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Some conjectures.

Let M be a hyperbolic 3-manifold, connected, closed and oriented.
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Introduction.

Some conjectures.

Let M be a hyperbolic 3-manifold, connected, closed and oriented.

Theorem (Kahn, Markovic)

The fundamental group 7 M contains a surface subgroup.

Conjectures

(1) (Virtually Haken.) There exists a finite cover M’ — M containing an
incompressible surface, i.e. an embedded surface T in M’ such that the map induced
by the embedding . : T — M’ on fundamental groups v.. : w1 T — w M’ is injective.
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Let M be a hyperbolic 3-manifold, connected, closed and oriented.

Theorem (Kahn, Markovic)

The fundamental group 7 M contains a surface subgroup.

Conjectures

(1) (Virtually Haken.) There exists a finite cover M’ — M containing an
incompressible surface, i.e. an embedded surface T in M’ such that the map induced
by the embedding . : T — M’ on fundamental groups v.. : w1 T — w M’ is injective.

(2) (Virtually positive first Betti number.) There exists a finite cover M’ — M with
by (M) > 0.
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Some conjectures.

Let M be a hyperbolic 3-manifold, connected, closed and oriented.

Theorem (Kahn, Markovic)

The fundamental group 7 M contains a surface subgroup.

Conjectures

(1) (Virtually Haken.) There exists a finite cover M’ — M containing an
incompressible surface, i.e. an embedded surface T in M’ such that the map induced
by the embedding . : T — M’ on fundamental groups v.. : w1 T — w M’ is injective.

(2) (Virtually positive first Betti number.) There exists a finite cover M’ — M with
by (M) > 0.

(3) (Virtually infinite first Betti number.) For each n € N, there exists a finite cover
Mpn — M with by (Mp) > n.
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Introduction.

Some conjectures.

Let M be a hyperbolic 3-manifold, connected, closed and oriented.

Theorem (Kahn, Markovic)

The fundamental group 7 M contains a surface subgroup.

Conjectures

(1) (Virtually Haken.) There exists a finite cover M’ — M containing an
incompressible surface, i.e. an embedded surface T in M’ such that the map induced
by the embedding . : T — M’ on fundamental groups v.. : w1 T — w M’ is injective.

(2) (Virtually positive first Betti number.) There exists a finite cover M’ — M with
by (M) > 0.

(3) (Virtually infinite first Betti number.) For each n € N, there exists a finite cover
Mpn — M with by (Mp) > n.

(4) (Thurston.) There exists a finite cover M’ — M which fibers over the circle S'.
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Introduction.

Definition
A 3-manifold M is said to be virtually fibered if it admits a finite cover which fibers over

the circle.
An embedded surface S in M is a virtual fiber if there is a finite cover of M in which

the preimage of S is a fiber.

M'=Td,

0= Ox1)
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Introduction.

Definition

A 3-manifold M is said to be virtually fibered if it admits a finite cover which fibers over

the circle.
An embedded surface S in M is a virtual fiber if there is a finite cover of M in which

the preimage of S is a fiber.
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Question: Let M’ — M be a finite cover of M. Find conditions for M’ to contain an
embedded surface which is a fiber, or at least a virtual fiber ?
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Main theorem.

Theorem (1,
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Main theorem.

Theorem (1, main theorem.)
Fix e < Inj(M)/2. There exists an explicit constant k = k(e, Vol(M)) such that:
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Main theorem.

Main theorem.

Theorem (1, main theorem.)

Fix e < Inj(M)/2. There exists an explicit constant k = k(e, Vol(M)) such that:
If M — M is a cover of finite degree d,
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Main theorem.

Main theorem.

Theorem (1, main theorem.)

Fix e < Inj(M)/2. There exists an explicit constant k = k(e, Vol(M)) such that:

If M — M is a cover of finite degree d,

with an embedded, closed, orientable, pseudo-minimal surface F, which splits M’ into
q compression bodies Cy, . . ., Cq with the following properties:
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If M — M is a cover of finite degree d,

with an embedded, closed, orientable, pseudo-minimal surface F, which splits M’ into
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@ Every simple closed curve embedded in C; of length < e is nul-homotopic in C;.
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Main theorem.

Main theorem.

Theorem (1, main theorem.)

Fix e < Inj(M)/2. There exists an explicit constant k = k(e, Vol(M)) such that:
If M’ — M is a cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M’ into
q compression bodies Cy, . . ., Cq with the following properties:
@ Every simple closed curve embedded in C; of length < e is nul-homotopic in C;.

@ kging < Inind/q, withg = max;{g(C;j)}.
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Main theorem.

Main theorem.

Theorem (1, main theorem.)

Fix e < Inj(M)/2. There exists an explicit constant k = k(e, Vol(M)) such that:

If M’ — M is a cover of finite degree d,

with an embedded, closed, orientable, pseudo-minimal surface F, which splits M’ into
q compression bodies Cy, . . ., Cq with the following properties:

@ Every simple closed curve embedded in C; of length < e is nul-homotopic in C;.
@ kging < Inind/q, withg = max;{g(C;j)}.

Then the finite cover M contains an embedded surface T of genus g(T) < g which is
a virtual fiber.
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Main theorem.

Theorem (1, main theorem.)

Fix e < Inj(M)/2. There exists an explicit constant k = k(e, Vol(M)) such that:

If M’ — M is a cover of finite degree d,

with an embedded, closed, orientable, pseudo-minimal surface F, which splits M’ into
q compression bodies Cy, . . ., Cq with the following properties:

@ Every simple closed curve embedded in C; of length < e is nul-homotopic in C;.
@ kging < Inind/q, withg = max;{g(C;j)}.

Then the finite cover M contains an embedded surface T of genus g(T) < g which is
a virtual fiber.

In particular, M virtually fibers over the circle and M’ is Haken.
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Main theorem.

Main theorem.

Theorem (1, main theorem.)

Fix e < Inj(M)/2. There exists an explicit constant k = k(e, Vol(M)) such that:

If M — M is a cover of finite degree d,

with an embedded, closed, orientable, pseudo-minimal surface F, which splits M’ into
q compression bodies Cy, . . ., Cq with the following properties:

@ Every simple closed curve embedded in C; of length < e is nul-homotopic in C;.
@ kging < Inind/q, withg = max;{g(C;j)}.

Then the finite cover M contains an embedded surface T of genus g(T) < g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M’ is Haken.

Conjecture (*)

The technical assumption (1) is not necessary.
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Main theorem.

Main theorem.

Theorem (1, main theorem.)

Fix e < Inj(M)/2. There exists an explicit constant k = k(e, Vol(M)) such that:

If M — M is a cover of finite degree d,

with an embedded, closed, orientable, pseudo-minimal surface F, which splits M’ into
q compression bodies Cy, . . ., Cq with the following properties:

@ Every simple closed curve embedded in C; of length < e is nul-homotopic in C;.
@ kging < Inind/q, withg = max;{g(C;j)}.

Then the finite cover M contains an embedded surface T of genus g(T) < g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M’ is Haken.

Conjecture (*)

The technical assumption (1) is not necessary.

If Vol(M) is fixed, lim._,o k(e, Vol(M)) — —+oco.
If € is fixed, liMyy a1y —s 400 K(€, VOI(M)) — +o0.
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Main theorem.

Ideas of the proof of the main theorem.

Suppose that the ratio gIng/Inin(d/q) is “small enough”.
Proof in two steps.
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Main theorem.

First step: Construct an embedded “long and thin” product T x [0, m] in M’,
satisfying the following properties.

M
T40,m]

>t
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Main theorem.

First step: Construct an embedded “long and thin” product T x [0, m] in M’,
satisfying the following properties.

o
T40,m]

>t

, T, To-1 T

@ The surface T is orientable and closed, with genus g(T) < g.
@ The number m = m(%, g) is “large”.

@ The surfaces T; := T x {j} have their diameters uniformly bounded from above by
K = K(9).

@ Two surfaces T; and T, are at distance at least r > 0.
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Main theorem.

Second step: Use this product to construct a virtual fibration of M'.
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Main theorem.

Second step: Use this product to construct a virtual fibration of M'.

@ Choose D, a Dirichlet fundamental polyhedron for M in HS3.
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Main theorem.

Second step: Use this product to construct a virtual fibration of M'.

@ Choose D, a Dirichlet fundamental polyhedron for M in HS3.

@ For each surface T}, consider the pattern of fundamental domains P; that is the
union of the fundamental domains meeting 7;.
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Main theorem.

Second step: Use this product to construct a virtual fibration of M'.

@ Choose D, a Dirichlet fundamental polyhedron for M in HS3.

@ For each surface T}, consider the pattern of fundamental domains P; that is the
union of the fundamental domains meeting 7;.

@ Find two patterns:

@ disjoint from each other,
@ isometric to the same "model” pattern P,
@ containing parallel surfaces Ty and T;.
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Main theorem.

Second step: Use this product to construct a virtual fibration of M'.
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@ Choose D, a Dirichlet fundamental polyhedron for M in HS3.

@ For each surface T}, consider the pattern of fundamental domains P; that is the
union of the fundamental domains meeting 7;.

@ Find two patterns:

@ disjoint from each other,
@ isometric to the same "model” pattern P,
@ containing parallel surfaces Ty and T;.

@ Cutalong Ty and T/, glue them together to get a finite fibered cover N of M.
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Main theorem.

The regular case.

Theorem (2, regular case.)
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Main theorem.

The regular case.

Theorem (2, regular case.)
Fix e < Inj(M)/2. There exists an explicit constant k' = k’(e, Vol(M)) such that:
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Main theorem.

The regular case.

Theorem (2, regular case.)

Fix e < Inj(M)/2. There exists an explicit constant k' = k’(e, Vol(M)) such that:
If M' — M is a regular cover of finite degree d,

with an embedded, closed, orientable, pseudo-minimal surface F, which splits M’ into
g compression bodies Cy, . . ., Cq with the following properties:

@ Every simple closed curve embedded in C; of length < e is nul-homotopic in C;.
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Main theorem.

The regular case.

Theorem (2, regular case.)

Fix e < Inj(M)/2. There exists an explicit constant k' = k’(e, Vol(M)) such that:
If M' — M is a regular cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M’ into
g compression bodies Cy, . . ., Cq with the following properties:
@ Every simple closed curve embedded in C; of length < e is nul-homotopic in C;.

Q Kk’ g? <Inind/q, with g = max;{g(C))}-
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Main theorem.

The regular case.

Theorem (2, regular case.)

Fix e < Inj(M)/2. There exists an explicit constant k' = k’(e, Vol(M)) such that:

If M' — M is a regular cover of finite degree d,

with an embedded, closed, orientable, pseudo-minimal surface F, which splits M’ into
g compression bodies Cy, . . ., Cq with the following properties:

@ Every simple closed curve embedded in C; of length < e is nul-homotopic in C;.
Q Kk’ g? <Inind/q, with g = max;{g(C))}-

Then the finite cover M’ is a fiber bundle over the circle, and a fiber can be obtained
from a component of F, possibly after some surgeries.
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Applications of the main theorem.

Application to Heegaard splittings.
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Applications of the main theorem.

Application to Heegaard splittings.

If Fis a surface of genus at least 1, x_ (F) = 2g(F) — 2.

Definition

The Heegaard characteristic: x" (M) = 2g(M) — 2.

The strong Heegaard characteristic: xS7(M) = maxg{x_(F)} where F is a strongly
irreducible Heegaard surface for M.
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Applications of the main theorem.

Application to Heegaard splittings.

If Fis a surface of genus at least 1, x_ (F) = 2g(F) — 2.

Definition

The Heegaard characteristic: x" (M) = 2g(M) — 2.

The strong Heegaard characteristic: xS7(M) = maxg{x_(F)} where F is a strongly
irreducible Heegaard surface for M.

If M’ — M is a cover of finite degree d, x" (M’) < dx" (M).
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Applications of the main theorem.

Heegaard gradient and conjectures of Lackenby.

Definition (Lackenby)
Heegaard gradient:

Strong Heegaard gradient:

V(M) = inf { XL (M) } :
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Applications of the main theorem.

Heegaard gradient and conjectures of Lackenby.

Definition (Lackenby)
Heegaard gradient:

V(M) = inf
1

—N
=
Q

h(Mi)}

V(M) = inf { XL (M) } :

Strong Heegaard gradient:

Conjecture (Lackenby)

(1) The Heegaard gradient of M is zero if and only if M virtually fibers over the circle.
(2) The strong Heegaard gradient is always strictly positive.
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Applications of the main theorem.

The sub-logarithmic version is true.

Definition

Letn € (0,1).
n-sub-logarithmic Heegaard gradient:

" (M)
Vioqn (M) = {(Ixrwlrm)}

Strong n-sub-logarithmic Heegaard gradient:

x(M)
Viogn(M) = inf (Inln d;)7
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Applications of the main theorem.

The sub-logarithmic version is true.

Definition

Letn € (0,1).
n-sub-logarithmic Heegaard gradient:

" (M)
Vioqn (M) = {(Ixnlrm)}

Strong n-sub-logarithmic Heegaard gradient:

xS (M;)
,Og 77(M) |nf { (Inlrwd)}

Proposition (3, Sub-logarithmic version of Lackenby’s conjectures.)

Suppose conjecture (x) is true.

Letn € (0,1).

(1) The n-sub-logarithmic Heegaard gradient of M is zero if and only if M virtually
fibers over the circle.

(2) The strong n-sub-logarithmic Heegaard gradient is always strictly positive.
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Applications of the main theorem.

The homological viewpoint.

Let a € H'(M, Z) be a non-trivial element.
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Applications of the main theorem.

The homological viewpoint.

Let a € H'(M, Z) be a non-trivial element.

Definition

A ||«||-minimizing surface R is an embedded surface with homology class
Poincaré-dual to o, and minimizing Thurston’s norm: x—(R) = ||c||.
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Applications of the main theorem.

The homological viewpoint.

Let a € H'(M, Z) be a non-trivial element.

Definition

A ||«||-minimizing surface R is an embedded surface with homology class
Poincaré-dual to o, and minimizing Thurston’s norm: x—(R) = ||c||.

Question: Find conditions to ensure that R is the fiber of a fibration over the circle ?
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Applications of the main theorem.

Circular decompositions.

Definition

Let Mg be the 3-manifold obtained from M by removing a regular neighborhood of R
diffeomorphic to R x (—1,1). The circular characteristic of o, denoted by x¢ (), is
the minimum over all ||ce||-minimizing surfaces R of the Heegaard characteristic of the
cobordism (Mg, R x {1}, R x {—1}).
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Applications of the main theorem.

Circular decompositions.

Definition

Let Mg be the 3-manifold obtained from M by removing a regular neighborhood of R
diffeomorphic to R x (—1,1). The circular characteristic of o, denoted by x¢ (), is
the minimum over all ||ce||-minimizing surfaces R of the Heegaard characteristic of the
cobordism (Mg, R x {1}, R x {—1}).

x° () = ||la| + h(e), where h(«) is the minimum over all ||«||-minimizing surfaces R
of the minimal number of critical points of index 1 and 2 of a Morse function
Mg — [—1,1].
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Applications of the main theorem.

Applications to circular decompositions.

Theorem (4, Adapted from a result of Lackenby)

There exists an explicit constant ¢’ = ¢'(e, Vol(M)) such that:

Fix o € H'(M) a non-trivial conomology class and R a ||«||-minimizing surface. Let
M’ — M be a d-sheeted regular cover and o' € H'(M',Z) the Poincaré-dual class
associated to a connected component R’ of the preimage of R in M'.

If £ x° (a’) < V/d, then the manifold M fibers over the circle and the surface R is a
fiber.
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Virtually infinite first Betti number.

Virtually infinite first Betti number.

Question: Find a tower of finite covers ... — M1 — M; — ... — M such that
limj oo D1(Mj) = +00 7

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.



Virtually infinite first Betti number.

Virtually infinite first Betti number.

Question: Find a tower of finite covers ... — M1 — M; — ... — M such that
limj oo D1(Mj) = +00 7

Theorem (5)

Suppose that there exists an infinite tower
... > M4 — Ny — M — N — ... = Ny — M of finite covers of M such that
foralli > 1, M; — N; is regular, with Galois group H; ~ (Z/27)"i.
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Virtually infinite first Betti number.

Virtually infinite first Betti number.

Question: Find a tower of finite covers ... — M1 — M; — ... — M such that
limj oo D1(Mj) = +00 7

Suppose that there exists an infinite tower
... > M4 — Ny — M — N — ... = Ny — M of finite covers of M such that
foralli > 1, M; — N; is regular, with Galois group H; ~ (Z/27)"i.

Ifinf,-eN X’L (M;)[rc1 M : 74 N,]/(\/E)" =0,
Thenlim;_, o b1 (M;) = +oco.
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Virtually infinite first Betti number.

Virtually infinite first Betti number.

Question: Find a tower of finite covers ... — M1 — M; — ... — M such that
limj oo D1(Mj) = +00 7

Theorem (5)

Suppose that there exists an infinite tower
... > M4 — Ny — M — N — ... = Ny — M of finite covers of M such that
foralli > 1, M; — N; is regular, with Galois group H; ~ (Z/27)"i.

Ifinf,-eN X’L (M;)[rc1 M : 74 N,]/(\/E)rl =0,
Thenlim;_, o b1 (M;) = +oco.

Corollary (6)

Let... - M; — M;_y — ... — My — M be the tower of finite covers corresponding to
the lower mod 2 central series.
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Virtually infinite first Betti number.

Virtually infinite first Betti number.

Question: Find a tower of finite covers ... — M1 — M; — ... — M such that
limj oo D1(Mj) = +00 7

Theorem (5)

Suppose that there exists an infinite tower
... > M4 — Ny — M — N — ... = Ny — M of finite covers of M such that
foralli > 1, M; — N; is regular, with Galois group H; ~ (Z/27)"i.

Ifinf,-eN X’L (M;)[rc1 M : 74 N,]/(\/E)rl =0,
Thenlim;_, o b1 (M;) = +oco.

Corollary (6)

Let... - M; — M;_y — ... — My — M be the tower of finite covers corresponding to
the lower mod 2 central series.

Foralli > 1, setr; = by ,(Mj_1), with My = M, and R; = ry +r2 + ... + r;. Suppose
thatry > 4.
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Virtually infinite first Betti number.

Virtually infinite first Betti number.

Question: Find a tower of finite covers ... — M1 — M; — ... — M such that
limj oo D1(Mj) = +00 7

Theorem (5)

Suppose that there exists an infinite tower
... > M4 — Ny — M — N — ... = Ny — M of finite covers of M such that
foralli > 1, M; — N; is regular, with Galois group H; ~ (Z/27)"i.

Ifinf,-eN X’L (M;)[rc1 M : 74 N,]/(\/E)rl =0,
Thenlim;_, o b1 (M;) = +oco.

Corollary (6)

Let... - M; — M;_y — ... — My — M be the tower of finite covers corresponding to
the lower mod 2 central series.

Foralli > 1, setr; = by ,(Mj_1), with My = M, and R; = ry +r2 + ... + r;. Suppose
thatry > 4.

Ifinf;cy x™ (M;)2Ri-1 /(v/2)"1 = 0,
Then lim;_, , o, by (M;) = +o0.
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Virtually infinite first Betti number.

Link with results of Lackenby.

Theorem (Lackenby)

Let... > Mj — M,_y — ... - My — M a tower of finite covers of M such that
foralli > 1, M; — M;_4 is regular, of group isomorphic to (Z/27)" (with the convention
thatMy = M). SetRi =i+ +...+1r;.
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Virtually infinite first Betti number.

Link with results of Lackenby.

Theorem (Lackenby)

Let... > Mj — M,_y — ... - My — M a tower of finite covers of M such that

foralli > 1, M; — M;_4 is regular, of group isomorphic to (Z/27)" (with the convention
thatMy = M). SetRi =i+ +...+1r;.

Suppose that one of the following assumptions is satisfied:
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Virtually infinite first Betti number.

Link with results of Lackenby.

Theorem (Lackenby)

Let... > Mj — M,_y — ... - My — M a tower of finite covers of M such that

foralli > 1, M; — M;_4 is regular, of group isomorphic to (Z/27)" (with the convention
thatMy = M). SetRi =i+ +...+1r;.

Suppose that one of the following assumptions is satisfied:

(a) m M does not have property (1) with respect to the family {m1M;}icn (for example
iFlim;_s 4 oo A(M;) = 0) and infjc ’2%1 >0, or
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Virtually infinite first Betti number.

Link with results of Lackenby.

Theorem (Lackenby)

Let... > Mj — M,_y — ... - My — M a tower of finite covers of M such that

foralli > 1, M; — M;_4 is regular, of group isomorphic to (Z/27)" (with the convention
thatMy = M). SetRi =i+ +...+1r;.

Suppose that one of the following assumptions is satisfied:

(a) m M does not have property (1) with respect to the family {m1M;}icn (for example
iFlim;_s 4 oo A(M;) = 0) and infjc ’2%1 >0, or

(b) each cover M; — M is regular and lim;_, | o ’2'%7 = +o00.
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Virtually infinite first Betti number.

Link with results of Lackenby.

Theorem (Lackenby)

Let... > Mj — M,_y — ... - My — M a tower of finite covers of M such that

foralli > 1, M; — M;_4 is regular, of group isomorphic to (Z/27)" (with the convention
thatMy = M). SetRi =i+ +...+1r;.

Suppose that one of the following assumptions is satisfied:

(a) m M does not have property (1) with respect to the family {m1M;}icn (for example
iFlim;_s 4 oo A(M;) = 0) and infjc ’2%1 >0, or

(b) each cover M; — M is regular andlim;_, , o, 5t = +oc.

Then 7 M is virtually large. In particular, the first Betti number of M is virtually infinite.
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Link with results of Lackenby.

Theorem (Lackenby)

Let... > Mj — M,_y — ... - My — M a tower of finite covers of M such that

foralli > 1, M; — M;_4 is regular, of group isomorphic to (Z/27)" (with the convention
thatMy = M). SetRi =i+ +...+1r;.
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iFlim;_s 4 oo A(M;) = 0) and infjc ’2%1 >0, or

(b) each cover M; — M is regular andlim;_, , o, 5t = +oc.

Then 7 M is virtually large. In particular, the first Betti number of M is virtually infinite.

Corollary (7)

Let... - M; — M;_y — ... — My — M be an infinite tower of finite covers of M as in
the previous theorem.
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Corollary (7)

Let... - M; — M;_y — ... — My — M be an infinite tower of finite covers of M as in
the previous theorem.

Then the first Betti number of M is virtually infinite if neither of the following properties
is satisfied.
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Then the first Betti number of M is virtually infinite if neither of the following properties
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@ inficy h(M;) > 0 and the sequence ('2’%;) ien admits a bounded subsequence.
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Theorem (Lackenby)

Let... > Mj — M,_y — ... - My — M a tower of finite covers of M such that

foralli > 1, M; — M;_4 is regular, of group isomorphic to (Z/27)" (with the convention
thatMy = M). SetRi =i+ +...+1r;.
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Corollary (7)

Let... - M; — M;_y — ... — My — M be an infinite tower of finite covers of M as in
the previous theorem.

Then the first Betti number of M is virtually infinite if neither of the following properties
is satisfied.

@ inficy h(M;) > 0 and the sequence ('2’%;) ien admits a bounded subsequence.

Q infjcy h(M1)4F1(v/2)i+1 > 0 and infiey ’2%1 =0.
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Thank you for your attention !!!!

Merci pour votre attention !l
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