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Introduction

Energy minimization is a widespread approach in Computer Vision and Graphics. Usually,

vision problems have many solutions due to the uncertainties in the acquisition process

and ambiguities in visual interpretation. A classical use of energy minimization is the

labeling problem, an abstraction of particular Computer Vision problems such as stereo,

motion, restoration or segmentation. The inputs are a set of pixels P and a set of labels

L. The goal is to �nd a labeling (i.e. a mapping from P to L) which minimizes some

energy function. Usually, the energy function encodes the constraints and prior of the

problem and its minimum gives the desired optimal solution. A standard form of such an

energy is

E(u) = β
∑
p∈P

Ep(up) +
∑

(p,q)∈N

Ep,q(up, uq), β ∈ R+,

among u ∈ LP and where N ⊂ P × P is a neighborhood system. The term Ep(.) called

data term is a function derived from the observed data. In other words, it measures

how much assigning label up to pixel p disagrees with initial data. The term Ep,q(.)

called smoothness term is a function imposing spatial smoothness on the solution by

giving penalties to neighboring pixels p and q having di�erent labels. Non-convex Ep,q(.)

terms are generally preferred over convex ones for discontinuity-preserving since it is

important to not over-penalize labelings at borders. In such situations, energy functions

have traditionally been minimized with general-purpose optimization techniques (such

as simulated annealing). As a consequence of their generality, such techniques usually

require an exponential time and are extremely slow to converge in practice. However,

e�cient techniques such as graph cuts have become increasingly popular.

Graph cuts are a discrete optimization method based on maximum-�ow / minimum-

cut computations in graphs for minimizing energies frequently arising in Computer Vision

and Graphics. Since last decades, this method has become a cornerstone in these commu-

nities for solving a wide range of problems such as denoising, segmentation, registration,

stereo, scene reconstruction, panorama stitching, etc. We refer the reader to [BK04] for

11
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typical applications of graph cuts. Since seminal work of [GPS89] for denoising binary

images, graph cuts have recently known a quick development mainly due to the introduc-

tion of a fast maximum-�ow algorithm [BK04] and heuristics o�ering good performance

in the multi-labels case [BVZ99].

In parallel, technological advances in image acquisition have exploded both the amount

and the diversity of data to process. As an illustration, in the third generation satellite

SPOT-5 launched by Arianespace in 2002, the embedded high resolution sensors can cap-

ture multispectral and panchromatic 8-bits images with an imaging swath of 60× 60 km.

In panchromatic modes, each image has a size of 12000 × 12000 against 6000 × 6000 in

multispectral mode. Notice that the next generation of satellites (namely SPOT-6 and

SPOT-7) whose launch is expected for 2012/2013, will form a constellation of earth obser-

vation to maintain continuity of high-resolution data collection and distribution provided

by the SPOT series. While the imaging swath remains the same as in SPOT-5, a con-

sequence of this decision is an increase of the resolution and hence, the volume of data

to process. These new satellites are now able to acquire images of size 40000 × 40000

in panchromatic mode against 10000 × 10000 in multispectral mode. The information

acquired by these satellites is naturally of great importance with a wide spectrum of

applications ranging from defense and cartography to environment and agriculture. Sim-

ilarly, latest medical imaging systems are now able to acquire 3D and 3D+t volume data

with several billion of voxels whereas latest digital cameras embed sensors of 20 million

pixels.

Processing such data amounts to solve large-scale optimization problems with a large

number of variables. In particular, graph-based methods appear to be totally imprac-

tical to solve such problems due to the huge memory requirements. To overcome this

situation, some amount of work has been recently done in this direction with some heuris-

tics [LSTS04, CA08, SD07, LSGX05, SG06, KLR10] and exact methods [LB07, SK10].

The rough heuristics appearing in the literature get easily trapped in a local minimum of

the energy, losing the main bene�t of global optimization. Others have also proposed orig-

inal ideas where global optimality is guaranteed on the generated solution [LB07, SK10].

While [LB07] is devoted to a particular application, the graph cuts limits are pushed away

12
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in [SK10] by splitting the problem in a parallelized/distributed fashion instead of reducing

graphs.

The objective of this thesis is to propose a new band-based strategy (see the work

of [LSGX05, SG06, KLR10]) for reducing graphs involved in binary graph cuts segmenta-

tion and improve the running time of the max-�ow algorithm. First, we do some reminders

about graph theory and functionals involved in image segmentation. Then, we present

a state of the art of the methods for reducing these graphs. Afterwards, we detail a

heuristic and an exact test for reducing them. For each one, massive experiments are

provided for evaluating the performance of the proposed algorithms in terms of time and

memory. Finally, we present an application of this technique for segmenting lung tumors

in an interactive fashion and discuss about the proposed work. We now brie�y detail the

organization of this document.

Chapter 1

This chapter gives some basic notions about segmentation functionals and graph the-

ory. First, we brie�y remind the most popular functionals involved in image segmentation

as well as the existing methods (among graph-based methods) for solving this problem

using the classi�cation of [Lec09]. Afterwards, some reminders on the graph cuts theory

are provided. We �rst give general de�nitions about graphs, review the duality between

the max-�ow and the min-cut problems in a network and the commonly used approaches

for e�ciently solving them. Then, we remind how this method can be applied in the

image segmentation context and describe two widespread energy models: Boykov-Jolly

and TV+L2.

Chapter 2

In this chapter, we �rst describe the problem of the prohibitive memory consumption

of graph cuts and demonstrate that this method is totally impractical for segmenting large

volume data. Next, we present a detailed state of the art of methods which overcome this

problem, among heuristics or exact methods. We split this state of the art into two parts:

sequential algorithms and parallelized / distributed algorithms. For each method, we

detail its internal working scheme and discuss about its advantages and its limits.

13
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Chapter 3

This chapter details the strategy adopted for reducing graphs involved in binary image

segmentation. First, we introduce a simple test for testing if a node in a graph is really

useful to the max-�ow computation. The reduced graph is then progressively built by only

adding nodes which satisfy this test. This leads to a straightforward algorithm with a

worst-case complexity similar to a convolution. The remaining nodes are typically located

in a narrow band surrounding the object edges to segment. Numerical results with two

di�erent energy models are provided: they clearly show that the solutions obtained on

the reduced graphs are identical to the solutions on the whole graphs. Furthermore, when

the amount of regularization in the model is of moderate level, the time required by the

reduction algorithm is compensated by the decrease of the time for computing the max-

�ow on the reduced graph. Secondly, we present another test for reducing exactly graphs

and establishing a comparison of reduction performance between both tests.

Chapter 4

In this chapter, we address the problem of segmenting accurately lung tumors in an

interactive fashion in 3D Computed Tomography (CT) images. We �rst present a novel

energy formulation embedding a prior on the seeds location inhibiting the propagation

of object seeds thanks to a Fast Marching algorithm based on the image gradient. The

generated graphs are then reduced using the approach detailed in Chapter 3. Afterwards,

we evaluate the method against a dataset composed of ground truths provided by an

expert. We �nally show that consistent and accurate results can be reached, enabling the

use of a valid prototype by clinicians.

Conclusion and discussion

We end this document by providing a summary of the developed contributions and

a discussion about the possible perspectives at short, middle and long term. We also

establish potential connections with other previous works on the same subject.
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1 Preliminaries

1.1 Image segmentation: history and methods

1.1.1 What is segmentation?

Originally, segmentation (or more precisely grouping) is a primitive process intervening

in the visual perception system of common animal species for partitioning a display into

meaningful regions. Since founding paper of Wertheimer in 1923 [Wer23] who crystallized

the so-called "Gestalt principles" 1, this process has become a very active �eld of research

in psychology with the Gestalt theory.

At about the same date, Image Processing emerged as a new research �eld of Signal

Processing devoted to the study of digital images. By analogy to visual grouping, the

segmentation problem 2 in Image Processing refers to the process of partitioning a digital

image into multiple and coherent semantic regions (i.e. sets of pixels, also called super-

pixels) with a machine. The contours separating two adjacent regions correspond to the

boundaries of the segmentation. This problem is closely related to image classi�cation.

Image segmentation refers to clustering or grouping pixels into various groups whereas

image classi�cation determines to which category belongs an image (or a subset of it).

Typical categories can be "landscape", "sea", "person", etc. and are �xed.

In a sense, computer scientists try to mimic the process which naturally arises in the

brain of animal species. As grouping, image segmentation is also a primitive process

intervening in the elaboration of high-level alrithms such as 3D reconstruction, object

recognition, data compression, object tracking [RCD07], etc.

Observe that both disciplines attempt to answer the same question: how to arrive at

global percepts from the local information contained into an image? Although obvious

1Gestalt is a German word usually meaning "shape" or "form".
2Not to be confused with the co-segmentation problem whose objective is to segment a similar object

from a pair of images [HS09].

17
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similarities appear in both disciplines, Image Processing did not use at �rst the Gestalt

theory. This lack of initial interaction is not really surprising since Gestalt principles

presented in the initial Wertheimer's programme [Wer23] do not translate readily into

algorithms. Also, in the case where two (or more) principles apply simultaneously for the

same input, a lot of work remains to be done to predict which one will win. While the

Gestalt principles are well established among psychologists, they have been criticized for

not being able to explain the phenomena they have uncovered. Furthermore, much of the

research on this topic was conducted only with two-dimensional drawings.

However, Gestalt specialists commonly admit that grouping appears in the �rst steps

of the visual perception system [Kof35, Köh29, Li00]. The same authors also proved that

these �rst steps are independent of any learning or prior knowledge on the world. Thus, it

seems reasonable to think that an algorithm, processing digital images, can reach the same

objective. Some amount of work has been recently done to formalize Gestalt principles

into a probabilistic setting [DMM04]. The experiments of [DMM04] demonstrate that

grouping and image segmentation face exactly the same challenges as in the Gestalt

theory. In what follows, we brie�y remind the image segmentation techniques and the

most popular functionals involved in contemporary work.

1.1.2 History and methods

Image Processing begins to be studied in the 20s for sending images over the Atlantic sea

through underwater cables. However, the time for transmitting data is about one week

and still needs to be drastically reduced to be popularized. Later, H.G. Bartholomew

and M.D. McFarlane reduced this duration to about three hours by compressing data

beforehand but do not evolve anymore until the end of the second world war. The true

development of Image Processing only begins in the 60s due to technological advances in

electronics and computer science. The constant miniaturization of electronic components

makes possible for a wide spectrum of applications in various �elds such as advertising,

entertainment, health, army, industry, security, etc.

The image segmentation problem only begins to be really studied in the 60s/70s lead-
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ing to signi�cant results. If human beings naturally know how to distinguish objects in

an image, it is mainly due to a global understanding of it. A machine do not possess

neither prior knowledge on the image nor a way to check if the obtained result is valid or

not. Segmenting an image is also a subjective process. As a consequence, several valid

segmentations can exist for the same image. Moreover, the notion of "good" segmentation

strongly depends on the image to process and the application. The image segmentation

problem early appears to be ill-posed: knowing the observed data, the solution to it does

not exist and/or is not unique and/or does not depend continuously on input data. To ob-

tain a well-posed problem, a common and reasonable assumption is to assume that images

vary smoothly within regions and discontinuously across boundaries. An important point

to note is the duality between regions and contours: a region is de�ned by its contours

while a contour is a boundary between two adjacent regions. Historically, researchers have

exploited this duality for segmenting images leading to two main approaches: region-based

and contour-based approaches. Contour-based methods search for discontinuities in the

image. They are typically divided into two steps: detection of boundaries and threshold-

ing. The �rst step is based on local properties of boundaries. Earliest methods of �nding

boundaries used small convolution masks to approximate �rst [Rob65, Pre70, Sob70] and

second derivatives of the image [MH80]. Gaussian averaging improves the detection of

boundaries but reduced their localization. From this, Canny [Can86] introduced three

criteria that an edge detector must satisfy: reliability of detection, accuracy of localiza-

tion and unique response per edge. These criteria are then embedded into a cost function

to �nd an optimal edge detector. In the second step, best candidates of boundaries are

generally kept by using simple or hysterysis thresholding on edges magnitude.

In the region-based approach, one search for regions in the image that are consistent

with respect to a given criterion. More precisely, we want to assign a label to each pixel

such that pixels having the same label share common features such as color, direction,

texture, motion, proximity, convexity, etc. For instance, when the number of labels is two,

the segmentation task consists in dissociating objects on a background and is sometimes

refered as binary segmentation. When the number of labels is larger, we will refer to it

as multi-labels segmentation in the sequel.
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Region-merging algorithms are a typical example of such an approach [BF70, Pav72].

These algorithms generally proceed by aggregating small adjacent regions into larger ones

until some criterion is satis�ed. As an illustration, Brice and Fenema choose the following

criterion [BF70]: two regions are said to be similar if there is low jump along their common

border. At the beginning of the algorithm, all pixels sharing the same intensity belong

to the same region. A statistical criterion is proposed by Pavlidis [Pav72]: two regions

are said to be similar if the variance of the regrouped regions is less than some threshold.

The regions initially correspond to a single pixel. Later, Beaulieu and Goldberg improve

this criterion using the same initialization [BG89]. At each iteration, the algorithm �nds

a couple of regions whose the variance of the regrouped regions minus the sum of the

variance of each region is minimal and fuse them. The algorithm stops when the desired

number of regions is obtained. Horowitz and Pavlidis were the �rst ones to provide a

formal de�nition of a region-growing algorithm [HP76].

De�nition 1. Let f be a function mapping a pixel x ∈ (Ω ⊂ Zd) to a value f(x) and a

neighborhood N ⊂ (Ω × Ω) de�ned on Ω. A typical example of neighborhood N consists

of pixel pairs with unit distance. Then, a set of pixels X ⊂ Ω is said to be connected if

for any pixel pair (p1, pn) ∈ (X ×X), we have (pi, pi+1) ∈ N , ∀i ∈ {1, . . . , n− 1}.

De�nition 2. Let Ω ⊂ Zd be the image domain and f(x) the function mapping each

x ∈ Ω to a value f(x). If we de�ne a predicate P on the power set of Ω, the segmentation

of Ω is de�ned as a decomposition of Ω in n subsets {R1, . . . , Rn} such that

• Ω =
⋃n
i=1Ri and Ri ∩ Rj = ∅, ∀i, j ∈ {1, . . . , n}, i 6= j, (i.e. {R1, . . . , Rn} is a

partition of Ω),

• Ri is connected, ∀i ∈ {1, . . . , n} (see De�nition (1)),

• P (Ri) = true, ∀i ∈ {1, . . . , n},

• ∀i, j ∈ {1, . . . , n} s.t. i 6= j, Ri is adjacent to Rj ⇒ P (Ri ∪Rj) = false.

The predicate P is used for testing the homogeneity of the sets Ri which compose

the regions of the input image. Thus, the segmentation is the decomposition of an image

into a set of "homogeneous" (in the sense of P ) regions. The conditions of De�nition 2
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can be summarized as follows. The �rst condition implies that each pixel belongs to one

and only one region. In particular, it means that a segmentation algorithm continues

until each pixel has been processed. The second and third conditions respectively imply

that each region must be connected and homogeneous. Finally, the last condition is a

maximality condition denoting that the fusion of two adjacent homogeneous regions must

be non-homogeneous. Notice that the number of regions n remains to determine. Notice

also that several segmentations can exist for the same predicate P .

Although region-growing algorithms achieve satisfactory results for a large number of

images, most of them do not o�er any means to regularize boundaries of the segmenta-

tion like boundary length and/or curvature [Pav72, BG89]. Furthermore, De�nition 2 is

somewhat limited to a particular kind of segmentation algorithms.

Variational formulation is an elegant answer to this problem. In the variational frame-

work, problems are characterized by a functional (generally measuring some kind of re-

construction error), and solutions are de�ned as minimizers of this functional. Modern

approaches to image segmentation are mostly based on a variational formulation and

date back to the 1980s. The purpose of the following paragraphs is to review the main

functionals involved in most contemporary work on image segmentation.

Consider now Ω, an open subset of Rd (d > 0) as the domain of a digital image

g : Ω → R where g(x) denotes the value of pixel x ∈ Ω in g. A segmentation of g is

de�ned as a pair (u,K) where u : Ω → R is some approximation of g and K denotes

the set of boundaries of u. In a founding paper [MS89], Mumford and Shah introduce

a suitable functional aiming for reconstruction of the input image by piecewise smooth

functions. They propose to minimize among every edge set K and every segmented image

u

E(u,K) = α0L(K) + α1

∫
Ω\K
|∇u|2dx︸ ︷︷ ︸

Regularity

+

∫
Ω

(u− g)2dx︸ ︷︷ ︸
Data �delity

, (1)

where α0, α1 ∈ R2 are free parameters and L(K) denotes the total length of boundaries

K. As usual, the �rst term in (1) imposes regularity on the boundaries K, the second one

also imposes that u varies smoothly within each region except at boundaries, and the last
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Figure 1: Segmentation (right) of a grayscale image (left) using the Mumford-Shah's

functional (2). Observe how regions of approximately constant intensity are assigned to

the same label in the segmentation (right).

one ensures proximity between u and observed data g. In the literature, (1) sometimes

refers as the "multiphase Mumford-Shah" functional.

While good properties can be exhibited from (1), its optimization remains complex

and is not easily accomplished using the standard calculus of variations. For most of the

considered applications, it is generally enough to assume that u is a piecewise constant

function. In such a situation, the second term in (1) vanishes. Consider now Ω as a

partition, i.e. Ω = ∪iΩi and Ωi ∩ Ωj = ∅, ∀i, j ∈ {1, . . . , n}, i 6= j. Then, assuming that

u is a piecewise constant function and the number of regions n is �nite in u, (1) can be

rewritten as

E(K) = α0L(K) +
n∑
i=1

αi

∫
Ωi

(u(x)− ūi)2dx, (2)

where ūi =

∫
Ωi
g(x)dx∫

Ωi
dx

is the mean intensity of region Ωi and αi ∈ R+ are free parameters,

∀i ∈ {0, . . . , n}. Here, the operator ']' stands for the cardinality of a set. An example of

segmentation is illustrated in Figure 1. When n = 2, Chan and Vese proposed a level-set

method (see [OS88]) for numerical realization of the optimization problem (2) [CV01].

With this approach, the unknown boundaries are represented by the zero level-set of a

continuous function (e.g. a distance function) φ : Ω → R. The idea is to express the

functional (2) in terms of the level-set function φ(.). They propose to minimize among

every level-set function φ(.) and every mean intensities ū1 and ū2 the following binary
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problem ∫
Ω

(|∇H(φ)|+ λ[H(φ)(ū1 − g(x))2 + (1−H(φ))(ū2 − g(x))2])dx, (3)

where λ ∈ R+ is a free parameter and H : R → R is the Heaviside function de�ned as

H(x) = 0 if x < 0 andH(x) = 1 otherwise. In [CV01], the authors propose to optimize the

functional (3) using Partial Di�erential Equations (PDE) with the following alternating

minimization scheme until stability:

1. Obtain an initial guess of mean intensities ū1 and ū2.

2. Fix mean intensities ū1, ū2 and minimize (3) over φ.

3. Fix φ(.) and update mean intensities ū1, ū2 from segmentation u.

In particular, since (3) is non-convex, reaching a global minimum is not guaranteed. Notice

that the work of [CV01] can be easily extended to the case where n > 2 by introducing

more level-set functions to describe a larger number of regions [TC04] or reformulated

using only one [BT08]. This algorithm quickly gained popularity mainly due to its ability

to segment objects that are not necessarily de�ned by gradient. Also, in the level-set

literature a manually placed contour or circular seeds are often used to obtain a good

estimate of ū1 and ū2 [CV01] but unsupervised clustering algorithms have also been used

in the past [BT08]. Notice that the speed and the reliability of solutions strongly depend

on the initialization in [CV01]. Although traditional PDE-based methods remain very

popular due to their ability to automatically deal with topology changes, they generally

are computationally expensive and su�er from numerical instability and to local minima.

Convergence can be sped up using graph cuts in the step (2) of the previous alternating

minimization scheme [BT08, ZCP06]. [ZCP06] improve performance by taking advantage

of dynamic graph cuts [KT07] between successive iterations. Experiments in [KT07] show

that graph cuts outperform level-set methods by several orders of magnitude. Graph cuts

also appear to be less sensitive to initialization than level-set methods albeit an initial

guess of mean intensities is still necessary.

Finally, we want to mention the work of [RD02] which introduces another Bayesian

model for image segmentation when n = 2. They pursue the issues adressed by [CV01]
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and improve the results obtained by representing each region Ωi by a Gaussian function

instead of a constant intensity ūi, ∀i ∈ {1, . . . , 2}. They propose to minimize among every

edge set K and mean intensities ū1 and ū2

α0L(K) +
2∑
i=1

αi

∫
Ωi

ei(x)dx, (4)

with

ei(x) =
(u(x)− ūi)

σ2
i

+ log σ2
i ,

where σ2
i is the intensity variance of the region Ωi, ∀i ∈ {1, 2}. Again, the functional (4)

is optimized using the same alternating minimization scheme as in [CV01]. Previous

references are not exhaustive since segmentation methods are relatively abundant in the

literature. Di�erences between these methods generally lie in the functional and the way

it is minimized. A good attempt of classi�cation has been recently made in [Lec09] in the

medical context and could be extended in various ways:

• Region-based. As explained before, this approach uses localization and identi�-

cation techniques of connected sets of pixels. Classi�cation methods partition the

image into several labels (or classes) and often constitute a �rst step in image seg-

mentation. In [Lec09], these classi�cation methods are split according to several

criteria: probabilistic, deterministic, (non-)parametric and (non-)supervised. For

instance, it includes neural networks (deterministic supervised method), k-means

and mean shift (deterministic non-supervised methods), Markovian approaches and

Support Vector Machines (probabilistic non-parametric methods).

• Edge-based. Unlike region-based approaches, the primitives to extract are bound-

aries separating multiple regions. In words, it consists in identifying transition areas

and localizing the boundary between regions. In [Lec09], this approch also includes

derivative scale-space models and wavelets (and its derivatives such as bandlets or

curvelets).

• Structural. This approach makes use of set operations to build morphological

operators (e.g. erosion, dilatation, morphological gradient, etc.) or higher level

algorithms like the Watershed algorithm.
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• Shape. Methods based on the shape tend to �nd regions deriving from a shape

given as a priori. Such methods include in [Lec09] spherical harmonics, level-sets

and active contours.

• Graph theory. Graph-based segmentation approaches have recently attracted

strong interest from the research community. In these techniques, each pixel is

mapped onto a node in a graph. Neighboring nodes are connected by weighted

edges (graphs) or hyperedges (hypergraphs 3). Generally, the weights are �xed in

such a way to re�ect the similarity or dissimilarity between pixels or regions having

the same visual features. Then, the graph is partitioned into multiple subgraphs

with an appropriate technique. Once the graph is partitioned, a segmentation can

be easily deduced by using the correspondence between nodes in the graph and

pixels in the image.

1.2 Graph cuts: principle and algorithms

1.2.1 History and related work

Historically, the theory of graph cuts was �rst applied in Computer Vision by Greig, Por-

teous and Seheult in [GPS89]. Their primary interest was in assessing the performance

of algorithms used to �nd the Maximum A Posteriori (MAP), such as Simulated Anneal-

ing (SA). In the Bayesian statistical context of image denoising, they showed how the

MAP estimate of a binary image can be exactly obtained by maximizing the �ow through

a capacitated network with two terminals. Thus, their contribution removes any ques-

tion of convergence when using iterative algorithms such as SA or Iterated Conditional

Modes (ICM). The problem was therefore shown to be solved in polynomial time using a

maximum-�ow/minimum-cut algorithm.

Then, graph cuts stayed behind the scenes during about one decade due to the limited

scope of applications of [GPS89]. Although an e�cient hierarchical approach was initially

3A survey on hypergraphs in Image Processing is available in [BCA]. An application of hypergraphs

for segmenting cerebral tissues is notably available in [RCM05b, RCM05a].
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proposed in [GPS89] to speed up the maximum-�ow computation, the algorithm requires

excessive time yet mainly due to computer technology limitations.

In 1998, Roy and Cox relaunched the interest of graph cuts for globally solving the

N-camera stereo correspondence problem in O(n2d2log(nd)), where n is the number of

pixels and d is the depth resolution. The latter is transformed into a maximum-�ow

problem and a graph with two terminals is built. Then, the problem is solved using a

standard maximum-�ow algorithm [RC98]. Once solved, the minimum-cut associated to

the maximum-�ow yields a disparity surface for the whole image at once.

The following years yield strong theoretical results [KZ04, IG99, Ish03] in the multi-

labels case. Already in 1999, Ishikawa both proved that the energies which can be mini-

mized by graph cuts are convex and did provide a graph construction in such a situation.

This result is restated in a more formal manner in [Ish03]. But mostly, graph cuts really

gained popularity with the introduction of a fast maximum-�ow algorithm [KZ04] and

e�cient multi-labels heuristics [BVZ99], both making near real-time performance for a

wide range of problems in Computer Vision such as image segmentation, restoration, im-

age registration, optical �ow, stereovision, multi-view reconstruction, texture synthesis,

etc 4. These heuristics are often applied iteratively to a sequence of binary problems,

usually yielding near optimal solutions [BVZ99].

In order to be more rigorous with the current literature, we shall complete the classi-

�cation of [Lec09] on image segmentation techniques by adding some recent work in the

continuous domain such as Normalized Cuts [SM00], Random Walker [GFL04] and Power

Watersheds [CGNT09].

In order to avoid small cuts in graph cuts, Shi and Malik propose to optimize a cost

function which slightly di�ers from the traditional minimum-cut [SM00]. First, a grid

graph G = (V , E) is built as in graph cuts but without embedding any terminals. The

problem is formulated as �nding a partition of nodes (A,B) of V in G by optimizing a

quantity (the normalized cut) which both ensures the consistency of nodes in A and B

as well as the dissimilarity of A with respect to B. Finding a normalized cut of minimal

4We refer the reader to [BK04] for typical applications of graph cuts.
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value exactly is an NP-hard problem and the authors choose to relax it in the continuous

domain. Then, a pairwise similarity matrix is built and the eigenvectors of this matrix

are computed. Then, the graph is partitioned with the second smallest eigenvalue and is

possibly subdivided.

As [SM00], the Random Walker algorithm [GFL04] is also formulated on a weighted

graph. Assuming that the user provides K seeds, the algorithm determines labels for the

unseeded nodes by assigning the pixel to the seed for which it is most likely to send a

random walker. This may be also interpreted as an interactive version of the Normalized

Cuts [SM00]. The key idea of this algorithm is to compute for each pixel, the probability

that it �rst reaches each of the K seed points. Thus, a vector of size K − 1 is assigned to

each pixel (since the sum of probabilities equals to one). In fact, such an approach amounts

to solve a Dirichlet problem. Computing these probabilities amounts to solving a large,

sparse and symmetric linear system of equations. Once these probabilities are computed,

the most likely label of each pixel p is taken as the maximum of the K probabilities of p.

Finally, the recent work of [CGNT09] uni�es the graph cuts framework, the Random

Walker and shortest path optimization under a common energy function. They gener-

alize previous links established between graphs cuts and maximum spanning forests by

proving that all cuts resulting of the minimization of the terms Ep,q(.) (including Random

Walker and graph cuts) converge to maximum spanning forest cuts as the edge capacities

tend to in�nity, under the condition that all maxima of the edge capacity function are

seeded. Promising results are obtained by varying the exponent on the di�erence be-

tween neighboring nodes. Moreover, the method can be easily generalized to multi-labels

segmentation.

In the subsequent sections, we �rst review the duality between maximum-�ow and

minimum-cut problems and describe the most popular algorithms used for solving them.

Next, we explain how a pairwise energy functional can be minimized in this framework

and detail two models used in image segmentation.
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1.2.2 De�nitions and notations

We consider a weighted directed graph G = (V , E) as a set of directed edges E ⊂ (V × V)

as well as a set of nodes V = P ∪ {s, t} with two terminal nodes s and t respectively

named the source and the sink. Notice that the nodes P ⊂ Zd (d > 0) are disposed on a

lattice and usually correspond to pixels/voxels whereas the set of edges E represents the

relations between two adjacent nodes. We also assume that for every node p ∈ P ,

(p, s) 6∈ E and (t, p) 6∈ E . (5)

In words, no edges go back from p to s and from t to p in G. Additionally, we split the set

of edges E into two disjoint sets En and Et denoting respectively the n-links (neighborhood

links) and t-links (terminal links):

En = {(p, q) ∈ E | (p, q) ∈ (P × P)},

Et = {(s, p) ∈ E | p ∈ P}
⋃
{(p, t) ∈ E | p ∈ P}.

(6)

To express a wide variety of energies, we also need to describe how each node interacts

with other nodes nearby. We therefore denote the neighbors of any node p ∈ V by

σE(p) = {q ∈ V | (p, q) ∈ E or (q, p) ∈ E}, (7)

and provide G with a neighborhood system N ⊂ P × P de�ned as a subset of all pixel

pairs (p, q) ∈ (P × P) in G. In this context, the following neighborhoods are used

N0 = {(p, q) ∈ E :
∑d

i=1 |qi − pi| = 1} or,

N1 = {(p, q) ∈ E : |qi − pi| ≤ 1 ∀i ∈ {1, . . . , d}},

where pi denotes the ith coordinate of the pixel p ∈ Zd. As an illustration, each pixel

has respectively 4 and 8 neighbors in 2D, 6 and 26 neighbors in 3D and �nally 8 and 80

neighbors in 4D, for N0 and N1 neighborhoods respectively. In what follows, "connectiv-

ity 0" and "connectivity 1" refer to the use of N0 and N1 neighborhoods, respectively.

Furthermore, we de�ne the edge capacities as a mapping c : (V × V) → R+ and denote

the capacity of any edge (p, q) ∈ (V × V) by

cp,q ≥ 0.
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Figure 2: An example of a weighted directed graph with six grid nodes and two terminals.

Although the mapping c(.) is de�ned for any (p, q) ∈ (V × V), we always set

cp,q = 0, when (p, q) 6∈ E . (8)

Doing so non-null capacities are only de�ned on existing edges. Furthermore, we assume,

without loss of generality (see [KZ04]) that edge capacities are such that for every grid

node p ∈ P , we have

cs,p 6= 0 ⇒ cp,t = 0. (9)

Therefore, we summarize the edge capacities of t-links and set for all grid node p ∈ P

cp = cs,p − cp,t. (10)

In the sequel, such quantites will be called "contracted capacities" for the sake of clarity.

Figure 2 shows an example of a weighted directed graph de�ned on a 3× 2 lattice.

We now describe the notion of graph partitioning which we will always refer to as s-t

cut throughout this document. This notion is formally de�ned in De�nition 3 illustrated

in Figure 3.

De�nition 3 (s-t cut). Let G = (V , E) be a weighted directed graph. An s-t cut C =

(S, T ) in G is a subset of edges F ⊂ E such that, in G ′ = (V , E \ F ), there is no path

going from s to t and such that no proper subset of F veri�es this property. The set V is

then partitioned into two disjoints sets S and T (i.e. S ∩ T = ∅ and S ∪ T = V) such

that ∀p ∈ S (resp. T ), there exists a path from s to p (resp. from p to t).
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Figure 3: An s-t cut of a weighted directed graph whose weight is equal to 8. The red

dashed line denotes the s-t cut C splitting V into two disjoint sets of nodes S = {s, a, b, d, e}

and T = {c, f, t}. Thus, C consists of the set of edges {(b, c), (e, f)}.

Observe that an s-t cut contains only edges going from S to T . As an illustration, the

edge (c, e) in Figure 3 does not belong to the s-t cut. Then, we can de�ne the weight of

an s-t cut C as the sum of the capacities of all edges in C.

De�nition 4 (s-t cut capacity). Let G = (V , E) be a weighted directed graph. The

capacity of an s-t cut C in G is the positive real:

valG(C) =
∑

(p,q)∈(S×T )

cp,q =
∑

(p,q)∈C

cp,q.

This naturally leads us to the minimum-cut problem which amounts to �nd an s-t cut

C∗ of minimum weight in G (see De�nition (5)).

De�nition 5 (minimum s-t cut). A minimum-cut of a graph G is an s-t cut C of min-

imum weight.

This notion is illustrated in Figure 4. Notice that the De�nition 5 implies that several

minimum s-t cuts can co-exist in the same graph G.
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Figure 4: A minimum s-t cut C∗ of a weighted directed graph, whose weight is equal to

6. The minimum s-t cut C∗ consists of the set of edges {(b, c), (b, e), (d, e)}.

Although the possible number of s-t cuts grows quickly with the number of non-

terminal nodes (which is bounded by 2]P), it is well known that the minimum s-t cut

problem (or min-cut problem for short) is the dual problem of the maximum-�ow problem

(or max-�ow problem for short) and can be solved in polynomial time. By duality, the

minimum-cut can be therefore solved with the same complexity [DF56, ECS56]. This is

a typical optimization problem often associated to transportation, which was thoroughly

studied over the last decades in the domain of operational research.

We now review the max-�ow problem and its duality with the min-cut problem. First,

we de�ne �ows as any mapping f : (V × V)→ R+. A �ow is said to be valid if it ful�lls

the edge capacity constraint and �ow conservation constraint.

De�nition 6 (�ow). Let G = (V , E) be a graph. A �ow f is said to be valid if it satis�es

the capacity constraint

0 ≤ fp,q ≤ cp,q, ∀(p, q) ∈ (V × V), (11)

and if the �ow conservation holds for any p ∈ V \ {s, t}

∑
q∈σE(p)

fq,p =
∑

q∈σE(p)

fp,q. (12)

Again (8) and (11) guarantee that

fp,q = 0, ∀(p, q) 6∈ E . (13)
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Figure 5: A valid �ow on a weighted directed graph. Left numbers denote �ow while right

numbers denote edge capacities.

This is the reason why we do not clarify that (q, p) ∈ E (resp. (p, q) ∈ E) in the left (resp.

right) hand side sum in (12). We can now de�ne the value of the �ow f in G by 5

valG(f) =
∑

p∈σE(s)

fs,p. (14)

As for edge capacities, we also summarize the �ow only passing through t-links for any

grid node p ∈ P

fp = fs,p − fp,t. (15)

Furthermore, it is easily seen that for any �ow f and any S ⊂ V , the �ow entering S is

equal to the �ow leaving S: ∑
p∈S
q 6∈S

fq,p =
∑
p∈S
q 6∈S

fp,q. (16)

Considering (9), (11) and (15), we can now rewrite (16) and obtain that for any S ⊂ P

∑
p∈S

fp +
∑
p∈S
q∈P\S

(fq,p − fp,q) = 0. (17)

As the min-cut problem, the max-�ow problem consists in �nding the maximum amount

of �ow which can be routed from s to t in G (see De�nition 7).

De�nition 7 (Maximum-�ow). A maximum-�ow in a graph G is a valid �ow of max-

imum value.

5Notice that the same notations are used for the �ow value and the s-t cut value in G. This abuse of

notation will never be ambiguous once in context.
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Figure 6: A max-�ow in the weighted directed graph of Figure 2. Observe that the value

of max-�ow reached is equal to the value of the min-cut in Figure 4. Saturated edges

belonging the min-cut are shown with dashed lines. Red nodes refer to nodes which can

be reached from s in the residual graph Gf whereas blue nodes refer to the remaining

nodes in the same graph. Left numbers denote �ow while right numbers denote edge

capacities.

An example of a valid �ow is illustrated in Figure 5. Notice that it is not a maxi-

mum �ow since some �ow can be routed yet from s to t. Then, the following theorem,

independently discovered by Dantzig and Fulkerson [DF56] as well as Elias, Feinstein and

Shannon [ECS56] establishes the duality between the max-�ow and the min-cut prob-

lems 6. This situation is outlined in Figure 6.

Theorem 1 (min-cut / max-�ow theorem [DF56, ECS56]). Let G be a weighted

directed graph. The max-�ow value in G is equal to the smallest value of any s-t cut

dividing V into disjoint sets S and T . Thus, we have

max
f∈F

valG(f) = min
C∈K

valG(C),

where F denotes the set of all feasible �ows in G and K the set of all s-t cuts in G.

In the subsequent sections, we detail the most popular approaches designed for solving

the max-�ow / min-cut problem and explain how this technique can be used to minimize

energy functionals frequently arising in Computer Vision problems.

6Notice that the edges belonging to C∗ are all saturated but it can exist some saturated edges which

do not belong to C∗.
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1.2.3 Maximum-�ow algorithms

The past �ve decades have witnessed proli�c developments of algorithms for solving the

max-�ow problem. Currently, these algorithms can be classi�ed in three categories:

feasible-�ow algorithms, pre�ow algorithms and pseudo�ow algorithms. In the subse-

quent, we brie�y describe all these approaches.

1.2.3.1 Feasible-�ow algorithms

First, we denote an s-t path from s to t in G by φG = ((s, p0), (p0, p1), . . . , (pl−1, pl), (pl, t)),

where (pi, pi+1) ∈ E , ∀i ∈ {0, . . . , l − 1} and (s, p0), (pl, t) ∈ E2. We say that an edge

(p, q) ∈ (V × V) is saturated if fp,q = cp,q. And by extension, an s-t path φG is said to be

an augmenting path if all edges are non-saturated along it in G. Standard feasible-�ow

algorithms typically work by pushing �ow f along augmenting paths in a residual graph

Gf (see De�nition 8) until no more augmenting path is found. When such a situation

occurs, it can be easily proved that the value of f reaches its maximum (see Theorem 2).

De�nition 8 (Residual graph). Let f be a valid �ow in G = (V , E). The residual

graph Gf = (V , Ef ) associated to the �ow f in G is built as follows, ∀(p, q) ∈ (V × V):

• If fp,q < cp,q, (p, q) ∈ Ef with the residual capacity cfp,q = cp,q − fp,q.

• If fp,q > 0, (q, p) ∈ Ef with the capacity cfq,p = fp,q.

Theorem 2. A valid �ow f on a graph G has a maximum-�ow value valG(f) if and only

if there is no more augmenting paths φGf in Gf .

The detailed modus operandi of a feasible-�ow algorithm is the following (see Algo-

rithm 1): at the beginning of the algorithm, we set f(u) = 0 ∀u ∈ E and build Gf according

to the De�nition 8. As a consequence, Gf has the same topology as G. Notice that Gf

can have edges that do not belong to G. Then, at each iteration, the algorithm attempts

to �nd a new augmenting path φGf from s to t in Gf . If so, we compute the maximum

amount of �ow which can be pushed (denoted by ∆f) as the minimum residual capacity

along this path. Then, residual capacities on this path are decreased by a quantity ∆f on

34



Graph cuts: principle and algorithms N. Lermé

s t

a b c

d e f

3

5

9

1

4

2

5

4

1

4

61

3

2

1

1

6

2 2
5

1

6

1

Figure 7: The residual graph of the weighted directed graph of Figure 6.

forward edges (edges oriented from s to t) and increased by ∆f on reverse edges (edges

oriented from t to s). This situation is illustrated in Figure 7. Thus, this path is no longer

an augmenting path since at least one edge becomes saturated along it. Furthermore, the

total value of �ow f increases by a quantity ∆f . The algorithm iterates until no more

augmenting path is found in Gf . Thus, a �ow f ∗ of maximum value is reached when all

paths φGf possess at least one saturated edge in Gf . With such representation, S and T

can be therefore easily deduced from f ∗, as S consists of all nodes which can be reached

from terminal s.

Algorithm 1 Feasible-�ow algorithm.

Inputs: A graph G = (V , E) with two terminals s and t.
Outputs: f ∗

1. fp,q ← 0, ∀(p, q) ∈ E
2. while ∃ an augmenting path φGf in Gf do
3. ∆f ← min {cfi,j | (i, j) ∈ φGf}
4. update residual graph Gf with ∆f

5. endwhile
6. return f

However, Algorithm 1 does not explain how to select an augmenting path in the

residual graph Gf . More precisely, this crucial step signi�cantly a�ects theoretical time

complexity and practical e�ciency of max-�ow/min-cut algorithms. A typical implemen-

tation choice is to �nd paths either with the fewest number of edges (shortest paths) or

having the maximum bottleneck capacity (fattest paths). Historically, Ford and Fulkerson

were the �rst to design a generic labeling procedure to select augmenting paths whose

time complexity is O(]V]EU), where U is the maximum edge capacity in G [FF56]. As
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an illustration, if we have U = 2]V , the complexity becomes O(]V]E2]V), i.e. exponential

with the number of nodes over the network.

Later, Edmonds and Karp [EK72] propose a (strongly) polynomial algorithm of com-

plexity O(]V]E2). This algorithm performs Breadth-First Search (BFS) for selecting the

shortest paths from s to t in the residual graph Gf . Dinic [Din70] lowers this time com-

plexity to O(]V2]E) as follows: when all paths of a length k are explored, the algorithm

starts again a BFS from scratch by exploring the paths of length k + 1.

Ideally, one would like to combine the bene�ts of shortest and fattest paths: while we

want a short path to reach the sink quickly, we also want to send as much as possible

�ow along each path from s to t. However, combining both criteria at the same time

is practically impossible. Capacity scaling o�ers a trade-o� by relaxing the "maximum

capacity" requirement and setting it for a "su�ciently large capacity" instead. The ca-

pacity scaling approach proposed in [EK72, Din70] suggests to select the shortest paths

among all paths of capacity higher than some threshold. Thus, initial coarser scales focus

on higher capacity paths whereas later �ner scales handle remaining lower capacity paths.

Selecting a good set of scales is important as it can change the complexity and the running

time of the algorithm.

In [JB07], a geometrically decreasing series of thresholds like A = {2logU , . . . , 2k, 1, 0}

is proposed for lowering the complexity of the max-�ow algorithm of [BK04]. They obtain

a weakly time complexity of O(]E2]V2log(U)) instead of O(]E2]V2 valG(f
∗)) (see below).

Experiments suggest that intermediate solutions obtained at �rst coarse scales are of good

quality when running time is a priority. The proposed algorithm also appears robust to

noise. However, the role of the regularization parameter probably impacts performance

but is surprisingly never discussed. Lastly, capacity scaling generalizes well to more recent

methods such as pre�ow-push algorithms [GT88] or pseudo�ow algorithms [Hoc98].

Boykov-Kolmogorov's algorithm

As we have seen before, the augmenting paths of length k+1 are explored from scratch

as soon as those of length k are all explored in the Dinic's algorithm [Din70]. Nevertheless,

in the context of Computer Vision and Graphics, a BFS implies to scan the major part of
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the image pixels. This operation naturally turns out to be very costly if it is performed

too often.

From here, Boykov and Kolmogorov developed an e�cient algorithm [BK04] 7 which

maintains two non-overlapping A and B trees respectively rooted at the source and the

sink. The nodes in these trees can be either active or passive. Passive nodes represent

the leaves of the tree. Other nodes are said to be free. We want also to mention that

this algorithm was previously described in [Mur03]. However, since this algorithm gained

popularity inside the Computer Vision community, we will refer to the work of [BK04] in

the rest of this document.

The algorithm consists of three stages. During the �rst stage, search trees A and B

grow simultaneously by acquiring children along non-saturated edges, until an augmenting

path is found (growing stage). Then, the �ow is pushed along this path (augmentation

stage). After this stage, search trees are broken into forests because some nodes (orphans),

are linked to their parent through a saturated edge. The �nal stage consists in �nding

a new valid parent for each orphan in the same search tree (adoption stage). The algo-

rithm iterates these steps until search trees cannot grow anymore and are only divided by

saturated edges.

The upper bound on the complexity given in [BK04] is O(]E]V2 valG(f
∗)). While

having a worse theoretical time complexity than [Din70], this algorithm outperforms em-

pirically other standard max-�ow algorithms (such as the Dinic's [Din70] algorithm and

other push-relabel algorithms) on typical vision graphs making possible near real-time

performance for a wide range of applications [BK04]. Nevertheless, unlike pre�ow-push

and pseudo�ow methods (see next paragraphs) empirical performance of this algorithm

deteriorates on denser (larger neighborhood) grid graphs [BK04] and when moving from

2D to 3D and 3D+t applications.

7An implementation is freely available at http://www.cs.cornell.edu/People/vnk/software.html.
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Figure 8: Representation of search trees A (red) and B (blue) at the end of the growing

stage when an augmenting path (yellow line) is found. "A" and "B" labels resp. stand for

active and passive nodes. Free nodes appear in black. The picture is courtesy of [BK04].

1.2.3.2 Pre�ow-push algorithms

Initially introduced by Goldberg and Tarjan in [GT88], the approach of the pre�ow-push

(or push-relabel) algorithms di�ers a lot from the feasible-�ow ones. As an illustration,

such algorithms maintain a �ow (called pre�ow) that may violate the restriction on the

balance of the incoming �ow and the outgoing �ow into each node other than s and t by

permitting excesses (more in�ow than out�ow). Some nodes are said to be active if the

excess of �ow is positive.

A labeling of nodes is maintained giving an upper bound on the distance to the sink

along non-saturated edges. The algorithm tries to push the excess of �ow towards the

nodes having a shorter distance to the sink. This operation is typically applied to the

nodes having a larger distance to the sink using a FIFO selection strategy. Thus, one

tries to push the �ow towards the sink at each iteration. If this operation is not possible,

the node is relabeled by increasing its distance to the sink. Thus, the node is moved away

from the sink and the push operation will be harder in subsequent steps.

A push-relabel algorithm iterates while a push and or a relabel step is possible. The

simplest push-relabel implementation has a complexity of O(]V2]E) [GT88] but a lot of

heuristics have been proposed for the selection strategy in the literature for lowering this

complexity.
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1.2.3.3 Pseudo�ow algorithms

Again, the approach di�ers from the feasible-�ow algorithms and pre�ow-push ones. Intro-

duced by Hochbaum in [Hoc98], these algorithms further relax the �ow-balance constraint

on each node other than s and t by permitting both excesses and de�cits. Source and sink

nodes have no distinguished role and all edges adjacent to the source and the sink are main-

tained saturated throughout the execution of the algorithm. The method seeks a partition

of the set of nodes into subsets, some of which have excesses, and some have de�cits, so

that all edges going from excess subsets to de�cit subsets are saturated. A partition with

this property is provably a minimum cut. The �rst max-�ow algorithm using pseudo�ows

was �rst proposed by Hochbaum with a complexity of O(]V]E log(]E)) [Hoc98].

1.2.4 Markov Random Fields and energy minimization

Variational and Markov Random Field (MRF) methods have been proposed for a wide

range of problems in Image Processing. Variational formulations have the advantages

to be more �exible to analyze and can embed more easily geometric constraints. On the

other hand, certain commonly used MRF models do not properly approximate continuous

formulation in the sense that the discrete solutions may not converge to a solution of the

continuous problem as the lattice spacing tends to zero. Nevertheless, discrete (MRF)

formulations have computational advantages and are typically used in implementing such

methods. In what follows, we �rst remind that �nding the MAP in a MRF is equivalent

to minimizing an appropriate energy function. Afterwards, we brie�y recall how the latter

can be minimized with graph cuts.

Remind �rst that P is a set of nodes, L = {l1, . . . , lk} is a set of labels and N is a

neighborhood system de�ned over P . Let U = {U1, . . . , U]P} be a set of random variables

where each variable Up ∈ L. A particular realization (or con�guration) of the �eld U is

denoted by u = {up | p ∈ P} and P(up) is short for P(Up = up). Then, U is said to be a

MRF if

• P(u) > 0, ∀u ∈ LP ,
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• P(up|uP\{p}) = P(up|uNp),

where uNp denotes the set of labels in the neighborhood of p. The �eld U is generally not

observable. It is therefore common to estimate u based on empirical data i. To achieve

this, a widespread approach is to estimate the MAP of U by maximizing the posterior

probability 8

P(u|i) =
P(i|u)P(u)

P(i)
. (18)

Since P(i) do not depends on u, the MAP estimate u∗ is

argmax
u∈LP

P(i|u)P(u). (19)

Assuming that all observations on i are independent, i.e.

P(i|u) =
∏
p∈P

P(ip|up), (20)

and by using (20), (19) and (18), we therefore obtain

u∗ = argmax
u∈LP

∏
p∈P

P(ip|up)P(up). (21)

The Hammersley-Cli�ord theorem [HC71] establishes the equivalence between MRF and

Gibbs random �elds for the prior probability with

P(f) ∝ exp
(
−
∑

(p,q)∈N

Ep,q(up, uq)
)
. (22)

By further assuming that

P(i|u) ∝ exp
(
−
∑
p∈P

Ep(up)
)
, (23)

we now have to maximize among u ∈ LP

exp
(
−
∑
p∈P

Ep(up)−
∑

(p,q)∈N

Ep,q(up, uq)
)
, (24)

which is equivalent to minimize

E(u) = β
∑
p∈P

Ep(up) +
∑

(p,q)∈N

Ep,q(up, uq), β ∈ R+. (25)

8Please note that other Bayes estimators exist such as Minimum Mean Square Error.
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In equation (25), the data term Ep(.) represents the cost for assigning the label up to the

pixel p without regards to its neighbors. In a similar manner, the smoothness term Ep,q(.)

penalizes pixel pairs (p, q) ∈ (P × P) having di�erent labels.

Let us now describe the principle of graph cuts in the binary case, i.e. when restricting

]L to only two labels. First, for any s-t cut C = (S, T ) we de�ne uC ∈ {0, 1}P by

uCp =

 0 if p ∈ T

1 if p ∈ S
, ∀p ∈ P . (26)

The key idea of graph cuts is to construct a graph G = (V , E) such that for any s-t cut

C ∈ K, we have

valG(C) = E(uC) +K, (27)

for some additional constant K ∈ R, independent of C. Such an energy function E is

then called graph-representable. The min-cut in G therefore corresponds to a minimizer

of (25) and can be e�ciently computed by using an appropriate max-�ow algorithm (see

Section 1.2.3). When Ep,q(.) is submodular, Kolmogorov and Zabih give in [KZ04] a

simple construction (see Figure 9) of a graph G satisfying (27). Therefore, they prove

that (25) can be globally minimized (see Theorem 3).

Theorem 3 (binary graph-representability [KZ04]). Let E be a pairwise energy func-

tion of binary variables. Then, E is graph-representable if and only if each term Ep,q(.)

is submodular, i.e. satisfying

Ep,q(0, 0) + Ep,q(1, 1) ≤ Ep,q(0, 1) + Ep,q(1, 0).

The Theorem 3 is also extended by [KZ04] for energy functions handling pairwise terms

and terms composed of three variables. Later, these results were further generalized by

Freedman and Drineas in [FD05] for energy functions embedding any number of variables.

When ]L > 2, the problem of �nding the global minimum of (25) is intractable.

Observe �rst that the space of labelings becomes huge as ]L and P grow since the total

number of labelings is equal to ]L]P . Even worse, �nding the global minimum of (25)

is known to be a NP-hard problem. Hence, any general-purpose energy minimization
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(b) Ep

term where

Ep(0) < Ep(1)

(c) Ep

term where

Ep(0) > Ep(1)

(d) Ep,q term where C >

A and C > D

Figure 9: Graph construction in the binary case [KZ04].

algorithm will require an exponential time. Nevertheless, Ishikawa develops a method

to �nd the exact minimum of (25) when the labels set L is linearly ordered 9 and the

smoothness terms Ep,q(.) are convex function of the labels di�erence (see Theorem 4).

His de�nition of the convexity in the discrete setting is given in De�nition 9. Convex

smoothness terms include the cases where g(.) is the absolute and squared labels di�erence

in De�nition 9. In [Ish03, IG99], a graph construction gain is detailed for such cases.

However, this construction increases a lot the number of nodes (and even more the number

of edges) in G compared to binary problems. Notice that the topology of G depends

both on g(.) and the number of labels. As an illustration, when using absolute and

squared labels di�erence with connectivity 0, this leads to a graph with O(]P]L) and

O(]P]L2), respectively. Remark also that the space of all labelings LP can be relatively

large in practice and the di�culty when solving a particular vision problem is generally

associated to the underlying number of labels. As an illustration, a typical segmentation

problem requires at maximum a dozen of labels whereas optical �ow or restoration requires

9This assumption obviously holds when the set of labels L consists of integers but rules out using this

method for motion estimation since labels are two-dimensional. [RG00] overcomes this situation by �xing

one component of a motion vector and letting the other vary.
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hundreds of them.

De�nition 9 (convexity [Ish03, IG99]). Let E be a pairwise energy function. For

any couple of labels l1, l2 ∈ L and any pixels (p, q) ∈ N , a smoothness term Ep,q(l1, l2) =

wp,qg(l1 − l2) is said to be convex if for any integer x

g(x+ 1)− 2g(x) + g(x− 1) ≥ 0.

De�nition 10 (linearly ordered). A set G is said to be linearly ordered if the order

relation ≤ is total on G. The following statements must hold ∀a, b, c ∈ G:

• If a ≤ b and b ≤ a, then a = b (antisymmetry)

• If a ≤ b and b ≤ c, then a ≤ c (transitivity)

• a ≤ b or b ≤ a (totality)

Theorem 4 (multi-labels graph-representability [Ish03]). Let E be a pairwise en-

ergy function de�ned on a linearly ordered labels set L (see De�nition 10). Then, E is

graph-representable if and only if Ep,q(.) is convex (see De�nition 9) with respect to L,

∀(p, q) ∈ E.

Convex smoothness terms Ep,q(.) are however usually known to preserve discontinuity

less e�ciently than non-convex ones. Optimizing the corresponding energy functional

leads to solutions with over-smoothed borders. In the non-convex case, some amount of

work has been done in the binary case [RKLS07] and in the multi-labels case [BVZ99].

For instance, authors of [BVZ99] designed heuristics like α-expansion or α-β swap o�ering

good performance for a large number of problems. In the next section, we detail the graph

cuts framework applied to image segmentation.

1.2.5 Binary graph cuts-based segmentation

Consider an image I : P ⊂ Zd → [0, 1]c (d > 0, c > 0) as a function, mapping each point

(called pixel) p ∈ P to a value Ip ∈ [0, 1]c. We de�ne a binary segmentation as a mapping

u assigning each element of P with the value 0 for the background and 1 for the object
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and we write u ∈ {0, 1}P . In the image segmentation context, a popular strategy consists

of minimizing an MRF of the form [BJ01]

E(u) = β
∑
p∈P

Ep(up) +
∑

(p,q)∈N

Ep,q(up, uq), (28)

among u ∈ {0, 1}P and for a �xed β ∈ R+. While the data term Ep(.) ensures proximity to

initial data, the smoothness term Ep,q(.) assumes that the boundaries of the segmentation

are smooth. The latter is typically used to better align boundaries of the segmentation on

the image edges based on visual features such as intensity, gradient direction or texture

information. In this setting, nodes usually correspond to image pixels/voxels while n-

links re�ects similarity between neighboring nodes. Once a min-cut C∗ is computed, the

segmentation readily corresponds to (26). In the next subsequent sections, we brie�y

review two popular energy functionals used in image segmentation.

1.2.5.1 TV+L2 energy model

Initially introduced by Rudin, Osher and Fatemi [ROF92], the TV+L2 (ROF) model

and its variants have been a very active research topic in image restoration. This model

has also successfully demonstrated its e�ciency for segmenting cars in video [RCD07].

It is only de�ned for grayscale images but can of course be applied to a grayscale image

resulting from a multichannel image. In the image segmentation context, the segmentation

is taken as a level-set of the minimizer u∗ of
L−2∑
µ=0

∑
(p,q)∈N

wp,q|uµp − uµq |︸ ︷︷ ︸
TV (u)

+β‖u− I‖2
2, β ∈ R+, (29)

where L denotes the maximum intensity of I, ‖.‖2 denotes the Euclidean distance in R]P ,

I ∈ RP is initial data, and TV (u) denotes the Total Variation of u ∈ RP . While the

second term maintains a proximity to a level-set of I, the solution is regularized by the

�rst one. Expressing the two terms of (29) in terms of level sets, we observe that the µ

level set of u∗ is a minimizer of the binary energy∑
(p,q)∈N

wp,q|uµp − uµq |︸ ︷︷ ︸
TV (uµ)

+2β
∑
p∈P

uµp [(µ− 1

2
)− Ip] + Ip, (30)
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Figure 10: An example of segmentation (right) of an image (left) using the Boykov-Jolly

model [BJ01]. The seeds as well as the segmentation are superimposed on the image by

transparency.

among uµ ∈ {0, 1}P and where the weight wp,q is proportional to the Euclidean distance

between p and q (see [DS04]). The latter problem has the form described in (25) and

can be minimized by a graph cut. Remind that this formulation cannot handle color

images. In practice, color images need to be converted into grayscale images before they

are segmented.

1.2.5.2 Boykov-Jolly energy model

In [BJ01], Boykov and Jolly introduced another energy model for segmenting images

using graph cuts. Unlike the TV + L2 model, the user must provide object (O ⊂ P)

and background seeds (B ⊂ P) in an interactive fashion (see Figure 10). The role of

these seeds is twofold: reducing the cuts space by adding hard constraints and computing

probability distributions laws of the object and the background. Formally, we have: Ep(1) = −log P(Ip | p ∈ O)

Ep(0) = −log P(Ip | p ∈ B)
and Ep,q(up, uq) = Bp,q|up − uq|, (31)

where P(.) is a probability density function, Ip ∈ [0, 1]c denotes the intensity at pixel p

and Bp,q is a weighting function used to map similarity between pixels to edge capacities.

The energy (31) encourages coherence in regions of similar intensity where the data

term favors the belonging of each pixel to the object or to the background while the
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smoothness term penalizes neighboring pixels having di�erent labels 10. In its simplest

form, the amount of penalization is determined by the gradient and favors boundaries

with a strong gradient. Nevertheless, the weight can also embed more complex features

such as gradient direction or texture information via tensors or Gabor �lters.

The most common choices for these weighting functions come from the in�uential work

of Perona and Malik on anisotropic di�usion [PM90] and are now used by almost every

graph-based segmentation algorithms

Gaussian: Bp,q = 1
‖p−q‖2 exp

(
− ‖Ip−Iq‖

2
2

2σ2

)
, (32)

Reciprocal: Bp,q = 1
‖p−q‖2

1
1+‖Ip−Iq‖ωω

, (33)

where σ ∈ R+, ω > 1 represent free parameters, ‖.‖2 is the Euclidean norm (either in Rd

or Rc) and ‖.‖ω is the `ω norm. Notice that some work has been recently done to measure

the impact of these functions on the segmentation results in a medical context [GJ08].

The numerical results highlight that (33) outperforms (32) in terms of both absolute

performance achieved on segmentation di�erences and stability over β values. Since we

were aware of the work [GJ08] only recently, all experiments presented in the sequel of

this document use the weighted Gaussian function (32).

Remark 1. It is well established that the quality of solutions obtained by graph cuts meth-

ods depends both on the graph structure and on the choice of edge capacities. This observa-

tion is empirically con�rmed in [GJ08]. More precisely, graph cuts may produce noticeable

metrication/geometric artifacts [BK05] and blocky structures due to the discrete topology

of graphs. A common way for reducing this e�ect is to increase the size of σE(p), ∀p ∈ P

(see (7)) and choose the edge capacities of σE(p) to better approximate the length of the

s-t cut crossing all edges in σE(p).

A standard approach to such problem is to use the inverse Euclidean distance between

two adjacent nodes as in (32) and (33). Thus, the larger the distance between two nodes

is, the smaller the edge capacity connecting them is.

The choice of these edge capacities is justi�ed in a more formal context in [BK05].

In fact, any s-t cut on a graph embedded in some continuous space can for instance be

10When the parameter β = 0, notice that (31) corresponds to the Ising model.

46



1.3 N. Lermé

interpreted as a contour (2D) or a surface (3D). In [BK05], the authors explain how to

set the edge capacities in a graph so that the cost of cuts is arbitrarily close to the length

of the corresponding contours for any anisotropic Riemannian metric using results from

integral geometry.

Also, the distributions of intensities of the object and the background in (31) are

generally estimated using either Normalized Histogram (NH) [RKB04]) or Gaussian Mix-

tures Model (GMM) [RKB04]. We also want to mention the work of [VKR09, RKB04]

where authors try to optimize both segmentation and appearance model using either an

Expectation-Maximization (EM)-style algorithm [RKB04] or dual decomposition [VKR09].

While the present work can be easily embedded into these approaches, we only deal with

a �xed appearance model constructed either from seeds (see the Boykov-Jolly model (30))

or not (see the TV+L2 model (31)).

Better embedding color information in (31) is a possible way to improve segmentation

results. The use of the Red Green Blue (RGB) space for representing image data is very

common in Image Processing and Computer Vision, mainly dictated by the availability

of such data as produced by digital cameras and camcorder. However, this space is not

perceptually uniform in the sense that di�erence between colors in it does not correspond

to color di�erences as perceived by humans. Furthermore, the improved performance of

non-uniform (CIE Lab and CIE Luv color spaces) or approximately non-uniform spaces

over uniform ones (RGB color space) is well established for image segmentation [ZN10]

and texture analysis [Pas01].

1.3 Estimating distribution laws

In what follows, we brie�y review two standard ways to estimate the distribution laws

P(Ip | p ∈ O) and P(Ip | p ∈ B) in the Boykov-Jolly model (see Section 1.2.5.2) in the

discrete domain (NH) and in the continuous domain (GMM).
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1.3.1 Normalized histograms

NH are a popular procedure to approximate a probability density function by a piecewise

constant function made of multiple squares. Each of these squares is generally called a

bin. Since we use the same strategy for the object and the background, we only describe

it for B for the sake of clarity.

First, let Nb ∈ N∗ denote the number of bins. Then, we call for q ∈ {0, . . . , Nb − 1}c,

Hq =
]{p ∈ B | qi

Nb
≤ (Ip)i <

qi+1
Nb

,∀1 ≤ i ≤ c}
]B

,

where we remind that Ip ∈ [0, 1]c is the intensity at the pixel p, (Ip)i and qi are the ith

channel of Ip and q, respectively. Since NH are known to be noise-sensitive, we choose for

any p ∈ P , to estimate P(Ip | p ∈ B) by

(Gσ′ ∗H)Ip

where Gσ′ is a Gaussian kernel of standard deviation σ′. In this document, we will always

set σ′ = 1 and use the same number of bins Nb for the object and the background.

Notice that, as it is well known, when the number of bins Nb is too large, Hq is null for

most q ∈ {0, . . . , Nb− 1}c. Such observation grows as the number of channels c increases.

As a result, P(Ip | p ∈ B) is not accurately estimated and most contracted capacities of

the graph are set to 0. The learned distribution law over�ts the samples. In practice, the

model behaves as if we had β = 0. On the other hand, when Nb is too small, the best

possible estimate approximates P(Ip | p ∈ B) by a piecewise constant function made of

large square pieces. This time, Hq is not null for a larger part of q ∈ {0, . . . , Nb − 1}c

but P(Ip | p ∈ B) is roughly approximated. Therefore, the number of bins Nb should be

a trade-o� between these two situations. In practice, we adapt the number of bins to

the number of channels. We empirically choose a number of cells Nb = 256 and Nb = 50

for grayscale and color images, respectively. Smoothing distributions allows to further

increase the number of cells where Hq is not null and can further reduce the size of the

graph.
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1.3.2 Gaussian mixtures model

GMM estimates and approximates a probability density function by a sum of Gaussian

functions. Then, the problem of estimating this function amounts to determine the pa-

rameters of each Gaussian (i.e. covariance and expectation), the number of Gaussians

(called number of components 11) and the participation of each one in the mixture (called

mixture weights). In addition, in a Bayesian setting, notice that the mixture weights and

parameters will themselves be random variables and prior distributions will be placed over

the variables. Again, since we use the same strategy for the object and the background,

we only describe it for B for the sake of clarity. For any pixel p ∈ P and a �xed number of

Gaussians Ng in the mixture, the probability density function P(Ip | p ∈ B) is estimated

as

P(Ip | p ∈ B) =

Ng∑
i=1

wih(Ip | µi,Σi), (34)

where we remind that Ip ∈ [0, 1]c is the intensity of pixel p, wi, ∀i = 1, . . . , Ng are the

mixture weights, and h(Ip | µi,Σi), ∀i = 1, . . . , Ng are the Gaussian functions. Each

Gaussian function h(.) is of the form

h(Ip | µ,Σ) =
1

(2π)c/2det(Σ)1/2
· exp

{−(Ip − µ)TΣ−1(Ip − µ)

2

}
,

with mean vector µ and covariance matrix Σ and where (.)T , det(.) respectively stand

for the transpose operator and the determinant. The mixture weights also satisfy the

constraint that
Ng∑
i=1

wi = 1.

Thus, the GMM is fully parameterized by the mean vectors µi, the covariance matrices

Σi and mixture weights, for all Gaussian functions. There exists several variants of this

problem where covariance matrices Σi can be full rank or diagonal (e.g. for favoring

a particular channel), parameters are shared among the Gaussian components with a

common covariance matrix or not, etc. In the sequel, we will consider that covariance

matrices are not shared and always of full rank. Notice that GMM is useful for a variety

of applications including texture and multispectral image segmentation.

11In clustering, this can be also referred as clusters.
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Although the problem of estimating Gaussian functions seems particularly hard to

solve due to the large number of parameters, one can usually use an EM algorithm to �nd

a good approximation of (34) with a priori given number of components. Initially proposed

by Dempster et al. in 1977 [DLR77], the EM algorithm alternates an Expectation step

(E-step) and a Maximization step (M-step) until some convergence threshold is reached.

In the E-step, the parameters are �xed and the expectation of the likelihood is computed

by taking into account the latest observed variables. During the M-step, the variables are

�xed and the algorithm tries to �nd the parameters which maximize the likelihood found

at the E-step. Then, we use the parameters found during the M-step as a starting point

of a new evaluation of the likelihood in the E-step. In its simplest form, some analogy

can be established between the EM algorithm with the clustering algorithm K-means.

Furthermore, notice that the problem of estimating the parameters of Gaussians and

mixture weights appears more di�cult when the number of components Ng also needs to

be determined. For the experiments presented in Chapter 3, we use the work of [Bou97]

which automatically estimates the number of components Ng with a statistical criterion

called Minimum Description Length (MDL). According to [Bou97], this is equivalent to

maximum likelihood estimation when the number of components is �xed, but in addition

it allows the latter to be more accurately estimated.
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2 Reducing graphs in graph cuts

optimization: state-of-the-art

2.1 Motivation

While graph cuts behave successfully well on a large number of applications, the memory

usage for solving large-scale optimization problems can be prohibitive since underlying

graphs can contain billions of nodes and even more edges. As an illustration, the latest

version of the max-�ow algorithm of [BK04] allocates 25]P+16]En bytes 1 for segmenting

a multi-dimensional image. In Table 1, we observe that for a �xed amount of RAM of

2Gb, the maximum volume size for which the corresponding graph �ts in central memory,

decreases quickly as the dimension d increases. This experiment gives us a better idea of

the limitation of graph cuts in the context of image segmentation. Beyond these limits,

other strategies must be considered.

To get round the problem of memory consumption with graph cuts, some amount of

work has been recently done in this direction with heuristics [LSTS04, SDB07, CA08,

SD07, LSGX05, SG06, KLR10] and exact methods [LB07, SK10].

The purpose of this section is to establish a detailed state-of-the-art on techniques for

reducing graphs involved in binary graph cut optimization by putting ahead the advan-

1Remind that P is the set of pixels/voxels and En denotes the set of n-links (see (6)).

@
@
@

Connectivity 0 Connectivity 1

2D 6138 4912
3D 308 209
4D 70 42
5D 28 16

Table 1: Maximum size of a square image on the side for which the corresponding graph

�ts in 2GB of RAM.
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tages and the limitations of each technique. We propose to review these methods in the

following way: single-machine algorithms and parallelized/distributed. In what follows,

we �rst review the former and then the latter.

2.2 Sequential strategies

To our best knowledge, Li et al. seem to be the �rst ones to tackle the problem of

memory consumption of graph cuts [LSTS04]. Their algorithm works as follows. First,

the image is partitioned into small and numerous homogeneous regions thanks to a low-

level segmentation algorithm such as watershed [LSTS04, SDB07] or mean shift [CA08].

A region adjacency graph is produced where each region corresponds to a node in the

graph (see Figure 1). Then, the max-�ow is computed on this graph for getting the

segmentation. The underlying assumption is that the �nal contours are embedded into

the pre-segmentation. While this observation is generally not theoretically guaranteed, it

is often veri�ed when working on natural images not corrupted by noise. Although this

approach drastically reduces the computational burden of graph cuts (about 6x faster ac-

cording to [LSTS04]), the results strongly depend on the low-level segmentation algorithm

used and its noise-sensitivity. Moreover, as fairly observed in [SDB07], this approach gen-

erally gives better results when over-segmentation occurs, which looses the main bene�t

of such a reduction.

Others have also reported band-based heuristics using a multi-resolution scheme [SG06,

LSGX05, KLR10]. The principle is to segment a low-resolution image/volume and propa-

gate the solution to the �ner level by only building the graph in a narrow band surrounding

the interpolated foreground/background interface at that resolution. More speci�cally, the

acceleration strategy consists of three stages (see Figure 2): �rst, a pyramid of images

is built with a coarsening operator (coarsening). Next, the coarsest image is segmented

and its contours are extracted (segmentation at coarsest level). Finally, the contours are

dilated and interpolated at the next higher resolution for building a new reduced graph

(uncoarsening). This process continues until the bottom of the pyramid is reached. Such
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Figure 1: Working scheme of the heuristic using region adjacency graphs. A region

adjacency graph (right) is built from a pre-segmentation (left) obtained from a low-level

segmentation algorithm. Then, the max-�ow is computed inside this graph for getting

the �nal segmentation. The picture is courtesy of [SD07].

an approach greatly reduces time and memory consumption of standard graph cuts (about

8x faster and 4x less memory according to [SG06]). Nevertheless, it generally fails to re-

cover thin structures and is limited to the segmentation of roundish objects. In medical

imaging, this is a real drawback since elongated structures like blood vessels are ubiqui-

tous. Moreover, the parameter controlling the band dilation during the projection, plays

an important role. Indeed, one usually needs this parameter to be large enough to fully

capture details of various shapes complexities. On the other side, wider bands reduce

the computational bene�ts and may also introduce potential outliers far away from the

desired object contours.

To avoid the loss of details, Lombaert et al. [LSGX05] used the information from

a Laplacian pyramid. At each level, the bands are extended by including pixels whose

value signi�cantly di�ers between the image and the "coarsened-uncoarsened image".

The idea is to capture thin structures which are not visible in the coarse image. This

inclusion is controlled by a thresholding parameter which provides a smooth transition

between [LSGX05] and traditional graph cuts. Although the previous problem is notably

reduced, it is still present for low-contrasted details.

In [KLR10], Kohli et al. proposed recently a �ner band-based technique using the

multi-resolution scheme proposed in [SG06, LSGX05]. In contrast with [SG06, LSGX05],
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Figure 2: Multi-resolution heuristics principle. A low-resolution image is �rst segmented

and the solution is propagated to the �ner level by only building the graph in a narrow

band surrounding the interpolated foreground/background interface at that resolution.

The picture is courtesy of [LSGX05].

they �rst de�ne an energy from the full resolution image instead of the low resolution

image. Experiments show that this strategy results in signi�cant improvements in both

time and segmentation accuracy. But mostly, they compute uncertainty estimates using

min-marginals 2 and use them to determine which regions belong to the reduced graph.

While their algorithm reaches low pixel errors using only a few variables, this heuristic

does not ensure to retrieve thin structures and details as in [SG06, LSGX05].

Finally, Lempitsky and Boykov presented an interesting touch-expand algorithm that

is able to minimize binary energy functions with graph cuts in a narrow band, while

ensuring the global optimality on the solution [LB07]. The principle is to make a band

evolve around the object to segment by expanding the band when the min-cut touches

its boundary. This process is iterated until the band no longer evolves. Although the

algorithm quickly converges toward the global optimal solution, it strongly depends on

2The min-marginal encodes the con�dence associated with a variable being assigned to the label in the

optimal solution. The min-marginal of a variable x corresponds to the energy obtained by �xing it to a

particular label and minimizing over all remaining variables. The exact min-marginals can be determined

exactly and e�ciently by reusing previous max-�ow computations [KT08].
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Figure 3: Touch-Expand algorithm maintains a band B and subgraphs Rs and Rt as in

(a) where red (resp. blue) pixels/nodes are linked to terminal s (resp. t). If a min-cut

in the band B results in a touch as in (b), then B is expanded (c). If not as in (d), the

min-cut is guaranteed to be the same than on the whole graph and the algorithm stops.

(e) shows a band at convergence for a real problem. The picture is courtesy of [LB07].

the initialization and no bound on the band size is given. Thus, the band can progres-

sively increase to encompass the whole volume in the worst case. However, depending

on the initialization, the bands are reasonably small in the context of [LB07] (volume

reconstruction). As far as we know, this strategy has not yet been adapted to image

segmentation. In particular, the bene�t of this strategy strongly depends on the design

of an initial band.

2.3 Parallel/distributed strategies

In a recent paper, Delong and Boykov design a method for solving the max-�ow prob-

lem for graphs which do not �t in memory. They propose a new parallelized max-�ow

algorithm yielding near-linear speedup with the number of processors [DB08]. As an il-

lustration, on a standard computer, segmenting a volume of size 512 × 512 × 256 takes

about 100 secs on a single core against less than 20 secs on eight cores. However, numer-

ical experiments also show that the acceleration of this scheme is very limited since it is

sensitive to the amount of physical memory. Furthermore, the proposed algorithm clearly

remains less e�cient on small graphs than standard graph cuts and can only be applied

to grid-like graphs.

More recently, Strandmark and Kahl in [SK10] introduced an original approach for
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minimizing binary energy functions in a parallelized/distributed fashion using the max-

�ow algorithm of [BK04]. The idea is to decompose the original problem into optimizable

sub-problems, solve them independently and update them according to the results of the

adjacent problems. This process is iterated until convergence. The key point of this

method is that optimality on the solution is guaranteed by dual decomposition.

More precisely, the �nal solutions of the sub-problems are constrained to be equal

on an overlap. They solve the original problem by converging Lagrangian multipliers

associated to equality constraints on the overlap. This max-min problem is solved by

alternating minimization over its primal variables and maximization over its dual variables

(the Lagrangian multipliers). The minimizations are done independently of each other on

the calculus nodes. The maximization combines the results obtained on the overlapping

bands. It consists in an update of the dual variables. To re�ect this change, the weights

in the graphs corresponding to the sub-problems are modi�ed and the corresponding

solutions are recomputed. This scheme is repeated until the solutions of the variables on

the overlap are equal. This iterative scheme is e�cient since only a few edge costs change

between iterations and then search trees can be e�ciently reused [KT07]. Moreover, the

number of edge costs which change decreases as the number of iterations increases.

Notice that this technique is quite general and can be either solved in parallel on the

same computer or across several ones over a network. An example of communication is

illustrated in Figure 4 between four computers, each one being assigned with a quarter of

the input image.

Experiments in [SK10] for image segmentation and stereo clearly demonstrate both

faster processing on multi-core computers and the ability to solve large scale problems over

a distributed network. As an illustration, such an approach is able to segment a graph

requiring 131GB of memory in 38 secs. To our best knowledge, the proposed work is the

�rst to segment 4D volume data of moderate size using graph cuts while keeping optimality

on the solution. Furthermore, in the image segmentation context, the algorithm is stable

over a large range of values of the regularization parameter. Nevertheless, the algorithm

is slower for solving some instances where the object to segment is not uniformly spread
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Figure 4: An example of communication between four computers for segmenting a 2D

image using [SK10]. Here, the initial graph is split into four parts, each one being as-

signed to one computer. Color nodes correspond to the overlap where the solutions are

constrained to be equal and communicate to their neighbors across the network. The

picture is courtesy of [SK10].

over the image. Also, notice that the proposed strategy is only e�ective for graphs for

which the max-�ow algorithm of [BK04] is. In particular, the latter becomes less e�ective

than a push-relabel algorithm for dense graphs.

2.4 Conclusion

The current state-of-the-art showed us that interesting heuristics [LSTS04, SDB07, CA08,

SD07, LSGX05, SG06, KLR10] have been already designed for reducing the graphs. In

words, the work of [KLR10] signi�cantly improves the results of [LSTS04, SDB07, CA08,

SD07, LSGX05, SG06] by keeping low pixel error on segmentations. Nevertheless, these

methods get easily trapped in a local minimum of the energy losing the main bene�t of

global optimization.

Recently, more e�orts have been concentrated to propose methods guaranteeing the

optimality on solutions and showing promising results [LB07, SK10]. While the former

is purely dedicated to shape �tting applications, the latter does not look for reducing

graphs but instead pushes the graph cuts limits away by splitting the problem into small

sub-problems. We now present a new band-based strategy for reducing graphs.
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3 Reduced Graph Cuts: a �ner

approach for reducing graphs

3.1 General principle

As discussed in Section 2.1, the memory consumption for segmenting high-resolution data

using graph cuts can be prohibitive (see [1, 4]). Nevertheless, as explained in [GY09], the

running time of the max-�ow computation increases with the amount of regularization

(i.e. when β is low in our situation). Indeed, a small value of β decreases t-links capacities

out of s and into t by a factor proportional to β. Then, reduced t-links capacities alleviate

the total amount of �ow into the graph. This situation makes n-links to be less likely

to be saturated and allows the max-�ow algorithm to have more and longer augmenting

paths, each carrying less �ow on average from s to t.

The e�ect of varying β on the length of augmenting paths is highlighted in Figure 1 for

segmenting a square image with a TV+L2 model in connectivity 1. In this experiment,

the max-�ow algorithm of [BK04] is used. On each image, the twenty longest augmenting

paths are colored and superimposed on the image. We clearly see that when β decreases,

the augmenting paths become longer and more sinuous. Notice also that the generated

paths strongly depend on the underlying max-�ow algorithm used.

In light to the previous experiment, we can reasonably think that, when the amount

of regularization is low, most of the nodes in the graph are useless during the max-�ow

computation since not traversed by any �ow (see Figure 2). With this in mind, one would

like to extract the smallest possible graph G ′ = (V ′, E ′) from G = (V , E) while keeping the

max-�ow value valG′(f
′∗) in G ′ identical or very close to the max-�ow value valG(f

∗) in G.

More formally, we want to minimize the relative size of the reduced graph de�ned as

ρ =
]V ′

]V
, (35)

under the constraint that valG′(f
′∗) ' valG(f

∗). Since several segmentations can exist
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β = 0.02 β = 0.01 β = 0.005 β = 0.0025

Figure 1: In�uence of β on the length of augmenting paths for segmenting a synthetic

image with a TV+L2 model in connectivity 1. From left to right: the twenty longest

augmenting paths are colored and superimposed on the image for a varying value of β.

for the same �ow f ′∗, we also want the segmentations with and without reduction to

be identical or very near. In fact, this is an ideal optimization problem which we will

not try to solve since the method for determining G ′ also needs to be (very) fast. In

order to represent the potential of this idea, we again take up an experiment of [4] where

we represent on the middle image of Figure 2, the �ow only passing through the t-links

when computing the segmentation of the image of Figure 2 with the TV+L2 model (see

Section 1.2.5.1). As with the previous experiment, the max-�ow algorithm of [BK04] is

again used. In the middle image of Figure 2, light gray pixels (resp. dark gray pixels)

indicate that a positive amount of �ow passed from the source s to a node p (resp.

from a node p to the sink t), for any pixel p ∈ P . Similarly, we represent on the right

image of Figure 2 the out�ow only passing through n-links using the same model and

parameters. This time, the gray is proportional to the sum of the �ow leaving any node p

through n-links. For the middle and the right images, gray (resp. black) areas correspond

respectively to the nodes not traversed by any �ow in the graph. Clearly, only a small

part of the nodes is used during the max-�ow computation.

Finally, due to the nature of the problem treated, it can be easily proved that the

value of the min-cut in G ′ must be less or equal than the value of the min-cut in G when

one (see Proposition 1) or multiple edges (see Proposition 2) are removed from G ′. By

duality of the max-�ow problem, we therefore must have

valG′(f
′∗) ≤ valG(f

∗),
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Figure 2: Illustration of the �ow passing through t-links (middle) and n-links (right) for

segmenting a synthetic 2D image (left) using a TV+L2 model. On the middle image,

light gray pixels (resp. dark gray pixels) indicates that a positive amount of �ow passed

from s to p (resp. from p to t). On the right image, the gray is proportional to the sum

of the �ow leaving any node p. On the middle and the right images, gray (resp. black)

areas correspond respectively to the nodes not traversed by any �ow in the graph.

where we remind that f ′∗ and f ∗ denote max-�ows in the graph G ′ and G, respectively.

Proposition 1. Let G = (V , E) be a weighted directed graph and C∗ a min-cut in G. Let

C ′∗ be a min-cut of G ′ = (V , E \ (p, q)) where (p, q) ∈ E. Then, we have: valG′(C ′∗) ≤

valG(C∗).

Proof.

• Suppose that (p, q) belongs to the s-t cut C∗. Thus, it is straightforward to see that

for every min-cut C ′∗ in G ′, we have

valG′(C ′∗) ≤ valG′(C∗) = valG(C∗)− cp,q ≤ valG(C∗).

• Suppose now that (p, q) does not belong to C∗. Again, for any min-cut C ′∗ in G ′, it

is easy to see that

valG′(C ′∗) ≤ valG′(C∗) = valG(C∗).

Both previous cases are independent of each other and conclude the proof. �
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Proposition 2. Let G = (V , E) be a weighted directed graph and C∗ its min-cut. Let C ′∗

be a min-cut of G ′ = (V , E ′) where E ′ ⊂ E. Then, we have

valG′(C ′∗) ≤ valG(C∗).

Proof. Let E ′ = {e1, . . . , ek} be the set of edges we want to remove from E , where ei ∈ E ,

∀1 ≤ i ≤ k. This produces a sequence of graphs where G0 = G and Gi = (V , E ′′i−1 \ ei)

(E ′′i corresponds to the set of edges of Gi at iteration i), ∀1 ≤ i ≤ k. Then, using

proposition (1), we just have

valGk(C∗k) ≤ . . . ≤ valGi(C∗i ) ≤ . . . ≤ valG0(C∗0), ∀0 < i < k.

�

Before explaining the general principle of our method for building G ′, let us introduce

some terminology. Throughout this chapter, we consider a �xed graph G = (V , E) and its

reduced version G ′ = (V ′, E ′). Furthermore, we also denote B ⊂ Zd and assume that B

and G are such that

∀p ∈ P , (σE(p) ∩ P) ⊂ Bp, (36)

where σE(p) is de�ned in (7) and Bp is the set translation of B at p, i.e.

Bp = {p+ q | q ∈ B}. (37)

In practice, we typically think of B as a ball centered at the origin. In such a case, the

expression (36) means that the neighbors in the graph G are close to each other in Zd.

When B is a square of positive radius r, we will denote it as Br. Moreover, for Z ⊂ P

and B ⊂ Zd, we denote by ZB the dilation of Z by B as

ZB = {p+ q | q ∈ B, p ∈ Z} =
⋃
p∈Z

Bp.

We also de�ne, for any Z ⊂ P , the maximal amount of �ow that might get in and out

through the n-links by

Pin(Z) =
∑

p6∈Z,q∈Z
(p,q)∈N

cp,q, Pout(Z) =
∑

p∈Z,q 6∈Z
(p,q)∈N

cp,q.
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Figure 3: Principle of the reduction. Red area and arrows (resp. green area arrows)

denote the �ow which get in (resp. out of) ZB. The nodes from Z are removed since Z

satis�es (38). Remaining nodes are typically located in the narrow band ZB \ Z.

Finally, we de�ne the maximum amount of �ow passing through the t-links and the �ow

orientation by

A(Z) =
∑
p∈Z

|cp|, O(Z) =
∑
p∈Z

sign(cp),

where the function sign(.) is de�ned by

sign(t) =


1 if t > 0,

0 if t = 0,

−1 otherwise.

The intuitive idea for building G ′ is to remove from the nodes of G any Z ⊂ P such that

 either
(
O(ZB) = +]ZB and A(ZB \ Z) ≥ Pout(ZB)

)
,

or
(
O(ZB) = −]ZB and A(ZB \ Z) ≥ Pin(ZB)

)
.

(38)

As an illustration of these conditions, the last (resp. �rst) condition of the test (38) implies

that all the �ow that might get in (resp. out of) the region ZB does so by traversing its

boundary and can be absorbed (resp. provided) by the band ZB \ Z (see Figure 3).

In the subsequent sections, two conditions for building G ′ heuristically or exactly are

respectively described in Section 3.2 and in Section 3.3. For each condition, we also

provide massive numerical experiments for segmenting 2D, 2D+t and 3D grayscale and

color images.
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p

s

p

t

Figure 4: Illustration of the heuristic test (39). In both situations, we remove the central

node p from G if contracted capacities are all greater than +δr (left image) or all less than

−δr (right image) inside the square window Br.

3.2 A heuristic test for reducing graphs

3.2.1 Description

In this section, we propose a condition for building G ′ heuristically. First, it is straightfor-

ward to see that the sets Z in the test (38) can be easily built by testing each individual

pixel p ∈ Z. In order to do so, we know that the conjunction of conditions (38) for every

set {p}, where p ∈ Z, implies (38) for Z. Consider now a graph G and a square window

Br of size (2r + 1) centered at the origin as de�ned in Section 3.1. We propose an even

more conservative condition for p ∈ Z as either
(
∀q ∈ Br

p, cq ≥ +δr

)
,

or
(
∀q ∈ Br

p, cq ≤ −δr
)
.

(39)

where

δr =
P (Br)

(2r + 1)d − 1
. (40)

Here, P (Br) denotes the perimeter of the square window B, i.e

P (Br) = max(]{(p, q) : p ∈ Br, q 6∈ Br and (p, q) ∈ N},

]{(q, p) : p ∈ Br, q 6∈ Br and (q, p) ∈ N}).

Although the test (39) is typically stronger than the condition (38), both conditions
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can be easily computed (see Figure 4). If moreover

cp,q ≤ 1, ∀(p, q) ∈ E ,

(which is true for the energies described in Section 1.2.5.1 and 1.2.5.2 1) and (39) holds,

one can easily check that the condition (38) holds for Z = {p}. For instance, the �rst

condition of (39) implies

A(Br
p \ {p}) =

∑
q∈Brp\{p}

|cq|

≥ [(2r + 1)d − 1]δr

≥ P (Br)

≥ Pout(B
r
p).

In words, for any node p ∈ Z satisfying the �rst (resp. second) condition of (39), all its

neighbors q ∈ Br
p are only linked to s (resp. t) and the �ow that might get in (resp. out)

through t-links in Br
p \ {p} su�ces to saturate the n-links going out of (resp. in) Br

p. The

node p is useless and can be removed from G. Therefore, we consider G ′ a subgraph of G

such that V ′ = P ′ ∪ {s, t}, where

P ′ = {p ∈ P | (39) does not hold for p}.

The experiments presented in Section 3.2.3.2 con�rm the dependence between the size of

the reduced graph and the model parameters (see Figure 5). Indeed, when minimizing (28)

via graph cuts as described in Section 1.2.5, the t-links capacities are all multiplied by β.

Thus, it is straightforward to observe that the condition (39) is more di�cult to satisfy

as β decreases. In such a situation, we need a larger window radius for decreasing δr in

order to reduce the size of the reduced graph. This results in wider bands around the

object contours. Notice that when β is small, the role of the regularization term Ep,q(.)

is increased. Conversely, we can a�ord large δr and therefore small window radius when

β is large. Thus, the reduced graph consists of narrow bands around the object edges.

Knowing the positive contracted capacity of any node p ∈ P , it is also trivial to know the

minimum radius (denoted rminp ) for which the test (39) holds in p (without regards to the

1If the condition (39) does not hold, δr can for instance be multiplied by max(p,q)∈N cp,q.
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image) when β 6= 0 by testing with an increasing window radius r from one until

|cp| ≥
P (Br)

(2r + 1)d − 1
(41)

is satis�ed. Using (41), we can compute the minimum radius (denoted rmin) for which

the test (39) holds for at least one node p (without regards to the image) when β 6= 0 by

rmin = max {rminp | p ∈ P}. (42)

This can be particularly useful to prevent the fact that no memory gain occur when one

chooses a window radius r > rmin. Conversely, choosing a window radius r ≤ rmin does

not imply that some reduction will occur.

ρ = 5.75% ρ = 32.58% ρ = 50.24% ρ = 64.77%

Figure 5: Tuning of the window radius for segmenting a synthetic 2D image with a TV+L2

model in connectivity 1. From left to right: reduced graphs are superimposed in yellow on

the original image for the window radius r = 1, 8, 15, 22. The relative size of the reduced

graph is indicated below each image. Observe how the reduced graph G ′ progressively

encompasses the whole image as the window radius r grows.

Additionally, we investigate some ways to relax the condition (39) for further reducing

the size of the reduced graph. A simple way is to multiply δr by a factor γ ∈ [0, 1]. Then,

as γ decreases to 0, the condition (39) can be satis�ed for a larger number of nodes.

Typically, when γ = 0, we only test the sign of contracted capacities (see (39)). Another

way is to allow some nodes in Br
p to fail complying with the test. The proportion of nodes

satisfying the test is controlled by a parameter called η ∈ [0, 1]. Then, as η decreases,

the condition (39) can be satis�ed more easily since a larger proportion of nodes can be
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connected to opposite terminals. Embedding these two extra parameters leads to either
(
]{q ∈ Br

p | cq ≥ +δrγ} ≥ η]Br
p

)
,

or
(
]{q ∈ Br

p | cq ≤ −δrγ} ≥ η]Br
p

)
.

(43)

Unlike the window radius parameter, γ and η parameters can further decrease the graph

size but do not o�er any guarantee on the �nal segmentation. However, for time-critical

applications, this can be particularly useful when optimality does not represent a major

constraint. As regard to the parameter η, it can also be used to remove noise in the

segmentation.

For this moment, we have not proved that the reduction with the test (39) is exact.

By exact, we mean that the max-�ow value obtained from the reduced graph G ′ is equal

to the one obtained in G. Moreover, the experiments presented in Section 3.2.3.2 show low

graph sizes while keeping a low pixel error on segmentations. The experiments show that

the relative max-�ow error between valG(f
∗) and valG′(f

′∗) (see Appendix A) is generally

equal to zero. In the next section, we detail a fast algorithm for building G ′ with the

test (43).

3.2.2 Algorithmic considerations

3.2.2.1 Naive algorithm

From the Section 3.2.1, an easy-to-implement algorithm emerges: it consists in checking

if the test (43) holds inside the square window Br
p centered in p, for any node p ∈ P of

G. If (43) is not satis�ed for a node p ∈ P , we add it to G ′ and link it to its neighbors

σε(p). Otherwise, p is just removed from G ′. Since the square window Br is visited

exactly once for each node p ∈ P , the algorithm for reducing G resembles a convolution

and has a worst-case complexity of O(]P]Br) (see Algorithm 2). Notice that the scalar

δr is computed at the beginning of the algorithm and is of negligible time. Also, instead

of building the set of edges E ′ from scratch as mentioned at the end of Algorithm 2, E ′ is

progressively built by keeping track of neighbors with an array of dimensionality (d− 1).

As a consequence, the extra memory storage of Algorithm 2 is also negligible with respect
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to the size of the input image.

Algorithm 2 Naive reduction algorithm for building the graph G ′ using (43)

Inputs: square window Br, γ, η, whole graph G = (V , E)
Outputs: reduced graph G ′ = (V ′, E ′).
1. δr ← compute-delta(r) (see (40))
2. V ′ ← {s, t}
3. forall p ∈ P do
4. NbLargePositive← 0
5. NbLargeNegative← 0
6. forall q ∈ Br

p do
7. if cq ≥ +δrγ then
8. NbLargePositive← NbLargePositive+ 1
9. endif

10. if cq ≤ −δrγ then
11. NbLargeNegative← NbLargeNegative− 1
12. endif
13. endfor
14. if |NbLargePositive| ≥ η]Br

p or |NbLargeNegative| ≥ η]Br
p then

15. V ′ ← V ′ ∪ {p}
16. endif
17. endfor
18. E ′ ← (P ′2 ∩ En) ∪ ({(p, q) | p, q ∈ (V ′ × V ′)} ∩ Et)
19. return G ′ = (V ′, E ′)

3.2.2.2 Incremental algorithm

For large window radii, Algorithm 2 becomes ine�cient as the image size and the dimen-

sionality d increase. Nevertheless, one can observe that condition (43) can be decomposed

as sums along the d dimensions yielding an algorithm with a complexity of O(]P), except

for image borders. For the sake of clarity, we only detail this incremental version in the

2D case with a connectivity 0. We consider a square window Br of size (2r+ 1), (r > 0).

First, for any point p ∈ P and δ′r ≥ 0, we de�ne

gδ′r(p) =

 1 if cp ≥ +δ′r,

0 otherwise.
(44)

We either denote gδrγ(p) or gδrγ(i, j) for any pixel p = (i, j) ∈ P (it will never be ambiguous

once in the context). In what follows, we only describe the computation of ]{q ∈ Br
p | cq ≥

+δrγ}. The other case can easily be deduced by adapting the de�nition of (44). The key
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idea is to decompose ]{q ∈ Br
p | cq ≥ +δrγ} as two sums where the �rst one sums over

each row in a column while the second one sums over all columns. First, we introduce an

arrayM whose size is the image width, where each element contains the sum of the values

of gδrγ(.) over a vertical segment of Br
p. More precisely, if we denote Mi0,j0 the state of

array M at the beginning of the computation at the pixel p = (i0, j0) ∈ P , we have

Mi0,j0 [i] =


∑+r

l=−r gδrγ(i, j0 + l) if i ≤ i0 + r,∑+r
l=−r gδrγ(i, j0 + l − 1) if i > i0 + r,

(45)

except for image borders. Additionally, we maintain a variable Ni0,j0 summing the

elements of M along an interval of size 2r + 1

Ni0,j0 =
+r∑
c=−r

Mi0,j0 [i0 + c], ∀(i, j) ∈ P .

We trivially have Ni0,j0 = ]{q ∈ Br
p | cq ≥ δrγ}, for p = (i0, j0). Then, for ensuring

the property (45) at the next pixel p = (i0 + 1, j0) ∈ P , we update M before N with

Mi0+1,j0 [i0 + r + 1] ← Mi0,j0 [i0 + r + 1]− gδrγ(i0 + r + 1, j0 − r − 1) + gδrγ(i0 + r + 1, j0 + r)

Ni0+1,j0 ← Ni0,j0 −Mi0+1,j0 [i0 − r] +Mi0+1,j0 [i0 + r + 1]

The contracted capacities are only evaluated once: when shifting from one position

to the next one. Therefore, the optimized algorithm builds the reduced graph with a

complexity of O(]P), except for image borders. In particular, the complexity becomes

independent of the window radius. Also, one can notice that the cost of such an algorithm

is directly proportional to the cost for evaluating the contracted capacities. However, for

the energy models presented in this document, these capacities can be e�ciently pre-

computed and stored in lookup tables. The memory storage required by the incremental

graph construction algorithm lies in the tableM which is of dimensionality (d−1). Thus,

the extra memory usage is negligible over the image and the graph size.
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i i

M12,2 . . . 2 3 3 2 . . . M13,2 . . . 2 3 3 3 . . .

11 12 13 14 11 12 13 14

0 . . . 0 0 0 0 . . . 0 . . . 0 0 0 0 . . .

j 1 . . . 0 1 1 1 . . . ⇒ 1 . . . 0 1 1 1 . . .

2 . . . 1 1 1 1 . . . 2 . . . 1 1 1 1 . . .

3 . . . 1 1 1 1 . . . 3 . . . 1 1 1 1 . . .

gδrγ(.) gδrγ(.)

N12,2 = 8

M13,2[14] ← M12,2[14]− gδrγ(14, 0) + gδrγ(14, 3)

← 2− 0 + 1 = 3

N13,2 ← N12,2 −M13,2[11] +M13,2(14)

← 8− 2 + 3 = 9

Figure 6: Illustration of the incremental algorithm for building G on a 2D image with

r = 1, γ = 1 and η = 1. In this example, only the node corresponding to the pixel

p = (13, 2) is added to G ′ since |N13,2| = (2r + 1)2 = 9.

3.2.2.3 Adaptive algorithm

Algorithm 2 remains quite general and can be extended in various ways. Since δr dimin-

ishes when the window radius r increases, one can easily design an adaptive version of

Algorithm 2 where the window radius r varies automatically according to the image con-

tent. This implies to compute, for each node p ∈ P in the graph G, the optimal window

radius r∗ for which the test (43) holds for p. This can be done by examining all window

radii r ∈ {0, . . . , rmax} (rmax ≥ 1). Notice however that unlike Algorithm 2, this algorithm

requires that η = 1 (see Algorithm 3). In Algorithm 3, observe that the expression (41)

permits to discard the current node as early as possible when the minimum radius rmin

is larger than the maximum radius rmax allowed.

Unlike Algorithm 2, the worst-case complexity is O(]P]Brmax). Although this ap-

proach permits to build smaller graphs (see Figure 7), the computational cost is larger

since all window radii must be examined in the worst case. It is also more di�cult to

avoid repetitive calculations of contracted capacities like in incremental algorithm. The

gain brought by this algorithm on the relative reduced graph sizes is thus limited to some

particular situations such as noisy or high-contrasted images and when the amount of
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regularization is large.

ρ∗ = 35.05% ρ∗ = 16.91%

Figure 7: Illustration of memory gain brought by the adaptive algorithm (middle) versus

the incremental algorithm (left) for segmenting a 2D image with a TV+L2 model in

connectivity 1. In this experiment we set r = 13 and rmax = 13. On the left and middle

images, the reduced graph is superimposed in yellow by transparency. In the right image,

any pixel p is assigned with rminp . Brighter pixels are the nodes which can be removed

with a larger window radius r and black pixels belong to G ′.

We want also to mention that Algorithms 2 and 3 are both highly parallelizable due

to the locality of data and operations. Indeed, the test (43) can be quickly evaluated on

each node, independently of the other ones. Furthermore, when the reduced graph G ′

contains several connected components, one could launch the max-�ow computation on

each component independently of the others. In some situations (such as the segmentation

of noisy images), this approach could be very e�cient since the max-�ow computation

would become trivial for a large amount of connected components whose nodes are all

linked to the same terminal 2. Due to the lower worst-case complexity of the incremental

algorithm compared to the naive one, we always will use the former for the numerical

experiments in the rest of this document.

2Indeed, the condition (43) does not imply that both terminals are linked to the non-terminals nodes

unless we have γ = 0 and η = 1.
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Algorithm 3 Adaptive reduction algorithm for building the graph G ′ using (43)

Inputs: γ, rmax, graph G = (V , E)

Outputs: reduced graph G ′ = (V ′, E ′).
1. V ′ ← {s, t}
2. forall p ∈ P do
3. NbLargeCapacities← 0

4. rmin ← −∞
5. forall r ∈ {0, . . . , rmax} do
6. forall q ∈ ∂Br

p do
7. rminq ← compute-rmin(cq, B

r) (see (41))

8. rmin ← max{rminq , rmin}
9. if rminq > rmax then

10. goto end

11. endif
12. δrminq

← compute-delta(rminq ) (see (40))

13. if cq ≥ +δrminq
γ then

14. NbLargeCapacities← NbLargeCapacities+ 1

15. endif
16. if cq ≤ −δrminq

γ then
17. NbLargeCapacities← NbLargeCapacities− 1

18. endif
19. endfor
20. if |NbLargeCapacities| = ]Br

p then
21. if rmin ≤ r then
22. goto end

23. endif
24. else
25. V ′ ← V ′ ∪ {p}
26. goto end

27. endif
28. endfor
29. end:

30. endfor
31. E ′ ← (P ′2 ∩ En) ∪ ({(p, q) | p, q ∈ (V ′ × V ′)} ∩ Et)
32. return G ′ = (V ′, E ′)
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3.2.3 Numerical experiments

Below, we analyze the role of the window radius parameter and describe massive numerical

experiments for segmenting multidimensional grayscale and color images. All experiments

are performed on an Athlon Dual Core 6000+ 3GHz with 2GB of RAM using the max-

�ow algorithm of [BK04] 3. Running times include the graph construction, the max-�ow

computation as well as the construction of the solution. Times are averaged over 10 runs.

3.2.3.1 The window radius parameter

The Figure 8 shows measures of the impact of the window radius parameter in terms

of speed and memory usage and compares the results to standard graph cuts (bottom

row) for segmenting 2D and 2D+t data (top row) in connectivity 1. On the bottom

row, the blue curves with squares correspond to time consumption and the red curves

with triangles correspond to the memory of the reduced graphs. Standard graph cuts

correspond to r = 0.

First, the segmentations obtained by standard graph cuts and reduced graph cuts are

identical. We also observe that the reduced graph cuts are always faster (except for the

image "plane") and requires less memory than the former. One can also observe that

both curves are approximately convex and the minimal relative size of the reduced graph

(denoted by ρ∗) is reached for some radius r∗ > 0. Notice that r∗ naturally depends both

on the image structure and the model parameters. The intuitive reason for both curves to

be approximately convex is that each individual test of (43) can be satis�ed more easily

when r increases, since δr decreases with r. Nevertheless, when r is larger, the condition

becomes more and more di�cult to satisfy because a larger number of individual test must

hold. Notice that this experiment is chosen to illustrate the behavior when r changes.

However, we generally set r = 1 for most of the images (see Tables 2 and 3).

3The code is freely available at http://www.cs.cornell.edu/People/vnk/software.html
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plane � 1443× 963 cells � 1536× 1536 lena � 2048× 2048 woman � 211× 172× 92

Image "plane" Image "cells" Image "lena" Image "woman"

Figure 8: In�uence of window radius (bottom row) for segmenting 2D and 2D+t images

(top row) with a TV+L2 model in connectivity 1. On the bottom row, blue curve with

squares and red curve with triangles correspond respectively to execution time and to the

amount of memory allocated for the graph. Standard graph cuts correspond to r = 0.

3.2.3.2 Massive experiments on 2D, 2D+t and 3D images

In this section, we compare the performance of standard graph cuts (SGC) against reduced

graph cuts (RGC) in terms of speed and memory consumption for segmenting 2D, 2D+t

and 3D grayscale/color images in connectivity 1. We also provide measures to estimate the

distance between the segmentations obtained with SGC and RGC as well as the relative

max-�ow error between valG′(f
′∗) and valG(f

∗). These measures will act as a performance

indicator for evaluating the e�ciency (or not) of the test (43). Also, notice that in the

following massive experiments, we always set γ = 1 and η = 1.

Let us �rst describe our experimental setup. For each image, the seeds and the model

parameters are manually optimized for getting the best segmentation. Using these seeds

and parameters, a reference segmentation is computed with SGC. Then, a second seg-

mentation is computed with RGC using the same seeds and parameters. The di�erences

between both segmentations are then assessed using three evaluation measures (DSC,

MSASD and VO) (see Appendix A). Similarly, we also estimate the relative max-�ow

error between valG(f
∗) and valG′(f

′∗) (see Appendix A). The window radius r∗ for which
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the relative size of the graph ρ∗ is minimum, is also provided. For all experiments, notice

that some 2D images are extracted from the Berkeley segmentation dataset 4.

The results obtained using a TV+L2 model (see Section 1.2.5.1) are summarized in

Table 2 and illustrated in Figure 9. Similarly, we summarize the results obtained using a

Boykov-Jolly model (see Section 1.2.5.2) with NH and GMM in Tables 3 and 4, respec-

tively. Segmentation results are also respectively provided for NH and GMM in Figures 10

and 11.

For both energy models, we observe that RGC globally outperform SGC in terms of

memory while the di�erences between both segmentations as well as the relative max-�ow

di�erence are generally null (or remain extremely small). For some of the 2D+t and 3D

images, SGC fail to compute the segmentation (due to a large amount of memory needed)

while RGC are able to segment them and in a reasonable time. Nevertheless, the minimum

relative size of the reduced graph ρ∗ of some noisy images remains particularly large (see

for instance images "circles", "zen-garden" and "cells") for both energy models. This

observation re�ects the fact that a lot of neighboring nodes are connected to opposite

terminals in G ′. The density of nodes connected to the terminals s and t is directly

correlated to the amount of noise in the image. An ideal situation therefore consists of

large area of nodes linked to the same terminal separated by smooth borders. In the case

where these areas contain few nodes connected to wrong terminals, we can obtain better

reduction by relaxing the test (39) with the parameter η (see (43) and Section 3.2.3.4).

In some situations, RGC are even faster than SGC. In words, it means that the time

required by the reduction is compensated by the time for allocating the useless nodes

and the computation of the max-�ow on the reduced graph. However, the di�erence is

generally small and becomes smaller as r∗ increases. In that case, most of the time of the

reduction is indeed spent on the borders. This drawback is strengthened when the number

of channels increases. As an illustration, the time spent on the borders for segmenting

a color image of size 481 × 321 can represent more than 50% of the time for reducing

4The dataset is freely available at http://www.eecs.berkeley.edu/Research/Projects/CS/

vision/bsds/
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the graph with a window radius r = 5. This percentage can rise to 80% for a window

radius r = 10. Although it signi�cantly reduces performances, this also con�rms that

RGC are fast almost everywhere. Therefore, a better management of borders would lead

to a substantial increase of speed of the proposed algorithm. Nevertheless, this situation

does not occur often since we generally have r∗ = 1.

Another key point is that RGC can allocate a larger amount of memory than SGC.

This situation typically occurs when β is too small, leading to a very large relative size of

the reduced graph (see the image "circles" in Table 2). Since the size of G ′ is not known

in advance, RGC sometimes need to reallocate an extra memory space for storing the

following nodes and edges. In fact, the max-�ow algorithm of [BK04] reallocates memory

by adding the half of the size of the memory storage taken by nodes and edges. In order to

avoid reallocations, we can adapt simple strategies to get an upper bound on the number

of nodes and edges belonging to G ′. For instance, we can use the test (43) by testing

individually each pixel p ∈ P with δ1 or by randomly polling some amount of pixels in

the image. Let us now analyze speci�cally the results obtained in Tables 2, 3 and 4.

For the TV+L2 model, the average relative size of the reduced graph is 33.51%

(±34.01%) over all images. For 21 images out of 28, RGC allocate less memory than

SGC. Similarly, RGC run faster than SGC for 11 images out of 28 for which no memory

problem occurs with SGC. For some instances, the optimal window radius is far from be-

ing equal to one because the boundary of the segmentation is very rigid in order to avoid

undesired parts in the image (see for instance the images "zen-garden" and "sweets" in

Figure 9). This leads to a low value of β and therefore a large window radius r∗ for

lowering δr in order to reduce the size of G ′.

For the Boykov-Jolly model using NH, the average relative size of the reduced graph

is 19.24% (±24.81%) over all images. RGC allocate less memory than SGC for 29 images

out of 31. Additionally, RGC run faster for 17 images out of 24 for which no memory

problem occurs with SGC. When using GMM, the average relative size of the reduced

graph is slightly higher than using NH: 24.99% (±31.9%). The Table 4 also shows that

RGC allocate less memory than SGC for 27 images out of 31. Similarly, for 15 images
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out of 24 where no memory problem occurs with SGC, RGC outperform SGC in terms

of speed. More generally, we have also compared the distance between segmentations

obtained with NH and GMM using the DSC and the ASASD evaluation measures (see

Appendix A), when both are available. The outcomes indicate that the segmentations

are almost the same with a mean DSC and a mean ASASD respectively equal to 97.88%

(±5.57%) and 4.20 (±6.97). All these results are also visually con�rmed in Figures 10

and 11.

From a memory point of view, the results obtained using GMM are surprisingly slightly

worse than using NH. For some images, the relative reduced graph size can be lower when

using GMM (see for instance the images "text1" or "red-�owers" in Tables 3 and 4). Unlike

NH, GMM acts in the continuous domain and slightly further propagates the distribution

laws when they are abrupt. This situation is particularly visible for the image "text1"

corresponding to a photo of a book with a raking light. Unlike NH, GMM is able to

properly recovers a kind of halo where no pixels belong to the seeds. In this case, the

same result could be reached by NH only by using a very large Gaussian kernel. However,

this represents a costly operation and is bounded to a particular family of images (see

Figure 12).

In other situations, the relative reduced graph size can also be larger when using

NH compared to GMM (see images "meadow-and-mountains", "snow-and-clouds" and

"birds2" in Tables 3 and 4). For all these color images, the object or background consists

of a small cluster inside the RGB space. The EM algorithm approximates too accurately

the distribution, leading to an over-estimate of the number of Gaussians in the mixture

near the initial cluster. Thus, the algorithm can incorrectly label pixels with a neighboring

intensity. This situation is illustrated in Figure 13 where two birds are drawn over a green

background. For this image, the number of Gaussian estimated by the MDL criterion is

10 for the birds and 6 for the green background. This is clearly a typical situation where

the GMM is unable to correctly label pixels in the background. Since we can not rely on

distribution laws, we must set β = 0 which leads to a very large increase of the reduced

graph size. These experiments therefore demonstrate the great importance of estimating

as accurately as possible distribution laws for getting a small reduced graph size. Finally,
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notice that GMM is able to fully recover thin structures like in the image "ct-thorax"

unlike NH where blood vessels are lost in the background. Again, this e�ect is typically

due to the ability of GMM to not being sensitive to discretization problems as NH.

"buttons" (6.91%) "rice" (21.77%) "ct-thorax" (7.87%) "circles" (94.85%)

"zen-garden" (94.72%) "cells" (17.46%) "sweets" (83.97%)

Figure 9: Segmentation results using a TV+L2 model in connectivity 1. For each image,

we represent the segmentation (�rst and third rows) as well as the reduced graphs (in

yellow on the second and fourth rows) superimposed on the original image by transparency.

The minimal relative size ρ∗ of the reduced graph is also indicated below each sequence

of images.



"red-star�sh" (13.95%) "horses4" (5.60%) "snow-and-clouds"

(15.24%)

"text1" (50.18%)

"interview-man1" (6.91%) "�uorescent-cell"

(5.88%)

"ct-thorax"

(17.30%)

"circles" (94.57%)

Figure 10: Segmentation results with using a Boykov-Jolly model using NH in connectiv-

ity 1. For each image, we represent the seeds (�rst and fourth rows), the segmentation

(second and �fth rows) as well as the reduced graphs (in yellow on third and sixth rows)

superimposed on the original image by transparency. The minimum relative reduced

graph size ρ∗ is also indicated below each sequence of images.



"red-star�sh" (4.28%) "horses4" (7.00%) "snow-and-clouds"

(99.22%)

"text1" (12.55%)

"interview-man1" (7.39%) "�uorescent-cell"

(11.37%)

"ct-thorax"

(13.72%)

"circles" (94.52%)

Figure 11: Segmentation results with using a Boykov-Jolly model using GMM in connec-

tivity 1. For each image, we represent the segmentation (�rst and third rows) as well as

the reduced graphs (in yellow on second and fourth rows) superimposed on the original

image by transparency. Remind that the same set of seeds are used as in Figure 10. The

minimum relative reduced graph size ρ∗ is also indicated below each sequence of images.



ρ∗ = 50.18% ρ∗ = 12.55%

Figure 12: Positive impact of using GMM (right column) against NH (left column) for

segmenting the image "text1" (top row) with a Boykov-Jolly model. The seeds are su-

perimposed by transparency on the image on top row. Similarly, the reduced graphs are

superimposed in yellow on the image on middle row whereas distributions of the object

(blue curve) and the background (red curve) are shown on the bottom row. Observe

how GMM can better label pixels inside the "halo" as background pixels where the mean

intensity is about 0.45.



ρ∗ = 6.40% ρ∗ = 39.16% ρ∗ = 5.62%

Figure 13: Negative impact of using GMM against NH for segmenting the image "birds2"

(left column) with a Boykov-Jolly model. Left column uses NH, middle column uses

GMM with MDL criteria and right column uses GMM with only one Gaussian for the

object and the background. Reduced graphs are shown on top row whereas the sign of

contracted capacities (positive in blue, negative in red and yellow otherwise) is shown on

bottom row. Observe how GMM over-estimates the number of Gaussians in the object

class while only one larger Gaussian is enough.
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3.2.3.3 The parameter γ

Figure 14 shows how far the test (43) can be relaxed while nearly having an exact solution.

In these experiments, we use the model and parameters as in Figure 8. The window radii

are chosen to minimize the memory consumption. Furthermore, the di�erences between

the segmentations computed by SGC and RGC are estimated using two evaluation mea-

sures: DSC and MSASD (see Appendix A). Then, we display the DSC (green curve), the

MSASD (purple curve) as well as the execution time (blue curve) and the memory con-

sumption (red curve) over a �xed range of γ values ranging from 0 to 1. As γ decreases to

0, we naturally observe that we get a coarser approximation of the solution. In practice,

we obtain nearly exact solutions for γ ≥ 0.5 for high-contrasted images. For γ < 0.4, the

solution is slightly di�erent but remains close from the original segmentation.

plane � 1443× 963 cells � 1536× 1536 lena � 2048× 2048 woman � 211× 172× 92

Image "plane" Image "cells" Image "lena" Image "woman"

Figure 14: In�uence of the parameter γ (bottom row) for segmenting 2D and 2D+t images

(top row) with a TV+L2 model in connectivity 1. On the bottom row, blue curve with

squares and red curve with triangles correspond respectively to the gain in time and to

the amount of memory allocated for the reduced graph. Green curves with circles and

purple curves with diamonds correspond respectively to the DSC and to the MSASD

between γ-parameterized segmentations and the segmentations obtained with standard

graph cuts.
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3.2.3.4 The parameter η

a) Automatic tuning

A lower bound

For a �xed window radius, notice �rst that the value of η must be su�ciently large for

keeping the graph in a whole piece (see Figure 15). Indeed, below some value (denoted

by ηmin), the reduced graph G ′ is split into multiple pieces and becomes inconsistent since

the min-cut is no longer fully embedded into G ′. This implies that some voxels could be

wrongly labeled in the segmentation.

Figure 16 illustrates a situation where ηmin can be easily computed with an image

consisting of two highly-contrasted areas. Using (43) with a square window of radius

r and η = 1, the reduced graph G ′ corresponds to a thin band of size 2r. An easy

under-estimation of ηmin is obtained by imposing that ηmin permits to segment these two

contrasted areas. In order to do so, we want the test (43) to be false for any pixel p

located at the boundary between these areas. For such a pixel, we have (e.g. if we assume

cp ≥ +δr)

]{q ∈ Bp | cq ≥ +δrγ} = (r + 1)(2r + 1)d−1.

As a consequence, if

η ≤ (r + 1)(2r + 1)d−1

(2r + 1)d
,

the pixel p does not belong to the reduced graph G ′. Since we want to avoid the situation,

we must therefore have

η > (r+1)(2r+1)d−1

(2r+1)d

= 1− r
2r+1

= ηmin.
(46)

In particular, (46) does not depend on the dimensionality d of P . By observing (46), it

is straightforward to see that, as the window radius r tends to in�nity, the proportion

of nodes allowed to be connected to opposite terminals tends to 1
2
. However, the lower

bound can be too small in areas with high curvature and the reduced graph G ′ might be

disconnected into multiple pieces (see Figure 15). As a consequence, the min-cut is no

longer ensured of being fully embedded into G ′. In practice, we also observed that the

lower bound (46) is less accurate in connectivity 0 than in connectivity 1 (see Figure 15
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η = 1.0 η = 0.8 η = 0.6 η = 0.53 η = 0.52

Figure 15: Illustration of the lower bound ηmin for segmenting a 2D synthetic image using

a TV+L2 model. In this experiment, ηmin ' 0.523 and we set r = 10 using connectivity 1.

On all images, the pixels belonging to G ′ are superimposed in yellow to the original image

by transparency. The middle and the bottom rows correspond respectively to close-ups

of the red and cyan areas. Observe how the reduced graph splits into multiple pieces as

soon as η ≤ ηmin.

where connectivity 1 is used). For instance, when η = 0.53, one can observe on the

middle row of Figure 15 that the graph G ′ is disconnected in connectivity 0 with diagonal

segments.

An upper bound

For a �xed window radius r and a positive amount of noise ξ, one can observe that

there exists a value of the parameter η for which most of the nodes in noisy regions are

removed from G, leading to a diminution of the relative size of the reduced graph ρ. This

situation is illustrated in the �ltering experiment of Figure 19 in the paragraph b).

The purpose of this paragraph is to identify, from a statistical point of view, a reliable
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Figure 16: Toy example for computing the lower bound ηmin.

value of the parameter η for which all nodes of P are very likely to be removed from G.

For a �xed amount of noise ξ in the image I, we therefore want to �nd an upper bound

on η by �nding the maximum value of η in such a way that we control the proportion of

nodes corresponding to noisy pixels in homogeneous areas.

Consider a noisy constant image I with a noise generated by a Bernoulli distribution

of parameter ξ ∈]0, 1[, corresponding to the amount of noise in I 5. The two cases where

ξ = 0 and ξ = 1 are trivial and are not considered in our analysis. Assume now that the

graph G is de�ned as in Section 1.2.2 where the nodes corresponding to noise free pixels

are connected to the sink t with a capacity cq ≤ −γδr and the nodes corresponding to

noisy pixels have capacity cq > −γδr.

First, let X be a discrete random variable counting degraded pixels in a square window

B of size n = (2r + 1)d in the image I. Then, the probability that at least k pixels are

corrupted in B is

P(X > k) =
n∑

i=k+1

(
n

i

)
ξi(1− ξ)n−i, (47)

where
(
n
i

)
= n!

i!(n−i)! . For a �xed window radius r, it is straightforward to see that (47) is

decreasing in k and tends to ξn if we impose that ξ ∈ ]0, 1[. Let k1, k2 ∈ {1, . . . , n} be

such that k2 > k1, we have

P(X > k1)− P(X > k2) =
∑n

i=k1+1

(
n
i

)
ξi(1− ξ)n−i −

∑n
j=k2+1

(
n
j

)
ξj(1− ξ)n−j

=
∑k2

i=k1+1

(
n
i

)
ξi(1− ξ)n−i

> 0,

(48)

since
(
n
i

)
≥ 1, ξi > 0 and (1− ξ)n−i > 0 for ξ ∈]0, 1[, ∀i ∈ {k1, . . . , k2 − 1}. According to

5Simple histogram-based techniques can be used to estimate the amount of noise ξ in the image.
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the test (43) and the hypothesis on G: a node p ∈ P can be removed from G if and only if

]{q ∈ Br
p | cq ≤ −γδr} = ]{q ∈ Br

p | q is noise free} ≥ ηn (49)

Moreover, we assumed

]{q ∈ Br
p | q is noise free} ∼ (n−X).

Therefore, we have

P(p is not removed) = P((n−X) < ηn) = P(X > (1− η)n).

Fixing a proportion ε of wrongly constructed nodes, we choose

η+ = max {η ∈ [0, 1] | P(X > (1− η)n) ≥ ε}, (50)

Considering the lower bound ηmin de�ned in (46), we set

ηmax = max {ηmin, η+}. (51)

Combining the de�nitions of the lower bound (see (46)) and the upper bound (see (51)),

it now becomes easy to get a good estimation of the parameter η∗ for a �xed window

radius by setting

η∗ =
(ηmin + ηmax

2

)
. (52)

Let us now analyze the joint behavior of the lower and the upper bounds. When the

amount of noise ξ is �xed, one can easily observe that the gap ∆η = (ηmax − ηmin) grows

as the window radius r increases. Indeed, we have previously seen that the lower bound

ηmin tends to 1
2
as the window radius r increases (see (46)). The previous observation is

also due to the fact that the upper bound ηmax grows as the window radius r increases.

Similarly, when the window radius r is �xed, remark that ∆η decreases when the

amount of noise ξ increases. This situation is consistent because ηmin remains the same

but ηmax tends to 1
2
since it is more likely that the number of degraded pixels increase

in the same window B. Observe how the noise a�ects the reliability of the upper bound

ηmax. It is important to notice that increasing the window radius r can compensate the

augmentation of the amount of noise only up to ξ = 0.5.
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Figure 17: Evolution of the lower bound ηmin, the statistical upper bound ηmax, the

empirical upper bound ηempmax and the optimal value η∗, versus the window radius for a

�xed amount of noise ξ = 0.05 (left) and ξ = 0.3 (right). In these experiments, we set

ε = 10−8.

Additionally, we can also derive an empirical upper bound ηempmax for evaluating the

quality of the statistical upper bound ηmax. Let us describe how the former is computed.

First, we generate a series of images corrupted by the same amount of noise ξ. For each

image, we progressively decrease η to zero for �nding the one that removes all nodes in

G ′. Then, the empirical upper bound ηempmax corresponds to the average of such η values

across all images. These two upper bounds as well as the lower bound ηmin and η∗ are

illustrated with a varying window radius in Figure 17 for two di�erent noise levels.

Finally, notice that the thresholding parameter ε much in�uences the quality of the

statistical upper bound ηmax. One way to obtain a good estimation of the parameter ε is

to �nd the one which minimizes the absolute error between the statistical upper bound

ηmax and the empirical upper bound ηempmax. The Figure 18 illustrates this error with a

varying ε for several window radii. Observe �rst that the error depends on the window

radius r since it generally cannot be minimized over all window radii when the amount

of noise increases. However, the Figure 18 also shows that choosing a value of ε < 0.05

is clearly too restrictive. In light of this experiment, we empirically set ε = 0.05 for this

moment.

Automatic tuning of η and r

In the continuity of the previous paragraph, we now explain how we can jointly obtain
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Figure 18: Evolution of the average absolute error between the empirical upper bound

ηempmax and the statistical upper bound ηmax versus the parameter ε, for a �xed amount of

noise ξ = 0.05 (left) and ξ = 0.2 (right). Color curves correspond to distinct window

radii.

reliable estimates of the parameters r∗ and η∗ such that all nodes of P are very likely to

be removed from G. Notice �rst that if η+ < ηmin, it means that the test (39) can fail for

some nodes in G. However, as discussed before, we can increase the window radius r to

increase the gap ∆η between the lower bound ηmin and the upper bound ηmax.

A good window radius r∗ can be therefore obtained by progressively increasing it

from one until η+ ≥ ηmin. Notice that the number of iterations must be bounded to

prevent an in�nite loop. Once the optimal radius r∗ computed, η∗ can for instance be

set as using (52). Empirically, we have found that the values of parameters r∗ and η∗ are

generally near to empirical values obtained for segmenting I with a varying amount of

noise ξ. Nevertheless, these estimations become less accurate as the amount of noise ξ

tends to 1
2
.

b) Further lowering the graph size η

We now detail how the parameter η can be used for reducing the memory usage. The

Figure 19 illustrates how far the condition (39) can be relaxed for further reducing graphs

while getting nearly the same segmentation. In this experiment, the segmentation and the

reduced graph are shown for segmenting a synthetic noisy 2D image with a Boykov-Jolly

model using connectivity 1. Since the condition (43) becomes easier to satisfy when η

decreases, the graph around the object contours becomes thicker.
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η 1.0 0.9 0.8 0.7 0.6
ρ 93.28% 30.99% 5.74% 3.65% 2.00%

Figure 19: Memory gain when segmenting a 2D synthetic image corrupted by 10% of

impulsive noise, using a Boykov-Jolly model (left). Top row shows the nodes of the

reduced graph in light gray while bottom row shows the corresponding segmentation.

In this experiment, we set r = 3, γ = 1 and use connectivity 1. In this experiment,

ηmin ' 0.571.

c) Filtering

The parameter η can also be used for �ltering the segmentation. Indeed, this parameter

can be tuned to remove small undesired regions in the segmentation due to noise. This

behavior is illustrated in Figure 20 for segmenting a 3D noisy image obtained from a

confocal microscope using a Boykov-Jolly model. In this picture, white spots correspond

to cell nuclei in a mouse cerebellum. Observe how the �ltering acts for small values of

η: small regions in the graph and in the segmentation are progressively removed as η

decreases. This parameter can be typically useful for �ltering images corrupted by a

noise behaving like an impulsive noise. Notice that unlike traditional �lters, RGC do not

require any pre or post-processing steps to �lter segmentations.

The robustness (see Figures 21 and 22) and the sensitivity to noise of the parameter η

(see Figure 23) are now analyzed. Let us describe the experimental setup. The experiment

consists in segmenting four grayscale and �ve color 2D images with an increasing noise level

ranging from 4 to 48%. We use the Boykov-Jolly model in connectivity 1 using GMM for

estimating the distribution laws of the object and the background. For each image,

we compute a reference segmentation on the noise-free image by tuning the seeds and
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parameters by hand. Using the approach of [RKB04], the parameter σ is automatically

set as

σ =

√
1

]P
∑

(p,q)∈N

‖Ip − Iq‖2
2,

Then, for each impulsive noise level, we select the segmentation maximizing the DSC (see

Appendix A) between the reference image and all segmentations obtained through a �xed

range of r and η values. Window radii range from r = 1 to r = 12 whereas η values range

from η = 1 to ηmin. Each segmentation is computed using the same seeds and parameters

as for the reference segmentation. Again, the σ parameter is automatically set as before.

Notice also that the choice of the evaluation measure in this experiment is important.

Due to the noise sensitivity of other evaluation measures like MSASD or SRMSSD (see

Appendix A), our choice naturally fell on the DSC, less sensitive to small perturbations.

As shown in Figure 21, for an impulsive noise level up to 45%, the parameter η appears

to be reasonably robust with a DSC always greater than 94% for all images, except for

the image "rice". However, such high and stable noise robustness can be reached at the

expense of a more important amount of seeds. The reason why the algorithm behaves

poorly on the "rice" image is the following. As said earlier, r must be large enough

when the amount of noise increases for removing a maximum number of segments due

to noise. This implies wider bands in G ′ around the object contours. Nevertheless, the

object contours further oscillate as the amount of noise increases since the uncertainty

grows inside the band due to noise. Another reason is due to the proximity of the objects

to segment. As an illustration, consider two circles over a uniform background, separated

by a distance d0 > 0. We clearly see that the test (43) becomes more and more di�cult

to satisfy when the window radius r increases. When (2r+1) ≥ d0, the reduced graphs of

both circles fuse into one component. This is typically the case in the image "rice" since

this photo consists of small assembled rice grains.

Figure 23 also highlights that the parameter η is not very sensitive to the variations

of r and η. The DSC does not vary much, except for the image "rice". This exception

can be explained for the same reasons as before.

More generally, the Figures 21, 23 and 22 also show the limits of the parameter η when
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η 1.0 0.9 0.8 0.7 0.6
ρ 55.70% 37.15% 18.26% 12.65% 8.87%

Figure 20: Simultaneous segmentation and �ltering of a 3D image using a Boykov-Jolly

model (left) in connectivity 1. In this picture, white spots correspond to cell nuclei in

a mouse cerebellum. Top row shows the nodes of the reduced graph in light gray while

bottom row shows the corresponding segmentation. In this experiment, we set r = 5 and

γ = 1.

the amount of noise is particularly large. To overcome these problems, the solution prob-

ably would be to identify structures belonging to the object in the window surrounding

each pixel.

Figure 21: Quantitative analysis of the robustness to noise for segmenting four 2D

grayscale images (top-most curves in the list) and �ve 2D color images with an impulsive

noise level ranging from 4 to 48%.
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Figure 22: Qualitative analysis of the robustness to noise for segmenting the images "f117"

(left-most column), "black-cat" (left column), "pyramid" (right column) and "�amingo"

(right-most column) with a �xed impulsive noise level of 36%. The seeds and the model

parameters are the same than those used in Figure 21 (top row).

Figure 23: Sensitivity of η for segmenting the images in Figure 21 with an impulsive noise

level of 36%. The seeds and model parameters are the same than those used in Figure 21.

96



3.3 N. Lermé

3.3 An exact test for reducing graphs

Although the massive numerical experiments presented in Section (3.2) clearly exhibit an

overall good performance with low pixel error on segmentations, we do not have demon-

strated yet that the test (39) preserves the value of the �ow in G. This test therefore

remains temporarily a band-based heuristic. This drawback has mainly motivated the

proposed work. In this section, we propose an exact test to reduce the graphs. In what

follows, we �rst describe this new test for reducing graphs in Section 3.3.1. We also

provide comprehensive numerical experiments in Section 3.3.2 and show that we obtain

reduction performance similar to those obtained with the test (39).

3.3.1 Principle

Throughout this section, we consider a �xed graph G = (V , E) as de�ned in Section 1.2.2

and a set B ⊂ Zd (d > 0). We also assume that G and B satisfy (36). We propose to test
either ∀q ∈ Bp, cq ≥ 0 and cq ≥ +

∑
q′∈σE (q)

q′ 6∈Bp
cq,q′ ,

or ∀q ∈ Bp, cq ≤ 0 and cq ≤ −
∑

q′∈σE (q)

q′ 6∈Bp
cq,q′ .

(53)

Theorem 5. Let G be the graph de�ned in Section 1.2.2, let B satisfy (36) and let us

assume that p ∈ P satis�es (53). Then, there exists a max-�ow f in G such that

∀q ∈ σE(p), fp,q = fq,p = 0.

As a consequence, removing the node p from the graph G does not modify its max-�ow

value.

The proof of the Theorem 5 is contained in the Appendix C. For simplicity, we only prove

the Theorem 5 when the node p satis�es the �rst condition of (53). Algorithmically, the

above theorem guarantees that we can test every node, during the graph construction,

before it is added to the graph. If the node satis�es (53), it is not useful to the max-

�ow evaluation and can be removed without alteration of the max-�ow value. Since all
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p

s

p

t

Figure 24: Illustration of the exact test (53). In both situations, we remove the central

node p from G since the contracted capacity of any node q ∈ ∂Bp is either greater than

the sum of the n-links capacities in σE(q) (left image) or less than the opposite sum of

the n-links capacities in σE(q) (right image).

nodes p ∈ P are individually tested using (53), this readily leads to an algorithm with a

worst-case complexity of O(]P]B dG
2

), where dG = max {]σE(p) | p ∈ P} is the maximum

node degree in G. This algorithm has clearly a superior complexity compared to the one

of Algorithm 2 described in Section 3.2.2.2.

It is however straightforward to lower this complexity by �nding, for any node p ∈ P ,

an upper bound on the sum of n-links capacities for each node q ∈ Bp. On the other hand,

such approximation would slightly deteriorate the reduction performance. Compared to

Algorithm 2, we want also to point out that the proposed algorithm for the test (53) is

fully parallelizable as discussed in Section 3.2.2.3.

Remark that the test (39) introduced in Section 3.2 is less restrictive than the test (53).

Indeed, the test (39) is clearly stronger than the test (53) for all nodes in Bp \∂Bp. Notice

also that the terms involved in each test in (53) do not depend explicitely on the window

radius r as the test (39). The general trend is that the relative reduced graph size ρ

is always minimum for r = 1. Finally, one could also easily embed the parameters γ

and η described in Section 3.2.3.3 and 3.2.3.4 for further reducing the graphs albeit the

exactness of the test is not anymore guaranteed.
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3.3.2 Massive experiments on 2D, 2D+t and 3D images

In this section, the performance of standard graph cuts (SGC) versus reduced graph cuts

(RGC) is compared in terms of speed and memory consumption for reducing graphs.

We also estimate the distance between the segmentations obtained with SGC and RGC

as well as the relative max-�ow error between valG′(f
′∗) and valG(f

∗) for evaluating the

e�ciency (or not) of the test (53). In the following massive experiments, we always set

γ = 1 and η = 1.

Additionally, we also compare the relative reduced graph sizes obtained with the

tests (39) (see Section 3.2.1) and (53) (see Section 3.3.1) when using the same seeds,

parameters and images as in Section 3.2.1. Also, remark that the experimental setup

adopted is the same as in Section 3.2.3.2. For the sake of clarity, we �rst remind our

procedure for segmenting such data using the Boykov-Jolly and the TV+L2 models in

connectivity 1.

For each image, the best segmentation is achieved by using the same seeds and pa-

rameters as in Section 3.2. Using these seeds and parameters, a reference segmentation

is computed with SGC. Then, a second segmentation is computed with RGC using the

same set of seeds and parameters. The di�erences between both segmentations are then

assessed using DSC and MSASD and the relative max-�ow error between valG(f
∗) and

valG′(f
′∗) is provided (see Appendix A). For each image, we also provide the scalar ∆ρ∗

measuring the di�erence between the optimal relative reduced graph size ρ∗ respectively

obtained using the tests (39) and (53). In words, the test (39) is more e�cient than the

test (53) when ∆ρ∗ > 0 and conversely.

On the technical side, all experiments are performed on an Athlon Dual Core 6000+

3GHz with 2GB of RAM using the max-�ow algorithm of [BK04] 6. Running times

include the graph construction, the max-�ow computation as well as the construction of

the solution. Times are averaged over 10 runs.

The results of the test (53) using a TV+L2 model (see Section 1.2.5.1) are summarized

6The code is freely available at http://www.cs.cornell.edu/People/vnk/software.html
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in Table 5. Reduction performance of the test (53) is also compared to the test (39) and

illustrated in Figure 25. Similarly, we summarize the outcomes of the test (53) using

a Boykov-Jolly model (see Section 1.2.5.2) with NH and GMM respectively in Tables 3

and 4. We also illustrate the reduction performance of the test (53) against (39) in

Figure 26. Let us now take an in-depth look at the results obtained.

As the test (39), we observe that the test (53) globally outperforms SGC in terms of

memory while the di�erences between both segmentations and between max-�ow values

are generally null (or remain extremely small). This situation is reassuring and con�rms

the consistency between theoretical and experimental results for the test (53). For some

images, SGC fail to compute the segmentation (due to the high memory requirements)

while RGC demonstrate their ability to segment them in a reasonable time. Furthermore,

the outcomes of Tables 5, 6 and 7 and those described in Section 3.2.3.2 also imply that

the segmentations obtained using the tests (39) and (53) are nearly the same. The larger

theoretical complexity of the test (53) is also con�rmed by larger running times than those

obtained with SGC. However, notice that this complexity could be improved as with the

test (39). Indeed, one can easily �nd an upper bound on the sum of n-links capacities for

each q ∈ ∂Bp.

From a memory point of view, the massive experiments in Tables 5, 6 and 7 also show

that the test (53) is globally less e�cient than the test (39) with a negative average ∆ρ∗

over all images. This least performance is strengthened for the images where the amount

of regularization is very large (see for instance the images "circles", "sweets", "cells",

etc.). Indeed, in such a situation, a large window radius can be used in the test (39) for

decreasing δr and the reduced graph size whereas the test (53) cannot be relaxed. Thus,

the relative reduced graph size ρ is minimum for the test (53) when r = 1. However, when

the amount of regularization is of moderate level, the reduction performance of both tests

are almost similar. Let us now describe the results for each model.

For the Boykov-Jolly model, the average relative size of reduced graphs over all images

using NH is 20.67% (±26.59%). For 28 images out of 31, RGC allocate less memory than

SGC. Observe that the image "talk" cannot be segmented using the test (53) whereas it
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ρ∗ = 37.06% ρ∗ = 64.82%

Figure 25: Negative impact of the test (53) (right) against the test (39) (left) for seg-

menting the image "viking-symbol2" with a TV+L2 model. On both images, the reduced

graph is superimposed in yellow on the image. In these experiments, we take the same

set of parameters than those used in Table 5. Observe how the test (39) can remove a

large part of nodes due to the raking light, unlike the test (53).

can with the test (39). Additionally, the average ∆ρ∗ over all images is -1.30% (±4.84%).

When using GMM with the same energy model, the average relative size of reduced graphs

drops to only 25.74% (±32.71%). For 27 images out of 31, RGC allocate less memory

than SGC. Also, the average ∆ρ∗ over all images is -0.746% (±3.67%). The di�erence

of reduction performance between the TV+L2 and Boykov-Jolly models lies in n-links

capacities. Indeed, the n-links capacities smoothly vary according to the image content

in the latter whereas they remain �xed in the former. Since the n-links capacities are

smaller when the gradient is larger (see (32)), the test (53) becomes easier to satisfy than

the test (39) around object contours and leads to a smaller reduced graph. Notice that

this e�ect is enforced with GMM due to the better estimate of distribution laws (see

Figure 26).

For the TV+L2 model, the average relative size of reduced graphs over all images is

39.09% (±39.65%). For 20 images out of 28, RGC allocate less memory than SGC. In the

manner of the test (39), the test (53) behaves poorly when the amount of regularization
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∆ρ∗ = +0.27% ∆ρ∗ = +1.87%

Figure 26: Positive impact of the test (53) against the test (39) for segmenting the image

"book" with a Boykov-Jolly model using NH (left) and GMM (right). Notice that we take

in these experiments the same set of seeds and parameters than those used in Tables 6

and 7. On both images, we represent the reduced graphs using the test (39) (cyan)

and (53) (green) superimposed on a zoomed version of the original image. The intersection

is drawn in red. Observe how the test (53) results in thicker bands around the object

contours unlike the test (39).

is large (see for instance the images "zen-garden" and "sweets"). As opposite, when the

amount of regularization is large enough, the test (53) is sometimes slightly more e�cient

than the test (39) (see for instance the images "angiography2" and "ct-thorax"). This

observation is typically due to the fact that the test (53) can be less conservative than the

test (39) since a lower number of contracted capacities must be larger than some threshold.

Additionally, the average ∆ρ∗ over all images is -5.57% (±11.44%) and is slightly larger

than using the test (39). This di�erence of reduction performance (in the particular case

of the TV+L2 model) can be explained as follows. Although the test (53) appears to

be less conservative, the threshold in the test (53) is larger than the one involved in the

test (39) as the dimensionality d and the window r increase. Let us now demonstrate it

in connectivity 0. First, one can easily observe that the test (53) is more restrictive in

corners of Bp since the number of neighbors outside Bp is larger. In this test, a node p is

therefore removed from G if ∃q ∈ Bp such that

|cq| ≥ d. (54)
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where we remind that d is the dimensionality. Given the connectivity type, the exact

value of δr in the test (39) can be readily computed as

δr =
2d(2r + 1)d−1

(2r + 1)d − 1
(55)

By plugging (55) into (39), we have the following statement: in the test (39), a node p is

removed from G if ∃q ∈ Bp such that

|cq| ≥ 2d(2r+1)d−1

(2r+1)d−1
⇔ |cq| ≥ 2d(2d+1)d−1

(2r+1)d
(

1− 1

(2r+1)d

)
⇔ |cq| ≥ d

2

(2r + 1)
(
1− 1

(2r+1)d

)︸ ︷︷ ︸
Ψ(r,d)

. (56)

For any dimensionality d > 0 and any window radius r > 0, it is therefore straightforward

to see that the maximum of Ψ(.) in (56) is reached for d = 1 and r = 1 and is equal to 1.

Since Ψ(.) is decreasing, this gives us a lower bound on |cq| in (56). One ends up with

d ≥ |cq| ≥ dΨ(r, d). (57)

Comparing (57) and (54) readily explains why the test (53) is stronger than (39) in such

particular case (see Figure 25). This calculus can be generalized to other connectivities.

Finally, as in Section 3.2.3.2, we have also compared the distance between segmenta-

tions obtained with NH and GMM using the DSC and the ASASD evaluation measures

(see Appendix A), when both are available. The outcomes are almost similar with a mean

DSC and a mean ASASD respectively equal to 98.87% (±1.25%) and 1.88 (±2.31).
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3.4 N. Lermé

3.4 Conclusion

In this chapter, we have presented two simple tests for reducing heuristically and ex-

actly graphs involved in graph cuts-based binary image segmentation. For the heuristic

test (39), we have proposed an e�cient implementation of complexity O(]P) (except for

image borders), which is in particular independent of the window radius. The massive

numerical experiments presented in Section 3.2.3.2 show that RGC globally outperform

SGC in terms of memory with an average relative reduced graph size under 35% while

keeping very low pixel error between segmentations obtained with and without RGC. The

proposed implementation of the test (43) also runs faster for some images if the amount

of regularization is of moderate level. For keeping good reduction performance when the

amount of regularization is large, we have introduced two extra parameters for further

reducing the graphs and removing small connected components due to noise in the seg-

mentations. Lower and upper bounds have also been provided to automatically tune the

parameter η with or without the window size.

More generally, the massive experiments presented in Section 3.2.3.2 and 3.3.2 clearly

show that the test (53) o�ers less performance in terms of memory and speed compared

to the test (39). In words, the exactness of the test (53) is at the expense of a larger

computational cost. However, we have also seen that the complexity of the test (53) could

be easily lowered with a slight deteriation of reduction performance. Furthermore, the

solutions provided by the test (39) are near identical to those obtained with the test (53).

On the other hand, an exact test has a deeper impact since it guarantees optimality on

the solutions. As an illustration, the test (53) can be typically used in critical applications

where accuracy is a fundamental requirement.

Finally, we want to mention that the tests described in Section 3.2 and 3.3 are currently

protected by a patent [5]. Also, a detailed view of the massive numerical experiments

presented in these sections are freely available at http://lipn.fr/~lerme.
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4 GCSFMP: an application of RGC

for segmenting lung tumors

4.1 Introduction

In this chapter, we address the problem of extracting interactively lung tumors in 3D

CT images using graph cuts [7]. The originality of this work consists in (1) reducing input

graphs using the method described in Section 3.2 to decrease the memory consumption of

graph cuts and (2) introducing an original energy formulation with a prior on the seeds

location: GCSFMP (Graph Cuts-Based Segmentation with Fast Marching Prior).

This prior is achieved by computing a distance map from object seeds and has a

double role: localize the tumor into the CT image and alleviate the propagation of object

seeds for reducing graphs. In the subsequent sections, we �rst detail the problem and its

constraints. Afterwards, our strategy for achieving relevant segmentations of lung tumors

is presented and evaluated against ground truth provided by an expert. Experiments

show how the proposed method yields accurate results in a fast and memory e�cient way.

4.1.1 Motivation and scope

The ability to exchange oxygen and carbon dioxide through the lungs is critical to life.

In human beings, the lungs are separated by the mediastinum, posed on the diaphragm

and protected by the rib cage. The left lung is divided into three lobes while the right

lung is divided into two lobes (see Figure 1). Finally, air is conducted through a airway

tree of bronchi composed of multiple rami�cations. Finally, blood vessels follow bronchi

pathways until alveoli where gaz exchanges occur.

In some patients, lungs can contain tumors, which are the most common manifestation

of lung cancers. Tumors are classi�ed according to their size as micronodules (less than

6 mm), nodules (from 6 mm to 30 mm) and masses (greater than 30 mm). They include
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Figure 1: Detailed lung anatomy (left) and surrounding structures (right).

as well areas of ground-glass attenuation. However, all nodules and tumors are not malig-

nant (cancerous). Some of them can also be benign (non-cancerous). Such structures are

usually located using CT scans or X-ray radiographs. Their degree of malignancy is gen-

erally estimated according to several criteria among shape, size, volume and growing rate

in time. The likelihood of malignancy is linked to the history of cancer of the patient and

his immediate environment (smoking, pollution, asbestos, etc.). Treatment and prognosis

depend on the type of cancer, its degree of dissemination and the health of the patient.

Typical treatments include surgery, radiotherapy and chemotherapy. According to the

World Health Organization (WHO), lung cancers currently represent the most frequent

mortality cause in men and, after the breast cancer, in women. Lung cancer is also the

most deadly cancer, responsible of about 1.37 million deaths worldwide in 2008.

Due to the moist and a well oxygenated environment, lungs also represent a perfect

breeding ground for bacteria to grow. Infections compromise the ability to move oxygen

through the system and can be very serious. Tuberculosis is the most common infec-

tion a�ecting lungs, killing about 1.4 million people worldwide in 2010, according to the

WHO. This disease can cause cavities inside the lungs and generally appear as masses in

CT scans. Although reduced in the �fties with the introduction of antibiotics, multire-

sistant strains of tuberculosis have recently emerged. Notice however that masses can be

also the manifestation of a lung cancer. In this situation, the surgery can help bring more

elements about the nature of these structures.

More generally, nodules are small spherical regions whereas masses have larger sizes
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Figure 2: Examples of micronodule (left), nodule (middle) and masse (right) in CT scans.

and present irregular shapes. Nodules and masses may be connected to some extent to

vessels, to bronchi, to the pleural wall or to the mediastinum (see Figure 2).

As a consequence, the detection and the measurement of the previous structures are

crucial for establishing an early diagnosis of the pathology and improving the patient'

survival rate. Accurate measurements of lung tumors sizes has become a challenging task

for staging and assessing tumor response to treatments or its progression. While early

assessment of the previous structures was performed manually on chest radiographs, the

joint use of powerful imaging acquisition systems and computer-aided analysis play now

a major role by making the diagnostics of radiologists more and more quick and accurate.

While a large number of measures have been proposed to assess the likelihood of

malignancy, measuring size and more recently volumes of tumors/nodules remains a stan-

dard choice among radiologists. Revised RECIST criteria, largely used by radiologists,

are based on the measurement of one diameter on a few number of lesions [vPvMGB10],

and su�er from a lack of reproducibility [STJ+10]. Alternatively, tumor volumetry has

been proposed to overcome those di�culties in order to improve the staging of nod-

ules [GKMP09], the evaluation of tumor aggressiveness [QCS+08], tumor response to

chemotherapy [BMG+10, ZSM+06] or to radiotherapy [MGBA+09] and the progression

rate of tumors [QCS+08] or metastases [MAS+07]. Moreover, it becomes a necessary tool

for the automatic screening of lung nodules on CT scans, and is currently on evaluation

on ongoing trials [vKOP+09].

Originally, nodules, masses and tumors were manually detected and measured in
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CT images. The purpose of this work is therefore to provide tools to radiologists and

radiotherapists for making measurements easily. Our tool permits to draw interactively

in 3D the shape of the lesion.

4.1.2 Constraints

Beside the main objective described in Section 4.1.1, the proposed method must faces

several constraints. In what follows, we propose to detail them in an increasing order of

importance and provide for each constraint, key references about the subject.

A major constraint of the method is to e�ciently deal with regular and irregular shapes

in the most transparent way. As a consequence, a shape prior cannot be embedded into

the algorithm to increase the accuracy of the method. This main constraint naturally

makes the initial problem more challenging. To our best knowledge, no work has been

previously done to address this issue using graph cuts.

A second constraint is due to the fact that tumoral tissues typically appear in the

same range of intensities than healthy tissues. This di�culty is also strengthened in

situations where the tumors are directly connected to the pleural surface. Furthermore,

no delineation is present between both tissues and is a problem for establishing accurate

diagnostics even for clinicians. This requires a segmentation to rely on another criteria

for correctly distinguishing tumoral tissues from healthy tissues. To tackle the issue

of connection to the pleural surface, methods often make use of basic morphological

operators [KRYH03, KDB+06, MLJM+09], clipping planes [RCY+06] or volumetric shape

indexes [YBS09]. A classi�cation of those methods can be found for instance in [SSPvG06]

and [GKMP09].

In [YBS09], authors provide a robust method for automatically segmenting nodules.

To our best knowledge, this technique is the only one to address this problem using graph

cuts. The method works as follows. First, a volumetric shape index is computed for

each voxel, based on local Gaussian and mean curvatures. This shape index represents

the local shape feature at each voxel and assigns a unique value for every distinct shape.

Afterwards, at each voxel, the shape index along with the image intensity and the spatial
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position are concatenated into a �ve-dimensional geometric feature vector. Mean-shift

clustering is applied on these vectors producing intensity and shape mode maps. The

solution is regularized using graph cuts upon these maps. While the method gives aston-

ishing results by detaching correctly nodules from surrounding undesired structures, the

approach remains limited to a particular kind of structure and cannot be used to segment

masses and tumors.

In [RCY+06], nodules are segmented by approximating their interface with the pleu-

ral surface as a plane. The algorithm iteratively pushes the plane toward the pleural

surface and reorients it to minimize the volume error of the nodule. While such an al-

gorithm seems to converge in a large number of cases (about 88.7% of success on a large

dataset [RCY+06]), better results occur when the interface between the nodule and the

pleural surface can be approximated by a plane. When this interface is convex, the al-

gorithm is no longer guaranteed to converge. Furthermore, this technique can only be

used for small nodules. Indeed, the interface between the pleural surface and the nodule

becomes more and more curved as the nodule size grows due the rib cage curvature.

A last but not least constraint lies in the imaging acquisition system itself. Although

these systems became more and more sophisticated and accurate over the last decades,

the CT images produced by them can contain a large number of artifacts. These artifacts

are almost represented by the partial volume e�ect but also by noise, ring, streak and

motion artifacts. Partial volume e�ect occurs in medical imaging and more generally in

biological imaging where a single voxel contains a mixture of multiple tissue values. This

can be observed at the interface between di�erent kinds of tissues (e.g. between gray

and white matter in the brain) or when thin structures are smaller than the resolution

of the acquisition system (e.g. blood vessels in the lungs). This e�ect is alleviated as

the resolution increases but is strengthened by the Point Spread Function (PSF) of the

acquisition system. The noise is caused by a low signal to noise ratio and occurs more

commonly when a thin slice thickness is used. But it can also occur when the power

supplied to the X-ray tube is insu�cient to penetrate the anatomy. The ring artifact is

a mechanical artifact which appears as small oscillations in the image. Streak artifacts

can be observed around materials that block most x-rays such as metal or bones. They
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appear as radial rays emitting from the source in the images. Finally, motion artifacts

can be seen as blurring or streaking and are mainly caused by voluntary or involuntary

movements of the patient inside the acquisition system during examination.

4.2 Proposed method

4.2.1 Overview

The underlying common assumption of graph cuts-based segmentation models like the

Boykov-Jolly (see Section 1.2.5.2) and TV+L2 (see Section 1.2.5.1) models, is that object

and background parts appear in di�erent range of intensities. For example, in the Boykov-

Jolly, when this is not the case, we must reduce the importance of the data term by

setting β = 0 to get consistent segmentation results. As a consequence, the result is only

determined by the contrast-preserving function Bp,q in (31).

However, setting the parameter β = 0 cannot be considered in this context since tu-

moral and healthy tissues appear in the same range of intensities in CT images. Therefore,

setting β > 0 appears as the unique solution and relaxes the tendency to smoothness in

regions of high contrast, as shown in [BJ01, RKB04]. Furthermore, RGC typically exclude

camou�age situations (i.e. when a signi�cant overlap exist between the distributions of

the object and the background) and would lead in no improvement of the relative size of

the reduced graph. Furthermore, due to the previous constraints, remind that in many

situations (and in the experiments presented in Section 4.3) the tumors can be connected

to the pleural surface and no delineation exists at the interface between both tissues.

To solve these issues, we propose to add in the Boykov-Jolly energy model a prior on

the location of the tumor, obtained from the location of the object seeds. This is achieved

by computing a distance map from object seeds. The role of this prior is twofold. First,

it is used to locate and detach tumors from pleural surface. Second, the prior is also used

to progressively lower the propagation of the object seeds as the distance increases from

them. This allows us to keep a large value of β and categorize background voxels easily,
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Figure 3: Flow diagram of our approach.

i.e. when the distance from object seeds is too large.

In words, the user puts object seeds inside the tumor and labels undesired parts with

background seeds. Afterwards, a distance map is computed from the object seeds and

a Region Of Interest (ROI) is extracted by thresholding the map. This threshold is set

small enough for keeping voxels which appear su�ciently near from the tumor. Then,

the graph is reduced in the ROI using the method described in Section 3.2. Finally, the

max-�ow is computed inside this graph using [BK04] and the segmentation is returned.

The overview of the approach is outlined in Figure 3. We now detail our novel energy

formulation.

4.2.2 Energy function

As discussed earlier, we propose to add in the Boykov-Jolly model a prior on the location of

the tumor, obtained from the location of the object seeds. Embedding this prior naturally

leads to a modi�cation of (31) where the regularity criterion is taken as the same with a

Gaussian weighting function (32), i.e.

Ep,q(up, uq) = Bp,q · |up − uq| and Bp,q =
1

‖p− q‖2

· exp
(
− (Ip − Iq)2

2σ2

)
, (58)

where I is the input image of a single channel and σ is a contrast parameter. The

parameter σ is automatically computed as described in Section 3.2.3.4. Also, the data

term is modi�ed in such a way to lower the importance of object seeds as the distance

from them increases. The data term is de�ned in Table 8.

In Table 8, the distributions laws P(Ip | p ∈ O) and P(Ip | p ∈ B) are estimated using

NH, σa ∈ R+
∗ is a free parameter and d(p,O) is a distance function between the point
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p ∈ Aσa p 6∈ Aσa
Ep(0) −log

[
P(Ip | p ∈ O)× exp

(
−
(
d(p,O)
σa

)2)]
+∞

Ep(1) −log P(Ip | p ∈ B) 0

Table 8: De�nition of the data term.

p ∈ P and object seeds O ⊂ P . The parameter σa controls how far object seeds propagate

from their location and then corresponds to an area of in�uence Aσa de�ned by

Aσa = {p ∈ P | d(p,O) ≤ 1 + σa
√
−log(ε)} with ε ' 0.

Beyond this area, the nodes are only linked to the background terminal with a large

capacity. A large capacity ensures that the corresponding node is labeled as background

voxel. As a consequence, background voxels satisfy the test (39) and be removed from

the graph. Although the parameter σa plays an important role that impacts the way of

positioning the seeds in the image, we always set σa = 10 in our experiments.

In words, the main di�erence between the proposed energy and (31) lies in the distance

term. The function d(.) is de�ned as

d(p,O) = min{dist(p, q) | q ∈ O}, ∀p ∈ P , (59)

where dist(.) denotes a notion of distance between two points. However, the results

naturally depend on the choice of dist(.). We have made two attempts for this function:

• The Euclidean distance. In this case, we only take into account spatial informa-

tion. The distance between two nodes p, q ∈ P2 in G is de�ned as

dist(p, q) = ‖p− q‖2. (60)

Thus, embedding (60) in (59) amounts to �nd the shortest path from any node p ∈ P

to the set O. Notice that (60) is de�ned for any couple of nodes. This distance can

be e�ciently computed with the algorithm described in [FH04]. However, we mostly

use it for the purpose of illustration.
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• The geodesic distance. In this case, the distance between two adjacent nodes

(p, q) ∈ N in G mixes spatial and intensity information and is de�ned as

dist(p, q) =
√

(Ip − Iq)2 + α‖p− q‖2, (61)

where α ∈ R+ is a parameter. This time, plugging (61) in (59) amounts to minimize

both the variations of intensities and the proximity of any node p ∈ P to the set

O. The parameter α acts as a trade-o� between the Euclidean distance and the

gradient norm. For instance, increasing α can help to further propagate distances

within regions of low gradient and can be used to segment elongated and/or curved

objects. The geodesic distance can be e�ciently computed with a Fast March-

ing algorithm [Iko05]. This algorithm is similar to Dijkstra's algorithm: distances

are progressively propagated from the object toward the boundaries of the image

(see Appendix B). Notice that [Iko05] require that dist(.) must be a metric. Also,

unlike [FH04], the distance map computed in [Iko05] is not exact due to the dis-

cretization of P . Using larger neighborhoods in G yield better approximations of

the true geodesic distance but is however more costly on the computational side.

In Figure 4, a level-set of the area of in�uence for the above two metrics is shown in

green color, for some ε ' 0. Remind that the area of in�uence corresponds to the voxels

which are su�ciently near O, with respect to the metric dist(.). Observe how the level-set

of geodesic distance better �ts to the tumor than the level-set of the Euclidean distance.

The choice of a geodesic distance allows to take into account areas with strong gradient

and therefore, avoids to include areas which would be too distant from the object seeds.

There might nonetheless be leakage through "gaps" in contours.

4.2.3 Segmenting lung tumors: a practical case

VLVDP (Very Large Volume Data Processing) is a project aiming to build prototypes

and software solutions for handling very large volume data. VLVDP is relatively recent

but tends to unit more and more people through interdisciplinary projects (Cancéropôle

of Toulouse) and a large �eld of applications including combinatorial optimization (seg-
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(a) Image and seeds (b) Euclidean distance (c) Geodesic distance

Figure 4: Area of in�uence for an Euclidean and a geodesic distance using σa = 40.

mentation, restoration, stereovision), tomographic reconstruction and compression 1. The

algorithmic solutions for addressing those issues are based on graph cuts as well as wavelets

and wavelet packets. I/O are managed with ImageMagick, supporting a large number of

image formats. The core of VLVDP is written in C and C++ whereas the graphical

user interface is written in C++ with Qt and VTK. Combinatorial optimization tools

(including RGC) are developped in C++ and place especially emphasis on speed and low

memory usage as well as clean and extensible object-oriented design. VLVDP also o�ers a

user-friendly interface to visualize segmentations and compare them with provided ground

truths (see below). VLVDP also provides an access to CUDA to bene�t from GPGPU

processing. Finally, additional features can be added by plugins.

We now brie�y detail a typical scenario of how a segmentation of a lung tumor can

be obtained in the VLVDP interface. After having selected the volume, we load it, we

adapt the visualization and localize the lung tumor using sagittal, coronal and transverse

planes (see Figure 5). Once localized, the centers of mass of the tumor are evenly selected

with object seeds along the z-axis using the mouse. Undesired parts like healthy tissues

are also marked with background seeds (see Figure 6). Then, the energy model is chosen

with adequate values of parameters (see Figure 7) and Reduced Graph Cuts compute the

desired segmentation. Finally, the segmentation obtained and the ground truth can be

compared through 2D or 3D views (see Figure 8).

1Please consult http://www.math.univ-toulouse.fr/~fmalgouy/software/VLVDP.html for more

information.
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Figure 5: Localization and visualization of the lung tumor using sagittal, coronal and

transversal planes.

Figure 6: Drawing object and background seeds using sagittal, coronal and transversal

planes.
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Figure 7: Entering model parameters before running RGC.

Figure 8: Visualization and comparison of the segmentation and the ground truth in 2D

(left) and 3D (right). Ground truth and segmentation are resp. in yellow and cyan.

4.3 Evaluation

In this section, we present experiments for segmenting ten 3D CT images consisting of

nodules, masses and tumors. A summary of these materials is available in Table 9. Notice

that all volumes have the same size on x ad y axes. All tumors are composed of 50 images

on the z-axis except for the tumor T8 (316) and the tumor T10 (70). The resolution on

xy-plane varies from 0.63 to 1.17 mm. Similarly, the slice thickness on the z-axis ranges

from 1 to 3 mm.

All experiments are performed using connectivity 1. Remind that distributions laws

are estimated using NH, the σ parameter is computed as explained in Section 4.2.2 and

we set σa = 10. Finally, seeds are placed manually for each CT image several times until

satisfaction (about 2-3 times maximum).
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Tumor Type Sizes (x,y,z) Description
T1 Mass 512× 512× 50 Mass of the upper right lobe (CT)
T2 Nodule 512× 512× 50 Nodule of the right apex (CT)
T3 Nodule 512× 512× 50 Nodule of the lower right lobe (CT)
T4 Tumor 512× 512× 50 Marge left hilar tumor inducing a peripheral atelec-

tasia (CT)
T5 Tumor 512× 512× 50 Same as T4 (dosimetric CT scanner)
T6 Mass 512× 512× 50 Mass of the lower left lobe appended to the pleura

(CT)
T7 Mass 512× 512× 50 Same as T6, after four months of treatment (CT)
T8 Tumor 512× 512× 316 Large left hilar tumor and peripheral atelectasia, be-

fore treatment (contrast enhanced CT)
T9 Tumor 512× 512× 50 Same as T8, after chemo-radiotherapy (CE-CT)
T10 Mass 512× 512× 70 Right hilar lymph node mass

Table 9: Description of lung tumors.

Figure 9: Overall context of lung tumors T1 (left), T8 (middle) and T9 (right). Ground

truth are superimposed in red on CT images.

4.3.1 Qualitative and quantitative results

In this section, we evaluate the relevance and the accuracy of our method for segmenting

the CT images shown in Table 9. This is achieved by comparing them against ground truth

provided by an expert, using several evaluation measures (see Appendix A). Quantitative

results are summarized in Table 10. For all tumors, we observe a Dice Coe�cient always

greater than 70%, which is according to radiologists, su�cient for validating the method.

The Average Surface Distance between both segmentations remains generally very low

but the Volume Overlap may be sometimes quite low too.

We also evaluate our method in a qualitative manner. The Figure 11 shows the

121



N. Lermé GCSFMP: an application of RGC for segmenting lung tumors

segmentations and the ground truth obtained at equally spaced values on the z-axis for

tumors which obtained the better statistics in Table 10. The segmentations and the

ground truth are superimposed by transparency on the original image. The segmentations

were obtained using the seeds illustrated in Figure 10. For illustrating their propagation,

we show in Figure 10 the seeds for equally spaced on the z-axis but for di�erent values

than previously. One can clearly observe how the seeds propagate around object seeds

without e�ort, avoiding radiologists to mark each slice in CT images. For instance, the

segmentation of the tumor T1 is very close from the ground truth, while the segmentations

obtained for T8 and T9 di�er slightly on the borders. This observation is also con�rmed

in Figure 12 where segmentations are ground truth are visualized in 3D from top, bottom

and side views.

Globally, our method depicts quite mitigated results and the poor quality of them can

be explained as follows. First, the ground truths provided by the expert are sometimes

wrongly labeled. Some voxels are categorized as belonging to the tumor instead of the

background. However, due the geodesic distance transform embedded to our method, the

algorithm cannot label correctly these voxels due to the high gradient between tumoral

and healthy tissues. But mostly, the ground truth shape can change a lot between two

successive slices in the z-axis. Again, this problem is inherent to the geodesic distance

which propagates uniformly distances between two successive slices. One way to solve

this issue would be to use background seeds for further constraining the propagation of

distances. However, this situation is not necessarily desirable from a user point of view.

4.3.2 Performance

In this section, we compare the performance of standard graph cuts (SGC) against reduced

graph cuts (RGC) both in terms of speed and memory consumption (see Table 11) for

segmenting the CT images shown in Table 9. In these experiments, the same seeds and

parameters are used as in Section 4.3.1. Experiments were performed on an Athlon Dual

Core 6000+ 3GHz with 2GB RAM. Times include graph construction/reduction, distance

map and max-�ow computation; they are averaged over ten runs. The numerical results
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Tumor Dice
Coe�cient

(%)

Volume
Overlap
(%)

Volume
Di�erence

(%)

Average
Surface
Distance

RMS
Surface
Distance

Maximum
Surface
Distance

T1 90.97 83.45 7.39 0.86 0.92 4.42
T2 80.95 67.99 4.98 1.25 1.54 6.63
T3 72.95 57.42 15.76 1.26 1.50 6.87
T4 71.33 55.44 42.31 3.30 4.01 14.34
T5 80.53 67.41 29.22 3.63 4.55 16.56
T6 86.63 76.42 18.02 1.30 1.49 5.90
T7 82.49 70.21 22.28 1.34 1.56 5.16
T8 89.25 80.59 9.59 1.20 1.47 9.32
T9 72.66 57.07 34.17 1.75 2.09 7.36
T10 74.04 58.79 41.09 4.97 5.55 15.99

Average 80.18 67.47 22.48 2.08 2.46 9.25

Table 10: Comparison between our method and the segmentations provided by the expert.

Figure 10: Seeds location for segmenting lung tumors T1 (top row), T8 (middle row) and

T9 (bottom row). Object seeds (cyan) and background seeds (red) are superimposed on

successive slices of the original image.
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Figure 11: Segmentation of lung tumors T1 (top row), T8 (middle row) and T9 (bottom

row). Ground truth (red) and segmentation (cyan) are superimposed on the original

image. Yellow color corresponds to the intersection of our solution and the ground truth.
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Figure 12: Segmentation of lung tumors T1 (top row), T8 (middle row) and T9 (bottom

row) with top (left column), bottom (middle column) and side (right column) views.

Yellow corresponds to ground truth (purple) whereas segmentation is shown in purple.

The intersection of ground truth and segmentation is shown in pink.
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Tumor
SGC RGC

Amount of object seeds (%)
Time Memory Time Memory

T1 2.34 231.85 2.05 8.72 2.56
T2 2.84 271.84 2.50 15.00 2.59
T3 3.21 310.34 2.87 19.27 2.00
T4 2.82 261.06 2.50 18.92 10.99
T5 3.00 284.47 2.72 16.41 8.75
T6 8.87 889.11 7.10 14.96 3.78
T7 4.42 386.27 3.49 23.29 11.18
T8 4.65 419.54 3.82 41.38 2.89
T9 3.62 344.68 3.10 13.65 5.55
T10 6.13 461.76 5.45 59.93 9.48

Table 11: Speed (secs) an memory usage (Mb) for our method and the graph cuts without

reduction. The label MP means that there is not enough memory for allocating the graph.

are summarized in Table 11. In this table, we also provide the amount of object seeds over

the tumor volume in the ground truth. This gives an objective measure of the amount of

interaction. by estimating the e�ort required by the user for positioning object seeds.

Table 11 show that RGC outperforms SGC for all segmented tumors. While running

time is only improved by a factor of low magnitude, the amount of memory allocated by

RGC ranges from 7.70 to 41.38x less than SGC while getting exactly the same solution.

We also want to emphasize that RGC are able to segment all tumors only in a couple of

seconds and are therefore compatible for clinical routine.

Finally, the amount of object seeds entered by the user remains generally negligible

with respect to the tumor volume, meaning that a low level of interaction is required for

segmenting tumors. This quantity increases a little bit for tumors T4 and T5 due to the

di�culty of segmenting correctly them. While such an approach strengthens the role of

object seeds, it is also relatively sensitive to the seeds location almost when the tumor is

linked to healthy tissues and requires some care when positioning them.

4.4 Conclusion

In this chapter, we have presented a new strategy for segmenting lung tumors in an

interactive fashion thanks to an original energy formulation embedding a prior on the
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location of object seeds. The propagation of seeds is also controlled by a Fast Marching

algorithm which takes into account the gradient of the CT image. In the experiments,

qualitative and quantitative comparisons both exhibit satisfying outcomes with a Dice

Coe�cient always greater than 70%. Additionally, the computation of the distance map,

the construction of the graph, its reduction as well as the max-�ow/min-cut computation

generally take only a few seconds. Thus, our method demonstrates its ability to segment

lung tumors quickly without requiring much e�ort if it is supported by a well designed

graphical user interface.

Nevertheless, the time required for the segmentation depends both on the image size

and the skill of the user for positioning the seeds not too far from the contours of the

object to segment and the ergonomics of the graphical user interface. Moreover, the

segmentation accuracy also depends directly on the seeds location. Additional corrections

can be however done quickly if some parts of the structures are incorrectly delineated.

While the numerical results appear satisfying from a medical point of view, they also

attest of the di�culty of the task.
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In Chapter 1, we have done some general reminders about graph theory and explained

how graph cuts can be used in the energy minimization framework. Afterwards, we

have described the problem of the prohibitive memory consumption of graph cuts in

Chapter 2 and demonstrated that this method is totally unsuitable for solving large-

scale optimization problems. Finally, we have proposed a new band-based strategy for

reducing graphs in Chapter 3 as well as an application using it for segmenting lung tumors

in Chapter 4. We now summarize the contributions of Chapter 3 and 4 and discuss about

potential perspectives for each one.

In Chapter 3, two simple tests have been presented for reducing either heuristically or

exactly graphs involved in binary graph cuts segmentation. First, an heuristic test (39)

has been proposed where the reduced graph size can be adjusted by tuning the window

size according of the amount of regularization asked. Then, we have shown that this test

can achieve near linear-time performance with an e�cient implementation of complexity

O(]P) (except for image borders). In particular, this complexity is independent of the

window size. Also, the reduction performance has also been evaluated against standard

graph cuts for segmenting 2D, 2D+t and 3D grayscale and color images using a TV+L2

model and a Boykov-Jolly model with NH (Normalized Histograms) and GMM (Gaussian

Mixtures Model). The massive numerical experiments presented in Section 3.2.3.2 show

that this algorithm globally outperforms standard graph cuts in terms of memory with an

average relative reduced graph size under 35% for all energy models tested, while keeping

a very low pixel error on segmentations. The proposed implementation of the test (39)

also runs faster for some images and if the amount of regularization is of moderate level.

For keeping good reduction performance in situations where the amount of regularization

is large, two extra parameters have been introduced for further reducing the graphs and

removing small connected components due to noise in the segmentations. In case of

noisy images, lower and upper bounds on the parameter η have also been provided to

automatically set it with or without the window size, in order to suppress all undesired
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segments due to noise in the segmentation.

In a second time, we proposed another test (see (53)) of complexity O(]P]B dG
2

) 2 and

proved its exactness in Appendix C. In the manner of the test (39), massive numerical

experiments for evaluating the test (53) have also been accomplished in Section 3.2.3.2.

These experiments exhibit similar reduction performance to the test (39) with an average

relative reduced graph size under 40%, while keeping a low distance between the segmen-

tations. The solutions provided by the tests (39) and (53) are empirically almost the

same. Also, the overall reduction performance using (53) is slightly lower than with (39)

except for some instances. In words, the exactness of the test (53) as well as better re-

duction performance for a few instances is at the expense of a larger computational cost.

However, one could easily lower the complexity for evaluating (53) for any node p ∈ P by

�nding an upper bound on the sum of n-links capacities for each q ∈ ∂Bp. Furthermore,

the exactness of the test (53) has a deeper impact than (39) since the optimality on the

solutions is preserved.

More generally, the proposed approach for reducing graphs remains general, non-

invasive and can be built on top of other techniques, enabling attractive perspectives.

Although the running time of our algorithms depends on the underlying max-�ow algo-

rithm used, both are dissociated from each other. Also, since the reduced graphs result

in narrow bands around the object edges, metrication and geometric artifacts mentioned

in Section 1.2.5.2 could be further reduced by increasing the neighborhood size at the ex-

pense of a slightly larger memory consumption. This pushes away the trade-o� between

memory usage and segmentation quality of graph cuts. As mentioned in Section 3.3.1

and 3.2.2.3, all described reduction algorithms for the tests (39) and (53) are favorable to

parallelization and could probably be sped up by several orders of magnitude. Other inter-

esting perspectives include the work of [SK10] and [GY09]. For example, one could apply

the reduction using (39) on each sub-optimizable problem involved in the dual decompo-

sition [SK10]. This task would be relatively straightforward to set since the procedure is

independent for each sub-problem. This would further push away the limits of [SK10] and

let us use fewer machines for segmenting the same amount of data. The theoretical result

2We remind that dG corresponds to the maximum node degree of G.
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of Appendix C also implicitly enables us to restore larger images with a TV+L2 model

using the dyadic scheme of [GY09] while keeping optimality on the solutions. Indeed,

we only exploit information of a single level-set of the solution and generalizing to more

level-sets is straightforward. However, we want to emphasize that this

Also, even though we do not study the more general TV+Lα model for 1 ≤ α < ∞,

we want to emphasize that a method similar to the one described in [GY09] for the

TV+L2 model can solve it. Similarly, the proposed work could also be embedded into

alternating minimization schemes for solving the Rousson-Deriche model [RD02] or the

Mumford-Shah model [BT08, ZCP06]. A last but not least perspective of the proof in

Appendix C would be to embed the reduction into local search algorithms for solving

multi-labels problems. α-expansion and α-β swap heuristics represent perfect candidates

for this task. Although the optimality is naturally not anymore ensured due to the NP-

hardness of the problem, this would at least guarantee that each move inside the labels

space (corresponding to a single graph cut computation) is optimal.

Although the proposed strategy for reducing graphs is more e�cient for dense graphs

with a large proportion of nodes linked to terminals, we want to emphasize that it is not

bounded to the particular case of binary segmentation and could probably be applied

to other problems such as multi-view stereo [VTC05]. Remind that multi-view stereo

consists in �nding a three-dimensional reconstruction of an object from a sequence of

two-dimensional images taken by di�erent cameras. A functional solving this problem

is de�ned and discretized on a grid in [VTC05]. First, each image of the sequence is

segmented using the method of [BK05] and the silhouette 3 is extracted. Knowing the

parameters of each camera, each silhouette de�nes a back-projected cone containing the

object. The visual hull corresponding to the intersection of the cones is determined and

allows one to discard voxels outside but also inside using a distance map. A weighted

directed graph is then built on this reduced grid. As usual, the degree of regularization

is controlled by a free parameter which multiplies t-links capacities. The optimal surface

under this discretized functional is then obtained as the min-cut solution of this graph.

Nevertheless, since the distance from the visual hull to the inner border is �xed, it does

3A silhouette is a 2D projection of the corresponding 3D object in the scene.
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not ensure that all information is captured. When the amount of regularization remains

low, one could probably obtain thinner bands in the graph while avoiding to �x a distance

parameter.

A natural extension of this work is to propose similar ideas of the tests (39) and (53)

in the multi-labels case (i.e. when ]L > 2) in order to discard areas where the optimiza-

tion occurs. Surprisingly, this problem does not seem to be importantly tackled and is

generally bounded to particular vision problems such as stereo. For instance in the stereo

problem, one usually needs to de�ne an appropriate disparity search range for looking to

the corresponding pixels in the second image. Depending on the image, this range can be

sometimes more or less large (e.g. 20 to 80 labels). The technique proposed in [Vek06]

is slightly di�erent: instead of discarding areas where the optimization occurs, Veksler

tries to reduce the disparity search range for any node p ∈ P in G in the case of the

α-expansion. Since the running time of stereo with α-expansion depends linearly on the

number of disparity labels searched, reducing the number of disparities explored per node

by half divides the running time by half. Reducing appropriately the disparity range for

all grid nodes without signi�cant degradations in the results would therefore increase per-

formance. Three di�erent strategies for reducing this range are evaluated: best-candidate

based, hierarchical and local-method based. Best-candidate based strategy amounts to

select the "best" disparities by thresholding the Ep(.) term or keeping the k best dispari-

ties, ∀p ∈ P . In both cases, the parameters must generally be large enough for including

the correct disparity label leading in very little computational savings. The hierarchical

approach uses disparity results at coarser levels to restrict the disparity range at higher

levels. However, if a detail is mistaken at a coarser level, the mistake gets propagated to

higher levels. Among local methods proposed, the window matching globally achieves the

best results. The window matching algorithm assigns to any p ∈ P the disparity

dp = argmin
l∈L

∑
q∈Bp

Eq(l).

where we remind that Bp is a window of size (2r + 1) centered in p. Then, the idea is

the following: a label l should be in the set of candidate disparities for pixel p if there is

a pixel q within some �xed Manhattan distance h which got assigned disparity l by the
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above window matching algorithm. This strategy was evaluated on a dataset of 32 real

stereo pairs from the Middlebury database against ground truths. Outcomes exhibit good

performance with an average speed-up of 2.8 while keeping a low error percentage with

respect to ground truths.

As an early attempt, we have also tried to restrict the areas where the multi-labels op-

timization occurs. The Figure 13 show some examples for segmenting objects in grayscale

and color images with a generalized Boykov-Jolly model where each variable up takes

now values in L, ∀p ∈ P . In this experiment, multi-labels optimization is accomplished

through α-expansion. Consider a square window B ⊂ Zd of size (2r + 1)d. Then, a �rst

approach would be to remove from P any node p ∈ P if

∃l0 ∈ L such that ∀l1 ∈ L, [Eq(l1)− Eq(l0)] ≥ δr, ∀q ∈ Bp, (62)

where δr is set as in the test (39). If (62) holds for any p ∈ P , we set up = l0. Remaining

nodes (denoted by ρ) therefore correspond to the areas where the optimization does not

occur. The test (62) exploits the same ideas as developped before for binary problems:

better reduction will be achieved when the image consists of large uniform areas (see

Table 12). The test (62) can be computed in O(]Bp]Llog(]L)) by sorting all energy costs

for each q ∈ Bp. Such an approach can easily leverage from parallelization to obtain near-

linear time with the number of processors. Although the test (62) remains perfectible and

would require further investigations to improve it, this potentially opens new perspectives.

Nevertheless, the results obtained for reducing graphs with the tests (39) and (53)

should be put in perspective. Indeed, the reduction performance is both dependent on

the image and the model parameters used. Indeed, the massive numerical experiments

presented in Section 3.2.3.2 and Section 3.3.2 clearly show that better performance is

achieved when the amount of regularization remains low. This implicitly restricts the

method to a speci�c subset of high-contrasted images and is not fully satisfying. To

overcome this di�culty, we think that the work of [SK10] is probably the most serious

and promising way to follow. We would like to generalize (if possible) their approach to

solve multi-labels problems and eventually reduce each sub-problem as discussed earlier.

But we have also observed that the reduction is highly problem-dependent and only gives
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Name Size SGC time RGC time ρ (%)

circles 512× 200 11.67 1.91 4.31

sun�ower-c 460× 600 (*) 17.52 4.28 9.46

zebra-c 800× 600 (*) 30.53 8.60 13.84

rubikscube-c 350× 359 (*) 12.83 4.50 20.76

red-�owers-c 481× 321 (*) 9.35 2.00 6.49

brain 181× 217× 181 MP 633.19 24.97

Table 12: Comparison of standard graph cuts and the sequential test (62) in terms of

speed (secs) and memory for segmenting 2D and 3D images with r = 1. Color images are

su�xed by "c" in their names. Label MP stands for memory problem.

satisfactory results when input data are well separated.

Another point concerns the estimation of distribution laws of the Boykov-Jolly model.

Although this problem was not the main purpose addressed in Section 3.2.3.2, we have

observed that GMM behaves poorly over NH when the seeds are limited to a small ho-

mogeneous cluster in the feature space. The EM algorithm approximates too accurately

the distribution laws, leading to an over-estimation of the number of Gaussians in the

mixture near the initial cluster. Since distribution laws are wrongly estimated, we cannot

rely on them and we must set β = 0, leading to a large increase of the reduced graph

size. Accurately estimating distribution laws is therefore a crucial step for keeping good

performance of our reduction algorithms. To overcome these di�culties, one could slightly

modify the EM algorithm to add simple geometric constraints like shape, orientation or

volume on the covariance matrix Σk, for any Gaussian k in a GMM. Another possibility

to constraint the shape of Gaussians would be to turn to kernel methods.

Finally, we have presented in Chapter 4 an application of the reduction for interactively

segmenting lung tumors in 3D CT images. Although the structures to segment appear to

be well localized in the images, their can potentially be in contact with similar intensities

between healthy and tumoral tissues. This makes the initial problem more challenging

since we cannot only rely on local features. This di�culty is also strengthened with the
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Figure 13: Ilustration of the test (62) for segmenting grayscale and color images with a

generalized Boykov-Jolly model in connectivity 1 with α-expansion. In this experiment,

we set the number of labels as ]L = 3 for middle and bottom images and ]L = 4 for top

image. The seeds (left column) and the segmentation (right column) are superimposed

on the image. On middle column, red pixels correspond to the areas where multi-labels

optimization is performed. In these experiments, we set the window radius as r = 1.
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high variability in shape and color of these structures. To overcome these di�culties, we

have proposed to add a prior on the location of object seeds to reduce their importance

inside the graph. The propagation of these seeds is also controlled by a Fast Marching

algorithm which takes into account gradient information and leads to better tumor de-

lineation. Experimental results against a dataset exhibit a DSC always greater than 70%

for all images. The results also show that the use of the reduction requires less time than

standard graph cuts and uses 7 to 500 times less memory while keeping very low pixel

error between segmentations. Nevertheless, the time required for segmenting such struc-

tures depends both on the image size and the skill of the user for positioning the seeds and

the ergonomics of the interface. The segmentations can be however quickly corrected if

some particular structures have been mislabeled. While these outcomes appear satisfying

from a medical point of view, they also attest of the di�culty of the problem. Moreover,

better targeting these structures inside the body is essential for enabling precise delivery

of high radiation doses.

Embedding more information seems to be a natural extension of this work to better

delineate tumors. However, tumor segmentation using both Positron Emission Tomogra-

phy (PET) and CT modalities is notoriously challenging with a low contrast in CT images

and a low spatial resolution/blur in PET due to a long time exposure. Currently, dual-

modality PET-CT imaging is widely spread in clinical therapy and increasingly in the

treatment process planning. Because the information presented in these modalities is

complementary, dual-modality PET-CT images have been empirically proven to bring

superior segmentation accuracy. Unlike other works, the strategy adopted in [HBS+11]

leverages from the strength of both modalities by penalizing the di�erence between the

PET and CT segmentations. This is achieved by building a large MRF consisting of both

images as well as additional nodes encoding this di�erence. The results are very promising

but the segmentation is limited to a small size of volume data due to the huge memory

storage required.
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Breadth-First Search (BFS) is a simple graph search algorithm that begins at the

root node and progressively explores all the neighboring nodes. Then, for each of

those nearest nodes, it explores their unvisited neighbor nodes, and so on, until it

�nds the desired goal, 36

Computed Tomography (CT) is a medical imaging method employing tomography

created by computer processing. Digital geometry processing is used to generate a

3D volume of an object from a large series of 2D X-ray images taken around a single

axis of rotation. Since its introduction in the 1970s, CT has become an important

tool in medical imaging to supplement X-rays and medical ultrasonography., 14,

109�111, 113, 114, 120�122, 126, 134, 136

Expectation-Maximization (EM) is an algorithm able to �nd the maximum likeli-

hood probabilistic model parameters when the model depends on non observable

latent variables, 47, 49, 77, 134

Gaussian Mixtures Model (GMM) usually serves to estimate parametrically the dis-

tribution of random variables by modeling them as a sum of several Gaussian (called

kernels), 47�49, 75�78, 83, 93, 99�101, 103, 104, 129, 134

Iterated Conditional Modes (ICM) is a deterministic algorithm for obtaining the

con�guration of an MRF that maximizes the joint probability. This is done by

iteratively maximizing the probability of each variable on the rest, 25

Maximum A Posteriori (MAP) is a mode of the posterior distribution in Bayesian

statistics. The MAP can be used to obtain a point estimate of an unobserved

quantity on the basis of empirical data, 25, 39, 40

Minimum Description Length (MDL) is a concept in which the best hypothesis for

a given set of data is the one that leads to the best compression of the data. MDL was

introduced in 1978 and remains an important concept in information and learning
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theory, 50, 77, 78

Markov Random Field (MRF) is a graphical model in which a set of random vari-

ables have a Markov property described by an undirected graph. Then, the Max-

imum A Posteriori can be computed inside this graph to minimize an appropriate

energy function to solve low to mid level tasks in Image Processing and Computer

Vision, 39, 40, 43, 136

Normalized Histogram (NH) is a discrete estimate of a probability distribution and

was �rst introduced by K. Pearson, 47, 48, 75�78, 83, 99�101, 103, 104, 115, 120,

129, 134

Partial Di�erential Equations (PDE) are a type of di�erential equation, i.e., a rela-

tion involving unknown function(s) of several independent variables and their partial

derivatives with respect to those variables, 23

Positron Emission Tomography (PET) is a nuclear medicine imaging technique that

produces a 3D image or picture of functional processes in the body. The system

detects pairs of gamma rays indirectly emitted by a positron-emitting radionuclide

(called tracer), introduced into the body of the patient on a biologically active

molecule, 136

Point Spread Function (PSF) describes the response of an imaging system to a point

source or point object. It is a recurrent concept arising in astronomical imaging and

other microscopy materials. In words, an intensity in the output image results of a

convolution with a mathematical function and images generally appear blurred, 113

Red Green Blue (RGB) is an additive color model in which red, green and blue light

are added together to reproduce a wide range of colors, 47

Region Of Interest (ROI) is a selected subset of samples within a dataset identi�ed

for a particular purpose, 115

Simulated Annealing (SA) is a probabilistic metaheuristic for obtaining an approx-

imation of a given function in a large search-space, discovered by S. Kirkpatrick,

C.D. Gelatt and M.P. Vecchi in 1983. Roughly speaking, each step of the algorithm
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replaces the current solution by a random nearby solution, chosen with a proba-

bility depending both on the di�erence between function values and a decreasing

parameter mimicking the role of temperature in metallurgy, 25

Watershed is a popular segmentation technique introduced by S. Beucher and C. Lan-

tuéjoul in 1979. Since a grey-level image can be seen as a topographic relief, this

method consists in placing a water source in each regional minimum, to �ood the

relief from sources, and build barriers when di�erent sources are meeting. The

resulting set of barriers constitutes a watershed by �ooding, 24
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Appendix

A Evaluation measures

This appendix describes the evaluation measures used in this document. Let SG,GT ⊂

{0, 1}N (N > 0) denote respectively a segmentation and the ground truth. We also denote

by d : (Zd × Zd)→ R+ a metric.

Dice Similarity Coe�cient (DSC) (%):

Dice Similarity Coe�cient is a similarity measure related to the Jaccard Index and

introduced in 1945 by Dice [Dic45]. This coe�cient is de�ned as twice the shared infor-

mation (intersection) over the combined set. Its value is 1 for a perfect segmentation and

0 in the worst case. We have

DSC(SG,GT ) = 2 · ](SG ∩GT )

]SG+ ]GT
× 100

Volumetric Overlap (VO) (%):

This is the number of voxels in the intersection of segmentation and ground truth,

divided by the number of voxels in the union of segmentation and ground truth. Its value

is 1 for a perfect segmentation and is bounded from below by 0, when there is no overlap

at all between the segmentation and the ground truth. We have

V O(SG,GT ) =
](SG ∩GT )

](SG ∪GT )
× 100

Its value is 100 for a perfect segmentation and is bounded from below by 0, when there

is no overlap at all between the segmentation and the ground truth.

Relative Absolute Volume Di�erence (%) (RAVD):

The total volume of the segmentation is divided by the total volume of the ground

truth. From this number 1 is subtracted, the absolute value is taken and the result is mul-

tiplied by 100. This value is 0 for a perfect segmentation and larger than zero otherwise.

Note that the perfect value of 0 can also be obtained for a non-perfect segmentation, as
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long as the volume of that segmentation is equal to the volume of the ground truth. We

have

RAVD(SG,GT ) =

∣∣∣∣ ]SG]GT
− 1

∣∣∣∣× 100

Average Symmetric Absolute Surface Distance (ASASD):

The border voxels of the segmentation and the ground truth are determined. For each

voxel in these sets, the closest voxel in the other set is determined (e.g. using the Euclidean

distance). All these distances are stored, for border voxels from both the ground truth

and the segmentation. The average of all these distances gives the Average Symmetric

Absolute Surface Distance. This value is 0 for a perfect segmentation. We have

ASASD(SG,GT ) =

(∑
p∈∂SG minq∈∂GT d(p, q) +

∑
q∈∂GT minp∈∂SG d(p, q)

]∂SG+ ]∂GT

)

Symmetric RMS Surface Distance (SRMSSD):

This measures is similar to the previous measure, but stores the squared distances

between the two sets of border voxels. We take the square root of the squared distances

of the average determined for ASASD. The �nal value gives the symmetric RMS surface

distance and is 0 for a perfect segmentation. We have

SRMSSD(SG,GT ) =

√(∑
p∈∂SG minq∈∂GT d(p, q)2 +

∑
q∈∂GT minp∈∂SG d(p, q)2

]∂SG+ ]∂GT

)

Maximum Symmetric Absolute Surface Distance (Hausdor� distance) (MSASD):

This measure is similar to the previous two, but only the maximum of all voxel dis-

tances is taken instead of the average. This value is 0 for a perfect segmentation. We

have

MSASD(SG,GT ) = max{max
p∈∂SG

min
q∈∂GT

d(p, q), max
q∈∂GT

min
p∈∂SG

d(p, q)}

Relative Max-�ow Error (RME) (%):

The Relative Max-�ow Error corresponds to the percentage of the relative error be-

tween the max-�ow values valG(f
∗) and valG′(f

′∗) of graphs G and G ′, respectively. Notice

that this quantity is always non-negative since a larger amount of �ow cannot be routed
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from the source to the sink in G ′ because it contains less edges than in G. This value is 0

when the max-�ow is the same. The RME is de�ned as

RME(G,G ′) =
(valG(f

∗)− valG′(f
′∗))

valG(f ∗)
× 100

B Dijkstra algorithm for computing distance maps

Below, we review the algorithm of [Iko05] for computing the distance map D : Ω → RN

of a binary image H : Ω→ {0, 1}N . In this algorithm, we denote Q as a standard priority

queue where elements are pulled with highest-priority-�rst criteria. We also denote d :

(E × E)→ R+ a metric de�ned in some metric space E. For instance, d(.) can be set as

the Euclidean distance between points of Ω, a metric based on the intensity di�erence or

a mixture of both.

In Algorithm 4, reference pixels are enqueued to the minimum heap and then dequeued

for processing them in priority order 4. Distance values are propagated from the dequeued

pixel to its neighbors. Then, neighbors which obtain a new distance value are enqueued

to the heap. The priority order ensures that only �nal distance values are propagated

further. If a shortest path is found to a pixel, which has already been enqueued, the

distance value is replaced. Previous instances of the pixel in the queue become obsolete

and can be discarded. When the queue becomes empty, all distances values are de�nitive.

Unlike recursive propagation with Chamfer masks, no local distance is computed more

than once in Algorithm 4.

C Exactness of the reduction test (53)

This appendix is devoted to the proof for the exactness of the test (53) described in

Section 3.3. We also want to highlight that the proposed work has been realized in

collaboration with F. Malgouyres.

4Pixels to enqueue can be limited to the border of reference pixels/calculation area for lowering the

heap size.
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Algorithm 4 Dijkstra's algorithm.

Inputs: Binary image H, metric d(.)
Outputs: Distance map D

1. Initialize D such that D(x) =

{
0 if H(x) = 0 (reference pixels)
+∞ if H(x) = 1 (calculation area)

, ∀x ∈ Ω

2. Put pixels with D(x) = 0 to priority queue Q, ∀x ∈ Ω.
3. while Q is not empty do
4. p = dequeue(Q) (Dq(p) was the smallest distance in Q).
5. if Dq(p) > D(p) (obsolete distance value) then
6. Continue from step 3.
7. endif
8. % D(p) becomes D∗(p) (distance value is de�nitive)
9. forall neighbors x of p with D(x) > D∗(p) do

10. if D∗(p) + d(p, x) < D(x) then
11. D(x)← D∗(p) + d(p, x)
12. endif
13. endfor
14. endwhile

Notations

Throughout this appendix, we consider a �xed graph G = (V , E , c), with V , E and c and a

structuring element B ⊂ Zd (d > 0) as de�ned in Section 1.2.2. Our purpose is to exhibit

a max-�ow satisfying some condition for this graph.

We also denote a walk of positive length l ∈ N∗ by p0 − p1 − . . . − pl, where pi ∈ V ,

for all i ∈ {0, . . . , l}, and (pi, pi+1) ∈ E , for all i ∈ {0, . . . , l − 1}. We also remind that a

closed walk is such that p0 = pl. We denote by Wa (p, q) the set containing all the walks

starting at p ∈ V and ending at q ∈ V .

For any S ⊂ P , we denote the value of the s-t cut (S ∪ {s}, (P \ S) ∪ {t}) in G by

valG (S) instead of the one used in Section 1.2.2. We remind that

valG (S) =
∑

p∈S∪{s}
q 6∈S∪{s}

cp,q.

Notice that, we have not clari�ed that (p, q) ∈ E in the above summation thanks to (8).

Notice that we use the again same notation for the value of a �ow and the value of a s-t

cut in G. This abuse of notation will never be ambiguous once in context.
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Avoiding useless �ow on closed walks

In this section we remind a known result. We also prove it so-that the appendix is self

contained.

Proposition 3. Let G be the graph de�ned in Section C. There exists a max-�ow f in G

satisfying for any length l and any closed walk p0 − p1 − . . .− pl of length l in G,

there exists i ∈ {0, . . . , l} such that fpi,pi+1
≤ fpi+1,pi where we denote pl+1 = p0.

(63)

Proof. Let f be a max-�ow in G. For any l and any closed walk w = p0 − p1 − . . .− pl of

length l in G, we set pl+1 = p0 and denote (Pf,w) the statement:

(Pf,w) : ∀i ∈ {0, . . . , l}, fpi,pi+1
> fpi+1,pi .

In particular, a closed walk w satisfying the previous statement is not allowed to take

reverse edges. We also denote

W (f)
def
= {w,w is a closed walk satisfying (Pf,w)}.

Notice �rst that if

#W (f) = 0, (64)

where # denotes the cardinality of a set, the �ow f necessarily satis�es (63).

We show, in the remaining of the proof, that if f is such that #W (f) > 0, there exist

f ′ such that

#W (f ′) < #W (f),

where # denotes the cardinality of a set. Since for any max-�ow f the set W (f) is �nite,

any initial max-�ow lead to a max-�ow satisfying (64) (and therefore (63)) after a �nite

number of such recursion.

Let us now assume that f is such that #W (f) > 0. Let us also consider a closed walk

w = p0 − p1 − . . .− pl ∈ W (f).
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We denote pl+1 = p0 and

δ
def
= min

i∈{0,...,l}
(fpi,pi+1

− fpi+1,pi).

Since w satis�es (Pf,w), we have δ > 0.

We de�ne the mapping f ′ : (V × V)→ R+ such that for all (p, q) ∈ (V × V):

f ′p,q =


fp,q − fq,p − δ , if (p, q) = (pi, pi+1), for some 0 ≤ i ≤ l

0 , if (p, q) = (pi+1, pi), for some 0 ≤ i ≤ l

fp,q , otherwise.

(65)

Notice that this de�nition is not ambiguous. Indeed, we cannot simultaneously have

(p, q) = (pi, pi+1) and (p, q) = (pj+1, pj) for some i 6= j since w satis�es (Pf,w).

Also, since f is a �ow in G, we clearly have for all (p, q) ∈ (V × V)

0 ≤ f ′p,q ≤ cp,q.

In order to prove the �ow conservation, we consider p ∈ V . Let us �rst assume that

p 6= pi, for all i ∈ {0, . . . , l}. Then (65) guarantees that f ′p,q = fp,q for all q ∈ σE(p) and

we trivially get ∑
q∈σE(p)

f ′q,p =
∑

q∈σE(p)

f ′p,q.

Let us now assume that there exists i ∈ {0, . . . , l} such that p = pi. We denote

I = {j ∈ {0, . . . , l}, p = pj}

and p−1 = l.

We have∑
q∈σE(p)

(f ′q,p− f ′p,q) =
∑

q∈σE (p)
q 6=pj+1,∀j∈I
q 6=pj−1,∀j∈I

(f ′q,p− f ′p,q) +
∑
j∈I

(f ′pj+1,pj
− f ′pj ,pj+1

) +
∑
j∈I

(f ′pj−1,pj
− f ′pj ,pj−1

)

Using (65), we obtain for each term∑
q∈σE (p)

q 6=pj+1,∀j∈I
q 6=pj−1,∀j∈I

(f ′q,p − f ′p,q) =
∑

q∈σE (p)
q 6=pj+1,∀j∈I
q 6=pj−1,∀j∈I

(fq,p − fp,q), (66)
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∑
j∈I

(f ′pj+1,pj
− f ′pj ,pj+1

) =
∑
j∈I

−(fpj ,pj+1
− fpj+1,pj − δ), (67)

and ∑
j∈I

(f ′pj−1,pj
− f ′pj ,pj−1

) =
∑
j∈I

(fpj−1,pj − fpj ,pj−1
− δ). (68)

Summing (66), (67), (68) and simplifying, we �nally get

∑
q∈σE(p)

(f ′q,p − f ′p,q) =
∑

q∈σE (p)
q 6=pj+1,∀j∈I
q 6=pj−1,∀j∈I

(fq,p − fp,q) +
∑
j∈I

(
(fpj+1,pj − fpj ,pj+1

) + (fpj−1,pj − fpj ,pj−1
)
)

=
∑

q∈σE(p)

(fq,p − fp,q)

= 0

As a conclusion, f ′ is a �ow. It is of course a max-�ow. Indeed, (5) and (13) guarantee

that fp,s = 0, for all p ∈ P . Since w satis�es (Pf,w), this ensures that

s 6= pi, ∀i ∈ {0, . . . , l}.

Using (14) and (65), we �nally get

valG (f ′) = valG (f) .

We still need to show that

#W (f ′) < #W (f).

With that in mind, we consider w′ = p′0− p′1− . . .− p′l′ ∈ W (f ′). Denoting p′l′+1
def
= p′0, we

know that for any j ∈ {0, . . . , l′}

0 < (f ′p′j ,p′j+1
− f ′p′j+1,p

′
j
).

Together with (65), this guarantees that for any j ∈ {0, . . . , l′}

(p′j, p
′
j+1) 6= (pi+1, pi), for all i ∈ {0, . . . , l}.

Such a situation is illustrated in Figure 14. Using (65) again, we therefore necessarily

have

0 < (f ′p′j ,p′j+1
− f ′p′j+1,p

′
j
) ≤ (fp′j ,p′j+1

− fp′j+1,p
′
j
).
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w'

w

Figure 14: A situation where the closed walks w ∈ W (f) (red) and w′ ∈ W (f ′) (blue) in G

both satisfy (65). The edges in purple correspond to the intersection of w and w′. Observe

that w cannot follows reverse edges in w′ and conversely since (65) must be satis�ed.

This means that w′ ∈ W (f) and, as a result,

W (f ′) ⊂ W (f).

In order to show that this inclusion is strict, we denote

i0 ∈ argmin
i∈{0,...l}

(fpi,pi+1
− fpi+1,pi).

Using (65), we trivially obtain that

f ′pi0 ,pi0+1
= f ′pi0+1,pi0

= 0,

and therefore w 6∈ W (f ′).

This concludes the proof. �

Avoiding useless traversing �ow

Throughout this section, we consider a graph G as constructed in Section C and a max-�ow

f in G satisfying (63). We also consider p ∈ P such that

∀q ∈ Bp, fq ≥ 0,

where Bp is de�ned in (37). 5

5Notice that all the content of this section could be adapted to a situation where fq ≤ 0, for all q ∈ Bp.
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The purpose of this section is to establish a su�cient condition so-that f can be

modi�ed in such a way that

fp,q ≥ fq,p, for all q ∈ σE(p).

In words, the node p globally sends more �ow to its neighbors than it can receive from

them.

In order to do so, we consider

Σi(p) = {q ∈ P ,∃p0− . . .− pl ∈ Wa (q, p) such that ∀i ∈ {0, . . . , l− 1}, fpi,pi+1
> fpi+1,pi},

and

Σo(p) = {q ∈ Bp,∃p0− . . .−pl ∈ Wa (p, q) such that ∀i ∈ {0, . . . , l−1}, fpi,pi+1
> fpi+1,pi},

where we remind that Wa (q, p) (resp. Wa (p, q)) contains all the walks starting at q (resp.

p) and ending at p (resp. q).

Let us �rst notice that, since f satis�es (63),

∀q ∈ (Σi(p) ∩ σE(p)) , fq,p ≥ fp,q (69)

and

∀q ∈ (Σo(p) ∩ σE(p)) , fp,q ≥ fq,p. (70)

Similarly, since f satis�es (63), we have

Σi(p) ∩ Σo(p) = ∅. (71)

Moreover,

p 6∈ Σi(p) and p 6∈ Σo(p).

For simplicity, we denote

Σ− = Σi(p) and Σ+ = Σo(p) ∪ {p}.

Also, since f satis�es (63), we have

∀q ∈ Σ−,∀q′ ∈ Σ+, fq,q′ ≥ fq′,q. (72)
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Otherwise, we could easily build a closed walk contradicting (63).

We also denote

P ′ = Σ− ∪ Σ+ , V ′ = P ′ ∪ {s, t} (73)

and construct the graph

G ′ = (V ′, E ′, c′) ,

where E ′ and c′ are de�ned below. We set

E ′ = E ′t ∪ (E ′n ∩ ET ), (74)

where ET = {(q, q′), (q′, q) ∈ E} and with

E ′t = {(q, t), with q ∈ Σ− such that fq ≥ 0}
⋃ (

{s} × Σ+
)

(75)

and

E ′n =
(
Σ+ × Σ+

) ⋃ (
(Σ− ∪ {p})× (Σ− ∪ {p})

)
. (76)

The capacities c′ are de�ned by

c′q,t = fq , for q ∈ Σ− such that fq ≥ 0, (77)

c′s,q = cq − fq , for q ∈ Σ+, (78)

and

c′q,q′ =

 fq′,q − fq,q′ , if fq′,q > fq,q′

0 , otherwise
, for (q, q′) ∈ (E ′n ∩ ET ). (79)

Notice that there exist some nodes in Σ− which are linked to no terminals. An example

of con�guration with Bp and the graph G ′ is outlined in Figure 15.

As in Section C, we arti�cially extend all the capacities c′ and set

c′q,q′ = 0, for all (q, q′) ∈ ((V ′ × V ′) \ E ′) .

Notice that, in the graph G ′ all the �ow sent by s goes in Σ+ and all the �ow arriving

at t comes from Σ−. Moreover, all the edges between Σ+ and Σ− contain p.
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p
q8

q4

Bp

q1

q2

q3

Σo
q5

q6

q7

Figure 15: An example of graph G ′ where the �ow sent by s goes in the nodes q1, q2, q3, q4 ∈

Σ− (blue) and all the �ow arriving at t comes from the nodes q5, q6, q7, q8 ∈ Σ+ (red).

Notice that the nodes of Σ+ are bounded to Bp whereas the nodes of Σ− are a subset of

P .

Also, for any S ⊂ P ′, we denote the value of the s-t cut (S ∪ {s}, (P ′ \ S) ∪ {t}) in G ′

by

valG′ (S) =
∑

q∈(S∪{s})
q′ 6∈(S∪{s})

c′q,q′ .

Using (77), (78) and (79), we �nd

valG′ (S) = E1 + E2 + E3,

where we write

E1 =
∑

q∈(Σ+\S)

c′s,q , E2 =
∑

q∈(Σ−∩S)

c′q,t and E3 =
∑
q∈S

q′∈(P′\S)

c′q,q′ . (80)

In particular, using (71) and (73), we have

valG′
(
Σ+
)

=
∑
q∈Σ+

q′∈Σ−

c′q,q′ ,

which, using (76), (71) becomes

valG′
(
Σ+
)

=
∑
q∈Σ−

c′p,q.

Finally, we obtain using (79) and (69)

valG′
(
Σ+
)

=
∑
q∈Σ−

(fq,p − fp,q). (81)

The following proposition holds.
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Proposition 4. Let G ′ be the graph constructed in Section C. For any S ⊂ P ′,

valG′ (S) ≥ valG′
(
Σ+
)

+
∑

q∈Σ+\(S∪{p})

cq +
∑
q′ 6∈Σ+

(fq′,q − fq,q′)

 . (82)

Proof. Let us �rst decompose E3 according to

E3 = E ′1 + E ′2 + E ′3 + E ′4,

with

E ′1 =
∑

q∈(S∩Σ+)

q′∈(Σ+\S)

c′q,q′ , E ′2 =
∑

q∈(S∩Σ+)

q′∈(Σ−\S)

c′q,q′

E ′3 =
∑

q∈(S∩Σ−)

q′∈(Σ+\S)

c′q,q′ , E ′4 =
∑

q∈(S∩Σ−)

q′∈(Σ−\S)

c′q,q′

We rewrite, using (79),

E ′1 =
∑

q∈(S∩Σ+)

q′∈(Σ+\S)
fq′,q>fq,q′

(fq′,q − fq,q′) , E ′2 =
∑

q∈(S∩Σ+)

q′∈(Σ−\S)

(q,q′)∈E′,fq′,q>fq,q′

(fq′,q − fq,q′) (83)

E ′3 =
∑

q∈(S∩Σ−)

q′∈(Σ+\S)

(q,q′)∈E′,fq′,q>fq,q′

c′q,q′ , E ′4 =
∑

q∈(S∩Σ−)

q′∈(Σ−\S)
fq′,q>fq,q′

(fq′,q − fq,q′) (84)

Using (76) and (71), then (79) and (69), we immediately �nd that

E ′2 =


∑

q∈(Σ−\S)(fq,p − fp,q) , if p ∈ S

0 , otherwise,
and E ′3 = 0. (85)

Moreover, since the total amount of �ow entering and exiting (S ∩ Σ−) are equal, we

have (see (17)) ∑
q∈(S∩Σ−)
fq≥0

fq +
∑

q∈(S∩Σ−)
fq<0

fq +
∑

q∈(S∩Σ−)

q′ 6∈(S∩Σ−)

(fq′,q − fq,q′) = 0

Moreover, if we decompose the last term and reorganize the equation we obtain

∑
q∈(S∩Σ−)
fq≥0

fq +
∑

q∈(S∩Σ−)

q′∈(Σ−\S)

(fq′,q − fq,q′) = −
∑

q∈(S∩Σ−)
fq<0

fq −
∑

q∈(S∩Σ−)

q′∈Σ+

(fq′,q − fq,q′)
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Together with the de�nition of E2 in (80), the de�nition of E ′4 in (84) and (77) this leads

to

E2 + E ′4 ≥
∑

q∈(S∩Σ−)
fq≥0

fq +
∑

q∈(S∩Σ−)

q′∈(Σ−\S)

(fq′,q − fq,q′)

≥ −
∑

q∈(S∩Σ−)
fq<0

fq −
∑

q∈(S∩Σ−)

q′∈Σ+

(fq′,q − fq,q′)

≥
∑

q∈(S∩Σ−)

(fq,p − fp,q) +
∑

q∈(S∩Σ−)

q′∈(Σ+\{p})

(fq,q′ − fq′,q).

Then, using (72), we immediately obtain

E2 + E ′4 ≥
∑

q∈(S∩Σ−)

(fq,p − fp,q).

Together with (85) and (81), this leads to the following intermediate result:

E2 + E ′2 + E ′3 + E ′4 ≥

 valG′ (Σ
+) , if p ∈ S∑

q∈(S∩Σ−)(fq,p − fp,q) , otherwise.
(86)

In order to �nish the proof, let us �rst notice that using the de�nition of E1 in (80),

(78) and the de�nition of E ′1 in (83)

E1 + E ′1 ≥
∑

q∈(Σ+\S)

(cq − fq) +
∑

q∈(S∩Σ+)

q′∈(Σ+\S)

(fq′,q − fq,q′) (87)

Expressing that the total amount of �ow entering and exiting (Σ+ \S) are equal, we have

(see (17)) ∑
q∈(Σ+\S)

fq +
∑

q∈(Σ+\S)

q′∈(Σ+∩S)

(fq′,q − fq,q′) +
∑

q∈(Σ+\S)

q′ 6∈Σ+

(fq′,q − fq,q′) = 0.

Together with (87), this guarantees that

E1 + E ′1 ≥
∑

q∈(Σ+\S)

cq +
∑

q∈(Σ+\S)

q′ 6∈Σ+

(fq′,q − fq,q′),

≥
∑

q∈(Σ+\S)

cq +
∑
q′ 6∈Σ+

(fq′,q − fq,q′)

 (88)
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When p ∈ S, by combining the latter result with (86), we immediately get (82). If p 6∈ S,

(88) can be rewritten using (81)

E1 + E ′1 ≥
∑

q∈(Σ+\(S∪{p}))

cq +
∑
q′ 6∈Σ+

(fq′,q − fq,q′)

+ cp + valG′
(
Σ+
)
.

Since cp ≥ 0, and (86) and (69) guarantee that E2 +E ′2 +E ′3 +E ′4 ≥ 0 , this ensures that

(82) holds even when p 6∈ S and concludes the proof. �

All along the remaining of this Section, we consider a max-�ow f ′ in G ′. Notice also

that G ′ satis�es (5), (9). Therefore, as in Section C, we denote

f ′q = f ′s,q − f ′q,t,

for all q ∈ P ′. We also arti�cially extend the �ow f ′ and set

f ′q,q′ = 0, for all (q, q′) ∈ ((V ′ × V ′) \ E ′) .

We are now going to combine f and f ′ in order to build a mapping f ′′ : E → R which

will turn out to be a max-�ow in G such that

f ′′p,q ≥ f ′′q,p = 0 ,∀q ∈ σE(p).

Let us begin with the de�nition of f ′′. We set

f ′′q,q′ = fq,q′ , for (q, q′) 6∈ E ′, q 6= s, q′ 6= t, (89) f ′′s,q = 0 and f ′′q,t = −fq , for q ∈ P ′ such that fq < 0

f ′′s,q = fq + f ′q and f ′′q,t = 0 , for q ∈ P ′ such that fq ≥ 0
(90)

f ′′q′,q =


fq′,q − fq,q′︸ ︷︷ ︸

c′
q,q′

−f ′q,q′ , if fq′,q > fq,q′ ,

0 , otherwise

, for (q′, q) ∈ P ′2 such that (q, q′) ∈ E ′.

(91)
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Notice that the equations (89), (90) and (91) permit to de�ne f ′′q,q′ for all (q, q′) ∈ E .

Once again, we extend f ′′ outside E and set

f ′′q,q′ = 0, for all (q, q′) ∈ ((V × V) \ E) .

We also denote

f ′′q = f ′′s,q − f ′′q,t ,∀q ∈ P .

Notice that, since f ′q = 0 for all q 6∈ P ′ as well as for q ∈ P ′ such that fq < 0 (see (77)

and (78)), we always have, according to (89) and (90),

f ′′q = fq + f ′q ,∀q ∈ P . (92)

Proposition 5. The mapping f ′′ : (V × V)→ R is a max-�ow in G.

Proof. Let us �rst show that f ′′ satis�es the capacity constraints. Let (q′, q) ∈ E .

• If q or q′ 6∈ P ′, q 6= s, q′ 6= s: then (q′, q) 6∈ E ′ and using (89) we have

0 ≤ f ′′q′,q = fq′,q ≤ cq′,q.

• If q′ ∈ Σ− and q = s or t:

� If moreover fq′ < 0, then using (90), 0 ≤ f ′′s,q′ = 0 ≤ cs,q′ and 0 ≤ f ′′q′,t = fq′,t ≤

cq′,t.

� If fq′ ≥ 0, then using (90) and (78), we �nd that 0 ≤ f ′′s,q′ = fs,q′ − f ′q′,t ≤ cs,q′

and 0 ≤ f ′′q′,t = 0 ≤ cq′,t.

• If q′ ∈ Σ+ and q = s or t: since q′ ∈ Bp, we necessarily have fq′ ≥ 0, then using (90)

and (78), we have 0 ≤ f ′′s,q′ = fs,q′ + f ′s,q′ ≤ cs,q′ and 0 ≤ f ′′q′,t = 0 ≤ cq′,t.

• If (q′, q) ∈ (P ′ × P ′):

� If moreover fq′,q ≤ fq,q′ , then (91) guarantees 0 ≤ f ′′q′,q = 0 ≤ cq′,q.

� If fq′,q > fq,q′ , using (79), we have

0 ≤ f ′q,q′ ≤ c′q,q′ = fq′,q − fq,q′ ,

and �nally (91) guarantees that

0 ≤ f ′′q′,q = fq′,q − fq,q′ − f ′q,q′ ≤ cq′,q.
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Let us now prove the �ow conservation. Let q ∈ P .

• If q 6∈ P ′ and q 6= s, then for any q′ ∈ σE(q) the de�nition of E ′ given in (74)

guarantees that both (q, q′) and (q′, q) 6∈ E ′. Using (89), we obtain f ′′q,q′ = fq,q′ and

f ′′q′,q = fq′,q, for all q
′ ∈ σE(q), and therefore∑

q′∈σE(q)

f ′′q′,q =
∑

q′∈σE(q)

fq′,q =
∑

q′∈σE(q)

fq,q′ =
∑

q′∈σE(q)

f ′′q,q′ .

• If q ∈ P ′, the �ow conservation constraint given by (17) for f and f ′ at q can be

decomposed to provide

fq +
∑

q′∈σE (q)

q′ 6∈σE′ (q)

(fq′,q − fq,q′) +
∑

q′∈σE′ (q)
fq′,q>fq,q′

(fq′,q − fq,q′) +
∑

q′∈σE′ (q)
fq′,q≤fq,q′

(fq′,q − fq,q′) = 0

and

f ′q +
∑

q′∈σE′ (q)
fq′,q>fq,q′

(0− f ′q,q′) +
∑

q′∈σE′ (q)
fq′,q≤fq,q′

(f ′q′,q − 0) = 0.

Summing these equalities and using (92), (89) and (91), we obtain

f ′′q +
∑

q′∈σE (q)

q′ 6∈σE′ (q)

(f ′′q′,q − f ′′q,q′) +
∑

q′∈σE′ (q)
fq′,q>fq,q′

(f ′′q′,q − f ′′q,q′) +
∑

q′∈σE′ (q)
fq′,q≤fq,q′

(f ′′q′,q − f ′′q,q′) = 0.

The latter corresponds to �ow conservation constraint (17) at the node q for f ′′.

Altogether, we now know that f ′′ is a �ow. We still need to show that it is a max-

�ow. The latter property is in fact trivially obtained since (90) and (89) guarantee that

f ′′q,t = fq,t, for all q ∈ P . Therefore, the value of f ′′ is equal to the value of f. Since f is a

max-�ow, this value is maximal and f ′′ is a max-�ow. �

Proposition 6. If Σ+ is a minimum s-t cut in the graph G ′ de�ned in Section C, then

the max-�ow f ′′ is such that

∀q ∈ σE(p), f ′′q,p = 0.

As a consequence,

∀q ∈ σE(p), f ′′p,q ≥ f ′′q,p.
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Proof. Since f ′ is a max-�ow in G ′ and Σ+ is a min s-t cut in G ′, Ford-Fulkerson theorem

guarantees that they have the same value. We therefore have

valG′ (f
′) = valG′

(
Σ+
)

=
∑
q′∈Σ+

q 6∈Σ+

(q′,q)∈E′

c′q′,q

=
∑
q∈Σ−

c′p,q (93)

Moreover, since f ′ is a �ow, the total amount of �ow entering and exiting Σ+ are

equal. Therefore, we have (see (17))

∑
q∈Σ+

f ′q +
∑
q′∈Σ+

q 6∈Σ+

q∈σE′ (q
′)

(f ′q,q′ − f ′q′,q) = 0.

Together with (14) and (75), this guarantees that

valG′ (f
′) =

∑
q∈Σ+

f ′q =
∑
q′∈Σ+

q 6∈Σ+

q∈σE′ (q
′)

(f ′q′,q − f ′q,q′) =
∑
q∈Σ−

(f ′p,q − f ′q,p).

Combined with (93), this provides

∑
q∈Σ−

c′p,q =
∑
q∈Σ−

f ′p,q −
∑
q∈Σ−

f ′q,p. (94)

As a consequence, ∑
q∈Σ−

f ′q,p =
∑
q∈Σ−

(f ′p,q − c′p,q) ≤ 0.

However, since for all q ∈ Σ−, f ′q,p ≥ 0, we �nally obtain that

∀q ∈ Σ−, f ′q,p = 0.

Using (94) again, (69) and (79), this provides

∀q ∈ Σ−, f ′p,q = c′p,q = fq,p − fp,q.

Therefore, using (69) and (91),

∀q ∈ Σ−, f ′′q,p = 0. (95)

157



N. Lermé Exactness of the reduction test (53)

Moreover, using (70) and (91), we also have

∀q ∈ (Σ+ ∩ σE(p)), f ′′q,p = 0. (96)

Combining (95) and (70), we �nally obtain

∀q ∈ σE(p), f ′′q,p = 0,

which concludes the proof. �

Proposition 7. Let G be the graph de�ned in Section C, let B satisfy (36) and let us

assume that p ∈ P is such that

∀q ∈ Bp, cq ≥ 0 and cq ≥
∑

q′∈σE (q)

q′ 6∈Bp

cq,q′ , (97)

then, there exists a max-�ow f in G such that

∀q ∈ σE(p), fp,q ≥ fq,p = 0. (98)

Proof. This is a straightforward consequence of Proposition 5, Proposition 4 and Propo-

sition 6.

Indeed, if (97) holds, we know that for any max-�ow f in G and any S ⊂ P ′

∑
q∈Σ+\(S∪{p})

cq +
∑
q′ 6∈Σ+

(fq′,q − fq,q′)

 ≥ 0

and therefore, Proposition 4 guarantees that Σ+ is a min s-t cut in G ′. Then, Proposition

5 guarantees that f ′′ is a max-�ow in G and Proposition 6 guarantees that f ′′ satis�es

(98). �
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A useless node

Throughout this section, we consider a graph G as constructed in Section C, a set B

satisfying (36), a pixel p ∈ P satisfying (97) and a max-�ow f in G satisfying (98).

The purpose of this section is to modify f so-that it remains a max-�ow in G and

satis�es

∀q ∈ σE(p), fp,q = fq,p = 0.

The latter obviously implies that the node p is useless when computing the max-�ow in

G.

Since the method for modifying f is analogous to the one used in Section C, we chose

to use the same notations for the objects playing the same role. Beware not to confuse

their de�nition.

First, we denote

P ′ = Bp ,Σ+ = Bp \ {p} and Σ− = {p}. (99)

In order to modify f, we build a graph G ′ = (P ′, E ′, c′) where E ′and c′ are de�ned below.

We consider

E ′ =
(
E ∩

(
Σ+ × Σ+

)) ⋃ (
(σE(p) ∩ Σ+)× Σ−

) ⋃ (
{s} × Σ+

) ⋃
{(p, t)}. (100)

We de�ne the capacities c′ by

c′q,q′ = cq,q′ − fq,q′ + fq′,q ,∀(q, q′) ∈
(
E ∩

(
Σ+ × Σ+

))
(101)

c′q,p = fp,q ,∀q ∈ (σE(p) ∩ Σ+) (102)

c′s,q = cq − fq ,∀q ∈ Σ+ (103)

c′p,t = fp (104)

As usual, in order to simplify the notations, we arti�cially set

c′q,q′ = 0 ,∀(q, q′) ∈ (P ′ × P ′) \ E ′, (105)

and we write

c′q = c′s,q − c′q,t ,∀q ∈ P ′. (106)
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Notice �rst that, for any S ⊂ P ′, the value of the s-t cut ((S ∪ {s}), (P ′ \ S)∪ {t}) in

G ′ depends on whether p ∈ S or p 6∈ S. If p ∈ S, we have

valG′ (S) = c′p,t +
∑

q∈(Σ+\S)

c′q +
∑
q∈S

q′∈(P′\S)

c′q,q′ .

Therefore, we trivially have using (101)-(106)

valG′ (S) ≥ c′p,t = fp , if p ∈ S. (107)

Moreover, for any S ⊂ P ′, the value of the s-t cut ((S ∪ {s}), (P ′ \ S) ∪ {t}) in G ′ is

given by

valG′ (S) =
∑

q∈(Σ+\S)

c′q +
∑
q∈S

q′∈(P′\S)

c′q,q′ , if p 6∈ S. (108)

In particular, if S = Σ+, we obtain using (102), the conservation of the �ow f at p and

(98) that

valG′
(
Σ+
)

=
∑

q∈(Σ+∩σE′ (p))

c′q,p,

=
∑

q∈(Σ+∩σE(p))

fp,q,

= fp . (109)

The following proposition holds.

Proposition 8. Let G ′ be the graph constructed in Section C. For any S ⊂ P ′,

• if p 6∈ S

valG′ (S) = valG′
(
Σ+
)

+
∑
q∈S

q′∈(Σ+\S)

cq,q′ +
∑

q∈(Σ+\S)

[
cq +

∑
q′ 6∈P ′

(fq′,q − fq,q′)

]
, (110)

• if p ∈ S

valG′ (S) ≥ valG′
(
Σ+
)
. (111)

Proof. Notice �rst that, if p ∈ S, (111) is a straightforward consequence of (107) and

(109). Let us assume from now on that p 6∈ S.
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Since f is a �ow, the total amount of �ow entering and exiting (P ′ \ S) are equal (see

(17)) and therefore, using (99)

fp +
∑

q∈(Σ+\S)

fq +
∑

q∈(P′\S)

q′ 6∈(P′\S)

(fq′,q − fq,q′) = 0.

Using (109), (103) and (106), we obtain

valG′
(
Σ+
)

+
∑

q∈(Σ+\S)

(cq − c′q) +
∑

q∈(P′\S)

q′ 6∈(P′\S)

(fq′,q − fq,q′) = 0.

Combined with (108), this becomes

valG′ (S) = valG′
(
Σ+
)

+
∑

q∈(Σ+\S)

cq +
∑

q∈(P′\S)

q′ 6∈(P′\S)

(fq′,q − fq,q′) +
∑
q∈S

q′∈(P′\S)

c′q,q′ . (112)

We now decompose the last term of the above equation using (101), (102) and (98) and

write ∑
q∈S

q′∈(P′\S)

c′q,q′ =
∑
q∈S

q′∈(Σ+\S)

(cq,q′ − fq,q′ + fq′,q) +
∑
q∈S

fp,q

=
∑
q∈S

q′∈(Σ+\S)

cq,q′ −
∑
q′∈S

q∈(Σ+\S)

(fq′,q − fq,q′) +
∑
q′∈S

(fp,q′ − fq′,p)

=
∑
q∈S

q′∈(Σ+\S)

cq,q′ −
∑

q∈(P′\S)

q′∈S

(fq′,q − fq,q′)

Combining the latter with (112), we �nally obtain

valG′ (S) = valG′
(
Σ+
)

+
∑

q∈(Σ+\S)

cq +
∑
q∈S

q′∈(Σ+\S)

cq,q′ +
∑

q∈(P′\S)

q′ 6∈P′

(fq′,q − fq,q′).

Using (36), we remark that for any q′ 6∈ P ′, q′ 6∈ σE(p) and we can �nally deduce that

(110) holds for all S ⊂ P ′ such that p 6∈ S. �

As in Section C, we will from now on consider a max �ow f ′ in the graph G ′ built in

the current section. We also arti�cially extend the �ow f ′ and set

f ′q,q′ = 0, for all (q, q′) ∈ ((V ′ × V ′) \ E ′) . (113)
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Once again, the graph G ′ satis�es (5) and (9), therefore, as usual, we denote for simplicity

f ′q = f ′s,q − f ′q,t ,∀q ∈ P ′. (114)

We are now going to combine f and f ′ in order to build a mapping f ′′ : E → R which

will turn out to be a max-�ow in G such that

f ′′p,q = f ′′q,p = 0 ,∀q ∈ σE(p).

As for G ′ and f ′, beware that the mapping f ′ is di�erent in Section C and in the current

section.

Let us begin with the de�nition of f ′′. We set

f ′′q = fq ∀q 6∈ P ′ (115)

f ′′q,q′ = fq,q′ ∀(q, q′) ∈ E , with q 6∈ P ′ or q′ 6∈ P ′ (116)

f ′′q = fq + f ′q ∀q ∈ P ′ (117)

f ′′q,q′ = (fq,q′ + f ′q,q′)− (fq′,q + f ′q′,q) ∀(q, q′) ∈
(
E ∩ (Σ+)2

)
and fq,q′ + f ′q,q′ ≥ fq′,q + f ′q′,q (118)

f ′′q,q′ = 0 ∀(q, q′) ∈
(
E ∩ (Σ+)2

)
and fq,q′ + f ′q,q′ < fq′,q + f ′q′,q (119)

f ′′p,q = fp,q − f ′q,p ∀q ∈ (P ′ ∩ σE(p)) (120)

f ′′q,p = 0 ∀q ∈ (P ′ ∩ σE(p)) (121)

We also de�ne

f ′′s,q = max(f ′′q , 0) and f ′′q,t = max(−f ′′q , 0) ,∀q ∈ P . (122)

Notice that the equation (115)-(122) permit to de�ne f ′′q,q′ for all (q, q′) ∈ E . Once again,

we extend f ′′ outside E and set

f ′′q,q′ = 0, for all (q, q′) ∈ ((V × V) \ E) .

The following proposition holds.

Proposition 9. The mapping f ′′ : (V × V)→ R is max-�ow in G.
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Proof. Notice �rst that, if f ′′ is a �ow in G it is necessarily a max �ow since, according

to (97), (σE(t) ∩ P ′) = ∅ and therefore, using (115), we always have f ′′q,t = fq,t, for all

q ∈ σE(t). Therefore, the valG (f ′′) = valG (f) and the latter is maximal in G.

In order to show that f ′′ is a �ow we �rst show that it satis�es the capacity constraints.

Let (q, q′) ∈ E .

• If q = s and q′ 6∈ Bp or if q 6∈ Bp and q
′ = t, using (115) and (122), we know that

0 ≤ f ′′q,q′ = fq,q′ ≤ cq,q′ and 0 ≤ f ′′q′,q = fq′,q ≤ cq′,q.

• If q 6∈ Bp or q
′ 6∈ Bp, using (116), we obtain again

0 ≤ f ′′q,q′ = fq,q′ ≤ cq,q′ .

• If q = s and q′ ∈ Σ+, using (117) and (103), we get

0 ≤ f ′′q,q′ = fs,q′ + f ′s,q′ ≤ cq,q′ .

• If q = s and q′ = p, using (117) and (104), we get

0 ≤ f ′′q,q′ = fs,p − f ′p,t ≤ cq,q′ .

• If (q, q′) ∈ (Σ+)2 and fq,q′ + f ′q,q′ ≥ fq′,q + f ′q′,q, using (118) and (101), we obtain

0 ≤ f ′′q,q′ = fq,q′ + f ′q,q′ − fq′,q − f ′q′,q ≤ cq,q′ − f ′q′,q ≤ cq,q′ .

• If (q, q′) ∈ (Σ+)2 and fq,q′ + f ′q,q′ < fq′,q + f ′q′,q, using (118), we trivially have

0 ≤ f ′′q,q′ = 0 ≤ cq,q′ .

• If q = p and q′ ∈ (Bp ∩ σE(p)), using (120) and (102), we get

0 ≤ f ′′q,q′ = fp,q′ − f ′q′,p ≤ cq,q′ .

• If q ∈ (Bp ∩ σE(p)) and q′ = p, then (121) trivially guarantees that

0 ≤ f ′′q,q′ = 0 ≤ cq,q′ .

163



N. Lermé Exactness of the reduction test (53)

In order to show the �ow conservation constraints, we consider, from now on, q ∈ P .

• If q 6∈ P ′, we have, using (115) and (116), we have f ′′q,q′ = fq,q′ and f
′′
q′,q = fq′,q, for

all q′ ∈ σE(q). Therefore,∑
q∈σE(q)

f ′′q′,q =
∑

q∈σE(q)

fq′,q =
∑

q∈σE(q)

fq,q′ =
∑

q∈σE(q)

f ′′q,q′ .

• If q ∈ Σ+, expressing that the two �ows f and f ′ are conserved at q, we obtain using

(13) and (98)

fq +
∑

q′∈σE (q)

q′ 6∈P′

(fq′,q − fq,q′) +
∑

q′∈σE (q)

q′∈Σ+

(fq′,q − fq,q′) + fp,q = 0

and

f ′q +
∑

q′∈σE (q)

q′∈Σ+

(f ′q′,q − f ′q,q′) − f ′q,p = 0.

Summing those inequalities and using (116)-(121), we obtain

f ′′q +
∑

q′∈σE (q)

q′ 6∈P′

(f ′′q′,q − f ′′q,q′) +
∑

q′∈σE (q)

q′∈Σ+

(f ′′q′,q − f ′′q,q′) + (f ′′p,q − f ′′q,p) = 0.

The latter expresses that f ′′ is conserved at the node q.

• If q = p, then using (117), (120) and (121) as well as (36) and (104), we obtain∑
q∈σE(p)

(f ′′q,p − f ′′p,q) = fs,p − f ′p,t −
∑

q∈(P ′∩σE(p))

(fp,q − f ′q,p).

Using that fp,t = 0 (see (97), (10) and (9)), f ′s,p = 0 (see (100) and (105)), fq,p = 0

(see (98)) and f ′p,q = 0 (see (100) and (105)), we obtain∑
q∈σE(p)

(f ′′q,p−f ′′p,q) = (fs,p−fp,t)+(f ′s,p−f ′p,t)−
∑

q∈(P ′∩σE(p))

[
(fp,q − fq,p) + (f ′p,q − f ′q,p)

]
.

Simplifying, we �nally obtain∑
q∈σE(p)

(f ′′q,p − f ′′p,q) =
∑

q∈σE(p)

(fq,p − fp,q) +
∑

q∈σE(p)

(f ′q,p − f ′p,q),

= 0,

since the two �ows f and f ′ are conserved at p.
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This concludes the proof. �

Proposition 10. If Σ+ is a minimum s-t cut in the graph G ′ de�ned in Section C, then

the max-�ow f ′′ is such that

∀q ∈ σE(p), f ′′q,p = f ′′p,q = 0.

As a consequence, removing the node p from the graph G does not modify its maximal �ow

value.

Proof. If Σ+ is a minimum s-t cut in the graph G ′ de�ned in Section C, then Ford-Fulkerson

theorem, (109) and (100) guarantee that

fp = valG′
(
Σ+
)

= valG′ (f
′) =

∑
q∈Σ+

f ′q.

Now, since the total amount of �ow f ′ entering and exiting Σ+ are equal, we obtain, using

(100), that

fp =
∑

q∈(σE(p)∩Σ+)

f ′q,p.

Using that the �ow f ′ is preserved at p and (100), we �nally get

fp = f ′p,t.

Using (117), (114) and (113) this yields

f ′′p = fp − f ′p,t = 0,

which, using (122), provides

f ′′s,p = f ′′p,t = 0.

Together with (121), this guarantees that

for all q ∈ σE(p), f ′′q,p = 0. (123)

Expressing the �ow conservation constraint at p for f ′′, we deduce from (123) that∑
q∈σE(p)

f ′′p,q =
∑

q∈σE(p)

f ′′q,p = 0,
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which guarantees that

for all q ∈ σE(p), f ′′p,q = 0,

since f ′′p,q ≥ 0, for all q ∈ σE(p).

Together with (123), this concludes the proof. �

We can now conclude with the following proposition.

Proposition 11. Let G be the graph de�ned in Section C, let B satisfy (36) and let us

assume that p ∈ P satis�es (97). Then, there exists a max-�ow f in G such that

∀q ∈ σE(p), fp,q = fq,p = 0. (124)

As a consequence, removing the node p from the graph G does not modify its maximal �ow

value.

Proof. This is a straightforward consequence of Proposition 7, Proposition 8, Proposition

9 and Proposition 10.

Indeed, if (97) holds, we know that there is max-�ow f in G satisfying (98). Therefore,

using the notations of Section C, we know that for any S ⊂ P ′ such that p 6∈ S

∑
q∈Σ+\S

[
cq +

∑
q′ 6∈P ′

(fq′,q − fq,q′)

]
≥ 0.

Therefore, for G ′ as de�ned in Section C, Proposition 8 guarantees that for any S ⊂ P ′

valG′ (S) ≥ valG′
(
Σ+
)
,

and therefore Σ+ is a min s-t cut in G ′. Then, Proposition 9 guarantees that f ′′ is a

max-�ow in G and Proposition 10 guarantees that f ′′ satis�es (124). �
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D Calculus details of the upper bound ηmax

Computing the upper bound ηmax amounts to loop over all possible proportions of de-

graded pixels k from n to 1 and �nd the one such that P(X > k) ≥ ε. For each proportion

k, the distribution function P(X > k) is recursively computed and a single iteration corre-

sponds to the computation of P(X = k). Let us denote T (n) the cost for evaluating (47) at

k. The complexity of the algorithm for estimating ηmax is therefore O(nT (n)). Since (47)

is decreasing (see (48)), the convergence of this algorithm can be improved using a di-

chotomic search, leading to a complexity of O(T (n)log2(n)).

When estimating the upper bound ηmax, some technical di�culties can appear with (47).

Indeed, for large window radii, the combinations in (47) can include a dozen of digits and

even more. Due to the limited precision of machines, the traditional approach for com-

puting these combinations quickly appears to be a dead-end when r > 15 in practice. To

overcome this di�culty, a common procedure consists in taking the logarithm of P(X = k).

For a �xed amount of noise ξ ∈]0, 1[, one ends up with

log(P(X = k)) = log(
(
n
k

)
ξk(1− ξ)n−k)

= log(
(
n
k

)
) + log(ξk) + log((1− ξ)n−k)

= log
(

n
k!(n−k)!

)
+ klog(ξ) + (n− k)log(1− ξ)

= log(n!)− log(k!)− log((n− k)!)︸ ︷︷ ︸
(∗)

+klog(ξ) + (n− k)log(1− ξ).

(125)

From (125), we have chosen to get an approximation of (*) using the Ramanujan's formula

because the complexity is only O(1).

The approximation of log(x!) proposed by Ramanujan in [Ram88] is 6

log(x!) ' xlog(x)− x+
log(x(1 + 4x(1 + 2x)))

6
+
log(π)

2
. (126)

6The absolute error between log(x!) and (126) is indeed maximum for x = 1 and progressively decreases

as x tends to in�nity. For x = 1, this error is about 10−4 and therefore is negligible.
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Abstract

In this thesis, we �rst present a new band-based strategy for reducing the graphs involved in binary
graph cut segmentation. This is done by locally testing if a node is really useful to the maximum �ow
computation in these graphs. Like previous band-based methods, the remaining nodes are typically
located in narrow bands surrounding the object edges to segment. In a �rst time, we propose an heuristic
condition to decide if a node can be added to the reduced graph which can be computed in constant
time (except for image borders). When the amount of regularization is large, extra parameters are
embedded into this test for both further reducing the graphs and removing segments due to noise in
the segmentations. When the amount of regularization is of moderate level, the time required by this
algorithm is even compensated by the maximum �ow time on the reduced graph. In this situation, we
experimentally show that this algorithm drastically reduce the memory usage of standard graph cuts
while keeping a low pixel error on segmentations. In a second time, we describe another test with a
slightly higher computational cost. We prove that each node satisfying this test can be safely removed
without modifying the maximum �ow value. Numerical experiments exhibit similar performance than
the heuristic test. In a second part, we present an application of this reduction technique devoted to the
semi-interactive segmentation of lung tumors in 3D CT images. The novelty of this work is to embed
a prior on the object seeds location and control their propagation thanks to a Fast Marching algorithm
based on the image gradient. Qualitative and quantitative results against provided ground truths exhibit
an accurate delineation of tumors with a Dice coe�cient greater than 80% in average.

Keywords: graph cut, segmentation, medical imaging, discrete optimization, reduction.

Résumé

Dans cette thèse, nous présentons d'abord une nouvelle stratégie à base de bandes pour réduire les
graphes impliqués dans la segmentation binaire par graph cuts. Ceci est e�ectué en testant localement
si un noeud est réellement utile au calcul du �ot maximum dans ces graphes. À l'instar des méthodes
antérieures à base de bandes, les noeuds restants sont typiquement localisés dans des bandes étroites
autour des contours de l'objet à segmenter. Dans un premier temps, nous proposons un test heuristique
pour décider si un noeud peut être ajouté au graphe réduit qui peut être calculée en temps constant
(excepté pour les bords de l'image). Lorsque le degré de régularisation est élevé, des paramètres sup-
plémentaires sont intégrés à ce test pour à la fois réduire davantage les graphes et supprimer les zones
dues au bruit dans les segmentations. Lorsque le degré de régularisation est moindre, le temps requis
par cet algorithme est même compensé par le temps de calcul du �ot maximum sur le graphe réduit.
Dans cette situation, nous montrons expérimentalement que cet algorithme réduit signi�cativement la
consommation mémoire des graph cuts standard tout en conservant une erreur quasi nulle sur les segmen-
tations. Dans un second temps, nous décrivons un autre test avec un coût computationnel légèrement
supérieur. Nous démontrons que chaque noeud véri�ant ce test peut être retiré sans altérer la valeur du
�ot maximum. Des expériences numériques permettent d'exhiber des performances équivalentes au test
heuristique. Dans une seconde partie, nous présentons une application de cette technique de réduction
à la segmentation semi-interactive de tumeurs pulmonaires dans des images CT 3D. L'originalité de ce
travail consiste à intégrer un a priori sur la localisation des graines objet et contrôler leur propagation
grâce à un algorithme de Fast Marching basé sur le gradient de l'image. Les résultats quantitatifs et
qualitatifs comparés aux vérités terrains fournies montrent une délimitation précise des tumeurs avec un
coe�cient de Dice supérieur à 80% en moyenne.

Mots-clés : coupe de graphe, segmentation, imagerie médicale, optimisation discrète, réduction.

Discipline : informatique.

Institut Galilée � Université Paris-Nord

99, avenue Jean-Baptiste Clément

93430 Villetaneuse


	Introduction
	Preliminaries
	Image segmentation: history and methods
	What is segmentation?
	History and methods

	Graph cuts: principle and algorithms
	History and related work
	Definitions and notations
	Maximum-flow algorithms
	Feasible-flow algorithms
	Preflow-push algorithms
	Pseudoflow algorithms

	Markov Random Fields and energy minimization
	Binary graph cuts-based segmentation
	TV+L2 energy model
	Boykov-Jolly energy model


	Estimating distribution laws
	Normalized histograms
	Gaussian mixtures model


	Reducing graphs in graph cuts optimization: state-of-the-art
	Motivation
	Sequential strategies
	Parallel/distributed strategies
	Conclusion

	Reduced Graph Cuts: a finer approach for reducing graphs
	General principle
	A heuristic test for reducing graphs
	Description
	Algorithmic considerations
	Naive algorithm
	Incremental algorithm
	Adaptive algorithm

	Numerical experiments
	The window radius parameter
	Massive experiments on 2D, 2D+t and 3D images
	The parameter 
	The parameter 
	Automatic tuning 
	Further lowering the graph size  
	Filtering 



	An exact test for reducing graphs
	Principle
	Massive experiments on 2D, 2D+t and 3D images

	Conclusion

	GCSFMP: an application of RGC for segmenting lung tumors
	Introduction
	Motivation and scope
	Constraints

	Proposed method
	Overview
	Energy function
	Segmenting lung tumors: a practical case

	Evaluation
	Qualitative and quantitative results
	Performance

	Conclusion

	Conclusion and discussion
	Glossary
	Appendix
	Evaluation measures
	Dijkstra algorithm for computing distance maps
	Exactness of the reduction test (53)
	Calculus details of the upper bound max
	References

	Publications




