the
fidelity, i.e. the projection of the state produced on the perfect superposition given in

which all the atoms are in the same well. The tunneling probability exhibits resonances as a function
of the driving frequency, reminiscent of the Shapiro-steps in SJJ. To observe this phenomenon the two
modes of the BJJ must be coupled, which induces a more complicated dynamics than the one described
in Eq.(2.29), as the coupling part does not commute with the rest of the Hamiltonian. Indeed, it has also
been shown that such driven coupled dynamics induces chaos in the classical regime, being related to the
appearance of entanglement in the quantum regime in Ref. [106]. The transport by driving in such systems
has also been addressed in Ref. [107].
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Eq.(2.13)

F1 = |〈ψNOON|ψ(t)〉|2 (2.31)

(to be evaluated at the time Tc of formation of the superposition) allows to estimate the
quality of the state produced. Such a calculation leads e.g. to F1 = 0.1394 for χ = 1 and
N = 300 [33, 108], i.e. the fidelity is quite low, which means that the state formed is only
approximatively a NOON state (see second panel in Fig.2.4). We mention that various
other quantities, more sensitive to the existence of coherences in the superposition than the
fidelity, can be computed to testify the “catness” of the state produced [33]. Among them,
we cite the probability distributions of the eigenvalues of angular momentum operators
in various directions, which we will extensively treat in Chap. 3, or the quantum Fisher
information, which will be discussed in Chap.4.

We note that the time of formation of the NOON state estimated in Eq.(2.30) is much
shorter than the time t2 required to form a two-component macroscopic superposition
of phase states by the quenched dynamics of the BJJ presented in Sec.2.5.1, providing
therefore a speed up with respect to the use of that protocol and leading to a substantial
advantage in experiments. Indeed, the fragility of superposition states with a macroscopic
number of particles with respect to decoherence induced by various mechanisms renders
challenging their experimental realization. Issues related to the decoherence of macro-
scopic superpositions will be explicitly addressed in Chap. 5. Here we only wish to stress
the interest in providing a protocol to create macroscopic quantum superpositions in the
shortest time possible, i.e. before decoherence becomes effective, and the question arises
whether the solution proposed in Ref. [108] is optimized. This question is addressed in
the following section.

2.5.3 Controlled dynamical creation of macroscopic superpositions in a
BJJ

In order to study the optimized production of macroscopic superpositions, we have de-
veloped a protocol of optimal control in collaboration with D. Sugny and M. Lapert [33].
The general idea is to consider that the parameters of the Hamiltonian (1.24) can be
tuned during the time evolution, in order to reach a certain target state (in our case, a
macroscopic superposition) in the minimum time possible, or with the best possible fi-
delity within a fixed time. Since in the internal BJJ setup the coupling K is efficiently
controllable both in amplitude and sign by tuning a resonant field, instantaneously with
respect to the other time scales of the problem [8, 62] (see also Chap. 1), we choose to
keep fixed the parameter χ and to use K as control field. We will have in mind the inter-
nal BJJ setup, which appears more suitable for the experimental implementation of our
control protocol. In the following we will use a dimensionless version of the coupling K,
i.e. ω = 2/Λ = 4K/(χN). In terms of this parameter the optimal separatrix of the static
protocol presented in the previous section is identified by ω = 1.

2.5.3.a Geometric optimal control approach

We first tackle the problem by means of geometric optimal control theory [109]. In a
summarized way, geometric optimal control is a vast domain where the optimal control
problems are solved by using tools of geometry and Hamiltonian dynamics. Due to its
geometric framework, this method is intrinsically limited to systems with few degrees of
freedom. Since as we have seen in Sec.1.6 in the semi-classical limit the BJJ is described
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in terms of two classical conjugated variables, i.e. the polar and azimuthal angles of the
Bloch sphere of radius N/2, the tools of geometric optimal control theory can be applied.

In particular, we solve our time-optimal control problem by applying the Pontryagin
Maximum Principle (PMP) [33, 109], which requires to set a bound, m, on the amplitude
of the control field: among all the functions ω(t) allowing to reach the target state, the
optimal solution is the one minimizing a given cost, here the duration of the control,
within the bound m on the dimensionless parameter ω.

We consider as initial classical state a point on the Bloch sphere at a distance σ from
(θ = π/2, φ = π), corresponding to the extremum point on the uncertainty circle of the
phase state |θ = π/2, φ = π〉 - the same initial phase state of the protocol presented in
Sec. 2.5.2. Without loss of generality, we can choose this point in the upper hemisphere.
Then, the optimal sequence to reach in minimum time the north pole of the Bloch sphere
is computed. By symmetry of the dynamical equations, the point of the lower hemisphere
symmetric with respect to S of the initial state reaches simultaneously the south pole.
This classical simultaneous control leads in the quantum domain to the creation of a
superposition state.

The minimum time Tmin for the generation of a macroscopic superposition with this
protocol can be estimated analytically for m→ +∞, and results inversely proportional to
the total number of particles as the time Tc in Eq.(2.30), differing from it by a numerical
factor. The calculation of Tmin as well as a numerical comparison between Tc and Tmin
are detailed in Ref. [33], resulting in Tmin . Tc.

The solutions for the optimal fields obtained for three bounds on the field amplitude
ω, namely m = 1, 2, 100, are reported in the second panel of Fig.2.3. For m = 1
we recover the solution of Ref. [108], which is only composed of a constant field - in
the control terminology, a “bang pulse”. More complicated solutions can be constructed
when the bound m takes larger values. The respective optimal trajectories in the phase
space, parameterized by the coordinates θ and φ (see Fig. 2.3, and also Refs. [48, 61, 108])
under the field solution ω(t) are displayed in Fig.2.3. In particular, taking as in Sec.2.5.2
N = 300, for m = 100 we reach the target in a time χTmin = 0.0236, while for m = 1 from
Eq.(2.30) one obtains χTc = 0.0259. The corresponding fidelities with the state |ψNOON〉,
obtained by calculating numerically the time-evolution of the quantum state under the
solution field ω(t), are equal to F1 = 0.116 for m = 100, while we recall from Sec.2.5.2 that
F1 = 0.139 for m = 1. Table 2.2 lists the numerical results obtained with this approach.
Other quantities, sensitive to the correlations, are computed in Ref. [33]. A visualization
on the Bloch sphere of the state created is provided in the second panel of Fig.2.4.

Our control protocol can be generalized to create a phase cat |ψPHASE〉 (see Eq.(2.14))
in addiction to the state |ψNOON〉, which is not possible in the original non-controlled
proposal of Ref. [108]. Arguments analogous to the case of a NOON state can be used to
describe the optimal trajectories reaching the state |ψPHASE〉. Switching the sign of the
control field is required here, though, which could be implemented by tuning the microwave
and radio-frequency fields as explained in Sec.1.4. Numerical results comparable with
those for the state |ψNOON〉 are obtained for the minimum time and the projections at
various values of the bound, as reported in Table 2.26.

The conclusion of this analysis is that both the minimum time of formation of macro-
scopic superpositions and the respective fidelities obtained with the geometric control
protocol developed are comparable to the ones of the static method of Ref. [108]. The

6The projection on the phase cat state, analogous to Eq.(2.31), is defined as F2 = |〈Cat2|ψ(t)〉|
2.
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Figure 2.3: (top) Plot in the (θ, φ) plane of the optimal trajectory in the semi-classical
model for the boundsm = 1, m = 2 andm = 100 in blue (dark), green (light gray) and red
(dark gray) respectively. The target state is the cat state |ψNOON〉. The dashed blue, red
and green lines represent the position of the separatrix for the different bounds. (bottom)
Evolution of the corresponding control fields ω(t), as a function of the dimensionless time
χt.

Figure 2.4: Plot of the projections on the Bloch sphere, (i.e. the Husimi function Q(θ, φ) =
|〈θ, φ|ψ〉|2 introduced in Sec.3.1) of the initial state |π/2, 0〉 (left), the final states with the
geometric solution for m = 1 and t = Tmin (middle) and with the fully quantum numerical
approach with t = 10Tc (right).



§2.5 Dynamical protocols 43

latter method is hence almost optimal for the creation of a NOON state based on a
semi-classical approach, though leading to a poor fidelity. To obtain better results, an-
other approach able to tackle the fully quantum character of the problem has to be used,
possibly relaxing a little the time constraint, as detailed in the next section.

NOON PHASE

m 1 2 100 1 2 100

χt(×10−3) 25.9 24.6 23.6 25.5 24.6 23.6
F1,2 0.139 0.122 0.116 0.091 0.100 0.116

Table 2.2: Numerical results of the semi-classical control protocol for three different
bounds, m = 1, 2 and 100. The control duration (χt) and the fidelity (F) are given
for the two cat states |ψNOON〉 (NOON state) and |ψPHASE〉 (Phase state).

2.5.3.b Fully numerical approach

As we have seen in the previous section, the efficiency of the optimal solution based on
the semi-classical approach is limited in the original quantum domain. We now determine
the solution of the initial quantum problem by using a purely numerical approach, namely
the monotonic convergent algorithm, which is a standard approach to solve the optimality
equations in quantum mechanics [110].

In this case, we shall rather consider various fixed control durations, namely T ′ =
Tc, 5Tc and 10Tc, multiple of the minimum time Tc of the static control protocol, and we
maximize the projection onto the target state at time t = T ′. In the following computa-
tions, we have chosen as parameters of the quantum system χ = 1 and N = 300.

In order to guide the numerical optimization, we use the geometric solution as a trial
solution for the numerical algorithm. This allows to design a final optimal solution close
to the geometric one. Due to the proximity of the results obtained at different values of
the bound, we can consider as initial field of the algorithm the constant field ω(t) = 1 in
the interval [0, T ′], corresponding to the bound m = 1 of the geometric protocol.

Very good results are obtained, with a final projection larger than 0.88 and 0.99 on
the target state |ψNOON〉 for T ′ = 5Tc and T ′ = 10Tc, respectively. The solution field
for this latter case is presented in Fig. 2.5. A visualization on the Bloch sphere of the
NOON state created is provided in the third panel of Fig. 2.4. Note that waiting a time
10Tc with the control field ω = 1 of Ref.[108] would not lead to any improvement, as
the quantum state would keep on evolving further from the configuration in the second
panel of Fig.4, refocussing at some point in the initial coherent state (the state is indeed
periodic). The time Tc is thus the optimum time for creating a cat state with ω = 1. For
such a time interval, a projection of 0.2548 is reached with the numerical optimum control
protocol, which yields an improvement over the result of Ref.[108], at the price of a more
complicated solution.

The same computation has been done for the target state |ψPHASE〉, taking again as
initial condition for the algorithm the geometrical optimal solution at m = 1 (which is no
longer static), with a total duration increased by a factor of 1, 5 and 10 as before. The
different numerical results are listed in Table 2.3.
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To conclude, we have demonstrated that by means of a fully numerical optimization
approach it is possible to create a NOON state with a very high fidelity in a time ten times
larger than the time of formation of the NOON state in Ref.[108], which led to a very low
fidelity. Note that this time interval can still lead to a significative speed-up with respect
to the protocol based on the quenched dynamics of the BJJ presented in Sec.2.5.1, where
t2 = π/(2χ) was independent on the number of atoms.

Figure 2.5: Plot of the field solution for T = 10Tc. The horizontal solid line is the solution
of Ref.[108], which is taken as a trial field of the algorithm.

NOON PHASE

n 1 5 10 1 5 10

F1,2 0.255 0.880 0.994 0.245 0.903 0.989

Table 2.3: Same as Table 2.2 but for the quantum protocol. The parameter n represents
the ratio of the control duration over the time Tc (see main text).

2.5.3.c Experimental feasibility

Let us discuss the experimental feasibility of our control protocol, starting with the bound
on the control. Having in mind the internal BJJ setup (and in particular the experiments
of Ref.[8, 62]), typical bounds on the parameterK are 0 < K < 2πKHz, and a typical value
for χ is χ ≈ 2π · 0.13Hz. Fixing this value for the interactions translates the maximum
value of the control field which we have used, i.e. ω = 100, into the value of the coupling,
K ≈ π ·1.95KHz for N = 300 particles, which is within the limit accessible experimentally.
Furthermore, the control field can be switched fast compared with the other time scales
of the experiments. Note that, from a theoretical point of view, it would be possible to
include in our protocol some spectral constraints on the control field [33]. Hence, in ideal
conditions it would be possible to implement our control protocol.

However, in realistic conditions the experiments are affected by the presence of noise,
which induces dissipation and decoherence, as will be discussed in Chap. 5. Such noise
sources have not been taken into account in our protocol, and may change significatively
the quantum state reached with the help of the designed control field. In particular,
with qualitative arguments we have estimated that, given the experimental parameters of
Ref. [8], the atom loss dissipation rate should be lowered by a factor 1000 in order to allow
the formation of macroscopic superposition at 10Tc without losing any atom - a single loss
event causes the decoherence of the NOON state, as it will be shown in Appenxix E.3.
Further discussions are provided in the conclusive section of Ref. [33].



Chapter 3
Detection of macroscopic superpositions

The entanglement witnesses presented in the previous chapter allow to detect the pres-
ence of entanglement by measuring the collective angular momentum operator in various
directions. However, these inequalities do not give any information about the structure
of the entangled state. In this chapter, we provide some tools which allow to visualize
the quantum state of the system, and detect its entanglement in the case of macroscopic
superpositions. After briefly presenting the theory of quasi-probability distributions for
the SU(2) symmetry group “borrowed” from quantum optics, we introduce the probabil-
ity distributions of the eigenstates of angular momentum operators in various directions,
and we show how they can be used to obtain information about the quantum state of the
system. These results are the subject of our publication Ref.[32].

Les critères que nous avons présentés dans le chapitre précédent permettent de
détecter l’intrication à l’aide de mesures du moment angulaire collectif dans
différentes directions. Cependant, ces inégalités ne donnent pas d’information sur
la structure de l’état intriqué. Dans ce chapitre, nous donnons des outils permettant
de visualiser l’état quantique du système, et de détecter l’intrication pour le cas des
superpositions macroscopiques d’états cohérents. Après avoir brièvement présenté
la théorie des distributions de quasi-probabilité pour le groupe de symétrie SU(2)
“emprunté” à l’optique quantique, nous introduisons la distribution de probabilité
des valeurs propres de l’opérateur de moment angulaire dans différents directions, et
nous montrons que celle-ci peut être utilisée pour obtenir de l’information sur l’état
quantique du système. Ces résultats ont fait l’objet de notre publication Ref.[32].

3.1 Quasi-probabilities distributions in phase space

In quantum optics it can be useful, in order to visualize the quantum state of the system,
to introduce quasi-probability distributions in phase space - for the electromagnetic field
in a cavity, the complex plane parameterized by the amplitude α = x + ip, where x̂ =
(â+ â†)/

√
2 and p̂ = (â− â†)/(i

√
2) are the quadratures of the field. These distributions

are thus simultaneous functions of the semiclassical variables x and p, associated with
non-commuting observables [72]. Three such phase-space representations can be defined,

45
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namely the Husimi function Q, the Sudahrsan distribution P , and the Wigner functionW ,
each of them in bijective correspondence with the density matrix of the system [72, 111].
Knowledge of each of these representations allows in principle to calculate the other ones
by convolution with coherent state overlap functions (similar to Eq.(1.31)), even if the
explicit calculation may be impractical (see Ref.[111] and Sec.3.1.2). An interesting feature
of these representations is that they allow to convert the calculation of quantum averages
to calculations of integrals over phase space. Their definitions can be adapted for the
SU(2) algebra, such as to render them suitable to describe our system of N bosons in
two modes [71, 72, 111, 112]. As we have seen in the previous chapters, the classical
phase space is in this case the Bloch sphere, which can be parameterized by means of the
angular variables θ and φ. In the following we present the definition of SU(2) phase space
distributions.

3.1.1 Husimi distribution Q

The Husimi function is defined as [71, 72]

Q(θ, φ) = 〈θ, φ|ρ|θ, φ〉, (3.1)

with the normalization condition (N+1)
4π

∫

dΩQ(θ, φ) = 1. When the system is in a pure
state, i.e. ρ = |ψ〉〈ψ|, the Husimi function reduces to the projection over a coherent state,
namely Q(θ, φ) = |〈θ, φ|ψ〉|2. Let us give some examples.

3.1.1.a Husimi distribution of a Fock state

The Husimi distribution of the Fock state |n〉 is readily calculated by means of Eqs.(1.4.3)
and (3.1), and reads

Q(n)(θ, φ) =
1

(1 + tan2
(

θ
2

)

)N

(

N
N
2 + n

)(

tan2
(

θ

2

))2(n+N
2
)

= Q(n)(θ). (3.2)

As anticipated in Sec.1.5.1, this distribution does not depend on the angle φ but only on
θ, and for each value of n it is peaked at θ = arccos(−2n/N) according to the third line
in Eq.(1.30). The Husimi distribution for various Fock states is illustrated in Fig. 3.1.

3.1.1.b Husimi distribution of a coherent state

Due to the definition (3.1), the Husimi distribution of a coherent state is simply calculated
by using the expression of the overlap between two coherent states Eq.(1.31). For example,
for the phase state |θ = π

2 , φ = 0〉 we obtain

Q(θ, φ) = |〈θ, φ|θ = π

2
, φ = 0〉|2 = 1

2N
(1 + sin θ cosφ)N , (3.3)

which displays a peak centered around the values θ = π
2 , φ = 0 parameterizing the coherent

state under consideration.
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Figure 3.1: Husimi function Q(n)(θ) of Fock states |n〉 for n = −5,−4..., 5 (with N = 10),
as given in Eq.(3.2) (panels from left to right, from top to bottom).

3.1.1.c Husimi distribution of cat states

The Husimi distribution of a cat state is also readily obtained by using Eqs.(2.25),(2.27)
and the definition (3.1). For phase cat states we will make use in what follows of the
restriction of the Husimi distribution to the equator of the Bloch sphere, i.e. Q(φ) ≡
Q(θ = π/2, φ). This function displays as many peaks as there are components in the
superposition, as can be seen in Fig. 3.2. Some examples of projected Husimi distributions
for macroscopic superpositions are given in Ref.[105] and in our work [32]. In Sec.5.1.3.b
we will calculate this function explicitly for a two-component cat state formed in the
presence of phase noise.

Although the Husimi phase distribution is in one-to-one correspondence with the full
density matrix, from a “visual” point of view in practice it is almost insensitive to the dif-
ference between a coherent superposition of phase states and the corresponding incoherent
mixture of the same coherent states, equally weighted. This is because due to Eq.(3.1)
the Husimi distribution can be seen as the diagonal of the density matrix represented over
coherent states, while the contributions which allow to distinguish a macroscopic superpo-
sition from an incoherent mixture are off-diagonal. This point will be extensively analyzed
in Sec.5.1.3.a. As an illustration of this fact, Fig. 3.2 (top panel) shows the Husimi dis-
tribution for a three-component superposition of phase states and for the corresponding
incoherent mixture, the tiny difference between the two being illustrated in the inset. The
need for developing tools to distinguish between coherent superpositions and incoherent
mixtures has brought us analyze the eigenvalue distributions which will be presented in
Sec. 3.2.1.
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Figure 3.2: Top panel: section of the Bloch sphere on the equatorial plane θ = π/2, param-
eterized by the angle φ. The dots indicate schematically the phase of the three coherent
states which give rise to the superposition, and correspond to the maxima in the Husimi
distribution illustrated in the bottom panel. The vector r̂ defines a generic direction of the
angular momentum operator for which the probability distribution Pφ(r) is considered.
Our convention for the x, y axes is also indicated. Bottom panel: Dimensionless Husimi
distribution Q(θ = π/2, φ) for a three-component superposition of phase states (solid line)
and for the corresponding incoherent mixture (dashed line), as a function of the phase
φ for N=20 particles. The inset shows a zoom of the same function around φ = 2π/3,
illustrating the difference between the superposition state and the incoherent mixture.
From Ref.[32].
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3.1.2 P representation

The P distribution is defined by the implicit relation

ρ =

∫

P (θ, φ)|θ, φ〉〈θ, φ|dΩ, (3.4)

with the normalization condition (N + 1)/(4π)
∫

P (θ, φ)dΩ = 1 [71, 72].

By projecting Eq.(3.4) over coherent states, one can see that the Q and P representa-
tions are related by a “convolution”, in which the overlap between coherent states plays
the role of a transfer function, i.e.

Q(θ, φ) =

∫

P (θ′, φ′)|〈θ, φ|θ′, φ′〉|2dΩ. (3.5)

This relation can be inverted, leading to (see Eq.(4.9) in Ref.[112])

P (θ, φ) =
2J
∑

l=0

l
∑

m=−l

(2s+ l + 1)!

(2s + l)!

(2s − l)!

(2s)!
Yl,m(θ, φ)

∫

dΩ
′′′
Y ∗
l,m(θ

′′′
, φ

′′′
)Q(θ

′′′
, φ

′′′
), (3.6)

where Yl,m(θ, φ) are the spherical harmonics [71].

This relation allows us to remark explicitly that, due to the overcompleteness of coher-
ent states, the off-diagonal information 〈θ′, φ′|ρ|θ, φ〉 can be entirely reconstructed solely by
employing the diagonal information 〈θ, φ|ρ|θ, φ〉, this latter being the Husimi distribution.
Indeed from Eq.(3.4) we obtain

〈θ′, φ′|ρ|θ, φ〉 =
∫

dΩ
′′
P (θ

′′
, φ

′′
)〈θ′, φ′|θ′′

, φ
′′〉〈θ′′

, φ
′′ |θ, φ〉, (3.7)

which, by the use of Eq.(3.6), allows to relate 〈θ′, φ′|ρ|θ, φ〉 to Q(θ, φ).

3.1.3 W representation

The Wigner function for the SU(2) group is defined as [113, 114]

W (θ, φ) = tr
[

ˆw(θ, φ)ρ̂
]

, (3.8)

where the Wigner operator ŵ(θ, φ) is defined in terms of the spherical tensors T̂ Jl,M =
√

2l+1
2J+1

∑J
m,m′=−J C

J ;m′

J,m;l,M |J,m′〉〈m,J | as

ŵ(θ, φ) =
2π√
2J + 1

2J
∑

l=0

l
∑

M=−l
Yl,M (θ, φ)T̂ Jl,M . (3.9)

Here CJ ;m
′

J,m;l,M are the Clebsh-Gordan coefficients and we have explicitly indicated the
representation J in the Fock states |J,m〉. The Wigner function of Fock states, coher-
ent states and squeezed states are explicitly calculated in Ref.[113], while an analogous
calculation for macroscopic superpositions is reported in Ref.[29]. In Ref.[115] an experi-
mental tomographic reconstruction of a squeezed state Wigner function in a BJJ has been
presented.
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An alternative definition of the Wigner function for systems described within a SU(2)
formalism has been provided in Ref.[116]. The connection with the usual Wigner function
has also been established by the same authors [114]. In that work, the Wigner operator
analogous to Eq.(3.9) is defined as

ŵs(~x) =

∫

SU(2)
d~ys(ξ)ei~y·

~Je−i~x·~y, (3.10)

where ξ = |~y| and ~y/ξ = (sin θ sinφ, sin θ cosφ, cos θ), with 0 ≤ ξ ≤ π, 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π, ~x ∈ R3, and s(ξ) is a measure; possible choices are the unity measure s(ξ) = 1
[116], the left and right invariant measure s(ξ) = 1

2 sin
2 ξ
2 [114], and the De Haar measure

s(ξ) = sHaar(ξ) =
1

2ξ2 sin
2 ξ
2 [116]. Then, the Wigner function is obtained from the Wigner

operator as

Ws(~x) = tr [ŵs(~x)ρ̂] =

∫

SU(2)
d~ys(ξ)tr

[

ei~y
~J ρ̂
]

e−i~x~y. (3.11)

Among the interesting features of the Wigner function we mention the overlap property,
which allows to express the overlap of two states by means of the integral of the product
of their Wigner functions. Taking for instance the definition (3.11), this property reads

|〈Ψ|χ〉|2 ∝
∫

R3

d~xWΨ
s (~x)W χ

s̃ (~x) (3.12)

withWΨ
s (~x) = 〈Ψ|ŵs(~x)|Ψ〉 and s(ξ)s̃(ξ) = sHaar(ξ) =

1
2ξ2

sin2 ξ2 . Note that as a particular

case, when the state |χ〉 is a generic coherent state, equation (3.12) allows to express the
Husimi distribution (3.1) as an integral of the product of the Wigner function with the
Wigner function of a coherent state.

Negativities and oscillations of the Wigner function are generally ascribed to the pres-
ence of entanglement in the quantum state [29, 117–119], and several works attempt
to characterize the non-classicality of a quantum state by means of the negativity of
the Wigner function [29, 117–123] (as well as by the non-existence of a well-behaved P
function[124, 125]).

3.2 Detection of macroscopic superpositions

We focus here on the detection of macroscopic superpositions of phase states created
during the quenched dynamics of the BJJ, i.e. the states given in Eqs.(2.25), (2.27),
for various numbers of components q, with α = 1 (|θ = π/2, φ = 0〉 is thus the initial
state). We address in particular the question of how to distinguish them from mixtures of
coherent states. Our approach, substantially different from the one of Ref. [101] which is
devoted to map out the Husimi distribution, is based on the analysis of the distributions
of angular momentum eigenvalues. The results of this work are presented in Ref. [32].

3.2.1 Distributions of the eigenvalues of angular momentum operators
in the equatorial plane

Consider the probability distribution of the eigenvalues r (taking integer values in the
interval [−N/2, N/2]) of the spin operator Ĵr, satisfying Ĵr|r〉 = r|r〉, where r̂ is the
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generic direction in the (xOy) plane defined in Eq.(1.33) (see also the bottom panel in
Fig.3.2). This probability distribution for a pure state is given by

Pφ(r) = |〈r|ψ〉|2; (3.13)

for a generic density matrix ρ̂, P ρ̂φ (r) = Tr(ρ̂|r〉〈r|). Indeed, we shall see that the shape of
the distribution Pφ(r) reflects the phase content of the state projected along the direction
specified by the vector r̂.

It is instructive to calculate the probability distribution Pφ(r) starting from its gener-
ating function, defined as

hφ(η) = 〈e−iηĴr 〉 = 〈ê−iη(Jx sinφ−Jy cosφ)〉 = 〈R̂(ζ)〉 (3.14)

where ζ = ηe−iφ, R̂(ζ) is the displacement operator introduced in Eq.(1.32), and 〈...〉
indicates the quantum average over the state of the system. For a statistical mixture

hφ(η) = tr
[

ρ̂e−iηĴr
]

. The function hφ(η) generates the moments of the distribution, since

〈Ĵkr 〉 = ik
(

d

dη

)k

hφ(η) |η=0 . (3.15)

Let us consider for simplicity a pure state |ψ〉. Expanding Eq.(3.14) in terms of the
eigenstates |r〉 of Ĵr yields

hφ(η) =

N/2
∑

r=−N/2
e−iηr|〈ψ|r〉|2 =

N/2
∑

r=−N/2
e−iηrPφ(r). (3.16)

The probability distribution Pφ(r) is then readily obtained as Fourier coefficients relative
to the expansion (3.16).

Pφ(r) =
1

2π

∫ π

−π
hφ(η)e

iηrdη; (3.17)

note that clearly from the definition (3.14) it follows that hφ(η+2π) = hφ(η), which allows
to take finite extrema in the integral of Eq.(3.17). This approach, based on the full counting
statistics of the probability distribution Pφ(r), allows us to stress that the knowledge of
Pφ(r) contains the information equivalent to the knowledge of all the moments of the
distribution itself. In turn, the latter are known once the generating function is known,
as shown by Eq.(3.15) [126].

The generating function Eq.(3.14) can be calculated analytically both for coherent
superpositions and incoherent mixtures. The calculation is detailed in Appendix A.1. We
obtain as a final result for the generating functions

hmixt
φ (η) =

1

q

q−1
∑

k=0

(3.18)

{

| cos η
2
|+ i sin

η

2
sign

[

cos
η

2

]

sin

(

2πk

q
+
π

q
− φ

)}N
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for the incoherent mixture and

hcatsφ (η) = hmixt
φ (η) (3.19)

+|ũ0|2
q−1
∑

k 6=k′=0

c̃k c̃
∗
k′

2N

{

| cos η
2
|
(

1 + e−i
2π(k−k′)

q

)

+sin
η

2
sign

[

cos
η

2

]

(

e
i( 2πk′

q
+π

q
−φ) − e

−i( 2πk
q

+π
q
−φ)
)}N

for the coherent superposition, in the case of an odd number of components q (the even-q
case is given in Appendix A.1).

As an example, we focus on the three-component superposition |ψ(t3)〉 given in Eq.(2.27),
formed at a time t3 = T/6 during the quenched dynamics of the BJJ, as we have seen in
Sec.2.5.1. Considering also the corresponding mixture, we calculate the probability distri-
butions of the eigenvalues in the x and y direction, namely Pπ/2(r) and Pπ(r) respectively,
by using Eq.(3.17) and (3.19). As illustrated in the top panels of Fig.3.3, these distri-
butions are peaked around the semiclassical values given in Eq.(1.30), i.e., in the specific
case 〈Ĵx〉 = (N/2) cos(±π/3), (N/2) cos(π) and 〈Ĵy〉 = (N/2) sin(±π/3), (N/2) sin(π).
The distribution Pπ/2(r) displays a noticeable difference between the mixture and the co-
herent superposition: the latter displays oscillations which are absent in the former. The
presence of fringes in the distribution of the eigenvalues of angular momentum operators
for superposition states was also noticed in the context of the dynamics of the quantum
non-linear rotor by Sanders [127]. The function Pπ(r) instead does not display fringes for
the three-component superposition because its components do not overlap when projected
along the y-direction (see Fig.3.2, bottom panel); as a result no interference effect takes
place in this case.

This analysis extends to higher-component superpositions (see for instance the bottom
panels of Fig.3.3, in which we plot the Pπ/2(r) and Pπ(r) probability distributions for the
four-component cat state |ψ(t4)〉).

We note that the two-component phase cat state |ψ(t2)〉 given in Eq.(2.26) (with
α = 1), cannot instead be distinguished from the corresponding incoherent mixture by
this method, due to the specific form of its state components (see Section 3.2.1.b).

Finally, the full counting statistics of the operator Ĵz could also be defined, but does
not yield any useful information about the considered superpositions of phase states as it
coincides with the binomial distribution Pφ=0(r) =

1
2N

( N
N
2
+r

)

of the initial coherent state.

This can be easily understood since, as mentioned in Sec.2.5.1, the quenched dynamics
leading to the creation of phase cat states conserves the number operator, and hence all
of its moments.

3.2.1.a Experimental realization of this method

For each choice of the angle φ the probability distribution Pφ(r) can be experimentally

accessed by repeated measurements of the corresponding angular momentum operator Ĵr.
Indeed, since the eigenstates of Ĵr form an orthonormal basis, each superposition state

decomposes as |ψq〉 =
∑N/2

r=−N/2 c
q
r|r〉 with cqr = 〈r|ψq〉. Then, according to the postulates

of quantum mechanics, after a (projective) measurement of Ĵr the state jumps to the state
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Figure 3.3: Top panels: eigenvalue distribution Pφ(r) corresponding to Ĵx (φ = π/2) and

Ĵy (φ = π) for the three-component coherent superposition (black lines) as well as for the
incoherent mixture of the same phase states (red lines) with N = 20. The vertical lines
correspond to the semiclassical values for 〈Ĵx〉 and 〈Ĵy〉 for the coherent states entering
the superposition. Bottom panels: analogous distributions for the four-component case.
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|r〉 with probability Pφ(r) = |cqr|2 and the corresponding outcome of the measurement is r.
The full distribution Pφ(r) is obtained by repeating this procedure many times, each time

preparing the system in the same initial state1. The measurement of Ĵr for a generic angle
φ can be achieved by measuring the population imbalance Ĵz between the two modes after
proper rotations of the state over the Bloch sphere, as explained in Sec. 1.4.4.

One of the first questions arising about the experimental feasibility of this protocol,
which would provide an interesting extension of our work, is how robust the probability
distributions of cat states are, if we take into account a possible error in the times at
which the shots (i.e., the measurements of Ĵr) are taken. A rough estimate of that effect
is provided in Appendix A.2.

In Sec.5.1.3.c we will discuss how the probability distributions Pφ(r) for macroscopic
superpositions are affected by the presence of noise.

3.2.1.b Detection of the NOON state

In Reference [128] a similar method has been proposed for the detection of a NOON
state as the one given in Eq.(2.13), or with a possible relative phase between the two
components, i.e.

|ψNOONβ
〉 = (|θ = 0, φ = 0〉+ eiβ |θ = π, φ = 0〉)√

2
. (3.20)

In this case, the probability distribution Pφ(r) corresponds to the profile of the NOON
state when projected on an axes in the equatorial plane, and can be more easily calculated
by rotating both the superposition state and the eigenstates of the angular momentum
operators by π/2 on the Bloch sphere, i.e. by transforming the eigenstates |r〉 in Fock
states and the state |ψNOONβ

〉 in a phase cat state with components along the direction

identified by φ, |ψPHASEφ,β
〉 = (|θ = π/2, φ〉 + eiβ|θ = π/2, φ + π〉)/

√
2. Thus we obtain

〈r|ψNOONβ
〉 = 〈n|ψPHASEφ,β

〉 = 1

2
N+1

2

(

N
N
2 + n

)
1
2

e−iφ(
N
2
+n)

[

1 + eiβ(−1)(
N
2
+n)
]

, (3.21)

which leads to

Pφ(r) =
1

2N

(

N
N
2 + r

)

[

1 + cos β(−1)(
N
2
+r)
]

. (3.22)

As seen in Eq.(3.22), the probability distribution Pφ(r) does not depend on the direction φ
and hence is isotropic in the (xOy) plane. The contrast of the interference fringes depends
on the relative phase β between the two components of the state. Note in particular that
for β = π/2 the distribution Pφ(r) does not display any fringes, despite the fact that it is
a macroscopic superposition. A similar argument can be applied to explain the absence
of fringes in the distribution Pπ/2(r) for the two-component phase state. For β = 0 the
contrast is maximal and we obtain

Pφ(r) =

{

1
2N−1

( N
N
2
+r

)

if r is even

0 if r is odd
(3.23)

1Technically, in typical experiments the system is destroyed after a measurement of Ĵr. Therefore, one
should model the process by a Positive Operator Valued Measure (POVM) rather than by a projective
measurement [89]. However, here we are only interested in the outcomes r. These are predicted to be the
same for both POVM and projective measurements, even if the latter do not describe properly the state
of the system after the measurement.
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This corresponds to a binomial envelope centered at n = 0, with interference fringes having
a unit spacing.

3.2.2 Quasi-probability distribution in spin variables

In our work, Ref. [32], we have addressed the issue of the two-dimensional (2D) tomo-
graphic reconstruction f(x, y) of the phase content of a state in the (xOy) plane. This
is based on the concept of the Radon transform, also exploited in medical imaging [129–
132]. The same principle has been also used for coherent superpositions with cavity
photons [133]. The idea is to obtain a 2D distribution function f(x, y) using all the
one-dimensional projections Pφ(r) at each φ in the interval [0, 2π].

We define the two-dimensional distribution f(x, y) by the implicit expression

Pφ(r) =

∫ ∞

−∞
f(x, y)ds =

∫ +∞

−∞
dx

∫ +∞

−∞
dyf(x, y)δ(r − x sinφ+ y cosφ), (3.24)

where s = x cosφ+ y sinφ = ~l · p̂1 with ~l = xx̂+ yŷ and p̂1 identifies the direction in the
equatorial plane of the Bloch sphere perpendicular to r̂, as expressed by the first line of
Eq.(2.7). Equation (3.24) can be inverted using the definition of the generating function
in Eq. (3.16). In order to do this, it is convenient to express Pφ(r) as the Fourier transform
of a non-periodic characteristic function, obtained by multiplying it by a window χ(η) of
width 2π. Namely, we define

h̃φ(η) = hφ(η)χ[−π,π](η), (3.25)

with χ[−π,π](η) = 1
2 (H(−(η + π) +H(η − π))), and H(x) the Heaviside function. This

modified generating function is related to the probability distribution as

h̃φ(η) =

∫ ∞

−∞
Pφ(r)e

−iηrdr, (3.26)

and inversely Pφ(r) = 1
2π

∫∞
−∞ h̃(η, φ)eiηrdη. An important remark is that the physical

values of Pφ(r) are only the ones taken for integer values of the variable r, which correspond
to the eigenvalues of a certain angular momentum operator defined by φ. In between, it
assumes interpolating values; in the same way, for r > N/2 or r < −N/2, Pφ(r) oscillates
in such a way so to recover zero for integers values of r (see Fig.3.4).

Now we seek the explicit expression of f(x, y) in terms of the characteristic function
hφ(η). We substitute Eq.(3.24) in Eq.(3.26) and we use the integral representation of the
delta function, δ(r − x sinφ+ y cosφ) =

∫∞
−∞

dω
2π e

iω(r−x sinφ+y cos φ), obtaining

h̃φ(η) =

∫ ∞

−∞
dr

∫ ∞

−∞
dxdyf(x, y)

∫

dω

2π
e−i(η−ω)re−iω(x sinφ−y cosφ). (3.27)
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Figure 3.4: Eigenvalue distribution Pφ(r) corresponding to Ĵx (φ = π/2) for the four-
component coherent superposition (solid lines) with N = 40. The red dots are the physical
values corresponding to the discrete eigenvalues, also reported in Fig.3.3, while the blue
line shows the extension on the real field of the function Pφ(r).

Using that 1
2π

∫∞
−∞ e−i(η−ω)rdr = δ(ω − η) and performing the integral in dω, yields2

h̃φ(η) =

∫ ∞

−∞
dxdyf(x, y)e−iη(x sinφ−y cosφ) =

= F∗ [f(x, y)] (η sinφ,−η cosφ). (3.29)

We have now to invert the Fourier transform in Eq.(3.29). Defining the variables

η sinφ = ωx

−η cosφ = ωy, (3.30)

readily leads us to

f(x, y) =

(

1

2π

)2 ∫ ∞

−∞
dωxdωyh̃φ(η)e

i(ωxx+ωyy). (3.31)

The definition (3.30) implies that |η| =
√

ω2
x + ω2

y and φ = arctan
(

−ωx
ωy

)

. Rewriting

Eq.(3.31) in terms of these variables makes appear the Jacobian of the transformation,
and we obtain

f(x, y) =

(

1

2π

)2 ∫ ∞

−∞
dη|η|

∫ π

0
dφh̃φ(η)e

iη(sin φx−cosφy)

=

(

1

2π

)2 ∫ π

−π
dη|η|

∫ π

0
dφhφ(η)e

iη(sin φx−cosφy), (3.32)

2 We choose here the definitions:

F [f(x)] (ω) =
1

2π

∫ ∞

−∞

dxf(x)eiωx

F∗ [g(ω)] (x) =

∫ ∞

−∞

dωg(ω)e−iωx
. (3.28)



§3.2 Detection of macroscopic superpositions 57

f(x, y) =
(

1
2π

)2 ∫

C d
2ζtr[ρ̂R̂(ζ)]e−2i(xζ2+yζ1) W (x, p) =

(

1
π

)2 ∫
d2λtr[ρ̂D̂(λ)]e−2i(xλ2−pλ1)

R̂(ζ) = eζĴ+−ζ∗Ĵ− Ĵ+ = Ĵx + iĴy D̂(λ) = eλâ
†−λ∗â â† = x̂− ip̂

|ζ〉 = R̂(ζ)| − J〉 ζ = ζ1 + iζ2 |λ〉 = D̂(λ)|0〉 λ = λ1 + iλ2

∫∞
−∞ dxf(x, y) = P (y) = 〈y|ρ̂|y〉

∫∞
−∞ dxW (x, p) = P (p) = 〈p|ρ̂|p〉

∫∞
−∞ dyf(x, y) = P (x) = 〈x|ρ̂|x〉

∫∞
−∞ dpW (x, p) = P (x) = 〈x|ρ̂|x〉

Table 3.1: Comparison illustrating the analogies between the 2D distribution function
f(x, y) and the quantum-optics Wigner function. By

∫

C d
2ζ we mean

∫ π
0 dηη

∫ 2π
0 dφ. We

denoted here Pπ(r) as P (y) and Pπ/2(r) as P (x) and the eigenstates satisfying Ĵx,y|r〉 =
r|r〉 as |x〉 and |y〉 respectively, which should be taken on integer values only.

where in the last step we made use of Eq.(3.25). It is possible to rewrite Eq.(3.32) in
terms of the natural intervals of definition of the variables η and φ, according to Ref.[71].
The calculation, detailed in Appendix A.3, yields as a final result

f(x, y) =
1

(2π)2

∫ π

0
ηdη

∫ 2π

0
dφhφ(η)e

iη(x sinφ−y cosφ). (3.33)

Equation (3.33) represents a quasi-probability distribution for the non-commuting op-
erators Jx and Jy. It is closely analogous to the quantum optics Wigner function, which
also can be expressed from the characteristic function of the probability distribution of
the quadratures (see Table 3.1, and also Eq.(3.8) in Ref.[131]). In terms of SU(2) Wigner
functions it could be regarded as the two-dimensional projection on the equatorial plane
of the Bloch sphere of the Wigner function defined in Eq.(3.11). Indeed, as shown in Ap-
pendix A.4, integrating Eq.(3.11) along the variable x3 renders a two-dimensional function
with structure similar to Eq.(3.33).

Figure 3.5 illustrates the 2D quasi-probability distribution f(x, y) for the three and
four component coherent superpositions, and for the corresponding incoherent mixtures.
In the top left panel f(x, y) shows three pronounced maxima in correspondence with
the coherent states composing the three-component macroscopic superposition. It also
displays oscillations between the maxima, due to interferences between the components.
The 2D quasi-probability function evaluated for the corresponding incoherent mixture
(bottom left) also exhibits the main peaks but the fringes are strongly suppressed, the
small remaining oscillations being intrinsically due to the definition of the function f(x, y)
as a Fourier transform in angular variables on a compact interval.
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Figure 3.5: Dimensionless 2D quasi-probability distribution f(x, y) in the (x0y) plane
(dimensionless) for the three- (left panels) and four- (right panels) component coherent
superpositions with N = 20 particles (top panels), and for the corresponding incoherent
mixtures (bottom panels).

Figure 3.6: Sections f(x, 0) of the quasi-probability distributions of Fig. 3.5 (solid line) in
the direction y = 0 for the-three component superposition (left) and the four-component
superposition (right). The dashed line represents the quasi-probability function f(x, 0)
for the corresponding incoherent mixture of the same three coherent states.
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Figure 3.7: Reconstruction of the Husimi distribution Q(θ = π/2, φ) of a four component
superposition with N = 20 by means of the overlap property in terms of the function
f(x, y). The red dots correspond to the points reconstructed this way, while the solid blue
curve is the exact Husimi function.

A complete tomographic protocol allowing for the full reconstruction of the quantum
state requires the measurement of angular momentum operators in all the directions of
the Bloch sphere, and not only in the equatorial plane (see Ref.[115, 131, 134]).

Although the function f(x, y) is not in one-to-one correspondence with the state of
the system, for the specific superpositions of phase states which we consider here it yields
the main information about the phase structure of the state, and shares many properties
with a Wigner function. For example, the definition (3.24) automatically implies that the
marginal probability distribution Pφ(r) can be obtained by integration of f(x, y) along
the perpendicular direction, in analogy to the quantum optics Wigner function (see Table
3.1, and Eq.(A.43)-(A-44) in Ref.[135]).

Furthermore, the phase profile of the state (i.e., the Husimi distribution on the equa-
tor of the Bloch sphere Q(θ = π/2, φ)) can be qualitatively reconstructed by exploit-
ing the overlap property similarly to Eq.(3.12). An indication of this fact for the four-
component cat state is provided in Fig.3.7. The reconstruction shown therein is however
only qualitative because we have used as an estimate of the phase profile the function
∑

x

∑

y f̃
ψ(x, y)f̃φ(x, y), where f̃(x, y) =

(

1
2π

)2
∆x∆y

∑P
kx=1

∑P
ky=1 W̃

(

ζ1(kx)
2 ,

ζ2(ky)
2

)

×e−iyζ1(kx)e−ixζ2(ky) is a discretized version of the function f(x, y), and where the sum-
mation interval is taken to be a square instead of a circle.

Note also that the two-dimensional probability distribution f(x, y) could be in principle
experimentally reconstructed. This should be done by reconstructing the Pφ(r) along
many different directions with the protocol presented in Sec.3.2.1.a; the knowledge of the
values assumed by this function for integers r allows to reconstruct hφ(η) with the use of
Eq.(3.16); then, the two-dimensional distribution f(x, y) can be reconstructed by using the
Radon inverse transformation given in Eq.(3.33). Note that a direct inversion of Eq.(3.24)
to obtain f(x, y) from Pφ(r) would involve an improper integral, to be taken in the sense
of a principal value [130].

In the case of an external BJJ set-up, a more direct fashion to obtain the 1D profiles
Pφ(r) in any direction of the (x0y) plane could be implemented, based on the measurement
of the atomic momentum distribution. This idea is drawn from the similarity between
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the expression for the momentum distribution in the two-mode model, Eq.(1.44), and
the expression for the angular momentum operator in the plane (xOy), Eq.(1.33). This
follow-up of our work is described in Chap. 6.



Chapter 4
Exploitation of useful entangled states

In this chapter we introduce atom interferometry, and we recall the criterium which defines
the usefulness of a quantum state for phase estimation. In particular, we recall that
squeezed states, macroscopic superposition states and Fock states are useful quantum
states, and can be used in metrology to outperform the classical limit of precision. In
this spirit, we then quantify the usefulness of various states of the BJJ: first, its ground
state, and then the states which are created during its time evolution under the quenched
dynamics introduced in Sec.2.5.1. The details of the latter analysis can also be found in
our work Ref.[25].

Dans ce chapitre nous introduisons l’interférométrie atomique, et nous rappelons
le critères qui définissent l’utilité d’un état quantique pour l’estimation de phase.
En particulier nous rappelons que les états comprimés, les superpositions d’états
cohérents et les états de Fock sont des états quantiques utiles, qui peuvent être utilisés
en métrologie pour surmonter la limite standard de précision. Dans cet esprit, nous
quantifions ensuite l’utilité de plusieurs états quantiques de la BJJ; tout d’abord,
de son état fondamental, et ensuite des états qui sont créés pendant l’évolution
dynamique trempée introduite en section 2.5.1. Les détails de cette analyse peuvent
aussi être trouvés dans notre publication Ref.[25].

4.1 Atom interferometry

4.1.1 The general interferometric procedure

The goal in interferometry, which is part of the theory of estimation of a parameter, is
to estimate an unknown phase shift ϕ with the highest possible precision. Since there
is no observable associated with the phase shift, some other observable is measured in
the output state; out of one or more such measurements, the original phase shift is then
inferred.

In atom interferometry, an input state is first transformed into a superposition of two
modes, analogous to the two arms of an optical interferometer. These modes acquire
distinct phases ϕ1 and ϕ2 during the subsequent quantum evolution. They are are finally
recombined to read out interference fringes, from which the phase difference ϕ = ϕ1 − ϕ2

61



62 Exploitation of useful entangled states §4.1

is inferred. The interferometric sequence can be described by means of rotation matrices
acting on the two-mode vector state, that is, by SU(2) rotation matrices in the Schwinger
representation introduced in Sec.1.4 [74]; the generators of the rotations are the angular-
momentum operators Ĵx, Ĵy, and Ĵz defined in Eq.(1.22). The total number N of atoms
in the condensate is assumed to be fixed.

Let us give a practical example. Consider as an initial state of the interferometric
sequence the state in which all atoms are initially in one of the two modes - say, the mode
j = 1. The input state is then the Fock state |n = N/2〉, coinciding with the coherent
state at the north pole of the Bloch sphere; an interferometric sequence with a different
initial state is analyzed for instance in Ref. [74]. A rotation of the atomic state around
the y-axes by an angle of π/2 radians is then applied to the input state, leading to the
phase state |θ = π/2, φ = 0〉. As explained in Chap. 1, this amounts in the internal
BJJ set-up to the application of a π/2 pulse with frequency in resonance with the two
internal levels, while in the external BJJ set-up a rotation around Ĵy would be possible by
combining successive rotations around Ĵx and Ĵz. This plays the role of a beam splitter
in optical interferometers. Then the state is rotated around the z-axes by the free time
evolution, the phase accumulation being due to a different energy shift between the two
states. For instance, placing an external BJJ in the vertical direction provides an energy
difference of the two modes proportional to the gravity constant g [136]. This rotation
is the analog of the different phase paths in the two arms of an optical interferometer.
Finally, by recombining the two paths, the state is rotated again around the y-axes by
an angle of −π/2 radians. The consecutive rotations of the input state on the Bloch
sphere are represented in Fig.4.1. The interferometric sequence can thus be described by
a succession of three rotations, and the output state of the linear interferometer is

|ψout〉 = e−i
π
2
Ĵye−iϕĴzei

π
2
Ĵy |ψin〉 = e−iϕĴx |ψin〉, (4.1)

where |ψin〉 is the input state, assumed here to be pure. Note that performing rotations of
the kind presented in this section requires the non-linear term in the Hamiltonian (1.24)
to be ineffective. In the internal BJJ set-up the rotations are typically realized fast enough
to neglect the non-linear effects induced by the interactions [8], while in the external set-
up Feschbach resonances may be employed. The residual effect of interactions on the
interferometric sequence has been recently addressed in Refs. [137, 138].

In a typical experiment one has access to the probability distribution associated with
the operator Ĵz measured with respect to the output state. Note however that due to the
argument presented in Sec.1.4.4 in practice the angular momentum in any direction can
be detected, by means of a suitable further rotation of the quantum state preceeding the
measurement of Ĵz . The quantum distribution of the measured observable depends on the
phase shift ϕ. In the simple example under consideration, the average value 〈Ĵz〉out in the
output state gives

〈Ĵz〉out = 〈ψin|eiϕĴx Ĵze−iϕĴx|ψin〉

= cosϕ〈Ĵz〉in + sinϕ〈Ĵy〉in = −N
2
cosϕ, (4.2)

which displays Ramsey fringes as a function of the phase shift ϕ, and in the last step
we have made use of Eq.(1.26) for the input state considered. The variance (∆Ĵz)

2
out =



§4.1 Atom interferometry 63

〈Ĵ2
z 〉out − (〈Ĵz〉out)2 reads

(∆Ĵz)
2
out = 〈ψin|eiϕĴx Ĵ2

z e
−iϕĴx |ψin〉 − cos2 ϕ〈Ĵ2

z 〉in
= sin2 ϕ〈Ĵ2

y 〉in + cosϕ sinϕ〈(Ĵz Ĵy + ĴyĴz)〉in

=
N

4
sin2 ϕ. (4.3)

The phase shift is then determined by means of a statistical estimator, i.e. an arbitrary
function ϕest(n1, n2, ....., nm) of the m outcomes of the measurements on the output state,
in our example of the observable Ĵz . Such an estimator is said to be unbiased if, when
repeating many times the experiment, the average value obtained corresponds to the true
value of the phase shift, i.e.

〈ϕest〉 =
∫

dn1dn2...dnmϕest(n1, n2, ....., nm)P (n1, n2, ....., nm|ϕ) = ϕ, (4.4)

where for independent measurements the probability of the outcomes (n1, n2, ....., nm)
under the phase shift ϕ can be expressed as a product of the likelihoods

P (n|ϕ) = |〈n|ψout〉|2 = |〈n|e−iϕĴx |ψin〉|2, (4.5)

i.e. P (n1, n2, ....., nm|ϕ) =
∏m
i=1 P (ni|ϕ) 1. An example of unbiased estimator is the max-

imum likelihood ϕML, i.e. the value of ϕ which maximizes P (n1, n2, ....., nm|ϕ) 2. Details
about the practical experimental determination of the likelihoods and the construction of
the corresponding estimator can be found in Ref. [139].

The phase precision, given by the mean square fluctuations

(∆ϕ)2 =

∫

dn1dn2...dnm(〈ϕest〉 − ϕest(n1, n2, ....., nm))
2, (4.6)

depends on the chosen estimator, on the input state and on the measurement performed
on the output state. For the maximum likelihood estimator a possible choice is to take
the 30 % confidence interval.

A heuristic argument to calculate the phase precision, valid when the input state is
gaussian (as e.g. it is the case for coherent states and squeezed states) is based on linear
error propagation, which yields [14, 74]

∆ϕ =
(∆Ĵz)out

d〈Ĵz〉out/dϕ
. (4.7)

In particular, for the input coherent state |n = N/2〉 that we are considering in our
example, Eqs.(4.2) and (4.3), Eq.(4.7) render

∆ϕ = ∆ϕbest =
1√
N

≡ ∆ϕSN , (4.8)

corresponding to the shot-noise limit [15], i.e. the typical precision obtained with the use
of coherent states. Here the suffix “best” indicates that in our example of interferometric
scheme expressed by Eq.(4.1), the observable Ĵz which we are supposing to measure in
the output state yields the most precise estimation. We shall clarify and generalize this
point it in Sec.4.1.3.

1We have denoted the average in Eq.(4.4) via an integral to be more general and include the case of
continuous outcomes. In the case of our experiment the values of the output are discrete and the integral
can be replaced by a summation.

2An alternative unbiased estimator, more suitable than the maximum likelihood in the case in which
only few outcomes are available, is a baesyan estimator [16].
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Figure 4.1: Rotations on the Bloch sphere in the interferometric scheme: the input co-
herent state at the north pole (green disk) is rotated around the y-axes by an angle π/2
(blue disk) and afterwards around the z-axes by the unkown phase ϕ (black disk). The
precision ∆ϕ on the estimation of ϕ is larger than the size

√
N/2 of the disk, representing

the angular momentum fluctuations, divided by the radius N/2 of the sphere. In the
output state (red disk) the number operator is measured.

4.1.2 Use of squeezed states in atom interferometry

If instead of a coherent state we use as input state for the interferometer a squeezed state,
an enhanced precision in the inferred phase can be obtained [14]. The squeezed state
should be suitably chosen, such that in the output state the fluctuations in the measured
direction are reduced. This can be intuitively understood by looking at Fig. 4.2: the
squeezing in the y direction is translated in reduced fluctuations of Ĵz in the output
state, which lead to an enhancement of the precision in the phase estimation according to
Eq.(4.7). Indeed, it can be proved that for a squeezed state

∆ϕbest =
ξn̂√
N

= ξn̂∆ϕSN , (4.9)

where we recall that ξn̂ is the squeezing parameter, defined in Eq.(2.6). It follows that the
squeezing condition ξn̂ < 1 implies ∆ϕbest < ∆ϕSN . Indeed, Eq.(2.9) provides a sufficient
(but not necessary for more general states) condition for sub-shot noise sensitivity [14] - in
addition to being a sufficient condition for multiparticle entanglement, as seen in Sec.2.3.1.
We stress that to take a full advantage of such a resource, the angular momentum operator
must be measured in the direction of squeezing in the output state.

4.1.3 Cramér-Rao lower bound and quantum Fisher information

The output state of a more general atom interferometer is

ρ̂out(ϕ) = e−iϕĴn ρ̂ine
iϕĴn , (4.10)

where ρ̂in is the input density matrix and n̂ the unit vector representing the effective
rotation axes associated with a given interferometric sequence. The likelihood is now
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Figure 4.2: Rotations on the Bloch sphere in the interferometric scheme when the input
state is a squeezed state: the input state, squeezed along the y direction (green ellipse),
is rotated around the y-axes by an angle π/2 (blue ellipse) and afterwards around the
z-axes by the unknown phase ϕ (black disk). The precision ∆ϕ on the estimation of
ϕ is of the order of the thinner axes of the ellipse, representing the angular momentum
fluctuations, divided by the radius N/2 of the sphere. In the output state (red disk)
the number operator is measured, which renders clear that the number fluctuations are
smaller as compared to a coherent state.

P (η|ϕ) = tr[Ê(η)ρ̂out], where Ê(η) is a general positive operator satisfying
∫

dηÊ(η) = 1.
It can be demonstrated [140] that a general bound - the Cramér-Rao lower bound -

exists on the phase precision (∆ϕ) defined in Eq.(4.6), which under the hypothesis of
independent measurements and unbiased estimator reads

∆ϕ ≥ 1

√
m

√

F
[

ρ̂in, Ĵn

]

, (4.11)

where m is the number of measurements and F
[

ρ̂in, Ĵn

]

=
∫

dη 1

P (η|ϕ)
(

∂P (η|ϕ)
∂ϕ

)2 is the

Fisher information [140]. This quantity clearly depends on the measurement Ê(η) per-
formed on the output state. We can define the quantum Fisher information as the max-
imum value taken by the Fisher information optimizing over all possible measurements
Ê(η) [140, 141], i.e.

FQ

[

ρ̂in, Ĵn

]

= maxÊ(η)F
[

ρ̂in, Ĵn

]

= 2
∑

l,m,pl+pm>0

(pl − pm)
2

pl + pm
|〈l|Ĵn|m〉|2 , (4.12)

{|l〉} being an orthonormal basis diagonalizing ρ̂in =
∑

l pl|l〉〈l| (with pl ≥ 0 and
∑

l pl =
1). The calculation is detailed in Ref. [140], where it is also demonstrated that the general
operator Ê(η) which optimizes the Fisher information reduces to a projective measurement
- in our simple scheme, to the measurement of the collective angular momentum operator
in some direction. Note that the quantum Fisher information (4.12) still depends on the
input state and on the direction n̂ of the interferometer.
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Substituting the inequality F
[

ρ̂in, Ĵn

]

≤ FQ

[

ρ̂in, Ĵn

]

in Eq.(4.13) leads to a more

advantageous bound on the phase precision, i.e. the best precision that can be achieved
in principle for a given input state ρ̂in

∆ϕ ≥ (∆ϕ)best =
1

√
m

√

FQ

[

ρ̂in, Ĵn

]

, (4.13)

also called the quantum Cramér-Rao lower bound. The saturation of the bound (4.13)
requires both a suitable classical post-processing on the m outcomes of the measurements
(e.g. the maximum likelihood estimation in the limit of large m [140]) and the knowledge
of the optimum observable to measure. This latter task can be difficult as the optimum
measurement may depend on the phase shift itself [140, 141].

For pure input states |ψin〉, the quantum Fisher information given in Eq.(4.12) reduces
to the quantum fluctuation (∆Jn)

2 = 〈ψin|Ĵ2
n|ψin〉 − 〈ψin|Ĵn|ψin〉2 of Ĵn,

FQ

[

|ψin〉, Ĵn
]

= 4(∆Jn)
2 . (4.14)

This allows to reinterpret the Cramér-Rao lower bound (4.13) as a generalized uncertainty
principle

∆ϕ∆Jn ≥ 1

2
√
m
, (4.15)

in which the generator Ĵn of the transformation (4.10) and the phase shift ϕ play the
role of two conjugate variables - ϕ being here not an observable but a parameter [140].
For instance, for the phase state |ψin〉 = |θ = π/2, φ〉 the quantum fluctuations in the
directions n̂ = x̂, ŷ, and ẑ are equal to (N sin2 φ)/4, (N cos2 φ)/4, and N/4, respectively.
According to (4.15), for this state the best precision that can be achieved on the phase
shift for m = 1 corresponds to the shot-noise limit in Eq.(4.8).

Due to Eq.(4.13), the inequality

FQ

[

ρ̂in, Ĵn

]

> N (4.16)

is a necessary and sufficient condition for sub-shot noise sensitivity (∆ϕ)best < (∆ϕ)SN .
In what follows, the input states satisfying this inequality are called useful states for
interferometry (or, more briefly, “useful states”).

4.1.3.a Interpretation of the quantum Fisher information

The quantum Fisher information is related to the Bures distance [142]

d2Bures(ρ̂1, ρ̂2) = 2(1−
√

F(ρ̂1, ρ̂2)), (4.17)

where

F(ρ̂1, ρ̂2) = (tr[

√

√

ρ̂1ρ̂2
√

ρ̂1])
2 (4.18)

is the fidelity, via the relation

d2Bures(ρ̂in, ρ̂dϕ) = FQ[ρ̂in, Ĵn](dϕ)
2 (4.19)

when two neighboring states are considered, one displaced by dϕ from the other on the
curve (4.10) parameterized by ϕ, i.e. ρ̂dϕ = e−idϕJn ρ̂ineidϕJn [140]. While Eq.(4.19) holds
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for a general density matrix, it is particularly simple to prove it for pure states. Consider
the displaced pure state

|ψdϕ〉 = e−idϕJnϕ|ψin〉 ∼ (1− idϕĴn − (dϕ)2

2
Ĵ2
n)|ψin〉. (4.20)

Then the fidelity (4.18) reduces to the overlap of the two states (as we have already seen
in Eq.(2.31)), and is given by

F(ψin, ψdϕ) = |〈ψin|ψdϕ〉|2 ∼ 1− (dϕ)2(∆Jn)
2 = 1− (dϕ)2

FQ[|ψin〉, Ĵn]
4

(4.21)

where in the last step we made use of Eq.(4.14). Substitution of Eq.(4.21) in the definition
of the Bures metric (4.17) yields Eq.(4.19).

From Eq.(4.19) it can be seen that the quantum Fisher information has the meaning

of the square of a “speed” FQ[ρ̂in, Ĵn] =
(

dBures(ρ̂in,ρ̂dϕ)
dϕ

)2
, at which the state evolves along

the curve defined by Eq.(4.10) in the space of density matrices when the parameter ϕ
is varied [16, 140]: if one increases ϕ starting from ϕ = 0, the larger is quantum Fisher
information of the input state ρ̂in, the faster the state (4.10) becomes distinguishable from
ρ̂in, the smaller is the change in the parameter ϕ which can be detected. This is further
seen from Eq.(4.18), in which we see that the state |ψdϕ〉 becomes orthogonal from |ψin〉
when (dϕ)2FQ ∼ 1; for FQ ∼ N , this happens for dϕ ∼ 1/

√
N , while for FQ ∼ N2,

|〈ψin|ψdϕ〉|2 ∼ 0 already for dϕ ∼ 1/N . Hence the bound (4.13) relates the problem of
estimating a phase shift in an interferometer to the problem of distinguishing neighboring
quantum states [140].

The link between the quantum Fisher information and the distinguishability of quan-
tum states has also been applied to study the Zeno effect in Ref. [143].

4.1.4 Interplay usefulness in phase estimation and entanglement

It can be shown [15, 16] that for any separable input state ρ̂in, FQ[ρ̂in, Ĵ~n] ≤ N , so that
(4.16) is a sufficient condition for ρ̂in to be entangled according to the definition in Eq.(2.1).
In other words, FQ −N is an entanglement witness 3.

It is worthwhile to stress that the inequality (4.16) is not a necessary condition for
entanglement: indeed, there exists entangled states which are not useful for interferometry,
that is, with a Fisher information FQ ≤ N [16, 76]. The criteria for entanglement and
sub-shot noise sensitivity are summarized in Table 4.1.4.

Because of the criterium (4.16) and the bound (4.13), the quantum Fisher information
can be seen as an entanglement parameter, quantifying the amount of quantum corre-
lations useful for interferometry. Note however that FQ is not a proper entanglement
measure, because it violates one of the postulates which are typically required in the
definition of a measure [144] - namely, it can increase under local operations [76].

The quantum Fisher information is bounded byN2. This is easy to show for pure states
by noticing that the largest square fluctuation of Ĵ~n in Eq.(4.14) is smaller or equal to
N2/4 (see [15]); for mixed states this follows from the convexity of FQ (see [16]). According

3Strictly speaking, the term “witness” only applies for pure states, where FQ is an observable, being
given by the fluctuations of the angular momentum operator. For mixed states, the entanglement criterium
(4.16) still holds, but FQ is given by the more complicated expression (4.12).
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Phase estimation Entanglement

FQ [ρ̂in] > N ⇔ (∆ϕ)best < (∆ϕ)SN FQ [ρ̂in] > N ⇒ ρ̂in 6= ρ̂sep
ξ2 [ρ̂in] < 1 ⇒ (∆ϕ)best < (∆ϕ)SN ξ2 [ρ̂in] < 1 ⇒ ρ̂in 6= ρ̂sep

Table 4.1: Necessary and/or sufficient conditions for sub-shot noise phase sensitivity in
an atom interferometer and multiparticle entanglement in terms of the quantum Fisher
information and spin-squeezing parameter.

to Eq.(4.13), the best sensitivity that can be achieved in linear interferometers [145] is
then

(∆ϕ)best = (∆ϕ)HL ≡ 1

N
. (4.22)

This corresponds to the so-called Heisenberg limit. As it will become clear in the next
paragraph, this limit can be reached using highly entangled atoms as input state.

4.1.4.a Macroscopic superpositions

Macroscopic superpositions such as the NOON state defined in Eq.(2.13) provide an ex-
ample of states which are useful for interferometry according to the criterium (4.16), but
which are not recognized as useful by the squeezing criterium (2.9). Indeed, with the use
of Eq.(4.14) it is easy to derive

FQ

[

|ψNOON〉, Ĵz
]

= N2, (4.23)

which substituted in the quantum Cramér-Rao lower bound (4.13) yields the highest
possible phase resolution, expressed by the Heisenberg limit (4.22).

It is instructive to compare this result with the value of the quantum Fisher information
for a statistical mixture of the same states, ρ̂NONO = (|N, 0〉〈N, 0| + |0, N〉〈0, N |)/2. The
latter is found with the help of Eq.(4.12) to be equal to N in all directions n̂ in the (xOy)
plane and to vanish in the direction ẑ. Therefore, the scaling of FQ like N2 for ρ̂NOON =
|ψNOON〉〈ψNOON| is due to the presence of the off-diagonal terms ρ̂NOON − ρ̂NONO =
(|N, 0〉〈0, N | + |0, N〉〈N, 0|)/2. In Chap. 5 we will make use of this different scaling of
the quantum Fisher information with N , depending on the presence or absence of the
off-diagonal terms, to quantify the effect of decoherence on macroscopic superpositions.

The two-component phase cat state shares the same value of the quantum Fisher
information as for the NOON state, since it is simply a rotation of the NOON state on
the Bloch sphere, and entanglement is conserved by collective local operations [76] (see
also section 4.2). The quantum Fisher information for macroscopic superpositions with a
larger number of components will be explicitly calculated in Sec.4.4.

The fact that macroscopic superpositions are useful for interferometry can be ascribed
to the fact that their likelihood probabilities defined in Eq.(4.5) display substructures
of order 1/N , which translates into a small angle of rotation needed to make the state
orthogonal to the initial one [16]. For instance, for a NOON state, the state shifted in the
Ĵz direction by an angle ϕ reads

|ψout〉 = e−iϕĴz |ψin〉 =
1√
2

(

e−iϕ
N
2 |N

2
〉+ eiϕ

N
2 | − N

2
〉
)

, (4.24)
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which apart from a global phase factor is the same state as the one in Eq.(3.20), with
β = Nϕ. Its likelihood probabilities according to any direction in the (xOy) plane are
hence given by Eq.(3.22) with β = Nϕ, which as a function of ϕ displays fast oscillations.
As a consequence, the overlap |〈ψin|ψout〉|2 = cos2(Nϕ/2) vanishes at ϕ ∼ 1/N .

Finally, we note that the fact that the NOON state is recognized as entangled by
the Fisher information criterium, which for pure states reads 4(∆Jn)

2 > N according to
Eqs.(4.14) and (4.16), may seem in contradiction with the statement that the inequalities
(2.3) are complete in the sense defined in Sec.2.2: i.e., that there is no other inequality
based on first and second moments only capable of detecting entangled states which are
not already detected by Eq.(2.3). It is indeed readily verified that the NOON state does
not violate such inequalities. The solution of this apparent “paradox” relies on the fact
that Eq.(4.14) only holds for pure states; however, in order to establish that the state
under consideration is pure, and hence that Eq.(4.14) can be applied, one should dispose
of higher moments, e.g. performing a quantum tomography, so that the contradiction is
removed [146].

4.1.4.b Fock states

The quantum Fisher information of a Fock state can also be calculated with the use of
Eq.(4.14), and yields

FQ

[

|n〉, Ĵr
]

= N

(

N

2
+ 1

)

− 2n2 (4.25)

in any direction r of the (xOy) plane defined by Eq.(1.33) 4. In particular, the twin-Fock
state |n = 0〉 is highly entangled as

FQ[|n = 0〉, Ĵr ] = N

(

N

2
+ 1

)

(4.26)

is of orderN2, and leads thus to the Heisenberg limit. The extremal Fock states n = ±N/2,
instead, become separable as they coindice with the coherent states at the poles, so that
FQ[|n = ±N

2 〉, Ĵr] = N .
In connection with the discussion presented in Sec.2.3.3, we remark that in Ref. [85] the

dependence is studied of the quantum Fisher information of a Fock state on the spatial
separation of the wells of a BJJ, when the degrees of freedom to be exploited for sub
shot-noise interferometry are additional (internal) degrees of freedom.

4.1.4.c Squeezed states

The property that squeezed states are useful for interferometry beyond the shot noise
limit, discussed in Sec.4.1.2, is readily demonstrated using the concept of quantum Fisher
information. Indeed, as we shall see in Secs.4.4 and 4.3.1, the quantum Fisher information
of a squeezed state is approximatively given by FQ ≃ Fξ [16, 25], where the parameter Fξ
is defined as

Fξ =
N

ξ2
. (4.27)

This indicates that for squeezed states the parameters FQ and ξ provide essentially the
same information (see also Fig.4.4). Furthermore, for these states the Fisher information

4For what concerns the z-direction, since Fock states are eigenstates of the Ĵz operator, we obtain
instead FQ[|n〉, Ĵz] = 0 for each n.
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is maximum in a direction perpendicular to the one of minimum squeezing. This has a
clear physical interpretation: when the state is squeezed, the quantum Fisher information
is maximum in the direction of highest angular momentum fluctuations, which is perpen-
dicular to the direction of lowest fluctuations yielding the best squeezing (see Fig.4.2 for
a sketch).

Use of Eq.(4.13) yields Eq.(4.9) for the phase uncertainty, demonstrating the usefulness
of squeezed states for atom interferometry.

4.2 Optimum coherent spin squeezing and quantum Fisher
information

As it is clear from the previous discussion, both the quantum Fisher information FQ
and the coherent spin squeezing parameter ξ depend on the direction of the genera-
tor which defines the interferometric sequence (4.10). For instance, for a NOON state
FQ[|ψNOON〉, Ĵx] = FQ[|ψNOON〉, Ĵy ] = N , while Eq.(4.23) shows that the NOON state is
maximally entangled. Hence, in order to quantify the useful correlations of a quantum
state, one needs to optimize FQ and ξ over all the possible directions by defining [76]

ξ2 [ρ̂in] ≡ min
n̂

ξ2n̂ [ρ̂in] , FQ [ρ̂in] ≡ max
n̂

FQ

[

ρ̂in, Ĵn

]

. (4.28)

Let us consider the 3× 3 real symmetric covariance matrix γ[ρ̂in] with matrix elements

γij [ρ̂in] =
1

2

∑

l,m,pl+pm>0

(pl − pm)
2

pl + pm
ℜe

[

〈l|Ĵi|m〉〈m|Ĵj |l〉
]

(4.29)

where {|l〉} is the orthonormal eigenbasis of ρ̂in as in Eq.(4.12). According to standard
linear algebra, the maximum of FQ[ρ̂in, Ĵn] = 4(n̂, γ [ρ̂in] n̂) over all unit vectors n̂ is equal
to

FQ [ρ̂in] = 4γmax , (4.30)

γmax being the largest eigenvalue of the matrix γ[ρ̂in]. In the following it will be useful to
define also the matrix

Gij [ρ̂] ≡
1

2
〈ĴiĴj + Ĵj Ĵi〉 − 〈Ĵi〉〈Ĵj〉, (4.31)

where 〈. . .〉 = tr(. . . ρ̂), with ρ̂ being the system density matrix. Note that for pure input
states |ψin〉 the matrix γij [|ψin〉] reduces to the matrix Gij [|ψin〉〈ψin|], which is easier to
compute than the more general expression (4.29). The optimum quantum Fisher informa-
tion is then given (up to a factor four) by the largest uncertainty of the angular momentum
operators Ĵn (see Eq.(4.14)).

For the sake of brevity, in the following we will omit both the adjective ”optimum”
and the explicit dependence on the input state, designating the optimum coherent spin
squeezing and the optimum quantum Fisher information respectively by ξ2 and FQ, unless
where source of confusion.

4.3 Quantum Fisher information and spin squeezing in the
ground state

In this section, we calculate the squeezing parameter and the quantum Fisher information
in the ground state of the BJJ, modeled by the two-mode Hamiltonian (1.24). This pro-
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vides an indication of the usefulness of the ground state of the BJJ for sub-shot noise phase
estimation in atom interferometry. The extension of the previous scenario to include the
effect of temperature within the same simple two-mode model is discussed in Appendix C.

Let us focus on the case of symmetric modes λ = 0, corresponding to the vertical
section of the number fluctuation phase diagram presented in Fig.1.6. We start with the
analysis of the limiting cases, namely the limit of non-interacting atoms and the limit of
non-coupled modes, for which an analytical solution can be provided; we will then turn
to the general case, to be addressed numerically.

4.3.1 Non-coupled modes

In the limit K = 0 (left bottom point in the diagram of Fig.1.6), the ground state is
the twin Fock state |n = 0〉, as explained in Sec.1.5.1. Hence, the optimum quantum
Fisher information is given by Eq.(4.26), displaying a N2 scaling, and it is optimum in
any direction contained in the (xOy) plane. The ground state in this regime is thus highly
“usefully” entangled.

The coherent spin squeezing along the z axes in the same regime is an indeterminate
expression, since the coherence factor in the denominator of Eq.(2.6) vanishes, as well as
the number fluctuations in the numerator. The limiting value for K → 0 can be calculated
with second order perturbation theory. The calculation, detailed in Appendix C.1, yields
as a result that the ground state displays the largest squeezing degree of the phase diagram
in this limit, as anticipated in Sec.(2.4.1), namely

ξ2 =
1

(

N
2 + 1

) (4.32)

(see also Ref. [96]). Evaluating the Fisher-like parameter (4.27) yields Fξ = FQ, given by
Eq.(4.26), showing that in this regime the two parameters provide the same information,
according to the discussion presented in Sec.4.1.4.c.

4.3.2 Non-interacting atoms

The ground state of the system in the limit of non-interacting atoms is, as already ex-
pressed by Eq.(1.37), the maximum eigenstate of Ĵx, i.e. the coherent state |α = 1〉. Then
the ground state in this regime is separable, and the Fisher information is FQ = N , opti-
mum in the plane (yOz). Correspondingly, the squeezing is isotropic in the plane (xOy)
and its value is ξ2 = 1.

4.3.3 Intermediate regime

In the general case in which the parameters K and χ of the Hamiltonian (1.24) are
competing, the values of the optimum quantum Fisher information and of the optimum
coherent spin squeezing have to be determined numerically. The result is shown in Fig.4.3.
As already mentioned in Sec. 2.4.1, the ground state of the BJJ is always a squeezed state
at any point of the phase diagram with χ 6= 0. Hence, for the discussion in Sec. 4.3.1,
FQ and ξ provide the same information, which translates into the fact that no substantial
difference can be seen between the two numerical curves.
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Figure 4.3: N = 10. Optimum quantum Fisher information (blue) and optimum Fisher-
like measure N/ξ2 (purple) as a function of r = K/χ (χ = 1) at T = 0. Top panels: zoom
at shorter r = K/χ scales. Blue gridline: K = 0, λ = 0 limit given by Eq.(4.26). Orange
gridline: shot noise limit FQ = N (χ = 0).
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To summarize, the analysis based on the quantum Fisher information allows us to
conclude that, increasing the ratio between the tunneling and the interactions, the ground
state undergoes a cross-over from a highly entangled state at strong interactions (with
FQ ≃ N2/2) to a separable state (with FQ = N) when the coupling is dominating. This
analysis reminds of the studies of Refs. [147, 148], where an entanglement measure is
used to analyze phase transitions in spin systems: by changing the external fields and the
coupling, the ground state crosses over from an entangled state to a fully factorizable one.

A different use of the quantum Fisher information in the context of phase transitions
has been made in Ref. [149]. There, a metric based on the Fisher information is used to
detect the line of phase transition, using the fact that perpendicularly to such a line the
state is changing with a maximal “speed”.

The Fisher information in the ground state of the BJJ has also been studied in
Refs.[150–152], to explore the cross-over of the model when the sign of the interatomic
interactions is changed from positive to negative.

4.4 Quantum Fisher information and coherent spin squeez-
ing during the quenched dynamics

We now address the question how much the quantum states produced during the quenched
dynamics of the BJJ presented in Sec.2.5.1 are useful for interferometry. For this purpose,
based on the discussion of the previous sections, we evaluate the quantum Fisher informa-
tion and the coherent spin squeezing parameter. The results presented in this section are
reported in Ref. [25]. In this section we are going to use the suffix “(0)” for the dynamical
quantities calculated in the absence of noise, in order to distinguish them from the same
quantities calculated in the presence of noise, which will be presented in the next chapter.

Since the atoms are in a pure state |ψ(0)(t)〉 during all the dynamical evolution, the
covariance matrix γ(0)(t) associated with this state is thus given by Eq.(4.31), and ana-
lytical expressions can be obtained for the quantum Fisher information and the coherent
spin squeezing as a function of time.

We consider in particular the case of an initial coherent state with α = 1, i.e. the
phase state |θ = π/2, φ = 0〉. Thus, the quenched dynamics takes place along the equator
of the Bloch sphere only, and the average value of the number operator is zero at all times,
as we have seen in Sec.2.5.1. Furthermore, the state is also always symmetric with respect
to the y direction. Hence, use of Eqs. (2.19) leads to

〈Ĵy(t)〉(0) = 〈Ĵz(t)〉(0) = 0, (4.33)

where 〈..〉(0)t = tr(...ρ̂(0)(t)). Using also Eq.(2.20), the angular-momenta covariance matrix
(4.31) reads

γ(0)(τ) =



















γ
(0)
x (τ) 0 0

0 −N
8

[

(N − 1) cosN−2 (2τ)− (N + 1)
] N(N−1)

4 cosN−2 (τ) sin (τ)

0 N(N−1)
4 cosN−2 (τ) sin (τ) N

4



















(4.34)
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where we have introduced the rescaled time τ = 2πt/T = χt and

γ(0)x (τ) ≡ 〈(∆Ĵx)2〉(0)τ =
N

8

[

(N − 1) cosN−2 (2τ) + (N + 1)− 2N cos2(N−1) (τ)
]

. (4.35)

The two other eigenvalues of the matrix (4.34) are given in terms of its elements γ
(0)
ij by

γ
(0)
± =

(

γ
(0)
yy + γ

(0)
zz

)

±
√

(

γ
(0)
yy − γ

(0)
zz

)2
+ 4γ

(0)2
yz

2
, (4.36)

or, more explicitly,

γ
(0)
± (τ) =

N

16

[

−(N − 1) cosN−2 (2τ) + (N + 3)

±(N − 1)

√

(cosN−2 (2τ)− 1)2 + 16 cos2(N−2) (τ) sin2 (τ)

]

. (4.37)

We remark that the matrix (4.34) has the property that its eigenvalues at times τ and
π− τ (and, similarly, at 2π− τ) coincide, hence it suffices to discuss its behavior at times
t belonging to the interval [0, T/4] (i.e., τ ∈ [0, π/2]).

According to Eq.(4.30), the quantum Fisher information is given by the largest eigen-
value,

FQ(τ) = 4max
{

γ(0)x (τ) , γ
(0)
+ (τ)

}

. (4.38)

We demonstrate in Appendix B.1 that the coherent spin squeezing (2.6) is always optimum
along a direction contained in the (yOz) plane. The optimal spin squeezing parameter

(4.28) is thus related to the lowest eigenvalue γ
(0)
− (τ) of the submatrix γ(0)

′
(τ) obtained

by removing the first line and column in the matrix (4.34). Using Eqs.(4.33) and (2.20),
we obtain

ξ(0)
2
(τ) =

4γ
(0)
− (τ)

Nν(0)
2
(τ)

. (4.39)

The direction of optimum squeezing is given by the eigenvector associated with the eigen-

value γ
(0)
− ,

n̂
(0)
ξ (τ) = n̂

(0)
− (τ) = − sin θ

(0)
ξ (τ) ŷ + cos θ

(0)
ξ (τ) ẑ. (4.40)

From the diagonalization of the matrix γ(0) we find

n̂
(0)
± =



0,
−γ(0)yz

√

γ
(0)2
yz + (γ

(0)
yy − γ

(0)
± )2

,
(γ

(0)
yy − γ

(0)
± )

√

γ
(0)2
yz + (γ

(0)
yy − γ

(0)
± )2



 , (4.41)

which, via comparison with Eq.(4.40), leads to tanθ
(0)
ξ =

(

−n
(0)
y

n
(0)
z

)

and then to the angle

of optimization of the squeezing parameter

θ
(0)
ξ (τ) = arctan

(

γ
(0)
yz (τ)

γ
(0)
yy (τ)− γ

(0)
− (τ)

)

=
1

2
arctan

(

〈

{Ĵy, Ĵz}〉(0)τ
〈Ĵ2
y 〉

(0)
τ − 〈Ĵ2

z 〉
(0)
τ

)

(4.42)
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where {·, ·} denotes the anticommutator, and where in the second step we have used the
trigonometric identity tan2x = 2tanx/(1 − tan2x).

The direction of optimization n̂
(0)
F of the quantum Fisher information is either given

by x̂ (if γ
(0)
x > γ

(0)
+ ) or by the eigenvector n̂

(0)
+ associated with the eigenvalue γ

(0)
+ (if

γ
(0)
x < γ

(0)
+ ). The latter condition is satisfied at times shorter than t∗, see Appendix B.2.

As both these eigenvectors are orthogonal to n̂
(0)
− (since the matrix γ(0) is symmetric),

it follows that coherent spin squeezing and quantum Fisher information are optimized in
perpendicular directions.

Figure 4.4: a) Coherent spin squeezing and b) quantum Fisher information during the
quenched dynamics of a BJJ with N = 100 atoms as a function of time (in units of the
revival time T ) in the absence of noise. The dashed line in the second panel represents
the parameter Fξ = N/ξ2. Horizontal and vertical gridlines in panel a): minimum of
the coherent spin squeezing and corresponding time tmin (see text). c) Non-optimized
quantum Fisher information along the x-axes (dashed line) and the y-axes (dotted line).
For comparison, the optimum quantum Fisher information of panel b) is also shown (gray
solid line). The vertical gridlines correspond from right to left to the time t = tfs of
formation of the first macroscopic superposition, see Eq.(2.28); to t = t∗, see Appendix B.2;
and to t = T/4−tfs. The horizontal gridline shows the shot-noise level FQ = N . d) Angles

θ
(0)
ξ in Eq.(4.42) (dashed line) and θ

(0)
F (solid line) giving the optimizing direction for the

spin squeezing and the quantum Fisher information as a function of time.

At short times, when the state of the system is a squeezed state (see panels (a) and (b)
in Fig. 4.4), this can be understood again with the argument discussed in Sec.4.1.4.c; i.e.
that for a squeezed state the quantum Fisher information is maximum in the direction
of maximal angular momentum fluctuations, perpendicularly to the direction of lowest
fluctuations yielding the best squeezing. In this short-time regime, the two parameters
provide essentially the same information. This fact can be visualized in panel (b) of
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Fig. 4.4, in which at short times the Fisher information (4.38) and squeezing parameter
Fξ = N/ξ2, calculated with the help of Eqs.(4.39), (4.35), (2.20) and (4.37) are shown to
coincide. A rigorous demonstration of this fact can be found in Ref.[25].

At time τ
(0)
min = 31/6N−2/3 the squeezing parameter reaches its minimum value, (ξ

(0)
min)

2 ≃
(3/N)2/3/2, as was calculated in Ref.[11].

At larger times, the squeezing parameter grows to values larger than one (that is,
Fξ decreases and becomes smaller than N). This does not imply that the atomic state
is not useful for interferometry since, as described in Sec.4.1.2, the squeezing criterion
is only a sufficient condition for useful entanglement [16]. Indeed, the quantum Fisher
information increases above the shot noise level FQ = N until it reaches a plateau, at
a time of order of tfs given in Eq. (2.28), corresponding to the appearance of the first
macroscopic superposition. The value of the Fisher information on the plateau can be
easily calculated since in the time regime δt ≤ t ≤ T/4− δt with δt ≫ tfs, the covariance
matrix (4.34) takes the simple following form in the limit N ≫ 1

γ(0)(τ) ≃





1
8N(N + 1) 0 0

0 1
8N(N + 1) 0

0 1
4N



 . (4.43)

Hence the Fisher information has a plateau at the value

F
(0)
Q (τ) =

N(N + 1)

2
. (4.44)

We have shown in Appendix B.1 that if N is even, the optimizing direction n̂
(0)
F (τ) of the

Fisher information changes as τ increases from the (yOz)-plane to the x-axes at the time

τ∗ ≃ arccos(1/
√
3) defined by γ

(0)
x (τ∗) = γ

(0)
+ (τ∗). Note, however, that any direction in the

(xOy)-plane gives a Fisher information almost equal to the optimized value N(N+1)/2, as
it is clear from the structure of the matrix (4.43), leading to almost degenerate eigenvalues

γ
(0)
x and γ

(0)
+ . This reflects the structure of multicomponent superpositions, symmetric in

the (yOx) plane. This result is visualized in panel c) of Fig.4.4, displaying the Fisher
information in the directions x̂ and ŷ.

It is seen in Fig.4.4 that FQ displays a sharp maximum at t = t2 = T/4, in corre-
spondence to the two-component macroscopic superposition (2.26), which has the highest
possible Fisher information FQ = N2, as expected in view of the discussion in Sec.4.1.4.a.
As one approaches the two-component superposition, the optimizing direction changes to
the x-axes, which is the direction of maximal angular momentum fluctuations for the state
(2.26).

In panel d) of Fig.4.4, the angle θ
(0)
ξ giving the direction of highest spin squeezing in the

(yOz) plane is represented as a function of time together with the corresponding angle

θ
(0)
F for the Fisher information, which gives the optimizing direction n̂

(0)
F of the Fisher

information according to Eq.(2.8). Table 4.4 summarizes the aforementioned results.
To recapitulate, during the quenched dynamics of the BJJ, starting from a (separable)

phase state, due to non-linear interactions entangled states are formed. The characteristic
time for squeezing scales as t ∝ N−2/3, which leads to typical values of the quantum
Fisher information of FQ ∼ Fξ ∝ N5/3, while the first macroscopic superpositions appear
at t ∝ N−1/2, leading to a scaling FQ ∝ N2. The quantum Fisher information reaches its
maximum value FQ = N2 at t = t2 = π/2 (independent on N), in correspondence of the
formation of the two-component superposition. Hence, in the perspective of exploiting
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Time Optimum quantum Fisher information FQ Optimizing direction

t = 0 N degenerate in (yOz) plane

0 ≤ t . T
N 4γ

(0)
+ (τ) ≃ N

[

1 +

(

N2τ2

2 +Nτ
√

1 + N2τ2

4

)]

− cos θ
(0)
ξ (t) ŷ − sin θ

(0)
ξ (t) ẑ

T
N ≪ t ≤ tmin 4γ

(0)
+ (τ) (see above) ≃ ŷ

tmin < t . tfs 31/3N5/3 < FQ . 0.4323N2 ≃ ŷ

tfs ≪ t ≤ t∗ FQ ≃ N(N + 1)/2 ≃ ŷ

t∗ < t ≤ T
4 N(N + 1)/2 . FQ ≤ FQ(T/4) = N2 x̂

Time Optimum coherent spin squeezing Fξ ≡ N/ξ2 Optimizing direction

t = 0 N degenerate in (yOz) plane

0 ≤ t . T
N Fξ ≃ FQ − sin θ

(0)
ξ (t) ŷ + cos θ

(0)
ξ (t) ẑ

T
N ≪ t ≤ tmin N < Fξ ≤ Fξ(tmin) = 2N5/33−2/3 ≃ ẑ

tmin < t . tfs Ne−1/2 . Fξ < 2N5/33−2/3 ≃ ẑ

tfs ≪ t ≤ t∗ N/3N/2−1 ≤ Fξ ≪ N ≃ ẑ

t∗ < t ≤ T
4 0 < Fξ < N/3N/2−1 ≃ ẑ

Table 4.2: Optimum coherent spin squeezing parameter, optimum quantum Fisher infor-
mation and corresponding optimizing directions during the quenched dynamics of a Bose
Josephson junction in the absence of noise for N ≫ 1. The arrows indicate whether the
function is increasing or decreasing with time in a given time interval. In this Table, N
is taken to be even. The calculation of the numerical prefactors and the short-time, large
N expansion of FQ in the second and third line can be found in Ref.[25].

the quantum state created during the quenched dynamics using it as an input state of
an atomic interferometer, in the absence of any noise sources the highest phase resolution
is reached using the state formed at t = t2 = π/2 - the two-component phase state. In
Chap. 5 we will address the question how this situation is modified by the presence of
noise.
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Chapter 5
Decoherence of useful entangled states

Cold atoms experiments are affected by various noise sources, which limit the lifetime of
the condensate and induce spurious effects, eventually menacing the feasibility of quantum
information protocols. The main sources of noise in cold atoms experiments are particle
losses [22, 23], phase noise [24, 25], collisions with thermal atoms [26, 27], interaction with
the electromagnetic field [28, 29], and random fluctuations of the trapping potentials [30].

In this work we will focus on two sources of noise: phase noise and particle losses, which
seem to be the major noise sources in the experiments of Refs. [8, 9, 13]. We will focus in
particular on their effect on the creation of useful states (squeezed states and macroscopic
superpositions) based on the quenched dynamics of the BJJ introduced in Chap.2. We will
address how much the useful quantum correlations of such states, which allow in principle
to outperform the classical limit of precision in the interferometric applications presented
in Chap.4, are degraded by the presence of noise. We will address the effect of phase
noise in Sec. 5.1, while particle losses are discussed in Sec. 5.2. The concluding section 5.3
presents an analytical method to treat both noise sources on the same footing.

Before starting with this program we remark that in this chapter we will focus on the
effect of phase noise and particle losses on the preparation of the useful input state only.
For studies of the effect of noise during the rotations of the interferometric procedure
presented in Chap. 4, or during the measurements, see references [153] and [145].

Les expériences d’atomes froids sont affectées par plusieurs sources de bruit, qui
limitent le temps de vie du condensat et qui induisent des effets non désirés, en
menaçant la faisabilité des protocoles d’information quantique. Les principales sources
de bruit sont la perte de particules [22, 23], le bruit de phase [24, 25], les collisions avec
les atomes thermiques [26, 27], l’interaction avec les champs électromagnétiques [28,
29], et les fluctuations aléatoires des potentiels de piégage [30].

Dans cette thèse nous nous focaliserons sur deux sources de bruit: le bruit de phase
et la perte de particules, qui semblent être les sources de bruit dominantes dans les
expériences des Refs. [8, 9, 13].

Nous focaliserons en particulier sur leur effet sur la création d’états quantiques
utiles (états comprimés et superpositions macroscopiques) basée sur la dynamique
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trempée de la jonction introduite dans le chapitre 2. Nous aborderons comment les
corrélations utiles de ces états, qui permettent de surmonter la limite de précision
standard dans les applications à l’interférométrie présentées dans le chapitre 4, sont
dégradées par la présence de bruit. Nous aborderons l’effet du bruit de phase dans la
Sec. 5.1, tandis que les pertes de particules seront examinées en Sec. 5.2. La section
conclusive présente une méthode analytique qui permet de traiter ces deux sources de
bruit en même temps.

Avant de commencer avec ce programme, nous faisons remarquer que dans ce
chapitre nous nous interessons à l’effet du bruit de phase et de la perte de particules
sur la préparation de l’état quantique utile seulement. Pour des études de l’effet du
bruit pendant les rotations qui composent la séquence interférométrique présentée dans
le chapitre 4, ou pendant les mesures, nous renvoyons aux références [153] et [145].

5.1 Phase noise

In this section we consider the effects of phase noise on the states formed during the
quenched dynamics of the BJJ. The original work associated with this subject is presented
in our Refs.[24, 25]. First, we model phase noise, and we analyze its effect on the visibility.
Then, we show that macroscopic superpositions of phase states in BJJs are relatively
robust with respect to phase noise, their decoherence rate being independent on the total
number of atoms in the condensate. Then, we show that these long-lived states can
be useful in interferometry to improve phase sensitivity even in the presence of phase
noise, by calculating the quantum Fisher information and the coherent spin squeezing as
introduced in the previous chapter. In particular, we compare the best possible phase
sensitivity obtained with the state of the BJJ at the times of formation of macroscopic
superpositions to the one obtained at earlier times when squeezed states are produced.
This allows us to determine which are the most useful quantum states for interferometric
applications in the presence of phase noise. Throughout this chapter, in the same notation
as in the previous one, we will denote by a suffix “(0)” the quantities calculated in the
absence of noise.

5.1.1 Model

Phase noise is caused by a randomly fluctuating energy difference ∆E(t) between the two
modes, which is modeled by taking the parameter λ in the Hamiltonian (1.24) as stochas-
tically time-dependent. In the single-well experiment [8] (internal BJJ), such a noise is
induced by fluctuations of the magnetic field, which by quadratic Zeeman effect cause a
shift in the hyperfine energies (see Eq.(1.3)), whereas in the double-well experiment [13]
(external BJJ) it is induced by fluctuations of the orientation of the laser beam producing
the double-well potential with respect to the trapping potential (see first line in Eq.(1.17)).
We will be especially interested in the effect of phase noise on the production of useful en-
tangled states (squeezed states and macroscopic superpositions of phase states) during the
quenched dynamics of the BJJ, according to the protocol reported in Sec.(2.5.1). Hence,
we focus on the time-dependent Hamiltonian

Ĥ(t) = χĴz
2 − λ(t)Ĵz. (5.1)
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Note that by the definition (1.25) also a fluctuation of the interaction difference U1 − U2

would provide a stochastically varying term λ(t) in the Hamiltonian (5.1). We will however
neglect such fluctuations, as this seems justified in the experiments [8, 9, 13].

5.1.1.a Derivation of the density matrix in the presence of phase noise

Even in presence of phase noise, the time evolution following the quench can be exactly

integrated, since the noise term λ(t)Ĵz commutes with the noiseless Hamiltonian χĴz
2
[24].

For a given realization of the stochastic process λ(t), the state of the atoms at time t is
given by Eq.(2.29); i.e, the effect of a fluctuating energy imbalance in a single realization
is a rotation of the state |ψ(0)(t)〉 formed in the absence of noise, given in Eq.(2.19), by a
phase φ(t) = −

∫ t
0 dτλ(τ) around the z axes.

The system density matrix is then obtained by ρ̂(t) = |ψ(t)〉〈ψ(t)| =
∫

dP [λ] |ψ(t)〉〈ψ(t)|,
where the overline denotes the average over the noise realizations. The introduction of
the distribution probability for the random angle φ(t),

f(φ, t) =

∫

dP [λ(t)] δ(φ − φ(t)) (5.2)

allows to write it as

ρ̂(t) =

∫ ∞

−∞
dφ f(φ, t) e−iφĴz ρ̂(0)(t)eiφĴz , (5.3)

where ρ̂(0)(t) = |ψ(0)(t)〉〈ψ(0)(t)| is the density matrix in the absence of noise. Let us
compute explicitly the probability distribution f(φ, t) of the angle φ(t), defined in Eq.(5.2)
as an average over the noise realizations induced by the functional P [λ(t)]. By Fourier
expansion we have

f(φ, t) =

∫

dP [λ(t)] δ

(

−
∫ t

0
λ(τ)dτ − φ

)

=
1

2π

∫

dP [λ(t)]

∫ ∞

−∞
du e−iuφ(t)eiφu . (5.4)

We are left with the evaluation of the Fourier transform of the average e−iuφ(t) =
∫

dP [λ(t)] e−iuφ(t).
This is readily done under the hypothesis of a gaussian noise; since for gaussian variables

with ξ = 0 one has eiuξ = e−
u2

2
ξ2 , the average in Eq.(5.4) can be worked out as

e−iuφ(t) = e−iu(φ(t)−φ(t))e−iuφ(t)

= e−
u2

2
(φ(t)−φ(t))2e−iuφ(t). (5.5)

Let us introduce the noise correlation function

h(τ, τ ′) = λ(τ)λ(τ ′)− λ
2
= ∆E(τ)∆E(τ ′)−∆E

2
, (5.6)

where λ = ∆E+(N−1)(U2−U1)/2. Note that h(τ, τ
′) depends only on the time difference

τ−τ ′ by the stationarity of the stochastic process λ(t), which also implies λ(t) = λ(0) ≡ λ;
moreover, h(τ, τ ′) decreases to zero at sufficiently long times. Defining also the variance

a2(t) =

∫ t

0
dτ

∫ t

0
dτ ′h(τ − τ ′) (5.7)

allows to rewrite Eq.(5.5) as e−iuφ(t) = e−
u2

2

∫ t
0 dτ

∫ t
0 dτ

′h(τ−τ ′)eiuλt = e−
u2

2
a2(t)eiuλt. Substi-

tution of this expression in (5.4) leads to

f(φ, t) =
1

2π

∫ ∞

−∞
du ei(φ+λt)ue−

u2

2
a2(t) , (5.8)
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which, after performing the gaussian integral, gives finally

f(φ, t) =
1√

2πa(t)
e
− (φ+λt)2

2a2(t) . (5.9)

Equation (5.9) is a gaussian distribution, in which the noise parameter a(t) plays the role
of the variance. From Eqs.(5.3) and (5.9) we can see that the effect of phase noise after
averaging over many realizations of the stochastic process λ(t) is a spread of the state
with respect to the noisless case, combined with a possible rigid rotation around the ẑ
axes if λ̄ 6= 0. A visualization of such an effect is represented in Fig.5.3 (where λ̄ = 0) for
a two-component and a four-component phase cat states.

By projecting Eq.(5.3) on the Fock basis {|n〉} we obtain

〈n|ρ̂(t)|n′〉 = e−
a2(t)(n−n′)2

2 eiλt(n−n
′)〈n|ρ̂(0)(t)|n′〉. (5.10)

Equation (5.10) contains all the information about the state formed in the presence of
phase noise. Several peculiar properties of phase noise will be deduced by the structure
of Eq.(5.10) in Secs.5.1.2-5.1.4. Notice that under our hypothesis, a(t) and thus the
decoherence factor (given by the first exponential in the right-hand side of Eq.(5.10)) is
independent on the number of atoms N in the BJJ. This is in contrast with the usual
scenario for decoherence which predicts stronger decoherence as the number of particles
in the system is increased. As a consequence of this fact, macroscopic superpositions of
phase states, of the form (2.25),(2.27), are robust against phase noise, as will be detailed
in Sec.5.1.3 below. A generalization of this model to treat non gaussian noise is discussed
in Ref.[24].

5.1.1.b Variance in different noise regimes

Before analyzing the effect of phase noise on the state of the atoms we briefly discuss the
properties of the noise variance a(t). First, let us note that Eq.(5.7) can be rewritten as

a2(t) = 2

∫ t

0
dτ

∫ τ

0
dτ ′h(τ − τ ′). (5.11)

Let us denote by tc the largest time such that h(τ) ≃ h(0) = δλ(0)2 ≡ δλ2 and by Tc the
characteristic time at which h(τ) vanishes. If the time evolution occurs on a short scale
such that t < tc then the colored nature of the noise plays an important role (non-markov
regime) and from Eq.(5.11) we obtain

a2(t) ≃ 2

∫ t

0
dτ

∫ τ

0
dτ ′h(0) = h(0)t2 = δλ2t2. (5.12)

If instead the time evolution occurs on a time scale much larger than the noise correlation
time Tc we obtain the same result as for white noise,

a2(t) ≃ 2t

∫ ∞

0
h(y)dy, (5.13)

which corresponds to the Markov approximation.
The effect of phase noise can be partially suppressed by using a so-called spin-echo

protocol [154]. This strategy was followed in a recent experiment [8]. The analysis dis-
cussed in Sec. 5.1.1.a can be adapted to take into account the residual effect of phase noise
when spin echo pulses are applied, see Appendix D.1.
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5.1.2 Effect of phase noise on the visibility

Under the effect of the noise, the visibility (1.45) acquires an additional decaying factor
due to the above-mentioned phase spreading. Indeed, one easily obtains from (5.10)

ν(t) =
2

N
tr[ρ̂(t)Ĵx] = e−

a2(t)
2 cos

(

λt
)

ν(0)(t). (5.14)

The dephasing factor e−a
2(t)/2 displays a Gaussian decay at short times t ≤ tc, corre-

sponding to the universal regime of Ref. [93], and an exponential decay at long times
t ≫ Tc (Markov regime). A Gaussian decay of the visibility (5.14) has been observed
experimentally in the internal BJJ even at small values of the interactions χ [62]. This
indicates that in the time regime 0 ≤ t . tfs in which the experiment was performed the
phase noise has strong time correlations (colored noise), corresponding to a non-markovian
regime. An estimate of the noise is extracted from the fit of the visibility decay data in
Fig.4.15 of Ref. [62] to our prediction given by Eq.(5.14). The resulting value for the
noise correlations is h(0)1/2 ≃ 8Hz, obtained for a small value of the interactions χ, thus
in a regime in which the decay is mainly due to the phase noise. The effect of phase
noise on the visibility decay in this regime is shown in Fig.5.1, for experimentally relevant
parameters [62].

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.2

0.4

0.6

0.8

1.0

t HsL

vH
tL

Figure 5.1: Visibility ν(t) as a function of time (in units of seconds) for χ = π · 0.05Hz,
π ·0.13Hz, π ·0.25Hz (from top to bottom), N = 400. Solid lines: decay of ν(t) in Eq.(5.14)
in the limit χt ≪ 1 and λt ≪ 1 with a2(t) = h(0)t2 and h(0)1/2 = 8Hz. Dashed lines:
decay of ν(0)(t) under the unitary evolution only. For small values of the interactions the
decay is mainly due to the phase noise.

5.1.3 Effect of phase noise on multicomponent macroscopic superposi-
tions of phase states

We proceed now to study the nature of the state of the atoms under phase noise at the
specific times tq which in the noiseless BJJ correspond to the formation of multicomponent
superpositions of phase states. We first illustrate the effect of the noise on the structure of
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the density matrix, then we visualize our results by means of the probability distributions
of the eigenvalues of the angular momentum operators presented in Sec.3.2.1.

5.1.3.a Structure of the density matrix in the Fock basis

In the absence of noise the quenched dynamics of the Bose Josephson junction leads to
the formation of coherent superpositions with q components as given by Eqs.(2.25),(2.27).
The corresponding density matrix ρ̂(0)(tq) = |ψ(0)(tq)〉〈ψ(0)(tq)| has the form ρ̂(0)(tq) =
∑

k,k′ ρ̂
(0)
kk′(tq), where the indices k and k′ label the various components of the superposition

and ρ̂
(0)
kk′(tq) = q−1ck,qc

∗
k′,q|π/2, φk,q〉〈π/2, φk′,q|. For general decoherence processes one

expects that, by increasing the intensity of the noise, ρ̂(0)(tq) will evolve into the statistical

mixture of phase states
∑

k ρ̂
(0)
kk (tq); moreover, the larger the atom number N the weaker

should be the noise strength at which this occurs [155]. It was found in [24] that for
the phase noise considered in Sec.5.1.1.a the actual scenario for decoherence is different
from the usual one. Indeed, the typical noise intensity at which the coherences between
distinct phase states |π/2, φk,q〉 are lost turns out to be independent on the atom number.
This is a consequence of the fact that the decoherence factor a(t) is independent on N , as
shown in Sec.5.1.1.a. Furthermore, for superpositions with a large number of components
q, this intensity is larger than the noise intensity at which phase relaxation occurs. In
what follows we discuss the origin of this fact.

Since the noise is expected to destroy correlations between different components of
the macroscopic superposition, we decompose the density matrix in its diagonal (intra-
component) and off-diagonal (intercomponent) parts, focussing on the latter one to quan-

tify the decoherence. We have then ρ̂(0) = ρ̂
(0)
d + ρ̂

(0)
od where

ρ̂
(0)
d (tq) =

q−1
∑

k=0

ρ̂
(0)
kk (tq) (5.15)

and

ρ̂
(0)
od (tq) =

q−1
∑

k,k′=0;k 6=k′
ρ̂
(0)
kk′(tq). (5.16)

Let us consider for simplicity the case q,N even; the general case can be found in Ref.[25].
Using Eqs.(2.25) and (1.28) and the identity

∑q−1
k=0 e

2ik(n′−n)π/q = q if n = n′ modulo q

and 0 otherwise, the matrix elements of ρ̂
(0)
d (tq) in the Fock basis are

〈n|ρ̂(0)d (tq)|n′〉 =











1

2N

(

N
N
2 + n

) 1
2
(

N
N
2 + n′

)1
2

if n′ = n+ pq

0 if n′ 6= n mod q

(5.17)

where p is an integer. By using ρ̂
(0)
od (tq) = e−iπĴ

2
z /q|θ = π/2, φ = 0〉〈θ = π/2, φ = 0|eiπĴ2

z /q−
ρ̂
(0)
d (tq), we also get

〈n|ρ̂(0)od (tq)|n′〉 =











0 if n′ = n+ pq

ei
π
q
(n′2−n2)

2N

(

N
N
2 + n

)
1
2
(

N
N
2 + n′

)
1
2

if n′ 6= n mod q
(5.18)
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The use of Eq.(5.10) allows to obtain the corresponding expressions in the presence of
noise,

〈n|ρ̂d,od(tq)|n′〉 = e−
a2q(n−n′)2

2 〈n|ρ̂(0)d,od(tq)|n′〉 (5.19)

up to a phase factor irrelevant for decoherence, with aq ≡ a(tq). In the strong noise limit
aq ≫ 1, the off-diagonal part ρ̂od of the atom density matrix vanishes whereas the diagonal
part ρ̂d tends to a matrix which is diagonal in the Fock basis,

ρ̂d(tq) → ρ̂∞ =

N/2
∑

n=−N/2

1

2N

(

N
N
2 + n

)

|n〉〈n| (5.20)

=

∫ 2π

0

dφ

2π
|θ = π/2, φ〉〈θ = π/2, φ| .

This means that for large noise intensity (or for long times) the phase φ is uniformly
spread on [0, 2π], as is the case for Fock states (Fig.5.3, right panels).

From Eqs.(5.17) and (5.18) we obtain a peculiar result, i.e. that the diagonal part
of the atom density matrix decays faster than the off-diagonal part for increasing noise
strengths [24]. This is readily explained by examining the structure of the noiseless density
matrices in Eqs.(5.17) and (5.18). The first off-diagonal elements of ρ̂d(tq) in the Fock
basis are those for which n′ = n± q while the first off-diagonal elements of ρ̂od(tq) satisfy
n′ = n ± 1. Hence, it results from Eq.(5.19) that the off-diagonal elements of ρ̂d vanish
at the noise scale a ≃ 1/q while the off-diagonal elements of ρ̂od vanish at the larger
noise scale a ≃ 1. In other words, the noise is more effective in letting ρ̂d converge to
ρ̂∞ than in suppressing ρ̂od, and this effect is more pronounced the higher is the number
of components in the superposition. An illustration of such anomalous decoherence is
given in Fig.5.2. The middle panels show that for intermediate noise strengths, ρ̂d has
already acquired its asymptotic diagonal form (5.20), while ρ̂od has not yet vanished. As
we will see in Sec.5.1.4 below, these results imply that, for moderate strengths of phase
noise, macroscopic superpositions are formed and provide quantum correlations useful for
interferometry.

5.1.3.b Husimi distribution

The phase relaxation of macroscopic superpositions of phase states can be visualized by
means of the projected Husimi distribution Q(θ = π/2, φ) introduced in Sec.3.1.1.c. For
a two-component phase cat state it is particularly simple to calculate this function, as it
is exactly given by the diagonal part of the density matrix ρ̂d(t2) only. The calculation is
reported in Appendix D.2, and gives as a result for λ̄ = 0, N ≫ 1, and N−1/4 ≪ a2 ≪
N−1/2

Q(
π

2
, φ) =

√
2π

2a2
QcostΘ3

(

−φ, e−2a22

)

, (5.21)

with Θ3 the Theta function [156] and Qcost = 1√
π

Γ( 1
2
+N)

Γ(1+N) the distribution of the state

(5.20) (see Appendix D.2). Q(π/2, φ) is plotted for various values of a2 in Fig.5.3. In the
absence of noise it shows peaks at φ = 0 and π, which correspond to the two coherent
states of the superposition. The peaks are smeared at increasing a2, and finally at a2 ≫ 1
the Husimi distribution reaches the flat profile Q(π/2, φ) = Qcost.
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Figure 5.2: Matrix elements of the diagonal (intracomponent) part ρ̂d(t3) (panels a),c),e))
and the off-diagonal (inter-component) part ρ̂od(t3) (panels b),d),f)) of the density matrix
in the Fock basis at time t = t3 as the noise is increased from a3 = 0 (a),b)) to a3 = 0.9
(c),d)) and a3 = 2.9 (e),f)).
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Figure 5.3: Phase relaxation of the q = 4 and q = 2 macroscopic superpositions in the
presence of noise sketched along the equator θ = π/2 of the Bloch sphere. Top panels:
q = 4 (t4 = T/8) and a4 = 0, 0.64, 2.05 (from left to right). Middle panels: q = 2
(t2 = T/4) for the same noise intensities

∫∞
0 dτh(τ) in the Markov regime (a2 = 0,

0.9, 2.9). The circle sizes illustrate qualitatively the phase distribution f(φ, t2,4). For
intermediate noise (middle column), the superposition is closer to the steady state (last
column) for q = 4 than for q = 2. Bottom panels: Husimi distribution Q(θ = π/2, φ) for
q = 2 for the same values of a2. Here λ = 0 and N = 10.
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5.1.3.c Angular momentum distributions

The anomalous decoherence of the atomic state can be visualized by plotting the prob-
ability distribution Pφ(r) of the eigenvalues of the angular momentum operators Ĵr =

Ĵx sinφ− Ĵy cosφ in an arbitrary direction of the equatorial plane of the Bloch sphere. In-
deed, as presented in Sec.3.2.1, the presence of correlations among the components of the
superposition formed at time tq is revealed by interference fringes in these distributions,
which would be absent if the atoms would be in a statistical mixture of phase states.

The probability distribution of Ĵr in the state ρ̂ can be calculated by a straightforward
generalization of the calculation in Sec. 3.2.1 as the Fourier coefficient of the characteristic

function hφ(η, t) = tr[e−iηĴr ρ̂(t)], namely,

Pφ(r; t) =
1

2π

∫ π

−π
dη hφ(η; t)e

iηr . (5.22)

For the quenched dynamics of the Bose Josephson junction in the presence of noise, the
characteristic function reads

hφ(η; t) =

N/2
∑

n,n′=−N/2
gnn′(t)〈n|ρ̂(0)(t)|n′〉 ×Dn′n(−φ, η, φ) (5.23)

where gnn′(t) = e−a
2(t)(n−n′)2/2eiλt(n−n

′) and Dn′n(−φ, η, φ) is the matrix element of the
rotation operator e−iηJφ in the Fock basis, which is given by (see e.g. [71], Eq. (D6))

Dn′n(−φ, η, φ) = 〈n′|e−iηJφ |n〉 =
min{N/2−n′,N/2+n}

∑

k=max{0,n−n′}
(−1)k

(

N
N
2 + n

)− 1
2
(

N
N
2 + n′

)− 1
2

× N !

(N2 − n′ − k)!(N2 + n− k)!k!(k + n′ − n)!
×
(

sin
η

2

)2k+n′−n (
cos

η

2

)N+n−n′−2k
e−iφ(n

′−n) .

The probability distribution in the absence of noise derived in Sec. 3.2.1 is recovered by

setting gnn′(t) = 1 in Eq.(5.23).

As an example, the distribution Pπ/2(r, t3) = |〈nx = r|ψ(0)(t3)〉|2 of the eigenvalues

of Ĵx (satisfying Ĵx|nx = r〉 = r|nx = r〉) is shown in Fig.5.4 for the three-component
superposition of phase states, for λ̄ = 0. As we have presented in Sec.3.2.1, in the absence
of noise (panel a)) its profile displays two peaks corresponding to the projections on the
x-axes of the phase states |θ = π/2, φ = φk,3〉, φk,3 = π, ±π/3 (the “phase content” of
the state, accounted for by ρ̂d(t3)) and interference fringes, due to the coherences between
these phase states (contained in ρ̂od(t3)). In the presence of noise (b)-c)), the phase
profile of each component of the superposition spreads and the characteristic peaks of
the distribution are smeared out (phase relaxation). At strong noise intensities, ρ̂d(tq)
approaches the steady-state given by the density matrix (5.20), which is symmetric in the
(xOy)-plane. As a consequence, the corresponding probability distribution Pφ(r,∞) ≡
P (r,∞) = tr[ρ̂∞|nx = r〉〈nx = r|] is independent on φ. In the semi-classical limit N ≫
1, this distribution can be easily calculated since Ĵx takes the values N cosφ/2 in the
phase states |π/2, φ〉 apart from small relative fluctuations of the order of 1/

√
N (see

Eq.(1.30)). Hence, recalling that ρ̂∞ is a statistical mixture of the states |π/2, φ〉 with
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Figure 5.4: Probability distribution Pπ/2(r, t3) of the eigenvalues of Ĵx for the three-
component coherent superposition (solid lines) at increasing noise strength from a3 = 0
(a), to a3 = 0.9 (b) and a3 = 2.9 (c) with N = 20 atoms. The blue dashed curves indicate
the large-noise intensity and large N limit given by Eq.(5.24).
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equal probabilities (see Eq.(5.20)),

P (r,∞) = c

∫ 2π

0
dφ δ

(

N

2
cosφ− r

)

=
1

π

1
√

(

N
2

)2 − r2
(5.24)

where c is a normalization factor. The semi-circle law (5.24) is indicated by the blue
dashed curve in panel c) of Fig.5.4. For finite N , one finds

P (r,∞) =

(

N
N
2 + r

)

1

π

Γ
[

N
2 + 1

2 − r
]

Γ
[

N
2 + 1

2 + r
]

Γ [N + 1]
.

On the other hand, the vanishing of ρ̂od(tq) tends to diminish the contrast of the
fringes in the distribution Pφ(r, tq), until they are completely washed out in the asymptotic
distribution (panel c) of Fig.5.4). The fact that phase relaxation occurs at a lower noise
strength than decoherence is evident in the panel b), where the profile of Pφ(r, tq) is close
to the asymptotic distribution P (r,∞) corresponding to ρ̂∞, while interference fringes due
to ρ̂od(tq) are still visible.

The surprising fact that decoherence is not enhanced by increasing the atom number
N is specific to the noise considered. Indeed, such a noise is applied perpendicularly to
the equator of the Bloch sphere where the phase states of the superpositions lay. As a
result, the noise is insensitive to the separation between these states, which scales with
N . However, such superpositions are very fragile under a noise applied parallel to the
equatorial plane, which resolves the separation between the components. This yields an
indication as to which classical noise to reduce to preserve the coherence in superpositions
of the phase states: this is the noise in directions parallel to this plane. For example,
stochastic fluctuations on the tunnel amplitude K give rise to rapid decoherence of the
macroscopic superposition (|α = 1〉+ eiγ |α = −1〉)/

√
2 at a rate increasing with the atom

number, without inducing relaxation. By rotation of the same argument, the same fate is
followed by a NOON state under the action of phase noise, as we will show in Appendix
D.4.

5.1.4 Quantum Fisher information and coherent spin squeezing during
the quenched dynamics of the BJJ

We present in this section the calculation of the useful quantum correlations which are
formed during the quenched dynamics of the Bose Josephson junction, when phase noise
is affecting the system. Hence, in analogy with what the calculation presented in Sec.4.4
for the noiseless case, we evaluate the quantum Fisher information and the coherent spin
squeezing parameter as a function of time. We take for simplicity λ̄ = 0.

5.1.4.a Coherent spin squeezing in the presence of phase noise

For coherent spin squeezing the calculation can be carried out analytically. We start with
the observation that even in the presence of noise 〈Ĵy〉t = 〈Ĵz〉t = 0 and more generally
the angular-momentum covariance matrix G defined in Eq.(4.31) has the same structure
as the matrix (4.34) in the noiseless case. Therefore, the arguments used in Appendix B.1
can be taken over to the noisy case. We thus conclude that the squeezing parameter ξ2 is
minimum in the (yOz)-plane, and is given by Eq.(4.39), evaluated for the corresponding
quantities in the presence of noise. In particular, the bare visibility ν(0), Eq.(2.20), should
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be replaced by the visibility ν in the presence of noise which is given in Eq.(5.14) with

λ̄ = 0, and γ
(0)
− by the lowest eigenvalue G− of the restriction of the covariance matrix G

to the (yOz)-plane.
We are now going to compute G− and the spin squeezing parameter explicitly. In

order to do so, we need to perform the averages in the presence of noise using the full
density matrix ρ̂(t): 〈. . .〉t = tr(. . . ρ̂(t)). These are related to those in the absence of noise
according to

〈Ĵi〉t =
∫ ∞

−∞
dφ f(φ, t)〈eiφĴz Ĵie−iφĴz〉(0)t (5.25)

where the expectation value inside the integral is taken for the pure state |ψ(0)(t)〉 in the
absence of noise. The rotated angular momentum operators in the above expectation value
are equal to cosφĴx − sinφĴy, sinφĴx + cosφĴy, and Ĵz for i = x, y, and z, respectively.
A similar derivation holds for 〈{Ĵi, Ĵj}〉t = tr[ρ̂(t){Ĵi, Ĵj}]. We are left with integrals of
trigonometric functions with the gaussian envelope given by Eq.(5.9), yielding the result

〈Ĵ2
z 〉t = 〈Ĵ2

z 〉
(0)
t =

N

4

〈Ĵ2
y 〉t =

1− e−2a2(t)

2
〈Ĵ2
x〉

(0)
t +

1 + e−2a2(t)

2
〈Ĵ2
y 〉t

〈{Ĵy , Ĵz}〉t = e−a
2(t)/2〈{Ĵy , Ĵz}〉(0)t

〈{Ĵx, Ĵy}〉t = 〈{Ĵx, Ĵz}〉t = 0 . (5.26)

Finally, the submatrix matrix G′(t) reads

G′(τ) =





N
8

[

−e−2a2(τ)(N − 1) cosN−2 (2τ) + (N + 1)
]

1
4e

− a2(τ)
2 N(N − 1) cosN−2 (τ) sin (τ)

1
4e

− a2(τ)
2 N(N − 1) cosN−2 (τ) sin (τ) N

4



 .

(5.27)
Thus, by Eqs.(4.39), (5.14) and (5.27), one has

ξ2(τ) =
1

4ν(0)
2
(τ)

[

−e−a2(τ)(N − 1) cosN−2 (2τ) + ea
2(τ)(N + 3) (5.28)

−(N − 1)ea
2(τ)
√

(1− e−2a2(τ) cosN−2 (2τ))2 + 16e−a2(τ) cos2(N−2) (τ) sin2 (τ)

]

.

The angle which identifies the optimal squeezing direction is given by Eq.(4.42), in which
the matrix γ(0)

′
should be replaced by G′.

We proceed by illustrating our results for the squeezing parameter in the presence of
phase noise. For the calculations we have chosen a noise range of direct experimental
relevance, as extracted from the fit of the visibility decay data mentioned in Sec.5.1.2
(see also caption of Fig.5.1 and forthcoming Sec. 6.2.2). For the noise variance a2(τ) we
have taken the short-time behavior a2(τ) = (δλ/χ)2τ2 expressed by Eq.(5.12) since the
experimental visibility exhibits a gaussian decay even for small interactions χ [62] (see
Sec.5.1.2). The squeezing parameter as a function of time is shown in Fig.5.5-a). As
seen in the figure, the presence of noise degrades the squeezing, as its minimum value
increases at increasing noise strength. We also notice that the time for optimal squeezing
tmin is slightly shorter than in the noiseless case. Analytical estimates of the minimum
value reached by the squeezing parameter and of the corresponding time can be found in
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Figure 5.5: Coherent spin squeezing and quantum Fisher information in the presence
of noise as a function of time in units of T during the quenched dynamics of a BJJ.
The parameters used are N = 100, χ = πHz. a) Spin squeezing ξ2 for (from top to
bottom) δλ = 15, 10, 5, and 0Hz. Horizontal and vertical gridlines: minimum of ξ2

and corresponding time tmin. b) Fisher information FQ for (from top to bottom) δλ =
0, 0.4, 1, 2, 5, 10, and 15Hz; the horizontal and vertical gridlines correspond to FQ = N(N+
1)/2 and t = tfs = T/

√
N . c) Zoom on the quantum Fisher information (solid lines) and

Fξ = N/ξ2 (dashed lines) for δλ = 0, 2, 5, 10, and 15Hz (from top to bottom). d) Angles
θF and θξ giving the optimizing direction of FQ (solid lines) and ξ2 (dashed lines) as a
function t/T , for the same noise levels.
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Ref.[25]. The angle θξ(t) which identifies the optimizing squeezing direction is represented
in dashed lines for various noise levels in Fig.5.5-d).

In the experiments of Refs.[8, 9], affected by phase noise, the squeezing degree has
been measured at a fixed time, as a function of the angle θ. This motivates the theoretical
calculation of the curve ξ2(θ), which is reported in appendix D.3.

5.1.4.b Quantum Fisher information in the presence of phase noise

The evaluation of the optimum quantum Fisher information (4.29) requires a numerical
diagonalization of the density matrix ρ̂(t) given by Eq.(5.10). For the time dependence of
a2(t) we take again the short-time approximation given in Eq.(5.12), even if there is no
experimental evidence that justifies such a choice at times t ∼ T . This choice corresponds
to the worst possible scenario for decoherence, as in the markovian regime the dependence
of a2(t) is weaker (see Eq.(5.13)) [24]. The behavior of FQ as a function of time in the
presence of noise results from the competition of two phenomena: (i) in the absence of
noise, at short times the quantum Fisher information grows from its initial value FQ = N
to the plateau value FQ = N(N + 1)/2 in a time interval tfs ∼ T/

√
N which shrinks as

N becomes larger, and (ii) the decoherence exponent a2(t) is independent on N and also
grows with time. As a result, FQ reaches a local maximum at a time tmax ∼ tsf , with a
value which increases with N and decreases with the noise fluctuation δλ2.

The quantum Fisher information as a function of time for various noise levels is shown
in Fig. 5.5. The short-time evolution is similar to the one found for the noiseless case, the
accumulation of noise correlations being not yet effective. In particular, one observes that
FQ coincides with the squeezing parameter Fξ = N/ξ2 at sufficiently small times (panel
c). For not too large noise intensities, FQ displays a plateau at those times which in the
noiseless BJJ correspond to the formation of macroscopic superpositions. The value on
the plateau is smaller than in the absence of noise but it is still much above the shot noise
level FQ = N . This indicates the presence of useful correlations which remain in spite of
the decoherence effects induced by the noise. This effect is due to the robustness of the
multicomponent superpositions with respect to phase noise discussed in Sec.5.1.3 above.
For higher noise levels, the width of the plateau is reduced and the peak at t2 ≡ T/4
corresponding to the two-component superposition in the absence of noise disappears
completely, meaning that decoherence has washed out the useful quantum correlations at
t2 (three bottom curves in the Fig.5.5-b)). In the limit of very large noise intensities the
Fisher information at times tq of formation of q-component superpositions in the noiseless
BJJ is degenerate in the (xOy) plane and tends to the asymptotic value

FQ[ρ̂∞] =
N(N − 1)

2N + 2
, (5.29)

which can be readily obtained from Eqs.(4.30) and (5.20). As illustrated in Fig.5.6, apart
from short times and around the peak at t2, the optimization direction is in the (xOy)-
plane and FQ is almost degenerate in all directions of this plane, as in the noiseless case.

As a partial summary, the analysis of the time evolution of the quantum Fisher infor-
mation indicates the build-up of useful quantum correlations at times beyond the spin-
squeezing regime. In the following we quantify this effect by studying the dependence of
FQ with the noise strength and the particle number.
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Figure 5.6: Direction-dependent quantum Fisher information in the presence of noise as
a function of time in units of T during the quenched dynamics of a BJJ with N = 100
atoms and χ = πHz for: a) δλ = 2Hz, b) 5Hz, c) 10Hz and d) 15Hz, calculated along
the x̂ direction (dashed lines), the ŷ direction (dotted lines) and the optimizing direction
(light-gray solid line). After a time t ∼ T/

√
N (left vertical gridlines) the three values are

almost the same, showing that the Fisher information is almost degenerate in the (xOy)
plane, except around t = T/4 if FQ has a peak at this value (panel a)). The vertical and
horizontal gridlines represent the times t = tfs and t = T/4 − tfs and the value of the
Fisher information in the limit of large noise intensities given by Eq.(5.29).
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Figure 5.7: Values of the Fisher information at its local maximum at time tmax (solid line,
circle markers), at time t2 (dot-dashed line, star markers) and at the time tmin of maximal
squeezing (long-dashed line, blue cross markers) in a logarithmic scale, as a function of the
energy fluctuation δλ (in Hz). For comparison we also plot the squeezing parameter Fξ =
N/ξ2 at the time tmin (dashed line, green cross markers) in a logarithmic scale. Gridlines,
from top to bottom: Heisenberg limit N2 (solid), approximate value (2/32/3)N5/3 of
Fξ(tmin) in the absence of noise, see Sec.4.4 (dashed), shot noise limit (solid), and limit of
FQ for large noise intensities (solid) given by Eq.(5.29). The parameters used are N = 400
and χ = πHz.

5.1.4.c Quantum correlations vs particle number and phase noise

Figure 5.7 shows FQ(t) on a logarithmic scale, evaluated at the time t = t2 ≡ T/4 of
formation of the two-component superposition in the noiseless BJJ, as well as the max-
imum (FQ)max of FQ(t) in the time interval 0 < t < T/8. This maximum corresponds
roughly to the value at the plateau in Fig.5.5, that is, to the value of FQ(t) at the times
of formation of the first multicomponent superpositions. It can be seen that in the range
of noise considered (FQ)max stays above the shot noise level, and is also larger than the
value FQ(tmin) at the time tmin of highest squeezing. The two-component superposition,
formed much after the superpositions with a large number of components, appears to be
too much degraded by noise to lead to any advantage in interferometry with respect to sep-
arable states. Hence, in this regime multicomponent macroscopic superpositions provide
a convenient alternative to both the squeezed states and the two-component macroscopic
superposition.

We next study the scaling of the quantum Fisher information with the particle number,
taken at the time tmax as before. As it is illustrated in Fig.5.8, at this time FQ displays a
power-law behavior FQ ∼ Nβ with an exponent β depending on the noise strength. This
exponent is extracted from a log-linear fit of the numerical data, varying N between 50
and 400 1, the latter value being realistic in the experiments [8]. We notice that in the
noise range considered β is larger or equal to 5/3, which is the exponent corresponding to
the squeezed state at t = tmin in the absence of noise (see Sec.4.4). For the chosen interval
of noise strengths, the analysis of the scaling FQ = cNβ is meaningful as the multiplying
constant c, which also depends on the noise, is large enough to ensure that FQ(tmax) ≫

1We cannot exclude here that slightly different values of β would appear for larger N ’s.
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Figure 5.8: a) Quantum Fisher information evaluated at the time of its local maximum
tmax (blue solid line) and at the time t2 (blue dashed line) as a function of the number
of particles N for δλ = 15Hz, as compared to the shot noise limit (black solid line).
Panels b),c),d),e): same as in a) in a semi-logarithmic scale, for various noise strengths
δλ = 2, 5, 10, and 15Hz (from left to right and top to bottom). f) Exponent β, extracted
by a log-linear fit of the data in a), as a function of the energy fluctuations δλ (in Hz) for
t = tmax (solid line, circle markers) and for t = t2 (dot-dashed line, star markers). We
used χ = πHz.
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N , as shown in the first panel in Fig.5.8. This confirms the potential improvement in
interferometry given by the state at time tmax with respect to the use of squeezed states
in the presence of phase noise. For comparison, we also show the scaling of FQ at the time
t2. At that time, β decays faster with the noise strength, reaching rapidly the shot noise
limit β = 1. This is due to the fact that the noise exponent a2(t) increases with time.

To recapitulate, multicomponent superpositions of phase states appear to be “twice”
robust against phase noise: 1) because of the independence of the decoherence rate on the
particle number, a feature shared with the two-component superposition; 2) because they
are formed at short times ∝ 1/

√
N , when the noise correlations did not become effective

yet for decoherence (for experimentally relevant values of noise δλ); this is not the case for
the two-component superposition, formed at t2 = π/(2χ). As a consequence, the analysis
based on the quantum Fisher information has indicated these states as the most suitable
for interferometric applications when phase noise is affecting the preparation of the input
state based on the quenched dynamics of the BJJ.

To conclude this section, we mention that a work similar in spirit has been presented in
Ref.[19], in which a new class of entangled states has been shown to be more robust than
the two-component macroscopic superposition against decoherence, induced by a single
particle (qubit) process. Analogously to our multicomponent superposition states, these
states are still highly entangled and lead to advantage over the use of classical resources
for quantum technology applications.

5.2 Particle losses

Several loss processes can induce the simultaneous expulsion of one, two or even three
particles out of the condensate. One-body loss processes are generally due to scattering
with impurities; spin-relaxation is instead a two-body process, in which two atoms collide
and can change their spin state, with a high kinetic energy gain which ejects them out of
the trap [157]; finally, when three atoms collide two of them form a molecule, and again
the third acquires a large kinetic energy which overcomes the trap height [158, 159].

Generally, atom losses in optical lattices are theoretically treated by means of the
master equation in the Lindblad form [160]

∂tρ̂ = − i

~

[

H(0), ρ̂
]

+ γ(m)
∑

k

([

(âk)
m, ρ̂(â†k)

m
]

+
[

(âk)
mρ̂, (â†k)

m
])

, (5.30)

where m = 1, 2, 3 is the order of the loss process, (âk)
m is the annihilation operator

destroying m atoms at site k and γ(m) is the loss rate. This loss rate has been measured
in 87Rb for m = 1 and m = 3 [161], while two-body collisions have been studied in
Ref. [157]. Equation (5.30) generally implies the rotating-wave approximation and it only
describes the dynamics in the Markov regime. A microscopic derivation of the master
equation (5.30) can be found for m = 3 in Ref. [159] and for m = 1 in Ref. [162].

We will focus here on the effect of one-body atom losses, and we will particularly
study their effect on the quenched dynamics of the bosonic Josephson junction and on the
formation of Schroedinger cat states. In this particular example of quantum dynamics it
is possible to solve the master equation exactly with analytical techniques. This analytical
solution has been provided for one-body losses in Ref.[162] in the case of symmetric wells
and interaction energies (λ = 0). In what follows we generalize this treatment to the
asymmetric case λ 6= 0, where λ can be a time-varying parameter, which will allow us in
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Sec.5.3 to treat particle losses and phase noise at the same time. An analytical solution
of the master equation for the quenched dynamics in the presence of two-body and three-
body losses is also available [163]. Further results on two-body losses will be given in
appendix E.4.

5.2.1 Master equation for one-body particle losses

For the case of one-body losses (m = 1), we present here and in the following section the
analytical solution for the density matrix. We rename γ(1) ≡ γ; the density matrix in the
presence of one-body losses is referred to as ρ̂. The master equation of the BJJ is given
by the two-site case of Eq.(5.30),

∂tρ̂ = − i

~

[

H(0), ρ̂
]

+ γ

2
∑

k=1

([

âk, ρ̂â
†
k

]

+
[

âkρ̂, â
†
k

])

. (5.31)

For the external BJJ, the unitary Hamiltonian H(0) appearing in Eq.(5.31) is given by
Eq.(1.16), with K = 0

H(0) =

2
∑

k=1

Ekâ
†
kâk +

2
∑

k=1

Uk
2
â†kâ

†
kâkâk, (5.32)

where (E1 − E2)(t) can be time dependent. As initial state of the dynamics we take as

usual the phase state |θ = π/2, φ = 0〉 = 1
2N/2

∑N
k=0

(N
k

)1/2|k,N − k〉, belonging to the
(N + 1)-dimensional Hilbert space of N bosons, as explained in Sec.1.4.2, where N is the
initial total number of particles (not necessarily even).

During the dynamics of the BJJ, as soon as particle losses become effective, other
sub-spaces of the total Fock space H =

∏N
⊗m=0 H(m) become populated (where m labels

the (m + 1)-dimensional Hilbert space associated with m particles), possibly involving
also the vacuum state |0〉 in which no atoms are left. The dimension of the total Hilbert
space to which the BJJ has access in the presence of one-body losses is hence dim(H) =
∑N

m=0(m + 1) = 1
2 (N + 1)(N + 2). For this larger space we can still use the Fock basis

|n1, n2〉, but here n1 + n2 does not necessarily sum to N , rather it can take any integer
value between 0 and N . In what follows we will denote the general density matrix element
in this basis as ρk+r,lk,l+p ≡ 〈n1 = k, n2 = l + p|ρ̂(t)|n1 = k + r, n2 = l〉.

Projection of the master equation (5.31) on the Fock basis yields

∂tρ
k+r,l
k,l+p =

{

−i
[

(E2p− E1r) +
U2

2
p(p− 1)− U1

2
r(r − 1)

]

− γ(r + p)

}

ρk+r,lk,l+p

+
{

(−iU2lp− 2γl)ρk+r,lk,l+p + 2γ
√

(l + 1)(l + p+ 1)ρk+r,l+1
k,l+p+1

}

+
{

(+iU1kr − 2γk)ρk+r,lk,l+p + 2γ
√

(k + r + 1)(k + 1)ρk+r+1,l
k+1,l+p

}

, (5.33)

while the expansion of the initial state on the Fock basis leads to the initial condition

ρk+r,lk,l+p(0) =
1

2N

(

N

k

) 1
2
(

N

k + r

)1
2

δr,pδk+r,N−l. (5.34)

The effect of the cross-interaction term U12â
†
1â1â

†
2â2 appearing in the Hamiltonian of the

internal BJJ Eq.(1.19) adds to the master equation (5.33) the term −iU12(kr − lr)ρk+r,lk,l+p.
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Hence, we see in Eq.(5.33) that this term can be treated by a renormalization of the
interaction constants Ui → Ui − U12/2 with i = 1, 2.

Note that the presence of the term δr,p in Eq.(5.34) expresses the absence of correla-
tions between sub-spaces at different particle numbers in the initial state. Since no such
correlation will be built during the dynamics described by Eq.(5.31), the state will never
be a coherent superposition of states at different particle number. This implies that the
only non-zero elements of the density matrix satisfy n1 + n2 = n′1 + n′2 ≡ m, which la-
bels the m-particles sub-space. This allows for the decomposition in blocks of the density
matrix, as

ρ̂ =

N
∑

m=0

ρ̂m =

N
∑

m=0

wmρ̄m, (5.35)

where we defined the normalized density matrix in the m-supspace ρ̄m = ρ̂m/tr[ρ̂m]. The
resulting block structure of the density matrix is represented in the first panel of Fig.5.9
(see also Sec.5.2.2).

5.2.2 Exact solution of the one body-losses master equation by the char-
acteristic method

In this paragraph we generalize the solution of the master equation (5.34), presented in
Ref.[162], to the case E1 6= E2, U1 6= U2. Let us introduce the generating function

hrp(x, y, t) =

∞
∑

k,l

xkyl
√

(k + r)!(l + p)!

k!l!
ρk+r,lk,l+p(t), (5.36)

from which the elements of the density matrix can be retrieved by derivation as

ρ̂k+r,lk,l+p(t) =
1

(k!l!(k + r)!(l + r)!)
1
2

∂kx∂
l
yh

r
p(0, 0, t). (5.37)

By multiplying Eq.(5.34) by xkyl and summing over k, l, the master equation can be
expressed in terms of the generating function hrp as

∂th
r
p =

{

−i
[

(E1(t)p − E2(t)r) +
U2

2
p(p− 1)− U1

2
r(r − 1)

]

− γ(r + p)

}

hrp

+ [(iU1r − 2γ) x+ 2γ] ∂xh
r
p + [(−iU2r − 2γ) y + 2γ] ∂yh

r
p. (5.38)

Let us define the shifted generating function hrp = e−
∫ t
0 c(r,p,τ)dτ h̃rp, where the parameter

c(r, p, t) is given by

c(r, p, t) = i

[

(E1(t)p− E2(t)r) +
U2

2
p(p− 1)− U1

2
r(r − 1)

]

+ γ(r + p). (5.39)

The further definitions

ζ1,r = 2γ − iU1r

ζ2,p = 2γ + iU2p (5.40)

allow us to rewrite the master equation (5.38) as a linear partial differential equation of
the first order

∂th̃rp = (−ζ1,rx+ 2γ) ∂xh̃rp + (−ζ2,py + 2γ) ∂yh̃rp. (5.41)
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The solution for h̃rp, obtained with the methods of the characteristics as in Ref. [162], is
reported in appendix E.1, and reads

h̃rp(x, y, t) =
1

2N
N !

(N − r)!

[

2γ − (2γ − ζ1,r)e
−ζ1,rt

ζ1,r
+

2γ − (2γ − ζ2,p)e
−ζ2,pt

ζ2,p

](N−r)
δr,p.

(5.42)
Then, by use of Eq.(5.37), we obtain the solution for the density matrix

ρ̂k+r,lk,l+p =
N !e−

∫ t
0 (E1−E2)(τ)dτre

−
(

ζ2,r+ζ1,r
2

)

(r−1)t
e−ζ1,rkte−ζ2,r lte−2γt

2N (N − r − k − l)!(k!l!(k + r)!(l + r)!)
1
2

×
[

2γ

ζ1,r
(1− e−ζ1,rt) +

2γ

ζ2,r
(1− e−ζ2,rt)

](N−r−k−l)
δr,p, (5.43)

where we have also used that the combination of parameters U2−U1
2 r(r−1) appearing in the

definition (5.39) when p = r can be rewritten as
(

U2−U1
2 r(r − 1)

)

=
(

ζ2,r+ζ1,r
2

)

(r−1)+2γ.

We can rewrite the solution (5.43) in a simplified form by using that, accordingly to
the discussion in Sec.5.2.1, due to the term δr,p we have k + r + l = k + l+ p = m, which
leads to

ρ̂
k+r,m−(k+r)
k,m−k (t) = e−

∫ t
0 (E1−E2)(τ)dτr N !e−2γmt

2(N−m)(N −m)!
(5.44)

[

1− e−2γteiU1rt

1− iU1r/(2γ)
+

1− e−2γte−iU2rt

1 + iU2r/(2γ)

](N−m)

ρ̂
(0) k+r,m−(k+r)
k,m−k (t).

Here ρ̂(0)(t) = |ψ(0)(t)〉〈ψ(0)(t)| is the density matrix corresponding to the unitary evolu-
tion under the Hamiltonian (5.32) with m particles and E1 = E2, i.e.

ˆρ(0)
k+r,m−(k+r)

k,m−k (t) =
1

2m

(

m

k

) 1
2
(

m

k + r

) 1
2

e
−i

(

U2−U1
2

)

r(r−1)t
e−i(U2(m−k−r)−U1k)rt. (5.45)

The reason to separate the contribution due to an energy imbalance E1 − E2 from the
unitary part will become clear in Sec.5.3.

Note that form = N the factor
[

2γ
ζ1,r

(1− e−ζ2,rt) + 2γ
ζ2,r

(1− e−ζ2,rt)
](N−r−k−l)

in Eq.(5.44)

is equal to 1, and the effect of particle losses on the corresponding block is only to “dump”
it (i.e., to reduce its weight), without affecting its inner dynamics, which then corresponds
to the unitary dynamics.

From Eq.(5.44) we can calculate the weights of each block of the density matrix,
appearing in Eq.(5.35). The diagonal elements are identified by r = 0, which leads to

ρ̂k,m−k
k,m−k(t) =

N !e−2γmt

2m(N −m)!k!(m− k)!
(1− e−2γt)(N−m), (5.46)

from which the weights wm can be immediately obtained as

wm = tr[ρ̂m] =
∑

k

ρ̂(t)k,m−k
k,m−k =

N !e−2γmt

m!(N −m)!
(1− e−2γt)(N−m). (5.47)
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Figure 5.9: Density matrix in the Fock basis of the total Hilbert space (left panel), and
weights of the density matrix as a function of the label of the subspace, i.e. the number of
particles m (right panel). Values of the parameters: N = 10, γT = 0.25, U1 = U2 = 4πHz,
t = t2.

From Eq.(5.47) we can calculate the decay of the average atom number with time,
which is given by

〈m̂〉 =
N
∑

m=0

wmm =

N
∑

m=0

(

N

m

)

e−2γmt(1− e−2γt)(N−m)m = Ne−2γt. (5.48)

Equation (5.48) shows that, as expected for one-body losses, the atom number decays
exponentially with time, with a decay rate given by γ.

5.2.3 Effect of particle losses on the visibility

The visibility in the presence of one-body atom losses can be calculated by generalizing
Eq.(2.20) to ν(t) = tr[ρ̂(t)Ĵx]/

√

tr[ρ̂(t)n̂1]tr[ρ̂(t)n̂2], where in the denominator we have
replaced N by the averages of the atom number n̂i in each mode i = 1, 2. This calculation
has been performed in Ref. [162] for optical lattices. The two-site case yields

ν1body(t) =

{

γ2 +
[

γ χ2 sin(χt) + (χ2 )
2 cos(χt)

]

e−2γt

γ2 + (χ2 )
2

}N−1

. (5.49)

A short-time expansion of Eq.(5.49) to the third order for χt ≡ τ ≪ 1 leads to

ν1body(t) ≃ (1− 1

2
τ2 +

2

3

γ

χ
τ3)(N−1) ≃ e

(N−1)[1− 1
2
τ2+ 2

3
γ
χ
τ3]
. (5.50)

In Eq.(5.50) we recognize the gaussian decay of the visibility due to the atomic interactions
(the unitary part), which also appears in the short-time expansion of Eq.(2.20), while we
see that atom losses provide a positive (cubic) corrections to the visibilty. This counterin-
tuitive effect is due in our model to the fact that the sites occupations in the denominator
decrease under the effect of particle losses. However, we expect this effect to disappear in
a more rigorous derivation in which the dependence of the microscopic parameters of the
BJJ from the particle number would be taken into account (see discussions in Secs.1.3.1.a
and 6.2.2).
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5.2.4 Effect of particle losses on squeezed states

The effect of particle losses on squeezed states in the bosonic Josephson junction has
already been addressed in Refs.[23, 164] for one, two and three-body losses. In Ref.[164]
the optimum particle number and the optimum trap frequency allowing to reach the
highest possible squeezing in the presence of atom losses have been determined, while in
Ref.[23] the best squeezing degree has been calculated when the spatial dynamics of the
bimodal condensate cannot be neglected.

5.2.5 Effect of one-body losses on macroscopic superpositions of phase
states

We now focus on the formation of macroscopic superpositions of phase states when one-
body losses are affecting the BJJ. We want to perform some kind of “spectroscopy” of
the density matrix at the specific times of formation of macroscopic superpositions, in the
spirit of Ref.[28], with the use of Eq.(5.35) and of the solution Eq.(5.44). For instance, let
us fix t = tq ≡ T/(2q), where T = Teven = 2π/χ is the period of the quantum state when
the initial particle number N is even. For q = 2, in the absence of noise the state at t2
is a two-component cat state. We want to see whether the state at this time is the sum
of terms in which each represents a two-component cat state in the space of m particles.
In order to do so, we analyze different quantities: the fidelity, the Husimi function and
the quantum Fisher information. From the discussion at the end of Sec.5.2.2 we already
partially know the answer: the block with m = N will be a perfect cat state. We study
in this section the character of the other blocks of the density matrix.

5.2.5.a Fidelity

Let us consider the state of the system at the time t2, corresponding to the two-component
macroscopic superposition. First, we plot the fidelity of density matrix ρ̂m of each subspace

at m particles, with a perfect m-particle cat state. We define thus Fm ≡ F [ρm, ρ̂
(0)
m ] =

Tr[

√

√

ρ̂
(0)
m ρm

√

ρ̂
(0)
m )]2, where ρ̂

(0)
m = |ψ(0)

m 〉〈ψ(0)
m | is perfect the two-component cat state in

the space of m particles, and we recall that ρ̄m = ρ̂m/tr[ρ̂m]. Then using ρ̂
(0)2
m = ρ̂

(0)
m and

tr[ρ̂
(0)
m ] = 1 we obtain

Fm = 〈ψ(0)
m |ρm|ψ(0)

m 〉 =
m+1
∑

n,n′=1

ρ̂(0)m (n′, n)ρm(n, n
′). (5.51)

The fidelities Fm are plotted for m = 0, 1, ....N = 10 in Fig.5.10. As we expected,
since we have defined Fm referring to the density matrices in each block renormalized by
the respective weight, we have FN = 1 (trivially, also F0 = 1 for the vacuum state), as
the block at m = N is only dumped by particle losses.

Quite remarkably, we find that the lower blocks withm < N , which are populated only
by the loss mechanism, have a non-zero fidelity with the corresponding two-component
m-particle cat state. Hence, we find that the loss process transfers some quantum corre-
lations 2.

2Using Eq.(5.44) we have demonstrated that the fidelity of each block of the density matrix renormalized
by its weight ρm for m 6= N with the density matrix of a perfect cat state increases in the limit of infinite
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Figure 5.10: Fidelity of each block of the density matrix with anm-particle two-component
cat state. The red line corresponds to the total fidelity defined in Eq.(5.52). Values of the
parameters: N = 10, γT = 0.25, U1 = U2 = 4πHz, t = t2.

Note that the fidelity of the total density matrix with the two-component cat state

formed in the absence of losses with N particles ρ̂
(0)
N (t2) is trivially given by the weight

wN expressed by Eq.(5.47), due to the orthonormality of Fock states at different m.
Mathematically, expliciting the time-dependence of the density matrix, we have at all
times

F [ρ(t), ρ̂(0)(t)] =

N+1
∑

n,n′=1

ρ̂(0)(n′, n, t)ρN (n, n
′, t) = FNwN (t) = wN (t) = e−2γNt, (5.52)

to be evaluated at t = t2 = T/4 for the fidelity with the two-component cat state. The
total fidelity corresponds to the red horizontal line in Fig. 5.10, coinciding with the last
weight in the second panel of Fig. 5.9 by Eq.(5.52).

Note that, since no inner dynamics affects the block at m = N (a part from a global
dumping), as already said at t2 ρN corresponds to a perfect two-component phase cat
state, displaying in particular non-diagonal terms at r 6= 0. Hence, no other way to
eliminate these off-diagonal elements exists apart from lowering the weight of the block at
m = N , which means that the decoherence rate coincides with the dumping of this block
- i.e., 2γN , at it results from the last equality in Eq.(5.52).

We may ask whether the effect of a purely lossy dynamics would equally affect the
BJJ if initially prepared either in a NOON state, or in a two-component phase cat state.
This question is affirmatively answered in appendix E.3, in contrast with what we have
found for the case of phase noise (see appendix D.4).

5.2.5.b Projected Husimi distribution

We now visualize the results presented in the previous section by plotting the Husimi
function in each subspace. In order to compare the Husimi functions corresponding to
subspaces at different particle number m, we define

Qm(φ) ≡ Qm(θ =
π

2
, φ) =

1

Normm
m〈φ|ρ̄m|φ〉m (5.53)

loss rate γ. However, in that limit the weights of each block except m = 0 go to zero, and this happens
faster than the speed at which a ρm tends to a cat state, so that we recover a physically meaningful result.
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Figure 5.11: First three panels: Husimi distribution Qm(θ = π/2, φ) (see Eq.(5.53)) at
t = t2 for m = 10, 9, 8 respectively. Last panel: All previous curves now at the same scale,
plus (gray dashed line) total Husimi distribution Q(θ = π/2, φ) (see Eq.(3.1)) at t = t2.
Values of the parameters: N = 10, γT = 0.25, U1 = U2 = 4πHz, t = t2.

where

Normm =
2
√
πΓ[m+ 1

2 ]

Γ[m+ 1]
= 2πQcost (5.54)

is a normalizing factor obtained with the requirement that the Husimi function Qm(φ)
associated with ρ̂∞(m) ≡ 1

2π

∫

dφ|φ〉mm〈φ| is equal to 1, and |φ〉m is the phase state
parameterized by the angle φ in the space of m particles (the constant Qcost has already
been introduced in Sec.5.1.3.b).

We plot the Husimi functions Qm for m = N,N − 1, N − 2 in Fig. 5.11. For m =
10 we recover the Husimi function of a perfect cat state with 10 particles, due to the
aforementioned effect of simple “dumping” of the N -th block of the density matrix. For
m = 9, 8 we see that the structure of these curves still displays two peaks, corresponding
to the components of the cat state. These peaks are placed at π/2 and 3π/2 for m = 9,
corresponding to the rotated components of a cat state with an odd number of particles
[101]. Note however the different scale on the y-axes in the first, second and third panel
in Fig. 5.11; we also find that Q9(φ) and Q8(φ) are quite different from the corresponding
Husimi functions of perfect two-component cat states (the latter are not shown here). As a
result, the profile of the total Husimi function Q(φ) =

∑N
m=0 wmQm(φ) (gray curve in the

last panel in Fig. 5.11) is smeared out, already for intermediate values of the decoherence
rate γT = 0.25.

Since the dynamics in the presence of particle losses is not conserving the number
imbalance operator, there is a “leaking” of the state along the θ direction also. Hence, it
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can be instructive to consider also the full Husimi distribution Q(θ, φ). This is addressed
in appendix E.2.

5.2.5.c Quantum Fisher information

We want now to quantify the effect of particle losses on the useful quantum correlations of
the state of the system as a function of time. To do this, we calculate the quantum Fisher
information as a function of time, after optimizing it over all of the possible directions.
Since the number of particles is fluctuating, we follow Ref.[165], and calculate the Fisher
information as

FQ[ρ̂, Ĵn] =
N
∑

m=0

wmFQ[ρ̂m, Ĵn], (5.55)

in analogy with the other quantities calculated in the previous sections. In Ref. [165] it
has been shown that in the presence of a super selection rule which forbids coherences
between subspaces at different numbers of particles the previous expression is bounded by
〈m̂2〉 and the following implication holds:

FQ[ρ̂, Ĵn] > 〈m̂〉 ⇒ ρ̂ entangled. (5.56)

The Fisher information in each subspace at fixed m is then calculated with the use of
Eq.(4.12), which in terms of the sub-space density matrix ρ̂m reads

FQ[ρ̂m, Ĵn] =

m
∑

k,l=0

(pl − pk)
2

pl + pk
|〈l|Ĵn|k〉|2, (5.57)

where |k〉 are the orthonormalized eigenstates which diagonalize the density matrix, satis-
fying ρ̂m|k〉 = pk|k〉. Then, we optimize Eq.(5.55) over all the possible directions Ĵn. We
choose to perform the optimization after the summation specified in Eq.(5.55) because
this choice seems to us physically more relevant: summing instead Fisher informations op-
timized at each m in Eq.(5.55) would give an indication of the usefulness of the state ρ̂ in
interferometric experiments in which the densities matrices ρ̂m associated with subspaces
at different m would be transformed with respect to different directions, which seems hard
to be realized in experiments.

In Fig. 5.12 we show the quantum Fisher information for various loss rate γ, forN = 10.
The black dashed line is the shot noise limit FQ for the initial number of particles N ; the
regions in which FQ is larger than this reference line are such that sub-shot noise phase
estimation could be in principle performed even in the presence of particles losses. The
gray dotted line is Fξ = N/ξ2, where ξ2 is the coherent spin squeezing, showing when the
quantum state is in principle more useful than a squeezed state even in the presence of
losses (note that here the squeezing is plotted in the ideal lossless case).

The presence of relatively high correlations at long times which can be seen in Fig. 5.12
is associated with our choice of a small initial number of particles. The plot of FQ for
the same parameters, repeated in the case of N = 100, displays a more dramatic effect of
losses for the same noise parameter, as can be seen in Fig. 5.13. This can be related to
the fact that the decay rate of the fidelity with the state formed in the absence of losses
scales like N (see Eq.(5.52)).

Finally, in connection with the results of Sec.5.1.4.c, we would like to perform a scaling
analysis of the quantum Fisher information as a function of the average number of particles
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Figure 5.12: Quantum Fisher information given in Eq.(5.55) optimized over Ĵn as a func-
tion of t/T , for γT = 0, 0.05, 0.15, 0.25 from top to bottom. The dashed lines represent
the corresponding average number of atoms as a function of time. Black dashed line: shot
noise limit N . Gray dotted line: coherent spin squeezing parameter ξ2/N in the absence
of losses. Value of the parameters: N = 10, U1 = U2 = 4πHz.
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Figure 5.13: Quantum Fisher information given in Eq.(5.55) optimized over Ĵn as a func-
tion of t/T , for γT = 0, 0.05, 0.25 from top to bottom. Gray dotted line: coherent spin
squeezing parameter ξ2/N in the absence of losses. Values of the parameters: N = 100,
U1 = U2 = 4πHz.
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〈m̂〉 in the present case of a fluctuating total number of particles. This could still be done,
but it would provide less clear indications with respect to the case of phase noise, as in
this case FQ is bounded by FQ[ρ̂, Ĵn] ≤ 〈m̂2〉, involving the expectation value of a different
operator (m2) [165]. Note also that in this case the bound on the highest possible phase

estimation has to be modified as ∆ϕ ≥ max

[

1√
p〈m̂2〉

, 1
p〈m̂〉

]

(p being here the number of

measurements) [165].

5.3 Treating phase noise and particle losses at the same

time

Since in real experiments both particle losses and phase noise are acting simultaneously, it
is important to develop a treatment allowing to calculate the density matrix of the system
including both sources of noise. We proceed in this direction.

As we deduced in Sec.5.1.2, and as we have already done in Sec.5.1.4, we are going
here to assume that phase noise is strongly correlated in the time-regime of interest,
leading e.g. to the production of squeezed states and macroscopic superpositions. During
this time regime, losses are affecting the system. We assume hence that the phase noise
process λ(t) = (E2−E1)(t) in one realization is constant during the characteristic time for
losses 1/γ, i.e. that tcγ ≫ 1 (where tc is the correlation time for phase noise introduced
in Sec.5.1.1.b). Hence, we can consider the solution of the master equation (5.44) as
“quenched” with respect to phase noise, i.e. as the solution of the lossy dynamics in one
realization of the phase noise process. We can indicate it with a “Q” suffix, i.e. we rename

ρ̂
k+r,m−(k+r)
k,m−k (t) → ρ̂

k+r,m−(k+r)
Q k,m−k (t) in Eq.(5.44), which gives

ρ̂Q
k+r,l
k,l+p =

N !e−iφ(t)re
−
(

ζ2,r+ζ1,r
2

)

(r−1)t
e−ζ1,rkte−ζ2,rlte−2γt

2N (N − r − k − l)!(k!l!(k + r)!(l + r)!)
1
2

×
[

2γ

ζ1,r
(1− e−ζ1,rt) +

2γ

ζ2,r
(1− e−ζ2,rt)

](N−r−k−l)
δr,p (5.58)

where we have also defined Λ(t) = (E2−E1) and
∫ t
0 (E1−E2)(τ)dτ = −

∫ t
0 Λ(τ)dτ ≡ φ(t).

The sign difference with respect to the analogous definition in Sec. 5.1.1.a is due to the
fact that in this basis (we recall that ρ̂Q

k+r,l
k,l+p ≡ 〈n1 = k, n2 = l+ p|ρ̂Q|n1 = k+ r, n2 = l〉)

in terms of the number imbalance n = (n1 − n2)/2, we have (n−n′) = ((k− l− r)− (k+
r − l))/2 = −r, to be compared to Eq.(5.10).

Then, (E1 − E2)(t) appearing in Eq.(5.58) is considered to be randomly fluctuating,
and we have to average with respect to phase noise. The averages are performed as in
Sec. 5.1.1.a, and the averaged density matrix is given by

ρ̂(t)k+r,lk,l+p =

∫

dP [Λ(t)] ρ̂Q
k+r,l
k,l+p =

∫

dφf(φ, t)ρ̂Q
k+r,l
k,l+p (5.59)

where f(φ, t) is defined as in Eq.(5.4) with the replacement λ → Λ, and reads f(φ, t) =

1√
2πa(t)

e
− (φ+Λt)2

2a2(t) , with a2(t) given by Eq.(5.7) and h(τ−τ ′) = Λ(τ)Λ(τ ′)−Λ
2
= ∆E(τ)∆E(τ ′)−

∆E
2
is identical to the correlation function defined in Sec. 5.1.1.a, while Λ = −∆E+(N−

1)(U2 − U1)/2.
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Substituting the expression of f(φ, t) in Eq.(5.59) and performing the gaussian integral
yields as final result the density matrix of the system in the presence of both phase noise
(red contribution) and particle losses (blue contribution)

ρ̂
k+r,m−(k+r)
k,m−k (t) = eiΛrte−

a(t)2r2

2
N !e−2γmt

2(N−m)(N −m)!

[

1− e−2γteiU1rt

1− iU1r/(2γ)
+

1− e−2γte−iU2rt

1 + iU2r/(2γ)

](N−m)

×ρ̂(0) k+r,m−(k+r)
k,m−k (t),

from which we see that in the density matrix in the presence of both one-atom losses and
phase noise these two respective contributions appear factorized.

This allows to write the visibility in the presence of both noise sources as

ν(t) = e−
a(t)2r2

2 ν1body(t), (5.60)

where ν1body is given in Eq.(5.49) and we have taken Λ = 0. A discussion of the possibility
to compare this expression to the measured decay of the visibility is presented in Sec. 6.2.2.



Chapter 6
Conclusions and perspectives

6.1 Conclusions

In this thesis we have considered the bosonic Josephson junction in the quantum regime
in the framework of the two-mode approximation, studying in particular some aspects
connected to quantum information.

Starting with the characterization of the system, in Chap.1 [31] we have studied its
“phase diagram”, by calculating the fluctuations of number imbalance operator as a func-
tion of the ratio between the coupling and inter-atomic interactions, and the asymmetry
of the two modes. We have shown that such a phase diagram displays a lobe structure,
due to the degeneracy of neighboring Fock states in the strongly interacting regime. The
size of the lobes increases at increasing asymmetry, as a consequence of a reduction of the
effective coupling; this non-linear effect is absent in superconducting Josephson junctions.

In Chap.2 [31, 33] we have shown that the dynamics driven by the interatomic inter-
actions only (“quenched dynamics”), starting from a single coherent state, leads to the
creation of macroscopic superposition of coherent states. These superpositions are placed
in planes parallel to the equator of the Bloch sphere - the equator of the Bloch sphere
itself if the initial coherent state is number balanced (“phase state”) - and they appear at
fractions tq = T/(2q) of the period T = 2π/χ, with a number of components q which varies
in time (this result has been also reported in Ref.[101]). We have later shown that the
creation of macroscopic superpositions can be optimized by means of an optimal control
protocol: a two-component phase cat state (as well as a NOON state) can be created with
a very high fidelity (∼ 99%) in a time T ′ = cTc, where Tc ∝ 1/N depends inversely on the
atom number, and c is a constant (depending in principle on the particle number). For
instance, c = 10 for N = 300, leading to an advantage over the quenched dynamics-based
protocol in terms of the time of formation of the superposition. A proper scaling analysis
of the constant c as a function of the number of particles is still to be carried out.

In Chap.3 [32] we have addressed the detection of macroscopic superpositions of phase
states. We have shown that the probability distributions of the eigenvalues of the collec-
tive angular momentum operator in various directions are suitable to detect qualitatively
these states. Indeed these probability distributions allow to access the phase content of
the state, and to distinguish macroscopic superpositions of phase states from incoherent
mixtures, as for the latter the probability distributions do not display fringes. Based on
the Radon transform, we have shown that the knowledge of these probability distribu-
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tions in each direction of the equatorial plane of the Bloch sphere allows to reconstruct a
two-dimensional distribution, analogous to phase-space distributions, yielding the major
information about macroscopic superposition states.

In Chap.4 [25] we have addressed the applications to quantum interferometry. We
have computed the quantum Fisher information and the squeezing parameter as a func-
tion of time during the quenched dynamics of the BJJ, optimizing them with respect to
all the possible unitary transformations describing a linear interferometer. This analysis
yields qualitatively the same result as reported in Ref.[16], indicating the two component
macroscopic superposition as the most useful state in ideal conditions. However, note
that in Ref.[16] the quantum Fisher information and the coherent spin squeezing were not
optimized. The optimization was for us important in view of the analysis of the decoher-
ence process presented in Chap.5, in order to assign via the quantum Fisher information
a value to the correlations of the superpositions - an intrinsec property of the state.

In Chap.5 [25] we have studied how the useful quantum correlations created during the
quenched dynamics of the BJJ are affected by the presence of noise, such as phase noise
and particle losses. First, we have derived an exact solution for the quantum state of the
system at any time during the quenched dynamics in the presence of phase noise. The for-
mation of macroscopic superpositions of phase states has been shown to be robust against
phase noise, since decoherence occurs at a rate of the same order as phase relaxation,
independently of the total number of particles. As a consequence of this anomalously slow
decoherence, a scaling analysis of the optimum quantum Fisher information with the num-
ber of particles has allowed us to conclude that, for a realistic choice of noise strengths,
multicomponent superpositions are more useful for interferometry than either the two-
component superposition or squeezed states. These superpositions are built during the
dynamical evolution of a noiseless junction at times longer than for squeezed states, but
still depending inversely on the total number of particles, the first macroscopic superpo-
sition being formed at a time ∝ 1/

√
N . This is not the case for the two-component cat

state, which is formed at T/4 independent on N , and is thus more affected by the presence
of noise. Hence, in experiments aimed at preparing a useful state for interferometric appli-
cations based on the quenched dynamics of the BJJ, despite the presence of a decoherence
source such as phase noise it would be convenient to wait until times ∝ 1/

√
N , beyond the

regime of spin squeezing, and reach the regime of formation of the first multicomponent
macroscopic superpositions.

We have then considered the effect of one-body particle losses on the production of
cat states. We have generalized the exact solution of the density matrix presented in
Ref.[162] to the case in which an asymmetry in the parameters of the BJJ is taken into
account. Then, we have carried out a “spectroscopy” of the density matrix, revealing
that the states with lost particles, which are mixed in the total density matrix to the
state in the absence of losses, still display some “cat-like” features. For instance, their
Husimi distribution displays peaks, even if smoothened, corresponding to the components
of the superposition. The analysis of how much the useful quantum correlation built up
during the dynamics are affected by particle losses has been possible only in a qualitative
fashion, as no easy scaling relation of the Fisher information with the particle number
can be defined in this case. Finally, we have shown that it is possible to treat one-body
particle losses and phase noise analytically at the same time. This result can be extended
in principle to the case of two- and three-body losses, and is important in view of an
accurate comparison with the experiments.

Our study confirms the BJJ as a versatile and promising system in quantum metrology
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and for other applications in quantum information.

Dans cette thèse nous avons considéré la jonction Josephson bosonique dans le
régime quantique dans le cadre de l’approximation à deux modes, en étudiant en par-
ticulier certains aspects en relation avec l’information quantique.

En commençant par la caractérisation du système, dans le premier chapitre nous
avons étudié son “diagramme de phase”, en calculant les fluctuations de l’opérateur
de nombre relatif en fonction du rapport entre le couplage et les interactions inter-
atomiques, et de l’asymétrie des deux modes. Nous avons montré que ce diagramme
de phase présente une structure à lobes, causée par la dégénérescence d’états de Fock
adjacents dans la limite de hautes interactions. La dimension des lobes augmente
avec l’asymétrie, comme conséquence de la réduction du couplage effectif; cet effet
non-linéaire ne se trouve pas dans les jonctions Josephson supraconductrices.

Dans le chapitre 2 [31, 33] nous avons montré que la dynamique régie par les inter-
actions interatomiques seulement (dynamique “trempée”), en démarrant avec un seul
état cohérent, porte à la création de superpositions macroscopiques d’états cohérents.
Ces superpositions sont placées sur des plans parallèles à l’équateur de la sphère de
Bloch, notamment le plan équatorial même si l’état cohérent initial est symétrique
quant’à occupation atomique moyenne (“état de phase”). Ces états apparaissent à des
temps tq = T/(2q) fractions de la période T = 2π/χ, et ont un nombre de composantes
q qui varient dans le temps (ce résultat a été démontré également dans la Ref.[101]).
Nous avons ensuite montré que la création des superpositions macroscopiques peut
être optimisé à l’aide d’un protocole de contrôle optimal: une superposition de deux
états de phase (tout comme un état NOON) peut être créée avec une très grande
fidélité (∼ 99%) dans un temps T ′ = cTc, où Tc ∝ 1/N dépend inversement du nom-
bre d’atomes, et c est une constante (qui dépends en principe du nombre d’atomes).
Par exemple, c = 10 pour N = 300, ce qui conduit à un avantage par rapport à la
dynamique trempée en terme du temps de formation de la superposition. Une analyse
détaillée de la loi d’échelle suivie par la constante c avec le nombre d’atomes n’a pas
encore été effectuée.

Dans le chapitre 3 [32] nous avons abordé la détection des superpositions macro-
scopique d’états de phase. Nous avons montré que les distributions de probabilité des
valeurs propres de l’opérateur de moment angulaire collectif dans différentes directions
sont convenables pour détecter qualitativement ces états. En effet ces distributions de
probabilité permettent de caractériser la distribution de la phase de l’état, et de dis-
tinguer des superpositions macroscopiques des mélanges incohérents, puisque pour ces
dernières les distributions de probabilité n’ont pas de franges. En s’appuyant sur la
transformation de Radon, nous avons montré que la connaissance de ces distributions
de probabilité dans toutes les directions du plan équatorial permet de construire une
distribution bi-dimensionnelle, analogue aux distributions sur l’espace des phases, qui
porte les informations essentielles pour les états de superposition macroscopique.

Dans le chapitre 4 [25] nous avons abordé les applications à l’interférométrie. Nous
avons calculé l’information de Fisher et le paramètre de compression en fonction du
temps pendant la dynamique trempée de la BJJ, en les optimisant par rapport aux
possibles transformations unitaires qui décrivent un interféromètre linéaire. Cette
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analyse apporte qualitativement les mêmes résultats communiqués en Ref.[16], indi-
quant que l’état le plus utile dans des conditions idéales est la superposition de deux
états cohérents. C’est tout de même à noter que en Ref.[16] l’information de Fisher et
le paramètre de compression n’étaient pas optimisés. L’optimisation était pour nous
importante en vue de l’analyse du processus de décohérence présenté dans le chapitre
5, pour pouvoir assigner à l’aide de l’information de Fisher une valeur aux corrélations
de la superposition, qui sont une propriété intrinsèque de l’ état.

Dans le chapitre 5 [25] nous avons étudié comment les corrélations quantiques
créées pendant la dynamique trempée de la BJJ sont affectées par la présence de
bruits extèrnes, tels que le bruit de phase et la perte de particules. Dans un pre-
mier temps, nous avons dérivé une solution exacte pour décrire l’état quantique du
système à tout temps pendant la dynamique trempée en présence de bruit de phase.
Nous avons montré que la formation des superpositions macroscopiques d’états de
phase est robuste vis-à-vis du bruit de phase, étant donné que la décohérence survient
avec la même vitesse que la relaxation, et que cette vitesse ne dépend pas du nombre
d’atomes. Comme conséquence de cette décohérence lente, une analyse d’échelle de
l’information de Fisher optimale avec le nombre d’atomes nous a permis de conclure
que pour un choix réaliste de la force du bruit, les superpositions à beaucoup de com-
posantes sont plus utiles pour l’interférométrie que la superposition à deux composantes
d’une part, et les états comprimés d’autre part. Ces superpositions apparaissent pen-
dant l’évolution dynamique en l’absence de bruit à des temps plus longs par rapports
à ceux des états comprimés, mais qui dépendent encore inversement du nombre total
d’atomes, étant donné que la première superposition se forme à un temps ∝ 1/

√
N .

Ceci n’est pas le cas pour la superposition macroscopique à deux composantes, qui est
formée à T/4 indépendamment de N , et qui donc est plus affectée par la présence
de bruit. Donc, dans des expériences qui auraient pour but de préparer un état utile
pour l’interférométrie en reposant sur la dynamique trempée de la jonction Josephson
bosonique, malgré la présence de bruit de phase il serait convenable d’attendre jusqu’à
un temps ∝ 1/

√
N , au-delà de le régime de spin squeezing, rejoignant la régime de

formation des superpositions macroscopiques.

Ensuite, nous avons considéré l’effet des pertes à une particule sur la production
d’états de chat de Schroedinger. Nous avons généralisé la solution pour la matrice
densité présentée en Ref.[162] au cas où une asymétrie dans les paramètres de la
BJJ est prise en compte. Nous avons fait ainsi une “spectroscopie” de la matrice
densité qui a révélé que les états où des particules ont été perdues, qui sont mélangés
dans la matrice densité avec l’état en l’absence de perte de particules, ont encore des
caractéristiques en commun avec des états de chat. Par exemple, leur distribution de
Husimi possède encore des pics, toutefois amortis, qui correspondent aux composantes
de la superposition. L’analyse de comment les corrélations utiles produites pendant
la dynamique sont affectées par la perte de particules a été possible seulement de
manière qualitative, puisqu’il n’est pas simple de définir dans ce cas une loi d’échelle
pour l’information de Fisher avec le nombre de particules. Enfin, nous avons montré
qu’il est possible de traiter analytiquement les pertes à une particule et le bruit de phase
en même temps. Ce résultat peut être en principe étendu au cas de pertes à deux et
trois corps, et il est important dans la perspective d’une comparaison quantitative avec
les expériences.



§6.2 Prospective views 113

Nos études confirment que la jonction Josephson de Bose est un système promet-
teur pour la métrologie et pour d’autres applications en information quantique.

6.2 Prospective views

Several aspects in the field of bosonic Josephson junctions deserve to be further investi-
gated, especially regarding their application in quantum metrology, towards the imple-
mentation of a Heisenberg-limited interferometer, or the realization of Schroedinger’s cat
states, among others. A few theoretical questions in particular appear as natural exten-
sions of the present thesis. We provide in the following the detailed list.

6.2.1 Efficient reconstruction of macroscopic superpositions via mea-
surement of the momentum distribution

By looking at expression (1.44) and at the expression of the angular momentum operator
Ĵr given in Eq.(1.33) one immediately notes their mutual similarity. A very natural
question which arises is therefore the following: is it possible to reconstruct the angular
momentum eigenvalues distributions in the x − y plane Pφ(r) introduced in Chap.3 by
measuring the momentum distribution?

Let us consider the operator version of Eq.(1.44),

n̂(~p) = |φ0(~p)|2(N + Ĵx cos (pxd)− Ĵy sin (pxd)), (6.1)

where 〈n̂(~p)〉 = n(~p) gives Eq.(1.44). As seen in Eq.(6.1), each value of the momentum
px selects a direction in the x − y plane of the angular momentum space. For instance,
fixing pxd = π (we note by ~̄p the three-dimensional vectors satisfying this condition)
leads to n̂(pxd = π) = |φ0(~̄p)|2(N + Ĵx). Suppose that a one shot measurement of the
observable n̂(~p) is performed. Hence, under knowledge of the gaussian envelope |φ0(~̄p)|2
and of the total number of particles N , from the eigenvalue of n̂(pxd = π) we can extract
an eigenvalue of Ĵx. Analogously, the value at n̂(pxd = π/2) yields an eigenvalue for
Ĵy, and so on, for each direction. In practice, for each shot the curve n(~p) should be
devided in bins; the center of each bin identifies a direction in angular momentum space,
while the count in each bin provides an outcome for an angular momentum operator.
Repeating many times this procedure would allow to reconstruct the histograms for the
angular momentum operators eigenvalues distributions in various directions of the x− y
plane Pφ(r) as explained in Chap.3 (see Fig.3.3), and if wished the two-dimensional quasi-
probability distribution f(x, y).

What is surprising with this procedure is that outcomes of observables which are not
mutually commuting could be apparently simultaneously obtained with a single shot of
the momentum distribution n̂(~p). We expect such a procedure to be realizable in the
regime in which the number of particles is large.

A possible recipe to demonstrate the feasability of this protocol is based on ref-
erences [166, 167]. By using the N -point probability distribution P (~r1, ~r2, ..., ~rN ) =
〈ψ̂†(~r1)ψ̂†(~r2)...ψ̂†(~rN )ψ̂(~rN )...ψ̂(~r1)〉 corresponding to the state of interest, one could sim-
ulate various shots of the spatial disribution of N -particles after a time of flight, analo-
gously to Refs. [166, 167]. The momentum distribution would be obtained from it via
the scaling law n(~pt/m) = n(~r) [35, 46]. Since this procedure attempts to map out the
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correlations in the equatorial plane of the Bloch sphere, it is more useful for states with
a structure in that plane, as indeed phase cat states (see Chap.3). A similar procedure
has been followed in Ref.[101] to map out the phase profile (i.e., the projected Husimi
distribution Q(π/2, φ)) of a phase cat state.

Once the simulation described above has shown the reliability of this method, one could
try an experimental verification by using available data for the momentum distribution,
e.g. by reconstructing the distributions Pφ(r) in various directions for a phase state. A
further questions which arises in this context is how the resolution in the directions which
can be reconstructed is related to the total number of particles and to the number of
measurements. A finite resolution on the spatial measurement of the particles (size of the
detectors) should be also taken into account (see Ref.[166]).

6.2.2 Particle losses and comparison with the experiments

Although in Sec.5.3 we have developed a treatment to include the effect of particle losses
and phase noise on the same footing, and we dispose of an analytical expression for the
visibility in the presence of both noise sources, a direct comparison with experimental
data seems to be difficult. There are mainly two reasons for this: first of all, one would
need to dispose of sufficiently good data in order to decide which loss process is the most
important between one-, two- or three-body losses. This could be done e.g. by means
of a fit of the visibility expression in the presence of different kind of losses separately,
and by looking at which one present the best agreement. To do this, an expression of
the visibility in the presence of two- and three-body losses analogous to Eq.(5.60) should
be derived, which seems to be feasable (one could also think of deriving an expression
including the effect of several sources of losses at the same time). Secondly, a precise
comparison with the experiments would also require to take into account the dependence
of the relevant parameters which enter the BJJ model on the particle number (and on the
site occupation in the case of the external BJJ), according to the discussion presented in
Sec.1.3.1.a. Despite the fact that we have neglected this dependence in our derivation, the
fit of the visibility decay for the internal set-up that we have mentioned in Sec.5.1.2, which
allowed us to extract an estimate for the noise correlation function in the non-markov
regime, is still qualitatively meaningful. An argument as to why this is the case relies on
the fact that at short times the contribution of the unitary dynamics to the damping of the
visibility in Eq.(5.14) depends on the factor Nχ2; in the set-up of Ref.[8], an experimental
estimation of the dependence of the interaction constant χ from the particle number yields
χ ∝ 1/

√
N , so that that the product Nχ2 is approximatively constant at varying N . As a

consequence, the visibility decay is not affected by particle losses in a first approximation
[168]. A quantitative investigation of this point would be nevertheless interesting.

6.2.3 Controlled creation of cat states in the presence of atom losses
and phase noise

As we have mentioned in Ch.2, the present decoherence rate in the experiments is too high
to permit the creation of cat states by means of the quenched dynamics of the BJJ, or even
by means of our optimal control protocol presented in Sec.2.5.3 (see also Ref.[33]). Once
the main sources of noise and their decoherence rates have been identified (see comments
above), an ambitious project would be thus to provide a protocol for the controlled creation
of cat states, able to take into account the effect of phase noise and particle losses, with the
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objective of making the experimental realization of such states possible. One could think
to proceed in an analogous way as presented in Sec.2.5.3: first, by a pre-study based on a
geometrical approach. To do this, one could use a semi-classical model for the dynamics
of the BJJ in the presence of atom losses and phase noise, as developped in Ref.[169]. A
verification of the validity of such a protocol by a full numerical calculaton of the fidelity
should clearly follow. Then, the geometrical solution for the control field K(t) could be
again used as a trial for a full numerical algorythm. Such a full numerical calculation
would be probably a challenging task, since as we have seen in Sec.5.2 the dimension of
the total Hilbert space when losses are affecting the system scales as N2.

6.2.4 Dynamics in optical lattices

A further extension of our work would be to study the quantum dynamics of a M -site
optical lattice, occupied by N bosons. For instance, one could generalize the calculation of
the quantum state produced after a quench which we have presented for the two-sites case
in Ch.2, in the case of a M -site lattice. An approximated version of such a calculation has
been carried out [101, 104, 170], in which the initial “superfluid” state (theM -site version
of the strongly coupled state for the BJJ) is described by the product state |ψ〉 =∏M

i=1 |αi〉,
where |α〉i = e−|α|2/2∑

n
αn√
n!
|n〉i is the Glauber coherent state in the site i. This is a good

approximation in the case in which the total particle number and the number of sites are
large, which is not always the case in experiments [170]. We propose to use a formalism
based on generalized SU(M) coherent states [27, 162]. In such a framework, a generalized
coherent state is defined as the displacement of a reference state as

|~y〉 = R̂(~y)|N, 0, 0...., 0〉 = e
∑M

k=2 y1kJk1−y∗1kJ
†
k1 |N, 0, 0...., 0〉

=
1√
N !

(

M
∑

k=1

xkâ
†
k

)N

, (6.2)

where the SU(M) generators Jjk = â†j âk satisfy [Ĵjk, Ĵmn] = Ĵjnδkm− Ĵmkδnj , x1 = cos |y|
and xk = sin |y|

|y| yk for k ≥ 2 [27]. Note the analogy of Eq.(6.2) with Eqs.(1.32) and

(1.29), which are recovered when M = 2 by setting y = θ/2e−iφ. The ground state of
the Hamiltonian (5.32) is given by Eq.(6.2) with xk = 1 for each k [162, 170]. The first
purpose would be to show that under a quench, after a fraction of the period the state is
found in a superposition of generalized coherent states of the form (6.2).

This formalism also allows to treat the 4-mode set-up advanced in Ref.[171], in which
two atomic species are trapped in a double-well external potential, so that four modes
are naturally involved. Such a system is a promising tool to demonstrate entanglement
between spatially separated parties, as in the Einstein-Podolski-Rosen paradox [171, 172].
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Appendix A
Detection of macroscopic superpositions

A.1 Generating function of the distributions of the angu-

lar momentum operators eigenvalues for macroscopic
superpositions and incoherent mixtures of phase states

Let us now evaluate explicitely the generating function (3.14) for the q-component cat
state and the corresponding statistical mixture of coherent states. In the following we will
assume that N is even. With the definition ζ = η/2e−iφ [71] and by using Eqs.(2.25), the
generating function for cat states with an even number of components can be rewritten
as

hcatsφ (η) = 〈ψ(tq)|eζĴ+−ζ∗Ĵ− |ψ(tq)〉 = |u0|2
q−1
∑

k=0

q−1
∑

k′=0

〈αe−i
2πk′

q |eζĴ+−ζ∗Ĵ− |αe−i
2πk
q 〉 (A.1)

From the disentangling theorem (Eq. (A5) in Ref.[71]) we have

eζĴ+−ζ∗Ĵ− = e−τ
∗Ĵ−e− log(1+|τ |2)Ĵzeτ Ĵ+ (A.2)

The operator eτ Ĵ+ acts on the coherent state on the right sides of Eq.(A.2) as a changing
in the amplitude of the coherent states, due to

eτ Ĵ+ |α〉 =
(

1 + |α+ τ |2
)N/2

(1 + |α|2)N/2
|α+ τ〉

〈α′|e−τ∗Ĵ− =

(

1 + |α′ − τ |2
)N/2

(1 + |α′|2)N/2
〈α − τ | (A.3)

(similarly for the left hand side of Eq.(A.2)). Then, we need to calculate the action of the

operator eγĴz over two general coherent states, which gives

〈β′|eγĴz |β〉 =

=
1

(1 + |β|2)N/2
1

(1 + |β|2)N/2
N/2
∑

n=−N/2

N/2
∑

m=−N/2

(

N
N
2 + n

)1/2( N
N
2 +m

)1/2

βn+
N
2 β′∗(m+N

2
)〈m|eγĴz |n〉

=
e−γN/2

(1 + |β|2)N/2(1 + |β′|2)N/2
(

1 + ββ′∗eγ
)N

. (A.4)
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Using Eqs.(A.3) and (A.4), equation (A.2) becomes

〈α′|eζĴ+−ζ∗Ĵ− |α〉 = 1

(1 + |α|2)N/2
1

(1 + |α′|2)N/2
e−

γN
2
(

1 + (α+ τ)
(

α′ − τ
)∗
eγ
)N

(A.5)

with

τ =
ζ

|ζ| tan |ζ|

γ = − log
(

1 + |τ |2
)

(A.6)

Substituting equations (A.5) and (A.6) in Eq.(A.1) and using α = 1, we obtain finally for
even q

hcatsφ (η) = |u0|2
e−

γN
2

2N

q−1
∑

k=0

q−1
∑

k′=0

ckc
∗
k′

(

1 +
(

e
−i 2πk

q + τ
)

(

e
i 2πk′

q − τ∗
)

eγ
)N

(A.7)

while the mean over the corresponding mixture gives

hmixt
φ (η) =

1

q

e−
γN
2

2N

q−1
∑

k=0

(

1 +
(

e
−i 2πk

q + τ
)(

e
i 2πk

q − τ∗
)

eγ
)N

(A.8)

and, for odd q

hcatsφ (η) = |ũ0|2
e−

γN
2

2N

q−1
∑

k=0

q−1
∑

k′=0

c̃k c̃
∗
k′

(

1 +
(

e
−i 2πk

q
−iπ

q + τ
)

(

e
i 2πk′

q
+iπ

q − τ∗
)

eγ
)N

hmixt
φ (η) =

1

q

e−
γN
2

2N

q−1
∑

k=0

(

1 +
(

e−i
2πk
q

−iπ
q + τ

)(

ei
2πk
q

+iπ
q − τ∗

)

eγ
)N

(A.9)

This can be further simplified as

hmixt
φ (η) =

1

q

q−1
∑

k=0

(

| cos η
2
|+ i sin

η

2
sign

[

cos
η

2

]

sin

(

2πk

q
− φ

))N

hcatsφ (η) = hmixt
φ (η) (A.10)

+|u0|2
q−1
∑

k 6=k′=0

ckc
∗
k′

2N

(

| cos η
2
|
(

1 + e−i
2π(k−k′)

q

)

+ sin
η

2
sign

[

cos
η

2

]

(

ei(
2πk′

q
−φ) − e−i(

2πk
q

−φ)
))N

for an even number of components, while for an odd q one obtains Eqs.(3.18) and (3.19)
of the main text.

A.2 Effect of time noise in the reconstruction of the prob-
ability distribution Pφ(r)

In order to roughly estimate the effect on the reconstruction of the profile Pφ(r) of an error
in the time at which the measurements of the angular momentum operators are performed,
we extract Nmeas values of t distributed normally with a variance σ2 around the time tq at



§A.3 Rewriting the quasi-probability distribution f(x, y) 119

-10 -5 0 5 10
0

0,1

0,2

0,3

0,4

P(nx)  σ = 0
P(nx)  σ = Τ/50
P(nx)  σ = Τ/20
P(nx)  σ = Τ/10

M = 20, q = 3, nmeas = 20

r

Figure A.1: Eigenvalue distribution Pφ(r) corresponding to Ĵx (φ = π/2) for the three-
component coherent superposition with N = 20, in the case in which an error in the time
of the measurement is taken into account, at various values of the variance σ of the time
distribution.

which the q-component cat state is formed, i.e. according to p(t, tq) = e−
(t−tq)

2

2σ2 /(
√
2πσ).

Then, we average Pφ(r, t) = |〈r|ψ(t)〉|2 where |ψ(t)〉 is given by Eq.(2.19), obtaining thus

Pφ(r, tq) =
1

Nmeas

Nmeas
∑

i=1

Pφ(r, t). (A.11)

Such an estimate is correct only in the limit of an infinite number of measurement, which
allows to sample many times each time t, and to perfectly reconstruct each probability dis-
tribution Pφ(r, t). We illustrate the estimate (A.11) in Fig.(A.1). We see that a standard
deviation σ = 1/N is somehow critical, in the sense that for lower standard deviations the
probability distribution still displais the peaks corresponding to the cat state, while for
higher values the recognition of such state fails.

A.3 Rewriting the quasi-probability distribution f(x, y)

The probability distribution f(x, y) of Eq.(3.32) can be rewritten to change the interval
of integration. To do this, we first separate the contribution for positive and negative η
in Eq.(3.32), obtaining

f(x, y) =

(

1

2π

)2(∫ π

0
dηη

∫ π

0
dφhφ(η)e

iη(sin φx−cosφy) + I

)

(A.12)
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with

I =

∫ 0

−π
dη (−η)

∫ π

0
dφhφ(η)e

iη(sin φx−cosφy) =

∫ π

0
dη′η′

∫ π

0
dφhφ(−η′)e−iη

′(sinφx−cosφy),

(A.13)
where we set η′ = −η. Let us drop the prime. Due to the definition of the generating
function Eq.(3.14), the following property follows:

hφ(−η)e−iη(sin φx−cosφy) = 〈eiη(Jx sinφ−Jy cosφ)〉e−iη(sin φx−cosφy)

= 〈e−iη(Jx sin(φ+π)−Jy cos(φ+π))〉eiη(sin(φ+π)x−cos(φ+π)y)

= hφ+π(η)e
iη(sin(φ+π)x−cos(φ+π)y). (A.14)

This allows to rewrite Eq.(A.13), defining also φ′ = φ+ π, as

I =

∫ π

0
dηη

∫ π

0
dφhφ(−η)e−iη(sin φx−cosφy)

=

∫ π

0
dηη

∫ 2π

π
dφ′hφ(η)e

iη(sin φ′x−cosφ′y). (A.15)

Substitution of Eq.(A.15) in Eq.(A.12) yields to equation (3.33) of the main text.

A.4 Connection with the Wigner function

Referring to the definition in Eq.(3.11) taken from Ref.[116], let us consider the projection
along the equator, i.e.

Ws(x1, x2) =

∫ ∞

−∞
dx3Ws(~x) =

∫

SU(2)
d~ys(ξ)tr

[

ei~y
~J ρ̂
]

e−i(x1y1+x2y2)
∫ ∞

−∞
dx3e

−ix3y3

= (2π)

∫

SU(2)
d~ys(ξ)tr

[

ei(y1Jx+y2Jy)ρ̂
]

e−i(x1y1+x2y2)δ(y3). (A.16)

Now, with the parametrization of Ref.[116] we have

y1 = ξ sin θ sinφ

y2 = ξ sin θ cosφ

y3 = ξ cos θ. (A.17)

Since

δ (y3) = δ (ξ cos θ) =
δ
(

θ − π
2

)

ξ
, (A.18)

hence from Eq.(A.16) we obtain

Ws(x1, x2) =

∫

dξξs(ξ)

∫

dθ sin θ

∫

dφ
δ
(

θ − π
2

)

ξ

×tr
[

eiξ(sin θ sinφJx+sin θ cosφJy)ρ̂
]

e−iξ(x1 sin θ sinφ+x2 sin θ cosφ)

=

∫

dξdφs(ξ)tr
[

eiξ(sinφJx+cosφJy)ρ̂
]

e−iξ(x1 sinφ+x2 cos φ), (A.19)

which clearly displais the same structure as Eq.(3.33).



Appendix B
Coherent spin squeezing and quantum

Fisher information

B.1 Demonstration of Eq.(4.39) for the spin squeezing pa-

rameter

In the following we show that the spin squeezing parameter ξ2(t) in a Bose Josephson
junction is always optimized along a direction contained in the (yOz)-plane.

Let us observe that the angular momentum covariance matrixG(t) defined by Eq.(4.31)
has vanishing matrix elements Gxy(t) = Gxz(t) = 0. In fact, in the absence of noise this
matrix G(t) = γ(0)(t) is given by Eq.(4.34), and we have seen in Sec. 5.1.4 that it preserves
the same structure in the presence of phase noise. Due to this special structure of G(t),
the fluctuations of the angular momentum operator along an arbitrary direction n̂ given
by Eq.(2.8) is

(∆Jn(t))
2 =

∑

i,j=x,y,z

niGij(t)nj (B.1)

= sin2 θ sin2 φGxx(t) +
∑

i,j=y,z

niGij(t)nj .

The sum over i, j in the second line can be written as (sin2 θ cos2 φ + cos2 θ)n̂′TG′(t)n̂′,
where we introduced the notation G′(t) for the two-by-two submatrix of G(t) in the plane
(yOz) and the normalized vector

n̂′ =
nyŷ + nzẑ

√

sin2 θ cos2 φ+ cos2 θ
(B.2)

in this plane. Furthermore, we observe that during the dynamics of the noisy junction
one has 〈Ĵy〉t = 〈Ĵz〉t = 0 at all times. As a consequence, the expectation values of the
angular momentum operators along the directions defined by Eq.(2.7) are given by

〈Ĵp1〉t = cosφ〈Ĵx〉t
〈Ĵp2〉t = − cos θ sinφ〈Ĵx〉t . (B.3)
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Combining these results and using the fact that Gxx(t) ≥ 0, we obtain from Eq.(2.6)

Nν(t)2

4
ξ2~n(t) =

sin2 θ sin2 φGxx(t)

1− sin2 φ sin2 θ
+ n̂′TG′(t)n̂′

≥ G−(t) = min
n̂′

{

n̂′TG′(t)n̂′
}

(B.4)

= min
n̂∈(yOz)

{

n̂TG(t)n̂
}

where ν(t) = 2〈Ĵx〉t/N is the visibility and G−(t) the smallest eigenvalue of G′(t). Since
it is clear that the inequality in Eq.(B.4) is an equality for n̂ equal to the corresponding
eigenvector n̂−(t) of G−(t), this demonstrates that the squeezing is minimized along a
direction n̂−(t) contained in the (yOz)-plane. Combining Eqs.(4.28) and (B.4), we obtain
that the optimum coherent spin squeezing is given by Eq.(4.39).

B.2 Determination of the time t∗ when the optimization di-

rection of the Fisher information changes in the absence
of noise

If the number N of atoms is even, the direction of optimization n̂
(0)
F of the Fisher informa-

tion in a noiseless Bose Josephson junction is along x-axis at the time t2 = T/4 of formation
of the superposition of the two phase states |θ = π/2, φ = 0〉 and |θ = π/2, φ = π〉. These
phase states are indeed diametrically opposite on the equator of Bloch sphere along this

axis. Since n̂
(0)
F (τ) = n̂

(0)
+ (τ) is in the (yOz)-plane at times τ = 2πt/T ≪ 1 (see Sec.4.4),

the optimizing direction thus changes abruptly from the (yOz)-plane to the x-axis at some
time τ∗ ∈]0, π/2[ satisfying

γ(0)x (τ∗) = γ
(0)
+ (τ∗) . (B.5)

In this appendix we determine τ∗ explicitely in the limit of large total atom number
N , supposed to be even. We may infer from the previous discussion that τ∗ is neither
close to 0 nor close to π/2. Consequently, we look for a solution of the implicit equation
(B.5) in the interval τ ∈ [N−α, π/2 − N−α], α being a positive exponent strictly smaller
than 1/2. Introducing the variables u ≡ cos(τ) ∈ [0, cos(N−α)] and v ≡ cos(2τ) ∈
[− cos(2N−α), cos(2N−α)], we obtain with the help of Eqs.(4.35) and (4.37)

4(γ
(0)
+ (τ)− γ

(0)
x (τ))

N
= −(N − 1)vN−2 +Nu2N−2 (B.6)

+2(N − 1)u2N−4(1− u2) +O(Nu4N−8) +O(Nv2N−4) .

Setting γ
(0)
+ (τ) = γ

(0)
x (τ) gives the equation

(

2− 1

u2

)N−2

= 2− u2
N − 2

N − 1
+O(e−N

1−2α
) . (B.7)

For large N , the right-hand side of Eq.(B.7) is strictly larger than one and is of the order
of unity. Hence the solution must satisfy |2−u−2| > 1 and 2−u−2 ≃ ±1. We may exclude
the positive sign as the values u = ±1 correspond to τ ≃ 0 or τ = π outside the studied
time interval. The relevant solution u of Eq.(B.7) is thus close to 1/

√
3 and smaller than

this number. Let us note that for odd N ’s, such a solution does not exist; indeed, in this
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case Eq.(B.5) has no solution (see Sec.4.4). Let us set u = 1/(
√
3(1 + δ)). Then from

Eq.(B.7) we obtain

e(N−2) ln(1+6δ+O(δ2)) =
5

3
+O(δ) +O

(

1

N

)

(B.8)

from which we find

δ =
1

6N
ln

(

5

3

)(

1 +O

(

1

N

))

(B.9)

In terms of the dimensionless time τ∗ we get

τ∗ = arccos

(

1√
3

)

+
ln(5/3)

6
√
2N

+O

(

1

N2

)

. (B.10)
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Appendix C
Quantum Fisher information and coherent

spin squeezing at thermal equilibrium

C.1 Squeezing at T = 0, K = 0

The squeezing in the ground state of the BJJ at K = 0 is an indeterminate expression.
To evaluate its limiting value, we use the perturbation theory to the second order with
unperturbed Hamiltonian Ĥ0 = χĴ2

z , and ĤI = −2KĴx. The ground state is the only
non-degenerate state for the unperturbed Hamiltonian. The excited two-fold degenerate
levels are given by

|ψ(1)
n 〉 = |n〉 − 2K

∑

m6=n

〈m|Ĵx|n〉
E

(0)
n −E

(0)
m

|m〉

= |n〉+ K

χ





√

(

N
2 + n+ 1

) (

N
2 − n

)

(2n + 1)
|n+ 1〉+

√

(

N
2 − n+ 1

) (

N
2 + n

)

(−2n + 1)
|n− 1〉



 ,

while the ground state expansion yields

|ψ(1)
0 〉 = |0〉 − 2K

∑

m6=n

〈m|Ĵx|n〉
E

(0)
n − E

(0)
m

|m〉 = |0〉 + b (| − 1〉+ |1〉) , (C.1)

where we defined b = K
χ

√

(

N
2 + 1

)

N
2 ; the normalization is fixed by 〈ψ(1)

0 |ψ(1)
0 〉 = (1+2b2).
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Indicating with 〈Õ〉 ≡ 〈ψ(1)
0 |Ô|ψ(1)

0 〉
〈ψ(1)

0 |ψ(1)
0 〉

, with the use of Eq.(C.1) we obtain

〈J̃x〉 =
2b

(1 + 2b2)

√

(

N

2
+ 1

)

N

2

〈J̃y〉 = 〈J̃z〉 = 0

〈J̃2
x〉 =

1

4(1 + 2b2)

[

N

(

N

2
+ 1

)

+ 2b2
(

N

(

N

2
+ 1

)

+

(

N

2
− 1

)(

N

2
+ 2

))]

〈J̃2
y 〉 =

1

4(1 + 2b2)

[

N

(

N

2
+ 1

)

− 2b2
(

N

2
− 1

)(

N

2
+ 2

)]

〈J̃2
z 〉 =

2b2

(1 + 2b2)

〈 ˜JxJy〉 = 〈 ˜JxJz〉 = 0

〈 ˜JyJz〉 =
−b

i(1 + 2b2)

√

(

N

2
+ 1

)

N

2
.

(C.2)

Due to Eqs.(C.2), we find that the direction which optimizes the squeezing is z. With the
definition (2.6) we then obtain

ξ2 = ξ2z =
N∆2Ĵz

〈Ĵx〉2 + 〈Ĵy〉2
=

N2b2

4b2
(

N
2 + 1

)

N
2

, (C.3)

which renders Eq.(4.32) of the main text.

C.2 Quantum Fisher information and coherent spin squeez-
ing at thermal equilibrium

We want to calculate the Fisher information and the squeezing (optimized over all the
possible directions) at thermal equilibrium when T = 1

KBβ
is non zero, at λ = 0, in the

framework of the two-mode Hamiltonan (1.24) modeling the bosonic Josephson junction.
As for Sec.4.3 of the main text, this provides an indication of the usefulness of the equi-
librium state of the BJJ for sub-shot noise phase estimation in atom interferometry, when
the temperature is finite. We focus again on the case of symmetric modes λ = 0.

The density matrix at temperature T is

ρ̂ =
∑

k

pk|k〉〈k| (C.4)

where |k〉 are the N + 1 eigenstates which diagonalize the Hamiltonian Eq.(1.24) Ĥ|k〉 =
Ek|k〉, and the pks are given by the Gibbs distribution

pk =
e−βEk

Z
(C.5)

with Z the partition function Z =
∑

k e
−βEk .
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Figure C.1: Energy spectrum from the Hamiltonian diagonalization as a function of r =
K/χ, with N = 10, λ = 0. For r ∼ 0 the spectrum is quadratic (see Sec.C.2.1), while for
r ≫ 1 the level spacing is linear (see Sec.C.2.2).

To compute the Fisher information, we use the covariance matrix (4.29) introduced in
Sec.4.2. In reference to Eq.(4.29), we introduce the notation

ei,j(l, k) = 〈l|Ji|k〉〈k|Jj |l〉, (C.6)

which allows to rewrite the covariance matrix as

[γC ]i,j =
1

2

∑

l,k

(pl − pk)
2

pl + pk
ei,j(l, k). (C.7)

As we have done in Sec.4.3, we first tackle in the next following two subsections the
limiting cases of the problem, namely the limit K = 0 and χ = 0. We will address
numerically the general case.

C.2.1 Limiting case I: K = 0, λ = 0

In this limit the Hamiltonian is reduced to Ĥ = χĴ2
z , with as eigenstates the Fock states

given by Eq.(1.26), with double degeneracy except the ground state n = 0. Therefore

Z = 1 + 2

N
2
∑

n=1

e−χβn
2

(C.8)

and ρ̂ =
∑

N
2
n=1 pn|n〉〈n| with pn = e−χβn

2
/Z. From (C.6) it is easy to calculate

exx(l, k) =
1

4

[

(
N

2
+ k + 1)(

N

2
− k)δl,k+1 + (

N

2
− k + 1)(

N

2
+ k)δl,k−1

]

eyy(l, k) = exx(l, k)

exy(l, k) = − 1

4i

[

(
N

2
+ k + 1)(

N

2
− k)δl,k+1 − (

N

2
− k + 1)(

N

2
+ k)δl,k−1

]

(C.9)
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The other elements do not contribute since they imply δl,k, and they appear multiplied
by (pl − pk)

2 in Eq.(4.29). The corresponding probability factors are

(pk+1 − pk)
2

pk+1 + pk
=

1

Z

(e−χβ(k+1)2 − e−χβk
2
)2

e−χβ(k+1)2 + e−χβk2
=

1

Z

2e−
χβ
2 (k

2+(k+1)2) sinh2(χβ2 (2k + 1))

cosh(χβ2 (2k + 1))

(pk−1 − pk)
2

pk−1 + pk
=

1

Z

(e−χβ(k−1)2 − e−χβk
2
)2

e−χβ(k−1)2 + e−χβk2
=

1

Z

2e−
χβ
2 (k

2+(k−1)2) sinh2(χβ2 (−2k + 1))

cosh(χβ2 (−2k + 1))

and then we obtain

γxx =
1

4Z

N
2
∑

k=−N
2

[

(
N

2
+ k + 1)(

N

2
− k)

e−
χβ
2
(k2+(k+1)2) sinh2(χβ2 (2k + 1))

cosh(χβ2 (2k + 1))
+

+(
N

2
− k + 1)(

N

2
+ k)

e−
χβ
2
(k2+(k−1)2) sinh2(χβ2 (−2k + 1))

cosh(χβ2 (−2k + 1))

]

=
1

2Z

N
∑

k=0

(k + 1)(N − k)
e−

χβ
2
((k−N

2
)2+(k−N

2
+1)2) sinh2(χβ2 (2(k − N

2 ) + 1))

cosh(χβ2 (2(k − N
2 ) + 1))

= γyy

The covariance matrix is then given by

γ =





γxx 0 0
0 γxx 0
0 0 0



 (C.10)

which is already diagonal. Therefore the Fisher information is optimum along any degen-
erate direction in the Ĵx − Ĵy plane, which reflects the fact the Hamiltonian in this limit
does not depend on Ĵx nor on Ĵy, and its value is

FQ = 4γxx. (C.11)

(the squeezing in this regime is calculated numerically).

For T → ∞, we find ρ̂∞ = 1
N+1

∑

N
2

n=−N
2

|n〉〈n|, which has optimum Fisher information

FQ = 0 as pl = pk for each k, l in Eq.(4.29). Here the squeezing parameter is infinite.

C.2.2 Limiting case II: χ = 0

The Hamiltonian in this regime reduceds to Ĥ = −2KĴx; its eigenstates are the states
|nx〉 satisfying Ĵx|nx〉 = nx|nx〉, with −N

2 ≤ nx ≤ N
2 . Hence the partition function is

given by

Z =

N
2
∑

nx=−N
2

e2Kβnx =
sinh(Kβ(N + 1))

sinh(Kβ)
(C.12)

and ρ̂ =
∑

N
2

nx=−N
2

pnx|nx〉〈nx| with pnx = e2Kβnx/Z. To calculate the Fisher information,

we rotate the basis (the Fisher information is left unvaried), and we calculate the covari-

ance matrix corresponding to the density matrix ρ̃ =
∑

N
2

n=−N
2

pn|n〉〈n| where Ĵz|n〉 = n|n〉,
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and pn = e2Kβn/Z. The matrix elements (C.6) are the same as in Eq. (C.9), but now the
corresponding probability factors are given by

(pk+1 − pk)
2

pk+1 + pk
=

1

Z

(e2Kβ(k+1) − e2Kβk)2

e2Kβ(k+1) + e2Kβk
=

1

Z

2e2Kβ(k+1/2) sinh2(Kβ)

cosh(Kβ)

(pk−1 − pk)
2

pk−1 + pk
=

1

Z

(e2Kβ(k−1) − e2Kβk)2

e2Kβ(k−1) + e2Kβk
=

1

Z

2e2Kβ(k−1/2) sinh2(Kβ)

cosh(Kβ)

Then we obtain

γ̃xx =
1

4Z

sinh2(Kβ)

cosh(Kβ)

N
2
∑

k=−N
2

[

(
N

2
+ k + 1)(

N

2
− k)e2Kβ(k+1/2) + (

N

2
− k + 1)(

N

2
+ k)e2Kβ(k−1/2)

]

=
1

2Z

sinh2(Kβ)

cosh(Kβ)

N
∑

k=0

(k + 1)(N − k)e2Kβ(k−
(N−1)

2
) = γ̃yy (C.13)

Coming back to the original basis via the identification γzz = γ̃xx, γyy = γ̃xx we obtain

γ =





0 0 0
0 γzz 0
0 0 γzz



 (C.14)

From Eq.(C.14) it is easily seen that the Fisher information is optimum along any degen-
erate direction in the Ĵy − Ĵz plane, reflecting the fact the Hamiltonian does not depend
on Ĵy nor on Ĵz. Its optimum value is

FQ = 4γzz = 4γ̃xx (C.15)

.

For T → ∞, ρ̂∞ = 1
N+1

∑

N
2

nx=−N
2

|nx〉〈nx| which has optimum Fisher information

FQ = 0 as pl = pk for each k, l in Eq.(4.29).

C.2.3 Intermediate regime

In Figs.(C.2.3) and (C.2.3) are presented the results of the numerical calculation of the
Fisher information and the squeezing at various temperatures in the intermediate regime,
as a function of the ratio r = Kχ.

We observe an interesting non monotonic behaviour of the Fisher information for
the intermediate temperature regime, e.g. KBT/χ = 1.31 as in Fig.C.2.3. The Fisher
information has in this case a maximum at r = K/χ ∼ 1 (for N = 10). This can be
understood as resulting from the competition between the following two effect: 1) At
T = 0 the region close to r = 0 is more entangled since the state is close to a Fock state;
2) In the same region the energy levels are less separated from each other, and therefore
it is easier to populate thermically many of them, compared to the region at high r where
the levels are more separated. (see Fig.C.2).

The squeezing exhibits the same behaviour. However, there is some regime (e.g. top
panel in Fig.C.2.3) in which the Fisher information is above the shot noise limit (here
N = 10) and therefore recognizes useful states, while squeezing does not.
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We have checked numerically that in the intermediate regime of generic r the squeezing
is always optimized in the z-direction, while the Fisher information is optimum in a non
trivial direction in angular momentum space which involves all of the components Ĵi. Such
direction is changed by the presence of temperature.

C.3 Remarks on the validity of the two-mode model

The presence of a finite temperature may induce the population of more than two one-
particle levels of the double-well potential realizing the external BJJ, thus invalidating
the two-mode approximation. In the experiments of Ref.[13], however, the lowest en-
ergy of transversal excitation, set by the trap frequencies, is approximatively twice the
temperature, and the two-mode approximation still yields good indications [62].

A multi-mode approach has been followed in Ref.[173] to study the effect of temper-
ature on the dynamical formation of squeezed states (see Ch.2), by means of a fully non
perturbative semiclassical field simulation. The result of this analysis is that the scaling
of the best spin squeezing ξ2best with the number of particles N is strongly modified by the
finite temperature, and ξ2best saturates to a constant value independent on N .
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Figure C.2: N = 10. Fisher information (blue) and fisher-like measureN/ξ2 obtained from
the squeezing (purple) as a function of r = K/χ (χ = 1) at KBT/χ = 1.31 (T = 10−11K).
Top panels: zoom at shorter r = K/χ scales. Blue gridline: Eq.(C.11) (K = 0, λ = 0).
Orange gridline: Eq.(C.15) (χ = 0).
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Figure C.3: N = 10. Fisher information (blue) and fisher-like measureN/ξ2 obtained from
the squeezing (purple) as a function of r = K/χ (χ = 1) at KBT/χ = 13.1 (T = 10−10K).
Top panels: zoom at shorter r = K/χ scales. Blue gridline: Eq.(C.11) (K = 0, λ = 0).
Orange gridline: Eq.(C.15) (χ = 0).



Appendix D
Decoherence effects induced by phase noise

D.1 Partial suppression of phase noise by spin-echo pulses

In a recent experiment [8], phase noise was partially suppressed by a spin-echo protocol
[154]. Let us assume that the state of interest (for instance, a squeezed state in [8]) is
produced after an evolution time t under the Hamiltonian (5.1). In the spin-echo protocol,
two short π-pulses are send by a laser in resonance with the energies of the two modes at
times t/2 and t. The effect of these laser pulses is to reverse the direction of Ĵz, mapped
into −Ĵz, in the evolution between t/2 and t. Since the noiseless part of the Hamiltonian
(5.1) is quadratic in Ĵz, it is not affected by the pulses, while the noise part is linear in Ĵz
and is reversed after half of the evolution. This allows to suppress the effect of the noise if
it is strongly correlated between the two time intervals [0, t/2] and [t/2, t], which appears
to be the case in the experiment of Ref.[8] (see also [62]).

Our model in Sec.5.1.1.a can be easily adapted to take into account the residual effect of
phase noise when the spin-echo pulses are applied. The derivation follows the same lines as
in the main text. Eq.(5.10) still holds provided that we use φ(t) ≡

∫ t
0 dτ Sgn(τ − t/2)λ(τ),

with the sign function defined as Sgn(x) = ±1 for ±x > 0. This leads to

a2echo(t) =

∫ t

0
dτ

∫ t

0
dτ ′ Sgn(τ − t

2
)Sgn(τ ′ − t

2
)h(τ − τ ′). (D.1)

We focus on the short time regime t < tc. The approximation h(τ) ≃ h(0) yields no
contribution to a2echo(t). An expansion to second order is needed, h(τ) = h(0) + τh′(0) +
τ2h′′(0)/2 + O(τ3). Using the parity h(−τ) = h(τ) of the correlation function (which
implies h′(0) = 0), we obtain

a2echo(t) = −h
′′(0)
16

t4 . (D.2)

Note that a2echo(t) is positive since h
′′(0) < 0. This follows from the fact that the correlation

function h is of positive type and hence has a positive Fourier transform. Comparing Eqs.
(D.2) and (5.12), one sees that the effect of the noise at times t < tc is considerably
reduced with respect to the case in absence of spin echo.
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D.2 Husimi distribution of a two-component macroscopic

superposition in the presence of phase noise

In this Appendix we want to calculate the projected Husimi functionQ(φ) ≡ Q(θ = π/2, φ)
defined in Chap.3, for the two-component macroscopic superposition (2.26). Let us focus
on the case N even. Due to Eq.(2.26) and (5.3), the density matrix of the two-component
superposition formed in the presence of noise (assuming λ̄ = 0) is given by

ρ̂(t2) =
1

2

∫ ∞

−∞
dφ0f(φ0, t2) (|φ0〉〈φ0|+ |φ0 + π〉〈φ0 + π|

+c0c
∗
1|φ0〉〈φ0 + π|+ c1c

∗
0|φ0 + π〉〈φ0|) , (D.3)

and naturally decomposes in a diagonal part ρ̂d, in the sense of the components of the su-
perposition, and an off-diagonal part ρ̂od, as we have seen in Sec.5.1.3.a. As a consequence,
the Husimi distribution can be expressed as

Q(φ) = 〈φ|ρ̂d|φ〉+ 〈φ|ρ̂od|φ〉. (D.4)

From Eq.(1.31) we have 〈φ|φ0〉 = e−i
φ−φ0

2 cosN
(

φ−φ0
2

)

and 〈φ|φ0+π〉 = e−i
φ−φ0

2 (i)N sinN
(

φ−φ0
2

)

.

Hence from Eqs.(D.3) and (5.9) we obtain for the diagonal contribution in Eq.(D.4)

〈φ|ρ̂d|φ〉 = |u0|2
1√
2πa2

∫ ∞

−∞
dφ0e

− φ20
2a22 (|〈φ|φ0〉|2 + |〈φ|φ0 + π〉|2)

= |u0|2
1√
2π

∫ ∞

−∞
dpe−

p2

2

(

cos2N
(

φ− pa2
2

)

+ sin2N
(

φ− pa2
2

))

,(D.5)

where we have defined φ0 = pa2 and a2 ≡ a(t2), a(t) being the noise parameter defined in
Eq.(5.7). The off-diagonal part of the superposition yields instead

〈φ|ρ̂od|φ〉 = |u0|2
1√
2πa2

∫ ∞

−∞
dφ0e

− φ20
2a22 (c0c

∗
1〈φ|φ0〉〈φ0 + π|φ〉+ c∗0c1〈φ|φ0〉〈φ0 + π|φ〉)

= |u0|2(c0c∗1
(i)N

2N
+ c∗0c1

(−i)N
2N

)
1√
2π

∫ ∞

−∞
dpe−

p2

2 sinN (φ− pa2) = 0, (D.6)

where we have used that, due to the particular expression of the coefficients ck for the
two-component superposition, c0c

∗
1(i)

N + c∗0c1(−i)N = i(−1)N/2(i)N − i(−1)N/2(−i)N =
iN+1(1 − (−1)N ) = 0 (see the definition in Eq.(2.25)). Hence, in the case of the two-
component phase cat state (2.26), the phase profile is given by the diagonal part of the
density matrix only. From Eqs.(D.4), (D.5) and (D.6) we are then left with

Q(φ) = |u0|2
1√
2π

∫ ∞

−∞
dpe−

p2

2

(

cos2N
(

φ− pa2
2

)

+ sin2N
(

φ− pa2
2

))

. (D.7)

The function to be integrated cos2N
(

φ−pa2
2

)

is 2π−periodic and peaked around the value

φ−pa2
2 = kπ, for k integer. Therefore, in the limit of large N we can consider the expo-

nential as a constant function in an interval −π
2 + kπ < φ−pa2

2 < π
2 + kπ around the peak
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(the regime of validity of this approximation is discussed in detail in Sec.D.2.1). Hence,
setting φ−pa2

2 = j, we can write

∫ ∞

−∞
dpe−

p2

2 cos2N
(

φ− pa2
2

)

=
2

a2

∫ ∞

−∞
dje

−
(

2j−φ
a2

)2
/2
cos2N j

=
2

a2

∞
∑

k=−∞

∫ π
2
+kπ

−π
2
+kπ

dje
−
(

2j−φ
a2

)2
/2
cos2N j

≃ 2

a2

∞
∑

k=−∞
e
−
(

2kπ−φ
a2

)2
/2
∫ π

2
+kπ

−π
2
+kπ

dj cos2N j

=
2

a2

∞
∑

k=−∞
e
−
(

2kπ−φ
a2

)2
/2
I1 (D.8)

where I1 =
∫

π
2
−π
2

dj cos2N j =
√
πΓ(N+1/2)

Γ(N+1) . Analogous considerations hold for the sine

function sin2N
(

φ−pa2
2

)

, peaked at φ−pa2
2 = (2k + 1)π2 , yielding to

∫ ∞

−∞
dpe−

p2

2 sin2N
(

φ− pa2
2

)

=
2

a2

∞
∑

k=−∞

∫ kπ+π

kπ
dje

−
(

2j−φ
a2

)2
/2
sin2N j

≃ 2

a2

∞
∑

k=−∞
e
−
(

(2k+1)π−φ
a2

)2
/2
I2 (D.9)

with I2 =
∫

π
2
−π
2

dj sin2N j =
√
πΓ(N+1/2)

Γ(N+1) = I1. Substituting Eq.(D.8) and (D.9) in Eq.(D.7)

gives

Q(φ) = |u0|2
√
2π

a2
Qcost

+∞
∑

k=−∞

(

e
−
(

2kπ−φ
a2

)2
/2

+ e
−
(

(2k+1)π−φ
a2

)2
/2
)

, (D.10)

where we have introduced the Husimi function Qcost corresponding to the uniform density
matrix ρ̂∞ = 1

2π

∫ 2π
0 dφ|φ〉〈φ| defined in Eq.(5.20),

Qcost = 〈φ|ρ̂∞|φ〉 = 1

2π

∫ 2π

0
dφ′ cos2N (φ− φ′) =

1

2π

2
√
πΓ
(

1
2 +N

)

Γ (1 +N)
(D.11)

(in Eq.(D.11) we made use of the overlap formula 〈φ|φ′〉 =
(

1+e−i(φ′−φ)

2

)N
). Finally, we

remark that the two sums appearing in Eq.(D.10) can be expressed as a single sum over
all the integers k, i.e.

+∞
∑

k=−∞

(

e
−
(

2kπ−φ
a2

)2
/2

+ e
−
(

(2k+1)π−φ
a2

)2
/2
)

=

+∞
∑

k=−∞
e
−
(

kπ−φ
a2

)2
/2

= Θ3

(

−φ, e−2a22

)

,

(D.12)
where Θ3 is the Theta function defined as Θ3 (u, q) = 1+2

∑∞
n=1 q

n2
cos(2nu) [156]. Sub-

stituting Eq.(D.12) in Eq.(D.10), and noticing that |u0|2 = 1/2, finally yields expression
(5.21) of the main text for the projected Husimi distribution of the two-component phase
cat state.
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D.2.1 Regime of validity of the approximation

We want now to discuss when the approximation that we have done to derive Eq.(D.8) is
valid, i.e. where we are allowed to identify

∫ π
2

−π
2

dje
−
(

2j−φ
a2

)2
/2
cos2N j ≃ e

−
(

φ
a2

)2
/2
∫ π

2

−π
2

dj cos2N j, (D.13)

considering as constant the exponetial function in the interval. First, we note that since
the cosine function is strongly peaked for large N , we have to assume this fact only in the
interval in which the cosine is well above zero. We can take such an interval to be the
width at half amplitude of the cosine function in the variable j around each peak, defined
by the condition

cosN j =

(

1− j2

2
+ o(j4)

)N

≃ e
N ln

(

1− j2

2

)

∼ e−N
j2

2 ≡ 1

2
, (D.14)

from which we derive j =
√

2 ln 2
N ∼ 1√

N
. Now, in integrals of the kind 2

a

∫∞
−∞ dje−(

2j−φ
a )

2
/2 cos2N j,

the exponential function can be considered constant in the region − 1√
N
< j < 1√

N
if the

condition

a≪ 1√
N

(D.15)

is satisfied. At the same time, we want e−(
2j−φ

a )
2
/2 = e−

2j2

a2 e−
φ2

a2 e
2jφ

a2 ∼ e−
φ2

a2 , which is
true if |2j(φ−j)| ≪ a2. Since we want this condition to hold for each φ, we have to choose
the strongest version j ≪ a2, which in the interval of interest implies

a2 ≫ 1√
N
. (D.16)

Condition (D.16), together with the condition Eq.(D.15), yields as a regime in which we
expect our approximation to be valid the range of noise correlations N−1/4 ≪ a≪ N−1/2.

D.3 Squeezing as a function of the angle under the action
of phase noise

As we have seen in Sec.5.1.4, during the quenched dynamics of the BJJ, possibly in the
presence of phase noise, squeezed states are developed at short times. The squeezing degree
and the direction of optimum squeezing vary with time. Stimulated by the measurements
reported in Refs.[8, 9] from the definition (2.6) we can compute the spin squeezing pa-
rameter as a function of the direction, parametrized by the angle θ, at fixed time. As
demonstrated in Appendix B.1, the direction of squeezing is contained in the plane (yOz),

and we have tr
[

ρ̂Ĵz

]

= tr
[

ρ̂Ĵy

]

= 0. Hence, using the definition 4.40 for the angle θ, the

squeezing degree as a function of the angle is given by

ξ2(t) = 4

(

∆Ĵn(θ)
)2

Nν(t)
, (D.17)
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where the visibility ν(t) is given in Eq.(5.14), and
(

∆Ĵn(θ)
)2

are the fluctuations of the

collective angular momentum operator in the direction θ. The latter can be calculated as

(

∆Ĵn(θ)
)2

=
[

sin2 θtr
[

ρ̂Ĵ2
y

]

+ cos2 θtr
[

ρ̂Ĵ2
z

]

− cos θ sin θtr
[

ρ̂ĴyĴz + ρ̂ĴzĴy

]]

=



−cos 2θ

2
(tr
[

ρ̂Ĵ2
y

]

− tr
[

ρ̂Ĵ2
z

]

)− sin 2θ

2
tr
[

ρ̂
{

Ĵy, Ĵz

}]

+
tr
[

ρ̂Ĵ2
y

]

+ tr
[

ρ̂Ĵ2
z

]

2





= −
(

Ã

2
cos 2θ +

B̃

2
sin 2θ

)

+
C

2

=
C

2
−
√

Ã2 + B̃2

2
cos (2(θ − δ)) (D.18)

where we defined

Ã = (tr
[

ρ̂Ĵ2
y

]

− tr
[

ρ̂Ĵ2
z

]

) = G′
yy −G′

zz =
N(N − 1)A

8

B̃ = tr
[

ρ̂
{

Ĵy, Ĵz

}]

= G′
yz +G′

zy =
N(N − 1)B

8

C = tr
[

ρ̂Ĵ2
z

]

+ tr
[

ρ̂Ĵ2
y

]

= G′
yy +G′

zz

δ =
1

2
arctan

B̃

Ã
, (D.19)

G′ being the fluctuation matrix given in Eq.(5.27). The last step is demonstrated using

that cos 2(θ − δ) = cos 2θ cos 2δ + sin 2θ sin 2δ = (Ã cos 2α + B̃ sin 2θ)/
√

Ã2 + B̃2; the
quantities A,B and δ have been previously defined in Ref.[11].

The spin squeezing as a function of the angle θ at various noise levels is represented in
Fig.D.1. We see that the presence of phase noise shifts the position of the minimum with
respect to the noisless case, and increases the value of the minimum squeezing reached,
as can be expected. The analytical calculation of the correction of the minimum value
reached by the squeezing in the presence of noise for a large number of particles can be
found in Ref.[25].

The issue of a direct comparison of Eq.(D.18) with the experimental results presented
in Refs.[8, 9] is discussed in Sec.6.2.2.

D.4 Decoherence of a NOON state and a phase cat state
under phase noise

In this section, we analyze the decoherence process to which a NOON state and a phase
cat state undergo when the two states, taken as initial states, are subjected to phase noise
only, with no other additional dynamics; i.e, we consider as initial state |ψ(0)〉 the two
states

|ψPHASEβ
〉 =

1√
2
(|φ = 0〉+ eiβ |φ = π〉)

|ψNOONβ
〉 =

1√
2
(|N, 0〉 + eiβ |0, N〉), (D.20)
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ξ2(θ)

θ

Figure D.1: Coherent spin squeezing as a function of the angle θ at t = 18ms. Solid green
line: δλ = 0; blue dotdashed line: δλ = 5Hz; red dashed line: δλ = 10Hz. Here we have
considered values of the parameters close to the experimental ones: N = 400, χ = 0.13π.

and we assume that they are evolving under the action of the Hamiltonian H = −λ(t)Ĵz,
where λ(t) is a stochastic process (we will assume here for simplicity that λ = 0). Ev-
erything goes exaclty as in Sec.5.1 with the setting H(0) = 0, which implies in particular
that Eq.(5.10) for the system density matrix as a function of time is still valid, with
ρ̂(0)(t) = ρ̂(0), i.e.

〈n|ρ̂(t)|n′〉 = e−
a2(t)(n−n′)2

2 〈n|ρ̂(0)|n′〉. (D.21)

Let us first discuss the case of an initial phase cat state. The structure of the density
matrix ρ̂(0) of macroscopic superpositions of phase states has been analyzed in detail in
Sec.5.1.3.a. In particular, decomposing the initial density matrix into its diagonal and
off-diagonal parts ρ̂(0) = ρ̂d(0) + ρ̂od(0), from Eq.(5.17) we have shown that the elements
in ρ̂d(0) which are the less affected by the noise are placed at n′ = n + 2 for the case
of a two component superposition of phase states (q = 2), such as the one given in the
first line of Eq.(D.20). Hence, they are dumped by a factor e−2a2(t). For the off-diagonal
part ρ̂od(0) given in Eq.(5.18), instead, the first non-zero elements out of the diagonal are

placed at n′ = n + 1, yielding an effective decoherence factor of e−
a2(t)

2 , inferior (but of
the same order of magnitude) to the one for relaxation, and independent on N .

For the case of an initial NOON state (second line of Eq.(D.20)), Eq.(D.21) is still
valid, but the structure of the initial density matrix ρ̂(0) is dramatically different with
respect to the case of a phase cat state. Indeed, separating the diagonal and off-diagonal
parts of the density matrix in same way as we have done for the two-component phase cat
state yields to the identifications

ρ̂d(0) =
1

2
(|0, N〉〈0, N | + |N, 0〉〈N, 0|)

ρ̂od(0) =
1

2
(eiβ |0, N〉〈N, 0| + e−iβ |N, 0〉〈0, N |). (D.22)
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Figure D.2: Optimum quantum Fisher information as a function of time for an initial
NOON state (red solid line) and an initial phase cat state (blue dot-dashed line). In the
former case the decay is exponential, with a rate equal to a2(t)N2, while in the latter case
the decay is slower. The saturation of FQ to the value N = 10 for the NOON state is due
to the fact that we are calculating here the optimized quantum Fisher information: when
all the coherences of the initial NOON state are lost, we are left with a statistical mixture
of two coherent states (see first line in Eq.(D.22)), the optimum Fisher information of
which is N . We have taken here a2(t) = 2ct, where c =

∫∞
0 h(y)dy, defined in the markov

regime of Eq.(5.13).

Thus, from Eq.(D.21) we easily obtain

〈n|ρ̂(t)|n′〉 =
1

2
e−

a2(t)(n−n′)2

2

[

(δn,N
2
δn′,N

2
+ δn,−N

2
δn′,−N

2
) + (eiβδn,N

2
δn′,−N

2
+ eiβδn,−N

2
δn′,N

2
)
]

= 〈n|ρ̂d(0)|n′〉+ e−
a2(t)N2

2 〈n|ρ̂od(0)|n′〉. (D.23)

From Eq.(D.23) we see that the coherences of the NOON state are lost with a rate
a2(t)N2/2, proportional to the number of particles, while the diagonal part of the su-
perposition is not affected by the phase noise - a purely dephasing process for the such a
cat state. This situation is in apparent contrast with the case of the two-component phase
cat states.

As we have discussed in Sec.5.1, the difference between the two situations can be
ascribed to the fact that phase noise acts perpendicularly with respect to the plane in
which the two-component phase cat state is contained - the equatorial plane, and hence is
insensitive to the separation between its components. This separation is instead resolved
in the case of a NOON cat state, as its components are placed along the z-direction, to
which the noise couples.

As a consequence of the fact that the coherences of the NOON state decay exponen-
tially in time under the effect of phase noise (Eq.(D.23)), the optimum quantum Fisher in-
formation also decays exponentially for such an initial state, with a rate equal to a2(t)N2.
Instead, the decay is slower in the case of an initial phase cat state. This fact can be
visualized in Fig.D.2.
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Appendix E
Decoherence effects induced by particle

losses

E.1 Solution of the Master equation by the characteristic

method

In this section, we provide a solution of the linear partial differential equation of the first
order Eq.(5.41) by means of the methods of the characteristic, as given in Ref.[162].

Let us define the characteristic function F (s) = h̃rp(x(s), y(s), t(s)), depending on a
parameter s. The condition for its first derivative to be zero F ′(s) = 0 translates in terms
of the function h̃rp into

∂th̃rp =
∂h̃rp
∂x

∂x

∂s
+
∂h̃rp
∂y

∂y

∂s
, (E.1)

given the choice ∂t/∂s = −1, or equivalently t = t0 − s, where t0 = t(s = 0). The
identification of the coefficients in Eqs.(E.1) and (5.41) provides the set of equations

{ ∂x
∂s = −ζ1x+ 2γ
∂y
∂s = −ζ2x+ 2γ

(E.2)

which has solution






x(s) = 2γ
ζ1

+
(

x0 − 2γ
ζ1

)

e−ζ1s

y(s) = 2γ
ζ2

+
(

y0 − 2γ
ζ2

)

e−ζ2s
(E.3)

where we have set x(s = 0) = x0 and y(s = 0) = y0. By definition, the function F (s) is
constant along the curve (E.3). Hence

h̃rp(x0, y0, t0) = h̃rp(x(t0), y(t0), 0). (E.4)

The last term expresses the initial condition (5.34) in terms of the generating function
(5.36), which reads

h̃rp(x, y, 0) =
1

2N
N !

(N − r)
(x+ y)(N−r)δr,p = hrp(x, y, 0). (E.5)

Substituting the curves (E.3) in Eq.(E.5) according to the prescription (E.4), with the
redefinition (x0, y0, t0) → (x, y, t), gives Eq.(5.42) of the main text.
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E.2 Full Husimi function for cat states in the presence of

particle losses

In analogy to the definitions in Sec.5.2.5.b, we define the full Husimi function for each of
the density matrices in the various m-particle subspaces as

Qm(θ, φ) ≡ m〈θ, φ|ρ̄m|θ, φ〉m, (E.6)

satisfying the normalization condition 1
4π

∫

dΩQm(θ, φ) = 1. The total Husimi function is

Q(θ, φ) =
N
∑

m=0

wmQm(θ, φ). (E.7)

The Husimi function at time t2 for γTeven = 0.25 is represented in Fig. E.1. The first panel
corresponds to the Husimi function of the block m = N of the density matrix, coinciding
with that of a perfect superposition of two coherent states with N particles formed in the
absence of losses. The other panels represent the Husimi function corresponding to the
blocksm = N−1 andm = N−2, according to Eq.(E.6). The last panel is the total Husimi
function defined in Eq.(E.7), which is still displaying a two-peak structure. A discussion
qualitatively similar to the case of the Husimi distribution projected on θ = π/2 presented
in Sec. 5.2.5.b can be put in advance. Note that the total Husimi function in the presence
of losses (forth panel of Fig. E.1) is more spread in the θ direction than the corresponding
Husimi function in the lossless case, represented in the first panel (see color scale). This
is due to the fact that the number imbalance is not conserved by the lossy quenched
dynamics of the BJJ, contrarily to the lossless case.

E.3 Decoherence of a NOON state and a phase cat state
under particle losses

In this section we analyze the decoherence of a phase cat state and a NOON state
(Eq.(D.20)) when such states are taken as initial states, and are later subjected to particle
losses only with no other additional (unitary) dynamics, as we have done in Sec.D.4 for
phase noise. In particular, we are interested in the question whether the two states share
the same decoherence rate or not. To do so, we first present the solution of the master
equation in the presence of one-body losses, following the lines of Sec.5.2.2. This allows us
to calculate the decay of the quantum Fisher information. Then, we provide a calculation
(for the NOON state only) based on the technique of quantum jumps, to directly access
the decay of the off-diagonal part of the density matrix.

E.3.1 Solution of the master equation by the method of the character-
istics

We proceed by solving the master equation (5.31) with H(0) = 0. The initial condition can
be derived from Eq.(D.20) with the use of the expansion Eq.(1.28), in which by setting k =

n+N/2 the sum involved can be rescaled as |θ, φ〉 = (1+ |α|2)−N
2
∑N

k=0

(

N
k

)

1
2αk|k;N −k〉,
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Figure E.1: First three panels: Husimi distribution Qm(θ, φ) (see Eq.(E.6)) at t = t2 for
m = 10, 9, 8 respectively. Last panel: Husimi distribution Q(θ, φ) (see Eq.(E.7)) at t = t2.
Value of the parameters: N = 10, γTeven = 0.25, U1 = U2 = 4πHz, t = t2.

and read respectively

ρ1
k+r,l
k,l+p(0) =

1

2

1

2N

(

N

k

) 1
2
(

N

k + r

) 1
2

[1 + (−1)r + eiβ(−1)k + e−iβ(−1)k+r]δr,pδk+r+l,N

ρ2
k+r,l
k,l+p(0) =

1

2
[δk,Nδr,0 + δk,0δr,0 + eiβδk,0δr,N + e−iβδk,Nδr,−N ]δr,pδk+r+l,N . (E.8)

The generating functions h1 and h2 corresponding to the two different initial states can still
be defined as in Eq.(5.36), and they both satisfy Eq.(5.38) with E1 = E2 = U1 = U2 = 0.
Hence, the solution is provided by Eq.(E.3) in the absence of unitary terms, i.e.

{

x(s) = 1 + (x0 − 1) e−2γs

y(s) = 1 + (y0 − 1) e−2γs (E.9)

where we have used the same definition of ˜h1,2
r

p as in Sec.5.2.2, with c(r, p, t) = γ(r + p).
The initial condition in terms of such generating functions is obtained with the use of
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Eq.(E.8) and (5.36), and reads

h1
r
p(x, y, 0) =

1

2

1

2N
N !

(N − r)

[

(1 + (−1)r)(x+ y)(N−r) + (eiβ + e−iβ(−1)r)(−x+ y)(N−r)
]

δr,p

h2
r
p(x, y, 0) =

1

2
(xNδr,0 + yNδr,0 +N !eiβδr,N +

e−iβ

N !
xNyNδr,−N )δr,p. (E.10)

Following the line of Sec.E.1, and in particular with the use of Eq.(E.4), we obtain as
solutions

h1
r
p(x, y, t) = e−2γrt 1

2(N+1)

N !

(N − r)!

[

(1 + (−1)r)
(

2 + (x− 1)e−2γt + (y − 1)e−2γt
)(N−r)

+ (eiβ + e−iβ(−1)r)e−2γ(N−r)t(−x+ y)(N−r)
]

δr,p

h2
r
p(x, y, t) = e−2γrt 1

2

[

(1 + (x− 1)e−2γt)Nδr,0 + (1 + (y − 1)e−2γt)Nδr,0

+ N !eiβδr,N +
e−iβ

N !
(1 + (x− 1)e−2γt)N (1 + (y − 1)e−2γt)Nδr,−N

]

δr,p (E.11)

Using the definition (5.37), from Eq.(E.11) we obtain the solution for the density matrix
of the two states as a function of time

ρ̂1
k+r,l
k,l+p =

N !e−2γrt

2(N+1)(N − r − k − l)!(k!l!(k + r)!(l + r)!)
1
2

×
[

(1 + (−1)r)e−2γt(l+k)2N−r−l−k(1− e−2γt)N−r−l−k

+ (eiβ + e−iβ(−1)r)e−2γ(N−r)t(−1)kδN,r+l+k

]

δr,p

ρ̂2
k+r,l
k,l+p =

N !e−2γrt

2(k!l!(k + r)!(l + r)!)
1
2

×
[

e−2γkt

(N − k)!
(1− e−2γt)(N−k)δr,0δl,0 +

e−2γlt

(N − l)!
(1− e−2γt)(N−l)δr,0δk,0

+ eiβδr,Nδl,0δk,0 + e−iβ
(1− e−2γt)(2N−k−l)e−2γ(l+k)t

(N − l)!(N − k)!
δr,−N

]

δr,p. (E.12)

Thanks to the exact solution (E.12) for the density matrix of an initial noon state and
an initial phase state in the presence of one-body losses, we can calculate the optimum
quantum Fisher information as a function of time. This is shown in Fig.E.2, where we
see that for both initial states the quantum Fisher information decays exponentially, with
a rate 4γN , thus depending on the initial number of particles. Note that this result is
different with respect to what we had found in Sec.D.4 for the case of phase noise, where
for the phase cat state the decay of the quantum Fisher information was much slower than
the for the NOON state.

E.3.2 Decoherence of a NOON state via the method of quantum jumps

As we have presented in Secs.5.1 and D.4 for the case of phase noise, the decay of the
useful quantum correlations of a macroscopic superposition under the effect of noise can
be related to the decay of the off-diagonal part of its density matrix, in the sense of the
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Figure E.2: Optimum quantum Fisher information (5.55) as a function of time, for an
initial NOON state (red solid curve) and an initial phase cat state (blue dot-dashed curve)
subjected to one-body particle losses. The two curves are superposed.

components of the superposition - the coherences of the superposition (see e.g. Eq.(D.23)).
Unfortunately, in the exact solutions (E.12) for the density matrix of an initial noon state
and an initial phase state in the presence of one-body losses, such diagonal and off-diagonal
contributions are not easily recognizeable.

However, in the case of a NOON state we can easily derive the decay of the off-diagonal
part of the density matrix by means of a quantum jumps approach [135, 174]. In this frame-
work, the effective Hamiltonian accounting for the dissipative dynamics corresponding to
the master equation (5.31) (with H(0) = 0) is defined as

Heff = −iγ
2
∑

i=1

â†i âi, (E.13)

and the state of the system evolves along each trajectory - corresponding to a single
realization the stochastic loss process - according to the following prescription:

|ψ(t)〉 =



















|ψnj(t)〉 = e−itHeff |ψ(0)〉
‖e−itHeff |ψ(0)〉‖ = |ψ(0)〉 if no jump is occurred

|N − 1, 0〉 if a jump is occurred on the site i = 1
|0, N − 1〉 if a jump is occurred on the site i = 2.

(E.14)

The first line of Eq.(E.14) can be easily verified by direct calculation of the action of
the effective Hamiltonian (E.13) on the NOON state in Eq.(D.20), i.e. Heff|ψ(0)〉 =
−iγ(n̂1 + n̂2)

1√
2
(|N, 0〉 + eiβ |0, N〉) = −iγN |ψ(0)〉, which implies

e−itHeff |ψ(0)〉 = e−γNt|ψ(0)〉, (E.15)

leading to the first line in Eq.(E.14).
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From Eq.(E.14) we see that the trajectories in which at least one jump has occurred in
the time interval [0, t] lead to a mixture of Fock states ρ̂mixt, while only the trajectory in
which no jump occurred in [0, t] keeps trace of the coherences of the initial superposition,
i.e.

ρ̂(t) = Pnj([0, t])|ψ(0)〉〈ψ(0)| + ρ̂mixt, (E.16)

where Pnj([0, t]) is the probability that no jumps occurred between the time 0 and t. In
order to evaluate the rate at which the coherence of the superposition is lost, we have thus
to calculate Pnj([0, t]). This probability satisfies the equation

Pnj([0, t]) − Pnj([0, t + dt]) =
∑

i=1,2

dpi(t)Pnj([0, t]), (E.17)

where dpi(t) is the probability that a jump occurs at site i in a time interval [t, t + dt],
which we assume to be symmetric (i.e. dp1(t) = dp2(t) ≡ dp(t)). The latter probability is
given by [174]

dp(t) = 2γ‖âi|ψnj(t)〉‖2dt, (E.18)

where |ψnj(t)〉 is defined in Eq.(E.14). Deviding each member of Eq.(E.17) by dtPnj([0, t])
we obtain

−d lnPnj([0, t])
dt

= 2
dp(t)

dt
. (E.19)

From a direct calculation, using that H†
eff = −Heff, we obtain that

d

dt
ln‖e−itHeff |ψ(0)〉‖2 =

d

dt
ln〈ψ(0)|e−i2tHeff |ψ(0)〉

=
−2i〈ψ(0)|e−itHeffHeffe

−itHeff |ψ(0)
‖e−itHeff |ψ(0)〉‖2

=
−2i‖e−itHeff |ψ(0)〉‖2〈ψnj(t)|Heff|ψnj(t)〉

‖e−itHeff |ψ(0)〉‖2
= −2i〈ψnj(t)|Heff|ψnj(t)〉

= −2γ
2
∑

i=1

‖âi|ψnj(t)〉‖2 = −2dp

dt
(E.20)

where we have made use of the first line of Eq.(E.14), of the definition (E.13), and of
Eq.(E.18). By comparing Eqs.(E.19) and (E.20) we can finally make the identification

Pnj([0, t]) = ‖e−itHeff |ψ(0)〉‖2 = e−2γNt, (E.21)

where in the last step we have used Eq.(E.15). From Eq.(E.21) we see that the coherences
of the superposition are lost at a rate 2γN , directly related to the exponential decay of
the Fisher information presented in Fig.(E.2). Incidentally, we remark that the fidelity of
the system density matrix during the quenched dynamics leading to the formation of cat
states in the presence of losses with the state formed in the absence of losses decays with
the same rate (see Eq.(5.52)).

The calculation may be repeated for the phase cat state, yielding the same final result.
In Ref.[159] the decoherence rate for the case of three-body losses has been calculated,
and turns out to be ∝ γ(3)N3. We expect by analogy a decoherence rate ∝ γ(2)N2 for a
cat state in the presence of two-body losses.
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E.4 Solution for two body losses

An analytical solution of the master equation (5.30) for the quenched dynamics in the
presence of two- and three-body losses is also available [163]. Here we do not provide that
derivation, but we apply the solution found in case of two-body losses to the calculation
of various quantities characterizing the state of the system at the time of formation of the
two-component macroscopic superposition, analogously to what we have done in Sec. 5.2.5
for the case of one-body losses. These are the fidelity with the two-component superposi-
tion (Fig. E.4), the projected Husimi distribution (Fig. E.5), the full Husimi distribution
(Fig. E.6) and the optimum quantum Fisher information as a function of time (Fig. E.7).

Similarly to the case of one-body losses, coherences between states at different number
of particles are forbidden. As a consequence, the density matrix in the Fock basis displays
a block structure, as can be seen in Fig. E.3. In the present case, though, the Hilbert
space accessible to the system only comprehends subspaces at m sharing the same parity
as the initial number of particles N . This fact is clearly visualized in Fig. E.3.
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Figure E.3: Density matrix in the Fock basis of the total Hilbert space (left panel),
and weigths of the density matrix as a function of the label of the subspace, i.e. the
number of particles m (right panel). Values of the parameters: N = 10, γTevenN = 0.25,
U1 = U2 = 4πHz, t = t2.
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Figure E.4: Fidelity given in Eq.(5.51). The red line corresponds to Eq.(5.52). Values of
the parameters: N = 10, γTevenN = 0.25, U1 = U2 = 4πHz, t = t2.
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Figure E.5: First panel: Husimi distribution Qm(θ = π/2, φ) (see Eq.(5.53)) at t = t2 for
m = 8; second panel: same curve (yellow solid line) superposed to the Husimi function
for m = 10, i;e. Q10(θ = π/2, φ) (blue solid line), and to the total Husimi distribution
Q(θ = π/2, φ) (gray dashed line, see Eq.(3.1)). Values of the parameters: N = 10,
γTevenN = 0.25, U1 = U2 = 4πHz, t = t2.
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Figure E.6: Husimi distribution Qm(θ, φ) (see Eq.(E.6)) at t = t2 for m = 8 (first panel),
and total Husimi distribution Q(θ, φ) (see Eq.(E.7)). Values of the parameters: N = 10,
γTevenN = 0.25, U1 = U2 = 4πHz, t = t2.
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Figure E.7: Fisher information given in Eq.(5.55) optimized over Ĵ~n as a function of
t/Teven, for γTevenN = 0, 0.05, 0.15, 0.25 from top to bottom. The dashed lines represent
the corresponding average number of atoms as a function of time. Black dashed line: shot
noise limit N . Values of the parameters: N = 10, U1 = U2 = 4πHz.
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MACROSCOPIC QUANTUM COHERENT PHENOMENA IN BOSE JOSEPHSON
JUNCTIONS

In recent years, cold atomic systems have been recognized as very promising tools for quantum
simulators and for applications in quantum technology. In particular, a Bose Josephson junction
(BJJ) - a system of ultracold dilute bosons which can occupy two modes - has been used to
realize an atomic interferometer, allowing to estimate a phase shift with a precision beyond the
classical limit. In this thesis we study theoretically the production, detection and decoherence of
entangled states which can be used for high-precision interferometry in a Bose Josephson junction.
Among such useful quantum states are atomic squeezed states and macroscopic superpositions of
coherent states. In the first part of the thesis, after demonstrating that macroscopic superpositions
of coherent states can be created during the dynamics following a ”quench” of the coupling
between the two modes of the junction, we study protocols for their experimental detection. In
the experiments there are unavoidable sources of noise, the major sources being phase noise,
induced by stochastic fluctuations of the energies of the two modes of the BJJ, and particle losses.
The presence of noise induces decoherence and degrades the quantum correlations of these states.
In the second part of the thesis we analyze in detail how the useful quantum correlations of
squeezed states and macroscopic superpositions are degraded by phase noise. We show that for
moderate phase noise intensities multicomponent superpositions of coherent states are interesting
candidates for high-precision atom interferometry. Finally, we address the effect of atom losses on
the formation of macroscopic superpositions, showing how decoherence affects the system density
matrix.

EFFETS DE COHÉRENCE QUANTIQUE MACROSCOPIQUE DANS LES JONCTIONS
JOSEPHSON BOSONIQUES

Dans les annés récentes, les systèmes d’atomes froids ont été reconnus comme des candidats
prometteurs pour réaliser des simulateurs quantiques, ainsi que pour différentes applications en
information quantique. Dans cette perspective, la jonction Josephson bosonique, un système de
bosons ultrafroids dilués qui peuvent occuper deux modes, a été employée pour réaliser un in-
terféromètre atomique, qui a permit d’ estimer un déphasage avec une précision allant au delà de
la limite classique. Dans cette thèse nous étudions d’un point de vue théorique la production, la
détection et la décohérence d’états intriqués qui peuvent être utilisés pour l’interférométrie de haute
précision dans une jonction Josephson bosonique. Parmi ces états quantiques utiles se trouvent les
états comprimés et les superpositions macroscopiques d’états cohérents. Dans la première partie
du manuscrit, nous démontrons que les superpositions macroscopiques d’états cohérents peuvent
être crées pendant la dynamique qui suit un arrêt soudain du couplage entre les deux modes de
la jonction, puis nous étudions des protocoles de détection expérimentale. Les expériences souf-
frent inévitablement de sources de bruit, les principaux étant le bruit de phase, induit par des
fluctuations des énergies des deux modes, et la perte d’atomes. La présence de bruit induit de la
décohérence et dégrade les corrélations quantiques des états manipulés. Dans la deuxième partie
du manuscrit, nous analysons en détail comment les corrélations quantiques utiles des états com-
primés et des superpositions macroscopiques sont dégradées par le bruit de phase. Nous montrons
que, pour des intensités de bruit modérées, les superpositions d’états cohérents formées de nom-
breuses composantes sont des candidates intéressantes pour l’interférométrie de précision. Enfin,
nous étudions l’effet de la perte d’atomes sur la formation des superpositions macroscopiques, en
montrant comment la décohérence agit sur la matrice densité du système.


