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A B S T R A C T

The interaction of light with matter is a well-established domain of
physical science. For a chemical physicist, this interaction may be
used as a probe (spectroscopy) or to induce chemical reactions (photo-
chemistry.) Photochemical reaction mechanisms are difficult to study
experimentally and even the most sophisticated modern femtosecond
spectroscopic studies can benefit enormously from the light of theoret-
ical simulations. Spectroscopic assignments often also require theoret-
ical calculations. Theoretical methods for describing photoprocesses
have been developed based upon wave-function theory and show
remarkable success when going to sophisticated higher-order approxi-
mations. However such approaches are typically limited to small or at
best medium-sized molecules. Fortunately time-dependent density-
functional theory (TD-DFT) has emerged as a computationally-simpler
method which can be applied to larger molecules with an accuracy
which is often, but not always, similar to high-quality wave-function
calculations. Part of this thesis concerns overcoming difficulties in-
volving the approximate functionals used in present-day TD-DFT. In
particular, we have examined the quality of conical intersections when
the Ziegler-Wang noncollinear spin-flip approach is used and have
shown that the spin-flip approach has merit as a particular solution
in particular cases but is not a general solution to improving the de-
scription of conical intersections in photochemical simulations based
upon TD-DFT. Most of this thesis concerns algorithmic improvements
aimed at either improving the analysis of TD-DFT results or extending
practical TD-DFT calculations to larger molecules. The implementa-
tion of automatic molecular orbital symmetry analysis in deMon2k is
one contribution to improving the analysis of TD-DFT results. It also
served as an introduction to a major programming project. The major
methodological contribution in this thesis is the implementation of
Casida’s equations in the wavelet-based code BigDFT and the subse-
quent analysis of the pros and cons of wavelet-based TD-DFT where
it is shown that accurate molecular orbitals are more easily obtained
in BigDFT than with deMon2k but that handling the contribution
of unoccupied orbitals in wavelet-based TD-DFT is potentially more
problematic than it is in a gaussian-based TD-DFT code such as de-
Mon2k. Finally the basic equations for TD-DFT excited state gradients
are derived. The thesis concludes with some perspectives about future
work.
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R É S U M É

L’interaction entre la matiére et le rayonnement est un domaine bien
établi de la physique. Pour un physico-chimiste, cette interaction peut
être utilisée comme une sonde (spectroscopie) ou pour provoquer
des réactions chimiques (photo-chimie). Les mécanismes des réac-
tions photochimiques sont difficiles à étudier expèrimentalement et
même les études les plus sophistiquées de spectroscopies femtosec-
ondes peuvent bénéficier énormément des simulations théoriques.Les
résultats spectroscopiques d’ailleurs ont souvent besoin des calculs
théoriques pour l’analyse de leurs spectres. Les méthodes théoriques
pour décrire les processus photochimiques ont été principalement
développées en utilisant le concept de la fonction d’onde à N corps et
ont eu des succès remarquables. Cependant de telles approches sont
généralement limitées à des petites ou moyennes molécules. Heureuse-
ment la théorie de la fonctionnelle de la densité dépendant du temps
(TD-DFT) a émergé comme une méthode simple de calcul pouvant
être appliquée à des molécules plus grandes, avec une précision qui
est souvent, mais pas toujours, semblable à la précision provenant
des méthodes basés sur la fonction d’onde à N électrons. Une partie
de cette thèse consiste à surmonter les difficultés des approxima-
tions utilisées de nos jours en TD-DFT. En particulier, nous avons
examiné la qualité des intersections coniques quand l’approche du
retournement de spin non collinéaire de Ziegler-Wang est utilisée et
nous avons montré que l’approche du retournement de spin, parfois
,améliore dans des cas particuliers, mais que c’est n’est pas une so-
lution générale pour mieux décrire les intersections coniques dans
les simulations photochimiques basées sur la TD-DFT. La plupart
des parties de cette thèse traite d’améliorations algorithmiques, soit
pour améliorer l’analyse des résultats de la TD-DFT, soit pour étendre
les calculs de TD-DFT à de grandes molécules. L’implémentation de
l’analyse automatique des symétries des orbitales moléculaires dans
deMon2k est une contribution pour améliorer l’analyse des résultats
de la TD-DFT. Cela a aussi servi comme une introduction au projet de
programmation majeur. La contribution méthodologique principale
dans cette thèse est l’implémentation des équations de Casida dans
le code BigDFT fondé sur le formalisme des ondelettes. Cette implé-
mentation a aussi permis une analyse détaillée des arguments positifs
et négatifs de l’utilisation de la TD-DFT fondée sur les ondelettes.
On montre qu’il est plus facile d’obtenir des orbitales moléculaires
précises qu’avec deMon2k. Par contre, la contribution des orbitales
inoccupées est plus problématiques qu’avec un code de gaussienne
comme deMon2k. Finalement, les équations de base des gradients
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analytiques des états excités sont dérivées pour la TD-DFT. La thèse
se termine avec quelques perspectives de travaux futurs.
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1
B A C K G R O U N D M AT E R I A L

Many molecular-quantum-mechanics research seminars, theses, and
reviews have began by quoting a remark made by Paul Dirac:

"The underlying physical laws necessary for the mathe-
matical theory of a larger part of physics and the whole of
chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equa-
tions much too complicated to be soluble." [Proceedings of
the Royal Society of London. Series A, Containing Papers
of a Mathematical and Physical Character, Vol. 123, No.
792 (6 April 1929)] 1

While this remark is as true now as it was then (we are still unable
to afford exact solutions to the equations), the development of super-
computers has enabled increasingly accurate solutions to be obtained.
Presented in this chapter are: (i) the equations of the molecular quan-
tum mechanics which explain the majority of chemistry referred to
by Dirac, (ii) the basis upon which we approximate their solution,
and (iii) the ways in which we seek to improve such approximations.
In the context of this thesis, emphasis is placed on DFT, and TD-DFT

treatments are introduced for completeness and for later discussion.

1.1 synopsis

The spirit of this thesis is very much that attributed to Dirac. The
goal is to find more efficient accurate ways to solve the Schrödinger
equation in order to extract chemically-useful information. Part of the
answer involves improving the numerical methods used in present-
day electronic structure calculations and part of the answer involves
seeking practical approximations. The purpose of this synopsis is to
explain–in broad strokes–the specific approach to be taken during my
thesis work and the general organization of my thesis.

The approach taken in my work is to use DFT for ground states and
LR TD-DFT for electronic excited states. The emphasis on DFT, rather
than wave-function-based approaches, is a question of efficiency. DFT

calculations simply scale better with system size than do wave-function
methods of comparable accuracy. LR-TD-DFT is now a well-established

1 The quote is typically given out of context as presented here. The rest of the text
actually goes on to speak about the need for approximations: "It therefore becomes
desirable that approximate practical methods of applying quantum mechanics should
be developed, which can lead to an explanation of the main features of complex
atomic systems without too much computation."

3
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way to extract information about electronic excited states. Nevertheless
much contemporary effort is currently being devoted to improving
DFT and TD-DFT, both from the point of view of commonly-used
underlying approximations and from the point of view of improved
numerical algorithms. The focus of this thesis is on TD-DFT rather than
conventional ground-state DFT. Algorithms and approximations are
proposed, tested, and (in some cases) applied to previously unstudied
systems. High-lights include:

• Testing an implementation of SF LR-TD-DFT for the computation
of potential energy surfaces (PES) with comparison against mul-
tireference wave-function methods at an accuracy comparable to
that of multireference methods.

• Implementation and exploration of wavelet-based LR-TD-DFT

calculations.

The thesis is "by articles," meaning that it includes entire published
articles or articles submitted for publication. The reason for doing so is
that some of the work was only possible because of the contributions
of several co-authors and this seemed the best way to acknowledge
them. Each article is prefaced with an introduction placing the work
in the context of this thesis and describing my contribution to that
article. Of course, this type of thesis has the drawback that many
of the articles retain redundant introductory material. Notation may
also sometimes differs from article to article. That is inevitable when
choosing this type of format and the readers are thanked ahead of
time for their understanding and indulgence.

The thesis is mainly divided into four parts. Part I (Chapters 1– 3)
consists of background material. Chapter 1 consists of an "elementary"
review of "textbook material" needed to keep the thesis self-contained
and accessible to (say) a new doctoral student. Chapters 2 and 3

review, respectively, the state of the art for TD-DFT investigations of
photochemistry and wavelet algorithms for solving the Kohn-Sham
(KS) equations of DFT.

Part II (Chapters 4 and 5) are original scientific contributions which
are either already published articles or have been submitted for pub-
lication. The performance of the deMon2k implementation of SF-LR-
TD-DFT is investigated in Chapter 4 for its ability to describe key PES

features needed for a realistic description of photochemical reactions.
Chapter 5 describes our implementation, testing, and application of
LR-TD-DFT in the wavelet code BigDFT. Implementation details are
given in appendix C following the theoretical details in appendix A.

Part III (Chapters 6 presents on-going research. Chapter 6 de-
scribes my personal experience implementing the molecular-orbital
symmetry labeling in the Grenoble version of deMon2k whose docu-
mentation is described in appendix B and its successful application to
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[Fe(H2O)6]2+–a common example in inorganic chemistry books dis-
cussing ligand field theory but also a molecule with rare Th symmetry.

Part IV (Chapter 7) concludes and points out how our work might
best be continued in the future.

Appendix D presents the equations that we have worked out for
implementing analytic gradients for TD-DFT excited states in deMon2k

and in BigDFT.

1.2 atomic units

We use a system of Hartree energy (Ha) atomic units (a.u) throughout
this dissertation unless otherwise denoted. Atomic units are based
upon Gaussian rather than international System (SI) units, so that factors
of 4πǫ0 never appear. There are also Rydberg atomic units but they
rarely work anymore. In atomic units,

e = me =  h = 1

where e is the elementary charge on the proton, me is the electron
mass, and  h Planck’s constant divided by 2π. Conversion to other
units can be obtained by dimensional analysis. For example, distance
is in units of  h2/mee

2 and called the Bohr radius a0, and energy is
in units of e2/a0 and is called Ha (Eh). The equations expressed in SI

units Coulomb’s constant 1/4πǫ0 also have magnitude 1.

1.2.1 Naming Excited States

There are various notations for the electronic states of a molecule and
the transitions between them. The most widely used nomenclatures
are the enumerative one and Kasha’s.

The enumerative nomenclature is based on the energetic order of
the states and their multiplicities. The electronic state with the lowest
energy defines the ground state, and the adiabatic energies of the
other states determine the corresponding labels. Thus, in this notation
the singlet ground state is denoted by S0, whereas the excited states
are expressed by the successive numbers S1, S2, S3,...,Sn. A similar
formula is used for the triplet states, which are denoted by T1, T2,...,Tn.
The excitations are expressed by S0 → S1, where the arrow indicates
the direction of excitation. It is worthwhile to mention that, since
the nature of the states can change along the PES, the enumerative
nomenclature can sometimes lead to confusion.

Kasha’s nomenclature only specifies the nature of the state involved
in the transition. The symbols π,σ, and n characters are used to denote
unsaturated, sigma and non-bonding occupied orbitals, respectively.
The same symbols with an added "∗" (π∗, σ∗) are used to refer to
the corresponding antibonding orbitals. As in the former case, the
excitations are expressed as π→ π∗. With this nomenclature the states
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present smooth energetic profiles along the PES. We will use both
nomenclatures indistinctively throughout this thesis. For the sake
of shortness, excitations will either be denoted as π, π∗ or π − π∗.
Basically the enumerative nomenclature labels adiabatic PESs while
Kasha’s notation labels diabatic PES.

1.3 classical beginnings

The classical mechanics which is so strongly associated with the name
of Isaac Newton grew out of our everyday experience with balls,
pendulums, boats on water–macroscopic objects of all kinds– and
the realization that these laws also describe the motion of heavenly
bodies. However classical mechanics fails miserably when describing
objects as small as atoms and molecules. In 1911, Rutherford [281]
proposed that an atom must contain a small massive center called the
nucleus. He believed the nucleus contained all the positive charge of
the atom and was surrounded by orbiting electrons with equal and
opposite charge which moved around the nucleus much like planets
around the sun. Later, Bohr [47] suggested that electrons could not
spiral inwards out of these orbits by emitting continuous radiation as
they were only allowed to emit quanta. This Rutherford-Bohr model
mixes the classical physics idea of electrons as particles in orbits with
concepts of energy quanta, and while this model successfully explains
the emission spectrum of hydrogen atom, it is incorrect. Nevertheless,
it was the introduction of quantum theory to chemistry, and this was
where quantum mechanics began to take over.

Quantum mechanics offers chemists the possibility of simulating
and hence understanding molecular structure, spectroscopy, and reac-
tivity. However, only the two particle hydrogen atom (H) has a closed
solution and only a few other systems may be considered to have
essentially numerically exact solutions (e.g., H+

2 and He). The rest
of this chapter tries to give an elementary introduction to the basic
quantum mechanics used in this thesis and to practical approximation
needed for treating nontrivial problems.

Quantum mechanics was born when two important theories come
together to give a clear explanation of the hydrogen spectrum. Louis
de Broglie postulated that every particle had a wavelength associated
with its momentum p,

λ =
h

p

As nonemitting charged entities, electrons are restricted to orbits with
integral wavelengths,

2πr = nλ

so their angular momentum is quantized

2πr =
nh

p
⇒ pr = n h
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By combining these relations with the equation balancing centrifugal
and Coulombic forces,

p2

mr
=

e2

(4πǫ0)r2

we have two equations in two unknowns which may be solved to give

p =
me2

(4πǫ0)h h

r =
(4πǫ0)n

2 h2

me2
, (1.1)

since

E =
p2

2m
−

e2

(4πǫ0)r
,

then

E = −
m2e2

2(4πǫ0)2n2 h2
= −

m2e2

8ǫ20n
2h2

.

In Gaussian units this is

E = −
m2e2

2n2 h2

and in atomic units
E = −

1

2n2
.

The energy gaps between these stable orbitals compose the hydrogen
spectrum. Beyond the hydrogen atom, quantum mechanics cannot be
solved exactly but numerical solutions of H+

2 and He are essentially
exact.

Using the de Broglie wavelength, Erwin Schrödinger substituted
the momentum of an electron for the frequency term in the classical
wave equation and derived his famous differential equation. For the
hydrogen atom, the Schrödinger equation reads (in a.u)

(

−
1

2
∇2 −

1

r

)

ψ(r) = ǫψ(r) , (1.2)

The Schrödinger equation defines kinetic 〈ψ|− 1
2∇2|ψ〉 and potential

〈ψ|− 1
r |ψ〉 energies in terms of electronic wave functions, ψ(r). P. A.

M. Dirac showed that Werner Heisenberg’s initial matrix mechanics
form of quantum mechanics is in fact just an alternative linear algebra
form of Schrödinger’s later wave mechanics formulation of quantum
mechanics.

1.4 the hamiltonian

First of all, I am going to describe the Hamiltonian of an N-electron
M-nuclei system. In principle the Hamiltonian contains all the physics
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of this many-body system. By solving the Schrödinger equation with
this Hamiltonian, we should then be able to derive all the observable
quantities. Its form is,

Ĥ =
∑

i

(

−
1

2
∇2

i

)

+
∑

α

(

−
1

2Mα
∇2

α

)

+

1

2

∑

i 6=j

1

rij
+
1

2

∑

α 6=β

ZαZβ

Rαβ
−
∑

i,α

Zα

|ri − Rα|
. (1.3)

The first term is the electronic kinetic energy operator, where ∇2
i

is the Laplacian acting over the electronic coordinates {ri} with an
electronic mass m. The second term is the operator corresponding
to the kinetic energy of the nuclei, where ∇2

α is the Laplacian acting
over the nuclear coordinates {Rα} with the mass of nuclei Mα. The
third and fourth terms are the pairwise electrostatic electron-electron
and nucleus-nucleus interactions respectively, where, rij = |ri − rj|

and Rij = |Ri − Rj| are the electron-electron and nucleus-nucleus
separations of the pairs which are being considered, and Zα represents
the charge of the αth nucleus. Finally, the fifth term corresponds to
the electron-nuclear attraction.

From the Hamiltonian given above, is clear that the number of
independent variables in the corresponding Schrödinger’s equation is
determined by the number of particles involved. Therefore, an exact
solution to such kind of equation is not possible for realistic systems.
Hence, when dealing with this kind of problems, people very often
try to work them out by applying different successive approximations
in order to model the physics of the system, which, in some cases, can
compromise the accuracy of the final result or at least provide results
that are not general. In some cases, this leads to empirical models (i.e.,
models containing external parameters) which will work well for only
a few kinds of systems and external conditions. (Note, however, that
empirical methods are largely avoided in this thesis, which favours a
first-principles density-functional theory approach.)

Very frequently, the first approximation that people do is the adi-
abatic (or Born-Oppenheimer (BO) [48]) approximation. This one
is usually not very critical in terms of loss of accuracy, and instead
simplifies considerably our problem so, next, I am going to present a
short description of what it is about.

1.5 born-oppenheimer approach

If we divide the system into light particles (electrons) and heavy ones
(atomic nuclei) and think classically, in thermodynamic equilibrium
the mean value for the kinetic energy of both kind of particles is of
the same order [49, 50] but, due to the large mass difference between
nucleons (i.e., protons+neutrons) and electrons, the electronic speed
very much exceeds nuclear speeds ( by approximately two orders of
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magnitude.) Then, for every modification in the position of the atomic
nuclei an almost instantaneous rearrangement of the electrons occurs,
following the new nuclear positions. This allows us to consider, at least
to a first approximation, the movement of the electrons as if they were
in field of fixed nuclei. While studying the movement of the nuclei, on
the contrary only the potential originating from the mean electronic
spatial distribution (not an instantaneous one) must be taken into
account. When this physical approximation is formulated in quantum
mechanics, it is known as the adiabatic or BO approximation.

In the BO approximation, the nuclear Schrödinger equation is written
as,

(

−
∑

α

1

2Mα
∇2

α + V0(R)

)

Φ(R) = ǫΦ(R) , (1.4)

where R = {Rα} is the set of all the nuclear coordinates and V0(R)

the clamped-ion energy of the system, which is often referred to
as the Born-Oppenheimer potential energy surface, and ǫ are the atomic
eigenvalues. In practice, V0(R) = E0(R) + Vnn(R) is the ground-state
energy of a system of interacting electrons moving in the field of fixed
nuclei, which obeys the Schrödinger equation

HBO
e (r; R)φn(x; R) = En(R)φn(x; R) . (1.5)

where the Hamiltonian–which acts on to the electronic variables and
depends only parametrically on R–reads

HBO
e (r; R) = −

1

2

∑

i

∇2
i +

1

2

∑

i 6=j

1

rij
−
∑

i,α

Zα

|ri − Rα|
, (1.6)

plus the nuclear-nuclear repulsion energy,

Vnn(R) =
∑

α<β

ZαZβ

|Rα − Rβ|
. (1.7)

This could be mistaken as a simple rearrangement of equation (1.3),
but it is important to notice that now the electronic part is decoupled
from the rest and can be solved independently, using the set of nuclear
positions R, only as parameters. Explicit inclusion of the coupling
of the electronic and nuclear degress of freedom beyond the Born-
Oppenheimer approximation and present in the full Schrödinger
equation is important for simulations of some types of photoprocess.

1.5.1 Density As Basic Variable

Within the BO approximation,

V0(R) = E0(R) + Vnn(R) . (1.8)
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while the nuclear-nuclear repulsion Vnn(R) is a relatively simple ob-
ject, the electronic energy E0(R) for nuclei frozen in the configuration
R is still very complicated. A priori E0(R) depends upon φ(x; R) where
x = {xi} and xi = (ri, σi) are the space plus spin coordinates of N elec-
trons. Nevertheless chemists have long analyzed chemical reactivity in
terms of atomic charges–which is to say, in terms of the charge density

ρ(r1; R) =
∑

σ

∫

|φ0(x1; R)|2dx2dx3...dxN . (1.9)

Why should this work? Part of the answer is that the electron-nuclear
attraction depends only upon the charge density,

Vne(R) = −

∫

ρ(r; R)

(

∑

α

Zα

|r − Rα|

)

d~r , (1.10)

as does the classical electron-electron repulsion energy

Vee(R) =
1

2

∫
ρ(r1; R)ρ(r2; R)

|r1 − r2|
dr1dr2 . (1.11)

For atoms, we can also obtain the electronic kinetic energy from the
virial theorem [268] as

Te(R) = 〈φ0(R)|−
1

2

∑
∇i|φ0(R)〉

= −
1

2
Vne(R) . (1.12)

Indeed Te(R) + Vne(R) + Vee(R) accounts for most of E0(R) but it
it still not an accurate-enough approximation for most problems in
chemical and solid-state physics.

A solution in principle was given by E. Bright Wilson [36], who
pointed out that (i) integration over ρ gives the number of electrons, N,
(ii) the cusps in ρ give the nuclear positions, R, and (iii) the derivatives
of ρ at the cusps give the nuclear charges, {Zα}. Hence the ground-
state density of a molecule contains all of the information necessary
to reconstruct the electronic Hamiltonian HBO

e (r; R) and hence to
determine all of the electronic properties of the system by "just" solving
the electronic Schrödinger equation. In particular, the ground-state
energy is a functional of the ground-state charge density

E0(R) = E0(R)[ρ0(~r; R)] . (1.13)

In 1964, Hohenberg and Kohn provided a more general mathematical
proof of this same result, so beautifully motivated by E. Bright Wilson.
The Hohenberg-Kohn (HK) theorems and the Kohn–Sham formulation
of density–functional theory (DFT) are the subject of the next section.
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1.6 introduction to dft

Over the last 45 years DFT has become one of the standard methods
for calculations in several branches of physics and chemistry. Among
all the other approaches to electronic structure calculations, such as
configuration interaction (CI), coupled cluster (CC) and Møller-Plesset
(MP) perturbation theory, the rather special place of DFT becomes
directly clear from the fundamentals, as first formulated in 1964 by
Hohenberg and Kohn [172].

1.6.1 The First Hohenberg-Kohn Theorem

Every observable quantity of a stationary quantum me-
chanical system is determined by the ground-state density
alone.

In other words, the aim of DFT is not to obtain a good approximation
to the ground-state wave function of the system, but rather to find
the energy of the system as a functional of the density, without any
reference to the wave function. This proof, that all observables of a
many electron system are unique functionals of the electron density,
provides the theoretical basis for DFT.

Consider a nonrelativisticN-electron system in the Born-Oppenheimer
approximation. The Hamiltonian Ĥ in the Schrödinger equation

ĤeΨ(x1, x2, ....xn) = EΨ(x1, x2, ...., xn) , (1.14)

consists of the kinetic energy T̂ , the nuclear-electron interaction v̂ne,
and the electron-electron interaction v̂ee.

In the HK theorem the one-to-one mapping between the electron
density ρ

ρ(r1) =
∑

σ1=↑↓

N

∫

|Ψ(x1, x2, ..., xn)|2dx2..., dxn , (1.15)

and the external potential v̂ =
∑

i v(ri) (which is typically just the
nuclear attraction v(ri) = −

∑
i

∑
α

Zα

riα
or could be more general) is

proved. The mapping

v̂
Eq. (1.14)−−−−−−−→ Ψ

Eq. (1.15)−−−−−−−→ ρ , (1.16)

is rather simple and straight forward. Each v̂ connects to a wave func-
tion, Ψ, by solving Schrödinger equation (1.14), and the corresponding
density ρ can be found by integrating the square of the wavefunction
Eq. (1.15).

The proof of the mapping in other direction (that ρ determines v̂)

v̂
a←− Ψ b←− ρ , (1.17)
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is done in two steps. In each case, the proof is by contradiction: (a)
If v̂ and v̂ ′ differ by more than a constant C, they will not lead to the
same wavefuction Ψ.
(b) If the ground state Ψ of Ĥ and Ψ ′ of Ĥ ′ are different, they cannot
lead to the same density ρ.

Let us first prove the lemma (a). For a nondegenerate ground state it
follows that,

(

T̂ + v̂ee + v̂ne

)

|Ψ〉 = Egs|Ψ〉 , (1.18)
(

T̂ + v̂ee + v̂
′
ne

)

|Ψ ′〉 = E ′
gs|Ψ

′〉 , (1.19)

Now we assume that Ψ = Ψ ′, and one gets

(v̂− v̂ ′)|Ψ〉 = (Egs − E
′
gs)|Ψ〉 , (1.20)

which immediately leads to v̂ = v̂ ′ + C at least where Ψ 6= 0, in
contradiction with the assumption made in (a).

We now prove the lemma (b). Using the variational principle, in the
case for (b) one proves that if Ψ 6= Ψ ′. This implies that ρ(r) 6= ρ ′(r).
Without loss of generality we may choose Ψ and Ψ ′ such that

Egs = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ ′|Ĥ|Ψ ′〉 ,
= 〈Ψ ′|Ĥ ′ + v̂− v̂ ′|Ψ ′〉 ,

= E ′
gs +

∫

ρ ′(r)[v(r) − v ′(r)]dr . (1.21)

and similarly

E ′
gs = 〈Ψ ′|Ĥ ′|Ψ ′〉 < 〈Ψ|Ĥ ′|Ψ〉 ,

= 〈Ψ|Ĥ+ v̂ ′ − v̂|Ψ〉 ,

= Egs +

∫

ρ(r)[v ′(r) − v(r)]dr . (1.22)

Assuming that ρ(r) 6= ρ ′(r), the combination of the equations (1.21)
and (1.22) leads to the following contradiction

Egs + E
′
gs < Egs + E

′
gs . (1.23)

Therefore the maps between v̂, Ψ and ρ are bijective (i.e., one-to-one).

v̂←→ Ψ←→ ρ , (1.24)

and as a consequence of the bijective map Ψ←→ ρ, every observable
O of the system is a unique functional of the density

〈Ψ[ρ]|Ô|Ψ[ρ]〉 = O[ρ] . (1.25)
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1.6.2 The Second Hohenberg-Kohn Theorem

The exact ground-state density of a system in a particular
external potential can be found by minimization of the
energy functional.

As a direct consequence of Eq. (1.24), the map ρ→ v̂ indicates that
ρ determines the external potential as well as the total number of
electrons, and thus the entire Hamiltonian. Therefore, in addition, the
first HK theorem tells us that for the energy functional of a system in a
particular external potential v0

Ev0
[ρ] = 〈Ψ[ρ]|T̂ + v̂ee + v̂0|Ψ[ρ]〉 , (1.26)

the exact ground-state density can be found by minimization of Ev0
[ρ],

E0 = minρEv0
[ρ] . (1.27)

The part of the energy functional, FHK[ρ], which does not involve the
external potential is a universal density functional

EHK[ρ] = Ev0
[ρ] = FHK[ρ] +

∫

v0(r)ρ0(r)dr ,

FHK[ρ] = 〈Ψ[ρ]|T̂ + v̂ee|Ψ[ρ]〉 . (1.28)

1.6.3 v-Representability And The Levy Constrained Search Formalism

When we proved the Hohenberg-Kohn theorem above, we made the
assumption that the density is v-representable. By this is meant that the
density comes from the anti-symmetric ground state wave function
associated with some potential v(r). Why is this important? The
reason is that we want to use the variational character of the energy
functional

E0 6 Ev0
[ρ] , (1.29)

To find the ground state energy, which assumes that ρ is a v-representable
density. If our trial density that we put in this functional turns out to be
non-v-representable, the variational principle is no longer valid. One
would think that most "reasonable" densities would be v-representable,
but many "reasonable" densities have actually been shown to be non-
v-representable [221, 224]. The Levy constrained search formulation
provides a way around the problem of v-representability and in the
same way presents a constructive proof of the HK theorem,

The minimization of Ev0
[ρ] can be written as

〈Ψ0|T̂ + Ŵ|Ψ0〉+
∫

dr v(r)ρ(r) 6 〈Ψρ0
|T̂ + Ŵ|Ψρ0

〉+
∫

dr v(r)ρ(r) ,
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(1.30)

or

〈Ψ0|T̂ + Ŵ|Ψ0〉 6 〈Ψρ0
|T̂ + Ŵ|Ψρ0

〉 . (1.31)

Here Ψ0 is the ground state wave function and Ψρ0
is any other wave

function yielding the same density. We recognize this as the HK

functional, FHK.
It turns out that the ground state wave function of density ρ(r)

can be defined as the wave function which yields ρ(r) and minimizes
the HK functional. Levy constrained search formulation of the HK

theorem [221, 224, 220, 222] which states that we can divide our search
for the ground state energy into two steps, we minimize Ev0

[ρ] first
over all wave functions giving a certain density, and then over all
N-representable densities

E0 = minΨ〈Ψ|T̂ + Ŵ + V̂ |Ψ〉
= minρ

(

minΨ→ρ〈Ψ|T̂ + Ŵ + V̂ |Ψ〉
)

= minρ

(

minΨ→ρ〈Ψ|T̂ + Ŵ + V̂ |Ψ〉+
∫

drvext(r)ρ(r)

)

.(1.32)

N-representable means is that ρ can be obtained from an anti-symmetric
wave function, and that it fulfills the following three conditions: It
should be positive, it should integrate to N, and it should be finite.
This is obviously a much weaker condition that v-representability and
any reasonable density fulfills it. The word "constrained" in the Levy
constrained search method comes from the fact that the Ψs that we
search among are constrained to give the density ρ.

1.6.4 The Kohn-Sham Equations

Unfortunately the Hohenberg-Kohn theorem does not provide us with
a practical scheme for doing DFT calculations. It does not tell us how
to perform the map ρ→ Ψ in practice, and only defines FHK formally.
Approximating FHK is the basis for orbital-free DFT. Unfortunately
sufficient accurate approximation for FHK have proven difficult to
develop.

Instead practical approximations are based on a different exact
formalism, namely that given, a little later in 1965 by Kohn and Sham

[206]:

The ground-state density of the interacting practicle system
can be calculated as the ground-state density of an auxiliary
non-interacting system

In other words, the central (non-interacting v-representabile) assump-
tion in the KS scheme is that, for each interacting electron system with
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external potential v0(r), a local potential vs,0(r) (the Kohn-Sham po-
tential) exists such that the density ρs(r) of the non-interacting system
equals the density ρs(r) of the interacting system, ρs(r) = ρ(r).

Consequently, if this is true, this KS potential vs,0(r) must, according
to the first HK theorem [(vs(r) ←→ Ψs(r) ←→ ρs(r))] be unique, in
the sense that it is a unique functional of the density: vs[ρ](r). The
Schrödinger equation for such a system of non-interacting electrons
(v̂ee = 0), which move in an external potential v̂s,0 reads

(

−
1

2
∇2 + vs,0(r)

)

φiσ(r) = ǫiφiσ(r) . (1.33)

and the density of such a system is determined by the N lowest energy
orbitals

ρs(r) =
∑

iσ

niσ|φiσ(r)|
2 . (1.34)

The kinetic energy of this non-interacting KS system is given by

Ts[ρ] =
∑

iσ

∑

iσ

niσ〈φiσ|−
1

2
∇2|φiσ〉 . (1.35)

In order to arrive at a useful expression for the KS potential, vs,0(r),
we write the total energy expression for the interacting system in the
following way,

E[ρ] = Ts[ρ] +

∫

v0(r)ρ(r)dr+
1

2

∫ ∫
ρ(r)ρ(r ′)

|r − r ′|
drdr ′ + Exc[ρ] , (1.36)

hereby introducing an exchange-correlation (xc) energy functional
Exc[ρ],

Exc[ρ] = FHK[ρ] − Ts[ρ] −
1

2

∫ ∫
ρ(r)ρ(r ′)

|r − r ′|
drdr ′ . (1.37)

The HK theorem ensures that the energy functional E[ρ] is stationary
for small variations δρ(r) around the exact density ρ0(r)

δE[ρ]

δρ(r)
|ρ=ρ0

= 0 , (1.38)

this leads to

δFHK[ρ]

δρ(r)
|ρ=ρ0

= −v0(r) . (1.39)

similarly for the non-interacting system we find

δTs[ρ]

δρ(r)
|ρ=ρ0

= −vs,0(r) . (1.40)

Differentiating now Eq. (1.37) with respect to ρ(r) yields

vs,0(r) = v0(r) +

∫
ρ(r ′)

|r − r ′|
dr ′ +

δExc

δρ(r)
, (1.41)



16 background material

which is often denoted in shorthand as

vs,0(r) = v0(r) + vH(r) + vxc(r) . (1.42)

The xc potential is given by,

vxc(r) =
δExc

δρ(r)
. (1.43)

Hence with Eq. (1.33) we find
[

−
1

2
∇2 + v0(r) +

∫
ρ(r ′)

|r − r ′|
dr ′ +

δExc

δρ(r)

]

φiσ(r) = ǫiφiσ(r) , (1.44)

Since the KS potential depends on the density, the Eqs. (1.41) and
(1.44) have to be solved self-consistently. And therefore, once an
approximation for the Exc has been made, the KS equations provide a
way for calculating the density ρ(r), and from that such as the energy
of the system.

1.6.5 Approximations For The Exchange-Correlation Functional

The KS equation holds independently of any approximation on the
functional Exc[ρ], thus it would give the exact ground-state properties
of an interacting system if the exact functional were known. In practice
the success of DFT is due to the fact that Exc[ρ] can be reasonably
approximated by a local or nearly local functional of the density.
The first and most widespread approximation to Exc[ρ] is the LDA

proposed in the original KS paper, which assumes that the xc energy
of a real system behaves locally as that of a uniform electron gas. The
xc functional in this case can be expressed as

ELDA

xc [ρ] =

∫

ǫhom
xc (ρ(r))ρ(r)dr , (1.45)

where ǫhom
xc (ρ) is the xc energy per electron of the homogeneous elec-

tron gas at density ρ(r). The exchange contribution can be evaluated
analytically [242], while the correlation part has been obtained by
parameterizing the results of Monte Carlo simulations [76, 265, 320].
The LDA is exact in the limit of high density (where the kinetic en-
ergy dominates) or of slowly-varying density distributions. In fact
experience has shown that accurate results are obtained well beyond
this theoretical range of validity. Typically the LDA yields a good
accuracy in reproducing experimental structural and vibrational prop-
erties of strongly bound systems, but usually overestimates bonding
energies and underestimates bond lengths. As a first improvement
beyond the LDA, the generalized gradient approximation (GGA) has
been introduced:

EGGA

xc [ρ] =

∫

ǫGGA

xc (ρ(r), |∇ρ(r)|)ρ(r)dr , (1.46)
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which depends also on the norm of the local density gradient, ∇ρ(r).
Several expressions for ǫGGA

xc have been considered. The three most
popular parametrizations are that of Becke (B88) [41], Perdew and
Wang (PW91) [264], and Perdew, Burke, and Enzerhof (PBE) [266].
GGA significantly improves upon the LDA to predict the binding
energies of real materials. There are other types of xc functionals
which are explicitly orbital-dependent; among them we mention
the self-interaction correction (SIC) methods, the optimized effective
potential (OEP), the exact exchange (EXX) and hybrid functionals such
as B3LYP. Some of these functionals provide a remarkable improve-
ment of the accuracy for some systems, but in general they also
introduce a significant increase in computational cost.

1.7 introduction to td-dft

The extension of DFT to deal with the time-dependent Schrödinger
equation and excited-state properties has been achieved with the
formulation of time-dependent density-functional theory (TD-DFT)
[241], a theory which has been mathematically estabilished by the
theorem of Runge and Gross [280]. In this approach the complex
many-body time-dependent Schrödinger equation is replaced by a set
of (coupled) time-dependent single-particle equations. For this reason
this method is computationally much more suitable than cumbersome
many-body techniques and in practice, it is one of the possible choice
in order to treat strongly non-linear phenomena in realistic systems.
Furthermore, for many applications, very simple approximations to TD-

DFT, such as the adiabatic LDA (ALDA) [35] have shown an unexpected
accuracy.

To cope with a wide range of applications, different practical imple-
mentations of linear-response (LR) TD-DFT are available. In its most
general form, the TD-DFT linear-response problem can be expressed in
terms of a Dyson-like equation [60]. This equation describes how to
compute a generalized susceptibility, whose poles are the excitation
energies of the system. Through this response function it is possible to
calculate the linear response of any local observable to any local exter-
nal perturbation. The polarizability which gives the optical absorption
spectra, can also be obtained in this way. Nevertheless, since in general
the computational cost of constructing and solving the Dyson-like
problem is very high, there are more efficient and widespread ways to
solve TD-DFT equations when only optical properties are required.

The Dyson-like equation for susceptibility has been reformulated
by Casida [60] into an eigenvalue problem, whose eigenvalues and
eigenvectors are used to build the optical absorption spectra. The
construction of Casida’s equations requires the prior diagonalization
of the full ground-state problem, this operation may be very demand-
ing, especially for large basis sets. The eigenvalue problem is then
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efficiently solved by iterative techiniques [192, 298]. Nevertheless,
within this approach only a limited number of the low-lying eigen-
values can be obtained. This leads to a limitation of the energy range
accessible. Furthermore, the density of excitation energies in a given
energy range increases linearly with the system size, thus making it
difficult if not impossible to calculate them individually for very large
systems.

Some of the drawbacks of Casida’s approach have been overcome
by directly solving the TD-DFT equations in the time domain. For
linear response purpose it is necessary to integrate this equations by
adding a properly-chosen small external perturbing potential [334,
333]. Real-time TD-DFT is suitable for calculating the optical spectra in
a large energy range and the full diagonalization of the ground-state
Hamiltonian is completely avoided, since it is necessary to propagate
the occupied states only. The basic operations required to integrate
TD-DFT equations are the same as an iterative ground-state calculation,
unfortunately they have to be performed many many more times. For
this reason the overall scalability of this method is basically the same
as that of a ground-state calculation, but the prefactor is much larger.

To summarize this overview of TD-DFT, two main open issues for a
wide applicability of this methodology: One is related to the accuracy
of the available xc functionals, which has to be improved in order
to treat, e.g., excitons in solids or Rydberg states in finite systems.
The other concerns the enhancement of the algorithmic performance
of the method, which is essential for the application TD-DFT to re-
alistic systems, indeed we need to build large models to simulate
e.g., biochromophores embedded in their biological environment or
dye-sensitized solar cells, just to mention two important examples. In
this thesis we will deal with this second issue. We will introduce a
new approach to solve TD-DFT equations in the linear regime.

1.7.1 The Time-Dependent Hohenberg-Kohn-Sham Formalism

The derivation for the TD KS equations is, compared to the static
case, much more complicated, and it was first formulated in 1984

by Runge and Gross [280]. The formalism of Runge and Gross has
many, atleast superficial parallels with the ground state DFT formalism
of Hohenberg, Kohn and Sham [172, 206]. For recent reviews on
time-dependent density functional theory, see [110, 150, 60, 151, 52,
318, 307, 61, 88, 238, 239, 53, 107, 73, 63, 64, 65]. The Runge-Gross
theorem is,

Given the initial state at t0, the single particle potential
v(r, t) leading to a given density ρ(r, t) is uniquely deter-
mined up to an arbitrary additive function of time, so that
the map v(r, t)→ ρ(r, t) is invertible
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As a consequence of the bijective map v(r, t) ←→ ρ(r, t), every
observable O(t) is a unique functional of, and can be calculated from,
the density ρ(r, t).

O[ρ](t) = 〈Φ[ρ](t)|Ô(t)|Φ[ρ](t)〉 . (1.47)

In a general TD situation such a proof starts from the time-dependent
Schrödinger equation,

i
∂

∂t
Ψ(t) = Ĥ(t)Ψ(t) , (1.48)

in which the Hamiltonian Ĥ(t) = T̂ + Ŵ + v̂(t), consists of a kinetic
energy part T̂ , some particle-particle interaction Ŵ, and the single-
particle potential v̂(t).

If the time-dependent Schrödinger equation Eq. (1.48) is solved for a
fixed initial state Ψ0, at time t0, and several potentials v(r, t), we obtain
the map v(r, t)→ Ψ(t). From the wavefunction we get the density by
ρ(r, t) = 〈Ψ(t)|ρ̂(r)|Ψ(t)〉, which defines the map Ψ(t)→ ρ(r, t), and in
which the density operator ρ̂(r) is given by

ρ̂(r) =

N∑

k=1

δ(r − rk) . (1.49)

In order now to prove that there exists a TD version of the first HK

theorem, one has to show that the map v(r, t) → Ψ(t) → ρ(r, t) is
invertible up to a purely time-dependent additive function α(t) and
under the requirement that the potential is expandable in a Taylor
series around t = t0. Despite this phase factor which appears in the
wave functions, Ψ(t) = e−iα(t)Φ[ρ](t), the expectation value of any
observable is often a functional of the density alone, because the phase
frequently cancels out in Eq. (1.47).

The proof is fully given in Ref. [280] and a short outline is given
here. If two potentials v(r, t) and v ′(r, t) differ by more than a purely
time-dependent function α(t), there must exist some non-negative
integer k for which

∂k

∂tk
[v(r, t) − v ′(r, t)]|t=t0 6= const. in r (1.50)

The thing to prove now is that the densities ρ(r, t) and ρ ′(r, t), which
correspond to the potentials v(r, t) and v ′(r, t) are different, if Eq. (1.50)
is fulfilled for k > 0.

Since we start from the same fixed initial state wave function Ψ0

it should be noted that the particle ρ(r, t), and also current j(r, t)

densities are of course identical at the initial time t0, and start therefore
to differ infinitesimally later than t0. This proof consists of two steps:
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(a). The time evolution of the current density if given by the equation
of motion

i
∂j(r, t)

∂t
= 〈Φ(t)|[ĵ, Ĥ(t)]|Φ(t)〉 , (1.51)

where the current operator ĵ(r) is given by

ĵ(r) =
1

2i

N∑

k=1

(∇rk
δ(r − rk) + δ(r − rk)∇rk

) , (1.52)

Since Φ(t) and Φ ′(t) evolve from the same initial state Φ0, Eq. (1.51)
gives

i
∂

∂t
[j(r, t) − j ′(r, t)]|t=t0 = 〈Φ0|[ĵ(r), Ĥ(t0)]|Φ0〉 ,

= iρ(r, t0)∇[v(r, t0) − v
′(r, t0)] .(1.53)

Working out the commutator in Eq. (1.53) (for k = 0 and k > 0 in
Eq. (1.50) shows after some straightforward algebra that j(r, t) and
j ′(r, t) will become different infinitesimally later than t0.

(b). To arrive at the corresponding densities, the continuity equation
is used

∂ρ(r, t)

∂t
= −∇ · j(r, t) , (1.54)

in which the result of (a) has to be inserted to finally find that also
ρ(r, t) and ρ ′(r, t) will become different infinitesimally later than t0.

Based on the Runge and Gross theorem, we can construct a TD KS

scheme.

The time-dependent density ρ(r, t) of the interacting par-
ticle system can be calculated as the density ρs(r, t) of
an auxiliary non-interacting (KS) system with the local
potential vs(r, t).

Thus the exact TD density of the interacting system can be computed
from

ρ(r, t) = ρs(r, t) =

N∑

i=1

|φi(r, t)|
2 , (1.55)

where the TD-KS (TD-DFT) orbitals are obtained by solving the time-
dependent Schrödinger equation of the non-interacting particle system

i
∂

∂t
φj(r, t) =

(

−
1

2
∇2 + vs[ρ](r, t)

)

φj(r, t) , (1.56)

in which the single-particle KS potential is given by

vs[ρ](r, t) = v(r, t) +

∫
ρ(r ′, t)

r − r ′
dr ′ + vxc(r, t) , (1.57)

and Eq. (1.57) formally defines the exchange-correlation potential
vxc(r, t).
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1.7.2 Adiabatic Approximation

As in the ground-state DFT formalism, the TD-KS equations require a
suitable approximation for the xc potential in order to be applied in
practice. The exact vxc depends non-locally on the density both in the
spatial and in the time variables (memory dependence). Fortunately,
by disregarding memory dependence, we obtain an approximation
which is not too bad and that has been successfully applied in many
cases. This approach, called the adiabatic approximation (AA), can be
written formally as

vadiaxc [ρ](r, t) = vGS

xc[ρt](r, t) , (1.58)

where vGS
xc is the ground-state xc functional calculated at the instan-

taneous density, ρt at time t. An example is the TD-LDA in the limit
of an external potential v(r, t), which varies slowly in time, the time-
dependent local density approximation (TD-LDA) is used to calculate
this xc potential vxc(r, t). Amazingly just like LDA in the case of time-
independent DFT, the TD-LDA seems to work well beyond its domain
of justification. Therefore vxc(r, t) is approximated by the same xc

potential as in time-independent DFT, but now using the TD density
at a particular time t, rather than the TD density.

Thus, evaluated with the density at a particular time t, the xc poten-
tial is approximated by,

vxc[ρt](r, t) =
δExc[ρt]

δρt(r)
, (1.59)

where ρt(r) is ρ(r, t) evaluated at fixed t, and it should be noted that,
in this approximation, all retardation memory effects are neglected,
and an instantaneous reaction of the SCF to changes in ρ is assumed.
Each ground-state functional such as LDA, GGA or hybrid can yield
a corresponding adiabatic approximation. In the limit of an external
potential that varies slowly in time, the AA becomes exact if the true
xc ground-state functional is known. In practice the results are also
affected by the faults of the ground-state approximations, such as the
lack of spatial non-locality of LDA or GGA. Nevertheless, despite the
crudeness of AA, optical spectra calculated within this approach are
often nearly as accurate as the results of more demanding many-body
approaches [261]. More importantly AA TD-DFT is easier to implement
and apply than are the many-body approaches, making AA TD-DFT an
obvious choice for calculations on larger more complex systems. There
are several known failures of the AA, due to either lack of memory or
spatial non-locality. Among them we mention the optical properties of
solids and long conjugated molecules, double excitations, and charge-
transfer excitations. These faults of AA and the attempts to solve them
are reviewed in [53].

All applications of TD-DFT in this thesis will use the AA.
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1.7.3 Linear-Response Theory

The majority of applications of TD-DFT concern the calculation of
optical absorption spectra using linear-response theory and within
the dipole approximation. The results of such calculations can be
compared with the findings of standard spectroscopic experiments,
where the external perturbing field is weak. In this section we will
summarize the general results of LR theory, with emphasis on its
application to optical absorption spectra. Linear-response theory is
a straightforward consequence of the time-dependent Schrödinger
equation in a perturbative treatment. For convenience, the equations
will be considered in the frequency representation, obtained by Fourier
transforming time-dependent quantities.

Given a many-particle system, the purpose of LR theory is to study
the variation of a given physical observable due to the application of
a weak external perturbation. As it is usual in quantum mechanics,
both the observable and the perturbation are represented by Her-
mitian operators. The fundamental quantity in TD LR theory is the
generalized susceptibility which in the frequency domain (Lehmann
representation) can be written [118]

χ(r, r ′,ω) =
∑

n

[

〈Ψ0|ψ̂
†(r)ψ̂(r)|Ψn〉〈Ψn|ψ̂

†(r ′)ψ̂(r ′)|Ψ0〉
ω− (En − E0) + iη

−
〈Ψ0|ψ̂

†(r ′)ψ̂(r ′)|Ψn〉〈Ψn|ψ̂
†(r)ψ̂(r)|Ψ0〉

ω+ (En − E0) + iη

]

, (1.60)

where η is an infinitesimal positive number, Ψ0 and Ψn are respectively
the ground- and excited-state wave functions corresponding to the
energies E0 and En, and ψ̂†(r) and ψ̂(r) are field operators. The
operator ψ̂†(r)ψ̂(r) is the second-quantized version of the density
operator ρ̂(r) =

∑N
i=1 δ(r − ri), where N is the number of electrons.

The poles of Eq. (1.60) correspond to the excitation energies of the
system. Using Eq. (1.60) the Fourier transform of the response of the
expectation value of a local operator, Â, to a local time-dependent
perturbation v ′ext(r, t) reads:

A ′(ω) =

∫

A(r)χ(r, r ′,ω)v ′ext(r
′,ω)drdr ′ . (1.61)

In case of an independent-particle system Ψ0 and Ψn become Slater
determinants of single-particle orbitals, φi(r), corresponding to the
energies ǫi and Eq. (1.60) can be written as

χKS(r, r
′,ω) =

∑

ij

(nj −ni)
φ∗
j (r)φi(r)φ

∗
i (r

′)φj(r
′)

ǫj − ǫi +ω+ iη
, (1.62)

where nj and ni are orbital occupation numbers. This equation
is particulary useful in TD-DFT since it is used to calculate the KS
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susceptibility. It is important to notice that, if i and j are both occupied
or both empty levels,then the corresponding contribution to χ vanishes.
A particularly important linear response function is the dynamic
polarizability

αij(ω) =

∫

riχ(r, r
′,ω)r ′jdrdr ′ , (1.63)

where ri and r ′j are the components of the position operators r and
r ′. If we consider the linear-response of the dipole to the external
perturbation v ′ext(r,ω) = −E(ω) · r in which E(ω) is a weak electric
field, we can write the polarizability as

a(ω) =
1

3
Traα(ω) =

∑

n

fn

(En − E0)2 −ω2
, (1.64)

where the spectroscopic oscillator strengths are

fn =
2

3
(En−E0)

(

|〈Ψ0|x̂|Ψn〉|2 + |〈Ψ0|ŷ|Ψn〉|2 + |〈Ψ0|ẑ|Ψn〉|2
)

, (1.65)

and x̂, ŷ and ẑ are the components of the position operator. Eq. (1.64)
is a straight-forward consequence of Eq. (1.60) and of Eq. (1.63). The
dynamic polarizability is particularly important since it is closely
related to the absorption of electromagnetic radiation in the dipole
approximation. Indeed for a molecular system we can write the molar
extinction coefficient as

ε(ω) ∝ ωIm(α(ω+ iη)) , (1.66)

This relation can be obtained in the context of the semi-classical theory
of the interaction radiation-matter using the dipole approximation and
Fermi’s golden rule. Since this result has been used in the thesis we will
sketch here the demonstration. First of all we remind the reader that
the absorption coefficient ε is defined by the relation I(z) = I0e−εcz,
where I indicates the intensity of an electromagnetic beam propagating
along z. We also remind the reader that the density of radiation
energy is given by ρ = E2/8π, where E is the norm of the electric
field associated with the wave. The intensity I is provided by the
product cρ where c is the speed of light. Using these relations, the
energy per unit of time (power) which is provided to the system under
investigation by the light beam can be written as

dU

dt
= c

dU

dz
=
Vc

8π

dE2

dz
= −

Vc

8π
εE2 , (1.67)

where V denotes the volume. This equation can be inverted to obtain

ε = −
8π

VcE2

dU

dt
, (1.68)
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In order to estabilish a connection with microscopic theory we rewrite
eq. (1.67) as

dU

dt
=

∑

if

ωfiWif , (1.69)

where i and f indicate occupied and unoccupied (virtual) energy levels,
ωfi is their difference in energy and Wif is the transition probability
per unit of time between levels i and f. To go further we have now to
evaluate Wfi using quantum mechanics. We will consider the simple
case of a single electron subject to an external potential vext(r) and
to electromagnetic radiation. The Hamiltonian for this system can be
expressed as

Ĥ =
1

2
(−i∇−

A

c
)2 + vext(r) , (1.70)

where A is the vector potential associated with the elctromagnetic
wave. Using the Coulomb gauge ∇ · A = 0 and discarding the
quadratic term in the vector potential, Eq. (1.70) can be simplified
as

H = −
1

2
∇2 + vext(r) +

i

c
A · ∇ , (1.71)

where the last term of the Hamiltonian can be treated perturbatively.
For an electromagnetic wave propagating along z, the vector potential
can be chosen to be

A(z, t) = A0e
i(kz−ωt) , (1.72)

where k is the wave number and ω is frequency. In general, if the
wavelength λ of the radiation is large compared with the dimension of
the system under investigation, the vector potential can be expanded
in powers of kz = 2π/λz

A(z, t) = A0e
iωt[1+ ikz−

1

2
(kz)2 + ...] . (1.73)

By limiting the expansion to the first term, namely by discarding
the dependence on the position, we obtain the dipole approximation.
Using Fermi’s golden rule, the transition probability per unit of time
between two levels i (occupied) and f (unoccupied) is given by

Wif =
2π

c2
[A0 · 〈Ψf|∇|Ψi〉]2δ(ωfi −ω) . (1.74)

Through the identity [r, H] = ∇, the term 〈Ψf|∇|Ψi〉 can be expressed
as

〈Ψf|∇|Ψi〉 = −ωfi〈Ψf|r|Ψi〉 , (1.75)

and Eq. (1.74) can be finally writted as

Wif = 2π[E0 · 〈Ψf|r|Ψi〉]2δ(ωfi −ω) , (1.76)

where we used the relation E0 = (iωfi/c)A0. Now Wif is ready to be
inserted in Eq. (1.69) to obtain the molar extinction coefficient through
Eq. (1.68).
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1.7.4 Linear-Response TD-DFT And Dyson-Like Equation

According to Eq. (1.61) the perturbation v ′ext introduces a first-order
change in the electronic density that can be expressed for an interacting
system as,

δρ(r,ω) =

∫

χ(r, r ′,ω)δv ′ext(r
′,ω)dr ′ , (1.77)

where χ is the generalized susceptibility defined in Eq. (1.61). By
construction, the noninteracting Kohn-Sham equations (1.56) have the
same time-dependent density as the many-body problem. For this
reason, the response of the density ρ ′(r,ω) is also the same. In this
case the equations are a bit more subtle, since the effective potential
also depends on the internal variables. Indeed the response of the
density can be written as

ρ ′(r,ω) =

∫

χKS(r, r
′,ω)v ′KS(r

′,ω)dr ′ , (1.78)

where

v ′Hxc
(r,ω) = v ′H(r,ω) + v ′ext(r,ω) , (1.79)

In Eq. (1.79) we have introduced the first-order response of the Hartree
+ xc potential induced by the application of v ′ext

v ′Hxc
(r,ω) = v ′H(r,ω)+ v ′xc(r,ω) =

∫

fHxc(r, r
′,ω)ρ ′(r ′,ω)dr ′ , (1.80)

The kernel f is defined by

fHxc(r, r
′,ω) =

∫
δvHxc

(r, t)

δρ(r ′, t ′)
eiω(t−t ′)d(t− t ′) , (1.81)

where the right-hand term is a functional of ground-state density only,
whose LR we are calculating, in the AA, Eq. (1.81) does not depend
explicitly on frequency because the xc contribution to the kernel is
local in time

fadiaxc (r, r ′, t− t ′) =
δvxc(r)

δρ(r ′)
|ρ=ρ0

δ(t− t ′) , (1.82)

By equating the density response in Eq. (1.77), we obtain a Dyson-like
equation for the TD-DFT linear-response, namely,

χ(r, r ′,ω) = χKS(r, r
′,ω)+

∫ ∫

χKS(r, r1,ω)f(r1, r2,ω)χ(r2, r
′,ω)dr1dr2 .

(1.83)

The poles of the response function χ are excitation energies of the
interacting system and the residues are the corresponding oscillator
strength. The kernel K is responsible for the corrections to the non-
interacting KS susceptibility. Indeed if we set fHxc = 0 we obtain
exactly χ = χKS. The optical spectra can be obtained from the Dyson-
like equation through Eq. (1.63).
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1.7.5 Casida’s Equation

For frequency-dependent and -independent kernels, Casida has re-
formulated the calculation of the poles (namely the transition ener-
gies) of the response function χ into a generalized Hermitian eigen-
value problem [60]. Ref. [60] also explicitly considers frequency-
dependent kernels. This approach with frequency-independent ker-
nels is widespread in the quantum chemistry community and is imple-
mented in many ab initio codes. It is particularly suitable to calculate
absorption spectra, although it is not possible to access broad energy
ranges. The starting point to derive Casida’s equations is Eq. (1.78)
where vH ′

xc
in turn depends linearly upon the response of the density

through Eq. (1.80). By explicitly substituting the KS susceptibility in
Eq. (1.78), we notice that the factorization allows for a direct integra-
tion of the product of the response function and of the first-order
change in the potential. The induced density change can then be
written as

ρ ′(r,ω) =
∑

ij

P ′
ijφi(r)φ

∗
j (r) , (1.84)

in which the expansion coefficients are given by

P ′
ij(ω) =

nj −ni

ǫj − ǫi +ω+ iη

∫

φi(r)
[

v ′KS(r,ω) + vappl(r,ω)
]

φ∗
j (r)dr .

(1.85)

Theses coefficients are different from zero only if they connect virtual
states with occupied states and vice versa. By inserting explicitly ρ ′ in
the form of Eq. (1.84) in Eq. (1.80) and by using this last equation to
evaluate Eq. (1.85), we obtain the linear system

∑

kl

[

ω− (ǫk − ǫl)

nj −ni
δikδjl −Kij,kl

]

P ′
kl(ω) =

∫

φi(r)v
′
appl(r,ω)φ∗

j (r)dr ,

(1.86)

where

Kij,kl(ω) =

∫ ∫

φ∗
i (r)φj(r)fHxc(r, r

′,ω)φ∗
k(r

′)φl(r
′)drdr ′ , (1.87)

is the coupling matrix and fKS(r, r
′,ω) is the exchange-correlation ker-

nel given by Eq. (1.81). Equation (1.86) describes the dynamic response
to a dynamic perturbation. At an excitation energy, this response be-
comes infinite even for an infinisimally small v ′appl. This means we
may find the excitation energies by seeking the zero eigenvalues of
the matrix in brackets on the lefthand side of Eq. (1.86). The resultant
equation can be written in the final form of Casida’s equation

Ω̂FI = ωIFI , (1.88)
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where

Ω̂ij,kl = (ǫl−ǫk)
2+2

√

(ni −nj)(ǫj − ǫi)Kij,kl

√

(nk −nl)(ǫl − ǫk) ,

(1.89)

is a Hermitian matrix. The eigenvalues of Eq. (1.88) provide the
excitation energies of the system; the eigenvectors, instead, can be
used to obtain the spectroscopic oscillator strengths and to assign the
symmetry of each transition. First of all, in order to solve Casida’s
equations, it is necessary to diagonalize the ground-state Hamiltonian
in order to obtain all (or at least many of) the empty KS states. This
operation has an unfavorable scaling, which makes this approach
not particularly appropriate for large basis sets, such as plane-waves.
It is essential to take advantage of iterative krylov-space techniques
such as Davidson diagonalization, [92] that do not require the explicit
calculation and storage of the full matrix. Indeed the full power of the
iterative techniques exmes only when combined with the fact that the
coupling matrix can be evaluated using techniques, which are already
well established for ground-state calculations, such as the auxiliary
function expansion method for localized basis sets [30] or fast Fourier
transforms in plane-wave/wavelet implementations. In this scheme
the computational cost is significantly reduced. The real drawback of
this approach is that iterative techniques allow for the calculation of
only a limited number of the lowest eigenvalues. Furthermore serious
problems can arise when particularly large systems have to be treated.
Indeed, by increasing the size of the system, the density of transitions
in a given energy range increases as well.





2
S TAT E O F T H E A RT

The light-matter interaction is one of the fundamentals in physics
and chemistry. Light (i.e., the electromagnetic field) is a versatile
tool to initiate, probe, and control physical and chemical processes.
Photochemistry can be defined as the study of chemical reactions
involving electronically-excited states typically generated by photon
absorption. Generally this process means that energy is exchanged,
something that can lead to both increase and decrease of energy in
the chemical system. The effect is determined by the size of the
energy quanta exchanged, and can range from a change in angular
momentum for the overall rotation of the molecule to a complete
disruption of all chemical bonds. In this chapter the main interest is in
the effects after interacting with photons that carry sufficient energy to
match the gap between the ground state and the lowest electronically
excited states.

With the rapid development of theories and computer power, theo-
retical chemistry has found more and more applications in understand-
ing molecular reactions and chemical processes [28, 299]. Its results no
longer only serve as the complement for the information obtained by
chemical experiments, but also can in many cases predict hitherto un-
observed chemical phenomena and guide the design of new drugs and
materials. Starting from Hartree-Fock (HF) method with BO approxi-
mation, various quantum mechanics methods with improved accuracy
or efficiency have been developed in studying different systems. In
the ab initio post HF methods, such as multireference configuration
interaction (MRCI) [327, 200, 201], CC [203], MP (MP2, MP3, MP4, etc.)
[19, 202], and quantum chemistry composite methods (G2, G3, CBS,
etc.) [96, 85], included electron correlation in a more accurate way
than HF and high accuracy was expected. While these traditional elec-
tronic structure theories are based on the complicated many-electron
wavefunction, DFT employs electronic density as the basic quantity.
It is now among the most popular and versatile methods to study
relative small or medium-size molecules as well as condensed phases
and gives quite satisfactory results often at a level of accuracy compa-
rable to, say, MP2 at a relatively low computational costs compared
to MP2. Moreover, multi-configurational self-consistent field (MCSCF)
method and TD-DFT, the theoretical study can be extended from the
electronic ground states to the excited states. Not only the geometries
and energies on PESs can be determined accurately, many other im-
portant properties, such as electronic charge distributions, dipoles and
higher multipole moments, vibrational frequencies, reactivity or spec-
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troscopic quantities, can also be calculated with satisfactory precison,
thus providing us more insights into chemical systems.

In the BO approximation, the PES of a molecule can be defined as the
surface described by the potential energy function of the molecule with
respect to the molecular geometry. The surface dimension depends
on the number of atoms of the molecule (1 for diatomic and 3N-6
for a nonlinear polyatomic molecules with N being the number of
atoms). An additional energy axis is needed to graph the PES, so the
(3N-6)-D surface lives in a (3N-6+1)-D space. Due to the large number
of dimensions of these polyatomic surfaces, they are commonly known
as hyper-surfaces. The hyper-surface are described by the Schrödinger
equation, whose solution gives the molecular energy as a function
of the nuclear coordinates. However, the Schrödinger equation has
an infinite number of solutions, which correspond to the different
electronic states of the molecule, and each state has its own hyper-
surface. The topology of the hyper-surface drives all the processes of
the molecule in that particular electronic state. The PES topology of the
excited states is different from that of the ground state, and therefore,
the regions (geometries) that the molecule can access are different too.
Consequently, there are processes that can only take place in excited
states.

To study the reactions or processes a molecule may undergo a chem-
ical reaction, one has to study the topology of the PESs that can be
involved in such processes. In these studies the stable conformations of
molecules are represented by valleys in the 2 or 3 dimensional sketches
of PES, and the height of the "mountain passes" between valleys indi-
cate the difficulty of the reaction. This so-called static description of
the reactivity of molecules can be improved by carrying out dynamics
studies, which are based on the solution of time-dependent nuclear
Schrödinger equation. The latter provides the position of the nuclei
(potential energy) and the kinetic energy of the molecule at a given
time in a given state. The importance of dynamics calculations for this
thesis chapter relies on the fact that they can describe non-stationary
processes. Those processes are especially relevant in photophysics
because photon absorptions provide an extra energy to molecules
which starts a sequence of non-stationary events that are commonly
known as deactivation process. The most important parameters of
the deactivations are the excited state lifetimes and branching ratios.
With the potential and kinetic energies, one can determine both the
"trajectory" a molecule will follow, i.e., the reaction that may take place
and the time needed to do so, i.e., the reaction lifetime. If different
products are formed, a set of trajectories can determine the probability
with which each product can be formed (branching ratio), which in-
cludes the probability of regenerating the initial structure. The average
of all trajectories and regions of the PES that a molecule can access
one gets an accurate description of the reactivity and behaviour of
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the molecule upon photon absorption. Thus, one gets enough data to
describe the experimental results.

Dynamics simulations are an indispensable tool for the descrip-
tion of reactions in photophysics, however they are computationally
challenging due to its high cost. As it will be shown, in this thesis
chapter we have tried to reach a compromise between computational
feasibility and results accuracy. This can be done by rationalizing the
dynamics simulations carried out at a computationally feasible level
with a high level PES.

There are different types of molecular dynamics simulations and
they can be classified depending on the way the nuclear motion is
treated. Two main groups, namely classical and quantum dynamics
methods, define the boundaries of the molecular dynamics framework.
These two methodologies present some limitations especially when
dealing with non-adiabatic processes of large systems. A large variety
of methods are addressed in this chapter. The full classical and
quantum dynamics methods are explained first together with some
of their limitations. Later, different methods with mixed classical-
quantum character, especially TD-DFT based methods, are explained.

Various methodologies and level of theories have been reviewed
with more emphasis on the theory behind rather than in the chemistry
behind them. The methodologies will not be explained in great detail
but will be plainly overviewed. Further insight will be given into those
parts which are more relevant for the understanding of the results or
have implications for the choice of methodology.

2.1 comments on my contribution to this article

The article included in this chapter entitled "Non-Born-Oppenheimer
dynamics and conical intersections" authored by my thesis direc-
tor Mark E. Casida and co-authored by myself along with my joint-
supervior Thierry Deutsch is an invited article for the second edition
of the book Fundamentals of Time-Dependent Density Functional Theory

edited by Miguel Marques, Neepa T. Maitra, Fernando Nogueira, E.
K. U. Gross, and Angel Rubio to be published in time for the next
Benasque School in January 2012 where it will be distributed among
the students and used as a reference. Mark and I, have discussed the
outline of this review article but most of the writing was done by Mark.
Since this was my first experience with the writing of a review article,
I learned quite a lot about the problems of transforming information
from an expert point of view to make it accessible to an introductory
reader just beginning to study this wide-spread subject area.

The chapter begins with a review of the literature on molecular
dynamics and the theoretical description of PESs for describing photo-
physical and photochemical processes, in Section (2.2). This is followed
by a description of some general methods of calculation of excited
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state dynamics using wave-function theory in Section (2.3) including
the algorithms developed that are able to search for a CX from the
Hessian and gradient of the electronic energy for a state, using the
reaction pathway approach to photochemistry. TD-DFT is explained
in Section (2.4), as a natural alternative technique to wave-function
theory-based techniques and example results are given. Some con-
clusions about the calculations presented in this chapter are given in
Section (2.5). It is hoped that the calculations presented in this chapter
will provide a basis for the further investigation of other parts of the
excited potential energy surfaces presented in the thesis, in particular
as regards our investigation of photoexcited oxirane PESs presented
in Chapter (4). My contribution focused mainly on my favourite part
searching algorithms for CX (Sec. 2.3.3). Plus most of the TD-DFT section
(Sec. 2.4) make use of the results from our already published SF article
[177] in which I was one of the active authors. Thanks to Thierry for
his valuable comments and for proof-reading.
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2.2 introduction

The area of excited-state dynamics is receiving increasing attention
for a number of reasons. First the importance of photochemical pro-
cesses in basic energy sciences, improved theoretical methods and
the associated theoretical understanding of photochemical processes.
Then there is the advent of femtosecond (and now attosecond) spec-
troscopy allowing access to more detailed experimental information
about photochemical processes. Since photophysical and chemical
processes are more complex than thermal (i.e., ground state) processes,
simulations quickly become expensive and even unmanageable as the
model system becomes increasingly realistic. With its combination of
simplicity and yet relatively good accuracy, TD-DFT has been finding
an increasingly important role to play in this rapidly developing field.
After reviewing some basic ideas from photophysics and photochem-
istry, this chapter will cover some of the strengths and weaknesses of
TD-DFT for modeling photoprocesses. The emphasis will be on going
beyond the BO approximation.

There are distinct differences between how solid-state physicists and
chemical physicists view photoprocesses. We believe that some of this
is due to fundamental differences in the underlying phenomena being
studied but that much is due to the use of different approximations
and the associated language. Ultimately anyone who wants to work at
the nanointerface between molecules and solids must come to terms
with these differences, but that is not our objective here. Instead
we will adopt the point of view of a chemical physicist (or physical
chemist)—see e.g., [247].

The usual way to think about molecular dynamics is in terms of the
potential energy surfaces that come out of the BO separation. In ther-
mal processes, vibrations are associated with small motions around
PES minima. Chemical reactions are usually described as going over
passes (transition states) on these hypersurfaces as the system moves
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Figure 2.1: Schematic representation of potential energy surfaces for photo-
physical and photochemical processes: S0, ground singlet state;
S1, lowest excited singlet state; T1, lowest triplet state; absorption
(ABS), fluorescence (FLUO), phosphorescence (PHOS), intersystem
crossing (ISX), conical intersection (CX), transition state (TS).

from one valley (reactants) to another (products). Photoprocesses are
much more complicated (see Fig. 2.1). Traditionally they include not
only process that begin by absorption of a photon, but also any pro-
cess involving electronically excited states, such as chemiluminescence
(e.g., in fireflies and glow worms) where the initial excitation energy is
provided by a chemical reaction. The Franck-Condon approximation
tells us that the initial absorption of a photon will take us from one
vibronic state to another without much change of molecular geometry,
thus defining a Franck-Condon region on the excited-state potential
energy surfaces. The molecule can return to the ground state by emit-
ting a photon of the initial wavelength or, depending upon vibronic
coupling and perturbations from surrounding molecules, the molecule
may undergo radiationless relaxation to a lower energy excited state
before emitting or it may even decay all the way to the ground state
without emitting. If emission takes place from a long-lived excited
state of the same spin as the ground state, then we speak of fluores-
cence. If emission takes place from an excited-state with a different
spin due to intersystem crossing, then we speak of phosphorescence.
If it is unsure whether the emission is fluorescence or phosphores-
cence, then we just say the molecule luminesces. Because of the large
variety of de-excitation processes, excited molecules usually return
too quickly to their ground state for the molecular geometry to change
much. We then speak of a photophysical process because no chemical
reaction has taken place. Thus fluorescence is usually described as
an excited molecule relaxing slightly to a nearby minimum on the
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excited-state potential energy surface where it is momentarily trapped
before it emits to the ground state. It follows that the photon emitted
during fluorescence is Stokes shifted to a lower energy than that of
the photon initially absorbed.

Photochemical reactions occur when the excited molecule decays
to a new minimum on the ground state surface, leading to a new
chemical species (product). This may have positive value as a way for
synthesizing new molecules or negative value because of photodegra-
dation of materials or because of photochemically-induced cancers.
Either way the photochemical reaction must occur quickly enough that
it can compete with other decay processes. Photochemical reactions al-
most always occur via photochemical funnels where excited-state and
ground-state surfaces come together, either almost touching (avoided
crossing) or crossing (conical intersection.) These funnels play a role
in photochemical reactions similar to transition states for thermal
reactions. However it must be kept in mind that these funnels may
be far from the Franck-Condon region on the excited-state potential
energy surface, either because there is an easy energetically-"downhill"
process or because, unless the absorption wavelength can be carefully
tuned to a known vertical excitation energy, the system will typically
arrive in an electronically-excited state with excess dynamical energy
which can be used to move from one excited-state potential energy
surface valley over a transition state to funnels in another basin of
the excited-state potential energy surface. While conical intersections
are forbidden in diatomic molecules, they are now believed to be om-
nipresent in the photochemistry of polyatomic molecules. Traditional
simple models involve symmetry constraints which correspond to a
potential energy surface cut, typically revealing an avoided crossing
rather than the nearby CX corresponding to a less symmetric geometry.
A particularly striking example is provided by experimental and theo-
retical evidence that the fundamental photochemical reaction involved
in vision passes through a CX [271]. For these reasons, modern photo-
chemical modeling often involves some type of dynamics and, when
this is not possible, at least focuses on finding conical intersections
that can explain the reaction.

While a single-reference electronic structure method may be ad-
equate for describing photophysical processes, the usual standard
for describing photochemical processes is a multireference electronic
structure method such as the CASSCF method. (See [165] for a review
of modern quantum chemical methods.) This is because the first
approximation to the wave function along a reaction pathway is as a
linear combination of the wave functions of the initial reactants and
the final products. Since CASSCF is both computationally heavy and
requires a high-level of user intervention, a simpler method such as TD-

DFT would be very much welcome. Early work in TD-DFT in quantum
chemistry foresaw increasing applications of TD-DFT in photochemical
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modeling. For example, avoided crossings between cross-sections of
excited-state potential energy surfaces may be described with TD-DFT

because of the multireference-like nature of TD-DFT excited states [69].
However great attention must also be paid to problems arising from
the use of approximate functionals [61]. In particular, the TD-DFT TDA

[170] was found to give improved shapes of excited-state potential
energy surfaces [71, 82], albeit at the price of losing oscillator strength
sum rules. A major advance towards serious investigations of TD-DFT

for describing photoprocesses came with the implementation of ana-
lytical derivatives for photochemical excited states in many electronic
structure programs [56, 55, 180, 86, 282]. This made it possible to
relax excited-state geometries and to calculate Stokes shifts within the
framework of TD-DFT. In fact, TD-DFT has become a standard part of the
photochemical modeler’s toolbox. It is typically used for calculating
absorption spectra and exploring excited-state potential energy sur-
faces around the Franck-Condon region. TD-DFT also serves as a rapid
way to gain the chemical information needed to carry out subsequent
CASSCF calculations. (See e.g., [99, 100, 97, 296, 98] for some com-
bined femtosecond spectroscopy/theoretical studies of photochemical
reactions which make good use of TD-DFT.) It would be nice to be
able to use a single method to model entire photochemical processes.
The advent of mixed TD-DFT/classical surface-hopping Tully-type
dynamics [301, 328, 302, 305, 306, 32] is giving us a way to extend
the power of TD-DFT to the exploration of increasingly complicated
photochemical processes.

The rest of this chapter is organized as follows: The next section re-
views non-Born-Oppenheimer phenomena from a wave-function point
of view, with an emphasis on mixed quantum/classical dynamics. This
sets the stage for our discussion of TD-DFT for non-Born-Oppenheimer
dynamics and conical intersections in Sec. 2.4. We sum up in Sec. 2.5.

2.3 wave-function theory

Most likely anyone who has made it this far into this chapter has
seen the BO approximation at least once, if not many times. However
it is relatively rare to find good discussions that go beyond the BO

approximation [103, 75]. This section tries to do just this from a
wave-function point of view, in preparation for a discussion of TD-DFT

approaches to the same problems in the following section. We first
begin by reviewing (again!) the BO approximation, but this time with
the point of view of identifying the missing terms. We then discuss
mixed quantum/classical approximations, and end with a discussion
of the pathway method and ways to find and characterize conical
intersections. (Mixed quantum/quantum and quantum/semiclassical
methods are also interesting, but have been judged beyond the scope
of this chapter.) We shall use Hartree atomic units ( h = me = e = 1)
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thoughout and adopt the convention in this section that electronic
states are labeled by small Latin letters, while nuclear degrees of
freedom are labeled by capital Latin letters.

2.3.1 Born-Oppenheimer Approximation And Beyond

As is well-known, the BO approximation relies on a separation of
time scales: Since electrons are so much lighter and so move so much
faster than nuclei, the electrons may be thought of as moving in the
field of nuclei which are "clamped" in place and the nuclei move in a
field which is determined by the mean field of the electrons. The BO

approximation provides a precise mathematical formulation of this
physical picture. Our interest here is in where the BO approximation
breaks down and what terms are needed to describe this breakdown.

Consider a molecule composed of M nuclei and N electrons. De-
note the nuclear coordinates by R̄ = (R1,R2, . . . ,RM) and electronic
coordinates by r̄ = (r1, r2, . . . , rN). The full Hamiltonian, Ĥ(R̄, r̄) =

T̂n(R̄) + Ĥe(r̄; R̄) + Vnn(R̄), is the sum of an electronic Hamiltonian,
Ĥe(r̄; R̄) = T̂e(r̄) + Ven(r̄; R̄) + Vee(r̄), with its electronic kinetic energy,
T̂e, electron-nuclear attraction, Ven, and electron-electron repulsion, Vee,
with the missing nuclear terms—namely the nuclear kinetic energy, T̂n,
and the nuclear-nuclear repulsion, Vnn. Solving the TD Schrödinger
equation,

Ĥ(R̄, r̄)Ψ̃(R̄, x̄, t) = i
d
dt
Ψ̃(R̄, x̄, t) , (2.1)

is a formidable (N+M)-body problem. (x̄ denotes inclusion of elec-
tron spin. We have decided to omit nuclear spin for simplicity. Note,
however, that explicit inclusion of nuclear spin can sometimes be im-
portant — for example, the properties of ortho- and para-hydrogen.)
That is why the Born-Oppenheimer expansion (which is not yet the
Born-Oppenheimer approximation!),

Φ(R̄, x̄, t) =
∑

j

Ψj(x̄; R̄)χj(R̄, t) , (2.2)

is used, where the electronic wave functions are solutions of the time-
independent electronic problem in the field of clamped nuclei,

Ĥe(r̄; R̄)Ψj(x̄; R̄) = Ee
j(R̄)Ψj(x̄; R̄) . (2.3)

Inserting the Born-Oppenheimer expansion Eq. (2.2) into the full
Schrödinger equation Eq. (2.1), left multiplying by Ψ∗

i (x̄; R̄), and in-
tegrating over x̄ gives the TD Schrödinger equation for the nuclear
degrees of freedom,

[

T̂n(R̄) + Vi(R̄)
]

χi(R̄, t) +
∑

j

V̂i,j(R̄)χj(R̄, t) = i
∂

∂t
χi(R̄, t) . (2.4)
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Here, Vi(R̄) = Ee
i(R̄) +Vnn(R̄), is the adiabatic PES for the ith electronic

state. [Notice that this is a different use of the term "adiabatic" than in
the TD-DFT "adiabatic approximation" for the exchange-correlation (xc)
functional.] The remaining part, V̂i,j(R̄), is the hopping term which
couples the ith and jth potential energy surfaces together. It should be
kept in mind that the Born-Oppenheimer expansion Eq. (2.2) is exact
and hence so is Eq. (2.4). As is well known, the BO approximation
neglects the hopping terms,

[

T̂n(R̄) + Vi(R̄)
]

χi(R̄, t) = i
∂

∂t
χi(R̄, t) . (2.5)

We, on the other hand, are interested in precisely the terms neglected
by the BO approximation. The hopping term is given by,

V̂i,j(R̄)χj(R̄, t) = −
∑

I

1

2mI

[

G
(I)
i,j (R̄) + 2F

(I)
i,j (R̄) · ∇I

]

χj(R̄, t) , (2.6)

where,

G
(I)
i,j (R̄) =

∫

d3 x̄1 · · ·
∫

d3 x̄NΨ
∗
i (x̄; R̄)

[

∇2
IΨj(x̄; R̄)

]

= 〈i|∇2
I |j〉 , (2.7)

is the scalar coupling matrix and,

F
(I)
i,j (R̄) =

∫

d3 x̄1 · · ·
∫

d3 x̄NΨ
∗
i (x̄; R̄)

[

∇IΨj(x̄; R̄)
]

= 〈i|∇I|j〉 , (2.8)

is the derivative coupling matrix [75]. Note that the derivative cou-
pling matrix is also often denoted dI

i,j and called the nonadiabatic
coupling vector [103]. Here we have introduced a compact notation
for some complicated objects: Both the scalar and derivative coupling
matrices are simultaneously a function of the nuclear coordinates, a
matrix in the electronic degrees of freedom, and a vector in the nuclear
degrees of freedom, and a matrix in the electronic degrees of freedom.
However the derivative coupling matrix is also a vector in the three
spatial coordinates of the Ith nucleus.

Interestingly the scalar coupling matrix and derivative coupling ma-
trix are not independent objects. Rather, making use of the resolution
of the identity for the electronic states, it is straightforward to show
that,
∑

k

(

δi,k∇I + F
(I)
i,k(R̄)

)

·
(

δk,j +∇IF
(I)
k,j(R̄)

)

= ∇2
I +G

(I)
i,j (R̄) +

2F
(I)
i,j (R̄) · ∇I . .(2.9)

We may then rewrite the TD nuclear equation (2.4) as,

−

{
∑

I

1

2mI

[

∑

k

(

δi,k∇I + F
(I)
i,k(R̄)

)

·
(

δk,j∇I + F
(I)
k,j(R̄)

)

]}

χj(R̄, t)

+Vi(R̄)χi(R̄, t) = i
∂

∂t
χj(R̄, t) , (2.10)
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which is known as the group BO equation [75]. Evidently this is an
equation which can be solved within a truncated manifold of a few
electronic states in order to find fully quantum mechanical solutions
beyond the BO approximation.

More importantly for present purposes is that Eq. (2.10) brings
out the importance of the derivative coupling matrix. The derivative
coupling matrix can be rewritten as,

F
(I)
i,j (R̄) =

〈i|
[

∇IĤe(R̄)
]

|j〉− δi,j∇IE
e
i (R̄)

Ee
j(R̄) − Ee

i(R̄)
. (2.11)

Since this equation is basically a force-like term, divided by an energy
difference, we see that we can neglect coupling between adiabatic
potential energy surfaces when (i) the force on the nuclei is sufficiently
small (i.e., the nuclei are not moving too quickly) and (ii) when the
energy difference between potential energy surfaces is sufficiently
large.

These conditions often break down in funnel regions of photochem-
ical reactions. There is then a tendency to follow diabatic surfaces,
which may be defined rigorously by a unitary transformation of elec-
tronic states (when it exists) to a new representation satisfying the
condition, F

(I)
i,j (R̄) ≈ 0. The advantage of the diabatic representation

(when it exists, which is not always the case) is that it eliminates the
off-diagonal elements of the derivative coupling matrix in the group
BO equation [Eq. (2.10)], hence eliminating the need to describe surface
hopping. At a more intuitive level, the character of electronic states
tends to be preserved along diabatic surfaces because

〈i|dj
dt
〉 = Ṙ · 〈i|∇j〉 = Ṙ · Fi,j ≈ 0 (2.12)

in this representation. For this reason, it is usual to trace diabatic
surfaces informally in funnel regions by analyzing electronic state
character, rather than seeking to minimize the nonadiabatic coupling
vector. Avoided crossings of adiabatic surfaces are then described as
due to configuration mixing of electronic configurations belonging to
different diabatic surfaces.

2.3.2 Mixed Quantum/Classical Dynamics

Solving the fully quantum-mechanical dynamics problem of coupled
electrons and nuclei is a challenge for small molecules and intractable
for larger molecules. Instead it is usual to use mixed quantum/classi-
cal methods in which the nuclei are described by Newtonian classical
mechanics while the electrons are described by quantum mechanics.
Dividing any quantum system into two parts and then approximating
one using classical mechanics is the subject of on-going research [210].
In general, no rigorous derivation is possible and wave-function phase
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information (e.g., the Berry phase) is lost which may be important
in some instances. Nevertheless mixed quantum/classical approx-
imations are intuitive: Most nuclei (except perhaps hydrogen) are
heavy enough that tunneling and other quantum mechanical effects
are minor, so that classical dynamics is often an a priori reasonable first
approximation. Of course, rather than thinking of a single classical
trajectory for the nuclear degree of freedom, we must expect to think
in terms of ensembles (or "swarms") of trajectories which are built to
incorporate either finite temperature effects or to try to represent quan-
tum mechanical probability distributions or both. The purpose of this
subsection is to introduce some common mixed quantum/classical
methods.

The most elementary mixed quantum/classical approximation is
Ehrenfest dynamics. According to Ehrenfest’s theorem [109], New-
ton’s equations are satisfied for mean values in quantum systems,
d〈r̂〉/dt = 〈p̂〉/m and d〈p̂〉/dt = −〈∇V〉. Identifying the position
of the nuclei with their mean value, we can then write an equation,
mIR̈I(t) = −∇IV(R̄(t)), whose physical interpretation is that the
nuclei are moving in the mean field of the electrons. Here

V(R̄(t)) = 〈Ψ(R̄, t)|Ĥe(R̄(t))|Ψ(R̄, t)〉+ Vnn(R̄(t)) , (2.13)

where the electronic wave function is found by solving the TD equation,

Ĥe(x̄, R̄(t))Ψ(x̄; R̄, t) = i
∂

∂t
Ψ(x̄; R̄, t) . (2.14)

While Ehrenfest dynamics has been widely and often successfully
applied, it suffers from some important drawbacks. The first drawback
is that the nuclei always move on average potential energy surfaces,
rather than adiabatic or diabatic surfaces, even when far from funnel
regions where the nuclei would be expected to move on the surface of
a single electronic state. While this is serious enough, since it suggests
errors in calculating branching ratios (i.e., relative yields of different
products in a photoreaction), a more serious drawback is a loss of
microscopic reversibility. That is, the temporal variation of the mean
potential energy surface depends upon past history and can easily be
different for forward and reverse processes.

A very much improved scheme is the fewest switches method of
Tully [313, 158]. Here the nuclei move on well-defined adiabatic
potential energy surfaces,

mIR̈I(t) = −~∇IVi(R̄(t)) , (2.15)

and the electrons move in the field of the moving nuclei,

Ĥe(r̄; R̄(t))Ψ(x̄, t) = i
d
dt
Ψ(x̄, t) . (2.16)
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To determine the probability that a classical trajectory describing
nuclear motion hops from one electronic PES to another, we expand

Ψ(x̄, t) =
∑

m

Ψm(x̄; R̄(t))Cm(t) , (2.17)

in solutions of the time-independent Schrödinger equation,

Ĥ(r̄; R̄(t))Ψm(x̄; R̄(t)) = Em(R̄(t))Ψm(x̄; R̄(t)) . (2.18)

The probability of finding the system on surface m is then given by,
Pm(t) = |Cm(t)|2. The coefficients may be obtained in a dynamics
calculation by integrating the first-order equation,

Ċm(t) = −iEm(t)Cm(t) −
∑

n

〈m|
dn
dt
〉Cn(t) . (2.19)

A not unimportant detail is that the nonadiabatic coupling elements
need not be calculated explicitly, but instead can be calculated using
the finite difference (FD) formula,

〈m(t+∆t/2)|ṅ(t+∆t/2)〉 = 〈m(t)|n(t+∆t)〉− 〈m(t+∆t)|n(t)〉
2∆t

.

(2.20)

In practice, it is also important to minimize the number of surface
hops or switches in order to keep the cost of the dynamics calculation
manageable. [Tully also suggests (p. 1066 of Ref. [313]) that too rapid
switching would lead to trajectories behaving incorrectly as if they
were on an average PES.] Tully accomplished this by introducing his
fewest-switches algorithm which is a type of Monte Carlo procedure
designed to correctly populate the different potential energy surfaces
with a minimum of surface hopping. Briefly, the probability of jump-
ing from surface m to surface n in the interval (t, t + ∆t) is given
by gm→n(t, ∆t) = Ṗm,n(t)∆t/Pm,m(t) where Pm,n(t) = Cm(t)C∗

n(t).
A random number ξ is generated with uniform probability on the
interval (0, 1) and compared with gm→n(t, ∆t). The transition m→ n

occurs only if P(m−1)
n < ξ < P

(m)
n where P(m)

n =
∑

l=1,m Pn,l is the
sum of the transition probabilities for the first m states. Additional
details of the algorithm, beyond the scope of this chapter, involve read-
justment of nuclear kinetic energies and the fineness of the numerical
integration grid for the electronic part of the calculation with respect
to that of the grid for the nuclear degrees of freedom.

It is occasionally useful to have a simpler theory for calculating
the probability of PES hops which depends only on the potential
energy surfaces and not on the wave functions. Such a theory was
suggested by Landau [211] and Zener [339] (see also Wittig [330]).
Their work predates the modern appreciation of the importance of
conical intersections and so focused on surface hopping at avoided
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crossing (AX). The Landau-Zener model assumes that surface hopping
occurs only on the surface where the two diabatic surfaces cross that
give rise to the AX where the surface hopping occurs. After some
linearizations and an asymptotic limit, it is possible to arrive at a very
simple final formula,

P = exp

(

−
π2∆E2adia

h(d|∆Edia|/dt)

)

, (2.21)

for the probability of hopping between two potential energy surfaces.
This formula is to be applied at the point of closest approach of the
two PES where the energy difference is ∆Eadia. However d|∆Edia|/dt
is evaluated as the maximum of the rate of change of the adiabatic

energy difference as the AX is approached. While not intended to be
applied to conical intersections, it is still applicable in photodynamics
calculations in the sense that trajectories rarely go exactly through a
CX.

2.3.3 Pathway Method

Dynamics calculations provide a swarm of reaction trajectories. The
"pathway method" provides an alternative when dynamics calculations
are too expensive or a simplified picture is otherwise desired, say, for
interpretational reasons. The pathway method consists of mapping
out minimum energy pathways between the initial Franck-Condon
points obtained by vertical excitations and excited-state minima or
conical intersections. Although analogous to the usual way of finding
thermal reaction paths, it is less likely to be a realistic representation
of true photoprocesses except in the limit of threshold excitation
energies since excess energy is often enough to open up alternative
pathways over excited-state transition states. While the necessary
ingredients for the photochemical pathway method are similar to those
for thermal reactions, conical intersections are a new feature which is
quite different from a thermal transition state. This section provides a
brief review for finding and characterizing conical intersections.

The notion of a CX arises from a relatively simple argument [337].
The PES of a molecule with f internal degrees of freedom is an f-
dimensional hypersurface in an (f+ 1)-dimensional space (the extra
dimension is the energy axis). If two potential energy surfaces simply
cross "without seeing each other", then the crossing space is character-
ized by the constraint

Ei(R̄) = Ej(R̄) , (2.22)

making the crossing space (f− 1)-dimensional. However in quantum
mechanics, we also have the additional constraint,

Hi,j(R̄) = 0 . (2.23)
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This makes the crossing space (f− 2)-dimensional. This means that
there will be two independent directions in hyperspace in which the
two potential energy surfaces will separate. These two directions
define a branching plane. Within the 3-dimensional space defined by
the energy and the branching plane, the CX appears to be a double
cone (see Fig. 2.6), the point of which represents an entire (f − 1)-
dimensional space. Of course, f = 1 for a diatomic and no CX is
possible. This is the origin of the well-known AX rule for diatomics.
Here we are interested in larger molecules where the low dimension-
ality of the branching space in comparison with the dimensionality of
the parent hyperspace can make the conical intersection hard to locate
and characterize.

In the pathway method, the system simply goes energetically down-
hill until two potential energy surfaces have the same energy Eq. (2.22).
The resultant intersection space must be analyzed and the branching
plane extracted so that the surface crossing region can be properly
visualized and interpreted. In order to do so, let us recall a result
from elementary calculus. Imagine a trajectory, R̄(τ), depending upon
some parameter τ within the CX surface. Then ∇C(R̄) must be perpen-
dicular to the conical intersection for any constraint function C(R̄) = 0

because,

0 =
dC(R̄(τ))

dτ
= ∇C(R̄) · dR̄

dτ
. (2.24)

and we can always choose dR̄/dτ 6= 0. Taking the gradient of Eq. (2.23)
defines the derivative coupling vector, fi,j = ∇Hi,j(R̄), while tak-
ing the gradient of Eq. (2.22) defines the gradient difference vector,
gi,j = ∇Ei(R̄) −∇Ej(R̄). Together the derivative nonadiabatic cou-
pling vector (DC) and unscaled gradient difference vector (UGD) are
referred to as the branching vectors which characterize the branch-
ing plane. [Note that the derivative coupling vector is essentially
the numerator of the derivative coupling matrix expression given in
Eq. (2.11). This confusion of nomenclature is unfortunate but present
in the literature.]

The condition that dR̄/dτ be perpendicular to the branching plane
provides a constraint for use in the exploration of the CX hyperspace
when seeking the minimum energy CX or the first-order saddle point in
conical intersection. In particular, there has been considerable effort de-
voted to the problem of developing efficient algorithms for finding min-
imum energy points within the CX space [204, 27, 276, 336, 104, 184].
Furthermore, an automated systematic exploration method for find-
ing minimum energy conical intersections has been very recently
developed [229]. First-order saddle points and the corresponding
minimum energy pathways both within the CX hypersurface may be
useful reference points when mapping out a surface, and an optimiza-
tion method was developed for such points within the CX hypersurface
[292]. Some of the minimum energy CX optimizers use the branching
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plane conditions explicitly to keep the degeneracy of the two adiabatic
states during optimizations [236, 40, 22], making explicit use of both
the derivative coupling vector and gradient difference vector at every
step. Most well-estabilished optimization algorithms assume smooth-
ness of the function to be optimized. Since the PES necessarily has a
discontinuous first derivative in the vicinity of a conical intersection,
the above-mentioned algorithms for finding minimum energy conical
intersections have required access to the UGD and DC. The gradient
difference vector can easily be obtained from analytical gradients, if
available, or by numerical energy differentiation if analytical gradients
are not yet available. However ways for finding the derivative cou-
pling vector are not yet available for all methods since implementation
of an analytical derivative method is often regarded as a prerequisite
[230]. Some approaches make use of a penalty function to get around
the need to calculate the derivative coupling vector and these have
proven very useful for finding minimum energy CX regions without
the need for the derivative coupling vector [219]. This is especially
important for methods such as renormalized CC theories and TD-DFT

or free-energy methods for which the electronic wave function is not
completely defined, considerably complicating the problem of how
to calculate derivative coupling vector matrix elements. However,
convergence of penalty function methods is in general slower than
methods which make explicit use of the branching plane constraints,
especially if tight optimization of the energy difference, (Ei − Ej), is
desired [196].

2.4 td-dft

The last section discussed the basic theory of non-Born-Oppenheimer
dynamics and conical intersections from a wave-function point of
view. We now wish to see to what extent we can replace wave-
function theory with what we hope will be a simpler DFT approach.
As usual in DFT, we seek both the guiding light of formal rigor and
pragmatic approximations that work. We will take a more or less
historical approach to presenting this material. In this section, upper
case Latin indices designate electronic states, while lower case Latin
indices designate orbitals.

One of the early objectives of TD-DFT was to allow simulations of
the behavior of atoms and clusters in intense laser fields, well beyond
the LR regime and too complex to be handled by comparable wave-
function methods. The closely related topic of ion-cluster collisions
was studied early on using TD-DFT in a very simplified form [335]. The
Ehrenfest method was the method of choice for TD-DFT simulations
coupling electronic and nuclear degrees of freedom in this area. The
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gradient of the potential (2.13) is calculated with the help of the
Hellmann-Feynman theorem as,

~∇IV(R̄(t)) = 〈Ψ(R̄, t)|~∇IĤe(R̄(t))|Ψ(R̄, t)〉+ ~∇IVnn(R̄(t)) . (2.25)

Note that the first integral on the right hand side only involves the
(time-dependent) charge density — at least in the usual TD-DFT adi-
abatic approximation. Among the notable work done with this ap-
proximation is early studies of the dynamics of sodium clusters in
intense laser fields [58], the development of the TD electron local-
ization function [54], and (more recently) the study of electron-ion
dynamics in molecules under intense laser pulses [195]. Besides
limitations associated with the TD-DFT adiabatic approximation, the
TD-DFT Ehrenfest method suffers from the same intrinsic problems
as its wave-function sibling—namely that it is implicitly based on an
average PES and so does not provide state-specific information, and
also suffers from problems with microscopic irreversibility.

To our knowledge, the first DFT dynamics on a well-defined excited-
state PES was not based upon TD-DFT but rather on the older multiplet
sum method of Ziegler, Rauk, and Baerends [340, 91]. This was
the work of restricted open-shell Kohn-Sham (ROKS) formalism of
Irmgard Frank et al. [126] who carried out Car-Parinello dynamics
for the open-shell singlet excited state 1(i, a) using the multiplet sum
method energy expression,

Es = 2E[Φ
a↑
i↑ ] − E[Φ

a↑
i↓ ] , (2.26)

where Φaτ
iσ is the KS determinant with the iσ spin-orbital replaced

with the aτ spin-orbital. Such a formalism suffers from all the formal
difficulties of the multiplet sum method, namely that it is just a
first-order estimate of the energy using a symmetry-motivated zero-
order guess for the excited-state wave function and assumes that DFT

works best for states which are well-described by single determinants.
Nevertheless appropriate use of the multiplet sum method can yield
results similar to TD-DFT. A recent application of this method is
to the study of the mechanism of the electrocyclic ring opening of
diphenyloxirane [128].

The implementation of TD-DFT excited-state derivatives in a wide
variety of programs not only means that excited-state geometry opti-
mizations may be implemented, allowing the calculation of the Stokes
shift between absorption and fluorescence spectra, but that the path-
way method can be implemented to search for conical intersections
in TD-DFT. Unless nonadiabatic coupling matrix elements can be cal-
culated within TD-DFT (vide infra), then a penalty method should be
employed as described in the previous section under the pathway
method. This has been done by Levine, Ko, Quenneville, and Mar-
tinez using conventional TD-DFT [218] and by Minezawa and Gordon
using spin-flip TD-DFT [249]. We will come back to these calculations
later in this section.
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The most recent approach to DFT dynamics on a well-defined excited-
state PES is Tully-type dynamics [313, 158, 312] applied within a
mixed TD-DFT/classical trajectory surface-hopping approach. Surface-
hopping probabilities can be calculated from PES alone within the
Landau-Zener method Eq. (2.21), however a strict application of Tully’s
method requires nonadiabatic coupling matrix elements as input. Thus
a key problem to be addressed is how to calculate nonadiabatic cou-
pling matrix elements within TD-DFT. Initial work by Craig, Duncan,
and Prezhdo used a simple approximation which neglected the xc-
kernel [84]. A further approximation, commented on by Maitra [232],
has been made by Craig and co-workers [84, 156] who treated the
electronic states as determinants of Kohn-Sham orbitals which are
propagated according to the TD KS equation. This means that neither
the excitation energies nor the associated forces could be considered
to be accurate.

The first complete mixed TD-DFT/classical trajectory surface-
hopping photodynamics method was proposed and implemented
by Tapavicza, Tavernelli, and Röthlisberger [301] in a development
version of the cpmd code. It was proposed that the nonadiabatic
coupling matrix elements be evaluated within Casida’s ansatz [60]
which was originally intended to aid with the problem of assigning
excited states by considering a specific functional form for an approx-
imate excited-state wave function. Note that numerical integration
of Eq. (2.19) to estimate the coefficients, Cm(t), for the true system
of interacting electrons also involves making assumptions about the
initial interacting excited state. Casida’s ansatz is a more logical choice
for this than is a simple single determinant of KS orbitals. For the
TDA, the Casida ansatz takes the familiar form, ΨI =

∑
iaσΦ

aσ
iσ Xiaσ.

In fact, matrix elements between ground and excited states may be
calculated exactly in a Casida-like formalism because of the response
theory nature of Eq. (2.11) [79, 174, 288]. Test results show reasonable
accuracy for nonadiabatic coupling matrix elements as long as conical
intersections are not approached too closely [29, 174, 305, 306, 288].
One likely reason for this is the divergence of Eq. (2.11) when EI = EJ.
Hu and Sugino attempted to further improve the accuracy of nonadia-
batic coupling matrix elements by using average excitation energies
[173]. The problem of calculating nonadiabatic coupling matrix el-
ements between two excited states is an open problem in TD-DFT,
though the ability to calculate excited-state densities [130] suggests
that such matrix elements could be calculated from double response
theory using Eq. (2.11). The idea is that adding a second TD electric
field in addition to the first perturbation which allows the extraction of
excited-state densities, should allow the extraction of the excited-state
absorption spectrum using LR theory in much the same way that this
is presently done for the ground state. To our knowledge, this has
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Figure 2.2: Mechanism proposed by Gomer and Noyes in 1950 for the pho-
tochemical ring opening of oxirane. Reprinted with permission
from [302]. Copyright 2008, American Institute of Physics.

never yet been done. But were it to be done, the extension to the
derivative coupling matrix through Eq. (2.11) should be trivial.

Soon after the implementation of mixed TD-DFT/classical trajectory
surface-hopping photodynamics in cpmd, a very similar method was
implemented in TurboMol and applied [328, 250, 32]. A version
of TurboMol capable of doing mixed TD-DFT/classical trajectory
surface-hopping photodynamics using analytic nonadiabatic coupling
matrix elements has recently appeared [288] and has been used
to study the photochemistry of vitamin-D [303]. Time-dependent
density-functional tight-binding may be regarded as the next step in a
multiscale approach to the photodynamics of larger systems. From
this point of view, it is interesting to note that mixed TD-DFT-tight
binding/classical trajectory surface-hopping photodynamics is also
a reality [251]. Given the increasingly wide-spread nature of im-
plementations of mixed TD-DFT/classical trajectory surface-hopping
photodynamics, we can only expect the method to be increasingly
available to and used by the global community of computational
chemists.

Before going further, let us illustrate the state-of-the-art for TD-DFT

when applied to non-Born-Oppenheimer dynamics and conical inter-
sections. We will take the example of the photochemical ring opening
of oxirane (structure I in Fig. 2.2). While this is not the "sexy applica-
tion" modeling some biochemical photoprocess, the photochemistry
of oxiranes is not unimportant in synthetic photochemistry and, above
all, this is a molecule where it was felt that TD-DFT "ought to work"
[82]. A first study showed that a main obstacle to photodynamics
is the presence of triplet and near singlet instabilities which lead to
highly underestimated and even imaginary excitation energies as fun-
nel regions are approached. This is illustrated in Fig. 2.3 for C2v ring
opening. While the real photochemical process involves asymmetric
CO ring-opening rather than the symmetric C2v CC ring-opening,
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Figure 2.3: Comparison of TDA TD-LDA and diffusion Monte Carlo curves for
C2v ring opening of oxirane. Reprinted with permission from [82].
Copyright 2007, American Institute of Physics.

results for the symmetric pathway have the advantage of being easier
to analyze. The figure shows that applying the TDA strongly attenuates
the instability problem, putting most curves in the right energy range.
Perhaps the best way to understand this is to realize that, whereas
time-dependent Hartree-Fock (TD-HF), is a nonvariational method
and hence allows variational collapse of excited states, TDA TD-HF is
the same as configuration interaction singles (CIS) which is variational.
There is however still a cusp in the ground state curve as the ground
state configuration changes from σ2 to (σ∗)2. According to a tradi-
tional wave-function picture, these two states, which are each double
excitations relative to each other should be included in configuration
mixing in order to obtain a proper description of the ground state PES

in the funnel region [82, 177].
Figure 2.4 shows an example of mixed TDA TDPBE/classical trajec-

tory surface-hopping calculations for the photochemical ring-opening
of oxirane with the initial photoexcitation prepared in the 1(n, 3pz)

state. Part (b) of the figure clearly shows that more than one PES is
populated after about 10 fs. The Landau-Zener process is typical of
the dominant physical process which involves an excitation from the
HOMO nonbonding lone pair on the oxygen initially to a 3pz Rydberg
orbital. As the reaction proceeds, the ring opens and the target Ryd-
berg orbital rapidly changes character to become a CO σ∗ antibonding
orbital (Fig. 2.5). Actual calculations were run on a swarm of 30 trajec-
tories, confirming the previously proposed Gomer-Noyes mechanism
[144] (Fig. 2.2), but also confirming other experimental by-products
and giving unprecedented state-specific reaction details such as the
orbital description briefly described above.

The oxirane photochemical ring-opening passes through a CX, pro-
viding a concrete example of a CX to study with TD-DFT. We now
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return to the study by Levine, Ko, Quenneville, and Martinez of con-
ical intersections using conventional TD-DFT [218] who noted that
strict conical intersections are forbidden by the TD-DFT adiabatic ap-
proximation for the simple reason that there is no coupling matrix
element [Eq. (2.23)] to zero out between the ground and excited states.
Figure 2.6 shows a CASSCF conical intersection close to the oxirane
photochemical funnel. Also shown are the TDA TD-DFT surfaces calcu-
lated with the same CASSCF branching coordinates. Interestingly the
CASSCF and TD-DFT conical intersections look remarkably similar. How-
ever closer examination shows that the TD-DFT "conical intersection"
is actually two intersecting cones rather than a true CX, confirming
the observation of Levine et al. This was analyzed in detail in [302]
where it was concluded that the problem is that we are encountering
effective noninteracting v-representability. True NVR means that there
is no noninteracting system whose ground state gives the ground state
density of the interacting system. This only means that there is some
excited state of the noninteracting system with integer occupation
number which gives the ground state density of the interacting system.
What we call effective NVR is when the LUMO falls below the HOMO (or,
in the language of solid-state physics, there is a "hole below the Fermi
level"). This is exactly what frequently happens in the funnel region.

Spin-flip (SF) TD-DFT [295, 291, 322] offers one way to circumvent
some of the problems of effective NVR in funnel regions. This is
because we can start from the lowest triplet state which has fewer
effective NVR problems and then use SFs to obtain both the ground
state and a doubly-excited state. Analytic derivatives are now available
for some types of SF-TD-DFT [290]. Figure 2.7 shows that SF-TD-DFT

works fairly well for treating the AX in the C2v ring-opening pathway
of oxirane. Minezawa and Gordon also used SF-TD-DFT to locate
a conical intersection in ethylene [249]. However Huix-Rotllant,
Natarajan, Ipatov, Wawire, Deutsch, and Casida found that, although
SF-TD-DFT does give a true CX in the photochemical ring opening of
oxirane, the funnel is significantly shifted from the position of the
CASSCF conical intersection [177]. The reason is that the key funnel
region involves an active space of more than orbitals which is too large
to be described accurately by SF-TD-DFT.

There are other ways to try to build two- and higher-excitation
character into a DFT treatment of excited states. Let us mention
here only MRCI/DFT [148], constrained density-functional theory-
CI (CDFT-CI) [332], and mixed TD-DFT/many-body theory methods
based upon the Bethe-Salpeter equation [278] or the related polar-
ization propagator approach [62, 176] or the simpler dressed TD-

DFT [233, 74, 149, 243, 244, 178] approach.
All of these may have the potential to improve the DFT-based de-

scription of funnel regions in photochemical reactions. Here however
we must be aware that we may be in the process of building a theory
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which is less automatic and requires the high amount of user inter-
vention typical of present day CASSCF calculations. This is certainly
the case with CDFT-CI which has already achieved some success in
describing conical intersections [193].

2.5 perspectives

Perhaps the essence of dynamics can be captured in a simple sentence:
"You should know from whence you are coming and to where you
are going." Of course this rather deterministic statement must be inter-
preted differently in classical and quantum mechanics. Here however
we would like to think about its meaning in terms of the development
of DFT for applications in photoprocesses. Theoretical developments
in this area have been remarkable in recent years, opening up the
possibility for a more detailed understanding of femtosecond (and
now also attosecond) spectroscopy. In this chapter we have tried to
discuss the past, the present, and a bit of the future.

The past treated here has been the vast area of static investiga-
tion and dynamic simulations of photophysical and photochemical
processes. We have first described more traditonal wave-function
techniques. We have also mentioned and made appropriate references
to important work on early DFT work involving Ehrenfest TD-DFT and
ROKS DFT dynamics. Our emphasis has been on photochemical pro-
cesses involving several potential energy surfaces, partly because of
our own personal experiences, but also because photochemical pro-
cesses start out as photophysical processes in the Franck-Condon region
and then rapidly become more complicated to handle.

The present-day status of DFT photodynamics is perhaps best repre-
sented by the recent availability of mixed TD-DFT and TD-DFTB/classical
surface-hopping dynamics codes as well as serious efforts to investi-
gate and improve the quality of the TD-DFT description of photochemi-
cal funnel regions. First applications have already shown the utility
of this theory and we feel sure that other applications will follow as
programs are made broadly available to computational scientists. Fi-
nally we have ended the last section with some speculations about the
future concerning the need for explicit double- and higher-excitations
to correctly describe funnel regions.

As expected, we could not treat everything of relevance to the
chapter title. Roi Baer’s recent work indicating that Berry phase in-
formation is somehow included in the ground-state charge density is
most intriguing [39]. Also on-going work on multicomponent DFT

capable of treating electrons and nuclei on more or less the same
footing [207, 208] would seem to open up new possibilities for de-
veloping useful non-Born-Oppenheimer approximations within a DFT

framework. We are sure that still other potentially relevant work has
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been unfortunately omitted either because of space limitations or for
other reasons.

Do we know where this field is going? Certainly non-Born-
Oppenheimer photodynamics using some form of DFT is currently a
hot and rapidly evolving area. Exactly what lies in store may not yet
be clear, but what we do know is that we are going to have fun getting
there!
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Figure 2.4: (a) Cut of potential energy surfaces along reaction path of a
Landau-Zener (dashed line) and a fewest-switches (solid line)
trajectory (black, S0; blue, S1; green, S2; magenta, S3). Both
trajectories were started by excitation into the 1(n, 3pz) state,
with the same geometry and same initial nuclear velocities. The
running states of the Landau-Zener and the fewest-switches trajec-
tory are indicated by the red crosses and circles, respectively. The
geometries of the Landau-Zener trajectory are shown at time a) 0,
b) 10, and c) 30 fs. (b) State populations (black, S0; blue, S1; green,
S2; magenta, S3) as a function of the fewest-switches trajectory
in (a). Reprinted with permission from [302]. Copyright 2008,
American Institute of Physics.
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Figure 2.5: Change of character of the active state along the reactive Landau-
Zener trajectory, shown in Fig. 2.4. Snapshots were taken at times
(a) 2.6, (b) 7.4, (c) 12.2, and (d) 19.4 fs. For (a) and (b), the running
state is characerized by a transition from the HOMO to the LUMO

plus one (LUMO+1), while for (c) and (d) it is characterized by a
HOMO-LUMO transition due to orbital crossing. Note that the
HOMO remains the same oxygen nonbonding orbital throughout
the simulation. Reprinted with permission from [302]. Copyright
2008, American Institute of Physics.

Figure 2.6: Comparison of the S0 and S1 potential energy surfaces calculated
using different methods for the CASSCF branching coordinate
space. Reproduced from [177] by permission of the PCCP Owner
Societies.



54 state of the art

Figure 2.7: C2v potential energy curves: full calculation (solid lines), two-
orbital model (dashed lines). Reproduced from [177] by permis-
sion of the PCCP Owner Societies.



3
WAV E L E T S F O R D F T

Most of the low-energy physics, chemistry and biology can be ex-
plained by the quantum mechanics of electrons and ions. First-
principles methods based on DFT [206, 172] have proven to be an
accurate and reliable tool in understanding and predicting a wide
variety of physical and chemical properties [183]. Traditional ab initio

methods are however extremely expensive in terms of computational
as well as memory requirements. Typically, the computer time scales
as N3 where N is the number of electrons in the system, restraining
the system sizes that can be examined. In order to treat grand chal-
lenge problems, such as the computational description of excited-state
dynamics, a significant increase in computational power is required or
new methods have to be devised with better scaling properties. One
such method based on wavelets is described in this chapter of the
thesis.

While the name "wavelets" is relatively young (early 80’s) the basic
ideas have been around for a long time in different forms ranging from
abstract analysis to signal processing and theoretical physics. They
incorporate the feature of having multiple scales, so very different
resolutions can be used in different parts of space in a mathematically
rigorous manner. The main contribution of the wavelet field as such
has been to bring together a number of similar ideas from different
disciplines and create synergy between these techniques. The result is
a flexible and powerful toolbox of algorithmic techniques combined
with a solid underlying theory. In short, the concept of multiresolution
analysis (MRA) underlines the theory of wavelets. The idea is simple
and ancient: separate the information to be analyzed into a "principal"
part and a "residual" part.

For solving the electronic Schrödinger equation numerically, a finite
basis set is used for representing the wavefunction. Usually, this basis
consists of Gaussian-type orbitals (GTOs), which offer computational
advantages by virtue of the Gaussian product theorem. Hence, the
truncation of the full infinite basis is an approximation. Since the
computational problem sizes of the methods used scale with a power
law with respect to the basis set size, the selection of the actual basis
set is therefore a compromise. There are hierarchical series of basis
sets, such as the correlation-consistent sets of Dunning [331, 198, 108],
which allow systematic convergency towards the basis set limit and
furthermore allows the usage of extrapolation techniques.

Using KS equations one needs to find a way to represent the wave-
functions and the density function numerically with a limited number
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Figure 3.1: Schematic overview of the three axes of hierarchical approxima-
tions in the ab initio electronic structure theory.

of floating point numbers. This is usually done by choosing a basis
set consisting of N functions φn(r) with n = 1...., N where this N is
now greater than or equal to the number of electrons in the system.
As we pointed out before that the computations with infinite bases
are impracticable in actual calculations and, truncated, but large basis
set expansions are necessary to obtain accurate results. Because of
computer limitations, these basis sets are rarely large enough to pro-
vide to reach the required chemical accuracy in molecules of chemical
interest. The error resulting from this trunctation is difficult to assess,
and the way it affects the results largely depends on the physical prop-
erties under calculation. As shown in Figure 3.1, the computational
resources are limited to an appropriate level of accuracy. The choices
are the truncation of the basis set, treating the electron correlation
approximately and accounting for relativistic effects by using different
Hamilton operators.

Like the plane waves in Fourier analysis, wavelets are a basis for
expanding square-integrable function space L2(R). But unlike the
harmonic functions, wavelets have dual localization in both real and
reciprocal space. In this chapter wavelets will be introduced starting
from the perspective of a chemical physicist/physical chemist. We
are not going to derive wavelets in any formal way, but we will strive
for mathematical correctness through the properties of wavelets. We
merely wish to make wavelets plausible, by giving a simple view of
what they do and how they work.
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3.1 comments on my contribution to this article

The review article "Wavelets for Density-Functional Theory and Post
Density-Functional Theory Calculations" is an outcome of our re-
sponse to an invitation to propose a research contribution to the book
Theoretical and Computational Developments in Modern Density Func-

tional Theory edited by Amlan K. Roy to be published by Nova Science
Publishers. Through this review article we aim to give some guidelines
(based on my experiences) to help novices get started with wavelets.
This article builds on previous reviews but differs in attempting to
include more practical advice and covers some recent and ongoing
development.

Section (3.3) gives an overview of multiresolution analysis and
wavelet theory with a brief historical note. The third-order interpo-
lating wavelet is introduced together with some important concepts
necessary to understand wavelet analysis. Section (3.4) introduces
the theoretical framework of DFT and TD-DFT. In continuation, Sec-
tions (3.6) and (3.7) talks about some aspects related to its numerical
implementation. Implementation aspects of the Poisson solver in the
subsections (3.7.5) and (3.7.6) is treated in detail. Section (3.8) is an
introduction partly to LR-TD-DFT and proceeds with explaining the
way of setting up Casida’s equation in a wavelet basis set. Section (3.9)
validates our implemented version of LR-TD-DFT in BigDFT against
the GTO-based program deMon2k and an application to the CO
molecule is discussed. Throughout this project, I acted as an principal
author, whereas Mark’s contribution to the results section (Sec: 3.9)
and Thierry’s comments and discussion on wavelets theory section
(Sec: 3.3) were highly appreciated.
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3.2 introduction

The broad meaning of "adaptivity" is the capacity to make something
work better by alternation, modification, or remodeling. Concepts of
adaptivity have found widespread use in quantum chemistry, ranging
from the construction of Gaussian-type orbital (GTO) basis sets, see
e.g., the development of correlation consistent bases [108, 198, 331],
to linear scaling methods in DFT [223, 93, 140, 205, 248, 260], selective
CI methods [179, 112] and local correlation methods based on many-
body perturbation theory (MBPT) or CC theory [286, 287]. This chapter
is about a specific adaptive tool, namely wavelets as an adaptive
basis set for DFT calculations which can be automatically placed when
and where needed to handle multiresolution problems with difficult
boundary conditions.

Let us take a moment to contrast the wavelet concept of adaptivity
with other types of adaptivity. In other contexts, the adaptive proce-
dure is typically based on a combination of physical insights together
with empirical evidence from numerical simulations. A rigorous math-
ematical justification is usually missing. This may not be surprising:
Familiar concepts lose a lot of their original power if one tries to put
them in a rigorous mathematical framework. Therefore, we will not
shoulder the monumental and perhaps questionable task of providing
a rigorous mathematical analysis of all the adaptive approaches used
nowadays throughout quantum chemistry. Instead we will concen-
trate on the mathematical analysis of a particular electronic structure
method which lends itself to a rigorous mathematical analysis and
application of adaptivity. In contrast with other adaptive methods,
MRA with wavelets can be regarded as an additive subspace correction
and their wavelet representations have a naturally built-in adaptivity
which comes through their ability to express directly and separately
components of the desired functions living on different scales.

59
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This combined with the fact that many operators and their inverses
have nearly sparse representations in wavelet coordinates may eventu-
ally lead to very efficient schemes that rely on the following principle:
Keep the computational work proportional to the number of signifi-
cant coefficients in the wavelet expansions of the sought-after solution.
As there are a lot of different wavelet bases with different properties
(length of support, number of vanishing moments, symmetry, etc.) in
each concrete case we can choose the basis that is most appropriate
for the intrinsic complexity of the desired solution. This fact makes
the wavelet-based schemes a very sophisticated and powerful tool
for compact representations of rather complicated functions. The ex-
pected success of wavelet transforms for solving electronic structure
problems in quantum mechanics are due to three important proper-
ties: (a) the ability to choose a basis set providing good resolution
where it is needed, in those cases where the potential energy varies
rapidly in some regions of space, and less in others; (b) economical
matrix calculations due to their sparse and banded nature; and (c) the
ability to use orthonormal wavelets, thus simplifying the eigenvalue
problem. Of course, this might lead to adaptive methods which are
fully competitive from a practical point of view, for example, working
with a systematic basis instead of GTO bases requires from the onset
larger basis sets and the benefit of systematic improvement might
be a distant prospect. However, we have the more realistic prospect
that our rigorous analysis provides new and hopefully enlightening
perspectives on standard adaptive methods, which we reckon cannot
be obtained in another way.

On the other hand advances in computational technology opened
up new opportunities in quantum mechanical calculation of various
electronic structures, like molecules, crystals, surfaces, mesoscopic
systems, etc. The calculations can only be carried out either for very
limited systems or with restricted models, because of their great de-
mands on computational and data storage resources. Independent
particle approximations, like the HF based [162, 124, 293, 279] algo-
rithms with single determinant wave functions, leave out the electron
correlation and need operation and storage capacity of order N4, if
N is the total number of electrons in the system. If inclusion of the
electron correlation is necessary, CI or CC methods can be applied,
with very high demand of computational resources (O(N6) to O(N)).
An alternative way is to use MBPT. The second order perturbation cal-
culations can be carried out within quite reasonable time and resource
limits, but the results are usually unsatisfactory, they just show the
tendencies, while the 4th order MBPT needs O(N7) to O(N8) opera-
tions. All these algorithms use the N-electron wave function as a basic
quantity.

Another branch of methods use electron density as the primary
entity. Pioneers of this trend, like Thomas [309], Fermi [115, 116],
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Frenkel [127] and Sommerfeld [297] developed the statistical theory of
atoms and the LDA. The space around the nuclei is separated into small
regions, where the atomic potential is approximated as a constant,
and the electrons are modeled as a free electron gas of Fermi-Dirac
statistics [101, 117, 127]. Dirac included electron correlation [102],
which improved the results. After the HK theorems had appeared
[172], and Kohn and Sham had offered a practically applicable method
[206] based on their work, many scientists were motivated to work on
the theory, and DFT developed into one of the most powerful electronic
structure methods.

Despite the success of density functional theory, it has some draw-
backs. The exact formula of the exchange-correlation potential is not
known, thus chemical intuition and measured data are necessary in
order to approximate it, and the kinetic energy functional is hard
to calculate. Powerful approximating formulas are available (see,
e.g. [106]), like the Thomas–Fermi functional based gradient and
generalized gradient expansions, where the energy functionals are
expressed as a power series of the gradient of the density (the first
such suggestion was [166].)

Considering the historical development of sophisticated N-electron
methods, a typical trend can be observed. Starting with a very simple
model, new details are introduced in order to improve the results.
This scheme is followed in the linear muffin-tin orbital (LMTO) method
[21] where the interatomic regions is replaced by the spherical orbital
of an atomic potential around the nuclei. Similarly, the linearized
augmented plane wave (APW) [329] and the plane wave pseudopo-
tential approach [263] describe the details of the crystal potential
differently in different spatial regions. Although they are rather suc-
cessful, for applying any of these models, chemical intuition is needed,
free parameters, like the radius of the bordering sphere between the
two types of potentials, and the boundary conditions have to be set.
A systematic method, which can handle the different behaviors of
the electron structures at different spatial domains, or either at differ-
ent length scale [269], is the longterm requirement of any physical
chemist.

Basis sets are commonly used in all electron structure calculations,
as the wave function is usually expanded as linear combination of
some kind of basis functions. Thus the operator eigenvalue problem
is reduced to an algebraic matrix eigenvector problem. The resulting
algebraic equations are easier to solve, well-known algorithms and
subroutine libraries are available, however, the difficulty of choosing
the proper basis set arises. If linear-combination of atomic orbital
(LCAO) is used, the atomic basis functions are Slater or Gaussian-
type of functions [270, 272], the selection of atomic orbitals needs
chemical intuition, which is a result of long experience, and can not be
algorithmized. Both basis sets are non-orthogonal, and lack the explicit
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convergence properties [326]. Moreover, calculation of operator matrix
elements with Slater-type orbitals is complicated, their integrals have
to be treated numerically. Although integrals of Gaussian functions
are analytically known, the Gaussian-type basis does not reflect the
nuclear cusp condition of Kato [194], which reflects on singularities
of the N-electron wave function in the presence of Coulomb-like
potentials. Since then it turned out that for high precision numerical
calculations it is essential to satisfy these requirements. However,
while the nuclear cusp condition is relatively easy to fulfill by Slater-
type orbitals (STO), the electron-electron cusp is extremely hard to
represent. In general, GTO-based/STO-based DFT codes gives reliable
results with a relatively small number of basis functions, making
them optimal for large scale computations where high accuracy is less
crucial. On the other hand there is no consistent way to extend these
basis sets and thereby converge the results with respect to the size of
the basis.

The second type of basis set covers the system-independent func-
tions such as plane waves [263] or wavelets [26]. The main advantage
of these basis sets, is that their size can be systematically increased
until the result of the calculation has converged, and are generally
considered to be more accurate than the former type. The number
of basis function required to obtain convergence is normally so large

that direct solution of the matrix eigenvalue problem within the entire
basis space is not possible. Instead one has to use iterative methods
to determine the lowest (occupied) part of the spectrum [263]. In
solid state physics, where more or less periodic systems are studied,
choosing plane wave basis sets is rather usual. These basis functions
are system independent and easily computable, but the results are
not always convincing and the number of necessary basis functions
is almost untreatable. (Theoretically, plane waves could also be used
for describing molecules, since the two-electron integrals and the ex-
pectation values are connected to the Fourier transform, thus they
are easily computable, and this could balance the large number of
necessary basis functions.) The reason, why so many plane waves are
needed is that the wave functions around the nuclei need very high
frequency terms, i.e. high resolution level, for reproducing the nuclear
cusps. In the framework of Fourier analysis, the whole space has to
be expanded at the same resolution, despite the fact that in most of
the space low frequency terms would be sufficient.

Fully-numerical "basis-set free" HF calculations of atoms have been
known since the 1960s (Vol. 1, pp. 322-326 and Vol. 2, pp. 15-30 of
Ref. [294] and Refs. [120, 121, 122, 237]) and have proven helpful in
constructing efficient finite basis sets for molecular calculations. In
the late 1980s, Axel Becke used a fully-numerical DFT program for
diatomics to show that many of the problems of DFT calculations at
that time were due not to the functionals used, but rather to numerical
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artifacts of the DFT programs of the 1970s [164].) Since that time,
fully-numerical DFT codes have been implemented for polyatomic
molecules using the finite difference (FD) method, with PARSEC from
the chemists point of view or OCTOPUS from the view point of
physicsts being a notable examples.

BigDFT the pseudo potential code for bigger systems based as it
is on traditional Hohenberg-Kohn-Sham DFT [172, 206], could only
calculate ground-state properties with an eye to order-N DFT. As a step
to increase the applicability of the code we formulated the wavelet-
based LR-TD-DFT and here we support our first implementation for
calculating electronic excitation spectra [256]. Electronic excitation
spectra can be calculated from TD-DFT [280] using time-dependent
linear-response theory [267, 60]. Casida formulated LR-TD-DFT (often
just refered to as TD-DFT) so as to resemble the LR TD-HF equations
already familiar to quantum chemists [60]. That method was then
rapidly implemented in a large number of electronic structure codes
in quantum chemistry, beginning with the deMon family of programs
[186] and the TurboMol program [35]. Among the programs that
implemented "Casida’s equations" early on was the FD method DFT

program PARSEC [44] and they may also be found in the FD method
DFT program OCTOPUS [73]. See Ref. [217] for a recent FD method
implementation of TD-DFT. Since a wavelet-based program offers
certain advantages over these other FD method DFT programs, it was
deemed important to also implement LR-TD-DFT in BigDFT.

In the next section we give a detailed description of the idea be-
hind the multiresolution analysis and wavelets, with a historical note.
Sec. 3.4 and Sec. 3.5, briefly present the theoretical introduction to DFT

and TD-DFT, and Sec. 3.6, talks about the well-known Krylov space
methods for solving eigenvalue equations involved in our implemen-
tation. Sec. 3.7 and Sec. 3.8, give the numerical implementation of DFT

and how we have implemented TD-DFT from the aspects of theoretical
and algorithmic point of view on wavelets based pseudopotential elec-
tronic structure code BigDFT, and in Section 3.9 we give the results
of detailed comparisons between TD-DFT excitation spectra calculated
with BigDFT and with the implementation of Casida’s equations in
the GTO-based program deMon2k. Conclusions are drawn for future
applications in the field of chemistry and some of the other problems
are reviewed to draw chemists’ greater attention to wavelets and to
gain more benifits from using the wavelet technique.

3.3 wavelet theory

The mathematics of wavelets is a fairly new technique, it can gener-
ally be used where one traditionally uses Fourier techniques. They
incorporate the feature of having multiple scales, so very different
resolutions can be used in different parts of space in a mathemati-
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cally rigorous manner. This matches many systems in nature well,
for example molecules where the atomic orbitals are very detailed
close to the cores, while they only vary slowly between them. Wavelet
analysis can quite generally be viewed as a local Fourier analysis.
From the wavelet expansion, or wavelet spectrum, of a function, f, it
can be inferred not only how fast f varies, i.e. which frequencies it
contains, but also where in space a given frequency is located. This
property has important applications in both data compression, sig-
nal/image processing and noise reduction [258]. Wavelet methods are
also employed for solving partial differential equations [87, 187], and
in relation to electronic structure methods a complete DFT program
based on interpolating wavelets has been developed [2].

3.3.1 The Story Of Wavelets

Most historical versions of wavelet theory however, despite their
source’s perspective, begin with Joseph Fourier. In 1807, a French
mathematician, Joseph Fourier, discovered that all periodic functions
could be expressed as a weighted sum of basic trigonometric functions.
His ideas faced much criticism from Lagrange, Legendre, and Laplace
for lack of mathematical rigor and generality, and his papers were
denied publication. It took Fourier over 15 years to convince them
and publish his results. Over the next 150 years his ideas were ex-
panded and generalized for non-periodic functions and discrete time
sequences. The fast Fourier transform algorithm, devised by Cooley
and Tukey in 1965 placed the crown on Fourier transform, making it
the king of all transforms. Since then Fourier transforms have been
the most widely used, and often misused, mathematical tool in not
only electrical engineering, but in many disciplines requiring function
analysis. This crown however, was about to change hands. Following
a remarkably similar history of development, the wavelet transform is
rapidly gaining popularity and recognition.

The first mention of wavelets was in a 1909 dissertation by Hun-
garian mathematician Alfred Haar. Haar’s work was not necessarily
about wavelets, as "wavelets" would not appear in their current form
until the late 1980s. Specifically, Haar focused on orthogonal function
systems, and proposed an orthogonal basis, now known as the Haar
wavelet basis, in which functions were to be transformed by two basis
functions. One basis function is constant on a fixed interval, and
is known as the scaling function. The other basis function is a step
function that contains exactly one zero–crossing (vanishing moment)
over a fixed interval (more on this later).

The next major contribution to wavelet theory was from a 1930s
French scientist Paul Pierre Lévy. More correctly, Lévy’s contribution
was less of a contribution and more of a validation. While studying
the ins and outs of Brownian motion in the years following Haar’s



3.3 wavelet theory 65

publication, Lévy discovered that a scale–varied Haar basis produced a
more accurate representation of Brownian motion than did the Fourier
basis. Lévy, being more of a physicist than mathematician, moved
on to make large contributions to our understanding of stochastic
processes.

Contributions to wavelet theory between the 1930s and 1970s were
slight. Most importantly, the windowed Fourier transform was devel-
oped, with the largest contribution being made by another Hungarian
named Dennis Gabor. The next major advancement in wavelet theory
is considered to be that of Jean Morlet in the late 1970s.

Morlet, a French geophysicist working with windowed Fourier
transforms, discovered that fixing frequency and stretching or com-
pressing (scaling) the time window was a more useful approach than
varying frequency and fixing scale. Furthermore, these windows were
all generated by dilation or compression of a prototype Gaussian.
These window functions had compact support both in time and in fre-
quency (since the Fourier transform of a Gaussian is also a Gaussian.)
Due to the small and oscillatory nature of these window functions,
Morlet named his functions as "wavelets of constant shape". In 1981,
Morlet worked with Croatian–French physicist Alex Grossman on
the idea that a function could be transformed by a wavelet basis and
transformed back without loss of information, thereby outlining the
wavelet transformation. It is of note that Morlet initially developed
his ideas with nothing more than a handheld calculator.

In 1986, Stéphane Mallat noticed a publication by Yves Meyer that
built on the concepts of Morlet and Grossman. Mallat consulted
Meyer, and the result of said consultation was Mallat’s publication of
multiresolution analysis. Mallat’s MRA connected wavelet transforma-
tions with the field of digital signal processing. Specifically, Mallat
developed the wavelet transformation as a multiresolution approxi-
mation produced by a pair of digital filters. The scaling and wavelet
functions that constitute a wavelet basis are represented by a pair
of finite impulse response filters, and the wavelet transformation is
computed as the convolution of these filters with the input function.
The importance of Mallat’s contribution cannot be overstated. Without
the fast computational means of wavelet transformation provided by
the MRA, then wavelets, undoubtedly, would not be the effective and
widely used signal processing tools that they are today.

In 1988, a student of Alex Grossman, named Ingrid Daubechies,
combined the ideas of Morlet, Grossman, Mallat, and Meyer by devel-
oping the first family of wavelets as they are known today. Named
the Daubechies wavelets, the family consists of 8 separate wavelet
and scaling functions (more on this later). With the development of
pair Daubechies wavelet and scaling functions which are orthogonal,
continuous, regular, and compactly supported, the foundations of the
modern wavelet theory were laid. The last ten years mostly witnessed
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a search for other wavelets with different properties and modifica-
tions of the MRA algorithms. In 1992, Albert Cohen, Jean Feauveau
and Daubechies constructed the compactly supported biorthogonal
wavelets, which are preferred by many researchers over the orthonor-
mal basis functions, whereas R. Coifman, Meyer and Victor Wicker-
hauser developed wavelet packers, a natural extension of MRA.

3.3.2 Multiresolution Analysis

A suitable gateway to the theory of wavelets is through the idea of MRA.
A detailed description of MRAs can be found in Keinert [197], from
which a brief summary of the key issues are given in the following.

A multiresolution analysis is an infinite nested sequence of sub-
spaces L2(R)

V0
j ⊂ V1

j ⊂ ... ⊂ Vn
j ⊂ ... (3.1)

with the following properties

• V∞
j is dense in L2

• f(x) ∈ Vn
j ⇐⇒ f(2x) ∈ Vn+1

j 0 6 n 6 ∞

• f(x) ∈ Vn
j ⇐⇒ f(x− 2−nl) ∈ Vn

j ; 0 6 l 6 (2n − 1)

• There exists a function vector ϕ of length j+ 1 in L2 such that

{ϕj(x) : 0 6 k 6 j}

forms a basis for V0
j .

This means that if we can construct a basis of V0
j , which consists

of only j+ 1 functions, we can construct a basis of any space Vn
j , by

simple compression (by a factor of 2n), and translations (to all grid
points at scale n), of the original j+ 1 functions, and by increasing the
scale n, we are approaching a complete basis of L2. Since Vn

j ⊂ Vn+1
j

the basis functions of Vn
j can be expanded in the basis of Vn+1

j

ϕn
l (x)

def

=
2n/2ϕ(2nx− l) =

∑

l

h(l)ϕn+1
l (x) . (3.2)

where the h(l)s are the so-called filter vector that describes the trans-
formation between different spaces Vn

j .
The MRA is called orthogonal if

〈ϕn
0 (x), ϕ

n
l (x)〉 = δ0lIj+1 , (3.3)

where Ij+1 is the (j+ 1)× (j+ 1) unit matrix, and j+ 1 is the length
of the function vector. The orthogonality condition means that the
functions are orthogonal both within one function vector and through
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all possible translations on one scale, but not through the different
scales.

Complementary to the nested sequence of subspaces Vn
j , we can

define another series of spaces Wn
j that complements Vn

j in Vn+1
j

Vn+1
j = Vn

j ⊕Wn
j (3.4)

where there exists another function vector φ of length j+ 1 that, with
all its translations on scale n forms a basis for Wn

j . Analogously to
Eq. (3.2) the function vector can be expanded in the basis of Vn+1

j

φn
l (x)

def

=
2n/2φ(2nx− l) =

∑

l

g(l)φn+1
l (x) . (3.5)

with filter matrices g(l). The functions φ also fulfill the same orthogo-
nality condition as Eq. (3.3), and if we combine Eq. (3.1) and Eq. (3.4)
we see that they must be orthogonal with respect to different scales.
Using Eq. (3.4) recursively we obtain

Vn
j = V0

j ⊕W0
j ⊕W1

j ⊕ ...⊕Wn−1
j . (3.6)

which will prove to be an important relation.

3.3.3 Wavelets

There are many ways to choose the basis functions ϕ and φ (which
define the spanned spaces Vn

j and Wn
j ), and there have been con-

structed functions with a variety of properties, and we should choose
the wavelet family that best suits the needs of the problem we are
trying to solve. (Wavelets are often denoted by ψ in the literature but
the choice has been made here to denote them by φ so as to avoid
confusion with the KS orbitals.) Otherwise, we could start from scratch
and construct the new family, one that is custum-made for the problem
at hand. Of course, this is not a trivial task, and it might prove more
efficient to use an existing family, even though its properties are not
right on cue.

There is a one-to-one correspondence between the basis functions
ϕ and φ, and the filter matrices h(l) and g(l) used in the two-scale
relation equations Eq. (3.2) and Eq. (3.5), and most well-known wavelet
families are defined only through their filter coefficients.

In the following we are taking a different, more intuitive approach,
for defining the scaling space Vn

j as the space of piecewise polynomial
functions

Vn
j

def

=
{f : all polynomials of degree 6 j

on the interval(2−nl, 2−n(l+ 1))

for0 6 l < 2n, f vanishes elsewhere} . (3.7)
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Figure 3.2: Wavelets (bottom) and scaling function (top).

Figure 3.3: Haar scaling functions.

It is quite obvious that one polynomial of degree j on the interval
[0, 1] can be exactly reproduced by two polynomials of degree j, one
on the interval [0, 12 ] and the other on the interval [12 , 1]. The spaces
Vn
j hence fulfills the MRA condition Eq. (3.1), and if the polynomial

basis is chosen to be orthogonal, the Vn
j constitutes an orthogonal

basis.

3.3.4 An Example: Simple Haar Wavelets

The basic wavelet ideas that we need can be easily explained using
Haar wavelets [155]. These are simply the box functions shown in
Fig. 3.3. We begin with a compact "mother scaling function", in this
case the Haar function,

ϕ(x) =






0 ; x > 1

1 ; 0 < x < 1

0 ; x < 0

. (3.8)
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Figure 3.4: Haar scaling functions and the corresponding wavelets.

Translations, {ϕi(x) = ϕ(x− i)}, of this mother function produces a
crude basis set. Its relation to the grid of integers is obvious. Succes-
sively more refined basis sets may be generated by repeated applica-
tion of the scaling operation consisting of contracting the functions to
half their size in the x direction. The kth generation of scaling function
is given by

{

ϕ
(k)
i (x) = ϕ(2kx− i)

}

. Each generation has a fixed reso-
lution related to an underlying grid with the same resolution. Let us
now try to construct a multiresolution basis set. This is accomplished
by (say) beginning with the third generation wavelets and taking sums
and differences of adjacent functions until the eight third generation
scaling functions have been replaced with the eight wavelets shown
in Fig. 3.4. Notice how each generation of daughter wavelets is re-
lated to the mother wavelet by scaling, φ(k)

i (x) = φ(2kx− i). Notice
also how the mother and two generations of daughter wavelets plus
the mother scaling function (occasionally refered to as the "father
wavelet") constitute a multiresolution basis set equivalent to the origi-
nal third generation scaling basis set. Thus an arbitrary function, f(x),
expressible in the original scaling basis,

f(x) =

8∑

i=1

ϕ
(3)
i (x)s

(3)
i , (3.9)

has the wavelet transform,

f(x) = ϕ
(0)
0 (x)s

(0)
0 +φ

(0)
0 (x)d

(0)
0 +

∑

i=0,1

φ
(1)
i (x)d

(1)
i +

∑

i=0,3

φ
(2)
i (x)d

(2)
i .

(3.10)

Since the basis set is multiresolution, we may choose to add more
grid points in some region of space and go locally to higher order
wavelet expansions. It is also not always necessary to carry out a full
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wavelet transform, but rather it may be useful to just carry out a partial
transform giving a linear combination of wavelets with several scaling
functions at a time. The extension to three dimensions is accomplished
by using products of one-dimensional scaling functions and wavelets.
Haar wavelets are just one type of wavelet basis set. It happens to be
pedagogically useful but is not particularly useful for computations.

3.3.5 Wavelet Basis

The wavelet space Wn
j is defined, according to Eq. (3.4), as the orthogo-

nal complement of Vn
j in Vn+1

j . The wavelet basis functions of Wn
j

are hence piece-wise polynomials of degree 6 j on each of the two
intervals on scale n+ 1 that overlaps with one interval on scale n.
These piece-wise polynomials are then made orthogonal to a basis of
Vn
j and to each other. The construction of the wavelet basis follows

exactly [16] where a simple Gram-Schmidt orthogonalization was
employed to construct a basis that met the necessary orthogonality
conditions.

One important property of the wavelet basis is the number of vanish-
ing moments. The j-th continuous moment of a function φ is defined
as the integrals

µj
def

=

∫1

0

xjφ(x)dx , (3.11)

and the function φ has M vanishing moments if

µj = 0, k = 0, ...,M− 1

The vanishing moments of the wavelet functions gives information
on the approximation order of the scaling functions. If the wavelet
function φ has M vanishing moments, any polynomial of order 6

M− 1 can be exactly reproduced by the scaling function ϕ, and the
error in representing an arbitrary function in the scaling basis is of
M-th order. By construction, xi is in the space V0

j for 0 6 i 6 j, and
since W0

j ⊥ V0
j , the first k+ 1 moments of φ0

j must vanish.

3.3.6 The Scaling Basis

The construction of the scaling functions is quite straightforward, j+ 1
suitable polynomials are chosen to span any polynomial of degree
j on the unit interval. The total basis for Vn

j is then obtained by
appropriate dilation and translation of these functions. Of course, any
polynomial basis can be used, the simplest of them the standard basis
{1, x, ..., xj}. However, this basis is not orthogonal on the unit interval.
In the following, two choices of orthogonal scaling functions will be
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presented, and even though they span exactly the same spaces Vn
j

there are some important numerical differences between the two.
In order to construct a set of orthogonal polynomials we could

proceed in the same manner as for the wavelet functions and do a
Gram-Schmidt orthogonalization of the standard basis {1, x, ..., xj}. If
this is done on the interval x ∈ [−1, 1] we end up with the Legendre
polynomials {Lk}

j
k=0. These functions are usually normalized such

that Lk(1) = 1 for all j. To make the Legendre scaling functions ϕL
k we

transform the Legendre polynomials to the interval x ∈ [0, 1], and L2

normalize

ϕL
k(x) =

√
2k+ 1Lk(2x− 1), x ∈ [0, 1] . (3.12)

The basis for the space Vn
j is then made by proper dilation and trans-

lation of ϕL
k. Alpert et al. [16] presented an alternative set of scaling

functions with interpolating properties. These interpolating scaling

functions ϕI
k are based on the Legendre scaling functions {ϕL

k}
j
k=0,

and the roots {yk}
j
k=0 and weights {wk}

j
k=0 of the Gauss-Legendre

quadrature of order j+ 1, and are organized in the linear combinations

ϕI
k(x) =

√
wk

jp∑

i=0

ϕL
i (yk)ϕ

L
i (x), x ∈ [0, 1] , (3.13)

Again the basis of Vn
j is made by dilation and translation of φI

k. The
construction of ϕI

k gives them the interpolating property

ϕI
k(yi) =

δki√
wi

. (3.14)

which will prove important for numerical efficiency.
A detailed discussion on the properties of interpolating wavelets

can be found in Donoho [89], but the case of interpolating wavelets is
somewhat different. An important property of interpolating wavelets
is the smoothness of any function represented in this basis. This
property stems from general Lagrange interpolation. In the wavelet
case the interpolating property applies within one scaling function
vector only, which means that functions represented in this basis can be
discontinous in any merging point between the different translations
on any scale.

3.3.7 Interpolating Scaling Functions

Since the general introduction to wavelets were already made, we will
now concentrate our description on the level 3 interpolating scaling
function (ISF) introduced by Deslauriers and Dubuc, and described
in detail in Ref. [226]. Its main advantage is that it is fast and easy to
perform nonlinear operations on functions represented in this basis,



72 wavelets for dft

as long as the operation is local in shape. It also represents 3rd order
polynomials exactly which means that it behaves very smoothly.

We introduced the projection operator Pn that projects an arbitrary
function f(x) onto the basis {ϕn

j,l} of the scaling space Vn (in the
remaining of this text the subscript k of the scaling and wavelet spaces
will be omitted, and it will always be assumed that we are dealing
with a kth order polynomial basis.)

f(x) ≈ Pnf(x) def

=
fn(x) =

2n−1∑

l=0

k∑

j=0

sn,f
j,l ϕ

n
j,l(x) , (3.15)

where the expansion coefficients sn,f
j,l , the so-called scaling coefficients,

are obtained by the usual integral

sn,f
j,l

def

=
〈f, ϕn

j,l〉 =
∫1

0

f(x)ϕn
j,l(x)dx , (3.16)

If this approximation turns out to be too crude, we double our basis
set by increasing the scale and perform the projection Pn+1. This can
be continued until we reach a scale N where we are satisfied with the
overall accuracy of fN relative to the true function f.

In a perfect world, the projection in Eq. (3.16) could be done exactly,
and the accuracy of the projection would be independent of the choice
of polynomial basis. In the real world the projections are done with
Gauss-Legendre quadrature and the expansion coefficients sn,f

j,l of f(x)
are obtained as

sn,f
j,l =

∫2−n(l+1)

2−nl

f(x)ϕn
j,l(x)dx

= 2−n/2

∫1

0

f(2−n(x+ l))ϕ0
j,0(x)dx

≈ 2−n/2

kq−1∑

q=0

wqf(2
−n(yq + l))ϕ0

j,0(yq) (3.17)

where {wq}
kq−1

q=0 are the weights and {yq}
kq−1

q=0 the roots of the Legen-
dre polynomial Lkq

used in kqth order quadrature.
By approximating this integral by quadrature we will of course

not obtain the exact expansion coefficients. However, it would be
nice if we could obtain the exact coefficients whenever our basis is
flexible enough to reproduce the function exactly, that is if f(x) is a
polynomial of degree 6 k. The Legendre quadrature holds a (2k− 1)

rule which states that the k-order quadrature is exact whenever the
integrand is a polynomial of order 2k− 1. By choosing the kq = k+ 1

order quadrature we will obtain the exact coefficient whenever f(x)
is a polynomial of degree 6 (k+ 1) when projecting on the basis of
orderk Legendre polynomials.



3.3 wavelet theory 73

In the multidimensional (d-dimensional) case the expansion coeffi-
cients are given by multidimensional quadrature

snf
jl = 2−dn/2

k∑

q1=0

k∑

q2=0

...
k∑

qd=0

f(2−n(yq + l))Πd
i=1wqi

ϕ0
jp,0

(yqi
) ,

(3.18)

using the following notation for the vector of quadrature roots

yq
def

=
(yq1

, yq2
, ..., yqd

) , (3.19)

This quadrature is not very efficient in multiple dimensions since
the number of terms scales as (k+ 1)d. However, if the function f is
separable and can be written as f(x1, x2, ..., xd) = f1(x1)f2(x2)...fd(xd),
then Eq. (3.18) can be simplified to

snf
jl = 2−dn/2Πd

i=1

k∑

qi=0

fi(2
−n(yqi

+ li))wqi
ϕ0

ji,0
(yqi

) , (3.20)

which is a product of small summations and scales only as d(k+ 1).
The Legendre polynomials show very good convergence for polyno-

mial functions f(x), and are likely to give more accurate projections.
However, most interesting functions f(x) are not simple polynomials,
and the accuracy of the Legendre scaling functions versus a general
polynomial basis might not be very different.

By choosing the quadrature order to be k + 1 a very important
property of the interpolating scaling functions emerges, stemming
from the specific construction of these functions [Eq. (3.13)], and the
use of the k+ 1 order quadrature roots and weights. The interpolating
property [Eq. (3.14)] inserts a Kronecker delta whenever the scaling
function is evaluated in a quadrature root, which is exactly the case in
the quadrature sum. This reduces Eq. (3.17) to

sn,f
jl =

2−n/2

√
wj

f(2−n(xj + l)) , (3.21)

which obviously makes the projection k+ 1 times more efficient.
In multiple dimensions this property becomes even more important,

since it effectively removes all the nested summations in Eq. (3.18) and
leaves only one term in the projection

snf
jl = f(2−n(yj + l))Π

d
i=1

2−n/2

√
wji

, (3.22)

This means that in the interpolating basis the projection is equally
effective regardless of the separability of the function f.
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3.4 density functional theory

A method to resolve the electronic structure is by using variational
principle

E[Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 , (3.23)

Where 〈Ψ|Ĥ|Ψ〉 =
∫
drΨ∗(r)ĤΨ(r), Ψ denotes the electronic wave func-

tion and Ĥ the Hamiltonian. The energy computed from a guess Ψ is
an upper bound to the true ground state energy E0. Full minimization
of the functional E[Ψ] will give the true ground state Ψgs and energy
E0 = E[Ψgs].

Density-functional theory states that the many electron problem
can be replaced by an equivalent set of self-consistent one-electron
equations, the Kohn-Sham equations

ĥψσ
i (r) =

(

−
1

2
∇2 + v̂psp(r) + v̂H(r) + v̂σxc(r)

)

ψσ
i (r) = ǫ

σ
i ψ

σ
i (r) .

(3.24)

The eigenfunctions ψσ
i are the one-electron wave functions that cor-

respond to the minimum of the KS energy functional. In these wave
functions, i is the orbital index and σ denotes the spin, which can be
either up ↑ or down ↓ (spin α or β.)

The Hamiltonian Ĥ consists of four different parts: a part related
to the kinetic energy of the electrons, the pseudopotentials v̂psp,
the Hartree potential v̂H and the exchange correlation potential v̂xc.
The interaction of the positively charged nuclei with the electrons is
described using the pseudopotential v̂psp instead of using the full
Coulombic potential. The pseudopotential usually consists of both a
local and a non-local part

v̂psp(r) = vloc(r) +
∑

l

|l〉v̂l(r, r ′)〈l| . (3.25)

The Hartree potential v̂H describes the interaction between electrons
and is given by

v̂H(r) =

∫

dr ′
ρ↑(r) + ρ↓(r

′)

|r − r ′|
. (3.26)

Finally, the exchange correlation potential v̂xc describes the nonclas-
sical interaction between the electrons and is given by the functional
derivative of an exchange correlation energy functional

v̂σxc(r) =
δExc(ρ↑, ρ↓)

δρσ(r)
. (3.27)

In these equations ρσ is the electron spin density, defined as

ρσ(r) =
∑

i

nσ
i |ψ

σ
i (r)|

2 , (3.28)
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where nσ
i is the occupation number, i.e. the number of electrons

in orbital i. In case of LDA (which we use throughout this chapter)
where there is no longer a distinction between spin up and spin down,
orbitals can contain at most two electrons.

3.5 time-dependent density functional theory

This section contains a brief review of the basic formalism of TD-DFT

which is already well-known from the literature [280]. The TD single
particle KS equations are,

(

−
1

2
∇2 + veff[ρ](r, t)

)

ψiσ(r, t) = i
∂

∂t
ψiσ(r, t) (3.29)

Here, the wave functions ψi(r, t) and veff[ρ](r, t) explicitly depend on
time, whereas,

veff[ρ](r, t) =
∑

a

vion(r−Ra) +

∫
ρ(r ′, t)

|r − r ′|
dr ′ + vxc[ρ](r, t) . (3.30)

Using the AA, (which is local in time)

vxc[ρ](r, t) ≈ δExc[ρt]

δρt(r)

δvxc[ρ](r, t)

δρ(r ′, t ′)
≈ δ(t− t ′)

δ2Exc[ρt]

δρt(r)δρt(r ′)
, (3.31)

and using the LDA,

Exc[ρ] =

∫

ρ(r)ǫxc(ρ(r))dr . (3.32)

The method that we wish to use here is Casida’s approach [60].
This section explains the deriving equations of LR-TD-LDA method.

The TD perturbation to the external potential can be written as,

δveff[ρ](r, t) = δvappl(r, t) + δvSCF[ρ](r, t) , (3.33)

where,

vSCF[ρ](r, t) =

∫
ρ(r ′, t)

|r − r ′|
dr ′ + vxc[ρ](r

′, t) , (3.34)

The LR of the density matrix (DM) can be written in terms of gener-
alised susceptibility χ as below,

δPijσ(ω) =
∑

klτ

χijσ,klτ(ω)δveffklτ(ω) , (3.35)

After some mathematical steps, one can end-up with the sum-over-
states (SOS) representation of χ,

χijσ,klτ(ω) = δikδjlδστ
λlkτ

ω− (ωklτ)
, (3.36)
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where λlkτ = nlτ − nkτ the difference in occupation numbers and
ωklτ = ǫkτ − ǫlτ the difference between the eigenvalues of kth and
lth states. In the basis of KS orbitals {ψiσ}, we can re-write the LR-DM

equation as,

δPijσ(ω) =
λjiσ

ω−ωijσ

[

δv
appl
ijσ (ω) + δvSCF

ijσ (ω)
]

(3.37)

Now the term δvSCF is complicated because it itself depends on the
response of the DM.

δvSCF
ijσ (ω) =

∑
Kijσ,klτδPklτ(ω) , (3.38)

Where,

Kijσ,klτ =
∂vSCF

ijσ

∂Pklτ
, (3.39)

whose integral form is,

Kijσ,klτ =

∫ ∫

ψ∗
iσ(r)ψjσ(r)

[

1

|r − r ′|
+

δ2Exc[ρ]

δρσ(r)δρτ(r ′)

]

ψkτ(r
′)ψ∗

lτ(r
′)drdr ′ , (3.40)

If the response is due to a real spin-independent external perturbation,
δvappl, then we can restrict ourselves to the real density response and
the coupling matrix is symmetric.

After some algebra, the real parts of the DM elements Re δP(ω) can
be given as,

∑

klτ

[

δik, δjlδστ

λklτωlkτ
(ω2 −ω2

lkτ) − 2Kijσ,klτ

]

Re (δPklτ)(ω) = δv
appl
ijσ (ω)

(3.41)

Here the real part of Re δPσ(ω) means the Fourier transform of the
real part of Re δPσ(t). Thus the real part of the first-order DM obtained
from the solution of the above linear equations gives access to the
frequency-dependent polarizabilities. This leads to the following
eigenvalue equation from which the excitation energies and oscillator
strengths can be obtained.

Ω̂~FI = ω
2
I
~FI , (3.42)

where,

Ωijσ,klτ = δikδjlδστω
2
klτ+ 2

√

λijσωjiσKijσ,klτ

√

λklτωlkτ (3.43)

Here, the desired excitation energies are equal to ωI and the oscillator
strengths fI are obtained from the eigenvectors ~FI. The frequency-
dependent polarizability is directly related to vertical excitation ener-
gies, oscillator strength and transition dipole moments µI,

α(ω) =
∑

I

fI

ωI
2 −ω2

=
2

3

∑

I

ωIµ
2
I

ωI
2 −ω2

(3.44)
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3.6 krylov space methods

The methods described in this article involve solving two very large
eigenvalue problems. One of these is the matrix form of the KS

orbital equation [Eq. (3.24)] while the other is the LR-TD-DFT equation
[Eq. (3.42)]. The first is very large because the wavelet basis set is
very large while the other is very large because it is of the order of
the number of unoccupied orbitals times the number of unoccupied
orbitals on each side. It is important to realize that special methods
must be and are being used to solve these very large eigenvalue
problems. In particular, BigDFT make use of the block Davidson
variant of the Krylov space method to solve the Kohn-Sham equation
while BigDFT and most other codes solving the LR-TD-DFT equation
[Eq. (3.42)] also make use of the block Davidson method. Krylov
methods and the block Davidson method are briefly described in this
section.

Krylov space methods may be traced back to a paper in the early
1930s written by the Russian mathematician Alexei Nikolaevich Krylov.
The main idea is that to solve a matrix problem involving a matrix
A, it is frequently never actually necessary to construct the matrix
A because iterative solutions only require a reasonable first guess
followed by repeated action of the operator Â on a vector. A number
of such methods are known with Lanczos diagonalization and the
discret inversion in the iterative subspace (DIIS) [275] as particularly
well-known examples in theoretical chemical physics. Given a vector
~x, the Krylov space of order r is given by,

Kr(A,~x) = span
{
~x,A~x,A2

~x, · · · ,Ar
~x
}

. (3.45)

The Davidson diagonalization method [92] for solving the matrix
eigenvalue problem

A~x = a~x , (3.46)

is deceptively simple. Suppose that we want the lowest eigenvalue
and eigenvector and we have an intial guess vector, ~x(0). Then we can
always write,

~x = ~x(0) + δ~x , (3.47)

is the component of the exact solution which is orthogonal to the intial
guess vector. Simple algebra then gives a formula highly reminiscent
of Rayleigh-Schrödinger perturbation theory but exact,

δ~x = [Q(a1 − A)Q]
−1

(A − a1)~x(0) , (3.48)

where,

Q = 1 −~x(0)~x(0)† , (3.49)
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projects onto the subspace orthogonal to the guess vector. Solving
Eq. (3.48) requires us to overcome two difficulties. The first is that we
need a guess for the eigenvalue a, but this is easily remedied by taking
a(0) = ~x(0)†A~x(0)/~x(0)†~x(0) and then iterating. The greater problem is
to invert the matrix [Q(a1 − A)Q]. It actually turns out that a highly
accurate inversion is not really needed (and actually can cause some
problems.) Instead it is better just to replace this difficult inversion
with,

δ~x = (a1 − D)
−1

(A − a1)~x(0) , (3.50)

where D is some diagonal matrix, hence easy to invert. Orthogonaliz-
ing δ~x to ~x(0) and normalizing produces ~x(1), which is the next basis
vector in our Krylov space. Setting up and diagonalizing the 2 × 2

matrix of A in this basis and taking the lowest eigenvalue gives us
the next estimate a(1). If application of Eq. (3.48) is close to zero then
we have solved the eigenvalue problem Eq. (3.46), otherwise we have
a new δ~x with which to generate ~x(2) and so on and so forth until
convergence. The block Davidson method [255] extends the Davidson
method to the lowest several eigenvalues and eigenvectors.

Davidson diagonalization works well when started from a rea-
sonably good initial guess, otherwise the Lanczos method may be
advantageous. One of the most recent incarnations of the Lanczos
method is the Liouville-Lanczos method for solving the LR-TD-DFT

problem [321, 277, 33, 235].

3.7 numerical implementation of dft in bigdft

Computational physics/chemistry is the transformation and imple-
mentation of scientific theory into efficient algorithms which requires
both theoretical and experimental skill. The transformation of a new
theory into an efficient algorithm requires understanding of program-
ming concepts, mathematical and physical intuition and theoretical
insight, whereas the production of the computer code is much like
experimentation, requiring debugging, testing and organisation to
yield a highly efficient product. It is also an adaptation of new scien-
tific theory into computer code exploiting the advances in compiler,
programming language and hardware technology. The aim is to make
an affordable algorithm to enable efficient computation, portability
of code, ease of adaptability and to document the science. To make
such an afforable algorithm requires an intuitive understanding of
the physics to be implemented, much experimentation with optimi-
sation and debugging of the developing code, a suitable choice of
programming language, as well as a basic overview of the nature of
the platforms for which the code is intended.

The KS scheme of DFT greatly reduces the complexity of ground
state electronic structure calculations by recasting the many-body
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problem into a (self-consistent) single-particle problem. For real atom-
istic modeling, however, the KS equations are still difficult to solve
and further approximate techniques are required. In general it is
important, though, that these approximations can be controlled in
such a way that the associated error does not exceed (and indeed be
much less than) the error introduced by the xc-functional. While DFT

accounts for approximately 90% of all quantum chemical calculations
being performed, the sometimes unpredictable nature of results and
the inability to systematically improve the quality of calculation may
mean that a place for the conventional correlated techniques remains
in the quantum chemist’s tool kit. In this work the detailed descrip-
tion of DFT program BigDFT has been given. BigDFT [2] has been
developed as an European project (FP6-NEST) from 2005 to 2008, and
is a wavelet-based pseudopotential implementation of DFT and TD-DFT.
For complimentary purpose, Gaussian based quantum chemistry DFT
code deMon2k [9] is also used but we are not going to discuss the
numerical implementation of deMon2k here and we restrict ourselves
to use deMon2k for validating our recent implementation of LR-TD-DFT

in BigDFT. However in the following sections, we are going to recast
how the fundamental computational operations were performed in
BigDFT.

3.7.1 Daubechies Wavelets

Before embarking on our own endeavours, we should make some
reference to related work. First, it should be acknowledged that
a considerable amount of work has been done already in pursuit
of a wavelet implementation for the electronic structure calculations
[132, 133, 134, 136, 95, 137]. The object of using wavelets as a basis set is
to associate an expansion coefficient to each of the piece-wise wavelets.
The expansion coefficients are free to vary from one wavelet function
to the next. This feature enables wavelets to be highly localised
continuous functions of a fractal nature with finite supports. The
Daubechies wavelets have no available analytic forms, and they are
not readily available in sampled versions. They are defined effectively
by the associated dilation coefficients. These express a wavelet in high
resolution and a scaling function in the low resolution–which has the
same width and which stretches to zero–as a linear combination of the
more densely packed and less dispersed scaling functions that form a
basis for the two resolution level in combination.

The fact that the Daubechies wavelets are known only via their
dilation coefficients is no impediment to the discrete wavelet transform.
This transform generates the expansion coefficients associated with
the wavelet decomposition of a data sequence. In this perspective,
the dilation coefficients of the wavelets and of the associated scaling
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functions are nothing but the coefficients of a pair of quadrature mirror
filters that are applied succesively.

As described above Daubechies family consists of two fundamental
functions: the scaling function φ(x) and the wavelet ϕ(x) (see Fig. 3.5.)
The full basis set can be obtained from all translations by a certain
grid spacing h of the scaling and wavelet functions centered at the
origin. These functions satisfy the fundamental defining (refinement)
equations,

φ(x) =
√
2

m∑

j=1−m

hjφ(2x− j) ,

ϕ(x) =
√
2

m∑

j=1−m

gjφ(2x− j) . (3.51)

which relate the basis functions on a grid with spacing h and another
one with spacing h/2. The coefficients, hj and gj, consitute the so-
called "filters" which define the wavelet family of order m. These
coefficients satisfy the relations,

∑
j hj = 1 and gj = (−1)jh−j+1.

Eq. (3.51) is very important since it means that a scaling-function
basis defined over a fine grid of spacing h/2 may be replaced by
combining a scaling-function basis over a coarse grid of spacing h
with a wavelet basis defined over the fine grid of spacing h. This
then gives us the liberty to begin with a coarse description in terms of
scaling functions and then add wavelets only where a more refined
description is needed. In principle the refined wavelet description
may be further refined by adding higher-order wavelets where needed.
However in BigDFT we restricted ourselves to just two levels: coarse
and fine associated respectively with scaling functions and wavelets.

For a three-dimensional description, the simplest basis set is ob-
tained by a tensor product of one-dimensional basis functions. For
a two resolution level description, the coarse degrees of freedom are
expanded by a single three dimensional function, φ0

i1,i2,i3
(r), while

the fine degrees of freedom can be expressed by adding another seven
basis functions, φν

j1,j2,j3
(r), which include tensor products with one-

dimensional wavelet functions. Thus, the Kohn-Sham wave function
ψ(r) is of the form

ψ(r) =
∑

i1,i2,i3

c0i1,i2,i3φ
0
i1,i2,i3

(r) +
∑

j1,j2,j3

7∑

ν1

cνj1,j2,j3φ
ν
j1,j2,j3

(r) .

(3.52)

The sum over i1,i2,i3 runs over all the grid points contained in the low-
resolution regions and the sum over j1,j2,j3 runs over all the points
contained in the (generally smaller) high-resolution regions. Each
wave function is then described by a set of coefficients {cνj1,j2,j3}, ν =

0, ..., 7. Only the nonzero scaling function and wavelet coefficients are
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Figure 3.5: Daubechies scaling function φ(x) and wavelet ϕ(x) of order 16.

stored. The data is thus compressed. The basis set being orthogonal,
several operations such as scalar products among different orbitals and
between orbitals and the projectors of the nonlocal pseudopotential
can be directly carried out in this compressed form.

3.7.2 Treatment Of Kinetic Energy

The matrix elements of the kinetic energy operator among the basis
functions of our mixed representation (i.e., scaling functions with
scaling functions, scaling function with wavelets and wavelets with
wavelets) can be calculated analytically [43]. For simplicity, let us illus-
trate the application of the kinetic energy operator onto a wavefunction
ψ that is only expressed in terms of scaling functions.

ψ(x, y, z) =
∑

i1,i2,i3

si1,i2,i3φ(x/h− i1)φ(y/h− i2)φ(z/h− i3)

The result of the application of the kinetic energy operator on this
wavefunction, projected to the original scaling function space, has the
expansion coefficients

ŝi1,i2,i3 = −
1

2h3

∫

φ(x/h− i1)φ(y/h− i2)φ(z/h− i3)×

×∇2ψ(x, y, z)dxdydz .

Analytically the coefficients si1,i2,i3 and ŝi1,i2,i3 are related by a con-
volution

ŝi1,i2,i3 =
1

2

∑

j1,j2,j3

Ki1−j1,i2−j2,i3−j3sj1,j2,j3 (3.53)

where

Ki1,i2,i3 = Ti1Ti2Ti3 , (3.54)
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where the coefficients Ti can be calculated analytically via an eigen-
value equation:

Ti =

∫

φ(x)
∂2

∂x2
φ(x− i)dx

=
∑

ν,µ

2hνhµ

∫

φ(2x− ν)
∂2

∂x2
φ(2x− 2i− µ)dx

=
∑

ν,µ

2hνhµ2
2−1

∫

φ(y− ν)
∂2

∂y2
φ(y− 2i− µ)dy

=
∑

ν,µ

hνhµ2
2

∫

φ(y)
∂2

∂y2
φ(y− 2i− µ+ ν)dy

=
∑

ν,µ

hνhµ 2
2 T2i−ν+µ

Using the refinement equation Eq. (3.51), the values of the Ti can be
calculated analytically, from a suitable eigenvector of a matrix derived
from the wavelet filters [43]. For this reason the expression of the
kinetic energy operator is exact in a given Daubechies basis.

Since the 3-dimensional kinetic energy filter Ki1,i2,i3 is a product of
three one-dimensional filters Eq. (3.54) the convolution in Eq. (3.53)
can be evaluated with 3N1N2N3L operations for a three-dimensional
grid of N1N2N3 grid points. L is the length of the one-dimensional
filter which is 29 for our Daubechies family. The kinetic energy can
thus be evaluated with linear scaling with respect to the number
of nonvanishing expansion coefficients of the wavefunction. This
statement remains true for a mixed scaling function-wavelet basis
where we have both nonvanishing s and d coefficients and for the
case where the low and high resolution regions cover only parts of the
cube of N1N2N3 grid points.

3.7.3 Treatment Of Local Potential Energy

In spite of the striking advantages of Daubechies wavelets the initial
exploration of this basis set [315] did not lead to any algorithm that
would be useful for practical electronic structure calculations. This
was due to the fact that an accurate evaluation of the local potential
energy is difficult in a Daubechies wavelet basis.

By definition, the local potential v(r) can be easily known on the
nodes of the uniform grid of the simulation box. Approximating a
potential energy matrix element vi,j,k;i ′,j ′,k ′

vi,j,k;i ′,j ′,k ′ =

∫

drφi ′,j ′,k ′(r)v(r)φi,j,k(r)

by

vi,j,k;i ′,j ′,k ′ ≈
∑

l,m,n

φi ′,j ′,k ′(rl,m,n)v(rl,m,n)φi,j,k(rl,m,n)
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gives an extremely slow convergence rate with respect to the num-
ber of grid points used to approximate the integral because a single
scaling function is not very smooth, i.e., it has a rather low number
of continuous derivatives. A. Neelov and S. Goedecker [257] have
shown that one should not try to approximate a single matrix element
as accurately as possible but that one should try instead to approxi-
mate directly the expectation value of the local potential. The reason
for this strategy is that the wavefunction expressed in the Daubechy
basis is smoother than a single Daubechies basis function. A sin-
gle Daubechies scaling function of order 16 (i.e., the corresponding
wavelet has 8 vanishing moments) has only 2 continuous derivatives.
More precisely its index of Hölder continuity is about 2.7 and the
Sobolev space regularity with respect to p = 2 is about 2.91 [213]. A
single Daubechies scaling function of order 16 has only 4 continuous
derivatives. By suitable linear combinations of Daubechies 16 one can
however exactly represent polynomials up to degree 7, i.e., functions
that have 7 non-vanishing continuous derivatives. The discontinuities
get thus canceled by taking suitable linear combinations. Since we use
pseudopotentials, our exact wavefunctions are analytic and can locally
be represented by a Taylor series. We are thus approximating functions
that are approximately polynomials of order 7 and the discontinuities
nearly cancel.

Instead of calculating the exact matrix elements we therefore use ma-
trix elements with respect to a smoothed version φ̃ of the Daubechies
scaling functions.

vi,j,k;i ′,j ′,k ′ ≈
∑

l,m,n

φ̃i ′,j ′,k ′(rl,m,n)v(rl,m,n)φ̃i,j,k(rl,m,n)

=
∑

l,m,n

φ̃0,0,0(rl−i ′,m−j ′,n−k ′)v(rl,m,n)

φ̃0,0,0(rl−i,m−j,n−k) (3.55)

where the smoothed wave function is defined by

φ̃0,0,0(rl,m,n) = ωlωmωn

and ωl is the "magic filter". Even though Eq. (3.55) is not a particulary
good approximation for a single matrix element it gives an excellent
approximation for the expectation values of the local potential energy

∫

dx

∫

dy

∫

dzψ(x, y, z)v(x, y, z)ψ(x, y, z)

and also for matrix elements between different wavefunctions
∫

dx

∫

dy

∫

dzψi(x, y, z)v(x, y, z)ψj(x, y, z)

in case they are needed. Because of this remarkable achievement of
the filter ω we call it the magic filter.
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Following the same guidelines as the kinetic energy filters, the
smoothed real space values ψ̃i,j,k of a wavefunction ψ are calculated
by performing a product of three one-dimensional convolutions with
the magic filters along the x, y and z directions. For the scaling
function part of the wavefunction the corresponding formula is

ψ̃i1,i2,i3 =
∑

j1,j2,j3

sj1,j2,j3v
(1)
i1−2j1

v
(1)
i2−2j2

v
(1)
i3−2j3

where v(1)i is the filter that maps a scaling function on a double
resolution grid. Similar convolutions are needed for the wavelet part.
The calculation is thus similar to the treatment of the Laplacian in the
kinetic energy.

Once we have calculated ψ̃i,j,k the approximate expectation value
ǫV of the local potential v for a wavefunction ψ is obtained by simple
summation on the double resolution real space grid:

ǫv =
∑

j1,j2,j3

ψ̃j1,j2,j3vj1,j2,j3ψ̃j1,j2,j3

3.7.4 Treatment Of The Non-Local Pseudopotential

The energy contributions from the non-local pseudopotential have for
each angular moment l the form

∑

i,j

〈ψ|pi〉hij〈pj|ψ〉

where |pi〉 is a pseudopotential projector. Once applying the Hamilto-
nian operator, the application of one projector on the wavefunctions
requires the calculation of

|ψ〉 → |ψ〉+
∑

i,j

|pi〉hij〈pj|ψ〉 .

If we use for the projectors the representation of Eq. (3.52) (i.e., the
same as for the wavefunctions) both operations are trivial to perform.
Because of the orthogonality of the basis set we just have to calculate
scalar products among the coefficient vectors and to update the wave-
functions. The scaling function and wavelet expansion coefficients for
the projectors are given by [139]

∫

p(r)φi1,i2,i3(r)dr ,

∫

p(r)ϕν
i1,i2,i3

(r)dr . (3.56)

The Goedecker-Teter-Hutter (GTH) Hartwigsen-Goedecker-Hutter
(HGH) pseudopotentials [141, 142] have projectors which are written
in terms of gaussians times polynomials. This form of projectors is
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particularly convenient for expansion in the Daubechies basis. In other
terms, since the general form of the projector is

〈r|p〉 = e−cr2xℓxyℓyzℓz ,

the 3-dimensional integrals can be calculated easily since they can be
factorized into a product of 3 one-dimensional integrals.

∫

〈r|p〉φi1,i2,i3(r)dr = Wi1(c, ℓx)Wi2(c, ℓy)Wi3(c, ℓx) , (3.57)

Wj(c, ℓ) =

∫+∞

−∞

e−ct2tℓφ(t/h− j)dt (3.58)

The one-dimensional integrals are calculated in the following way.
We first calculate the scaling function expansion coefficients for scaling
functions on a one-dimensional grid that is 16 times denser. The
integration on this dense grid is done by the well-known quadrature
introduced in [188], that coincides with the magic filter [257]. This
integration scheme based on the magic filter has a convergence rate
of h16 and we gain therefore a factor of 1616 in accuracy by going
to a denser grid. This means that the expansion coefficients are for
reasonable grid spacings h accurate to machine precision. After having
obtained the expansion coefficients with respect to the fine scaling
functions we obtain the expansion coefficients with respect to the
scaling functions and wavelets on the required resolution level by one-
dimensional fast wavelet transformations. No accuracy is lost in the
wavelet transforms and our representation of the projectors is therefore
typically accurate to nearly machine precision. In order to treat with
the same advantages other pseudopotentials which are not given
under the form of gaussians it would be necessary to approximate
them by a small number of gaussians.

3.7.5 The Poisson Operator

Solving the Poisson equation for an arbitrary charge distribution is a
non-trivial task, and is of major importance in many field of science,
especially in the field of computational chemistry. A huge effort has
been put into making efficient Poisson solvers, and usual real-space
approaches include FD and finite element (FE) methods. FD is a grid-
based method, which is solving the equations iteratively on a discrete
grid of points, while FE is expanding the solution in a basis set, usually
by dividing space into cubic cells and allocating a polynomial basis to
each cell.

It is well-known fact that the electronic density in molecular systems
is rapidly varying in the vicinity of the atomic nuclei, and a usual
problem with real-space methods is that an accurate treatment of the
system requires high resolution of grid points (FD) or cells (FE) in
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the nuclear regions. Keeping this high resolution uniformly through-
out space is overkill in the interatomic regions, and the solution of
the Poisson equation for molecular systems requires a multiresolution

framework in order to achieve numerical efficiency. This chapter is
concerned with a way of doing DFT and TD-DFT calculations, one where
the multiresolution character is inherent in the theory, namely using
wavelet bases.

In order to evaluate the Hartree potential, we need to rewrite the
standard Poisson equation in integral form. The equation, in its
differential form, is given as

∇2v(x) = 4πρ(x) , (3.59)

where ρ(x) is the known (charge) distribution, and v(x) is the unknown
(electrostatic) potential. It is a standard textbook procedure to show
that the solution can be written as the integral

v(x) =

∫

G(x, y)ρ(y)dy , (3.60)

where G(x, y) is the Green’s function which is the solution to the fun-

damental equation with homogeneous (Dirichlet) boundary conditions

∇2G(x, y) = δ(x − y)

G(x, y) = 0 , x ∈ boundary (3.61)

This equation can be solved analytically and the Green’s function is
given (in three dimensions) simply as

G(x, y) =
1

||x − y||
, (3.62)

This is the well-known potential arising from a point charge located
in the position y, which is exactly what Eq. (3.61) describes.

3.7.6 Numerical Separation Of The Kernel

The Green’s function kernel as it is given in Eq. (3.62) is not separable
in the cartesian coordinates. However, since we are working with
finite precision we can get by with an approximate kernel as long as
the error introduced with this approximation is less than our overall
accuracy criterion. If we are able to obtain such a numerical separation
of the kernel, the operator can be applied in one direction at a time,
allowing us to use the expressions derived above for one-dimensional
integral operators to solve the three-dimensional Poisson equation.
This is of great importance because it reduces the scaling behavior to
linear in the dimension of the system.

The Poisson kernel can be made separable by expanding it as a sum
of Gaussian functions, specifically

1

r
≃

Mǫ∑

k=1

ωke
−pkr

2

. (3.63)
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where ωk and pk are parameters that needs to be determined, and
the number of terms Mǫ, called the separation rank, depends on the
accuracy requirement and on what interval this expression needs to
be valid. Details of how to obtain this expression can be found in
[132, 133], and will not be treated here, but it should be mentioned
that the separation rank is usually in the order of 100, e.g, it requires
Mǫ = 89 to reproduce 1

r on the interval [10−9 , 1] in three dimensions
with error less than ǫ = 10−8.

Finally, figure 3.6 summarizes this complete section into a flow-
chart type diagram. This kind of explanation is necessary for beginners
because there are different functions used for the different operations
in BigDFT. As one can see from the figure, The KS wavefunctions
|ψ〉 are expressed in terms of Daubechies wavelets and the projec-
tion of Hamiltonian vnl|ψ〉 and of pseudopotential operators |Hψ〉
also expressed using Daubechies wavelets. The rest of the operations
such as kinetic energy |∇2ψ〉, potential energy operator v(x)ψ(x), and
the local densities ρ(x) are all expressed using interpolating scaling
functions, in which the Hartree vH(x), local part potential energy
vloc(x) and xc operations vxc(x) were performed in real space. The
interconnecting lines between different operations represents the trans-
formation between Daubechies wavelets-to-ISF or the transformation
of real space-to-fourier space representation.
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Figure 3.6: Operations performed in BigDFT

3.8 bigdft and td-dft

We want to solve Casida’s equation [60],
[(

A(ω) B(ω)

B∗(ω) A∗(ω)

)

−ω

(

1 0

0 −1

)](

~X

~Y

)

= 0 , (3.64)
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where ~X and ~Y represents the pseudoeigenvectors; the matrices A and
B are defined as

Aaiσ,bjτ = δabδijδστ(ǫa − ǫi) + Kaiσ,bjτ(ω) , (3.65)

and,

Baiσ,bjτ = Kaiσ,jbτ(ω) , (3.66)

in which the integral form of the coupling matrix K is given by,

Kpqσ,rsτ =

∫ ∫

Ψ∗
pσ(~r)Ψqσ(~r)

[

1

|~r−~r ′|
+

∂2Exc[ρ]

∂ρσ(~r)∂ρτ(~r ′)

]

Ψrτ(~r
′)Ψ∗

sτ(~r
′)d~rd~r ′ . (3.67)

The universal adiabatic approximation is applied to Eq. (3.67) to
remove the frequency dependence of the kernel.

The electronic transitions occur with an infinitesimal perturbation
obtains the above described non-Hermitian eigenvalue Eq. (3.64).
Where the response is due to a real spin independent external per-
turbation, and the actual response is described as the real density
response. However, an unitary transformation is necessary to convert
Eq. (3.64) into the real eiganvalue problem. In Eq. (3.64), all occupied-
occupied and virtual-virtual element contributions are zero whereas
only the elements that are from virtual-occupied and occupied-virtual
parts are taken into account. Moreover if we only restricted to virtual-
occupied elements and neglecting the occupied-virtual elements of
Eq. (3.64) leads to a Hermitian eigenvalue equation of the dimension
one-half of that TD-DFT working equation is said to be TDA and it is
written as,

A~X = ω~X , (3.68)

where A is as same as in Eq. (3.42). The matrix A is just restricted to
number of single excitations.

3.8.1 Calculation Of Coupling Matrix

We are now in a position to understand the construction of the cou-
pling matrix Eq. (3.67) in our implementation of TD-DFT in BigDFT,
which we split into the Hartree and xc parts,

Kaiσ,bjτ = KH
aiσ,bjτ + Kxc

ajσ,bjτ . (3.69)

Instead of calculating the Hartree part of coupling matrix directly as,

KH
aiσ,bjτ =

∫ ∫

ψ∗
aσ(r)ψiσ(r)

1

|r − r ′|
ψbτ(r

′)ψ∗
jτ(r

′)drdr ′ , (3.70)
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we express the coupling matrix element as,

KH
aiσ,bjτ =

∫

ψ∗
aσ(r)ψiσ(r)vbjτ(r)dr , (3.71)

where,

vaiσ(r) =

∫
ρaiσ(r)

|r − r ′|
dr ′ , (3.72)

and,

ρaiσ(r) = ψ
∗
aσ(r)ψiσ(r) . (3.73)

The advantage of doing this is that, although ρaiσ and vaiσ are neither
real physical charge densities nor real physical potentials, they still
satisfy the Poisson equation,

∇2vaiσ(r) = −4πρaiσ(r) , (3.74)

and we can make use of whichever of the efficient wavelet-based
Poisson solvers already available in BigDFT, is appropriate for the
boundary conditions of our physical problem.

Once the solution of Poisson’s equation, vaiσ(r), is known, we can
then calculate the Hartree part of the kernel according to Eq. (3.71).
Inclusion of the xc kernel is accomplished by evaluating,

Kaiσ,bjτ =

∫

Maiσ(r)ρbjτ(r)dr , (3.75)

where,

Maiσ(r) = vaiσ(r) +

∫

ρaiσ(r
′)fσ,τxc (r, r ′)dr ′ . (3.76)

We note that fσ,τxc (r, r ′) = fσ,τxc (r, r ′)δ(r − r ′) for the LDA, so that no
integral need actually be carried out in evaluating Maiσ(r). The
integral in Eq. (3.75) is, of course, carried out numerically in practice
as a discrete summation.

3.9 results

We now wish to illustrate a bit how wavelet calculations work in
the BigDFT program. Comparison will be made against results ob-
tained with the GTO-based program deMon2k. This work is very
similar to our previous work reporting the first implementation of
wavelet-based TD-DFT with illustration for N2 and application to the
absorption spectrum of a medium-sized organic molecule of potential
biomedical use as a fluorescent probe [256]. Here however we will
present new BigDFT results for a different small molecule, namely
carbon monoxide. Though CO is roughly isoelectronic with N2, CO
has the interesting feature of having a low-lying bright state in its
absorption spectrum.
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3.9.1 Computational Details

Calculations were carried out with deMon2k and BigDFT with the
LDA-optimized bond length of 1.129 Å.

3.9.1.1 deMon2k

deMon2k resembles a typical GTO-based quantum chemistry program
in that all the integrals other than the xc-integrals, can be evaluated
analytically. In particular, deMon2k has the important advantage that
it accepts the popular GTO basis sets common in quantum chemistry
and so can benefit from the experience in basis set construction of a
large community built up over the past 50 years or so. In the following,
we have chosen to use the well-known correlation-consistent basis
sets for this study [114, 285]. (Note, however, that the correlation-
consistent basis sets used in deMon2k lack f and g functions but are
otherwise exactly the same as the usual ones.) The advantage of using
these particular basis sets is that there is a clear hierarchy as to quality.

An exception to the rule that integrals are evaluated analytically
in deMon2k are the xc-integrals (for the xc-energy, xc-potential, and
xc-kernel) which are evaluated numerically over a Becke atom-centered
grid. This is important because the relative simplicity of evaluating
integrals over a grid has allowed the rapid implemenation of new
functionals as they were introduced. We made use of the fine fixed
grid in our calculations.

As described so far, deMon2k should have O(N4) scaling because
of the need to evaluate 4-center integrals. Instead deMon2k uses
a second atom-centered auxiliary GTO basis to expand the charge
density. This allows the the elimination of all 4-center integrals so that
only 3-center integrals remain for a formal O(N3) scaling. In practice,
integral prescreening leads to O(NM) scaling where M is typically
between 2 and 3. We made use of the A3 auxiliary basis set from the
deMon2k automated auxiliary basis set library.

All calculations were performed using standard deMon2k default
criteria. The implementation of TD-DFT in deMon2k is described in
Ref. [181]. (The charge density conservation constraint is no longer
used in deMon2k TD-DFT calculations.) Although full TD-LDA calcu-
lations are possible with deMon2k, the TD-LDA calculations reported
here all made use of the TDA.

3.9.1.2 BigDFT

The main thing to vary in BigDFT is the grid which is of more pro-
found importance than in deMon2k because it is the grid which
supports the wavelets. Figures 3.7, 3.8, and 3.9 give an idea of what
the grid looks like for the small familiar molecule of water. Conceptu-
ally the molecule is in a very large box (Fig. 3.7.) A fine grid is placed
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Figure 3.7: Example: H2O in a simulation box

Figure 3.8: Example: H2O in a simulation box showing fine grid resolution

Figure 3.9: Example: H2O in a simulation box showing coarse grid resolution
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in the regions of high electron density around the molecule (Fig. 3.8.)
A coarse grid is used in a larger region where the electron density
varies more slowly (Fig. 3.9.) The BigDFT grid is characterized by
the triple hg/crmult/frmult. The first number in the triple (hg) is a
real number which specifies the nodes of the grid in a.u. The second
number (the integer-valued crmult) is the coarse grid multiplier. And
the third number (the integer-valued frmult) is the fine grid multiplier.
Two points must be clearly understood when looking at Figs. 3.7, 3.8,
and 3.9. The first is that, while the box may determine the limits of
the grid, the grid does not have the shape of the box and there are no
basis functions where there are no grid points. This means that we are
not dealing with box boundary conditions, but rather with effective
boundary conditions which reflect the shape of the molecule. The
other point which is not brought out by our explanation is that the
BigDFT grid is adaptive in the sense that additional fine grid points
are added during the calculation as they are needed to maintain and
improve numerical precision.

The implementation of TD-DFT in BigDFT is described in Ref. [256].

3.9.2 Orbital Energies

Possibly the most remarkable property of wavelets is how rapidly
they converge to the basis set limit. Let us illustrate this by com-
paring HOMO and LUMO energies calculated with deMon2k and
BigDFT. The difference of these two energies is the HOMO-LUMO

gap, ∆ǫHOMO−LUMO.
Consider first how deMon2k calculations of ∆ǫHOMO−LUMO, evolve

as the basis set is improved (Table 5.1.) Convergence to the true HOMO-
LUMO LDA gap is expected with systematic improvement within the
series:

• Double zeta plus valence polarization (DZVP) → triple zeta plus
valence polarization (TZVP)

• Augmented correlation-consistent double zeta plus polarization
plus diffuse on all atoms (AUG-CC-PCVDZ)→ AUG-CC-PCVTZ
(triple zeta) → AUG-CC-PCVQZ (quadruple zeta) → AUG-CC-
PCV5Z (quintuple zeta)

• Augmented correlation-consistent valence double zeta plus po-
larization plus diffuse (AUG-CC-PVDZ) → AUG-CC-PVTZ →
AUG-CC-PVQZ → AUG-CC-PV5Z

• Correlation-consistent double zeta plus polarization plus tight
core (CC-PCVDZ) → CC-PCVTZ → CC-PCVQZ → CC-PCV5Z

• Correlation-consistent valence double zeta plus polarization on
all atoms (CC-PVDZ) → CC-PVTZ → CC-PVQZ → CC-PV5Z.
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Table 3.1: Basis set dependence of the HOMO and LUMO energies and of the
HOMO-LUMO gap (eV) calculated using deMon2k.

Basis Set −ǫHOMO −ǫLUMO ∆ǫHOMO−LUMO

STO-3G -5.5350 1.2428 4.2922

DZVP -8.9271 -2.0942 6.8329

TZVP -9.0287 -2.1902 6.8385

CC-PVDZ -8.6729 -1.7823 6.8906

CC-PVTZ -9.0419 -2.1195 6.9224

CC-PVQZ -9.0944 -2.1971 6.8973

CC-PV5Z -9.1169 -2.2400 6.8769

CC-PCVDZ -8.6905 -1.7922 6.8983

CC-PCVQZ -9.0957 -2.1988 6.8969

CC-PCVTZ -9.0371 -2.1165 6.9206

CC-PCV5Z -9.1172 -2.2401 6.8771

AUG-CC-PVDZ -9.0910 -2.2345 6.8565

AUG-CC-PVQZ -9.1286 -2.2567 6.8719

AUG-CC-PVTZ -9.1306 -2.2535 6.8771

AUG-CC-PV5Z -9.1289 -2.2606 6.8683

AUG-CC-PCVDZ -9.0987 -2.2371 6.8616

AUG-CC-PCVTZ -9.1316 -2.2554 6.5776

AUG-CC-PCVQZ -9.1293 -2.2574 6.8719

AUG-CC-PCV5Z -9.1291 -2.2607 6.8684
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Table 3.2: Basis set dependence of the HOMO and LUMO energies and of the
HOMO-LUMO gap (eV) calculated using BigDFT.

hg
a/mb/nc −ǫHOMO −ǫLUMO ∆ǫHOMO−LUMO

0.4/6/8 -9.0976 -2.1946 6.9029

0.4/7/8 -9.1014 -2.2028 6.8985

0.4/8/8 -9.1017 -2.2044 6.8971

0.4/9/8 -9.1017 -2.2049 6.8967

0.4/10/8 -9.1017 -2.2049 6.8966

0.3/7/8 -9.1022 -2.2056 6.8964

0.3/8/8 -9.1025 -2.2073 6.8950

aGrid spacing of the cartesian grid in atomic units.
bCoarse grid multiplier (crmult).
c Fine grid multiplier (frmult).

There is a clear tendency in the correlation-consistent basis sets to tend
towards values of -9.13 eV for the HOMO energy, -2.26 eV for the LUMO

energy, and 6.87 eV for ∆ǫHOMO−LUMO, with adequate convergance
achieved with the AUG-CC-PVQZ basis set.

Now let us turn to BigDFT (Table 5.2). Calculations were done
for several different grids, including the high-resolution combination
0.3/8/8 and the low-resolution combination of 0.4/6/8. Remarkably,
except for the very lowest quality grid 0.4/6/8, there is essentially
no difference between results obtained with the two grids (and even
the 0.4/6/8 grid gives nearly converged results.) The results are also
quite close to, but not identical to those obtained with the deMon2k

program. The reason for the small differences between the converged
results obtained with the two programs is more difficult to trace as
it might be due to the auxiliary basis approximation in deMon2k or
to the use of pseudopotentials in BigDFT or perhaps to still other
program differences. The important point is that differences are
remarkably small.

3.9.3 Excitation Energies

Orbital energy differences provide a first estimate for excitation ener-
gies. In this case, we would expect to see the HOMO → LUMO excitation
at ∆ǫHOMO−LUMO ≈ 6.9 eV (6.87 eV for deMon2k and 6.90 eV for
BigDFT.) A better estimate is provided by the TOTEM [60, 71, 64, 65]
for the singlet (S) and triplet (T) transition from orbital i to orbital a,

 hωT
i→a = ∆ǫi→a + (ia|fα,α

xc − fα,β
xc |ai)

 hωS
i→a = ∆ǫi→a + (ia|2fH + fα,α

xc + fα,β
xc |ai) , (3.77)
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Table 3.3: Comparison of lowest excitation energies of CO (in eV) calculated
using BigDFT and deMon2k and with experiment.

State BigDFTa deMon2kb Experimentc

13Σ− 9.84 9.85 9.88

13∆ 9.17 9.21 9.36

11Π 8.94 8.42 8.51

13Σ+ 8.94 8.54 8.51

13Π 6.47 6.05 6.32

a Present work (TD-LDA/TDA) using AUG-CC-PCQZ basis set.
b Present work (TD-LDA/TDA) using 0.3/8/8 grid.
c Taken from Ref. [66].

where

∆ǫi→a = ǫa − ǫi . (3.78)

The TOTEM often works surprisingly well for small molecules be-
cause, unlike the HF approximation which is better adapted to describe
electron ionization and attachment, pure DFT KS orbitals are prepre-
pared to describe excitation energies in the sense that the occupied and
unoccupied orbitals see the same potential, thus minimizing orbital
relaxation effects. Inspection of the sizes and signs of the integrals in
Eq. (3.77) indicates that we should expect,

 hωT
i→a 6 ∆ǫi→a 6  hωS

i→a . (3.79)

These is confirmed in Table 3.3 where the 13Π and 11Π excitations are,
respectively, the triplet and singlet states corresponding to the HOMO

→ LUMO transition.
Assuming that fα,α

xc dominates over fα,β
xc , we may even go a bit

further to estimate (ia|fH|ai) and (ia|fα,α
xc |ai) (Fig. 3.10.) The cal-

culations are show in Table 3.4. Comparison of (ia|fα,α
xc |ai)(1) and

(ia|fα,α
xc |ai)(2) provides an indication of the quality of the approxima-

tion of neglecting the (ia|f
α,β
xc |ai) integral which in this case appears

to be excellent. The (ia|fH|ai) integrals calculated with the two pro-
grams are reasonably close. Interestingly the (ia|fα,α

xc |ai) disagree by
about 0.4 eV which, though small, is not negligible.

Let us now examine the issue of the collapse of the continuum. In
Ref. [70], it was shown that the TD-DFT ionization continuum begins
at −ǫHOMO. In exact KS DFT, this should be the ionization potential.
However typical approximate density functionals underbind electrons
and so lead to an artificially-early on-set of the TD-DFT ionization
continuum. This is first illustrated using the deMon2k program and
different basis sets. Indeed Fig. 3.11 shows that the states above
−ǫHOMO tend to collapse towards −ǫHOMO rather than converging
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Figure 3.10: Estimation of integrals within the TOTEM model.

Table 3.4: Estimations of integrals (in eV) within the TOTEM.

Program deMon2k BigDFT

Input Data

11Π 8.42 8.94

∆ǫi→a 6.87 6.90

13Π 6.05 6.47

Derived Results

(ia|fH|ai) 1.19 1.24

(ia|fα,α
xc |ai)(1) -0.82 -0.43

(ia|fα,α
xc |ai)(2) -0.83 -0.44

as they should. This is simply because we are trying to describe a
continuum which should not be there with a finite basis set. Also seen
in the figure is a slight splitting of the 11Π excitation energy. This
small effect is due to the fact that the grid used to calculate xc-integrals
in deMon2k has only roughly break the symmetry of the molecule.

Now let us turn to BigDFT calculations. Figure 3.12 shows a sim-
ilar collapse of the continuum as the fineness of the grid increases.
Interestingly there is no evidence of symmetry breaking of the doubly-
degenerate 11Π state.

3.9.4 Oscillator Strengths

Carbon monoxide is very unusual for small molecules in that absolute
oscillator strengths have been well studied [78] over a significant
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Figure 3.11: Singlet and triplet excitation energies for CO calculated using
deMon2k
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Figure 3.12: Singlet and triplet excitation energies for CO calculated using
BigDFT

energy range and the A1Π (11Π in Table 3.3) is bright and has an accu-
rately determined oscillator strength. See Fig. 2 of Ref. [78] (as well as
other references in the same paper) for a graph of measured absolute
optical oscillator strengths against absorption energy in eV. Table 3.5
reports our calculated TD-LDA/TDA oscillator strengths. As the TDA

violates the Thomas-Reiche-Kuhn (TRK) f-sum rule [60] it should only
be used very cautiously to estimate oscillator strengths. Nevertheless
the deMon2k value of f = 0.232 is in good agreement with the experi-
mental value of f = 0.1762. As shown in Ref. [66], full TD-LDA calcula-
tions with asymptotically corrected potentials give smaller oscillator
strengths (0.136 for TD-LDA/LB94 and 0.156 for TD-LDA/AC-LDA
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Table 3.5: Comparison of experimental A1Π energies (eV) and oscillator
strengths with TD-LDA/TDA experimental A1Π energies (eV) and
degeneracy-weighted oscillator strengths (unitless.)

deMon2k BigDFT Experimenta

 hωS 8.43 8.95 8.4

f 0.232 0.853 0.1762

a See Table VIII of Ref. [66].

calculations [66].) (Coincidently our own deMon2k full TD-LDA cal-
cuations without asymptotic corrections give a degeneracy-weighted
oscillator strength of 0.1752 (bang on the experimental value) but an ex-
citation energy of 8.19 eV.) Since oscillator strengths are quite sensitive
to configuration mixing with nearby states, the fact that the BigDFT
oscillator strength is larger than the deMon2k oscillator strength may
be due to the relatively small energy separation between the BigDFT
A1Π state and the artificially-low TD-LDA ionization continuum.

3.10 conclusion

In this chapter we have tried to give an informative elementary review
of a subject largely unfamiliar to most theoretical chemists and physi-
cists. Wavelets, once an obscure ripple at the exterior of engineering
applications, grew to become a regular tsumani in engineering circles
in the 1990s as the similarity to and superiority over Fourier transform
methods for multiresolution problems with arbitrary boundary condi-
tions became increasingly recognized. Though the first applications
of wavelet theory to solving the Schrödinger equation may be traced
back to the mid-1990s [25, 123, 57], the theory is still not well known
among quantum mechanicians. Here we have tried to remedy this
aberrant situation by trying to "make some waves about wavelets for
wave functions."

In particular we have reviewed the theory behind the wavelet
code BigDFT for ground-state DFT and our recent implementation
of wavelet-based TD-DFT in BigDFT. Rapid progress is being made
towards making BigDFT a high performance computing order-N code
for applications to large systems. Right now applications to 400 or
500 atoms are routine for ground-state calculations with BigDFT. Our
implementation of TD-DFT in BigDFT is by comparison only a rude-
mentary beginning, but it shows that the basic method is viable and
we are confident that there are no insurmountable obstacles to making
high performance computing order-N wavelet-based TD-DFT code for
large systems.
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4
S P I N - F L I P L R - T D - D F T

The aim of this chapter of the thesis is to test the implementation
of spin-flip TD-DFT in deMon2k and explore SF-TD-DFT based on the
noncollinear formalism presented in [324].

4.1 collinear td-dft

The most common application of KS DFT is to spin-independent exter-
nal potentials so that

[ĥs, Ŝz] = 0 , (4.1)

That means that the orbitals may be chosen as simultaneous eigen
functions of ĥs and Ŝz with the spin of the spin orbitals aligned
collinearly either up or down along the z-axis everywhere in space. It
follows that

ρ =

[

ρα

ρβ

]

=

[

ρ↑

ρ↓

]

. (4.2)

is a 2-component vector and spin-independent perturbations cannot
change spin so that the LR-TD-DFT problem partitions as

[

A↑,↑ A↑,↓

A↓,↑ A↓,↓

](

~X↑

~X↓

)

= ω

(

~X↑

~X↓

)

. (4.3)

in the TDA. For closed-shell ground-states,

A↑,↑ = A↓,↓ ,

A↓,↑ = A↓,↓ , (4.4)

so a unitary transformation brings the TDA equation to the form,
[

AT 0

0 AS

](

~XT

~XS

)

= ω

(

~XT

~XS

)

, (4.5)

where
AT = A↑,↑ − A↑,↓

is the triplet matrix and

AS = A↑,↑ + A↑,↓

is the singlet matrix. Hence SP TD-DFT has only triplet-coupled and
singlet-coupled solutions.
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4.2 noncollinear td-dft

In this case, the KS operator contains a component which can rotate
spin, possibly differently in different parts of space. Now

[ĥs, Ŝz] 6= 0 , (4.6)

and so spin-orbitals may not be chosen as purely spin up or spin down
but rather the orbitals is a 2-component

ψi(r) =

(

ψiα(r)

ψiβ(r)

)

=

(

ψi↑(r)

ψi↓(r)

)

, (4.7)

It follows that the density matrix is no longer a vector in spin, but a
matrix

ρ(r) =

[

ρ↑↑(r) ρ↑↓(r)

ρ↓↑(r) ρ↓↓(r)

]

. (4.8)

spin-dependent perturbation may rotate spins and the kernels

fσ1σ2,τ1τ2
xc (r1, r2) =

δ2Exc[ρ]

δρσ1,σ2
(r1)δρτ1,τ2

(r2)
, (4.9)

has 4-spin indices. The general TDA problem is correspondingly larger
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. (4.10)

In principle, noncollinear response theory then allows us to flip spin
even when starting from a collinear unperturbed state. However
this only works for functionals which allow spin flips. Only two SF

functionals are so far known to allow spin flips. The earliest is that
of hybrid functionals including some Hartree-Fock exchange. The
more recent noncollinear spin-flip functional considered in this paper
comes from relativistic DFT and works nominally even for the LDA.
Our objective here is to subject it to more demanding tests with critical
points on potential energy surfaces in mind.

4.3 comments on my contribution to this article

The chapter is structured in the following way. The first section (4.4)
of the included article consists of an introduction to the theories un-
derlying the TD-DFT method; it is dedicated to the presentation of the
nature of excitations in LR-TD-DFT. Section (4.5), a full description of
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the SF-TD-DFT is proposed including the numerical implementation
of SF-TD-DFT in deMon2k, and the SF-TD-DFT method applied to the
problem of H2 dissociation. Section (4.6) explains the different compu-
tational approaches used in various different programs in the article.
In section 4.7, we applied SF-TD-DFT method to study the mechanism
of C2v ring-opening (subsection 4.7.1) of oxirane. In order to test
the SF-TD-DFT method on this particular aspect, futher investigation
on photochemical pathway of oxirane is studied in detail, (subsec-
tions 4.7.2 and 4.7.3) the values are compared with values obtained by
other methods such as DMC, CIS and CASSCF. Finally conclusions are
summarized in the last section (4.8) along with an outlook for further
studies on SF-TD-DFT method.

My contribution in this article is to work on the last part involving
the calculation (requiring hundreds of SF-TD-DFT calculations!!!) of the
SF-TD-DFT PES for locating the CX in the photochemical ring opening of
oxirane.
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4.4 introduction

Due to its rigorous formal foundations and computational efficiency,
TD-DFT is currently a method of choice for treating electronic excited
states. It is thus one of several tools to be found in today’s photo-
chemical modeling kit (see e.g., Refs. [99, 100, 97, 296]). Nevertheless
applications of TD-DFT are limited by a number of problems due to
the inevitable use of approximate functionals in practical applications.
Overcoming these limitations is important for extending the domain
of applicability of TD-DFT. Here we investigate the ability of spin-flip
SF TD-DFT to overcome problems encountered by ordinary TD-DFT near
funnel regions, namely avoided crossings (AX) and conical intersec-
tions (CX). This is especially important in light of the recent develop-
ment of Tully-type [313, 314] mixed TD-DFT/classical trajectory surface-
hopping dynamics [103, 84, 301, 302, 328, 250]. Surface-hopping dy-
namics may also have inspired very recent work by Minezawa and
Gordon [249] focusing on characterizing the CXs of ethylene using
one formulation of SF-TD-DFT [291, 295] and the BHHLYP functional
(50% Hartree-Fock plus 50% Becke exchange [41] plus Lee-Yang-Parr
correlation [216]). In the present study, we have chosen the photo-
chemical ring opening of oxirane [(I) in Fig. 4.1] as a test case for
evaluating the ability of a different formulation of SF-TD-DFT [322, 325]
in describing funnel regions because oxiranes are an important class of
compounds in photochemistry (see Ref. [163] and the brief review in
Appendix B of Ref. [82] as well as Ref. [128] where the photochemical
ring-opening of diphenyloxirane has been studied, not by TD-DFT,
but by a different DFT approach) and because of the availability of
high-quality comparison results [82, 302].

Let us review the fundamental problems encountered by DFT for
such applications. Hohenberg, Kohn, and Sham showed that the static
ground state properties of a real system of interacting electrons could
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Figure 4.1: Gomer-Noyes mechanism for the ring-opening of oxirane (I). [144]

in principle be treated exactly by replacing it with a fictitious system
of noninteracting electrons [172, 206]. In the absence of degeneracies,
the wave function of the noninteracting system is single determinantal
in nature. The orbitals obey the well-known Kohn-Sham equation,

(

ĥC + vH + vσxc
)

ψσ
p = ǫpσψ

σ
p , (4.11)

where ĥσC is the usual core (i.e., kinetic energy plus external potential,
vσext), vH is the Hartree (i.e., Coulomb) potential, and (assuming a
pure spin-density functional) the exchange-correlation (xc) potential,

vσxc[ρα, ρβ](r) =
δExc[ρα, ρβ]

δρσ(r)
, (4.12)

is the functional derivative of the xc-energy, Exc. (Hartree atomic
units are used throughout this paper:  h = me = e = 1.) While the
Hohenberg-Kohn-Sham DFT is formally exact in principle, it is limited
in practice by the use of approximate xc-functionals. The result is
that DFT, whose equations resemble those of Hartree-Fock (HF) theory,
"inherits" some of the problems of HF theory, notably molecular orbital
symmetry breaking when describing the rupture of covalent bonds.
Indeed simple arguments show that no symmetry breaking should
occur for a closed-shell molecule when the xc-functional is exact [82].
In practice, the broken symmetry solution becomes lower in energy
than the unbroken symmetry solution beyond some critical bond
distance (Coulson-Fischer point) because of the use of approximate
functionals. The above arguments rest on the supposition of NVR,
which means that the energy is minimized with the Aufbau filling of
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the KS orbitals. Interestingly there is some indication that NVR fails for
biradicals [302], indicating the need for an ensemble formalism which,
however, is beyond the scope of the present paper.

Modern TD-DFT is based upon the formalism of Runge and Gross
who presented Hohenberg-Kohn-like theorems for the time-dependent
(TD) case and a TD-KS equation, [280]

(

ĥσC + vH + vσxc
)

ψσ
p = i

∂

∂t
ψσ

p , (4.13)

in which the xc-potential is, in principle, a functional of the TD density,
ρσ(r, t), and the wave functions of the interacting and noninteracting
systems at some initial time. However the first Hohenberg-Kohn (HK)
theorem tells us that these wave functions are also functionals of the
initial density, meaning that the xc-potential depends only on the
density for the case of a system initially in its ground stationary state
perturbed by a TD applied potential [172]. Linear response (LR) theory
may then be used to extract information about excited states. This
leads, in Casida’s formulation [60], to the LR-TD-DFT equation,

[

A(ω) B(ω)

B∗(ω) A∗(ω)

](

~X

~Y

)

= ω

[

1 0

0 −1

](

~X

~Y

)

, (4.14)

which has paired excitation and de-excitation solutions,
(

~XI

~YI

)

↔ ωI = E0 − EI = −ωI ↔
(

~YI
~XI

)

(4.15)

Here

Aσ,τ
ia,jb = δa,bδi,jδσ,τ (ǫaσ − ǫiσ) + Kσ,τ

ia,jb(ω)

Bσ,τ
ia,jb = Kσ,τ

ia,bj(ω) , (4.16)

and the coupling matrix,

Kσ,τ
ia,bj(ω) = (ia|fH + fσ,τxc (ω)|bj) , (4.17)

where,

fH(r1, r2) =
1

r12
, (4.18)

is the Hartree kernel and,

fσ,τxc (r1, r2;ω) =

∫+∞

−∞

eiω(t1−t2)
δvσxc(r1, t1)

δρτ(r2, t2)
d(t1 − t2) , (4.19)

is the xc-kernel. Integrals are written in Mulliken charge-cloud nota-
tion,

(pq|f|rs) =

∫ ∫

ψ∗
p(r1)ψq(r1)f(r1, r2)ψ

∗
r(r2)ψs(r2)dr1dr2 . (4.20)



108 spin-flip lr-td-dft

Since LR-TD-DFT is the primary application of TD-DFT and the only one
treated in the present article, we will normally just refer to LR-TD-DFT

as TD-DFT. Like conventional DFT, the underlying formalism of TD-DFT

has been the subject of much healthy criticism (e.g., Refs. [283, 234,
284]). Nevertheless is our expectation that, like the static ground-state
formalism, formal TD-DFT—either as is or suitably modified—will
stand the test of time, for at least some time to come. The reader
interested in further information about TD-DFT is referred to a recent
book [241] and two special journal issues [240, 67] devoted to TD-DFT.

Problems arise in practice because of the use of approximate func-
tionals. These have been extensively reviewed in the literature (e.g.,
Refs. [61] and [64]). Suffice it to say that the normal domain of va-
lidity of TD-DFT with existent approximate xc-functionals is low-lying
1-electron excitations which are not too delocalized in space and do
not involve too much charge transfer.

The present paper is primarily concerned with the limitation to
1-electron excitations. This limitation arises from the basic adiabatic
approximation (AA) which is almost universally used in practice. This
approximation assumes that the xc-potential reacts instantaneously
and without memory to any temporal change of the charge density.
Mathematically, the AA means that the xc-potential,

vσxc(r, t) =
δExc[ρ

t
α, ρ

t
β]

δρtσ(r)
, (4.21)

may be evaluated in terms of the xc-functional of static ground-state
DFT. Here ρtσ(r) means ρσ(r, t) regarded as a function of the spatial
coordinate r at fixed time t. It is easily seen that the AA limits TD-DFT

to 1-electron excitations (albeit "dressed" to include some electron
correlation effects). In particular, the AA implies that the coupling
matrix is frequency-independent and hence that the number of excita-
tion solutions obtained from the LR-TD-DFT equation is exactly equal
to the number of 1-electron excitations. This is a problem for some
applications, such as excitations in polyenes and open-shell molecules,
and an active area of research is aimed at going beyond the AA by
explicit inclusion of 2- and higher-electron excitations through the
frequency-dependence of the xc-kernel [74, 233, 62, 243, 278, 149]. The
limitation to 1-electron excitations is a priori also a problem for photo-
chemical reactions passing through biradicals since the conventional
description of biradical formation involves the mixing of the ground
state configuration with a doubly-excited state. Thus for the breaking
of the σ bond in H2,

HA-HB → [HA ↑+ HB ↓ ↔ HA ↓+ HB ↑] , (4.22)

the final state corresponds to the wave function,

1

2
(|sA, s̄B|+ |sB, s̄A|) =

1

2
(|σ, σ̄|− |σ∗, σ̄∗|) . (4.23)
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The 2-electron excited state, |σ∗, σ̄∗|, is excluded by the AA. A subtler,
but important point, is that mixing of the ground and excited configu-
rations is also forbidden by the AA but is rigorously necessary to have
a CX [218, 82, 302].

The present and previous work applying TD-DFT to oxirane pho-
tochemistry [302, 82] also makes use of the TDA [170]. [The work
of Friedrichs and Frank on the photochemical dynamics of dipheny-
loxirane uses a different (non-TD-DFT) DFT approach [128].] The TDA

consists of neglecting the B matrix to obtain just,

A~X = ω~X . (4.24)

While the TDA is simpler than full LR-TD-DFT and so is both a bit easier
to interpret as well as being computationally a bit simpler, the main ad-
vantage of the TDA is that it bypasses the triplet instability problem —
that is, symmetry breaking in the ground state occurs if and only if an
imaginary triplet excitation energy is found in TD-DFT [61, 71, 72, 82].
The reason, of course, is that TD-DFT excitation energies obtained by
LR theory are intrisically limited by the quality of the DFT description
of the ground state which in the NVR case should not show any sym-
metry breaking. Underestimates of corresponding singlet excitation
energies are also often associated with triplet instabilities. However
when the TDA is applied to LR-TD-HF, then the fully variational CIS is
obtained, indicating that the excited-state problem has been decoupled
from the ground-state problem in a way that avoids the problem of
variational collapse. The situation in TD-DFT is similar and TD-DFT TDA

calculations give much improved excited-state PES compared to full
TD-DFT calculations [71, 72, 82].

(It may be worth noting that use of the TDA comes with a cost.
TD-DFT absorption spectra are derived using linear response theory
from the poles of the dynamic polarizability [60]. This implies that
the spectral intensities should be reasonably correct. For example, it
is known that the Thomas-Reiche-Kuhn (TRK) "f-sum" rule holds in
a sufficiently extended basis set [186]. However the f-sum rule is
lost and the reliability of calculated spectral intensities is diminished
when making the TDA with potentially important effects on spectra.
Consequently the TDA should be used with extreme caution when
calculating oscillator strength distributions [153]. Here however we
are interested in potential energy surfaces not oscillator strengths.)

Though it yields improved PESs, the TDA does not solve the problem
that mixing of the ground and excited configurations is forbidden by
the AA but is rigorously necessary to have a CX, nor does the TDA

provide the 2-electron excited states needed for describing biradialoïd
intermediates. At first thought such an absence of CX might seem fatal
for photodynamics applications. Though the situation is not actually
as dark as might at first seem [302], it would be nice to find a way to
recover a true CX.
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Figure 4.2: Two-orbital model of TD-DFT excitations with a triplet reference
configuration.

Levine et al. suggest that SF-TD-DFT might be good for this pur-
pose [218]. The main idea of SF-TD-DFT is shown in Fig. 4.2. We
must first make the common pragmatic assumption that DFT applies
not only to the ground state but also to the lowest energy state of
a given spin-symmetry. This assumption is especially plausible if a
single-determinant provides a reasonable first approximation to the
state in question. Excited states normally excluded from TD-DFT are
included in SF-TD-DFT by beginning from the lowest triplet state and
flipping spins while exciting electrons from one orbital to another.
In this manner we arrive at exactly the ground configuration and
the doubly-excited configuration needed to describe bond breaking.
Ideally then H2 will dissociate correctly without recourse to symmetry
breaking and this is indeed the case [322] (Fig. 4.3). Moreover the
problem of an effective failure of NVR is very much reduced leading to
much improved convergence. Historically designing an appropriate
functional for SF-TD-DFT has proven to be not entirely straightforward.
This problem is reviewed in some detail the next section.

Computational details and a brief description of our own implemen-
tation of SF-TD-DFT are given in Sec. 4.6. In Sec. 4.7, we report results
pertinent to oxirane photochemistry. Section 4.8 summarizes our
main conclusions about the effectiveness of SF-TD-DFT for describing
photochemical funnels.
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Figure 4.3: Dissociation of H2 obtained with the present implementation
of SF-TD-DFT. The black 1 3Σu curve (circles) is the triplet SCF

reference state from which excitations are taken. It is nearly
degenerate with theMS = 0 triplet state (not shown) generated by
SF-TD-DFT. The red 1 1Σg ground state curve (squares) is a mixture
of |σ, σ̄| and |σ∗, σ̄∗| configurations, with the |σ, σ̄| dominating at
the equilibrium geometry. The 1 1Σg and 1 3Σu states dissociate
to the same neutral "diradical" limit, namely [H↑+ H↓ ↔ H↓+
H↑]. The blue 2 1Σg state curve (triangles) is also a mixture of
|σ, σ̄| and |σ∗, σ̄∗| configurations, but the "doubly-excited" |σ∗, σ̄∗|
configuration dominates at the ground state equilibrium geometry.
The green curve (diamonds) is the 1 1Σu(σ→ σ∗) singly-excited
state. The 2 1Σg and 1 1Σu(σ→ σ∗) states dissociate to the same
ionic limit, namely [H+ + H− ↔ H− + H+].
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4.5 spin-flip td-dft

No new solution to the SF-TD-DFT problem is proposed in the present
paper, but this section reviews existent solutions to the problem of
developing appropriate functionals for SF-TD-DFT. We do this partly to
keep this paper self-contained, but also to point out that some aspects
of present SF solutions might also be improved if the goal is complete
compatibility between SF-TD-DFT and conventional TD-DFT.

The most basic requirement of the SF method is the generalization
of the one-component collinear approach in which each orbital is
associated with either spin α or spin β aligned along an arbitrary z-
axis, to a two-component noncollinear approach in which each orbital
is a linear combination of spin α and spin β components. Lifting of
the collinear requirement is needed to allow spins to rotate in response
to an external spin-dependent perturbation and hence to be able to
flip. Orbitals become two-component spinors,

ψp(r) =

(

ψα
p(r)

ψ
β
p(r)

)

, (4.25)

which are obtained by solving the 2× 2 matrix equation in spin,
[

ĥα,α
C + vα,α

Hxc ĥ
α,β
C + v

α,β
Hxc

ĥ
β,α
C + v

β,α
Hxc ĥ

β,β
C + v

β,β
Hxc

](

ψα
p(r)

ψ
β
p(r)

)

= ǫp

(

ψα
p(r)

ψ
β
p(r)

)

. (4.26)

Note that the core hamiltonian may now have a spin-dependence due
to a spin-dependent external potential. The density is also a 2× 2
matrix in spin,

ρ(r) =

[

ρα,α(r) ρα,β(r)

ρβ,α(r) ρβ,β(r)

]

. (4.27)

Consequently the xc-kernel has four spin indices,

fσ,σ
′;τ,τ ′

xc (r1, r2;ω) =

∫∞

−∞

eiω(t−t ′) δv
σ,σ ′

(r, t1)

δρτ,τ ′(r2, t2)
d(t1 − t2) , (4.28)

or, in the AA,

fσ,σ
′;τ,τ ′

xc (r1, r2) =
δ2Exc[ρ]

δρσ,σ ′(r1)δρτ,τ ′(r2)
. (4.29)

Naturally the TD-DFT coupling matrix also has four spin indices.
Normal practice is to apply SF-TD-DFT using orbitals and orbital en-

ergies obtained from an ordinary one-component collinear calculation,
rather than as a post two-component noncollinear calculation. Thus
the assumption is that the one-component noncollinear calculation is
an adequate approximation at the SCF level to a full two-component
noncollinear SCF calculation. In the end, the noncollinear model only
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serves in deriving the SF-TD-DFT formalism, not in actually carrying it
out.

Applying the SF-TD-DFT formalism to the usual collinear pure xc-
functionals leads to nothing new because,

fσ,σ
′;τ,τ ′

xc = δσ,σ ′δτ,τ ′fσ,τxc . (4.30)

This however is not true in HF because the kernel of the exchange
operator, Σ̂σ,τ

x , is given by,

Σσ,τ
x (r1, r2) = −

γσ,τ(r, r
′)

r12
, (4.31)

where γσ,τ(r, r ′) is the one-electron reduced density matrix. Conse-
quently,

fσ,τ;σ ′,τ ′

x (r1, r2; r ′1, r
′
2) =

δΣσ,τ
x (r1, r2)

δγσ ′,τ ′(r ′1, r
′
2)

= −δσ,σ ′δτ,τ ′

δ(r1 − r ′1)δ(r2 − r ′2)

r12
,

(4.32)

and the exchange-part of the HF coupling matrix is,

Kσ,τ;σ ′,τ ′

pq,rs = −δσ,σ ′δτ,τ ′(ps|fH|rq) . (4.33)

This means that hybrid functionals allow SF because they include a por-
tion of HF exchange. This in fact was the first form of SF-TD-DFT. It was
proposed by Anna Krylov and coworkers who used their approach to
study the ground and excited states of diradicals [291, 295]. In order
to get good agreement with experiment, they found it necessary to use
a significantly higher amount of HF exchange (50%) than is typically
used for ground state properties (∼ 25%). Even higher percentages of
HF exchange (> 50%) have been reported to be necessary for calculat-
ing second hyperpolarizabilities of diradical systems by this spin-flip
method [199]. Although the use of a different functional for ground
and excited states is disturbing, the basic idea is admirable and this
method continues to be used [199, 308, 212]. In particular, this is the
SF-TD-DFT approach mentioned in the introduction in the context of its
recent use by Minezawa and Gordon who found the method to give a
relatively good description of CXs in ethylene [249].

The next and most recent major advance in SF-TD-DFT came with
an article by Wang and Ziegler [322]. (See also Ref. [325].) It is
intimately related to work by Wenjian Liu and coworkers on relativistic
four-component TD-DFT [131]. Basing their approach on ideas from
relativistic two-component DFT [111, 319], Wang and Ziegler proposed
that any pure spin-density xc-functional, Exc[ρα, ρβ], could be used
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to make a noncollinear xc-functional suitable for SF calculations by
making the substitution,

ρα → ρ+ =
1

2
(ρ+ s)

ρβ → ρ− =
1

2
(ρ− s) , (4.34)

involving two quantities which are invariant under a unitary trans-
formation of the spin coordinates. These are the total charge density,

ρ = ρα,α + ρβ,β , (4.35)

and the magnetization, s, whose square is given by,

s2 =
(

ρα,α − ρβ,β

)2
+ 2

(

ρ2α,β + ρ2β,α

)

. (4.36)

The collinear limit of s is just the spin-polarization,

s→ ρα − ρβ , (4.37)

after an appropriate choice of phase. The factor of 1/2 has been
introduced by us so that,

ρ+ → ρα

ρ− → ρβ , (4.38)

in the same limit. After taking derivatives and the noncollinear limit,
the xc-kernel becomes,
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. (4.39)

This approach to SF-TD-DFT has been applied to the dissociation of
H2 [322] and to calculate the spectra of open-shell molecules [323,
289, 154]. Very recent work has used the Wang-Ziegler approach to
treat the reaction path for the cis-trans photochemical isomerization of
4-styrylpyridine [215, 214]. The Wang-Ziegler approach has also been
proposed as the basis of a more general spin-coupled TD-DFT [317].

At first glance, Eq. (4.39) is very pretty because it contains ordinary
TD-DFT for spin-preserving (SP) transitions. However we can be more
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Figure 4.4: Two-orbital model of TD-DFT excitations with a closed-shell singlet
reference configuration.

demanding. For example, we can require that the three triplets which
are generated from the singlet referenced two-orbital model shown in
Fig. 4.4 be strictly degenerate. In the TDA, ordinary TD-DFT gives the
MS = 0 triplet excitation energy,

ωT = ǫa − ǫi + (ia|fα,α
xc − fα,β

xc |ia) . (4.40)

Also in the TDA, SF-TD-DFT gives the MS = ±1 triplet excitation ener-
gies,

ωT = ǫa − ǫi + (ia|
vαxc − v

β
xc

ρα − ρβ
|ia) . (4.41)

Since ρα = ρβ, the right-hand-side of Eq. (4.41) can only be interpreted
as a derivative. That is, we set ρα = ρβ + δ and take the limit that the
function δ→ 0. Then,

vαxc(r) − v
β
xc(r)

ρα(r) − ρβ(r)

= lim
δ→0

vαxc[ρβ + δ, ρβ](r) − v
β
xc[ρβ + δ, ρβ](r)

δ(r)

= lim
δ→0

∫
fα,α
xc (r, r ′)δ(r ′)dr ′ −

∫
f
β,α
xc (r, r ′)δ(r ′)dr ′

δ(r)
,

(4.42)

which is rigorously only equal to fα,α
xc − f

α,β
xc for the local density

approximation ( LDA), in which case Eqs. (4.40) and (4.41) reduce to
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the same thing. That, of course, is quite good (probably even adequate
for most applications), but it would have been nice to have a theory
which was completely general.

As emphasized in the introduction, the case that most interests us
in practice is when we begin with a triplet reference configuration as
in the two-orbital model of Fig. 4.2 and look at ∆MS = −1 transitions.
This leads to a triplet-triplet SF-TD-DFT TDA excitation energy which is
equal to zero when orbital relaxation is neglected. The demonstration
involves making use of the identity,

Fαp,q − Fβp,q = (pq|
vαxc − v

β
xc

ρα − ρβ
|aa) + (pq|

vαxc − v
β
xc

ρα − ρβ
|ii) . (4.43)

However the usual SP-TD-DFT excited singlet-triplet energy difference
formula,

ωS −ωT = 2(ia|fH + fα,β
xc |ia) , (4.44)

cannot be recovered in the SF-TD-DFT formalism where instead is found,

ωS −ωT = 2(ii|
vαxc − v

β
xc

ρα − ρβ
|aa) . (4.45)

The ground to triplet excitation energy formulae obtained from the two
formalisms are equally different. Furthermore there is no analogue
of Brillouin’s theorem in the sense that the coupling between the
ground configuration (lower left in Fig. 4.2) and the singly excited
configurations (right hand side of Fig. 4.2) is nonzero in this formalism.
Of course, a sort of Brillouin’s theorem still holds by construction in
the sense that there is no coupling in this formalism between the
reference triplet (center in Fig. 4.2) and any of the excited states (left
and right sides in Fig. 4.2).

While the above comments suggest that there are grave problems in
harmonizing the formulae of the two different TD-DFT formalisms, they
do not suggest any fatal problems since different looking formulae can
lead to nearly similar numerical results. It will, however, turn out that
the SF-TD-DFT triplet energy is lower than the corresponding SP-TD-DFT

triplet energy because orbital relaxation in the triplet is more easily
described when beginning from a triplet reference than from a singlet
reference. Thus the two formalisms are at least shifted with respect to
one another.

Despite these unresolved problems, we have chosen to use the Wang-

Ziegler functional in the present paper for our noncollinear SF-TD-DFT cal-

culations. This is because we believe pure density-functionals, rather
than HF exchange, to be at the heart of DFT. It thus seems more at-
tractive to us to use the LDA or a generalized gradient approximation
(GGA) in conjunction with the Wang-Ziegler noncollinear spin-flip ap-
proach than not to use potentially different amounts of HF exchange
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in hybrid functionals for ground and excited states while completely
ignoring the pure DFT part of the hybrid functional as implied by the
pioneering SF-TD-DFT approach of Krylov and coworkers.

4.6 computational details

The benchmark geometries and electronic structure calculations used
in the present work are taken from the literature. For the C2v CC ring-
opening pathway, we used the geometries and quantum Monte Carlo
(QMC) potential energy curves given in Appendix C of Ref. [82]. The
idea behind QMC is to use statistical techniques to go beyond typical
high-quality ab initio calculations, such as CASSCF and CI, through the
use of more general types of wave functions. The QMC calculations of
Ref. [82] began with a conventional CASSCF calculation. This was then
reoptimized by variational Monte Carlo in the presence of a Jastrow
factor to include dynamical correlation. Finally diffusion Monte Carlo
was used to further improve on the result of the variational Monte
Carlo calculation. Suffice it to say that the result is an electronic
structure calculation of very high quality (certainly better than the
CASSCF starting point or multireference CI.) Geometry optimizations
are not presently possible with QMC, so the benchmark geometries are
those obtained by C2v structure optimization at fixed ring-opening
angle using DFT with the B3LYP functional [1]. For asymmetric CO
ring-opening, we used the geometries and QMC potential energy curves
from Appendix C of Ref. [302]. The QMC calculations in this reference
are similar to those of Ref. [82], but are carried out along a typical
pathway for CO ring-opening obtained by mixed TD-DFT/classical
surface hopping photodynamics calculations. They pass close to a CX

which was characterized at the CASSCF level in Ref. [302]. While exact
CXs with the ground state are impossible in conventional TD-DFT [218],
it was shown in Ref. [302] that the CX is described to a reasonably good
approximation by TD-DFT in the form of an interpenetrating double
cone.

Calculations for the present work were performed with the Greno-
ble development version of deMon2k (density of Montreal 2000) [9].
Where needed additional calculations were carried out with Gaus-
sian 03 [11] in order to fix orbital symmetry assignments since the
particular version of deMon2k used here did not yet have automatic
symmetry assignments. The deMon2k program makes use of two
Gaussian-type basis sets. In addition to the usual orbital basis set,
there is a second auxiliary charge-density fitting basis set. Its use
permits the elimination of all four-center integrals. As with other DFT

programs, deMon2k uses a grid to evaluate xc-integrals. A descrip-
tion of the implementation of standard (spin-preserving) TD-DFT in
deMon2k has been published elsewhere [181]. The present work is the
first reported use of our implementation of Wang-Ziegler SF-TD-DFT
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in deMon2k. Results were compared against those obtained from the
Amsterdam density-functional (ADF) [307] package and were found to
be acceptably close.

The deMon2k calculations in the present work were carried out us-
ing the Vosko-Wilk-Nusair parameterization of the LDA [320]. Density-
fitting was carried out without imposing the charge conservation con-
straint [181] using the GEN-A3* density-fitting basis. The orbital basis
was the extensive 6-311++G**(2d,2p) basis set [209, 80]. The SCF con-
vergence was set at 10−7 and the FIXED FINE option was always used
for the grid. Our SF-TD-DFT calculations used the TDA and the refer-
ence state was always the lowest energy triplet. Full advantage was
taken of deMon2k keywords allowing convergence of excited state
configurations to explore alternative triplet reference configurations
for SF-TD-DFT.

4.7 results

We are interested in the ability of TD-DFT to describe funnel regions.
These are regions where potential energy surfaces (PESs) come close
enough together that surface hopping becomes possible. Typical
funnels are AXs and CXs.

Rather than being distinct phenomena, AXs and CXs are actually
very closely related. The PESs of a molecule with f (15 in the case of
oxirane) nuclear internal degrees of freedom, R, is an f-dimensional
hypersurface in an (f+ 1)-dimensional hyperspace. The condition that
the Ith and Jth PESs cross,

EI(R) = EJ(R) , (4.46)

reduces the dimensionality of the intersection to an (f− 1)-dimensional
hyperline. If this were all that there were to it, then we could talk about
"surfaces that cross without seeing each other." However quantum
mechanics typically also requires zeroing out a CI like coupling matrix
element,

AI,J(R) = 0 , (4.47)

denoted A here to indicate that it could be the linear response matrix
in the TDA. (However we could equally well have called it H for the
CI matrix in a CASSCF calculation.) This second condition reduces the
dimensionality of the intersection to an (f− 2)-dimensional hyperpoint.
CXs are impossible for diatomics for states belonging to different
irreducible representations of the molecular point group because f = 1
and f− 2 = −1 is impossible. So only AXs are seen for diatomics
in this case. [Crossings may occur for states belonging to different
irreducible representations because Eq. (4.47) is then a consequence
of symmetry and so no longer useful as a condition defining the
intersection space.] However, in general, there will be two coordinates
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in hyperspace along which the two intersecting PESs will separate.
These two branching coordinates are normally defined by the DC,

h
(I,J)
q = X†

I

∂H

∂q
XJ , (4.48)

and the UGD vector,

g
(I,J)
q = X†

I

∂H

∂q
XI − X†

J

∂H

∂q
XJ , (4.49)

and there is quite a literature on finding and characterizing them (see
e.g., Ref. [105]). Within the 3-dimensional space defined by the two
branching coordinates plus the energy coordinate, a CX takes on the
form of a double cone. Choosing a one-dimensional slice within the
space of branching coordinates means that we will typically pass near
but not through the CX and so see an AX.

In this section we report the results of our calculations to see to
what extent SF-TD-DFT calculations give a better than ordinary SP-
TD-DFT description of funnel regions in oxirane photochemistry in
comparison with the results of previously reported-high benchmark
calculations [82]. Results are divided into two parts. In the first part we
look at C2v ring opening which involves breaking the CC single bond.
This is a one-dimensional slice and so any funnel region will appear
as an AX. However it has two advantages: firstly that it represents
our "normal" picture of how bonds break and secondly that we can
analyze it in great detail. In the second part we look at the CX region for
asymmetric CO ring opening along the typical photochemical pathway.
Here we are restricted to using CASSCF branching coordinates because
we are not yet able to find CXs within TD-DFT. From this point of view,
our conclusions cannot be as conclusive as those of the recent study of
Minezawa and Gordon [249], but nevertheless we believe the present
calculations to be indicative of some of the strengths and weaknesses
of Ziegler-Wang SF-TD-DFT for this type of application.

4.7.1 C2v Ring Opening

The present SF-TD-DFT work is perhaps best understood in the light
of previous work which is now briefly reviewed. Aryl substitution of
oxirane favors symmetric ring opening via CC bond cleavage. Cordova
et al. investigated the ability of TD-DFT to describe C2v as well as conro-
tatory and disrotatory ring opening of oxirane, by comparing TD-DFT

results against results from high-quality quantum Monte Carlo (QMC)
calculations [82]. The high symmetry C2v ring-opening pathway al-
lowed a particularly detailed analysis. Investigation of conrotatory and
disrotatory ring opening was inspired by the Woodward-Hoffmann
theory of electrocyclic ring-opening reactions. The three principal
UV absorption peaks were assigned to Rydberg excitations from the
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Figure 4.5: Principal frontier molecular orbital spin-flip transitions in-
volved in the C2v ring-opening of oxirane beginning from the
R 3B2[6a1(σ)→ 4b2(σ

∗)] reference state.

oxygen nonbonding orbital, which are difficult to describe quantita-
tively because of the well-known problem of underestimation of the
ionization threshold [70], but which can nevertheless be described
qualitatively correctly even with the simple local density approxi-
mation (LDA). The C2v ring-opening pathway showed a cusp in the
ground state potential energy surface when the occupied 6a1(σ) and
unoccupied 4b2(σ∗) orbitals became quasidegenerate. This region also
showed an "effective failure of NVR," which is to say that the energy of
the LUMO fell below that of the HOMO. A consequence of this effective
failure are severe SCF convergence problems when using a program
which tries to enforce the Aufbau principle. Triplet instabilities were
found to be omnipresent for all the symmetric ring-opening pathways
investigated. It was pointed out that the TDA is a practical necessity
for avoiding triplet instabilities and singlet near instabilities. With
the TDA, the excited-state potential energy surfaces were found to be
energetically reasonable even during bond breaking. In principle, SF-
TD-DFT can improve upon the previous SP-TD-DFT calculations in two
ways: first by removing the cusp along the C2v ring-opening pathway
through an improved description of the AX, and second through the
use of a triplet reference which bypasses the effective failure of NVR in
the ground singlet state and so may lead to improved convergence.
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The reference in our SF-TD-DFT calculations is the lowest triplet.
While the configuration of oxirane at the intial equilibrium geome-
try [82],

· · · [6a1(σ)]2[2b1(n)]2[7a1(3s)]0[4b2(σ∗)]0 · · · . (4.50)

suggests that the reference is the 1 3B1[2b1(n) → 7a1(3s)] state, this
is at most true below a ring-opening angle of about 75◦. Beyond this
angle the reference triplet is the 1 3B2[6a1(σ) → 4b2(σ

∗)] state. This
is true not only in the range 75-120◦ when the configuration is,

· · · [2b1(n)]2[6a1(σ)]2[4b2(σ∗)]0[7a1(3s)]0 · · · , (4.51)

but also beyond 120◦ when the σ and σ∗ orbitals change order,

· · · [2b1(n)]2[4b2(σ∗)]2[6a1(σ)]0[7a1(3s)]0 · · · , (4.52)

Figure 4.5 shows the frontier molecular orbitals in our SF-TD-DFT

calculations (which however make use of all, not just the of the frontier,
molecular orbitals). Both the ground X 1A1 and doubly excited D 1A1

configurations are accessible by spin-flip from the R 3B2 reference state.
Taking the symmetric and antisymmetric combinations of the 6a1(σ)
and 4b2(σ∗) SF configurations leads to B2 states, the triplet of which
is expected to be degenerate with the R 3B2 reference state. Two states
of mixed spin symmetry (MB2 and MA1) are also formed. These
states are unphysical and yet are necessarily present in any SF-TD-DFT

calculation (including in the Krylov approach to SF-TD-DFT). They are
readily identifiable in our calculations and have been excluded from
the following discussion.

Figure 4.6 shows the results of the SF-TD-DFT calculations. The four
states predicted in our qualitative discussion are all present. The R 3B2

SCF reference curve and the corresponding 3B2 SF-TD-DFT curve are
not identical, but they are indistinguishable on the scale of the figure.
The figure also shows a very important feature, namely the classic
avoided crossing corresponding to the breaking of the CC σ bond.
The traditional picture is that of H2 described in the introduction
where mixing of the σ2 and (σ∗)2 configurations is necessary for bond
breaking. In order to confirm this two-orbital model, we isolated the
part of the SF-TD-DFT corresponding to the 4b2(σ∗) → 6a1(σ) and
6a1(σ)→ 4b2(σ

∗) SF transitions. Diagonalizing this 2× 2 matrix gives
the two-orbital model adiabatic curves in Fig. 4.6, which are seen to
be in semiquantitative agreement with the results of the full SF-TD-

DFT calculation. The diagonal elements of the 2× 2 matrix give the
corresponding diabatic curves. These show how the σ2 ground state
configuration at small angles continues on at large angles to become
an excited state and how the (σ∗)2 excited state configuration at small
angles continues on at large angles to become the ground state at
large angles. Thus it would seem that SF-TD-DFT can correctly describe
avoided crossings associated with bond breaking.
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Figure 4.6: C2v potential energy curves: full calculation (solid lines), two-
orbital model (dashed lines).
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Figure 4.7: Comparison between different methods for the X1A1, 13B2, and
D1A1 C2v ring-opening potential energy curves: SF-TD-DFT triplet
SCF reference state (black dashed line), SF-TD-DFT (circles), SP-TD-

DFT (squares), and DMC (triangles). All curves have been shifted
to give the same ground state energy at a ring-opening angle of
80◦.
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Figure 4.8: Illustration of orbital relaxation effects in SF versus SP TD-DFT.

Figure 4.7 compares the present SF-TD-DFT calculations with both
ordinary SP-TD-DFT calculations obtained with the LDA functional and
the TDA (Ref. [82]) and with the QMC benchmark calculations. Let
us begin first with the comparison with SP-TD-DFT calculations. As
explained in Ref. [82], the bond-breaking region around 120◦ is an
example of effective failure of NVR where the LUMO falls lower in
energy than the HOMO. The result is that "normal" DFT programs
which insist on filling the Kohn-Sham orbitals according to the Aufbau

principle will inevitably fail to converge in this region. This is why
there are neither SCF ground state nor SP-TD-DFT results near 120◦ in the
figure. Very significantly, few convergence difficulties are encountered
for the triplet reference state. This would seem to be very good
news for those who would like to carry out routine photodynamics
calculations where SCF convergence failures can be highly inconvenient
if not fatal to the calculations.

In the region where the SCF ground state does converge the shape

of the ground X 1A1 and excited 1 3B2 curves are very similar for
SF-TD-DFT and SP-TD-DFT calculations. Before shifting the SF-TD-DFT

curves are actually 0.41 eV in energy higher than the corresponding SP-
TD-DFT curves. Differences between SCF and TD-DFT triplet excitation
energies have been previously discussed by Casida et al. [71] who gave
an analysis within a two-level model. The result is that the SF-TD-DFT

triplet reference is expected to be higher in energy than the SP-TD-
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DFT triplet by the charge-transfer correction (really a density-transfer
correction or relaxation effect),

ω∆SCF
T −ωSP-TDDFT

T ≈ 1

2
(∆ρ|fH + fα,α

xc |∆ρ) > 0 . (4.53)

This is illustrated in Fig. 4.8. Simultaneously there is a problem
describing the ground state with orbitals optimized for a triplet. The
result is that the SF-TD-DFT method overestimates the ground state
energy. However energy differences do appear to be similar in SF-TD-

DFT and in SP-TD-DFT when the same configurations are concerned, so
that a rigid shift of energy levels is reasonable.

Having established the similarity and differences of the DFT ap-
proaches, let us now compare against the QMC benchmark calculations.
Just as relaxation effects lead to the underestimation of the SP-TD-

DFT 1 3B2[6a1(σ) → 4b2(σ
∗)] state with respect to the SF-TD-DFT SCF

reference state, so we can expect the SF-TD-DFT D 1A1{[6a1(σ)]
2 →

[4b2(σ
∗)]2} to be underestimated with respect to an SCF calculation

with the doubly-excited configuration. This may help to explain why
the SF-TD-DFT D 1A1 is significantly below the corresponding QMC

curve. Consequently we may also expect important differences be-
tween the SF-TD-DFT and QMC description of the ground state curve
in the region of the avoided crossing. Nevertheless, except for the
point at 60◦, the shape of the QMC and DFT ground state curves agree
reasonably well below about 100◦. Significant differences only really
appear in Fig. 4.7 between the DFT and QMC ground state curves at
higher angles. We must conclude that SF-TD-DFT is not able to capture
all of the correlation effects present in QMC at these angles. Note
that the QMC D 1A1 also seems to be mixing with one or more singly-
excited states (see Table II of Ref. [82]), none of which are accessible to
the SF-TD-DFT formalism used here. The result is a QMC D 1A1 curve
which is rather flatter than its SF-TD-DFT counterpart.

4.7.2 Photochemical Pathway

Alkyl substitution of oxirane and indeed oxirane itself does not un-
dergo symmetric ring opening. Rather photochemical ring-opening
of oxirane is believed to proceed via the three step Gomer-Noyes
mechanism shown in Fig. 4.1. In Ref. [302], Tapavicza et al. carried out
Tully-type TD-DFT/classical trajectory surface-hopping photodynamics
calculations using the TDA. This study confirmed and detailed the
Gomer-Noyes mechanism. It was shown that the 1(n, 3pz) Rydberg
state is directly linked to a 1(n, σ∗) valence CO antibonding state.
Initial excitation leads within 100 femtoseconds or so to population
of the 1(n, 3pz) state and thereby to spontaneous ring-opening (step 1

in Fig. 4.1). Structure (II) of Fig. 4.1 is a CX with mixed zwitterionic
and biradical character permitting electronic de-excitation directly to
a vibrationally hot (4000 K) electronic ground state. At this point
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there is enough energy for several things to happen, one of which
is hydrogen abstraction (III) followed by CC bond breaking. High-
quality QMC calculations were carried out along a typical trajectory
and used for comparison purposes. Once again an effective failure of
NVR was encountered, but difficulties with SCF convergence problems
are minimized in dynamics calculations by restarting the SCF for each
new geometry from the converged result of the previous geometry, so
that orbital-following rather than Aufbau filling is enforced.

In this subsection we compare the results of our SF-TD-DFT calcula-
tions with results of other methods along this trajectory. The trajectory
involves the following "events": Only the initial geometry has C2v

symmetry, so we fall back on a more chemical nomenclature for key
molecular orbitals. The first excited singlet state, S1, is initially as-
signed as 1 1B1[b1(n) → a1(3s)] and thereafter as simply 1(n, 3s).
This state remains of Rydberg character throughout the photoreaction.
However the second excited singlet state, S2, does not. Instead, S2 is
initially 2 1B1[b1(n) → a1(3pz)], remains of 1(n, 3pz) Rydberg type
for only a short time, soon falling in energy to become the new S1
as it takes on valence-type CO antibonding character, 1(n, σ∗CO). At
that point 1(n, 3s) is the new S2. In fact, what happens is qualitatively
very much in-line with the Woodward-Hoffmann orbital correlation
scheme described in Ref. [82] (Fig. 1 of that reference) for the C2v

ring-opening reaction but without the symmetry. The trajectory finally
passes through (or near) a CX where surface hopping takes place. The
nature of this CX has been discussed in Ref. [302]. Suffice it to say that
it is probably best described by the resonance structure II shown in
Fig. 4.1, which has both biradicaloid and zwitterionic character.

Results are shown in Fig. 4.9 alongside those from the QMC and
SP-TD-DFT calculations of Ref. [302]. Configuration interaction singles
(CIS) calculations obtained using Gaussian [11] and the same basis
set have also been included in the figure. It appears from this figure
that the S1/S0 CX is perhaps a bit better described by SP-TD-DFT than
by SF-TD-DFT and, as expected, that both are significantly better than
the CIS description of the same CX. Most dramatic however is the
difference between the behavior of the SP-TD-DFT S2 state, which is in
relatively good agreement with the QMC S2 state and in qualitatively
reasonable agreement with the CIS S2 state, and the SF-TD-DFT S2 state
which takes an energetic dive as the ring opens. This latter state is in
fact highly spin-contaminated and hence unphysical.

It is clear from both the SP-TD-DFT and SF-TD-DFT calculations that
the S1 state is predominantly of 1(n, σ∗CO) character. This confers a
partial CO σ biradicaloid character by reducing the bond index to 1/2.
The SF-TD-DFT reference configuration is geometry dependent but for
most geometries is,

spin α: · · ·n1σ1CO(σ
∗
CO)

1 · · ·
spin β: · · ·σ1COn

0(σ∗CO)
0 · · · . (4.54)
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Figure 4.9: Potential energy curves for asymmetric ring-opening in oxirane
calculated with various methods.

Formation of the σ2CO → (σ∗CO)
2 is thus impossible. Rechoosing the

orbital occupations as,

spin α: · · ·n1σ1CO(σ
∗
CO)

1 · · ·
spin β: · · ·n1σ0CO(σ

∗
CO)

0 · · · , (4.55)

makes the usual σ2CO/(σ
∗
CO)

2 description of a biradical possible but
explicit calculations (not shown here) show S0 and S1 potential energy
surfaces which are misshappen and much too high in energy, some-
thing we can only partly attribute to the use of orbitals optimized for
a triplet excited state. As the electronic configuration around the CX

likely has both some 1(n, σ∗CO) and some σ2CO/(σ
∗
CO)

2, it is remarkable
that SP-TD-DFT and SF-TD-DFT with reference configuration (4.54) do as
well as they do.

4.7.3 Conical Intersection

Let us now take a closer look at what is happening around the CX,
first reviewing some of the conclusions of Ref. [302]. Earlier Levine et

al. had noted that a true CX could not exist between S0 and S1 because
condition (4.47) is a consequence of the formalism and hence cannot
serve as a criterion for fixing the dimensionality of the intersection
space [218]. Tapavicza et al. verified this point but showed that an
approximate CX did exist in adiabatic TD-DFT for the asymmetric
ring opening of oxirane, provided appropriate care was taken in
treating convergence problems. These convergence problems result
from an effective failure of NVR near the CX as shown schematically in
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Figure 4.10: Schematic Walsh diagram showing how the orbital fillings dur-
ing asymmetric ring-opening in a normal TD-DFT calculation.
Regions B and C show effective violation of NVR.

Fig. 4.10. The representation can only be schematic because the orbitals
mix and their energetic ordering varies with the mixing. However
this representation, while simplified, is as close as possible to what
emerged during lengthy discussions between one of us (MEC) and
Enrico Tapavicza [304]. However Tapavicza et al. were able to maintain
the lower energy solution with its "hole below the Fermi level" by a
sort of "orbital following." The result is an approximate TD-DFT CX

in the form of interpenetrating double cones as shown in Fig. 4.11.
The similarity between the behavior of the TD-DFT and CASSCF PESs
is perhaps even more clear in Fig. 4.12 where the S0 → S1 excitation
energy is shown for the CASSCF branching plane.

Given the results obtained in the case of the symmetric C2v CC ring-
opening reaction, we expected that SF-TD-DFT would give a rather good
description of the asymmetric CO ring-opening reaction by mixing
configurations with doubly occupied σCO and doubly occupied σ∗CO
orbitals. Levine et al. also suggested that SF-TD-DFT might be the
solution to the CX problem in TD-DFT [218]. Figures 4.11 and 4.12 show
that the situation is not so simple. These results do seem to confirm
what is expected theoretically, namely that SF-TD-DFT is able to produce
a CX by coupling ground and excited states. However the SF-TD-DFT

S0/S1 intersection is located at a position between that found in CIS

and that found with CASSCF (and approximately by SP-TD-DFT).
It is worth taking a closer look. Figure 4.11 shows that, while not

identical, the SF-TD-DFT ground state more closely resembles the CIS

ground state than the CASSCF ground state. In particular both the
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Figure 4.11: Comparison of the S0 and S1 PESs calculated using different
methods for the CASSCF branching coordinate space. All but the
SF-TD-DFT part of the figure have been adapted from Ref. [302].
See also that reference for a detailed description of the branching
coordinates.

Figure 4.12: Comparison of the S0 → S1 excitation energy surfaces calculated
using different methods for the CASSCF branching coordinate
space. See Ref. [302] for a detailed description of the branching
coordinates.
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Figure 4.13: Schematic Walsh diagram showing how the orbital fillings vary
during asymmetric ring-opening in a SF-TD-DFT calculation.

SF-TD-DFT and the CIS PESs have a minimum at (DC,UGD)=(0,2) while
the CASSCF PES has its minimum at the origin. This indicates that it
is highly unlikely that (σCO)

2-(σ∗CO)
2 configuration mixing is actually

occuring near (DC,UGD)=(0,0). (As might be expected, straight DFT

also gives a result similar to SF-TD-DFT for the ground state.) Our
explanation is shown schematically in Fig. 4.13 which shows how
the reference triplet configuration evolves with ring-opening angle.
Though the spin α and β orbitals have different energies in our spin-
unrestricted calculation and significant orbital remixing occurs, this
explanation could still be confirmed by explicit orbital visualization.
Conclusions based upon Fig. 4.13 explain our results rather well,
because there is no geometry where SF-TD-DFT can simultaneously
lead to both the (σCO)

2 and (σ∗CO)
2 configurations.

We have carried out SF-TD-DFT by enforcing an initial σ1CO(σ
∗
CO)

1

triplet state Eq. (4.55), with significant degradation of results compared
to the CASSCF and SP-TD-DFT curves. This is in line with our above
mentioned observations for the asymmetric ring opening pathway
when the reference configuration was rechosen as (4.55).

4.8 conclusion

The present paper is a contribution to our understanding of how well
TD-DFT, and SF-TD-DFT in particular, is able to describe critical funnels
in photochemical reactions. We have chosen the small molecule oxi-
rane for our study because of the availability of previously reported
high-quality ab initio results [82, 302] for comparison and have investi-
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gated the avoided crossing (AX) in the C2v ring-opening pathway, the
more physical CO ring-opening pathway, and the associated conical
intersection (CX).

As pointed out in the introduction, the recent development of mixed
TD-DFT/classical trajectory SH photodynamics [103, 84, 301, 302, 328,
250] is fueling investigations of the ability of TD-DFT to describe critical
funnel regions [79, 29, 218, 174, 82, 175, 302, 306, 305]. Such regions
often correspond to the formation of diradicals through bond breaking.
Traditional wisdom tells us that a correct description of such regions
requires mixing of the ground-state configuration with doubly-excited
configurations, which are not normally available to ordinary spin-
preserving (SP) TD-DFT. In particular, Levine et al. argued convincingly
that CXs cannot exist between the ground and excited states in SP-TD-

DFT in the usual case where the TD-DFT adiabatic approximation is
employed [218]. This is counter to the idea that exact TD-DFT should
be able to describe this coupling [82] and that an approximate CX has
been found in practice [302]. Nevertheless it is highly desirable to find
a way to include double excitations so as to obtain a more rigorous
description of funnel regions. One active area of research which may
lead to a better understanding of the problem, if not a solution, is
the explicit inclusion of 2- and higher-electron excitations through the
frequency-dependence of the xc-kernel [74, 233, 62, 243, 278, 149]. In
the meantime, spin-flip (SF) TD-DFT [291, 295, 322, 323, 289, 154, 325,
199, 317, 308, 212, 215, 214] offers an attractive alternative. Indeed this
was also recognized by Levine et al [302]. The present work reports
our implementation of Wang-Ziegler noncollinear SF-TD-DFT in the
program deMon2k and constitutes a test of the usefulness of SF-TD-DFT

for photochemical funnels.
We know of only two previous works on this subject. One is unpub-

lished work by Lawson Daku, Linares, and Boillot who used Wang-
Ziegler SF-TD-DFT to investigate the cis/trans photoisomerization of
4-styrylpyridine [215, 214]. The other is recent work by Minezawa
and Gordon who characterized CXs in ethylene using the Krylov
variant of SF-TD-DFT [249]. While both of those applications appeared
to be successful, they are both restricted to cis/trans isomerization
around a double bond. Here we treat something very different, namely
photochemical ring-opening and are only able to report mixed success.

We first applied SF-TD-DFT to study the AX along the C2v ring-
opening pathway. A few problems show up which are not present
in the obligatory test of dissociation of H2 (Fig. 4.3). One problem is
the presence of unphysical states of mixed spin symmetry (Fig. 4.5).
Fortunately these were readily identifiable and so could be appro-
priately ignored. A second problem arises in comparing the results
of SP-TD-DFT beginning from the ground-state singlet determinant
reference and SF-TD-DFT beginning from the lowest triplet determinant
reference. The different choice of reference immediately implies the
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possible presence of an orbital relaxation energy correction and indeed
the SF-TD-DFT potential energy curves are shifted by about 0.4 eV from
the corresponding SP-TD-DFT curves. Nevertheless SF-TD-DFT is to be
quite successful in describing the interesting AX.

This is especially true when it is realized that the usual SP-TD-DFT

calculations run into serious convergence problems in the vicinity
of the AX [82]. This is exactly a region of effective violation of
noninteracting v-representability [302]. Minimizing the total energy
with integer occupation number leads to a violation of the Aufbau

principle with the LUMO below the HOMO or (to put it in more solid-
state physics language) with a hole below the Fermi level. Most
quantum chemistry programs seek to enforce the Aufbau principle
even in this case with the result that convergence is not possible at
this geometry. In contrast, no particular convergence problems were
encountered using SF-TD-DFT and the triplet reference.

The question arises as to what can be done in order to remove the
unphysical mixed spin-symmetry states in the SF-TD-DFT calculations.
Vahtras and Rinkevicius have proposed what appears to be a very
elegant formal solution [317]. They propose a reformulation of TD-DFT

which makes use from the very beginning of explicit spin-coupled
excitation and de-excitation operators. This requires using the same or-
bitals for different spin (i.e., a spin-restricted formalism) which is often
viewed as at odds with the variational principle in density-functional
theory, but this perhaps is a small price to pay. (Note however that our
own experience in the present work is that spin-restricted calculations
can be significantly more difficult to converge than spin-unrestricted
calculations. This is one reason why all of our calculations have
been done in the spin-unrestricted formalism.) More importantly
putting the Vahtras-Rinkvicius scheme into practice still means find-
ing explicit ways to include matrix elements involving 2-electron and
higher excitations. We have already mentioned research aimed at the
explicit inclusion of 2- and higher-electron excitations through the
frequency-dependence of the xc-kernel [74, 233, 62, 243, 278, 149]. An-
other approach which should be mentioned is to handle these states by
a transformed reference via an intermediate configuration Kohn-Sham
TD-DFT procedure proposed by Seth and Ziegler with its very appro-
priate acronym "TRICKS-TD-DFT" [289]. The basic idea is to combine
SF-TD-DFT with different reference states using ideas from the Ziegler-
Rauk-Baerends multiplet sum method to make first-order estimates
of the pure spin-states corresponding to the mixed states. [340] Thus,
in the case of the M(a1 → b1) mixed state on the right hand side of
Fig. 4.5 obtained from SF-TD-DFT, we could calculate the energy for the
corresponding 3(a1 → b1) triplet state from conventional SP-TD-DFT

and then use the multiplet sum formula

ωTRICKS-TDDFT
S = 2ωSF-TDDFT

M −ωSP-TDDFT
T , (4.56)
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to estimate the energy of the 1(a1 → b1) singlet state. Similar ideas
have been used to advantage in the recent study of the reaction path
for the cis/trans photochemical isomerization of 4-styrylpyridine [215,
214]. The main drawback, and the reason that this approach was not
considered here, is that finding corresponding spin α and β orbitals
is not only not always easy but also not always possible in the spin-
unrestricted (i.e., different-orbitals-for-different-spins) approach. It
turns out that this is especially true in the funnel regions which interest
us most.

Perhaps the most interesting and important result in this paper
came when we pursued the CO ring-opening path way and examined
the physically-important CX. The situation is very different than the
case of cis/trans photoisomerization. In that case, the HOMO and LUMO

are typically the π and π∗ orbitals associated with the double bond
around which rotation is occuring. It is also true that the HOMO and
LUMO involved in the C2v ring-opening reaction are the σ and σ∗

orbitals associated with breaking the CC bond. The oxygen lone pair
(n) is tightly enough bound that it stays out of the way. However
along the physical CO ring-opening reaction route, elementary chemi-
cal arguments indicate that the oxygen lone pair intercedes as HOMO

between the relevant CO σ and σ∗ orbitals. This means that taking
the lowest triplet as reference does not necessarily lead to an optimal
description of the biradical present at the CO ring-opening CX. In
particular, attempts to include the doubly-excited σ2 → (σ∗)2 config-
uration exclude the possibility of the 1(n, σ∗) configuration whose
importance is well-established, and did not prove useful. Nevertheless
S0/S1 coupling exists in SF-TD-DFT meaning that a CX is theoretically
possible. Indeed such a feature is seen in our lowest energy triplet
SF-TD-DFT calculations roughly half-way between the location of the
CASSCF CX and the CIS seam.

We conclude that, depending upon the molecule and the CX, the low-
est triplet state may or may not be the optimal choice of reference for
SF-TD-DFT. However the asymmetric ring-opening reaction in oxirane
should be taken as a warning that choosing a suitable triplet reference
for SF-TD-DFT may require a nontrivial use of chemical intuition. This is
likely to be especially problematic for larger molecules and is unlikely
to be practical for on-the-fly photodynamics calculations. Thus, for the
moment, SF-TD-DFT remains an ad hoc solution for particular problems
rather than a universal panacea.





5
WAV E L E T S F O R T D - D F T

As theoretical methods have improved and available computing power
has increased there has been a continuing trend towards DFT studies
on larger size systems [20]. One of the modern methodological trends
in the development of computational methods includes the wavelet-
based DFT program, BigDFT. This pseudopotential code for bigger
systems [136] based as it is on traditional Hohenberg-Kohn-Sham DFT,
could only calculate ground-state properties with an eye to order-N
DFT. As a step to increase the feasibility of the code we have formulated
wavelet-based LR-TD-DFT and the article that is included in this chapter
presents our first implementation for calculating electronic excitation
spectra [60, 186] in BigDFT for the well-studied test case N2. In this
work we also present first calculated spectra of one of the biologically
important molecule from the flugi family using our implemented
TD-DFT calculations with the aim of providing the spectral details of
these fluorescent molecules.

Density functional theory is widely used in the computations of
materials properties. It has a demonstrated ability to produce results
that, whose predictive value for ground-state electronic structure are
competitive with the best traditional methods of quantum chemistry.
In addition, DFT has superior scaling properties [23], and so can be
applied to much larger systems than can the traditional methods.
Although several general-purpose computer codes for DFT-based cal-
culations of molecular and solid structures have become commercially
available [129, 13, 46], the writing of such codes remains largely an
effort pursued in several research groups, working in collaboration.
Such groups focus on the solution of problems of physics and chem-
istry, and tend to establishing the limits of accuracy of the underlying
methods. Within the accuracies of the KS approach the only remaining
limitations on the types and sizes of systems which can be tackled
are the efficiency of the computations, the choice of basis set, and the
availability of sufficient computing power. Today, even the difficulty
of dealing with thousands of atoms has been circumvented due the
joint advance of computer and theoretical methods. However, another
difficulty – conceptual difficulty still stand. One recent contribution
towards this computational and also as an alternative way to deal
with the conceptual difficulties is the massively parallel BigDFT code
which uses a wavelet basis set on a real-space grid to obtain essentially
basis-set limit results for DFT.

Several extensions to DFT that allow for the treatment of excited
states have recently been developed and implemented. The imple-
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mentation of TD-DFT in Gaussian [129] had led to an explosion in the
number of calculations using this particular variant of excited-state
DFT. The performance of TD-DFT for vertical excitation energies to
valance excited states is often quite good [311, 35, 298], with an ap-
parent accuracy similar to some of the best ab initio methods. When
the excited state of interest has significant Rydberg character, there are
often problems related to the improper asymptotic properties of most
functionals [311, 66]. An efficient approximate formulation of TD-DFT

has been presented [170] that makes the computational cost almost
identical to the CIS method. These considerations make TD-DFT a very
attractive method in the context of first-principles photodynamics
calculations.

5.1 comments on my contribution to this article

We begin in section 5.2 with a small introduction to LR-TD-DFT and
importance of wavelet theory in computational science. We continue
in section 5.3 by introducing the time-dependent density-functional
theory and explaining our implementation details in section 5.4. Before
showing the results, it is important to validate our implementation
in the wavelet-based code BigDFT by comparing the test case results
against GTO-based program deMon2k in section 5.5. Next we turn
our attention in section 5.6 to our actual application, excited-state
calculations of a fluorescent molecule Flugi 6 (See figure 5.1) .

This is also one of the projects which interest me a lot because a)
when I was working on this project, I started to realize the real objective
of my thesis by bringing ideas from two different quantum mechanics
comunities. b) I had a chance to interact with experimentalists. It was
right on time when we just finished the implementation on BigDFT,
Olga came to us with the details of structure and spectrum of Flugi 6.
Among several authors in the article, Luigi was the one helped with the
implementation part, Olga and Max were responsible for this beautiful
collaborative work, and Christian did the X-ray crystallography to
get the structural details. Most of my preliminary knowledge about
wavelets were come from Thierry who is really helpful throughout
this project whereas Mark helped me to interpreting the results and
with my writing.
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5.2 introduction

The last century witnessed the birth, growth, and increasing awareness
of the importance of quantum mechanics for describing the behavior
of electrons in atoms, molecules, and solids. One key to unlocking the
door to widespread applications was the advent of scientific comput-
ing in the 1960s. New computational methods had to be developed —
and continue to be developed — to make use of the increasing compu-
tational power. Wavelet-based methods are a comparative newcomer
to the world of electronic structure algorithms (Refs. [25, 143] provide
useful, if dated, reviews) but offer increasing accuracy for grid-based
DFT calculations of molecular properties. Although DFT is a theory
of the ground stationary state, excited states may be treated by the
complementary time-dependent (TD) theory. This paper reports the
first implementation of TD-DFT in a wavelet-based code — namely
our implementation of linear response TD-DFT in the BigDFT [2] pro-
gram. TD-DFT results obtained with our implementation in BigDFT
and with the GTOs based program deMon2k [9] are compared and
BigDFT is used to calculate and analyse the absorption spectrum of a
recently-synthesized small organic molecule [51].

Modern computing requires discretization and this has been his-
torically treated in DFT and non-DFT ab initio [6] electronic structure
calculations by basis set expansions. Because the basis set is necessar-
ily finite, electronic structure algorithms for solids and molecules have
developed as refinements on physically-sensible zero-order systems,
based upon the reasonable idea that fewer basis functions should be
needed when the underlying physics is already approximately cor-
rect. Thus computations on solids used plane-wave basis sets partly
because of analogies with the free-electron model of metals and partly
for other reasons (ease of integral evaluation and Bloch’s theorem
taking explicit account of crystal symmetry.) Similarly computations
on molecules are typically based upon the LCAO approximation to
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molecular orbitals, with split-valence, polarization, and diffuse func-
tions added as needed to go beyond this crude first approximation.
A key feature of finite-basis-set calculations has been the use of the
variational principle in order to guarantee smooth convergence from
above to the true ground-state energy.

Meanwhile a different set of methods developed within the larger
context of engineering applications, where model-independent meth-
ods are important for treating a variety of complex systems. These
methods involve spatial discretization over a grid of points and in-
clude finite-difference (FD) methods, finite-element (FE) methods, and
(more recently) wavelet methods. Use of these methods in solid-state
electronic structure calculations is particularly natural in areas such as
materials science where physics meets engineering [44], in real-time
applications [73] and also in chemical engineering [252].

Although one of the first applications of computers to scientific
problems was to solve the Schrödinger equation by direct numerical
integration using the Cooley-Cashion-Zare approach [81, 59, 338] and
this method soon became the preferred way to find atomic orbitals
[121, 237, 122], quantum chemists have been slow to accept grid-based
methods. There have been at least three reasons for this. The first is
the principle that any two quantum chemistry programs should give
the same answer to machine precision when the same calculation is
performed. Historically this principle has been essential for debugging
and assuring the consistency of the multiple sophisticated GTO-based
programs common in quantum chemistry. The second reason is the
fear that numerical noise would undermine the variational principle
and make chemical accuracy (1 kcal/mol) impossible to achieve for
realistic chemical problems. The first principle has gradually been
abandoned with the wide-spread adoption in quantum chemistry of
DFT and its associated grid-based algorithms. The second reason is
simply an obsolete fear as grid-based methods are now more precise
and free of numerical error than ever before. A third reason for
the slow acceptance of grid-based methods in quantum chemistry is
the conviction that the continuum-like unoccupied orbitals typically
produced by grid-based methods are not the most efficient orbital-
basis set to use when large CI or MBPT type expansions are needed
for the accurate description of electron correlation. Rather it is more
useful to replace continuum-like unoccupied orbitals with natural
orbitals or with other orbitals localized in the same region of space as
the occupied orbitals since this is where electron correlation occurs.
We discuss this problem further in Sec. 5.5.

Wavelet-based codes represent some of the latest evolutions in grid-
based methods for the problem of electronic structure calculations.
Daubechies classic 1992 book [89] helped to establish wavelet theory
as the powerful, flexible, and still-growing toolbox we know today.
Wavelet theory has deep roots in applied mathematics and computa-
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tional theory, and has benefited from the various points of view and
expertises of researchers in markedly different but complementary
disciplines. (Ingrid Daubechies describes this aspect of wavelet theory
rather well in a 1996 viewpoint article [90].) Wavelet theory some-
what resembles the older Fourier theory in its use of continuous and
discrete transforms and underlying grids. However wavelet theory is
designed to embody the powerful idea of MRA that coarse features are
large-scale objects while fine-scale features tend to be more localized.
Computationally, a low resolution description is afforded by a set of
so-called "scaling functions" placed at nodes of a coarse spatial grid.
Note that scaling functions are typically only placed where they are
needed on this grid. Wavelets or "detail functions" are then added
adaptively on a finer grid in regions of space where more resolution
is needed. This provides yet another attractive feature for grid-based
calculations, namely flexible boundary conditions. A subtler, and
also highly desirable feature, is that the coefficients of the scaling and
wavelet expansions are of comparable size and so properly reflect an
even balance between different length scales. The reader interested
in more information about wavelets is referred to the classic book of
Daubechies [89] and for applications in theoretical physics is referred
to Refs. [143, 146].

The first applications of wavelet theory to solving the Schrödinger
equation began in the mid-1990s [25]. (Interest was also expressed
by quantum chemists at around the same time [123, 57].) At least
two important wavelet-based codes have been developed for solving
the Kohn-Sham equation of the traditional Hohenberg-Kohn-Sham
ground-state DFT [172, 206]. These are Madness [161] and BigDFT
[2]. This paper concerns BigDFT.

Since Hohenberg-Kohn-Sham DFT is a ground-state theory, a differ-
ent theory is needed to treat electronic excited states and, in particular,
to calculate absorption spectra. The TD-DFT formalism [280] com-
plements that of DFT by laying the ground work for calculating the
time-dependent response of the charge density to an applied per-
turbation. Excitation spectra may then be calculated through linear
response theory using, for example, the equations developed by one
of us [60]. Implementing these equations in a wavelet code is not
entirely straightforward since integral evalulation is performed differ-
ently than in traditional TD-DFT codes. Thus a key point in the present
paper is how we handle integral evaluation in our implementation of
TD-DFT in BigDFT.

Our implementation is first validated by comparison against TD-

DFT calculations with the GTO-based program deMon2k for the
historically-important test case of N2 [186, 70]. This allows us to
see and discuss some of the pros and cons of wavelets versus GTOs.
We then go on to apply the method to a real-world application, namely
the calculation of the absorption spectrum of a molecule of poten-
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Figure 5.1: N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-α]
pyridin-3-amine (Flugi 6).

tial interest as a fluorescent probe in biological applications. This
molecule, N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-α]pyridin-
3-amine (Fig. 5.1), will simply be referred to as Flugi 6 [51]. Since
this molecule has not been thoroughly characterized before we have
included an experimental section describing our determination of its
X-ray crystal structure.

This paper is organized as follows: The basic equations of TD-DFT

are reviewed in the next section. In Sec. 5.4, we briefly review the
idea of wavelets, explain how we handle the integral evaluation in our
implementation of TD-DFT, and Section 5.5 discuss the pros and cons
of the wavelet implementation in the context of N2 calculations with
BigDFT and the GTO-based code deMon2k. Section 5.6 reports the
X-ray crystal structure, and experimental and calculated UV/visible
absorption spectrum of Flugi 6. An assignment is also made of the
peaks appearing in the spectrum. The final section contains our
concluding discussion.

5.3 time-dependent density-functional theory

As evidenced by the numerous review articles [110, 150, 60, 151, 52,
318, 307, 61, 88, 238, 239, 53, 107, 73, 63, 64, 65] and books [231, 241,
152] written on the subject, TD-DFT is now such a well-established
formalism that little additional review seems necessary. Nevertheless
the purpose of this section is to recall a few key equations in order
to keep the present paper reasonably self-contained and to introduce
notation.

Time-dependent DFT builds upon the KS formulation of ground-state
DFT [206]. In its modern formulation, Kohn-Sham DFT is spin-DFT
so that the total energy involves an exchange-correlation (xc) energy
which depends upon the density ρα of spin-α electrons and the density
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ρβ of spin-β electrons. These are obtained as the sum of the densities
of the occupied orbitals of each spin,

ρσ(r) = e
∑

p

npσ|ψpσ(r)|
2 , (5.1)

where npσ is the occupation number of orbital ψpσ and, the total
charge density is given as the sum of the charge densities of two spin
components. The Kohn-Sham orbitals are obtained by solving the
Kohn-Sham equation,

(

−
 h2

2me
∇2 + vσs [ρα, ρβ](r)

)

ψpσ(r) = ǫpσψpσ(r) . (5.2)

This involves a single-particle potential,

vσs [ρα, ρβ](r) = vext(r) + vH[ρ](r) + v
σ
xc[ρα, ρβ](r) . (5.3)

which is the sum of the external potential vext (i.e., the interaction of
the electrons with the nuclei and any applied electronic fields), the
Hartree potential,

vH[ρ](r) =

∫
ρ(r ′)

|r − r ′|
dr ′ , (5.4)

which may alternatively be obtained as the solution of Poisson’s
equation,

∇2vH[ρ](r) = −4πρ(r) , (5.5)

and the xc-potential which is just the functional derivative of the
xc-energy,

vσxc[ρα, ρβ](r) =
δExc[ρα, ρβ]

δρσ(r)
. (5.6)

Together vH[ρ] and vσxc[ρα, ρβ] constitute the self-consistent field (SCF),
vσHxc[ρα, ρβ]. Modern DFT often uses a type of generalized Kohn-Sham
formalism where the SCF may contain some orbital dependence due
to (say) inclusion of some fraction of Hartree-Fock exchange and the
external potential may even include a nonlocal part. In particular this
latter generalization is the case when nonlocal pseudopotentials are
employed, as is the case in BigDFT.

The external potential is time-dependent in TD-DFT, and the TD-KS

potential has the form,

(

−
 h2

2me
∇2 + vσs [ρα, ρβ;Φ0;Ψ0](r, t)

)

ψpσ(r, t) = i h
∂

∂t
ψpσ(r, t) ,

(5.7)

where the external potential,

vσs [ρα, ρβ;Φ0;Ψ0](r, t) = vext(r, t)+vH[ρ](r, t)+v
σ
xc[ρα, ρβ;Φ0;Ψ0](r, t) .
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(5.8)

The dependence of the xc part on the initial interacting (Ψ0) and
noninteracting (Φ0) wave functions may be eliminated by using the
first HK theorem [172] if the initial state is the ground stationary
state. This is the case when seeking the linear response of the ground
stationary state to an applied electronic field. The TD charge density,

ρ(r, t) = e
∑

pσ

npσ|ψpσ(r, t)|
2 , (5.9)

then suffices to calculate the induced dipole moment (at least for finite
systems such as molecules) and hence the dynamic polarizability,

α(ω) =

I 6=0∑

I

e2fI

me(ω
2
I −ω2)

, (5.10)

whose poles give the excitation energies of the system,

 hωI = EI − E0 , (5.11)

and whose residues give the corresponding oscillator strengths,

fI =
2ωIme

 h
|〈ΨI|r|Ψ0〉|2 . (5.12)

The excitation energies and oscillator strengths are often presented
in the form of a stick spectrum consisting of lines of height fI located
at the associated ωI. What is actually measured is the molar extinction
coefficient ǫ, in Beer’s law. To a first approximation, this is related to
the spectral function,

S(ω) =
∑

I

fIδ(ω−ωI) , (5.13)

by,

ǫ(ω) =
πNAe

2

2ǫ0mec ln(10)
S(ω) , (5.14)

in SI units [168, 169, 167]. Finite spectrometer resolution, finite-
temperature vibrational, and solvent effects are traditionally approxi-
mated by replacing the Dirac delta functions in Eq. (5.13) with a Gaus-
sian whose full-width at half-maximum (FWHM) is selected to match
the experimental spectrum and we will do the same. Solvent effects
may also shift excitation energies [37, 38, 225, 228, 245, 34, 45] and
affect oscillator strengths [77, 254, 259, 227, 36, 14, 246, 15, 24, 160, 31].
While these effects are not necessarily small (vide infra), we will sim-
ply ignore them when comparing with experimental data as this is a
reasonable first approximation.
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Practical TD-DFT calculations typically make use of the TD-DFT adia-
batic approximation,

vσxc[ρα, ρβ](r, t) =
δExc[ρ

t
α, ρ

t
β]

δρtσ(r)
, (5.15)

because even less is known about the exact xc-potential in TD-DFT than
is the case for regular DFT. Here ρtσ(r) is ρ(r, t) regarded at fixed t
as a function of r = (x, y, z). If in addition, the xc-energy functional
is of the local density approximation (LDA) or generalized gradient
approximation (GGA) type, the TD-DFT adiabatic approximation is
typically found to work well for low-energy excitations of dominant
one-hole/one-particle character which are not too delocalized in space
and do not involve too much charge transfer. Several extensions of
classic TD-DFT have been found to be useful for going beyond these
restrictions (see for example Ref. [64, 65] for a review).

One of us used a density-matrix formalism to develop a random-
phase approximation (RPA) like formalism for the calculation of ab-
sorption spectra from the dynamic polarizability Eq. (5.10) [60]. This
allowed the calculation of TD-DFT spectra to be quickly implemented
in a wide variety of quantum chemistry programs since most of the
available computational framework was already in place. The pre-
cise equation that needs to be solved is, within the TD-DFT adiabatic
approximation,

[

A B

B∗ A∗

](

~X

~Y

)

=  hω

[

1 0

0 −1

](

~X

~Y

)

. (5.16)

Here,

Aaiσ,bjτ = δabδijδστ(ǫa − ǫi) + Kaiσ,bjτ

Baiσ,bjτ = Kaiσ,jbτ , (5.17)

and the coupling matrix is given by,

Kpqσ,rsτ = e2
∫ ∫

ψ∗
pσ(r)ψqσ(r)

[

1

|r − r ′|
+

δ2Exc

δρσ(r)δρτ(r ′)

]

ψrτ(r
′)ψ∗

sτ(r
′)drdr ′ , (5.18)

where we are making use of the index convention that orbitals
a, b, · · · , g, h are unoccupied, orbitals i, j, k, l,m, n are occupied, and
orbitals o, p, · · · , x, y, z are free to be either occupied or unoccupied.
In the case of an LDA or GGA, Eq. (5.16) may be rearranged to give the
lower-dimensional matrix equation,

Ω~F =  h2ω2~F , (5.19)

where

Ωiaσ,jbτ = δiaδjbδστ(ǫaσ − ǫiσ)
2+2

√

(ǫaσ − ǫiσ)Kiaσ,jbτ

√

(ǫaσ − ǫiσ) .
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(5.20)

Alternatively the TDA is sometimes found to be useful [170],

A~X = ω~X . (5.21)

This is particularly the case when it is necessary to attenuate the effect
of spin-instabilities on potential energy surfaces when investigating
photoprocesses [68].

5.4 implementation in bigdft

Our implementation of the equations of the previous section in BigDFT
is described in this section and their validation by comparison against
calculations with deMon2k is described in the next section.

BigDFT solves the Kohn-Sham equation [Eq. (5.2)] in the pseu-
dopotential approximation. The main difference is that the external
potential part, vext, of the Kohn-Sham potential, vσs , is manipulated
so as to smooth the behavior of the KS orbitals in the core region near
the nuclei while preserving the form of the KS orbitals outside the
core region. This is done through the use of GTH pseudopotentials
[141] in order to avoid "wasting" wavelets on describing the nuclear
cusp. These include both a local and nonlocal part and are used for
all atoms (even hydrogen). Several different functionals are available
for the xc-energy. However we will only be considering the LDA func-
tional with Teter’s Pade approximation [141] of Ceperley and Alder’s
quantum Monte Carlo results [76] since the xc-kernel, fxc, is thus far
only implemented in BigDFT at the LDA level.

There are two fundamental functions in Daubechies family: the
scaling function φ(x) and the wavelet ϕ(x) (see Fig. 5.2.) Note that
both types of function are localized with compact support. The full
basis set can be obtained from all translations by a certain grid spacing
h of the scaling and wavelet functions centered at the origin. These
functions satisfy the fundamental defining equations,

φ(x) =
√
2

m∑

j=1−m

hjφ(2x− j) ,

ϕ(x) =
√
2

m∑

j=1−m

gjφ(2x− j) . (5.22)

which relate the basis functions on a grid with spacing h and another
one with spacing h/2. The coefficients, hj and gj, constitute the so-
called "filters" which define the wavelet family of order m. These
coefficients satisfy the relations,

∑
j hj = 1 and gj = (−1)jh−j+1.

Equation (5.22) is very important since it means that a scaling-function
basis defined over a fine grid of spacing h/2 may be replaced by
combining a scaling-function basis over a coarse grid of spacing h
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Figure 5.2: Daubechies scaling function φ(x) and wavelet ϕ(x) of order 16.

with a wavelet basis defined over the fine grid of spacing h/2. This
then gives us the liberty to begin with a coarse description in terms of
scaling functions and then add wavelets only where a more refined
description is needed. In principle the refined wavelet description
may be further refined by adding higher-order wavelets where needed.
However in BigDFT we restricted ourselves to just two levels: coarse
and fine-associated respectively with scaling functions and wavelets.

For a three-dimensional description, the simplest basis set is ob-
tained by a tensor product of one-dimensional basis functions. For
a two resolution level description, the coarse degrees of freedom are
expanded by a single three dimensional function, φ0

i1,i2,i3
(r), while

the fine degrees of freedom can be expressed by adding another seven
basis functions, φν

j1,j2,j3
(r), which include tensor products with one-

dimensional wavelet functions. Thus, the Kohn-Sham wave function
ψ(r) is of the form

ψ(r) =
∑

i1,i2,i3

c0i1,i2,i3φ
0
i1,i2,i3

(r) +
∑

j1,j2,j3

7∑

ν1

cνj1,j2,j3φ
ν
j1,j2,j3

(r) .

(5.23)

The sum over i1,i2,i3 runs over all the grid points contained in the low-
resolution regions and the sum over j1,j2,j3 runs over all the points
contained in the (generally smaller) high resolution regions. Each
wave function is then described by a set of coefficients {cνj1,j2,j3}, ν =

0, ..., 7. Only the nonzero scaling function and wavelet coefficients are
stored. The data is thus compressed. The basis set being orthogonal,
several operations such as scalar products among different orbitals and
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between orbitals and the projectors of the nonlocal pseudopotential
can be directly carried out in this compressed form. In addition to
raw Daubechies scaling functions, practical applications make use of
autocorrelated functions to make ISF [94]. In particular, as shown by
A. Neelov and S. Goedecker [257], the local potential matrix elements
approximated using the linear combination of such ISF is exact for
polynomial expansions up to 7th order and the corresponding KS

densities can be calculated by the real-valued coefficients on the grid
points.

Although not every grid point is associated with a basis function
and the fine grid is only used in some regions of space, the Daubechies
basis set is still very large. This means that full diagonalization of the
KS orbital Hamiltonian is not possible. Instead the direct minimisation
method [92, 255] is used to obtain the occupied orbitals. This is
in contrast with the GTO-based deMon2k program which will be
described below in which full diagonalization of the Kohn-Sham
orbital Hamiltonian matrix is carried out within the finite GTO basis
set.

A key point to review because of its importance for our implemen-
tation of TD-DFT in BigDFT is the Poisson solver used to treat the
Hartree part of the potential, vH. Although this Poisson solver has
been discussed elsewhere [132, 133], we briefly review how it works
in order to keep this article somewhat self-contained. The Hartree
potential is evaluated as,

vH(r) =

∫

G(|r − r ′|)ρ(r ′)dr ′ , (5.24)

where G(r) = 1/r is the Green’s function for the Poisson equation,
namely just the Coulomb potential. The density and potential are
expanded in a set of interpolating scaling functions,

ρ(r) =
∑

i1,i2,i3

φ̃i1(x)φ̃i2(y)φ̃i3(z)ρi1,i2,i3

vH(r) =
∑

i1,i2,i3

φ̃i1(x)φ̃i2(y)φ̃i3(z)vi1,i2,i3 , (5.25)

associated with the same grid of points, ri1,i2,i3 , in real space. In
particular, the charge density coefficients, ρi1,i2,i3 = ρ(ri1,i2,i3). Then,

vi1,i2,i3 =
∑

j1,j2,j3

Gj1−i1,j2−i2,j3−i3ρj1,j2,j3 , (5.26)

where the quantity,

Gj1−i1,j2−i2,j3−i3 =

∫
φ̃j1(x

′)φ̃j2(y
′)φ̃j3(z

′)

|ri1,i2,i3 − r ′|
dr ′ , (5.27)
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is translationally invariant by construction. Since Eq. (5.26) has the
form of a three dimensional convolution, it may be efficiently eval-
uated by using appropriate parallelized fast Fourier transform algo-
rithms at the cost of only O(N lnN) operations. The calculation of
matrix elements of the Green’s function G(r) = 1/r is simplified by
using a separable approximation in terms of Gaussians,

1

r
≈

∑

k

e−pkr
2

ck , (5.28)

so that all the complicated 3-dimensional integrals are reduced to
products of simpler 1-dimensional integrals. For more information
about BigDFT, the reader is referred to the program website [2] and
to various publications [132, 133, 135, 20, 136, 138].

We are now in a position to understand the construction of the
coupling matrix in our implementation of TD-DFT in BigDFT, which
we split into the Hartree and exchange-correlation parts,

Kaiσ,bjτ = KH

aiσ,bjτ +K
xc
ajσ,bjτ . (5.29)

Instead of calculating the Hartree part of coupling matrix directly as,

KH

aiσ,bjτ =

∫ ∫

ψ∗
aσ(r)ψiσ(r)

1

|r − r ′|
ψbτ(r

′)ψ∗
jτ(r

′)drdr ′ , (5.30)

we express the coupling matrix element as,

KH

aiσ,bjτ =

∫

ψ∗
aσ(r)ψiσ(r)vbjτ(r)dr , (5.31)

where,

vaiσ(r) =

∫
ρaiσ(r)

|r − r ′|
dr ′ , (5.32)

and,

ρaiσ(r) = ψ
∗
aσ(r)ψiσ(r) . (5.33)

The advantage of doing this is that, although ρaiσ and vaiσ are neither
real physical charge densities nor real physical potentials, they still
satisfy the Poisson equation,

∇2vaiσ(r) = −4πρaiσ(r) , (5.34)

and we can make use of whichever of the efficient wavelet-based
Poisson solvers already available in BigDFT, is appropriate for the
boundary conditions of our physical problem.

Once the solution of Poisson’s equation, vaiσ(r), is known, we can
then calculate the Hartree part of the kernel according to Eq. (5.31).
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Inclusion of the exchange-correlation kernel is accomplished by evalu-
ating,

Kaiσ,bjτ =

∫

Maiσ(r)ρbjτ(r)dr , (5.35)

where,

Maiσ(r) = vaiσ(r) +

∫

ρaiσ(r
′)fσ,τxc (r, r ′)dr ′ . (5.36)

We note that fσ,τxc (r, r ′) = fσ,τxc (r, r ′)δ(r − r ′) for the LDA, so that no
integral need actually be carried out in evaluating Maiσ(r). The
integral in Eq. (5.35) is, of course, carried out numerically in practice
as a discrete sum.

5.5 validation

Having implemented TD-DFT in BigDFT we now desire to validate
our implementation by testing it against another program in which
TD-DFT is already implemented, namely the all-electron GTO-based
program deMon2k [9]. deMon2k resembles a typical GTO-based
quantum chemistry program in that all the integrals other than the
xc-integrals, can be evaluated analytically. In particular, deMon2k

has the important advantage that it accepts the popular GTO basis
sets common in quantum chemistry and so can benefit from the
experience in basis set construction of a large community built up
over the past 50 years or so. In the following, we have chosen to
use the well-known correlation-consistent basis sets for this study
[114, 285]. (Note, however, that the correlation-consistent basis sets
used in deMon2k lack f and g functions but are otherwise exactly the
same as the usual ones.) The advantage of using these particular basis
sets is that there is a clear hierarchy as to quality.

An exception to the rule that integrals are evaluated analytically
in deMon2k are the xc-integrals (for the xc-energy, xc-potential, and
xc-kernel) which are evaluated numerically over a Becke atom-centered
grid. This is important because the relative simplicity of evaluating
integrals over a grid has allowed the rapid implementation of new
functionals as they were introduced. We made use of the fine fixed
grid in our calculations.

As described so far, deMon2k should have O(N4) scaling because
of the need to evaluate 4-center integrals. Instead deMon2k uses
a second atom-centered auxiliary GTO basis to expand the charge
density. This allows the the elimination of all 4-center integrals so that
only 3-center integrals remain for a formal O(N3) scaling. In practice,
integral prescreening leads to O(NM) scaling where M is typically
between 2 and 3. We made use of the A3 auxiliary basis set from the
deMon2k automated auxiliary basis set library.
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All calculations were performed using standard deMon2k default
criteria. Although full TD-LDA calculations are possible with deMon2k,
the TD-LDA calculations reported here all made use of the TDA. The
chosen test molecule was N2 with an optimized bond length of 1.115

Å. This molecule was chosen partly because of its small size but
also because of the large number of excited states which are well
characterized (see Refs. [186, 70] and references therein.)

Unlike TD-HF (or configuration interaction singles) calculations, TD-
LDA calculations are prepared to describe excitation processes in the
sense that the occupied and unoccupied orbitals both see the same
number of electrons (because they come from the same local potential).
This means that there is often little relaxation — at least in small
molecules — and a two orbital model [60, 63, 65, 71] often provides a
good first approximation to the singlet ( hωS

i→a) and triplet ( hωT

i→a)
excitation energies,

 hωT

i→a = ǫa − ǫi + (ia|fα,α
xc − fα,β

xc |ai)

 hωS

i→a = ǫa − ǫi + (ia|2fH + fα,α
xc + fα,β

xc |ai) . (5.37)

Consideration of typical integral signs and magnitudes then implies
that

 hωT

i→a 6 ǫa − ǫi 6  hωS

i→a , (5.38)

with the singlet-triplet splitting going to zero for Rydberg states (in
which case the electron repulsion integrals become negligible due to
the diffuse nature of the target orbital ψa.)

Since orbital energy differences provide an important first estimate
of TD-DFT excitation energies, we wished to see how rapidly they
converged for BigDFT and deMon2k as the quality of the basis set
was improved. Tables 5.1 and 5.2 show how HOMO – LUMO energy
gap (∆ǫHOMO−LUMO) varies for each program.

Consider first how deMon2k calculations of ∆ǫHOMO−LUMO evolve as
the basis set is improved (Table 5.1). Jamorski, Casida, and Salahub
had earlier shown that LUMO is bound for reasonable basis sets
[186]. (Small differences between the present calculations and those in
Ref. [186] are due to gradual improvements in the grid, auxiliary basis
sets, and convergence criteria used in the deMon programs). Conver-
gence to the true HOMO-LUMO LDA gap is expected with systematic
improvement within the series:

• Double zeta plus valence polarization (DZVP) → triple zeta plus
valence polarization (TZVP),

• Augmented correlation-consistent double zeta plus polarization
plus diffuse on all atoms (AUG-CC-PCVDZ)→ AUG-CC-PCVTZ
(triple zeta) → AUG-CC-PCVQZ (quadruple zeta) → AUG-CC-
PCV5Z (quintuple zeta)
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Table 5.1: Basis set dependence of the HOMO and LUMO energies and of the
HOMO-LUMO gap (eV) calculated using deMon2k.

Basis Set −ǫHOMO −ǫLUMO ∆ǫHOMO−LUMO

STO-3G 7.6758 0.0297 7.6461

DZVP 10.1824 2.2616 7.9208

TZVP 10.2142 2.2894 7.9248

CC-PVDZ 9.8656 1.8993 7.9663

CC-PVTZ 10.2978 2.2868 8.0110

CC-PVQZ 10.3545 2.3527 8.0018

CC-PV5Z 10.3786 2.3886 7.9900

CC-PCVDZ 9.9197 1.9314 7.9883

CC-PCVQZ 10.3555 2.3532 8.0023

CC-PCVTZ 10.2372 2.2718 8.0154

CC-PCV5Z 10.3793 2.3891 7.9902

AUG-CC-PVDZ 10.3534 2.3785 7.9749

AUG-CC-PVQZ 10.3987 2.4127 7.9860

AUG-CC-PVTZ 10.3953 2.4010 7.9943

AUG-CC-PV5Z 10.3984 2.4137 7.9847

AUG-CC-PCVDZ 10.3732 2.3879 7.9847

AUG-CC-PCVTZ 10.3972 2.4015 7.9957

AUG-CC-PCVQZ 10.3990 2.4124 7.9866

AUG-CC-PCV5Z 10.3985 2.4136 7.9849
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Table 5.2: Basis set dependence of the HOMO and LUMO energies and of the
HOMO-LUMO gap (eV) calculated using BigDFT.

hg
1/m2/n3 −ǫHOMO −ǫLUMO ∆ǫHOMO−LUMO

Low resolution

0.4/6/8 10.3910 2.3815 8.0095

0.4/7/8 10.3964 2.3922 8.0042

0.4/8/8 10.3971 2.3945 8.0027

0.4/9/8 10.3972 2.3951 8.0022

0.4/10/8 10.3973 2.3953 8.0020

0.4/11/8 10.3972 2.3953 8.0019

High resolution

0.3/7/8 10.3977 2.3932 8.0043

0.3/8/8 10.3984 2.3957 8.0027

0.3/9/8 10.3985 2.3963 8.0022

0.3/10/8 10.3985 2.3965 8.0021

0.3/11/8 10.3985 2.3965 8.0020

1 Grid spacing of the cartesian grid in atomic
units.

2 coarse grid multiplier (crmult)
3 fine grid multiplier (frmult)
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• Augmented correlation-consistent valence double zeta plus po-
larization plus diffuse (AUG-CC-PVDZ) → AUG-CC-PVTZ →
AUG-CC-PVQZ → AUG-CC-PV5Z

• Correlation-consistent double zeta plus polarization plus tight
core (CC-PCVDZ) → CC-PCVTZ → CC-PCVQZ → CC-PCV5Z

• Correlation-consistent valence double zeta plus polarization on
all atoms (CC-PVDZ) → CC-PVTZ → CC-PVQZ → CC-PV5Z.

There is a clear tendency in the correlation-consistent basis sets to
tend towards values of 10.40 eV for the HOMO energy, 2.42 eV for the
LUMO energy, and 8.01 eV for ∆ǫHOMO−LUMO, with adequate convergance
already achieved with the CC-PVTZ basis set.

Now let us turn to BigDFT (Table 5.2). Calculations were done
for two different grid values, denoted by hg = 0.3, 0.4. (These val-
ues are the nodes of the grid in a.u which serve as centers for the
scaling function/wavelet basis.) The simulation "box" has the shape
of the molecule and its size is expressed in the units of the coarse
grid multiplier (crmult) and the fine grid multiplier (frmult) which
determines the radius for the low/high resolution sphere around the
atom. Results using 16 unoccopied orbitals with the different wavelet
basis sets are essentially identical, with no significant variation in the
HOMO energy, the LUMO energy, and the ∆ǫHOMO−LUMO value of 8.00

eV between the high resolution combination of 0.3/11/8 and the low
resolution combination of 0.4/6/8.

The remaining differences for the HOMO energy, LUMO energy, and
∆ǫHOMO−LUMO calculated by the two programs, deMon2k and BigDFT,
is more difficult to trace. For example, it might be due to the auxiliary
basis approximation in deMon2k or to the use of pseudopotentials in
BigDFT or perhaps to still other program differences. The important
point is that differences are remarkably small.

We now come to the calculation of the actual excited states of N2

and the third reason alluded to in the introduction that quantum
chemists have been slow to adapt grid-based methods. This is the
concern that the very large size of basis sets in grid-based methods
would lead to impractically-large configuration interaction expansions.
Put differently, this concerns the basic problem of how to handle the
continuum. A correct inclusion of the continuum in the formalism
of Sec. 5.3 would seem to require at least approximate integrals over
a quasicontinuum of unoccupied orbitals. Clearly this is impractical
and our method only uses the first several unoccupied orbitals. This
is perhaps reasonable for the lower excited states, given the antici-
pated dominance of the two-orbital model [Eq. (5.37)], but may fail
to be quantitative when relaxation or state mixing starts to become
important and the two-orbital model breaks down. This problem
is avoided in quantum chemistry where the virtual orbitals in the
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Figure 5.3: Singlet and triplet excitation energies for N2 calculated using
BigDFT

Table 5.3: Comparison of the nine lowest excitation energies of N2 (in eV)
calculated using different programs and with experiment.

State BigDFT1 deMon2k2 ABINIT3 Experiment4

13Σ+
g 10.71 10.39 9.91 12.0

13Πu 10.58 10.38 10.79 11.19

11∆u 10.29 9.99 10.46 10.27

11Σ−
u 9.37 9.36 9.92 9.92

13Σ−
u 9.36 9.36 9.16 9.67

11Πg 9.35 9.10 9.47 9.31

13∆u 8.93 8.60 9.08 8.88

13Πg 7.69 7.83 7.85 7.75

13Σ+
u 8.52 8.43 8.16 8.04

1 Present work (TD-LDA/TDA).
2 Present work (TD-LDA/TDA).
3 From [5] (TD-LDA).
4 Taken from Ref.( [42]).
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TD-DFT calculation have an altogether different meaning: they are sim-
ply there to describe the dynamic polarizability of the ground-state
charge density and need not describe the continuum well. This is why
fewer unoccupied orbitals are normally needed in quantum chemical
applications of TD-DFT than is the case when using, say, plane waves.
In Fig. 5.3 the lowest few excited-states are calculated using BigDFT.
This figure shows that the excited states calculated with different grids
are essentially the same up to -ǫHOMO. After -ǫHOMO, increasing the
quality of the basis set by varying the simulation box sizes leads to an
increasing collapse of the higher excited-states. This is a reflection of
the fact that the TD-LDA ionization continuum starts at -ǫHOMO which
is about 5 eV low because of the incorrect asymptotic behavior of the
xc-potential [70]. Of course, as indicated by the estimate (5.37), the
excitation energy is not exactly a simple orbital energy difference, but
they are closely related.

With these caveats, let us see how well our implementation of TD-

DFT does in BigDFT. Table 5.3, lists the lowest nine excited states of
N2 calculated with deMon2k and BigDFT. For comparison, Table 5.3
also contains full TD-LDA (i.e, non-TDA) excitation energies obtained
from ABINIT [145] using the Perdew-Wang 92 parameterisation of
the LDA functional [264] along with the experimental values from the
literature [42]. The slight differences which occur between the 11Σ−

u

and 13Σ−
u excitation energies in the BigDFT and ABINIT calculations

are an indication of residual numerical errors since these two states
are rigorously degenerate by symmetry when using the TD-LDA and
TD-LDA/TDA approximations: Aside from this tiny difference, it is
certainly reassuring that excitation energies calculated with BigDFT,
deMon2k, and ABINIT are quite similar. Nevertheless differences as
large as 0.3 eV or more are found for some states. Such differences
are large enough to be potentially problematic for determining the
ordering of near-lying states.

Finally since a large number of excited states have been calculated,
it is interesting to test the assertion that the oscillator strength distribu-
tion should be approximately correct even above the TD-LDA ionization
threshold at -ǫHOMO [70]. This is especially true since the transitions
given in Table 5.3 are all dark and we would like to see how the
oscillator strengths of bright states compare. The high-energy spectra
are compared in Fig. 5.4 using Eq. (5.14). Clearly the spectra are in
reasonable qualitative agreement.

The above results show that this first implementation of BigDFT
is quantitative — especially when results are dominated by bound-
bound transitions — and our discussion may eventually suggest ways
to go further towards improving the method. In the meantime, we
have a method that can be used for moderate-size molecules and this
is illustrated in the next section.
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Figure 5.4: Comparison of deMon2k and BigDFT N2 spectra at higher ener-
gies.

5.6 application

A large series of fluorescent molecules of potential interest as biolog-
ical markers [147] has recently been synthesized by combinatorial
chemistry [51]. This is a method whereby large sets of similar reac-
tions are conducted in parallel in arrays of spots on a single plate, thus
dramatically increasing throughput when searching for molecules
with a particular property — in this case fluorescence. We have cho-
sen to calculate the absorption spectrum of one of these fluorescent
molecules in preparation for future more in-depth theoretical studies
of their fluorescence properties using BigDFT. This molecule, which
we will simply refer to as Flugi 6 (because it is molecule 6 [51] among
the fluorescent molecules prepared by the UGI reaction [316]) rather
than by its full name ofN-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-
a]pyridin-3-amine is shown in Fig. 5.1. The synthesis and partial
characterization of Flugi 6 has been described in Ref. [51]. However
we go further here and report the experimental determination of its
crystal structure. We then go on to compare the spectrum calculated
with BigDFT with the measured spectrum and discuss the problem of
peak assignment.

5.6.1 X-Ray Crystal Structure

Crystals of Flugi 6 (C20H23N3O, M = 321.42 g/mol) were obtained
out of recrystallisation in ethyl acetate (EtOAc) as colorless needles
suitable for X-ray diffraction. A 0.38 mm × 0.28 mm × 0.01 mm crystal
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was mounted on a glass fiber using grease and centered on a Bruker
Enraf Nonius kappa charge-coupled device (CCD) detector working
at 200 K and at the monochromated (graphite) Mo Kα radiation λ
= 0.71073 Å. The crystal was found to be orthorhombic, Pna21, a =
27.912(4) Å , b = 5.876(2)Å, c = 10.297(2) Å, V = 1688.7(6) Å3, Z = 4,
Dx = 1.264 g.cm−3, m = 0.080 mm−1. A total of 17700 reflections were
collected using φ and ω scans; 2853 independent reflections (Rint

= 0.1557). The data were corrected for the Lorentz and polarization
effects. The structure was solved by direct methods with SIR92 [18]
and refined against F by leastsquare method implemented by TeXsan
[4]. C, N, and O atoms were refined anisotropically by the full matrix
least-squares method. H atoms were set geometrically and recalculated
before the last refinement cycle. The final R values for 1964 reflections
with I > 2σ (I) and 217 parameters are R1 = 0.0617, wR2 = 0.0657,
goodness of fit (GOF) = 1.78 and for all 2854 unique reflections R1 =
0.0923 , wR2 = 0.0829, GOF = 1.85. The resultant crystal geometry is
given in 5.4

The data have been deposited with the Cambridge Crystallographic
Data Centre (Reference No. CCDC 8200007). This material is avail-
able free of charge via www.ccdc.can.ac.uk/conts/retrieving.html
(or from the Cambridge Crystallographic Data Centre, 12 Union
Road, Cambridge CB2 1EZ, UK. Fax: +44-1223-336033. E-mail: de-
posit@ccdc.cam.ac.uk).

5.6.2 Spectrum

The experimental UV/Vis spectrum was determined in dimethyl sul-
phur dioxide (DMSO) as described in the supplementary material of
Ref. [51] The first step to calculating the spectrum of Flugi 6 is to
optimize the geometry. This was done with BigDFT using the 0.4/8/8

grid, beginning with the experimental crystal geometry shown in
Fig. 5.5. Our optimized geometry is given in Table 5.5. The largest
change 0.15 Å from the initial guess is for the 18th atom of hydrogen.
It was verified that the optimized geometry is indeed a minimum by
explicit calculation of vibrational frequencies. However the experimen-
tal geometry is not identical to our calculated gas phase geometry as
confirmed by the presence of three imaginary vibrational frequencies
calculated for the (unoptimized) experimental geometry.

The TD-LDA absorption spectrum of Flugi 6 was then calculated at
the optimized geometry using our new implementation of TD-DFT in
BigDFT. In addition to the previously mentioned computational de-
tails, the calculation used 60 unoccupied orbitals within the TDA. The
excited-states were obtained using full-matrix diagonalization of the
TD-DFT part. The theoretical spectrum was calculated using Eq. (5.14)
using a FWHM of 0.25 eV and then transformed to a wavelength scale
using our spectrum convolution program [12]. Because we were
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Figure 5.5: Experimental geometry: carbon, orange; nitrogen, blue; oxygen,
red; hydrogen, white. This geometry consists of two nearly planar
entities, namely a nearly planar cyclohexane (C6H11-) ring and
the rest of the molecule which rests in a plane perpendicular to
the plane of the cyclohexane
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Figure 5.6: Comparison of theoretical and measured absorption spectra for
Flugi 6 (left y-axis). The magnitude of the BigDFT curve has been
divided by a factor of ten (see text). Both theoretical and exper-
imental curves show qualitative agreement with the oscillator
strength stick-spectra which however is in different units (right
y-axis).

restricted to a more limited number of unoccupied orbitals than in
the N2 test case, there is some concern that our calculated spectrum
might change if a larger number of unoccupied orbitals is included.
However the comparison of the theoretical and experimental results
shown in Fig. 5.6 is reasonable. This is especially true when it is kept
in mind that we are comparing gas-phase theory with an experimental
spectrum measured in a polar solvent DMSO. Notice the presence of
a larger peak at 4.6-5.0 eV, a smaller peak at 3.2-3.5 eV, and a shoulder
inbetween near 4.3 eV.

In contrast to experience with ruthenium complexes (to name but
one example), Eq. (5.14) with gaussian broadening does not suffice
in the present case to give good agreement between theoretical and
experimental molar extinction coefficinets. This is why the theoretical
curve has been divided magnitude by a factor of ten. We believe that this
discrepancy is in part due to the aforementioned solvent effects on
excitation energies and oscillator strengths which we have chosen to
neglect and in part due to the possible presence of multiple conformers
in the room temperature experiment. This latter hypothesis might
be tested by expensive dynamics calculations, but this far beyond
the scope of the present work. Nevertheless, even without dynamics
we find this level of agreement to be encouraging and now go on to
further analyze our calculated spectrum. The calculated stick spectrum
is also shown in Fig. 5.6. It is now clear that the small peak at 3.2-



5.7 conclusion 159

3.5 eV corresponds to two transitions, that the shoulder near 4.3 eV
corresponds to three transitions, and that the large peak at 4.6-5.0
eV corresponds to several electric excited states. Table 5.6 provides a
more detailed analysis. All of the transitions are below the onset of TD-
LDA ionization continuum at −ǫHOMO = 4.8713 eV, which is artificially
low compared to the true ionization energy [70]. As mentioned in
Sec. 5.4, unlike TD-HF (or configuration interaction singles) calculations,
TD-LDA calculations are prepared to describe excitation processes in
the sense that the occupied and unoccupied orbitals both see the
same number of electrons (because they come from the same local
potential.) This means that there is often little relaxation — at least
in small molecules — and a two orbital model [60] provides a good
first approximation to the excitation energy Eqs. (5.37) and (5.38). The
TDA configuration interaction coefficient is then determined by spin
coupling and is given by 1/

√
2 = 0.707. Table 5.6 shows significant

deviations from this theoretical value, suggesting significant relaxation
effects may be taking place. Visualization of the HOMO and LUMO

suggests that relaxation is important here and might help to explain
why the first peak is at slightly too low an energy compared to the
first experimental peak in the absorption spectrum [71]. Nevertheless,
the energy of HOMO → LUMO dominated singlet transition at 3.21 eV
exceeds the simple difference of HOMO and LUMO molecular orbital
energies of 2.80 eV as expected from the domination of the Hartree
term (ia|fH|ai) over the two xc terms. Two interesting features, which
will not be pursued in the present paper, are the absence of oscillator
strength for the 1(H, L+ 1) transition and the indication of significant
configuration mixing for the first and seventh transitions which both
borrow from 1(H, L) and for the third and fifth transitions which both
borrow from 1(H, L+ 2).

5.7 conclusion

Grid-based methods have long been regarded with skepticism by the
quantum chemistry community, but have now been accepted in the
form of the grids used to evaluate xc-integrals in the DFT part of most
quantum chemistry codes. We believe that an even greater acceptance
of grid-based methods may prove useful as theoretical solid-state and
chemical physics strive to meet on "neutral ground" at the nanometer
scale. Acceptance will be aided by continuing advances in grid-based
methods with wavelets being of particular interest here. At the same
time, new features should be added to grid-based electronic structure
codes in order to make them more useful for chemical applications.
This paper represents a small step in that direction. In particular, we
have presented the first implementation of TD-DFT in a wavelet-based
code, namely in BigDFT.
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While BigDFT is designed for routine calculations on systems con-
taining many hundreds of atoms, this first implementation of TD-DFT

in BigDFT is not yet ready for these more ambitious applications.
Rather, we wished to bring out the pros and cons of wavelet-based TD-

DFT by comparing against a GTO-based quantum chemistry code (in
this case, deMon2k) and by an example application showing how our
implementation in BigDFT can be useful in analyzing the spectrum of
a molecule of contemporary experimental interest.

A factor in favor of the wavelet-based approach is the rapidity of
convergence of the bound orbitals and orbital energies with respect
to refinements of the wavelet basis and associated grid. While orbital
results from the all-electron deMon2k code are not (and should not)
be in exact agreement with those of the pseudopotential BigDFT code,
the results are really quite close when sufficiently large basis sets are
used. In the case of the GTO-based code, tight basis set convergence
typically requires going beyond at least the triple-zeta-valence-plus-
polarization (TZVP) level. In contrast, adequate orbital convergence is
easily obtained with BigDFT using the default wavelet basis set and
grid, with further refinements leading to only minor improvement.
This comes close to the quantum chemists’ dream of calculations free
of errors due to basis set incompleteness.

Interestingly, problems which could be envisioned with this first im-
plementation of TD-DFT in BigDFT either did not arise or did not seem
to be serious. The worry was that the unbound orbitals of the molecule
are continuum orbitals whose description is apparently only limited
by the boundaries of the box defined by the coarse grid. In principle,
for an infinitely large box, there are an infinite number of unoccupied
orbitals in even a small energy band and all of these would seem to
need to be taken into account even for describing transitions below
the TD-DFT ionization threshold at -ǫHOMO. This is a doubly large
worry because the number of unoccupied orbitals to be calculated is
limited by an input parameter, making a double convergence prob-
lem (number of virtuals and box size.) Nevertheless our calculations
show that the implementation in BigDFT works correctly, giving quite
reasonable results when compared with deMon2k and with experi-
mental results for transitions below -ǫHOMO. There are at least two
probable reasons that the anticipated problems are not seen here. The
first is the tendency, at least for small molecules, for excitations to be
dominated by bound-to-bound transitions involving two or only a few
orbitals. This is especially true for the LDA and GGA, but will gradually
breakdown with the inclusion of Hartree-Fock exchange where orbital
relaxation becomes more important. The second reason that we may
not see the expected problems associated with continuum-type unoc-
cupied orbitals is that putting the molecule in a box acts much like
atom-centered GTOs in the sense that it keeps wavelet basis functions
close to those regions of space where electron density is high and
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so can be efficiently used to describe the dynamic response of the
charge density, whose description is the fundamental key to extracting
spectra in TD-DFT. Nevertheless it should be mentioned that there are
alternative algorithms in TD-DFT such as the modified Sternheimer
equation and the Green’s function approach which avoid explicit ref-
erence to unoccupied orbitals [231]. These may be worth exploring in
future development work of wavelet-based TD-DFT. However our first
priority will be to implement analytic derivatives for TD-DFT excited
states which are needed in modeling fluorescence.

It should also be mentioned that implementing TD-DFT is a step
along the way to implementing MBPT methods from solid-state physics,
namely the GW one-particle Green’s function approximation and the
Bethe-Salpeter equation approach to the two-particle Green’s function
[261]. Such work is already in progress in BigDFT. Of course, the
expected collapse of the TD-DFT continuum [70] was seen above -
ǫHOMO (Fig. 5.3) with increasing box size, though the spectrum
remains qualitatively correct (Fig. 5.4).

The application to Flugi 6 presented in this paper provides a con-
crete reality check on the usefulness of TD-DFT for practical applications.
Geometry optimization was simplified by beginning with an X-ray
structure, but solvent and dynamics effects were ignored. All in all the
final result may be qualified as semiquantitative but useful. In fact, we
have also carried out preliminary calculations of absorption spectra
for five other members of the Flugi combinatorial chemistry series (not
reported here.) For these molecules, trends in the energies of the first
experimental absorption peaks do parallel trends in the calculated first
absorption peak as well as the HOMO-LUMO energy difference. How-
ever, in the absence of X-ray crystal data, the large number of possible
molecular configurations merits further exploration, especially since
the LDA may not correctly order these states. Hydrogen bonding with
the solvent should also be considered in some cases. For these reasons
it seems best to reserve the calculation of these spectra, comparison
with experimental spectra, and assignment of transitions for a future
paper.
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Table 5.4: Experimental geomentry (Cartesian coordinates in Å) for the Flugi
6

Atom x y z

O 14.0340 1.5882 2.9552

N 7.7362 0.5932 7.4268

N 9.1303 2.5361 7.6402

N 8.7184 -0.6003 5.8202

C 8.8581 1.3112 7.0430

C 7.6978 -0.5625 6.6613

C 6.7910 0.8587 8.3836

C 5.8275 -0.0445 8.6210

C 9.4459 0.5452 6.0467

C 12.4814 2.2280 4.5690

C 9.6943 2.5959 8.9709

C 12.2450 0.0746 3.5887

C 12.9311 1.2651 3.6923

C 11.3663 2.0047 5.3306

C 11.1149 -0.1284 4.3608

C 10.6426 0.8232 5.2590

C 5.7504 -1.2331 7.8594

C 6.6706 -1.4857 6.8881

C 11.0628 2.0293 9.0805

C 14.5914 0.5796 2.1251

C 9.6456 4.0228 9.4571

C 10.1882 4.1778 10.8473

C 11.6027 2.1400 10.5019

C 11.5598 3.5428 10.9936

H 6.8178 1.6727 8.8752

H 5.1910 0.1163 9.3101

H 12.9482 3.0519 4.6478

H 9.1307 2.0846 9.5420

H 12.5454 -0.6011 2.9948

H 11.0776 2.6830 5.9322

H 10.6436 -0.9486 4.2766

H 5.0541 -1.8576 8.0282

H 6.6161 -2.2802 6.3725

H 11.0384 1.1132 8.8327

H 11.6406 2.5025 8.4958

H 10.1595 4.5627 8.8705

H 8.7422 4.3165 9.4511

H 10.2551 5.1036 11.0519

H 9.5907 3.7627 11.4607

H 11.0761 1.5956 11.0779

H 12.5025 1.8356 10.5174

H 12.1865 4.0570 10.5007

H 11.8007 3.5496 11.9149

H 15.3192 0.9409 1.6353

H 14.8996 -0.1395 2.6665

H 13.9283 0.2626 1.5256

H 8.9445 3.3408 7.1731
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Table 5.5: DFT optimized geometries (Cartesian coordinates in Å) of Flugi 6.
Calculations performed at the LDA level of theory.

Atom x y z

O 14.0374 1.5760 2.9779

N 7.75774 0.5820 7.4296

N 9.14347 2.5138 7.6339

N 8.73705 -0.581 5.7976

C 8.85269 1.3197 7.0273

C 7.73253 -0.574 6.6557

C 6.82855 0.8581 8.3749

C 5.83564 -0.044 8.6043

C 9.44155 0.5586 6.0148

C 12.4807 2.2541 4.5863

C 9.66483 2.5868 8.9771

C 12.2472 0.0755 3.6050

C 12.9348 1.2789 3.7031

C 11.3530 2.0325 5.3457

C 11.1111 -0.130 4.3645

C 10.6388 0.8366 5.2444

C 5.77383 -1.232 7.8551

C 6.70657 -1.492 6.8869

C 11.0671 2.0245 9.0831

C 14.5517 0.5791 2.1429

C 9.63546 4.0197 9.4485

C 10.1799 4.1615 10.852

C 11.5902 2.1260 10.497

C 11.5622 3.5584 10.985

H 6.94062 1.8172 8.8855

H 5.08962 0.1718 9.3696

H 13.0361 3.1924 4.6593

H 9.01856 1.9925 9.6670

H 12.5948 -0.707 2.9284

H 11.0089 2.7962 6.0486

H 10.5470 -1.064 4.2928

H 4.97202 -1.948 8.0454

H 6.68074 -2.397 6.2775

H 11.0746 0.9834 8.7183

H 11.7169 2.5999 8.3962

H 10.2520 4.6168 8.7465

H 8.60472 4.4110 9.3825

H 10.1918 5.2227 11.149

H 9.49548 3.6524 11.557

H 10.9656 1.5016 11.164

H 12.6112 1.7164 10.558

H 12.2802 4.1561 10.392

H 11.9013 3.6190 12.032

H 15.4016 1.0289 1.6155

H 14.9021 -0.292 2.7251

H 13.8030 0.2392 1.4055

H 8.94041 3.3910 7.1600
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Table 5.6: Singlet excitation energies ( hωI, in eV) up to −ǫHOMO = 4.8713 eV,
oscillator strength (fI, unitless) and assignment.

 hωI fI Dominant transition1 Coefficient2

4.83006 0.047 1(H, L+ 7) 0.698419

4.81870 0.890 1(H− 2, L+ 3) 0.402878

4.77478 0.054 1(H, L+ 6) 0.662945

4.72164 0.373 1(H− 1, L+ 4) 0.423823

4.63424 0.665 1(H− 1, L+ 2) 0.308510

4.58075 0.572 1(H− 1, L+ 3) 0.279673

4.50552 0.048 1(H, L+ 5) 0.654877

4.47587 0.012 1(H− 5, L) 0.396204

4.38722 0.037 1(H− 2, L+ 2) 0.496849

4.33889 0.005 1(H, L+ 4) 0.550260

4.29785 0.007 1(H− 1, L) 0.332720

4.24700 0.221 1(H, L+ 3) 0.418216

4.12777 0.495 1(H, L+ 2) 0.358160

3.92056 0.116 1(H− 2, L) 0.431698

3.78973 0.042 1(H, L+ 2) 0.418160

3.50331 0.883 1(H− 1, L) 0.523227

3.21284 1.386 1(H, L) 0.615044



Part III

W O R K I N P R O G R E S S





6
M O L E C U L A R O R B I TA L S Y M M E T RY L A B E L L I N G

Unlike the rest of the thesis, this chapter is organized in a little different
way because of the nature of the work presented here. Even though the
main idea of this article to validate our implementation of symmetry
orbital labelling in deMon2k (whose theoretical details are given in
appendix A and its implementation details in appendix B) to a real-
time application, being a begineer to the field of applied chemical
physics, I think it is necessary to introduce some of the vocabularies
from the field of ligand field theory (LFT) and crysal field theory (CFT).

Since 1951, [300, 189, 190, 191] LFT has been applied to the absorp-
tion spectra of octahedral complexes with partly filled d-shells and
found to give very good agreement with the observed energy levels,
provided that reasonable values are chosen for the ligand field pa-
rameter ∆ (also denoted by (E1 − E2) or 10 Dq or 10

21K), the energy
difference between the high energy orbitals and the low orbitals con-
taining at most four and six electrons, respectively, for an octahedral
complex.

Studies on symmetry of molecules is an application of mathematical
group theory. The symmetry of a molecule can be described by
listing all the symmetry elements of the molecule and this allows
one to classify the molecule. This classification plays a vital role in
the variety of coordination complexes. A simple, yet complicated,
example is complexes of the two oxidation states of elemental iron:
Fe(II) (ferrous, 3d6) and Fe(III) (ferric, 3d5). While the half-integer
spin ferric ion is generally amendable to experimental and theoretical
studies, the integer spin ferrous ion presents a considerable challenge
to spectroscopists. When in the low-spin form (S=0), it is diamagnetic,
however it is paramagnetic in the intermediate (S=1) spin, or more
commonly, high spin (S=2). Prediction of high-spin configurations
may be difficult or even impossible to validate experimentally. This
is because in reduced symmetry environments anisotropic orbital
angular momentum contributions cause the phenomenon of zero-field
splitting (ZFS).

Thus LFT is the standard theory used to describe the physical prop-
erties of transition metal complexes [119]. However LFT is very limited
in at least two respects: (i) its abilities to describe differences in ge-
ometries due to changes in spin state, and (ii) excited states involving
ligand orbitals. DFT offers an attractive alternative, but its application
is not entirely evident. This is primarily because ∆SCF and TD-DFT may
give different answers for some excited states (though they should
agree when both are applicable). Not every excited state may be
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described by TD-DFT. We address these issues in detail for the small
well-studied complex [Fe(H2O)6 ]2+ and then go on to extract to show
how information about LFT may be extracted from DFT.

6.0.1 Transition Metal Coordination

A transition metal is defined as an element whose atom has an incom-
plete d-sub-shell or which can give rise to cations with an incomplete
d-sub-shell. Whereas a transition metal compound is a structure of
a central transition metal atom, coordinated to one or more ligands.
These compounds may be brightly coloured and some are paramag-
netic, due to the partially filled d-shells. The variety of transition metal
compounds originate from the diversity of available oxidation states
(for the transition metal) and their ability to form complexes with a
wide-range of ligands. This results in a wide range of coordination
numbers and geometries. The total number of other atoms directly
linked to the central element is termed the coordination number [3]
and this can vary from 2 to as many as 16, of which 4 and 6 are the
most common.

• Coordination number 2 (ML2) : This coordination number is
relatively rare for transition metals, since the two ligands will
have to be oriented 180◦ apart. The coordination geometry is
linear (D∞h).

Figure 6.1: Linear [D∞h](Image found on the web [8])

• Coordination number 3 (ML3) : The most important 3-coordinate
arrangements are trigonal planar (D3h) and trigonal pyramidal
(C3v) in which the three ligands are oriented 120◦ apart.

Figure 6.2: Trigonal planar [D3h] (Image found on the web [8])
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Figure 6.3: Trigonal pyramidal [C3v] (Image found on the web [8])

• Coordination number 4 (ML4) : This is a very important number.
The best known 4-coordinate arrangements are square planar
(D4h) and tetrahedral (Td). The tetrahedral arrangement is the
more common while the square planar arrangement is found
almost exclusively with metal ions having a d8 electronic config-
uration.

Figure 6.4: Square planar [D4h] ( Image found on the web [8])

Figure 6.5: Tetrahedral [Td] ( Image found on the web [8])

• Coordination number 5 (ML5) : This coordination number is less
common than four or six, but is still very important. The most
important 5-coordinate arrangements are trigonal bipyramidal
(D3h) and square pyramidal (C4v). For the trigonal bipyramidal,
a substitution of one of the axial ligands typically would lower
the symmetry to C3v whereas a subsitution of one of the quato-
rial ligands would lower the symmetry to C2v. It is interesting
to note that these trigonal bipyramidal and square pyramidal
geometries usually differ little in energy and thus the one may
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become converted into the other by small changes in bond angles.

Figure 6.6: Trigonal bipyramidal [D3h] ( Image found on the web [8])

Figure 6.7: Square pyramidal [C4v] ( Image found on the web [8])

• Coordination number 6 (ML6) : This coordination number is
most important of them all, since nearly all cations form 6-
coordinated complexes. The octahedron is often distorted, even
in cases where all ligands are chemically the same. There are
three principal forms of distortion of an octahedron. The tetrag-
onal distortion (symmetrical distortion along one C4-axis) gives
a D4h symmetry, the rhombic distortion (unsymmetrical distor-
tion along one C4-axis) gives a D2h symmetry and the trigonal
distortion gives a D3d symmetry.

Figure 6.8: Octahedral [D4h] ( Image found on the web [8])
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Figure 6.9: The five atomic d-orbitals on the Cartesian axis. There are two
atomic d-orbitals that point direct along the Cartesian axis: dx2

(which points along the z-axis) and dx2−y2 (which has lobes on
both x- and y-axes.) The other three atomic d-orbitals (dxy, dxz
and dyz), have lobes in between the Cartesian axis. A 45◦ rotation
of dxy along the z-axis results in dx2−y2 , and a 90◦ rotation of
dxz along the z-axis results in dyz. Image found on the web [7]

6.0.2 Crystal Field Theory

There are different approaches to explain the bonding in transition
metal complexes. One very familier approach is the crystal field
theory (CFT). CFT is an electrostatic model that uses the negative
charge on the non-bonding ligand electrons to create an electric field
around the positively charged metal centre. The CFT focues on the
energy changes (splitting) of the five degenerate atomic d-atomic
orbitals (Figure 6.9) on the metal centre, when surrounded by the
point charges from the ligands. For alkali metal ions containing a
symmetric sphere of charge, calculations of energies are generally
quite successful. However, for transition metal cations that contain
varying numbers of d-electrons in orbitals that are not spherically
symmetric, the situation is quite different. Despite above, CFT still
provides a remarkably good qualitative explanation of many of the
transition metal properties. The most common type of metal complex
is octahedral, although tetrahedral and other complex geometries can
also be described by CFT.

The splitting is affected by the following factors:

• The nature of the metal ion.

• The metal’s oxidation state - a higher oxidation state leads to a
larger splitting.

• The arrangement of the ligands around the metal ion.
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Figure 6.10: Illustration of a LS and HS d4 system in an octahedral environ-
ment

The nature of the ligands surrounding the metal ion - the stronger
the effect of the ligands, the greater the difference between the high
and low energy 3d groups.

6.0.3 Octahedral Crystal Field

Consider a first row metal cation surrounded by six identical ligands,
placed on the Cartesian axis at the vertices of an octahedron. As
mentioned before, each ligand is treated as a negative point charge
and there is an electrostatic attraction between the metal ion and
ligands. However, there is also a repulsive interaction between the
electrons in the atomic d-orbitals (Fig. 6.9) and the ligand point charges,
due to the repulsion between similar charges. As the distance between
the ligands and the metal ion decreases, the electrons from the ligands
will be closer to the dx2−y2 and dz2 atomic orbitals and further away
from the dxy, dxz and dyz atomic orbitals. Thus the d-electrons closer
to the ligands will have a higher energy than those further away, which
results in the atomic d-orbitals splitting in energy. This means that
the dx2−y2 and dz2 atomic orbitals are destabilized while the dxy, dxz
and dyz atomic orbitals are stabilized. From the Oh character table
[83], it can be deduced that the dx2−y2 and dz2 atomic orbitals have
an eg symmetry and the dxy, dxz and dyz atomic orbitals possess a
t2g symmetry. The energy separation between them is called ∆oct.
To maintain an energy equilibrium, the eg level lies 3/5∆oct above
and the t2g level lies 2/5∆oct below the energy of the unsplit atomic
d-orbitals. This pattern of splitting, in which the algebraic sum of
all energy shifts of all atomic orbitals is zero, is said to "preserve the
centre of gravity" of the set of levels and is called the crystal field
stabilization energy (CFSE). The magnitude of ∆oct is determined by
the strength of the crystal field. Factors governing the magnitude are
the identity and oxidation state of the metal ion and the nature of the
ligands.

6.0.4 High-Spin (HS) And Low-Spin (LS)

Let us have a look at the effects of different numbers of electrons
occupying the atomic d-orbitals in an octahedral crystal field. For a
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Figure 6.11: Illustration of alternative spin states: LS, intermediate spin and
HS of a d5 system in an octahedral environment

d1 system, only one state is possible, which is t12g. For a d4 system,
two arrangements are available: the four electrons may occupy the
t2g set with the configuration t42g (large ∆oct Figure 6.10 left) or may
singly occupy four atomic d-orbitals with the configuration t32ge

1
g

(small ∆oct Figure. 6.10 right). This corresponds to LS (Fig. 6.10

left) and HS (Fig. 6.10 right) respectively. The distinction between
the LS and HS configuration is governed by the size of the pairing
energy (Ep) versus the crystal field splitting energy (∆). For the LS
configuration, the next question arises - where is the paired electron?
Is it d2xyd1xzd1yz,d1xyd2xzd1yz or d1xyd1xzd2yz? The preferred configuration
is that with the lowest energy and depends on where it is energitically
preferable to place the fourth electron. Thus for a d5 system, ten
different arrangement (3 LSs, 6 intermediate-spins and 1 HS) are
possible (Fig. 6.11). These different arrangements are called alternative
spin states and will be used in this study.

6.0.5 Jahn-Teller Distortions

Octahedral complexes of d9 and HS d4 ions are often distorted in
such a way that the axial metal-ligand bonds (along the z-axis) are
of different lengths from the remaining four equatorial metal-ligand
bonds (x- and y-axis). This is illustration in Fig. 6.12. For a HS d4
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Figure 6.12: Jahn-Teller distortions along the z-axis. The Jahn-Teller theorem
states that any non-linear molecule system in a degenerate elec-
tronic state will be unstable and will undergo distortion to form
a system of low symmetry and low energy, thereby removing
the degeneracy

ion, one of the eg atomic orbitals contains one electron while the
other is vacant. If the singly occupied orbital is in the dz2 atomic
orbital, most of the electron density in this orbital will be concentrated
between the cation and the two ligands on the z-axis. Thus, there
will be a greater electrostatic repulsion associated with these ligands
than with the other four and the complex suffers elongation (Fig. 6.12

left). On the other hand, if the singly occupied orbital is in the dx2−y2

atomic orbital, it would lead to elongation along the x- and y-axis
(Fig. 6.12 right). A similar argument applies for a d9 system where
the two atomic orbtials in the eg set are singly and doubly occupied
respectively. Distortions of this kind are called Jahn-Teller distortions.

6.0.6 Molecular Orbital Theory

Another approach to explain the bonding in transition metal com-
plexes is the molecular orbital (MO) theory. In MO theory, electrons
are not assigned to individual bonds, but are treated as moving under
the influence of the nuclei in the whole molecule. The probable posi-
tion of the electrons can be described by an MO wave function which
describes the different MOs of a molecule. MOs can be arranged in
energy levels that account for the stability of various molecules.

Consider an octahedral ML6 complex where the ligands have only
σ-orbitals (no π-orbitals) directed toward the metal ion. The six σ-
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orbitals are designated σx and σ−x (along the x-axis), σy and σ−y

(along the y-axis), and σz and σ−z (along the z-axis). These six orbitals
combine to make six distinct linear combinations called ligand group
orbitals (LGOs). Each LGO has a symmetry that is correctly oriented to
overlap with one of thes−, p− or d−orbitals of the metal. This method
is called the linear combination of atomic orbitals approximation and
is used in computational chemistry.

Each such overlap between one of the six LGOs and a metal orbital
results in the formation of a bonding MO and an antibonding MO. If
this orbital is of a type in which the electron in the orbital has a higher
probability of being between nuclei than elsewhere, the orbital will
be a bonding orbital and will tend to hold the nuclei together. If the
electrons tend to be present in a molecular orbital in which they spend
more time elsewhere than between nuclei, the orbital will function as
an antibonding orbital and will actually weaken the bond.

MO theory can further be generalized by including π-orbitals. One
must differentiate between two types of ligands: π-donor and π-
acceptor ligands. A π-donor ligand donates electrons to the metal
centre in an interaction that involves a filled ligand orbital and an
empty metal orbital, whereas a π-acceptor ligand accepts electrons
from the metal centre in an interaction that involves a filled metal
orbital and an empty ligand orbital. The ligand group π-orbitals are
filled and lie above (but relatively close to) the ligand group σ-orbitals.
The π-orbitals can overlap with the dxy, dyz and dxz atomic orbitals
of the metal and this leads to bonding (t2g) and antibonding (t∗2g)
MOs. The positions of these sets of t2g and t∗2g orbitals in the MO
energy-level diagram are variable depending on the nature of the
ligand π-orbitals.

The following important differences between octahedral ML6 com-
plexes containing σ-donar, π-donar and π-acceptor ligands exist:

• ∆oct decreases in going from a σ-complex to one containing
π-donor ligands.

• For a complex with π-donor ligands, increased π-donation sta-
bilizes the t2g level and destabilizes the t∗2g, thus decreasing
∆oct.

• ∆oct values are relatively large for complexes containing π-
acceptor ligands and such complexes are likely to be LS.

• For a complex with π-acceptor ligands, increased π-acceptance
stabilizes the t2g level, thus increasing ∆oct.

6.0.7 Ligand Field Theory

Ligand field theory (LFT) is an extension of CFT that assigns certain
parameters as variables rather than taking them as equal to the values
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Figure 6.13: Schematic representation of the two possible spin states for
iron(II) and iron(III) coordination compounds in an octahedral
environment

found for free ions, thereby taking into account the potential covalent
character of the metal-ligand bond. In other words, LFT (like CFT)
is confined to the role of atomic d-orbitals, but (unlike CFT) the LFT
approach is not purely electrostatic model. It is a freely parameterized
model and uses ∆oct along with the Racah parameters, which are
obtained from electronic spectroscopic data. LFT is more powerful
than either CFT or MO theory, but unfortunately it is also more
abstract.

6.0.8 Spin Crossover

The choice between a LS and HS configurations for d4 to d7 complexes
is not always unique and a spin crossover (SCO) sometimes occurs.
The electronic ground state of these SCO complexes may be reversibly
interchanged under external stimuli such as temperature, pressure,
magnetic field or light irradiation. This type of molecular magnetism
is one of the most spectacualr examples of molecular bistability driven
by external constraints leading to molecular switches or memory.

The atomic d-orbitals of an octahedral complex split into the t2g and
eg sets with an energy separation of ∆oct and therefore the complexes
can either exist in LS or HS states. As an example, Fig. 6.13 illustrates
the possible spin states for iron(II) and iron(III) complexes. This spin
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state is influenced by the nature of the ligand field surrounding the
metal centre. In weak fields, HS is the ground state (corresponding
to the highest possible spin multiplicity) and the d-electrons are dis-
tributed over the t2g and eg sets. Strong fields again stabilize the
LS state with minimum multiplicity. In this case, Fig. 6.13, the t2g
set is completely occupied before electrons are added to the eg set.
The energy gap between these orbitals (∆oct) varies subject to the
ligands used to generate the metal coordination compounds. If the
appropriate energy gap is achieved by the application of an external
stimulus, the d-electron(s) transfers from the t2g set to the eg set
and the compound passes from one configuration to the other. This
phenomenon is called spin crossover.





T E S T I N G S Y M M E T RY I M P L E M E N TAT I O N I N
D E M O N @ G R E N O B L E : S P I N S TAT E A S S I G N M E N T
F O R T H E G R O U N D A N D E X C I T E D S TAT E S O F
[ F E ( H 2 O ) 6 ] 2+

bhaarathi natarajan and mark e. casida

6.1 introduction

The importance of transition metal complexes—whether it be in the
active sites of biomolecules or in intelligent materials—has given them
a well-merited place in the curriculum of every well-trained chemist.
We are particularly interested in transition metal complexes belonging
to the spin-crossover regime. In these complexes, the high-spin (HS)
and low-spin (LS) states are close in energy with the LS state a little
lower in energy. As the equilibrium,

LS = HS , (6.1)

with

K =
[HS]

[LS]
, (6.2)

is determined by the well-known thermodynamic relation,

−RT lnK = ∆G = ∆E+ P∆V − T∆S ≈ ∆E− T∆S , (6.3)

and

∆E = EHS − ELS > 0

∆S = SHS − SLS > 0 , (6.4)

it is possible to change the color, magnetism, as well as still other
properties (such as the dielectric constant), of the complex by a change
of temperature. This gives us an optomagnetic molecular switch.
When it is possible to induce the spin-crossover transition by light, we
speak of light-induced excited spin-state trapping (LIESST).

Up until about 10 years ago, LFT was pretty much the only model
used to describe complexes in the spin-crossover regime, despite the
limitations associated with the relative simplicity of the spin-crossover
model [119]. The DFT has shown itself to be useful for studying the
ground states of these complexes. In order to go further in modeling
the light-induced excited spin-state trapping (LIESST) phenomenon,
one could imagine using a generalization of DFT, namely TD-DFT [241].
The LIESST effect is a general phenomenon in the sense that it is
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Figure 6.14: Starting geometry for optimizations for S=5/2,3/2 and 1/2 spin
states of [Fe(H2O)6]2+

the photoinduced population of the HS state of any transition metal
complex with a LS ground state. However there may be problems
associated with TD-DFT state assignments due to spin-contamination
when the ground state is open-shell [182].

6.2 structural details

Figure 6.14 shows the initial geometry for the hexaaquo iron(II) com-
plex used for all calculations. All the Fe-O distances have been reg-
ularized to the same initial value of 1.75 Å and the oxygen atoms
placed along the octahedral axes. (Slight deviations from octahedral
symmetry are present in the crystal structure they appear to be the
result of intermolecular hydrogen-bonding interactions between water
molecules or between water and the counterions.) The dispositions
of the hydrogens of the waters closest to one another in this structure
are of a "staggered" nature with the hydrogens of waters "anti" to
one another in the same plane. However, the mean deviation of the
hydrogen positions are fixed throughout the calculations relative to
the oxygen to which they are bonded and the Fe-O bond. The point
group characterizing the complete structure of the complex is Th.

6.2.1 Basis Sets

For Fe we employed a triple-zeta-valance polarization (TZVP) con-
tracted Gaussian type orbital basis. The basis set used for H2O was a
double-zeta-valance polarization (DZVP) Gaussian set.
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6.2.2 Computational Details

All calculations were performed using the symmetry implemented
version of deMon2k. All DFT and TD-DFT calculations were performed
using the PBE91 functional and ’fine’ integration grid was employed.
The guess ’core’ option was used for all SCF calculations with the
tolerance of 10−5 a.u. TD-DFT calculations were performed within TDA.

6.3 results

In a mononuclear transition metal complex, the central ion is sur-
rounded by the ligands in a specific three-dimentional arrangement.
The metal-ligand bonds involved are of the dative type, that is the
metal interacts as a Lewis acid with the ligand, which in turn acts as a
Lewis base.

In Th symmetry, the metallic dz2 and dx2−z2 orbitals form a basis
set for the eg irreducible representation, while the dxy, dyz and dxz
orbitals constitue a basis for the t2g irreducible representation. All five
3d orbitals are degenerate in the free metal iron. The ligand orbitals,
also can be combined linearly to form a basis set for the irreducible
representations in Th. Those belonging to eg and t2g can interact with
the metal d orbitals of corresponding symmetry.

Molecular orbitals thus formed from the σ interaction between the
metal eg orbitals and the correspondingly combined ligand eg orbitals
result in antibonding e∗g and bonding eg MOs. The former are metal-
centered because the metallic contributions (the dx2 and dx2−z2) are
higher in energy than those from the corresponding ligand eg orbitals.
The metalic t2g orbitals remain mostly non-bonding because their
symmetry is not appropriate to have interactions with the orbitals
of the ligands, except for usually small π interactions which can
be either antibonding character in the case of π base ligands. The
six σ bonding molecular orbitals result from the combination of the
symmetry adapted linear combinations (SALC) of the ligands with
the metal orbitals of the same symmetry.

The splitting of the d orbitals upon complex formation is often
discussed in terms of crystal field theory (CFT) in which the ligands
are considered as point charges with which the d electrons interact
electrostatically. Thus the metal eg orbitals pointing towards the
ligands are destabilized with respect to the metal t2g orbitals. The
energy difference between the metal-centered e∗g and t2g levels is
called the ligand field splitting and is expressed by the ligand field
parameter ∆=10Dq. Its value depends on the chemical properties
of the ligands and the metal iron. Thus 10Dq can be regarded as a
measure of the metal-ligand interaction.
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Figure 6.15: Elementary pairing energy argument

6.3.1 Optimized Geometries And Breathing Coordinates

Table 6.1: Average Fe-O bond lengths of the three spin states.

State R(Fe-O)/Å

S=5/2 2.15

S=3/2 2.10

S=1/2 2.00

Table 6.1 and 6.2 lists the Fe-O distances for the optimized [Fe(H2O)6]2+

structures resulting in Th symmetry and their corresponding ener-
gies in the three spin states respectively. The average value of the
Fe-O distance decreases with decreasing spin multiplicity: RFe−O(S =

5/2)avg > RFe−O(S = 3/2)avg > RFe−O(S = 1/2)avg.
The optimized singlet and quintet geometries have been discussed

in Ref. [125]. According to LFT the triply degenerate t2g orbital is
expected to be nonbonding while the doubly degenerate eg orbital
is expected to be antibonding with respect to the ligands. Going
to higher spin states means populating the antibonding orbital and
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Table 6.2: Energies of High, Intermediate, and Low Spin State Complexes at
Optimized Geometries .

State E(Ha)

S=5/2 -1721.11678

S=3/2 -1721.08743

S=1/2 -1721.09407

E(3/2) - E(5/2) 6441.41908

E(1/2) - E(5/2) 4984.20717

hence is expected to lead to longer bonds. The calculated average
equilibrium Fe-O bond lengths are shown in Table 6.1. Not only are
the complexes not exactly octahedral because the water molecules
are not exactly spherical, but the triplet and quintet states undergo
Jahn-Teller distortions to remove their electronic degeneracies. This
is why we speak of average bond lengths. However the distortion is
small.

6.3.2 Ground State And Excited-State Curves

The efficient control of spin-state transitions depends on an in-depth
understanding of the relationship between the structural and energetic
factors which rule the relaxation kinetics.

Although its nature and the spectroscopic constants are known, our
results will be included here for sake of validation. The total energies
of the low-lying states as a function of metal ligand distance (R Å)
are depicted in figure 6.16. The increase of the R parameter equilizes
the singlet and triplet energies, producing a spin crossover at R ≈ 2

Å and the triplet and quintuplet energies, producing an another spin
crossover at R ≈ 2.1 Å. At higher values of R, the quintuplet remains
the ground state.

6.3.2.1 Excited States Calculations

The ∆SCF method is based on the extension of the Hohenberg-Kohn
theorems to treat the state of lowest energy among states of given
spatial and spin symmetry 2S+2Γ . It allows in particular to estimate
the energy difference between states of distinct symmetries through
regular Kohn-Sham calculations. The method requires the knowledge
of the symmetry dependence of the xc functional. This condition is
not fulfilled by the current approximate functionals. Despite this, the
∆SCF approach is known to give satisfactory results [340].

The linear-response (LR) method in TD-DFT can be used to charac-
terize the states of interest even if they are not the states of lowest
energy in a given symmetry. It allows one to obtain the energies of
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Figure 6.16: Ground-state curves

the excited states upon excitations with respect to a given reference
state which could be the ground state or the state of lowest energy for
a chosen symmetry. In particular the calculations on transition metal
systems involve treating partially filled d shells with one or several
unpaired electrons. The reliable determination of the small energy
differences between states, which originated from the state or differ-
ent electronic configurations demands very accurate computational
methods. It should be recalled that the first-row transition metal ions
have a very compact 3d electron subshell, which makes the treatment
of electronic correlation extremely difficult with an decisive choice of
the xc-functional.

Figures 6.17, 6.18, and 6.19 presents the Walsh diagrams for the
excited state singlet, triplet, and quintuplet respectively. Examination
of orbital symmetries using those plots show us the tendency of
decrease in energy with respect to decrease in interatomic distance
with among the lowest excited states. In case of singlet, the eg orbital
symmetry tend to mix with the lowest ag state symmetry when the
water molecule close to the metal ion. More or less the same trend
is observed for the triplet as shown in fig 6.18. When the system is
in the high spin state i.e., for quintuplet orbital symmetry behavior
seems is not yet quite understood especially in the region where the
spin crossover occurs. The observation shows that the orbital with
ag symmetry orbital remains unchanged thoughout the interatomic
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Figure 6.17: Singlet Walsh diagram

distances. However higher orbital symmetries gets lower in energy for
the lower distance between metal ion and ligand but not close enough
to cross the lower symmetry orbital. Careful studies would be needed
to make any further understanding of this spin state behavior.

6.4 conclusion

The optimized structure and spin-state energies of the hexaaquo
iron(II) complex, [Fe(H2O)6]2+, in high (S=5/2), intermediate (S=3/2),
and low (S=1/2) spin states were determined from a common structure
using unrestricted Kohn-Sham density-functional theoretical (DFT)
method. The optimized ground-state geometries were similar to each
other and the energy ordering of the spin state was found to be : E(5/2)
< E(3/2) < E(1/2). Time-dependent density-functional calculations
were performed using symmetry implemented version of deMon2k.
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Figure 6.18: Triplet Walsh diagram
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Part IV

C O N C L U D I N G R E M A R K S





7
O V E R A L L C O N C L U S I O N

7.1 conclusion

My thesis project, "Implementation, Testing, and Application of Time-

Dependent Density-Functional Theory Algorithms for Gaussian- and Wavelet-

based Programs", is part of a greater NanoSTAR project aimed at de-
veloping new, and improving existant methods for the theoretical
modeling of nanoelectronic systems. Such systems typically involve
large molecules, small solids, or simply molecules on surfaces. Thus
the modelling of nanoelectronic systems very much lies at the interface
between molecular and solid-state theory.

The NanoSTAR project divides into two parts: one dealing with
spectroscopy; the other dealing with conductivity. My project falls
within the former part and steps taken to acheive the goal of the
project are reported in this thesis.

This thesis is very much a contribution at the interface between
molecular and solid-state theory. Many interesting things happen
when molecules come in contact with solids – be it heterogeneous
catalysis, molecular crystals, or molecules on conducting surfaces
designed to carry out applications in nanoelectronics. Very few people
are trained to work with the theoretical ideas and the programming
of computer codes in both of these areas and I think that my work
contributing to improved algorithms for TD-DFT in both these areas
opens the way to new algorithms for applications where molecules
come into contact with conductors, semiconductors, and even optically-
active insulators.

My thesis work began with the quantum chemistry code deMon2k.
This was my initiation to many ideas in hard-core theory. Not only
did I have to learn about basis sets, grids, convegence criteria, po-
tential energy surfaces, and all the jargon of quantum chemistry so
that I could run the programs, but I also helped to implement the
molecular orbital symmetry routines in deMon2k and verify that they
worked correctly. These routines were subsequently applied to work
in progress (chapter 6) on [Fe(H2O)6]

2+ designed to high-light the
pros and cons of TD-DFT for potential energy surfaces of open-shell
molecules. It is often assumed that, for the characterization of tran-
sition metal complexes used for studying the spin crossover (SCO)
and light induced excited spin-state trapping (LIESST) phenomena,
density-functional theory (DFT) within the Kohn-Sham (KS) formula-
tion is adequate for the description not only of the molecular structure
in all spin-states, but also of the energies and photophysics. However
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it is also clear that TD-DFT may present not just advantages, but also
problems, when used to calculate the excitation spectra and PES of
species with open-shell ground states. Such species abound in the
field of transition metal coordination complexes. In order to clarify
how best to use TD-DFT for such problems. Thus, a spin crossover
complex [Fe(H2O)6]

2+ was taken as an example test case. In the study
of [Fe(H2O)6]

2+, the main subjects treated were the ability of DFT to
describe and predict the molecular structure of such complexes and
the difficulties encountered when it comes to calculating the energetics
of the different spin states. The calculation of excitation energies for
three different spin states were carried out and future studies will
be focused on studying the potential energy surfaces (PES) morefully,
including with functionals beyond the simple LDA. The modelling of
the effect of the environment is very important, especially because
it is known that the environment is often important for getting right
delicate energy difference between different spin-states.

Early on I was also heavily involved in exploring the spin-flip (SF)
approach to TD-DFT to see how it works for describing the conical
intersection (CX) in the photochemical pathway of oxirane ring open-
ing. The CX forms a part of the photophysical and photochemical
reaction pathway of molecules. In this model, points on the excited
state (Franck-Condon region, minima, transition states and conical
intersections) are linked by a path of steepest descent. The CX acts
as a point from which the reaction may branch, as the population
moves from the higher to the lower state. The exact structure of the
CX can be used to gain insight regarding the photochemical stability
of molecules and regarding how the reaction pathway may branch
thus leading to more than one product in different relative ratios. In
chapter 4 an attempt is made to test the validity of SF-TD-DFT method
for locating CX and to make a comparison of the PES trajectories with
that of TD-DFT, CIS and CASSCF for the text book molecule oxirane. The
results presented in 4.7.3 suggest that SF-TD-DFT method, though not
as good as multi-reference wave function methods, can improve the
description of oxirane photochemistry compared to conventional TD-

DFT. The generalities of SF-TD-DFT has been reinforced and presented
in what we trust is a convincing way.

This was long and tedious but rewarding work which helped to
bring out the pros and cons of this attractive and yet not completely
satisfactory approach to resolving some fundamental problems of TD-

DFT for key regions of photochemistry potential energy surfaces. This
project certainly sparked my interest for theoretical photochemistry
and helps to explain my contribution both to the book chapter on
photodynamics with TD-DFT (chapter 2). In that chapter, two common
approaches to quantum-classical (nonadiabatic) dynamics were intro-
duced: wave function-based and density function-based dynamics.
After reviewing quantum-classical wave function molecular dynamics,
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a method to perform dynamics within TD-DFT was discussed. Such a
formulation on the dynamics holds much promise for cases where the
dynamics of large molecues.

My work then shifted to the problem of implementing TD-DFT in
the wavelet program BigDFT. Wavelets are very different both from
the plane waves typical of solid-state physics programs and from
the GTOs typical of quantum chemistry programs. In attacking this
problem, I brought with me the knowledge of how TD-DFT is pro-
grammed in deMon2k and how it is used in practice in that program
plus the desire to explore the new (both to me and to much of the
physics and chemistry communities) technique of wavlets. Learning
the basics of wavelets involved a major retraining in modern applied
mathematics and this is well reflected in the book chapter that I wrote
trying to make wavelet-based DFT and TD-DFT more understandable
to the broader physics and chemistry audience. In this chapter 3, we
have shown the principal features of an electronic structure pseudopo-
tential method based on Daubechies wavelets. Daubechies wavelets
properties make the basis set a powerful tool for electronic structure
calculations. The matrix elements, the kinetic energy and nonlocal
pseudopotentials operators can be calculated analytically in this basis.
The other operations are mainly based on convolutions with short-
range filters, which can be highly optimized in order to obtain good
computational performances. BigDFT shows high systematic conver-
gence properties, very good performances for bigger systems and an
excellent efficiency for parallel calculations.

Implementation of TD-DFT in BigDFT as described in chapter 5 was
also facilitated by my previous experience in working with deMon2k

in the sense that both programs are very big, professional codes. The
final result is a first working version of wavelet-based TD-DFT which
was tested and found to work reasonably well – well enough to do
an interesting calculation of the Flugi6 spectrum. The corresponding
documentation is given in appendix C. The problems anticipated
with the use of unoccupied wavelet-orbitals are there, but turned
out to be much less severe than expected. Future work on TD-DFT in
BigDFT should focus on eliminating as much as possible the need
for unoccupied orbitals. Making the TD-DFT part of the code robust
and user-friendly is also important. Only then should we go on to
the very interesting area of excited-state analytical derivatives with
applications to luminescence and to photochemical dynamics.

Detailed formula given in appendix D for the TD-DFT analytical
derivatives that we had hoped (and still hope) to implement in both
the GTO-based deMon2k and the wavelet-based BigDFT codes for the
future exploitation of TD-DFT beyond Born-Oppenheimer approxima-
tion.





Part V

A P P E N D I X





A
P R O J E C T O R S F O R S Y M M E T RY B L O C K I N G

Implementing and debugging a method can be very difficult unless
you have a good understanding of the formalism behind the method.
The goal of this small document is to help provide the background for
symmetry blocking of the Kohn-Sham orbital eiganvalue problem,

F̂|iσ〉 = ǫσi |iσ〉 , (A.1)

Here |iσ〉 is the ith molecular orbitals (MO) associated with spin σ.
The emphasis on how symmetry projectors are defined and used.
In particular we will be concerned with P̂Γ , the projector onto the
irreducible representation (irrep) Γ .

Most of the time, the MO should belong to an irrep of the space
group of the molecule. An exception occurs when there are acci-
dental degeneracies. These are simply MOs with the same energy
but belonging to different irreps. Their linear combination is also
an eigenfunction of the molecule with the same energy but need not
belong to an irrep of the molecule. Far from being rare, accidental
degeneracies of 1s core orbitals are likely to be common for large
symmetric molecules. Problems may also occur for virtual orbitals
with closely-spaced energy levels.

Probably the best way to ensure that the MOs belong to irreps is to
set up and solve the projected problem,

F̂σΓ |iσ〉 = ǫσi |iσ〉 , (A.2)

where,

F̂σΓ = P̂Γ F̂
σP̂Γ . (A.3)

Our ultimate objective is to set up and solve Eq. (A.2) in a finite basis
set of atomic orbitals (AO)s, |µ〉. That is, we want to find the coefficients
cσµ,i in the expansion,

|iσ〉 =
∑

|µ〉cσµ,i . (A.4)

a.1 representation theory

Any operator, Ô, may be represented in terms of finite basis sets, |µA〉,
|νA〉, etc. Here I have deliberately chosen to use more than one basis
set so that we can talk about transformations from one basis set to
another.
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The operator Ô may be either represented in a finite basis set by
using expansion coefficients,

[

Ô
]

µA,νB
, defining the action of the

operator on a basis set,

Ô|νB〉 =
∑

|µA〉
[

Ô
]

µA,νB
, (A.5)

or in terms of its matrix elements,

ÔµA,νB = 〈µA|Ô|νB〉 . (A.6)

The relation between the two is that,

ÔµA,νC =
∑
〈µA|κB〉

[

Ô
]

κB,νC

OA,C = SA,B

[

Ô
]

B,C
[

Ô
]

B,C
= (SA,B)

−1OA,C , (A.7)

where

SµA,νB = 〈µA|νB〉 , (A.8)

defines the overlap matrix SA,B. I shall assume that sums are over
all repeated indices after the sum sign (Einstein convention), unless
otherwise indicated.

The action of an operator expressed in terms of a finite basis set is a
little tricky. The algebra of expansion coefficients is easiest,

∑
|νA〉

[

X̂Ŷ
]A,C

µ,ν
= X̂Ŷ|µC〉

= X̂
∑

|κB〉
[

Ŷ
]

κB,νC

=
∑

|νA
[

X̂
]

νA,κB

[

Ŷ
]

κB,νC
(A.9)

or
[

X̂Ŷ
]

A,C
=
[

X̂
]

A,B

[

Ŷ
]

B,C
. (A.10)

In fact, the expansion coefficients have the same algebra as the opera-
tors!

This is not so far the matrices. Instead we have that

(SB,A)
−1 MB,E = (SB,A)

−1 XB,C (SD,C)
−1 YD,E , (A.11)

because of Eq. (A.7). Here MµB,νE = 〈µB|X̂Ŷ|νE〉 is the matrix of the
product of the operators. Thus

MB,E = XB,C

(

S−1
D,C

)

YD,E . (A.12)

We can also arrive at the same result using the projection operator,

P̂ =
∑

|µC〉
(

S−1
D,C

)

µC,νD
〈νD| . (A.13)
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Then

MµB,νE = 〈µB|X̂Ŷ|νE〉
≈ 〈µB|X̂P̂Ŷ|νE〉
=

∑
〈µB|X̂|κC〉

(

S−1
D,C

)

κC,λD
〈Dλ|Ŷ|νE〉

MB,E = XB,C (SD,C)
−1 YC,E . (A.14)

Notice how Eq. (A.12) assumes that the space spanned by the finite
AO basis set is closed under the action of the operators (which may
not actually be the case.) Also the projection operator becomes the
resolution-of-identity (RI) (i.e., completeness relation) in the limit of a
complete basis set.

a.2 symmetry projection

We want to make symmetry adapted linear combinations (SALCs) by
projection. For each irrep, this involves a transformation,

|νΓ〉 =
∑

|µ〉
[

1̂
]

µ,νΓ
, (A.15)

Here
[

1̂
]

µ,νΓ
= Aµ,νΓ , (A.16)

(Actually A is a work vector in deMon2k and so does not always refer
to the SALCs, but we will use it here as synomymous with the SALC
expanstion coefficients.)

The most common way to make SALCs is via the well-known
formula of group theory,

Γ
P̂
=
dim(Γ)

dim(G)

∑

Ĝ∈G

χΓ (Ĝ)Ĝ . (A.17)

However orthonormalization of SALCs belonging to the same irrep
provides a potentially different equivalent set of SALCs, so we should
not necessarily assume Eq. (A.17). Note that I have made the irrep
label a left superscript in Eq. (A.17) to minimize confusion with basis
set transformations.

From Eqs. (A.15-A.16), matrix elements of the projector P̂ onto the
irrep Γ are given by,

Pµ,νΓ =
∑
〈µ|κ〉Aκ,νΓ

P−,Γ = S−,−A−,Γ

A−,Γ = (S−,−)
−1 P−,Γ . (A.18)
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Here (−) indicates the untransformed AO basis set, while the Γ sub-
script refers to the SALCs. This is the famous deMon2k formula for
the projector. Also

Pµ,Γ,νΓ =
∑
〈µΓ |λ〉Aλ,νΓ

=
∑

A∗
κ,µΓ 〈λ|λ〉Aλ,νΓ

PΓ,Γ = A†
−,ΓS−,−A−,Γ . (A.19)

It should be clear that Eq. (A.18) and Eq. (A.19) are representations of
the same projector but in different basis sets.

One way to that |iσ〉 belongs to the irrep Γ is to calculate,

〈iσ|P̂|iσ〉 =
∑

Γ !

〈iσ|µΓ〉
(

S−1
Γ,Γ

)

µΓ,νΓ
〈νΓ |iσ〉 , (A.20)

and compare it with

〈iσ|iσ〉 = ~c
†
iS−,−~ci . (A.21)

The Γ ! indicates not to sum over the index Γ . Now

SΓ,Γ = PΓ,Γ = A†
−,ΓS−,−A−,Γ , (A.22)

and

〈iσ|µΓ〉 =
∑
〈iσ|ν〉Aν,µΓ

=
∑

~cσκ,iSκ,νAν,µΓ

〈iσ|P̂|iσ〉 = ~c
σ,†
i S−,−A−,Γ

(

A†
−,ΓS−,−A−,Γ

)−1

A†
−,ΓS−,−~c

σ
i

= ~c
σ,†
i P−1

Γ,ΓPΓ,−~c
σ
i . (A.23)

From this we can deduce that,

P−,− = P−,ΓP−1
Γ,ΓPΓ,− . (A.24)

This will often work to assign the irrep of a MO, but not always. The
problem is that |iσ〉 need not belong to an irrep because of accidental
degenerecies. That is why symmetry blocking is essential.

a.3 symmetry blocking

Let us now work on blocking the Kohn–Sham eigenvalue problem.
Let us write,

|iσ〉 =
∑

|νΓ〉dσνΓ,i
=

∑
|µ〉Aµ,νΓd

σ
νΓ,i . (A.25)
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Comparing with Eq. (A.4) gives that,

cσµ,i =
∑

Aµ,νΓd
σ
νΓ,i

~cσi = A−,Γ
~dσi (A.26)

Substituting Eq. (A.25) into Eq. (A.1) gives,
∑

F̂σ|νΓ〉dσνΓ,i = ǫσi
∑

|νΓ〉dσνΓ,i , (A.27)

If we want to use the projector of Eq. (A.19), then we should work
with

∑
〈µΓF̂σ|νΓ〉dσνΓ,i = ǫσi

∑
〈µΓ |νΓ〉dσνΓ,i , (A.28)

This becomes

A†
−,ΓFσ

−,−A−,Γ
~dσi = ǫσi A†

−,ΓSσ
−,−A−,Γ

~dσi . (A.29)

What we have is the matrix of F̂σΓ in the representation of SALCs:
Making use of P−,Γ , we see that,

Fσ
Γ,Γ = PΓ,− (S−,−)

−1 F−,−
σ (S−,−)

−1 P−,Γ

=
(

A†
−,ΓS−,−

)

(S−,−)
−1 F−,−

σ (S−,−)
−1

(S−,−A−,Γ )

= A†
−,ΓF−,−

σA−,Γ . (A.30)

Notice that, although we have used the projector PΓ,− = S−,−A−,Γ in
the demonstration, the final result is most easily expressed directly in
terms of A−,Γ .
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Figure B.1: Example of symmetry: Tamil mandala painted on a roof inside a
temple located in Mauritius Island. (Found on the web.)

b.1 introduction

“Symmetrize and conquer.”

Group theory is a basic part of the training of physical chemists and
chemical physicists as evidenced by the large number of texts on the
subject. (See for example Refs. [157, 310, 83, 17].) Essentially symmetry
both helps us to simplify complex problems and thereby understand
them. In fact, molecular orbital (MO) symmetry assignments have
become such an essential part of the language of spectroscopy that,
at least for small molecules, it is difficult to avoid the use of group
theoretic labels. [253] This document describes the implementation of
symmetry blocking and of MO symmetry assignments in deMon2k.

The MOs in question are the solution of the Kohn-Sham equa-
tion, [206]

F̂σψσ
p(r) = ǫ

σ
pψ

σ
p(r) , (B.1)

where F̂ is the Kohn-Sham analogue of the Fock operator in Hartree-
Fock. Here σ = α,β is the spin index and ψα

p may be different from
ψ

β
p for spin-unrestricted calculations. deMon2k solves the Kohn-Sham

203
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equation by developing each MO as a linear combination of atomic
orbitals (AOs),

ψσ
p(r) =

∑

µ

χµ(r)C
σ
µ,p , (B.2)

(Note that χ is also used to denote a character in group theory. How-
ever we trust that the distinction will be clear from context.) In reality,
rather than the solutions of an atomic Schrödinger equation, the
so-called AOs are just convenient atom-centered contracted Gaussian-
type orbital basis functions. In this way, the exact differential equa-
tion (B.1) is reduced to the approximate matrix equation,

F
σ
C

σ
p = ǫσpSC

σ
p . (B.3)

where,

Fσµ,ν = 〈χµ|F̂σ|χν〉
Sµ,ν = 〈χµ|χν〉 , (B.4)

or, in an even more compact notation,

Fσµ,ν = 〈µ|F̂σ|ν〉
Sµ,ν = 〈µ|ν〉 . (B.5)

The matrix S is the AO overlap matrix. These matrices are not in
general blocked so, for example,

F =



















∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



















, (B.6)

where the asterisk indicates possibly nonzero matrix elements.
However if a molecule has symmetry, we can form new symmetry

adapted linear combinations (SALCs) of the AOs,

φΓ
µ(r) =

∑

ν

χµ(r)T
Γ
µ,ν , (B.7)

or,

|µ, Γ〉 =
∑

ν

|ν〉TΓµ,ν . (B.8)

Here Γ denotes the irreducible representation or “irrep” of the SALC.
Re-expressing the Fock and overlap matrices in the underlying basis
of the SALCs, leads to symmetry blocking. In particular,

〈µ, Γ |F̂σ|ν, Γ ′〉 = δΓ,Γ ′FΓµ,ν , (B.9)
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where,

Fσ,Γµ,ν =
∑

µ ′,ν ′

TΓ,∗µ ′,µF
σ
µ ′,ν ′TΓν ′,ν

F
σ
Γ = T

†
ΓF

σ
TΓ , (B.10)

and similarly for the overlap matrix. Defining a new matrix,

T̃µ,Γ ;ν = TΓµ,ν , (B.11)

allows us to write,

F̃
σ = T̃

†
F
σ
T̃

=









FσΓ1
0 0

0 FσΓ2
0

0 0 FσΓ3









=



















∗ ∗ 0 0 0

∗ ∗ 0 0 0

0 0 ∗ 0 0

0 0 0 ∗ ∗
0 0 0 ∗ ∗



















, (B.12)

say, and similarly for the overlap matrix. This allows us to write, the
matrix equation (B.3) as separate equations for each block,

F
σ
ΓC

Γ
p,σ = ǫσpSΓC

Γ
p,σ (B.13)

The corresponding MO ψσ
p belonging to the irrep Γ is,

ψσ
p(r) =

∑

ν

φΓ
ν(r)C

Γ
ν;p,σ

=
∑

µ,ν

χµ(r)T
Γ
µ,νC

Γ
ν;p,σ . (B.14)

Comparison with Eq. (B.2) shows that,

Cσ
µ,p =

∑

ν

TΓµ,νC
Γ
ν;p,σ . (B.15)

Since equations (B.13) are smaller matrix equations than Eq. (B.3),
less work is required to solve each one. However this gain is at least
partially counterbalanced by the need to calculate the SALCs. The
most important gains are possibly elsewhere:

1. Each MO now has an explicit symmetry label, Γ .

2. Explicit symmetry reduces the number of variational parameters
and this may lead to faster convergence of self-consistent field
(SCF) calculations.
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3. Any small symmetry breaking due, say, to the use of a grid in
evaluating exchange-correlation (xc) integrals is neutralized.

The last point turns out to be particularly important in the case of
nearly degenerate (such as core and high-lying unoccupied) orbitals.
A grid whose symmetry is different from that of the molecule intro-
duces off-diagonal terms which couple different irreps. Although this
coupling may be small, elementary perturbation theory,

δψp(r) =

q 6=p∑

q

〈p|δv|q〉
ǫp − ǫq

, (B.16)

tells us that the effect on the MOs can be large when the MO energy
difference is also small.

It remains to construct the TΓ matrices. This involves operations at
the heart of group theory itself and the reader is referred to anyone
of a number of useful texts for more details. [157, 310, 83, 17] The
following review is just a reminder: Given a group G with group
elements that we will represent by g and an underlying vector space
upon which g acts, then we can represent the group elements as
matrices. The underlying vector space could be the space of AOs of a
molecule belonging to group G, in which case the action of g on a AO
χ is given by the action of the inverse group element on the spatial
coordinate,

ĝχ(r) = χ(ĝ−1r) , (B.17)

or the underlying space could be the abstract space composed of linear
combinations of group elements or it could be something entirely
different. However no matter what the nature of the underlying
vector space, the group element representation matrices may be in
general simultaneously blocked. It is a fundamental tenant of group
theory that these blocks, called irrep matrices, are independent of the
underlying vector space used in their construction, except possibly for
a trivial unitary transformation of each matrix. The matrices of two
irreps, Γi and Γj, obey the great orthogonality theorem,

∑

g∈G

[Γi(g)m,n]
[

Γj(g)m ′,n ′

]∗
=

h
√

lilj
δi,jδm,m ′δn,n ′ , (B.18)

where h = dimG is the number of elements in the group and the
matrices of irrep Γi are dimensioned li × li (i.e., li = dim Γi). Often it
is more convenient to work with characters which are defined as the
trace of the irrep matrix,

χi(g) = tr Γi(g) . (B.19)

This leads to the lesser orthogonality theorem,
∑

g∈G

χi(g)χj(g) = hδi,j . (B.20)
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Characters are so much more convenient than irrep matrices, that we
tend to forget the latter in favor of the former. However irrep matrices
become important for irreps of dimensionality greater than one if we
wish to distinguish between the different elements belonging to the
irrep. This is really simpler than it sounds. In acetylene (HCCH), πx
and πy are the two partners of an irrep of dimension two. However
there will in general be several π orbitals in a molecule and we may
wish to guarantee that the x- and y-components of the different π
orbitals correspond. This requires keeping track of elements by using
irrep matrices rather than characters.

The SALCs may be found by projection. In the most general theory,
the projection operator, P̂is,t, for the irrep Γi is given by,

P̂is,t =
li

h

∑

g∈G

[Γi(g)s,t]
∗ ĝ . (B.21)

Let φi
s represent the different partners of the irrep Γi, then

P̂is,tφ
j
t ′ = δi,jδt,t ′φi

s . (B.22)

If information about partners is not needed, then we may use the
simpler character-based projection operator,

P̂i =
li

h

∑

g∈G

χi(g)ĝ . (B.23)

Sometimes this is written in a slightly different notation,

P̂Γ =
dim Γ

dimG

∑

g∈G

χΓ (g)ĝ . (B.24)

Pages 111-119 of Ref. [83] give a very nice illustration of how to apply
this projection operator to obtain SALCs. There are several ways one
could imagine to obtain the TΓ matrices. One could, for example, solve
the eigenvalue problem,

PΓ tj = λjStj . (B.25)

In principle the λj can only be zero for functions orthogonal to the
irrep space or one for SALCs belonging to the Γ irrep space. Thus
to construct the matrix TΓ column by column it suffices to take those
vectors tj whose eigenvalues are unity. A second way, and basically
equivalent way, to construct the TΓ matrix is to project each AO and
then orthonormalize the surviving nonzero functions. These will be
the columns of the TΓ matrix. It is the later strategy which is used in
deMon-StoBe and in deMon2k.

The rest of this document is organized as follows: The next section
(Sec. B.2) describes a bit of the history of the present implementation,
gives more details about how symmetry is implemented, and describes
some of the limitations. Keywords are described in Sec. B.3 and an
example is given in Sec. B.4 of the symmetry parts of deMon2k input
and output files.
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b.2 present implementation

Figure B.2 shows a brief time-line of the development of the deMon
suite of programs. By 1995, deMon-StoBe and hence deMon-KS3 had
MO symmetry assignments. However deMon2k, which was based
upon the AllChem project, did not inherit MO symmetry assignments.
This has been a bit of a pain in the side of deMon developers. An
initial attempt to transplant deMon-StoBe’s symmetry routines into
deMon2k was made by Emilio Cisneros under the direction of Alberto
Vela at Cinvestav in Mexico City. The task proved very complicated
without the direct implication of at least one of the authors of deMon-
StoBe. Very recently, Klaus Hermann, one of the co-authors of deMon-
StoBe visited Cinvestav and worked with Andreas Köster to transplant
key symmetry routines into deMon2k. The work then moved to
Grenoble where we have a first working implementation.

A major problem has been the harmonization of the underlying
philosophy of deMon-StoBe and of deMon2k. The initial procedure
follows the deMon2k philosophy. Molecules are input in any orienta-
tion. Their principle moments of inertia are found and used to put the
molecule in a standard position, in such a way that the principle sym-
metry axis is the z-axis. The molecules are then automatically analyzed
to determine their symmetry group. This analysis can fail if the three
moments of inertia are equivalent (case of low-spin [Fe(H2O)6]2+), in
which case the molecule must be positionned by hand.

The flow of control then passes to the transplanted routines. Most of
the important symmetry groups are available. In particular, symmetry
blocking is supported for the groups Ci, Cs, Cn, Cnh, Cnv, Dn, Dnh,
and Dnd where n runs from 1 to 6. The special groups O, T , Oh, Th,
and Td are also supported. The point group symmetry information
was taken from Ref. [17]. Complications arise because of differences
in how symmetry-redundant atoms are handled in the two programs
and because of different internal ordering of basis functions. These
have been harmonized upto certain caveats which appear in italics
in the keyword section (Sec.B.3). The result is the T matrix which
contains the TΓ matrices.

These are then used in the SCF to construct the matrix eigenvalue
problem block-by-block. Any symmetry breaking due to the grid is
thus zeroed out. MO symmetry labeling is also clear at this point.
However the MOs and MO energies must be resorted (taking care
not to lose the symmetry labels) so that the MOs continue to be filled
according to the usual Aufbau principle during the SCF iterations.

Later, during calculations of excitation spectra using time-dependent
density-functional theory (TDDFT), the orbital symmetry assignments
reappear. It is left up to the user to deduce the total symmetry of the

excited state from the symmetry of the ground state and the symmetries of
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Figure B.2: Brief schematic of the history of the deMon suite of programs.
Taken from the web site [10]
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Table B.1: C2v group character table. (See for example Ref. [83].)

C2v E C2 σv(xz) σ ′
v(yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 -1 -1 Rz xy

B1 1 -1 1 -1 x, Ry xz

B2 1 -1 -1 1 y, Rx yz

the orbitals involved in the transitions. This is straightforward for abelian
groups, but may pose some challenges for nonabelian groups.

b.3 keywords

The keyword SYMMETRY ON activates spatial-symmetry-based cal-
culations for spin-unrestricted calculations. This keyword must occur
in the input before the GEOMETRY keyword.

SYMMETRY ON

b.4 example

We will use the well-known example of H2O to illustrate how to use
symmetry in deMon2k. Table B.1 gives the C2v character table appro-
priate for this molecule. There are two ways to orient the molecule
which are consistent with this group table: Either the molecule is
in the (x, z)-plane or it is in th (y, z)-plane. The International Union
of Pure and Applied Chemistry (IUPAC) has recommended that the
molecule should be aligned in the (y, z)-plane when assigning MO
symmetries,

“it is recommended (REC. 5a) that, for planar C2v molecules,
the x-axis always be chosen perpendicular to the plane of
the molecule unless there are very exeptionally strong rea-
sons for a different choice; and that the choice of axes used
also be explicitly stated” [253].

If the other orientation is chosen then the B1 and B2 irreps are inter-
changed.

b.4.1 Input

We have the following input:

Title H2O

SYMMETRY ON ! Turn on symmetry assignments
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GUESS CORE

ORBITAL CARTESIAN

BASIS (STO-3G)

EXCITATION TDA

PRINT SYMMETRY MOS S

GEOMETRY

O 0.00000 0.00000 0.00000

H 0.00000 1.10000 1.20000

H 0.00000 -1.10000 1.20000

b.4.2 Output

The symmetry part of the output consists of the following parts: Iden-
tification of the point group of a molecule, along with its irreducible
representations, and the corresponding number of SALCs. For H2O
and the STO-3G basis set,

Orbital basis symmetry decomposition (symm. group C2v )

Representation : A1 A2 B1 B2

Basis functions : 4 0 1 2

Atoms are reordered accordingly to the deMon-StoBe orbital order,

BASIS INFORMATION BEFORE SYMMETRIZATION

1 1/O S | 3 2/H S | 5 1/O X | 7 1/O Z

2 1/O S | 4 3/H S | 6 1/O Y |

The TΓ matrices are printed out,

IRREDUCIBLE REPRESENTATION A1

ORBITAL 1 2 3 4

1 1/O S 1.0000 0.0000 0.0000 0.0000

2 1/O S 0.0000 1.0000 0.0000 0.0000

3 2/H S 0.0000 0.0000 0.0000 0.7071

4 3/H S 0.0000 0.0000 0.0000 0.7071

7 1/O Z 0.0000 0.0000 1.0000 0.0000

IRREDUCIBLE REPRESENTATION B1

ORBITAL 1

5 1/O X 1.0000

IRREDUCIBLE REPRESENTATION B2
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ORBITAL 1 2

3 2/H S 0.0000 0.7071

4 3/H S 0.0000 -0.7071

6 1/O Y 1.0000 0.0000

The symmetry elements of the TΓ matrices are orthonormalized and
the TΓ matrices are printed out again,

Symmetry orbitals after orthogonalization

IRREDUCIBLE REPRESENTATION A1

ORBITAL 1 2 3 4

1 1/O S 1.0000 -0.2436 0.0000 0.0383

2 1/O S 0.0000 1.0292 0.0000 -0.2310

3 2/H S 0.0000 0.0000 0.0000 0.7050

4 3/H S 0.0000 0.0000 0.0000 0.7050

7 1/O Z 0.0000 0.0000 1.0000 -0.1673

IRREDUCIBLE REPRESENTATION B1

ORBITAL 1

5 1/O X 1.0000

IRREDUCIBLE REPRESENTATION B2

ORBITAL 1 2

3 2/H S 0.0000 0.7490

4 3/H S 0.0000 -0.7490

6 1/O Y 1.0000 -0.1629

The SALCs allow the irreps of the MOs to be determined. The irrep
label appears when the MO coefficient matrix or MO energies are
printed out. The deMon-StoBe ordering is no longer used at this
point.

1 2 3 4 5

A1 A1 B2 A1 B1

-18.28410 -0.91609 -0.37801 -0.19172 -0.07802

2.00000 2.00000 2.00000 2.00000 2.00000
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1 1 O 1s 0.99227 -0.21660 0.00000 -0.14898 0.00000

2 1 O 2s 0.03655 0.72078 0.00000 0.71707 0.00000

3 1 O 2px 0.00000 0.00000 0.00000 0.00000 1.00000

4 1 O 2py 0.00000 0.00000 0.64820 0.00000 0.00000

5 1 O 2pz 0.00770 0.27303 0.00000 -0.70607 0.00000

6 2 H 1s -0.00957 0.18381 0.45249 -0.24480 0.00000

7 3 H 1s -0.00957 0.18381 -0.45249 -0.24480 0.00000

6 7

A1 B2

0.41527 0.51024

0.00000 0.00000

1 1 O 1s -0.13688 0.00000

2 1 O 2s 1.00837 0.00000

3 1 O 2px 0.00000 0.00000

4 1 O 2py 0.00000 0.98069

5 1 O 2pz 0.86162 0.00000

6 2 H 1s -0.84429 -0.97835

7 3 H 1s -0.84429 0.97835



214 molecular orbital symmetry labeling in demon2k

(a) 1a1 (-18.28410) (b) 2a1 (-0.91609) (c) 1b2 (-0.37801)

(d) 3a1 (-0.19172) (e) 1b1 (-0.07802) (f) 4a1 (0.41527)

(g) 2b2 (0.51024)

Figure B.3: Molecular orbitals of H2O

The molecular orbital diagram for H2O Fig( B.3) displays the or-
bitals arranged from lowest to highest energy in eVs along with its
symmetry labels. Thus, for water molecule, the highest occupied or-
bital (HOMO) is the 1b1 [Fig( B.3e)] orbital and the lowest unoccupied
orbital (LUMO) is 4a1 [Fig( B.3f)]. The calculated electronic structure
of water is 1a21 2a

2
1 1b

2
2 3a

2
1 1b

2
1 . This corresponding to a closed-shell

1A1 state. we see that the 1b1 orbital mainly of px character is not
involved in (σ) bonding. It represents a lone pair on oxygen.

Excited state calculations are activated by the keyword EXCITA-
TION. The orbital symmetry label are included in the TDDFT output.

+=========================================================================+

1 Transition energy 12.81087 eV : T ! B1 triplet state

+-------------------------------------------------------------------------+

5( 1 B1 ) --> 6( 4 A1 ) ( 13.42216 eV) Coeff = 0.70711E+00

+-------------------------------------------------------------------------+

5( 1 B1 ) --> 6( 4 A1 ) ( 13.42216 eV) Coeff =-0.70711E+00

+=========================================================================+
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2 Transition energy 14.70036 eV : S ! B1 singlet state

+-------------------------------------------------------------------------+

5( 1 B1 ) --> 6( 4 A1 ) ( 13.42216 eV) Coeff = 0.70711E+00

+-------------------------------------------------------------------------+

5( 1 B1 ) --> 6( 4 A1 ) ( 13.42216 eV) Coeff = 0.70711E+00

+=========================================================================+

3 Transition energy 15.54388 eV : T ! A2 triplet state

+-------------------------------------------------------------------------+

5( 1 B1 ) --> 7( 2 B2 ) ( 16.00695 eV) Coeff =-0.70711E+00

+-------------------------------------------------------------------------+

5( 1 B1 ) --> 7( 2 B2 ) ( 16.00695 eV) Coeff = 0.70711E+00

+=========================================================================+

4 Transition energy 15.82217 eV : T ! A1 triplet state

+-------------------------------------------------------------------------+

4( 3 A1 ) --> 6( 4 A1 ) ( 16.51651 eV) Coeff =-0.70518E+00

+-------------------------------------------------------------------------+

4( 3 A1 ) --> 6( 4 A1 ) ( 16.51651 eV) Coeff = 0.70518E+00

+=========================================================================+

5 Transition energy 16.49019 eV : S ! A2 singlet state

+-------------------------------------------------------------------------+

5( 1 B1 ) --> 7( 2 B2 ) ( 16.00695 eV) Coeff =-0.70711E+00

+-------------------------------------------------------------------------+

5( 1 B1 ) --> 7( 2 B2 ) ( 16.00695 eV) Coeff =-0.70711E+00

+=========================================================================+

6 Transition energy 17.85242 eV : S ! singlet state

+-------------------------------------------------------------------------+

3( 1 B2 ) --> 7( 2 B2 ) ( 24.17024 eV) Coeff = 0.16180E+00

4( 3 A1 ) --> 6( 4 A1 ) ( 16.51651 eV) Coeff = 0.68766E+00

+-------------------------------------------------------------------------+

3( 1 B2 ) --> 7( 2 B2 ) ( 24.17024 eV) Coeff = 0.16180E+00

4( 3 A1 ) --> 6( 4 A1 ) ( 16.51651 eV) Coeff = 0.68766E+00

+=========================================================================+

b.5 for the programmer

In this section, we would like to give the list of subroutines that are
changed to make the symmetry routines work considering the above
explained formalisms and constrains.

b.5.1 Modified deMon2k(v.2.4.6) Routines

symdrv.f Driver routine for symmetry analysis. Modification is done
to get appropriate redundant elements for the construction of
SALCs from the deMon-StoBe orientation of a molecule.
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ksmort.f This is the routine for Kohn-Sham matrix orthogonalization.
Implementation of Eq. (B.10) is done here.

doscf.f This routines does the SCF iterations. Implementation of Eq. (B.12)
to Eq. (B.15) is done here.

priscf.f This subroutines printing of the SCF matrices. Little modification
is done to assign appropriate irreps to MOs.

b.5.1.1 Routines For Extending MO Symmetry To TD-DFT

tdini.f This routine initializes the TDDFT calculation. Variables corre-
sponding to MOs symmetry labels are initialized here.

dipspec.f This routine analyses the dipole spectrum and prints it out with
symmetry information.

convert.f converts a positive integer into a character string. This is the new
routine needed for exporting symmetry information to TDDFT.

scfvec.h This include file is modified for the sake of storing and retriving
symmetry labels.

b.6 limitations

Although the program works in most cases there are some well char-
acterized limitations. These are listed below as well as possible user
pitfalls.

• Since the molecular symmetry orbital implementaion is based
on deMon-StoBe, the user should be more careful when looking
for the information about symmetry orbitals. Changes in atom
order in symmetry orbitals and MOs could confuse the user.

• User should aware of the fact that the symmetry labeling for
the excited states is not the final symmetry of the product of
occupied and unoccupied irreps.
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L R - T D D F T C A L C U L AT I O N S I N B I G D F T

bhaarathi natarajan, luigi genovese , mark e . casida and

thierry deutsch

c.1 introduction

we have arranged an almost-complete code that performs TD-DFT

calculations within the linear response formalism. This is not the place
to derive the equations that are actually solved; let us just present
them very quickly. Let us assume that we have obtained the set of
occupied states Ψi (in the following, i run over occupied states) and a
set of unoccupied states Ψa (in the following a run over unoccupied
states). In the linear response formalism, the excitation energies
may be obtained by solving the following eigenvalue equations (the
excitation energies are the square roots of the eigenvalues):

Ω̂(ω)~FI = ω
2~FI , (C.1)

where

Ωiaσ,jbτ = δiaδjbδστ(ǫaσ − ǫiσ)
2 + (C.2)

2
√

(ǫiσ − ǫaσ)Kiaσ,jbτ

√

(ǫiσ − ǫaσ) ,

where ǫiσ − ǫaσ is the energy eigenvalue differences of ith and ath

states. Solving Eqs. (C.1) yields TD-DFT excitation energies ω and ~FI’s
are the corresponding oscillator strengths which are defined from the
transition dipole moments. The key magnitude here is the coupling
matrix K:

Kpqσ,rsτ =

∫ ∫

Ψ∗
pσ(~r)Ψqσ(~r)

[

1

|~r−~r ′|
+

∂2Exc[ρ]

∂ρσ(~r)∂ρτ(~r ′)

]

Ψrτ(~r
′)Ψ∗

sτ(~r
′)d~rd~r ′ . (C.3)

Very importantly, in the LDA, the second term of Eq.(C.3) using adia-
batic approximation (AA )

δvxc[ρ]

δρ
≈ δ2Exc[ρ](t)

δρ(r, t)2
, (C.4)

and also of the exchange-correlation energy within LDA is defined as,

ǫxc[ρ](~r) = ǫ
hom
xc (ρ(~r)) . (C.5)

as of in the DFT calculations.
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c.2 running td-dft

c.2.1 The Input File "input.tddft"

If this file exists, BigDFT performs linear response time-dependent
calculations and the file should contain the following parameters.

• tddft_approach : This character string specifies the method used
for the time dependent calculations. For the moment only avail-
able keyword is ‘TDA’.

c.3 example

Once the ground-state calculations were properly done, one can enable
the TDDFT calculations by adding the input file ‘input.tddft’. As an
example, let us perform a calculation of nitrogen molecule.

c.3.1 Input

TDA ! tddft approch that we are using

c.3.2 Output

If you run the executable bigdft, after the ground-state calculations,
you will see the message as of following:

Linear-Response TDDFT calculations

TAMM-DANCOFF APPROXIMATION

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Excitation Energy Oscillator Strength

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 7.7258 1.269E-31

2 7.7258 9.263E-32

....

...

================================================

1 Transition energy 7.72582 eV

------------------------------------------------

5-----> 1 Coeff )=-7.07084E-01

------------------------------------------------

5-----> 1 Coeff )= 7.07084E-01

================================================

2 Transition energy 7.72583 eV

....

..

-------------------------MEMORY CONSUMPTION REPORT--------
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...

...

During TD-DFT calculations, we have calculated the excitation energies
of nitrogen and the results are tubulated in the outfile along with the
oscillator strengths. After this, detailed description of the transitions
are listed. In the above example, the first transition from the ground-
state occupied orbital (HOMO i.e. 5) to the first unoccupied orbital
(LUMO i.e. 1) with a coefficient 0.70708. The corresponding excitation
energiy is 7.72582 eV with an oscillator strength of null intensity.
The upper part in the transition energy description with an minus
coefficient (-0.70708 eV) defines the transition of occupied orbital(5)
β-electron with a down-spin to the unoccupied orbital(1) whereas the
lower part defines the transition of occupied orbital(5) α-electron with
a up-spin to the unoccupied orbital(1).

c.3.3 Plotting The Absorption Spectra

At the end of the TD-DFT calculations, the program creates the file
‘td_spectra.txt ′ which contains the first 100 values of excitation en-
ergies and oscillator strength. Using the plotting program spec-
trum.py [12], one can convolute the theoretical values to compare
with the appropriate experimental spectra.
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Figure C.1: Absorbtion spectrum of Nitrogen
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A N A LY T I C A L D E R I VAT I V E S F O R T H E E X C I T E D
S TAT E S U S I N G T D - D F T / T D A A P P R O A C H

bhaarathi natarajan and mark e. casida

Time dependent density functional theory (TD-DFT) become one of the
most accepted method for the treatment of excitation energies [280,
60] though it has some known problems like charge transfer [71]
and double excitations [171]. Indeed, as we have seen in the earlier
chapter of this thesis, TD-DFT is one of the promising approach to
obtain potential energy surfaces (PES) for the excited states as the
function of molecular geometry by simply adding the ground state
DFT energies to the excited state energy. Moreover, the excited state
properties such as dipole moments, vibrational spectra calculations
which are of interest can be expressed via Hellman-Feynmann theorem
as first derivatives of the excited states.The pioneering work for the
calculation of analytical gradients and their implementations has long
history [273, 274, 185, 262].

Analytical gradient calculations plays an important role for the
exploration of very many interesting chemical phenomena. But the
problem in using TD-DFT is that we can get excitation energies but its
wave functions are not properly defined. But from the practical point
of view, examples can be found from the literature to do the geometry
optimization of excited states using density functional approach was
made recently by van Caillie and Amos [56, 55] and practically
validated by Furche and Ahrichs [113] and Hutter [180].

Our idea behind this project is to examine the mathematical frame-
work for the calculation of first derivatives of excited states which was
presented in [64] and search for the computational requirements for
the general equation set of excited state analytical gradients for the
implementation in deMon2k and in BigDFT. Importance is given to
the theoretical aspect of implementation in this part of the thesis using
Z-vector method as suggested by Handy and Schaefer [159] in order
to reduce the number of sets of linear equations from 3 × number of
nuclei to one which is the necessary equation when evaluating the
contribution of orbital changes to the excited stated gradients.

d.1 analytical derivatives

In this article I am using the follwing notations, µ , ν, λ... are all
the indices for AO, p, q, r... are the indices for general MO, i, j, k...
represents occupied MOs and a, b, c...are for the virtual MOs.
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d.1.1 Preliminaries

In TD-DFT formalism the excitation energies can be obtained by

EI = Eo +  hωI , (D.1)

Derivative of excited state energy with respect to the geometric pa-
rameter η,

∂EI

∂η
=
∂Eo

∂η
+  h

∂ωI

∂η
, (D.2)

The molecular orbitals (MO) are expanded in terms of atomic orbitals
(AO)

ψs(r) =

AO∑

µ

Cµ,sχµ(r) , (D.3)

Keep the MOs coefficient Cµ,s as constant and the derivative of AOs
with respect to η

∂ψs

∂η
=

AO∑

µ

{
∂Cµ,s

∂η
χµ +Cµ,s

∂χµ

∂η

}

=

AO∑

µ

{
MO∑

r

Uη
s,rCµ,rχµ +Cµ,sχ

η
µ

}

∂ψs

∂η
=

MO∑

r

Uη
s,rψr +ψ

η
s , (D.4)

where ψη
s is the core or skeleton term which is defined as

AO∑

µ

(
∂χµ

∂η
)
Cµ,s

U
η
s,r is the coupled perturbed coefficients which are defined as,

∑

r

ψrU
η
sr =

∑

ν

∂Cνr

∂η
χν , (D.5)

Uη
sr =

∑

µν

C∗
µνSµν

∂Cνs

∂η
, (D.6)
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in which Sµν is an overlap matrix

Spq =

AO∑

µν

C∗
µpSµνCνq

∂Spq

∂η
=

∂

∂η

{
∑

µν

C∗
µpSµνCνq

}

=
∑

µν

{
∂C∗

µp

∂η
SµνCνq +C∗

µp

∂Sµν

∂η
Cνq +C∗

µpSµν
∂Cνq

∂η

}

=
∑

µν

{
∑

r

{
Uη∗

rpCµrSµνCνq +C∗
µpSµνU

η
rqCνr

}
+C∗

µpCνqS
η
µν

}

=
∑

r

(

Uη∗
rpSrq +Uη

rqSrp
)

+ Sηpq , (D.7)

d.1.2 Turn-Over Rule

Using orthonormality of MOs and their derivative, we can write

Spq = δpq

∂Spq

∂η
=
∂2Spq

∂η∂η ′
= 0

∑

r

(

Uη∗
rpSrq +Uη

rqSrp
)

+ Sηpq = 0

Uη∗
qp +Uη

pq + Sηpq = 0 , (D.8)

Rearrangement of Eq. (D.8) leads to

Uη∗
qp = −Uη

pq − Sηpq , (D.9)

and finally we arrive at so called ’Turnover rule’. For the diagonal
matrix with the assumption MO and AO orbitals are real, the turnover
rule is re-written as,

Uη
pp = −

1

2
Sηpp , (D.10)

d.1.3 Analytical Gradients For Ground State

Lets start from the classic Roothan and Hall equation of linear combi-
nation of atomic orbitals,

MO∑

r

FµνCµ,r = ǫr

MO∑

r

Cµ,rSµν , (D.11)

in which the Fock matrix F is

Fµν = hµν +
∑

µνµ ′ν ′

Pµ ′ν ′

{
2(µν|µ ′ν ′) − (µµ ′|νν ′)

}
, (D.12)
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and the overlap matrix S is defined as

Sµν =

∫

χ∗µ(1)χν(1)dr1 = 〈χµ|χν〉 , (D.13)

where, the density matrix P take the form

Pµν =
∑

p

Cµ,pnpC
∗
ν,p , (D.14)

Fµν =

AO∑

µν

hµνPµν +

AO∑

µνµ ′ν ′

(µν|fH|µ ′ν ′)PνµPν ′µ ′ +Exc(P) , (D.15)

in which one electron Hamiltonian in atomic orbitals

hµν =

∫

χ∗µ(1)h(1)χν(1)dr1 = 〈χµ|h|χν〉 , (D.16)

and two-electron Coulombic atomic orbital integral as

(µν|fH|µ ′ν ′) =

∫

χ∗µ(1)χν(1)
1

r12
χ∗µ ′(2)χν ′(2)dr1dr2 , (D.17)

starting again with density matrix P,

Pµν(1) =
∑

Cµ,pχµ(1)npC
∗
νpχ

∗
ν(1) , (D.18)

=
∑

χµ(1)Pµνχ
∗
ν(1) , (D.19)

1

2
(P|fH|P) =

1

2

∑
(µν|fH|µ ′ν ′)PµνPµ ′ν ′ , (D.20)

The exchange-correlation (xc) part of total energy can be rewritten in
terms of density matrices,

EHF
xc = −

1

2

∫ ∫
|r(1, 2)|2

r12
dr1dr2 , (D.21)

where

r(1, 2) =
∑

χµ(1)npχ
∗
ν(2)

EHF
xc = −

1

2

∫ ∫

χµ(1)χ
∗
ν(2)

1

r12
χ∗µ ′(1)χν ′(2)PµνP

∗
µ ′ν ′dr1dr2

= −
1

2

∑
(µ ′µ|fH|νν ′)PµνP

∗
µ ′ν ′

= −
1

2

∑
(µν ′|fH|µ ′ν)PµνPν ′µ ′

= EDFT
xc [ρ(P)] , (D.22)

The final form of Fock matrix is,

Fµν = hµνPµν +
∑

(µν|fH|µ ′ν ′)PµνPµ ′ν ′ + Exc[ρ(P)]

Fµν =
∂E

∂Pµν

= hµν +
∑

(µν|fH|µ ′ν ′)Pµ ′ν ′ + Vxc
ν ′µ ′(P)

Fµν = hµν + vSCF
ν ′µ ′ , (D.23)
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d.1.4 Density Matrix Derivatives

To proceed further lets find out the first derivative of density matrix
with respect to the geometric parameter η

Pµν =
∑

CµpnpC
∗
νp

∂Pµν

∂η
=

∂

∂η

{
∑

µν

CµpnpC
∗
νp

}

=
∑

µν

{
∂Cµp

∂η
npC

∗
νp +Cµpnp

∂C∗
νp

∂η

}

=
∑

µν

{
MO∑

q

Uη
qpCµqnpC

∗
νp +

∑

q

CµpnpU
η∗
qpC

∗
νq

}

,(D.24)

and applying orthonormality condition, (D.9)

=
∑

µν

{
MO∑

q

Uη
qpCµqnpC

∗
νp +

∑

q

Cµpnp(−U
η
pq − Sηpq)C

∗
νq

}

=
∑

µν

{
MO∑

q

Uη
qpCµqnpC

∗
νp −

∑

q

CµpnpU
η
pqC

∗
ν,q −

∑

q

CµpnpS
η
pqC

∗
νq

}

=
∑

µν

{
MO∑

q

Uη
qpCµqnpC

∗
νp −

∑

q

CµqnqU
η
qpC

∗
ν,p

−
∑

q

CµqnqS
η
qpC

∗
νp

}

,

∂Pµν

∂η
=

∑

µν

∑

q

{
Cµq(np −nq)C

∗
νpU

η
qp −CµqnqS

η
qpC

∗
νp

}
, (D.25)

Using the derivative of density matrix, the first derivative of ground
state energy is given by,

∂E

∂η
= Eη +

∑ ∂E

∂Pµν
.
∂Pµν

∂η
, (D.26)

and the canonical form of MOs as,

Fpq = δpqǫq , (D.27)

∂E

∂η
= Eη −

∑
FpqnqS

η
pq +

∑
FpqU

η
qp(np −nq) , (D.28)

∂E

∂η
= Eη −

∑

µν

WµνS
η
νµ , (D.29)
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The first term Eη in the right hand side of Eq. (D.29) is a Hellmann-
Feynman force in which the derivative of the total energy with re-
spect to a parameter relates the expectation value of the derivative of
the Hamiltonian with respect to the same parameter. The last term
WµνS

η
νµ is the Pulay force consists of energy weighted density matrix

and overlap matrix in AO basis which must be included in order to
obtain forces that are properly tangent to the energy surface.

The weighted density matrix W is defined as,

Wµν =
∑

µν

CµpnpǫpC
∗
νp , (D.30)

∑
FpqnqS

η
qp =

∑
ǫpnpS

η
qp

=
∑

ǫpnpC
∗
νpS

η
qpCµp

=
∑

WµνS
η
qp , (D.31)

Now we are in the way to construct all the pieces necessary to construct
coupled perturbed Kohn-Sham equations. Following previous steps,
the first derivative of the canonical form of the MOs can be

∂Fpq

∂η
= δpq

∂ǫq

∂η
, (D.32)

δpq
∂ǫq

∂η
=

∂

∂η

{
∑

µν

C∗
µpFµνCνq

}

= Fηpq +
∑

µν

{
∂Cµp

∂η

∗

FµνCνq +C∗
µpFµν

∂Cνq

∂η
+C∗

µp

∂Fµν

∂η
Cνq

}

= Fηpq +

AO∑

µν






MO∑

p ′

U
η∗
p ′pC

∗
µp ′FµνCνq +

∑

q ′

C∗
µpFµνU

η
q ′qCνq ′

+C∗
µp

∂Fµν

∂Pν ′µ ′

∂Pν ′µ ′

∂η
Cνq

}

, (D.33)

Substituing Eq. (D.25) and define the TD-DFTcoupling matrix K as
∂Fµν

∂Pν ′µ ′
,
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δpq
∂ǫq

∂η
= Fηpq +

∑

µν

∑

p ′

(

−U
η
pp ′ − S

η
pp ′

)

C
η
µp ′FµνCνq

+
∑

q ′

C∗
µpFµνU

η
q ′qCνq ′ +

∑

µ ′ν ′

C∗
µpKµνµ ′ν ′






∑

q ′p ′

Cν ′q ′(np ′ −nq ′)U
η
q ′p ′C

∗
µ ′p ′ −Cν ′q ′nq ′S

η
q ′p ′Cµ ′p ′





Cνq

= Fηpq +
∑{

−
∑

U
η
pp ′C

∗
µp ′FµνCνq −

∑
S
η
pp ′C

∗
µp ′FµνCνq

+
∑

C∗
µpFµνU

η
q ′qCνq ′ +

∑
C∗
µpKµνµ ′ν ′Cν ′q ′

(

np ′ −nq ′

)

U
η
q ′p ′C

∗
µ ′p ′Cνq −

∑
C∗
µpKµνµ ′ν ′Cν ′q ′nq ′S

η
q ′p ′Cµ ′p ′

}

Cνq

= Fηpq −
∑

U
η
pp ′Fp ′q −

∑
S
η
pp ′Fp ′q +

∑
U

η
q ′qFpq ′

+
∑

Kpqp ′q ′

(

np ′ −nq ′

)

U
η
q ′p ′ −

∑
Kpqp ′q ′nq ′S

η
q ′p ′

= Fηpq −Uη
pqǫq − Sηpqǫq +Uη

pqǫp +
∑

Kpqp ′q ′

(

np ′ −nq ′

)

U
η
q ′p ′

−
∑

Kpqp ′q ′nq ′S
η
q ′p ′

= Fηpq − (ǫq − ǫp)U
η
pq − Sηpqǫq +

∑
Kpqp ′q ′

(

np ′ −nq ′

)

U
η
q ′p ′

−
∑

Kpqp ′q ′nq ′S
η
q ′p ′ . (D.34)

for the case p 6= q

(ǫq − ǫp)U
η
pq −

∑
Kpqp ′q ′

(

np ′ −nq ′

)

U
η
q ′p ′ = F

η
pq − Sηpqǫq

−
∑

Kpqp ′q ′nq ′S
η
q ′p ′

δpp ′δqq ′(ǫq − ǫp)U
η
p ′q ′ −

∑
Kpqp ′q ′

(

nq ′ −np ′

)

U
η
p ′q ′ = F

η
pq − Sηpqǫq

−
∑

Kpqq ′p ′np ′S
η
p ′q ′

∑
[

δpp ′δqq ′ (ǫq − ǫp) −Kpqq ′p ′

(

nq ′ −np ′

)]

U
η
p ′q ′ = F

η
pq − Sηpqǫq

−
∑

Kpqq ′p ′np ′S
η
p ′q ′

∑
[

δpp ′δqq ′

(ǫq − ǫp)

(nq −np)
−Kpqq ′p ′

]

(nq ′ −np ′)U
η
p ′q ′ = F

η
pq − Sηpqǫq

−
∑

Kpqq ′p ′np ′S
η
p ′q ′ (D.35)

Now getting down into exact details, construct the matrix eigenvalue
like equations using occupied and unoccupied orbitals as,








δijδab(ǫa − ǫi) +Kia,bj −Kia,jb

Kai,bj −δijδab(ǫa − ǫi) −Kai,jb

















U
η
jb

U
η
bj









=









F
η
ia − S

η
iaǫa −

∑
Kia,q ′p ′np ′S

η
p ′q ′

F
η
ai − S

η
aiǫi −

∑
Kai,q ′p ′np ′S

η
p ′q ′









.(D.36)
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δijδab(ǫa − ǫi) +Kia,bj Kia,jb

Kai,bj δijδab(ǫa − ǫi) +Kai,jb

















U
η
jb

−U
η
bj









=









F
η
ia − S

η
iaǫa −

∑
Kia,q ′p ′np ′S

η
p ′q ′i

F
η
ai − S

η
aiǫi −

∑
Kai,q ′p ′np ′S

η
p ′q ′









.(D.37)

d.1.5 Solving Linear Response (LR) Like Equation

Since we are familiar with the general matrix of the linear-reponse
matrix equation, lets start from that.

[

A B

B∗ A∗

](

~X

~Y

)

=

(

~W

~Z

)

, (D.38)

where

A~X+B~Y = ~W

B∗~X+A∗~Y = ~Z

(A+B)(~X+ ~Y) = ( ~W + ~Z)

(A−B)(~X− ~Y) = ( ~W − ~Z)

A = δijδab(ǫa − ǫi) +Kia,bj

B = Kia,jb

~X = U
η
jb

~Y = −U
η
bj . (D.39)

Now there are two ways to proceed with. a) Case: 1

(A−B)(~X− ~Y) = ( ~W) − ~Z) , (D.40)

∑
[

δijδab(ǫa − ǫi)+ Kiabj −Kiajb

]

(U
η
jb +U

η
bj) = F

η
ia − F

η
ai

−S
η
ia(ǫa − ǫi) −

∑(

Kiaq ′p ′−Kaiq ′p ′

)

np ′S
η
p ′q ′

∑
[

δijδab(ǫa − ǫi) + Kiabj −Kiajb

]

(−S
η
jb) = −S

η
ia(ǫa − ǫi)

−
∑

(Kiaq ′p ′ −Kiap ′q ′)np ′S
η
p ′q ′

= −S
η
ia(ǫa − ǫi)

−
∑





(
∑

ij

Kiakj −Kiajk)S
η
jk

+
∑

jb

(Kiabj −Kiajb)





S
η
jb . (D.41)
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Case:2

(A+B)(~X+ ~Y) = ( ~W + ~Z) , (D.42)

∑
[

δijδab(ǫa − ǫi) +Kiabj +Kiajb

]

(U
η
jb −U

η
bj) = F

η
ia + F

η
ai − S

η
ia(ǫa + ǫi)

−
∑

(K ′
iaq ′p +Kaiq ′p ′)np ′S

η
p ′q ′ .(D.43)

Using orthonormality condition given in Eq. (D.9)

U
η
jb −U

η
bj = 2U

η
jb + S

η
jb . (D.44)

U
η
jb −U

η
bj = −2U

η
bj − S

η
bj . (D.45)

Substituting Eq. (D.44) in Eq. (D.43) then,
∑

[

δijδab(ǫa − ǫi) +Kiabj +Kiajb

]

(2U
η
jb + S

η
jb) = 2F

η
ia − S

η
ia(ǫa − ǫi)

−
∑

(Kiaq ′p ′ +Kaip ′q ′)np ′S
η
p ′q ′ .

2
∑

[

δijδab(ǫa − ǫi) +Kiabj +Kiajb

]

U
η
jb

+
∑

[

δijδab(ǫa − ǫi) +Kiabj +Kiajb

]

S
η
jb = 2F

η
ia − S

η
ia(ǫa − ǫi)

−
∑

{(
∑

jk

Kiakj +Kiajk)S
η
jk

+
∑

(Kiabj +Kiajb)S
η
jb} .

and Substituting Eq. (D.45) in Eq. (D.43)
∑

[

δijδab(ǫa − ǫi)

+Kiabj +Kiajb

]

(−2U
η
bj − S

η
bj) = 2F

η
ia − S

η
ia(ǫa − ǫi) −

∑
{
∑

(Kiakj +Kiajb)S
η
jk

+
∑

(Kiabj +Kiajb)}S
η
bj ,

2
∑

[

δijδab(ǫi − ǫa) − (Kiabj +Kiajb)
]

U
η
bj −

[

δijδab(ǫa − ǫi) +Kiabj +Kiajb

]

S
η
bj +

S
η
ia(ǫa − ǫi) +

∑
(Kiabj +Kiajb)S

η
bj = 2F

η
ia −

∑
(Kiakj +Kiajk)S

η
jk ,

2
∑

[

δijδab(ǫi − ǫa) − (Kiabj +Kiajb)
]

U
η
bj + 2S

η
iaǫi = 2F

η
ia − 2

∑
KiajkS

η
jk

∑
[

δijδab(ǫi − ǫa) − (Kiabj +Kiajb)
]

U
η
bj = F

η
ia − S

η
iaǫi

−
∑

KiajkS
η
jk .
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d.1.6 Coupled Perturbed Kohn-Sham Equation

The linear-response like matrix equation is solved and finally end up
with what is an linear CP-KS equation

Aai,bj = δijδab(ǫi − ǫa) − (Kaijb +Kaibj)

Bo
ai = F

η
ai − S

η
aiǫi −

∑
KaikjS

η
kj

∑
AaibjU

η
bj = Bo

ai

Aaibj = δijδab(ǫi − ǫa) − [2(ai|fH + fxc|jb)]

Bo
ai = F

η
ai − S

η
aiǫi −

∑
[(ai|fH|jk) − (ak|fH|ji)]S

η
jk ,

with reformulated matrices A and B which are coupled to Uη .

(ǫq − ǫp)U
η
pq −

∑
Kpqq ′p ′(nq ′ −np ′)U

η
p ′q ′ = Fηpq − Sηpqǫq

−
∑

Kpqq ′p ′np ′S
η
p ′q ′

Uη
pq =

1

(ǫq − ǫp)

[

Fηpq − Sηpqǫq−

∑
Kpqq ′p ′np ′S

η
p ′q ′ +Kpqq ′p ′(nq ′ −np ′)U

η
p ′q ′

]

,

(ǫq−ǫp)U
η
pq−(Kqpbj+Kqpjb)U

η
bj = F

η
qp−Sηqpǫq−

∑
KqpkjS

η
kj ,

Uη
pq =

1

(ǫq − ǫp)

[

Fηqp − Sηqpǫq (D.46)

−
∑

KqpkjSkj +
∑

(Kqpbj +Kqpjb)U
η
bj

]

,
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d.1.7 Analytical Gradients For Excited States Within TDA

Applying TDA on the matrix formulation of LR-TD-DFT equation can
be written as,

A~X = ω~X
∑

AiajbXjb = ωXjb

Aiajb = δijδab(ǫa − ǫi) +Kiabj

ω =
∑

X∗
iaAiajbXjb

∂ω

∂η
=

∑ ∂X∗
ia

∂η
AiajbXjb +

∑
X∗
iaAiajb

∂Xjb

∂η
+
∑

X∗
ia

∂Aiajb

∂η
Xjb

=
∑ ∂X∗

ia

∂η
(ωXjb) +

∑
ωX∗

jb

∂Xjb

∂η
+
∑

X∗
ia

∂Aiajb

∂η
Xjb

= ω
∂

∂η

∑
X∗
iaXjb +ω

∂

∂η

∑
XjbX

∗
jb +

∑
Xia

∂Aiajb

∂η
Xjb

∂ω

∂η
=

∑
Xia

∂Aiajb

∂η
Xjb

Aiajb = δijδab(ǫa − ǫi) +Kiabj

= δijFab − δabFji +Kiabj

∂Aiajb

∂η
= A

η
iajb +

∑ ∂Aiajb

∂Pqp

∂Pqp

∂η
,

This is final form of the first derivative of excited state gradients with

Fp ′q ′

∂Pqp
= Kp ′q ′pq

∂Pqp

∂η
= (np −nq)U

η
qp −nqS

η
qp

∂Kp ′q ′pq

∂η
= Gp ′q ′p"q"pq ,
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∂Aiajb

∂η
= A

η
iajb +

∑
{
∂

∂η

[

(δijFab − δabFji +Kiabj)
]

[(np −nq)U
η
qp −nqS

η
qp]

= A
η
iajb +

∑
[

(δijKabpq − δabKjipq +Giapqbj)
]

[(np −nq)U
η
qp −nqS

η
qp]

= A
η
iajb +

∑
δijKabpq(np −nq)U

η
qp

−
∑

δabKjipq(np −nq)U
η
qp +

∑
Giapqbj(np −nq)U

η
qp

−
∑

δijKabpqnqS
η
qp +

∑
δabKjipqnqS

η
qp −

∑
GiapqbjnqS

η
qp

= A
η
iajb +

∑
[

δijKabpq(np −nq) − δabKjipq(np −nq) +Giapqbj

(np −nq)]U
η
qp −

∑
[

δijKabpqnq − δabKjipqnq −Giapqbjnq

]

Sηqp

= A
η
iajb +

∑
[

δijKabkc + δabKjikc +Giakcbj

]

U
η
kc

−
∑

[

δijKabck − δabKjick +Giackbj

]

U
η
ck

−
∑

[

δijKabkl − δabKjikl −Giaklbj

]

S
η
kl

= A
η
iajb +

∑
[

δij(Kabkc +Kabck) − δab(Kjikc +Kjick)+

(Giakcbj +Giackbj)
]

U
η
ck −

∑
[

δijKabkl − δabKjikl −Giaklbj

]

S
η
kl ,

whereas, Lck and Mkl would take the form as,

∂ω

∂η
= A

η
iajb +

∑
LckU

η
ck −

∑
MklS

η
kl

Lck =
∑

X∗
iaXjb{(Kabkc +Kabck) − (Kjikc +Kjick) + (Giakcbj +Giackbj)}

Mkl =
∑

X∗
iaXjb{Kabkl −Kjikl −Giaklbj}

∂ω

∂η
= ωη +

∑
LckU

η
ck −

∑
MklS

η
kl , (D.47)

d.1.8 Ground State Lagrangian Formalism

Introduce compact notation of ground state energies in terms of re-
duced density matrices,

Ĥ =
∑

hpqp
+q+

∑
Vpqrsp

+q+sr

Vpqrs = 〈pq|rs〉− 〈pq|sr〉
= (pr|fH|qs) − (ps|fH|qr)

Ĥ =
∑

hpqp
+q+ 2

∑
(pr|fH|qs)p+q+sr

E =
∑

hpq〈p+q〉+ 2
∑

(pr|fH|qs)〈p+q+sr〉

E =
∑

hpqγqp + 2
∑

(pr|fH|qs)Γrspq . (D.48)
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Formation of Lagrangian matrices,

E1 =
∑

hpq〈p+q〉

=
∑

C∗
µphµνCνqγqp

∂E1

∂η
= E

η
1 +

∂

∂η
(
∑

C∗
µphµνCνqγqp)

= E
η
1 +

∑
(

C∗
µp

∂η
hµνCνqγqp +C∗

µphµν
∂Cνq

∂η
γqp

)

= E
η
1 +

∑




∑

p ′

U
η∗
p ′pC

∗
µp ′hµνCνqγqp +

∑

q ′

C∗
µphµνCνq ′U

η
q ′qγqp





= E
η
1 +

∑
U

η∗
p ′php ′qγqp +

∑
U

η
q ′qhpq ′γqp

= E
η
1 +

∑
U

η∗
p ′pL

1∗
p ′p +

∑
U

η
q ′qL

1
q ′q , (D.49)

where one electron Lagrangian matrix L1∗p ′p = hp ′qγqp.

E2 = 2
∑

(pr|fH|qs)Γrs,pq

= 2
∑

C∗
µpCνrC

∗
µqCνs(µν|fH|µ ′ν ′)Γrs,pq

∂E2

∂η
= E

η
2 + 2{

∂C∗
µp

∂η
CνrC

∗
µqCνs +C

∗
µp

Cνr

∂η
C∗
µqCνs +

C∗
µpCνr

∂C∗
µq

∂η
Cνs +C

∗
µpCνrC

∗
µq

∂Cνs

∂η
}(µν|fH|µ ′ν ′)Γrs,pq

= E
η
2 + 2

∑
{
∑

p ′

U
η∗
p ′pC

∗
µp ′CνrC

∗
µqCνs +

∑

r ′

C∗
µpU

η
r ′rCνr ′C∗

µqCνs +

∑

q ′

C∗
µpCνrU

η∗
q ′qC

∗
µq ′Cνs +

∑

s ′

C∗
µpCνrC

∗
µqU

η
s ′sCνs ′}(µν|fH|µ ′ν ′)Γrspq

= E
η
2 + 2

∑
{U

η∗
p ′p(p

′r|fH|qs)Γrspq +U
η
r ′r(pr

′|fH|qs)Γrspq +

U
η∗
q ′q(pr|fH|q ′s)Γrspq +U

η
s ′s(pr|fH|qs ′)Γrspq}

= E
η
2 + 2

∑
{U

η∗
p ′p(p

′r|fH|qs)Γrspq +U
η
r ′r(pr

′|fH|qs)Γrspq +

U
η∗
q ′q(qs|fH|p ′r)Γrsqp +U

η
s ′s(qs|fH|pr ′)Γsrqp}

= E
η
2 + 4

∑
U

η∗
p ′p(p

′r|fH|qs)Γrspq + 4
∑

U
η
r ′r(pr

′|fH|qs)Γrspq

= E
η
2 +

∑
U

η∗
p ′pL

2
p ′p +

∑
Ur ′rL

2
r ′r , (D.50)

therefore
∂E

∂η
= (E

η
1 + E

η
2) +

∑
U

η∗
p ′p ′(L

1∗
p ′p + L2p ′p) +

∑
U

η
r ′r(L

1
q ′q + L2∗r ′r)

= Eη +
∑

U∗
p ′pLp ′p +

∑
U

η
r ′rL

∗
rr ′ , (D.51)

d.1.9 Z-Vector Method

The Z-vector method reduces this set of 3N equations (one for each
nuclear purturbation) to one. For a given gradient expression, all



234 analytical derivatives for the excited states using td-dft/tda approach

terms including occupied-virtual orbital response matrices define La-
grangian L of the chemical system.The remaining task is to determine
the SCF Lagrangian and subtitute z-vector whenever necessary.

~L+~Uη = ~Z+~Bη . (D.52)

WKT,

A~Uη = ~Bη

~Uη = A−1~Bη

~L+A−1~Bη = ~Z+~Bη

~Z+ = ~L+A−1

~Z+A = ~L+ , (D.53)

so that the final Lagrangian is independent of η.

d.1.10 Excited State Lagrangian And Z-Vector Method

∂ω

∂η
=

∑
X∗
ia

∂Aiajb

∂η
Xjb

= ωη +
∑

[

X∗
iaXjb(Kabkc +Kabck) −X

∗
iaXjb(Kjikc +Kjick)

+X∗
iaXjb(Giakcbj +Giackbj)

]

U
η
ck −

∑
[

X∗
iaXjbKabkl

−X∗
iaXjbKjikl −X

∗
iaXjbGiaklbj

]

S
η
kl , (D.54)

∑
LckU

η
ck =

∑
ZckB

o
ik , (D.55)

∑
[

δijδab(ǫi − ǫa) − (Kaijb +Kaibj)
]

Zbj = Lai . (D.56)

∑
ZckB

o
ck =

∑ [

F
η
ai − S

η
aiǫi −

∑
[(ai|fH|jk) − (ak|fH|ji)] S

η
jk

]

Zai .
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