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Some conjectures.

Let M be a hyperbolic 3-manifold, connected, closed and oriented.

Theorem (Kahn, Markovic)

The fundamental group π1M contains a surface subgroup.

Conjectures

(1) (Virtually Haken.) There exists a finite cover M′ → M containing an
incompressible surface, i.e. an embedded surface T in M′ such that the map induced
by the embedding ι : T → M′ on fundamental groups ι∗ : π1T → π1M′ is injective.

(2) (Virtually positive first Betti number.) There exists a finite cover M′ → M with
b1(M′) > 0.

(3) (Virtually infinite first Betti number.) For each n ∈ N, there exists a finite cover
Mn → M with b1(Mn) ≥ n.

(4) (Thurston.) There exists a finite cover M′ → M which fibers over the circle S1.
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Definition

A 3-manifold M is said to be virtually fibered if it admits a finite cover which fibers over
the circle.
An embedded surface S in M is a virtual fiber if there is a finite cover of M in which
the preimage of S is a fiber.

T {1/2}T {0} T {1}

M’= T I / (x,0) ~ (     x,1)ϕ

M

ϕ

S

Question: Let M′ → M be a finite cover of M. Find conditions for M′ to contain an
embedded surface which is a fiber, or at least a virtual fiber ?

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.
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Main theorem.

Theorem (1, main theorem.)

Fix ε ≤ Inj(M)/2. There exists an explicit constant k = k(ε,Vol(M)) such that:
If M′ → M is a cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M′ into
q compression bodies C1, . . . ,Cq with the following properties:

1 Every simple closed curve embedded in Cj of length ≤ ε is nul-homotopic in Cj .
2 k g ln g < ln ln d/q, with g = maxj{g(Cj )}.

Then the finite cover M′ contains an embedded surface T of genus g(T ) ≤ g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M′ is Haken.

Conjecture (∗)

The technical assumption (1) is not necessary.

Remark

If Vol(M) is fixed, limε→0 k(ε,Vol(M))→ +∞.
If ε is fixed, limVol(M)→+∞ k(ε,Vol(M))→ +∞.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.



Introduction.
Main theorem.

Applications of the main theorem.
Virtually infinite first Betti number.

Main theorem.

Theorem (1, main theorem.)

Fix ε ≤ Inj(M)/2. There exists an explicit constant k = k(ε,Vol(M)) such that:
If M′ → M is a cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M′ into
q compression bodies C1, . . . ,Cq with the following properties:

1 Every simple closed curve embedded in Cj of length ≤ ε is nul-homotopic in Cj .
2 k g ln g < ln ln d/q, with g = maxj{g(Cj )}.

Then the finite cover M′ contains an embedded surface T of genus g(T ) ≤ g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M′ is Haken.

Conjecture (∗)

The technical assumption (1) is not necessary.

Remark

If Vol(M) is fixed, limε→0 k(ε,Vol(M))→ +∞.
If ε is fixed, limVol(M)→+∞ k(ε,Vol(M))→ +∞.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.



Introduction.
Main theorem.

Applications of the main theorem.
Virtually infinite first Betti number.

Main theorem.

Theorem (1, main theorem.)

Fix ε ≤ Inj(M)/2. There exists an explicit constant k = k(ε,Vol(M)) such that:
If M′ → M is a cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M′ into
q compression bodies C1, . . . ,Cq with the following properties:

1 Every simple closed curve embedded in Cj of length ≤ ε is nul-homotopic in Cj .
2 k g ln g < ln ln d/q, with g = maxj{g(Cj )}.

Then the finite cover M′ contains an embedded surface T of genus g(T ) ≤ g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M′ is Haken.

Conjecture (∗)

The technical assumption (1) is not necessary.

Remark

If Vol(M) is fixed, limε→0 k(ε,Vol(M))→ +∞.
If ε is fixed, limVol(M)→+∞ k(ε,Vol(M))→ +∞.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.



Introduction.
Main theorem.

Applications of the main theorem.
Virtually infinite first Betti number.

Main theorem.

Theorem (1, main theorem.)

Fix ε ≤ Inj(M)/2. There exists an explicit constant k = k(ε,Vol(M)) such that:
If M′ → M is a cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M′ into
q compression bodies C1, . . . ,Cq with the following properties:

1 Every simple closed curve embedded in Cj of length ≤ ε is nul-homotopic in Cj .
2 k g ln g < ln ln d/q, with g = maxj{g(Cj )}.

Then the finite cover M′ contains an embedded surface T of genus g(T ) ≤ g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M′ is Haken.

Conjecture (∗)

The technical assumption (1) is not necessary.

Remark

If Vol(M) is fixed, limε→0 k(ε,Vol(M))→ +∞.
If ε is fixed, limVol(M)→+∞ k(ε,Vol(M))→ +∞.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.



Introduction.
Main theorem.

Applications of the main theorem.
Virtually infinite first Betti number.

Main theorem.

Theorem (1, main theorem.)

Fix ε ≤ Inj(M)/2. There exists an explicit constant k = k(ε,Vol(M)) such that:
If M′ → M is a cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M′ into
q compression bodies C1, . . . ,Cq with the following properties:

1 Every simple closed curve embedded in Cj of length ≤ ε is nul-homotopic in Cj .
2 k g ln g < ln ln d/q, with g = maxj{g(Cj )}.

Then the finite cover M′ contains an embedded surface T of genus g(T ) ≤ g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M′ is Haken.

Conjecture (∗)

The technical assumption (1) is not necessary.

Remark

If Vol(M) is fixed, limε→0 k(ε,Vol(M))→ +∞.
If ε is fixed, limVol(M)→+∞ k(ε,Vol(M))→ +∞.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.



Introduction.
Main theorem.

Applications of the main theorem.
Virtually infinite first Betti number.

Main theorem.

Theorem (1, main theorem.)

Fix ε ≤ Inj(M)/2. There exists an explicit constant k = k(ε,Vol(M)) such that:
If M′ → M is a cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M′ into
q compression bodies C1, . . . ,Cq with the following properties:

1 Every simple closed curve embedded in Cj of length ≤ ε is nul-homotopic in Cj .
2 k g ln g < ln ln d/q, with g = maxj{g(Cj )}.

Then the finite cover M′ contains an embedded surface T of genus g(T ) ≤ g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M′ is Haken.

Conjecture (∗)

The technical assumption (1) is not necessary.

Remark

If Vol(M) is fixed, limε→0 k(ε,Vol(M))→ +∞.
If ε is fixed, limVol(M)→+∞ k(ε,Vol(M))→ +∞.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.



Introduction.
Main theorem.

Applications of the main theorem.
Virtually infinite first Betti number.

Main theorem.

Theorem (1, main theorem.)

Fix ε ≤ Inj(M)/2. There exists an explicit constant k = k(ε,Vol(M)) such that:
If M′ → M is a cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M′ into
q compression bodies C1, . . . ,Cq with the following properties:

1 Every simple closed curve embedded in Cj of length ≤ ε is nul-homotopic in Cj .
2 k g ln g < ln ln d/q, with g = maxj{g(Cj )}.

Then the finite cover M′ contains an embedded surface T of genus g(T ) ≤ g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M′ is Haken.

Conjecture (∗)

The technical assumption (1) is not necessary.

Remark

If Vol(M) is fixed, limε→0 k(ε,Vol(M))→ +∞.
If ε is fixed, limVol(M)→+∞ k(ε,Vol(M))→ +∞.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.



Introduction.
Main theorem.

Applications of the main theorem.
Virtually infinite first Betti number.

Main theorem.

Theorem (1, main theorem.)

Fix ε ≤ Inj(M)/2. There exists an explicit constant k = k(ε,Vol(M)) such that:
If M′ → M is a cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M′ into
q compression bodies C1, . . . ,Cq with the following properties:

1 Every simple closed curve embedded in Cj of length ≤ ε is nul-homotopic in Cj .
2 k g ln g < ln ln d/q, with g = maxj{g(Cj )}.

Then the finite cover M′ contains an embedded surface T of genus g(T ) ≤ g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M′ is Haken.

Conjecture (∗)

The technical assumption (1) is not necessary.

Remark

If Vol(M) is fixed, limε→0 k(ε,Vol(M))→ +∞.
If ε is fixed, limVol(M)→+∞ k(ε,Vol(M))→ +∞.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.



Introduction.
Main theorem.

Applications of the main theorem.
Virtually infinite first Betti number.

Main theorem.

Theorem (1, main theorem.)

Fix ε ≤ Inj(M)/2. There exists an explicit constant k = k(ε,Vol(M)) such that:
If M′ → M is a cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M′ into
q compression bodies C1, . . . ,Cq with the following properties:

1 Every simple closed curve embedded in Cj of length ≤ ε is nul-homotopic in Cj .
2 k g ln g < ln ln d/q, with g = maxj{g(Cj )}.

Then the finite cover M′ contains an embedded surface T of genus g(T ) ≤ g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M′ is Haken.

Conjecture (∗)

The technical assumption (1) is not necessary.

Remark

If Vol(M) is fixed, limε→0 k(ε,Vol(M))→ +∞.
If ε is fixed, limVol(M)→+∞ k(ε,Vol(M))→ +∞.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.



Introduction.
Main theorem.

Applications of the main theorem.
Virtually infinite first Betti number.

Main theorem.

Theorem (1, main theorem.)

Fix ε ≤ Inj(M)/2. There exists an explicit constant k = k(ε,Vol(M)) such that:
If M′ → M is a cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M′ into
q compression bodies C1, . . . ,Cq with the following properties:

1 Every simple closed curve embedded in Cj of length ≤ ε is nul-homotopic in Cj .
2 k g ln g < ln ln d/q, with g = maxj{g(Cj )}.

Then the finite cover M′ contains an embedded surface T of genus g(T ) ≤ g which is
a virtual fiber.
In particular, M virtually fibers over the circle and M′ is Haken.

Conjecture (∗)

The technical assumption (1) is not necessary.

Remark

If Vol(M) is fixed, limε→0 k(ε,Vol(M))→ +∞.
If ε is fixed, limVol(M)→+∞ k(ε,Vol(M))→ +∞.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.



Introduction.
Main theorem.

Applications of the main theorem.
Virtually infinite first Betti number.

Ideas of the proof of the main theorem.

Suppose that the ratio g ln g/ ln ln(d/q) is “small enough”.
Proof in two steps.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.
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First step: Construct an embedded “long and thin” product T × [0,m] in M′,
satisfying the following properties.

T T T T 

T [0,m]
M’

0 1 2
T m−1 m

< K(g)

> r

The surface T is orientable and closed, with genus g(T ) ≤ g.

The number m = m( d
q , g) is “large”.

The surfaces Tj := T × {j} have their diameters uniformly bounded from above by
K = K (g).

Two surfaces Tj and Tj+1 are at distance at least r > 0.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.
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Second step: Use this product to construct a virtual fibration of M′.

1
T’

2
P

1
T T TT

0 2 3

1
P

Choose D, a Dirichlet fundamental polyhedron for M in H3.

For each surface Tj , consider the pattern of fundamental domains Pj that is the
union of the fundamental domains meeting Tj .

Find two patterns:
1 disjoint from each other,
2 isometric to the same ”model” pattern P,
3 containing parallel surfaces T1 and T ′

1 .

Cut along T1 and T ′1, glue them together to get a finite fibered cover N of M.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.
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The regular case.

Theorem (2, regular case.)

Fix ε ≤ Inj(M)/2. There exists an explicit constant k ′ = k ′(ε,Vol(M)) such that:
If M′ → M is a regular cover of finite degree d,
with an embedded, closed, orientable, pseudo-minimal surface F, which splits M′ into
q compression bodies C1, . . . ,Cq with the following properties:

1 Every simple closed curve embedded in Cj of length ≤ ε is nul-homotopic in Cj .

2 k ′ g2 < ln ln d/q, with g = maxj{g(Cj )}.

Then the finite cover M′ is a fiber bundle over the circle, and a fiber can be obtained
from a component of F , possibly after some surgeries.

Claire RENARD Finite covers of a hyperbolic 3-manifold and virtual fibers.
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Then the finite cover M′ is a fiber bundle over the circle, and a fiber can be obtained
from a component of F , possibly after some surgeries.
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Application to Heegaard splittings.

H H1
2

ϕ

F
F

If F is a surface of genus at least 1, χ−(F ) = 2g(F )− 2.

Definition

The Heegaard characteristic: χh
−(M) = 2g(M)− 2.

The strong Heegaard characteristic: χsh
− (M) = maxF{χ−(F )} where F is a strongly

irreducible Heegaard surface for M.

Remark

If M′ → M is a cover of finite degree d, χh
−(M

′) ≤ dχh
−(M).
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Heegaard gradient and conjectures of Lackenby.

Definition (Lackenby)

Heegaard gradient:

∇h(M) = inf
i

{
χh
−(Mi )

di

}
.

Strong Heegaard gradient:

∇sh(M) = inf
i

{
χsh
− (Mi )

di

}
.

Conjecture (Lackenby)

(1) The Heegaard gradient of M is zero if and only if M virtually fibers over the circle.
(2) The strong Heegaard gradient is always strictly positive.
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The sub-logarithmic version is true.

Definition

Let η ∈ (0, 1).
η-sub-logarithmic Heegaard gradient:

∇h
log,η(M) = inf

i

{
χh
−(Mi )

(ln ln di )η

}
.

Strong η-sub-logarithmic Heegaard gradient:

∇sh
log,η(M) = inf

i

{
χsh
− (Mi )

(ln ln di )η

}
.

Proposition (3, Sub-logarithmic version of Lackenby’s conjectures.)

Suppose conjecture (∗) is true.
Let η ∈ (0, 1).
(1) The η-sub-logarithmic Heegaard gradient of M is zero if and only if M virtually
fibers over the circle.
(2) The strong η-sub-logarithmic Heegaard gradient is always strictly positive.
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The homological viewpoint.

Let α ∈ H1(M,Z) be a non-trivial element.

Definition

A ‖α‖-minimizing surface R is an embedded surface with homology class
Poincaré-dual to α, and minimizing Thurston’s norm: χ−(R) = ‖α‖.

Question: Find conditions to ensure that R is the fiber of a fibration over the circle ?
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Circular decompositions.

Definition

Let MR be the 3-manifold obtained from M by removing a regular neighborhood of R
diffeomorphic to R × (−1, 1). The circular characteristic of α, denoted by χc

−(α), is
the minimum over all ‖α‖-minimizing surfaces R of the Heegaard characteristic of the
cobordism (MR ,R × {1},R × {−1}).

R  {−1}

R  {1}

M
R

S
1

1~(−1)R
f

M

S

Remark

χc
−(α) = ‖α‖+ h(α), where h(α) is the minimum over all ‖α‖-minimizing surfaces R

of the minimal number of critical points of index 1 and 2 of a Morse function
MR → [−1, 1].
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Applications to circular decompositions.

Theorem (4, Adapted from a result of Lackenby)

There exists an explicit constant `′ = `′(ε,Vol(M)) such that:
Fix α ∈ H1(M) a non-trivial cohomology class and R a ‖α‖-minimizing surface. Let
M′ → M be a d-sheeted regular cover and α′ ∈ H1(M′,Z) the Poincaré-dual class
associated to a connected component R′ of the preimage of R in M′.
If `′ χc

−(α
′) ≤ 4√d , then the manifold M fibers over the circle and the surface R is a

fiber.
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Virtually infinite first Betti number.

Question: Find a tower of finite covers . . .→ Mi+1 → Mi → . . .→ M such that
limi→+∞ b1(Mi ) = +∞ ?

Theorem (5)

Suppose that there exists an infinite tower
. . .→ Mi+1 → Ni+1 → Mi → Ni → . . .→ N1 → M of finite covers of M such that
for all i ≥ 1, Mi → Ni is regular, with Galois group Hi ' (Z/2Z)

ri .

If infi∈N χ
h
−(Mi)[π1M : π1Ni ]/(

√
2)ri = 0,

Then limi→+∞ b1(Mi ) = +∞.

Corollary (6)

Let . . .→ Mi → Mi−1 → . . .→ M1 → M be the tower of finite covers corresponding to
the lower mod 2 central series.
For all i ≥ 1, set ri = b1,F2 (Mi−1), with M0 = M, and Ri = r1 + r2 + . . .+ ri . Suppose
that r1 ≥ 4.

If infi∈N χ
h
−(Mi)2

Ri−1/(
√

2)ri = 0,
Then limi→+∞ b1(Mi ) = +∞.
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Link with results of Lackenby.

Theorem (Lackenby)

Let . . .→ Mi → Mi−1 → . . .→ M1 → M a tower of finite covers of M such that
for all i ≥ 1, Mi → Mi−1 is regular, of group isomorphic to (Z/2Z)

ri (with the convention
that M0 = M). Set Ri = r1 + r2 + . . .+ ri .
Suppose that one of the following assumptions is satisfied:
(a) π1M does not have property (τ) with respect to the family {π1Mi}i∈N (for example
if limi→+∞ h(Mi ) = 0) and infi∈N

ri+1

2Ri
> 0, or

(b) each cover Mi → M is regular and limi→+∞
ri+1

2Ri
= +∞.

Then π1M is virtually large. In particular, the first Betti number of M is virtually infinite.

Corollary (7)

Let . . .→ Mi → Mi−1 → . . .→ M1 → M be an infinite tower of finite covers of M as in
the previous theorem.
Then the first Betti number of M is virtually infinite if neither of the following properties
is satisfied.

1 infi∈N h(Mi ) > 0 and the sequence (
ri+1

2Ri
)i∈N admits a bounded subsequence.

2 infi∈N h(Mi+1)4Ri (
√

2)ri+1 > 0 and infi∈N
ri+1

2Ri
= 0.
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Merci pour votre attention !!!!
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