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Abstract

This thesis deals with optimal control problems for systems that are affine in

one part of the control variable. First, we state necessary and sufficient second order

conditions when all control variables enter linearly. We have bound control constraints

and a bang-singular solution. The sufficient condition is restricted to the scalar control

case. We propose a shooting algorithm and provide a sufficient condition for its local

quadratic convergence. This condition guarantees the stability of the optimal solution

and the local quadratic convergence of the algorithm for the perturbed problem in

some cases. We present numerical tests that validate our method. Afterwards, we

investigate an optimal control problems with systems that are affine in one part

of the control variable. We obtain second order necessary and sufficient conditions

for optimality. We propose a shooting algorithm, and we show that the sufficient

condition just mentioned is also sufficient for the local quadratic convergence. Finally,

we study a model of optimal hydrothermal scheduling. We investigate, by means of

necessary conditions due to Goh, the possible occurrence of a singular arc.

Résumé

Dans cette thèse on s’intéresse aux problèmes de commande optimale pour des

systèmes affines dans une partie de la commande. Premièrement, on donne une

condition nécessaire du second ordre pour le cas ou le système est affine dans toutes

les commandes. On a des bornes sur les contrôles et une solution bang-singulière.

Une condition suffisante est donnée pour le cas d’une commande scalaire. On propose

après un algorithme de tir et une condition suffisante pour sa convergence quadratique

locale. Cette condition garantit la stabilité de la solution optimale et implique que

l’algorithme converge quadratiquement localement pour le problème perturbé, dans

certains cas. On présente des essais numériques qui valident notre méthode. Ensuite,

on étudie un système affine dans une partie des commandes. On obtient des conditions

nécessaire et suffisante du second ordre. Ensuite, on propose un algorithme de tir et on

montre que la condition suffisante mentionnée garantit que cet algorithme converge

quadratiquement localement. Enfin, on étudie un problème de planification d’une

centrale hydrothermal. On analyse au moyen des conditions nécessaires obtenues par

Goh, la possible apparition d’arcs singuliers.
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0.1. BRIEF INTRODUCTION TO OPTIMAL CONTROL THEORY 3

0.1 Brief introduction to optimal control theory

In this thesis we study an optimal control problem

ϕ0(x(T ))→ min, (1)

ẋ(t) = f(x(t), u(t)), a.e. on [0, T ], (2)

x(0) = x0, (3)

u ∈ U, (4)

where u ∈ U := L∞(0, T ;Rm) is termed control variable, x ∈ X := W 1
∞(0, T ;Rn),

is called state variable, f : Rn+m → Rn, and U ⊂ Rm is a closed convex set. When

needed, put w = (x, u) for a point in the product space W := X × U .
A trajectory is an element w ∈ W that satisfies the state equation (2). If in

addition constraint (4) holds, say that w is a feasible point of the problem (1)-(4).

Denote by A the set of feasible points. Call feasible variation for ŵ ∈ A an element

δw ∈ W such that ŵ+δw ∈ A. Hence, our optimal control problem consists of finding

a feasible trajectory w that minimizes the cost function ϕ0.

Later on a problem having finitely many initial-final state constraints is considered.

However, we found it more illustrative to present the basics of optimal control theory

for the simplified framework (1)-(4).

The investigation of optimal control problems dates from the late 1950s, when two

important advances were made. The first one is the Pontryagin Maximum Principle

[111] and consists of a set of necessary conditions for optimality. The second one was

the Dynamic Programming Principle [13] that allows us to transform the minimization

problem (1)-(4) into a problem of finding the solution to a partial differential equation,

known as the Hamilton-Jacobi-Bellman equation. Both approaches make use of the

pre-Hamiltonian function

H : Rn × Rn,∗ × Rm → R,
(x, p, u) 7→ pf(x, u),

(5)

where with Rn,∗ we indicate the n−dimensional space of row-vector with real compo-

nents.

0.1.1 Pontryagin Maximum Principle

The Pontryagin Maximum Principle (PMP) provides a necessary condition for op-

timality by means of the existence of a certain dual variable called costate variable.

Let (x, u) ∈ W be an optimal solution of (1)-(4). Then the PMP states that there
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exists a Lipschitz continuous function p : [0, T ]→ Rn,∗ that is solution of the costate

equation

−ṗ(t) = Hx(x(t), p(t), u(t)), p(T ) = ϕ′0(x(T )), (6)

and such that (x(t), p(t), u(t)) satisfies the minimum condition

H(x(t), p(t), u(t)) = min
v∈U

H(x(t), p(t), v), a.e. on [0, T ]. (7)

When initial-final state constraints are considered, the PMP has a slightly more

complex statement that includes a multiplier associated to the cost function and the

initial-final constraints.

0.1.2 Hamilton-Jacobi-Bellman equation

The Hamilton-Jacobi-Bellman (HJB) equation is a partial differential equation result-

ing from the Dynamic Programming Principle. It provides a necessary and sufficient

condition for optimality in terms of the value function

V (ζ, t) := inf
(x,u)
{ϕ0(x(T )) : ẋ(s) = f(x(s), u(s)) and u(s) ∈ U a.e. on [t, T ], x(t) = ζ} .

The pillar of the dynamic programming approach is the following statement: the value

function V is unique viscosity solution of the HJB equation{
Wt(ζ, t) + infa∈U H (ζ, a,Wζ(ζ, t)) = 0, for (ζ, t) ∈ Rn × (0, T ),

W (ζ, T ) = ϕ0(ζ).
(HJB)

The concept of viscosity solution was introduced by Crandall and Lions in [37], and

in their later work with Evans [36] they provided a more refined set of definitions and

properties. The classical references concerning viscosity solutions and their connection

with optimal control theory are the books of Fleming-Soner [58] and Bardi-Capuzzo

Dolcetta [11].

In this thesis we do not investigate this approach.

0.1.3 Second order conditions

Let (x(t), p(t), u(t)) be a feasible solution of (1)-(4) satisfying the PMP, and such that

u(t) ∈ intU, a.e. on [0, T ]. (8)

Hence, the minimum condition (7) implies the stationarity of the pre-Hamiltonian

Hu(x(t), p(t), u(t)) = 0, a.e. on [0, T ], (9)
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and the positive semidefiniteness of its Hessian matrix

Huu(x(t), p(t), u(t)) � 0, a.e. on [0, T ]. (10)

The latter inequality is termed Legendre-Clebsch condition and it is a second order

necessary condition for optimality. On the other hand, observe that if the strengthened

Legendre-Clebsch condition

Huu(x(t), p(t), u(t)) � αI, a.e. on [0, T ] (11)

holds for some positive α, it guarantees that u(t) is a local minimizer of H(x(t), p(t), v)

almost everywhere on [0, T ].

Set J(u) := ϕ0(x(T )) the cost associated to a given control u ∈ U , i.e. x is the

solution of (2)-(3) corresponding to u. It can be shown that if there exists α > 0 such

that

D2
uuJ(u)(v, v) ≥ α‖v‖2

2, for every v ∈ L2(0, T ;Rm), (12)

then u is a strict local minimum satisfying quadratic growth, i.e. for some ε, ρ > 0,

J(u+ v) ≥ J(u) + c‖v‖2
2, for every ‖v‖∞ < ρ. (13)

Hence, (12) is a sufficient condition for local optimality.

Concerning second order conditions for optimality, many references can be cited

and several different approaches are encountered in the literature. Next we list a

set of works related to second order conditions that is far from being complete, but

that intends to give an outlook on the research in this area. The books Bryson-Ho

[30] and Agrachev-Sachkov [3] provide a set of second order conditions for different

kinds of problems. The articles Jacobson [75], Agrachev [1], Sarychev [116], Zeidan

[128, 129], Zeidan-Zezza [131, 130], Pales-Zeidan [105] and the book by Bonnard and

Chyba [24] treated this subject as well. The reader is then referred to these works and

the references therein for further information on the topic of second order analysis.

0.1.4 The shooting method

Concerning numerical methods for optimal control, two approaches can be encoun-

tered in practice: direct and indirect methods. Direct methods consist of solving the

nonlinear programming problem obtained by discretizing the state and control vari-

ables. On the other hand, indirect methods use the shooting algorithm to solve the

two-point boundary value problem resulting from the Pontryagin Maximum Principle.

In this thesis we study only the indirect approach. Betts in [14] gave a meticulous
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survey on direct and indirect techniques, including 100 references. This article to-

gether with the works by von Stryk-Bulirsch [126], Biegler-Cervantes [17], Pesch [106],

Trélat [125] and Biegler [15] provide a detailed panorama of the subject.

Observe that the minimization condition (7) of the PMP allows, under hypothesis

(8) and (11), to express the control as a function of the state and costate variables:

u(t) = Γ(x(t), p(t)), t ∈ [0, T ]. (14)

Eliminating u by means of the latter expression from the set of conditions provided

by the PMP yields the two-point boundary value problem

ẋ(t) = f(x(t),Γ(x(t), p(t))),

ṗ(t) = −Hx(x(t), p(t),Γ(x(t), p(t))),
(15)

with boundary conditions

x(0) = x0, p(T ) = ϕ′0(x(T )). (16)

The latter is a system of ordinary differential equations having boundary conditions

both in the initial and final times. We define the shooting function

S : Rn,∗ → Rn,∗,
p0 7→ S(p0) := ϕ′0(x(T ))− p(T ),

(17)

where x and p are the solution of (15) with initial conditions x(0) = x0 and p(0) = p0.

Hence, S assigns to each estimate of the initial values, the value of the final condition

of the corresponding solution. The shooting algorithm consists of approximating a

zero of this function. In other words, the method finds suitable initial values for

which the corresponding solution of the differential equation system satisfies the final

conditions.

0.2 Singular arcs

In some problems, the candidate extremal or some subarc of it cannot be directly

determined by the minimum condition (7). This occurs when the strengthened

Legendre-Clebsch condition (11) does not hold, and hence

Huu is singular, (18)

and only semidefinite. Such arcs are called singular arcs.

Singular arcs appear, for example, when the system is affine in one or more control

variable.

This topic has been extensively studied and many references can be cited. See

Bell-Jacobson [12], Bryson-Ho [30] and Bonnard-Chyba [24], among others.
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0.2.1 Affine systems

When systems are affine in all the control variables, there is a classical technique that

provides second order necessary conditions. It is based on the fact that the control u

does not appear in the stationarity condition (9). Therefore, the expression (9) can

be differentiated with respect to the time variable. Once this derivation is performed,

ẋ and ṗ are replaced using (2) and (6). This yields a new algebraic equation in

the variables (x, p, u) that can contain the control with a non-zero coefficient. If it

does not, another time differentiation is allowed. This is done until an expression

depending explicitly on u is obtained.

By means of the technique just described a set of necessary conditions was derived

in the 60s. For the scalar control case, Kelley in [79] proved that

− ∂

∂u

[
d2

dt2
Hu(x(t), p(t), u(t))

]
≥ 0. (19)

The latter inequality is known as the generalized Legendre-Clebsch condition. The

result was extended by Kopp and Moyer [82] for higher order derivatives. In Kelley-

Kopp-Moyer [81] it is shown that the smallest order of derivative of Hu where u

appears without an identically zero coefficient is even. This says that if M is the

smallest positive integer such that ∂
∂u

(dM/dtM)Hu(x(t), p(t), u(t)) 6= 0, then M is

even. The integer N := M/2 is called order of the singular arc. Summing up all these

results together yields: if N is the order of the singular arc then the coefficient of u

in (dM/dtM)Hu(x(t), p(t), u(t)) is nonnegative. Goh in [67] extended this necessary

condition for the vector control problem by proving that

(−1)N
∂

∂u

[
d2N

dt2N
Hu(x(t), p(t), u(t))

]
� 0, (20)

along an optimal trajectory. He used a transformation of variables introduced by

himself in [68].

Regarding sufficient conditions for this kind of problem, the first results came out

a decade later. Dmitruk in [40] gave necessary and sufficient conditions for optimality

in terms of the second variation of the Lagrangian function. He used Goh’s Transfor-

mation above-mentioned. In Dmitruk [41, 43] he extended previous results to a more

general type of minimum. These results have a strong connection with the first two

chapters of this thesis and therefore, we present them in more detail later on.

Many other works can be cited concerning second order conditions for totally

singular extremals. The reader is referred to the introduction of Chapter 1 to a

survey of the literature on this topic.
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0.2.2 Partially affine systems

Consider now a problem having a pre-Hamiltonian that is linear in one part of the

control variables and nonlinear in the remaining part. The necessary condition Goh

gave in [67] actually applies to this kind of problem. It extends both the Legendre-

Clebsch for the nonlinear case in equation (10) and the ‘vector generalized Legendre-

Clebsch condition’ in (20). Assume that the control can be written in the form (u, v),

with v appearing linearly in the pre-Hamiltonian. Then the necessary condition in

Goh [67] for a singular arc of order 1 says that along an optimal trajectory, Huu − ∂

∂u
Ḣ>v

− ∂

∂u
Ḣv − ∂

∂v
Ḧv

 � 0. (21)

In this text we refer to (21) as Goh-Legendre-Clebsch condition. In the recent article

[69], Goh gave a concise presentation of this result and some other related necessary

conditions.

Concerning sufficient conditions, in [95] Maurer and Osmolovskii derive one for a

problem with this ‘mixed’ structure, but where the optimal trajectory has a bang-bang

affine control. Our framework is different since the components that appear linearly

in the system are assumed to be singular. No derivation of sufficient conditions for

partially affine systems was found in the literature.

Remark 0.2.1. The terminology just introduced for the conditions (10) and (20) is

the one we use throughout all this thesis, but some variants can be encountered in the

literature. Actually, the Legendre-Clebsch condition (10) is found under the name of

Legendre condition, while what we call here generalized Legendre-Clebsch condition

(20) is sometimes known as Legendre-Clebsch condition (as in Bonnard-Chyba [24])

or as Kelley’s condition when N = 1 (as in Robbins [112]).

0.3 Structure of the thesis

The thesis consists of four chapters and each of them corresponds to an article (either

published, submission or preprint).

Chapter 1 is entitled Second order conditions for bang-singular extremals and

corresponds to a joint work with J.F. Bonnans, A.V. Dmitruk and P.A. Lotito. It

will appear in Numerical Algebra, Control and Optimization, in a special issue in

honor of Professor Helmut Maurer, under the title Quadratic conditions for bang-
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singular extremals. It was also published as the INRIA Research Report Nr. 6674

[8].

Chapter 2 is entitled A shooting algorithm for problems with singular arcs and

corresponds to a joint work with J.F. Bonnans and P. Martinon. It was published

as the INRIA Research Report Nr. 7763 [10] under the title A well-posed shooting

algorithm for problems with singular arcs.

Chapter 3 is entitled Partially affine control problems: second order conditions

and a shooting algorithm and M.S. Aronna is the sole author. It was published as the

INRIA Research Report Nr. 7764 [7] under the title Partially affine control problems:

second order conditions and a well-posed shooting algorithm.

Chapter 4 is entitled Continuous Time Optimal Hydrothermal Scheduling and

corresponds to a joint work with J.F. Bonnans and P.A. Lotito. It was published in

Proceedings of the International Conference on Engineering Optimization, under the

title Continuous Time Optimal Hydrothermal Scheduling. See reference [9].

Next we give a short summary of the results of each chapter.

0.4 Summary of the results of the thesis

0.4.1 Second order conditions for bang-singular extremals

In the first chapter we give second order necessary and sufficient conditions for the

problem

J := ϕ0(x(T ))→ min, (22)

ẋ(t) =
m∑
i=0

ui(t)fi(x(t)), a.e. on [0, T ], (23)

x(0) = x0, (24)

u(t) ≥ 0, for a.a. t ∈ (0, T ), (25)

ϕi(x(T )) ≤ 0, for i = 1, . . . , dϕ, (26)

ηj(x(T )) = 0, for j = 1 . . . , dη, (27)

where fi : Rn → Rn for i = 0, . . . ,m, ϕi : Rn → R for i = 0, . . . , dϕ, ηj : Rn → R for

j = 1, . . . , dη and u0 ≡ 1. The sufficient condition is restricted to the scalar control

case.

We shall start by noticing that all the second order conditions that we mentioned

in Section 0.2.1 do not apply when the control variable touches the boundary of the

admissible set since condition (8) was needed. This means that those results hold only
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for totally singular extremals. The novelty of Chapter 1 is to provide second order

conditions for solutions that eventually touch the boundary of U. In other words, we

allow the constraint (25) to be active.

For a given control component i, an arc is termed singular if Hui = 0 almost

everywhere on the arc, otherwise it is called bang. Under the strict complementary

assumption to be introduced afterwards, the singular arcs occur when the control is

positive, and the bang arcs when the control is null. The studied trajectory is a finite

concatenation of bang and singular arcs. We call this kind of solution a bang-singular

extremal.

Basic concepts.

We shall introduce some definitions needed for the statement of the principal theorems

of Chapter 1. We study the two types of minimum defined as follows.

Definition 0.4.1. A pair w0 = (x0, u0) ∈ W is said to be a weak minimum of problem

(22)-(27) if there exists ε > 0 such that the cost function attains at w0 its minimum

on the set of feasible trajectories w = (x, u) verifying

‖x− x0‖∞ < ε, ‖u− u0‖∞ < ε.

A trajectory w0 is a Pontryagin minimum if for any positive N there exists εN > 0

such that w0 is a minimum point on the set of feasible trajectories w verifying

‖x− x0‖∞ < εN , ‖u− u0‖∞ ≤ N, ‖u− u0‖1 < εN .

Let λ = (α, β, p) ∈ Rdϕ+1,∗ ×Rdη ,∗ ×W 1
∞(0, T ;Rn,∗). Define the pre-Hamiltonian1

H[λ](x, u, t) := p(t)
m∑
i=0

uifi(x),

the terminal Lagrangian

`[λ](q) :=

dϕ∑
i=0

αiϕi(q) +

dη∑
j=1

βjηj(q),

and the Lagrangian

Φ[λ](w) := `[λ](x(T )) +

∫ T

0

p(t)

(
m∑
i=0

ui(t)fi(x(t))− ẋ(t)

)
dt. (28)

The optimality of a given feasible trajectory ŵ = (x̂, û) is investigated.

1We use the notation with the multiplier indicated between square brackets like in Dmitruk [43].
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Definition 0.4.2. Denote by Λ ⊂ Rdϕ+1,∗ × Rdη ,∗ ×W 1
∞(0, T ;Rn,∗) the set of Pon-

tryagin multipliers associated to ŵ. It consists of the elements λ = (α, β, p) satisfying

the Pontryagin Maximum Principle, i.e. such that

|α|+ |β| = 1, (29)

α = (α0, α1, . . . , αdϕ) ≥ 0, (30)

the function p is solution of the costate equation and satisfies the transversality con-

dition in the end-point T

−ṗ(t) = Hx[λ](x̂(t), û(t), t), p(T ) = `′[λ](x̂(T )), (31)

and the following minimum condition holds

H[λ](x̂(t), û(t), t) = min
v≥0

H[λ](x̂(t), v, t), a.e. on [0, T ]. (32)

Remark 0.4.3. Λ can be identified with a finite dimensional compact set.

The second order condition that we establish first involves the critical cone and

second variation of the Lagrangian function to be defined below. Consider the lin-

earized state equation:{
ż(t) = A(t)z(t) +B(t)v(t), a.e. on [0, T ],
z(0) = 0,

(33)

with A(t) :=
∑m

i=0 ûif
′
i(x̂(t)) and B(t)v(t) :=

∑m
i=1 vi(t)fi(û(t)). The solution z of

(33) is called linearized state variable. The linearization of the cost and final con-

straints is given by {
ϕ′i(x̂(T ))z(T ) ≤ 0, i = 0, . . . , dϕ,

η′j(x̂(T ))z(T ) = 0, j = 1, . . . , dη.
(34)

To each index i = 1, . . . ,m we associate the active and free sets

I i0 :=

{
t ∈ [0, T ] : max

λ∈Λ
Hui [λ](t) > 0

}
, I i+ := [0, T ]\I i0, (35)

We assume strict complementarity for the control constraint: ûi = 0 a.e. on I i0 and

ûi > 0 a.e. on I i+. Consider now the critical cone

C2 :=
{

(z, v) ∈ W 1
2 (0, T ;Rn)× L2(0, T ;Rm) : vi = 0 on I i0, (33) and (34) hold

}
,

(36)

and the second variation of the Lagrangian function

Ω[λ](δx, δu) := 1
2
D2Φ[λ](ŵ)(δx, δu)2

1
2
`′′[λ](x̂(T ))(δx(T ))2 +

∫ T

0

(
1
2
δx>Q[λ]δx+ δu>C[λ]δx

)
dt,

(37)

where Q := Hxx and C := Hux.
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Results

First we provide a detailed derivation of the necessary condition below. Another proof

can be found in Levitin-Milyutin-Osmolovskii [86].

Theorem 0.4.4. If ŵ is a weak minimum then

max
λ∈Λ

Ω[λ](z, v) ≥ 0, for all (z, v) ∈ C2. (38)

Afterwards, we use this result, the Goh’s transformation of variables introduced in

[68] and some techniques given by Dmitruk in [40, 43] to show a necessary condition

in another space of perturbations. Many details are omitted in order to achieve a

concise presentation.

Let us begin by recalling the Goh’s transformation: given (z, v) satisfying (33),

set

y(t) :=

∫ t

0

v(s)ds, ξ := z −By. (39)

Notice that ξ satisfies the linear differential equation

ξ̇ = Aξ +B1y, ξ(0) = 0, (40)

where B1 := AB − Ḃ. Performing Goh’s transformation in Ω yields

ΩP [λ](ξ, y, v) :=g[λ](ξ(T ), y(T ))

+

∫ T

0

(1
2
ξ>Q[λ]ξ + y>M [λ]ξ + 1

2
y>R[λ]y + v>V [λ]y)dt.

(41)

By transforming the critical cone C2 we obtain a cone P in the new space of pertur-

bations. The objective is providing conditions that do not involve variable v. With

this aim we define, for a compact and convex set M ⊂ Rs,

G(M) := {λ ∈M : Vij[λ](t) = 0 on I i+ ∩ I
j
+, for any pair 1 ≤ i < j ≤ m}.

By Remark 0.4.3, the convex hull of Λ, denoted by co Λ, can be identified with a finite

dimensional compact and convex set. The following necessary condition is established.

Theorem 0.4.5. If ŵ is a weak minimum then

max
λ∈G(co Λ)

ΩP [λ](ξ, y, ẏ) ≥ 0, on P . (42)

Denote by P2 the closure of the cone P in the W 1
2 (0, T ;Rn)×L2(0, T ;Rm

+ )×Rm−topo-

logy and consider the following quadratic mapping that does not depend on v.
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Definition 0.4.6. For (ξ, y, h) ∈ P2 and λ ∈ G(Λ) define

ΩP2 [λ](ξ, y, h) :=g[λ](ξ(T ), h) + Ξ[λ](ξ, y, h)

+

∫ T

0

(1
2
ξ>Q[λ]ξ + y>M [λ]ξ + 1

2
y>R[λ]y)dt,

(43)

where Ξ is a quadratic mapping (that we define later).

The following necessary condition is established.

Theorem 0.4.7. Let ŵ be a weak minimum, then

max
λ∈G(co Λ)

ΩP2 [λ](ξ, y, h) ≥ 0, for all (ξ, y, h) ∈ P2. (44)

Finally, we provide a sufficient condition for Pontryagin optimality for the case of

a scalar control. We make use of the concepts below

Definition 0.4.8. - A sequence {vk} ⊂ U converges to 0 in the Pontryagin sense

if ‖vk‖1 → 0 and there exists N such that ‖vk‖∞ < N.

- For (y, h) ∈ U2 × R, consider the order γ(y, h) :=

∫ T

0

y(t)2dt+ h2.

- The extremal ŵ satisfies γ−quadratic growth condition in the Pontryagin sense

if there exists ρ > 0 such that, for every sequence of feasible variations {(δxk, vk)}
with {vk} converging to 0 in the Pontryagin sense,

J(û+ vk)− J(û) ≥ ργ(yk, yk(T )), (45)

holds for large enough k, where yk is defined by (39). Equivalently, for all

N > 0, there exists ε > 0 such that if ‖v‖∞ < N and ‖v‖1 < ε, then (45) holds.

- The trajectory ŵ is normal if α0 > 0 for every λ ∈ Λ.

The sufficient condition is as follows.

Theorem 0.4.9 (Sufficient condition for scalar control). Suppose that there exists

ρ > 0 such that

max
λ∈Λ

ΩP2 [λ](ξ, y, h) ≥ ργ(y, h), on (ξ, y, h) ∈ P2. (46)

Then ŵ is a Pontryagin minimum satisfying γ− quadratic growth. Furthermore, if ŵ

is normal, the converse holds.

Remark 0.4.10. In case the bang arcs are absent, i.e. the control is totally singular,

this theorem reduces to one proved in Dmitruk [41, 43].
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0.4.2 A shooting method

We begin Chapter 2 by studying the problem

ϕ0(x(0), x(T ))→ min, (47)

ẋ(t) =
m∑
i=0

ui(t)fi(x(t)), a.e. on [0, T ], (48)

ηj(x(0), x(T )) = 0, for j = 1, . . . , dη. (49)

Notice that no inequality constraints are considered. We assume that the studied

trajectory ŵ satisfies the following qualification hypothesis. Consider the mapping

G : Rn × U → Rdη

(x0, u) 7→ η(x0, xT ),
(50)

where xT is the solution of (2.2) associated to (x0, u).

Assumption 0.4.11. The derivative of G at (x̂0, û) is onto.

It is a known fact that the Assumption 0.4.11 implies the uniqueness of multiplier.

We denote this unique multiplier by λ̂ = (β̂, p̂).

For this problem, we propose a shooting algorithm and we show a sufficient con-

dition that guarantees its local quadratic convergence. This condition coincides with

the second order sufficient condition for weak optimality proved by Dmitruk in [40],

and already mentioned earlier in this introduction. Furthermore, in some cases, we

prove that this sufficient condition ensures the stability of the optimal solution under

small data perturbation.

Afterwards we deal with a problem having control bounds of the type

0 ≤ u(t) ≤ 1, a.e. on [0, T ]. (51)

By means of a certain transformation we obtain similar results that those established

for (47)-(49).

Finally we present numerical tests that validate our method.

The algorithm

The PMP consists of the following conditions: the costate equation

− ˙̂p(t) = Hx[λ̂](x̂(t), û(t), t), on [0, T ], (52)
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with the transversality conditions

p̂(0) = −Dx0`[λ̂](x̂(0), x̂(T )), (53)

p̂(T ) = DxT `[λ̂](x̂(0), x̂(T )), (54)

and the minimum condition

H[λ̂](x̂(t), û(t), t) = min
v∈Rm

H[λ̂](x̂(t), v, t), a.e. on [0, T ]. (55)

Let the switching function Φ : [0, T ]→ Rm,∗ be defined by

Φ(t) := Hu[λ̂](x̂(t), û(t), t). (56)

Observe that the minimum condition (55) is equivalent to

Φ(t) = 0, a.e. on [0, T ]. (57)

Assuming that the strengthened generalized Legendre-Clebsch condition − ∂
∂u

Φ̈ � 0

holds, we can write û in terms of x̂ and p̂ from equation

Φ̈ = 0, a.e. on [0, T ]. (58)

Observe that (58) together with

ΦT = 0, Φ̇0 = 0, (59)

imply the stationarity condition (57).

Notation: Denote by (OS) the set of equations composed by (48)-(49), (52)-(54),

(58), (59).

Define the shooting function

S : D(S) := Rn × Rn+dη ,∗ → Rdη × R2n+2m,∗,

(
x0, p0, β

)
=: ν 7→ S(ν) :=


η(x(0), x(T ))

p0 +Dx0`[λ](x(0), x(T ))
pT −DxT `[λ](x(0), x(T ))

Φ(T )

Φ̇(0)

 ,
(60)

where (x, u, p) is a solution of (48), (52), (58) with initial conditions x0 and p0, and

λ := (β, p). Note that solving (OS) consists of finding ν ∈ D(S) such that

S(ν) = 0. (61)

Since the number of equations in (2.23) is greater than the number of unknowns,

the Gauss-Newton method is a suitable approach to solve it. The shooting method

suggested here consists of solving (2.23) by the Gauss-Newton method. The latter is

applicable provided that S ′(ν̂) is one-to-one, where ν̂ is the solution of (61), and in

this case the algorithm converges locally quadratically.
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The sufficient condition

We shall briefly present the second order sufficient condition due to Dmitruk [40]

that we use in the main statements of Chapter 2. The concepts that we need here

where already introduced in the presentantion of Chapter 1 in Paragraph 0.4.1 above.

Recall the critical cone P2 and the quadratic mappings ΩP and ΩP2 .

Theorem 0.4.12. The trajectory ŵ is a weak minimum of (P) satisfying γ−quadratic

growth condition in the weak sense if and only if V ≡ 0 and ΩP2 is coercive on P2.

Remark 0.4.13. Actually, the nullity of V is a necessary condition for weak optimal-

ity due to Goh [67] and it implies that the function Ξ in ΩP2 is null and ΩP = ΩP2 .

The results

We give first a sufficient condition for the local quadratic convergence of the shooting

algorithm:

Theorem 0.4.14. Let ŵ be a weak minimum of (47)-(49) such that ΩP2 is coercive

on P2. Then the shooting algorithm is locally quadratically convergent.

Afterwards, we study the family of problems depending on the real parameter µ

ϕµ0(x(0), x(T ))→ min,

ẋ(t) =
m∑
i=0

ui(t)f
µ
i (x(t)), a.e. on [0, T ],

ηµ(x(0), x(T )) = 0.

(Pµ)

All the data functions are continuously differentiable with respect to the parameter

µ, and problem (P0) coincides with (47)-(49). We establish the stability under small

perturbation.

Theorem 0.4.15 (Stability of the optimal solution). Assume that the shooting system

generated by problem (47)-(49) is square (i.e. it can be reduced to a square system) and

let ŵ be such that ΩP2 is coercive on P2. Then there exists a neighborhood J ⊂ R of 0,

and a continuous differentiable mapping µ 7→ wµ = (xµ, uµ), from J to W , where wµ

is a weak solution for (Pµ). Furthermore, wµ verifies the coercivity condition for Ωµ
P2

.

Therefore, the quadratic growth in the weak sense holds and the shooting algorithm

for (Pµ) converges locally quadratically.
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For a problem having control bounds like in (51) we prove similar results to the

two just given. We proceed as follows. Denote by (CP) the problem defined by (47)-

(49), (51). Assuming that we know the structure of the optimal solution û of (CP)

and an approximation of its switching times we propose a shooting system by means

of a transformed problem (TP). Afterwards we prove that we can transform ŵ into a

solution Ŵ of (TP). Finally we conclude that if Ŵ satisfies the coercivity condition

for its corresponding ΩP2 , the Theorem 0.4.14 can be applied. Then the shooting

method converges locally quadratically. Furthermore, if the system is square the

stability result holds for Ŵ , in view of Theorem 0.4.15. The latter yields the stability

of ŵ in a certain sense that we define later on and that is very close to weak optimality.

0.4.3 Partially affine problems

In Chapter 3 we investigate the problem

J := ϕ0(x(0), x(T ))→ min, (62)

ẋ(t) =
m∑
i=0

vi(t)fi(x(t), u(t)), a.e. on [0, T ], (63)

ηj(x(0), x(T )) = 0, for j = 1 . . . , dη, (64)

ϕi(x(0), x(T )) ≤ 0, for i = 1, . . . , dϕ. (65)

Observe that v enters linearly in the pre-Hamiltonian. We derive second order nec-

essary and sufficient conditions for weak optimality in terms of the second variation

of the Lagrangian function. Afterwards, we propose a shooting algorithm and show

that the provided sufficient condition guarantees the local quadratic convergence of

this algorithm.

There is a difference that we encounter in the derivation of second order conditions

for this ‘mixed’ framework that we would like to mention. The Goh’s transformation

used in this case does not change the entire control variable, but only the controls

that are affine in the pre-Hamiltonian. More precisely, if we denote by (x̄, ū, v̄) the

perturbation for a trajectory (x̂, û, v̂), the transformation is given by

ȳ(t) :=

∫ t

0

v̄(s)ds, ξ̄(t) := x̄(t)−B(t)ȳ(t). (66)

Hence, the new perturbation is (ξ̄, ū, ȳ).
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Basic concepts and properties

As usual, we study a nominal feasible trajectory (x̂, û, v̂). We consider the associated

set of Lagrange multipliers ΛL consisting of the elements λ = (α, β, p) that verify

the normalization for (α, β), the non-negativity for α, the costate equation and the

following stationarity conditions{
Hu[λ](x̂(t), û(t), v̂(t), t) = 0,

Hv[λ](x̂(t), û(t), v̂(t), t) = 0,
a.e. on [0, T ]. (67)

The second variation associated to problem (62)-(65) is given by

Ω[λ](x̄, ū, v̄) := 1
2
`′′[λ](x̂0, x̂T )(x̄0, x̄T )2

+

∫ T

0

[1
2
x̄>Q[λ]x̄+ ū>E[λ]x̄+ v̄>C[λ]x̄+ 1

2
ū>R0[λ]ū+ v̄>K[λ]ū]dt.

(68)

The main statements involve the subset of multipliers given by

Λ#
L := {λ ∈ ΛL : R0[λ] � 0 and K[λ] ≡ 0}. (69)

The critical cone C2, the quadratic mapping ΩP2 and the transformed cone P2 are the

natural extensions for the mixed case of the ones defined before.

Results

In the first part of the chapter we establish the following second order conditions.

Theorem 0.4.16 (Second order necessary condition). If ŵ is a weak minimum of

problem (P), then

max
λ∈Λ#

L

Ω[λ](x̄, ū, v̄) ≥ 0, on C2. (70)

Theorem 0.4.17 (Transformed second order necessary condition). If ŵ is a weak

minimum of problem (P), then

max
λ∈G(co Λ#

L )

ΩP2 [λ](ξ̄, ū, ȳ, h̄) ≥ 0, on P2. (71)

Theorem 0.4.18 (Sufficient condition). Assume that there exists ρ > 0 such that

max
λ∈G(co Λ#

L )

ΩP2 [λ](ξ̄, ū, ȳ, h̄) ≥ ργ(ξ̄0, ū, ȳ, h̄), on P2. (72)

Then ŵ is a weak minimum satisfying γ−quadratic growth in the weak sense.
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In the second part of the chapter we propose a shooting algorithm that uses the

system (
Hu

−Ḧv

)
= 0 (73)

to eliminate the control (u, v) in terms of the state and costate variables. We give a

sufficient condition for its local quadratic convergence that coincides with the suffi-

cient condition stated above.

Theorem 0.4.19. If ŵ is a weak minimum satisfying (72) then the shooting algorithm

converges locally quadratically.

0.4.4 Optimal hydrothermal scheduling

In Chapter 4 we study the model of hydrothermal scheduling described next. We know

(somehow) the complete trajectory of the electricity demand d(t) and the thermal

production cost P which is an increasing, positive function of the load. If we call π(t)

the total amount of electricity produced with the hydropower plants, the remainder

d(t) − π(t) will be produced with the thermal units. For the sake of planning, the

water has an economic value that has also to be considered in the cost definition.

More precisely, we consider the problem on [0, T ] given by

T∫
0

P [d(t)− π(t)]dt− a
m∑
i=1

yi(T )→ min,

ẏ(t) = b(t)− s(t)− q(t),

π(t) =
m∑
i=1

ρi(yi)qi ≤ d(t),

0 ≤ yi(t) ≤ yM , for i = 1, . . . ,m,

0 ≤ qi(t) ≤ qM , for i = 1, . . . ,m,

s(t) ≥ 0,

(P)

where qi is the outflow of plant i, yi is the water volume in the valley i, bi is its water

inflow and si is the spilled out water at plant i. The control variables are q and s. We

assume that the efficiency of each turbine is a positive and increasing function of the

volumen ρi(yi), the maximum volume of each valley is given by yM and the maximum

allowed flow in each turbine is qM .
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Results

By means of a change of variables on the controls we convert problem (P) into a

problem having the partially affine structure studied in Chapter 3. We focus on

the occurrence of singular arcs in this transformed problem. Our main result is an

analysis of the Goh-Legendre-Clebsch condition. We show that for some choices

of the efficiency functions ρi(yi), the Goh-Legendre-Clebsch condition always holds

(respectively does not hold).
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Abstract

This paper deals with optimal control problems for systems affine in the control

variable. We consider nonnegativity constraints on the control, and finitely many

equality and inequality constraints on the final state. For the vector control case we

obtain second order necessary optimality conditions, and for the scalar control we get

second order sufficient conditions as well.

1.1 Introduction

In this article we obtain second order conditions for an optimal control problem affine

in the control. First we consider a pointwise nonnegativity constraint on the control,

end-point state constraints and a fixed time interval. Then we extend the result to

bound constraints on the control, initial-final state constraints and problems involving

parameters. We do not assume that the multipliers are unique. We study weak and

Pontryagin minima.

There is already an important literature on this subject. The case without control

constraints, i.e. when the extremal is totally singular, has been extensively studied

since the mid 1960s. Kelley in [79] treated the scalar control case and presented a

necessary condition involving the second order derivative of the switching function.

The result was extended by Kopp and Moyer [82] for higher order derivatives, and in

[81] it was shown that the order had to be even. Goh in [68] proposed a special change

of variables obtained via a linear ODE and in [67] used this transformation to derive

a necessary condition for the vector control problem. An extensive survey of these

articles can be found in Gabasov and Kirillova [62]. Jacobson and Speyer in [76],

and together with Lele in [77] obtained necessary conditions by adding a penalization

term to the cost functional. Gabasov and Kirillova [62], Krener [83], Agrachev and

Gamkrelidze [2] obtained a countable series of necessary conditions that in fact use the

idea behind the Goh transformation. Milyutin in [96] discovered an abstract essence

of this approach and obtained even stronger necessary conditions. More references

can be found in Dmitruk [44]. The main feature of this kind of problem, where the

control enters linearly, is that the corresponding second variation does not contain the

Legendre term, so the methods of the classical calculus of variations are not applicable

for obtaining sufficient conditions. This is why the literature was mostly devoted to

necessary conditions, which are actually a consequence of the nonnegativity of the

second variation. For a long time, the proposed sufficient conditions were not of
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second order since they required not only properties along the reference extremal,

but also those in a neighborhood of it. Those conditions were based either on field

theory or on the existence of a so-called Krotov function. Hence, they were rather

far from being necessary. See e.g. works of Moyer [99], Gurman [71] and Dykhta

[51]. On the other hand, the above-mentioned Goh’s transformation allows one to

convert the second variation into another functional that hopefully turns out to have a

positive Legendre term with respect to some state variable that can be taken as a new

control. Dmitruk in [40] proposed a quadratic order involving only state variations,

and proved that the corresponding coercivity of the second variation is sufficient for

the weak optimality (whereas its nonnegativity is a necessary condition). He used

the abstract approach developed by Levitin, Milyutin and Osmolovskii in [86], and

considered finitely many inequality and equality constraints on the endpoints and

the possible nonuniqueness of multipliers. In [41, 43] he also obtained necessary

and sufficient conditions of this quadratic order, again closely related, for Pontryagin

minimality. More recently, Bonnard et al. in [21] provided second order sufficient

conditions for the minimum time problem of a single-input system in terms of the

existence of a conjugate time.

The case with linear control constraints and a “purely” bang-bang control without

singular subarcs has been extensively investigated over the past 15 years. Milyutin

and Osmolovskii in [97] provided second order necessary and sufficient conditions

based on the general theory of [86]. Agrachev, Stefani and Zezza [4] reduced the

problem to a finite dimensional problem with the switching instants as variables and

obtained a sufficient condition for strong optimality. Osmolovskii and Maurer [104]

showed that this condition is equivalent to that in [97]. Some other results were

obtained by Sarychev [115], Poggiolini and Spadini [107], Maurer and Osmolovskii

[94, 93]. Felgenhauer in [52, 53, 54] studied both second order optimality conditions

and sensitivity of the optimal solution.

The mixed case, where the control is partly bang-bang, partly singular was studied

in [108] by Poggiolini and Stefani. They obtained a second order sufficient condition

with an additional geometrical hypothesis (which is not needed here) and claimed

that it is not clear whether this hypothesis is ‘almost necessary’, in the sense that

it is not obtained straightforward from a necessary condition by strengthening an

inequality. In [109, 110] they derived a second order sufficient condition for the special

case of a time-optimal problem. The single-input time-optimal problem was also

studied by means of synthesis-like methods. See, among others, Sussmann [123, 122,

121], Schättler [117] and Schättler-Jankovic [118]. Both bang-bang and bang-singular
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structures were analyzed in these works, but they did not give second order conditions.

The main goal of the present article is to provide a second order sufficient condition

for bang-singular extremals in a general Mayer problem, that is ‘almost necessary’.

Our approach is quite different from that in Poggiolini and Stefani [108, 109, 110].

The article is organized as follows. In the section 1.2 we present the problem

and give basic definitions. In section 1.3 we perform a second order analysis. More

precisely, we derive the second variation of the Lagrangian functions and obtain a

necessary condition. Afterwards, in the section 1.4, we present the Goh transforma-

tion and a new necessary condition in the transformed variables. In section 1.5 we

obtain a sufficient condition for scalar control. Finally, we give an example with a

scalar control where the second order sufficient condition can be verified in section

1.6. The appendix is devoted to a series of technical properties that are used to prove

the main results.

1.2 Statement of the problem and assumptions

1.2.1 Statement of the problem

Consider the spaces U := L∞(0, T ;Rm) and X := W 1
∞(0, T ;Rn) as control and state

spaces, respectively. Denote with u and x their elements, respectively. When needed,

put w = (x, u) for a point in W := X × U . In this paper we investigate the optimal

control problem

J := ϕ0(x(T ))→ min, (1.1)

ẋ(t) =
m∑
i=0

uifi(x), x(0) = x0, (1.2)

u(t) ≥ 0, a.e. on t ∈ [0, T ], (1.3)

ϕi(x(T )) ≤ 0, for i = 1, . . . , dϕ, ηj(x(T )) = 0, for j = 1 . . . , dη. (1.4)

where fi : Rn → Rn for i = 0, . . . ,m, ϕi : Rn → R for i = 0, . . . , dϕ, ηj : Rn → R
for j = 1, . . . , dη and u0 ≡ 1. Assume that data functions fi are twice continuously

differentiable. Functions ϕi and ηj are assumed to be twice differentiable.

A trajectory is an element w ∈ W that satisfies the state equation (1.2). If, in

addition, constraints (1.3) and (1.4) hold, we say that w is a feasible point of the

problem (1.1)-(1.4). Denote by A the set of feasible points. A feasible variation for

ŵ ∈ A is an element δw ∈ W such that ŵ + δw ∈ A.
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Definition 1.2.1. A pair w0 = (x0, u0) ∈ W is said to be a weak minimum of

problem (1.1)-(1.4) if there exists an ε > 0 such that the cost function attains at w0

its minimum on the set{
w = (x, u) ∈ A : ‖x− x0‖∞ < ε, ‖u− u0‖∞ < ε

}
.

We say w0 is a Pontryagin minimum of problem (1.1)-(1.4) if, for any positive N,

there exists an εN > 0 such that w0 is a minimum point on the set{
w = (x, u) ∈ A : ‖x− x0‖∞ < εN , ‖u− u0‖∞ ≤ N, ‖u− u0‖1 < εN

}
.

Consider λ = (α, β, ψ) ∈ Rdϕ+1,∗ × Rdη ,∗ ×W 1
∞(0, T ;Rn,∗), i.e. ψ is a Lipschitz-

continuous function with values in the n−dimensional space of row-vectors with real

components Rn,∗. Define the pre-Hamiltonian (or Pontryagin) function

H[λ](x, u, t) := ψ(t)
m∑
i=0

uifi(x),

the terminal Lagrangian function

`[λ](q) :=

dϕ∑
i=0

αiϕi(q) +

dη∑
j=1

βjηj(q),

and the Lagrangian function

Φ[λ](w) := `[λ](x(T )) +

∫ T

0

ψ(t)

(
m∑
i=0

ui(t)fi(x(t))− ẋ(t)

)
dt. (1.5)

In this article the optimality of a given feasible trajectory ŵ = (x̂, û) is studied.

Whenever some argument of fi, H, `, Φ or their derivatives is omitted, assume that

they are evaluated over this trajectory. Without loss of generality suppose that

ϕi(x̂(T )) = 0, for all i = 0, 1, . . . , dϕ. (1.6)

1.2.2 First order analysis

Definition 1.2.2. Denote by Λ ⊂ Rdϕ+1,∗×Rdη ,∗×W 1
∞(0, T ;Rn,∗) the set of Pontrya-

gin multipliers associated with ŵ consisting of the elements λ = (α, β, ψ) satisfying

the Pontryagin Maximum Principle, i.e. having the following properties:

|α|+ |β| = 1, (1.7)

α = (α0, α1, . . . , αdϕ) ≥ 0, (1.8)
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function ψ is solution of the costate equation and satisfies the transversality condition

at the endpoint T, i.e.

−ψ̇(t) = Hx[λ](x̂(t), û(t), t), ψ(T ) = `′[λ](x̂(T )), (1.9)

and the following minimum condition holds

H[λ](x̂(t), û(t), t) = min
v≥0

H[λ](x̂(t), v, t), a.e. on [0, T ]. (1.10)

Remark 1.2.3. For every λ ∈ Λ, the following two conditions hold.

(i) Hui [λ] is continuous in time,

(ii) Hui [λ](t) ≥ 0, a.e. on [0, T ].

Recall the following well known result for which a proof can be found e.g. in

Alekseev, Tikhomirov and Fomin [5], Kurcyusz and Zowe [84].

Theorem 1.2.4. The set Λ is not empty.

Remark 1.2.5. Since ψ may be expressed as a linear continuous mapping of (α, β)

and since (1.7) holds, Λ is a finite-dimensional compact set. Thus, it can be identified

with a compact subset of Rs, where s := dϕ + dη + 1.

The following expression for the derivative of the Lagrangian function holds

Φu[λ](ŵ)v =

∫ T

0

Hu[λ](x̂(t), û(t), t)v(t)dt. (1.11)

Consider v ∈ U and the linearized state equation: ż(t) =
m∑
i=0

ûi(t)f
′
i(x̂(t))z(t) +

m∑
i=1

vi(t)fi(û(t)), a.e. on [0, T ],

z(0) = 0.

(1.12)

Its solution z is called the linearized state variable.

With each index i = 1, . . . ,m, we associate the sets

I i0 :=

{
t ∈ [0, T ] : max

λ∈Λ
Hui [λ](t) > 0

}
, I i+ := [0, T ]\I i0, (1.13)

and the active set

Ĩ i0 := {t ∈ [0, T ] : ûi(t) = 0}. (1.14)

Notice that I i0 ⊂ Ĩ i0, and that I i0 is relatively open in [0, T ] as each Hui [λ] is continuous.
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Assumption 1. Assume strict complementarity for the control constraint, i.e. for

every i = 1, . . . ,m,

I i0 = Ĩ i0, up to a set of null measure. (1.15)

Observe then that for any index i = 1, . . . ,m, the control ûi(t) > 0 a.e. on I i+,

and given λ ∈ Λ,

Hui [λ](t) = 0, a.e. on I i+.

Assumption 2. For every i = 1, . . . ,m, the active set I i0 is a finite union of intervals,

i.e.

I i0 =

Ni⋃
j=1

I ij,

for I ij subintervals of [0, T ] of the form [0, d), (c, T ]; or (c, d) if c 6= 0 and d 6= T. Denote

by ci1 < di1 < ci2 < . . . < ciNi < diNi the endpoints of these intervals. Consequently, I i+

is a finite union of intervals as well.

Remark 1.2.6 (On the multi-dimensional control case). We would like to make a

comment concerning solutions with more than one control component being singular

at the same time. In [32, 33], Chitour et al. proved that generic systems with three or

more control variables, or with two controls and drift did not admit singular optimal

trajectories (by means of Goh’s necessary condition [67]). Consequently, the study

of generic properties of control-affine systems is restricted to problems having either

one dimensional control or two control variables and no drift. Nevertheless, there

are motivations for investigating problems with an arbitrary number of inputs that

we point out next. In [85], Ledzewicz and Schättler worked on a model of cancer

treatment having two control variables entering linearly in the pre-Hamiltonian and

nonzero drift. They provided necessary optimality conditions for solutions with both

controls being singular at the same time. Even if they were not able to give a proof of

optimality they claimed to have strong expectations that this structure is part of the

solution. Other examples can be found in the literature. Maurer in [92] analyzed a

resource allocation problem (taken from Bryson-Ho [30]). The model had two controls

and drift, and numerical computations yielded a candidate solution containing two

simultaneous singular arcs. For a system with a similar structure, Gajardo et al. in

[63] discussed the optimality of an extremal with two singular control components at

the same time. Another motivation that we would like to point out is the technique

used in Aronna et al. [10] to study the shooting algorithm for bang-singular solutions.

In order to treat this kind of extremals, they perform a transformation that yields a

new system and an associated totally singular solution. This new system involves as
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many control variables as singular arcs of the original solution. Hence, even a one-

dimensional problem can lead to a multi-dimensional totally singular solution. These

facts give a motivation for the investigation of multi-input control-affine problems.

1.2.3 Critical cones

Let 1 ≤ p ≤ ∞, and call Up := Lp(0, T ;Rm), U+
p := Lp(0, T ;Rm

+ ) and Xp :=

W 1
p (0, T ;Rn). Recall that given a topological vector space E, a subset D ⊂ E and

x ∈ E, a tangent direction to D at x is an element d ∈ E such that there exists

sequences (σk) ⊂ R+ and (xk) ⊂ D with

xk − x
σk

→ d.

It is a well known result, see e.g. [35], that the tangent cone to U+
2 at û is

{v ∈ U2 : vi ≥ 0 on I i0, for i = 1, . . . ,m}.

Given v ∈ Up and z the solution of (1.12), consider the linearization of the cost and

final constraints {
ϕ′i(x̂(T ))z(T ) ≤ 0, i = 0, . . . , dϕ,

η′j(x̂(T ))z(T ) = 0, j = 1, . . . , dη.
(1.16)

For p ∈ {2,∞}, define the Lp−critical cone as

Cp :=
{

(z, v) ∈ Xp × Up : v tangent to U+
p , (1.12) and (1.16) hold

}
.

Certain relations of inclusion and density between some approximate critical cones

are needed. Given ε ≥ 0 and i = 1, . . . ,m, define the ε−active sets, up to a set of

null measure

I iε := {t ∈ (0, T ) : ûi(t) ≤ ε},

and the sets

Wp,ε := {(z, v) ∈ Xp × Up : vi = 0 on I iε, (1.12) holds}.

By Assumption 1, the following explicit expression for C2 holds

C2 = {(z, v) ∈ W2,0 : (1.16) holds}. (1.17)

Consider the ε−critical cones

Cp,ε := {(z, v) ∈ Wp,ε : (1.16) holds}. (1.18)
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Let ε > 0. Note that by (1.17), C2,ε ⊂ C2. On the other hand, given (z, v) ∈ C∞,ε, it

easily follows that û + σv ∈ U+ for small positive σ. Thus v is tangent to U+ at û,

and this yields C∞,ε ⊂ C∞.

Recall the following technical result, see Dmitruk [45].

Lemma 1.2.7 (on density). Consider a locally convex topological space X, a finite-

faced cone C ⊂ X, and a linear manifold L dense in X. Then the cone C ∩L is dense

in C.

Lemma 1.2.8. Given ε > 0 the following properties hold.

(a) C∞,ε ⊂ C2,ε with dense inclusion.

(b)
⋃
ε>0 C2,ε ⊂ C2 with dense inclusion.

Proof. (a) The inclusion is immediate. As U is dense in U2,W∞,ε is a dense subspace

of W2,ε. By Lemma 1.2.7, C2,ε ∩W∞,ε is dense in C2,ε, as desired.

(b) The inclusion is immediate. In order to prove density, consider the following

dense subspace of W2,0 :

W2,
⋃ :=

⋃
ε>0

W2,ε,

and the finite-faced cone in C2 ⊂ W2,0. By Lemma 1.2.7, C2 ∩ W2,
⋃ is dense in C2,

which is what we needed to prove.

1.3 Second order analysis

1.3.1 Second variation

Consider the following quadratic mapping on W ;

Ω[λ](δx, δu) :=1
2
`′′[λ](x̂(T ))(δx(T ))2

+ 1
2

∫ T

0

[(Hxx[λ]δx, δx) + 2(Hux[λ]δx, δu)] dt.

The next lemma provides a second order expansion for the Lagrangian function in-

volving operator Ω. Recall the following notation: given two functions h : Rn → Rnh

and k : Rn → Rnk , we say that h is a big-O of k around 0 and denote it by

h(x) = O(k(x)),

if there exists positive constants δ and M such that |h(x)| ≤ M |k(x)| for |x| < δ. It

is a small-o if M goes to 0 as |x| goes to 0. Denote this by

h(x) = o(k(x)).
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Lemma 1.3.1. Let δw = (δx, δu) ∈ W . Then for every multiplier λ ∈ Λ, the function

Φ has the following expansion (omitting time arguments):

Φ[λ](ŵ + δw) =

∫ T

0

Hu[λ]δudt+ Ω[λ](δx, δu) + 1
2

∫ T

0

(Huxx[λ]δx, δx, δu)dt

+O(|δx(T )|3) +

∫ T

0

|(û+ δu)(t)|O(|δx(t)|3) dt.

Proof. Omit the dependence on λ for the sake of simplicity. Use the Taylor expansions

`(x̂(T ) + δx(T )) = `(x̂(T )) + `′(x̂(T ))δx(T ) + 1
2
`′′(x̂(T ))(δx(T ))2 +O(|δx(T )|3),

fi(x̂(t) + δx(t)) = fi(x̂(t)) + f ′i(x̂(t))δx(t) + 1
2
f ′′i (x̂(t))(δx(t))2 +O(|δx(t)|3),

in the expression

Φ(ŵ + δw) = `(x̂+ δx(T )) +

∫ T

0

ψ

[
m∑
i=0

(ûi + δui)fi(x̂+ δx)− ˙̂x− ˙δx

]
dt.

Afterwards, use the identity∫ T

0

ψ
m∑
i=0

ûif
′
i(x̂)δxdt = −`′(x̂(T ))δx(T ) +

∫ T

0

ψ ˙δxdt,

obtained by integration by parts and equation (1.2) to get the desired result.

The previous lemma yields the following identity for every (δx, δu) ∈ W :

Ω[λ](δx, δu) = 1
2
D2Φ[λ](ŵ)(δx, δu)2.

1.3.2 Necessary condition

This section provides the following second order necessary condition in terms of Ω

and the critical cone C2.

Theorem 1.3.2. If ŵ is a weak minimum then

max
λ∈Λ

Ω[λ](z, v) ≥ 0, for all (z, v) ∈ C2. (1.19)

For the sake of simplicity, define ϕ̄ : U → Rdϕ+1, and η̄ : U → Rdη as

ϕ̄i(u) := ϕi(x(T )), for i = 0, 1, . . . , dϕ,

η̄j(u) := ηj(x(T )), for j = 1, . . . , dη,
(1.20)

where x is the solution of (1.2) corresponding to u.



32 1. BANG-SINGULAR EXTREMALS

Definition 1.3.3. We say that the equality constraints are nondegenerate if

η̄′(û) is onto from U toRdη . (1.21)

If (1.21) does not hold, we call them degenerate.

Write the problem in the following way

ϕ̄0(u)→ min; ϕ̄i(u) ≤ 0, i = 1, . . . , dϕ, η̄(u) = 0, u ∈ U+. (P)

Suppose that û is a local weak solution of (P). Next we prove Theorem 1.3.2. Its

proof is divided into two cases: degenerate and nondegenerate equality constraints.

For the first case the result is immediate and is tackled in the next Lemma. In

order to show Theorem 1.3.2 for the latter case we introduce an auxiliary problem

parameterized by certain critical directions (z, v), denoted by (QPv). We prove that

val(QPv) ≥ 0 and, by a result on duality, the desired second order condition will be

derived.

Lemma 1.3.4. If equality constraints are degenerate, then (1.19) holds.

Proof. Notice that there exists β 6= 0 such that
∑dη

j=1 βjη
′
j(x̂(T )) = 0, since η̄′(û) is

not onto. Consider α = 0 and ψ = 0. Take λ := (α, β, ψ) and notice that both λ and

−λ are in Λ. Observe that

Ω[λ](z, v) = 1
2

dη∑
j=1

βjη
′′
j (x̂(T ))(z(T ))2.

Thus Ω[λ](z, v) ≥ 0 either for λ or −λ. The required result follows.

Take ε > 0, (z, v) ∈ C∞,ε, and rewrite (1.18) using the notation in (1.20),

C∞,ε = {(z, v) ∈ X × U : vi(t) = 0 on I iε, i = 1, . . . ,m,

(1.12) holds, ϕ̄′i(û)v ≤ 0, i = 0, . . . , dϕ, η̄
′(û)v = 0}.

Consider the problem

δζ → min

ϕ̄′i(û)r + ϕ̄′′i (û)(v, v) ≤ δζ, for i = 0, . . . , dϕ,

η̄′(û)r + η̄′′(û)(v, v) = 0,

− ri(t) ≤ δζ, on I i0, for i = 1, . . . ,m.

(QPv)

Proposition 1.3.5. Let (z, v) ∈ C∞,ε. If the equality constraints are nondegenerate,

problem (QPv) is feasible and val (QPv) ≥ 0.
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Proof. Let us first prove feasibility. As η̄′(û) is onto, there exists r ∈ U such that the

equality constraint in (QPv) is satisfied. Take

δζ := max(‖r‖∞, ϕ̄′i(û)r + ϕ̄′′(û)(v, v)).

Thus the pair (r, δζ) is feasible for (QPv).

Let us now prove that val (QPv) ≥ 0. On the contrary suppose that there exists a

feasible solution (r, δζ) with δζ < 0. The last constraint in (QPv) implies ‖r‖∞ 6= 0.

Set, for σ > 0,

ũ(σ) := û+ σv + 1
2
σ2r, ζ̃(σ) := 1

2
σ2δζ. (1.22)

The goal is finding u(σ) feasible for (P) such that for small σ,

u(σ)
U→ û, and ϕ̄0(u(σ)) < ϕ̄0(û),

contradicting the weak optimality of û.

Notice that ûi(t) > ε a.e. on [0, T ]\I iε, and then ũ(σ)i(t) > −ζ̃(σ) for sufficiently

small σ. On I iε, if ũ(σ)i(t) < −ζ̃(σ) then necessarily

ûi(t) <
1
2
σ2(‖r‖∞ + |δζ|),

as vi(t) = 0. Thus, defining the set

J iσ := {t : 0 < ûi(t) <
1
2
σ2(‖r‖∞ + |δζ|)},

we get {t ∈ [0, T ] : ũ(σ)i(t) < −ζ̃(σ)} ⊂ J iσ. Observe that on J iσ, the function

|ũ(σ)i(t) + ζ̃(σ)|/σ2 is dominated by ‖r‖∞ + |δζ|. Since meas(J iσ) goes to 0 by the

Dominated Convergence Theorem, we obtain∫
Jiσ

|ũ(σ)i(t) + ζ̃(σ)|dt = o(σ2).

Take

˜̃u(σ) :=

{
ũ(σ) on [0, T ]\J iσ,
−ζ̃(σ) on J iσ.

Thus, ˜̃u satisfies

˜̃u(σ)(t) ≥ −ζ̃(σ), a.e. on [0, T ], (1.23)

‖˜̃u(σ)− û‖1 = o(σ2), ‖˜̃u(σ)− û‖∞ = O(σ2),

and the following estimates hold

ϕ̄i(˜̃u(σ)) = ϕ̄i(û) + σϕ̄′i(û)v + 1
2
σ2[ϕ̄′i(û)r + ϕ̄′′i (û)(v, v)] + o(σ2)

< ϕ̄i(û) + ζ̃(σ) + o(σ2),
(1.24)
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η̄(˜̃u(σ)) = ση̄′(û)v + 1
2
σ2[η̄′(û)r + η̄′′(û)(v, v)] + o(σ2) = o(σ2).

As η̄′(û) is onto on U we can find a corrected control u(σ) satisfying the equality

constraint and such that ‖u(σ) − ˜̃u(σ)‖∞ = o(σ2). Deduce by (1.23) that u(σ) ≥ 0

a.e. on [0, T ], and by (1.24) that it satisfies the terminal inequality constraints. Thus

u(σ) is feasible for (P) and it satisfies (1.22). This contradicts the weak optimality of

û.

Recall that a Lagrange multiplier associated with ŵ is a pair (λ, µ) in Rdϕ+1 ×
Rdη ×W 1

∞(0, T ;Rn,∗) × U∗ with λ = (α, β, ψ) satisfying (1.7), (1.8), µ ≥ 0 and the

stationarity condition∫ T

0

Hu[λ](t)v(t)dt+

∫ T

0

v(t)dµ(t) = 0, for every v ∈ U .

Here U∗ denotes the dual space of U . Simple computations show that (λ, µ) is a

Lagrange multiplier if and only if λ is a Pontryagin multiplier and µ = Hu[λ]. Thus

µ ∈ L∞(0, T ;Rm,∗).

Let us come back to Theorem 1.3.2.

Proof. [of Theorem 1.3.2] Lemma 1.3.4 covers the degenerate case. Assume thus that

η̄′(û) is onto. Take ε > 0 and (z, v) ∈ C∞,ε. Applying Proposition 1.3.5, we see that

there cannot exist r and δζ < 0 such that

ϕ̄′i(û)r + ϕ̄′′i (û)(v, v) ≤ δζ, i = 0, . . . , dϕ,

η̄′(û)r + η̄′′(û)(v, v) = 0,

− ri(t) ≤ δζ, on I i0, for i = 1, . . . ,m.

By the Dubovitskii-Milyutin Theorem (see [49]) we obtain the existence of (α, β) ∈ Rs

and µ ∈ U∗ with supp µi ⊂ I i0, and (α, β, µ) 6= 0 such that

dϕ∑
i=0

αiϕ̄
′
i(û) +

dη∑
i=1

βj η̄
′
j(û)− µ = 0, (1.25)

and denoting λ := (α, β, ψ), with ψ being solution of (1.9), the following holds:

dϕ∑
i=0

αiϕ̄
′′
i (û)(v, v) +

dη∑
i=1

βj η̄
′′
j (û)(v, v) ≥ 0.

By Lemma 1.8.2 we obtain

Ω[λ](z, v) ≥ 0. (1.26)
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Observe that (1.25) implies that λ ∈ Λ. Consider now (z̄, v̄) ∈ C2, and note that

Lemma 1.2.8 guarantees the existence of a sequence {(zε, vε)} ⊂ C∞,ε converging to

(z̄, v̄) in X2 × U2. Recall Remark 1.2.5. Let λε ∈ Λ be such that (1.26) holds for

(λε, zε, vε). Since (λε) is bounded, it contains a limit point λ̄ ∈ Λ. Thus (1.26) holds

for (λ̄, z̄, v̄), as required.

1.4 Goh Transformation

Consider an arbitrary linear system:{
ż(t) = A(t)z(t) +B(t)v(t), a.e. on [0, T ],
z(0) = 0,

(1.27)

where A(t) ∈ L(Rn;Rn) is an essentially bounded function of t, and B(t) ∈ L(Rm;Rn)

is a Lipschitz-continuous function of t. With each v ∈ U associate the state variable

z ∈ X solution of (1.12). Let us present a transformation of the variables (z, v) ∈ W ,

first introduced by Goh in [68]. Define two new state variables as follows: y(t) :=

∫ t

0

v(s)ds,

ξ(t) := z(t)−B(t)y(t).

(1.28)

Thus y ∈ Y := W 1
∞(0, T ;Rm), y(0) = 0 and ξ is an element of space X . It easily

follows that ξ is a solution of the linear differential equation

ξ̇(t) = A(t)ξ(t) +B1(t)y(t), ξ(0) = 0, (1.29)

where

B1(t) := A(t)B(t)− Ḃ(t). (1.30)

For the purposes of this article take

A(t) :=
m∑
i=0

ûif
′
i(x̂(t)), and B(t)v(t) :=

m∑
i=1

vi(t)fi(û(t)). (1.31)

Then (1.27) coincides with the linearized equation (1.12).

1.4.1 Transformed critical directions

As optimality conditions on the variables obtained by the Goh Transformation will

be derived, a new set of critical directions is needed. Take a point (z, v) in C∞, and
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define ξ and y by the transformation (1.28). Let h := y(T ) and notice that since

(1.16) is satisfied, the following inequalities hold,

ϕ′i(x̂(T ))(ξ(T ) +B(T )h) ≤ 0, for i = 0, . . . , dϕ,

η′j(x̂(T ))(ξ(T ) +B(T )h) = 0, for j = 1, . . . , dη.
(1.32)

Define the set of transformed critical directions

P :=

{
(ξ, y, h) ∈ X × Y × Rm : ẏi = 0 over I i0, y(0) = 0, h := y(T ),

(1.29) and (1.32) hold

}
.

Observe that for every (ξ, y, h) ∈ P and 1 ≤ i ≤ m,

yi is constant over each connected component of I i0, (1.33)

and at the endpoints the following conditions hold

yi = 0 on [0, di1), if 0 ∈ I i0, and

yi = hi on (ciNi , T ], if T ∈ I i0,
(1.34)

where ci1 and di1 were introduced in Assumption 2. Define the set

P2 := {(ξ, y, h) ∈ X2 × U2 × Rm : (1.29), (1.32), (1.33) and (1.34) hold} .

Lemma 1.4.1. P is a dense subset of P2 in the X2 × U2 × Rm−topology.

Proof. The inclusion is immediate. In order to prove the density, consider the follow-

ing sets.

X := {(ξ, y, h) ∈ X2 × U2 × Rm : (1.29), (1.33) and (1.34) hold},

L := {(ξ, y, y(T )) ∈ X × Y × Rm : y(0) = 0, (1.29) and (1.33) hold},

C := {(ξ, y, h) ∈ X : (1.32) holds} .

By Lemma 1.8.1, L is a dense subset of X. The conclusion follows with Lemma

1.2.7.

1.4.2 Transformed second variation

We are interested in writing Ω in terms of variables y and ξ defined in (1.28). Introduce

the following notation for the sake of simplifying the presentation.
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Definition 1.4.2. Consider the following matrices of sizes n× n,m× n and m× n,
respectively.

Q[λ] := Hxx[λ], C[λ] := Hux[λ], M [λ] := B>Q[λ]− Ċ[λ]− C[λ]A, (1.35)

where A and B were defined in (1.31). Notice that M is well-defined as C is Lipschitz-

continuous on t. Decompose matrix C[λ]B into its symmetric and skew-symmetric

parts, i.e. consider

S[λ] := 1
2
(C[λ]B + (C[λ]B)>), V [λ] := 1

2
(C[λ]B − (C[λ]B)>). (1.36)

Remark 1.4.3. Observe that, since C[λ] and B are Lipschitz-continuous, S[λ] and

V [λ] are Lipschitz-continuous as well. In fact, simple computations yield

Sij[λ] = 1
2
ψ(f ′ifj + f ′jfi), Vij[λ] = 1

2
ψ[fi, fj], for i, j = 1, . . . ,m, (1.37)

where

[fi, fj] := f ′ifj − f ′jfi. (1.38)

With this notation, Ω takes the form

Ω[λ](δx, v) = 1
2
`′′[λ](x̂(T ))(δx(T ))2 + 1

2

∫ T

0

[(Q[λ]δx, δx) + 2(C[λ]δx, v)]dt.

Define the m×m matrix

R[λ] := B>Q[λ]B − C[λ]B1 − (C[λ]B1)> − Ṡ[λ], (1.39)

where B1 was introduced in equation (1.30). Consider the function g[λ] from Rn×Rm

to R defined by:

g[λ](ζ, h) := 1
2
`′′[λ](x̂(T ))(ζ +B(T )h)2 + 1

2
(C[λ](T )(2ζ +B(T )h), h). (1.40)

Remark 1.4.4. (i) We use the same notation for the matrices Q[λ], C[λ], M [λ],

`′′[λ](x̂(T )) and for the bilinear mapping they define.

(ii) Observe that when m = 1, the function V [λ] ≡ 0 since it becomes a skew-

symmetric scalar.

Definition 1.4.5. Define the mapping over X × Y × U given by

ΩP [λ](ξ, y, v) := g[λ](ξ(T ), y(T ))

+

∫ T

0

{1
2
(Q[λ]ξ, ξ) + 2(M [λ]ξ, y) + 1

2
(R[λ]y, y) + (V [λ]y, v)}dt,

(1.41)

with g[λ], Q[λ], M [λ], R[λ] and V [λ] defined in (1.35)-(1.40).
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The following theorem shows that ΩP coincides with Ω. See e.g. [43].

Theorem 1.4.6. Let (z, v) ∈ W satisfying (1.12) and (ξ, y) be defined by (1.28).

Then

Ω[λ](z, v) = ΩP [λ](ξ, y, v).

Proof. We omit the dependence on λ for the sake of simplicity. Replace z by its

expression in (1.28) and obtain

Ω(z, v) = 1
2
`′′(x̂(T ))(ξ(T ) +B(T )y(T ))2

+ 1
2

∫ T

0

[(Q(ξ +By), ξ +By) + (C(ξ +By), v) + (C>v, ξ +By)]dt.
(1.42)

Integrating by parts yields∫ T

0

(Cξ, v)dt = [(Cξ, y)]T0 −
∫ T

0

(Ċξ + C(Aξ +B1y), y)dt, (1.43)

and ∫ T

0

(CBy, v)dt =

∫ T

0

((S + V )y, v)dt

= 1
2
[(Sy, y)]T0 +

∫ T

0

(−1
2
(Ṡy, y) + (V y, v))dt.

(1.44)

Combining (1.42), (1.43) and (1.44) we get the desired result.

Corollary 1.4.7. If V [λ] ≡ 0 then Ω does not involve v explicitly, and it can be

expressed in terms of (ξ, y, y(T )).

In view of (1.37), the previous corollary holds in particular if [fi, fj] = 0 on the

reference trajectory for each pair 1 ≤ i < j ≤ m.

Corollary 1.4.8. If ŵ is a weak minimum, then

max
λ∈Λ

ΩP [λ](ξ, y, v) ≥ 0,

for every (z, v) ∈ C2 and (ξ, y) defined by (1.28).

1.4.3 New second order condition

In this section we present a necessary condition involving the variable (ξ, y, h) in P2.

To achieve this we remove the explicit dependence on v from the second variation, for

certain subset of multipliers. Recall that we consider λ = (α, β) as elements of Rs.
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Definition 1.4.9. Given M ⊂ Rs, define

G(M) := {λ ∈M : Vij[λ](t) = 0 on I i+ ∩ I
j
+, for any pair 1 ≤ i < j ≤ m}.

Theorem 1.4.10. Let M ⊂ Rs be convex and compact, and assume that

max
λ∈M

ΩP [λ](ξ, y, ẏ) ≥ 0, for all (ξ, y, h) ∈ P . (1.45)

Then

max
λ∈G(M)

ΩP [λ](ξ, y, ẏ) ≥ 0, for all (ξ, y, h) ∈ P .

The proof is based on some techniques introduced in Dmitruk [40, 43] for the

proof of similar theorems.

Let 1 ≤ i < j ≤ m and t∗ ∈ int I i+ ∩ I
j
+. Take y ∈ Y satisfying

y(0) = y(T ) = 0, yk = 0, for k 6= i, k 6= j. (1.46)

Such functions define a linear continuous mapping r : Rs,∗ → R by

λ 7→ r [λ] :=

∫ T

0

(V [λ](t∗)y, ẏ)dt. (1.47)

By condition (1.46), and since V [λ] is skew-symmetric,∫ T

0

(V [λ](t∗)y, ẏ)dt = Vij[λ](t∗)

∫ T

0

(yiẏj − yj ẏi)dt.

Each r is an element of the dual space of Rs,∗, and it can thus be identified with an

element of Rs. Consequently, the subset of Rs defined by

Rij(t
∗) := {r ∈ Rs : y ∈ Y satisfies (1.46), r is defined by (1.47)},

is a linear subspace of Rs. Now, consider all the finite collections

Θij :=
{
θ = {t1 < · · · < tNθ} : tk ∈ int I i+ ∩ I

j
+ for k = 1, . . . , Nθ

}
.

Define

R :=
∑
i<j

⋃
θ∈Θij

Nθ∑
k=1

Rij(t
k).

Note that R is a linear subspace of Rs. Given (ξ, y, y(T )) ∈ P , let the mapping

py : Rs,∗ → R be given by

λ 7→ py[λ] := ΩP [λ](ξ, y, ẏ). (1.48)

Thus, py is an element of Rs.
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Lemma 1.4.11. Let (ξ̄, ȳ, ȳ(T )) ∈ P and r ∈ R. Then there exists a sequence

{(ξν , yν , yν(T ))} in P such that

ΩP [λ](ξν , yν , ẏν) −→ pȳ[λ] + r [λ]. (1.49)

Proof. Take (ξ̄, ȳ, ȳ(T )) ∈ P , its corresponding critical direction (z̄, v̄) ∈ C related via

(1.28) and pȳ defined in (1.48). Assume that r ∈ Rij(t
∗) for some 1 ≤ i < j ≤ m and

t∗ ∈ int I i+ ∩ I
j
+, i.e. r is associated via (1.47) to some function ỹ verifying (1.46).

Take ỹ(t) = 0 when t /∈ [0, T ]. Consider

ỹν(t) := ỹ(ν(t− t∗)), y̆ν := ȳ + ỹν . (1.50)

Let ξ̆ν be the solution of (1.29) corresponding to y̆ν . Observe that for large enough

ν, as t∗ ∈ int I i+ ∩ I
j
+,

˙̆yνk = 0, a.e. on Ik0 , for k = 1, . . . ,m. (1.51)

Let (z̃ν , ṽν) and (z̆ν , v̆ν) be the points associated by transformation (1.28) with

(ξ̃ν , ỹν , ỹν(T )) and (ξ̆ν , y̆ν , y̆ν(T )), respectively. By (1.51), we get

v̆νk = 0, a.e. on Ik0 , for k = 1, . . . ,m.

Note, however, that (z̆ν , v̆ν) can violate the terminal constraints defining C∞, i.e. the

constraints defined in (1.16). Let us look for an estimate of the magnitude of this

violation. Since

‖ỹν‖1 = O(1/ν), (1.52)

and (ξ̃ν , ỹν) is solution of (1.29), Gronwall’s Lemma implies

|ξ̃ν(T )| = O(1/ν).

On the other hand, notice that z̆ν(T ) = z̄(T ) + ξ̃ν(T ), and thus

|z̆ν(T )− z̄(T )| = O(1/ν).

By Hoffman’s Lemma (see [73]), there exists (∆zν ,∆vν) ∈ W satisfying ‖∆vν‖∞ +

‖∆zν‖∞ = O(1/ν), and such that (zν , vν) := (z̆ν , v̆ν)+(∆zν ,∆vν) belongs to C∞. Let

(ξν , yν , yν(T )) ∈ P be defined by (1.28). Let us show that for each λ ∈M,

lim
ν→∞

ΩP [λ](ξν , yν , ẏν) = pȳ[λ] + r [λ].
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Observe that

lim
ν→∞

ΩP [λ](ξν , yν , ẏν)− pȳ[λ] = lim
ν→∞

∫ T

0

{(V [λ]ȳ, ˙̃yν) + (V [λ]ỹν , ˙̃yν)}dt, (1.53)

since the terms involving ξν − ξ̄, yν − ȳ or ∆vν vanish as ‖ξν − ξ̄‖∞ → 0 and

‖yν − ȳ‖1 → 0. Integrating by parts the first term in the right hand-side of (1.53) we

obtain∫ T

0

(V [λ]ȳ, ˙̃yν)dt = [(V [λ]ȳ, ỹν)]T0 −
∫ T

0

{(V̇ [λ]ȳ, ỹν) + (V [λ] ˙̄y, ỹν)}dt ν→∞→ 0,

by (1.52) and since ỹν(0) = ỹν(T ) = 0. Coming back to (1.53) we have

lim
ν→∞

ΩP [λ](ξν , yν , ẏν)− pȳ[λ] = lim
ν→∞

∫ T

0

(V [λ]ỹν , ˙̃yν)dt

= lim
ν→∞

∫ T

0

(V [λ](t)ỹ(ν(t− t∗)), ˙̃y(ν(t− t∗)))dνt

= lim
ν→∞

∫ ν(T−t∗)

−νt∗
(V [λ](t∗ + s/ν)ỹ(s), ˙̃y(s))ds = r [λ],

and thus (1.49) holds when r ∈ Rij(t
∗).

Consider the general case when r ∈ R, i.e. r =
∑
i<j

Nij∑
k=1

r kij, with each r kij in Rij(t
k
ij).

Let ỹkij be associated with r kij by (1.47). Define ỹk,νij as in (1.50), and follow the previous

procedure for ȳ +
∑
i<j

Nij∑
k=1

ỹk,νij to get the desired result.

Proof. [of Theorem 1.4.10] Take (ξ̄, ȳ, ȳ(T )) ∈ P and r ∈ R. By Lemma 1.4.11

there exists a sequence {(ξν , yν , yν(T ))} in P such that for each λ ∈M,

ΩP [λ](ξν , yν , ẏν)→ ΩP [λ](ξ̄, ȳ, ˙̄y) + r[λ].

Since this convergence is uniform over M, from (1.45) we get that

max
λ∈M

(ΩP [λ](ξ̄, ȳ, ˙̄y) + r[λ]) ≥ 0, for all r ∈ R.

Hence

inf
r∈R

max
λ∈M

(ΩP [λ](ξ̄, ȳ, ˙̄y) + r[λ]) ≥ 0, (1.54)

where the expression in brackets is linear both in λ and r. Furthermore, note that M

and R are convex, and M is compact. In light of MinMax Theorem [113, Corollary

37.3.2, page 39] we can invert the order of inf and max in (1.54) and obtain

max
λ∈M

inf
r∈R

(ΩP [λ](ξ̄, ȳ, ˙̄y) + r[λ]) ≥ 0. (1.55)
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Suppose that, for certain λ ∈M, there exists r ∈ R with r[λ] 6= 0. Then the infimum

in (1.55) is −∞ since R is a linear subspace. Hence, this λ does not provide the

maximal value of the infima, and so, we can restrict the maximization to the set of

λ ∈ M for which r[λ] = 0 for every r ∈ R. Note that this set is G(M), and thus the

conclusion follows.

Consider for i, j = 1, . . . ,m :

Iij := {t ∈ (0, T ) : ûi(t) = 0, ûj(t) > 0}.

By Assumption 2, Iij can be expressed as a finite union of intervals, i.e.

Iij =

Kij⋃
k=1

Ikij, where Ikij := (ckij, d
k
ij).

Let (z, v) ∈ C∞, i 6= j, and y be defined by (1.28). Notice that yi is constant on each

(ckij, d
k
ij). Denote with yki,j its value on this interval.

Proposition 1.4.12. Let (z, v) ∈ C∞, y be defined by (1.28) and λ ∈ G(Λ). Then∫ T

0

(V [λ]y, v)dt =
m∑
i 6=j
i,j=1

Kij∑
k=1

yki,j

{
[Vij[λ]yj]

dkij

ckij
−
∫ dkij

ckij

V̇ij[λ]yjdt

}
.

Proof. Observe that ∫ T

0

(V [λ]y, v)dt =
m∑
i 6=j
i,j=1

∫ T

0

Vij[λ]yivjdt, (1.56)

since Vii[λ] ≡ 0. Fix i 6= j, and recall that that Vij[λ] is differentiable in time (see

expression (1.37)). Since (z, v) ∈ C∞ and λ ∈ G(Λ),∫ T

0

Vij[λ]yivjdt =

∫
Iij

Vij[λ]yivjdt =

Kij∑
k=1

∫ dkij

ckij

Vij[λ]yivjdt

=

Kij∑
k=1

yki,j

{
[Vij[λ]yj]

dkij

ckij
−
∫ dkij

ckij

V̇ij[λ]yjdt

}
,

(1.57)

where the last equality was obtained by integrating by parts and knowing that yi is

constant on Iij. The desired result follows from (1.56) and (1.57).

Given a real function h and c ∈ R, define

h(c+) := lim
t→c+

h(t), and h(c−) := lim
t→c−

h(t).
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Definition 1.4.13. Let (ξ, y, h) ∈ P2 and λ ∈ G(Λ). Define

Ξ[λ](ξ, y, h) :=

2
m∑
i 6=j
i,j=1

Kij∑
k=1
ckij 6=0

yki,j

{
Vij[λ](dkij)yj(d

k
ij+)− Vij[λ](ckij)yj(c

k
ij−)−

∫ dkij

ckij

V̇ij[λ]yjdt

}
,

where the above expression is interpreted as follows:

(i) yj(d
k
ij+) := hj, if dkij = T,

(ii) Vij[λ](ckij)yj(c
k
ij−) := 0, if ûi > 0 and ûj > 0 for t < ckij,

(iii) Vij[λ](dkij)yj(d
k
ij+) := 0, if ûi > 0 and ûj > 0 for t > dkij.

Proposition 1.4.14. The following properties for Ξ hold.

(i) Ξ[λ](ξ, y, h) is well-defined for each (ξ, y, h) ∈ P2, and λ ∈ G(Λ).

(ii) If {(ξν , yν , yν(T ))} ⊂ P converges in the X2×U2×Rm− topology to (ξ, y, h) ∈ P2

, then ∫ T

0

(V [λ]yν , ẏν)dt
ν→∞−→ Ξ[λ](ξ, y, h).

Proof. (i) Take (ξ, y, h) ∈ P2. First observe that yi ≡ yki,j over (ckij, d
k
ij). As ckij 6= 0,

two possible situations can arise,

(a) for t < ckij : ûj = 0, thus yj is constant, and consequently yj(c
k
ij−) is well-defined,

(b) for t < ckij : ûi > 0 and ûj > 0, thus Vij[λ](ckij) = 0 since λ ∈ G(Λ).

The same analysis can be done for t > dkij when dkij 6= T. We conclude that Ξ is

correctly defined.

(ii) Observe that since yν converges to y in the U2−topology and since yνi is constant

over Iij, then yi is constant as well, and yνi goes to yi pointwise on Iij. Thus, yνi (ckij) −→
yki,j, and yνi (dkij) −→ yki,j. Now, for the terms on yj, the same analysis can be made,

which yields either yνj (ckij) −→ yj(c
k
ij−) or Vij[λ](ckij) = 0; and, either yνj (dkij) −→

yj(d
k
ij+) or Vij[λ](dkij) = 0, when dkij < T. For dkij = T, yνj (T ) −→ hj holds.

Definition 1.4.15. For (ξ, y, h) ∈ P2 and λ ∈ G(Λ) define

ΩP2 [λ](ξ, y, h) :=g[λ](ξ(T ), h) + Ξ[λ](ξ, y, h)

+

∫ T

0

((Q[λ]ξ, ξ) + 2(M [λ]ξ, y) + (R[λ]y, y))dt.
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Remark 1.4.16. Observe that when m = 1, the mapping Ξ ≡ 0 since V ≡ 0. Thus,

in this case, ΩP2 can be defined for any element (ξ, y, h) ∈ X2×U2×R and any λ ∈ Λ.

If we take (z, v) ∈ W satisfying (1.12), and define (ξ, y) by (1.28), then

Ω[λ](z, v) = ΩP [λ](ξ, y, ẏ) = ΩP2 [λ](ξ, y, y(T )).

For m > 1, the previous equality holds for (z, v) ∈ C∞.

Lemma 1.4.17. Let {(ξν , yν , yν(T )} ⊂ P be a sequence converging to (ξ, y, h) ∈ P2

in the X2 × U2 × Rm−topology. Then

lim
ν→∞

ΩP [λ](ξν , yν , ẏν) = ΩP2 [λ](ξ, y, h).

Denote with co Λ the convex hull of Λ.

Theorem 1.4.18. Let ŵ be a weak minimum, then

max
λ∈G(co Λ)

ΩP2 [λ](ξ, y, h) ≥ 0, for all (ξ, y, h) ∈ P2. (1.58)

Proof. Corollary 1.4.8 together with Theorem 1.4.10 applied to M := co Λ yield

max
λ∈G(co Λ)

ΩP [λ](ξ, y, ẏ) ≥ 0, for all (ξ, y, y(T )) ∈ P .

The result follows from Lemma 1.4.1 and Lemma 1.4.17.

Remark 1.4.19. Notice that in case (1.21) is not satisfied, condition (1.58) does not

provide any useful information as 0 ∈ co Λ. On the other hand, if (1.21) holds, every

λ = (α, β, ψ) ∈ Λ necessarily has α 6= 0, and thus 0 /∈ co Λ.

1.5 Sufficient condition

Consider the problem for a scalar control, i.e. let m = 1. This section provides a

sufficient condition for Pontryagin optimality.

In view of the notion of Pontryagin optimality, one can consider the following kind

of convergence.

Definition 1.5.1. A sequence {vk} ⊂ U converges to 0 in the Pontryagin sense if

‖vk‖1 → 0 and there exists N such that ‖vk‖∞ < N.

Definition 1.5.2. Given (y, h) ∈ U2 × R, let

γ(y, h) :=

∫ T

0

y(t)2dt+ |h|2.
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Definition 1.5.3. We say that ŵ satisfies γ−quadratic growth condition in the Pon-

tryagin sense if there exists ρ > 0 such that, for every sequence of feasible variations

{(δxk, vk)} with {vk} converging to 0 in the Pontryagin sense,

J(û+ vk)− J(û) ≥ ργ(yk, yk(T )), (1.59)

holds for a large enough k, where yk is defined by (1.28). Equivalently, for all N > 0,

there exists ε > 0 such that if ‖v‖∞ < N and ‖v‖1 < ε, then (1.59) holds.

Definition 1.5.4. We say that ŵ is normal if α0 > 0 for every λ ∈ Λ.

Theorem 1.5.5. Suppose that there exists ρ > 0 such that

max
λ∈Λ

ΩP2 [λ](ξ, y, h) ≥ ργ(y, h), for all (ξ, y, h) ∈ P2. (1.60)

Then ŵ is a Pontryagin minimum satisfying γ− quadratic growth. Furthermore, if ŵ

is normal, the converse holds.

Remark 1.5.6. In case the bang arcs are absent, i.e. the control is totally singular,

this theorem follows from one proved in Dmitruk [41, 43].

Recall that Φ is defined in (1.5). We will use the following technical result.

Lemma 1.5.7. Consider {vk} ⊂ U converging to 0 in the Pontryagin sense. Let

uk := û + vk and let xk be the corresponding solution of equation (1.2). Then for

every λ ∈ Λ,

Φ[λ](xk, uk) = Φ[λ](x̂, û) +

∫ T

0

Hu[λ](t)vk(t)dt+ Ω[λ](zk, vk) + o(γk), (1.61)

where zk is defined by (1.12), γk := γ(yk, yk(T )), and yk is defined by (1.28).

Proof. By Lemma 1.3.1 we can write

Φ[λ](xk, uk) = Φ[λ](x̂, û) +

∫ T

0

Hu[λ](t)vk(t)dt+ Ω[λ](zk, vk) +Rk,

where, in view of Lemma 1.8.5,

Rk := ∆kΩ[λ] +

∫ T

0

(Huxx[λ](t)δxk(t), δxk(t), vk(t))dt+ o(γk), (1.62)

with δxk := xk − x̂, and

∆kΩ[λ] := Ω[λ](δxk, vk)− Ω[λ](zk, vk). (1.63)
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Next, we prove that

Rk = o(γk). (1.64)

Note that Q(a, a) − Q(b, b) = Q(a + b, a − b), for any bilinear mapping Q, and any

pair a, b. Put ηk := δxk − zk. Hence, from (1.63), we get

∆kΩ[λ] =1
2
`′′[λ](x̂(T ))(δxk(T ) + zk(T ), ηk(T ))

+ 1
2

∫ T

0

(Hxx[λ](δxk + zk), ηk)dt+

∫ T

0

(Hux[λ]ηk, vk)dt.

By Lemmas 1.8.5 and 1.8.13 in the Appendix, the first and the second terms are of

order o(γk). Integrate by parts the last term to obtain∫ T

0

(Hux[λ]ηk, vk)dt (1.65)

= [(Hux[λ]ηk, yk)]
T
0 −

∫ T

0

{(Ḣux[λ]ηk, yk) + (Hux[λ]η̇k, yk)}dt. (1.66)

Thus, by Lemma 1.8.13 we deduce that the first two terms in (1.66) are of order

o(γk). It remains to deal with last term in the integral. Replace η̇k by its expression

in equation (1.125) of Lemma 1.8.13:∫ T

0

(Hux[λ]η̇k, yk)dt =

∫ T

0

(Hux[λ]

(
1∑
i=0

ûif
′
i(x̂)ηk + vkf

′
1(x̂)δxk + ζk

)
, yk)dt

= o(γk) +

∫ T

0

d

dt

(
y2
k

2

)
Hux[λ]f ′1(x̂)δxkdt,

(1.67)

where the second equality follows from Lemmas 1.8.5 and 1.8.13. Integrating the last

term by parts, we obtain∫ T

0

d

dt

(
y2
k

2

)
Hux[λ]f ′1(x̂)δxkdt =

[
y2
k

2
Hux[λ]f ′1(x̂)δxk

]T
0

−
∫ T

0

y2
k

2

d

dt
(Hux[λ]f ′1(x̂)) δxkdt−

∫ T

0

y2
k

2
Hux[λ]f ′1(x̂) ˙δxkdt

= o(γk)−
∫ T

0

d

dt

(
y3
k

6

)
Hux[λ]f ′1(x̂)f1(x̂)dt

= o(γk)−
[
y3
k

6
Hux[λ]f ′1(x̂)f1(x̂)

]T
0

+

∫ T

0

y3
k

6

d

dt
(Hux[λ]f ′1(x̂)f1(x̂)) dt

= o(γk),

(1.68)

where we used Lemma 1.8.13 and, in particular, equation (1.126). From (1.67) and

(1.68), it follows that the term in (1.65) is of order o(γk). Thus,

∆kΩ[λ] ≤ o(γk). (1.69)



1.5. SUFFICIENT CONDITION 47

Consider now the third order term in (1.62):∫ T

0

(Huxx[λ]δxk, δxk, vk)dt = [ykδx
>
kHuxx[λ]δxk]

T
0

−
∫ T

0

ykδx
>
k Ḣuxx[λ]δxkdt− 2

∫ T

0

ykδx
>
kHuxx[λ] ˙δxkdt

= o(γk)−
∫ T

0

d

dt
(y2
k)δx

>
kHuxx[λ]f1(x̂)dt

= o(γk)−
[
y2
kδx

>
kHuxx[λ]f1(x̂)

]T
0
−
∫ T

0

y2
kvkf1(x̂)>Huxx[λ]f1(x̂)dt = o(γk),

(1.70)

by Lemmas 1.8.5 and 1.8.13. The last inequality follows from integrating by parts

one more time as it was done in (1.68). Consider expression (1.62). By inequality

(1.69) and equation (1.70), equality (1.64) is obtained and thus, the desired result

follows.

Proof. [of Theorem 1.5.5] Part 1. First we prove that if ŵ is a normal Pontryagin

minimum satisfying the γ−quadratic growth condition in the Pontryagin sense then

(1.60) holds for some ρ > 0. Here the necessary condition of Theorem 1.3.2 is used.

Define ŷ(t) :=
∫ t

0
û(s)ds, and note that (ŵ, ŷ) is, for some ρ′ > 0, a Pontryagin

minimum of

J̃ := J − ρ′γ(y − ŷ, y(T )− ŷ(T ))→ min,

(1.2)-(1.4), ẏ = u, y(0) = 0.
(1.71)

Observe that the critical cone C̃2 for (1.71) consists of the points (z, v, δy) in X2×U2×
W 1

2 (0, T ;R) verifying (z, v) ∈ C2, δ̇y = v and δy(0) = 0. Since the pre-Hamiltonian

at point (ŵ, ŷ) coincides with the original pre-Hamiltonian, the set of multipliers for

(1.71) consists of the points (λ, ψy) with λ ∈ Λ.

Applying the second order necessary condition of Theorem 1.3.2 at the point (ŵ, ŷ)

we see that, for every (z, v) ∈ C2 and δy(t) :=
∫ t

0
v(s)ds, there exists λ ∈ Λ such that

Ω[λ](z, v)− α0ρ
′(‖δy‖2

2 + δy2(T )) ≥ 0, (1.72)

where α0 > 0 since ŵ is normal. Take ρ := minλ∈Λ α0ρ
′ > 0. Applying the Goh

transformation in (1.72), condition (1.60) for the constant ρ follows.

Part 2. We shall prove that if (1.60) holds for some ρ > 0, then ŵ satisfies

γ−quadratic growth in the Pontryagin sense. On the contrary, assume that the
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quadratic growth condition (1.59) is not valid. Consequently, there exists a sequence

{vk} ⊂ U converging to 0 in the Pontryagin sense such that, denoting uk := û+ vk,

J(û+ vk) ≤ J(û) + o(γk), (1.73)

where yk(t) :=
∫ t

0
vk(s)ds and γk := γ(yk, yk(T )). Denote by xk the solution of equa-

tion (1.2) corresponding to uk, define wk := (xk, uk) and let zk be the solution of

(1.12) associated with vk. Take any λ ∈ Λ. Multiply inequality (1.73) by α0, add

the nonpositive term
∑dϕ

i=0 αiϕi(xk(T )) +
∑dη

j=1 βjηj(xk(T )) to its left-hand side, and

obtain the inequality

Φ[λ](xk, uk) ≤ Φ[λ](x̂, û) + o(γk). (1.74)

Recall expansion (1.61). Let (ȳk, h̄k) := (yk, yk(T ))/
√
γk. Note that the elements of

this sequence have unit norm in U2×R. By the Banach-Alaoglu Theorem, extracting

if necessary a sequence, we may assume that there exists (ȳ, h̄) ∈ U2 × R such that

ȳk ⇀ ȳ, and h̄k → h̄, (1.75)

where the first limit is taken in the weak topology of U2. The remainder of the proof

is split into two parts.

(a) Using equations (1.61) and (1.74) we prove that (ξ̄, ȳ, h̄) ∈ P2, where ξ̄ is a

solution of (1.29).

(b) We prove that (ȳ, h̄) = 0 and that it is the limit of {(ȳk, h̄k)} in the strong sense.

This leads to a contradiction since each (ȳk, h̄k) has unit norm.

(a) We shall prove that (ξ̄, ȳ, h̄) ∈ P2. From (1.61) and (1.74) it follows that

0 ≤
∫ T

0

Hu[λ](t)vk(t)dt ≤ −ΩP2 [λ](ξk, yk, hk) + o(γk),

where ξk is solution of (1.29) corresponding to yk. The first inequality holds as

Hu[λ]vk ≥ 0 almost everywhere on [0, T ] and we replaced ΩP by ΩP2 in view of

Remark 1.4.16. By the continuity of mapping ΩP2 [λ] over X2 × U2 × R deduce that

0 ≤
∫ T

0

Hu[λ](t)vk(t)dt ≤ O(γk),

and thus, for each composing interval (c, d) of I0,

lim
k→∞

∫ d

c

Hu[λ](t)ϕ(t)
vk(t)√
γk
dt = 0, (1.76)
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for every nonnegative Lipschitz continuous function ϕ with suppϕ ⊂ (c, d). The latter

expression means that the support of ϕ is included in (c, d). Integrating by parts in

(1.76) and by (1.75) we obtain

0 = lim
k→∞

∫ d

c

d

dt
(Hu[λ](t)ϕ(t)) ȳk(t)dt =

∫ d

c

d

dt
(Hu[λ](t)ϕ(t)) ȳ(t)dt.

By Lemma 1.8.6, ȳ is nondecreasing over (c, d). Hence, in view of Lemma 1.8.8, we

can integrate by parts in the previous equation to get∫ d

c

Hu[λ](t)ϕ(t)dȳ(t) = 0. (1.77)

Take t0 ∈ (c, d). By the strict complementary in Assumption 1, there exists λ0 ∈ Λ

such that Hu[λ0](t0) > 0. Hence, in view of the continuity of Hu[λ0], there exists

ε > 0 such that Hu[λ0] > 0 on (t0 − 2ε, t0 + 2ε) ⊂ (c, d). Choose ϕ such that

suppϕ ⊂ (t0 − 2ε, t0 + 2ε), and Hu[λ0](t)ϕ(t) = 1 on (t0 − ε, t0 + ε). Since dȳ ≥ 0,

equation (1.77) yields

0 =

∫ d

c

Hu[λ](t)ϕ(t)dȳ(t) ≥
∫ t0+ε

t0−ε
Hu[λ](t)ϕ(t)dȳ(t)

=

∫ t0+ε

t0−ε
dȳ(t) = ȳ(t0 + ε)− ȳ(t0 − ε).

As ε and t0 ∈ (c, d) are arbitrary we find that

dȳ(t) = 0, on I0, (1.78)

and thus (1.33) holds. Let us prove condition (1.34) for (ξ̄, ȳ, h̄). Suppose that 0 ∈ I0.

Take ε > 0, and notice that by Assumption 1 there exists λ′ ∈ Λ and δ > 0 such that

Hu[λ
′](t) > δ for t ∈ [0, d1 − ε], and thus by (1.76) we obtain

∫ d1−ε
0

vk(t)/
√
γkdt→ 0,

as vk ≥ 0. Then for all s ∈ [0, d1), we have

ȳk(s)→ 0,

and thus

ȳ = 0, on [0, d1), if 0 ∈ I0. (1.79)

Suppose that T ∈ I0. Then, we can derive
∫ T
aN+ε

v̄k(t)dt → 0 by an analogous argu-

ment. Thus, the pointwise convergence

h̄k − ȳk(s)→ 0,
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holds for every s ∈ (aN , T ], and then,

ȳ = h̄, on (aN , T ], if T ∈ I0. (1.80)

It remains to check the final conditions (1.32) for h̄. Let 0 ≤ i ≤ dϕ,

ϕ′i(x̂(T ))(ξ̄(T ) +B(T )h̄) = lim
k→∞

ϕ′i(x̂(T ))

(
ξk(T ) +B(T )hk√

γk

)
= lim

k→∞
ϕ′i(x̂(T ))

zk(T )
√
γk

.

(1.81)

A first order Taylor expansion of the function ϕi around x̂(T ) gives

ϕi(xk(T )) = ϕi(x̂(T )) + ϕ′i(x̂(T ))δxk(T ) +O(|δxk(T )|2).

By Lemmas 1.8.5 and 1.8.13 in the Appendix, we can write

ϕi(xk(T )) = ϕi(x̂(T )) + ϕ′i(x̂(T ))zk(T ) + o(
√
γk).

Thus

ϕ′i(x̂(T ))
zk(T )
√
γk

=
ϕi(xk(T ))− ϕi(x̂(T ))

√
γk

+ o(1). (1.82)

Since xk satisfies (1.4), equations (1.81) and (1.82) yield, for 1 ≤ i ≤ dϕ :

ϕ′i(x̂(T ))(ξ̄(T ) +B(T )h̄) ≤ 0. For i = 0 use inequality (1.73). Analogously,

η′j(x̂(T ))(ξ̄(T ) +B(T )h̄) = 0, for j = 1, . . . , dη.

Thus (ξ̄, ȳ, h̄) satisfies (1.32), and by (1.78), (1.79) and (1.80), we obtain

(ξ̄, ȳ, h̄) ∈ P2.

(b) Return to the expansion (1.61). Equation (1.74) and Hu[λ] ≥ 0 imply

ΩP2 [λ](ξk, yk, yk(T )) =

Φ[λ](xk, uk)− Φ[λ](x̂, û)−
∫ T

0

Hu[λ]vkdt− o(γk) ≤ o(γk).

Thus

lim inf
k→∞

ΩP2 [λ](ξ̄k, ȳk, h̄k) ≤ lim sup
k→∞

ΩP2 [λ](ξ̄k, ȳk, h̄k) ≤ 0. (1.83)

Recall Assumption 2, and let N be the number of connected components of I0. Set

ε > 0, and for each composing interval (c, d) of I0, consider a smaller interval of the



1.5. SUFFICIENT CONDITION 51

form (c+ ε/2N, d− ε/2N). Denote their union as Iε0 . Notice that I0\Iε0 is of measure

ε. Put Iε+ := [0, T ]\Iε0 . Split ΩP2 as follows

Ωε
P2,0

[λ](ξ, y, h) :=∫ T

0

{(Q[λ]ξ, ξ) + (M [λ]ξ, y)}dt+

∫
Iε0

(R[λ]y, y)dt+ g[λ](ξ(T ), h),

and

Ωε
P2,+

[λ](y) :=

∫
Iε+

(R[λ]y, y)dt.

Consider the Hilbert space

Γ2 := {(ξ, y, h) ∈ X2 × U2 × R : (1.29), (1.33) and (1.34) hold} .

Let ρ > 0 be the constant in (1.60) and define

Λρ := {λ ∈ co Λ : ΩP2 [λ]− ργ is weakly l.s.c. on Γ2}.

Equation (1.60) and Lemma 1.8.12 imply that

max
λ∈Λρ

ΩP2 [λ](ξ̄, ȳ, h̄) ≥ ργ(ȳ, h̄). (1.84)

Denote by λ̄ the element in Λρ that reaches the maximum in (1.84). Observe that

Ωε
P2,0

[λ̄] is weakly continuous. Thus, ΩP2 [λ̄] − ργ is weakly l.s.c. if and only if the

quadratic mapping

y 7→ Ωε
P2,+

[λ̄](y)− ρ
∫
Iε+

|y(t)|2dt, (1.85)

is weakly l.s.c. over the subspace U2,Iε+
of U2 consisting of the functions that are

constant over each connected component of [0, T ]\Iε+. Applying Lemma 1.8.11 to the

mapping in (1.85) we see that R[λ̄](t) � ρ on Iε+. Consequently, Ωε
P2,+

[λ̄] is a Legendre

form on U2,Iε+
, and thus

Ωε
P2,+

[λ̄](ȳ) ≤ lim inf
k→∞

Ωε
P2,+

[λ̄](ȳk). (1.86)

Hence,

ργ(ȳ, h̄) ≤ΩP2 [λ̄](ξ̄, ȳ, h̄) ≤ lim
k→∞

Ωε
P2,0

[λ̄](ξk, ȳk, h̄k)

+ lim inf
k→∞

Ωε
P2,+

[λ̄](ȳk) = lim inf
k→∞

ΩP2 [λ̄](ξ̄k, ȳk, h̄k),

where first inequality is due to condition (1.60), and the second inequality is an

immediate consequence of (1.86). Inequality (1.83) implies that the right-hand side

of the last expression is nonpositive. Hence,

(ȳ, h̄) = 0, and lim
k→∞

ΩP2 [λ̄](ξ̄k, ȳk, h̄k) = 0.
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As Ωε
P2,0

[λ̄] is weakly continuous, limk→∞Ωε
P2,0

[λ̄](ξ̄k, ȳk, h̄k) = 0 and thus

lim
k→∞

Ωε
P2,+

[λ̄](ȳk) = 0. (1.87)

We have: Ωε
P2,+

[λ̄] is a Legendre form and ȳk ⇀ 0 on Iε+. Thus, by (1.87),

ȳk → 0, on U2,Iε+
.

As {ȳk} converges uniformly on Iε0 , the strong convergence holds on [0, T ], and thus

(ȳk, h̄k) −→ (0, 0), on U2 × R. (1.88)

This leads to a contradiction since (ȳk, h̄k) has unit norm for every k ∈ IN. Thus, ŵ

is a Pontryagin minimum satisfying quadratic growth.

1.6 Extensions and an example

1.6.1 Including parameters

Consider the following optimal control problem where the initial state is not de-

termined, some parameters are included and a more general control constraint is

considered.

J := ϕ0(x(0), x(T ), r(0))→ min, (1.89)

ẋ(t) =
m∑
i=0

ui(t)fi(x(t), r(t)), (1.90)

ṙ(t) = 0, (1.91)

ai ≤ ui(t) ≤ bi, for a.a. t ∈ (0, T ), i = 1, . . . ,m (1.92)

ϕi(x(0), x(T ), r(0)) ≤ 0, for i = 1, . . . , dϕ, (1.93)

ηj(x(0), x(T ), r(0)) = 0, for j = 1 . . . , dη, (1.94)

where u ∈ U , x ∈ X , r ∈ Rnr is a parameter considered as a state variable with zero-

dynamics, a, b ∈ Rm, functions fi : Rn+nr → Rn, ϕi : R2n+nr → R, and η : R2n+nr →
Rdη are twice continuously differentiable. As r has zero dynamics, the costate variable

ψr corresponding to equation (1.91) does not appear in the pre-Hamiltonian. Denote

with ψ the costate variable associated with (1.90). The pre-Hamiltonian function for

problem (1.89)-(1.94) is given by

H[λ](x, r, u, t) = ψ(t)
m∑
i=0

uifi(x, r).
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Let (x̂, r̂, û) be a feasible solution for (1.90)-(1.94). Since r̂(·) is constant, we can

denote it by r̂. Assume that

ϕi(x̂(0), x̂(T ), r̂) = 0, for i = 0, . . . , dϕ.

An element λ = (α, β, ψx, ψr) ∈ Rdϕ+dη+1 × W 1
∞(0, T ;Rn,∗) × W 1

∞(0, T ;Rnr,∗) is a

Pontryagin multiplier for (x̂, r̂, û) if it satisfies (1.7), (1.8), the costate equation for ψ
−ψ̇x(t) = Hx[λ](x̂(t), r̂, û(t), t), a.e. on [0, T ]

ψx(0) = −`x0 [λ](x̂(0), x̂(T ), r̂),

ψx(T ) = `xT [λ](x̂(0), x̂(T ), r̂),

and for ψr {
−ψ̇r(t) = Hr[λ](x̂(t), r̂, û(t), t), a.e. on [0, T ]

ψr(0) = −`r[λ](x̂(0), x̂(T ), r̂), ψr(T ) = 0.
(1.95)

Observe that (1.95) implies the stationarity condition

`r(x̂(0), x̂(T ), r̂) +

∫ T

0

Hr[λ](t)dt = 0.

Take v ∈ U and consider the linearized state equation ż(t) =
m∑
i=0

ûi(t)[fi,x(x̂(t), r̂)z(t) + fi,r(x̂(t), r̂)δr(t)] +
m∑
i=1

vi(t)fi(x̂(t), r̂),

δ̇r(t) = 0,

(1.96)

where we can see that δr(·) is constant and thus we denote it by δr. Let the linearized

initial-final constraints be

ϕ′i(x̂(0), x̂(T ), r̂)(z(0), z(T ), δr) ≤ 0, for i = 1, . . . , dϕ,

η′j(x̂(0), x̂(T ), r̂)(z(0), z(T ), δr) = 0, for j = 1, . . . , dη.
(1.97)

Define for each i = 1, . . . ,m the sets

I ia := {t ∈ [0, T ] : max
λ∈Λ

Hui [λ](t) > 0},

I ib := {t ∈ [0, T ] : max
λ∈Λ

Hui [λ](t) < 0},

I ising := [0, T ]\(I ia ∪ I ib).

Assumption 3. Consider the natural extension of Assumption 2, i.e. for each

i = 1, . . . ,m, the sets I ia and I ib are finite unions of intervals, i.e.

I ia =

N i
a⋃

j=1

I ij,a, I ib =

N i
b⋃

j=1

I ij,b,
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for I ij,a and I ij,b being subintervals of [0, T ] of the form [0, c), (d, T ]; or (c, d) if c 6= 0

and d 6= T. Notice that I ia ∩ I ib = ∅. Call ci1,a < di1,a < ci2,a < . . . < ciN i
a,a

< diN i
a,a

the

endpoints of these intervals corresponding to bound a, and define them analogously for

b. Consequently, I ising is a finite union of intervals as well. Assume that a concatenation

of a bang arc followed by another bang arc is forbidden.

Assumption 4. Strict complementarity assumption for control constraints:{
I ia = {t ∈ [0, T ] : ûi(t) = ai}, up to a set of null measure,

I ib = {t ∈ [0, T ] : ûi(t) = bi}, up to a set of null measure.

Consider

C2 :=

{
(z, δr, v) ∈ X2 × Rnr × U2 : (1.96)-(1.97) hold,

vi = 0 on I ia ∪ I ib, for i = 1, . . . ,m

}
.

The Goh transformation allows us to obtain variables (ξ, y) defined by

y(t) :=

∫ t

0

v(s)ds, ξ := z −
m∑
i=1

yifi.

Notice that ξ satisfies the equation

ξ̇ = Axξ + Arδr +Bx
1y,

ξ(0) = z(0),
(1.98)

where, denoting [fi, fj]
x := fi,xfj − fj,xfi,

Ax :=
m∑
i=0

ûifi,x, Ar :=
m∑
i=0

ûifi,r, Bx
1y :=

m∑
j=1

yj

m∑
i=0

ûi[fi, fj]
x.

Consider the transformed version of (1.97),

ϕ′i(x̂(0), x̂(T ), r̂)(ξ(0), ξ(T ) +B(T )h, δr) ≤ 0, i = 1, . . . , dϕ,

η′j(x̂(0), x̂(T ), r̂)(ξ(0), ξ(T ) +B(T )h, δr) = 0, j = 1, . . . , dη,
(1.99)

and let the cone P be given by

P :=

{
(ξ, δr, y, h) ∈ X × Rnr × Y × Rm : y(0) = 0, h = y(T ),

(1.98) and (1.99) hold, y′i = 0 on I ia ∪ I ib, for i = 1, . . . ,m

}
.

Observe that each (ξ, δr, y, h) ∈ P satisfies

yi constant over each composing interval of I ia ∪ I ib, (1.100)
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and at the endpoints, {
yi = 0 on [0, d], if 0 ∈ I ia ∪ I ib, and,
yi = hi on [c, T ], if T ∈ I ia ∪ I ib,

(1.101)

where [0, d) is the first maximal composing interval of I ia ∪ Idb when 0 ∈ Ida ∪ Idb , and

(c, T ] is its last composing interval when T ∈ I ia ∪ I ib. Define

P2 :=

{
(ξ, δr, y, h) ∈ X2 × Rnr × U2 × Rm :

(1.98), (1.99), (1.100) and (1.101) hold for i = 1, . . . ,m

}
.

Recall definitions in equations (1.35), (1.36), (1.39), (1.40), (1.41). Minor simplifica-

tions appear in the computations of these functions as the dynamics of r are null and

δr is constant. We outline these calculations in an example.

Consider M ⊂ Rs and the subset of M ⊂ Rs defined by

G(M) := {λ ∈M : Vij[λ] = 0 on I ising ∩ I
j
sing, for every pair 1 < i 6= j ≤ m}.

Using the same techniques, we obtain the equivalent of Theorem 1.4.18:

Corollary 1.6.1. Suppose that (x̂, r̂, û) is a weak minimum for problem (1.89)-(1.94).

Then

max
λ∈G(co Λ)

ΩP2 [λ](ξ, δr, y, h) ≥ 0, for all (ξ, δr, y, h) ∈ P2.

By a simple adaptation of the proof of Theorem 1.5.5 we get the equivalent result.

Corollary 1.6.2. Let m = 1. Suppose that there exists ρ > 0 such that

max
λ∈Λ

ΩP2 [λ](ξ, δr, y, h) ≥ ργ(y, h), for all (ξ, δr, y, h) ∈ P2. (1.102)

Then (x̂, r̂, û) is a Pontryagin minimum that satisfies γ−quadratic growth.

1.6.2 Application to minimum-time problems

Consider the problem

J := T → min,

s.t. (1.90)− (1.94).

Observe that by the change of variables:

x(s)← x(Ts), u(s)← u(Ts), (1.103)
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we can transform the problem into the following formulation.

J := T (0)→ min,

ẋ(s) = T (s)
m∑
i=0

ui(s)fi(x(s), r(s)), a.e. on [0, 1],

ṙ(s) = 0, a.e. on [0, 1],

Ṫ (s) = 0, a.e. on [0, 1],

ai ≤ ui(s) ≤ bi, a.e. on [0, 1], i = 1, . . . ,m,

ϕi(x(0), x(1), r(0)) ≤ 0, for i = 1, . . . , dϕ,

ηj(x(0), x(T ), r(0)) = 0, for j = 1 . . . , dη.

We can apply Corollaries 1.6.1 and 1.6.2 to the problem written in this form. We

outline the calculations in the following example.

1.6.2.1 Example: Markov-Dubins problem

Consider a problem over the interval [0, T ] with free final time T :

J := T → min,

ẋ1 = − sinx3, x1(0) = 0, x1(T ) = b1,

ẋ2 = cosx3, x2(0) = 0, x2(T ) = b2,

ẋ3 = u, x3(0) = 0, x3(T ) = θ,

− 1 ≤ u ≤ 1,

(1.104)

with 0 < θ < π, b1 and b2 fixed.

This problem was originally introduced and studied by Markov in [88], and much

later, it was investigated by Dubins in [48]. More recently, the problem was investi-

gated by Sussmann and Tang [124], Soueres and Laumond [120], Boscain and Piccoli

[28], among others.

Here we will study the optimality of the extremal

û(t) :=

{
1 on [0, θ],

0 on (θ, T̂ ].
(1.105)

Observe that by the change of variables (1.103) we can transform (1.104) into the
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following problem on the interval [0, 1].

J := T (0)→ min,

ẋ1(s) = −T (s) sinx3(s), x1(0) = 0, x1(1) = b1,

ẋ2(s) = T (s) cosx3(s), x2(0) = 0, x2(1) = b2,

ẋ3(s) = T (s)u(s), x3(0) = 0, x3(1) = θ,

Ṫ (s) = 0,

− 1 ≤ u(s) ≤ 1.

(1.106)

We obtain for state variables:

x̂3(s) =

{
T̂ s on [0, θ/T̂ ],

θ on (θ/T̂ , 1],
(1.107)

x̂1(s) =

{
cos(T̂ s)− 1 on [0, θ/T̂ ],

T̂ sin θ(θ/T̂ − s) + cos θ − 1 on (θ/T̂ , 1],

x̂2(s) =

{
sin T̂ s on [0, θ/T̂ ],

T̂ cos θ(s− θ/T̂ ) + sin θ on (θ, T̂ ].

Since the terminal values for x1 and x2 are fixed, the final time T̂ is determined by

the previous equalities. The pre-Hamiltonian for problem (1.106) is

H[λ](s) := T (s)(−ψ1(s) sinx3(s) + ψ2(s) cosx3(s) + ψ3(s)u(s)). (1.108)

The final Lagrangian is

` := α0T (1) +
3∑
j=1

(βjxj(0) + βjxj(1)).

As ψ̇1 ≡ 0, and ψ̇2 ≡ 0, we get

ψ1 ≡ β1, ψ2 ≡ β2, on [0, 1].

Since the candidate control û is singular on [θ/T̂ , 1], we have Hu[λ] ≡ 0. By (1.108),

we obtain

ψ3(s) = 0, on [θ/T̂ , 1]. (1.109)

Thus β3 = 0. In addition, as the costate equation for ψ3 is

−ψ̇3 = T̂ (−β1 cos x̂3 − β2 sin x̂3),

by (1.107) and (1.109), we get

β1 cos θ + β2 sin θ = 0. (1.110)



58 1. BANG-SINGULAR EXTREMALS

From (1.107) and (1.109) and since H is constant and equal to −α0, we get

H = T̂ (−β1 sin θ + β2 cos θ) ≡ −α0. (1.111)

Proposition 1.6.3. The following properties hold

(i) α0 > 0,

(ii) Hu[λ](s) < 0 on [0, θ/T̂ ) for all λ ∈ Λ.

Proof. Item (i) Suppose that α0 = 0. By (1.110) and (1.111), we obtain

β1 cos θ + β2 sin θ = 0, and − β1 sin θ + β2 cos θ = 0.

Suppose, w.l.g., that cos θ 6= 0. Then β1 = −β2
sin θ

cos θ
and thus

β2
sin2 θ

cos θ
+ β2 cos θ = 0.

We conclude that β2 = 0 as well. This implies (α0, β1, β2, β3) = 0, which contradicts

the non-triviality condition (1.7). So, α0 > 0, as required.

Item (ii) Observe that

Hu[λ](s) ≤ 0, on [0, θ/T̂ ),

and Hu[λ] = ψ3. Let us prove that ψ3 is never 0 on [0, θ/T̂ ). Suppose there exists

s1 ∈ [0, θ/T̂ ) such that ψ3(s1) = 0. Thus, since ψ3(θ/T̂ ) = 0 as indicated in (1.109),

there exists s2 ∈ (s1, θ/T̂ ) such that ψ̇3(s2) = 0, i.e.

β1 cos(T̂ s2) + β2 sin(T̂ s2) = 0. (1.112)

Equations (1.110) and (1.112) imply that tan(θ/T̂ ) = tan(s2/T̂ ). This contradicts

θ < π. Thus ψ3(s) 6= 0 for every s ∈ [0, θ/T̂ ), and consequently,

Hu[λ](s) < 0, for s ∈ [0, θ/T̂ ).

Since α0 > 0, then δT = 0 for each element of the critical cone, where δT is the

linearized state variable T. Observe that as û = 1 on [0, θ/T̂ ], then

y = 0 and ξ = 0, on [0, θ/T̂ ], for all (ξ, δT, y, h) ∈ P2.

We look for the second variation in the interval [θ/T̂ , 1]. The Goh transformation

gives

ξ3 = z3 − T̂ y,
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and since ż3 = T̂ v, we get z3 = T̂ y and thus ξ3 = 0. Then, as Hux = 0 and `′′ = 0, we

get

Ω[λ] =

∫ 1

θ/T̂

(β1 sin θ − β2 cos θ)y2dt = α0

∫ 1

0

y2dt.

Notice that if (ξ, δT, y, h) ∈ P2, then h satisfies ξ3(T ) + T̂ h = 0, and, as ξ3(T ) = 0,

we get h = 0. Thus

Ω[λ](ξ, y, h) = α0

∫ T

0

y2dt = α0γ(y, h), on P2.

Since Assumptions 3 and 4 hold, we conclude by Corollary 1.6.2 that (x̂, T̂ , û) is a

Pontryagin minimum satisfying quadratic growth.

1.7 Conclusion

We provided a set of necessary and sufficient conditions for a bang-singular extremal.

The sufficient condition is restricted to the scalar control case. These necessary and

sufficient conditions are close in the sense that, to pass from one to the other, one has

to strengthen a non-negativity inequality transforming it into a coercivity condition.

This is the first time that a sufficient condition that is ‘almost necessary’ is estab-

lished for a bang-singular extremal for the general Mayer problem. In some cases the

condition can be easily checked as it can be seen in the example.

1.8 Appendix

Lemma 1.8.1. Let

X := {(ξ, y, h) ∈ X2 × U2 × Rm : (1.29), (1.33)-(1.34) hold},

L := {(ξ, y, y(T )) ∈ X × Y × Rm : y(0) = 0, (1.29) and (1.33)}.

Then L is a dense subset of X in the X2 × U2 × Rm−topology.

Proof. (See Lemma 6 in [47].) Let us prove the result for m = 1. The general case

is a trivial extension. Let (ξ̄, ȳ, h̄) ∈ X and ε, δ > 0. Consider φ ∈ Y such that

‖ȳ − φ‖2 < ε/2. In order to satisfy condition (1.34) take{
yδ(t) := 0, for t ∈ [0, d1], if c1 = 0,
yδ(t) := h, for t ∈ [cN , T ], if dN = T,

where cj, dj were introduced in Assumption 2. Since ȳ is constant on each Ij, define yδ

constant over these intervals with the same constant value as ȳ. It remains to define
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yδ over I+. Over each maximal composing interval (a, b) of I+, define yδ as described

below. Take c := ȳ(a−) if a > 0, or c := 0 if a = 0; and let d := ȳ(b+) if b < T, or

d := h when b = T. Define two affine functions `1,δ and `2,δ satisfying

`1,δ(a) = c, `1,δ(a+ δ) = φ(a+ δ),

`2,δ(b) = d, `2,δ(b− δ) = φ(b− δ).
(1.113)

Take

yδ(t) :=


`1,δ(t), for t ∈ [a, a+ δ],

φ(t), for t ∈ (a+ δ, b− δ),

`2,δ(t), for t ∈ [b− δ, b],

(1.114)

and notice that ‖φ−yδ‖2,[a,b] ≤ 1
k

max (|c|, |d|,M), where M := supt∈[a,b] |φ(t)|. Finally,

observe that yδ(T ) = h, and, for sufficiently small δ,

‖ȳ − yδ‖2 ≤ ‖ȳ − φ‖2 + ‖φ− yδ‖2 < ε.

Thus, the result follows.

Lemma 1.8.2. Let λ ∈ Λ and (z, v) ∈ C2. Then

dϕ∑
i=0

αiϕ̄
′′
i (û)(v, v) +

dη∑
i=1

βj η̄
′′
j (û)(v, v) = Ω[λ](z, v). (1.115)

Proof. Let us compute the left-hand side of (1.115). Notice that

dϕ∑
i=0

αiϕ̄i(û) +

dη∑
i=1

βj η̄j(û) = `[λ](x̂(T )). (1.116)

Let us look for a second order expansion for `. Consider first a second order expansion

of the state variable:

x = x̂+ z + 1
2
zvv + o(‖v‖2

∞),

where zvv satisfies

żvv = Azvv +D2
(x,u)2F (x̂, û)(z, v)2, zvv(0) = 0, (1.117)

with F (x, u) :=
∑m

i=0 uifi(x). Consider the second order expansion for ` :

`[λ](x(T )) =`[λ]((x̂+ z + 1
2
zvv)(T )) + o(‖v‖2

1)

=`[λ](x̂(T )) + `′[λ](x̂(T ))(z(T ) + 1
2
zvv(T ))

+ 1
2
`′′[λ](x̂(T ))(z(T ) + 1

2
zvv(T ))2 + o(‖v‖2

1).

(1.118)
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Step 1. Compute

`′[λ](x̂(T ))zvv(T ) = ψ(T )zvv(T )− ψ(0)zvv(0)

=

∫ T

0

[ψ̇zvv + ψżvv]dt =

∫ T

0

{−ψAzvv + ψ(Azvv +D2F(x,u)2(z, v)2)}dt

=

∫ T

0

D2H[λ](z, v)2dt.

Step 2. Compute `′′[λ](x̂(T ))(z(T ), zvv(T )). Applying Gronwall’s Lemma, we obtain

‖z‖∞ = O(‖v‖1), and ‖zvv‖∞ = O(‖v2‖1). Thus

|(z(T ), zvv(T ))| = O(‖v‖3
1),

and we conclude that

|`′′[λ](x̂(T ))(z(T ), zvv(T ))| = O(‖v‖3
1).

Step 3. See that `′′[λ](x̂(T ))(zvv(T ))2 = O(‖v‖4
1). Then by (1.118) we get,

`[λ](x(T )) =`[λ](x̂(T )) + `′[λ](x̂(T ))z(T )

+ 1
2
`′′[λ](x̂(T ))z2(T ) + 1

2

∫ T

0

D2
(x,u)2H[λ](z, v)2dt+ o(‖v‖2

1)

=`[λ](x̂(T )) + `′[λ](x̂(T ))z(T ) + Ω[λ](z, v) + o(‖v‖2
1).

The conclusion follows by (1.116).

Lemma 1.8.3. Given (z, v) ∈ W satisfying (1.12), the following estimation holds for

some ρ > 0 :

‖z‖2
2 + |z(T )|2 ≤ ργ(y, y(T )),

where y is defined by (1.28).

Remark 1.8.4. ρ depends on ŵ, i.e. it does not vary with (z, v).

Proof. Every time we mention ρi we are referring to a constant depending on ‖A‖∞,
‖B‖∞ or both. Consider ξ, the solution of equation (1.29) corresponding to y. Gron-

wall’s Lemma and the Cauchy-Schwartz inequality imply

‖ξ‖∞ ≤ ρ1‖y‖2. (1.119)

This last inequality, together with expression (1.28), implies

‖z‖2 ≤ ‖ξ‖2 + ‖B‖∞‖y‖2 ≤ ρ2‖y‖2. (1.120)
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On the other hand, equations (1.28) and (1.119) lead to

|z(T )| ≤ |ξ(T )|+ ‖B‖∞|y(T )| ≤ ρ1‖y‖2 + ‖B‖∞|y(T )|.

Then, by the inequality ab ≤ a2+b2

2
, we get

|z(T )|2 ≤ ρ3(‖y‖2
2 + |y(T )|2). (1.121)

The conclusion follows from equations (1.120) and (1.121).

The next lemma is a generalization of the previous result to the nonlinear case.

See Lemma 6.1 in Dmitruk [43].

Lemma 1.8.5. Let w = (x, u) be the solution of (1.2) with ‖u‖2 ≤ c for some

constant c. Put (δx, v) := w − ŵ. Then

|δx(T )|2 + ‖δx‖2
2 ≤ ργ(y, y(T )),

where y is defined by (1.28) and ρ depends on c.

Lemma 1.8.6. Let {yk} ⊂ L2(a, b) be a sequence of continuous non-decreasing func-

tions that converges weakly to y ∈ L2(a, b). Then y is non-decreasing.

Proof. Let s, t ∈ (a, b) be such that s < t, and ε0 > 0 such that s + ε0 < t − ε0. For

every k ∈ IN, and every 0 < ε < ε0, the following inequality holds∫ s+ε

s−ε
yk(ν)dν ≤

∫ t+ε

t−ε
yk(ν)dν.

Taking the limit as k goes to infinity and multiplying by 1
2ε
, we deduce that

1

2ε

∫ s+ε

s−ε
y(ν)dν ≤ 1

2ε

∫ t+ε

t−ε
y(ν)dν.

As (a, b) is a finite measure space, y is a function of L1(a, b) and almost all points in

(a, b) are Lebesgue points (see Rudin [114, Theorem 7.7]). Thus, by taking ε to 0, it

follows from the previous inequality that

y(s) ≤ y(t),

which is what we wanted to prove.

Lemma 1.8.7. Consider a sequence {yk} of non-decreasing continuous functions in

a compact real interval I and assume that {yk} converges weakly to 0 in U2. Then it

converges uniformly to 0 on any interval (a, b) ⊂ I.
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Proof. Take an arbitrary interval (a, b) ⊂ I. First prove the pointwise convergence

of {yk} to 0. On the contrary, suppose that there exists c ∈ (a, b) such that {yk(c)}
does not converge to 0. Thus there exist ε > 0 and a subsequence {ykj} such that

ykj(c) > ε for each j ∈ IN, or ykj(c) < −ε for each j ∈ IN. Suppose, without loss of

generality, that the first statement is true. Thus

0 < ε(b− c) < ykj(c)(b− c) ≤
∫ b

c

ykj(t)dt, (1.122)

where the last inequality holds since ykj is nondecreasing. But the right-hand side

of (1.122) goes to 0 as j goes to infinity. This contradicts the hypothesis and thus

the pointwise convergence of {yk} to 0 follows. The uniform convergence is a direct

consequence of the monotonicity of the functions yk.

Lemma 1.8.8. [50, Theorem 22, Page 154 - Volume I] Let a and b be two functions

of bounded variation in [0, T ]. Suppose that one is continuous and the other is right-

continuous. Then ∫ T

0

a(t)db(t) +

∫ T

0

b(t)da(t) = [ab]T+
0− .

Lemma 1.8.9. Let m = 1, i.e. consider a scalar control variable. Then, for any

λ ∈ Λ, the function R[λ](t) defined in (1.39) is continuous in t.

Proof. Consider definition (1.36). Condition V [λ] ≡ 0 yields S[λ] = C[λ]B, and since

R[λ] is scalar, we can write

R[λ] = B>Q[λ]B − 2C[λ]B1 − Ċ[λ]B − C[λ]Ḃ.

Note that B = f1, B1 = [f0, f1], C[λ] = −ψf ′1, and Q[λ] = −ψ(f ′′0 + ûf ′′1 . Thus

R[λ] =ψ(f ′′0 + ûf ′′1 )(f1, f1)− 2ψf ′1(f ′0f1 − f ′1f0)

+ ψ(f ′0 + ûf ′1)f ′1f1 − ψf ′′1 (f0 + ûf1)f1 − ψf ′1f ′1(f0 + ûf1)

=ψ[f1, [f1, f0]].

Since f0 and f1 are twice continuously differentiable, we conclude that R[λ] is con-

tinuous in time.

Lemma 1.8.10. [72] Consider a quadratic form Q = Q1+Q2 where Q1 is a Legendre

form and Q2 is weakly continuous over some Hilbert space. Then Q is a Legendre

form.
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Lemma 1.8.11. [72, Theorem 3.2] Consider a real interval I and a quadratic form

Q over the Hilbert space L2(I), given by

Q(y) :=

∫
I

y>(t)R(t)y(t)dt.

Then Q is weakly l.s.c. over L2(I) iff

R(t) � 0, a.e. on I. (1.123)

Lemma 1.8.12. [42, Theorem 5] Given a Hilbert space H, and a1, a2, . . . , ap ∈ H,

set

K := {x ∈ H : (ai, x) ≤ 0, for i = 1, . . . , p}.

Let M be a convex and compact subset of Rs, and let {Qψ : ψ ∈ M} be a family

of continuous quadratic forms over H with the mapping ψ → Qψ being affine. Set

M# := {ψ ∈M : Qψ is weakly l.s.c.} and assume that

max
ψ∈M

Qψ(x) ≥ 0, for all x ∈ K.

Then

max
ψ∈M#

Qψ(x) ≥ 0, for all x ∈ K.

The following result is an adaptation of Lemma 6.5 in [43].

Lemma 1.8.13. Consider a sequence {vk} ⊂ U and {yk} their primitives defined by

(1.28). Call uk := û + vk, xk its corresponding solution of (1.2), and let zk denote

the linearized state corresponding to vk, i.e. the solution of (1.12). Define, for each

k ∈ IN,
δxk := xk − x̂, ηk := δxk − zk, γk := γ(yk, yk(T )). (1.124)

Suppose that {vk} converges to 0 in the Pontryagin sense. Then

(i)

η̇k =
m∑
i=0

ûif
′
i(x̂)ηk +

m∑
i=1

vi,kf
′
i(x̂)δxk + ζk, (1.125)

δ̇xk =
m∑
i=0

ui,kf
′
i(x̂)δxk +

m∑
i=1

vi,kfi(x̂) + ζk, (1.126)

where ‖ζk‖2 ≤ o(
√
γk) and ‖ζk‖∞ → 0,

(ii) ‖ηk‖∞ ≤ o(
√
γk).
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Proof. (i,ii) Consider the second order Taylor expansions of fi,

fi(xk) = fi(x̂) + f ′i(x̂)δxk + 1
2
f ′′i (x̂)(δxk, δxk) + o(|δxk(t)|2).

We can write

δ̇xk =
m∑
i=0

ui,kf
′
i(x̂)δxk +

m∑
i=1

vi,kfi(x̂) + ζk, (1.127)

with

ζk := 1
2

m∑
i=0

ui,kf
′′
i (x̂)(δxk, δxk) + o(|δxk(t)|2)

m∑
i=0

ui,k. (1.128)

As {uk} is bounded in L∞ and ‖δxk‖∞ → 0, we get ‖ζk‖∞ → 0 and the following

L2−norm bound:

‖ζk‖2 ≤ const.
m∑
i=0

‖ui,k(δxk, δxk)‖2 + o(γk)‖
m∑
i=0

ui,k‖1

≤ const.‖uk‖∞‖δxk‖2
2 = O(γk) ≤ o(

√
γk).

(1.129)

Let us look for the differential equation of ηk defined in (1.124). By (1.127), and

adding and substracting the term
∑m

i=1 ûif
′
i(x̂)δxk we obtain

η̇k =
m∑
i=0

ûif
′
i(x̂)ηk +

m∑
i=1

vi,kf
′
i(x̂)δxk + ζk.

Thus we obtain (i). Applying Gronwall’s Lemma to this last differential equation we

get

‖ηk‖∞ ≤ ‖
m∑
i=1

vi,kf
′
i(x̂)δxk + ζk‖1. (1.130)

Since ‖vk‖∞ < N and ‖vk‖1 → 0, we also find that ‖vk‖2 → 0. Applying the Cauchy-

Schwartz inequality to (1.130), from (1.129) we get (ii).
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Abstract

In this article we propose a shooting algorithm for a class of optimal control prob-

lems for which all control variables appear linearly. The shooting system has, in

the general case, more equations than unknowns and the Gauss-Newton method is

used to compute a zero of the shooting function. This shooting algorithm is locally

quadratically convergent if the derivative of the shooting function is one-to-one at

the solution. The main result of this paper is to show that the latter holds whenever

a sufficient condition for weak optimality is satisfied. We note that this condition

is very close to a second order necessary condition. For the case when the shooting

system can be reduced to one having the same number of unknowns and equations

(square system) we prove that the mentioned sufficient condition guarantees the sta-

bility of the optimal solution under small perturbations and the invertibility of the

Jacobian matrix of the shooting function associated to the perturbed problem. We

present numerical tests that validate our method.

2.1 Introduction

The classical shooting method is used to solve boundary value problems. Hence, it

is used to compute the solution of optimal control problems by solving the boundary

value problem derived from the Pontryagin Maximum Principle.

Some references can be mentioned regarding the shooting method. The first two

works we can find in the literature, dating from years 1956 and 1962 respectively,

are Goodman-Lance [70] and Morrison et al. [98]. Both present the same method

for solving two-point boundary value problems in a general setting, not necessarily

related to an optimal control problem. The latter article applies to more general

formulations. The method was studied in detail in Keller’s book [78], and later on

Bulirsch [31] applied it to the resolution of optimal control problems.

The case we deal with in this paper where the shooting method is used to solve

optimal control problems with control-affine systems is treated in, e.g., Maurer [92],

Oberle [101, 102], Fraser-Andrews [60], Martinon [89] and Vossen [127]. These works

provided a series of algorithms and numerical examples with different control struc-

tures, but no theoretical foundation is supplied. In particular, Vossen [127] dealt with

a problem in which the control can be written as a function of the state variable, i.e.

the control has a feedback representation. He proposed an algorithm that involved a

finite dimensional optimization problem induced by the switching times. The main
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difference between Vossen’s work and the study here presented is that we treat the

general problem (no feedback law is necessary). Furthermore we justify the well-

definition and the convergence of our algorithm via second order sufficient conditions

of the original control problem. In some of the just mentioned papers the control

variable had only some of its components entering linearly. This particular structure

is studied in more detailed in Aronna [7], and in the present article we study problems

having all affine inputs.

In [25] Bonnard and Kupka studied the optimal time problem of a generic single-

input affine system without control constraints, with fixed initial point and terminal

point constrained to a given manifold. For this class of problems they established

a link between the injectivity of the shooting function and the optimality of the

trajectory by means of the conjugate and focal points theory. Bonnard et al. [23]

provides a survey on a series of algorithms for the numerical computation of these

points, which can be employed to test the injectivity of the shooting function in some

cases. The reader is referred to [23], Bonnard-Chyba [24] and references therein for

further information about this topic.

In addition, Malanowski-Maurer [87] and Bonnans-Hermant [20] dealt with a prob-

lem having mixed control-state and pure state running constraints and satisfying the

strong Legendre-Clebsch condition (which is not verified in our affine-input case).

They all established a link between the invertibility of the Jacobian of the shooting

function and some second order sufficient condition for optimality. They provided

stability analysis as well.

We start this article by presenting an optimal control problem affine in the control,

with terminal constraints and free control variables. For this kind of problem we

state a set of optimality conditions which is equivalent to the Pontryagin Maximum

Principle. Afterwards, the second order strengthened generalized Legendre-Clebsch

condition is used to eliminate the control variable from the stationarity condition.

The resulting set of conditions turns out to be a two-point boundary value problem,

i.e. a system of ordinary differential equations having boundary conditions both in

the initial and final times. We define the shooting function as the mapping that

assigns to each estimate of the initial values, the value of the final condition of the

corresponding solution. The shooting algorithm consists of approximating a zero of

this function. In other words, the method finds suitable initial values for which the

corresponding solution of the differential equation system satisfies the final conditions.

Since the number of equations happens to be, in general, greater than the number

of unknowns, the Gauss-Newton method is a suitable approach for solving this overde-
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termined system of equations. The reader is referred to Dennis [38], Fletcher [59] and

Dennis et al. [39] for details and implementations of Gauss-Newton technique. This

method is applicable when the derivative of the shooting function is one-to-one at the

solution, and in this case it converges locally quadratically.

The main result of this paper is to provide a sufficient condition for the injectivity

of this derivative, and to notice that this condition is quite weak since, for qualified

problems, it characterizes quadratic growth in the weak sense (see Dmitruk [40, 43]).

Once the unconstrained case is investigated, we pass to a problem having bounded

controls. To treat this case, we perform a transformation yielding a new problem

without bounds, we prove that an optimal solution of the original problem is also

optimal for the transformed one and we apply our above-mentioned result to this

modified formulation.

It is interesting to mention that by means of the latter result we can justify,

in particular, the invertibility of the Jacobian of the shooting function proposed by

Maurer [92]. In this work, Maurer suggested a method to treat problems having

scalar bang-singular-bang solutions and provided a square system of equations (i.e.

a system having as many equations as unknowns) meant to be solved by Newton’s

algorithm. However, the systems that can be encountered in practice may not be

square and hence our approach is suitable.

We provide a deeper analysis in the case when the shooting system can be reduced

to one having equal number of equations and unknowns. In this framework, we in-

vestigate the stability of the optimal solution. It is shown that the above-mentioned

sufficient condition guarantees the stability of the optimal solution under small per-

turbation of the data and the invertibility of the Jacobian of the shooting function

associated to the perturbed problem. Felgenhauer in [56, 55] provided sufficient con-

ditions for the stability of the structure of the optimal control, but assuming that the

perturbed problem had an optimal solution.

Our article is organized as follows. In section 2.2 we present the optimal control

problem without bound constraints, for which we provide an optimality system in

section 2.3. We give a description of the shooting method in section 2.4. In section

2.5 we present a set of second order necessary and sufficient conditions, and the

statement of the main result. We introduce a linear quadratic optimal control problem

in section 2.6. In section 2.7 we present a variable transformation relating the shooting

system and the optimality system of the linear quadratic problem mentioned above.

In section 2.8 we deal with the control constrained case. A stability analysis for

both unconstrained and constrained control cases is provided in section 2.9. Finally



72 2. A SHOOTING ALGORITHM

we present some numerical tests in section 2.10, and we devote section 2.11 to the

conclusions of the article.

2.2 Statement of the Problem

Consider the spaces U := L∞(0, T ;Rm) and X := W 1
∞(0, T ;Rn), as control and state

spaces, respectively. Denote by u and x their elements, respectively. When needed,

put w = (x, u) for a point in the product space W := X × U . In this paper we

investigate the optimal control problem

J := ϕ0(x0, xT )→ min, (2.1)

ẋt =
m∑
i=0

ui,tfi(xt), a.e. on [0, T ], (2.2)

ηj(x0, xT ) = 0, for j = 1, . . . , dη, (2.3)

where final time T is fixed, u0 ≡ 1, fi : Rn → Rn for i = 0, . . . ,m and ηj : R2n → R
for j = 1, . . . , dη. Assume that data functions ϕ0, fi and ηj have Lipschitz-continuous

second derivatives. Denote by (P) the problem defined by (2.1)-(2.3). An element

w ∈ W satisfying (2.2)-(2.3) is called a feasible trajectory.

Set X∗ := W 1
∞(0, T ;Rn,∗) the space of Lipschitz-continuous functions with values

in the n−dimensional space of row-vectors with real components Rn,∗. Consider an

element λ := (β, p) ∈ Rdη ,∗ ×X∗ and define the pre-Hamiltonian function

H[λ](x, u, t) := pt

m∑
i=0

uifi(x), (2.4)

the initial-final Lagrangian function

`[λ](ζ0, ζT ) := ϕ0(ζ0, ζT ) +

dη∑
j=1

βjηj(ζ0, ζT ), (2.5)

and the Lagrangian function

L[λ](w) := `[λ](x0, xT ) +

∫ T

0

pt

(
m∑
i=0

ui,tfi(xt)− ẋt

)
dt. (2.6)

We study a nominal feasible trajectory ŵ = (x̂, û). Next we present a qualification

hypothesis that is assumed throughout the article. Consider the mapping

G : Rn × U → Rdη

(x0, u) 7→ η(x0, xT ),
(2.7)

where xT is the solution of (2.2) associated to (x0, u).
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Assumption 2.2.1. The derivative of G at (x̂0, û) is onto.

Assumption 2.2.1 is usually known as qualification of equality constraints.

Definition 2.2.2. It is said that the trajectory ŵ is a weak minimum of problem

(P) if there exists ε > 0 such that ŵ is a minimum in the set of feasible trajectories

w = (x, u) ∈ W satisfying

‖x− x̂‖∞ < ε, ‖u− û‖∞ < ε.

The following first order necessary condition holds for ŵ.

Theorem 2.2.3. If ŵ is a weak solution then there exists λ = (β, p) ∈ Rdη ,∗ × X∗
such that p is solution of the costate equation

−ṗt = DxH[λ](x̂t, ût, t), a.e. on [0, T ], (2.8)

with transversality conditions

p0 = −Dx0`[λ](x̂0, x̂T ), (2.9)

pT = DxT `[λ](x̂0, x̂T ), (2.10)

and the stationarity condition

DuH[λ](x̂t, ût, t) = 0, a.e. on [0, T ], (2.11)

is verified.

It follows easily that since the pre-Hamiltonian H is affine in all the control vari-

ables, (2.11) is equivalent to the minimum condition

H[λ](x̂t, ût, t) = min
v∈Rm

H[λ](x̂t, v, t), a.e. on [0, T ]. (2.12)

In order words, the element (ŵ, λ) in Theorem 2.2.3 satisfies the qualified Pontryagin

Maximum Principle and λ is a Pontryagin multiplier. It is known that the Assump-

tion 2.2.1 implies the existence and uniqueness of multiplier. We denote this unique

multiplier by λ̂ = (β̂, p̂).

Let the switching function Φ : [0, T ]→ Rm,∗ be defined by

Φt := DuH[λ̂](x̂t, ût, t) = (p̂tfi(x̂t))
m
i=1. (2.13)

Observe that the stationarity condition (2.11) can be written as

Φt = 0, a.e. on [0, T ]. (2.14)
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2.3 Optimality System

In this section we present an optimality system, i.e. a set of equations that are

necessary for optimality. We obtain this system from the conditions in Theorem 2.2.3

above and assuming that the strengthened generalized Legendre-Clebsch condition (to

be defined below) holds.

Observe that, since H is affine in the control, the switching function Φ introduced

in (2.13) does not depend explicitly on u. Let an index i = 1, . . . ,m, and (dMiΦ/dtMi)

be the lowest order derivative of Φ in which ui appears with a coefficient that is not

identically zero on (0, T ). In Kelley et al. [81] it is stated that Mi is even, assuming

that the extremal is normal (as it is the case here since ŵ satisfies the PMP in its

qualified form). The integer Ni := Mi/2 is called order of the singular arc. As we

have just said, the control u cannot be retrieved from equation (2.11). In order to be

able to express û in terms of (p̂, x̂) from equation

Φ̈t = 0, a.e. on [0, T ], (2.15)

we make the following hypothesis.

Assumption 2.3.1. The strengthened generalized Legendre-Clebsch condition (see

e.g.

Kelley [79] and Goh [67]) holds, i.e.

− ∂

∂u
Φ̈t � 0, on [0, T ]. (2.16)

Here, by X � 0 we mean that the matrix X is positive definite. Notice that

function Φ̈ is affine in u, and thus û can be written in terms of (p̂, x̂) from (2.15) by

inverting the matrix in (2.16). Furthermore, due to the regularity hypothesis imposed

on the data functions, û turns out to be a continuous function of time.

Hence, the condition (2.15) is included in our optimality system and we can use

it to compute û in view of Assumption 2.3.1. In order to guarantee the stationarity

condition (2.14) we consider the endpoint conditions

ΦT = 0, Φ̇0 = 0. (2.17)

Remark 2.3.2. We could choose another pair of endpoint conditions among the four

possible ones: Φ0 = 0, ΦT = 0, Φ̇0 = 0 and Φ̇T = 0, always including at least one of

order zero. The choice we made will simplify the presentation of the result afterwards.
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Notation: Denote by (OS) the set of equations composed by (2.2)-(2.3),(2.8)-

(2.10), (2.15), (2.17), i.e. the system

ẋt =
m∑
i=0

ui,tfi(xt), a.e. on [0, T ],

ηj(x0, xT ) = 0, for j = 1, . . . , dη,

−ṗt = DxH[λ](x̂t, ût, t), a.e. on [0, T ],

p0 = −Dx0`[λ](x̂0, x̂T ),

pT = DxT `[λ](x̂0, x̂T ),

Φ̈t = 0, a.e. on [0, T ],

ΦT = 0, Φ̇0 = 0.

(OS)

Let us give explicit expressions for Φ̇ and Φ̈. Denote the Lie bracket of two smooth

vector fields g, h : Rn → Rn by

[g, h](x) := g′(x)h(x)− h′(x)g(x). (2.18)

Define A : Rn+m →Mn×n(R) and B : Rn →Mn×m(R) by

A(x, u) :=
m∑
i=0

uif
′
i(x), B(x)v :=

m∑
i=1

vifi(x), (2.19)

for every v ∈ Rm. Notice that the ith. column of B(x) is fi(x). For (x, u) ∈ W
satisfying (2.2), let B1(xt, ut) ∈Mn×m(R) given by

B1(xt, ut) := A(xt, ut)B(xt)−
d

dt
B(xt). (2.20)

In view of (2.19) and (2.20), the expressions in (2.17) can be rewritten as

Φt = ptB(xt), Φ̇t = −ptB1(xt, ut). (2.21)

2.4 Shooting Algorithm

The aim of this section is to present an appropriated numerical scheme to solve system

(OS). For this purpose define the shooting function

S : D(S) := Rn × Rn+dη ,∗ → Rdη × R2n+2m,∗,

(
x0, p0, β

)
=: ν 7→ S(ν) :=


η(x0, xT )

p0 +Dx0`[λ](x0, xT )
pT −DxT `[λ](x0, xT )

pTB(xT )
p0B1(x0, u0)

 ,
(2.22)
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where (x, u, p) is a solution of (2.2),(2.8),(2.15) corresponding to the initial conditions

(x0, p0), and with λ := (β, p). Here we denote either by (a1, a2) or

(
a1

a2

)
an element

of the product space A1 × A2. Notice that the control u retrieved from (2.15) is

continuous in time, as we have already pointed out after Assumption 2.3.1. Hence,

we can refer to the value u0, as it is done in the right hand-side of (2.22). Observe that

in a simpler framework having fixed initial state and no final constraints, the shooting

function would depend only on p0. In our case, since the initial state is not fixed and a

multiplier associated with the initial-final constraints must be considered, S has more

independent variables. Note that solving (OS) consists of finding ν ∈ D(S) such that

S(ν) = 0. (2.23)

Since the number of equations in (2.23) is greater than the number of unknowns, the

Gauss-Newton method is a suitable approach to solve it. This algorithm will solve

the equivalent least squares problem

min
ν∈D(S)

∣∣S (ν)∣∣2 . (2.24)

At each iteration k, given the approximate values νk, it looks for ∆k that gives the

minimum of the linear approximation of problem

min
∆∈D(S)

∣∣S(νk) + S ′(νk)∆
∣∣2 . (2.25)

Afterwards it updates

νk+1 ← νk + ∆k. (2.26)

In order to solve the linear approximation of problem (2.25) at each iteration k, we

look for ∆k in the kernel of the derivative of the objective function, i.e. ∆k satisfying

S ′(νk)>S ′(νk)∆k + S ′(νk)>S(νk) = 0. (2.27)

Hence, to compute direction ∆k the matrix S ′(νk)>S ′(νk) must be nonsingular. Thus,

Gauss-Newton method will be applicable provided that S ′(ν̂)>S ′(ν̂) is invertible,

where ν̂ := (x̂0, p̂0, β̂). Easily follows that S ′(ν̂)>S ′(ν̂) is nonsingular if and only

if S ′(ν̂) is one-to-one. Summarizing, the shooting algorithm we propose here consists

of solving the equation (2.23) by the Gauss-Newton method defined by (2.26)-(2.27).

Since the right hand-side of system (2.23) is zero, the Gauss-Newton method

converges locally quadratically if the function S has Lipschitz-continuous derivative.

The latter holds here given the regularity assumptions on the data functions. This

convergence result is stated in the proposition below. See, e.g., Fletcher [59] or

Bonnans [19] for a proof.
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Proposition 2.4.1. If S ′(ν̂) is one-to-one then the shooting algorithm is locally

quadratically convergent.

The main result of this article is to present a condition that guarantees the

quadratic convergence of the shooting method near the optimal local solution (ŵ, λ̂).

This condition involves the second variation studied in Dmitruk [40, 43], more pre-

cisely, the sufficient optimality conditions therein presented.

2.4.1 Linearization of a Differential Algebraic System

For the aim of finding an expression of S ′(ν̂), we make use of the linearization of (OS)

and thus we introduce the following concept.

Definition 2.4.2 (Linearization of a Differential Algebraic System). Consider a sys-

tem of differential algebraic equations (DAE) with endpoint conditions

ζ̇t = F(ζt, αt), (2.28)

0 = G(ζt, αt), (2.29)

0 = I(ζ0, ζT ), (2.30)

where F : Rm+n → Rn, G : Rm+n → RdG and I : R2n → RdI are C1 functions. Let

(ζ0, α0) be a C1 solution. We call linearized system at point (ζ0, α0) the following

DAE in the variables ζ̄ and ᾱ,

˙̄ζt = LinF |(ζ0t ,α0
t )

(ζ̄t, ᾱt), (2.31)

0 = LinG |(ζ0t ,α0
t )

(ζ̄t, ᾱt), (2.32)

0 = Lin I |(ζ00 ,ζ0T ) (ζ̄0, ζ̄T ), (2.33)

where

LinF |(ζ0t ,α0
t )

(ζ̄t, ᾱt) := F ′(ζ0
t , α

0
t )(ζ̄t, ᾱt), (2.34)

and the analogous definitions hold for LinG and LinH.

The technical result below will simplify the computation of the linearization of

(OS). Its proof is immediate.

Lemma 2.4.3 (Commutation of linearization and differentiation). Given G and F
as in the previous definition, it holds

d

dt
LinG = Lin

d

dt
G, d

dt
LinF = Lin

d

dt
F . (2.35)
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2.4.2 Linearized optimality system

In the sequel, whenever the argument of functions A,B,B1, etc. is omitted, assume

that they are evaluated at the reference extremal (ŵ, λ̂). Define the m × n−matrix

C, the n× n−matrix Q and the m× n−matrix M by

C := Hux, Q := Hxx, M := B>Q− Ċ − CA. (2.36)

Notice that the ith. row of matrix C is the function pf ′i , for i = 1, . . . ,m. Denote

with (z, v, λ̄ := (β̄, q)) the linearized variable (x, u, λ = (β, p)). In view of equations

(2.21) and (2.36) we can write

Lin Φt = qtBt + z>t C
>
t . (2.37)

The linearization of system (OS) at point (x̂, û, λ̂) consists of the linearized state

equation

żt = Atzt +Btvt, a.e. on [0, T ], (2.38)

with endpoint conditions

0 = Dη(x̂0, x̂T )(z0, zT ), (2.39)

the linearized costate equation

−q̇t = qtAt + z>t Qt + v>t Ct, a.e. on [0, T ], (2.40)

with endpoint conditions

q0 = −

[
z>0 D

2
x20
`+ z>TD

2
x0xT

`+

dη∑
j=1

β̄jDx0ηj

]
(x̂0,x̂T )

, (2.41)

qT =

[
z>TD

2
x2T
`+ z>0 D

2
x0xT

`+

dη∑
j=1

β̄jDxT ηj

]
(x̂0,x̂T )

, (2.42)

and the algebraic equations

0 = Lin Φ̈ = − d2

dt2
(qB + Cz), a.e. on [0, T ], (2.43)

0 = Lin ΦT = qTBT + CT zT , (2.44)

0 = Lin Φ̇0 = − d

dt
(qB + Cz)t=0. (2.45)

Here we used equation (2.37) and commutation property of Lemma 2.4.3 to write

(2.43) and (2.47). Observe that (2.43)-(2.47) and Lemma 2.4.3 yield

0 = Lin Φt = qtBt + z>t C
>
t , on [0, T ], (2.46)
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and

0 = Lin Φ̇t = −qB1 − z>M> + v>(−CB +B>C>), a.e. on [0, T ].

By means of Theorem 2.5.2 to be stated in Section 2.5 afterwards we can see that the

coefficient of v in previous expression vanishes, and hence,

0 = Lin Φ̇t = −qB1 − z>M>, on [0, T ]. (2.47)

Note that both equations (2.46) and (2.47) hold everywhere on [0, T ] since all the

involved functions are continuous in time.

Notation: denote by (LS) the set of equations (2.38)-(2.47).

Once we have computed the linearized system (LS), we can write the derivative

of S in the direction ν̄ :=
(
z0, q0, β̄

)
as follows.

S ′(ν̂)ν̄ =



Dη(x̂0, x̂T )(z0, zT )

q0 +
[
z>0 D

2
x20
`+ z>TD

2
x0xT

`+
∑dη

j=1 β̄jDx0ηj

]
(x̂0,x̂T )

qT −
[
z>TD

2
x2T
`+ z>0 D

2
x0xT

`+
∑dη

j=1 β̄jDxT ηj

]
(x̂0,x̂T )

qTBT + z>T C
>
T

q0B1,0 + z>0 M
>
0


, (2.48)

where (v, z, q) is the solution of (2.38),(2.40),(2.43) associated with the initial condi-

tion (z0, q0) and the multiplier β̄. Thus, we get the property below.

Proposition 2.4.4. S ′(ν̂) is one-to-one if the only solution of (2.38)-(2.40),(2.43)

with the initial conditions z0 = 0, q0 = 0 and with β̄ = 0 is (v, z, q) = 0.

2.5 Second Order Optimality Conditions

In this section we summarize a set of second order necessary and sufficient conditions.

At the end of the section we state a sufficient condition for the local quadratic con-

vergence of the shooting algorithm presented in Section 2.4. The latter is the main

result of this article.

Recall the matrices C and Q defined in (2.36), and the space W given at the

beginning of Section 2.2. Consider the quadratic mapping on W ,

Ω(z, v) := 1
2
D2` (z0, zT )2 + 1

2

∫ T

0

[
z>Qz + 2v>Cz

]
dt. (2.49)

It is a well-known result that for each (z, v) ∈ W ,

D2L (z, v)2 = Ω(z, v). (2.50)
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We next recall the classical second order necessary condition for optimality that states

that the second variation of the Lagrangian function is nonnegative on the critical

cone. In our case, the critical cone is given by

C := {(z, v) ∈ W : (2.38)-(2.39) hold}, (2.51)

and the second order optimality condition is as follows.

Theorem 2.5.1 (Second order necessary optimality condition). If ŵ is a weak min-

imum of (P) then

Ω(z, v) ≥ 0, for all (z, v) ∈ C. (2.52)

A proof of previous theorem can be found in, e.g., Levitin, Milyutin and Os-

molovskii [86]. The following necessary condition is due to Goh [67] and it is a non-

trivial consequence (not immediate) of Theorem 2.5.1. Define first the m×m−matrix

R := B>QB − CB1 − (CB1)> − d

dt
(CB). (2.53)

Theorem 2.5.2 (Goh’s Necessary Condition). If ŵ is a weak minimum of (P), then

CB is symmetric, (2.54)

and

R � 0. (2.55)

Remark 2.5.3. Observe that (2.54) is equivalent to pf ′ifj = pf ′jfi, for every pair

i, j = 1, . . . ,m. These identities can be written in terms of Lie brackets as

p[fi, fj] = 0, for i, j = 1, . . . ,m. (2.56)

Notice that (2.54) implies, in view of (2.53), that R is symmetric. The components

of matrix R can be written as

Rij = p[fi, [fj, f0]], (2.57)

and hence, its symmetry implies

p[fi, [fj, f0]] = p[fj, [fi, f0]], for i, j = 1, . . . ,m. (2.58)

The latter expressions involving Lie brackets can be often found in the literature.
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The result that we present next is due to Dmitruk [40] and is stated in terms of

the coercivity of Ω in a transformed space of variables. Let us give the details of the

involved transformation and the transformed second variation. Given (z, v) ∈ W ,

define

yt :=

∫ t

0

vsds, (2.59)

ξt := zt −B(x̂t)yt. (2.60)

This change of variables, first introduced by Goh in [68], can be perform in any linear

system of differential equations, and it is known as Goh’s transformation.

We aim to perform Goh’s transformation in (2.49). To this end consider the spaces

U2 := L2(0, T ;Rm) and X2 := W 1
2 (0, T ;Rn), the function g : R2n+m → R defined by

g(ζ0, ζT , h) := D2` (ζ0, ζT +BTh)2 + h>CT (2ζT +BTh), (2.61)

and the quadratic mapping

Ω̄ : X2 × U2 × Rm → R

(ξ, y, h) 7→ 1
2
g(ξ0, ξT , h) + 1

2

∫ T

0

{ξ>Qξ + 2y>Mξ + y>Ry}dt, (2.62)

where the involved matrices where introduced in (2.19), (2.36) and (2.53).

Proposition 2.5.4. If ŵ is a weak minimum of (P), then

Ω(z, v) = Ω̄(ξ, y, yT ), (2.63)

whenever (z, v) ∈ W and (ξ, y, yT ) ∈ X × Y × Rm satisfy (2.59)-(2.60).

The latter result follows by integrating by parts the terms containing v in (2.49),

and by replacing z by its expression in (2.60). See, e.g., Aronna et al. [8] for the

detailed calculations that lead to (2.63).

Define the order function γ : Rn × U2 × Rm → R as

γ(ξ0, y, h) := |ξ0|2 +

∫ T

0

y2
t dt+ |h|2. (2.64)

We call (δx, v) ∈ W a feasible variation for ŵ if (x̂+ δx, û+ v) satisfies (2.2)-(2.3).

Definition 2.5.5. We say that ŵ satisfies the γ−growth condition in the weak sense

if there exists ρ > 0 such that, for every sequence of feasible variations {(δxk, vk)}
converging to 0 in W ,

J(û+ vk)− J(û) ≥ ργ(ξk0 , y
k, ykT ), (2.65)

holds for big enough k, where ykt :=
∫ t

0
vksds, and ξk is given by (2.60).
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In previous definition, given that (δxk, vk) is a feasible variation for each k, the

sequence {(δxk, vk)} goes to 0 in W if and only if {vk} goes to 0 in U .
Observe that if (z, v) ∈ W satisfies (2.38)-(2.39), then (ξ, y, h := yT ) given by

transformation (2.59)-(2.60) verifies

ξ̇ = Aξ +B1y, (2.66)

Dη(x̂0, x̂T )(ξ0, ξT +BTh) = 0. (2.67)

Set the transformed critical cone

P2 := {(ξ, y, h) ∈ X2 × U2 × Rm : (2.66)-(2.67) hold} . (2.68)

The following is an immediate consequence of the sufficient condition established

in Dmitruk [40] (or [43, Theorem 3.1]).

Theorem 2.5.6. The trajectory ŵ is a weak minimum of (P) satisfying γ− growth

condition in the weak sense if and only if (2.54) holds and there exists ρ > 0 such

that

Ω̄(ξ, y, h) ≥ ργ(ξ0, y, h), on P2. (2.69)

The result presented in [40] applies to a more general case having finitely many

equalities and inequalities constraints on the initial and final state, and a set of

multipliers consisting possibly of more than one element.

Remark 2.5.7. If (2.69) holds then necessarily

R � ρ I, (2.70)

where I represents the identity matrix.

Theorem 2.5.8. If ŵ is a weak minimum of (P) satisfying (2.69), then the shooting

algorithm is locally quadratically convergent.

We present the proof of previous theorem at the end of Section 2.7.

Remark 2.5.9. It is interesting to observe that condition (2.69) is a quite weak

assumption in the sense that it is necessary for γ−growth and its corresponding relaxed

condition (2.52) holds necessarily for every weak minimum.

Remark 2.5.10 (Verification of (2.69)). The sufficient condition in (2.69) can be

sometimes checked analytically. On the other hand, when the initial point ξ0 is fixed,

it can be characterized by a Riccati-type equation and/or the nonexistence of a focal

point as it was established in Zeidan [129]. Furthermore, under certain hypotheses, the

condition (2.69) can be verified numerically as proposed in [22] by Bonnard, Caillau

and Trélat (see also the survey in [23]).
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2.6 Corresponding LQ Problem

In this section we study the linear-quadratic problem (LQ) given by

Ω̄(ξ, y, hT )→ min, (2.71)

(2.66)-(2.67), (2.72)

ḣ = 0, h0 free. (2.73)

Here y is the control, ξ and h are the state variables. Note that if condition (2.69)

holds then (LQ) has a unique optimal solution (ξ, y, h) = 0. Furthermore, recall that

(2.69) yields (2.70) as it was said in Remark 2.5.7. In other words, (2.69) implies

that the strengthened Legendre-Clebsch condition holds at (ξ, y, h) = 0. Hence, the

unique local optimal solution of (LQ) is characterized by the first optimality system,

that we denote afterwards by (LQS). In Section 2.7 we present a one-to-one linear

mapping that transforms each solution of (LS) (introduced in section 2.4.2) into a

solution of this new optimality system (LQS). Theorem 2.5.8 will follow.

Denote by χ and χh the costate variables corresponding to ξ and h, respectively;

and by βLQ the multiplier associated to the initial-final linearized state constraint

(2.67). Note that the qualification hypothesis in Assumption 2.2.1 implies that

{Dηj(x̂0, x̂T )}dηj=1 are linearly independent. Hence any weak solution (ξ, y, h) of (LQ)

has a unique associated multiplier λLQ := (χ, χh, β
LQ) solution of the system that we

describe next. The pre-Hamiltonian of (LQ) is

H[λLQ](ξ, y) := χ(Aξ +B1y) + 1
2
(ξ>Qξ + 2y>Mξ + y>Ry). (2.74)

Observe that H does not depend on h since the latter has zero dynamics and does

not appear in the running cost. The endpoint Lagrangian is given by

`LQ[λLQ](ξ0, ξT , hT ) := 1
2
g(ξ0, ξT , hT ) +

dη∑
j=1

βLQj Dηj(ξ0, ξT +BThT ). (2.75)

The costate equation for χ is

−χ̇ = DξH[λLQ] = χA+ ξ>Q+ y>M, (2.76)

with endpoint conditions

χ0 = −Dξ0`
LQ[λLQ]

= −
[
ξ>0 D

2
x20
`+ (ξT +BTh)>D2

x0xT
`+

∑dη
j=1 β

LQ
j Dx0ηj

]
,

(2.77)



84 2. A SHOOTING ALGORITHM

χT = DξT `
LQ[λLQ]

= ξ>0 D
2
x0xT

`+ (ξT +BTh)>D2
x2T
`+ h>CT +

∑dη
j=1 β

LQ
j DxT ηj.

(2.78)

For costate variable χh we get the equation

χ̇h = 0, (2.79)

χh,0 = 0, (2.80)

χh,T = Dh`
LQ[λLQ]. (2.81)

Hence, χh ≡ 0 and thus (2.81) yields

0 = ξ>0 D
2
x0xT

`BT + (ξT +BTh)>(D2
x2T
`BT + C>T ) +

dη∑
j=1

βLQj DxT ηjBT . (2.82)

The stationarity with respect to the new control y implies

0 = DyH = χB1 + ξ>M> + y>R. (2.83)

Notation: Denote by (LQS) the set of equations consisting of (2.66)-(2.67), (2.73),

(2.76)-(2.78),(2.82) and (2.83), i.e. (LQS) is the system

ξ̇ = Aξ +B1y,

Dη(x̂0, x̂T )(ξ0, ξT +BTh) = 0,

ḣ = 0,

−χ̇ = DξH[λLQ] = χA+ ξ>Q+ y>M,

χ0 = −

[
ξ>0 D

2
x20
`+ (ξT +BTh)>D2

x0xT
`+

dη∑
j=1

βLQj Dx0ηj

]
,

χT = ξ>0 D
2
x0xT

`+ (ξT +BTh)>D2
x2T
`+ h>CT +

dη∑
j=1

βLQj DxT ηj,

0 = ξ>0 D
2
x0xT

`BT + (ξT +BTh)>(D2
x2T
`BT + C>T ) +

dη∑
j=1

βLQj DxT ηjBT ,

0 = χB1 + ξ>M> + y>R.

(LQS)

Notice that (LQS) is a first order optimality system for problem (2.71)-(2.73).

2.7 The Transformation

In this section we show how to transform a solution of (LS) into a solution of (LQS)

via a one-to-one linear mapping. Given (z, v, q, β̄) ∈ X × U × X∗ × Rdη ,∗, define

yt :=

∫ t

0

vsds, ξ := z −By, χ := q + y>C, χh := 0, h := yT , β
LQ
j := β̄j. (2.84)
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The next lemma shows that the point (ξ, y, h, χ, χh, β
LQ) is solution of (LQS) provided

that (z, v, q, β̄) is solution of (LS).

Lemma 2.7.1. The one-to-one linear mapping defined by (2.84) converts each solu-

tion of (LS) into a solution of (LQS).

Proof. Let (z, v, q, β̄) be a solution of (LS), and set (ξ, y, χ, βLQ) by (2.84).

Part I. We shall prove that (ξ, y, χ, βLQ) satisfies conditions (2.66) and (2.67). Equa-

tion (2.66) follows by differentiating expression of ξ in (2.84), and equation (2.67)

follows from (2.39).

Part II. We shall prove that (ξ, y, χ, βLQ) verifies (2.76)-(2.78) and (2.82). Differen-

tiate χ in (2.84), use equations (2.40) and (2.84), recall definition of M in (2.36) and

obtain
−χ̇ = −q̇ − v>C − y>Ċ

= qA+ z>Q− y>Ċ
= χA+ ξ>Q+ y>(−CA+B>Q− Ċ)
= χA+ ξ>Q+ y>M.

(2.85)

Hence (2.76) holds. Equations (2.77) and (2.78) follow from (2.41) and (2.42). Com-

bine (2.42) and (2.44) to get

0 = qTBT + z>T C
>
T

=
[
z>TD

2
x2T
`+ z>0 D

2
x0xT

`+
∑dη

j=1 β̄jDxT ηj

]
(x̂0,x̂T )

BT + z>T C
>
T .

(2.86)

Performing transformation (2.84) in the previous equation yields (2.82).

Part III. We shall prove that (2.83) holds. Differentiating (2.46) we get

0 =
d

dt
Lin Φ =

d

dt
(qB + z>C>). (2.87)

Consequently, by (2.38) and (2.40),

0 = −(qA+ z>Q+ v>C)B + qḂ + (z>A> + v>B>)C> + z>Ċ>, (2.88)

where the coefficient of v vanishes in view of (2.54). Recall (2.20) and (2.36). Per-

forming transformation (2.84) and regrouping the terms we get from (2.88),

0 = −χB1 − ξ>M> + y>(CB1 −B>QB +B>A>C> +B>Ċ>). (2.89)

Equation (2.83) follows from (2.53) and condition (2.54).

Parts I, II and III show that (ξ, y, χ, βLQ) is a solution of (LQS), and hence the

result follows.
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Remark 2.7.2. Observe that the unique assumption we needed in previous proof was

Goh’s condition (2.54) that follows from the weak optimality of ŵ.

Proof. [of Theorem 2.5.8] We shall prove that (2.69) implies that S ′(ν̂) is one-to-one.

Take (z, v, q, β̄) a solution of (LS), and let (ξ, y, χ, χh, β
LQ) be defined by (2.84), that

we know by Lemma 2.7.1 is solution of (LQS). As it has been already pointed out

at the beginning of Section 2.6, condition (2.69) implies that the unique solution of

(LQS) is 0. Hence (ξ, y, χ, χh, β
LQ) = 0 and thus (z, v, q, β̄) = 0. Conclude that the

unique solution of (LS) is 0. The latter assertion implies, in view of Proposition 2.4.4,

that S ′(ν̂) is one-to-one. The result follows from Proposition 2.4.1.

2.8 Control Constrained Case

In this section we add the following bounds to the control variables

0 ≤ ui,t ≤ 1, for a.a. t ∈ [0, T ], for i = 1, . . . ,m. (2.90)

Denote with (CP) the problem given by (2.1)-(2.3) and (2.90).

Definition 2.8.1. A feasible trajectory ŵ ∈ W is a Pontryagin minimum of (CP) if

for any positive N there exists εN > 0 such that ŵ is a minimum in the set of feasible

trajectories w = (x, u) ∈ W satisfying

‖x− x̂‖∞ < εN , ‖u− û‖1 < εN , ‖u− û‖∞ < N.

Given i = 1, . . . ,m, we say that ûi has a bang arc in (a, b) ⊂ (0, T ) if ûi,t = 0 a.e.

on (a, b) or ûi,t = 1 a.e. on (a, b), and it has a singular arc if 0 < ûi,t < 1 a.e. on

(a, b).

Assumption 2.8.2. Each component ûi is a finite concatenation of bang and singular

arcs.

A time t ∈ (0, T ) is called switching time if there exists an index 1 ≤ i ≤ m such

that ûi switches at time t from singular to bang, or vice versa, or from one bound in

(2.90) to the other.

Remark 2.8.3. Assumption 2.8.2 rules out the solutions having an infinite number

of swit- chings in a bounded interval. This behavior is usually known as Fuller’s phe-

nomenon (see Fuller [61]). Many examples can be encountered satisfying Assumption

2.8.2 as is the case of the three problems presented in Section 2.10.
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With the purpose of solving (CP) numerically we assume that the structure of the

concatenation of bang and singular arcs of the optimal solution ŵ and an approxima-

tion of its switching times are known. This initial guess can be obtained, for instance,

by solving the nonlinear problem resulting from the discretization of the optimality

conditions or by a continuation method. See Betts [14] or Biegler [16] for a detailed

survey and description of numerical methods for nonlinear programming problems.

For the continuation method the reader is referred to Martinon [89].

This section is organized as follows. From (CP) and the known structure of û and

its switching times we create a new problem that we denote by (TP). Afterwards we

prove that we can transform ŵ into a weak solution Ŵ of (TP). Finally we conclude

that if Ŵ satisfies the coercivity condition (2.69), then the shooting method for

problem (TP) converges locally quadratically. In practice, the procedure will be as

follows: obtain somehow the structure of the optimal solution of (CP), create problem

(TP), solve (TP) numerically obtaining Ŵ , and finally transform Ŵ to find ŵ.

Next we present the transformed problem.

Assumption 2.8.4. Assume that each time a control ûi switches from bang to sin-

gular or vice versa, there is a discontinuity of first kind.

Here, by discontinuity of first kind we mean that each component of û has a finite

nonzero jump at the switching times, and the left and right limits exist.

By Assumption 2.8.2 the set of switching times is finite. Consider the partition of

[0, T ] induced by the switching times:

{0 =: T̂0 < T̂1 < . . . < T̂N−1 < T̂N := T}. (2.91)

Set Îk := [T̂k−1, T̂k], and define for k = 1, . . . , N,

Sk := {1 ≤ i ≤ m : ûi is singular on Îk}, (2.92)

Ek := {1 ≤ i ≤ m : ûi = 0 a.e. on Îk}, (2.93)

Nk := {1 ≤ i ≤ m : ûi = 1 a.e. on Îk}. (2.94)

Clearly Sk ∪ Ek ∪Nk = {1, . . . ,m}.

Assumption 2.8.5. For each k = 1, . . . , N, denote by uSk the vector with components

ui with i ∈ Sk. Assume that the strengthened generalized Legendre-Clebsch condition

holds on Îk, i.e.

− ∂

∂uSk
ḦuSk

� 0, on Îk. (2.95)
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Hence, uSk can be retrieved from equation

ḦuSk
= 0, (2.96)

since the latter is affine on uSk as it has been already pointed out in Section 2.3.

Observe that the expression obtained from (2.96) involves only the state variable x̂

and the corresponding adjoint state p̂. Hence, it results that ûSk is continuous on Îk

with finite limits at the endpoints of this interval. As the components ûi with i /∈ Sk
are either identically 1 or 0, we conclude that

û is continuous on Îk. (2.97)

By Assumption 2.8.4 and condition (2.97) (derived from Assumption 2.8.5) we get

that there exists ρ > 0 such that

ρ < ûi,t < 1− ρ, a.e. on Îk, for k = 1, . . . , N, i ∈ Sk. (2.98)

Next we present a new control problem obtained in the following way. For each

k = 1, . . . , N, we perform the change of time variable that converts the interval Îk

into [0, 1], afterwards we fix the bang control variables to their bounds and finally,

we associate a free control variable to each index in Sk. More precisely, consider for

k = 1, . . . , N the control variables uki ∈ L∞(0, 1;R), with i ∈ Sk, and the state

variables xk ∈ W 1
∞(0, 1;Rn). Let the constants Tk ∈ R, for k = 1, . . . , N − 1, which

will be considered as state variables of zero-dynamics. Set T0 := 0, TN := T and

define the problem on the interval [0, 1]

ϕ0(x1
0, x

N
1 )→ min, (2.99)

ẋk = (Tk − Tk−1)

 ∑
i∈Nk∪{0}

fi(x
k) +

∑
i∈Sk

uki fi(x
k)

 , k = 1, . . . , N, (2.100)

Ṫk = 0, k = 1, . . . , N − 1, (2.101)

η(x1
0, x

N
1 ) = 0, (2.102)

xk1 = xk+1
0 , k = 1, . . . , N − 1. (2.103)

Denote by (TP) the problem consisting of equations (2.99)-(2.103). The link between

the original problem (CP) and the transformed one (TP) is given in Lemma 2.8.6

below. Set for each k = 1, . . . , N :

x̂ks := x̂(T̂k−1 + (T̂k − T̂k−1)s), for s ∈ [0, 1], (2.104)

ûki,s := ûi(T̂k−1 + (T̂k − T̂k−1)s), for i ∈ Sk, a.a. s ∈ [0, 1]. (2.105)
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Set

Ŵ := ((x̂k)Nk=1, (û
k
i )
N
k=1,i∈Sk , (T̂k)

N−1
k=1 ). (2.106)

Lemma 2.8.6. If ŵ is a Pontryagin minimum of (CP), then Ŵ is a weak solution

of (TP).

Proof. The idea of the proof is to derive the weak optimality of Ŵ from the Pontryagin

optimality of ŵ and condition (2.98). Since ŵ is a Pontryagin minimum for (CP), there

exists ε > 0 such that ŵ is a minimum in the set of feasible trajectories w = (x, u)

satisfying

‖x− x̂‖∞ < ε, ‖u− û‖1 < ε, ‖u− û‖∞ < 1. (2.107)

Consider δ̄, ε̄ > 0, and a feasible solution ((xk), (uki ), (Tk)) for (TP) such that

|Tk − T̂k| ≤ δ̄, ‖uki − ûki ‖∞ < ε̄, for all k = 1, . . . , N. (2.108)

We shall relate ε in (2.107) with δ̄ and ε̄ in (2.108). Let k = 1, . . . , N. Denote

Ik := (Tk−1, Tk), and define for each i = 1, . . . ,m :

ui,t :=


0, if t ∈ Ik and i ∈ Ek,

uki

(
t−Tk−1

Tk−Tk−1

)
, if t ∈ Ik and i ∈ Sk,

1, if t ∈ Ik and i ∈ Nk.

(2.109)

Let x be the solution of (2.2) associated to u and having x0 = x1
0. We shall prove

that (x, u) is feasible for the original problem (CP). Observe that condition (2.103)

implies that xt = xk
(

t−Tk−1

Tk−Tk−1

)
when t ∈ Ik, and thus x1 = xN1 . It follows that (2.3)

holds. We shall check condition (2.90). For i ∈ Ek ∪Nk, it follows from the definition

in (2.109). Consider now i ∈ Sk. Since (2.98) holds, by (2.105) we get

ρ < ûki,s < 1− ρ, a.e. on (0, 1). (2.110)

Thus, by (2.108) and if ε̄ < ρ, we get 0 < uki,s < 1 a.e. on (0, 1). This yields

0 < ui,t < 1, a.e. on Ik, (2.111)

and thus the feasibility of (x, u) for (CP).

We now estimate ‖u− û‖1. For k = 1, . . . , N and i ∈ Sk,∫
Ik∩Îk

|ui,t − ûi,t|dt ≤
∫
Ik∩Îk

∣∣∣uki ( t−Tk−1

Tk−Tk−1

)
− ûki

(
t−Tk−1

Tk−Tk−1

)∣∣∣ dt
+
∫
Ik∩Îk

∣∣∣ûki ( t−Tk−1

Tk−Tk−1

)
− ûki

(
t−T̂k−1

T̂k−T̂k−1

)∣∣∣ dt. (2.112)
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Note that by Assumption 2.8.4 and condition (2.97), each ûki is uniformly continuous

on Îk, and thus there exists θki > 0 such that if |s− s′| < θki then |ûki,s− ûki,s′ | < ε̄. Set

θ̄ := min θki > 0. Consider then δ̄ such that if |Tk−T̂k| < δ̄, then
∣∣∣ t−Tk−1

Tk−Tk−1
− t−T̂k−1

T̂k−T̂k−1

∣∣∣ <
θ̄. From (2.108) and (2.112) we get∫

Ik∩Îk
|ui,t − ûi,t|dt < 2ε̄meas (Ik ∩ Îk). (2.113)

Assume, w.l.o.g., that Tk < T̂k and note that∫ T̂k

Tk

|ui,t − ûi,t|dt ≤
∫ T̂k

Tk

∣∣∣∣∣uki
(
t− Tk−1

Tk − Tk−1

)
− ûki

(
t− T̂k−1

T̂k − T̂k−1

)∣∣∣∣∣ dt < δ̄ ε̄, (2.114)

where we used (2.108) in the last inequality. From (2.113) and (2.114) we get ‖ui −
ûi‖1 < ε̄(2T + (N − 1)δ̄). Thus ‖u− û‖1 < ε if

ε̄(2T + (N − 1)δ̄) < ε/m. (2.115)

We conclude from (2.107) that ((xk), (uki ), (Tk)) is a minimum on the set of feasible

points satisfying (2.108) and (2.115). Thus Ŵ is a weak solution of (TP), as it was

to be proved.

We shall next propose a shooting function associated to (TP). The pre-Hamilto-

nian of the latter is

H̃ :=
N∑
k=1

(Tk − Tk−1)Hk, (2.116)

where, denoting by pk the costate variable associated to xk,

Hk := pk

 ∑
i∈Nk∪{0}

fi(x
k) +

∑
i∈Sk

uki fi(x
k)

 . (2.117)

Observe that Assumption 2.8.5 made on û yields

− ∂

∂u
¨̃Hu � 0, on [0, 1], (2.118)

i.e. the strengthened generalized Legendre-Clebsch condition holds in problem (TP)

at ŵ. Hence we can define the shooting function for (TP) as it was done in Section

2.4 for (P).

The endpoint Lagrangian is

˜̀ := ϕ0(x1
0, x

N
1 ) +

dη∑
j=1

βjηj(x
1
0, x

N
1 ) +

N−1∑
k=1

θk(x
k
1 − xk+1

0 ). (2.119)
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The costate equation for pk is given by

ṗk = −(Tk − Tk−1)DxkH
k, (2.120)

with endpoint conditions

p1
0 = −Dx10

˜̀= −Dx10
ϕ0 −

dη∑
j=1

βjDx10
ηj, (2.121)

pk1 = θk, for k = 1, . . . , N − 1,
pk0 = θk−1, for k = 2, . . . , N,

(2.122)

pN1 = DxN1
˜̀= DxN1

ϕ0 +

dη∑
j=1

βjDxN1
ηj. (2.123)

For the costate variables pTk associated with Tk we get the equations

ṗTk = −Hk +Hk+1, pTk0 = 0, pTk1 = 0, for k = 1, . . . , N − 1, . (2.124)

Remark 2.8.7. We can sum up the conditions in (2.124) integrating the first one

and obtaining
∫ 1

0
(Hk+1 −Hk)dt = 0, and hence, since Hk is constant on the optimal

trajectory, we get the equivalent condition

Hk
1 = Hk+1

0 , for k = 1, . . . , N − 1. (2.125)

So we can remove the shooting variable pTk and keep the continuity condition on the

pre-Hamiltonian.

Observe that (2.103) and (2.122) imply the continuity of the two functions ob-

tained by concatenating the states and the costates, i.e. the continuity of X and P

defined by

X0 := x1
0, Xs := xk(s− (k − 1)), for s ∈ (k − 1, k], k = 1, . . . , N, (2.126)

P0 := p1
0, Ps := pk(s− (k − 1)), for s ∈ (k − 1, k], k = 1, . . . , N. (2.127)

Thus, while iterating the shooting method, we can either include the conditions

(2.103) and (2.122) in the definition of the shooting function or integrate the dif-

ferential equations for xk and pk from the values xk−1
1 and pk−1

1 previously obtained.

The latter option reduces the number of variables and hence the size of the problem,

but is less stable. We shall present below the shooting function for the more stable

case. For this end define the n× n−matrix

Ak :=
∑

i∈Nk∪{0}

f ′i(x̂
k) +

∑
i∈Sk

ûki f
′
i(x̂

k), (2.128)
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the n× |Sk|−matrix Bk with columns fi(x̂
k) with i ∈ Sk, and

Bk
1 := AkBk − d

dt
Bk. (2.129)

We shall denote by gi(x
k, uk) the ith. column of Bk

1 for each i in Sk. Here uk is the

|Sk|−dimensional vector of components uki . The resulting shooting function for (TP)

is given by

S : RNn+N−1 × RNn+dη ,∗ → Rdη+(N−1)n × R(N+1)n+N−1+2
∑
|Sk|,∗,

(
(xk0), (Tk), (p

k
0), β

)
=: ν 7→ S(ν) :=



η(x1
0, x

N
1 )

(xk1 − xk+1
0 )k=1,...,N−1

p1
0 +Dx10

˜̀[λ](x1
0, x

N
1 )

(pk1 − pk+1
0 )k=1,...,N−1

pN1 −DxN1
˜̀[λ](x1

0, x
N
1 )

(Hk
1 −Hk+1

0 )k=1,...,N−1

(pk0fi(x
k
0))k=1,...,N, i∈Sk

(pk0gi(x
k
0, u

k
0))k=1,...,N, i∈Sk


.

(2.130)

Here we put both conditions H̃u = 0 and ˙̃Hu = 0 at the beginning of the interval

since we have already pointed out in Remark 2.3.2 that all the possible choices were

equivalent.

Since problem (TP) has the same structure than problem (P) in section 2.2, i.e.

they both have free control variable (initial-final constraints), we can apply Theorem

2.5.8 and obtain the analogous result below.

Theorem 2.8.8. Assume that ŵ is a Pontryagin minimum of (CP) such that Ŵ

defined in (2.106) satisfies condition (2.69) for problem (TP). Then the shooting

algorithm for (TP) is locally quadratically convergent.

Remark 2.8.9. Once system (2.130) is obtained, observe that two numerical im-

plementations can be done: one integrating each variable on the interval [0, 1] and

the other one, going back to the original interval [0, T ], and using implicitly the con-

tinuity conditions (2.103), (2.122) and (2.125) at each switching time. The latter

implementation is done in the numerical tests of Section 2.10 below. In this case, the

sensibility with respect to the switching times is obtained from the derivative of the

shooting function.
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2.8.1 Reduced Systems

In some cases we can show that some of the conditions imposed to the shooting

function in (2.130) are redundant. Hence, they can be removed from the formulation

yielding a smaller system that we will refer as reduced system and which is associated

to a reduced shooting function.

Recall that when defining S we are implicitly imposing that ¨̃Hu ≡ 0. The latter

condition together with ˙̃Hu,0 = H̃u,1 = 0, both included in the definition of S, imply

that ˙̃Hu ≡ H̃u ≡ 0. Hence,

pk1fi(x
k
1) = pk1gi(x

k
1, u

k
1) = 0, for k = 1, . . . , N, i ∈ Sk, (2.131)

and, in view of the continuity conditions (2.103) and (2.122),

pk+1
0 fi(x

k+1
0 ) = pk+1

0 gi(x
k+1
0 , uk+1

0 ) = 0, for k = 1, . . . , N − 1, i ∈ Sk. (2.132)

Therefore, if a component of the control is singular on Ik and remains being singular

on Ik+1, then there is no need to impose the boundary conditions on H̃u and ˙̃Hu since

they are a consequence of the continuity conditions and the implicit equation ¨̃Hu ≡ 0.

Observe now that from (2.117), (2.130) and previous two equations (2.131) and

(2.132) we obtain,

Hk
1 = pk1

∑
Nk∪{0}

fi(x
k
1) = pk+1

0

∑
Nk∪{0}\Sk+1

fi(x
k+1
0 ). (2.133)

On the other hand,

Hk+1
0 = pk+1

0

∑
Nk+1∪{0}\Sk

fi(x
k+1
0 ). (2.134)

Thus, Hk
1 = Hk+1

0 if Nk ∪{0}\Sk+1 = Nk+1∪{0}\Sk. The latter equality holds if and

only if at instant Tk all the switchings are either bang-to-singular or singular-to-bang.

Definition 2.8.10 (Reduced shooting function). We call reduced shooting function

and we denote it by Sr the function obtained from S defined in (2.130) by removing

the condition Hk
1 = Hk+1

0 whenever all the switchings occurring at Tk are either bang-

to-singular or singular-to-bang, and removing

pk0fi(x
k
0) = 0, pk0gi(x

k
0, u

k
0) = 0, (2.135)

for k = 2, . . . , N and i ∈ Sk−1 ∩ Sk.
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2.8.2 Square Systems

The reduced system above-presented can occasionally result square, in the sense that

the reduced function Sr has as many variables as outputs. This situation occurs,

e.g., in problems 1 and 3 of Section 2.10. The fact that the reduced system turns out

to be square is a consequence of the structure of the optimal solution. In general,

the optimal solution û yields a square reduced system if and only if each singular

arc is in the interior of [0, T ] and at each switching time only one control component

switches. This can be interpreted as follows: each singular arc contributes to the

formulation with two inputs that are its entry and exit times, and with two outputs

that correspond to pk0fi(x
k
0) = gi(x

k
0, u

k
0) = 0, being Ik the first interval where the

component is singular and i the index of the analyzed component. On the other

hand, whenever a bang-to-bang transition occurs, it contributes to the formulation

with one input for the switching time and one output associated to the continuity

of the pre-Hamiltonian (which is sometimes expressed as a zero of the switching

function).

2.9 Stability under Data Perturbation

In this section we investigate the stability of the optimal solution under data pertur-

bation. We shall prove that, under condition (2.69), the solution is stable under small

perturbations of the data functions ϕ0, fi and η. Assume for this stability analysis

that the shooting system of the studied problem can be reduced to a square one. We

gave a description of this situation in Subsection 2.8.2. Even if the above-mentioned

square systems appear in control constrained problems, we start this section by es-

tablishing a stability result of the optimal solution for an unconstrained problem.

Afterwards, in Subsection 2.9.2, we apply the latter result to problem (TP) and this

way we obtain a stability result for the control constrained problem (CP).

2.9.1 Unconstrained control case

Consider then problem (P) presented in Section 2.2, and the family of problems

depending on the real parameter µ given by:

ϕµ0(x0, xT )→ min,

ẋt =
m∑
i=0

ui,tf
µ
i (xt), for t ∈ (0, T ),

ηµ(x0, xT ) = 0.

(Pµ)
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Assume that ϕµ0 : R2n+1 → R and ηµ : R2n+1 → Rdη have Lipschitz-continuous second

derivatives in the variable (x0, xT ) and continuously differentiable with respect to

µ, and fµi : Rn+1 → Rn is twice continuously differentiable with respect to x and

continuously differentiable with respect to the parameter µ. In this formulation, the

problem (P0) associated to µ = 0 coincides with (P), i.e. ϕ0
0 = ϕ0, f

0
i = fi for

i = 0, . . . ,m and η0 = η. Recall (2.69) in Theorem 2.5.6, and write the analogous

condition for (Pµ) as follows:

Ω̄µ(ξ, y, h) ≥ ργ(ξ0, y, h), on Pµ2 , (2.136)

where Ω̄µ and Pµ2 are the second variation and critical cone associated to (Pµ), re-

spectively. Let Sµ be the shooting function for (Pµ). Thus, we can write

Sµ : RM × R → RM ,
( ν , µ ) 7→ Sµ(ν),

(2.137)

where we indicate with M the dimension of the domain of S. The following stability

result will be established.

Theorem 2.9.1 (Stability of the optimal solution). Assume that the shooting system

generated by problem (P) is square and let ŵ be a solution satisfying the uniform

positivity condition (2.69). Then there exists a neighborhood J ⊂ R of 0, and a

continuous differentiable mapping µ 7→ wµ = (xµ, uµ), from J to W , where wµ is

a weak solution for (Pµ). Furthermore, wµ verifies the uniform positivity (2.136).

Therefore, in view of Theorems 2.5.6 and 2.5.8, the γ− growth holds, and the shooting

algorithm for (P µ) is locally quadratically convergent.

Let us start showing the following stability result for the family of shooting func-

tions {Sµ}.

Lemma 2.9.2. Under the hypotheses of Theorem 2.9.1, there exists a neighborhood

I ⊂ R of 0 and a continuous differentiable mapping µ 7→ νµ = (xµ0 , p
µ
0 , β

µ), from I
to RM , such that Sµ(νµ) = 0. Furthermore, the solutions (xµ, uµ, pµ) of (2.2)-(2.8)-

(2.15) with initial condition (xµ0 , p
µ
0) and associated multiplier βµ provide a family of

feasible trajectories wµ := (xµ, uµ) verifying

‖xµ − x̂‖∞ + ‖uµ − û‖∞ + ‖pµ − p̂‖∞ + |βµ − β̂| = O(µ). (2.138)

Proof. Since (2.69) holds, the result in Theorem 2.5.8 yields the non-singularity of

the square matrix DνS
0(ν̂). Hence, the Implicit Function Theorem is applicable and
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we can then guarantee the existence of a neighborhood B ⊂ RM of ν̂, a neighborhood

I ⊂ R of 0, and a continuously differentiable function Γ : I → B such that

Sµ(Γ(µ)) = 0, for all µ ∈ I. (2.139)

Finally, write νµ := Γ(µ) and use the continuity of DΓ on I to get the first part of

the statement.

The feasibility of wµ holds since equation (2.139) is verified. Finally, the estimation

(2.138) follows from the stability of the system of differential equation provided by

the shooting method.

Once we obtained the existence of this wµ feasible for (P µ), we may wonder

whether it is locally optimal. For this aim, we shall investigate the stability of the

sufficient condition (2.69). Denote by Ω̄µ and Pµ2 the quadratic mapping and crit-

ical cone related to (P µ), respectively. Given that all the functions involved in Ω̄µ

are continuously differentiable with respect to µ, the mapping Ω̄µ itself is continu-

ously differentiable with respect to µ. For the perturbed cone we get the following

approximation result.

Lemma 2.9.3. Assume the same hypotheses as in Theorem 2.9.1. Take µ ∈ I and

(ξµ, yµ, hµ) ∈ Pµ2 . Then there exists (ξ, y, h) ∈ P2 such that

|ξµ0 − ξ0|+ ‖yµ − y‖2 + |hµ − h| = O(µ). (2.140)

The definition below will be useful in the proof of previous Lemma.

Definition 2.9.4. Define the function η̄ : U × Rn → Rdη , given by

η̄(u, x0) := η(x0, xT ), (2.141)

where x is the solution of (2.2) associated to (u, x0).

Proof. [of Lemma 2.9.3] Recall that Dη̄(û, x̂0) is onto by Assumption 2.2.1. Call back

the definition of the critical cone C given in (2.51), and notice that we can rewrite

it as C = {(z, v) ∈ W : G(z, v) = 0} = KerG, with G(z, v) := Dη(x̂0, x̂T )(z0, zT )

being an onto linear application from W to Rdη . In view of Goh’s Transformation

(2.59)-(2.60),

Dη(x̂0, x̂T )(z0, zT ) = Dη(x̂0, x̂T )(ξ0, ξT +BTyT ), (2.142)

for (z, v) ∈ W and (ξ, y) being its corresponding transformed direction. Thus, the

cone P2 can be written as P2 = {ζ ∈ H : K(ζ) = 0} = KerK, with ζ := (ξ, y, h),
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H := X2 ×U2 ×Rn, and K(ζ) := Dη(x̂0, x̂T )(ξ0, ξT +BTh). Then K ∈ L(H,Rdη) and

it is surjective. Analogously, Pµ2 = {ζ ∈ H : Kµ(ζ) = 0} = KerKµ, with

‖Kµ −K‖L(H,Rdη ) = O(µ). (2.143)

Let us now prove the desired stability property. Take ζµ ∈ Pµ2 = KerKµ having

‖ζ‖µH = 1. Hence K(ζµ) = Kµ(ζµ) + (K −Kµ)(ζµ), and by estimation (2.143),

|K(ζµ)| = O(µ). (2.144)

Observe that, since H = KerK ⊕ ImK>, there exists ζµ,∗ ∈ H∗ such that

ζ := ζµ +K>(ζµ,∗) ∈ KerK. (2.145)

This yields 0 = K(ζ) = K(ζµ) +KK>(ζµ,∗) = (K−Kµ)(ζµ) +KK>(ζµ,∗). Given that

K is onto, the operator KK> is invertible and thus

ζµ,∗ = −(KK>)−1(K −Kµ)(ζµ). (2.146)

The estimation (2.144) above implies ‖ζµ,∗‖H∗ = O(µ). It follows then from (2.145)

that ‖ζµ − ζ‖H = O(µ), and therefore, the desired result holds.

Proof. [of Theorem 2.9.1] We shall begin by observing that Lemma 2.9.2 provides a

neighborhood I and a class of solutions {(xµ, uµ, pµ, βµ)}µ∈I satisfying (2.138). We

shall prove that wµ = (xµ, uµ) satisfies the sufficient condition (2.136) close to 0.

Suppose on the contrary that there exists a sequence of parameters µk → 0 and

critical directions (ξµk , yµk , hµk) ∈ Pµk2 with γ(ξµk0 , yµk , hµk) = 1, such that

Ω̄µk(ξµk , yµk , hµk) ≤ o(1). (2.147)

Since Ω̄µ is Lipschitz-continuous in µ, from previous inequality we get

Ω̄(ξµk , yµk , hµk) ≤ o(1). (2.148)

In view of Lemma 2.9.3, there exists for each k, a direction (ξk, yk, hk) ∈ P2 satisfying

|ξk0 − ξ
µk
0 |+ ‖yk − yµk‖2 + |hk − hµk | = O(µk). (2.149)

Hence, by inequality (2.148) and given that ŵ satisfies (2.69),

ργ(ξk0 , y
k, hk) ≤ Ω̄(ξk, yk, hk) ≤ o(1). (2.150)

However, the left hand-side of this last inequality cannot go to 0 since (ξk0 , y
k, hk) is

close to (ξµk0 , yµk , hµk) by estimation (2.149), and the elements of the latter sequence

have unit norm. This leads to a contradiction. Hence, the result follows.
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2.9.2 Control constrained case

In this paragraph we aim to investigate the stability of the shooting algorithm applied

to the problem with control bounds (CP) studied in Section 2.8. Observe that previ-

ous Theorem 2.9.1 guarantees the weak optimality for the perturbed problem when

the control constraints are absent. In case we have control constraints, this stability

result is applied to the transformed problem (TP) (given by equations (2.99)-(2.103)

of Section 2.8) yielding a similar stability property, but for which the nominal point

and the perturbed ones are weak optimal for (TP). This means that they are optimal

in the class of extremals having the same control structure, and switching times and

singular arcs sufficiently close in L∞. An extremal satisfying optimality in this sense

will be called weak-structural optimal, and a formal definition would be as follows.

Definition 2.9.5 (Weak-structural optimality). A feasible solution ŵ for problem

(CP) is called a weak-structural solution if its transformed extremal Ŵ given by

(2.104)-(2.106) is a weak solution of (TP).

Theorem 2.9.6 (Sufficient condition for the extended weak minimum in the control

constrained case). Let ŵ be a feasible solution for (CP) satisfying Assumptions 2.8.2

and 2.8.4. Consider the transformed problem (TP) and the corresponding transformed

solution Ŵ given by (2.104)-(2.106). If ŵ satisfies (2.69) for (TP), then ŵ is an

extended weak solution for (CP).

Proof. It follows from the sufficient condition in Theorem 2.5.6 applied to (TP).

Consider the family of perturbed problems given by:

ϕµ0(x0, xT )→ min,

ẋt =
m∑
i=0

ui,tf
µ
i (xt), for t ∈ (0, T ),

ηµ(x0, xT ) = 0,
0 ≤ ut ≤ 1, a.e on (0, T ).

(CPµ)

The following stability result follows from Theorem 2.9.1.

Theorem 2.9.7 (Stability in the control constrained case). Assume that the reduced

shooting system generated by problem (CP) is square. Let ŵ be the solution of (CP)

and {T̂k}Nk=1 its switching times. Denote by Ŵ its transformation via equation (2.106).

Suppose that Ŵ satisfies uniform positivity condition (2.69) for problem (TP). Then

there exists a neighborhood J ⊂ R of 0 such that for every parameter µ ∈ J there
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exists a weak-structural optimal extremal wµ of (CP µ) with switching times {T µk }Nk=1

satisfying the estimation

N∑
k=1

|T µk − T̂k|+
N∑
k=1

∑
i∈Sk

‖uµi − ûi‖∞,Iµk∩Îk + ‖xµ − x̂‖∞ = O(µ), (2.151)

where Iµk := (T µk−1, Tk). Furthermore, the transformed perturbed solution W µ verifies

uniform positivity (2.136) and hence quadratic growth in the weak sense for problem

(TP) holds, and the shooting algorithm for (CPµ) is locally quadratically convergent.

2.9.3 Additional analysis for the scalar control case

Consider a particular case where the control û is scalar. The lemma below shows

that the perturbed solutions are Pontryagin extremals for (CPµ) provided that the

following assumption holds.

Assumption 2.9.8. (a) The switching function Hu is never zero in the interior of a

bang arc. Hence if û = 1 on (t1, t2) then Hu < 0 on (t1, t2), and if û = −1 on (t1, t2)

then Hu > 0 on (t1, t2).

(b) If T̂k is a bang-to-bang switching time then Ḣu(T̂k) 6= 0.

The property (a) is called strict complementarity for the control constraint.

Lemma 2.9.9. Suppose that û satisfies Assumption 2.9.8. Let wµ as in Theorem

2.9.7 above. Then wµ is a Pontryagin extremal for (CPµ).

Proof. We intend to prove that wµ satisfies the minimum condition (2.12) given by

the Pontryagin Maximum Principle. Observe that on the singular arcs, Hµ
u = 0

since wµ is the solution associated to a zero of the shooting function. It suffices then

to study the stability of the sign of Hµ
u on the bang arcs around a switching time.

First suppose that û has a bang-to-singular switching at T̂k. Assume, without loss of

generality, that û ≡ 1 on Îk and û is singular on [T̂k, T̂k+1]. Let us write

Ḧµ
u = aµ + uµbµ, (2.152)

where aµ and bµ := ∂
∂u
Ḧµ
u are continuous functions on [0, T ], and continuously differ-

entiable with respect to µ since they depend on xµ and pµ. Assumption 2.8.5 yields

b0 < 0 on [T̂k, T̂k+1], and therefore

bµ < 0, on [T µk , T
µ
k+1]. (2.153)



100 2. A SHOOTING ALGORITHM

Due to (2.152), the sign of Ḧµ
u around T µk depends on uµ(T µk +)− uµ(T µk −). But this

quantity is negative since uµ passes from its upper bound to a singular arc. From the

latter assertion and (2.153) follows

Ḧµ
u (T µk −) < 0, (2.154)

and thus Hµ
u is concave at the junction time T µk . Since Hµ

u is null on [T µk , T
µ
k+1], its

concavity implies that it has to be negative before entering this arc. Hence, wµ

respects the minimum condition on the interval Îk.

Consider now the case when û has a bang-to-bang switching at T̂k. Let us begin

by showing that Hµ
u (T µk ) = 0. Suppose on the contrary that Hµ

u (T µk ) 6= 0. Then

Hµ(T µk +) − Hµ(T µk −) 6= 0, contradicting the continuity condition imposed on H in

the shooting system. Hence Hµ
u (T µk ) = 0. On the other hand, since Ḣu(T̂k) 6= 0 by

Assumption 2.9.8, the value Ḣµ
u (T µk ) has the same sign for small µ. This implies that

Hµ
u has the same sign before and after T µk that Hu (before and after T̂k), respectively.

The result follows.

Remark 2.9.10. We end this analysis by mentioning that if the transformed solu-

tion Ŵ satisfies the uniform positivity (2.69) for (TP), then ŵ verifies the sufficient

condition established in Aronna et al. [8] and hence it is actually a Pontryagin min-

imum. This follows from the fact that in condition (2.69) we are allowed to perturb

the switching times, and hence (2.69) is more restrictive (or demanding) that the

condition in [8].

2.10 Numerical Simulations

Now we aim to check numerically the extended shooting method described above.

More precisely, we want to compare the classical n × n shooting formulation to an

extended formulation with the additional conditions on the pre-Hamiltonian conti-

nuity. We test three problems with singular arcs: a fishing and a regulator problem

and the well-known Goddard problem, which we have already studied in [65, 90]. For

each problem, we perform a batch of shootings on a large grid around the solution.

We then check the convergence and the solution found, as well as the singular values

and condition number of the Jacobian matrix of the shooting function.
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2.10.1 Test problems

2.10.1.1 Fishing problem

The first example we consider is a fishing problem described in [34]. The state xt ∈ R
represents the fish population (halibut), the control ut ∈ R is the fishing activity,

and the objective is to maximize the net revenue of fishing over a fixed time interval.

The coefficient (E − c/x) takes into account the greater fishing cost for a low fish

population. The problem is
max

∫ T

0

(E − c/xt) ut Umaxdt,

ẋt = r xt (1− xt/k) − ut Umax,
0 ≤ ut ≤ 1, ∀t ∈ [0, T ],
x0 = 70, xT free,

(P1)

with T = 10, E = 1, c = 17.5, r = 0.71, k = 80.5 and Umax = 20.

Remark 2.10.1. The state and control were rescaled by a factor 106 compared to the

original data for a better numerical behavior.

Remark 2.10.2. Since we have an integral cost, we add a state variable to adapt (P1)

to the initial-final cost formulation. It is well-known that its corresponding costate

variable is constantly equal to 1.

The pre-Hamiltonian for this problem is

H := (c/x− E)uUmax + p[r x (1− x/k)− uUmax], (2.155)

and hence the switching function

Φt = DuHt = Umax(c/xt − E − pt), ∀t ∈ [0, T ]. (2.156)

The optimal control follows the bang-bang law{
u∗t = 0 if Φt > 0,
u∗t = 1 if Φt < 0.

(2.157)

Over a singular arc where Φ = 0, we assume that the relation Φ̈ = 0 gives the

expression of the singular control (t is omitted for clarity)

u∗singular =
k r

2(c/x− p)Umax

(
c

x
− c

k
− p+

2px

k
− 2px2

k2

)
. (2.158)

The solution obtained for (P1) has the structure bang-singular-bang, as shown on

Figure 2.1.
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Figure 2.1: Fishing Problem

Shooting formulations. Assuming the control structure, the shooting unknowns

are the initial costate and the limits of the singular arc,

ν := (p0, t1, t2) ∈ R3.

The classical shooting formulation uses the entry conditions on t1

S1(ν) := (pT ,Φt1 , Φ̇t1).

Solving S1(ν) = 0 is a square nonlinear system, for which a quasi-Newton method

can be used. Note that even if there is no explicit condition on t2 in S, the value of

pT does depend on t2 via the control switch.

The extended shooting formulation adds two conditions corresponding to the con-

tinuity of the pre-Hamiltonian at the junctions between bang and singular arcs. We

denote [H]t := Ht+ −Ht− the pre-Hamiltonian jump, and define

S̃1(ν) = (p10,Φt1 , Φ̇t1 , [H]t1 , [H]t2). (2.159)

To solve S̃1(ν) = 0 we use a nonlinear least-square algorithm (see paragraph 2.10.2

below for more details).
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2.10.1.2 Regulator problem

The second example is the quadratic regulator problem described in Aly [6]. We

want to minimize the integral of the sum of the squares of the position and speed of

a mobile over a fixed time interval, the control being the acceleration.

min 1
2

∫ T

0

(
x2

1,t + x2
2,t

)
dt,

ẋ1,t = x2,t,
ẋ2,t = ut,
−1 ≤ ut ≤ 1, a.e. on [0, T ],
x0 = (0, 1), xT free,
T = 5.

(P2)

The corresponding pre-Hamiltonian

H := 1
2
(x2

1 + x2
2) + p1x2 + p2u, (2.160)

and hence we have the switching function

Φt := DuHt = p2,t. (2.161)

The bang-bang optimal control satisfies

u∗t = −sign p2,t if Φt 6= 0. (2.162)

The singular control is again obtained from Φ̈ = 0 and verifies

u∗singular,t = x1,t. (2.163)

The solution for this problem has the structure bang-singular, as shown on Figure

2.2.

Shooting formulations. Assuming the control structure, the shooting unknowns

are

ν := (p1,0, p2,0, t1) ∈ R3. (2.164)

For the classical shooting formulation, in order to have a square system, we can

for instance combine the two entry conditions on Φ and Φ̇, since we only have one

additional unknown which is the entry time t1. Thus we define

S2(ν) := (p1,T , p2,T ,Φ
2
t1

+ Φ̇2
t2

). (2.165)

The extended formulation does not require such a trick, we simply have

S̃2(ν) := (p1,T , p2,T ,Φt1 , Φ̇t1 , [H]t1). (2.166)
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Figure 2.2: Regulator Problem

2.10.1.3 Goddard problem

The third example is the well-known Goddard problem, introduced in Goddard [66]

and studied for instance in Seywald-Cliff [119]. This problem models the ascent of

a rocket through the atmosphere, and we restrict here ourselves to vertical (unidi-

mensional) trajectories. The state variables are the altitude, speed and mass of the

rocket during the flight, for a total dimension of 3. The rocket is subject to gravity,

thrust and drag forces. The final time is free, and the objective is to reach a certain

altitude with a minimal fuel consumption, i.e. a maximal final mass.

max mT ,
ṙ = v,
v̇ = −1/r2 + 1/m(Tmaxu−D(r, v))
ṁ = −bTmaxu,
0 ≤ ut ≤ 1, a.e. on (0, 1),
r0 = 1, v0 = 0, m0 = 1,
rt = 1.01,
T free,

(P3)

with the parameters b = 7, Tmax = 3.5 and the drag given by

D(r, v) := 310v2e−500(r−1).
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The pre-Hamiltonian function here is

H := prv + pv(−1/r2 + 1/m(Tmaxu−D(r, v)))− pmbTmaxu, (2.167)

where pr, pv and pm are the costate variables associated to r, v and m, respectively.

The switching function is

Φ := DuH = Tmax((1− pm)b+ pv/m). (2.168)

Hence, the bang-bang optimal control is given by{
u∗t = 0 if Φt > 0,
u∗t = 1 if Φt < 0,

(2.169)

and the singular control can be obtained by formally solving Φ̈ = 0. The expression

of u∗singular, however, is quite complicated and is not recalled here. The solution for

this problem has the well-known typical structure 1-singular-0, as shown on Figures

2.3 and 2.4.
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Figure 2.3: Goddard Problem

Shooting formulations. Once again fixing the control structure, the shooting un-

knowns are

ν = (p1,0, p2,0, p3,0, t1, t2, T ) ∈ R6. (2.170)
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Figure 2.4: Goddard Problem

Here is the classical shooting formulation with the entry conditions on t1

S3(ν) := (x1,T − 1.01, p2,T , p3,T + 1,Φt1 , Φ̇t1 , HT ), (2.171)

while the extended formulation is

S̃3(ν) := (x1,T − 1.01, p2,T , p3,T + 1,Φt1 , Φ̇t1 , HT , [H]t1 , [H]t2). (2.172)

2.10.2 Results

All tests were run on a 12-core platform, with the parallelized (OPENMP) version of

the SHOOT ([91]) package. The ODE solver is a fixed step 4th. order Runge Kutta

method with 500 steps. The classical shooting is solved with a basic Newton method,

and the extended shooting with a basic Gauss-Newton method. Both algorithms use

a fixed step length of 1 and a maximum of 1000 iterations. In addition to the singu-

lar/bang structure, the value of the control on the bang arcs is also fixed according

to the expected solution.

The values for the initial costates are taken in [−10, 10], and the values for the

entry/exit times in [0, T ] for (P1) and (P2). For (P3), the entry, exit and final times
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are taken in [0, 0.2]. The number of grid points is set around to 10 000 for the three

problems. These grids for the starting points are quite large and rough, which explains

the low success rate for (P1) and (P3). However, the solution was found for all three

problems.

For each problem, the results are summarized in 3 tables. The first table indicates

the total CPU time for all shootings over the grid, the success rate of convergence to

the solution, the norm of the shooting function at the solution, and the objective value.

The second table recalls the solution found by both formulations: initial costate and

junction times, as well as final time for (P3). The third table gives the singular values

for the Jacobian matrix at the solution, as well as its condition number κ := σ1/σn.

We observe that for all three problems (P1), (P2) and (P3), both formulations

converge to the same solution, ν∗ and the objective being identical to more than 6

digits. The success rate over the grid, total CPU time and norm of the shooting func-

tion at the solution are close for both formulations. Concerning the singular values

and condition number of the Jacobian matrix, we note that for (P2) the extended

formulation has the smallest singular value going from 10−8 to 1, thus improving the

condition number by a factor 108. This is caused by the combination of the two entry

conditions into a single one that we used in the classical formulation for this problem:

as the singular arc lasts until tf , there is only one additional unknown, the entry time.

Overall, these results validate the extended shooting formulation, which perform

at least as well as the classical formulation and has a theoretical foundation.

Remark 2.10.3. Several additional tests runs were made using the HYBRD ([64])

and NL2SNO ([39]) solvers for the classical and extended shootings instead of the

basic Newton and Gauss-Newton method. The results were similar, apart from a

higher success rate for the HYBRD solver compared to NL2SNO.

Remark 2.10.4. We also tested both formulations using the sign of the switching

function to determine the control value over the bang arcs, instead of forcing the value.

However, this causes a numerical instability at the exit of a singular arc, where the

switching function is supposed to be 0 but whose sign determines the control at the

beginning of the following bang arc. This instability leads to much more erratic results

for both shooting formulations, but with the same general tendencies.
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Problem 1:

Shooting grid: [−10, 10]× [0, T ]2, 213 gridpoints, 9261 shootings.

Shooting CPU Success Convergence Objective
Classical 74 s 21.28 % 1.43E-16 -106.9059979
Extended 86 s 22.52 % 6.51E-16 -106.9059979

Table 1.1: (P1) CPU times, success rate, convergence and objective

Shooting p0 t1 t2
Classical -0.462254744307241 2.37041478456004 6.98877992494185
Extended -0.462254744307242 2.37041478456004 6.98877992494185

Table 1.2: (P1) solution ν∗ found

Shooting σ1 σ2 σ3 κ
Classical 3.61 0.43 5.63E-02 64.12
Extended 27.2 1.71 3.53E-01 77.05

Table 1.3: (P1) singular values and condition number for the Jacobian

Problem 2

Shooting grid: [−10, 10]2 × [0, T ], 213 gridpoints, 9261 shootings.

Shooting CPU Success Convergence Objective
Classical 468 s 94.14 % 1.17E-16 0.37699193037
Extended 419 s 99.36 % 1.22E-13 0.37699193037

Table 2.1: (P2) CPU times, success rate, convergence and objective

Shooting p1,0 p2,0 t1
Classical 0.942173346483640 1.44191017584598 1.41376408762863
Extended 0.942173346476773 1.44191017581021 1.41376408762893

Table 2.2: (P2) solution ν∗ found

Shooting σ1 σ2 σ3 κ
Classical 24.66 5.19 1.96E-08 1.26E+09
Extended 24.70 5.97 1.13 21.86

Table 2.3: (P2) singular values and condition number for the Jacobian
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Problem 3

Shooting grid: [−10, 10]3 × [0, 0.2]3, 43 × 53 gridpoints, 8000 shootings.

Shooting CPU Success Convergence Objective
Classical 42 s 0.82 % 5.27E-13 -0.634130666
Extended 52 s 0.85 % 1.29E-10 -0.634130666

Table 3.1: (P3) CPU times, success rate, convergence and objective

Shoot. pr,0 pv,0 pm,0
Class. -50.9280055899288 -1.94115676279896 -0.693270270795148
Exten. -50.9280055901093 -1.94115676280611 -0.693270270787320

t1 t2 tf
Class. 0.02350968417421373 0.06684546924474312 0.174129456729642
Exten. 0.02350968417420884 0.06684546924565564 0.174129456733106

Table 3.2: (P3) solution ν∗ found

Shooting σ1 σ2 σ3 σ4 σ5 σ6 κ
Classical 6182 9.44 8.13 2.46 0.86 1.09E-03 5.67E+06
Extended 6189 12.30 8.23 2.49 0.86 1.09E-03 5.67E+06

Table 3.3: (P3) singular values and condition number for the Jacobian

2.11 Conclusion

Theorems 2.5.8 and 2.8.8 provide a theoretical support for an extension of the shoot-

ing algorithm for problems with all the control variables entering linearly and having

singular arcs. The shooting functions here presented are not the ones usually im-

plemented in numerical methods as we have already pointed out in previous section.

They come from systems having more equations than unknowns in the general case,

while before in practice only square systems have been used. Anyway, we are not able

to prove the injectivity of the derivative of the shooting function when we remove some

equations, i.e. we are not able to determine which equations are redundant, and we

suspect that it can vary for different problems.

The proposed algorithm was tested in three simple problems, where we compared

its performance with the classical shooting method for square systems. The percent-

ages of convergence are similar in both approaches, the singular values and condition
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number of the Jacobian matrix of the shooting function coincide in two problems, and

are better for our formulation in one of the problems. Summarizing, we can observe

that the proposed method works as well as the one currently used in practice and has

a theoretical foundation.

In the bang-singular-bang case, as in the fishing and Goddard’s problems, our

formulation coincides with the algorithm proposed by Maurer [92].

Whenever the system can be reduced to a square one, given that the sufficient

condition for the non-singularity of the Jacobian of the shooting function coincides

with a sufficient condition for optimality, we could established the stability of the

optimal local solution under small perturbations of the data.
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Abstract

This paper deals with optimal control problems for systems that are affine in one

part of the control variables and nonlinear in the rest of the control variables. We

have finitely many equality and inequality constraints on the initial and final states.

First we obtain second order necessary and sufficient conditions for weak optimality.

Afterwards, we propose a shooting algorithm. We show that the sufficient condition

above-mentioned is also sufficient for the local quadratic convergence of this algorithm.

3.1 Introduction

In this article we investigate an optimal control that is affine in one part of the control

variables and nonlinear in the rest of the control variables. We consider a finite

quantity of initial-final state constraints. First we provide second order necessary

and sufficient conditions for weak optimality. We do not assume uniqueness of the

multipliers. Then we prove that the stated sufficient condition is also sufficient for

local quadratic convergence of the shooting algorithm. Some of the techniques used

in Aronna et al. [8, 10] (or chapters 1 and 2) are employed.

The investigation of this particular framework is motivated by some models en-

countered in practice. Among these we can mention: 1. an hydro-thermal electricity

production problem studied in Bortolossi et al. [26] and Aronna et al. [9] or (Chapter

4), 2. the Goddard’s problem in 3 dimensions introduced in Goddard [66] and anal-

ysed in, e.g., Martinon et al. [18], 3. the problem of atmospheric flight considered by

Oberle in [103].

The subject of optimality conditions for these partially affine problems have been

studied by Goh in [68, 69], Dmitruk in [46], Dmitruk and Shishov in [47], and Maurer

and Osmolovskii [95]. In the papers by Goh, second order necessary conditions are

derived assuming uniqueness of the multiplier. They are consequence of the classi-

cal Legendre-Clebsch condition applied to a transformed problem, and are currently

known as Goh-Legendre-Clebsch conditions. Dmitruk and Shishov [47] analysed the

quadratic functional associated to the second variation of the Lagrangian function.

They provided a set of necessary conditions for the nonnegativity of this quadratic

functional. In [46] Dmitruk proposed, without proof, necessary and sufficient condi-

tions for a problem having a particular structure: the affine control variable applies

to a term depending only on the state variable, i.e. the affine and nonlinear controls

are ‘uncoupled’. This hypothesis is not used in the present work. The conditions
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established here coincide with those suggested in Dmitruk [46] when the latter are

applicable. All of these four articles use Goh’s Transformation, first introduced in

[67], to derive their conditions. We use this transformation as well. On the other

hand, in [95] Maurer and Osmolovskii gave a sufficient condition for a class of prob-

lems having one affine control subject to bounds and such that it is bang-bang at the

optimal solution. This structure is not studied here since no control constraints are

considered. Our affine control is suppose to be totally singular.

Regarding the shooting method applied to the numerical solution of partially affine

problems we can mention the articles Bonnans et al. [90, 18], Oberle [101, 102, 103]

and Oberle-Taubert [100]. All these works present interesting implementations of a

shooting-like method to solve partially affine control problems having bang-singular

or bang-bang solutions and, in some cases, running-state constraints are considered.

The article is organised as follows. In section 3.2 we present the problem, the

basic definitions and properties. A necessary condition is established in section 3.3.

In section 3.4 we introduce Goh’s Transformation, that is an essential tool for the rest

of the article. In Section 3.5 we show a new necessary condition, and in Section 3.6

we give a sufficient for weak optimality. A shooting algorithm is proposed in Section

3.7, and in Section 3.8 we give a sufficient condition for this algorithm to converge

locally quadratically.

3.2 Statement of the problem and assumptions

3.2.1 Statement of the problem.

In this paper we investigate the optimal control problem (P) given by

J := ϕ0(x0, xT )→ min, (3.1)

ẋt =
m∑
i=0

vi,tfi(xt, ut), , a.e. on [0, T ], (3.2)

ηj(x0, xT ) = 0, for j = 1 . . . , dη, (3.3)

ϕi(x0, xT ) ≤ 0, for i = 1, . . . , dϕ, (3.4)

where fi : Rn+l → Rn for i = 0, . . . ,m, ϕi : R2n → R for i = 0, . . . , dϕ, ηj : R2n → R
for j = 1, . . . , dη and v0 ≡ 1 (it is not a variable). The nonlinear control u belongs to

U := L∞(0, T ;Rl), while by V := L∞(0, T ;Rm) we denote the space of affine controls,

and X := W 1
∞(0, T ;Rn) refers to the state space. When needed, put w = (x, u, v) for a
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point inW := X ×U×V . Assume that all data functions fi have Lipschitz-continuous

second derivatives.

A trajectory is an element w ∈ W that satisfies the state equation (3.2). If

in addition constraints (3.3) and (3.4) hold, say that w is a feasible trajectory of

problem (P). Denote by A the set of feasible trajectories.

The following type of minimum is considered.

Definition 3.2.1. A feasible trajectory ŵ = (x̂, û, v̂) ∈ W is said to be a weak

minimum of (P) if there exists ε > 0 such that the cost function attains at ŵ its

minimum in the set of feasible trajectories satisfying

‖x− x0‖∞ < ε, ‖u− û‖∞ < ε, ‖v − v̂‖∞ < ε.

In the sequel, we study a nominal feasible trajectory ŵ = (x̂, û, v̂) ∈ W . An

element δw ∈ W is termed feasible variation for ŵ if ŵ + δw ∈ A. We write Rd,∗ for

the d−dimensional space of row vectors with real components. Take λ = (α, β, p) in

Rdϕ+1,∗ × Rdη ,∗ ×W 1
∞(0, T ;Rn,∗), i.e. p is a Lip-continuous function with values in

Rn,∗. Define the pre-Hamiltonian function

H[λ](x, u, v, t) := pt

m∑
i=0

vifi(x, u),

the terminal Lagrangian function

`[λ](q) :=

dϕ∑
i=0

αiϕi(q) +

dη∑
j=1

βjηj(q),

and the Lagrangian function

L[λ](w) := `[λ](x̂0, x̂T ) +

∫ T

0

pt

(
m∑
i=0

vi,tfi(xt, ut)− ẋt

)
dt. (3.5)

In the sequel, whenever some argument of fi, H, `, L or their derivatives is omitted,

assume that they are evaluated at ŵ. Without loss of generality suppose that

ϕi(x̂0, x̂T ) = 0, for all i = 0, 1, . . . , dϕ. (3.6)

3.2.2 Lagrange and Pontryagin multipliers

Definition 3.2.2. An element λ = (α, β, p) ∈ Rdϕ+1,∗ × Rdη ,∗ ×W 1
∞(0, T ;Rn,∗) is a

Lagrange multiplier associated to ŵ if it satisfies the following conditions:

|α|+ |β| = 1, (3.7)

α = (α0, α1, . . . , αdϕ) ≥ 0, (3.8)



116 3. PARTIALLY AFFINE CONTROL PROBLEMS

the function p is solution of the costate equation

−ṗt = Hx[λ](x̂t, ût, v̂t, t), (3.9)

and satisfies the transversality conditions

p0 = −Dx0`[λ](x̂0, x̂T ),

pT = DxT `[λ](x̂0, x̂T ),
(3.10)

and the following stationarity conditions hold{
Hu[λ](x̂(t), û(t), v̂(t), t) = 0,

Hv[λ](x̂(t), û(t), v̂(t), t) = 0,
a.e. on [0, T ]. (3.11)

We say that λ is a Pontryagin multiplier if it satisfies (3.7)-(3.10) and the following

minimum condition

H[λ](x̂t, ût, v̂t, t) = min
(u,v)∈Rl+m

H[λ](x̂t, u, v, t), a.e. on [0, T ]. (3.12)

Denote by ΛL and ΛP the sets of Lagrange and Pontryagin multipliers, respectively.

It easily follows from the previous definitions that

ΛP ⊂ ΛL, (3.13)

and

Hvj [λ] = pfj(x̂, û) ≡ 0, for j = 1, . . . ,m. (3.14)

Recall the following well-known result.

Theorem 3.2.3. The set ΛL and ΛP are non empty and compact.

Proof. Regarding the existence of a Pontryagin multiplier, the reader is referred to

Ioffe-Tihomirov [74].

In order to prove the compactness, observe that p may be expressed as a linear

continuous mapping of (α, β). Thus, since the normalization (3.7) holds, both ΛL and

ΛP are finite-dimensional compact sets.

In view of previous result, note that ΛL and ΛP can be identified with compact

subsets of Rs, where s := dϕ + dη + 1.

Given a square symmetric real matrix X, we write X � 0 to indicate that it is

positive semidefinite and X � 0 when it is positive definite. The minimum condition

(3.12) yields following set of properties.
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Lemma 3.2.4. For every Pontryagin multiplier λ ∈ ΛP ,

(i)

Huu[λ] = p
m∑
i=0

v̂iD
2
uufi(x̂, û) � 0, (3.15)

(ii)
Huv[λ] ≡ 0,

pDufj(x̂, û) ≡ 0, for j = 0, . . . ,m.
(3.16)

Proof. Observe that (3.12) implies that the matrix(
Huu[λ] Hvu[λ]>

Hvu[λ] Hvv[λ]

)
(3.17)

is positive semidefinite. Since Hvv[λ] ≡ 0, the positive semidefiniteness in (i) and the

first identity in (ii) follow. The latter equation yields the second identity in (ii) for

j = 1, . . . ,m. Finally, use (3.11) to get the analogous condition for j = 0.

For (x̄0, ū, v̄) ∈ Rn × U × V , consider the linearized state equation

˙̄xt = Atx̄t +Dtūt +Btv̄t, a.e. on [0, T ], (3.18)

x̄(0) = x̄0, (3.19)

where

At :=
m∑
i=0

v̂ifi,x(x̂, û), Dt :=
m∑
i=0

v̂ifi,u(x̂, û), (3.20)

and B : [0, T ]→Mn×m(R) such that for every v ∈ Rm,

Btv :=
m∑
i=0

vifi(x̂t, ût), (3.21)

i.e. the ith. column of B is fi(x̂, û). The variable x̄ in (3.18)-(3.19) is called linearized

state variable.

3.2.3 Critical cones

Set X2 := W 1
2 (0, T ;Rn), U2 := L2(0, T ;Rl) and V2 := L2(0, T ;Rm). Put W2 :=

X2 × U2 × V2 for the corresponding product space. Define,

H2 := {w̄ ∈ W2 : (3.18)-(3.19) hold}, H∞ := {w̄ ∈ W : (3.18)-(3.19) hold}. (3.22)

Mn×m(R): the space of n×m−real matrices
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Let p ∈ {2,∞}. Given w̄ ∈ Hp, consider the linearization of the initial-final con-

straints and cost function:

Dηj(x̂0, x̂T )(x̄0, x̄T ) = 0, for j = 1, . . . , dη, (3.23)

Dϕi(x̂0, x̂T )(x̄0, x̄T ) ≤ 0, for i = 0, . . . , dϕ. (3.24)

Define the Lp−critical cone

Cp := {w̄ ∈ Hp : (3.23)− (3.24) hold} . (3.25)

Lemma 3.2.5. The critical cone C∞ is a dense subset of C2.

In order to prove previous lemma, recall the following technical result, (see e.g.

Dmitruk [45] for a proof).

Lemma 3.2.6 (on density). Consider a locally convex topological space X, a finite-

faced cone C ⊂ X, and a linear manifold L dense in X. Then the cone C ∩L is dense

in C.

Proof. [of Lemma 3.2.5] Set X := H2, L := H∞, C := C2 and apply Lemma 3.2.6.

3.3 Second order analysis

We begin this section by presenting the second variation of the Lagrangian function

the we denote by Ω. All the second order conditions in this paper are established

in terms of either Ω or some transformed form of Ω. The main result of the current

section is the second order necessary condition provided by Theorem 3.3.6.

3.3.1 Second variation

Let us consider the quadratic mapping:

Ω[λ](x̄, ū, v̄) := 1
2
`′′[λ](x̂0, x̂T )(x̄0, x̄T )2

+

∫ T

0

[1
2
x̄>Q[λ]x̄+ ū>E[λ]x̄+ v̄>C[λ]x̄+ 1

2
ū>R0[λ]ū+ v̄>K[λ]ū]dt,

(3.26)

where the involved matrices are, omitting arguments,

Q := Hxx, E := Hux, C := Hvx, R0 := Huu, K := Hvu. (3.27)
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Lemma 3.3.1 (Lagrangian expansion). Let w ∈ W be a solution of (3.2), and set

δw := w − ŵ. Then for every multiplier λ ∈ ΛL,

L[λ](w) =L[λ](ŵ) + Ω[λ](δx, δu, δv) +

∫ T

0

[Hvxx[λ](δx, δx, δv)

+ 2Hvux[λ](δx, δu, δv) +Hvuu[λ](δu, δu, δv)] dt

+O(|(δx0, δxT )|3) + (1 + ‖v‖1)‖(δx, δu)‖∞O(‖(δx, δu)‖2
2),

(3.28)

where the time variable was omitted for the sake of simplicity.

Proof. Omit the dependence on λ for the sake of simplicity. In order to achieve the

expression (3.28) consider the second order Taylor representations below, written in

a compact form,

`(x0, xT ) = `+D`(δx0, δxT ) + 1
2
D2`(δx0, δxT )2 +O(|(δx0, δxT )|3), (3.29)

fi(xt, ut) = fi,t +Dfi,t(δxt, δut) + 1
2
D2fi,t(δxt, δut)

2 +O(‖(δx, δu)‖3
3),(3.30)

where, whenever the argument is missing the corresponding function is evaluated on

the reference trajectory ŵ. Observe that the costate equation (3.9) and the transver-

sality conditions (3.10) yield

D` (δx0, δxT ) = −p0 δx0 + pT δxT =

∫ T

0

p

[
−

m∑
i=0

v̂iDxfi δx+ ˙δx

]
dt, (3.31)

Recall the expression of the Lagrangian given in (3.5). Replacing `(x0, xT ) and fi(x, u)

in (3.5) by their Taylor expansions (3.29)-(3.30) and using the identity (3.31) we get

L(w) = L(ŵ) +

∫ T

0

[Huδu+Hvδv]dt+ Ω(δx, δu, δv)

+

∫ T

0

[Hvxx(δx, δx, δv) + 2Hvux(δx, δu, δv) +Hvuu(δu, δu, δv)] dt

+O(|(δx0, δxT )|3) + ‖(δx, δu)‖∞
∫ T

0

p
m∑
i=0

viO(‖(δx, δu)‖2
2)dt.

Finally, to obtain (3.28) use stationarity condition (3.11).

Remark 3.3.2. The last lemma gives the identity:

Ω[λ](w̄) = 1
2
D2L[λ](ŵ) w̄2 (3.32)
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3.3.2 Second order necessary condition

Recall the classical second order condition below, a proof of which can be found in

[86].

Theorem 3.3.3 (Classical second order necessary condition). If ŵ is a weak mini-

mum of problem (P), then

max
λ∈ΛL

Ω[λ](x̄, ū, v̄) ≥ 0, on C∞. (3.33)

In this paragraph we aim to strengthen previous necessary condition by proving

that the maximum in (3.33) can be taken in a smaller set of multipliers. We shall

first give a description of the subset of Lagrange multipliers we work with.

Remark 3.3.4. Condition (3.33) can be extended to the cone C2 by the continuity of

Ω[λ] and the compactness of ΛL.

Recall the definition of the Hilbert space H2 introduced in (3.22), and consider

the subset of ΛL given by

Λ#
L := {λ ∈ ΛL : Ω[λ] is weakly-l.s.c. on H2}. (3.34)

The two results below are established in this section. Lemma 3.3.5 provides a char-

acterization of Λ#
L and Theorem 3.3.6 gives a strengthened second order necessary

condition.

Lemma 3.3.5.

Λ#
L = {λ ∈ ΛL : R0[λ] � 0 and K[λ] ≡ 0}. (3.35)

Theorem 3.3.6 (Second order necessary condition). If ŵ is a weak minimum of

problem (P), then

max
λ∈Λ#

L

Ω[λ](x̄, ū, v̄) ≥ 0, on C2. (3.36)

In order to prove Lemma 3.3.5 consider the matrix

1
2

(
R0[λ] K[λ]>

K[λ] 0

)
, (3.37)

and note that it is the coefficient of the quadratic term on

(
ū
v̄

)
in Ω[λ]. Hence Ω[λ]

can be written as the sum of a weakly-continuous mapping on the space H2 and the

quadratic operator given by∫ T

0

(1
2
ū>R0[λ]ū+ v̄>K[λ]ū)dt. (3.38)

Recall next a characterization of weakly-l.s.c. forms.
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Lemma 3.3.7. [72, Theorem 3.2] Consider a real interval I and a quadratic form Q
over the Hilbert space L2(I), given by

Q(y) :=

∫
I

y>t Rtytdt.

Then Q is weakly-l.s.c. over L2(I) iff

Rt � 0, a.e. on I. (3.39)

Lemma 3.3.5 follows from last result and it yields, owing to Lemma 3.2.4:

ΛP ⊂ Λ#
L . (3.40)

Theorem 3.3.6 is a consequence of Remark 3.3.4, Lemma 3.3.5 and the following result

on quadratic forms:

Lemma 3.3.8. [42, Theorem 5] Given a Hilbert space H, and a1, a2, . . . , ap in H, set

K := {x ∈ H : (ai, x) ≤ 0, for i = 1, . . . , p}. (3.41)

Let M be a convex and compact subset of Rs, and let {Qψ : ψ ∈ M} be a family of

continuous quadratic forms over H, the mapping ψ → Qψ being affine. Set M# :=

{ψ ∈M : Qψ is weakly-l.s.c. on H} and assume that

max
ψ∈M

Qψ(x) ≥ 0, for all x ∈ K. (3.42)

Then

max
ψ∈M#

Qψ(x) ≥ 0, for all x ∈ K. (3.43)

3.4 Goh Transformation

In this section we introduce a linear transformation of variables x̄, ū and v̄. Afterwards

we define the critical cone in the new space of variables denoted by P2, and we show

that performing the mentioned transformation in Ω yields a new quadratic operator

called ΩP2 on the transformed space.

Consider hence the linear system in (3.18) and the change of variables{
ȳt :=

∫ t
0
v̄sds,

ξ̄t := x̄t −Btȳt,
for t ∈ [0, T ]. (3.44)
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This change of variables, first introduced by Goh [68], can be done in any linear

system of differential equations, and it is often called Goh’s transformation. Observe

that ξ̄ defined in that way satisfies the linear equation

˙̄ξ = Aξ̄ +Dū+B1ȳ, ξ̄0 = x̄0, (3.45)

where A and D were given in (3.20), and

B1,t := AtBt −
d

dt
Bt. (3.46)

3.4.1 Tranformed critical cones

In this paragraph we present the critical cones obtained after Goh’s transformation,

that we use later on to formulate the optimality conditions. Recall the linearized

constraints in (3.23)-(3.24) and the critical cone given by (3.25) in paragraph 3.2.3.

Let (x̄, ū, v̄) ∈ C∞ be a critical direction. Define (ξ̄, ȳ) by transformation (3.44) and

set h̄ := ȳT . Note that (3.23)-(3.24) yields

Dηj(x̂0, x̂T )(ξ̄0, ξ̄T +BT h̄) = 0, for j = 1, . . . , dη, (3.47)

Dϕi(x̂0, x̂T )(ξ̄0, ξ̄T +BT h̄) ≤ 0, for i = 0, . . . , dϕ. (3.48)

Recall the definition ofW2 in paragraph 3.2.3. Denote by Y the space W 1
∞(0, T ;Rm),

and consider the cones

P := {(ξ̄, ū, ȳ, h̄) ∈ W × Rm : ȳ0 = 0, ȳT = h̄, (3.45), (3.47)-(3.48) hold}, (3.49)

P2 := {(ξ̄, ū, ȳ, h̄) ∈ W2 × Rm : (3.45), (3.47)-(3.48) hold}. (3.50)

Remark 3.4.1. Notice that P consists of the directions obtained by transformating

the elements of C∞ via Goh’s Transformation (3.44).

Lemma 3.4.2. P is a dense subspace of P2 in the W2 × Rm−topology.

Proof. Notice that the inclusion is immediate. In order to prove the density, consider

the linear spaces

X := {(ξ̄, ū, ȳ, h̄) ∈ W2 × Rm : (3.45) holds}, (3.51)

L := {(ξ̄, ū, ȳ, h̄) ∈ W∞ × Rm : ȳ(0) = 0, ȳ(T ) = h̄, and (3.45) holds}, (3.52)

and the cone

C := {(ξ̄, ū, ȳ, h̄) ∈ X : (3.47)− (3.48) holds}. (3.53)

Since L is a dense linear subspace of X (by Lemma 6 in [47] or Lemma 7.1 in [8]),

and C is a finite-faced cone of X, we get the desired density by Lemma 3.2.6.
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3.4.2 Transformed second variation

In Theorem 3.4.3 below we prove that performing the Goh transformation in Ω yields

the new quadratic operator ΩP in variables (ξ̄, ū, ȳ, v̄, h̄) defined below. Recall the

definitions in (3.27) and set for λ ∈ Λ#
L ,

ΩP [λ](ξ̄, ū, ȳ, v̄, h̄) := g[λ](ξ̄0, ξ̄T , h̄) +

∫ T

0

(
1
2
ξ̄ >Q[λ]ξ̄ + ū>E[λ]ξ̄

+ ȳ>M [λ]ξ̄ + 1
2
ū>R0[λ]ū+ ȳ>J [λ]ū+ 1

2
ȳ>R1[λ]ȳ + v̄>V [λ]ȳ

)
dt,

(3.54)

where

M := B>Q− Ċ − CA, J := B>E> − CD, (3.55)

S := 1
2
(CB + (CB)>), V := 1

2
(CB − (CB)>), (3.56)

R1 := B>QB − 1
2
(CB1 + (CB1)>)− Ṡ, (3.57)

g[λ](ζ0, ζT , h) := 1
2
`′′(ζ0, ζT +BTh)2 + h>(CT ζT + 1

2
STh). (3.58)

Theorem 3.4.3. Let (x̄, ū, v̄) ∈ H2 (given in (3.22)) and (ξ̄, ȳ) defined by the trans-

formation (3.44). Then

Ω[λ](x̄, ū, v̄) = ΩP [λ](ξ̄, ū, ȳ, v̄, ȳT ). (3.59)

Proof. We omit the dependence on λ for the sake of simplicity. Replacing x̄ in the

definition (3.26) of Ω by its expression in (3.44) yields

Ω(x̄, ū, v̄) = 1
2
`′′(x̂0, x̂T )(ξ̄0, ξ̄T +BT ȳT )2 +

∫ T

0

[
1
2
(ξ̄ +Bȳ)>Q(ξ̄ +Bȳ)

+ ū>E(ξ̄ +Bȳ) + v̄>C(ξ̄ +Bȳ) + 1
2
ū>R0ū

]
dt.

(3.60)

Integrating by parts the first term containing v̄ yields, owing to (3.45),∫ T

0

v̄>Cξ̄dt = [ȳ>Cξ̄]T0 −
∫ T

0

ȳ>{Ċξ̄ + C(Aξ̄ +Dū+B1ȳ)}dt. (3.61)

Using the descomposition of CB introduced in (3.56) we get∫ T

0

v̄>CBȳdt =

∫ T

0

v̄>(S + V )ȳdt

= 1
2
[ȳ>Sȳ]T0 +

∫ T

0

(−1
2
ȳ>Ṡȳ + v̄>V ȳ)dt.

(3.62)

Combining (3.60), (3.61) and (3.62), the identity (3.59) follows.
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Recall Theorem 3.3.6. Observe that by performing Goh’s transformation (3.44)

in (3.36) and in view of Remark 3.4.1, we obtain the following form for the second

order necessary condition.

Corollary 3.4.4. If ŵ is a weak minimum of problem (P), then

max
λ∈Λ#

L

ΩP [λ](ξ̄, ū, ȳ, ˙̄y, h̄) ≥ 0, on P . (3.63)

3.5 New second order necessary condition

We aim to remove the dependence of v̄ from the formulation of the second order

necessary condition. Note that in (3.63), given that the considered multipliers are in

Λ#
L , the matrix K[λ] vanishes and that is why we do not include it in ΩP . However,

there still remains the term v̄>V [λ]ȳ. Next we prove that we can restrict the maximum

in (3.63) to the subset of Λ#
L consisting of the multipliers for which V [λ] vanishes.

We use, in an essential way, some techniques introduced by Dmitruk [40, 43] for the

proof of similar results.

Definition 3.5.1. Given M ⊂ Rs, define

G(M) := {λ ∈M : Vij[λ] ≡ 0 on [0, T ]}.

Theorem 3.5.2. Let M ⊂ Rs be convex and compact, and assume that

max
λ∈M

ΩP [λ](ξ̄, ū, ȳ, ˙̄y, ȳT ) ≥ 0, on P . (3.64)

Then

max
λ∈G(M)

ΩP [λ](ξ̄, ū, ȳ, ˙̄y, ȳT ) ≥ 0, on P . (3.65)

The proof of Theorem 3.5.2 is based on some techniques introduced in Dmitruk

[40, 43], and was given in detail in Aronna et al. [8] (or Theorem 1.4.10 of Chapter

1) for a system that is affine in all the control variables. For the case treated here,

the same proof holds with minor modifications and hence there is no point in writing

it again.

When ŵ has a unique associated Lagrange multiplier, as a consequence of Theorem

3.5.2 we get the corollary below. This corollary is one of the necessary conditions

stated by Goh in [67].

Corollary 3.5.3. When ŵ is a weak minimum having a unique associated multiplier,

V ≡ 0 or, equivalently, CB is symmetric.
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From theorems 3.3.6 and 3.5.2 we get

Theorem 3.5.4 (New necessary condition). If ŵ is a weak minimum of problem (P),

then

max
λ∈G(co Λ#

L )

ΩP [λ](ξ̄, ū, ȳ, ˙̄y, ȳT ) ≥ 0, on P . (3.66)

Observe that for λ ∈ G(co Λ#
L ), the quadratic form Ω[λ] does not depend on v̄

since its coefficients vanish. We can then consider its continuous extension to P2,

given by

ΩP2 [λ](ξ̄, ū, ȳ, h̄) := g[λ](ξ̄0, ξ̄T , h̄) +

∫ T

0

(
1
2
ξ̄ >Q[λ]ξ̄ + ū>E[λ]ξ̄

+ ȳ>M [λ]ξ̄ + 1
2
ū>R0[λ]ū+ ȳ>J [λ]ū+ 1

2
ȳ>R1[λ]ȳ

)
dt.

(3.67)

Applying Theorem 3.5.4 we obtain

Theorem 3.5.5. If ŵ is a weak minimum of problem (P), then

max
λ∈G(co Λ#

L )

ΩP2 [λ](ξ̄, ū, ȳ, h̄) ≥ 0, on P2. (3.68)

Remark 3.5.6. The latter optimality condition does not involve variable v̄. It is

stated in the space of variables (ξ̄, ū, ŷ, h̄).

3.6 Second order sufficient condition

for weak minimum

This section provides a second order sufficient condition for strict weak optimality

with quadratic growth. The proof is an adaptation of the proof of Theorem 5.5 in [8]

(or Theorem 1.5.5 in Chapter 1), with important simplifications due to the absence

of control constraints.

The quadratic growth above mentioned will be established with respect to the

order

γ(x̄0, ū, ȳ, h̄) := |x̄0|2 + |h̄|2 +

∫ T

0

(|ūt|+ |ȳt|)2dt. (3.69)

for (x̄0, ū, ȳ, h̄) ∈ U2×V2×Rn+m. It can also be considered as a function of (x̄0, ū, v̄) ∈
Rn × U2 × V2 by means of the identity

γ̃(x̄0, ū, v̄) := γ(x̄0, ū, ȳ, ȳT ), (3.70)

with ȳ being the primitive of v̄ defined in (3.44).

Notation: We write γ to refer to either γ or γ̃.
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Definition 3.6.1. [Quadratic Growth] We say that ŵ satisfies γ−quadratic growth

condition in the weak sense if there exists ρ > 0 such that

J(w) ≥ J(ŵ) + ργ(x0 − x̂0, u− û, v − v̂), (3.71)

for every feasible trajectory w satisfying ‖w − ŵ‖∞ < ε.

Theorem 3.6.2 (Sufficient condition). Assume that there exists ρ > 0 such that

max
λ∈G(co Λ#

L )

ΩP2 [λ](ξ̄, ū, ȳ, h̄) ≥ ργ(ξ̄0, ū, ȳ, h̄), on P2. (3.72)

Then ŵ is a weak minimum satisfying γ−quadratic growth in the weak sense.

The remainder of this section is devoted to the proof of Theorem 3.6.2. We shall

start by establishing some technical results that will be needed for the main result.

For the lemma below recall the definition of the space H2 in (3.22).

Lemma 3.6.3. There exists ρ > 0 such that

|x̄0|2 + ‖x̄‖2
2 + |x̄T |2 ≤ ργ(x̄0, ū, v̄), (3.73)

for every linearized trajectory (x̄, ū, v̄) ∈ H2. The constant ρ depends on ‖A‖∞, ‖B‖∞,
‖D‖∞ and ‖B2‖∞.

Proof. Every time we put ρi we refer to a positive constant depending on ‖A‖∞,
‖B‖∞, ‖D‖∞, and/or ‖B2‖∞. Let (x̄, ū, v̄) ∈ H2 and (ξ̄, ȳ) be defined by Goh’s

Transformation (3.44). Thus (ξ̄, ū, ȳ) is solution of (3.45) having ξ̄0 = x̄0. Gronwall’s

Lemma and Cauchy-Schwartz inequality yield

‖ξ̄‖∞ ≤ ρ1(|ξ̄0|2 + ‖ū‖2
2 + ‖ȳ‖2

2)1/2 ≤ ρ1γ(x̄0, ū, ȳ, ȳT )1/2, (3.74)

with ρ1 = ρ1(‖A‖1, ‖D‖∞, ‖B1‖∞). This last inequality together with the relation

between ξ̄ and xb provided by (3.44) imply

‖x̄‖2 ≤ ‖ξ̄‖2 + ‖B‖∞‖ȳ‖2 ≤ ρ2γ(x̄0, ū, ȳ, ȳT )1/2, (3.75)

for ρ2 = ρ2(ρ1, ‖B‖∞). On the other hand, (3.44) and estimation (3.74) lead to

|x̄T | ≤ |ξ̄T |+ ‖B‖∞|ȳT | ≤ ρ1γ(x̄0, ū, ȳ, ȳT )1/2 + ‖B‖∞|ȳT |. (3.76)

Then, in view of inequality ‘ab ≤ a2+b2

2
,’

|x̄T |2 ≤ ρ3γ(x̄0, ū, ȳ, ȳT ), (3.77)

for some ρ3 = ρ3(ρ1, ‖B‖∞). The desired estimation follows from (3.75) and (3.77).
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Notice that Lemma 3.6.3 above gives an estimation of the linearized state in terms

of γ. The following result shows that the analogous property holds for the variation

of the state variable as well. Recall the state dynamics (3.2).

Lemma 3.6.4. For every C > 0 there exists ρ > 0 such that

|δx0|2 + ‖δx‖2
2 + |δxT |2 ≤ ργ(δx0, δu, δv). (3.78)

for every (x, u, v) solution of (3.2) having ‖v‖2 ≤ C, and where we set δw := w − ŵ.
The constant ρ depends on C, ‖B‖∞, ‖Ḃ‖∞ and the Lipschitz constants of fi.

Proof. Consider (x, u, v) solution of (3.2) with ‖v‖2 ≤ C. Let δw := w − ŵ, and

ξ := δx−Bδy, with B given in (3.21) and yt :=
∫ t

0
vsds. Note that

ξ̇ =
m∑
i=0

[vifi(x, u)− v̂ifi(x̂, û)]− Ḃδy −
m∑
i=1

δvifi(x̂, û)

=
m∑
i=0

vi[fi(x̂+ ξ +Bδy, û+ δu)− fi(x̂, û)]− Ḃδy,
(3.79)

where v0 ≡ 1. In view of the Lipschitz-continuity of fi,

|fi(x̂+ ξ +Bδy, û+ δu)− fi(x̂, û)| ≤ L(|ξ|+ ‖B‖∞|δy|+ |δu|), (3.80)

for some L > 0. Thus, from (3.79) it follows

|ξ̇| ≤ L(|ξ|+ ‖B‖∞|δy|+ |δu|)(1 + |v|) + ‖Ḃ‖∞|δy|
= L(|ξ|(1 + |v|) + ‖B‖∞|δy|+ |δu|+ ‖B‖∞|δy||v|+ |δu||v|) + ‖Ḃ‖∞|δy|.

Applying Gronwall’s Lemma and Cauchy-Schwartz inequality to previous estimation

yields

‖ξ‖∞ ≤ ρ1(|ξ0|+ ‖δu‖1 + ‖δy‖1 + ‖δy‖2‖v‖2 + ‖δu‖2‖v‖2), (3.81)

for ρ1 = ρ1(L,C, ‖B‖∞, ‖Ḃ‖∞). Hence, since ‖δx‖2 ≤ ‖ξ‖2 +‖B‖∞‖δy‖2, by Cauchy-

Schwartz inequality and previous estimation, the desired result follows.

Finally, the following lemma gives an estimation for the difference between the

variation of the state variable and the linearized state.

Lemma 3.6.5. Consider C > 0 and w = (x, u, v) ∈ W a feasible trajectory having

‖w − ŵ‖∞ < C. Set (δx, ū, v̄) := w − ŵ and x̄ its corresponding linearized state.

Consider

η := δx− x̄. (3.82)
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Then,

η̇ =
m∑
i=0

v̂iDxfi(x̂, û)η +
m∑
i=1

v̄iDfi(x̂, û)(δx, ū) + ζ, (3.83)

with

‖ζ‖∞ < O(C), ‖ζ‖2 < O(γ). (3.84)

If in addition, ‖ū‖2 + ‖v̄‖2 → 0, the following estimations for hold:

‖η‖∞ < o(
√
γ), ‖η̇‖2 < o(

√
γ). (3.85)

Proof. Let us begin by observing that the variation of the state variable satisfies the

differential equation:

˙δx =
m∑
i=1

v̄ifi(x̂, û) +
m∑
i=0

vi[fi(x, u)− fi(x̂, û)]. (3.86)

Consider the following Taylor expansions for fi :

fi(x, u) = fi(x̂, û) +Dfi(x̂, û)(δx, ū) + 1
2
D2fi(x̂, û)(δx, ū)2 + o(|(δx, ū)|2). (3.87)

Combining (3.86) and (3.87) yields

˙δx =
m∑
i=1

v̄ifi(x̂, û) +
m∑
i=0

viDfi(x̂, û)(δx, ū) + ζ, (3.88)

with the remainder being

ζ := 1
2

m∑
i=0

vi[D
2fi(x̂, û)(δx, ū)2 + o(|(δx, ū)|2)]. (3.89)

The linearized equation together with (3.88) lead to (3.83), and, in view of (3.89),

it can be seen that the estimations in (3.84) hold. Applying Gronwall’s Lemma in

(3.83), and using Cauchy-Schwartz inequality afterwards lead to

‖η‖∞ ≤ ρ1

∥∥∥∥∥
m∑
i=1

v̄iDfi(x̂, û)(δx, ū) + ζ

∥∥∥∥∥
1

≤ ρ2 {‖v̄‖2(‖δx‖2 + ‖ū‖2) + ‖ζ‖2} , (3.90)

for some positive ρ1, ρ2. Finally, using estimation of Lemma 3.6.4 and (3.84) just

obtained, the inequalities in (3.85) follow.

In view of Lemmas 3.3.1, 3.6.3, 3.6.4 and 3.6.5 we can justify the following technical

result that is an essential point in the proof of Theorem 3.6.2.
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Lemma 3.6.6. Let w ∈ W be a feasible variation. Set (δx, ū, v̄) := w − ŵ, and x̄

its corresponding linearized state, i.e., the solution of (3.18)-(3.19) associated to ū, v̄

and δx0. Assume that ‖w − ŵ‖∞ → 0. Then

L[λ](w) = L[λ](ŵ) + Ω[λ](x̄, ū, v̄) + o(γ). (3.91)

Proof. Omit the dependence on λ for the sake of simplicity. Recall the expansion

of the Lagrangian function given in Lemma 3.3.1. Notice that by Lemma 3.6.4,

L(w) = L(ŵ) + Ω(δx, ū, v̄) + o(γ). Hence,

L(w) = L(ŵ) + Ω(x̄, ū, v̄) + ∆Ω + o(γ), (3.92)

with ∆Ω := Ω(δx, ū, v̄) − Ω(x̄, ū, v̄). The next step is using Lemmas 3.6.3, 3.6.4 and

3.6.5 to prove that

∆Ω = o(γ). (3.93)

Note that Q(a, a) − Q(b, b) = Q(a + b, a − b), for any bilinear mapping Q, and any

pair a, b. Put η := δx− x̄ as it is done in Lemma 3.6.5. Hence,

∆Ω = 1
2
`′′((δx0+x̄0, δxT +x̄T ), (0, ηT ))+

∫ T

0

[1
2
(δx+x̄)>Qη+ū>Eη+v̄>Cη]dt. (3.94)

The estimations in Lemmas 3.6.3 and 3.6.4 yield ∆Ω =
∫ T

0
v̄>Cηdt+o(γ). Integrating

by parts in the latter expression and using (3.85) lead to∫ T

0

v̄>Cηdt = [ȳ>Cη]T0 −
∫ T

0

ȳ>(Ċη + Cη̇)dt = o(γ), (3.95)

and hence the desired result follows.

Proof. [of Theorem 3.6.2]

We shall prove that if (3.72) holds for some ρ > 0, then ŵ satisfies γ−quadratic

growth in the weak sense. By the contrary assume that the quadratic growth condition

(3.71) is not satisfied. Consequently, there exists a sequence of feasible trajectories

{wk} converging to ŵ in the weak sense, such that

J(wk) ≤ J(ŵ) + o(γk), (3.96)

with δwk := wk − ŵ and γk := γ(δxk,0, ūk, v̄k). Let (ξ̄k, ūk, ȳk) be the transformed

directions defined by (3.44). We divide the remainder of the proof in two steps.
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(I) First we prove that the sequence given by

(ξ̃k, ũk, ỹk, h̃k) := (ξ̄k, ūk, ȳk, h̄k)/
√
γk (3.97)

contains a subsequence converging to an element (ξ̃, ũ, ỹ, h̃) of P2 in the weak

topology, i.e. (ũk, ỹk) ⇀ (ũ, ỹ) in the weak topology of U2 × V2 and (ξ̃k, h̃k) →
(ξ̃, h̃) in the strong sense in X2 × Rm.

(II) Afterwards, employing the latter sequence and its weak limit, we show that

(3.72) together with (3.96) lead to a contradiction.

We shall begin by Part (I). Take any Lagrange multiplier λ in Λ#
L . Multiply

inequality (3.96) by α0, then add the nonpositive term

dϕ∑
i=0

αiϕi(xk,0, xk,T ) +

dη∑
j=1

βjηj(xk,0, xk,T ), (3.98)

to its left-hand side and obtain the inequality

L[λ](wk) ≤ L[λ](ŵ) + o(γk). (3.99)

Recall now expansion (3.91) given in Lemma 3.6.6. Note that the elements of the

sequence (ξ̃k,0, ũk, ỹk, h̃k) have unit Rn × U2 × V2 × Rm−norm. The Banach-Alaoglu

Theorem (see e.g. [29, Theorem III.15]), implies that, extracting if necessary a sub-

sequence, there exists (ξ̃0, ũ, ỹ, h̃) ∈ Rn × U2 × V2 × Rm such that

ξ̃k,0 → ξ̃0, ũk ⇀ ũ, ỹk ⇀ ỹ, h̃k → h̃, (3.100)

where the two limits indicated with ⇀ are taken in the weak topology of U2 and V2,

respectively. Let ξ̃ be the solution of equation (3.45) associated with (ξ̃0, ũ, ỹ). Note

that ξ̃ is the limit of ξ̃k in X2. For the aim of proving that (ξ̃, ũ, ṽ, h̃) belongs to P2, we

shall check that the initial-final conditions (3.47)-(3.48) are verified. For each index

0 ≤ i ≤ dϕ,

Dϕi(x̂0, x̂T )(ξ̃0, ξ̃T +BT h̃) = lim
k→∞

Dϕi(x̂0, x̂T )

(
x̄k,0, x̄k,T√

γk

)
. (3.101)

In order to prove that the right hand-side of (3.101) is non-positive, consider the

following first order Taylor expansion of function ϕi around (x̂0, x̂T ) :

ϕi(xk,0, xk,T ) = ϕi(x̂0, x̂T ) +Dϕi(x̂0, x̂T )(δxk,0, δxk,T ) + o(|(δxk,0, δxk,T )|).
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Previous equation and Lemmas 3.6.3 and 3.6.5 imply

ϕi(xk,0, xk,T ) = ϕi(x̂0, x̂T ) +Dϕi(x̂0, x̂T )(x̄k,0, x̄k,T ) + o(
√
γk).

Thus, the following approximation for the right hand-side in (3.101) holds:

Dϕi(x̂0, x̂T )

(
x̄k,0, x̄k,T√

γk

)
=
ϕi(xk,0, xk,T )− ϕi(x̂0, x̂T )

√
γk

+ o(1). (3.102)

Since wk is a feasible trajectory, it satisfies (3.4), and then equations (3.101) and

(3.102) yield, for 1 ≤ i ≤ dϕ, Dϕi(x̂0, x̂T )(ξ̃0, ξ̃T +BT h̃) ≤ 0. For i = 0 use inequality

(3.96) to get the corresponding inequality. Analogously,

Dηj(x̂0, x̂T )(ξ̃0, ξ̃T +BT h̃) = 0, for j = 1, . . . , dη. (3.103)

Thus (ξ̃, ũ, ỹ, h̃) satisfies (3.47)-(3.48), and hence it belongs to P2.

Let us deal with Part (II). Notice that from (3.91) and (3.99) we get

ΩP2 [λ](ξ̃k, ũk, ỹk, h̃k) ≤ o(1), (3.104)

and thus

lim inf
k→∞

ΩP2 [λ](ξ̃k, ũk, ỹk, h̃k) ≤ 0. (3.105)

Consider the subset of G(co Λ#
L ) given by

Λ#,ρ
L := {λ ∈ G(co Λ#

L ) : ΩP2 [λ]− ργ is weakly l.s.c. on H2 × Rm}. (3.106)

Applying Lemma 3.3.8 to the inequality (3.72) yields

max
λ∈Λ#,ρ

L

ΩP2 [λ](ξ̄, ū, ȳ, h̄) ≥ ργ(ξ̄0, ū, ȳ, h̄), on P2. (3.107)

Take λ̃ ∈ Λ#,ρ
L that attains the maximum in (3.107) for the direction (ξ̃, ũ, ỹ, h̃). Hence

0 ≤ ΩP2 [λ̃](ξ̃, ũ, ỹ, h̃)− ργ(ξ̃0, ũ, ỹ, h̃)

≤ lim infk→∞ΩP2 [λ̃](ξ̃k, ũk, ỹk, h̃k)− ργ(ξ̃k,0, ũk, ỹk, h̃k) ≤ −ρ,
(3.108)

since ΩP2 [λ̃] − ργ is weakly-l.s.c., γ(ξ̃k,0, ũk, ỹk, h̃k) = 1 for every k and inequality

(3.105) holds. This leads us to a contradiction, since ρ > 0, and so the desired result

follows.
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3.7 Shooting algorithm

The purpose of this section is to present an appropriated numerical scheme to solve

the problem given by equations (3.1)-(3.3), that we denote with (SP). Notice that no

inequality constraints are considered. Next we present a qualification hypothesis

that is assumed throughout the remainder of this article. Consider the mapping

G : Rn × U × V → Rdη

(x0, u, v) 7→ η(x0, xT ),
(3.109)

where xT is the solution of (3.2) associated to (x0, u, v).

Assumption 3.7.1. The derivative of G at (x̂0, û, v̂) is onto.

The Assumption 2.2.1 is usually known as qualification of equality constraints. It

is a known fact that the Assumption 2.2.1 implies the uniqueness of multiplier and

the normality of the extremal. Hence we can consider α0 = 1. We denote this unique

multiplier by λ̂ = (β̂, p̂).

3.7.1 Optimality system

We aim to provide an optimality system for (SP) in the form of a boundary value

problem. First, call back condition (3.11) given by the Pontryagin maximum principle

(PMP) in Section 3.2.

We shall recall that for the case where all the control variables appear nonlinearly

(m = 0), the classical technique is using the stationarity equation

Hu[λ̂](ŵ) = 0, (3.110)

to solve û as a function of (x̂, λ̂). One is able to do this by assuming, for instance, the

strengthened Legendre-Clebsch condition

Huu[λ̂](ŵ) � 0. (3.111)

In this case, in view of the Implicit Function Theorem, we can write û = U [λ̂](x̂)

with U being differentiable. Hence, replacing the occurrences of û by U [λ̂](x̂) in the

conditions provided by the PMP yields a two point boundary value problem.

When the system is affine in all the control variables (l = 0), we cannot eliminate

the control from the equation Hv = 0 and then a different technique is implemented

(see [10] or Section 2.3 in Chapter 2). Let then 1 ≤ i ≤ m, and dMiHv/dt
Mi be

the lowest order derivative of Hv in which v̂i appears with a coefficient that is not
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identically zero. Kelley et al. in [81] proved that Mi is even when the investigated

extremal is normal. This implies that Ḣv depends only on x̂ and λ̂. Hence, it is

differentiable and the expression

Ḧv[λ̂](ŵ) = 0 (3.112)

is well-defined. The control v̂ can be retrieved from (3.112) provided that, for instance,

the strengthened generalized Legendre-Clebsch condition (see Goh [67])

−∂Ḧv

∂v
[λ̂](ŵ) � 0 (3.113)

holds. In this case, we can write v̂ = V [λ̂](x̂) with V being differentiable. An

optimality system in the form of a boundary value problem can be then obtained by

replacing v̂ by V [λ̂](x̂) in the PMP.

In the problem studied here, where l > 0 and m > 0, we aim to use both equations

(3.110) and (3.112) to retrieve the control (û, v̂) as a function of the state and costate

variables. We next describe a procedure to achieve this elimination that was given in

Goh [69]. Let us show that Hv can be differentiated two times in the time variable

as it was done in the totally affine case. We shall start by proving that we can use

(3.110) to write ˙̂u as a function of (λ̂, ŵ). In fact, since Huv = 0 (see Lemma 3.2.4),

the coefficient of ˙̂v in Ḣu is zero and hence,

Ḣu = Ḣu[λ̂](x̂, û, v̂, ˙̂u) = 0. (3.114)

Thus, if the strong Legendre-Clebsch condition (3.111) holds, ˙̂u can be eliminated

from (3.114) yielding
˙̂u = Γ[λ̂](x̂, û, v̂). (3.115)

Observe that Hv = Hv[λ̂](x̂, û), i.e. it does not depend on v. In view of (3.115) we

can write Ḣv = Ḣv[λ̂](x̂, û, v̂). Thus, a priori, Ḣv is a function of (λ̂, x̂, û, v̂). However,

since Goh in [67] stated that
∂Ḣv

∂v
= 0 (3.116)

on the reference trajectory, Ḣv does not depend on v̂, and so

Ḣv = Ḣv[λ̂](x̂, û) = 0. (3.117)

We can then differentiate one more time (3.117) obtaining (3.112) as it was desired.
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Remark 3.7.2. Observe that if the system has the special structure

ẋ = f0(x, u) +
m∑
i=1

vifi(x), (3.118)

then in the expression (3.115), ˙̂u is affine on v̂. In fact, by differentiating Hu we get

Ḣu = HuxHp −HxHup +Huu
˙̂u

= p̂ (
∑m

i=0 v̂ifi,ux)
(∑m

j=0 v̂jfj

)
− p̂

(∑m
j=0 v̂jfj,x

)
(
∑m

i=0 v̂ifi,u) +Huu
˙̂u

= p̂
∑m

i,j=0 v̂iv̂j(fi,uxfj − fj,xfi,u) +Huu
˙̂u.

(3.119)

In our case, we have fi,u = 0 for i = 1, . . . ,m, and hence it follows from (3.119),

Ḣu = p̂

m∑
j=0

v̂j(f0,uxfj − fj,xf0,u) +Huu
˙̂u. (3.120)

Thus, given that Huu does not depend on v̂, we can deduce from (3.120) that ˙̂u is

affine on v̂.

Observe now that the derivative of the function(
Hu

−Ḧv

)
(3.121)

with respect to (u, v) is given by

J :=

 Huu 0

−∂Ḧv

∂u
−∂Ḧv

∂v

 , (3.122)

where we used (3.16). Therefore, the equations (3.110) and (3.112) can be used to

solve (û, v̂) in terms of (λ̂, x̂) provided that J is invertible. Notice that if (3.111) and

(3.113) are verified, J is definite positive and consequently, nonsingular.

Finally, see that (3.112) together with the boundary conditions

Hv[λ̂](ŵT ) = 0, (3.123)

Ḣv[λ̂](ŵ0) = 0, (3.124)

guarantee the second identity in (3.11).

Notation: Denote by (OS) the set of equations consisting of (3.2)-(3.3), (3.7), (3.9)-

(3.10), (3.110), (3.112) and the boundary conditions (3.123)-(3.124).

Remark 3.7.3. Instead of (3.123)-(3.124), we could choose another pair of endpoint

conditions among the four possible ones: Hv(0) = 0, Hv(T ) = 0, Ḣv(0) = 0 and

Ḣv(T ) = 0, always including at least one of order zero. The choice we made will

simplify the presentation of the result afterwards.
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The rest of this article is very close to what was done in Aronna el at- [10] (or

Sections 2.4-2.7 of Chapter 2 of this thesis). The presentation here is then more

concise, and the reader is referred to the mentioned sections for further details.

3.7.2 The algorithm

The aim of this section is to present an appropriated numerical scheme to solve system

(OS). Let us define the shooting function

S : D(S) := Rn × Rn+dη ,∗ → Rdη × R2n+2m,∗,

(
x0, p0, β

)
=: ν 7→ S(ν) :=


η(x0, xT )

p0 +Dx0`[λ](x0, xT )
pT −DxT `[λ](x0, xT )

Hv[λ](wT )

Ḣv(w0)

 ,
(3.125)

where (x, u, v, p) is a solution of (3.2),(3.9),(3.110),(3.112) with initial conditions x0

and p0, and λ := (p, β). Note that solving (OS) consists of finding ν̂ ∈ D(S) such that

S(ν̂) = 0. (3.126)

Since the number of equations in (3.126) is greater than the number of unknowns,

the Gauss-Newton method is a suitable approach to solve it (see [10] or Section

2.4 of Chapter 2 of this thesis for further details of Gauss-Newton method). The

shooting algorithm we propose here consists of solving the equation (3.126) by the

Gauss-Newton method. As we already know, Gauss-Newton is applicable when the

derivative of the shooting function S is one-to-one in a neighborhood of ν̂, and in this

case it converges locally quadratically.

The main result of this last part of the article is presenting a condition that

guarantees the local quadratic convergence of the shooting method. This condition

involves the sufficient optimality condition of Theorem 3.6.2 in Section 3.6.

3.8 Convergence of the shooting algorithm

The purpose of this section is proving the following result:

Theorem 3.8.1. If ŵ is a weak minimum of (SP) satisfying (3.72) then the shooting

algorithm is locally quadratically convergent.
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3.8.1 Linearized optimality system

In this paragraph we shall compute the linearization of (OS). The reader is referred to

the Appendix for a definition of linearized system of differential algebraic equations

and for a commutation property between the linearization and time differentiation.

We denote by LinF the linearization of function F . Each time the argument of a

function is missing, assume that it is evaluated on (ŵ, λ̂). Recall the definitions of B

in (3.21) and of C in (3.27). Notice that, since Hv = pB,

LinHv = p̄B + x̄>C>. (3.127)

The linearization of system (OS) at point (x̂, û, v̂, λ̂) consists of the linearized state

equation (3.18) with initial-final condition (3.23), the linearized costate equation

− ˙̄pt = p̄tAt + x̄>t Qt + ū>t Et + v̄>t Ct, a.e. on [0, T ], (3.128)

with initial-final conditions

p̄0 = −

[
x̄>0 D

2
x20
`+ x̄>TD

2
x0xT

`+

dη∑
j=1

β̄jDx0ηj

]
(x̂0,x̂T )

, (3.129)

p̄T =

[
x̄>TD

2
x2T
`+ x̄>0 D

2
x0xT

`+

dη∑
j=1

β̄jDxT ηj

]
(x̂0,x̂T )

, (3.130)

and the algebraic equations

0 = Lin Hu = p̄D + x̄>E> + ū>R0, (3.131)

0 = Lin Ḧv = − d2

dt2
(p̄B + x̄>C>), a.e. on [0, T ], (3.132)

0 = (Lin Hv)T = p̄TBT + x̄>TC
>
T , (3.133)

0 = (Lin Ḣv)0 = − d

dt

∣∣∣∣
t=0

(p̄B + x̄>C>), (3.134)

where we used equation (3.127) and commutation property of Lemma 3.9.2. There is

no need to detail the derivatives in (3.133) and (3.134) since we will not make use of

them later. Observe that (3.132) -(3.134) and Lemma 3.9.2 yield

0 = Lin Hv = p̄B + x̄>C>, a.e. on [0, T ]. (3.135)

Note that equation (3.135) holds everywhere on [0, T ] since all the involved functions

are continuous in time.
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Notation: denote by (LS) the set of equations consisting of (3.18), (3.23), (3.128)-

(3.134).

Once we have computed the linearized system (LS), we can write the derivative

of S in the direction ν̄ :=
(
x̄0, p̄0, β̄

)
as follows:

S ′(ν̂)ν̄ =



Dη(x̂0, x̂T )(x̄0, x̄T )

p̄0 +
[
x̄>0 D

2
x20
`+ x̄>TD

2
x0xT

`+
∑dη

j=1 β̄jDx0ηj

]
(x̂0,x̂T )

p̄T −
[
x̄>TD

2
x2T
`+ x̄>0 D

2
x0xT

`+
∑dη

j=1 β̄jDxT ηj

]
(x̂0,x̂T )

p̄TBT + x̄>TCT
d
dt

∣∣
t=0

(p̄B + x̄>C>)


, (3.136)

where (x̄, ū, v̄, p̄) is the solution of (3.18),(3.128),(3.131),(3.132) associated to the

initial condition (x̄0, p̄0) and the multiplier β̄.

Proposition 3.8.2. The derivative S ′(ν̂) is one-to-one if the only solution of (3.18),

(3.128), (3.131), (3.132) with the initial conditions x̄0 = 0, p̄0 = 0 and with β̄ = 0 is

(x̄, ū, v̄, p̄) = 0.

3.8.2 Additional LQ problem

In this paragraph we present a linear-quadratic control problem (LQ) in the variables

(ξ̄, ū, ȳ, h̄) having ΩP2 (defined in (3.67)) as cost functional. Note that if condition

(3.72) holds then (LQ) has a unique optimal solution (ξ, y, h) = 0. Furthermore,

(3.72) yields the strong convexity of the pre-Hamiltonian of (LQ) and hence its unique

optimal solution is characterized by its first order optimality system. Here we present

a one-to-one linear mapping that transforms each solution of (LS) (introduced in

paragraph 3.8.1 above) into a solution of this new optimality system. Theorem 3.8.1

will follow.

Let us consider the linear-quadratic problem (LQ) given by:

ΩP2(ξ̄, ū, ȳ, h̄)→ min, (3.137)

(3.45)-(3.47), (3.138)

ḣ = 0. (3.139)

Here ū and ȳ are the control variables, ξ̄ and h̄ are the state variables. Denote

by χ̄ and χ̄h the costate variables corresponding to ξ̄ and h̄, respectively. Note

that the qualification hypothesis in Assumption 3.7.1 implies that {Dηj(x̂0, x̂T )}dηj=1

are linearly independent. Hence any weak solution (ξ̄, ū, ȳ, h̄) of (LQ) has a unique
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associated multiplier λLQ := (χ̄, χ̄h, β
LQ) solution of the system that we describe next.

The pre-Hamiltonian for (LQ) is

H[λLQ](ξ̄, ū, ȳ) := χ̄(Aξ̄ +Dū+B1ȳ)

+(1
2
ξ̄>Qξ̄ + ū>Eξ̄ + ȳ>Mξ̄ + 1

2
ū>R0ū+ ȳ>Jū+ 1

2
ȳ>R1ȳ).

(3.140)

Observe that H does not depend on h̄ since it has zero dynamics and does not appear

in the running cost. The initial-final Lagrangian is

`LQ[λLQ](ξ̄0, ξ̄T , h̄T ) := g(ξ̄0, ξ̄T , h̄T ) +

dη∑
j=1

βLQj Dηj(ξ̄0, ξ̄T +BT h̄T ). (3.141)

The costate equation for χ̄ is:

− ˙̄χt = Dξ̄H[λLQ] = χ̄A+ ξ̄>Q+ ū>E + ȳ>M, (3.142)

with the boundary conditions:

χ̄0 = −Dξ̄0`
LQ[λLQ]

= −ρLQ0

[
ξ̄>0 D

2
x20
`+ (ξ̄T +BT h̄)>D2

x0xT
`
]
−
∑dη

j=1 β
LQ
j Dx0ηj,

(3.143)

χ̄T = DξT `
LQ[λLQ]

= ρLQ0

[
ξ̄>0 D

2
x0xT

`+ (ξ̄T +BT h̄)>D2
x2T
`
]

+ h̄>CT +
∑dη

j=1 β
LQ
j DxT ηj.

(3.144)

For costate variable χ̄h we get the equation

˙̄χh = 0, (3.145)

χ̄h,0 = 0, (3.146)

χ̄h,T = Dh̄`
LQ[λLQ]. (3.147)

Hence, χ̄h ≡ 0 and thus (3.147) yields

0 = ρLQ0

[
ξ̄>0 D

2
x0xT

`BT + (ξ̄T +BT h̄)>(D2
x2T
`BT + C>T )

]
+

dη∑
j=1

βLQj DxT ηjBT . (3.148)

The stationarity with respect to the new control ȳ implies

0 = Hū = χ̄D + ξ>E> + ū>R0 + ȳ>J, (3.149)

0 = Hȳ = χ̄B1 + ξ̄>M> + ū>J> + ȳ>R1. (3.150)

Notation: Denote by (LQS) the set of equations consisting of (3.138)-(3.139), (3.142)-

(3.144),(3.148) and (3.150), and observe that (LQS) is an optimality system of

problem (3.137)-(3.139).
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3.8.3 The transformation

In this paragraph we show how to transform a solution of (LS) into a solution of

(LQS) via a one-to-one linear mapping. Given (x̄, ū, v̄, p̄, β̄) ∈ W × W1,∞ × Rdη ,∗,

define

ȳt :=

∫ t

0

v̄sds, ξ̄ := x̄−Bȳ, χ̄ := p̄+ ȳ>C, χ̄h := 0, h̄ := ȳT , β
LQ
j := β̄j. (3.151)

The next lemma shows that the point (ξ̄, ū, ȳ, h̄, χ̄, χ̄h, β
LQ) is solution of (LQS) pro-

vided that (x̄, ū, v̄, p̄, β̄) is solution of (LS).

Lemma 3.8.3. The one-to-one linear mapping defined by (3.151) converts each so-

lution of (LS) into a solution of (LQS).

Remark 3.8.4. Recall Corollary 3.5.3 for the proof below.

Proof. Let (x̄, ū, v̄, p̄, β̄) be a solution of (LS), and set (ξ̄, ū, ȳ, h̄, χ̄, βLQ) by (3.151).

Part I. We shall prove that (ξ̄, ū, ȳ, h̄, χ̄, βLQ) satisfies conditions (3.138). Equation

(3.45) follows differentiating expression of ξ̄ in (3.151), and equation (3.47) follows

from (3.23).

Part II. We shall prove that (ξ̄, ū, ȳ, h̄, χ̄, βLQ) verifies (3.142)-(3.144) and (3.148).

Differentiate χ̄ in (3.151), use equations (3.128) and (3.151), recall definition of M in

(3.55) and obtain:

− ˙̄χ = − ˙̄p− v̄>C − ȳ>Ċ
= p̄A+ x̄>Q+ ū>E − ȳ>Ċ
= χ̄A+ ξ̄>Q+ ū>E + ȳ>(−CA+B>Q− Ċ)
= χ̄A+ ξ>Q+ ū>E + y>M.

(3.152)

Hence (3.142) holds. Equations (3.143)-(3.144) follow from (3.129)-(3.130). Combine

(3.130) and (3.133) to get

0 = p̄TBT + x̄>TC
>
T

=
[
p̄>TD

2
x2T
`+ x̄>0 D

2
x0xT

`+
∑dη

j=1 β̄jDxT ηj

]
(x̂0,x̂T )

BT + x̄>TC
>
T .

(3.153)

Performing transformation (3.151) in the previous equation yields (3.148).

Part III. Let us show that the stationarity with respect to ȳ in (3.149) is verified.

The transformation in (3.151) together with equation (3.131) imply

0 = (χ̄− ȳ>C)D + (ξ̄ +Bȳ)>E> + ū>R0

= χ̄D + ξ̄>E> + ū>R0 + ȳ>(B>E> − CD).
(3.154)
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Calling back definition of J in (3.55), stationarity condition (3.149) follows.

Part IV. Finally, we shall prove that (3.150) holds. Perform the transformation

(3.151) in equation (3.135) to obtain

0 = (χ̄− ȳ>C)B + (ξ̄ +Bȳ)>C> = χ̄B + ξ̄>C>, (3.155)

since Corollary 3.5.3 holds when the multiplier in unique. Differentiating previous

expression we obtain

0 = −(χ̄A+ ξ̄>Q+ ū>E + ȳ>M)B + +χ̄Ḃ

+(Aξ̄ +Dū+B1ȳ)>C> + ξ̄>Ċ>.
(3.156)

Recall the definitions of B1 in (3.46) and of J in (3.55), of R1 in (3.57), and use then

in (3.156) to get (3.150).

Parts I to IV show that (ξ̄, ū, ȳ, h̄, χ̄, βLQ) is a solution of (LQS), and hence the

result follows.

Remark 3.8.5. Observe that the unique assumption we needed in previous proof was

the symmetry condition in Corollary 3.5.3.

Proof. [of Theorem 3.8.1] Let (x̄, ū, v̄, p̄, β̄) be a solution of (LS), and let

(ξ̄, ū, ȳ, h̄, χ̄, χ̄h, β
LQ) be defined by the transformation in (3.151). Hence we know by

Lemma 3.8.3 that (ξ̄, ū, ȳ, h̄, χ̄, χ̄h, β
LQ) is solution of (LQS). As it has been already

pointed out, condition (3.72) implies that the unique solution of (LQS) is 0. Hence

(ξ̄, ū, ȳ, h̄, χ̄, χ̄h, β
LQ) = 0 and thus (x̄, ū, v̄, p̄, β̄) = 0. Conclude that the unique solu-

tion of (LS) is 0. This implies the injectivity of S ′ at ν̂, and hence the result follows.

3.9 Conclusion

We provided a set of necessary and sufficient conditions for a problem having a part of

the control variable entering linearly in the pre-Hamiltonian. These conditions apply

to a weak minimum and do not assume the uniqueness of multipliers.

We proposed a shooting algorithm based on the procedure described by Goh [69]

to compute the control variables in terms of the state and costate variables. We

proved that the sufficient condition above-mentioned guarantees the local quadratic

convergence of the shooting algorithm.
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Appendix

Linearization of a Differential Algebraic System

For the aim of finding an expression of S ′(ν̂), we make use of the linearization of (OS)

and thus we recall the following concept:

Definition 3.9.1 (Linearization of a Differential Algebraic System). Consider a sys-

tem of differential algebraic equations:

ζ̇t = F(ζt, αt), (3.157)

0 = G(ζt, αt), (3.158)

0 = I(ζ0, ζT ), (3.159)

with F : Rm+n → Rn, G : Rm+n → RnG , and I : R2n → RnI . Let (ζ0, α0) be a solution.

We call linearized system at point (ζ0, α0) the following DAE in the variables ζ̄ and

ᾱ :

˙̄ζt = LinF |(ζ0t ,α0
t )

(ζ̄t, ᾱt), (3.160)

0 = LinG |(ζ0t ,α0
t )

(ζ̄t, ᾱt), (3.161)

0 = Lin I |(ζ00 ,ζ0T ) (ζ̄0, ζ̄T ), (3.162)

where

LinF |(ζ0t ,α0
t )

(ζ̄t, ᾱt) := F ′(ζ0
t , α

0
t )(ζ̄t, ᾱt), (3.163)

and the analogous definitions for LinG and LinH.

The technical result below will simplify the computation of the linearization of

(OS). Its proof is immediate.

Lemma 3.9.2 (Commutation of linearization and differentiation). Given G and F
as in the previous definition, it holds:

d

dt
LinG = Lin

d

dt
G, d

dt
LinF = Lin

d

dt
F . (3.164)
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Abstract

We consider an optimal control problem of optimal hydrothermal scheduling. The

model, already discussed in [27], is deterministic and takes into account the depen-

dence of efficiency of hydroelectric energy with respect to the volume of water in

dams. The thermal cost is a strongly convex and nondecreasing function of the ther-

mal power. We study the possible occurence of a singular arc, for which necessary

conditions due to Goh are known (Goh-Legendre-Clebsch condition in (21)). We are

able to give conditions under which these conditions are automatically satisfied.

4.1 Introduction

On a weekly basis optimal hydrothermal scheduling is usually performed using linear

programming techniques, see [57] and the references therein. In such a case limitations

due to switch on-off of engines as well as the variable efficiency as function of height of

water are neglected. Our proposal is to study the hydrothermal scheduling by taking

into account this variable efficiency. Our model is deterministic and with continuous

time, which is meaningful for a short-term horizon. In this respect we follow the

model in [27]. These authors obtain existence and also uniqueness of minimizers in

some special situations.

The novelty of this paper is to apply the tools of optimal control theory. We focus

on the analysis of singular arcs. Our main result is a characterization of the Goh-

Legendre-Clebsch (GLC) condition [67, 69]. As a consequence we show that for some

choices of the efficiency coefficients, this condition always holds (resp. does not hold).

When the GL condition holds, the algebraic variables (controls) can be eliminated

from some algebraic expressions and expressed as functions of the differential variables

(state and costate).

4.2 Background on singular arcs

Consider an optimal control problem with state equation

ẏ(t) = f(u(t), w(t), y(t)), (4.1)

where y(t) ∈ Rn is the state, u(t) ∈ Rm1 is the “nonlinear control”, and w(t) ∈ Rm2

is such that the mapping w 7→ f(u,w, y) is affine, and therefore we call w the “affine

control”. For simplicity we assume that the cost is a function φ(y(T )) of the terminal
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state (the horizon is fixed; if an integral cost is present then we can eliminate it thanks

to an additional state variable). Let (ū, w̄, ȳ) be a solution of this unconstrained

problem. The Hamiltonian associated with the problem is

H(u,w, y, p) := p · f(u,w, y). (4.2)

The dynamics of the costate is

−ṗ(t) = Hy(u(t), w(t), y(t), p(t)). (4.3)

By Pontryagin’s principle we have that the Hamiltonian

H(u,w, y, p) := p · f(u,w, y), (4.4)

attains its minimum over the control variables along the trajectory, i.e.,

H(ū(t), w̄(t), ȳ(t), p̄(t)) ≤ H(u,w, ȳ(t), p̄(t)), for all (u,w). (4.5)

The first-order optimality conditions for this problem are

(i) Hu(ū(t), w̄(t), ȳ(t), p̄(t)) = 0; (ii) Hw(ū(t), w̄(t), ȳ(t), p̄(t)) = 0. (4.6)

The second-order optimality condition is, skipping the variables and denoting A � B

if A, B are symmetric matrices of same size and A−B is positive semidefinite:(
Huu Huw

Hwu Hww

)
� 0. (4.7)

This is known as the Legendre-Clebsch condition.

Since w 7→ H(u,w, y, p) is affine, Hww = 0 and so the Legendre-Clebsch is equiv-

alent to the two relations below:

(i) Huu � 0 (ii) Huw = 0. (4.8)

If Huu � 0 (is positive definite) then by the Implicit Function Theorem (IFT) we

can locally solve Eq.(4.6)(i) by expressing ū as a function say U of (w̄, ȳ, p̄). However

since Eq.(4.6)(ii) does not depend on w̄, we cannot eliminate w̄ from the latter.

Further results were obtained by considering high-order time derivatives Hw along

the optimal trajectory. Generalizations of the Legendre-Clebsch condition, for opti-

mal control problems with Hamiltonian affine w.r.t. the control, were obtained by

Kelley [79, 80], and then higher order conditions were obtained by [81]. Robbins [112]

consider the case when only some of the components of the control enter in an affine
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way, then eliminating the other components using Pontryagin’s principle formulates

a reduced system for which similar conditions hold. However, this construction by

reduction is not obvious. By a different approach Goh could obtain more general

conditions called Goh-Legendre-Clebsch conditions [67, 69]. In the simplest case they

are as follows: (
Huu −(Ḣw)>u
−(Ḣw)u −(Ḧw)w

)
� 0. (4.9)

In the above relation the total derivatives denoted by one or two points must be

understood as being applied to Hw. The expression of the total derivative is obtained

by applying the chain rule, replacing the derivatives of state and costate with their

expression, but without elimination of the nonlinear control and its derivatives. For

a qualified constrained problem, the above relations remain valid along an arc where

these constraints are not active.

We will now see how to apply these results to our model and see if this allows

to eliminate the algebraic variables (an essential condition for designing shooting

algorithms in the presence of singular arcs, see e.g. [90] and Aronna [7]).

4.3 Optimal Hydropower Generation Problem

We know (somehow) the complete trajectory of the electricity demand d(t), the ther-

mal production cost P which is an increasing, positive function of the load. We need

to decide for each time how much energy we will produce with each kind of generation

units, complying with the restrictions. If we call π(t) the total amount of electricity

produced with the hydropower plants, the rest, d(t) − π(t) will be produced with

the thermal units. For the sake of planning, the water has an economic value that

has also to be considered in the cost definition. More precisely, the criterium to be

minimized is

J(q, s) =

T∫
0

P [d(t)− π(t)]dt− a
∑
i

yi(T ), (4.10)

where q(t) = (qi(t)), i = 1, 2, . . . ,m, is the outflow in each plant, y(t) = (yi(t)),

i = 1, 2, . . . ,m, is the water volume in the valley i at time t, π(t) =
∑
ρi(yi)qi and

s(t) = (si(t)), i = 1, 2, . . . ,m, is the spilled out water at each plant at time t. We

assume that the efficiency of each turbine is a positive and increasing function of the

volumen ρi(yi), the maximum volume of each valley is given by yM , and the maximum

allowed flow in each turbine is qM . Now the dynamic equation for the water volume
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on each valley is given by

ẏi(t) = bi(t)− si(t)− qi(t), (4.11)

where bi(t) is the water inflow for each valley and we consider also that

0 ≤ yi(t) ≤ yM , (4.12)

0 ≤ qi(t) ≤ qM , (4.13)

0 ≤ si(t), (4.14)∑
ρi(yi)qi ≤ d. (4.15)

4.4 Singular arcs study with two plants

We have the following dynamical system{
ẏ1 = b1 − s1 − q1,
ẏ2 = b2 − s2 − q2.

(4.16)

The Hamiltonian is, in this case

H(p1, p2, y1, y2, q1, q2, s1, s2) = p1(b1− s1− q1) + p2(b2− s2− q2) +P (d− ρ1q1− ρ2q2).

(4.17)

By PMP we have that

0 = Hqi = −pi − P ′(d−
2∑

k=1

ρkqk)ρi, (4.18)

and

ṗi = −Hyi = −P ′(d−
2∑

k=1

ρkqk)ρ
′
i. (4.19)

From (4.18) we know that

pi = −P ′(d−
2∑

k=1

ρkqk)ρi, (4.20)

and then, as P ′ and ρi are strictly positive, we have that

pi < 0. (4.21)

From (4.19), we can deduce that

ṗi < 0, (4.22)
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since ρ′i > 0.

We now make a change of variables on controls in order to highlight the presence

of an affine control. Consider the following new control variables

π =
ρ1q1 + ρ2q2

2
, η =

ρ1q1 − ρ2q2

2
.

The resulting dynamics is 
ẏ1 = b1 − s1 −

π + η

ρ1

,

ẏ2 = b2 − s2 −
π − η
ρ2

,
(4.23)

and the new Hamiltonian reads

H(p, y, π, η, s) = p1

(
b1 − s1 −

π + η

ρ1

)
+ p2

(
b2 − s2 −

π − η
ρ2

)
+ P (d− 2π). (4.24)

If the qualified form of Pontryagin’s principle holds, then we have that the costate

p satisfies

−ṗ1 = Hy1 =
ρ′1p1(π + η)

ρ2
1

, − ṗ2 = Hy2 =
ρ′2p2(π − η)

ρ2
2

. (4.25)

In the sequel we note that we can assume that s1 = s2 = 0, since when control

constraints are not active (which by the definition is the case on singular arcs we are

interested in) there is no spillover. In order to check Goh’s condition we have to com-

pute the first- and second-order time derivatives of Hη along the optimal trajectory.

Their expression is stated in the next lemma.

Proposition 4.4.1. The expression of Hη and its first-order time derivative Ḣη, as

well as the one of the partial derivative w.r.t. η of Ḧη, are

Hη = −p1

ρ1

+
p2

ρ2

, (4.26)

Ḣη =
p1ρ
′
1b1

ρ2
1

− p2ρ
′
2b2

ρ2
2

, (4.27)

∂Ḧη

∂η
= −p1b1

(
ρ
′2
1

ρ4
1

+
1

ρ1

[
ρ′1
ρ2

1

]′)
− p2b2

(
ρ
′2
2

ρ4
2

+
1

ρ2

[
ρ′2
ρ2

2

]′)
. (4.28)

Proof. The expression of Hη and of its first-order time derivative are esay conse-

quences of the state and costate equations. The second-order time derivative is



150 4. CONTINUOUS TIME OPTIMAL HYDROTHERMAL SCHEDULING

Ḧη = − ρ
′2
1

ρ4
1

p1(π + η)b1 + p1

[
ρ′1
ρ2

1

]′
(b1 −

π + η

ρ1

)b1 + p1
ρ′1
ρ2

1

ḃ1

+
ρ
′2
2

ρ4
2

p2(π − η)b2 − p2

[
ρ′2
ρ2

2

]′
(b2 −

π − η
ρ2

)b2 − p2
ρ′2
ρ2

2

ḃ2.

And then, differentiating with respect to η we obtain

∂Ḧη

∂η
= −ρ

′2
1

ρ4
1

p1b1 −
p1b1

ρ1

[
ρ′1
ρ2

1

]′
− ρ

′2
2

ρ4
2

p2b2 −
p2b2

ρ2

[
ρ′2
ρ2

2

]′
(4.29)

= −p1b1

(
ρ
′2
1

ρ4
1

+
1

ρ1

[
ρ′1
ρ2

1

]′)
− p2b2

(
ρ
′2
2

ρ4
2

+
1

ρ2

[
ρ′2
ρ2

2

]′)
, (4.30)

as was to be proved.

Lemma 4.4.2. Goh-Legendre-Clebsch condition is satisfied if and only if

∂Ḧη

∂η
≤ 0. (4.31)

Proof. We recall the matrix of Goh-Legendre-Clebsch condition (we use here the fact

that both π and η are scalar variables): Hππ −∂Ḣη

∂π

−∂Ḣη

∂π
−∂Ḧη

∂η

 . (4.32)

Let us look for Hππ.

Hπ = −p1

ρ1

− p2

ρ2

− 2P ′(d− 2π), (4.33)

and then

Hππ = 4P ′′(d− 2π), (4.34)

which is strictly positive as P is strictly convex. From (4.27) we get that

∂Ḣη

∂π
= 0. (4.35)

Then the matrix in (4.32) is as follows4P ′′(d− 2π) 0

0 −∂Ḧη

∂η

 . (4.36)

We conclude then that it is semidefinite positive if and only if

∂Ḧη

∂η
≤ 0. (4.37)
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Using the fact that pi < 0, i = 1, 2, and that bi ≥ 0, from (4.28) we can obtain

sufficient conditions for having (not having) Goh’s condition. We put

Φ(ρ) :=
ρ
′2

ρ4
+

1

ρ

[
ρ′

ρ2

]′
. (4.38)

Corollary 4.4.3. (i) If

Φ(ρi) ≤ 0, i = 1, 2, (4.39)

then Goh’s condition is satified.

(ii) If

bi > 0,Φ(ρi) > 0, i = 1, 2, (4.40)

then Goh’s condition is not satified, and hence, there are no singular arcs.

Lemma 4.4.4. If
∂Ḧη

∂η
6= 0

then we can retrieve η, π from the system of equations{
Hπ = 0,

Ḧη = 0.
(4.41)

Proof. The Jacobian matrix for the system in (4.41) is the following one

J =

Hππ Hπη

∂Ḧη

∂π

∂Ḧη

∂η

 . (4.42)

Then, as Hπη = 0 and Hππ > 0 we will have that J is nonsingular if and only if

∂Ḧη

∂η
6= 0.

4.5 Singular arcs study with m plants

In this paragraph we will analyse Goh-Legendre-Clebsch condition for the problem

with m dams. The change of variables in this case varies from the one we made for

two dams and is as follows: we consider for i = 1, . . . ,m the control ηi = ρiqi − π.
The dynamical system can be written as

ẏi = bi − si −
π + ηi
ρi

, (4.43)
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with the additional constraint
∑m

i=1 ηi = 0. Then we have that
∑
ρiqi = mπ, and

moreover, we can work out ηm from this constraint. Then:

ηm = −
m−1∑
i=1

ηi. (4.44)

Then, the dynamic system is as follows:
ẏi = bi − si −

π + ηi
ρi

, i = 1, . . .m− 1,

ẏm = bm − sm −
π −

∑m−1
i=1 ηi

ρm
,

(4.45)

and the Hamiltonian is

H(π, η, s, y, p) =
m−1∑
i=1

pi(bi− si−
π + ηi
ρi

) + pm(bm− sm−
π −

∑m−1
i=1 ηi

ρm
) +P (d−mπ).

(4.46)

PMP states that:

ṗi = −Hyi = −piρ
′
i(π + ηi)

ρ2
i

, i = 1, . . . ,m− 1,

ṗm = −Hym = −pmρ
′
m(π −

∑m−1
i=1 ηi)

ρ2
m

,

pi(T ) = −a, i = 1, . . . ,m

where π(t), η(t), s(t), y(t), p(t) are optimal.

Proposition 4.5.1. For all i = 1, . . . ,m− 1, we have that

Hηi = −pi
ρi

+
pm
ρm

, (4.47)

Ḣηi =
ρ′ibipi
ρ2
i

− ρ′mbmpm
ρ2
m

, (4.48)

Ḧηi = Ai − Am, (4.49)

where

Ai = −ρ
′2
i

ρ4
i

pi(π + ηi)bi + pi

[
ρ′i
ρ2
i

]′
(bi −

π + ηi
ρi

)bi + pi
ρ′i
ρ2
i

ḃi, (4.50)

Am = −ρ
′2
m

ρ4
m

pm(π −
m−1∑
i=1

ηi)bm + pm

[
ρ′m
ρ2
m

]′
(bm −

π −
∑m−1

i=1 ηi
ρm

)bm + pm
ρ′m
ρ2
m

ḃm. (4.51)

Proof. It is easy to retrieve this expressions by making an analogy with the equations

for two plants and taking into account the difference between the dynamical systems

of both problems.
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Theorem 4.5.2. The matrix in Goh-Legendre-Clebsch condition is the following one:m2P ′′(d−mπ) 0

0 −∂Ḧη

∂η

 , (4.52)

where
∂Ḧη

∂η
= −diag(pibiΦ(ρi))− pmbmΦ(ρm)11T . (4.53)

With 1 we denote the m− 1 dimensional column vector with all its components equal

to 1, and we have already introduced Φ in the last paragraph.

Proof. From (4.46):

Hπ = −mP ′(d−mπ), (4.54)

and then

Hππ = m2P ′′(d−mπ). (4.55)

Now, from (4.48) we obtain that

∂Ḣηi

∂π
= 0. (4.56)

From (4.49), we know that

Ḧηi = Ai − Am, (4.57)

then, let us look for

∂Ai
∂ηj

, for i = 1, . . . ,m, j = 1, . . . ,m− 1. (4.58)

From (4.50) and (4.51)

∂Ai
∂ηi

= −pibi
(
ρ
′2
i

ρ4
i

+
1

ρi

[
ρ′i
ρ2
i

]′)
= −pibiΦ(ρi), i = 1, . . . ,m− 1, (4.59)

∂Ai
∂ηj

= 0, i, j = 1, . . . ,m− 1, i 6= j, (4.60)

∂Am
∂ηi

= pmbm

(
ρ
′2
m

ρ4
m

+
1

ρm

[
ρ′m
ρ2
m

]′)
= −pmbmΦ(ρm), i = 1, . . . ,m− 1. (4.61)

Then
∂Ḧηi

∂ηi
=
∂Ai
∂ηi
− ∂Am

∂ηi
= −pibiΦ(ρi)− pmbmΦ(ρm), (4.62)
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∂Ḧηi

∂ηj
=
∂Ai
∂ηj
− ∂Am

∂ηj
= −pmbmΦ(ρm), if i 6= j. (4.63)

We arrived then to the expected result.

Using the fact that pi < 0 since it is solution of an homogeneous linear differential

equation and its final value is negative, and that bi ≥ 0; from Theorem 4.5.2 we can

obtain sufficient conditions for having (not having) Goh’s condition:

Corollary 4.5.3. (i) If

Φ(ρi) ≤ 0, i = 1, . . . ,m, (4.64)

then Goh’s condition is satified.

(ii) If

bi > 0,Φ(ρi) > 0, i = 1, . . . ,m, (4.65)

then Goh’s condition is not satified, and hence, there are no singular arcs.

Proof. If condition (i) is satisfied we will have that the matrix in Goh-Legendre-

Clebsch condition is a sum of two semidefinite positive matrix, and thus, it will be

semidefinite positive. That proves item (i).

For item (ii) we use the same argument.

Remark 4.5.4. When we eliminated ηm, we could have chosen any other control ηi,

and then there are other sufficient conditions for having (not having) Goh-Legendre-

Clebsch condition by putting another ηi in the place of ηm.



Conclusion

In this thesis we studied two types of optimal control problems. The first class was

governed by a control-affine system and the second type has a partially control-affine

dynamics.

In Chapter 1 we gave a pair of second order necessary and sufficient conditions

for a bang-singular solution for a control-affine problem. The sufficient condition is

restricted to the scalar control case, and it is the main result of the chapter. These

necessary and sufficient conditions are close in the sense that, to pass from one to

the other, one has to strengthen a non-negativity inequality transforming it into a

coercivity condition. We checked the sufficient condition in a simple example.

In Chapter 2 we suggested a shooting algorithm for problems having control-

affine dynamics. The algorithm can be applied to compute an optimal bang-singular

solution. We provided a sufficient condition for this algorithm to be convergent and

we related this condition to a second order sufficient condition of optimality for totally

singular extremals. The sufficient condition obtained in Chapter 1 is an extension of

the latter that applies to bang-singular solutions. The convergent result is the main

theorem of the chapter. The algorithm was tested in three simple problems. In some

cases, we could established the stability of the optimal local solution under small

perturbations of the data.

In Chapter 3 we studied a problem governed by a partially control-affine system.

We provided a set of necessary and sufficient conditions for a totally singular solution.

No control constraints were considered. We proposed a shooting algorithm, and we

proved that the just mentioned sufficient condition guarantees the local quadratic

convergence of this shooting.

Finally, in Chapter 4, we exhibited a model of electricity production that responds

to a partially control-affine structure, after an appropriated change of variables. It

is then a motivation of the investigation of Chapter 3. This problem has control

bounds. We studied the possible occurrence of a singular arc by means of second

order conditions established by Goh in [67, 69].
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volume 40 of Mathématiques & Applications (Berlin) [Mathematics & Applica-

tions]. Springer-Verlag, Berlin, 2003.
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[33] Y. Chitour, F. Jean, and E. Trélat. Singular trajectories of control-affine sys-

tems. SIAM J. Control Optim., 47(2):1078–1095, 2008.

[34] C.W. Clark. Mathematical Bioeconomics. John Wiley & Sons, 1976.

[35] R. Cominetti and J.-Penot. Tangent sets of order one and two to the posi-

tive cones of some functional spaces. Applied Mathematics and Optimization,

(36):291–312, 1997.

[36] M.G. Crandall, L.C. Evans, and P.-L. Lions. Some properties of viscosity so-

lutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc, 282:487–502,

1984.

[37] M.G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton Jacobi equa-

tions. Bull. American Mathematical Society, 277:1–42, 1983.

[38] J.E. Dennis. Nonlinear least-squares. In: D. Jacobs, Editor, The State of the

Art in Numerical Analysis, pages 269–312, 1977.

[39] J.E. Dennis, D.M. Gay, and R. E. Welsch. An adaptive nonlinear least-squares

algorithm. ACM Trans. Math. Softw., 7:348–368, 1981.

[40] A.V. Dmitruk. Quadratic conditions for a weak minimum for singular regimes

in optimal control problems. Soviet Math. Doklady, 18(2), 1977.

[41] A.V. Dmitruk. Quadratic conditions for a Pontryagin minimum in an optimal

control problems, linear in the control, with a constraint on the control. Soviet

Math. Doklady, 28(2):364–368, 1983.

[42] A.V. Dmitruk. Jacobi-type conditions for the problem of Bolza with inequalities.

Math. Notes, 35(6):427–435, 1984.

[43] A.V. Dmitruk. Quadratic order conditions for a Pontryagin minimum in an

optimal control problem linear in the control. Math. USSR Izvestiya, 28:275–

303, 1987.

[44] A.V. Dmitruk. Quadratic order conditions of a local minimum for singular

extremals in a general optimal control problem. Proceedings of Symposia in

Pure Mathematics, 64:163–198, 1999.

[45] A.V. Dmitruk. Jacobi type conditions for singular extremals. Control & Cy-

bernetics, 37(2):285–306, 2008.



BIBLIOGRAPHY 161

[46] A.V. Dmitruk. Quadratic order optimality conditions for extremals completely

singular in part of controls. Operations Research Proceedings 2010, Selected Pa-

pers of the Annual International Conference of the German Operations Research

Society, 0:341–346, 2011.

[47] A.V. Dmitruk and K.K. Shishov. Analysis of a quadratic functional with a

partly singular Legendre condition. Moscow University Comput. Math. and

Cybernetics, 34(1):16–25, 2010.

[48] L. E. Dubins. On curves of minimal length with a constraint on average cur-

vature, and with prescribed initial and terminal positions and tangents. Amer.

J. Math., 79:497–516, 1957.

[49] A.Ya. Dubovitskii and A.A. Milyutin. Extremum problems with constraints.

USSR Comp. Math. and Math. Phys., 5(3):1–80, 1965.

[50] N. Dunford and J. Schwartz. Linear operators, Vol I. Interscience, New York,

1958, 1963.

[51] V.A. Dykhta. Conditions of a local minimum for singular modes in systems

with linear control. Automatics and Remote Control, 42(12):1583–1587, 1982.

[52] U. Felgenhauer. On stability of bang-bang type controls. SIAM J. Control

Optim., 41(6):1843–1867 (electronic), 2003.

[53] U. Felgenhauer. Optimality and sensitivity for semilinear bang-bang type opti-

mal control problems. Int. J. Appl. Math. Comput. Sci., 14(4):447–454, 2004.

[54] U. Felgenhauer. Optimality properties of controls with bang-bang components

in problems with semilinear state equation. Control Cybernet., 34(3):763–785,

2005.

[55] U. Felgenhauer. Controllability and stability for problems with bang-singular-

bang optimal control. 2011. [submitted].

[56] U. Felgenhauer. Structural stability investigation of bang-singular-bang optimal

controls. Journal of Optimization Theory and Applications, 2011. [published as

‘online first’].



162 BIBLIOGRAPHY

[57] E.C. Finardi, E.L. da Silva, and C.A. Sagastizábal. Solving the unit commit-
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