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participé à la direction de ces recherches.
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d’Aubenton-Carafa et Chunlong Chen, ainsi que Olivier Hyrien et son équipe, Guil-
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Résumé

Deux processus majeures de la vie cellulaire, la transcription et la réplication,
nécessitent l’ouverture de la double hélice d’ADN et agissent différemment sur les
deux brins, ce qui génère des taux de mutation différents (asymétrie de mutation),
et aboutit à des compositions en nucléotides différentes des deux brins (asymétrie
de composition). Nous nous proposons de modéliser le programme spatio-temporel
de réplication et son impact sur l’évolution des séquences d’ADN. Dans le génome
humain, nous montrons que les asymétries de composition et de mutation peuvent
être décomposées en deux contributions, l’une associée à la transcription et l’autre
à la réplication. Celle associée à la réplication est proportionnelle à la polarité
des fourches de réplication, elle-même proportionnelle à la dérivée du ”timing” de
réplication. La polarité des fourches de réplication délimite, le long des chromo-
somes humains, des domaines de réplication longs de plusieurs Mpb où le timing
de réplication a une forme de U. Ces domaines de réplication sont également ob-
servés dans la lignée germinale, où ils sont révélés par une asymétrie de composi-
tion en forme de N, indiquant la conservation de ce programme de réplication sur
plusieurs centaines de millions d’années. Les bords de ces domaines de réplication
sont constituées d’euchromatine, permissive à la transcription et à l’initiation de la
réplication. L’analyse de données d’intéraction à longue portée de la chromatine
suggère que ces domaines correspondent à des unités structurelles de la chromatine,
au coeur d’une organisation hautement parallélisée de la réplication dans le génome
humain.



Abstract

Two key cellular processes, namely transcription and replication, require the opening
of the DNA double helix and act differently on the two DNA strands, generating dif-
ferent mutational patterns (mutational asymmetry) that may result, after long evo-
lutionary time, in different nucleotide compositions on the two DNA strands (com-
positional asymmetry). Here, we propose to model the spatio-temporal program of
DNA replication and its impact on the DNA sequence evolution. The mutational
and compositional asymmetries observed in the human genome are shown to de-
compose into transcription- and replication-associated components. The replication-
associated asymmetry is related to the replication fork polarity, which is also shown
to be proportional to the derivative of the mean replication timing. The large-scale
variation of the replication fork polarity delineate Mbp scale replication domains
where the replication timing is shaped as a U. Such replication domains are also
observed in the germline, where they are revealed by a N-shaped compositional
asymmetry, which indicates the conservation of this replication program over sev-
eral hundred million years. The replication domains borders are enriched in open
chromatin markers, and correspond to regions permissive to transcription and repli-
cation initiation. The analysis of chromatin interaction data suggests that these
replication domains correspond to self-interacting chromatin structural units, at the
heart of a highly parallelized organization of the replication program in the human
genome.





Figure 2: Comparing GC skew SGC = G−C
G+C

and replication timing in Bacillus sub-
tilis genome. (A) Schematic representation of the replicon model: divergent bidirectional
progression of the two replication forks from the replication origin (ORI) to the replica-
tion terminus (TER). The replication timing is indicated from early, 0 to late, 1. (B) SGC

calculated in 1 kbp windows along the genomic sequence of Bacillus subtilis. Black points
correspond to intergenic regions, red (resp. blue) points correspond to (+) (resp. (−)) genes,
which coding sequences are on the published (resp. complementary) strand.

Compositional asymmetry in bacteria
A clear relationship between replication and compositional asymmetry was first es-

tablished in prokaryotic genomes by Lobry (1996a). In bacteria, the spatio-temporal
replication program is particularly simple. Most prokaryotes follow the replicon
model depicted in Fig. 2A: the replication origin is defined by a consensus sequence,
replication therefore always initiates at the same genomic locus (ORI), two divergent
forks then replicate the DNA until they meet at the replication terminus (TER). As
shown in Fig. 2B for Bacillus subtilis, many prokaryotic genomes are divided into two
halves: one presents an excess of guanine over cytosine, and the other one, on the
opposite, an excess of cytosine over guanine. The GC skew, defined as SGC = G−C

G+C ,
is thus positive on one half of the genome and negative on the other. Remarkably,
the GC skew profile is tightly related to the spatio-temporal replication program:
the leading strand has positive GC skew whereas the lagging strand has negative
GC skew.

Compositional asymmetry in the human genome
By contrast, the spatio-temporal replication program in eukaryotes is much more

complex. Several initiation sites are used each cell cycle, and they fire at different
times during the S phase. Furthermore, the genomic positions and firing times of the
initiation sites change from one cell cycle to another. Does the relationship observed
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Figure 3: Comparing compositional skew S = T−A
T+A

+ G−C
G+C

and mean replication
timing (MRT) in the human genome. (A) MRT profiles along a 11.4 Mbp long fragment
of human chromosome 10, from early, 0 to late, 1 for BG02 embryonic stem cell (green), K562
erythroid (red) and GM06990 lymphoblastoid (blue) cell lines. Replication timing data was
retrieved from (Hansen et al. 2010). (B) S calculated in 1 kbp windows of repeat-masked
sequence. The colors correspond to intergenic (black), (+) genes (red) and (−) genes (blue).
Six skew N-domains (horizontal black bars) were detected in this genomic region.

between the compositional asymmetry and the replication program in bacteria gen-
eralize to eukaryotic genomes?

We observe in Fig. 3 a clear relationship between the compositional asymmetry
and the replication timing in the human genome: a N-shaped compositional skew
S = G−C

G+C + T−A
T+A profile remarkably corresponds to a U-shaped replication timing

profile. Previous work has led to the objective delineation of N-shaped skew domains
in the human genome (Touchon et al. 2005; Brodie of Brodie et al. 2005; Nicolay
2006). Those genomic domains, that were called N-domains, were shown to exhibit a
very peculiar gene organization and chromatin state (Huvet et al. 2007; Audit et al.
2009; Zaghloul 2009). Based on the analogy with the bacterial case (the upward jump
of the GC skew colocalizes with the ORI in Fig. 2) , the N-domains borders (upward
jumps of the skew) were proposed to be replication origins, evolutionary conserved
and active in the germline (Touchon et al. 2005; Brodie of Brodie et al. 2005).
However in our current perspective we know that the skew profile observed in N-
domains is not a trivial extension of the replicon model in bacteria, with replication
origins located at the N-domains borders. For instance, as N-domains have ∼ 1
Mbp characteristic size, this model would imply that large ∼ 1 Mbp replicons are
produced in the 30% of the human genome covered by N-domains, in conflict with
the typical observed replicon size (∼ 100 kbp).
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In this thesis, we will try to answer the following questions. How do the mu-
tational asymmetries generated by the replication process relate to the replication
program? How does a genome submitted to a mutational asymmetry evolve? On
which time scales were the skew N-domains generated? Which characteristics of the
replication program do explain the N-shaped skew profile? Why do skew N-domains
coincide with U-shaped replication timing domains? As compositional asymmetry is
also associated to transcription in the human genome (Touchon et al. 2003), is it pos-
sible to disentangle in the skew profile the contributions associated to transcription
and replication?

Replication fork polarity
In eukaryotes, due to the multiple initiation sites and the inherent stochasticity

of the replication program, a locus can be replicated by a right-moving fork in some
cell cycles and by a left-moving fork in other cell cycles. Therefore, in contrast to
bacteria, genomic regions cannot be unambiguously assigned as leading or lagging
strands. To study replication-associated strand asymmetry in eukaryotes we need to
consider the replication fork polarity, defined as the difference of proportions of right-
moving and left-moving forks replicating a locus. In this thesis, we demonstrate that
the compositional asymmetry and the replication timing are both related
to the replication fork polarity. We further argue that it provides an unifying
mechanism which explains why the replicon model in bacteria (Fig. 2A) results
in the crenel-like skew profile (Fig. 2B), and why the U-shaped replication timing
profile observed in the human genome (Fig. 3A) results in the N-shaped skew profile
(Fig. 3B).

Outline
The manuscript is organized in five Chapters. Chapters I and II deal with the

mathematical aspects of the DNA composition evolution and of the spatio-temporal
DNA replication program. Our modeling will lead to three main theoretical proposi-
tions (i) the compositional asymmetry decomposes into transcription and replication
associated contributions, (ii) the compositional asymmetry generated by the replica-
tion process is proportional to the replication fork polarity, and (iii) the replication
fork polarity is proportional to the derivative of the mean replication timing. In
Chapter III, the analysis of substitution rates in the human genome will support
the decomposition of the compositional asymmetry into transcription and replica-
tion associated components. Chapter IV focuses on the detection of N-domains in
the human and mouse genomes, with the specific goal to extract in the skew pro-
file the contributions associated to replication and transcription. In Chapter V, we
will objectively delineate U-shaped replication timing domains in several human cell
lines. We will also study their properties in term of chromatin state and long-range
chromatin interactions. Finally, we will present the conclusions and perspectives of
this work.
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Chapter I

Evolution of compositional
skews: a theoretical approach

Replication and transcription are asymmetric processes with respect to the two DNA
strands. How do the asymmetries due to replication and transcription reflect on the
substitution rates and, after long evolutionary time, on the composition? These
questions received a lot of attention experimentally, but not so much formally. In
this chapter, we present a mathematical formalism to describe the establishment and
maintenance of the strand asymmetry. Only Sections I.3 and I.4 are mathematically
involved. As some readers may wish to skip the mathematical part, we sum up at
the end of the chapter the key arguments and the main results.

I.1 Introduction: the two DNA strands, transcription
and replication

We briefly recall a fundamental property of DNA (Alberts et al. 2008), namely the
double-helix structure and the base-pairing of the two DNA strands. We expect ap-
proximately the same substitution rates and the same composition on the two DNA
strands (strand symmetry) (Sueoka 1995). However two key processes of the cell,
transcription and replication, are generally thought to generate strand asymmetries
(Francino and Ochman 1997; Frank and Lobry 1999). In order to model replication
and transcription related strand asymmetries, we introduce the gene orientation and
the replication fork polarity.

I.1.1 Double-helix structure of DNA

Generalities
A deoxyribonucleic acid (DNA) molecule consists of two polynucleotides chains,

called DNA strands. The two DNA strands are held together by hydrogen bonds,
and the resulting double-stranded DNA has a double-helix structure (Fig. 1). The
nucleotide chain is composed of a backbone of alternating sugars and phosphates,

9





●

0 1 2 3 4

0
1

2
3

4

τ
c
  (10

−3
  bp

−1)

τ
  
(1

0
−
3
  
b
p

−
1
)

● C → T  vs  G → A

A → G  vs  T → C

C → G  vs  G → C

G → T  vs  C → A

A → C  vs  T → G

A → T  vs  T → A

Figure 2: PR1 in the human genome. Genome wide substitution rate τ versus the
reverse complementary substitution rate τ c.

I.1.2 Strand symmetry

Parity rule type 1
We expect that the two DNA strands experience on average the same mutational

and repair mechanisms. The substitution rates should therefore be approximately
equal on the two DNA strands. A substitution (e.g. G→ T ) on one strand always
corresponds to the reverse complementarity substitution (e.g. (G→ T )c = C → A)
on the complementary strand. Therefore we expect complementary substitutions
to have approximately equal rates, when computed on a given strand (e.g. G →
T ∼ C → A). This symmetry law is known as Parity rule type 1 (PR1) (Sueoka
1995). As shown in Fig. 2 for the human genome, PR1 is very well verified at the
genome scale. Although substitution rates can vary over a large range of values
(the transition C → T is three fold higher than the transversion C → G in Fig. 2),
reverse complementary substitution rates are nearly equal.

Parity rule type 2
If the substitution rates are nearly equal on the two DNA strands, we expect in

turn the compositions of the two DNA strands to be nearly equal. Therefore we
expect complementary nucleotides to have approximately equal frequencies, when

11



10 15 20 25 30

1
0

1
5

2
0

2
5

3
0

[C] (%)

[G
] 

(%
)

20 25 30 35 40

2
0

2
5

3
0

3
5

4
0

[A] (%)
[T

] 
(%

)

Figure 3: PR2 in the human genome. [G] versus [C] and [T ] versus [A] for the 22 human
autosomes. Reproduced from (Sueoka 1995; Lobry 1995), where PR2 plots are shown for
organims over the whole life tree.

computed on a given strand: [G] ∼ [C] and [T ] ∼ [A]. This second symmetry law
is known as Parity rule type 2 (PR2) (Rudner et al. 1968; Sueoka 1995). As shown
in Fig. 3 for the human genome, PR2 is very well verified at the chromosomal scale.
Although the GC content (θGC = [G] + [C]) can vary over a large range of values
(from 36% to 50% in Fig. 3), the frequencies of complementary nucleotides are nearly
equal. PR2 formally derives from PR1: under symmetrical substitution rates (PR1),
the DNA composition should verify PR2 (Lobry 1995; Lobry and Lobry 1999).

☛ PR1 and PR2 are approximate symmetries, they are well verified on the chromo-
somal scale, but we can observe systematic deviations at finer scales. The breaking
of PR1 and PR2 symmetries, i.e. strand asymmetry, has generally been associated
to two key processes of the cell, namely transcription and replication.

I.1.3 Transcription

Transcription is a strand asymmetric process
During the transcription of a gene (Fig. 4), the RNA polymerase synthesizes a

messenger RNA similar to the coding sequence (with the replacement of thymines T
by uracils U). The RNA polymerase synthesizes the messenger RNA in the 5′ → 3′

direction by base-pairing using the other strand as a template. The RNA polymerase
therefore progresses in the 3′ → 5′ direction on the template (or transcribed) strand
(Alberts et al. 2008). The coding strand and the transcribed strand could undergo
different mutational and repair events that generate strand asymmetry (Francino
and Ochman 1997; Frank and Lobry 1999; Francino and Ochman 2001; Green et al.
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Definition of gene orientation
Transcription generates strand asymmetries by discriminating a coding and a

transcribed strand. We further need to define the strand asymmetry as seen by the
reference strand, where the DNA sequence is computed. A gene is defined as sense
(+) gene if its coding sequence is on the reference strand, and as antisense (−)
gene if its coding sequence is on the complementary strand (Fig. 5). For a sense
(+) gene the reference strand is the coding strand and the complementary strand
is the transcribed strand. For an antisense (−) gene we have the opposite situa-
tion. Therefore the gene orientation (±) is a crucial parameter of transcription-
associated strand asymmetry. Another crucial parameter is the transcription rate
(hereafter noted as α), which reflects how many times the gene has been transcribed
during a cell cycle. The more the gene is transcribed, the stronger we expect the
strand asymmetries to be.

☛ Gene orientation and transcription rate are the natural parameters to describe
the strand asymmetry due to transcription.

I.1.4 Replication

Replication is a strand asymmetric process
When a cell divides, the genome of the mother cell is duplicated and transmit-

ted to the two daughter cells. The DNA replication is semi-conservative (Fig. 6):
each daughter cell inherits a DNA strand of the mother cell, which serves as a
template for the DNA polymerase to synthesize the complementary strand (Alberts
et al. 2008). During the S-phase (phase of the cell cycle where the genome is du-
plicated), replication initiates at loci called replication origins. At a replication
origin (Fig. 6) the DNA double helix is opened, and two divergent replication forks
replicate the DNA on each side of the replication origin, creating a “replication
bubble”. Each replication fork is composed of two DNA polymerases that replicate
separately the two parental strands. The DNA polymerases always synthesize the
new strand in the 5′ → 3′ direction progressing on the parental strand in the 3′ → 5′

direction. Due to the anti-parallel polarities of the parental strands, one strand is
synthesized continuously (the leading strand) and the other discontinuously (the
lagging strand). The parental strand oriented in the 3′ → 5′ direction as seen
by the replication fork (the leading strand template) is replicated continuously by
the DNA polymerase, producing continuously the synthesized leading strand in the
5′ → 3′ direction. On the parental strand oriented in the 5′ → 3′ direction as seen by
the replication fork (the lagging strand template), the DNA polymerase synthesizes
discontinuously small nascent strands, called Okazaki fragments, in the 5′ → 3′ di-
rection, progressing in the 3′ → 5′ direction on the parental strand, opposite to the
global replication fork movement. The leading/lagging strands usually refer to the
newly synthesized leading/lagging strands. But they can also refer to the parental
strands, in that case the leading (resp. lagging) strand is understood as the lagging
(resp. leading) strand template.
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replication origin that fired downstream (3′ direction of the reference strand). For a
sense (+) fork (Fig. 7), the reference strand is either the synthesized leading strand
or the lagging strand template, whereas the complementary strand is either the syn-
thesized lagging strand or the leading strand template. For an antisense (−) fork
(Fig. 7) we have the opposite situation. During the S-phase, each locus is replicated
once and only once, and it is either replicated by a sense or an antisense fork. Over
cell cycles, the locus x will be replicated by a proportion p(±)(x) of (±) forks. As the
proportions of sense and antisense forks always sum up to one, only the difference
of proportions is relevant. This difference defines the replication fork polarity:

p(x) = p(+)(x)− p(−)(x). (1)

We define the replication fork polarity for a locus x, but it can be equally defined
for a genomic region. When the replication fork polarity p = +1 (resp. p = −1),
the genomic region only undergoes leading (resp. lagging) strand synthesis, hence
the strand asymmetry due to replication is maximal in such regions. Between these
two extreme cases, the replication fork polarity can take values in the whole interval
[−1, 1]. When the replication fork polarity p = 0, there is as many leading and
lagging strand synthesis, and consequently no strand asymmetry due to replication
in these regions.

☛ Replication fork polarity is the natural parameter to describe the strand asymmetry
due to replication.

I.1.5 From mutations to substitutions

Mutations, if they occur in germ line cells, can be transmitted from an individual to
its descendants. These mutations, at the population level, can have their frequencies
increased or decreased over time, and ultimately reach fixation (when the mutation
is present in all individuals of the species) or disappear. A mutation that reaches
fixation is called a substitution. Natural selection and random genetic drift are two
competing forces that determine fixation or disappearance of a mutation (Graur and
Li 1999). Random genetic drift corresponds to the stochastic variation of a mutation
frequency, due to the random sampling of alleles (Graur and Li 1999). Under random
genetic drift alone, the fixation probability is the same for all mutations, and the
substitution rate observed at the population level directly reflects the mutation
rate at the individual level (Kimura 1968; Graur and Li 1999) (neutral molecular
evolution). On the opposite, natural selection affects the probability of fixation
of a mutation, the fixation probability of an advantageous mutation is increased
(positive selection), on the opposite the fixation probability of a deleterious mutation
is decreased (purifying selection) (Graur and Li 1999). The fixation probability can
also be affected by neutral processes such as biased gene conversion (Galtier et al.
2001; Duret and Arndt 2008; Duret and Galtier 2009): gene conversion, a common
event during meiosis recombination, is biased towards the fixation of GC rich alleles.
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When selection plays no role at a locus, the site is said to evolve neutrally.

☛ In the following discussion on substitutional asymmetry, we will only consider
neutral sites.

I.2 Substitutional asymmetry

As transcription and replication are strand asymmetric processes, the two DNA
strands could experience different mutational events, which would result in differ-
ent substitution rates. We propose here to model the impact of replication fork
polarity, gene orientation and transcription rate on substitution rates. The model
we propose is the simplest model that takes into account the basic symmetries of
the problem. We show that most molecular mechanims proposed so far to explain
strand asymmetry are particular cases of this minimal model.

I.2.1 Minimal model

The model has to respect strand exchange symmetry
The arbitrary choice of the reference strand leads, as we shall see, to strong

symmetrical properties of the substitution rates. A substitution on a given strand,
e.g. G → T , always corresponds to the reverse complementary substitution on the
other strand, e.g. (G → T )c = C → A. The substitution rates are computed on a
given reference strand, and the definitions of gene orientation and replication fork
polarity are made relatively to this reference strand. Note that calling a gene (or
a replication fork) sense or antisense is just related to our arbitrary choice of the
reference strand. An antisense gene (or fork) for the reference strand is a sense
gene (or fork) for the complementary strand and vice-versa. Let us consider a
substitution rate τ (e.g. T → C) for a locus located in a sense gene and having
a replication fork polarity p. Computed on the complementary strand, the reverse
complementary substitution rate τ c (e.g. A → G) has the same value, and seen
from the complementary strand, the locus is located in an antisense gene and it has
a replication fork polarity −p. Therefore substitution rates have to respect what we
call strand exchange symmetry:

τ [ξ, p, α, (+)] = τ c[ξ,−p, α, (−)], (2)

where the “ξ dependence” is here to remind us that substitution rates depend on
many other variables, but that these variables do not discriminate the two strands
(e.g. replication timing, distance to telomeres, recombination rate). Indeed, it
is much more convenient to study strand asymmetry using the symmetrical part
τ s = [τ + τ c]/2 and asymmetrical part τa = [τ − τ c]/2 of substitution rates. The
symmetrical part corresponds to the average of a substitution rate on the two DNA
strands, while the asymmetrical part measures the substitutional asymmetry
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between the two DNA strands. The symmetrical part is invariant under strand
exchange symmetry whereas the asymmetrical part changes sign:

τ s[ξ, p, α, (+)] = τ s[ξ,−p, α, (−)], (3)

τa[ξ, p, α, (+)] = −τa[ξ,−p, α, (−)]. (4)

We propose here to take the simplest model, with the minimal set of parameters,
that respects strand exchange symmetry (Eq. (2)). More sophisticated models could
be proposed, but they would still have to verify the general relation Eq. (2).

Substitution rates in genic and intergenic regions
Hereafter, we will forget about the “ξ dependence” to focus only on the effect of

gene orientation (±), transcription rate α and replication fork polarity p on substitu-
tion rates. Therefore these rates have to be understood either as secretly depending
on the ξ parameters, or as averaged over the ξ parameters. In our minimal model,
substitution rates in intergenic regions are given by:

τintergenic[p] = τ s0 + p(+)τR + p(−)τ
c
R. (5)

The different coefficients can be interpreted as follows. Mutational events associated
with the passage of a sense (+) replication fork give rise to a substitution rate τR.
Due to strand exchange symmetry (Eq. (2)), the passage of an antisense (−) fork
contributes by the reverse complementary substitution rate τ cR. We assume that
mutational events not associated to the passage of replication forks affect equally
the two DNA strands. Thus they give rise to a symmetrical substitution rate τ s0 that
is equal on the two DNA strands, in other words τ s0 satisfies PR1. In genic regions,
we propose to model the net effect of transcription by:

τgenic (+)[p, α] = τintergenic[p] + τT [α], (6)

τgenic (−)[p, α] = τintergenic[p] + τ cT [α]. (7)

The reverse complementary coefficient τ cT appears in antisense gene due to strand
exchange symmetry (Eq. (2)). If τT [α] is interpreted as a substitution rate result-
ing from additional mutational events associated to transcription, then it has to
be positive. If this coefficient also takes into account repair mechanisms associated
to transcription, then it can be either way positive or negative. This coefficient
should depend on the transcription rate α. We expect the effect of transcription to
be stronger if the gene is more transcribed; in other words τT [α] should increase in
magnitude with α. For weakly expressed genes (α→ 0), we expect to recover the in-
tergenic case (τT [α]→ 0). The main assumption of our model is that transcription
and replication contribute separately to substitution rates. In this model
we also neglect non-coding transcription. Recent studies have shown that most
genomic DNA, including intergenic regions, is transcribed (The ENCODE Project
Consortium 2007), producing non-coding transcripts (Cheng et al. 2005; Core et al.

19



2008; He et al. 2008; Preker et al. 2008; Seila et al. 2008). Non-coding transcripts
could generate strand asymmetries in intergenic regions not associated to replica-
tion (Necsulea et al. 2009). In our model non-coding transcripts are not taken into
account, and we will always assume that substitutional asymmetry in intergenic
regions is solely due to replication.

The substitutional asymmetry is decomposed into transcription- and repli-
cation-associated components
For the model defined by Eqs. (5) to (7), the symmetrical part of the substitution

rates depends neither on the replication fork polarity nor on the gene orientation.
It depends only on the transcription rate α:

τ s[p, α, (±)] = τ s0 + τ sR + τ sT [α], (8)

where α = 0 (τT [0] = 0) corresponds to the intergenic case. The asymmetrical
part depends on the replication fork polarity p, the gene orientation (±), and the
transcription rate α:

τa[p, α, (±)] = pτaR ± τaT [α] , (9)

where α = 0 (τT [0] = 0) corresponds to the intergenic case.

☛ In our minimal model, substitutional asymmetry can be decomposed into tran-
scription and replication associated components. The replication-associated substi-
tutional asymmetry is proportional to the replication fork polarity, the transcription-
associated one increases in magnitude with transcription rate and changes sign with
gene orientation.

I.2.2 Examples of molecular mechanisms

To illustrate the relevance of our minimal model, in this subsection we review more
concrete biological processes. These molecular mechanisms are of interest to us, as
they were proposed to explain strand asymmetry in the human genome. We will
show that they all reduce to the decomposition of the substitution rates given in
Eqs. (8) and (9), except for the last example where a new term will appear in the
symmetrical part (Eq. (8)).

Remark. In the following I will confound substitutions with mutations to make the
discussion easier to follow. The relationship between substitution and mutation rate
is direct (Kimura 1968) if there are no (neutral or selective) fixation bias. To my
knowledge, no concrete neutral fixation bias were proposed to generate strand asym-
metry, but a fixation bias could surely modulate the strength of the substitutional
asymmetry.
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Misinsertions induced by the DNA polymerases
In eukaryotes, the leading and lagging strands are presumably synthesized by two

distinct DNA polymerases. This is demonstrated at least in yeast, where pol ǫ
is used for the leading strand synthesis and pol δ for the lagging strand synthesis
(Kunkel and Burgers 2008). In the human genome, the substitutional asymmetries
associated to replication were proposed to result from the different error spectra of
the two DNA polymerases (Polak and Arndt 2009; Chen et al. 2011). The error
spectra of the human DNA polymerases are currently unknown, it is therefore dif-
ficult to infer the sign of the asymmetries and thus to check this hypothesis (Polak
and Arndt 2009).

Modelling the misinsertions. For clarity let us call pol ǫ (resp. pol δ) the lead-
ing (resp. lagging) polymerase as in yeast. For a nucleotide i ∈ {T,A,G,C}
we denote by ic ∈ {A, T,C,G} the complementary nucleotide. For nucleotides
i, j ∈ {T,A,G,C}, we denote by Σji (resp. ∆ji) the misinsertion rate of a j instead
of i, in other words a j misinserted in front of ic, by the ǫ (resp. δ) polymerase. For
simplicity we assume that the mispaired base j : ic will persist until the next replica-
tion round, where the mispaired base has a priori 50% chance to result in the i→ j
substitution. For a sense fork, the reference strand is the leading strand (synthesized
by pol ǫ), while the complementary strand is the lagging strand (synthesized by pol
δ). For a antisense fork the role of the complementary and reference strands are
exchanged. Sense and antisense forks contribute to the i → j substitution by the
following pathways:

(+) fork
i
ic

Σji−−−→ j
ic

1
2−−→ j

jc

1
2←−− i

jc
∆c

ji←−−− i
ic

(10)

(−) fork
i
ic

∆ji−−−→ j
ic

1
2−−→ j

jc

1
2←−− i

jc
Σc

ji←−−− i
ic

(11)

where the upper strand is the reference strand, ∆c
ji = ∆jcic and Σcji = Σjcic . There-

fore the misinsertion process contributes to the i→ j substitution by:

p(+)
(Σ +∆c)ji

2
+ p(−)

(Σc +∆)ji
2

. (12)

We recover our minimal model Eq. (5) with:

τR =
Σ+∆c

2
. (13)

The substitutional asymmetry associated to replication is then given by:

pτaR with τaR =
Σa −∆a

2
, (14)

in agreement with Eq. (9).
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Cytosine deamination in single-stranded DNA
Cytosine can spontaneously deaminates into uracil. After two replication rounds

the uracil can become a thymine (U : G → U : A → T : A) and the cytosine
deamination results in a proper C → T substitution. The cytosine deamination is
much more frequent (140 fold) in single-stranded DNA (ssDNA) than in double-
stranded DNA (Frederico et al. 1990). The leading strand, when it serves as a
template for the lagging synthesis of the complementary strand, is transiently in
ssDNA and could undergo an excess of cytosine deamination. The process was
proposed to explain strand asymmetry associated to replication in bacteria (Frank
and Lobry 1999), in mitochondria (Reyes et al. 1998), and recently in human (Polak
and Arndt 2009; Chen et al. 2011). Similarly the coding strand is transiently in
ssDNA during transcription and could undergo an excess of cytosine deamination
(Beletskii and Bhagwat 1996, 1998). This process was proposed to explain the strand
asymmetry observed in E. coli genes (Francino and Ochman 2001), and in human
genes (Mugal et al. 2009; Polak and Arndt 2008).

Modelling the cytosine deamination. Let us call (C → U)ssDNA the rate of cytosine
deamination into uracil in ssDNA. For simplicity we assume that the uracil has a

25% chance to result, after two replication rounds (U : G
1/2→ U : A

1/2→ T : A),
in a thymine. We called tR (resp. tT ) the time lapse in ssDNA for the leading
(resp. coding) strand during replication (resp. transcription). For a gene with a
transcription rate α, the time lapse in ssDNA over the cell cycle is thus αtT . The
cytosine deamination in ssDNA contributes to the C → T substitution rate by:

p(+)
tR
4
(C → U)ssDNA +

{

α tT4 (C → U)ssDNA (+) gene
0 (−) gene

(15)

and to the reverse complementary G→ A substitution rate by:

p(−)
tR
4
(C → U)ssDNA +

{

0 (+) gene

α tT4 (C → U)ssDNA (−) gene
(16)

We again recover our minimal model (Eqs. (5) to (7)) with:

(C → T )R =
tR
4
(C → U)ssDNA and (G→ A)R = 0, (17)

(C → T )T [α] = α
tT
4
(C → U)ssDNA and (G→ A)T [α] = 0. (18)

The (C → T )a asymmetry then follows the decomposition predicted by Eq. (9):

(C → T )a = p(C → T )aR ± α(C → T )aT , (19)

with (C → T )aR =
tR
8
(C → U)ssDNA > 0, (20)

and (C → T )aT =
tT
8
(C → U)ssDNA > 0. (21)
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The cytosine deamination theory predicts positive asymmetries for both replication
(Frank and Lobry 1999; Polak and Arndt 2009) and transcription (Francino and
Ochman 2001; Mugal et al. 2009). Importantly the cytosine deamination also affects
the symmetrical part of the substitution rates (Eq. (8)):

(C → T )s = (C → T )s0 + (C → T )sR + α(C → T )sT , (22)

with (C → T )sR =
tR
8
(C → U)ssDNA > 0, (23)

and (C → T )sT =
tT
8
(C → U)ssDNA > 0. (24)

Thus in the cytosine deamination theory, symmetrical substitution rates are higher
in genic regions than in intergenic regions.

Transcription induced mutations
Along with the cytosine deamination, other types of mutagenic reactions can

be considered. Mugal et al. (2009) proposed, for the human genome, to take into
account the deamination of cytosine, the deamination of adenine, the oxidative stress
of guanine, and the loss of a purine (Y = A or G), which would result respectively
after two replication rounds in the C → T , A→ G, G→ T and Y → T substitutions.
During transcription, the coding strand is possibly more exposed to those mutagenic
reactions (Beletskii and Bhagwat 1996, 1998). These mutagenic reactions lead to
an increase of C → T , A → G, G → T and A → T substitution rates on the
coding strand compared to the flanking intergenic regions, as observed in the human
genome by Mugal et al (2009). Under transcription induced mutations alone, those
substitution rates should be the same in the transcribed strand and in the flanking
intergenic region. These processes lead to the asymmetries (Mugal et al. 2009):

(C → T )aT , (A→ G)aT , (G→ T )aT , (A→ T )aT > 0. (25)

Importantly they also imply that symmetrical substitution rates are higher in genic
regions than in intergenic regions:

(C → T )sT , (A→ G)sT , (G→ T )sT , (A→ T )sT > 0. (26)

Transcription-coupled repair
Transcription-coupled repair (TCR), see (Svejstrup 2002) for review, has also been

proposed to generate strand asymmetries (Francino et al. 1996; Green et al. 2003;
Mugal et al. 2009). TCR is triggered by the stalling of RNA polymerase II due to
DNA damage on the transcribed strand, and then repair is achieved using the coding
strand as a template (Svejstrup 2002). TCR can therefore reduce rates of mutagenic
reactions on the transcribed strands. Mugal et al (2009) proposed that the C → T ,
A→ G, G→ T and A→ T substitution rates were lower in the transcribed strand
than in the flanking intergenic region due to TCR, or other repair mechanisms. As
in transcription induced mutations it leads to the asymmetries:

(C → T )a, (A→ G)aT , (G→ T )aT , (A→ T )aT > 0. (27)
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On the contrary to the transcription induced mutations, symmetrical substitution
rates are lower in genic regions than in intergenic regions:

(C → T )sT , (A→ G)sT , (G→ T )sT , (A→ T )sT < 0. (28)

Likely, both transcription induced mutations and repair impact on substitution rates.
The sign of the symmetrical part will depend of the relative strength of the two
competing processes.

TCR acting on misinserted bases
Green et al. (2003) proposed that TCR could act on misinserted bases during

the previous replication round. After the stalling of the RNA polymerase II, TCR
can detect mispaired base in the vicinity through the MutSα mismatch repair com-
plex, and will resolve the mismatch using the coding strand as a template (Svejstrup
2002). In non-transcribed regions, a misinserted base can presumably persist until
the next replication round, where it will have a 50% chance to result in a substitu-
tion. In transcribed regions however, if TCR resolves the mismatch, it results in a
substitution if and only if the misinserted base was on the coding strand.

Modelling TCR acting on a misinserted base. Let us call PTCR[α] the probability
that TCR detects and repairs the mismatch. This probability is likely close to 0
for weakly expressed genes and likely increases with the transcription rate α (but is
always inferior to 1). The i → j substitution can result from the mispaired bases
j : ic and i : jc. In non-transcribed regions (intergenic regions in our model), the
mispaired base has a 50% chance to result in the i→ j substitution:

intergenic
i
jc

1
2−−−→ j

jc

1
2←−−− j

ic
(29)

In transcribed regions (sense and antisense genic regions in our model), TCR with
a probability PTCR[α] repairs towards the coding strand:

(+) gene
i
jc

1−PTCR[α]

2−−−−−−−−→ j
jc

1+PTCR[α]

2←−−−−−−−− j
ic

(30)

(−) gene
i
jc

1+PTCR[α]

2−−−−−−−−→ j
jc

1−PTCR[α]

2←−−−−−−−− j
ic

(31)

where as usual the reference strand is the upper strand. The relations Eqs. (29)-(31)
can be written in the compact form:

i
jc

1∓PTCR[α]

2−−−−−−−−→ j
jc

1±PTCR[α]

2←−−−−−−−− j
ic

(32)

for (±) genes and where α = 0 (PTCR[α] = 0) corresponds to the intergenic case
(Eq. (29)). Green et al. (2003) assumed that the replication induced misinsertions
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occur with equal frequencies on the two strands. This is the case if we neglect strand
asymmetry due to replication, e.g. when the replication fork polarity p = 0. The
mispaired bases are then created with rates (Eqs. (10) and (11)):

(p = 0)
i
jc

(Σc+∆c)ji
2←−−−−−−− i

ic

(Σ+∆)ji
2−−−−−−→ j

ic
. (33)

Combining Eqs. (32) and (33), TCR acting on misinserted bases contributes to the
i→ j substitution by:

(1∓ PTCR[α])

2

(Σc +∆c)ji
2

+
(1± PTCR[α])

2

(Σ +∆)ji
2

=
(Σs +∆s)ji

2
± PTCR[α]

(Σa +∆a)ji
2

. (34)

Consistently with our minimal model, we recover Eqs. (8) and (9) for p = 0 with:

τ sR =
(Σs +∆s)

2
, τaT [α] = PTCR[α]

Σa +∆a

2
, and τ sT [α] = 0. (35)

This model has therefore two consequences: it generates an asymmetry that depends
on the error spectra of the two DNA polymerases, and the symmetrical rates are
equal in genic and intergenic regions. Green et al (2003) proposed this model to
explain the (A→ G)a > 0 asymmetry observed in the coding strand of mammalian
genes. This model is consistent with the observation that the symmetrical rate
(A→ G)s has approximately the same value in genes and in their flanking intergenic
regions (Green et al. 2003).

When reaching the limits of our minimal model (Eqs. (5) to (7)). When taking into
account the strand asymmetry due to replication (p 6= 0), the mispaired bases are
now created with rates (Eqs. (10) and (11)):

i
jc

(p(−)Σ
c+p(+)∆

c)ji←−−−−−−−−−−−−− i
ic

(p(+)Σ+p(−)∆)ji−−−−−−−−−−−→ j
ic

. (36)

Combining relations Eqs. (32) and (36) we get:

τ [p, α, (±)] = 1∓ PTCR[α]

2
(p(−)Σ

c + p(+)∆
c) +

1± PTCR[α]

2
(p(+)Σ+ p(−)∆). (37)

This complicated relation nonetheless satisfies strand exchange symmetry (Eq. (2)),
as it should. If we develop the different terms, we find for the symmetrical part:

τ s[p, α, (±)] = Σs +∆s

2
± pPTCR[α]

Σs −∆s

2
. (38)

A new term, that depends on the replication fork polarity p and gene orientation (±),
is found adding to the symmetrical part predicted by our minimal model (Eq. (8)).
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Note that even with this additional term, the symmetrical part still obeys strand
exchange symmetry (Eq. (3)). Interestingly, the asymmetrical part still satisfies
Eq. (9) with:

τaR =
Σa −∆a

2
, and τaT [α] = PTCR[α]

Σa +∆a

2
. (39)

Remark. For the transcription-associated asymmetry τaT [α], we recover Eq. (35)
derived in the p = 0 case. For the replication-associated asymmetry τaR, we recover
Eq. (14) previously derived in the α = 0 (PTCR[α] = 0) case.

☛ Consistently with our minimal model, all the molecular mechanisms considered
here lead to Eq. (9) for the substitutional asymmetry. The symmetrical part also
satisfies the predicted Eq. (8), except when TCR is acting on misinserted bases, where
a new term must be added into Eq. (38). Importantly, the signs of the coefficients
τaR, τaT and τ sT depend on the underlying molecular mechanisms and their relative
strengths.

I.2.3 Determination of substitution rates in the human genome

Our collaborators determined substitution rates in the human genome (Chen et al.
2010), from which we estimated the values of the different coefficients of our minimal
model. To do so, we computed the average values in regions of given replication fork
polarity and given transcriptional status. Importantly the substitutional asymmetry
is found to be small.

Methodology
Substitutions were tabulated in the human lineage since its divergence with chim-

panzee using macaca and orangutan as outgroups (Chen et al. 2010). Sequences were
divided into CpG and non-CpG sites in the ancestral human-chimpanzee genome
(CpG means a C followed by a G in the DNA sequence i.e. 5′ − CG − 3′). Cyto-
sine when methylated can spontaneously deaminates into thymine. In vertebrates
genomes, most CpG dinucleotides have their cytosine methylated with the excep-
tion of a few genomic regions called CpG islands, see (Suzuki and Bird 2008) for
review. As a result the CpG dinucleotide is hypermutable, and the CpG → TpG
and its reverse complementary CpG → CpA are by far the principal neighbor-
dependent substitutions rates (Hess et al. 1994; Arndt and Hwa 2005). The twelve
neighbor-independent substitution rates were determined on non-CpG sites. The
two neighbor-dependent CpG → TpG and CpG → CpA substitution rates were
determined on CpG sites. CpG islands and exons were excluded from the analysis
as they are unlikely to evolve neutrally. The first and last 500 bp of intronic se-
quences were also excluded to avoid bias due to splicing sites (Touchon et al. 2004).
Genomic regions were classed as genic (+), genic (−), and intergenic using RefGene
transcripts. As an estimator of the replication fork polarity, for a reason that will
be justified in Chapter II, we took the derivative of the mean replication timing

26



abbreviated as dMRT/dx. The dMRT/dx profile was computed as in (Baker et al.
2011), using experimental replication timing data obtained from (Chen et al. 2010;
Hansen et al. 2010). Note that the MRT profile is expressed as a fraction of S-phase
and has therefore no dimension. The dMRT/dx profile will be expressed in Mbp−1.
If we multiply the MRT by the duration of S-phase we get a reasonable proxy for
the MRT expressed in time, although the conversion between S-phase fraction and
time is not strictly linear (Blumenthal et al. 1974). The replication fork polarity can
be estimated as:

p(x) ≃ v TS dMRT/dx, (40)

where v is the replication fork velocity and TS the duration of S-phase. Note that the
MRT profile was determined for seven cell lines: an ESC cell line (BG02), three lym-
phoblastoid cell lines (GM06990, H0287, TL010), a fibroblast cell line (BJ, replicates
R1 and R2), an erythroid cell line (K562), and a HeLa cell line. The MRT profile,
the replication fork velocity v, the duration of the S-phase TS , and consequently the
replication fork polarity are all cell type specific. For our study of strand asymmetry,
we would like to have access to germline replication fork polarity, as only mutations
occurring in the germline are transmitted to the descendants. Unfortunately, no
germline replication timing data are available today. As a substitute to germline
dMRT/dx, we use the dMRT/dx profile obtained in the BG02 embryonic stem cell
line. The conservation of the dMRT/dx profile between different cell lines will be
addressed in Chapters III, IV and V. For our current purpose we just point out that
the dMRT/dx profile in one cell line correlates with the dMRT/dx profile in another
cell line (Baker et al. 2011). For all the reasons mentioned above, we conjecture that
the dMRT/dx profile in BG02 is, on average, proportional to the replication fork
polarity in the germline. We estimated substitution rates by concatenating the se-
quences of all genomic regions of given transcriptional status (genic (+), intergenic,
genic (−)) and given dMRT/dx. The substitution rates thus correspond to averaged
values, usually on several Mbp of aligned sequences.

Results
We considered genomic regions with dMRT/dx > 1 Mbp−1 (in BG02 cell line)

which are likely to have a positive replication fork polarity p̄ > 0 in the germline.
The precise value of p̄ > 0 is unknown. The neighbor-independent (single nucleotide)
substitution rates are tabulated in the form of a substitution rate matrix (see Section
I.3.1). The substitution rate matrix Minter,p̄ and Msense,p̄ obtained in intergenic
regions and genic sense (+) regions are equal to:

Minter,p̄ =

ւ T A G C

T 0.638 1.234 3.804

A 0.606 3.639 1.189

G 0.778 3.254 1.244

C 2.873 0.809 1.139

(41)
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and:

Msense,p̄ =

ւ T A G C

T 0.601 1.118 3.535

A 0.509 3.392 0.926

G 0.776 3.700 1.383

C 2.418 0.817 1.077

(42)

where substitution rates are expressed in kbp−1. We can readily see that substitution
rates in Eqs. (41) and (42) do not respect PR1 (Section I.1.2). For instance, for the
Minter,p̄ substitution rate matrix, A → G = 3.254 6= T → C = 2.873. According to
Eq. (8), the symmetrical part of Minter,p̄ provides an estimate of M s

0 +M s
R:

M s
0 +M s

R =

ւ T A G C

T 0.622 1.211 3.721

A 0.622 3.721 1.211

G 0.794 3.063 1.191

C 3.063 0.794 1.191

. (43)

Note that the symmetrical part, by definition, satisfies PR1. The asymmetrical part
of Minter,p̄, according to relation Eq. (9), provides an estimate of p̄Ma

R:

p̄Ma
R =

ւ T A G C

T 0.016 0.022 0.082

A -0.016 -0.082 -0.022

G -0.015 0.190 0.052

C -0.190 0.015 -0.052

. (44)

The non null substitutional asymmetry p̄Ma
R 6= 0 is responsible for the breaking of

PR1 in Eq. (41). We further remark from Eqs.(41) and (42) that substitution rates
are not equal in intergenic and genic regions. For instance, A → G = 3.254 for the
Minter,p̄ matrix whereas A → G = 3.700 for the Mgenic (+),p̄ matrix. According to
relation Eq. (6), Msense,p̄ −Minter,p̄ provides an estimate of MT :

MT =

ւ T A G C

T -0.036 -0.116 -0.268

A -0.097 -0.246 -0.263

G -0.002 0.446 0.139

C -0.456 0.007 -0.062

(45)

which symmetrical and asymmetrical parts are respectively:

M s
T =

ւ T A G C

T -0.067 -0.189 -0.257

A -0.067 -0.257 -0.189

G 0.003 -0.005 0.039

C -0.005 0.003 0.039

(46)
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and

Ma
T =

ւ T A G C

T 0.030 0.074 -0.011

A -0.030 0.011 -0.074

G -0.005 0.451 0.101

C -0.451 0.005 -0.101

. (47)

For the neighbor-dependent rate r = CpG→ TpG, we obtained:

rinter,p̄ = 53.738, rcinter,p̄ = 47.122, (48)

and rgenic (+),p̄ = 51.842, rcgenic (+),p̄ = 42.885, (49)

Note that, as expected, the neighbor-dependent CpG → TpG rate is much higher
(about 10 fold) than the C → T rate. We obtained the coefficients:

rs0 + rsR = 50.43, p̄raR = 3.308, rsT = −3.067, and raT = 1.171, (50)

where as already mentioned substitution rates are expressed in kbp−1.

Remark. The transcription-associated component τT was determined over all genic
(+) regions, whatever their transcription rates α. The given transcription-associated
component τT thus corresponds to the τT [α] coefficient averaged over α. The given
replication-associated asymmetry p̄τ sR depends on the (unknown) average replication
fork polarity p̄. We independently measured substitution rates in genomic regions
with dMRT/dx < −1 Mbp−1 which are likely to have the opposite replication fork
polarity −p̄ < 0. We got approximately the same values for the coefficients as in
Eqs. (43) and (44). We also independently measured the net effect of transcription
using genic (−) regions. We got approximately the same values for the coefficients
in Eqs. (46) and (47). The compliance of substitution rates with Eqs. (8) and (9)
will be explicitly addressed in Chapter III.

The substitutional asymmetry is small
Note that the asymmetrical parts p̄τaR and τaT are small as compared to the sym-

metrical part τ s0 + τ sR. The symmetrical coefficients τ sT are also small as compared
to the symmetrical part τ s0 + τ sR. More precisely, for the values reported above we
have:

p̄|τaR| = ǫ|τ s0 + τ sR|, with ǫ ≤ 0.07 (51)

|τaT | = ǫ|τ s0 + τ sR|, with ǫ ≤ 0.15 (52)

|τ sT | = ǫ|τ s0 + τ sR|, with ǫ ≤ 0.16 . (53)

☛ The coefficients τaR, τ
a
T , τ

s
T are small as compared to the symmetrical τ s0 + τ sR

substitution rates.
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I.2.4 From substitutional to compositional asymmetry

The DNA sequences, under the repetitive exposure to substitutional patterns, change
their nucleotide compositions over time (Graur and Li 1999). How does the substitu-
tional asymmetry reflect on the DNA composition evolution ? When the substitution
rates are equal on the two DNA strands (PR1), the compositions are equal on the
two DNA strands (PR2) (Lobry 1995; Lobry and Lobry 1999). On the opposite we
expect that a substitutional asymmetry gives rise to a compositional asymmetry.
For instance, if we have the (A → G)a > 0 asymmetry, i.e. an excess of A → G
versus T → C substitutions, we expect after long evolutionary time [G] > [C] and
[T ] > [A]. The next two mathematical Sections I.3 and I.4 formalize the evolution
of the compositional asymmetry and prove this assertion. In Section I.4 we use, as a
central hypothesis, the smallness of the substitutional asymmetry to relate directly
the compositional asymmetry to the substitutional one. An important consequence
of this mathematical treatment is that the decomposition of the substitutional asym-
metry into transcription and replication components in Eq. (9) directly reflects on
the compositional asymmetry. This key result, that will be exploited all along this
thesis manuscript, is reported in Section I.5.

☛ Readers not interested in the mathematical formalism are encouraged to skip Sec-
tions I.3 and I.4 and to go directly to Section I.5.

I.3 DNA composition evolution

We first recall the general formalism of DNA composition evolution (Graur and
Li 1999), for neighbor-independent and time homogeneous substitutions. We then
exploit the symmetry of strand exchange to rewrite the equations under a more
suitable form for the study of strand asymmetry (Lobry and Lobry 1999).

I.3.1 General formalism

Time evolution of the composition
In the case of neighbor-independent and time homogeneous substitutions, the time

evolution of the DNA composition is given by (Graur and Li 1999):

d

dt
X(t) = MX(t), (54)

where X(t) is the frequency (or probability) vector; for a nucleotide i ∈ {T,A,G,C},
Xi(t) is the frequency (or probability) of i in the DNA sequence at time t. M is
called the substitution rate matrix; for i 6= j ∈ {T,A,G,C}, the element Mij

is the substitution rate j → i (expressed in per bp per unit of time). Diagonal
elements of M are such that sum over rows are null: Mjj = −

∑

i 6=j Mij . When
X(t) is thought as a probability vector, Eq. (54) is called the master equation; it
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is the time continuous formulation of a Markov chain. The general properties of a
Markov chain are well known (Van Kampen 2007), we briefly expose them below.

Evolution towards equilibrium
First, we can easily integrate Eq. (54) to get the composition X(t) at any time t,

knowing the initial composition X(t0) at a time t0:

X(t) = W (t, t0)X(t0), where W (t, t0) = e(t−t0)M . (55)

The matrix W (t, t0) gives the substitution probabilities between t0 and t; for i, j ∈
{T,A,G,C}, Wij(t, t0) = Prob(i at time t | j at time t0). We recover in this form
the time discrete formulation of a Markov chain. Note that from this formulation
we have necessarily

∑

iWij(t, t0) = 1, which in the limit t→ t0 gives the condition
∑

iMij = 0 for M . This property also ensures that
∑

iXi(t) = 1 at all time t. The
spectral properties of M are important to give the asymptotic behaviour of X(t).
There is a unique vector X∗, called the equilibrium vector, such as:

MX∗ = 0 and
∑

i

X∗
i = 1. (56)

So X∗ is an eigenvector of M with eigenvalue 0. The three other eigenvalues have
all a strictly negative real part:

MX(a) =

[

− 1

τ (a)
+ iω(a)

]

X(a) with τ (a) > 0, a ∈ {1, 2, 3}. (57)

These spectral properties have been demonstrated in many different ways. One can
for instance use the fact that W (t, t0) belongs to the class of “stochastic matrices”
(0 ≤ Wij(t, t0) ≤ 1 and

∑

iWij(t, t0) = 1) and apply Perron-Frobenius theorem
(Van Kampen 2007). There are some exceptional cases where Eqs. (56) and (57) are
not verified, but such cases are never encountered in DNA composition evolution
and therefore not relevant for our purpose. It follows from Eqs. (56) and (57) that
the composition X(t) converges asymptotically towards the equilibrium value X∗,
whatever the initial composition X(t0):

X(t) = eM(t−t0)X(t0)→ X∗ when t→∞ (58)

☛ Convergence towards equilibrium is the central property of the time evolution
Eq. (54).

I.3.2 Exploiting strand exchange symmetry

We previously defined strand exchange symmetry for substitution rates (Eq. (2)).
More abstractly, we can define strand exchange symmetry as the change of strand
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referential (exchanging the reference strand and the complementary strand). We can
study more easily strand asymmetry if we systematically define variables that are
invariant under strand exchange symmetry and variables that change sign. Using
this reformulation, we easily recover PR2 (Section I.1.2).

Defining strand-symmetric and strand-asymmetric variables
The time evolution on the complementary strand is given by:

d

dt
Xc(t) = M cXc(t), (59)

where Xc(t) is the frequency vector on the complementary strand, and M c is the
substitution rate matrix computed on the complementary strand. For a nucleotide
i ∈ {T,A,G,C}, let us denote by ic ∈ {A, T,C,G} the corresponding complementary
nucleotide. By reverse complementarity we have Xc

i (t) = Xic(t) and M c
ij = Micjc .

We can decompose M into a symmetrical and an asymmetrical part under strand
exchange symmetry:

M = M s +Ma with M s =
M +M c

2
, Ma =

M −M c

2
. (60)

It is more convenient to consider the evolution of DNA composition through the
following variables (Lobry and Lobry 1999):

Y =

(

θ
S

)

=









θTA
θGC
STA
SGC









= UX =









XT +XA

XG +XC

XT −XA

XG −XC









, (61)

where STA and SGC are the compositional skews and θTA and θGC are the TA
and GC contents. The TA and GC contents are invariant under strand exchange
symmetry, whereas the compositional skews change sign. The change of coordinate
matrix U and its inverse are given by:

U =









1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1









, U−1 =
1

2









1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1









. (62)

It is easy to get the evolution of Y through a linear transformation of Eq. (54):

dY (t)

dt
= NY (t) with N = UMU−1. (63)

Similarly it is straightforward to get the equilibrium composition Y ∗ through a linear
transformation of Eq. (56):

NY ∗ = 0 and θ∗TA + θ∗GC = 1. (64)
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The symmetry properties of M s and Ma imply the following block forms for:

N s = UM sU−1 =

(

A 0
0 D

)

, (65)

Na = UMaU−1 =

(

0 B
C 0

)

. (66)

The A and D matrices are invariant under strand exchange symmetry whereas the
B and C matrices change sign. More explicitly, in the {T,A,G,C} coordinates, the
symmetrical and asymmetrical parts of M have the following forms:

M s =









α β γ δ
β α δ γ
µ ν κ ǫ
ν µ ǫ κ









, Ma =









a −b c −d
b −a d −c
m −n k −e
n −m e −k









(67)

The matrices A and D introduced in Eq. (65) are equal to:

A =

(

α+ β γ + δ
µ+ ν κ+ ǫ

)

, D =

(

α− β γ − δ
µ− ν κ− ǫ

)

, (68)

and the matrices B and C introduced in Eq. (66) are equal to:

B =

(

a+ b c+ d
m+ n k + e

)

, C =

(

a− b c− d
m− n k − e

)

. (69)

Following (Duret and Arndt 2008), the coefficients of the matrix A can also be
expressed as substitution rates between weak (W = A, T ) and strong (S = G,C)
nucleotides:

µ+ ν = (T → G)s + (T → C)s = (W → S), (70)

γ + δ = (G→ T )s + (G→ A)s = (S →W ). (71)

The spectral properties of the matrices A and D will be needed for the time
evolution of the composition. The eigenvalues and eigenvectors of A are given by:

AθA = 0 with θA =
1

µ+ ν + γ + δ

(

γ + δ
µ+ ν

)

, (72)

A

(

1
−1

)

= − 1

τA

(

1
−1

)

with τA =
1

µ+ ν + γ + δ
. (73)

Expressed in terms of weak to strong and strong to weak substitution rates, the GC
component of θA and τA are equal to (Duret and Arndt 2008):

θA,GC =
(W → S)

(W → S) + (S →W )
, τA =

1

(W → S) + (S →W )
. (74)
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The two eigenvalues of D have a strictly negative real part:

DS(a) =

[

− 1

τ
(a)
D

+ iω(a)

]

S(a) with τ
(a)
D > 0, a ∈ {1, 2}. (75)

Hence, D is invertible and etD → 0 when t→∞. As it will become clear in the next

paragraph, θA characterizes the equilibrium composition, while τA and τ
(1,2)
D are

characteristic time-scales of the DNA composition evolution, when the substitution
rate matrix satisfies PR1.

Proof. As
∑

iM
s
ij = 0 and for i 6= j,M s

ij > 0, we know according to Eqs. (56) and (57)
that M s has 0 as eigenvalue, and three eigenvalues with a strictly negative real part.
N s and M s are similar, they have therefore the same eigenvalues. As 0 and − 1

τA
are

the two eigenvalues of A, the two remaining eigenvalues of N s, those of D, have a
strictly negative real part.

Strand symmetry: evolution under PR1
We consider here the case where there is no substitutional asymmetry Ma = 0, in

other words the substitution rate matrix is symmetrical M = M s and satisfies PR1
(Sueoka 1995). It implies in turn that the matrices B and C are null (Eq. (66)).
The equilibrium TA and GC contents and the equilibrium skews satisfy:

Aθ∗ = 0 and DS∗ = 0, (76)

with the constraint θ∗TA + θ∗GC = 1 (Eq. (64)). According to the spectral properties
of A and D derived just above (Eqs. (72) and (75)), the solutions of Eq. (76) are:

θ∗ = θA and S∗ = 0. (77)

The equations of evolution for the TA and GC contents and the compositional skews
are respectively given by:

d

dt
θ(t) = Aθ(t), (78)

d

dt
S(t) = DS(t), (79)

whose solutions are:

θ(t) = eA(t−t0)θ(t0)→ θA when t− t0 ≫ τA, (80)

S(t) = eD(t−t0)S(t0)→ 0 when t− t0 ≫ τ
(1)
D , τ

(2)
D . (81)

We recover the result of Lobry (1995): if the substitution rate matrix is symmetrical
(PR1), then the compositional skews are null at equilibrium (PR2):

if M = M s (PR1) then S∗
TA = S∗

GC = 0 (PR2) . (82)
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The TA and GC contents converge exponentially toward their equilibrium values
θA with the characteristic time scale τA. More explicitly the evolution of the GC
content1 is given by:

θGC(t) = e
−

(t−t0)
τA θGC(t0) +

(

1− e
−

(t−t0)
τA

)

θ∗GC . (83)

Hence the half time t1/2 of the GC content evolution, defined as the time necessary
to divide by two the difference between the GC content and the equilibrium GC
content, is given by (Duret and Arndt 2008):

θ∗GC − θGC(t)

θ∗GC − θGC(t0)
= e

−
(t−t0)
τA =

1

2
, for t− t0 = t1/2 = ln 2 τA. (84)

The compositional skews decay towards zero with two time-scales τ
(1)
D and τ

(2)
D .

More precisely, the projections of the compositional skew S(t) onto the eigenvectors
S(1) and S(2) of D (Eq. (75)) decay exponentially with respective characteristic

time-scales τ
(1)
D and τ

(2)
D , and the corresponding half times are given by ln 2 τ

(1)
D and

ln 2 τ
(2)
D .

Numerical test. In Fig. 8, we illustrate the time evolution under PR1, using the
symmetrical substitution rate matrix M = M s

0 +M s
R given in Eq. (43). To express

substitution rates in per bp per Myrs units, I used 5 Myrs as an estimation of the
human-chimpanzee divergence. As predicted by Eq. (80), the TA and GC contents
converge towards their equilibrium values whatever their initial values (Fig. 8A,B).
The equilibrium GC content is equal to θ∗GC = 44% and the characteristic time scales

are equal to τA = 568 Myrs (corresponding half time t1/2 = 393 Myrs), τ
(1)
D = 566

Myrs and τ
(2)
D = 1398 Myrs (corresponding half times 385 Myrs and 969 Myrs).

The dynamics of the GC content and the skews are therefore extremely slow. As
predicted by Eq. (81), the TA and GC skews decay towards 0 whatever their initial
values (Fig. 8C,D).

Comment on the GC content evolution. The symmetrical substitution rates (and
therefore the GC content evolution) depend on many variables not taken into account
here: for instance recombination rates in the context of the biased gene conversion
(BGC) model (Duret and Arndt 2008), or replication timing (Stamatoyannopoulos
et al. 2009; Chen et al. 2010). The value found for GC∗ (44%) corresponds to the
highest values found in reference (Duret and Arndt 2008), for reasons currently
unclear. The substitution rate matrix M s

0 +M s
R was determined in regions of high

replication polarity, and could maybe correspond to regions of high recombination
rate. In the BGC model, the half time t1/2 strongly depends on the recombination

1The TA content evolution is somehow redundant with the GC content evolution, as at all time
we have θTA(t) + θGC(t) = 1.
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Figure 8: DNA composition evolution under PR1 satisfies PR2 asymptotically.
The substitution rate matrix is symmetric M = Ms

0 + Ms
R (Eq. (43)). Time evolution of

the TA and GC contents with the initial conditions (A) θTA(0) = θGC(0) = 50%, and (B)
θTA(0) = 40% and θGC(0) = 60%. Time evolution of the TA and GC skews with the initial
conditions (C) STA(0) = SGC(0) = 2%, and (D) STA(0) = 2% and SGC(0) = 3%.
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rate and the effective population size. In absence of recombination, the BGC model
predicts t1/2 ∼ 470 Myrs, and the GC content evolution is extremely slow (Duret
and Arndt 2008). But in genomic region of high recombination rate, for species
with large effective population size, the GC content evolution is predicted to be
much faster t1/2 ∼ 62 Myrs (Duret and Arndt 2008). Our value for t1/2 (393 Myrs)
therefore corresponds to an intermediate value between the two extremes proposed
by the BGC model.

Strand asymmetry
When the PR1 symmetry is broken Ma 6= 0, the matrices B and C are no longer

null (Eq. (66)). The equilibrium TA and GC contents and the equilibrium skews are
now solutions of the equations:

Aθ∗ +BS∗ = 0 and Cθ∗ +DS∗ = 0, (85)

with the constraint θ∗TA + θ∗GC = 1. The evolutions of the TA and GC contents and
the skews are now governed by the following ordinary differential equations:

d

dt
θ(t) = Aθ(t) +BS(t), (86)

d

dt
S(t) = Cθ(t) +DS(t). (87)

How are the time evolutions of the skews and the GC content affected by the sub-
stitutional asymmetry ? How are their equilibrium values modified ? Is PR2 still
verified ? These fundamental questions are addressed in Section I.4 using pertuba-
tive analysis. Under the assumption that the substitutional asymmetry is small, we
will solve the time evolution Eqs. (86) and (87) and the equilibrium composition
Eq. (85), and show that PR2 is explicitly broken.

☛ We systematically defined symmetric and asymmetric variables under strand ex-
change symmetry. Among the strand-symmetric variables we have: the TA and GC
contents θ, the symmetrical substitution rates M s, the 2× 2 matrices A and D de-
fined from M s, the equilibrium TA and GC contents θA, the time scale τA of TA

and GC contents evolution, the time scales τ
(1)
D and τ

(2)
D of the compositional skews

evolution. Among the strand-asymmetric variables we have: the TA and GC skews
S, the substitutional asymmetries Ma, and the 2×2 matrices B and C defined from
Ma.

I.4 Pertubative analysis of the compositional asymme-
try

Under symmetrical substitution rates (PR1), the compositional skews decay towards
0 (PR2) as demonstrated by Lobry (1995). In this section we are interested in the
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opposite situation: establishment and maintenance of the compositional skews in
the presence of a substitutional asymmetry. In the human genome, we found that
the substitutional asymmetry was small (Eqs. (51) and (52)). As we know how
the compositional skews evolve under symmetrical substitution rates, we will use
perturbation theory to determine the skews evolution, adding a small perturbation
that will be the substitutional asymmetry. This section is devoted to this pertu-
bative resolution. Importantly, for substitution rates satisfying our minimal model
(Eqs. (8) and (9)), we demonstrate that the compositional asymmetry can be de-
composed into transcription- and replication-associated components. We also extend
this result for neighbor-dependent substitutions (Arndt et al. 2003) and formally for
time-dependent substitution rates (Lobry and Lobry 1999).

I.4.1 General principles

Pertubative analysis of X(t)
Let us illustrate the principles of perturbation theory on the time evolution of

the composition X(t) governed by Eq. (54). For other quantities, we will just give
the results, as the same method will be used repeatedly. Here we consider the
symmetrical part M s as order O(1) and the asymmetrical part Ma as a small per-
turbation of order O(ǫ). We define the expansion of the composition X(t) in order
of ǫ (Eqs. (51)-(53)):

X(t) = X(0)(t) + ǫX(1)(t) + ǫ2X(2)(t) + · · · (88)

We have then to solve the time evolution Eq. (54) order by order in ǫ, considering
Ma of order ǫ:

d

dt
X(0)(t) = M sX(0)(t), (89)

ǫn
d

dt
X(n)(t) = ǫnM sX(n)(t) + ǫn−1MaX(n−1)(t), for n ≥ 1, (90)

with the initial condition X(t0) = X(0)(t0) that we choose not to depend upon ǫ.
The solutions of these differential equations are:

X(0)(t) = eM
s(t−t0)X(t0), (91)

ǫX(1)(t) =

∫

t≥t1≥t0

dt1e
Ms(t−t1)MaeM

s(t1−t0)X(t0), (92)

ǫ2X(2)(t) =

∫

t≥t2≥t1≥t0

dt2dt1e
Ms(t−t2)MaeM

s(t2−t1)MaeM
s(t1−t0)X(t0), (93)

and so on. We finally get the pertubative solution of the composition X(t):

X(t) = eM
s(t−t0)X(t0) +

∫ t

t0

dueM
s(t−u)MaeM

s(u−t0)X(t0) +O(ǫ2). (94)

The zero-order term X(0)(t) corresponds to the PR2 solution when there is no sub-
stitutional asymmetry Ma = 0. The first-order term X(1)(t) gives small corrections
to the composition evolution when there is a small asymmetry Ma 6= 0.
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Pertubative analysis in the (θ, S) coordinates
We can also perform the pertubative analysis directly in the (θ, S) coordinates,

the computations are just slightly more involved. If we start with initial null skews
S(t0) = 0, the pertubative resolution of Eq. (63) gives the following time evolutions:

θ(t) = eA(t−t0)θ(t0) +O(ǫ2), (95)

S(t) =

∫ t

t0

dueD(t−u)CeA(u−t0)θ(t0) +O(ǫ2). (96)

We can also use perturbation theory to find the composition at equilibrium. The
method is similar, but instead of having differential equations we have algebraic
equations to solve. The pertubative resolution of Eq. (64) gives the equilibrium
values:

θ∗ = θA +O(ǫ2), (97)

S∗ = −D−1CθA +O(ǫ2). (98)

We can demonstrate that the pertubative expansions of θ(t) (Eq. (95)) and S(t)
(Eq. (96)) consistently converge towards the pertubative expansions of θ∗ (Eq. (97))
and S∗ (Eq. (98)), and this at all orders in the expansion parameter ǫ. At first order
in the substitutional asymmetry, the GC content time evolution (Eq. (95)) and its
equilibrium value (Eq. (97)) are not affected. The dynamic of the compositional

skews in Eq.(96) is controlled by the time scales τ
(1)
D and τ

(2)
D (Eq. (75)) but also by

the time scale τA (Eq. (73)). As expected the compositional skews depend linearly
on the substitutional asymmetry through the matrix C in Eqs. (96) and (98). The
skews at equilibrium (Eq. (98)) show that PR2 is explicitly broken when there is a
substitutional asymmetry.

I.4.2 Impact of replication fork polarity, gene orientation and tran-
scription rate

Working hypotheses
We now address the impact of replication fork polarity p, gene orientation (±) and

transcription rate α on the compositional asymmetry. To this purpose, we apply
the pertubative analysis for substitution rates satisfying our model Eqs. (8) and (9).
We recall that the coefficients τaR, τ

a
T , τ

s
T of the model were all found to be small as

compared to the τ s0+τ sR substitution rate in the human genome (Eqs. (51)-(53)). We
will therefore treat the τ s0 + τ sR substitution rates as order O(1), and the τaR, τ

a
T , τ

s
T

coefficients as small perturbations of order O(ǫ). In our minimal model symmetrical
substitutions rates follow Eq. (8), rewritten here for the reader’s convenience:

τ s[p, α, (±)] = τ s0 + τ sR + τ sT [α], (8)

which implies in turn the same decomposition for the symmetrical part M s, and for
the matrices A and D defined from M s in Eq. (65). Similarly the Eq. (9) for the
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substitutional asymmetry:

τa[p, α, (±)] = pτaR ± τaT [α] (9)

implies in turn the same decomposition for the asymmetrical part Ma, and for the
matrices B and C defined from Ma in Eq. (66).

Weak impact on the TA and GC contents
The pertubative resolution of Eq. (63) gives the following time evolution of the

TA and GC contents (Eq. (95)):

θ[p, α, (±)](t) = θ̃0(t) + θT [α](t) +O(ǫ2), (99)

where:

θ̃0(t) = e[A0+AR](t−t0) θ(t0), (100)

θT [α](t) =

∫ t

t0

du e[A0+AR](t−u)AT [α] θ̃0(u). (101)

The pertubative resolution of Eq. (64) yields the following equilibrium TA and GC
contents (Eq. (97)):

θ∗[p, α, (±)] = θ̃∗0 + θ∗T [α] +O(ǫ2), (102)

where:

θ̃∗0 = θ[A0+AR], (103)

θ∗T [α] = τ[A0+AR]AT [α] θ̃
∗
0. (104)

As expected the GC content does not depend on replication fork polarity and gene
orientation. Hence our minimal model (Eqs. (8) and (9)) do not provide a satis-
factory treatment of the GC content evolution. The GC content is almost equal
to its PR2 value and depends on all the variables that determine the symmetrical
substitution rates, and they are many. More relevant explanatory variables, such
as recombination rate (Duret and Arndt 2008), should be considered to account
for the GC content evolution. Our model only predicts a slight dependence of the
GC content upon transcription rate through the θT [α] coefficient. This change is
however presumably small as compared to the variation of the GC content with
recombination rate.

The skews can be decomposed into transcription- and replication-associ-
ated components
The pertubative resolution of Eq. (63), with initial null skews S(t0) = 0, gives the

following time evolution of the TA and GC skews (Eq. (96)):

S[p, α, (±)](t) = pSR(t)± ST [α](t) +O(ǫ2) , (105)
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where:

SR(t) =

∫ t

t0

du e[D0+DR](t−u)CR θ̃0(u), (106)

ST [α](t) =

∫ t

t0

du e[D0+DR](t−u)CT [α] θ̃0(u). (107)

The pertubative resolution of Eq. (64) gives the following equilibrium TA and GC
skews (Eq. (98)):

S∗[p, α, (±)] = pS∗
R ± S∗

T [α] +O(ǫ2) , (108)

where:

S∗
R = −[D0 +DR]

−1CR θ̃∗0, (109)

S∗
T [α] = −[D0 +DR]

−1CT [α] θ̃
∗
0. (110)

Therefore we recover for the compositional asymmetry the same additive decompo-
sition into a replication and a transcription contribution, as originally hypothesized
for the substitutional asymmetry (Eq. (9)).

☛ In our minimal model, the compositional asymmetry can be decomposed into tran-
scription- and replication-associated components. The replication-associated compo-
sitional asymmetry is proportional to the replication fork polarity, the transcription-
associated one increases in magnitude with transcription rate and changes sign with
gene orientation.

Numerical test. In Fig. 9, we compare the exact and pertubative solutions for the
toy model substitution rate matrix:

M [p] = M s
0 +M s

R + pMa
R = M s

0 +M s
R + (p/p̄) p̄Ma

R, (111)

where M s
0 +M s

R and p̄Ma
R are the substitution rate matrices computed in the human

genome as explained in Section I.2.3 (Eqs. (43) and (44)). To express the substitution
rates in per bp per Myrs units, I used 5 Myrs as an estimation of the human-
chimp divergence. According to our minimal model Eq. (8) and (9), M [p] is equal
to the substitution rate matrix obtained in intergenic regions of replication fork
polarity p. As shown in Fig. 9A,B, the pertubative solutions for the time evolution
of θGC , θTA, and SGC , STA are indistinguishable from the exact solutions. The
pertubative solutions for the equilibrium values are also indistinguishable from the
exact solutions (Fig. 9C,D). For the given experimental substitution rate matrices,
the first-order correction is already an excellent approximation, and there is no need
to take into account higher order corrections. As predicted by Eq. (108) the skews at
equilibrium are proportional to p (Fig. 9D). Similarly, as predicted by Eq. (102), the
TA and GC contents at equilibrium do not depend upon p (Fig. 9C). As governed
by Eq. (99), the time evolution of the GC content (Fig. 9A) is not affected by the
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Figure 9: DNA composition evolution in presence of strand asymmetry: com-
parison of exact and pertubative solutions. Toy model substitution rate matrix
M [p] = Ms

0 + Ms
R + pMa

R depends on the replication fork polarity p (Eq. (111)). Ex-
act solution is represented as circles, pertubative solution as solid line. Time evolution of
the TA and GC contents (A) and of the TA and GC skews (B) for the initial conditions
θTA(0) = θGC(0) = 50% and STA(0) = SGC(0) = 0%, and p = p̄. Equilibrium TA and GC
contents (C) and TA and GC skews (D) versus p.
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substitutional asymmetry p̄Ma
R, which explains that we recover the time evolution

under the symmetrical matrix M s
0 + M s

R previously shown in Fig. 8A. According
to Eq. (106), the skews converge towards their equilibrium values with time scales

τA0+AR
, τ

(1)
D0+DR

and τ
(2)
D0+DR

. For the M s
0 +M s

R matrix given in Eq. (43), these time
scales are equal to 568 Myrs, 566 Myrs and 1398 Myrs. Hence the convergence of
the skews towards their equilibrium values is a very long process.

Comment on the long term memory of the initial skews. If the skews are initially
null, they increase according to Eqs. (105)-(107) to ultimately reach their equilibrium
values. Depending linearly on the substitutional asymmetry (Eqs. (108)-(110)),
the equilibrium skews are of order O(ǫ). Therefore under a small substitutional
asymmetry, the skews cannot reach values larger thanO(ǫ). Hence in our pertubative
analysis, if we take initial non null skews S(t0) 6= 0, we will nonetheless assume that
they are of order O(ǫ). Under this assumption the time evolution of the skews is
governed by:

S[p, α, (±)](t) = Sini(t) + pSR(t)± ST [α](t) +O(ǫ2), (112)

where:

Sini(t) = e[D0+DR](t−t0)S(t0). (113)

The skews at equilibrium are of course unchanged as they do not depend on the initial
composition. But if the skews have not reached equilibrium, their time evolution
keeps memory of the initial skews through the additional term Sini(t). We recognize
this term as the PR2 solution (Eq. (81)) under the symmetrical matrix M s

0 +M s
R.

As we have already discussed for the PR2 solution, this term slowly decays towards

zero with time scales τ
(1)
[D0+DR] and τ

(2)
[D0+DR].

I.4.3 Accounting for neighbor-dependent substitution rates

We first exposed DNA composition evolution (Eq. (54)) in the case of time homoge-
neous and neighbor-independent substitution rates. However, substitution rates do
depend on the flanking nucleotides (Hwang and Green 2004; Arndt and Hwa 2005).
In vertebrates, CpG sites are hypermutable, the substitution rate C → T depends
dramatically (ten fold) on whether the cytosine belongs to a CG dinucleotide or
not (Hess et al. 1994; Arndt and Hwa 2005). The r = CpG → TpG and its re-
verse complementary rc = CpG→ CpA are by far the principal neighbor-dependent
substitutions rates in the human genome (Hess et al. 1994; Arndt and Hwa 2005).
The neighbor dependency is difficult to handle mathematically and we will follow
the model introduced in (Arndt et al. 2003). First we expose the model in its gen-
eral form and some of its general properties (odd ratios, PR2). Then we specify
the model when only the neighbor-dependent r = CpG → TpG substitution rate
is taken into account. Finally we perform the pertubative analysis for this simple
case.
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☛ As far as the pertubative analysis is concerned, the neighbor dependency does not
change anything to the conclusions made in the neighbor-independent model.

Neighbor-dependent model
Following (Arndt et al. 2003) the sequence evolves by two processes:

∗ single-nucleotide (neighbor-independent) substitution rates;

∗ dinucleotide (neighbor-dependent) substitution rates.

We define a single-nucleotide substitution rate matrix M and a dinucleotide substi-
tution rate matrix Q. We keep the same definition for M as before: for nucleotides
i, a ∈ {T,A,G,C}, the element Mia is the (neighbor-independent) substitution rate
a → i. For i, j ∈ {T,A,G,C} and a, b ∈ {T,A,G,C}, the element Qij,ab is the
(neighbor-dependent) substitution rate ab → ij. Sums over rows are null for both
M and Q:

∑

i

Mia = 0 and
∑

ij

Qij,ab = 0. (114)

The evolution of the composition is now given by:

d

dt
Xi(t) =

∑

a

MiaXa(t) +
∑

abc

Qia,bcXbc(t) +
∑

abc

Qai,bcXbc(t), (115)

where Xi(t) is still the frequency (or probability) of nucleotides i at time t, and
Xij(t) the frequency (or probability) of dinucleotides ij at time t. As before the first
term accounts for the single nucleotide substitutions. The second and third terms
account for all the dinucleotide substitutions that give rise to the nucleotide i. A
dinucleotide bc can substitute into a dinucleotide ia (second term) with a nucleotide
i on the first base, or into a dinucleotide ai (third term) with a nucleotide i on the
second base.

The neighbor-dependent model is not a closed system
According to Eq. (115), the time evolution of the composition in nucleotides Xi(t)

depends on the composition in dinucleotides Xij(t). Hence, in order to solve this
equation, we need to determine the composition in dinucleotides. The evolution of
the composition in dinucleotides is given by:

d

dt
Xij(t) =

∑

ab

[M ⊗ I+ I⊗M ]ij,abXab(t)

+
∑

ab

Qij,abXab(t) +
∑

abc

Qja,bcXibc(t) +
∑

abc

Qai,bcXbcj(t), (116)

whereXijk(t) is the frequency (or probability) of trinucleotides ijk at time t, ⊗ is the
Kronecker tensor product, and I is the 4×4 identity matrix. The first term accounts
for single nucleotide substitutions, the three last terms for dinucleotide substitutions.
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Dinucleotide substitutions can give rise to the dinucleotide ij in different ways. Of
course a dinucleotide ab can substitute into the dinucleotide ij (second term). But
we can also get the dinucleotide ij if a trinucleotide ibc containing a i on the first
base, undergoes a substitution bc→ ja and becomes a trinucleotide ija (third term).
We also get the dinucleotide ij if a trinucleotide bcj containing a j on the third base,
undergoes a substitution bc→ ai and becomes a trinucleotide aij (fourth term).

The time evolution for the composition in dinucleotides (Eq. (116)) therefore
depends on the composition in trinucleotides, whose time evolution will in turn
depend on the composition in quadrinucleotides, and so on. We are thus faced with
an infinite hierarchy of equations (Arndt et al. 2003). This is the main mathematical
difficulty of the neighbor-dependent model, as the infinite hierarchy of equations
cannot be solved exactly in general. To my knowledge, only Bérard et al. (2008)
succeeded in proving exact results regarding the neighbor-dependent model. The
authors in (Arndt et al. 2003) proposed instead to truncate the infinite hierarchy
using the two-cluster approximation:

Xijk ≃
XijXjk

Xj
. (117)

This approximation is equivalent to state that the sequence is a first-order Markov
chain (in genomic position). Then Eq. (116) is closed, with trinucleotide frequen-
cies given by Eq. (117). In further numerical examples, we will use the two-cluster
approximation to compute the time evolution of the dinucleotide frequencies.

Remark. Note that the infinite hierarchy of equations is in fact highly redun-
dant. The composition in nucleotides can be obtained from the composition in
dinucleotides, which can be obtained from the composition in trinucleotides, and so
on:

Xi =
∑

a

Xia =
∑

a

Xai, Xij =
∑

a

Xija =
∑

a

Xaij , . . . (118)

Using Eq. (118) between compositions in nucleotides and dinucleotides and the time
evolution Eq. (116) for the composition in dinucleotides, one recovers the time evo-
lution Eq. (115) for the composition in nucleotides. Similarly, the time evolution
for composition in n-nucleotides implies all the time evolutions for lower numbers of
nucleotides through relations like Eq. (118).

Odds ratios and PR2
When there are no neighbor-dependent substitution rates, i.e. when Q = 0, the

solution of Eq. (116) is Xij(t) = Xi(t)Xj(t). The observed frequencies of dinu-
cleotides Xij are then equal to their expected value XiXj . Odds ratios (or observed

over expected values) ρij =
Xij

XiXi
clearly different from 1 have been an indication,

directly derived from the sequence, that neighbor-independency does not hold in
many genomes (Burge et al. 1992). Regarding strand symmetry, one can extend
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PR1 and PR2 symmetries to dinucleotide frequencies. We recall that the reverse
complementary of a dinucleotide ij is the dinucleotide jcic. Hence four dinucleotides
are their own reverse complementary:

(TA)c = TA, (AT )c = AT, (GC)c = GC and (CG)c = CG. (119)

The dinucleotide frequencies computed on the complementary strand are given by
reverse complementarity:

Xc
ij = X(ij)c = Xjcic . (120)

We note that the CG frequency is strand-symmetric: Xc
CG = XCG. The neighbor-

dependent substitution rate matrix computed on the complementary strand is also
given by reverse complementarity:

Qc
ij,ab = Q(ij)c,(ab)c = Qjcic,bcac . (121)

We can decompose Q into symmetrical and asymmetrical parts under strand ex-
change symmetry:

Q = Qs +Qa, with Qs =
Q+Qc

2
, Qa =

Q−Qc

2
. (122)

In the neighbor-dependent model, PR2 extends to the dinucleotides frequencies. Un-
der symmetrical substitution rates (PR1), the frequencies of reverse complementary
dinucleotides are equal at equilibrium (PR2):

if M = M s and Q = Qs (PR1) then X∗
ij = X∗

jcic (PR2) (123)

Focusing on the CpG→ TpG substitution only
As previously mentioned, the r = CpG → TpG and its reverse complementary

rc = CpG → CpA are by far the principal neighbor-dependent substitutions rates
in the human genome (Hess et al. 1994; Arndt and Hwa 2005). Following (Arndt
et al. 2003), we take all the elements of the matrix Q null except:

QTG,CG = r = rs + ra, QCA,CG = rc = rs − ra, QCG,CG = −2rs. (124)

The evolution of the composition then simplifies to:

d

dt
X(t) = MX(t) +XCG(t)









rs + ra

rs − ra

−rs + ra

−rs − ra









(125)

in the {T,A,G,C} coordinates and to:

d

dt
Y (t) = NY (t) +XCG(t)









2rs

−2rs
2ra

2ra









(126)
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in the {θTA, θGC , STA, SGC} coordinates. Therefore we recover the time evolutions
Eqs. (54) and (63) with a source term depending on the CG frequency. The com-
position at equilibrium is given by:

NY ∗ +X∗
CG









2rs

−2rs
2ra

2ra









= 0 and θ∗TA + θ∗GC = 1. (127)

Therefore a source term depending on the equilibrium CG frequency is also added
to the equilibrium composition Eq. (63).

Numerical test of odds ratio and PR2
To illustrate the properties of the neighbor dependency, we investigated observed

dinucleotide frequencies Xij versus expected dinucleotide frequencies XiXj at equi-
librium for four different models (Fig. 10). The dinucleotide frequencies at equi-
librium were determined by integrating numerically the differential Eq. (116) with
the two-cluster approximation (Eq. (117)). The four models correspond to special
cases of the model Eq. (126), with or without neighbor dependency, and evolving
under PR1 or PR1 breaking. For the two neighbor-independent models (r = 0 in
Fig. 10A,B), observed dinucleotide frequencies are equal to their expected values. On
the opposite, for the neighbor-dependent models (r 6= 0 in Fig. 10C,D) the odd ra-
tios are clearly different from 1. As expected the odd ratio of the CG dinucleotide is
decreased, whereas the odds ratio of the TG and CA dinucleotides are increased. For
models under PR1 (M = M s, r = rs in Fig. 10A,C), observed frequencies of reverse
complementary dinucleotides are equal, as their expected values. The composition
does satisfy PR2 ([G] = [C] and [T ] = [A]), as verified in Fig. 10A,C, the values
are clustered into three groups along the x-axis, corresponding to the only three
different expected dinucleotide frequencies [X][Y ] values ([G][G], [T ][T ] or [G][T ]).
Furthermore, for the neighbor-dependent model under PR1 (Fig. 10C), the observed
dinucleotide frequencies are not equal to their expected values, but the observed fre-
quencies of reverse complementary dinucleotides are nonetheless equal. For instance
in Fig. 10C, TG and CA observed frequencies are equal [TG] = [(TG)c] = [CA]
whereas the CG observed frequency is only equal to itself [CG] = [(CG)c]. Of course
when the PR1 symmetry is broken (Fig. 10B,D), the PR2 symmetry is broken for
both expected and observed dinucleotide frequencies.

Pertubative resolution of the neighbor-dependent model
The neighbor-dependent case (Eq. (126)) differs from the neighbor-independent

model (Eq. (63)) by the additional source term related to the CG frequency. The
neighbor dependency does not change anything to our conclusions, but a source term
related to the CG frequency is systematically added.

Pertubative analysis in the (θ, S) coordinates. Here the symmetrical parts M s and rs
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Figure 10: Observed and expected dinucleotide frequencies at equilibrium. (A)
Neighbor-independent model (r = 0) with symmetrical substitution rates (M = Ms).
(B) Neighbor-independent model (r = 0) with substitutional asymmetry (Ma 6= 0). (C)
Neighbor-dependent model (r 6= 0) with symmetrical substitution rates (M = Ms, r = rs).
(D) Neighbor-dependent model (r 6= 0) with substitutional asymmetry (Ma 6= 0, ra 6= 0).
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are considered O(1), while the asymmetrical parts Ma and ra are considered O(ǫ).
If we start with initial null skews S(t0) = 0, the pertubative resolution of Eq. (126)
gives the following time evolutions:

θ(t) = eA(t−t0) θ(t0) +

∫ t

t0

du eA(t−u)XCG(u)

(

2rs

−2rs
)

+O(ǫ2), (128)

S(t) =

∫ t

t0

du eD(t−u)C eA(u−t0) θ(t0)

+

∫ t

t0

du eD(t−u)C

∫ u

t0

dv eA(u−v)XCG(v)

(

2rs

−2rs
)

+

∫ t

t0

du eD(t−u)XCG(u)

(

2ra

2ra

)

+O(ǫ2). (129)

The pertubative resolution of Eq. (127) yields the equilibrium values:

θ∗ = θA + τAX
∗
CG

(

2rs

−2rs
)

+O(ǫ2), (130)

S∗ = −D−1

{

CθA + CτAX
∗
CG

(

2rs

−2rs
)

+X∗
CG

(

2ra

2ra

)}

+O(ǫ2). (131)

We note that both the GC content and the skews are affected by the neighbor-
dependent rate r.

Weak impact on the TA and GC contents. Here we assume that the substitution
rates, and in particular the r substitution rate and the substitution rate matrix M ,
follow our minimal model Eqs. (8) and (9). We recall that the coefficients τaR, τ

s
T , τ

a
T

are O(ǫ). The pertubative resolution of Eq. (126) gives the following time evolution
of the TA and GC contents:

θ[p, α, (±)](t) = θ̃0(t) + θT [α](t) +O(ǫ2), (132)

where:

θ̃0(t) = e[A0+AR](t−t0) θ(t0)

+

∫ t

t0

du e[A0+AR](t−u)XCG(u)

(

2(rs0 + rsR)
−2(rs0 + rsR)

)

, (133)

θT [α](t) =

∫ t

t0

du e[A0+AR](t−u)AT [α] θ̃0(u)

+

∫ t

t0

du e[A0+AR](t−u)XCG(u)

(

2rsT [α]
−2rsT [α]

)

. (134)

The pertubative resolution of Eq. (127) gives the following equilibrium TA and GC
contents:

θ∗[p, α, (±)] = θ̃∗0 + θ∗T [α] +O(ǫ2), (135)
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where:

θ̃∗0 = θ[A0+AR] + τ[A0+AR]X
∗
CG

(

2(rs0 + rsR)
−2(rs0 + rsR)

)

, (136)

θ∗T [α] = τ[A0+AR]

{

AT [α] θ̃
∗
0 +X∗

CG

(

2rsT [α]
−2rsT [α]

)}

. (137)

As compared to the neighbor-independent model Eqs. (99)-(104), we note that
the neighbor-dependent rate r impacts on both the θ̃0 and θT [α] coefficients in
Eqs. (132)-(137).

The skews still decompose into transcription- and replication-associated components.
We still assume that the substitution rates obey our minimal model Eqs. (8) and (9).
The pertubative resolution of Eq. (63), with initial null skews S(t0) = 0, yields the
following time evolution of the TA and GC skews:

S[p, α, (±)](t) = pSR(t)± ST [α](t) +O(ǫ2) , (138)

where:

SR(t) =

∫ t

t0

du e[D0+DR](t−u)CR θ̃0(u)

+

∫ t

t0

du e[D0+DR](t−u)XCG(v)

(

2raR
2raR

)

, (139)

ST [α](t) =

∫ t

t0

du e[D0+DR](t−u)CT [α] θ̃0(u)

+

∫ t

t0

du e[D0+DR](t−u)XCG(v)

(

2raT [α]
2raT [α]

)

. (140)

The pertubative resolution of Eq. (64) gives the equilibrium TA and GC skew values:

S∗[p, α, (±)] = pS∗
R ± S∗

T [α] +O(ǫ2) , (141)

where:

S∗
R = −[D0 +DR]

−1

{

CR θ̃∗0 + X∗
CG

(

2raR
2raR

)}

, (142)

S∗
T [α] = −[D0 +DR]

−1

{

CT [α] θ̃
∗
0 +X∗

CG

(

2raT [α]
2raT [α]

)}

. (143)

Therefore we recover for the compositional asymmetry the same decomposition as for
the substitutional asymmetry Eq. (9). From the comparison with the corresponding
Eqs. (105)-(110) of the neighbor-independent model, we note that the neighbor-
dependent rate r also impacts on the SR and ST [α] coefficients.
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Figure 11: Comparison of the exact and pertubative solutions in the neighbor-
dependent model. The substitution rate matrix M [p] = Ms

0 + pMa
R and the neighbor-

dependent substitution rate r[p] = rs0+praR depend on the replication fork polarity p. Exact
solution is represented as circles, pertubative solution as solid line. (A) Equilibrium TA and
GC contents versus p. (B) Equilibrium TA and GC skews versus p.

Numerical test. In Fig. 11, we compare the exact and pertubative solutions for the
toy model substitution rates matrix:

M [p] = M s
0 +M s

R + pMa
R = M s

0 +M s
R + (p/p̄) p̄Ma

R, (144)

when taking into account the toy model neighbor-dependent substitution rate:

r[p] = rs0 + rsR + praR = rs0 + rsR + (p/p̄) p̄raR, (145)

where the experimental matrices M s
0 +M s

R and p̄Ma
R are given in Eqs. (43) and (44),

and the experimental neighbor-dependent rate rs0+rsR and p̄raR in Eq. (50). According
to our minimal model Eq. (8), these substitution rates are equal to those obtained in
intergenic regions of replication fork polarity p. As shown in Fig. 11, the pertubative
solutions for the equilibrium values are indistinguishable from the exact solutions.
As predicted by Eq. (141) the skews at equilibrium are proportional to p (Fig. 11B).
In contrast, as predicted by Eq. (135), the TA and GC contents at equilibrium do
not depend upon p (Fig. 11A). When comparing these values to the ones previously
obtained with the neighbor-independent model (r = 0, Fig. 9), we see that the
neighbor-dependent rate r does impact on both the skews and the GC content.

I.4.4 Time dependency of substitution rates

Substitutional patterns have been also shown to depend on time (Hwang and Green
2004; Mugal et al. 2009). In this case all substitution rates, and all the parameters
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derived from them, depend explicitly on time. Importantly, on the contrary to the
time homogeneous case, the nucleotide composition does not necessarily converge
towards its equilibrium value. PR2 formally extends to the time-dependent case
(Lobry and Lobry 1999). For the pertubative analysis of the compositional asym-
metry (violation of PR2), I briefly indicate how to formally take into account the
time dependency.

☛ This subsection will not lead to any practical, or even numerical, applications.

Equilibrium composition interpreted as the current direction of evolution
If we take into account the time dependency of the substitution rates, the neighbor-

independent model evolution Eq.(54) becomes:

d

dt
X(t) = M(t)X(t). (146)

In general the solution of Eq. (146) does not converge. At each time t, the composi-
tion starts converging towards the equilibrium value X∗(t), defined from the matrix
M(t). As the equilibrium composition X∗(t) changes over time, the composition
X(t) may never actually reach an equilibrium state. In this perspective the equilib-
rium composition X∗(t) gives the current direction of evolution, not the long term
asymptotic value (that may even not exist) of the composition. With this interpre-
tation in mind, the pertubative solutions for the equilibrium GC content and the
skews are still valid, but they of course depend explicitly on time.

PR2 is still valid for time-dependent substitution rates
PR2 was first proved (Lobry 1995) for the equilibrium composition for time-

independent substitution rates (Eq. (82)). But if the composition never reaches
the equilibrium state, are we certain that PR2 is still satisfied ? Under symmetrical
substitution rates (PR1), the evolution of the skews decouples from the evolution of
the TA and GC contents (Lobry and Lobry 1999):

d

dt
θ(t) = A(t)θ(t), (147)

d

dt
S(t) = D(t)S(t). (148)

Note that Eqs. (147) and (148) are the equivalent of Eqs. (78) and (79) for time-
dependent substitution rates. Lobry and Lobry (1999) showed that the GC content
on one side and the skews on the other have distinct long term behaviour. The GC
content generally never reaches equilibrium, GC∗(t) only gives the ever changing
direction of evolution. On the opposite the skews always decay towards zero, as
S∗(t) = 0 gives at all times the same direction of evolution. Therefore whatever the
time-dependent substitutional pattern, under symmetrical substitution rates (PR1),
the nucleotide composition will always satisfy PR2 asymptotically.
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Solving time-dependent differential equations
If we take into account the time dependency of the substitution rates, the neighbor-

dependent model Eq. (126) may be rewritten as

d

dt
Y (t) = N(t)Y (t) +XCG(t)









2rs(t)
−2rs(t)
2ra(t)
2ra(t)









(149)

in the {θTA, θGC , STA, SGC} coordinates. This models falls into the class of time-
dependent linear differential equations:

d

dt
Y (t) = N(t)Y (t) + Z(t), (150)

where Z(t) is a source term. When solving pertubatively Eq. (149), we systematically
encounter differential equations of this class. To solve Eq. (150) we need to introduce
the time-ordered exponential (Van Kampen 2007):

Te
∫ t

t0
duN(u)

= 1 +
∑

n≥1

∫

t≥tn≥···≥t1≥t0

dtn . . . dt1N(tn) · · ·N(t1). (151)

Importantly the time-ordered exponential satisfies the following properties:

d

dt
Te

∫ t

t0
duN(u)

= N(t)Te
∫ t

t0
duN(u)

, and Te
∫ t

t0
duN(u)

∣

∣

∣

t=t0
= I, (152)

where I is the identity matrix. The solution of Eq. (150) with the initial condition
Y (t0) at t0 is given by:

Y (t) = Te
∫ t

t0
duN(u)

Y (t0) +

∫ t

t0

duTe
∫ u

t0
dvN(v)

Z(u). (153)

Proof. The proof is very simple. The solution Eq. (153) satisfies both Eq. (150)
and the initial condition thanks to the properties of the time-ordered exponential
(Eq. (152)). Uniqueness of the solution is ensured by the Cauchy-Lipschitz theorem.

We recall that the solution of differential Eq. (150) in the time-independent case
N(t) = N is given by:

Y (t) = e(t−t0)NY (t0) +

∫ t

t0

du e(u−t0)NZ(u). (154)

Consistently the time-ordered exponential reduces to the ordinary exponential in
the time-independent case:

Te
∫ t

t0
duN(u)

= e(t−t0)N when N(t) = N. (155)

Therefore the resolution of the time-dependent differential equation actually amounts
to replace the ordinary exponential in Eq. (154) by the time-ordered exponential in
Eq. (153).
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Pertubative analysis of the compositional asymmetry with time-dependent
substitution rates
All the result derived in the previous pertubative analyses are extended to the

time-dependent case if we systematically replace ordinary exponentials by time-
ordered exponentials. For example, Eq. (128) becomes in the time-dependent case:

θ(t) = Te
∫ t

t0
duA(u)

θ(t0) +

∫ t

t0

duTe
∫ t

u
dvA(v)XCG(u)

(

2rs(u)
−2rs(u)

)

+O(ǫ2). (156)

In the time-dependent case the skews can still be decomposed into a transcription-
and a replication-associated contribution. The proportionality of the replication-
associated skew with the replication fork polarity further depends on whether the
replication fork polarity changes over time or not. In our minimal model Eq. (9), the
replication-associated substitutional asymmetry can change over time either because
the replication fork polarity changes or because the coefficient τaR changes. We
could imagine for instance that the error spectra of the DNA polymerase, which
affect τaR (Eq. (14)), change over evolutionary time scales. We could also invoke
that the replication program, which determines p, undergoes major changes over
evolutionary time scales. If the replication fork polarity changes over time, we are
no longer certain of the proportionality between the skew and the replication fork
polarity. On the opposite, if the replication fork polarity is relatively constant, but
the coefficient τaR is time-dependent, then the proportionality will still hold.

I.5 Compositional asymmetry

Definition of the compositional skews
The compositional asymmetry is measured by the compositional skews (Eq. (61)):

STA = [T ]− [A] and SGC = [G]− [C], (157)

where [i] denotes the frequency of nucleotide i ∈ {T,A,G,C} in the DNA sequence.
The skew STA (resp. SGC) is also equal to the difference in frequencies of T (resp.
G) between the two DNA strands, hence its ability to measure compositional asym-
metry. In the biological literature the skews are often normalized by the GC and
TA contents (Brodie of Brodie et al. 2005; Touchon et al. 2005):

STA =
[T ]− [A]

[T ] + [A]
and SGC =

[G]− [C]

[G] + [C]
. (158)

In the human genome, as the TA and GC skews correlate (Touchon et al. 2003),
the total skew defined as the sum of the TA and GC skews is also often considered.
In the following S will denote generically the compositional skews, no matter their
definitions.
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The skew decomposes into transcription- and replication-associated com-
ponents
We showed in Sections I.3 and I.4 that a substitutional asymmetry (breaking of

PR1) in turn generates a compositional asymmetry (breaking of PR2). For substitu-
tion rates following our minimal model Eqs. (8) and (9), and starting from initial null
skews, we demonstrated that the compositional skews are at all times decomposable
into the sum of a transcription-associated component and a replication-associated
component:

S[p, α, (±)](t) = pSR(t)± ST [α](t). (159)

If the substitutional pattern given by Eqs. (8) and (9) lasts for ever, the skews
converge towards their equilibrium values, and asymptotically reach them after
long evolutionary time (Graur and Li 1999). The equilibrium skews can be directly
computed from the substitution rates. More generally, as the substitutional pattern
may change over time, the equilibrium skews computed from today’s substitution
rates give the current direction of evolution. We demonstrated that the equilibrium
skews follow the same decomposition into transcription- and replication-associated
components:

S∗[p, α, (±)] = pS∗
R ± S∗

T [α]. (160)

As reported in Section I.4, the proof of Eqs. (159) and (160) relies importantly on
the smallness of the coefficients τaR, τ

a
T and τ sT as observed in the human genome

(Eqs. (51) to (53)). We also took into account the neighbor-dependent r = CpG→
TpG substitution rate using the model introduced in (Arndt et al. 2003).

Finally what about the observed compositional skews, computed from the cur-
rent DNA sequence? If the substitutional pattern has robustly satisfied Eqs. (8) and
(9) for a sufficiently long period of time, we can suppose that the theoretical time
evolution Eq. (159) has significantly contributed to shape the observed compositional
skews. Therefore we expect the current observed compositional skews to follow more
or less the same decomposition into transcription- and replication-associated com-
ponents:

S[p, α, (±)] = pSR ± ST [α] . (161)

☛ In our minimal evolution model, the compositional asymmetry can be linearly
decomposed into a transcription-associated component and a replication-associated
component. The replication-associated compositional asymmetry is proportional to
the replication fork polarity, whereas the transcription-associated asymmetry in-
creases in magnitude with transcription rate and changes sign with gene orientation.

Numerical test. In Fig. 12, we illustrate the additive decomposition of the equilib-
rium skews into replication- and transcription-associated components (Eq. (160))
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Figure 12: Decomposition of the equilibrium skews into transcription- and
replication-associated components. In intergenic regions substitution rates depend on
the replication fork polarity τ [p] = τ s0 + τ sR+pτaR. In genic regions substitution rates depend
on the replication fork polarity and gene orientation τgenic (±)[p] = τintergenic[p] + τ sT ± τaT .
Exact solution is represented as circles, pertubative solution as solid line. Equilibrium GC
skew (A) and TA skew (B) versus replication fork polarity p. STA and SGC skews are defined
in Eq. (158).

for the toy model substitution rates:

τintergenic[p] = τ s0 + τ sR + pτaR = τ s0 + τ sR + (p/p̄)(p̄τaR), (162)

τgenic (±)[p] = τintergenic[p] + τ sT ± τaT , (163)

where the coefficients τ s0 + τ sR, p̄τ
a
R, τ

s
T and τaT were estimated in the human genome

as described in Section I.2.3 (Eqs. (43)-(47) and Eq. (50)). According to our minimal
model Eqs. (5)-(7), the substitution rates correspond to those obtained in intergenic
and genic (±) regions of replication fork polarity p. In Fig. 12, as predicted by
Eq. (160), the replication-associated skew in intergenic regions is found proportional
to p. In genic regions we recover the same linear dependence upon p, adding up for
sense genes or subtracting down for antisense genes a constant corresponding to the
(mean) transcription-associated skew, in agreement with Eq. (160).

Note for the readers of Sections I.3 and I.4. As shown in Fig. 12, the pertubative
solutions for the equilibrium values are indistinguishable from the exact solutions.
The coefficients S∗

R and S∗
T in the biologist convention (Eq. (158)) are easily deduced

from the coefficients given in Section I.4.
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Summary of Chapter I

To determine the DNA sequence, we have to choose arbitrary one of the two strands,
for instance the published strand. The sequence is read in the 5′ → 3′ direction on
this reference strand. The sequence on the complementary strand is then
given by reverse complementarity. The orientation (±) of genes (Fig. 5), as well as
the orientation of replication forks (Fig. 7), were defined relatively to the reference
strand. Over cell cycles, a locus x is replicated by a proportion p(±)(x) of (±) forks.
The difference of these proportions defines the replication fork polarity:

p(x) = p(+)(x)− p(−)(x). (164)

Gene orientation and transcription rate are the natural parameters to describe the
strand asymmetry due to transcription. Replication fork polarity is the natural
parameter to describe the strand asymmetry due to replication.

For a substitution rate τ (e.g. A → G), we denote by τ c the reverse comple-
mentary substitution rate (e.g. T → C). It is much more convenient to study
strand asymmetry using the symmetrical part τ s = [τ + τ c]/2 and asymmetrical
part τa = [τ − τ c]/2 of substitution rates. The symmetrical part corresponds to the
average of a substitution rate on the two DNA strands, whereas the asymmetrical
part measures the substitutional asymmetry between the two DNA strands. The
compositional asymmetry is measured by the compositional skews:

STA =
[T ]− [A]

[T ] + [A]
, SGC =

[G]− [C]

[G] + [C]
. (165)

In our minimal evolution model, the impact of replication fork polarity p, transcrip-
tion rate α and gene orientation (±) on substitution rates and compositional skews
is described by the following equations:

τ s[p, α, (±)] = τ s0 + τ sR + τ sT [α], (166)

τa[p, α, (±)] = pτaR ± τaT [α], (167)

and
S[p, α, (±)] = pSR ± ST [α], (168)

where α = 0 (τT [0] = 0, ST [0] = 0) corresponds to the intergenic case. The com-
positional asymmetry, as well as the substitutional asymmetry, can be decomposed
into two distinct contributions, one associated to transcription and the other one to
replication. The replication-associated asymmetry is proportional to the replication
fork polarity p, while the transcription-associated asymmetry increases in magnitude
with transcription rate α and changes sign with gene orientation (±).
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Chapter II

Theory of the spatio-temporal
DNA replication program

In this Chapter, we present a rigorous analysis of the spatio-temporal program of
DNA replication. Importantly, we indicate how to measure replication fork polarity
from replication timing data, which will be crucial for the interpretation of com-
positional strand asymmetry. We first recall the complexity of the spatio-temporal
program of DNA replication in higher eukaryotes, which motivates the introduction
of a rigorous theoretical framework.

II.1 Introduction

DNA replication is an essential genomic function responsible for the accurate trans-
mission of genetic information through successive cell generations. According to
the so-called “replicon” paradigm derived from prokaryotes (Jacob et al. 1963), this
process starts with the binding of some “initiator” protein complex to a specific
“replicator” DNA sequence called origin of replication. The recruitment of addi-
tional factors initiates the bi-directional progression of two divergent replication
forks along the chromosome. One strand is replicated continuously (leading strand),
while the other strand is replicated in discrete steps towards the origin (lagging
strand) (see Figs. 6 and 7 of Chapter I). In eukaryotic cells, this event is initiated at
a number of replication origins and propagates until two converging forks collide at
a terminus of replication (Bell and Dutta 2002; DePamphilis 2006). The initiation
of different replication origins is coupled to the progression through S phase but
there is a definite flexibility in the usage of the replication origins at different de-
velopmental stages (Hyrien and Méchali 1993; Gerbi and Bielinsky 2002; Schübeler
et al. 2002; Anglana et al. 2003; Fisher and Méchali 2003). Also, it can be strongly
influenced by the distance and timing of activation of neighboring replication ori-
gins, by the transcriptional activity and by the local chromatin structure (Gerbi
and Bielinsky 2002; Schübeler et al. 2002; Anglana et al. 2003; Fisher and Méchali
2003). Actually, sequence requirements for a replication origin vary significantly
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between different eukaryotic organisms. In the unicellular eukaryote S. cerevisiae,
the replication origins spread over 100-150 bp and present some highly conserved
motifs (Bell and Dutta 2002). However, among eukaryotes, S. cerevisiae seems to
be the exception that remains faithful to the replicon model. In the fission yeast
Schizosaccharomyces pombe, there is no clear consensus sequence and the replication
origins spread over at least 800 to 1000 bp (Bell and Dutta 2002). In multicellular
organisms, the nature of initiation sites of DNA replication is even more complex
(DePamphilis 2006). Metazoan replication origins are rather poorly defined and ini-
tiation may occur at multiple sites distributed over a thousand of base pairs (Gilbert
2001). The initiation of replication at random and closely spaced sites was repeat-
edly observed in Drosophila and Xenopus early embryo cells, presumably to allow for
extremely rapid S phase, suggesting that any DNA sequence can function as a repli-
cator (Hyrien and Méchali 1993; Coverley and Laskey 1994; Sasaki et al. 1999). A
developmental change occurs around midblastula transition that coincides with some
remodeling of the chromatin structure, transcription ability and selection of prefer-
ential initiation sites (Hyrien and Méchali 1993; Sasaki et al. 1999). Thus, although
it is clear that some sites consistently act as replication origins in most eukaryotic
cells, the mechanisms that select these sites and the sequences that determine their
location remain elusive in many cell types (Bogan et al. 2000; Gilbert 2004; DePam-
philis 2006). As recently proposed by many authors (Demeret et al. 2001; Méchali
2001; McNairn and Gilbert 2003), the need to fulfill specific requirements that result
from cell diversification may have led high eukaryotes to develop various epigenetic
controls over the replication origin selection rather than to conserve specific replica-
tion sequence. This might explain that for many years, very few replication origins
have been identified in multicellular eukaryotes, namely around 20 in metazoa and
only about 10 in human. In several recent studies, replication bubbles and small
nascent DNA strands synthetized at origins were purified by various methods (Mes-
ner et al. 2006; Lucas et al. 2007; The ENCODE Project Consortium 2007; Cadoret
et al. 2008; Karnani et al. 2009; Mesner et al. 2011) and hybridized to microarrays,
to map a few hundred putative origins over a small fraction (. 1%) of the human
genome. However, the concordance between the different studies is very low (from
< 5% to < 25%), even when they employ the same technique (Cadoret et al. 2008;
Karnani et al. 2009), for reasons that are currently unclear (Hamlin et al. 2010).
The reliable detection of individual origins seems today still an extremely difficult
experimental task. This contrasts with the flourishing availability of genome-wide
replication timing data, for several eukaryotic organisms ranging from yeast (Raghu-
raman et al. 2001), to drosophila (Schübeler et al. 2002), to mouse (Hiratani et al.
2008), and to human (Woodfine et al. 2005). Very recently genome-wide replica-
tion timing data has been determined in several human cell types (Woodfine et al.
2005; Desprat et al. 2009; Chen et al. 2010; Hansen et al. 2010; Ryba et al. 2010;
Yaffe et al. 2010), which permits to study changes in the replication program across
differentiation.
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In this experimental context, what kind of information can we extract from repli-
cation timing data about the mechanisms underlying the spatio-temporal replication
program? Note that the replication timing at a given locus depends on the local
initiation properties, but it depends equally on the initiation properties of neighbor-
ing sites as replication forks propagate (de Moura et al. 2010; Yang et al. 2010). As
a very challenging inverse problem, is it possible to infer the underlying initiation
properties from the replication timing data? How much the replication fork propa-
gation does affect the link between replication timing, transcriptional activity and
chromatin context? Motivated by our study of compositional strand asymmetry in
Chapter I, is there a way to experimentally measure the replication fork polarity?
In order to avoid any overstatement on the replication program in higher eukary-
otes, it seems necessary from the early beginning to provide a rigorous theoretical
framework (de Moura et al. 2010; Hyrien and Goldar 2010; Yang et al. 2010), where
required assumptions are explicitly stated.

II.2 Constant replication fork velocity

Here we assume that replication origins are bidirectional and the replication fork
velocity v is constant. From these simple assumptions we can already extract fun-
damental clues such as the replication fork polarity and the difference between ini-
tiation site density and termination site density (Baker et al. 2011; Rappailles et al.
2011).

☛ Importantly for Chapters III, IV and V, we demonstrate that the replication fork
polarity is related to the derivative of the mean replication timing.

Replication program in one cell cycle
If the replication fork velocity v is constant, the spatio-temporal program of repli-

cation for one cell cycle is completely specified by the position xi and the firing
time ti of the n activated bidirectional replication origins Oi (Fig. 1A). From each
bidirectional origin, two divergent forks propagate at velocity v, until they meet a
fork of opposite orientation (Fig. 1A). Let Ti be the termination locus where the
fork coming from Oi meets the fork coming from Oi+1. Straightforward calculations
lead to the space-time coordinates (yi, ui) for Ti:

yi =
1

2
(xi+1 + xi) +

v

2
(ti+1 − ti), ui =

1

2v
(xi+1 − xi) +

1

2
(ti+1 + ti). (1)

In Fig. 1, the x-axis is conventionally oriented in the 5′ → 3′ direction of the reference
strand. Hence sense (+) and antisense (−) forks defined in Chapter 1, correspond
respectively to rightward and leftward moving forks in Fig. 1B. Around origin Oi

(for x ∈ [yi−1, yi]), the replication timing tR(x) and the fork orientation o(x) = ±1
are given by:

tR(x) = ti + |x− xi|/v and o(x) = sign(x− xi). (2)
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Figure 1: Replication program in one cell cycle. (A) Replication timing tR(x), (B)
replication fork orientation o(x) and (C) spatial location of replication origins (upward
arrows) and termination sites (downward arrows). Oi = (xi, ti) corresponds to the origin i
positioned at location xi and firing at time ti. Fork coming form Oi meets the fork coming
from Oi+1 at termination site Ti with space-time coordinates (yi, ui) given in Eq. (1). Note
that we can deduce the fork orientation in (B) (resp. origin and termination site locations in
(C)) by simply taking successive derivatives of the timing profile in (A) (Eqs. (3) and (4)).
If we take the population average, we can deduce in turn the replication fork polarity, and
the difference between initiation site density and termination site density by simply taking
successive derivatives of the mean replication timing (Eqs. (7) and (8)). The fundamental
hypothesis is that the replication fork velocity v is constant.
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Finally, using the Dirac distribution δ to represent origin locations δ(x − xi) and
termination sites δ(y − yi) (Fig. 1C), we obtain the following fundamental relation-
ships:

v
d

dx
tR(x) = o(x), (3)

v
d2

dx2
tR(x) =

∑

i

δ(x− xi)−
∑

i

δ(x− yi). (4)

In other words, we can extract, up to a multiplicative constant, the fork orientation
o(x) (Fig. 1B) and the location of origin and termination sites (Fig. 1C) by simply
taking successive derivative (Eqs. (3) and (4)) of the timing profile tR(x) (Fig. 1A).

Extension to population average
Single cell determination of the replication timing profile is beyond current ex-

perimental abilities. Replication timing data are usually obtained using thousands
to millions of cells, and thus only determine the population average replication pro-
gram. If we assume a nearly deterministic replication program, where at each cell
cycle nearly the same set of replication origins is used, and where all replication ori-
gins fire at specific times, then the population average replication program reflects
faithfully what occurs in each cell cycle. However there is now increasing evidence
that the replication program is stochastic (Friedman et al. 1997; Patel et al. 2006;
Rhind 2006; Czajkowsky et al. 2008), it is now believed that no two cell cycles use
the same set of replication origins and the same firing times. But if we take into
account the stochasticity of the replication program, some care is needed in inter-
preting mean replication timing profiles (de Moura et al. 2010; Rhind et al. 2010;
Retkute et al. 2011). For instance, it has been proposed that the mean replication
timing gradient measures the replication fork velocity (Raghuraman et al. 2001).
However, this is true only for a nearly deterministic replication program. In whole
generality, the mean replication timing gradient also reflects the proportion over cell
cycles of leftward and rightward moving forks replicating a locus (de Moura et al.
2010). It has also been proposed that replication origins correspond to minima of the
mean replication timing profile (Raghuraman et al. 2001), but this intuitive claim
turns out to be incorrect (Retkute et al. 2011). A careful and rigorous analysis
is therefore necessary to interpret mean replication timing profiles. The successive
derivatives of the mean replication timing profile give direct access to the replica-
tion fork polarity and to the distribution of initiation and termination events, as
proposed and analysed in (de Moura et al. 2010; Retkute et al. 2011). We propose
here an elementary and very general derivation of these relationships.

As Eqs. (3) and (4) are true for each cell cycle, they are in particular true if we
average over cell cycles. We note first that the replication fork polarity p(x) is equal
to the population average of the fork orientation o(x):

p(x) = p(+)(x)− p(−)(x) = 〈o(x)〉, (5)
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where p(±)(x) denote the proportions, over cell cycles, of (±) forks replicating the
locus x. The initiation site density dOri(x) and termination site density dTer(x) are
equal to the population averages:

dOri(x) =

〈

∑

i

δ(x− xi)

〉

, dTer(x) =

〈

∑

i

δ(x− yi)

〉

. (6)

As taking the spatial derivative commutes with population average, Eq. (3) can be
rewritten as:

v
d

dx
〈tR(x)〉 = p(x) , (7)

as well as Eq. (4) into:

v
d2

dx2
〈tR(x)〉 = dOri(x)− dTer(x) , (8)

where 〈tR(x)〉 is the mean replication timing. Hence the successive derivatives of the
mean replication timing give access, up to a multiplicative constant, to the replica-
tion fork polarity and the difference between initiation site density and termination
site density.

Remark: application to experimental data. Replication timing data have always a
finite spatial resolution (from 1kbp in yeast to tens of kbp in human). Moreover, as
the experimental mean replication timing profiles are noisy, we cannot simply take
the naive derivative of the mean replication timing, which would yield numerically
unstable results. We note that as taking the spatial derivative also commutes with
the spatial average, Eqs. (7) and (8) are still valid when averaging over the spatial
coordinate. There are several ways to perform spatial averaging, but they all consist
in convolving the original signal by a weight function (positive function of integral
1). The spatial averaging can be performed at various scales. Over larger and larger
scales, the noise is more and more reduced but at the expense of a loss in the spatial
resolution. The average of the signal f at scale a is defined as:

fa(x) =

∫

dyφa(x− y)f(y), (9)

where φa(x) =
1
aφ(x/a) is the weight function φ dilated at scale a. For instance if

we take for the weight function the rectangular function:

⊓(x) = 1 if |x| < 1

2
, and 0 elsewhere, (10)

we recover the usual definition of the spatial average at scale a:

fa(x) =
1

a

∫ x+a/2

x−a/2
dyf(y). (11)
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In practical situations, the rectangular function often turns out to be a bad choice,
as it is not a sufficiently smooth function. Indeed the rectangular function present
jumps (hence singularities) at x = ±1

2 . One usually takes smoother weight functions,
such as the gaussian, or any sufficiently smooth weight function.

Initiation site density and origin efficiency
If initiations can only occur at predefined sites xk, the initiation site density profile

formally reduces to:

dOri(x) =
∑

k

Ekδ(x− xk), (12)

where Ek, the observed efficiency of locus xk, is defined as the fraction of cells
where an initiation is observed at xk. In some eukaryotes, such as yeast, initiations
predominantly occur at specific sites (well-positioned replication origins), that usu-
ally spread over several hundreds bp. In this situation there are sharp peaks in the
initiation site density profile, and the height of these peaks are given by the ob-
served efficiencies. This contrasts with the termination site density profile, which is
generally expected to be a rather smooth profile, as the variable firing times lead to
greatly dispersed termination sites over cell cycles (Retkute et al. 2011). Therefore
well-positioned replication origins reveal themselves as singularities in the dOri(x)
profile, and consequently according to Eq. (8), as singularities in the second deriva-
tive of the mean replication timing profile. Local minima of the mean replication
timing are singularities in the second derivative but the converse is not true. A min-
ima is present only if the derivative is negative upstream and positive downstream,
in other words if the replication fork polarity switch from negative to positive values
(Eq. (7)). It clearly depends on the efficiency of the origin, and equally on the main
directionality of forks that passively replicate the origin. Therefore well-positioned
origins do not necessarily correspond to minima of the mean replicating timing
(Retkute et al. 2011). Finally we note that in some cases, for instance in the mouse
β-globin locus, initiation sites are dispersed over a large genomic region (extended
initiation zones) that can reach several hundreds kbp (Aladjem 2007). In extended
initiation zones the efficiency of each locus is very weak, and we can no longer speak
of well-positioned replication origins. The resulting initiation site density profile is
also smoother in such genomic regions.

II.3 Independent firing of replication origins

We still assume that origins are bidirectional and that the replication fork velocity v
is constant. In this section, we further assume the independent firing of replication
origins. In a pioneering work, Bechhoefer and his group (Jun et al. 2005; Jun and
Bechhoefer 2005) observed that the DNA replication program is formally equivalent
to a 1D nucleation-and-growth process. In the late 1930s, Kolmogorov (1937), John-
son and Mehl (1939), and Avrami (1939; 1940; 1941) independently derived a model
(the so-called KJMA model) for nucleation-and-growth processes that describes the
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phase transition kinetics. Bechhoefer’s group generalized and adapted the KJMA
model to the study of DNA replication kinetics. They demonstrated that once the
intrinsic firing properties of replication origins are given, most features of the DNA
replication program can be analytically predicted, including the observed density of
initiations and the replication timing distribution (Yang et al. 2010). Recently many
modelling efforts (de Moura et al. 2010; Luo et al. 2010; Yang et al. 2010) have been
devoted to infer, from the replication timing distribution, the intrinsic firing proper-
ties of replication origins. Here, we first briefly present the KJMA model. Then we
report our main result, namely the analytical inversion of the KJMA model. Finally
we discuss some shortcomings of the theoretical inversion approach when applied to
currently available experimental data.

☛ We demonstrate that the local initiation properties can be analytically predicted
from replication timing data. However application to currently available experimen-
tal data still requires further investigation.

II.3.1 The KJMA model applied to DNA replication kinetics

Analogy between DNA replication and 1D nucleation-and-growth pro-
cess
Nucleation-and-growth processes model the irreversible transition from an old

(untransformed) phase into a new (transformed) phase. In such processes the phase
transition decomposes into three steps: nucleation (appearance of the new phase),
growth of transformed domains, and coalescence (merging of two transformed do-
mains). Examples of such processes are widespread in physics (crystallization, freez-
ing phase change, ...) and in material sciences (random deposition on a surface, film
growth, ...), see (Evans 1993; Fanfoni and Tomellini 1998; Christian 2002) for re-
views. In our biological context, it is clear from Fig. 2 that DNA replication is
formally a 1D nucleation-and-growth process (Jun and Bechhoefer 2005):

∗ the initiation, in other words the activation or firing of a replication origin,
corresponds to a nucleation event;

∗ the replication eye, or replication bubble, corresponds to an island of trans-
formed domain (replicated DNA);

∗ the elongation (growth of the replication bubble due to the propagating repli-
cation forks) corresponds to the expansion of a transformed domain;

∗ the merging of two expanding domains (coalescence) corresponds, in the DNA
replication context, to a termination event.

The phase transition kinetics depends on the laws governing the nucleation and
the growth of the transformed domains. In its simplest form, the KJMA model
(Kolmogorov 1937; Johnson and Mehl 1939; Avrami 1939, 1940, 1941) assumes a
homogeneous and constant nucleation rate I and a linear growth law (constant
growth velocity v). The fraction of transformed phase f(t) at time t can then be
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encounter this issue and the KJMA derivation is perfectly rigorous. Importantly, the
KJMA formalism also assumes that nucleations occur independently of each other.
Indeed, if we formally define a local nucleation rate (depending or not on space and
time), we are explicitly assuming that the nucleation will occur independently of the
nucleations events in the surroundings. As Kolmogorov (1937) already suggested in
his title “On the static theory of crystallization in metal”, the independent nucle-
ation hypothesis corresponds to a static view of nucleation-and-growth processes.
In more dynamical models, one could allow nucleation to favor, or on the contrary
to inhibit, subsequent nucleation events in the nearby untransformed phase. When
nucleations are spatially or temporally correlated, for instance when nucleation is
forbidden close to the frontier of a transformed domain (hard-core repulsion), this
explicitly breaks the independence assumption of the KJMA model. Tomellini and
Fanfoni (2003) extensively studied those shortcomings of the KJMA formalism, and
generalized the KJMA model to include spatial correlations.

Definitions of interest: the observed density of initiations n(x, t) and the
unreplicated fraction s(x, t)
The unreplicated fraction s(x, t) is defined as the fraction of cells where the

locus x is not yet replicated at time t. The unreplicated fraction characterizes
the DNA replication kinetics. From s(x, t), we can define the replicated fraction
f(x, t) = 1− s(x, t) as the fraction of cells where the locus x is already replicated at
time t. From s(x, t) we can also extract the probability distribution of the replication
timing. Note that a locus x is unreplicated at time t iff2 its replication timing tR(x)
is greater than t. Therefore the probability distribution P (x, t) of the replication
timing at locus x is given by:

P (x, t) = −∂t s(x, t), (13)

as s(x, t) = Prob(tR(x) ≥ t). To characterize the distribution of initiation events,
we introduce the observed density of initiations n(x, t) at locus x and time t. In
other words n(x, t) is the probability3 to observe an initiation at locus x and time
t. Several characteristics of the DNA replication program can be directly deduced
from s(x, t) and n(x, t), for instance:

∗ the probability distribution of the replication timing, and consequently the
median and the mean replication timing, according to Eq. (13);

∗ the length of replicated DNA in a genomic region R at time t: lR(t) =
∫

R
dx f(x, t);

∗ the length of unreplicated DNA in R at time t: l̄R(t) =
∫

R
dx s(x, t);

∗ the number of initiations in R per unit of time: nR(t) =
∫

R
dxn(x, t);

∗ the rate of DNA synthesis in R: dlR(t)/dt =
∫

R
dxP (x, t);

2abbreviation for “if and only if”
3Strictly speaking, n(x, t)dxdt is the probability of observing an initiation at [x, x+dx]×[t, t+dt].

I will often make a similar slight abuse of terminology.
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∗ the initiation rate in R, defined as the number of initiations per unit time per
unit length of unreplicated DNA: IR(t) = nR(t)/l̄R(t);

∗ the initiation site density, introduced in Eq. (6), dOri(x) =
∫

dt n(x, t), and
consequently the observed efficiency of well-positioned origins.

Several experimental techniques were developed to investigate the replication kinet-
ics and the distribution of initiation events:

∗ Time-course microarray experiments (Raghuraman et al. 2001) measure the
replicated fractions at different time points through S-phase;

∗ Repli-Seq experiments (Chen et al. 2010; Hansen et al. 2010) measure the
probability distribution of the replication timing for several S-phase fractions;

∗ Nascent strand studies (Cadoret et al. 2008), trapping of replication bubbles
(Mesner et al. 2011), and other techniques (Gilbert 2010) map well-positioned
replication origins and estimate their efficiencies. The mapping of replication
origins is still a difficult experimental task, in contrasts with replication timing
experiments that are currently performed with relative ease (Gilbert 2010);

∗ DNA combing (Bensimon et al. 1994) has found several applications in the
study of DNA replication (Herrick et al. 2000, 2002; Anglana et al. 2003;
Conti et al. 2007; Courbet et al. 2008; Czajkowsky et al. 2008; Marheineke
et al. 2009; Rappailles et al. 2011). As DNA combing is a single-molecule
technique, it permits to visualize single-cell snapshots that reveal much more
information on the spatio-temporal replication program than the population
average quantities we were considering above.

☛ From a theoretical view point, our main goal is to predict s(x, t) and n(x, t) from
the parameters of the model. Many relevant characteristics of the spatio-temporal
program of DNA replication can then be deduced.

Analytical prediction of n(x, t) and s(x, t)
Under the assumption of independent firing of replication origins, the firing proba-

bility of an unreplicated locus does not depend on the nearby initiations events. This
probability can however depend both on the locus and on the time of S-phase. If
the locus is already replicated it can no longer fire since in eukaryotes re-replication
is not allowed (DePamphilis 2006). We can then define the local initiation rate
I(x, t) as the probability the locus x, if not replicated at time t, to fire at t. In
models that assume independent firing, a local initiation rate can always be defined,
and it completely specifies the intrinsic firing properties (as detailed in the next
paragraph). Almost all stochastic models of the DNA replication program proposed
so far (Lygeros et al. 2008; Blow and Ge 2009; de Moura et al. 2010; Luo et al.
2010; Yang et al. 2010; Retkute et al. 2011) assume independent firing of replication
origins, and are thus special cases of the KJMA model. The space-time dependent
initiation rate I(x, t) can thus be considered as the basic ingredient of the model. In
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Figure 3: The Kolmogorov argument. (A) A locus x is unreplicated at time t iff no
initiation occurred in the past light cone VX [v] of X = (x, t) (grey region). (B) All the loci
x1, x2, x3 are unreplicated at respective times t1, t2, t3 iff no initiation occurred in VX1

[v] ∪
VX2

[v] ∪ VX3
[v] (grey region).

the previously mentioned stochastic models of the replication program, most groups
use numerical simulations to estimate s(x, t) and n(x, t) from the intrinsic firing
properties (free parameters of the models), a task which is rather time consuming.
Bechhoefer’s group proved that s(x, t) and n(x, t) can be analytically derived from
I(x, t), generalizing the KJMA formalism to a space-time dependent nucleation (ini-
tiation) rate I(x, t) (Yang et al. 2010).

Proof. First, as illustrated in Fig. 3A, we remark that the locus x is unreplicated
at time t iff no initiation occurred in the past light cone VX [v] of X = (x, t). Thus
s(x, t) is equal to the probability P0(VX [v]) that no initiation occurred in VX [v]
(Kolmogorov (1937) argument). As the origins fire independently, this probability
is equal to:

P0(VX [v]) = lim
∆Y→0

∏

Y ∈VX [v]

[1− I(Y )∆Y ] = e
−

∫
VX [v] dY I(Y )

. (14)

Therefore the unreplicated fraction is equal to (Yang et al. 2010):

s(x, t) = e
−

∫
VX [v] dY I(Y )

. (15)

Next we note that we can observe an initiation at X iff no initiation occurred in VX
and one initiation occurred at X (Fig. 3A). As the origins fire independently, the
probability to observe an initiation at X is equal to n(X) = I(X)P0(VX [v]). Thus
the observed density of initiations is given by (Yang et al. 2010):

n(x, t) = I(x, t)e
−

∫
VX [v] dY I(Y )

. (16)
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Let us emphasize that from Eqs. (15) and (16), both the unreplicated fraction and
the observed density of initiations at X depend on the local initiation properties in
the whole past light cone of X. Therefore the replication timing distribution P (x, t)
at locus x, the initiation site density dOri(x) at locus x, the observed efficiency if x
corresponds to a well-positioned origin, all depend not only on the local initiation
properties at x, but also on the local initiation properties of neighboring loci, as
replication forks propagate.

Theoretical digression: correlations in observed initiation events and
replication kinetics

A lot of information can be inferred from the correlations observed between repli-
cation eye sizes or between replication hole sizes (Fig. 2). For instance, if nearby
replication eyes have comparable sizes, it indicates that the origins have fired syn-
chronously (Blow et al. 2001). The distribution of eye-to-eye distances also provides
information on the typical origin spacings during a replication round. The analy-
sis of molecular combing experiments in early-embryo Xenopus for instance reveal
that the distribution of eye-to-eye distances and the correlations between replication
eye sizes were not compliant with a completely homogeneous firing rate (Jun et al.
2004). It has been proposed that DNA polymerases linked to the chromatin fiber
could segregate, leading to the so-called “replication factories” where the chromatin
forms loops (Cook 1999). Interestingly the physical properties of the chromatin
fiber, which controls the typical size of the chromatin loops and in turn the ori-
gin spacings, can explain both the observed regularity of origin spacings and the
existence of an origin exclusion zone (Jun et al. 2004).

Here, we investigate, in a more formal approach, the correlations between ob-
served initiation events and the correlations between the replication timing of differ-
ent loci. To this purpose, we introduce theN -point unreplicated fraction sN (X1, · · · , XN ),
where Xi denotes the space-time point (xi, ti). It is defined as the fraction of cells
where each loci xi is unreplicated at time ti. The joint probability distribution of
the replication timing is given by:

PN (X1, . . . , XN ) = (−1)N∂t1 · · · ∂tN sN (X1, · · · , XN ), (17)

where sN (X1, · · · , XN ) = Prob(tR(x1) ≥ t1 and . . . and tR(xN ) ≥ tN ). As regards
the distribution of initiation events, we introduce the N -point joint observed density
nN (X1, . . . , XN ). We can define nN (X1, . . . , XN ) as the probability to observe,
during the same cell cycle, an initiation at each Xi. As combing gives snapshots
of the replication state for individual DNA fragments, it could in principle be used
to determine correlations between observed initiation events. As shown just below,
sN (X1, · · · , XN ) and nN (X1, · · · , XN ) can be easily derived from the local initiation
rate I(x, t).

Proof. We assume first that no Xi belongs to the past light cone of another Xj , as
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depicted in Fig. 3B. We remark on this figure that each loci xi is unreplicated at time
ti iff no initiation occurred in VX1 [v] ∪ · · · ∪ VXN

[v]. Therefore sN (X1, . . . , XN ) is
equal to P0(VX1 [v]∪ · · · ∪VXN

[v]). As the origins fire independently this probability
is equal to:

P0(VX1 [v] ∪ · · · ∪ VXN
[v]) = e

−
∫
(VX1

[v]∪···∪VXN
[v] dY I(Y )

. (18)

Therefore the N -point unreplicated fraction is equal to:

sN (X1, · · · , XN ) = e
−

∫
VX1

[v]∪···∪VXN
[v] dY I(Y )

. (19)

In his study of the 1D KJMA model, Sekimoto (1986) introduced the space-time cor-
relation functions CN (X1, . . . , XN ) which are equal to the sN (X1, . . . , XN ) functions.
Consistently, the formula (3.8) of (Sekimoto 1986) reduces to Eq. (19) when the ve-
locity v is constant. Now, as illustrated in Fig. 3B, we remark that we can observe
an initiation at each Xi iff no initiation occurred in VX1 [v]∪· · ·∪VXN

[v] and an initi-
ation occurs at each Xi. As the origins fire independently, the probability to observe
an initiation at each Xi is equal to nN (X1, . . . , XN ) = I(X1) · · · I(XN )P0(VX1 [v] ∪
· · · ∪ VXN

[v]). Therefore the observed joint densities are equal to:

nN (X1, · · · , XN ) = I(X1) · · · I(XN )e
−

∫
VX1

[v]∪···∪VXN
[v] dY I(Y )

. (20)

To illustrate why the replication fork propagation necessarily creates correlations
between the replication timings at different loci and also between the observed initi-
ation densities, let us specify these expressions for N = 2. The 2-point unreplicated
fraction is equal to:

s2(X1, X2) = s(X1)s(X2)e

∫
VX1

[v]∩VX2
[v] dY I(Y )

. (21)

Hence the distribution of replication timings at loci x1 and x2 are correlated due to
the possible initiation events in their common past-light cone VX1 [v]∩VX2 [v]. Indeed
if I(Y ) is not identically zero in VX1 [v] ∩ VX2 [v] then s2(X1, X2) 6= s(X1)s(X2).
Similarly we have for the observed joint densities:

n2(X1, X2) = n(X1)n(X2)e

∫
VX1

[v]∩VX2
[v] dY I(Y )

. (22)

The independent firing of origins, that generates the observed joint densities, is a
stochastic process where the firings (probability I(X) of firing at X) are by hy-
pothesis not correlated. But the observed joint densities at X1 and X2 are possibly
correlated due to the initiation events that may occur in their common past-light
cone VX1 [v] ∩ VX2 [v]. Finally, if one of the Xi belongs to the past light cone of
another Xj , nN (X1, · · · , XN ) is necessary null. As re-replication is not allowed, we
cannot observe an initiation in the future-light cone of another. This is a trivial
correlation verified by the observed joint densities.
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Intrinsic firing properties
If initiation can only occur at predefined sites called potential origins, the local

initiation rate has the following form (Yang et al. 2010):

I(x, t) =
∑

i

δ(x− xi)Ii(t), (23)

where xi is the position of the potential origin i, and Ii(t) is its firing rate. The
firing rate Ii(t) gives the probability, if the locus xi is unreplicated at time t, that the
potential origin i fires at time t. If the locus xi is replicated by a fork coming from a
neighboring origin, the potential origin i will not be activated during this cell cycle,
the potential origin is said to be passively replicated. The replication kinetics
observed at a locus does not necessarily reflects the local initiation properties, due
to the confounding effect of passive replication (de Moura et al. 2010; Hyrien and
Goldar 2010; Yang et al. 2010). For instance, if a potential origin is observed early
replicating, it does not necessary imply that the origin is intrinsically early firing:
the origin could be close to a very efficient and early firing origin. In the same
way, the observed efficiency of a potential origin depends as much on the context
(is it close or not to other potential origins? what are the firing properties of the
neighboring origins?) than on its individual firing properties. Following (Yang et al.
2010), let us now define, from the local initiation rate I(x, t), several quantities that
characterize the local initiation properties.

Intrinsic firing properties of a potential origin. In order to define the intrinsic firing
properties of the potential origin i, let us isolate, by an experience of thought, the
potential origin i from its neighbors. In other words, in our gedanken experiment,
the potential origin i is prevented from passive replication. The potential origin
i, if it has not fired before time t, fires with probability Ii(t) at time t. We can then
define the intrinsic unreplicated fraction si(t) as the probability that the potential
origin i has not yet fired at time t:

si(t) = lim
δt→0

∏

u≤t

[1− Ii(u)δt] = e−
∫ t

0 duIi(u). (24)

Similarly the intrinsic replicated fraction fi(t) = 1−si(t) is defined as the probability
that i has fired before t. Note that si(t) (resp. fi(t)) is equal to the probability that
the firing time of i is greater (resp. less) than t. Hence the intrinsic firing time
distribution, or origin activation time in (de Moura et al. 2010), is given by:

φi(t) = −∂tsi(t) = Ii(t)e
−

∫ t

0 duIi(u). (25)

We note that φi(t) is also equal to the probability to observe a firing event at time
t, hence φi(t) could also be called the intrinsic density of initiations. Consistently,
the probability that i fires at t given that it has not fired before t is equal to the
firing rate:

Ii(t) =
φi(t)

si(t)
. (26)
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This last equality also permits to derive the firing rate for any intrinsic firing time
distribution:

Ii(t) =
φi(t)

∫ t
0 duφi(u)

. (27)

Finally the intrinsic efficiency Ei, defined as the probability that i has fired before
the end of S phase (t = tend), is equal to:

Ei =
∫ tend

0
dtφi(t) = fi(tend). (28)

Note that due to passive replication, the observed origin efficiency Ei (Eq. (12))
is generally not equal to and smaller than the intrinsic efficiency Ei. Similarly the
observed replication timing distribution P (xi, t) at origin i (Eq. (13)) is generally
not equal to the intrinsic firing time distribution φi(t).

Intrinsic firing properties of a genomic region. Experimental replication timing
data have always a finite spatial resolution (several kbp); usually we cannot resolve
individually the potential origins. Moreover, if we want to probe the local initiation
properties at different scales, we also need to consider larger genomic regions that
may harbor several potential origins. Fortunately, we can easily extend the previous
definitions to a genomic region R, prevented from passive replication. Let us first
consider thatR gathers a cluster of potential origins xi ∈ R. If we neglect the spatial
extension, the potential origin that fires first gives its firing time to the region R.
Then the intrinsic unreplicated fraction is equal to the probability that none
potential origin has fired during [0, t]:

sR(t) =
∏

xi∈R

si(t) = e
−

∑
xi∈R

∫ t

0 duIi(u). (29)

Hence the intrinsic unreplicated fraction of R is given by:

sR(t) = e−
∫ t

0 duIR(u), (30)

where we introduce the intrinsic firing rate of R:

IR(t) =
∑

xi∈R

Ii(t) =

∫

R

dxI(x, t). (31)

Note that the second equality allows us to extend the discussion to a continuous
I(x, t). The intrinsic firing time distribution of R is given by:

φR(t) = −∂tsR(t) = IR(t)e
−

∫ t

0 duIR(u). (32)

The intrinsic efficiency of R writes:

ER =

∫ tend

0
dtφR(t). (33)

74



If we neglect its spatial extension, a region R thus behaves as an effective potential
origin with a firing rate IR(t). When clustering several potential origins of a region
R, the effective firing rate IR(t) is simply the sum of the firing rates Ii(t) over R.

☛ Under the assumption of independent firing, models of the DNA replication pro-
gram are exactly solvable. We can always define a local initiation rate I(x, t) which
specifies the intrinsic firing properties of replication origins, such as the intrinsic
firing time distribution and the intrinsic efficiency. The unreplicated fraction s(x, t)
and the observed density of initiations n(x, t), as well as the higher order N-point
functions, can be explicitly expressed from any local initiation rate I(x, t).

II.3.2 Inversion of the KJMA model

Motivation: determining local initiation properties from the replication
timing distribution
In usual applications of the KJMA model, the nucleation rate and the growth law

are dictated by the physics of the problem. The kinetics predicted by the KJMA
model can then be directly confronted to experiments. In our biological context
however, we have no idea of what the local initiation rate should be. The mech-
anisms that determine the initiation properties in eukaryotes are currently unclear
and are presumably very complex. Moreover, the location of replication origins is
poorly known in eukaryotes, and even less is known about the mechanisms that
regulate their firing times (Gilbert 2001; Aladjem 2007; Méchali 2010). Therefore,
as a very challenging project, we would like to extract the local initiation proper-
ties from replication timing data, that are now widely available. This could help
us in determining the position of replication origins as well as their intrinsic firing
time distribution (does this observed origin fire intrinsically late or early? Is this
observed origin intrinsically efficient?). By confronting the local initiation proper-
ties to other types of genomic or epigenetic data, we may hope getting insight into
the underlying mechanisms that govern the spatio-temporal replication program in
higher eukaryotes. Recently, various groups (de Moura et al. 2010; Luo et al. 2010;
Yang et al. 2010) have attempted to infer the local initiation properties from repli-
cation timing data in yeast (where the position of potential replication origins are
well characterized (Nieduszynski et al. 2007)). They all used a fitting strategy that
consists in determining the set of parameters (positions of replication origins and
their firing time properties) that best reproduces the replication timing data. Here
we propose to solve the inverse problem and to determine I(x, t) analytically. The-
oretically, the analytical inversion of the KJMA model has many advantages: (i) it
avoids overfitting since we do not have to impose some predefined constraints on
the local initiation rate (always necessary if we consider a finite number of param-
eters for the fitting procedure), (ii) it can as easily predict well-positioned origins
as extended initiation zones, and (iii) it is almost immediate in computation time.
Unfortunately, from a practical point of view, the analytical approach has several
shortcomings when applied to currently available experimental data. We do not
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Figure 4: Inversion of the KJMA model. (A) Light cone coordinates x± = x ∓ vt of
space-time point X = (x, t). Note that Y belongs to the past light cone of X iff x+ ≤ y+
and y− ≤ x−. (B) Diamond DX,∆X

of area 2∆X∆t (grey region) surrounding space-time
point X = (x, t). The corners of DX,∆X

are the space-time points (x−∆X , t), (x, t+∆t),
(x+∆x, t) and (x, t−∆t).

know yet how to properly handle the noise, as well as other experimental issues
(such as data normalization), in order to provide a robust and efficient determina-
tion of the local initiation properties directly from the analysis of replication timing
data.

Analytical prediction of I(x, t)
An elegant proof of the inverse problem can be established when introducing the

light cone coordinates (Wald 1984), as illustrated in Fig. 4A:

x+ = x− vt, x− = x+ vt. (34)

In these coordinates, the past light cone has a simple expression:

VX [v] = {Y such that x+ ≤ y+, y− ≤ x−}. (35)

In the light cone coordinates, it follows from Eq. (15):
∫

x+≤y+,y−≤x−

dy+dy−I(y+, y−) = − ln s(x+, x−). (36)

Differentiating with respect to x+ and x−, we get:

I(x+, x−) = ∂+∂− ln s(x+, x−). (37)

Back to the original (x, t) coordinates, Eq. (37) becomes:

I(x, t) = −v

2
� ln s(x, t) , (38)
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where � = 1
v2
∂2
t − ∂2

x is the d’Alembertian operator. For numerical or experimental
applications, we will consider the discrete and regularized versions of Eq. (38) de-
scribed just below.

Application to finite resolution data: discrete version. We can give an alternative
derivation of Eq. (38), more adapted to numerical and experimental applications,
that have always a finite spatial and temporal resolution. Let ∆t be a scale in time
(in practice the time resolution) and ∆x = v∆t the corresponding scale in space.
Let us consider DX,∆x , the diamond of area 2∆x∆t surrounding X, as shown in
Fig. 4B. The average of I(x, t) in DX,∆x is equal to:

I∆x(x, t) =
1

2∆x∆t

∫

DX,∆x

dY I(Y ), (39)

=
1

2∆x∆t

[

∫

V(x,t+∆t)

dY I(Y ) +

∫

V(x,t−∆t)

dY I(Y )

−
∫

V(x+∆x,t)

dY I(Y )−
∫

V(x−∆x,t)

dY I(Y )

]

, (40)

= − 1

2∆x∆t
[ln s(x, t+∆t) + ln s(x, t−∆t)

− ln s(x+∆x, t)− ln s(x−∆x, t)] . (41)

The second equality follows from basic geometry (Fig. 4B), and the third equality
from Eq. (15). We recognize in the third equality the discrete d’Alembertian. Indeed
the discrete derivatives and d’Alembertian of a signal f are given by:

∂x,∆xf(x, t) =
1

∆x
[f(x+

∆x

2
, t)− f(x− ∆x

2
, t)], (42)

∂t,∆tf(x, t) =
1

∆t
[f(x, t+

∆t

2
)− f(x, t− ∆t

2
)], (43)

�∆xf(x, t) =
1

∆2
x

[f(x, t+∆t) + f(x, t−∆t)− f(x+∆x, t)− f(x−∆x, t)]. (44)

Hence the average of I(x, t) in DX,∆x is equal to:

I∆x(x, t) = −
v

2
�∆x ln s(x, t) =

1

2∆x∆t
ln

[

s(x+∆x, t)s(x−∆x, t)

s(x, t+∆t)s(x, t−∆t)

]

, (45)

which is nothing but the discrete version of Eq. (38).

Application to noisy data: regularized version. The d’Alembertian operator, as all
differential operators, can amplify noise when applied to experimental data. It is
often necessary to regularize I(x, t) by a smooth weight function W (x, t):

IW (x, t) = (W ∗ I)(x, t). (46)
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We can also perform the regularization at various scales, using the weight function
W dilated at scale ax in space and scale at in time: Wax,at(x, t) =

1
axat

W (x/ax, t/at).
At larger scales, the noise will likely be reduced, but at the expense of a loss in the
spatial and temporal resolution. If we convolve Eq. (38) by the weight function W
and integrate by parts, we get:

IW (x, t) = −v

2
�W ln s(x, t) =

([

−v

2
�W

]

∗ ln s
)

(x, t) , (47)

where we have introduced the regularized d’Alembertian operator �W , defined for
any signal f as the convolution with the smooth function �W :

�W f(x, t) = ([�W ] ∗ f)(x, t) . (48)

Note that Eq. (47) in fact includes the discrete version Eq. (45) as a particular (but
singular) case. If we consider for the weight function W the characteristic function
of D0,∆x (diamond of area 2∆x∆t surrounding x = t = 0), the regularization of f
by W is equivalent to average f over DX,∆x :

(W ∗ f)(X) =
1

2∆x∆t

∫

DX,∆x

dY f(Y ). (49)

Therefore the regularized IW (X) is equal to I∆x(X) introduced in Eq. (39). Using
the theory of distribution, we can prove that:

�W (x, t) =
1

∆2
x

[δ(x, t−∆t) + δ(x, t+∆t)− δ(x−∆x, t)− δ(x+∆x, t)]. (50)

We recover in turn the definition of the discrete d’Alembertian (Eq. (44)):

�W f(X) = ([�W ] ∗ f)(x, t), (51)

=
1

∆2
x

[f(x, t+∆t) + f(x, t−∆t)− f(x+∆x, t)− f(x−∆x, t)], (52)

= �∆xf(X). (53)

Let us point out that the more general regularized version (Eq. (47)) offers many
advantages as compared to the discrete version (Eq. (45)). First, for the discrete
version we had to impose the scale ∆x to be equal to v∆t. Hence we can apply
Eq. (45) only when on the one hand the spatial resolution divides ∆x(= v∆t) and
on the other hand the temporal resolution divides ∆t, which may not be possible for
any replication fork velocity v. On the contrary, the operator �W is defined at any
large enough scales ax and at, whatever the replication fork velocity v, using dilated
versions of the weight function W . Moreover it is clear from the Dirac distributions
appearing in Eq. (50) that the discrete d’Alembertian corresponds to a singular
version of �W , and may amplify noise when applied to real data. On the opposite,
for any sufficiently smooth weight function W , the regularized d’Alembertian �W

corresponds to the convolution with the smooth function �W , which provides a
robust and numerically stable way of estimating I(x, t).
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Numerical illustration
Here we illustrate the inversion of the KJMA model on “ideal” replication tim-

ing data distribution. We generated the theoretical unreplicated fraction of the
multiple-initiator model proposed in (Yang et al. 2010). This model fits quite well
the experimental replicated fractions obtained in yeast (McCune et al. 2008). The
theoretical data generated is considered as ideal because: (i) the kinetics explicitly
satisfies the two key assumptions of the KJMA model (constant replication fork
velocity and independent firing of replication origins), (ii) the numerical data are
not noisy, (iii) the unreplicated fraction are obtained at a fine spatial (2 kbp) and
temporal (1 min) resolution, (iv) the unreplicated fraction cover the whole S-phase.
The spatial resolution (2 kbp) corresponds to the resolution of the experimental
data fitted by Yang et al (2010). In the following discussion, it will be implicitly
considered that each locus x corresponds to a 2 kbp locus. The temporal resolution
we choose (1 min) is finer that the temporal resolution (5 min) of the experimental
data (McCune et al. 2008). Note that taking a temporal resolution of 5 min would
not change considerably our numerical illustration, as all quantities could be consis-
tently determined at the 5 min resolution.

Extracting the intrinsic firing time distribution from replication timing distribution.
As exemplified in Fig. 5A for a 260 kbp fragment of yeast chromosome 4, contain-
ing 8 potential origins (O1 to O8), we generated using the forward KJMA formula
(Eq. (15)) the theoretical unreplicated fraction s(x, t) of the multiple-initiator model
(Yang et al. 2010). From the theoretical unreplicated fraction s(x, t), we computed
the local initiation rate I(x, t) according to the analytical inversion formula Eq. (45).
The knowledge of I(x, t) allows in turn to determine the intrinsic firing time dis-
tribution φ(x, t) (Fig. 5B), the observed density of initiations n(x, t), the observed
efficiency E(x) and the intrinsic efficiency E(x) (Fig. 5C). We recover in Fig. 5B
the location of the 8 potential origins of the multiple-initiator model. We can even
distinguish the intrinsic firing time distribution of each potential origin, for instance
O6 is intrinsically early firing while O7 fires intrinsically at the mid S-phase (t ∼30
min). As shown in Fig. 6 for the origins O3, O6 and O7, the initiation rate I(x, t)
determined by the analytical inversion is in perfect agreement with the theoretical
initiation rate of the multiple initiator model (Fig. 6A), as well as the intrinsic fir-
ing time distribution φ(x, t) (Fig. 6B). We notice from Fig. 5A that the origin O7,
detected by the numerical inversion, does not correspond to a local minima of the
unreplicated fraction. About one origin over three in the multiple-initiator model is
not recovered as a local minima in the unreplicated fractions (Yang et al. 2010). It
is sometimes assumed that well-positioned origins correspond to local minima in the
mean replication timing or the unreplicated fractions (Raghuraman et al. 2001). It
is important to point out that the well-positioned origin O7 would have been missed
by such methods.

Impact of passive replication. Passive replication can strongly affects the replication
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Figure 5: Extracting the intrinsic firing time distribution from replication timing
distribution. On a 260 kbp fragment of yeast chromosome 4, containing 8 potential repli-
cation origins (O1 to O8), the unreplicated fraction s(x, t) (A) given by the multiple-initiator
model of (Yang et al. 2010) was generated by the forward KJMA formula (Eq. (15)). The
local initiation rate I(x, t) was computed from the unreplicated fraction s(x, t) (A) using
the inversion of the KJMA model Eq. (45). The intrinsic firing time distribution φ(x, t) (B),
as well as the observed efficiency E(x) (green bars in (C)) and intrinsic efficiency E(x) (blue
bars in (C)), were then determined from the local initiation rate I(x, t) according to their
definitions provided in Section II.3.1.
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Figure 6: Numerical test of our theoretical solution of the inverse problem. Com-
parison of the solution obtained by the analytical inversion (circles) and the theoretical
solution (solid line) for (A) the local initiation rate I(x, t) (Eqs. (38) and (45)) and (B) the
intrinsic firing time distribution φ(x, t) (Eqs. (25) and (32)), for the potential origins O3

(red) , O6 (green) and O7 (blue) (see Fig. 5).

Figure 7: Impact of passive replication. Intrinsic firing time distribution φ(x, t) (solid
line), replication timing distribution P (x, t) (dashed line), and observed density of initiations
n(x, t) (dotted line) for (A) potential origin O6 (green) and (B) potential origin O7 (blue).
The potential origin O7 is often passively replicated by a fork originating from O6, while O6

is early firing and unlikely passively replicated (see Fig. 5).
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kinetics observed at a locus and the observed efficiencies of replication origins, and
can lead to erroneous interpretation of replication timing data (de Moura et al. 2010;
Yang et al. 2010; Retkute et al. 2011). Let us illustrate, on the 260 kbp fragment
in Fig. 5, some of the consequences of passive replication. We first note that all
the potential origins have an intrinsic efficiency (blue bars in Fig. 5C) close to 1,
as the smallest intrinsic efficiency (origin O7) is equal to 96%. On the opposite the
observed efficiencies (green bars in Fig. 5C) vary greatly (from 24% for origin O7

to 94% for origin O6), depending on the context. Passive replication has therefore
a strong impact on the observed efficiencies of most origins. For a potential origin
which is rarely passively replicated, we expect the replication timing to be equal to
the firing time of the origin. We therefore expect for such an origin the replication
timing distribution P (x, t) to be close to the intrinsic firing distribution φ(x, t). As
in such cases the firing time corresponds to an observed initiation event, we also
expect the observed density of initiations n(x, t) to be close to the intrinsic firing
time distribution φ(x, t). As shown in Fig. 7A for the origin O6, which is early firing
and unlikely passively replicated (Fig. 5), we have indeed P (x, t) ∼ n(x, t) ∼ φ(x, t).
However this is no longer true when the potential origin can be passively replicated.
For instance the potential origin O7, which can be passively replicated by a fork
originating from O6 (Fig. 5), has a replication timing distribution clearly different
from its intrinsic firing time distribution (Fig. 7B). The replication timing distribu-
tion of O7, as it is likely replicated by a fork coming from O6, is very close to the
firing time distribution of O6, shifted by the time (7 min) necessary for a fork to
propagate from O6 to O7 (x7 − x6 = 14 kbp and v = 2 kbp/min). At the onset of
S-phase (t < 16 min), the origin O7 is unlikely passively replicated, since only few
forks coming from O6 have the time to reach O7, and the observed density of initi-
ations at O7 is very close to its intrinsic firing time distribution (Fig. 7B). At later
times the observed density of initiations at O7 is strongly reduced, as it becomes
more and more likely that O7 will be passively replicated by a fork coming from O6.
Even though the origin O7 has intrinsically a high probability of firing for t > 30
min, we will almost never observe initiations at those times (Fig. 7B). Due to the
context (early firing origin O6 located nearby), the observed density of initiations
and the replication timing at O7 are strongly affected by the passive replication of
O7.

Application to experimental data?
The analytical prediction of the local initiation rate I(x, t) from experimental

replicated fractions requires some caution: the straightforward application of Eq. (45)
to the experimental replicated fractions obtained in (McCune et al. 2008) leads to
an unphysical I(x, t), found negative in most space-time regions. The experimental
replicated fractions present however several anomalies. For instance, at each locus x
the replicated fraction f(x, t) can only be increasing with time t, but the experimen-
tal replicated fractions violate this causality requirement: we observe on Fig. 8A that
the f(x, t = 45min) profile (pink curve) is sometimes below the f(x, t = 35min) pro-
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Figure 8: Extracting the intrinsic firing time distribution from replication timing
distribution: application to experimental data. (A) Experimental replicated fraction
f(x, t) profiles, obtained at different S-phase times (from t = 10 min to t = 45 min every 5
min), along the same 260 kbp fragment of yeast chromosome 4 displayed in Fig. 5, which
contains 8 potential replication origins (O1 to O8) in the multiple-initiator model of (Yang
et al. 2010). The replicated fractions, obtained by time-course microarray experiments,
were retrieved from (McCune et al. 2008). (B) Experimental unreplicated fraction s(x, t).
(C) Intrinsic firing time distribution φ(x, t), obtained from the experimental unreplicated
fraction s(x, t) as explained in the main text.
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file (blue curve). It is therefore not surprising that the experimental replicated frac-
tions are also in conflict with stronger requirements of the KJMA kinetics, namely
the constant replication fork velocity and the independent firing of replication ori-
gins.

Applying the analytical inversion formula Eq. (45) on unreplicated fractions that
do not respect the KJMA kinetics does not make sense, and inevitably yields an aber-
rant local initiation rate. Hence we must first modify the experimental unreplicated
fractions to render them compliant with the KJMA kinetics:

(a) causality requires that s(x, t) decreases with time t. We thus changed iteratively
the unreplicated fractions according to: s(x, t+∆t)← min [s(x, t+∆t), s(x, t)],
where ∆t = 5 min is the time resolution.

(b) if replication forks propagate at velocity v, then for each space-time point X
and for every Y in the past light-cone of X we have s(X) ≤ s(Y ). To satisfy
this requirement, it is sufficient to change iteratively the unreplicated fractions
according to: s(x, t + ∆t) ← min

[

s(x, t+∆t),miny∈[x−∆x,x+∆x] s(y, t)
]

, where
∆x = v∆t. We choose here v = 2 kbp/min.

(c) the independent firing of replication origins implies that I∆x(X) is positive for
any space-time point X. According to Eq. (45), this requirement is equivalent

to s(x, t+∆t) ≤ s(x+∆x,t)s(x−∆x,t)
s(x,t−∆t)

. We therefore changed iteratively the unrepli-

cated fractions according to: s(x, t+∆t)← min
[

s(x, t+∆t),
s(x+∆x,t)s(x−∆x,t)

s(x,t−∆t)

]

.

On the 260 kbp fragment used to illustrate the inversion of the multiple initiator
model (Fig. 5), we modified the experimental unreplicated fractions (Fig. 8B) accord-
ing to steps (a-c), we then applied Eq. (45) to obtain a local initiation rate I(x, t),
from which we finally deduced the intrinsic firing distribution φ(x, t) (Fig. 8C). The
inversion works pretty well qualitatively: we recover the locations of the 8 potential
origins O1 to O8 of the multiple initiator model (Fig. 5). Furthermore, the firing
time distribution (Fig. 8C) is in good qualitative agreement with the firing time dis-
tribution of the multiple initiator model (Fig. 5C), for instance O6 is a very efficient
early-firing origin while O7 is a less efficient origin firing at t ∼ 30 min.

Arguably, the methodology presented here does not provide a robust and accu-
rate determination of the local initiation rate from the replicated fractions. Causal-
ity, constant replication fork velocity, and independent firing of replication origins
were imposed quite artificially on the unreplicated fractions. The rather crude and
drastic modifications of the unreplicated fractions made in steps (a-c) are numeri-
cally unstable, which surely affects the determination of I(x, t). The successful ex-
traction of the local initiation rate from the experimental replicated fractions could
considerably ease the analysis of replication kinetics, but it is a very challenging
inverse problem. In future work, we would like to investigate several regularization
schemes, and determine which can most accurately and most robustly predict the
local initiation rate.
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Figure 9: Space-time dependent fork velocity. Light gray curves represent the propa-
gation lines of (+) forks (rightward moving forks) and (−) forks (leftward moving forks) in
a space-time dependent fork velocity v(x, t). The (±) fork propagation line passing by X
intersects the x-axis at the x± coordinate, this defines the light cone coordinates x± of X.
Note that Y belongs to the past light cone of X iff x+ ≤ y+ and y− ≤ x−.

Theoretical digression: space-time dependent fork velocity
Kolmogorov (1937) already considered a time-dependent growth velocity v(t).

We show in this paragraph that the KJMA model and its inversion can be easily
generalized to a space-time dependent replication fork velocity v(x, t). The inte-
gral curves of the velocity field v(x, t) correspond in our biological context to the
propagation lines of replication forks, depicted as gray lines in Fig. 9. We notice
that the transition from a constant velocity v to a space-time dependent velocity
v(x, t) amounts formally to replace the Minkowski space-time ds2 = dx2 − v2dt2

by the pseudo-Riemannian space-time ds2 = dx2 − v(x, t)2dt2. In this geometrical
viewpoint, the propagation lines of replication forks correspond to the geodesics of
the ds2 = dx2 − v(x, t)2dt2 metric. The Kolmogorov argument, and consequently
Eqs. (15) and (16) as well as Eqs.(19) and (20), are still true, keeping in mind that
VX [v], the past light cone of X, depends functionally on the velocity field v(x, t).
The light cone coordinates, a useful mathematical trick encountered in general rel-
ativity (Wald 1984), can be defined in our present situation in the following simple
way. As shown in Fig. 9, the space-time point X is at the intersection of a (+) fork
and (−) fork propagation lines which respectively intersect the x-axis (t = 0) at
the light cone coordinates x+ and x−. In the light cone coordinates, the past light
cone is still given by Eq. (35) and the local initiation rate is still given by Eq. (37).
Expressed in the original (x, t) coordinates the local initiation rate is equal to:

I(x, t) =

{

1

2

(

1

v
∂tv

)

1

v
∂t +

1

2
(∂xv)∂x −

v

2

(

1

v2
∂2
t − ∂2

x

)}

ln s(x, t). (54)

The proof is given below. Note that we recover Eq. (38) when the velocity field is
constant.
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Proof. Let s → y±(x±, s) be the propagation line of the (±) fork initially at x± (s
denotes time and y±(x±, s) the position at s). By definition y±(x±, s) verifies:

y±(x±, 0) = x±, (55)

(∂sy±)(x±, s) = ±v(y±(x±, s), s). (56)

The light cone coordinates x±(x, t) of X are defined by y±(x±(x, t), t) = x. Con-
versely the origin coordinates x(x+, x−) and t(x+, x−) verify:

y±(x±, t(x+, x−)) = x(x+, x−). (57)

Differentiating this relation with respect to x+ and x− yields:

(∂+x) = −v(∂+t) and (∂−x) = +v(∂−t). (58)

The differential operators ∂± are then equal to:

∂+ = (∂+t){∂t − v∂x} and ∂− = (∂−t){∂t + v∂x}. (59)

After some lines of algebra, we get the differential operators:

∂+∂− = (∂+∂−t){∂t + v∂x}+ (∂+t)(∂−t){∂t − v∂x}{∂t + v∂x}, (60)

∂−∂+ = (∂−∂+t){∂t − v∂x}+ (∂−t)(∂+t){∂t + v∂x}{∂t − v∂x}. (61)

When applying the Schwarz’s theorem ∂+∂− = ∂−∂+ to x, we get:

(∂+∂−t)v + (∂+t)(∂−t)(∂tv) = 0. (62)

Therefore the differential operator ∂+∂− is equal to:

∂+∂− = (∂+t)(∂−t)

[

−1

v
(∂tv){∂t + v∂x}+ {∂t − v∂x}{∂t + v∂x}

]

. (63)

This relation simplifies into:

∂+∂− = −2v(∂+t)(∂−t)
{

1

2

(

1

v
∂tv

)

1

v
∂t +

1

2
(∂xv)∂x −

v

2

(

1

v2
∂2
t − ∂2

x

)}

. (64)

The jacobian of the (x, t)→ (x+, x−) change of variables is equal to:

J =

∣

∣

∣

∣

(∂+x) (∂−x)
(∂+t) (∂−t)

∣

∣

∣

∣

= |
>0
2v

<0

(∂+t)
>0

(∂−t)| = −2v (∂+t) (∂−t). (65)

In other words we have dxdt = Jdx+dx−. As I(x, t)dxdt = I(x+, x−)dx+dx− and
I(x+, x−) = ∂+∂− ln s(x+, x−), then:

I(x, t) = − 1

2v(∂+t)(∂−t)
∂+∂−s(x, t), (66)

When using the expression Eq. (64) of ∂+∂−, we finally get:

I(x, t) =

{

1

2

(

1

v
∂tv

)

1

v
∂t +

1

2
(∂xv)∂x −

v

2

(

1

v2
∂2
t − ∂2

x

)}

ln s(x, t). (67)
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Summary of Chapter II

Under the assumptions that origins are bidirectional and that the replication fork
velocity is constant, we have shown that the replication fork polarity is related to
the derivative of the mean replication timing (see Fig. 1):

p(x) = v
d

dx
< tR(x) >, (68)

where p(x) is the replication fork polarity, < tR(x) > the mean replication timing,
and v the replication fork velocity. According to the relationship established in
Chapter I between the replication-associated strand asymmetry and the replication
fork polarity, this equality establishes a link between the replication-associated skew
and replication timing data. We have also demonstrated that the difference between
initiation site density and termination site density is related to the second derivative
of the replication timing (see Fig. 1):

dOri(x)− dTer(x) = v
d2

dx2
< tR(x) >, (69)

where dOri(x) (resp. dTer(x)) is the initiation (resp. termination) site density.

When further assuming that replication origins fire independently, the replication
timing distribution, as well as the distribution of initiation events, can be analyti-
cally predicted from the intrinsic firing properties of replication origins (Yang et al.
2010). Reciprocally we have solved the inverse problem, by demonstrating that the
intrinsic firing properties of replication origins can be analytically extracted from
the replication timing distribution. However the application to currently available
experimental data requires some caution, in order avoid artifacts induced by data
normalization and signal to noise issues.
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Chapter III

Transcription- and replication-
associated strand asymmetries
in the human genome

We show in this Chapter that substitution rates and compositional skews observed
in the human genome are consistent with the model proposed in Chapter I. This
model states that substitutional as well as compositional asymmetry can be decom-
posed into transcription- and replication-associated components. The transcription-
associated asymmetry, as generally admitted, changes sign with gene orientation
and increases in magnitude with gene expression. According to this model, the
replication-associated asymmetry is proportional to the replication fork polarity. In
Chapter II, under the assumption of constant replication fork velocity, we demon-
strated that the replication fork polarity was directly related to the derivative of
the mean replication timing. This theoretical result can be used to test the model
proposed in Chapter I, using the derivative of the mean replication timing as an
estimator of the replication fork polarity.

III.1 Analysis of substitution rates in the human genome

Genome wide substitution rates
The substitutions were tabulated in the human lineage since the divergence with

chimpanzee (Chen et al. 2010) (Section I.2.3, §Methodology). As shown in Fig. 1,
the genome-wide substitution rates are of the order of 10−3 substitutions per bp.
The four transitions C → T , G→ A, A→ G and T → C are three fold higher than
the eight transversions. The genome wide substitution rates respect parity rule
type 1 (PR1) (Section I.1.2): reverse complementary substitutions, displayed with
the same color coding in Fig. 1A, have nearly equal rates. However if we compute
substitution rates separately in genic (+), intergenic and genic (−) regions, PR1 is
explicitly broken. As argued in Chapter I (Section I.2.1 or the summary), it is more
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Figure 1: Genome wide substitution rates. (A) Genome wide substitution rates. Re-
verse complementary substitution rates, e.g. C → T andG→ A, have the same color coding.
(B) Genome wide symmetrical substitution rates in genic sense (red), intergenic (black), and
genic antisense (blue) regions. (C) Genome wide asymmetrical substitution rates in genic
sense (red), intergenic (black), and genic antisense (blue) regions. Substitution rates were
computed on the reference strand (Section I.1.2).
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convenient to decompose substitution rates into symmetrical and asymmetrical parts
under strand exchange symmetry. As shown in Fig. 1B, symmetrical substitution
rates are lower in genic regions than in intergenic regions, this is particularly true for
the strong to weak substitutions (C → T )s and (G→ T )s. In the perspective of the
model proposed in Chapter I (Eq. (166) in the summary), it implies negative τ sT < 0
coefficients. Substitutional asymmetries are opposed and significantly different from
0 in genic (+) and (−) regions in Fig. 1C, clearly demonstrating the existence of a
transcription-associated substitutional asymmetry. The substitutional asymmetries
are one order of magnitude lower than symmetrical substitution rates (and thus
than substitution rates), which a posteriori explains the ten fold difference between
the y-axis units in Figs. 1B and 1C. The transcription-associated (A → G)aT > 0
asymmetry is the highest one, followed by the (C → G)aT > 0 and (G → T )aT > 0
asymmetries. The sign of the transcription-associated asymmetries are consistent
with previous findings (Green et al. 2003; Polak and Arndt 2008; Mugal et al. 2009;
Chen et al. 2011), with the exception of the (C → T )aT asymmetry. We found
along with (Green et al. 2003; Polak and Arndt 2008; Chen et al. 2011) a negative
but weak (C → T )aT < 0 asymmetry, in apparent contradiction with (Mugal et al.
2009). However the substitutional pattern determined by Mugal et al. (2009) was
estimated further in the past than the human-chimpanzee divergence, hence the
discrepancy might be explained by a time dependency of the (C → T )aT asymmetry
(Mugal et al. 2009). We point out that the (C → T )aT asymmetry also varies along
the transcript, which could hamper the determination of (C → T )aT when computed
on the whole transcript. As observed by (Polak and Arndt 2008), a strong localized
(C → T )aT > 0 asymmetry is found restricted to the first two kbp downstream of
the TSS, opposite to the weak (C → T )aT < 0 on the remaining transcript.

The substitutional asymmetry decomposes into transcription- and replica-
tion-associated components
In the model proposed in Chapter I, both transcription and replication can gen-

erate strand asymmetry, and the replication-associated strand asymmetry depends
on the replication fork polarity. We choose here to take advantage of the theoretical
result of Chapter II (Eq. (68) in the summary), relating the replication fork polarity
to the derivative of the mean replication timing. We use for this purpose replication
timing data obtained in several human cell lines (Chen et al. 2010; Hansen et al.
2010). As described in (Baker et al. 2011), we computed from these data the Mean
Replication Timing (MRT) and its derivative dMRT/dx. Note that the MRT profile
is expressed as a fraction of S-phase and has therefore no dimension. If we multiply
the MRT by the duration of S-phase we get a reasonable proxy for the MRT ex-
pressed in time, although the conversion between S-phase fraction and time is not
strictly linear (Blumenthal et al. 1974). According to Eq. (68) of Chapter II, under
the approximation of constant replication fork velocity, the replication fork polarity
is proportional to the dMRT/dx profile:

p(x) = v TS dMRT/dx, (1)
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Figure 2: The substitutional asymmetry decomposes into transcription- and
replication-associated components. Substitutional asymmetry versus replication fork
polarity (determined in HeLa cell line using Eq. (1) and replication timing data from (Rap-
pailles et al. 2011)) in genic sense (red), intergenic (black), and genic antisense (blue) regions,
for (A) the A → G substitution, (B) the C → T substitution, (C) the C → G substitu-
tion, and (D) the G → T substitution. Substitution rates, replication fork polarity, and
the gene orientation were computed on the reference strand. The dashed lines correspond
to the least-squares fits to a line, following the linear model Eq. (2). The linear regression
coefficients are reported in Table 1.
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(A→ G)a (C → T )a (C → G)a (G→ T )a

τaT (10−4 bp−1) 5.41± 0.05 −0.48± 0.05 1.20± 0.02 0.75± 0.02
τaR (10−4 bp−1) 4.28± 0.26 3.52± 0.23 1.20± 0.12 0.35± 0.13

Table 1: Transcription- and replication-associated substitutional asymmetries.
Coefficients τaR, τ

a
T of the linear model Eq. (2), obtained by least-squares fits to a line in

Fig. 2.

where v is the replication fork velocity and TS the duration of S-phase. It is impor-
tant to note that the replication program, and consequently the MRT profile and
the replication fork polarity, are cell type specific. We would like to have access to
the replication fork polarity in the germline, as only mutations occurring in germline
cells are transmitted to the descendants, but unfortunately no experimental data in
the germline is available today. As a substitute to germline replication fork polar-
ity, we used the replication fork polarity determined in HeLa cell line, where the
replication fork velocity v = 0.64 kbp/min has been measured by DNA combing and
where the S-phase duration was estimated to be TS ∼ 7 h (Rappailles et al. 2011).
The conservation of the replication fork polarity profile across differentiation will
be addressed in Section III.3. Substitution rates were computed separately in genic
(+), intergenic and genic (−) regions of given HeLa replication fork polarity values.
As shown in Fig. 2, PR1 is not only broken in genic regions (red and blue) but also in
intergenic regions (black). Furthermore the substitutional asymmetry in intergenic
region is proportional to the HeLa replication fork polarity. In genic (+) (resp. (−))
regions, we recover the same linear behaviour adding up (resp. subtracting down)
a constant corresponding to the transcription-associated asymmetry evidenced in
Fig 1C. The substitutional asymmetry τa is therefore consistent with the following
model:

τa =







pτaR + τaT genic (+)
pτaR intergenic
pτaR − τaT genic (−)

, (2)

in agreement with the minimal model for substitutional asymmetry proposed in
Chapter I (Eq. (167) in the summary). The coefficients τaT and τaR, estimated by
least-squares fits to a line (dashed lines in Fig. 2), are reported in Table 1. These
results clearly support (i) that a replication-associated substitutional asymmetry
does exist, (ii) that this replication-associated asymmetry is found in intergenic
as well as in genic regions, and (iii) that the replication-associated asymmetry is
proportional to the replication fork polarity (determined in the HeLa cell line).
Furthermore, as reported in Table 2, the substitutional asymmetries correlate sig-
nificantly with the replication fork polarity (and thus dMRT/dx) in intergenic re-
gions, even though the replication fork polarity was determined in HeLa and not
in the germline. Interestingly, the substitutional asymmetries do not correlate with
the MRT (R < 0.02, p-value > 0.5), which is a strand-symmetric variable, while
they do correlate with dMRT/dx which is a strand-asymmetric variable. On the
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(A→ G)a (C → T )a (C → G)a (G→ T )a

p (HeLa) 0.30 0.17 0.19 0.09

Table 2: Substitutional asymmetry correlates with the replication fork polarity.
Pearson correlation (R values) between the substitutional asymmetries and the replication
fork polarity p in HeLa cell line. Substitutional asymmetries and p were calculated in non-
overlapping 1Mbp windows genome wide. For substitution rates we only retained intergenic
nucleotides. Only 1Mbp windows containing at least 100 kbp of aligned (intergenic) sequence
were retained (N=2123). All p-values are < 10−15 except for (G→ T )a (p-value = 3 10−5).

opposite the symmetrical substitution rates highly correlate with the MRT (Stam-
atoyannopoulos et al. 2009; Chen et al. 2010), but not with dMRT/dx (R < 0.02,
p-value > 0.5). Therefore, as those correlations highlight, it is relevant to dis-
tinguish between strand-symmetric and strand-asymmetric variables. Mugal et al.
(2009; 2010) reported that the substitutional asymmetry correlates strongly with
the relative distance to skew N-domains borders (presented in Chapter IV). In our
current perspective (Chapters IV and V), the relative distance to N-domains bor-
ders is directly related to the replication fork polarity in the germline. So far the
substitutional asymmetry follows closely the model proposed in Chapter I (Eq. (167)
in the summary): a replication-associated asymmetry proportional to the replica-
tion fork polarity, and a transcription-associated which adds to it. The estimates
obtained for (A → G)aR > 0, (C → T )aR > 0, (C → G)aR > 0, and (G → T )aR > 0
replication-associated asymmetries (Table 1) are in agreement with previous studies
(Polak and Arndt 2009; Mugal et al. 2009, 2010; Chen et al. 2011). We finally note
that the (C → T )aR > 0 replication-associated asymmetry is stronger than, and
opposite to, the (C → T )aT < 0 transcription-associated one (Table 1).

Symmetrical substitution rates are lower in genic region than in their
flanking intergenic regions
In Fig. 1B, the average symmetrical substitution rates in genic regions were found

to be lower than the corresponding rates in intergenic regions. However the genic
and intergenic nucleotides could belong to genomic regions that do not share, even on
average, the same characteristics. As substitution rates may depend on many vari-
ables, e.g. replication timing (Stamatoyannopoulos et al. 2009; Chen et al. 2010), the
lower rates in genic region may not be directly associated to transcription, but could
simply reflect that genes tend to belong to early replicating genomic regions. There-
fore to further test if the lower symmetrical substitution rates could be attributed
to transcription, we performed a regional analysis of substitution rates along large
(> 100 kbp) human genes. In Fig. 3, a given substitution rate computed on the
coding strand is displayed in purple, while the same substitution rate computed
on the transcribed strand is displayed in orange. Equivalently, the orange curve is
also equal to the reverse complementary substitution rate computed on the coding
strand. We first note on Fig. 3A that there is a strong (A → G)aT > 0 asymmetry
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Figure 3: Substitution rates along large (> 100 kbp) human genes. Average substi-
tution rates in large human genes were computed every 10 kbp from 100 kbp upstream to
100 kbp downstream of the TSS. As genes are larger than 100 kbp, data points at 0 kbp <
distance to TSS < 100 kbp correspond to the interior of the gene. For data points in the
flanking intergenic region -100 kbp < distance to TSS < 0 kbp, we only retained intergenic
nucleotides (as defined by the RefGene table). The substitution rates, and the distance
to TSS are defined with respect to the coding strand of the gene (see Section I.1.3). (A)
A→ G substitution rate (purple) and the reverse complementary T → C substitution rate
(orange), computed on the coding strand. Equivalently the orange curve corresponds to the
A→ G substitution rate computed on the transcribed strand (see Section I.1.3). (B) Same
as in (A) but for the C → T substitution rate. (C) Same as in (A) but for the C → G
substitution rate. (D) Same as in (A) but for the G→ T substitution rate.
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(the purple curve is above the orange one), which extends on the whole transcript,
as previously observed (Green et al. 2003; Polak and Arndt 2008). Similarly signif-
icant (C → G)aT > 0 and (G→ T )aT > 0 asymmetries are observed along the whole
transcript (Figs. 3C and 3D). In contrast, no significant asymmetry is observed for
the C → T substitution rate (Fig. 3B). Note that each data point corresponds to
a 10 kbp bin, therefore our scale of analysis is too coarse to resolve the strong but
localized (C → T )aT > 0 asymmetry, restricted to the first 2 kbp downstream of the
TSS (Polak and Arndt 2008). The regional variation of substitution rates observed
in Fig. 3 thus confirms the transcription-associated substitutional asymmetries re-
ported in Fig. 1C. We then note that for the C → T and G→ T substitutions, the
rates both in the transcribed and coding strands inside the gene are lower than the
rate observed in the flanking intergenic region. Therefore for the C → T and G→ T
substitutions, the symmetrical part is clearly lower inside the gene than in the flank-
ing intergenic region. This observation confirms the significant (C → T )sT < 0 and
(G→ T )sT < 0 reported in Fig. 1B. The variation of the A→ G rate (Fig. 3A) and
the C → G rate (Fig. 3C) are compliant with, but not demonstrative of, the weak
(A → G)sT < 0 and (C → G)sT < 0 reported in Fig. 1B. Indeed, the symmetrical
part of the A → G substitution rate is not significantly different in the genic and
the flanking intergenic region, as previously observed in (Green et al. 2003). Finally
we note a residual (A → G)aT > 0 asymmetry in the flanking intergenic region in
Fig. 3A. This is likely due to unannotated transcripts in the RefGene gene anno-
tation table. The flanking “intergenic” region probably contains some unannotated
transcripts, co-oriented with the gene. Note however that the (A→ G)aT > 0 asym-
metry observed in the flanking intergenic region is ten fold lower than the asymmetry
observed inside the gene, which suggests that unannotated transcripts are not nu-
merous enough to affect our previous observations.

☛ The substitutional asymmetry is compliant with the model proposed in Chapter I.
The replication-associated asymmetry is proportional to the replication fork polarity
determined in HeLa cell line (Fig. 2). The transcription-associated asymmetry adds
to the replication-associated one and changes sign with gene orientation (Fig. 2).
The symmetrical substitution rate is smaller in genic region than in intergenic re-
gion (Figs. 1B and 3), especially for the C → T and G→ T substitutions.

III.2 From substitutional to compositional asymmetry

If the substitutional asymmetry follows the decomposition observed in Fig. 2 and
formalized in Eq. (2), we expect in turn the same decomposition for the composi-
tional asymmetry, as measured by the GC and TA skews (Chapter I, Eq. (165) in
the summary). In Section I.4.2 we formally studied the DNA composition evolu-
tion of a sequence submitted to substitutional asymmetries following Eq. (2). Such
substitutional asymmetries give theoretically rise to transcription- and replication-
associated skews in the DNA sequence, the latter being at all time proportional to
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S∗
GC S∗

TA SGC STA

ST (%) 7.02± 0.16 10.80± 0.16 3.12± 0.05 4.23± 0.06
SR (%) 10.54± 0.82 13.64± 0.85 6.06± 0.27 6.09± 0.31

Table 3: Transcription- and replication-associated compositional asymmetries.
Coefficients SR, ST of the linear model Eq. (3), obtained by least-squares fits to a line in
Fig. 4.

the replication fork polarity. In this Section, we check that the substitutional asym-
metries found in Section III.1 generate transcription- and replication-associated GC
and TA skews.

The compositional asymmetry decomposes into transcription- and replica-
tion-associated components
The equilibrium GC and TA skews, which are directly computed from the sub-

stitution rate matrix, can be interpreted as the current direction of evolution of the
skews. As shown in Figs. 4A and 4B, the equilibrium skews S∗

GC and S∗
TA indeed de-

compose into transcription- and replication-associated components, consistent with
the formal derivations made in Chapter I (Eq. (108)). If the current substitutional
pattern is representative of the substitutional patterns that have shaped our genome,
we expect the GC and TA compositional skews observed presently to follow the same
decomposition. This is verified in Figs. 4C and 4D, where the compositional skews
SGC and STA are shown to decompose into transcription- and replication-associated
components. Importantly, both equilibrium and compositional skews are propor-
tional to the replication fork polarity. The compositional asymmetry S (where S
denotes generically S∗

GC , S
∗
TA, SGC , or STA) is therefore consistent with the following

model:

S =







pSR + ST genic (+)
pSR intergenic
pSR − ST genic (−)

, (3)

in agreement with the minimal model for the compositional asymmetry proposed in
Chapter I (Eq. (168) in the summary). The coefficients ST and SR, estimated by
least-squares fits to a line (dashed lines in Fig. 4), are reported in Table 3. We found
positive STA,T and SGC,T skews associated to transcription, as well as positive STA,R
and SGC,R skews associated to replication, in agreement with previous analyses
(Touchon et al. 2003, 2004; Brodie of Brodie et al. 2005; Touchon et al. 2005). As
reported in Table 4, both equilibrium and compositional skews correlate significantly
with the replication fork polarity, even though the replication fork polarity was
determined in HeLa and not in the germline. By contrast, the equilibrium and
observed skews do not correlate with the MRT (R < 0.02 and p > 0.45), which
is strand-symmetric. If we compare the numerical values in Figs. 4A and 4B, the
observed compositional skews are two fold lower than the equilibrium skews shown
in Figs. 4C and 4D. The compositional skews have clearly not reach equilibrium yet.
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Figure 4: The compositional asymmetry decomposes into transcription- and
replication-associated components. Compositional asymmetry versus the replication
fork polarity (determined in HeLa cell line) in genic sense (red), intergenic (black), and
genic antisense (blue) regions, for (A) the equilibrium GC skew, (B) the equilibrium TA
skew, (C) the compositional GC skew, and (D) the compositional TA skew. The equilib-
rium composition was directly computed from the substitution rate matrix (Section I.3.1).
For the compositional skews we only retained repeat-masked sequences. Equilibrium and
compositional skews, replication fork polarity, and gene orientation were computed on the
reference strand. The dashed lines correspond to the least-squares fits to a line, following
the linear model Eq. (3). The linear regression coefficients are reported in Table 3.
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S∗
GC S∗

TA STA SGC

p (HeLa) 0.22 0.30 0.47 0.49

Table 4: The compositional asymmetry correlates with the replication fork polar-
ity. Pearson correlation (R values) of equilibrium and observed compositional skews with
the replication fork polarity. S∗

TA, S
∗
GC , STA, SGC , and p were calculated in non-overlapping

1Mbp windows genome wide. For substitution rates and sequence composition we only re-
tained intergenic nucleotides. Only 1 Mbp windows containing at least 100 kbp of aligned
(intergenic) sequences and at least 100 kbp of repeat-masked (intergenic) sequences were
retained (N=1982). All p-values are < 10−16.
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Figure 5: Equilibrium and compositional skews along large (> 100 kbp) human
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Average substitution rates and nucleotide composition in large human genes were computed
very 10 kbp from 100 kbp upstream (distance to TSS = -100 kbp) to 100 kbp downstream
of the TSS (distance to TSS = +100 kbp). As genes are larger than 100 kbp, data points at
0 kbp < distance to TSS < 100 kbp correspond to the interior of the gene. For data points
in the flanking intergenic region -100 kbp < distance to TSS < 0 kbp, we only retained
intergenic nucleotides (as defined by the RefGene table). For the nucleotide composition we
only retained repeat-masked sequences. The substitution rates, the nucleotide composition,
and the distance to TSS are defined with respect to the coding strand of the gene.
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Figure 6: Establishment of the compositional skew is a very slow process. Time
evolution of the total skew S = STA + SGC , from initially null skews, under the current
substitutional pattern obtained in intergenic regions for different replication fork polarity
values in HeLa (Fig. 2). Time is indicated in Myrs; the time evolution was computed
according to the neighbor-independent and time-homogeneous model of DNA composition
evolution presented in Section I.3.1. Note that the skew S obtained at t = 400 Myrs (light
blue curve) matches the observed compositional skew (black circles), whereas the equilibrium
skew (black cross curve) is almost reached at t = 3200 Myrs (magenta curve).

As shown in Fig. 5 along large (> 100 kbp) human genes, the GC and TA skews
extend on the whole transcript (Touchon et al. 2003, 2004).

The observed compositional skews were generated over several hundreds
Myrs
In this paragraph we investigate the dynamics of compositional skew evolution.

The convergence of the compositional skews towards equilibrium is governed by the

time-scales τA, τ
(1)
D , and τ

(2)
D introduced in Chapter I (Eqs. (73) and (75)). For the

current substitution rates, these time-scales are of several hundreds Myrs. We can
give however a more illustrative time-scale, defined as the time necessary to generate
the observed compositional skews in a sequence exposed to the current substitutional
pattern. As shown in Fig. 6, if we start from initial null skews, and if the sequence
is submitted to the substitution rates found in intergenic region at given replication
fork polarity (Fig. 2), the compositional skews increase over time. It is equal to
the observed compositional skew (black circles in Fig. 6) after 400 Myrs. It almost
reaches equilibrium after three billion years (black crosses in Fig. 6). Interestingly,
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the estimated time to reach the observed skew (400 Myrs) is a bit larger than the
last common ancestor of amniotes (∼ 350 Myrs). Note that this estimation is some-
how qualitative. Indeed the substitutional pattern that has generated the observed
skew might have changed over time, and the current substitutional pattern may not
faithfully reflect the substitutional pattern of these past 400 Myrs. For instance,
the excellent correlation found by Mugal et al. (2009) between the substitutional
asymmetry and the compositional skew implies that their substitutional pattern, de-
termined further in the past than the human-chimpanzee divergence we considered
in this manuscript, reflects more faithfully the substitutional pattern that has gen-
erated the skew. Let us also mention that the substitution rates might have been
higher in the past, which would have transiently accelerated the skew evolution.
Nonetheless, these observations clearly indicate that the skew evolution is a very
slow process. The current and quite high value of the compositional skew requires
a persistent direction of skew evolution, over several hundreds Myrs. Interestingly,
the substitutional asymmetry is well conserved between human and mouse (Mugal
et al. 2010), which consistently indicates that the substitutional asymmetry is well
conserved on evolutionary time scales. In turn this suggests that the determinants
of the substitutional asymmetry (the replication fork polarity for instance), which
determine the direction of skew evolution, must have been well conserved over such
time-scales. Indeed the replication timing, which determines the replication fork
polarity, has been well conserved at least since the human-mouse divergence (Ryba
et al. 2010; Yaffe et al. 2010).

Taking into account the CpG→ TpG substitution
The neighbor-dependent CpG→ TpG substitution is 13 fold more frequent than

C → T , the most frequent single nucleotide substitution according to Fig. 1A. As
shown in Fig. 7A, the (CpG → TpG)a asymmetry decomposes into transcription-
and replication-associated components. There is a strong replication-associated
asymmetry (CpG→ TpG)aR = 13.2 kbp−1 and a very weak transcription-associated
asymmetry (CpG→ TpG)aT = 0.9 kbp−1. In Section I.4.3, we studied the evolution
of the DNA composition when taking into account the CpG → TpG substitution
rate, using the neighbor-dependent model proposed in (Arndt et al. 2003). The
neighbor-dependency does not affect the decomposition of the skew into transcription-
and replication-associated components (Eqs. (138) and (141)), as confirmed for the
equilibrium skew in Fig. 7B. We did not explore the time evolution in the neighbor-
dependent model. A limiting issue is the great number of unknown parameters (the
initial dinucleotide frequencies), even if we impose PR2 for the initial composition.

☛ The compositional asymmetry is compliant with the model proposed in Chapter I.
The replication-associated asymmetry is proportional to the replication fork polarity
determined in HeLa cell line (Fig. 4). The transcription-associated asymmetry adds
to the replication-associated one and changes sign with gene orientation (Fig. 4).
This is true both for the equilibrium skew that gives the current direction of the skew
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Figure 7: Taking into account the neighbor-dependent CpG → TpG substitution
rate. (CpG → TpG)a substitutional asymmetry (A) and equilibrium skew S∗ (B) versus
replication fork polarity (determined in HeLa cell line as in Fig. 2) in genic sense (red),
intergenic (black), and genic antisense (blue) regions. The equilibrium composition was
computed taking into account, besides the single-nucleotide substitution rate matrix, the
neighbor-dependent CpG → TpG substitution rate (Section I.4.3), using the neighbor-
dependent model proposed in (Arndt et al. 2003). Substitution rates, equilibrium skew,
replication fork polarity, and gene orientation were computed on the reference strand.

evolution, and for the observed compositional skew. The compositional skew is not
at equilibrium, and the skew evolution is an extremely slow process (time-scales of
several hundreds Myrs). With the current substitutional pattern, it requires 400 Myrs
to generate the current values of the skew from initially null skews (Fig. 6).

III.3 Discussion

Effect of gene expression on substitution rates
In the model proposed in Chapter I, the transcription-associated asymmetry in-

creases with the transcription rate α. It is understood that the asymmetry should
increase with the germline transcription rate, as only mutations occurring in the
germline are transmitted to the descendants. The strand asymmetry could, or not,
correlate with gene expression in somatic cells depending on the conservation of
gene expression over differentiation. Various analyses already support the link be-
tween strand asymmetry and germline expression level. As reported in (McVicker
and Green 2010), the (A → G)a asymmetry and the G + T content on the coding
strand strongly correlate with germline expression level. Note that these correlations
are higher than those previously reported between the G + T content and house-
keeping genes expression (Majewski 2003), expression in testis (Comeron 2004), and

102



breath of expression (Duret 2002), used as indirect estimators of the expression in
the germline. During the male germline, the time spent as a spermatogonia cell
is probably the longest, thus the gene expression in spermatogonia is expected to
have the greatest impact on the transcription-associated strand asymmetry. Inter-
estingly, the (A → G)a asymmetry and the G + T content most strongly correlate
with the expression in spermatogonia (McVicker and Green 2010). On the opposite,
the (C → T )a asymmetry does not correlate significantly with the expression in
germline cells (McVicker and Green 2010). Our results suggest that the (C → T )a

asymmetry, in transcribed and non-transcribed regions, is mainly driven by the repli-
cation fork polarity (Fig. 2B), which could explain the poor correlation observed in
(McVicker and Green 2010). The correlation could also be affected by the variation
of the (C → T )a asymmetry along transcripts, as observed in (Polak and Arndt
2008). Note that the poor correlation between the (C → T )a asymmetry and gene
expression only applies to the most recent substitutional pattern, as estimated since
the human-chimpanzee divergence. In contrast, with substitution rates estimated
further in the past, Mugal et al. (2010) reported a strong correlation between the
(C → T )a asymmetry and gene expression. Interestingly, the substitutional asym-
metry in genes correlates with both germline expression and the relative distance
to skew N-domain borders (estimator of replication fork polarity, see Chapter IV)
(Mugal et al. 2009, 2010). According to (Mugal et al. 2010), a linear model based
on these two predictors has the best explanatory power which strongly supports the
model proposed in Chapter I for substitutional asymmetry.

To my knowledge, the lower symmetrical substitution rates in genes were not
previously reported. Moreover, the relationship with germline gene expression has
neither been investigated. We noted that the strong to weak C → T and G → T
substitutions were the most affected (Fig. 1B). We argue that the reduced rates are
most likely due to some repair mechanism associated with transcription. A higher
selective pressure in genes introns could induce a lower total substitution rate, but a
priori, there is no reason to disfavor systematically the strong to weak substitutions.
Biased-gene conversion (BGC), a neutral process which favors the fixation of GC rich
alleles, can neither be invoked, as it impacts on weak to strong substitution rates, but
not on strong to weak substitution rates (Duret and Arndt 2008). However BGC,
along with reduced recombination rates observed in genes (McVicker and Green
2010), could explain the weakly reduced weak to strong (A → G)s symmetrical
substitution rate (Fig. 1B). We conjecture that if the rates are reduced in genes due
to some repair mechanism associated with transcription, the reduction should be
greater for the most expressed genes.

Are ORIs location relevant for the study of strand asymmetry in eukary-
otes?
First studies on strand asymmetry and replication in human were contradictory

and inconclusive. A replication-related strand asymmetry was reported around the
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replication origin in the β-globin locus (Wu and Maeda 1987), but was not confirmed
by further analyses (Bulmer 1991; Francino and Ochman 2000). Until recently very
few (∼ 30) human replication origins were known experimentally (Aladjem 2007).
This is considerably less than the number (about ∼ 104) of initiation sites needed
each cell cycle to ensure complete duplication of the human genome. It was thus
difficult to make the same analysis as in bacteria, defining locally leading and lagging
strands in between unknown replication origins (Wu 1991). In our current perspec-
tive, it would have been even incorrect to make the same analysis as in bacteria.
In contrast to bacteria, genomic regions in eukaryotes cannot be unambiguously as-
signed as leading or lagging strands (replication fork polarity p = +1 or p = −1).
In eukaryotes, the replication program is more complex: several replication origins,
firing at different times during the S-phase, and not always at the same positions
and times over cell cycles. A loci is in general replicated by a proportions p(±) of
(±) forks over cell cycles, and the replication fork polarity p = p(+) − p(−) can take
values in the whole interval [−1, 1].

Let us point out that it would be mathematically intractable to infer the repli-
cation fork polarity profile only from the locations of replication origins. Indeed the
replication fork polarity at a locus depends on the locations of neighboring repli-
cation origins, on their efficiencies, on their firing time distributions, and on the
combinatorial usage of replication origins. Most of these quantities are out of reach
by current experimental abilities. In Chapter II, the replication fork polarity was
shown to be proportional to the derivative of the mean replication timing (Eq. (68)).
We pointed out that this result is exact provided that (i) the replication fork veloc-
ity is constant, and (ii) that replication origins are bidirectional, which seems rather
reasonable assumptions given the information at hand. For comparison, Necsulea et
al (2009) proposed to segment the human genome into leading and lagging strands
as in bacteria, in between replication origins experimentally determined by (Cadoret
et al. 2008). This segmentation not only assumes (i) and (ii), but further requires
that all experimental origins are 100% efficient and that they all fire synchronously
at the onset of S-phase, which looks rather drastic and unrealistic assumptions in
higher eukaryotes. Using this segmentation into leading and lagging strands, Nec-
sulea et al (2009) did not observe any strand asymmetry around experimental repli-
cation origins, and concluded to the nonexistence of replication-associated strand
asymmetry.

However, a specific set of replication origins can be used to reveal replication-
associated strand asymmetry. Actually we expect to observe a significant replication-
associated strand asymmetry for very efficient and well-positioned replication ori-
gins, active in the germline, and well evolutionary conserved. Using either these
very efficient replication origins or the relationship between replication fork polarity
and the mean replication timing (Chapter II, Eq. (68)) thus appears as two different
strategies, likely operative at different scales. The strand asymmetry directly asso-
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ciated to a very efficient origin is expected to be localized around the origin, and not
to extend beyond the closest termination sites. Loci too far upstream or downstream
are replicated by forks coming from other initiation sites. On the opposite, the mean
replication timing permits to study strand asymmetry at larger scales. Note that,
due to the current resolution of replication timing data in human cell lines, we de-
termined the dMRT/dx profile at the 100 kbp scale. At this scale, comparable to
the typical replicon size (Berezney et al. 2000), the proximity to an initiation site
is no longer relevant: each data point contains on average one initiation site. Even
at the 100 kbp scale, many genomic regions have a significantly non null replication
fork polarity. Indeed we observed in the human genome large scale gradients of
replication timing, from hundreds of kbp to several Mbp (Rappailles et al. 2011). In
these regions and at such scales, the strand asymmetry is presumably not generated
by the proximity to a replication origin, but more likely due the average temporal
order of replication origin firings.

Finally we note that replication timing data are now available in an increasing
number of organisms (yeast (Raghuraman et al. 2001), drosophila (Schübeler et al.
2002), mouse (Hiratani et al. 2008), human (Woodfine et al. 2005; Hansen et al.
2010)). Hence, as regards future work, the relationship between replication fork
polarity and replication timing (Chapter II, Eq. (68)) can further be used to study
replication-associated strand asymmetry in various eukaryotic genomes.

The good conservation of dMRT/dx across differentiation ensures the
robustness of our analysis
In Section III.2, we analysed strand asymmetry using the replication fork polar-

ity determined in the HeLa cell line, as a substitute to germline replication fork
polarity. In other cell lines (data from Hansen et al. 2010), in contrasts to HeLa
(data from Rappailles et al. 2011), we had not access to both the replication fork
velocity v and duration of S-phase TS , and we were therefore not able to convert the
dMRT/dx profile into a replication fork polarity profile using Eq. (1). Nonetheless
in any examined cell line, we robustly observed that the substitutional and compo-
sitional asymmetries decompose into transcription- and replication-associated com-
ponents, the latter being proportional to dMRT/dx, as exemplified in Fig. 8 for the
equilibrium skew S∗ and the compositional skew S in the BG02 embryonic stem
cell line and in the GM06990 lymphoblastoid cell line. In intergenic regions, both
the equilibrium and compositional skews correlate significantly with the dMRT/dx
profile in any examined cell line (Table 5). We infer from the good correlation
obtained between the dMRT/dx profiles of the different cell lines that they all cor-
relate with the dMRT/dx profile (and consequently the replication fork polarity) in
the germline. This explains, a posteriori, why we were able to measure replication-
associated asymmetries, even with replication fork polarity profiles not estimated
in the germline. Interestingly the correlation between the compositional skew and
the different dMRT/dx profiles is as high as between the dMRT/dx profiles them-

105



BG02 GM06990 K562 BJ HeLa
BG02 1 0.59 0.62 0.52 0.57

GM06990 0.59 1 0.73 0.61 0.64
K562 0.62 0.73 1 0.57 0.63
BJ 0.52 0.61 0.57 1 0.73

HeLa 0.57 0.64 0.63 0.73 1
S 0.61 0.60 0.62 0.49 0.52
S∗ 0.41 0.41 0.44 0.33 0.35

Table 5: Conservation of dMRT/dx across differentiation. Pearson correlation (R val-
ues) between dMRT/dx profiles from various cell lines: B0G2 embryonic stem cell, GM06990
lymphoblastoid, K562 erythroid, BJ fibroblast, and HeLa cell lines. For comparison, are also
reported for each of these cell lines the Pearson correlation between the compositional skew
S and the equilibrium skew S∗ and dMRT/dx. S, S∗, and dMRT/dx were calculated genome
wide in non-overlapping 1Mbp windows using replication timing data from (Hansen et al.
2010; Rappailles et al. 2011). For substitution rates and sequence composition we only re-
tained intergenic nucleotides. Only 1 Mbp windows containing at least 100 kbp of aligned
(intergenic) sequences and at least 100 kbp of repeat-masked (intergenic) sequences were
retained (N=1982). All p-values are < 10−16.

selves (Table 5).

Estimation of τaR and τaT coefficients for different cell lines
In each cell line, we performed the least-squares fits to a line of the substitutional

and compositional asymmetries according to the minimal model Eqs. (2) and (3), as
previously done for the HeLa cell line in Figs. 2 and 4. As reported in Table 6, the es-
timated transcription-associated asymmetries for stem cells, somatic cells and HeLa
cells are in remarkable quantitative agreement. Unfortunately, for the replication-
associated asymmetry, the linear regression versus the dMRT/dx values does not
directly give access to τaR or SR, but only to vTS τ

a
R or vTS SR. In all cell lines with

the exception of HeLa (where v and Ts are known), we could only estimate vTS τ
a
R

and vTS SR (Table 7). The replication fork velocity and the duration of S-phase are
likely cell type specific, so the factor vTS likely depends on the cell line considered.
Consistently, the replication-associated asymmetries vTS τ

a
R and vTS SR determined

in each considered cell line were found to be proportional to τaR and SR determined
in the HeLa cell line (Fig. 9). Unfortunately we cannot assert (see next paragraph)
that the linear regression versus the replication fork polarity, in each cell line, would
yield the same estimates of τaR and SR as found in HeLa cells, and as possibly found
in the germline. If we make however this strong assumption, the coefficients of pro-
portionality reported in Fig. 9 would imply that vTS = 0.24 Mbp in BG02 embryonic
stem cells and vTS = 0.46 Mbp in GM06990 lymphoblastoid cells, as compared to
vTS = 0.27 Mbp in HeLa cells as measured in (Rappailles et al. 2011).
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Figure 8: The decomposition of S and S∗ into transcription- and replication-
associated components is observed for all examined cell lines. (A) Equilibrium
skew S∗ versus dMRT/dx in BG02 embryonic stem cell line for genic sense (red), intergenic
(black), and genic antisense (blue) regions. (B) Same as in (A) but using dMRT/dx deter-
mined in the GM06990 lymphoblastoid cell line. (C) Compositional skew S versus dMRT/dx
in BG02 embryonic stem cell line for genic sense (red), intergenic (black), and genic anti-
sense (blue) regions. (D) Same as in (C) but using dMRT/dx determined in the GM06990
lymphoblastoid cell line. Equilibrium and observed compositional skews, dMRT/dx, and
gene orientation were computed on the reference strand. The dashed lines correspond to the
least-squares fits to a line, following the linear model Eq. (3). The replication timing data
were retrieved from (Hansen et al. 2010).
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BG02 GM06990 K562 BJ HeLa
(A→ G)aT 5.47± 0.06 5.47± 0.07 5.44± 0.09 5.46± 0.05 5.41± 0.05
(C → T )aT −0.50± 0.04 −0.44± 0.05 −0.50± 0.04 −0.45± 0.04 −0.48± 0.05
(C → G)aT 1.20± 0.03 1.20± 0.02 1.19± 0.03 1.19± 0.02 1.20± 0.02
(G→ T )aT 0.75± 0.03 0.76± 0.02 0.75± 0.03 0.74± 0.02 0.75± 0.02
S∗
GC,T 7.03± 0.14 7.10± 0.11 6.98± 0.15 7.06± 0.14 7.02± 0.16

S∗
TA,T 10.88± 0.21 11.12± 0.16 10.93± 0.18 11.08± 0.16 10.80± 0.16

SGC,T 3.12± 0.07 3.19± 0.05 3.15± 0.05 3.21± 0.05 3.12± 0.05
STA,T 4.24± 0.06 4.26± 0.06 4.24± 0.06 4.31± 0.06 4.23± 0.06

Table 6: Estimates of transcription-associated asymmetries using dMRT/dx in
different human cell lines. Transcription-associated asymmetries estimated by least-
square fits to a line of the substitutional and compositional asymmetries, according to the
linear model Eqs. (2) and (3), in BG02 embryonic stem cell, GM06990 lymphoblastoid cell,
K562 erythroid cell, BJ fibroblast cell (Hansen et al. 2010), and HeLa cell (Rappailles et al.
2011) lines. For all cell lines, the linear regression was actually performed versus dMRT/dx
values. The substitutional asymmetries are expressed in 10−4 bp−1 and the compositional
asymmetries in %.

BG02 GM06990 K562 BJ HeLa
vTS (A→ G)aR 0.97± 0.07 2.13± 0.16 2.18± 0.16 1.22± 0.08 1.15± 0.07
vTS (C → T )aR 0.98± 0.05 1.49± 0.1 1.42± 0.08 0.94± 0.07 0.95± 0.06
vTS (C → G)aR 0.30± 0.03 0.59± 0.05 0.58± 0.07 0.42± 0.04 0.32± 0.03
vTS (G→ T )aR 0.08± 0.03 0.14± 0.05 0.22± 0.05 0.11± 0.04 0.09± 0.03
vTS S∗

GC,R 2.56± 0.15 5.09± 0.25 4.85± 0.29 3.24± 0.23 2.83± 0.22

vTS S∗
TA,R 3.23± 0.23 6.11± 0.35 6.34± 0.35 3.79± 0.26 3.67± 0.23

vTS SGC,R 1.47± 0.08 2.60± 0.11 2.79± 0.09 1.84± 0.08 1.63± 0.07
vTS SGC,R 1.31± 0.07 2.66± 0.12 2.66± 0.11 1.72± 0.1 1.64± 0.08

Table 7: Estimates of replication-associated asymmetries using dMRT/dx in dif-
ferent human cell lines. Replication-associated asymmetries estimated by least-squares
fits to a line of the substitutional and compositional asymmetries, according to the linear
model Eqs. (2) and (3), in BG02 embryonic stem cell, GM06990 lymphoblastoid cell, K562
erythroid cell, BJ fibroblast cell (Hansen et al. 2010), and HeLa cell (Rappailles et al. 2011)
lines. For all cell lines, the linear regression was actually performed versus dMRT/dx val-
ues. The substitutional asymmetries are expressed in 10−4 bp−1 and the compositional
asymmetries in %.
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Figure 9: Consistent estimates of replication-associated asymmetries when using
different cell lines Replication-associated asymmetries vTS τaR and vTS SR estimated in
BG02 embryonic stem cell line (A) and GM06990 lymphoblastoid cell line (B) versus the
corresponding replication-associated asymmetries τaR and SR determined in HeLa cell line
(Tables 1 and 3). The substitutional asymmetries are expressed in 10−4 bp−1 and the
compositional asymmetries in %.

Are the replication-associated asymmetries overestimated?
The replication-associated asymmetries τaR and SR found using HeLa replication

fork polarity are unexpectedly high, they are comparable and sometimes greater
than the corresponding transcription-associated asymmetries (Tables 1 and 3). The
τaR and SR asymmetries are theoretically the maximal replication-associated asym-
metries observable in the human genome when the replication fork polarity p = ±1.
Note that only a few genomic regions, if any, are expected to have p = ±1 repli-
cation fork polarity. Such genomic regions would have to be, at each cell cycle in
the germline and on evolutionary time scales, always replicated by forks of the same
directionality. Interestingly, as reported in Chapter IV, the replication-associated
asymmetries observed at compositional skew upward jumps (S-jumps) in the hu-
man genome (Brodie of Brodie et al. 2005; Touchon et al. 2005) are about three fold
lower than the coefficients τaR and SR obtained in the present study from HeLa cell
replication timing data. For example, in intergenic regions downstream of S-jumps,
the equilibrium and compositional skews are respectively equal to S∗ = 7.69% and
S = 3.72% (Chen et al. 2011), while the corresponding coefficients reported in Ta-
ble 3 are equal to S∗

R = 24.18% and SR = 12.15%. This suggests that only a few
genomic regions have a replication polarity (in the germline and integrated over
evolutionary time scale) larger than ∼ 1/3, provided that the coefficients τaR and SR
have not been overestimated. We see two causes leading to a possible overestimation
of the τaR and SR coefficients: (i) the underestimation of HeLa replication fork polar-
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ity, and (ii) the non-conservation of replication fork polarity between HeLa and the
germline. The replication fork polarity in HeLa was measured according to Eq. (1),
and thus directly depends on the replication fork velocity v and duration of S-phase
TS . Thus an underestimation of v or TS might have led to an underestimation of
the replication fork polarity, and in turn to the overestimation the coefficients τaR
and SR obtained by linear regression. For instance, if v would be equal to twice its
value measured by DNA combing in HeLa cells (Rappailles et al. 2011), then the τaR
and SR coefficients would be divided by two. The τaR and SR coefficients might also
be overestimated if the germline replication fork polarity was, on average, larger
than HeLa replication fork polarity. In Section III.2, we measured substitutional
and compositional asymmetries in regions of fixed replication fork polarity in HeLa
cells (pHeLa). As the correlations reported in Table 5 suggest, in regions of given
pHeLa values, the average replication fork polarity in the germline (pgermline) is likely
proportional to pHeLa:

pgermline = KpHeLa. (4)

According to our minimal model (Chapter I, Eq. (167) in the summary), we expect
to observe the following substitutional asymmetries:

τa =







pgermlineτ
a
R + τaT = pHeLa (KτaR) + τaT genic (+)

pgermlineτ
a
R = pHeLa (KτaR) intergenic

pgermlineτ
a
R − τaT = pHeLa (KτaR)− τaT genic (−)

(5)

Hence the coefficient τaR,HeLa = KτaR, as estimated by the linear regression versus
pHeLa, is expected to be proportional to τaR. If K > 1 (resp. K < 1), the coeffi-
cients reported in Table 7 would actually overestimate (resp. underestimate) the
replication-associated asymmetries.

The (A→ G)aR asymmetry may require an extension of the minimal model
Although the decomposition of the substitutional and compositional asymmetries

into transcription- and replication-associated components was robustly observed for
all examined cell lines, we observed for many cell lines a deviation of the (A →
G)a asymmetry from the minimal model Eq. (2). As shown in Fig. 10 for the
K562 erythroid and GM06990 lymphoblastoid cell lines, the replication-associated
asymmetry is more pronounced in intergenic regions than in genic regions. The
(A→ G)a is better described by the following extension of the minimal model:

(A→ G)a =







p (A→ G)aR,genic + (A→ G)aT genic (+)

p (A→ G)aR,intergenic intergenic

p (A→ G)aR,genic − (A→ G)aT genic (−)
, (6)

allowing for different slopes in intergenic and genic regions. Note that the slopes
have to be the same in genic (+) and (−) regions due to strand-exchange symmetry
(Chapter I, Eq. (4)). The least-squares fit of the (A → G)aR asymmetry according
to Eq. (6) (dashed lines in Fig. 10) yields in all cell lines, a slope larger in intergenic
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Figure 10: The replication-associated (A → G)aR asymmetry is more pronounced
in intergenic regions. (A → G)a asymmetry versus dMRT/dx in genic sense (red),
intergenic (black), and genic antisense (blue) regions, where dMRT/dx was determined in
the K562 erythroid cell (A), and GM06990 lymphoblastoid cell (B) lines. Substitution rates,
dMRT/dx, and the gene orientation were computed on the reference strand. The dashed
lines correspond to the least-squares fits to a line, following the linear model Eq. (6).

regions, from 1.57 fold higher in HeLa to 2.15 fold higher in GM06990 and 2.26 fold
higher in K562. Finally, we note that a fixation bias due to biased gene conversion
(BCG) can be proposed to explain such a trend. BCG, in regions of high recom-
bination rate, favors the fixation of weak to strong substitution (Duret and Arndt
2008). The reduced crossover rates observed in human genes (McVicker and Green
2010) suggest that the weak to strong A → G and T → C substitutions have a
higher fixation probability in intergenic regions. A higher fixation probability would
amplify the substitutional asymmetry in intergenic regions.

Summary of Chapter III

In this Chapter, we provided clear evidence for replication-associated strand
asymmetry in the human genome. The substitutional asymmetry (Fig 2) and the
compositional asymmetry (Fig 4) follow closely the minimal model proposed in
Chapter I: both decompose into transcription- and replication-associated compo-
nents, the former changes sign with gene orientation, and the latter is proportional
to the replication fork polarity. The replication fork polarity profiles correlate in dif-
ferent cell lines (Table 5), which explains a posteriori why we were able to provide
evidence for replication-associated asymmetry, even if our replication fork polarity
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estimates were not determined in the germline. Of course, we expect our analyses to
be even more conclusive when using germline replication fork polarity. Interestingly,
the establishment of the compositional skews is an extremely slow process. The com-
positional skews have not reached equilibrium yet. With the current substitutional
pattern, it would require 400 Myrs to generate the observed compositional skews
from initially null skews (Fig. 6). In turn this is an indication that the determinant
of the skew evolution in intergenic region, namely the replication fork polarity, has
been well evolutionary conserved over several hundreds Myrs. In our analyses of
substitution rates, we also observed lower symmetrical rates in genic regions for the
strong to weak C → T and G→ T substitutions (Fig. 3). If further analyses confirm
this trend, this will suggest that some repair mechanisms coupled to transcription
have an important impact on the substitutional pattern found in genes.
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Chapter IV

Wavelet-based method to
disentangle transcription- and
replication-associated strand
asymmetries in mammalian
genomes

As proposed theoretically (Chapter I), and verified experimentally in the human
genome (Chapter III), the compositional asymmetry decomposes into transcription-
and replication-associated components, the latter being proportional to the repli-
cation fork polarity. In this Chapter, we develop a wavelet-based methodology to
analyze the DNA strand asymmetry profiles with the specific goal to extract the
contributions associated with replication and transcription. In a first step, we use
an adapted N-shaped analyzing wavelet to perform a multi-scale pattern recogni-
tion analysis of the sum of the TA and GC skews along human chromosomes. This
method provides an objective segmentation of the human genome in skew domains
of ≃ 1 Mbp characteristic size, bordered by two putative replication origins recog-
nized as large amplitude upward jumps in the noisy skew profile. In between the two
upwards jumps, the skew decreases rather linearly as the signature of the progres-
sive inversion of the replication fork polarity. In a second step, we use a least-square
fitting procedure to disentangle, in these skew domains, the small-scale (the mean
human gene size ≃ 30 kbp) square-like transcription component from the global N-
shaped component induced by replication. When applying this procedure to the 22
human autosomes, we delineate 678 replication domains of mean length L̄ = 1.2±0.6
Mbp spanning 33.8% of the human genome and we predict 1062 replication origins.
As a comparative analysis, we further apply our wavelet-based methodology to skew
profiles along the mouse chromosomes. The striking similarity of the results in hu-
man and mouse indicates that skew N-domains are likely to be a general feature
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of mammalian genomes. The transcription- and replication-associated components
estimated by our disentangling methodology are shown to respectively correlate to
the expression in the germline and to the replication fork polarity in various cell
lines.

IV.1 Introduction: zooming in genomic sequences with
the wavelet-transform “microscope”

The wavelet-transform: a mathematical microscope to track singularities
and study multifractal distributions.
Since the pioneering works of J. Morlet and A. Grossmann in the early 1980’s

(Goupillaud et al. 1984; Grossmann and Morlet 1984; Grossmann and Morlet 1985),
the continuous wavelet transform (WT) has been the subject of considerable theo-
retical developments and practical applications in a wide variety of fields (Combes
et al. 1989; Meyer 1992; Daubechies 1992; Ruskai et al. 1992; Meyer and Roques
1993; Farge et al. 1993; Arneodo et al. 1995a; Erlebacher et al. 1996; Mallat 1998;
Torresani 1998; Silverman and Vassilicos 2000; Jaffard et al. 2001). Originally in-
troduced to perform time-frequency analysis, the WT has been early recognized as
a mathematical microscope that is well adapted to characterize the scale-invariance
properties of fractal objects and to reveal the hierarchy that governs the spatial
distribution of the singularities of multifractal measures and functions (Arneodo
et al. 1988; Holschneider 1988; Arneodo et al. 1989; Jaffard 1989; Holschneider and
Tchamitchian 1990; Jaffard 1991; Mallat and Hwang 1992; Mallat and Zhong 1992;
Arneodo et al. 1992a). This has led A. Arneodo and collaborators (Muzy et al.
1991, 1993, 1994; Bacry et al. 1993; Arneodo et al. 1995c) to elaborate on a unified
statistical (thermodynamic) description of multifractal distributions including mea-
sures and functions, the so-called Wavelet Transform Modulus Maxima (WTMM)
method. This method relies on the computation of partition functions from the WT
skeleton defined by the wavelet transform modulus maxima. This skeleton provides
an adaptive space-scale partition of the fractal distribution under study, from which
one can extract the D(h) singularity spectrum of Hölder exponent values as the
equivalent of a thermodynamic potential (entropy) (Arneodo et al. 1995c). We refer
the reader to Bacry et al. (1993), Jaffard (1997a; 1997b) and collaborators (Jaffard
et al. 2006) for rigorous mathematical results and to Hentschel (1994) for the the-
oretical treatment of random multifractal functions. Applications of the WTMM
method to 1D signals (Arneodo et al. 2002a) and its generalization in 2D for image
analysis (Arneodo et al. 2000; Decoster et al. 2000; Arneodo et al. 2003) and in 3D
for scalar and vector fields analysis (Kestener and Arneodo 2003, 2004, 2007) have
already provided insights into a wide variety of problems (Arneodo et al. 2002a), in
domains as different as the fully-developed turbulence (Arneodo et al. 1998b, 1999b;
Roux et al. 1999; Delour et al. 2001; Mordant et al. 2002, 2003), hydrology (Venu-
gopal et al. 2006a,b; Roux et al. 2009), astrophysics (Khalil et al. 2006; Kestener
et al. 2010; McAteer et al. 2010), geophysics (Arrault et al. 1997; Arneodo et al.
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1999a; Roux et al. 2000), econophysics (Arneodo et al. 1998c; Muzy et al. 2001),
fractal growth phenomena (Arneodo et al. 1992b,c,d; Kuhn et al. 1994), medical
time series analysis (Ivanov et al. 1996, 1999) and medical and biological image
processing (Arneodo et al. 2003; Kestener et al. 2001; Khalil et al. 2007; Caddle
et al. 2007). Surprisingly, among these applications, there is one that turns out to
be quite fruitful and very promising in regards to its unexpected appropriateness,
namely the multi-scale wavelet-based analysis of genomic sequences (Arneodo et al.
1995b, 1996, 2002a; Audit et al. 2001, 2002).

Long-range correlations in genomic sequences.
The possible relevance of scale invariance and fractal concepts to the structural

complexity of genomic sequences has been the subject of increasing interest (Stanley
et al. 1993; Li et al. 1994; Arneodo et al. 2002a). During the past twenty years or so,
there has been intense discussion about the existence, the nature and origin of the
long-range correlations (LRC) observed in DNA sequences (Li 1992; Peng et al. 1992;
Voss 1992; Nee 1992; Borštnik et al. 1993; Chatzidimitriou-Dreismann and Larham-
mar 1993; Karlin and Brendel 1993; Larhammar and Chatzidimitriou-Dreismann
1993; Peng et al. 1993; Stanley et al. 1993; Voss 1994; Azbel’ 1995; Herzel and Große
1995; Mantegna et al. 1995; Arneodo et al. 1996; Li 1997; Viswanathan et al. 1998;
Arneodo et al. 2002a). One of the main obstacles to LRC analysis in DNA sequences
is the genuine mosaic structure of these sequences that are well known to be formed of
patches of different underlying composition (Gardiner 1996; Li et al. 1998; Bernardi
2000). When using the DNA walk representation, these patches appear as trends in
the DNA walk landscapes that are likely to break scale-invariance (Nee 1992; Peng
et al. 1992; Borštnik et al. 1993; Chatzidimitriou-Dreismann and Larhammar 1993;
Larhammar and Chatzidimitriou-Dreismann 1993; Karlin and Brendel 1993; Stanley
et al. 1993; Viswanathan et al. 1998; Arneodo et al. 2002a). Indeed, most of the
techniques, e.g. the variance method, used in the early studies for characterizing the
presence of LRC, were not well-adapted to study non-stationary sequences. There
have been some phenomenological attempts to differentiate local patchiness from
LRC using ad hoc methods such as the so-called “min-max method” (Peng et al.
1992) and the “detrended fluctuations analysis” (Peng et al. 1994). In that context
the WT has been early recognized as a well-suited technique that overcomes this
difficulty (Arneodo et al. 1995b, 1996, 2002a). By considering analyzing wavelets
that make the WT microscope blind to low-frequency trends, any bias in the DNA
walk can be removed and the existence of power-law correlations with specific scale
invariance properties can be revealed accurately. As a first important result, from
a systematic WT analysis of human exons, CDSs and introns, LRC were found in
non-coding sequences as well as in regions coding for proteins somehow hidden in
their inner codon structure (Arneodo et al. 1998a). This observation made rather
questionable the model based on genome plasticity proposed at that time to ac-
count for the reported absence of LRC in coding sequences (Li 1992; Peng et al.
1992; Stanley et al. 1993; Arneodo et al. 1995b; Buldyrev et al. 1995; Arneodo et al.
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1996). An alternative structural interpretation of these LRC has emerged from a
comparative multifractal analysis of DNA sequences using structural coding tables
based on nucleosome positioning data (Audit et al. 2001, 2002). The application
of the WTMM method has revealed that the corresponding DNA chain bending
profiles are monofractal (homogeneous) as characterized by a unique Hölder expo-
nent h = H and that there exists two LRC regimes. In the 10 bp - 200 bp range,
LRC are observed for eukaryotic sequences as quantified by a Hurst exponent value
H ≃ 0.6 as the signature of the nucleosomal structure. In contrast, for eubacte-
rial sequences, the uncorrelated H = 0.5 value is systematically obtained. These
LRC were further shown to favor the autonomous formation of small (a few hun-
dred bps) 2D DNA loops and in turn the propensity of eukaryotic DNA to interact
with histones to form nucleosomes (Vaillant et al. 2005, 2006). In addition these
LRC might induce some local hyper-diffusion of these loops which would be a very
attractive interpretation of the nucleosome repositioning dynamics. Over larger dis-
tances (≥ 200 bp), stronger LRC with H ≃ 0.8 seem to exist in any sequence (Audit
et al. 2001, 2002) as experimentally confirmed by atomic force microscopy imaging
of naked DNA molecules deposited onto a mica surface under 2D thermodynamic
equilibrium conditions (Moukhtar et al. 2007, 2010). Furthermore these LRC were
recently observed in S.cerevisiae nucleosome positioning in vivo data suggesting that
they are involved in the collective nucleosome organization of the so-called 30 nm
chromatin fiber (Vaillant et al. 2007; Arneodo et al. 2008). The fact that this second
regime of LRC is also present in eubacterial sequences shows that it is likely to be a
possible key to the understanding of the structure and dynamics of both eukaryotic
and prokaryotic chromatin fibers.

Bifractality of the compositional asymmetry.
The increasing availability of new fully sequenced genomes has provided an un-

precedented opportunity to generalize the application of the WTMM method to
genome-wide multifractal sequence analysis when using alternative codings that have
a clear functional meaning. Among these codings, the TA and GC skews permit to
study the strand asymmetry generated by the transcription and replication processes
(Chapter I). Genome-wide multi-scale analysis of mammalian genomes has clearly
shown compositional asymmetry in intergenic regions and further confirmed the ex-
istence of replication-associated strand asymmetries (Nicolay et al. 2004; Brodie of
Brodie et al. 2005; Touchon et al. 2005; Chen et al. 2011). In particular the appli-
cation of the WTMM method to the skew S = STA + SGC in the human genome
(Nicolay et al. 2007; Arneodo et al. 2009) has revealed the bifractal nature of the
corresponding DNA walk landscape which involves two competing scale invariant
(from repeat masked distances of 1 kbp up to 40 kbp) components characterized by
Hölder exponent h1 = 0.78 and h2 = 1 respectively. The former corresponds to the
long-range correlated homogeneous fluctuations previously observed in DNA walks
generated with structural codings (Audit et al. 2001, 2002). The latter is associated
with the presence of jumps in the skew profile. A majority of the detected
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upward (resp. downward) jumps were shown to co-locate with gene transcription
start sites (TSS) (resp. transcription termination sites (TTS)). However, about a
third of the detected upward jumps are still observed at scale ≥ 200 kbp, larger
than the typical gene size, as bordering large-scale (mean size ≃ 1 Mbp) N-shaped
skew domains. The N-domains borders were hypothesized to be replication ori-
gins active in the germline (Brodie of Brodie et al. 2005; Touchon et al. 2005; Huvet
et al. 2007), possibly specified by an open chromatin structure favorable to early
replication initiation and permissive to transcription (Audit et al. 2009). A prelimi-
nary analysis of human replication timing data confirmed that a significant number
of N-domain borders are initiation zones that replicate earlier in the S-phase than
their surrounding regions, whereas central regions replicate late (Audit et al. 2007).

☛ Our aim in this Chapter is to use the WT transform to objectively delineate skew
N-domains thereby predicting (at their edges) replications origins directly from the
DNA sequence. In our current perspective, skew N-domains actually define replica-
tion domains in the germline, characterized by a global N-shape of the replication
fork polarity. With an adequate choice of the analyzing wavelet, we show that the
proposed method can be further used to disentangle, in the so-identified replication
domains, the contribution coming from transcription (local square-like genic skew
component) from the one associated with replication (global N-shaped skew compo-
nent).

IV.2 Review of transcription- and/or replication- cou-
pled strand asymmetries in mammalian genomes

☛ A square-like mean skew profile is observed in mammalian genes (see Fig. 1). In
prokaryotes, where the replication program follows the replicon model, a square-like
skew profile is also observed associated to replication. In particular, the upward and
downward jumps of the skew profile remarkably colocalize with the replication origin
and terminus. In contrast, we observe in mammalian genomes a recurrent N-shape
pattern in the skew profile, likely associated to replication (see Fig. 3). We propose
that the serrated “factory roof” skew profile observed in these N-domains results
from the superimposition of the genic square-like components and the global N-shape
component induced by replication (see Fig. 4).

IV.2.1 Definitions of the compositional skews

We will mainly use in this study the TA and GC skews computed in non-overlapping
1 kbp windows (Eq. 158 of Chapter I) (Arneodo et al. 2007, 2009):

STA =
[T ]− [A]

[T ] + [A]
, SGC =

[G]− [C]

[G] + [C]
, (1)
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where [T ], [A], [G] and [C] are respectively the frequencies of T, A, G and C in the
windows. Because of the observed correlation between TA and GC skews (Touchon
et al. 2003) we will mainly consider the total skew:

S = STA + SGC . (2)

Sequences and gene annotation data (“knownGene”) were retrieved from the UCSC
Genome Browser (May 2004). We used RepeatMasker to exclude repetitive elements
(SINEs, LINEs, ...) that might have been inserted recently in the genome and would
not reflect long-term evolutionary patterns.

IV.2.2 Transcription-induced square-like skew profiles in mamma-
lian genomes

Substitutional and compositional asymmetries associated to transcription have been
observed in organisms across the whole life tree (Section I.1.3). In a previous study,
Touchon et al. (2003; 2004) reported definite evidence for compositional asymme-
try in transcribed regions of human sequences. The distributions of the TA and GC
skews, computed on the 14 854 intron-containing genes, present positive mean values
for “sense” (+) genes (7058), namely S̄TA = 4.49± 0.01% and S̄GC = 3.29± 0.01%,
and nearly opposed values for “antisense” (−) genes (7346). In Fig. 1 are reported
the mean values of STA and SGC for all genes, computed on the coding strand, as a
function of the distance to the 5’ or 3’ gene ends. At the 5’ gene extremity (Fig. 1(a)),
a sharp transition of both skews is observed from close to zero values in the inter-
genic regions to finite positive values in transcribed regions ranging between 4 and
6% for STA and between 3 and 5% for SGC . At the 3’ gene extremity (Fig. 1(b)), the
TA and GC skews also exhibit a transition from significantly large positive values
inside the gene to very small values in untranscribed regions. However, in compar-
ison to the steep transition observed at 5’ end, the 3’ end mean profile presents a
slightly smoother transition pattern extending over ∼ 5 kbp and including regions
downstream of the 3’ end likely reflecting the fact that transcription continues to
some extent downstream of the polyadenylation site. In pluricellular organisms, mu-
tations responsible for the observed biases have occurred in germline cells. It could
happen that gene 3’ ends annotated in the databank differ from the poly-A sites
effectively used in germline cells. Such differences would then lead to some broaden-
ing of the skew profiles. Overall, the results reported in Fig. 1 suggest that the STA
and SGC are constant along introns. Since introns amount for about 80% of gene
sequences, this means that skew profiles induced by transcription processes
have a characteristic square-like shape (Touchon et al. 2003, 2004; Arneodo
et al. 2007, 2009). However, the absence of asymmetries in intergenic regions does
not exclude the possibility of additional replication associated biases. Such biases
would present opposite signs in regions of opposite replication fork polarity that
would cancel each other in our statistical analysis.

If there is not doubt that the mean TA and GC skew profiles are different from
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Figure 1: Transcription square-like skew component in human genes. TA (•) and
GC (•) skew profiles in the regions surrounding 5’ and 3’ gene extremities (Touchon et al.
2003). STA and SGC were calculated in 1 kbp windows, on the coding strand, starting from
each gene extremities in both directions. Only intronic and repeat-masked nucleotides were
retained. In abscissa is reported the distance (n) of each 1 kbp window to the indicated
gene extremity; zero values of abscissa correspond to 5’ (a) or 3’ (b) gene extremities. In
ordinate is reported the mean value of the skews over 14 854 intron-containing genes for all
1 kbp windows at the corresponding abscissa. Error bars represent the standard error of the
means.

zero inside the genes likely resulting from transcription-coupled processes, how many
genes actually contribute to these mean profiles or in other words, how many genes
have biased sequences? Since each square-like skew pattern is edged by one upward
and one downward jump, the set of human genes that are significantly biased is
expected to contribute to an equal number of ∆S > 0 and ∆S < 0 jumps. This is
exactly what we observed when using the WT microscope to detect jumps in the
noisy total skew profile S when exploring the range of scales 10 ≤ a ≤ 40 kbp, typ-
ical of human gene size (Nicolay et al. 2007). Out of 20 023 TSS, 36% (7228) were
found to be delineated within 2 kbp by an upward jump of amplitude ∆S > 0.1.
This percentage of biased genes provides a very reasonable estimate of the number of
genes expressed in germ-line cells as compared to the 31.9% recently experimentally
found to be bound to PolII in human embryonic stem cells (Lee et al. 2006).

Remark. This study of strand asymmetries in intronic sequences has been further
extended to evolutionary distant eukaryotes (Touchon et al. 2004). When appro-
priately examined, all genomes present transcription-coupled excess of T over A
(STA > 0) in the coding strand. In contrast, GC skew is found positive in mammals
and plants but negative in invertebrates suggesting different repair mechanisms as-
sociated with transcription in vertebrates and invertebrates (Touchon et al. 2004;
Touchon 2005).
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Figure 2: Replication square-like skew component in Bacillus subtilis.
(a) Schematic representation of the divergent bidirectional progression of the two repli-
cation forks from the replication origin. The leading (resp. lagging) strand is replicated
by a sense (+) (resp. antisense (−)) fork and has replication fork polarity p = +1 (resp.
p = −1). (b) SGC calculated in 1 kbp windows along the genomic sequence of Bacillus
subtilis. (c) Cumulated skew ΣGC . The vertical lines correspond respectively to the replica-
tion origin (ORI) and termination (TER) positions. In (b) and (c), red (resp. blue) points
correspond to (+) (resp. (−)) genes.

IV.2.3 Replication-induced N-shaped skew profiles in mammalian
genomes

Substitutional and compositional asymmetry associated to replication has been ob-
served in organisms across the whole life tree (Section I.1.2). The existence of
replication-associated strand asymmetries has been mainly established in bacterial
genomes (Lobry 1995; Mrázek and Karlin 1998; Frank and Lobry 1999; Rocha et al.
1999; Tillier and Collins 2000). As illustrated in Fig. 2, the GC and TA skews
abruptly switch sign (over a few kbp) from negative to positive values at the repli-
cation origin and in the opposite direction from positive to negative values at the
replication terminus. This step-like profile is characteristic of the replicon model (Ja-
cob et al. 1963). In Bacillus subtilis, as in most bacteria, the leading (resp. lagging)
strand (Fig. 2(a)) is generally richer (resp. poorer) in G than in C (Fig. 2(b)), and
to a lesser extent in T than in A (data not shown). This typical pattern is par-
ticularly clear when plotting the cumulated skews ΣGC (Fig. 2(c)) and ΣTA; both
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present decreasing (or increasing) profiles in regions situated 5’ (or 3’) to the origin,
displaying a characteristic ∨-shape pointing to the replication origin position (sim-
ilarly a characteristic ∧-shape is observed at the terminus position). The research
of ∨ patterns in the cumulated skews has been extensively used as a strategy to
detect the position of the (unique) replication origin in (generally circular) bacterial
genomes (Mrázek and Karlin 1998; Frank and Lobry 1999; Rocha et al. 1999; Tillier
and Collins 2000). We note that the replication-associated compositional asymme-
try observed in bacteria is a particular case of the model proposed in Chapter I.
In the replicon model, the circular bacterial chromosome is divided into two halves
(the leading and lagging strands) of opposed replication fork polarity. The repli-
cation fork polarity has therefore the same square-like pattern as the SGC skew.
Furthermore, the cumulative skew ΣGC profile is expected to give qualitatively the
replication timing pattern, as the replication fork polarity is related to the derivative
of the replication timing. Interestingly, the ΣGC profile (Fig. 2(c)) indeed mimics
the replication timing pattern expected in the replicon model (Fig. 2(a)) (see also
Fig. 1 in Chapter II).

In previous works, Brodie of Brodie et al (2005) and Touchon et al (2005) have
investigated the behavior of the skew profiles around 9 replication origins experimen-
tally identified in the human genome. As shown in Fig. 3(a) for TOP1 replication
origin, most of these origins also correspond to rather sharp (over several kbp) tran-
sitions from negative to positive S (STA as well as SGC) skew values that clearly
emerge from the noisy background. As shown in Fig. 3(b-d), sharp upward jumps
of amplitude ∆S ≥ 15%, similar to the ones observed for the known replication
origins (Fig. 3(a)), seem to exist at many other locations along the human chromo-
somes. This observation led A. Arneodo and collaborators to develop an upward
jump detection methodology based on the WT microscope (Brodie of Brodie et al.
2005; Touchon et al. 2005). By selecting in the WT skeleton, the maxima lines
that still exist at scales a ≥ 200 kbp, i.e. scales larger than the typical gene size
(∼ 30 kbp), one not only reduces the effect of the noise but also the contribution
of the upward (5’ extremity) and downward (3’ extremity) jumps associated to the
square-like skew pattern induced by transcription (Fig. 1). When applying this
wavelet-based method to the 22 human autosomes, retaining as putative replication
origins upward jumps with ∆S ≥ 12%, i.e. with an amplitude much larger than the
one induced by transcription at the TSS (Fig. 1(a)), A. Arneodo and collaborators
got a set of 1012 candidates mainly located in regions with G+C ≤ 42% (as seen in
Fig. 3(d), in G+C rich regions the required scale separation between the character-
istic replicon and gene sizes was no longer tractable to the multi-scale wavelet-based
methodology) (Brodie of Brodie et al. 2005; Touchon et al. 2005).

But when examining the behavior of the skews at large distance from the replica-
tion origins, one does not observe a square-like pattern with upward and downward
jumps at the origin and termination positions as expected from the replicon model.
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Figure 3: Replication N-shaped skew component in mammalian genomes. S pro-
files along mammalian genome fragments (without repeats) (Touchon et al. 2005; Arneodo
et al. 2007). (a) Fragment of human chromosome 20 including the TOP1 origin (red vertical
line). (b and c) Human chromosome 4 and chromosome 9 fragments, respectively, with low
GC content (36%). (d) Human chromosome 22 fragment with larger GC content (48%). In
(a) and (b), vertical lines correspond to selected putative origins; yellow lines are linear fits
of the S values between successive putative origins. Black, intergenic regions; red, (+) sense
genes; blue, (−) anti-sense genes. Note the fully intergenic regions upstream of TOP1 in (a)
and from positions 5290-6850∼kbp in (c). (e) Fragment of mouse chromosome 4 homologous
to the human fragment shown in (c). (f) Fragment of dog chromosome 5 homologous to the
human fragment shown in (c). In (e) and (f), genes are not represented.
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(a) (b) (c)

Figure 4: Factory roof model of mammalian skew profiles. (a) N-shaped replication-
associated skew profile. (b) Transcription-associated skew profile showing positive square
blocks at (+) gene positions and negative square blocks at (−) gene positions. (c) Super-
imposition of the replication- and transcription- associated skew profiles producing the final
factory-roof pattern that defines “N-domains” (Huvet et al. 2007).

Indeed the most striking feature is the fact that in between two neighboring ma-
jor upward jumps, not only the noisy S profile does not present any comparable
downward sharp transition, but it displays a remarkable decreasing linear behav-
ior. At chromosome scale, one thus gets jagged S profiles that have the aspect of
“factory roofs” (Touchon et al. 2005; Brodie of Brodie et al. 2005; Arneodo et al.
2007; Huvet et al. 2007). Note that the jagged S profiles shown in Fig. 3(a-d)
look somehow disordered because of the extreme variability in the distance between
two successive upward jumps, from spacing ∼50-100 kbp (∼100-200 kbp for the na-
tive sequences) mainly in GC rich regions (Fig. 3(d)), up to 1-2 Mbp (∼2-3 Mbp
for native sequences) (Fig. 3(c)). But what is important to notice is that some of
these segments between two successive skew upward jumps are entirely intergenic
(Fig. 3(a,c)), clearly suggesting that the observed peculiar N-shape skew profile
is characteristic of a strand bias resulting solely from replication (Brodie of
Brodie et al. 2005; Touchon et al. 2005; Huvet et al. 2007). Importantly, as illus-
trated in Fig. 3(e,f), the factory-roof pattern is not specific to human sequences but
is also conserved in homologous regions of the mouse and dog genomes (Touchon
et al. 2005). Hence, the presence of strand asymmetry in regions that have strongly
diverged during evolution further supports the existence of compositional bias asso-
ciated with replication in mammalian germline cells (Touchon et al. 2005; Brodie of
Brodie et al. 2005; Arneodo et al. 2007; Huvet et al. 2007; Chen et al. 2011).

IV.2.4 A working model of mammalian “factory roof” skew profiles

As discussed in Chapter I (Eq. (168) in the summary), the compositional asymme-
try can be decomposed into transcription- and replication-associated components.
The transcription-associated asymmetry changes sign with gene orientation and in-
creases in magnitude with the transcription rate (in the germline). The replication-
associated is proportional to the replication fork polarity (in the germline). Under
the assumption of constant replication fork velocity, the replication fork polarity
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is also proportional to the derivative of the mean replication timing (Chapter II,
Eq. (68) in the summary). According to the results reported just above, we will
use as a working model that the overall factory roof profile observed for mam-
malian genomes actually results from the superposition of two patterns (Fig. 4)
(Huvet et al. 2007). One decreases steadily from the 5’ to the 3’ direction and
would be attributable to replication in germline cells (Fig. 4(a)), and would reflect
the progressive inversion of the replication fork polarity. In turn, the linear de-
crease of the replication fork polarity would indicate that the germline replication
timing has a parabolic U-shape (the derivative of a parabolic U-shape is a linear
N-shape). The global N-shaped skew component, attributed to replication, thus de-
fines skew N-domains as replication domains characterized by a U-shaped
replication timing profile in the germline. The other pattern would result from
transcription-associated strand asymmetries that generate square-like profiles corre-
sponding to (+) sense and (−) antisense genes (Fig. 4(b)). When the two profiles are
superimposed, this leads to the factory roof pattern (Fig. 4(c)) (Huvet et al. 2007).
Because the typical gene size (∼ 30 kbp) is much smaller than the characteristic
distance (∼ 1 Mbp) between two adjacent putative replication origins, these skew
domains were named “N-domains” in regards of their overall qualitative N shape
(Huvet et al. 2007).

IV.3 Detecting replication N-domains with the contin-
uous wavelet transform

☛ The wavelet transform, using an adapted N-shaped wavelet, provides a robust way
to perform a multi-scale pattern recognition of the letter N in a noisy skew profile.
In this section, we summarize the wavelet-based methodology previously developed
by Nicolay in (Nicolay 2006; Baker et al. 2010) to detect skew N-domains. The
efficiency of this methodology is verified on synthetic skew signals.

IV.3.1 The continuous N-let transform

The continuous wavelet transform (WT) is a space-scale analysis which consists in
expanding a signal S in terms of wavelets that are constructed from a single function,
the analyzing wavelet Ψ, by means of dilations and translations (Goupillaud et al.
1984; Grossmann and Morlet 1984; Grossmann and Morlet 1985; Combes et al. 1989;
Meyer 1992; Daubechies 1992):

WΨ[S](b, a) =
1

a

∫ +∞

−∞

S(y)Ψ

(

y − b

a

)

dy, (3)

where b and a (> 0) are the space and scale parameters respectively. The analysing
wavelet Ψ is generally chosen to be well localized in both space and frequency.
Usually Ψ is required to be of zero mean for the WT to be invertible. For the
particular purpose of segmenting the human genome, and more generally mammalian
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Figure 5: N-shaped analyzing wavelet. ΨN (x) defined in Eq. (4).

genomes, according to the working model described in Fig. 4, we will use in the
following an adapted analyzing wavelet called N-let because of its shape that looks
like the letter N (Fig. 5) (Audit et al. 2007; Huvet et al. 2007; Arneodo et al. 2009):

ΨN (x) = −xχ[−1,1](x), (4)

where χ[−1,1](x) is the characteristic function of the interval [−1, 1].

IV.3.2 Multi-scale pattern recognition with the continuous N-let
transform

Along the line of the working model of mammalian “factory roof” skew profiles
defined in Fig. 4, let us compute the N-let transform of the following theoretical
skew profile (Nicolay 2006):

S(x) = (−θ(x− r∗) + h)χ[r1,r2](x), (5)

where r1 and r2 are the bordering replication origin positions and r∗ = (r1 + r2)/2.
The N-let transform of Eq. (5) takes the following analytical expressions:

WΨN
[S](b, a) =































0
θ(b−r∗)−h

2

(
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a2

)
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3
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2θa
3
θ(b−r∗)−h

2

(
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a2
− 1

)
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3

(

(r2−b)3

a3
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)

θ(b−r∗)−h
2a2

(

(r2 − b)2 − (r1 − b)2
)

+ θ
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(

(r2 − b)3 − (r1 − b)3
)

for























b ≤ r1 − a or b ≥ r2 + a
r1 − a < b ≤ r1 + a and b < r2 − a
b ≥ r1 + a and b ≤ r2 − a
b > r1 + a and r2 − a < b < r2 + a
b < r1 + a and b > r2 − a

(6)
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Figure 6: Space-scale representation of the N-let transform. N-let transform of the
skew function S(x) = −10−2xχ[−100,100](x) (see Eq. (5)). WΨN

[S](b, a) is maximum at
(b∗, a∗) = (0, 100). WΨN

[S](b, a) is color coded from blue (minimum) to red (maximum)
through green (intermediate values). The white dashed-lines correspond to the WTMM
lines (local negative minimum of WΨN

[S](b, a)) LL and LR that point to the extremities of
the theoretical N-domains in the limit a→ 0+.

b
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N
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Figure 7: 1D cut of the N-let transform. Horizontal 1D cuts of the N-let transform
represented in Fig. 6 for the scales a = 10 (dotted line), 50 (dashed line) and 100 (solid line).
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As an illustration, a space-scale representation of the N-let transform of S(x) for
the following parameters values θ = 10−2, h = 0, r1 = −100 and r2 = 100, is shown
in Fig. 6. Some 1D cuts corresponding to different scale values a ≤ a∗ are shown
in Fig. 7. For a given scale a, WΨN

[S](b, a) exhibits a plateau for b ∈ [b∗1(a), b
∗
2(a)],

where b∗1(a) = r1 + a and b∗2(a) = r2 − a. When increasing a, this plateau increases
linearly with a while the interval [b∗1(a), b

∗
2(a)] shrinks to zero so that WΨN

[S](b, a)
presents a local maximum in the (b, a) half-plane at the point (b∗, a∗) :

WΨN
[S](b∗, a∗) =

2

3
θa∗, (7)

where

b∗ = r∗ =
r1 + r2

2
, a∗ =

r2 − r1
2

. (8)

The determination of this N-let transform local maximum (the red spot in Fig. 6)
therefore provides an estimate of the mid-point and the size of the support of the
function S via Eq. (8) and of its linear slope −θ via Eq. (7). Note that these results
extend to non-zero values of the offset parameter h in Eq. (5) provided it remains
small as compared to the jump amplitude θa∗.

IV.3.3 Numerical method

The method we propose to identify replication N-domains in noisy factory roof like
profiles (Fig. 3) involves several steps.

∗ Step 1: Detecting potential N-domain borders.

We smooth the skew S with a square-like filter of size 20 kbp:

S̃(x) =
1

20
S ∗ χ[−10,10](x). (9)

The amplitude ∆S(x) at a point x is defined as:

∆S(x) = S̃(x+ 20)− S̃(x− 20). (10)

On purpose, we do not take into account the nucleotides that are closer than
10 kbp to the jump location for which a high variability of skew values is
observed. Then, along the line of previous investigation of replication origins in
mammalian genomes (Audit et al. 2007; Huvet et al. 2007; Arneodo et al. 2009),
the position xn of an upward jump will be considered as a good candidate for
the location of a putative replication origin if it is a local maximum of ∆S(x)
and satisfies the condition:

S̃(xn − 20) ≤ −ǫ and S̃(xn + 20) ≥ ǫ. (11)

This condition not only fixes a threshold (= 2ǫ) in the jump amplitude but it
also imposes the fact that a putative replication origin must correspond to a
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Figure 8: 1D cut of the N-let transform. Vertical 1D cuts of the N-let transform
represented in Fig.6 for b = 50 (dotted line) and b = b∗ = 0 (solid line). The largest value
of aM (b) is obtained for b = b∗, a = a∗ (Eq. (8)), i.e. when the analyzing N-let is positioned
at the center of the support of S.

jump from negative to positive skew values. In the present work, according to
the histograms of S values obtained from the human and mouse genomes, we
will fix the threshold parameter ǫ to:

ǫ = 310−2. (12)

In this way, for each human and mouse chromosomes, we obtain a dictionary
of upward jump locations as potential candidates for N-domain borders.

∗ Step 2: Associating pairs of borders to define N-domains.

For each pair of selected upward jumps (x1, x2), we determine the position
(bM , aM ) of the local maximum of the N-let transform (i.e. red spot in Fig. 6).
For each b ∈ [x1, x2], we estimate the range of scales [a1(b), a2(b)] over which
WΨN

[S](b, a) behaves linearly with the scale a as predicted by Eq. (6). We
impose a1(b) to be larger than 40 (kbp) to minimize bias induced by the noise
and the N-let sampling and, using a classical least square fit procedure, we
estimate a2(b). As illustrated in the Fig. 8, for the theoretical example defined
in Eq. (5), in the absence of noise, a2(b) corresponds to the scale aM (b) for
which WΨN

[S](b, a) starts decreasing. For the genomic noisy skew profile, the
sharp maximum of WΨN

[S](b, a) vs a turns out to be smoothed out so that
a2(b) ≤ aM (b). We estimate aM (b) as the first N-let transform maximum above
a2(b), provided aM (b)− a2(b) ≤ a2(b)/10 (if not we set aM (b) = a2(b)). Then,
bM is the position corresponding to the maximal value of aM (b) for b ∈ [x1, x2].
Finally, we check the consistency of associating (x1, x2) into a N-domain by
comparing (bM , aM ) with (b∗, a∗) (Eq. (8)). The interval [x1, x2] is considered
as a N-domain candidate if (bM , aM ) corresponds to the expectation (b∗, a∗)
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within 10% accuracy and allowing for a maximum of 30 kbp error on domain
length. It is retained only if the χ2 obtained by a linear regression fit of S over
[x1, x2] is smaller than a critical threshold. We select between overlapping
intervals according to their χ2. For example, if the intervals I1 = [x1, x2],
I2 = [x2, x3] and I3 = [x1, x3] are all three good candidates, we will retain
either I1 and I2 or I3 according to whether χ2

I1
+ χ2

I2
< χ2

I3
or the opposite.

∗ Step 3: Refining N-domain border locations.

The dictionary of upward jumps generated in Step 1 contains jumps identified
at rather small scales (≤ 20 kbp) as compared to the mean replication N-
domain size we want to detect (see Section IV.4) and also to the characteristic
size of mammalian genes that were shown to induce transcription-associated
upward jumps in the skew profile at their promoter (Section IV.2.2). Con-
sistently with the strategy of detecting putative replication origins pioneered
in (Brodie of Brodie et al. 2005; Touchon et al. 2005), we take advantage of
the space-scale representation provided by the WT to follow from large scales
a ≤ aM

(

x1+x2
2

)

to small scales, the blue tongues like the ones shown in Fig. 6
that are likely to point to the jump positions at the N-domain extremities.
Practically, we identify in the WT skeleton the two nearest WTMM lines that
exist at scale aM

(

x1+x2
2

)

immediately on the left LL and the right LR of the

central point (x1+x2)
2 , and that correspond to the two local negative minima

of WΨN
[S](b, a) when represented versus b in Fig. 7. In regards to the noise

amplitude and the mean gene size, we reallocate the N-domain extremities x1
and x2, to b1 and b2 respectively, where

b1 ∈ LL(b, a) and b2 ∈ LR(b, a) for a = 40 kbp. (13)

Then, we check that the new domain [b1, b2] still satisfy the consistency con-
dition of Step 2; if not we reject the interval [b1, b2] as possible N-domain
candidate.

IV.3.4 Test application on synthetic skew signals

To test our methodology, we generated synthetic factory roof like profiles of the
following simple form (Nicolay 2006; Baker et al. 2010):

S(x) =
∑

j

Sj(x) + g(x), (14)

where Sj(x) are functions similar to the one defined in Eq. (5):

Sj(x) = (−θj (x− (rj + ρj/2)) + hj)χ[rj ,rj+ρj ](x), (15)

where rj =
∑j−1

i=1 ρi and g(x) is a centered white noise. We chose the parameters
to get a numerical S profile similar to the ones observed in the human and mouse
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Figure 9: N-let transform of synthetic skew profile. (a) Synthetic skew profile
(Eq. (14)) generated as explained in the text; the gray line represents the succession of
deterministic N-shape functions Sj(x). (b) Space-scale representation of the N-let trans-
form of S(x) using the same color coding as in Fig. 6 (Baker et al. 2010).

genomes (see Section IV.4). We fixed θjρj = 0.14, hj = 0 an the noise standard
deviation σg = 0.08, consistently with the corresponding genomic mean values (see
Sections IV.4 and IV.5). We generated the length ρj of the synthetic N-domains
according to a normal law of mean ρ̄ = 550 kbp and standard deviation σρ =300 kbp
consistently with the size statistics of the human and mouse masked N-domains (see
Table 1). Square-like skew profiles of mean length 30 kbp and amplitude ∆S = 0.06
(resp. ∆S = −0.06) for sense (resp. anti-sense) genes were finally added to mimic
the contribution to the skew associated to transcription (Section IV.2.2).

In Fig. 9 is shown the space-scale representation of a portion of the generated
synthetic skew signal provided by the N-let transform. This representation illustrates
the essence of our methodology, namely a multi-scale pattern recognition in the N-let
transform half-plane. As reported in Fig. 10, out of the generated 2201 N-domains,
1997 were identified by our methodology, i.e. more than 90%. When examining the
N-domains that were missed, they mainly correspond to small domains of length
ρ ≤ 200 kbp for which our method failed because of the lack of scale separation
between the three components contributing to the total skew, namely the replication-
and transcription-associated skews and the noise. When further analyzing the 1997
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Figure 10: Testing the performance of our multi-scale N-domain detection
methodology. Histogram of skew N-domain length generated as explained in the text
and illustrated in Fig. 9(a): (black) theoretical histogram corresponding to a synthetic skew
signal containing 2201 N-domains; (gray) histogram obtained from the 1997 N-domains
detected by our N-let based methodology (Baker et al. 2010).

detected N-domains, we realized that the extremities of these domains were predicted
with an accuracy of ∼ 15 kbp which is reasonable in regards to the noise amplitude.
As explored in the pioneering study of (Brodie of Brodie et al. 2005; Touchon et al.
2005), a better accuracy in upward jump detection can be obtained if one uses a
smoother analyzing wavelet than the N-let like the first derivative of the Gaussian
function. This leads us to modify Step 3 in our method.

∗ Step 3: In Step 3, the N-domain extremities b1 and b2 in Eq. (13) are now
determined from the corresponding WTMM lines LL and LR in the WT skele-
ton computed with the first derivative of the Gaussian function G(1)(x) =
−x exp

(

−x2/2
)

.

When reproducing the test application with this new Step 3, similar efficiency
was obtained but with a better accuracy in determining the N-domains edges, the
mean error being reduced to 5 kbp (Nicolay 2006; Baker et al. 2010).

IV.4 Identifying replication N-domains in the human
and mouse genomes

☛ Using our wavelet-based methodology we detected in the human and mouse genomes
respectively 678 and 587 skew N-domains. These skew N-domains correspond to
large-scale genomic structures (from 200 kbp up to 3 Mbp) and recover a significant
proportion of the human and mouse genomes (33.8% and 22.3% respectively).
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N L (Mbp) CN (%) n̄genes Cinter (%) GC (%)
Human 678 0.63± 0.33 (masked) 33.8 4.93 57.3 (masked) 40.8

1.19± 0.62 (native)
Mouse 587 0.54± 0.34 (masked) 22.3 4.13 58.2 (masked) 42.4

0.91± 0.62 (native)

Table 1: Replication N-domains detected in the human and mouse genomes. For
the human and mouse genomes we indicate the number N of detected skew N-domains, their
characteristic length L (mean length ± standard deviation), the genome coverage CN by
N-domains, the mean number n̄genes of genes found per N-domain, the intergenic coverage
Cinter of N-domains, and the mean GC content.

IV.4.1 Human autosomes

When applying the wavelet-based method described in Section IV.3 to the skew pro-
files along the 22 human autosomes, we detected 759 N-domain candidates (Fig. 11).
Among these domains, we discarded 17 domains that contain stretches of N (un-
known nucleotides) longer than 100 kbp. We also removed from the remaining
N-domains those (64) of length L > 2.8 Mbp whose shape is reminiscent of an N
but split in half, leaving in the center a region of null skew whose length increases
with domain size. As recently discovered (Zaghloul 2009), these split-N-domains
have a central region corresponding to large heterochromatic gene deserts of homo-
geneous composition, i.e. both a null skew and a constant and low GC content.
We ended with a library of 678 N-domains bordered by 1062 putative replication
origins spanning 33.8% of the genome (Table 1). As shown in Fig. 12, the size of
these N-domains ranges from ∼ 200 kbp (resp. 100 kbp when masked) to 2.8 Mbp
(resp. 1.6 Mbp when masked) with a mean length L̄ = 1.19 Mbp (resp 0.63 Mbp
when masked). Most of the 1062 putative replication origins at the extremities of
the detected replication domains are intergenic (78%) and are located near to a gene
promoter more often than would be expected by chance (data not shown). These
N-domains contain approximately equal numbers of genes oriented in each direction
(1653 (+) genes and 1690 (−) genes) with a mean gene number per domain of 4.93.
As observed in (Huvet et al. 2007), gene distributions in the 5’ half of N-domains
contain more (+) than (−) genes, and vice-versa for the 3’ half of N-domains. Note
that these N-domains have a high intergenic coverage where the skew S is likely to
result from replication only. As reported in Table 1 and Fig. 13, most of the detected
N-domains are mainly intergenic with a mean (masked) coverage of 57.3%. Indeed
only a few N-domains (64/678) have a (masked) intergenic coverage less than 20%
(Fig. 13(b)).

IV.4.2 Mouse autosomes

When reproducing the same wavelet-based analysis for the 19 mouse autosomes, 634
N-domains candidates were identified with no domain containing large stretches of
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Figure 11: Genome wide multiscale detection of the skew N-domains using the
N-let transform. (a) Skew profile S of a 9 Mbp repeat-masked fragment of human chro-
mosome 21. (b) N-let transform of S using ΨN (Fig. 5); WΨN

[S](n, a) is color-coded from
dark-blue (min; negative values) to red (max; positive values) through green (null values).
Light blue and purple lines illustrate the detection of two replication domains of significantly
different sizes. Note than in (b), blue cone-shape areas signing upward jumps point at small
scale (top) towards the putative replication origins and that the vertical positions of the
WT maxima (red areas) corresponding to the two indicated replications domains match the
distance between the putative replication origins (1.6 Mbp and 470 kbp respectively) (Baker
et al. 2010).
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Figure 12: Statistics of N-domain length. Normalized histograms of N-domain length
detected in the human (black) and mouse (gray) genomes: (a) native sequences; (b) masked
sequences (Baker et al. 2010).

Figure 13: Statistics of intergenic regions in N-domains. Normalized histograms of
intergenic regions in N-domains detected in human (black) and mouse (gray) genomes: (a)
masked intergenic length; (b) coverage by masked intergenic regions per N-domain (Baker
et al. 2010).
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unsequenced nucleotides (N). After discarding 47 detected N-domains of length L >
2.8 Mbp, we ended with a library of 587 N-domains that cover 22.3% of the genome,
i.e. a percentage slightly smaller than previously obtained for the human genome.
This results from the fact that more small domains are detected in the mouse genome
(Fig. 12) with a mean native (resp. masked) length of 0.91 Mbp (resp. 0.54 Mbp).
The mean GC content of the mouse N-domains (42.4%) is also slightly higher than in
the human N-domains (40.8%). Despite these slight quantitative differences, most of
the features concerning gene organization in human N-domains are also observed in
mouse N-domains with a mean number of genes of 4.13 and globally a similar number
of genes oriented in each direction (1220 (+) genes and 1204 (−) genes). Like in
the human autosomes a majority of the 994 putative replication origins that border
the 587 mouse N-domains are intergenic (71%) . Importantly the relative coverage
of these N-domains by intergenic regions is important (58.2%) and statistically very
similar to what is observed with the human autosomes (Fig. 13).

IV.5 Disentangling transcription- and replication-associ-
ated strand asymmetries

☛ Following the factory roof model (Fig. 4) of the skew profile inside N-domains, we
proceed to disentangling the transcription- and replication-associated strand asym-
metries in the human and mouse genomes. The replication bias is shown to sig-
nificantly correlate with the replication fork polarity in various cell lines, while the
transcription bias is shown to be driven by gene expression in mitotic spermatogonia.

IV.5.1 Method

Our method to disentangle transcription- and replication-associated skews is based
on the working model shown in Fig. 4. When superimposing the N-shaped repli-
cation profile and the transcription square-like skew profiles, we get the following
theoretical skew profile in a replication N-domain :

S(x′) = SR(x
′) + ST (x

′) = −2δ
(

x′ − 1

2

)

+ h+
∑

genes

cgχg(x
′), (16)

where position x′ within the domain has been rescaled between 0 and 1, h and δ
(> 0) are parameters that define the replication bias ( S5′

R = h+δ at the 5’ N-domain
extremity and S3′

R = h − δ at the 3’ extremity ), χg is the characteristic function
for the gth gene that belongs to the N-domain (1 when the points is in the gene
and 0 elsewhere) and cg is its transcriptional bias calculated on the reference strand
(likely to be positive for (+) genes and negative for (−) genes). For each N-domain
detected as explained in Section IV.3 (see Fig. 11), we used a general least-square fit
procedure to estimate, from the noisy S profile the parameters δ, h and each of the
cg’s. The resulting χ2 value was then used to select the N-domain candidates where
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Figure 14: Disentangling transcription- and replication-associated skew compo-
nents. (a) Skew profile S of a 4.3 Mbp repeat-masked fragment of human chromosome 6;
each point corresponds to a 1 kbp window: red, (+) genes; blue, (−) genes; black, intergenic
regions (the color is defined by majority rule); the estimated skew profile (Eq. (16)) is shown
in green; vertical lines corresponds to the locations of 5 putative replication origins that de-
limit 4 adjacent domains identified by the wavelet-based methodology. (b) Noise component
SNoise obtained by subtracting the estimated total skew (green line in (a)) from the orig-
inal skew profile in (a). (c) Transcription-associated skew ST obtained by subtracting the
estimated replication-associated profile (green lines in (d)) from the original S profile in (a);
the estimated transcription step-like profile (third term of the rhs of (Eq. (16)) is shown
in green. (d) Replication-associated skew SR obtained by subtracting the estimated tran-
scription step-like profile (green lines in (c)) from the original S profile in (a); the estimated
replication serrated profile (first two terms in the rhs of (Eq. (16)) is shown in green (Baker
et al. 2010).
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Figure 15: Characterization of the noise component of the skew. Semi-log repre-
sentation of normalized histograms of skew values in: (a) a N-domain of length L = 2.6
Mbp (1.5 Mbp masked) in the human genome and (b) a N-domain of length L = 2.3 Mbp
(1.3 Mbp masked) in the mouse genome. The symbols correspond to the histogram of the
skew component SNoise (•) and of the total skew increments δS/

√
2 (◦). The continuous

parabola corresponds to Gaussian distributions of standard deviation σ = 0.090 (a) and
0.087 (b) (Baker et al. 2010).

the skew was well described by Eq. (16). As illustrated in Fig. 14 for a fragment
of human chromosome 6 that contains 4 adjacent replication domains (Fig. 14(a)),
this method provides a very efficient way to disentangle the square-like transcription
skew component (Fig. 14(c)) from the N-shaped component induced by replication
(Fig. 14(d)).

Remark. In the least-square fit procedure, we fixed the variance σ2 of the Gaussian
noise to the variance σ2 = 1

2σ
2
δS computed in each N-domain from the probability

distribution function of the skew increments δS(n)/
√
2 = [S(n+1)− S(n)]/

√
2. As

quantitatively verified a posteriori (Fig. 15), this variance directly estimated from
the total skew S (Fig. 14(a)) is a very good approximation of the noise component
of the skew once subtracted our model skew profile (Fig. 14(b)).

IV.5.2 Human autosomes

Among the 678 N-domains detected in the 22 human autosomes, our disentangling
methodology failed to provide satisfactory results (prohibitive too large χ2 values) for
14 domains only. We checked that the main reason for which our working hypothesis
Eq. (16) did not apply was the fact that some regions presented anomalous high
amplitude skew values. Hence, the results reported in the following correspond to a
statistical analysis performed on 664 N-domains.
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Figure 16: Normalized histograms of replication parameters. (a) S5′

R , (b) S3′

R and
(c) h estimated in 664 N-domains identified in the 22 human autosomes (black) and in 585
N-domains detected in the 19 mouse autosomes (gray) (see Table 2) (Baker et al. 2010).

Number of S̄5′

R S̄3′

R h̄
N-domains

Human 664 7.2± 0.1 −7.4± 0.1 (−9.5± 8.4) 10−2

Mouse 585 6.8± 0.2 −6.8± 0.2 (−1.8± 7.9) 10−2

Table 2: Mean replication parameters. S̄5′

R , S̄3′

R and h̄ (in percent ± SEM) computed
with our wavelet-based disentangling method from human and mouse skew profiles (see
Eq. (16)).

Replication bias.
In Fig. 16 are reported the results of our estimate of the replication parame-

ters S5′

R = h + δ (Fig. 16(a)), S3′

R = h − δ (Fig. 16(b)), and h (Fig. 16(c)). The
normalized histogram of the offset parameter h (vertical shift of the N profile) is
symmetric (Fig. 16(c)), with a mean value h̄ = (−9.5 ± 8.4) 10−4 (Table 2), that
cannot be distinguished from zero. This means that the replication N-shaped profile
is mainly observed centered at zero with equal statistical probability of upward and
downward vertical shift by a few percent. The histograms of replication bias at the
5’ (Fig. 16(a)) and 3’ (Fig. 16(a)) N-domain extremities are quite symmetric one
from each other with mean values S̄5′

R = 7.2 ± 0.1% and S̄3′

R = −7.4 ± 0.1%, as
expected from an antisymmetric N-shaped skew pattern of zero mean. Altogether
these results provide some estimate of the mean replication bias δ̄ = 7.3 ± 0.1%,
which corresponds to an upward jump of mean amplitude ≃ 14.6% in the skew pro-
file at the putative replication origins that border the replication N-domains. These
estimations are consistent with those obtained in the pioneering study of large am-
plitude upward jumps in human skew profiles (Brodie of Brodie et al. 2005; Touchon
et al. 2005).

As a test of the reliability of our methodology, we compare in Fig. 17 the results
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Figure 17: Test of the consistency of our disentangling methodology. For each N-
domain detected in the 22 human autosomes, the replication parameters computed directly
from the intergenic skew only are plotted versus the corresponding parameters derived from
the method described in Section IV.5.1. (a) h vs hintergenic; (b) δ vs δintergenic. For clarity,
only (437/664) N-domains containing more than 200 kbp of intergenic masked sequences are
represented such that the error bars remain small enough (Baker et al. 2010).

of our estimates of the replication parameters h and δ for each N-domain to the
corresponding values obtained directly from some fit of the S profile when consider-
ing only the intergenic regions where the observed skew is supposed to result from
replication only. As observed in Fig. 17(a) for the parameter h and in Fig. 17(b)
for the parameter δ, a large majority of points fall, up to the numerical uncertainty,
on the diagonal. Thus, except for a small percentage of N-domains where intergenic
coverage (Fig. 13) is too small to allow us to compute the replication parameters
directly from the intergenic skew profile, the estimates reported in Table 2 are quite
consistent with the skew values observed genome wide in intergenic sequences.

The replication bias correlates with the replication fork polarity
As discussed in the previous Chapters, the replication-associated SR(x) profile

defined in Eq. (16) is predicted to be proportional to the replication fork polarity
p(x) (Chapter I, Eq. (168) in the summary), which itself is proportional to the
derivative of the mean replication timing (Chapter II, Eq. (68) in the summary).
These relations of proportionality can be written, using notations consistent with
the previous Chapters, under the following form:

SR(x) = SR p(x) = vTS SR dMRT/dx, (17)

where v denotes the replication fork velocity, TS the duration of the S-phase, MRT
the mean replication timing and dMRT/dx its derivative. Note that the duration of
the S-phase appears as experimental MRT profiles are expressed in S-phase fraction
and not in unit of time. Of course Eq. (17) is expected to hold for the replication

139



Figure 18: The replication bias SR(x) is on average proportional to dMRT/dx.
Replication bias SR(x) (Eq. (16)) versus dMRT/dx in (a) GM6990 lymphoblastoid cell line
(each point represents a 100 kbp window) and (b) in BG02 stem cell, GM06990 lymphoblas-
toid, K562 erythroid, BJ fibroblast and HeLa cell lines (mean values indicated, errors bars
represent SEM).

BG02 GM06990 K562 BJ HeLa
BG02 1 0.38 0.41 0.36 0.34

GM06990 0.38 1 0.61 0.45 0.41
K562 0.41 0.61 1 0.43 0.41
BJ 0.36 0.45 0.43 1 0.52

HeLa 0.34 0.41 0.41 0.52 1
SR 0.42 0.46 0.46 0.35 0.36

Table 3: The replication bias SR(x) correlates with dMRT/dx. Pearson correlation
(R values) between replication-associated skew SR(x) (Eq. (16)) and dMRT/dx in BG02
embryonic stem cell, GM06990 lymphoblastoid, K562 erythroid, BJ fibroblast, and HeLa
cell lines. SR(x) and dMRT/dx were calculated in non-overlapping 100 kbp windows located
in skew N-domains (N=7751). All p-values are < 10−16.
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n(+) S̄
(+)
T n(−) S̄

(−)
T

Human 726 5.1± 0.2 731 −5.2± 0.2
Mouse 467 5.1± 0.2 481 −4.9± 0.2

Table 4: Mean transcription bias (in percent ± SEM) computed with our wavelet-based

disentangling method from human and mouse skew profiles (see Eq. (16)). S̄
(+)
T and S̄

(−)
T

are the mean transcription skews computed for (+) and (−) genes of length ≥ 20 kbp.

fork polarity determined in the germline. Unfortunately no replication timing data
in germline cells are available to date. As a substitute to germline data, we used ex-
perimental replication timing data obtained in BG02 embryonic stem cell, GM06990
lymphoblastoid, K562 erythroid, BJ fibroblast, and HeLa cell line (Chen et al. 2010;
Hansen et al. 2010). The SR(x) profile correlates significantly with dMRT/dx, as
exemplified for the lymphoblastoid GM06990 cell line in Fig. 18(a). Interestingly
the correlation between SR(x) and the dMRT/dx profiles in different cell lines is
as high as between the dMRT/dx profiles themselves (Table3). In Fig. 18(b) we
superimposed the average SR(x) profiles obtained in regions of given dMRT/dx val-
ues, for different indicated cell lines. The SR(x) profile is found to be proportional,
on average, to the dMRT/dx profile in every cell line. The different slopes, equal
to vTS SR (Eq. (17)), can be attributed to cell specific values of v and TS , but can
also be attributed to the unequal conservation of the replication fork polarity among
these cell lines and the germline. Indeed the replication fork polarity in one cell line
needs not, even on average, be equal to the replication fork polarity in another cell
line. For instance, in all examined cell lines, the regions of highest replication fork
polarity have a replication bias of ∼ 4%, which is two fold lower than the highest
replication bias observed at N-domain border S5′

R ∼ 7% (Table 2). Finally, we note
that the coefficients vTS SR obtained by linear regression of the SR(x) profile versus
dMRT/dx are quite consistent with the values obtained in (Section III.3, Table 7).
The linear regression of SR(x) versus dMRT/dx indeed yields vTS SR = 2.76%,
5.69%, 5.20%, 3.61%, and 3.44% for respectively the BG02, GM06990, K562, BJ
and HeLa cell lines while we obtained respectively vTS SR = 2.78%, 5.26%, 5.45%,
3.56%, and 3.27% in (Section III.3, Table 7) .

Transcription bias.
To estimate the mean transcription bias of the genes belonging to a given N-

domain, we considered the transcription-associated skew ST obtained after subtract-
ing the estimated N-shaped replication profile as illustrated in Fig. 14(c). Then as
first proposed in (Touchon et al. 2004), the transcription skew of the genes was mea-
sured by averaging ST over intron sequences after removing 490 bp at each intron
extremities in order to get rid of the contribution to the skew coming from splicing
signals. In Fig. 19 and Table 4 are reported the transcription bias so estimated
for 726 sense (+) genes and 731 anti-sense genes (−) of length ≥ 20 kbp so that
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Figure 19: Statistics of transcription bias. Normalized histograms of transcription bias
ST computed as explained in the main text for human (black) and mouse (gray) genes of
length ≥ 20 kbp. (a) sense (+) genes; (b) anti-sense (−) genes (see Table 4) (Baker et al.
2010).

BG02 GM06990 K562 BJ HeLa
SR 0.36 (10−16) 0.41 (10−16) 0.40 (10−16) 0.30 (10−16) 0.31 (10−16)
ST 0.09 (2 10−3) 0.13 (8 10−6) 0.09 (2 10−3) 0.14 (8 10−7) 0.13 (6 10−6)

Table 5: The transcription bias ST correlates poorly with dMRT/dx. Pearson
correlation between transcription bias ST and replication bias SR for human genes of length
≥ 20 kbp (N=1457) and dMRT/dx in B0G2 embryonic stem cell, GM06990 lymphoblastoid,
K562 erythroid, BJ fibroblast, and HeLa cell lines (p-values are in parentheses). The skews
ST and SR were computed on the coding strand.

the total intronic coverage is enough to ensure convergence in the estimate of the
gene transcription skew. The histograms of ST values for (+) and (−) genes are

remarkably symmetric with means S̄
(+)
T = 5.1 ± 0.2% and S̄

(−)
T = −5.2 ± 0.2% re-

spectively. This confirms that the local genic contribution of transcription to the
total skew is of the same magnitude (∼ 5%) than the contribution induced by repli-
cation (∼ 7.5%) which can be seen a posteriori as a justification of the need to
develop a methodology capable to disentangle these two skew components. Inter-
estingly, the transcription-associated ST correlates much lower with dMRT/dx than
the replication-associated SR (Table 5). Recently, the compositional asymmetry in
human genes was shown to significantly correlate with the expression in germline
cells, especially in spermatogonia (McVicker and Green 2010). As a perspective, it
will be interesting to correlate the transcription-associated skew ST with germline
expression data in the human genome.
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IV.5.3 Mouse autosomes

Among the 587 N-domains detected in the 19 mouse autosomes, only 2 were dis-
carded by our disentangling methodology as incompatible with our working model
Eq. (16). The results presented in this section thus correspond to a statistical anal-
ysis performed on 585 N-domains.

Replication and transcription biases.
As shown in Fig. 16, the histograms of replication parameters (S5′

R , S
3′

R , h) values
computed with our methodology cannot be statistically distinguished from the ones
previously obtained for the human autosomes. The detected N-domains have a zero
mean replication skew (h̄ = (−1.8 ± 7.9) 10−4) and an antisymmetric shape with
S̄5′

R = 6.8±0.2% and S̄3′

R = −6.8±0.2% (Table 2) corresponding to an upward jump
in the mouse skew profile, at the detected putative replication origins, of character-
istic amplitude ∼ 13.6% similar to the ∼ 14.4% previously observed for the human
autosomes. Similarly, the estimates of the transcription bias for sense (Fig. 19(a))
and antisense (Fig. 19(b)) mouse genes are in remarkable agreement with those ob-
tained for human genes. As reported in Table 4, we got the following mean values

S̄
(+)
T = 5.1 ± 0.2%, S̄

(−)
T = −4.9 ± 0.2% for sense and antisense genes respectively.

To corroborate the analyses made in the human genome (Section IV.5.2), it would
be interesting to correlate the replication-associated profile SR(x) with dMRT/dx,
using replication timing data obtained in mouse (Farkash-Amar et al. 2008).

The transcription bias correlates with gene expression in spermatogonia
cells.
We further focused on a key group of 315 protein-coding genes that were found

to be differentially expressed between male germ cells and somatic controls and to
display highly similar meiotic and post-meiotic patterns of transcriptional induction
across human, mouse and rat populations (Chalmel et al. 2007). In the male germ
line, the spermatogonia cell undergoes the greater number of mitoses. Thus, among
male germline cells, the time spent as a spermatogonia cell is probably the longest,
and the gene expression in spermatogonia is expected to have the greatest impact
on the transcription bias. The transcription-induced component ST of the skew cor-
relates significantly with the expression level in mitotic spermatogonia (R = 0.36,
p-value= 6.9 10−11, Fig. 20(a)), on the contrary to the replication-induced compo-
nent SR (R = 0.17, p-value= 2 10−3). Among germline cells, ST increases with
the expression level only in mitotic spermatogonia cells (Fig. 20(b)). In contrast
with mitotic spermatogonia, no significant positive correlations were found between
ST and expression data in meiotic spermatocytes and post meiotic spermatids (Ta-
ble 6). This result indicates that the transcription bias is indeed driven by the
gene expression in spermatogonia, as observed in the human genome (McVicker and
Green 2010).
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Figure 20: The transcription bias ST increases in magnitude with gene expression
in mitotic spermatogonia. Transcription skew ST versus the expression in (a) mitotic
spermatogonia (each circle represents a gene) and (b) in mitotic spermatogonia (black), mei-
otic spermatocytes (green), post-meiotic spermatids (red), and seminiferous tubules (blue)
(mean values computed on 40 genes, errors bars represent SEM). The expression data corre-
spond to the key group of 315 protein-coding genes with conserved transcriptome in human
and rodent male gametogenesis identified in (Chalmel et al. 2007). Importantly these genes
are differentially expressed in spermatogonia, spermatocytes, spermatids and tubules. The
skew ST was computed on the coding strand.

SG SC ST TU
ST 0.36 (6.9 10−11) -0.019 (0.73) -0.190 (7.7 10−4) -0.042 (0.5)
SR 0.17 (2.1 10−3) 0.025 (0.65) -0.058 (0.30) 0.051 (0.36)

Table 6: The transcription bias ST reflects gene expression in mitotic spermato-
gonia. Pearson correlation between expression data in germline cells (SG=spermatogonia,
SC= spermatocytes, ST= spermatids, TU=tubules) and the transcription bias ST or the
replication bias SR (p-values are in parentheses). The expression data correspond to the key
group of 315 protein-coding genes with conserved transcriptome in human and rodent male
gametogenesis identified in (Chalmel et al. 2007). Importantly these genes are differentially
expressed in spermatogonia, spermatocytes, spermatids and tubules. The skews ST and SR

were computed on the coding strand.

144



Summary of Chapter IV

In this Chapter, we developed a multi-scale methodology based on the contin-
uous wavelet transform with an adapted (N-shaped) analyzing wavelet. The im-
plementation of this method allowed us to delineate 678 and 587 skew N-domains
in the human and mouse genomes respectively. The skew N-domains correspond
to large-scale genomic structures (from 300 kbp up to 3 Mbp size), and cover a
significant proportion of the human and mouse genomes (22.3% and 33.8% respec-
tively). The skew profile inside N-domain is well described by the factory roof model
(Fig. 4): genes add transcription square-like components to the global skew N-shape
attributed to replication. Skew N-domains are proposed to be replication domains
in the germline, characterized by a N-shaped replication fork polarity, with putative
replication origins at their edges. Following the factory roof model, we disentangled
inside N-domains the contributions associated to transcription and replication in
the skew profile. The confrontation with replication timing data and germline ex-
pression data strongly supports the relevance of this decomposition. In the human
genome, the replication bias strongly correlates with the dMRT/dx profile (estima-
tor of replication fork polarity) in various cell lines (Fig. 18 and Table 3), while the
transcription bias correlates poorly (Table 5). In the mouse genome, the transcrip-
tion bias strongly correlates with the expression in germline (Fig. 20(a)), whereas the
replication bias correlates much less significantly (Table 6). Among germline cells, it
is actually the expression in mitotic spermatogonia that drives the correlation with
the transcription bias (Table 6 and Fig. 20(b)), as observed in the human genome
(McVicker and Green 2010). Finally, as the replication fork polarity is proportional
to the derivative of the mean replication timing, the putative N-shape replication
fork polarity in skew N-domains suggests that the mean replication timing has a
parabolic U-shape. We thus conclude that skew N-domains are replication domains
in the germline, characterized by a U-shape mean replication timing, with initiation
zones at their edges.
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Chapter V

Replication domains are
self-interacting chromatin
structural units

In Chapter IV we showed that 30% of the human genome was covered by large-
scale (∼ 1 Mbp) N-shaped compositional skew domains, the so-called N-domains.
According to the relationships established in Chapters I to IV between replication-
associated strand asymmetry, replication fork polarity and replication timing, skew
N-domains were proposed to be replication domains in the germline, characterized
by a U-shape of the replication timing. Here, we show that replication timing U-
domains are robustly observed in several cell lines as covering about half of the
human genome. Significant numbers of U-domains coincide with skew N-domains,
which indirectly supports their interpretation as germline replication domains. How-
ever a majority of U-domains are cell line specific and therefore belong to genomic
regions of high replication timing plasticity. As previously observed for skew N-
domains (Audit et al. 2009), U-domain borders stand out from their environment
by a localized (∼ 300 kbp) open chromatin structure. Long-range chromatin inter-
action data (Hi-C) further suggests that U-domains correspond to self-interacting
chromatin structural units. The compartmentalization of the genome into replica-
tion U-domains provides new insights on the organization of the replication program
in the human genome.

V.1 Introduction

Comprehensive knowledge of genetic inheritance at different development stages
relies on elucidating the mechanisms that regulate the DNA spatio-temporal repli-
cation program and its possible conservation during evolution (Gilbert 2010). In
multi-cellular organisms, there is no clear consensus sequence where initiation may
occur (Berezney et al. 2000; Bell and Dutta 2002). Instead epigenetic mechanisms
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may take part in the spatial and temporal control of replication initiation in higher
eukaryotes in relation with gene expression (Bogan et al. 2000; Méchali 2001; Mc-
Nairn and Gilbert 2003; Aladjem 2007; Courbet et al. 2008; Méchali 2010). For many
years, understanding the determinants that specify replication origins has been ham-
pered by the small number (approximately 30) of well-established replication origins
in the human genome and more generally in mammalian genomes (Aladjem 2007;
Hamlin et al. 2008; Gilbert 2010). Recently, nascent DNA strands synthesized at
origins were purified by various methods (The ENCODE Project Consortium 2007;
Cadoret et al. 2008; Karnani et al. 2009; Mesner et al. 2011) to map a few hundreds
putative origins in 1% of the human genome. For unclear reasons, the concordance
between the different studies is very low (from < 5% to < 25%) (Cadoret et al. 2008;
Karnani et al. 2009; Hamlin et al. 2010; Mesner et al. 2011).

In a completely different approach to map replication origins, previous in silico
analyses of the nucleotide compositional skew S = (T −A)/(T +A)+ (G−C)/(G+
C) of the human genome showed that the sign of S abruptly changed from (−)
to (+) when crossing known replication initiation sites. This allowed A. Arneodo
and collaborators to predict putative origins at more than a thousand sites of S
sign inversion (S-jumps) along the human genome (Brodie of Brodie et al. 2005;
Touchon et al. 2005) (see Fig. 3 of Chapter IV). Further analyses of S patterns
identified 663 megabase-sized N-domains whose skew profile displays a N-like shape
(Fig. 1A), with two abrupt S-jumps bordering a DNA segment whose skew linearly
decreases between the two jumps (Brodie of Brodie et al. 2005; Touchon et al.
2005; Audit et al. 2007; Huvet et al. 2007; Baker et al. 2010; Arneodo et al. 2011).
Skew N-domains have a mean length of 1.2 ± 0.6 Mbp and cover 29.2% of the
human genome (Section IV.4). The initiation zones predicted at N-domains borders
would be specified by an open chromatin structure favorable to early replication
initiation and permissive to transcription (Audit et al. 2009; Arneodo et al. 2011).
The determination of HeLa replication timing profile (Chen et al. 2010) and the
analysis of available timing profiles in several human cell lines (Woodfine et al. 2005;
Desprat et al. 2009; Hansen et al. 2010; Ryba et al. 2010; Yaffe et al. 2010) confirmed
that significant numbers of N-domains borders colocalize with early initiation zones
(Audit et al. 2007; Chen et al. 2011).

Recent studies have shown that replication induces different mutation rates on
the leading and lagging replicating strands (Chen et al. 2011). This asymmetry of
rates acting during evolution has generated the skew upward jumps that result from
the abrupt inversion of replication fork polarity at N-domain extremities. Inside
N-domains, the linear decrease of the skew (Fig. 1A) likely reflects a progressive
inversion of the replication fork polarity. This organization of replication in a large
proportion of the genome contrasts with the previously proposed segmentation of
mammalian chromosomes in regions replicated either by multiple synchronous ori-
gins with equal proportion of forks coming from both directions (0.2-2.0 Mbp Con-
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stant Timing Regions) or by unidirectional replication forks (0.1-0.6 Mbp Transition
Timing Regions) (Farkash-Amar et al. 2008; Hiratani et al. 2008; Desprat et al. 2009;
Ryba et al. 2010). According to Eq. (68) of Chapter II, we expect the derivative of
the replication timing in the germline to be shaped as a N inside skew N-domains.
In this Chapter, we show that the corresponding U-shape of the replication tim-
ing profile is not specific to the germline but is generally observed in all replication
timing profiles examined, thus establishing these “U-domains” as a new type of repli-
cation domains. As previously observed with the early initiation zones bordering
N-domain extremities, those specific to the U-domains are significantly enriched in
open chromatin markers as well as insulator-binding proteins CTCF (Phillips and
Corces 2009; Ohlsson et al. 2010) and are prone to gene activity.

DNA replication and transcription require great reproducibility and coordina-
tion, all this in the crowded environment of the cell nucleus. Regulation of these
complex processes may partly rely on the conformation and dynamics of the chro-
matin fiber that ultimately condition DNA sequence accessibility. The chromatin
fiber is a nucleoprotein filament with non homogeneous structural and mechanical
properties (Wolffe 1998; Horn and Peterson 2002). This heterogeneity evidently af-
fects how the fiber folds and organizes into higher order structures like loops, coil
or chromonema. But, despite increasing experimental (Belmont 2001; Cremer and
Cremer 2001; Gasser 2002; Dekker 2003; Gilbert et al. 2005; Branco and Pombo
2006; Shopland et al. 2006) and modeling (Cook 1995; Sachs et al. 1995; Osta-
shevsky 1998; Münkel et al. 1999) efforts, the so-called tertiary chromatin structure
is still very controversial (Cook 2001; Müller et al. 2004) and the possible role, if
any, of the DNA sequence at such large scales remains an enigma. Although the
existence of chromatin loops, ranging in size from several kbp to 10 Mbp or more
(Dekker 2003; Chambeyron and Bickmore 2004; Müller et al. 2004) has been exten-
sively discussed in the literature, it has generally been inferred from indirect assays.
Chromatin loops were proposed to result from the clustering of DNA and/or RNA
polymerases (Cook 1995, 2002). In this model, non specific entropic forces between
DNA and/or RNA polymerases, already engaged on the chromatin fiber, are sup-
posed to drive the aggregation of these polymerases thereby promoting the genome
compartmentalization into rosette-like multi-loop patterns containing several thou-
sands (and sometimes millions) of base pairs. This dynamical multi-loop model has
been emphasized as providing a very attractive description of replication foci and
transcription factories (Cook 1999).

In this Chapter, we analyse recent Hi-C data (Lieberman-Aiden et al. 2009)
and show that replication U-domains likely correspond to self-interacting structural
chromatin units. These data actually suggest that the “islands” of open chromatin
observed at U-domains borders are at the heart of a compartmentalization of chro-
mosomes into chromatin units of independent replication and of coordinated gene
transcription.
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V.2 From compositional skew N-domains to replication
timing U-domains

V.2.1 Linking replication fork polarity to nucleotide compositional
skew profile and replication timing

In Chapter I (Eq. (168) in the summary), we argued that the skew S resulting from
mutational asymmetries associated to replication was proportional to the replication
fork polarity p:

S(x) ∼ p(x). (1)

The linear decrease of S in N-domains from positive (5′ end) to negative (3′ end)
values would thus reflect a linear decrease of the replication fork polarity with a
change of sign in the middle of the N-domains. This result strongly supports the
interpretation of N-domains (Fig. 1A-C) as replication units in germline cells. In
Chapter II (Eq. (68) in the summary), under the central hypotheses that the repli-
cation fork velocity is constant and that replication is bidirectional from each origin,
we demonstrated that the replication fork polarity was proportional to the derivative
of the mean replication timing (MRT):

p(x) ∼ dMRT/dx. (2)

The fork polarity should therefore provide a direct link between the skew S and the
derivative of the replication timing profile in germline cells.

To test this relationship, we used, as a substitute to germline MRT, the repli-
cation timing profiles of seven somatic cell lines (one embryonic stem cell, three
lymphoblastoid, a fibroblast, an erythroid and HeLa cell lines) (Chen et al. 2010;
Hansen et al. 2010) (Section V.4). We first correlated the skew S with dMRT/dx,
in the BG02 embryonic stem cells, over the 22 human autosomes (Fig. 1D). The
significant correlations observed in intergenic (R = 0.40, P < 10−16), genic (+)
(R = 0.34, P < 10−16) and genic (−) (R = 0.33, P < 10−16) regions are rep-
resentative of the correlations observed in the other 6 cell lines (Table 1). These
correlations are as important as those obtained between the dMRT/dx profiles in
different cell lines (Table 2), as well as those previously reported between the repli-
cation timing data themselves (Hansen et al. 2010; Ryba et al. 2010; Yaffe et al.
2010). The correlations between S and dMRT/dx are even stronger when focusing
on the 663 skew N-domains (Table 1). The correlations obtained in intergenic regions
(R = 0.45± 0.06) are recovered to a large extent in genic regions (R = 0.34± 0.03)
where the transcription-associated skew ST was hypothesized to superimpose to the
replication-associated skew SR (Audit et al. 2007; Huvet et al. 2007; Baker et al.
2010) (Fig. 4 of Chapter IV and Section IV.2.4). Further evidence of this link be-
tween S and dMRT/dx was obtained when averaging, for the different cell lines,
the dMRT/dx profiles inside the 663 skew N-domains after rescaling their length to
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Figure 1: Comparing skew S = T−A
T+A

+ G−C
G+C

and mean replication timing (MRT).
(A) S profile along a 11.4 Mbp long fragment of human chromosome 10 that contains 6
skew N-domains (horizontal black bars) bordered by 7 putative replication origins O1 to
O7. Each dot corresponds to the skew calculated for a window of 1 kbp of repeat-masked
sequence. The colors correspond to intergenic (black), (+) genes (red) and (−) genes (blue).
(B) Corresponding cumulative skew profile Σ obtained by cumulative addition of S−values
along the sequence. (C) MRT profiles from early, 0 to late, 1 for BG02 (green), K562 (red)
and GM06990 (blue) cell lines. (D) Correlations between S and dMRT/dx, in BG02 (100
kbp windows) along the 22 human autosomes; colors as in (A); the corresponding Pearson
correlations are given in Table 1. (E) Average dMRT/dx profiles (± SEM) in the 663 skew
N-domains after rescaling their length L to unity; colors as in (C).
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R BG02 K562 GM06990 H0287 TL010 BJ HeLa
GW (+) 0.34 0.36 0.35 0.34 0.33 0.31 0.33
GW (i) 0.40 0.45 0.42 0.41 0.41 0.35 0.32
GW (−) 0.33 0.37 0.34 0.35 0.34 0.33 0.34
Ndom (+) 0.36 0.43 0.42 0.42 0.41 0.32 0.38
Ndom (i) 0.45 0.50 0.48 0.48 0.47 0.38 0.35
Ndom (−) 0.35 0.44 0.44 0.43 0.41 0.40 0.40

Table 1: The compositional skew correlates with dMRT/dx. Pearson correlation (R
values) between the skew S and dMRT/dx, from different cell lines . S and dMRT/dx were
calculated in non-overlapping 100 kbp windows genome wide (GW) and in the 663 skews
N-domains (Ndom). Each 100 kbp window was classed as intergenic (i), genic (+) or genic
(−) by majority rule. All p-values are < 10−16.

R BG02 K562 GM06990 H0287 TL010 BJ HeLa
BG02 1 0.42 0.39 0.39 0.35 0.39 0.36
K562 0.42 1 0.58 0.57 0.56 0.43 0.39

GM06990 0.39 0.58 1 0.9 0.84 0.47 0.41
H0287 0.39 0.57 0.9 1 0.84 0.47 0.41
TL010 0.35 0.56 0.84 0.84 1 0.45 0.37
BJ 0.39 0.43 0.47 0.47 0.45 1 0.52

HeLa 0.36 0.39 0.41 0.41 0.37 0.52 1

Table 2: Conservation of dMRT/dx across differentiation. Pearson correlation (R
values) of the derivative of MRT, dMRT/dx, between different pairs of human cell lines
(Methods). dMRT/dx was calculated in non-overlapping 100 kb windows over the 22 human
autosomes. All p-values are < 10−16.

unity (Fig. 1E). These mean profiles are shaped as a N, suggesting that some prop-
erties of the germline replication program associated with the pattern of replication
fork polarity are shared by somatic cells.

V.2.2 Replication timing U-domains are robustly observed in hu-
man cell lines

According to Eqs. (1) and (2), the integration of the skew S is expected to generate
a profile rather similar to the replication timing profile. In segments of linearly
changing skew, the integrated S function is thus expected to show a parabolic profile.
The integrated S function when estimated by the cumulative skew Σ (Fig. 1B) along
N-domains of a 11.4 Mbp long fragment of human chromosome 10, indeed displays a
U-shaped (parabolic) profile likely corresponding the replication timing profile in the
germline. Remarkably, the 6 N-domains effectively correspond to successive genome
regions where the MRT in the BG02 embryonic stem cells is U-shaped (Fig. 1C). The
7 putative initiation zones (O1 to O7) corresponding to upward S-jumps (Fig. 1A),
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Ndom BG02 K562 GM06990 H0287 TL010 BJ HeLa
N 663 1534 876 882 830 664 1150 1422
L 1.19 1.09 1.42 1.52 1.57 1.62 1.19 1.06
G 29.2 61.9 46.1 49.5 48.1 39.6 50.5 55.7
GC 40.30 40.25 40.84 40.85 40.94 41.13 40.84 40.72

Table 3: Replication timing U-domains detected in different cell lines using our
wavelet-based methodology. N = number, L = mean length (Mbp), G = genome cov-
erage (%), GC = mean GC-content (%) of the replication timing U-domains found in the
22 human autosomes. Corresponding data for the skew N-domains (replication domains in
the germline) are given for comparison.

co-locate (up to the ∼ 100 kbp resolution) with MRT local extrema which supports
that they are highly active in BG02. These initiation zones can present cell specificity
as exemplified by the putative replication origin O5 which is inactive (or late) in both
the K562 erythroid and GM06990 lymphoblastoid cell lines (Fig. 1C) resulting in
domain “consolidation” (Hiratani et al. 2010). Two neighboring U-domains ([O4, O5]
and [O5, O6]) in BG02 merged into a larger U-domain in the K562 and GM06990
cell lines. Note that the other 3 N-domains ([O1, O2],[O2, O3], and [O6, O7]) are
replication timing U-domains common to BG02, K562 and GM06990.

To detect U-domains in replication timing profiles at genome scale, we developed
a wavelet-based methodology (see Section V.2.3) which allowed us to identify in the
7 human cell lines from 664 (TL010) up to 1534 (BG02) U-domains of mean size
ranging from 1.06 Mbp (HeLa) up to 1.62 Mbp (TL010) and covering from 39.6%
(TL010) to 61.9% (BG02) of the genome (Table 3). For each cell line, the average
MRT profile of U-domains has an expected parabolic shape (Fig. 2A) representative
of individual U-domains (Figs. 2C, 3A and 4A). Inside the U-domains, the derivative
dMRT/dx is N-shaped (Figs. 2D, 3B and 4B) like the skew profile inside N-domains
(Figs. 3F and 4F). When rescaling the size of each U-domains to unity for a given cell
line, these profiles superimpose onto a common N-shaped curve well approximated
by the average dMRT/dx profile (Fig. 2B).

To determine the amounts of U-domains conserved in different cell types, we
computed for each cell type pair the mutual covering of the corresponding sets of U-
domains (two U-domains are shared by two different cell lines if each domain covers
more than 80% of the other domain (Table 4)). Taking as reference the matching
obtained for the three lymphoblastoid cell lines (from ∼ 40 to 65%; Table 4), the
matchings between the other cell lines were statistically significant. The number
of U-domain shared by cell type pairs were all significantly larger than the number
expected by chance (P < 10−3; Section V.4). For example BG02 shares 197 and 189
U-domains with K562 and GM06990 respectively, when only 45 and 46 are expected
by chance. This corresponds to a significant proportion (∼20%) of the U-domains
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Figure 2: Replication timing U-domains in different human cell lines: BG02 (green),
K562 (red), GM06990 (blue), BJ (magenta), and HeLa (cyan). (A) Average MRT pro-
files (± SEM) inside detected replication U-domains (Table 3). (B) Corresponding average
dMRT/dx profiles (± SEM). (C) The 2534 BG02 U-domains were centered and ordered
vertically from the smallest (top) to the longest (bottom). The MRT profile of each domain
is figured along a horizontal line using the MRT (BG02) color map. (D) Same as in (C) but
for dMRT/dx using the dMRT/dx (BG02) color map.
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Figure 3: The replication U-domains in the erythroid K562 cell line significantly
match the skew N-domains. The 876 replication timing U-domains detected in K562
cell line were centered and ordered vertically from the smallest (top) to the largest (bottom):
the MRT (A), dMRT/dx (B), and skew S (C) profiles of each domain are figured along a
horizontal line using the corresponding color maps. Same representation of the MRT (D),
dMRT/dx (E), and S (F) profiles in the 663 skew N-domains.

155



Figure 4: The replication U-domains in the lymphoblastoid GM06990 cell line
significantly match the skew N-domains. Same as in Fig. 3 but for the lymphoblastoid
GM06990 cell line (882 replication timing U-domains).
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Ndom BG02 K562 GM06990 H0287 TL010 BJ HeLa
Ndom 100 10.2 13.6 13.5 13.1 13 7.22 8.44
BG02 23.7 100 22.5 21.4 20.5 17.9 18 16.7
K562 17.9 12.8 100 28.5 28.8 30.9 16 13.9

GM06990 17.9 12.3 28.7 100 64.6 56.2 16 12.2
H0287 16.4 11.1 27.3 60.8 100 56.6 16.9 13
TL010 13 7.76 23.4 42.3 45.3 100 12.3 9.21
BJ 12.5 13.5 21 20.9 23.4 21.2 100 23.5

HeLa 18.1 15.5 22.5 19.6 22.3 19.7 29 100

Table 4: Percentage of matchings between replication timing U-domains in dif-
ferent cell lines including skew N-domains in the germline. A U-domain in a given
cell line (column) was considered as matching a U-domain in another cell line (row) if more
than 80% nucleotides of each of these U-domains were common to the two domains. For
instance, 23.7% of skew N-domains match a BG02 U-domain, while 10.2% BG02 U-domains
match a skew N-domain.

of the individual cell lines (Table 4), as compared to the matchings (. 5%) expected
by chance. A significant percentage of N-domains correspond to U-domains (e.g.
from 12.5% in BJ up to 23.7% in BG02). This explains that when representing
the MRT profile of K562 and GM06990 instead of the skew S, along the set of
N-domains ordered according to their size, we can recognize the edges of many N-
domains (Figs. 3D and 4D respectively). The same observation can be made when
comparing the dMRT/dx profiles (Figs. 3E and 4E respectively) to the corresponding
skew profiles (Figs. 3F and 4F ). Note that the N-domains match only 7−14% of the
U-domains of various cell lines due to the very stringent N-domain selection criteria
(Huvet et al. 2007; Baker et al. 2010) that yielded only 663 N-domains (29.2% of
the genome) as compared to much larger U-domain numbers (Table 3). Replication
timing U-domains are robustly observed in all cell lines, covering∼ 50% of the human
genome. For each cell type, about half U-domains are shared by at least another
cell line, namely BG02 (38.4%), K562 (61%), GM06990 (59.2%), BJ (51.6%), HeLa
(44.7 %). This is also true for the skew N-domains (50.2%) that likely correspond
to replication timing U-domains in the germline. Conversely this equally means
that about half U-domains are specific to only one cell line: for instance 61.6%
BG02 U-domains are only encountered in the BG02 cell line, and for the other
cell line these percentage are K562 (39%), GM06990 (40.8%), BJ (48.4%), HeLa
(55.3%). Therefore about half of the human genome that is covered by U-domains
corresponds to regions of high replication timing plasticity where replication domains
may (i) reorganize according to the so-called “consolidation” scenario (merging of
two U-domains into a larger one) (Fig. 1C), (ii) experience some boundary shift and
(iii) emerge in a late replicating region as previously observed in the mouse genome
during differentiation (Hiratani et al. 2010).
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Figure 5: Wavelet-based methodology to delineate U-shaped replication timing
domains. (A) MRT profile obtained in K562 cell line along a 11.4 Mbp long segment of hu-
man chromosome 10. (B) Space-scale representation of second-order variations for the MRT
profile presented in (A); TMRT

g(2) (Eq. (3)) values are color coded using green (resp. orange)

shades for negative (resp. positive) curvature (note that MRT axis is going downwards).
Horizontal dashed line marks scale 300 kbp used to detect regions of preferential repli-
cation initiation (vertical lines). Pairs of horizontal bars delineate the scale range where
strong negative curvature is expected for parabolic U-shaped MRT profile. Regions delin-
eated by two successive regions of preferential replication initiation are kept as U-domain if
TMRT
g(2) ≤ −0.04 at their midpoint for some scale value in this range.

V.2.3 Detection of U-domains along mean replication timing pro-
files

Within the approximation of constant fork velocity, the second derivative of MRT
profiles is related to the average initiation site density minus the average termination
site density (Chapter II, Eq. (69) in the summary). Here, we propose to segment
MRT at points of maximal curvature i.e. regions that present on average more
initiation than termination events.

This can be achieved using the continuous wavelet transform, which provides a
powerful framework for the robust estimation of signal variations over any length
scale (Mallat 1998; Arneodo et al. 2002b). The wavelet-transform (WT) is a space-
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scale analysis which consists in expanding signals in terms of wavelets that are
constructed from a single function, the analyzing wavelet, by means of dilations
and translations. When using the derivatives of the Gaussian function, namely
g(n)(x) = dng(0)(x)/dxn, with g(0)(x) = e−x

2/2, then the WT of MRT profile takes
the following expression:

TMRT
g(n) (x, a) =

1

a

∫ +∞

−∞

dy g(n)
(

y − x

a

)

MRT(y)

= (−a)n dn

dxn

(

g(0)a ∗MRT
)

(x), (3)

where x and a (> 0) are the space and scale parameters respectively. Eq. (3) shows
that the WT computed with g(n) is proportional to the nth derivative of the MRT

profile smoothed by a dilated version g
(0)
a (x) = 1

ag
(0)(x/a) of the Gaussian function.

This property is at the heart of various applications of the WT microscope as a
very efficient multi-scale singularity tracking technique (Mallat 1998; Arneodo et al.
2002b).

In the space-scale representation of replication timing second-order variations
provided by TMRT

g(2)
, we delineated loci that present a local maxima in the MRT

curvature profile at scale 300 kbp (Fig. 5; TMRT
g(2)

≥ 0.02) as loci of preferential

replication initiation. In a second step, we characterized the regions encompassed
between two preferential replication initiation loci using the MRT curvature at their
mid-point (Fig. 5). We selected regions of length L with sufficiently negative values
of TMRT

g(2)
(≤ −0.04; Eq. (3)) at some scale between 0.48L and 0.72L (for a parabolic

shape profile of finite size L, the scale where extremal curvature is observed using
the TMRT

g(2)
is proportional to L but also depends on the shape of the profile at the

border of the region).

V.3 Chromatin state and long-range chromatin interac-
tions in replication U-domains

V.3.1 Replication timing U-domains borders are enriched in open
chromatin markers

Genome-wide investigation of chromatin architecture has revealed that, at large
scales (from 100 kbp to 1 Mbp), regions enriched in open chromatin fibers correlate
with regions of high gene density (Gilbert et al. 2004). Moreover there is a growing
body of evidence that transcription factors are regulators of origin activation (re-
viewed in Kohzaki and Murakami 2005). We ask whether the remarkable genome
organization observed around N-domain borders (Huvet et al. 2007) is maintained
around replication timing U-domain borders and to what extent it is mediated by a
particular chromatin structure favorable to early replication initiation (Audit et al.
2009).
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Figure 6: Over representation of open chromatin markers at replication timing
U-domain borders relative to the corresponding genome-wide value. (A) Mean
coverage by DNase I hypersensitive zones, as a function of the distance to the closest U-
domain border in BG02 using DNase H1-hESC data (green, genome-wide mean value =
0.0073), K562 using DNase K562 data (red, genome-wide mean value = 0.0138), GM06990
using DNase GM06990 data (blue, genome-wide mean value = 0.0107). (B) Proportion of
clones presenting a ratio of “open” over input chromatin greater than 1.5 versus the distance
to the closest U-domain border in GM06990 for four U-domain size categories: L<0.8Mbp,
0.8Mb<L<1.2Mbp, 1.2Mb<L<1.8Mbp and 1.8Mb<L<3Mbp from light to dark blue curves
(genome-wide mean value = 0.20). (C) Mean coverage by 1 kbp-enlarged CpG islands as
a function of the distance to the closest U-domain border in BG02 for the four U-domain
size categories defined in (B) from light to dark green curves (genome-wide mean value =
0.0254). (D) Mean coverage by Pol II peaks as a function of the distance to the closest
U-domain border in BG02 (green: Pol II in H1 ESC, genome-wide mean value = 0.0026),
K562 (red: Pol II in K562, genome-wide mean value = 0.0024), GM06990 (blue: Pol II in
GM12878, genome-wide mean value = 0.0097).
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When mapping DNase I sensitivity data (Section V.4) (Sabo et al. 2006) on the
U-domains, we observed that the mean coverage is maximal at U-domain extrem-
ities and decreases significantly from the extremities to the center that is rather
insensitive to DNase I cleavage (Fig. 6A). This decrease, from values significantly
higher than the genome-wide average value, extends over ∼ 150 kbp, whatever the
size of the replication timing U-domain (Fig. 7A-C) suggesting that, for all exam-
ined cell lines, early replicating U-domains borders are at the center of ∼ 300 kbp
wide open chromatin regions. We observed a significant anti-correlation between
DNase I cleavage sensitivity data and replication timing data in BG02 (DNase H1-
hESC: R = −0.55, P < 10−16), K562 (R = −0.63, P < 10−16) and GM06990
(R = −0.57, P < 10−16) cell lines as well as in the other four cell lines (data not
shown; note that this was still observed when controlling for the GC content). This
is further supported by open over input chromatin ratio data obtained from human
lymphoblastoid cells (Gilbert et al. 2004). We observed that the regions present-
ing an open/input ratio > 1.5 also decreased significantly (3-fold) from U-domain
borders to centers (Fig. 6B).

Cytosine DNA methylation is a mediator of gene silencing in repressed hete-
rochromatic regions, while in potentially active open chromatin regions, DNA is
essentially unmethylated (Suzuki and Bird 2008). DNA methylation is continuously
distributed over mammalian chromosomes with the notable exception of CpG is-
lands (CGIs) and in turn of certain CpG rich promoters and transcription start
sites (TSSs). Along the observation that the hypomethylation level of CGIs extends
to about 1 kbp in flanking regions, we used 1 kbp-enlarged CGI coverage as an
hypomethylation marker (Section V.4) (Audit et al. 2009). When averaging over
the U-domains detected in BG02, we robustly observed a maximum of CGI cover-
age at U-domain borders as the signature of hypomethylation and a decrease over a
characteristic distance of ∼ 150 kbp (Fig. 6C), similar to what found for DNase I sen-
sitivity coverage (Fig. 6A). This contrasts with the GC-content profile that strongly
depends on the U-domain size and decreases very slowly toward the U-domain cen-
ter without exhibiting any characteristic scale (Fig. 7D-F). These observations are
consistent with the hypothesis that early replication origins at U-domains borders
are associated to CGIs possibly protected from methylation due to the colocalization
with replication origins (Antequera and Bird 1999).

Open chromatin markers have been associated with genes. For example 16%
of all DNase I hypersensitive sites (HS) are in the first exon or at the TSS of a
gene and 42% are found inside a gene (Boyle et al. 2008a). Also, more than 90%
of broadly expressed housekeeping genes have a CpG-rich promoter (Ponger et al.
2001). Remarkably, the mean profiles of Pol II binding Chip-Seq tag density (Sec-
tion V.4) along U-domains detected in BG02, K562 and GM06990 cell lines strongly
decay over ∼ 150 kbp away from U-domain borders (Fig. 6D). This indicates that,
whatever the cell line, the open chromatin regions around replication U-domains
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Figure 7: Comparison of DHS coverage and GC content gradients along U-
domains. Mean coverage (relative to the genome average) of DNase I hypersensitive zones
(A-C) and GC content (D-F) as a function of the distance to the closest U-domain border in
K562 (A,D), GM06990 (B,E) and BG02 (C,F), for four U-domain size categories: L<0.8Mbp,
0.8Mb<L<1.2Mbp, 1.2Mb<L<1.8Mbp and 1.8Mb<L<3Mbp from light to dark curves.
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are prone to transcription whereas U-domain central regions appear, on average,
transcriptionally silent.

V.3.2 Replication timing U-domains are insulated compartments
of genome-wide chromatin interactions (Hi-C)

It has early been recognized that the 3D chromatin tertiary structure provides some
understanding to the experimental observation of the so-called replicon and repli-
cation foci (Buongiorno-Nardelli et al. 1982; Berezney et al. 2000). In particular,
replicon size, which is dictated by the spacing of between active origins, has been
shown to correlate with the length of chromatin loops (Buongiorno-Nardelli et al.
1982; Conti et al. 2007; Courbet et al. 2008). Very recently, the outstanding progress
made in chromosome conformation capture technique (Lieberman-Aiden et al. 2009)
has provided access to long-range chromatin interactions across the entire genome
as a footprint of the different levels of chromatin folding in relation with gene activ-
ity and the functional state of the cell. From a comparative analysis of replication
timing data and Hi-C data in the human genome, some dichotomic picture has been
proposed where early and late replicating loci occur in separated compartments of
open and closed chromatin respectively (Lieberman-Aiden et al. 2009; Ryba et al.
2010). More precisely, each chromosome has been consistently partitioned into two
compartments, where the interaction profiles over the whole chromosome correlate
for loci belonging to the same compartment but anticorrelates for loci belonging to
separated compartments (Lieberman-Aiden et al. 2009). These two compartments
very significantly overlap early and late replicating domains respectively (Ryba et al.
2010). Here, instead of considering this partitioning derived from the positive or
negative correlations between interaction profiles over the whole chromosome, we fo-
cused on interactions between loci separated by short genomic distances (. 10 Mbp)
over which the contact probabilities are the highest (Lieberman-Aiden et al. 2009).

First, we performed this zoom in the Hi-C contact matrix in the K562 cell line at
the 100 kbp resolution (Section V.4) for the 11.4 Mbp fragment of human chromo-
some 10 which contains four U-domains in K562 (Fig. 1; [O1, O2], [O2, O3], [O4, O6]
and [O6, O7]). We found that these four U-domains remarkably correspond to four
matrix square-blocks of enriched interactions (Fig. 8A). We recovered that early
replicating zones, when bordering a U-domain (e.g. O4 and O6 separated by 3.9
Mbp), have a high contact probability as the signature of 3D spatial proximity.
However, we also observed a high contact probability of the two early replicating
borders with the late replicating U-domain center and interactions appear sparse for
loci in separate U-domains (e.g. O1 and O3 separated by 3.6 Mbp). Further exami-
nation of the average behavior of intrachromosomal contact probability as a function
of genomic distance for the complete genome corroborated these observations. We
found that the mean number of interactions between two 100 kbp loci of the same
U-domain decays when increasing their distance as observed genome-wide (Fig. 8B).
But importantly the mean number of pairwise interactions is significantly higher in-
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Figure 8: Replication U-domains are self-interacting structural units in K562
erythroid cell line. (A) Hi-C proximity matrix corresponding to intrachromosome in-
teractions on the 11.4 Mbp long fragment of human chromosome 10 (Fig. 1), as measured
in the K562 cell line. Each pixel represents all interactions between a 100 kbp locus and
another 100 kbp locus; intensity corresponding to the total number of reads is color coded
according to the colormap (right). The dashed squares correspond to replication timing
U-domains detected in the K562 cell line. (B) Number of interactions between two 100
kbp loci versus the distance separating them (logarithmic scales) as computed genome wide
(black) or in K562 replication U-domains only, for four U-domain size categories: L<0.8Mbp,
0.8Mb<L<1.2Mbp, 1.2Mb<L<1.8Mbp and 1.8Mb<L<3Mbp (from light to dark red). (C)
Ratio of the number of interactions between two 100 kbp loci inside the same U-domain at
equal distance from its center and the number of interactions between loci on opposite sides
and equal distance from a U-domain border, versus the distance between them; colors as in
(B).
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Figure 9: Replication U-domains are self-interacting structural units in GM06990
lymphoblastoid cell line. Same as in Fig. 8 but for the GM06990 lymphoblastoid cell
line.
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Figure 10: Enrichment in insulator-binding protein CTCF at replication U-
domains borders. (A) Mean coverage by CTCF enriched signals versus the distance to
the closest U-domain border in K562 cell line for four U-domain size categories: L<0.8Mbp,
0.8Mb<L<1.2Mbp, 1.2Mb<L<1.8Mbp and 1.8Mb<L<3Mbp, from light to dark red curves
(genome-wide mean value = 0.0051). (B) Same as in (A) but for the GM06990 cell line
(blue code shades) (genome-wide mean value = 0.0046).

side the U-domains than genome-wide and this seems to depend on the U-domain
length, smaller the domain, higher the mean number of interactions probably as
the signature of a more open chromatin structure. When comparing the contact
probability between two loci inside a U-domain or lying in neighboring U-domains
(Fig. 8C), we observed that the latter is higher than the former for distances smaller
than the characteristic size (∼ 300 kbp) of the open chromatin structure at U-domain
borders (Fig. 6). Above this characteristic distance, the tendency is reversed and the
ratio increases up to 2 for distances ∼ 1.8 Mbp (Fig. 8C). These data suggest that
the segmentation of the genome into replication timing U-domains corresponds to
some spatial compartmentalization into self-interacting structural chromatin units
insulated by two boundaries of open, accessible, actively transcribed chromatin.
This conclusion is strengthened by the observation that U-domain borders are sig-
nificantly enriched in the insulator binding protein CTCF (Fig. 10), that is known to
be involved in chromatin loop formation conditioning communication between tran-
scriptional regulatory elements (Phillips and Corces 2009; Hou et al. 2010; Ohlsson
et al. 2010; Handoko et al. 2011). Quantitatively similar results were obtained for
the lymphoblastoid GM06990 cell line for which both replication timing and Hi-C
data were available (Fig. 9).
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V.4 Material and Methods

Determining mean replication timing profiles.
We determined the mean replication timing profiles along the complete human

genome using Repli-Seq data (Hansen et al., 2010; Chen et al., 2010). This method
consists in labeling newly synthesized DNA using a pulse of BrdU, sorting cells
into several S-phase fractions using FACS and to reveal the locus of DNA synthesis
in each fraction using anti-BrdU antibody combined to next-generation sequencing.
For embryonic stem cells (BG02), three lymphoblastoid cell lines (GM06990, H0287,
TL010) a fibroblast cell line (BJ, replicate R1) and erythroid K562 cell line, Repli-
Seq tags for 6 FACS fractions were downloaded from the NCBI SRA website (Studies
accession: SPR0013933) (Hansen et al., 2010). For a given cell line and for each S-
phase fraction, we computed the tag densities in 100 kb windows, and following
the authors (Hansen et al., 2010) the tag densities were normalized to the same
genome-wide sequence tag counts for each fraction, and a second normalization
was performed so that at each genomic position, the sum over S-phase fractions
be one. To filter out noise which could critically bias mean timing profile estimate
(Fig. 11A), we proceeded as follows. We noticed that the genome-wide distribution
of the normalized tag density (Fig. 11D) presents a mode at 0.01 < m < 0.08 (mainly
noise) and a long tail up to 1 (mainly corresponding to the replication signal). For
each S-phase fraction we set to 0 the normalized tag density < 4m, and re-normalized
at each genomic position by the sum over S-phase fractions. The mean replication
timing profile computed on these denoised tag densities superimposes on the original
one, but is much less noisy (Fig. 11B,C).

For the HeLa cell line, the denoised tag densities were obtained from (Chen et al.,
2010). Instead of computing the S50 (median replication timing) as the authors in
(Chen et al., 2010), we computed the mean replication timing (MRT).

Sequence and annotation data. Sequence and annotation data were retrieved
from the Genome Browsers of the University of California Santa Cruz (UCSC)
(Karolchik et al. 2003). Analyses were performed using the human genome as-
sembly of March 2006 (NCBI36 or hg18). As human gene coordinates, we used the
UCSC Known Genes table. When several genes presenting the same orientation
overlapped, they were merged into one gene whose coordinates corresponded to the
union of all the overlapping gene coordinates, resulting in 23818 distinct genes. We
used CpG islands (CGIs) annotation provided in UCSC table “cpgIslandExt”.

Replication N-domains. The coordinates of the 678 human replication N-domains
for assembly NCBI35/hg17 were obtained in (Huvet et al. 2007) and mapped using
LiftOver to hg18 coordinates; we kept only the 663 N-domains that had the same
size after conversion.
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Figure 11: Determining mean replication timing profiles from Repli-Seq data. (A)
Normalized tag densities on a 25 Mb long fragment of chromosome 10, for the GM06990
cell line, and the corresponding computed MRT (white line). (B) “Denoised” normalized
tag densities on the same genomic fragment and the corresponding MRT (white line). In
(A) and (B) the tag densities for each S-phase fraction (G1-G2) are color coded using
the color map situed at the top. (C) Comparison on the same genomic fragment of the
MRT computed on the normalized tag densities (cyan line) and the MRT computed on the
“denoised” normalized tag densities (blue line). (D) Probability density function (P.d.f.) of
the genome-wide distribution of the normalized tag densities for each S-phase fraction from
G1 to G2 from bottom to top (black histogram). The mode m of the distribution is given
by the red bar, the threshold 4m used for denoising is given by the green bar.
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Matchings of replication timing U-domains expected by chance. We ran-
domly re-positioned replication timing U-domains in all cell lines including skew N-
domains in the germline, conserving the statistics of domains size and inter-domain
distance. We then computed for each cell line pair the number of matchings (1000
simulations were used to obtain the mean values), and the percentage of matchings
as in Table 4. None of the 1000 simulations gave number of matchings as important
as the one observed, so we concluded that the matchings observed had a p-value
P < 10−3.

DNase I hypersensitive site data. We used the DNaseI sensitivity measured
genome-wide (Sabo et al. 2006). Data corresponding to Release 3 (Jan 2010) of the
ENCODE UW DNaseI HS track, were downloaded from the UCSC FTP site:
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeUwDnaseSeq/.
We plotted the coverage by DNase Hypersentive Sites (DHSs) identified as signal
peaks at a false discovery rate threshold of 0.5% within hypersensitive zones delin-
eated using the HotSpot algorithm (“wgEncodeUwDnaseSeqPeaks” tables). When
several replicates were available, data were merged.

Genome-wide maps of Pol II and CTCF binding. We used ChIP-seq data us-
ing antibody for Pol II and CTCF from Release 3 (Mar 2010) of the ENCODE Open
Chromatin track (Bhinge et al. 2007; The ENCODE Project Consortium 2007).
Data were downloaded from the UCSC FTP site:
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeChromatinMap.
We plotted coverage by regions of enriched signal in ChIP experiments, called based
on signals created using F-Seq (Boyle et al. 2008b) (“wgEncodeUtaChIPseqPeaks”
tables). Significant regions were determined at an approximately 95% sensitivity
level. We always used the most recent version of data.

Whole genome chromatin conformation data. We used the spatial proximity
maps of the human genome generated using Hi-C method (Lieberman-Aiden et al.
2009). We downloaded 100 kbp resolution maps for GM06990 and K562 cell lines
from the GEO web site (GSE18199 binned heatmaps):
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18199.

Chromatin fiber density data. Open over input chromatin ratio data from
human lymphoblastoid cells were obtained from the authors (Gilbert et al. 2004).
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Summary of Chapter V

In several human cell lines, about half of the human genome is covered by large-
scale (∼ 1 Mbp) replication domains characterized by a U-shaped replication timing
profile (U-domains). Interestingly, a majority of replication U-domains are cell line
specific, and thus belong to genomic regions of high replication timing plasticity.
The mapping of open chromatin marks along U-domains revealed that they are bor-
dered by early replication initiation zones likely specified by a ∼ 300 kbp wide region
of accessible, open chromatin permissive to transcription (Fig. 6). Long-range chro-
matin interaction data (Hi-C) suggest that U-domains correspond to chromatin self-
interacting structural units. Replication U-domains indeed remarkably correspond
to square block of enriched interaction in the Hi-C contact matrix (Figs. 8A and 9A).
Loci interact more inside a U-domains than loci separated by a U-domain border
(Figs. 8C and 9C), as if the border was insulating the domain, consistently with the
strong enrichment of insulator binding protein CTCF at U-domain borders (Fig. 10).
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Chapter VI

Conclusion and perspectives

VI.1 Establishment of the compositional asymmetry

Compositional asymmetry has long been proposed to result from the asymmetric
mutational pressure generated by the transcription and replication processes. The
originality of this work was to formalize this neutral molecular evolution scenario,
and to propose a theoretical framework to discuss the compositional asymmetry
dynamic and its relation to the spatio-temporal program of DNA replication.

A minimal model for the compositional asymmetry evolution
In the minimal model proposed in Chapter I, both the substitutional and composi-

tional asymmetries decompose into transcription and replication associated compo-
nents, the latter being proportional to the replication fork polarity. Most studies of
replication-associated asymmetry focused on the relationship between strand asym-
metry and replication origins, in direct analogy with the bacterial replicon case,
sometimes leading to inconclusive and even contradictory results. In Chapter II, we
proved under quite reasonable assumptions (constant replication fork velocity and
bidirectional replication origins) that the replication fork polarity is proportional
to the derivative of the mean replication timing, whatever the complexity of the
spatio-temporal replication program. Thanks to this relationship, we succeeded in
estimating experimentally the replication fork polarity in the human genome, using
recently available replication timing data. In Chapter III, we were then able to
show that the substitutional and compositional asymmetries observed in the human
genome were consistent with the minimal model proposed theoretically in Chapter I.

Study of replication-associted strand asymmetry in eukaryotes
As experimental replication timing data are now becoming available in an increas-

ing number of organisms, the relationship between replication fork polarity and repli-
cation timing opens new perspectives regarding the study of replication-associated
strand asymmetry in eukaryotic genomes. It would be for instance possible to ex-
tend, on a genome-wide scale, previous analyses of strand asymmetry made in the
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sub-telomeric regions of yeast (Gierlik et al. 2000). As the mutational spectra of
the DNA polymerases has been investigated experimentally in yeast (Pursell et al.
2007; Larrea et al. 2010), it would be in principle possible to test if the substitutional
asymmetries associated to replication can be explained by the different error spectra
of the leading and lagging DNA polymerases.

Conservation of the replication timing profile
The comparative analysis of replication timing and compositional asymmetry in

the eukaryotic kingdom will probably shed a new light on the conservation of the
replication program across evolution. Indeed the establishment of a replication-
associated compositional asymmetry not only requires a molecular mechanism that
generates a different mutational pattern on the leading and lagging strands, but
further requires the stability of the replication fork polarity profile on evolutionary
time-scales. The current values of the compositional asymmetries and substitution
rates observed in the human genome suggest that the compositional skew has been
generated over 400 Myrs, a time-scale comparable to the last common ancestor of
amniotes (∼ 350 Myrs). Interestingly, skew N-domains are observed in all amniotic
genomes (Claude Thermes, personal communication). These observations suggest
that the replication timing profile has been well conserved in amniotes, despite
considerable chromosomal rearrangements. Consistently, evolutionary breakpoints
in N-domains preferentially occur at the borders (Lemaitre et al. 2009; Zaghloul
2009), thus likely preserving the overall N-shaped skew profile.

Do all skew N-domains correspond to germline replication U-domains?
In this thesis, N-domains were proposed to result from a U-shaped mean replica-

tion timing profile in the germline. We could not directly test this hypothesis, as
no germline replication timing data is available today. It would be very interest-
ing to know how many skew N-domains are actually germline replication U-domains.
What are the characteristics of skew N-domains that are not U-domains? Were they
generated by another mechanism, such as non-coding transcription as proposed in
(Necsulea et al. 2009)? Were they U-domains in an ancestral replication timing
profile that have persisted as skew N-domains (as it takes several hundred Myrs to
erase an initially non null skew)?

VI.2 Which spatio-temporal replication program for the
replication U-domains?

As proposed in this thesis, the N-shaped skew profile in N-domains may result
from a U-shaped mean replication timing profile. A U-shaped replication timing
profile is not specific to the germline but is robustly observed in several human cell
lines (Chapter V). However it doesn’t tell where and when replication initiates in
the N-domains and U-domains, which would completely specify the spatio-temporal
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replication program. Actually several replication programs, with drastically different
distributions of initiation sites, can yield the same mean replication timing.

Determining the firing times and initiation sites from the replication ki-
netics
In Chapter II, we derived the “analytical inversion of the KJMA model” which

could have very promising applications. This result allows, at least theoretically, to
infer the distribution of initiation sites and firing times directly from the replicated
fractions obtained by time-course micro-array or Repli-Seq experiments. Unfor-
tunately, the current time resolution (∼ 2h) of replicated fractions in the human
genome is too coarse to allow the application of this result. Hopefully, it would be
possible in the next future to apply this procedure to better-resolved experimental
data. Of course, it would be then very interesting to compare the distribution of
initiation sites predicted from the replicated fractions and the distributions obtained
experimentally by other approaches, for instance DNA combing and nascent-strand
studies. Maybe the combination of all these methods will permit to decipher the
spatio-temporal replication program in human cell lines, in particular within U-
domains.

Previous model: replication origins located at the borders
We recall the first model proposed to explain the N-domains (Brodie of Brodie

et al. 2005; Touchon et al. 2005): the skew upward jumps at the N-domains borders
correspond to replication origins as in bacteria, but the absence of downward jumps
(associated to the replication terminus in bacteria) likely reflects the randomness of
the termination site. We note that the variable firing times of the two bordering
replication origins lead inevitably to greatly dispersed termination sites over cell
cycles, which provides a very simple mechanism accounting for the random termi-
nation site postulated in (Brodie of Brodie et al. 2005; Touchon et al. 2005). More
generally in each model of DNA replication program with well-positioned replica-
tion origins (with variable efficiencies and firing times), as it seems to be the case
in yeast, we expect a U-shaped replication timing profile, where timing peaks corre-
spond to replication origins but where the converse is not necessarily true (Chapter
II). However we already know that this model is certainly wrong for the N-domains
and U-domains in the human genome, especially for the larger ones. Indeed this
model would imply too large inter-origin distances (several Mbp), as compared to
the typical inter-origin distances (40 kbp) observed in DNA combing experiments
(Rappailles et al. 2011). We foresee that other initiation events could be observed
in the central regions of N-domains and U-domains.

The domino model
The “analytical inversion of the KJMA model” relies on an important assumption:

the independent firing of replication origins. Our collaborators, Olivier Hyrien and
Arach Goldar, have proposed a “domino model” for the replication program in U-
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domains which explicitly breaks this assumption. In this model, a moving fork is
supposed to stimulate the initiation in nearby unreplicated DNA. As each initiation
event is associated to the propagation of two diverging replication forks, this results
in the sequential activation of replication origins in a domino-like fashion (Rappailles
et al. 2011). In U-domains, replication first initiates at the borders as they are
local minima of the replication timing. From the borders, two replication waves
of secondary initiations would then propagate until complete replication of the U-
domain. If the “master” replication origins at the border (that fire first) have variable
firing times, or if the stimulated initiations are more and more synchronous as S
phase progresses, or if some rare additional initiation events (not associated to the
replication wave of secondary initiations) take place within the domain, then it can
easily lead to a U-shaped mean replication timing profile.

VI.3 Genome 3D structure and replication timing

How the chromatin fiber folds into higher-order structures within the cell nucleus
is arguably one of the most important open problem in cell biology. The genome
3D structure is presumably tightly related to the chromatin state and to the or-
ganization of many cellular processes, including transcription and replication. The
recent development of the Hi-C technique offers the unprecedented possibility to
measure long-range chromatin interactions on a genome-wide scale. The compara-
tive analysis of the replication timing and the Hi-C contact matrix revealed qual-
itatively two different regimes. Replication U-domains, especially when they are
large, often correspond to a square like block of enriched interactions, as if they
were self-interacting. This correspondence is particularly impressive on U-domains
larger than 3 Mbp1, which contain in their central regions heterochromatic and late
replicating gene deserts. Besides replication U-domains, the human genome is also
covered by large (several Mbp) early replicating domains, which overlap in part the
GC-rich isochores, are characterized by an open chromatin state and a high tran-
scriptional activity. In the early replicating domains, a locus interacts a lot with
neighboring loci on a Mbp characteristic distance.

The relationship between replication timing and long-range chromatin interac-
tions is under current investigation at Laboratoire Joliot-Curie, both experimentally
and bioinformatically. On the bioinformatical side, in order to study quantitatively
this relationship on a genome-wide scale, it will be necessary to objectively de-
lineate square-like blocks in the Hi-C contact matrix and to measure the overlap
with replication U-domains. The square-like Hi-C blocks have different sizes, and
are sometimes organized hierarchically (a square-like block can be made of smaller

1Actually, U-domains larger than 3 Mbp were not retained in the analysis of Chapter V. These
U-domains significantly overlap the so-called split-N domains, skew domains systematically detected
and studied in (Zaghloul 2009; Arneodo et al. 2011). Split-N domains contain a central region of
null skew, which corresponds to a heterochromatic gene desert.
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square-like blocks). The wavelet transform, which can perform a pattern recognition
at multiple scales, and previously used as such for the detection of skew N-domains
and replication U-domains, seems equally well adapted for this new task.
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Demeret C, Vassetzky Y, Méchali M. 2001. Chromatin remodelling and DNA repli-
cation: from nucleosomes to loop domains. Oncogene 20: 3086–3093.

DePamphilis ML, ed. 2006. DNA Replication and Human Disease. Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, New-York.

183



Desprat R, Thierry-Mieg D, Lailler N, Lajugie J, Schildkraut C, Thierry-Mieg J,
Bouhassira EE. 2009. Predictable dynamic program of timing of DNA replication
in human cells. Genome Res 19: 2288–2299.

Duret L. 2002. Evolution of synonymous codon usage in metazoans. Curr Opin
Genet Dev 12: 640–649.

Duret L, Arndt PF. 2008. The impact of recombination on nucleotide substitutions
in the human genome. PLoS Genet 4: e1000071.

Duret L, Galtier N. 2009. Biased gene conversion and the evolution of mammalian
genomic landscapes. Annu Rev Genomics Hum Genet 10: 285–311.

Erlebacher G, Hussaini M, Jameson L, eds. 1996. Wavelets : Theory and Applica-
tions. Oxford University Press, Oxford.

Evans J. 1993. Random and cooperative sequential adsorption. Rev Mod Phys 65:
1281–1329.

Fanfoni M, Tomellini M. 1998. The Johnson-Mehl-Avrami-Kolmogorov model: a
brief review. Il Nuevo Cimento 20D: 1171–1181.

Farge M, Hunt J, Vassilicos J, eds. 1993. Wavelets, Fractals and Fourier. Clarendon
Press, Oxford.

Farkash-Amar S, Lipson D, Polten A, Goren A, Helmstetter C, Yakhini Z, Simon I.
2008. Global organization of replication time zones of the mouse genome. Genome
Res 18: 1562–1570.
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