
HAL Id: tel-00683224
https://theses.hal.science/tel-00683224

Submitted on 28 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Cyclo-Static Process Networks to Code
Generation for Multidimensional Software Pipelining

Mohammed Fellahi

To cite this version:
Mohammed Fellahi. From Cyclo-Static Process Networks to Code Generation for Multidimen-
sional Software Pipelining. Other [cs.OH]. Université Paris Sud - Paris XI, 2011. English. �NNT :
2011PA112046�. �tel-00683224�

https://theses.hal.science/tel-00683224
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

SPECIALITE : Informatique

Ecole Doctorale d'Informatique de Paris-sud

 Présenté par

 Mohammed Fellahi

Sujet de la thèse

From Cyclo-Static Process Networks to Code Generation for Multidimensional

Software Pipelining

Des réseaux de processus cyclo-statiques à la génération de code pour

le pipeline multi-dimensionnel

Soutenue le 22 Avril 2011 devant les membres du jury:

Pr. Yannis Manoussakis Président

Pr. Pierre Boulet Rapporteur

Pr. Alain Girault Rapporteur

Pr. Albert Cohen Directeur de thèse

Pr. Daniel Etiemble Examinateur

M. Lionel Lacassagne Examinateur

Université Paris Sud

i

Résumé

Les applications de flux de données sont des cibles importantes de l’optimisation de
programme en raison de leur haute exigence de calcul et la diversité de leurs do-
maines d’application: communication, systèmes embarqués, multimédia, etc. L’un
des problèmes les plus importants et difficiles dans la conception des langages de
programmation distinés à ce genre d’applications est comment les ordonnancer à
grain fin à fin d’exploiter les ressources disponibles de la machine.

Dans cette thèse on propose un "framework" pour l’ordonnancement à grain fin
des applications de flux de données et des boucles imbriquées en general. Pre-
mièrement on essaye de paralléliser le nombre maximum de boucles en appliquant
le pipeline logiciel. Après on fusionne le prologue et l’épilogue de chaque boucle
(phase) parallelisée pour éviter l’augmentation de la taille du code. Ce processus est
un pipeline multidimensionnel, quelques occurrences (ou instructions) sont décalées
par des itérations de la boucle interne et d’autres occurrences (instructions) par des
itérations de la boucle externe.

Les expériences montrent que l’application de cette technique permet l’amélioration
des performances, extraction du parallélisme sans augmenter la taille du code, à la
fois dans le cas des applications de flux de données et des boucles imbriquées en
général.

Abstract

Applications based on streams, ordered sequences of data values, are important
targets of program optimization because of their high computational requirements
and the diversity of their application domains: communication, embedded systems,
multimedia, etc. One of the most important and difficult problems in special purpose
stream language design and implementation is how to schedule these applications
in a fine-grain way to exploit available machine resources.

In this thesis we propose a framework for fine-grain scheduling of streaming ap-
plications and nested loops in general. First, we try to pipeline steady state phases
(inner loops), by finding the repeated kernel pattern, and executing actor occur-
rences in parallel as much as possible. Then we merge the kernel prolog and epilog
of pipelined phases to move them out of the outer loop. Merging the kernel prolog
and epilog means that we shift actor occurrences, or instructions, from one phase it-
eration to another and from one outer loop iteration to another, a multidimensional
shifting.

Experimental shows that our framework can improve performance, parallelism
extraction without increasing the code size, in streaming applications and nested
loops in general.

ii

iii

Contents

Abstract i

Contents i

1 Introduction 1
1.1 Introduction . 1
1.2 State of the Art . 2
1.3 Our Contributions . 3
1.4 Thesis Overview . 3

I 5

2 Stream Theory 7
2.1 Introduction . 7
2.2 Basic Notions . 7
2.3 Streaming Applications . 8
2.4 Models of Computation . 9

2.4.1 Kahn Process Networks . 9
2.4.2 Dataflow Networks . 12
2.4.3 Synchronous Dataflow Networks: 14

2.5 Conclusion . 15

3 Dependence Analysis and Loop Transformations 17
3.1 Introduction . 17
3.2 Dependence Analysis . 17

3.2.1 Type of Dependences . 17
3.2.2 Representing Dependences . 20
3.2.3 Loop Dependence Analysis . 20

3.3 Loop Transformations . 22
3.3.1 Loop Fusion . 22
3.3.2 Loop Interchange . 23
3.3.3 Loop Tiling . 24
3.3.4 Retiming . 25
3.3.5 Software Pipelining . 27

3.4 Conclusion . 30

iv

4 Dependence Removal Techniques 31

4.1 Introduction . 31

4.2 False Dependence Removal Techniques 31

4.2.1 Renaming . 32

4.2.2 Privatization . 32

4.2.3 Node Splitting . 33

4.2.4 Conversion to Single-assignment Form 34

4.3 Conclusion . 35

5 Knapsack Problem 37

5.1 Introduction . 37

5.2 Formal Definition . 37

5.3 Knapsack Problems . 38

5.3.1 0-1-Knapsack Problem . 38

5.3.2 Bounded Knapsack Problem 39

5.3.3 Unbounded Knapsack Problem 39

5.4 Computational Complexity . 39

5.5 Knapsack Problem Solutions . 40

5.5.1 Dynamic Programming Solution 40

5.5.2 Greedy Approximation Algorithm: 41

5.6 Conclusion . 41

II Imperfectly Nested Multidimensional Shifting (INMS)
43

6 Overview of The Problem 45

6.1 Introduction . 45

6.2 Specifications . 45

6.3 The Global View . 46

6.4 Pre-scheduling Algorithm . 47

6.5 Imperfectly Nested Multidimensional Shifting 50

6.5.1 Phase Parallelization . 51

6.5.2 Actor Firing Index . 51

6.5.3 Phase Prolog-epilog Moving 52

6.5.3.1 Phase Prolog-epilog Merging 53

6.5.3.2 Phase Epilog Fill-in by Other Phases 54

6.5.4 Phase Prolog-epilog Moving Effect on Other Phases 54

6.6 Multi-dimensional Shifting Formalization 56

6.6.1 Phase Prolog-epilog Merging 57

6.6.2 Phase Epilog Fill-in by Other Phases 58

6.7 INMS Implementation . 60

v

7 Pattern Table Shifting 61
7.1 introduction . 61
7.2 Heuristic . 61
7.3 Pattern Table Shifting . 62

7.3.1 Cycle . 63
7.4 Simple Case Algorithm . 63

7.4.1 Algorithm . 64
7.4.2 Running Example . 66
7.4.3 Termination . 67
7.4.4 Correctness . 67
7.4.5 Remarks. 69

7.5 Conclusion . 70

8 Prolog Epilog Merging 73
8.1 Introduction . 73
8.2 Problem Statement . 73

8.2.1 Running Example . 74
8.2.2 Inter-Phase Dependences . 76

8.3 Characterization of Pipelinable Phases 76
8.3.1 Causality Condition . 78
8.3.2 Necessary and Sufficient Condition 80

8.4 Global Optimization Problem . 80
8.4.1 Multidimensional Knapsack Problem 80
8.4.2 Algorithm . 81

8.5 Back to the Running Example . 82
8.6 Dependence Removal . 83

8.6.1 Prolog-Epilog Merging with Renaming Algorithm 84
8.6.2 Code Generation . 85

8.7 Related Work and Challenges . 85
8.7.1 Managing Register Pressure 86
8.7.2 Managing Code Size . 86
8.7.3 Multidimensional Scheduling 86

8.8 Conclusion . 87

9 Code generation of Prolog-Epilog Merging 89
9.1 Introduction . 89
9.2 Prolog-Epilog Merging Implementation Idea 89

9.2.1 Phase Prolog-Epilog Merging 91
9.2.2 Phase Prolog-Epilog Merging implementation 92

9.2.2.1 Loop Nest Detection 93
9.2.2.2 Prolog Epilog Moving and Kernel Duplicating 93
9.2.2.3 Computing Iterator Bounds 95
9.2.2.4 Computing of Actor Occurrence Coordinates 95

9.2.3 Effect of Phase Prolog-Epilog Merging on Loop Nest 95
9.2.3.1 Idea . 96

vi

9.2.3.2 Algorithm . 98
9.2.3.3 Epilog Construction 103
9.2.3.4 Recomputing of Actor Occurrence Coordinates . . . 105

9.3 Technique Extension . 105
9.3.1 Parametric Depth Prolog-epilog Merging 106
9.3.2 Combining INMS with Other Optimization Techniques 107

9.4 Conclusion . 107

10 Experiments 109
10.1 Introduction . 109
10.2 Prolog-epilog Merging Applicability 109
10.3 Experiment Results on the Polyphase Image Upscaling Benchmark . . 110
10.4 Conclusion . 112

11 Conclusion 113
11.1 Our Contributions . 113
11.2 Future Work . 114

1

Chapter 1

Introduction

1.1 Introduction

Many architectures have been designed and constructed to exploit the parallelism of
streaming applications. Specialized hardware is used in the Cheops video processing
system for streaming operation [7]. The Imagine architecture for media processing
also takes into account stream operations but without specialized functional units
[51]. Raw architecture may support stream codes because of its conception, repli-
cated processing elements and a fast compiler-controlled interconnection network
[65]. Other architectures exist too, like the Cell processor.
Despite all these architectures, few of them have compilers and languages for stream-
ing application programming. Such a compiler or language should help the program-
mer to express stream computations in a natural way and without the need to have
information about the target machine. The programmer also doesn’t need to take
care about stream operations scheduling; it is the compiler task. Language design
and paradigms should be easy enough to make it popular, especially when the lan-
guage users are from different scientific domains as stream applications.
An interesting question may be asked here: why don’t we use general purpose lan-
guages, like the C language, when it is already easy and popular? General purpose
languages are inadequate for stream programming: They don’t provide an intuitive
representation of streams which reduces readability, robustness and programmer
productivity. Moreover because of the widespread parallelism and regular commu-
nication patterns of data, streams are left implicit in general purpose languages;
compilers are not stream-conscious and can not perform stream specific optimiza-
tions. Also most general purpose languages are built for Von-Neumann architectures
which is not suitable for streaming applications and their architectures [4].
Surprisingly, there are few special-purpose stream languages. They are theoretically
sound but they are not practical enough to be used for the development of any
streaming applications. Sometimes, developing a streaming application using one
stream language is a research project. The reason is that streaming applications are
not like general applications: the nature of streams affects directly their design and
development. The data can be streamed in a static or dynamic way. This means
the data flow can be uniform or not and model of actor (independent operations)

2

communication can be static or dynamic depending on whether it can change during
the execution time or not. It depends on the system where the application is run-
ning. An example of that is: a mobile phone user leaves a station zone and goes to
another one is an asynchronous event. So the application environment also affects
the application design and implementation.
Theoretically, a lot of work and research have been done. Researchers have tried
to classify different streaming applications according to their stream and communi-
cation natures and there are models of computation for them like Kahn networks,
data flow networks, Synchronous Data Flow (SDF), Boolean Data Flow (BDF), Dy-
namic Data Flow networks (DDF) and others [42]. For instance, SDF is for uniform
streams application and DDF is for non uniform streams applications. Finding the
model that suits your application is not enough to develop it. Executing the appli-
cations means the execution of its different actors, each one a number of times at
a number of instances. Actors are independent in that they depend only on their
inputs. If there are enough input data, they can be executed. So do all actor exe-
cution sequences are valid schedules? Are there invalid actor orders? what are the
constraints restricting this selection? Is it always possible to find a valid schedule?
Should this schedule be found at compile time? Surprisingly target architecture
affects the choice of a valid schedule. A compiled code in a machine may not be
executed on another one. The execution of a streaming application means the con-
sumption of resources and time. Schedule size and channel size depend directly on
the free memory and buffer sizes. Extraction of parallelism means the exploitation
of machine resources, including registers and operational units, as good as possi-
ble. If the application has time constraints, for example a real time application,
the research for a valid schedule becomes more difficult. We are focusing on SDF
application static scheduling, scheduling during compilation, and we try to answer
the questions asked above.

1.2 State of the Art

So the problem is how to schedule SDF applications. As far as we know, ‘StreamIt’
and ‘Lucid Synchrone’ are the latest works on Streaming Application languages.
They come from very different classes of language paradigms. StreamIt is designed
and developed to be an imperative language for streaming applications, exactly for
SDF applications although StreamIt researchers have started to look at DDF appli-
cations. Its goals are to provide a high-level stream abstraction to improve program-
mer productivity. Also it is intended to be a general language for different stream
target architectures which lets researchers work on portability too[4][57][58][59]. The
scheduling task provides a coarse-grained schedule, Phased Scheduling [30][29], ac-
tors are coarse-grained actors and the schedule as well. Therefore, it doesn’t take
advantage of offered parallelism. Also, the application graph model (SDF) is re-
stricted: it is built using a set of predefined structures [4][57][58][59] and not all
SDF applications can be modeled using them. Lucid Synchrone is designed for
streaming applications too but it is built on a functional language (OCAML), Lus-

3

tre family of stream languages. It is up to the programmer to use language syntax
to build a synchronized application. Using keywords and scheduling instructions
one by one provides a scheduled source code, but it is a hard task and it demands
from the programmer to be well experienced with the language and obliges him to
know the application and its environment very well to schedule it [12][47][46][10].
All difficult tasks are performed by the user himself which is not practical. Without
forgetting that functional programming is not easy as well by itself. Other languages
are cited in [55]. So how to schedule SDF applications in a fine-grain manner to
profit from available machine resources?

1.3 Our Contributions

The goal of my work is to focus on the problem of streaming application schedul-
ing. One of the most important and difficult problems in special purpose stream
language design and implementation is to answer this question: how to schedule
SDF applications in a fine-grain way to exploit available machine resources? The
main idea: developing a fine-grained scheduling approach: an actor is a block of
a few instructions without loop or branch statement, this is useful to build a fine-
grained schedule and to exploit offered parallelism; an SDF schedule is an infinite
execution of periodic sequence, steady state and this sequence schedule looks ex-
actly like nested loops schedule. Hence, all our scheduling work is based on this
similitude between nested loop schedule and SDF schedule, in this way we take ad-
vantage of nested loops scheduling methods and exploit machine parallelism. Also,
loop scheduling and parallelism can take advantage of our proposed techniques and
algorithms because they are applicable for both nested loops and steady state.

The contributions of this thesis are:

• A coarse-grain scheduling algorithm. It takes care of code and buffer size.

• A fine-grain scheduling technique INMS.

• Shifting idea: it breaks down dependence relations between actors to exploit
parallelism.

• Prolog-epilog merging technique.

• Prolog-epilog merging with renaming.

• Code generation for prolog-epilog merging technique.

1.4 Thesis Overview

This thesis will address the problem of streaming application scheduling. It is di-
vided into two parts. The first part will introduce the basic concepts. In chapter
2 we present Stream applications and their models of computation, especially the
SD model. Chapter 3 is a survey on loop basic notions and its transformations that

4

are necessary for readers to understand our work. Chapter 4 describes "Dependence
Removal Techniques" especially "Renaming" that we use to extent our scheduling
technique, "Prolog-epilog Merging". In chapter 5 we present the Knapsack Prob-
lem because the "Prolog-epilog Merging" solution is based on solving this problem.
The second part of the thesis focuses on our work. Chapter 6 is an overview of
the problem. It cites different specifications and characteristics of applications we
focus on. Then it presents "Imperfectly Nested Multidimensional Shifting(INMS)"
framework. Chapter 7 talks about Pattern Tables Shifting, our first attempt to
propose a fine-grained schedule for streaming applications. In chapter 8 we present
the "Prolog-epilog Merging" scheduling technique and in chapter 9 we explain how
to generate code for it. Chapter 10 shows different experiments and results. Finally,
we conclude in chapter 11 and suggest future work.

5

Part I

7

Chapter 2

Stream Theory

2.1 Introduction

Applications based on streams, ordered sequences of data values, are becoming im-
portant and widespread because of their high computational requirements and the
diversity of their domains: communication, embedded systems, multimedia, etc. In
embedded domain, applications for hand-held computers, cell phones and DSPs are
centered around streams of voice or video data. The stream abstraction is also fun-
damental to high performance applications such as intelligent software routers, cell
phone base station and HDTV editing consoles.

One important property of these applications is that they are composed of in-
dependent repetitive operations. This takes the form of a pipeline. As data are
streamed through the pipeline, each stage can operate concurrently on a different
portion of the input.

We will see in this chapter some basic stream notions, in section 2.2 and 2.3
then in section 2.4 we will take a look at different models of computation, and we
will finish by choosing one of them, the appropriate one for our case.

2.2 Basic Notions

Stream Processing: it refers to the active research area of a number of disparate
systems such as dataflow systems, reactive systems, synchronous concurrent algo-
rithms, signal processing systems and certain classes of real-time systems. They all
deal with streams [55].
Stream: it is an infinite list of elements a0, a1, a2, ... taken from some data of inter-
est A which can be a set of integers, reals, booleans, or any other type, or stream
itself[55].
Stream Processing Systems Basic Conceptual Model: a Stream Processing System
(SPS) can be seen as collections of modules, also called actors or agents depending
on the system and its specific model, that compute in parallel and that communicate
data via channels. A module can be a source that passes data into the system, a
filter (or agent) that performs atomic computations or a sink that passes data from

8

the system [55]. This basic model can be represented by a directed graph where
nodes are modules and arcs are channels. Fig. 2.1 shows a typical SPS. The charac-
teristic of modules and channels provide more specific models such as Kahn process
networks, dataflow networks and others. The three main characteristics are :

(1) synchronous or asynchronous actors: actor are synchronized or not. Do they
operate in synchronized manner with respect to other filters, or they compute with
no synchronization?

(2) deterministic or non-deterministic actors: actor either do or do not compute
a function.

(3) uni-directional or bi-directional channels.

In1

In2

In3

M1

M2

M3

M4

M5

out1

out2

Fig. 2.1. Typical SPS

2.3 Streaming Applications

Applications that use stream abstractions are diverse but they have some common
characteristics identifying them as “ Streaming Applications” and making them
distinct from other classes of programs [59]. These characteristics are as follows:

1. large streams of data: it is the most important characteristic of streaming
applications. Streams are the input and the output data. They may be infinite.
This makes a great difference between streaming applications and scientific
codes which process a set of data with a great degree of data reuse.

2. independent stream filters: an Actor is the basic operational unit. If we look at
a streaming computation as a sequence of transformations on the data streams,
an actor will be the basic unit of this transformation. All communications
between actors are explained in the graph. Actors do not communicate through
shared variables. The streaming application is the composition of these filters
in a stream graph where the output of a filter is connected to the input of
another.

9

3. a stable computation pattern: generally the graph structure is static during the
computation or precisely during the steady state sequence which is a predefined
period ordering filter executions. In Synchronous Data Flow (SDF) case, the
graph structure is always static.

4. occasional modification of stream structure: occasional change of the graph
structure occurs because of some asynchronous events. These events will break
the ordinary execution by introducing some new filters to the graph, omitting
some others or modifying some data value, like, initialization. For instance,
a software radio re-initializes a portion of stream graph when a user switches
from AM to FM or when a network protocol changes from bluetooth to 802.11
during transmission.

5. occasional out-of-stream communication: in practice, filters may exchange an-
other kind of data, a small amount of control information on an infrequent
and irregular basis. For example to change the cell phone volume or printing
an error message to a screen.

6. high performance expectations: many streaming applications, like in embed-
ded system, have real time constraints and others have their own appropriate
constraints depending on the streaming application kind. For example power
consumption in mobile environment is a critical constraint. Also, memory re-
quirement and code size in some specific architectures where memory size is
not very big, in some specific embedded architectures where memory is very
expensive (cache or ROM).

We are interested in this thesis in streaming applications that have a static graph,
Synchrounous DataFlow (SDF) applications. They are presented in detail in section
2.4.3.

2.4 Models of Computation

As we have said above, characteristics of channels, actors and streams define the
model of computation. We will not talk here about models, like reactive system
model, where the channel is bi-directional. We will present only dataflow system
models: kahn networks and its restricted models. Kahn Process Networks is the
natural model for describing dataflow systems. It is for ADU-SPS (Asynchronous
Determinate Unidirectional SPS) and generally dataflow systems are ADU-SPS too.
This section presents Kahn network model and its derived models, especially SDF
model, their mathematical representations and boundedness and termination prob-
lems.

2.4.1 Kahn Process Networks

Like the basic conceptual model Kahn Process Network (KPN) is a model of compu-
tation where processes are connected by channels to form a network. The interesting

10

properties that make it a suitable model for computation are [42]:

• each process is a sequential program that consumes tokens from its inputs and
produces tokens to the output queues.

• channel is the only way of information exchange and it is unidirectional.

• each process is blocked when it tries to read from an empty channel. It can
not examine a channel to test for the presence of data

• writing is non blocking but in practice we are interested in channels that have
limited size.

• systems that can be modeled by this model are deterministic. Results or token
produced on channels do not depend on the execution order [42].

The goal is to execute process network programs always with bounded channel
whenever it is possible. The real differences between streaming applications and
scientific computing are: infinite stream and infinite program execution. Because
each process can be seen as a Turing machine, this model is a Turing machine net-
work and because termination of a Turing machine is an undecidable problem, we
can’t know always in finite time if this process will terminate or not, then termina-
tion of process network programs is undecidable too. Bounded buffering is another
problem, in practice buffer or memory have limited sizes. It can be transformed
to a termination problem. Hence it is undecidable. But buffering depends on the
execution order so if we find a valid execution order, which does not increase buffer
size infinitely, then the problem is solved. While both of these properties are unde-
cidable for Kahn Process Network programs, for some restricted models, like SDF,
they are decidable as we will see later.

Mathematical Representation: Kahn’s formal mathematical representation
of process networks is very easy, efficient and it proves determinism of KPN pro-
grams. Produced tokens depend only on program definition and not on execution
order. In this formalism, channels are represented by streams and processes are
functions that map streams into streams and the process network is this set of equa-
tions. The least fixed point of these equations is unique and it corresponds to the
histories of the streams in the network which proves the determinism of the KPN
program [42].

Stream: a stream is a sequence of finite or infinite elements: X = [x1, x2, x3, ..].
X, Y are streams, X ⊑ Y means X is a prefix or it is equal to Y , for example X = [0]
is a prefix of Y = [0, 1]. ⊥ is the empty stream and ∀X,⊥⊑ X. Each increasing chain
~X = (X1, X2, ...) where X1 ⊑ X2 ⊑ ... has a least upper bound ∪ ~X = limi→∞ Xi.

Process: A process is a function that maps input streams into output streams.
This functional mapping can be described by an equation. For example, the process
in Fig. 2.2 can be described by this equation:

(Y 1, Y 2) = f(X1, X2, X3) (2.1)

11

Fig. 2.2. Graphical Representation of a Process

A functional mapping is continuous iff

∀ ~X,X1 ⊑ X2 ⊑ ... f(limi→∞Xi) = limi→∞f(Xi) (2.2)

Fixed Point Equations: as we have said before, we can represent the process
network by a set of equations representing different function mappings (different
processes). If the functions are continuous mappings over a complete partial order
then there is a unique least fixed point for this set of equations, and that solution
corresponds to the histories produced on the communication channels which proves
the determinism of KPN programs. KPN in Fig. 2.3 can be described by :

• (T1, T2) = g(X)

• X = f(Y, Z)

• Y = h(T1, 0)

• Z = h(T2, 1)

Fig. 2.3. Graphical Representation of the Process Network

This system can be reduced to one equation: (T1, T2) = g(f(h(T1, 0), h(T2, 1)))
Because the solution corresponds to the channels’ histories, so it is the set of chan-
nel’s least upper bound, and if it is a terminating program all streams will be finite,
else at least one of them is infinite.

In our example and by induction:

• (T1, T2)
0 = (⊥,⊥)

• (T1, T2)
1 = g(f(h(⊥, 0), h(⊥, 1))) = ([0], [1])

12

• (T1, T2)
2 = g(f(h([0], 0), h([1], 1))) = ([0, 0], [1, 1])

• (T1, T2)
3 = g(f(h([0, 0], 0), h([1, 1], 1))) = ([0, 0, 0], [1, 1, 1])

• (T1, T2)
j+1 = g(f(h(T j

1 , 0), h(T j
2 , 1))) = ([0, 0, 0, ...], [1, 1, 1, ..])

The least fixed point solution is: T1 = [0, 0, 0...], T2 = [1, 1, 1, ...]. Y = h(T1, 0) =
[0, 0, 0, ...] and Z = h(T2, 1) = [1, 1, 1, ...]. X = f(Y, Z) = [0, 1, 0, 1, ...].

Determinism, Termination and Boundedness.
Determinism : A PN is determinate if the result of the computation doesn’t

depend on the execution order. KPN programs are determinate because they are
based on the fact that the least fixed point, which represents channels’ histories, is
unique [42].

Termination: It is closely related to determinism. The least fixed point solution
determines stream values of each channel in the program. If we know the stream
values, we know each length. Then we can know if the stream is finite or not. A
complete execution of the KPN program corresponds to the least fixed point. A
terminating KPN program is a program where all complete executions have a finite
number of operations (finite streams) and a non-terminating KPN program is one
where all its complete executions have an infinite number of operations.

Boundedness: Although the length of produced token in each channel is defined
by the program, the number of tokens unconsumed in channels depends on the
execution order. A channel strictly bounded by b is a channel where the number
of unconsumed tokens doesn’t exceed b for any complete execution. A channel is
bounded by b if there is a complete execution where the number of unconsumed
tokens in this channel doesn’t exceed b. This last definition is a weaker condition
but it is not always easy or possible to find this complete execution or this execution
order.

2.4.2 Dataflow Networks

Dataflow networks, like KPN, can be represented by a graph where arcs represent
the FIFO channels and nodes represent actors. The difference between these two
models is that dataflow networks don’t use blocking reading semantics. They have
firing rules instead of it. These firing rules specify the number of tokens that should
be ready in each actor input channel, to enable the execution of the actors and
actors are atomic. A process is formed by firing an actor many times, infinitely, for
an infinite stream [42].

Stream here has the same meaning. It is represented the by tokens, it can
be finite or infinite. In contrast to the process (functional mapping from streams
to streams), actors are functions that map input tokens to output tokens. They
specify how many tokens should be available in each input channel for the actor to
fire. When it fires it consumes some input tokens and produces some output tokens.

Firing rules: an actor can have one or more firing rules:

R = ~R1, ~R2, ..., ~RN (2.3)

13

R is the set of firing rules of the actor. It will fire if at least one firing rule Ri is
satisfied. And for an actor with p input channels:

~Ri = Ri,1, Ri,2, ..., Ri,p (2.4)

For ~Ri firing rule to be satisfied, each Ri,j should be a prefix of the stream Xj

because Ri,j is a sequence of tokens specifying what tokens should be available on
the channel “j” to let the actor fire.
Ri,j =⊥ means there is no condition on this channel and the actor can fire for any
token on this channel but it doesn’t mean the channel should be empty. A pattern
Ri,j can specify input tokens to have some particular values. For instance, the select
actor firing in Fig. 2.4 depends on the control token values. It has two firing rules:
~R1 = ([∗],⊥, [F]) , ~R2 = (⊥, [∗], [T]). If the control token equals true then R1 is
selected else R2. So Ri,3 pattern specifies the value of this token. [∗] means the
alone condition is: at least one token exists and ⊥ means no condition even if the
channel is empty the actor can fire.

Fig. 2.4. The Select Actor

Sequential Firing Rules: any firing rule that can be implemented as a sequence
of blocking reads is a sequential firing rule. For example, selector firing rules are
sequential: a blocking read of the control input is followed by a blocking read of
the appropriate data input. But with non-determinate merge, firing rules are not
sequential, see Fig. 2.5: The blocking read of one input doesn’t mean the same for
the other. If tokens are available in both channels so there is an ambiguity. With
sequential rules this problem doesn’t appear at all.

Execution Order: there is another difference between Kahn Process Networks
and Data Flow Networks. Because the actor firing is atomic, ordering actor firings
will implicitly order put and get operations. In a channel , the producer actor
put tokens in it, "put" operation and the consumer actor get tokens form it, "get"
operation.

Fig. 2.5. The Non-determinate Merge Actor

14

2.4.3 Synchronous Dataflow Networks:

Synchronous Dataflow Networks, SDF, is a restricted dataflow network model .
SDF, like dataflow networks, consists of actors and channels but the initial number
of tokens on each channel, the number of consumed and produced tokens by each
actors are all predefined. Because the number of consumed tokens is static so we have
only one firing rule which means it is a determinate model. It can be represented
by a matrix Γ where rows represent arcs and columns represents nodes. Γi,j is the
number of tokens produced by the jth node on the ith arc. It is negative if the node j
is a consumer and not a producer and equals zero if the channel is not connected with
an actor. If an actor is both producer and consumer, Γi,jis the difference between
the number of tokens produced and the number of token consumed.
Steady State Making the system balanced means finding a sequence of actor firings.
How much each actor firing should be repeated such that it returns the system to
its initial state. By state we mean the number of tokens in each channel. So after
the execution of this sequence, the number of consumed tokens equals the number
of produced tokens on each channel. To find this sequence we should resolve this
equation and find the vector ~r:

Γ~r = ~0 (2.5)

rj means how much the actor j will fire. We call this sequence a "Steady State"
or "Complete Cycle". For example in Fig. 2.6 actor1 produces 2 tokens each time
it fires and actor2 consumes 3 tokens from the same channel on each firing. So to
make the system balanced, we should execute actor1 3 times and actor2 twice and
continue repeating this sequence. In this example Γ = (2 − 3) and ~r = (3 2)T .
Bounded Channel Because the number of actor firings is finite in the complete
cycle and the number of tokens produced by an actor is finite so channels are always
bounded. We can repeat the sequence forever by consuming only a bounded number
of tokens on the arcs. For this reason this model doesn’t suffer from bounded chan-
nel problem. Also because the steady state tells us only how much each actor should
fire, we can find many execution orders for this complete cycle. For our example of
Fig. 2.6 1,1,2,1,2 and 1,1,2,1,2 are two valid execution orders for the complete cycle
but the first is better, in buffer consumption, because the number of un-consumed
tokens in the first case equals 4 and in the second case equals 6. Hence, in this
model, the choice of execution order is important. It is even difficult if there are
other constraints like schedule size and resources [42][29].

Fig. 2.6. Bounded Synchronous Dataflow Program

Initial State Finding the steady state, non-null ~r, is not enough for the SDF
program to execute forever with bounded channels. Having enough initial tokens
on channels to execute a complete cycle without deadlock is necessary too. In the

15

example of Fig. 2.7, the SDF program has a steady state (complete cycle) but it is
deadlocked because it doesn’t have enough tokens at its initial state:

Γ =

2 −3 0
−1 0 3
0 1 −2

 and ~r =
(

3 2 1
)T

Fig. 2.7. A Deadlocked Synchronous Dataflow Program

2.5 Conclusion

To conclude, KPN is the natural representation of dataflow systems but termina-
tion and boundedness are undecidable. A restricted model of KPN is Dataflow
Networks, that use firing rules instead of the blocking read and atomic actor firings.
With these, we have more chance to find a valid execution order, no deadlock and
bounded channel. However both properties termination and boundedness are still
undecidable. In contrast to KPN, dataflow network models can be un-determinate
as well when two or more firing rules are satisfied. The model which can verify these
two properties is synchronous dataflow networks(SDF), a restricted model of data
flow networks. The initial number of tokens in each channel, the consumed and pro-
duced tokens by each actor firing are all predefined. So it is always possible to find
a valid schedule (execution order). Of course it is possible only if the application is
an SDF program. Not all dataflow systems are SDF applications but many inter-
esting applications are so, in many interesting domains: digital signal processing,
embedded systems, mobile phones, etc. We have tried to restrict our work to SDF
applications as a first step. Other interesting models exist like Dynamic Dataflow
(DDF) where the input streams are not static, different actor firings may consume
different amount of tokens.

16

17

Chapter 3

Dependence Analysis and Loop
Transformations

3.1 Introduction

A steady state is exactly a loop nest where actor occurrences replace instructions.
This similitude between steady state and nested loops let us think about steady state
scheduling problem as a loop nest scheduling problem, especially because there are a
lot of works on loop nest scheduling. Because of this importance of loop scheduling
in our work and because our proposed scheduling technique, Prolog-epilog Merging,
is for both steady state and loop nest we will try to do a survey on loop basic notions
and its transformations that are necessary for readers to understand our work.

3.2 Dependence Analysis

This section briefly introduces dependence analysis, its terminology and the un-
derlying theory. A dependence is a relationship between two computations that
places constraints on their execution orders. Dependence analysis identifies these
constraints, which are then used to determine whether a particular transformation
can be applied without changing the semantics of the computation [27][2].

3.2.1 Type of Dependences

There are two kinds of dependences: data dependence and control dependence
[27][2].

• Data Dependence A data dependence is a situation in which a program
statement (instruction) refers to the data of a preceding statement. Assuming
statement S1 and S2, S2 depends on S1 if:
[I(S1) ∩ O(S2)] ∪ [O(S1) ∩ I(S2)] ∪ [O(S1) ∩ O(S2)] 6= ∅ where:I(Si) is the
set of memory locations read by Si and O(Sj) is the set of memory locations
written by Sj and there is a feasible run-time execution path from S1 to S2

18

This Condition is called Bernstein Condition, named by A. J. Bernstein. Three
cases exist:

– True Dependence: O(S1) ∩ I(S2), S1 → S2 and S1 writes something
read by S2. It occurs when an instruction depends on the result of a
previous instruction:

1. a = 3

2. b = a

3. c = b

Instruction 3 is truly dependent on instruction 2, as the final value of c
depends on the instruction updating b. Instruction 2 is truly dependent
on instruction 1, as the final value of b depends on the instruction up-
dating a. Since instruction 3 is truly dependent upon instruction 2 and
instruction 2 is truly dependent on instruction 1, instruction 3 is also truly
dependent on instruction 1. Instruction level parallelism is therefore not
an option in this example.

– Anti-dependence:I(S1) ∩ O(S2), mirror relationship of true depen-
dence. It occurs when an instruction requires a value that is later up-
dated. In the following example, instruction 3 anti-depends on instruction
2. The ordering of these instructions cannot be changed, nor can they be
executed in parallel (possibly changing the instruction ordering), as this
would affect the final value of a.

1. b = 3

2. a = b + 1

3. b = 7

An anti-dependence is an example of a name dependence. That is, re-
naming of variables could remove the dependence, as in the next example:

1. b = 3

N. b2 = b

2. a = b2 + 1

3. b = 7

A new variable, b2, has been declared as a copy of b in a new instruction,
instruction N . The anti-dependence between 2 and 3 has been removed,
meaning that these instructions may now be executed in parallel. How-
ever, the modification has introduced a new dependence: instruction 2 is
now truly dependent on instruction N , which is truly dependent upon in-
struction 1. As true dependences, these new dependences are impossible
to safely remove.

– Output Dependence: O(S1) ∩ O(S2), S1 → S2 and both write the
same memory location. It occurs when the ordering of instructions will
affect the final output value of a variable. In the example below, there
is an output dependence between instructions 3 and 1. Changing the
ordering of instructions in this example will change the final value of a,
thus these instructions can not be executed in parallel.

19

1. a = 2 ×x

2. b = a / 3

3. a = 9 ×y

As with anti-dependences, output dependences are name dependences.
That is, they may be removed through renaming of variables, as in the
below modification of the above example:

1 a2 = 2 ×x

2 b = a2 /3

3 a = 9 ×y

A commonly used naming convention for data dependences is the following:
Read-after-Write (true dependence), Write-after-Write (output dependence),
and Write-After-Read (anti-dependence).

• Control Dependence An instruction B is control dependent on a preceding
instruction A if the latter determines whether B should execute or not. In the
following example, instruction S2 is control dependent on instruction S1.

S1. if a == b goto AFTER

S2. a = 2 ×x

S3. AFTER

Intuitively, there is a control dependence between two statements S1 and S2
if S1 could be possibly executed before S2. The outcome of S1 execution will
determine whether S2 will be executed. A typical example is that there is
a control dependence betweenthe if statement’s condition part and the state-
ments in the corresponding true/false bodies. A formal definition of control
dependence can be presented as follows: A statement S2 is said to be control
dependent on another statement S1 if and only if there exists a path P from
S1 to S2 such that every statement Si 6= S1 within P will be followed by S2 in
each possible path to the end of the program and S1 will not necessarily be fol-
lowed by S2, i.e., there is an execution path from S1 to the end of the program
that does not go through S2. Expressed with the help of (post-)dominance
the two conditions are equivalent to:

– S2 post-dominates all Si

– S2 does not post-dominate S1

Implications: Conventional programs are written assuming the sequential
execution model. Under this model, instructions execute one after the other,
atomically (i.e., at any given point of time only one instruction is executed)
and in the order specified by the program. However, dependences among state-
ments or instructions may hinder parallelism parallel execution of multiple
instructions, either by a parallelizing compiler or by a processor exploiting
instruction level parallelism (ILP). Recklessly executing multiple instructions
without considering related dependences may cause danger of getting wrong
results, namely hazards.

20

3.2.2 Representing Dependences

To capture the dependence for a part of code, the compiler creates a dependence
graph; each node in the graph typically represents one statement. An arc between
two nodes indicates that there is a dependence between the computation they rep-
resents. Because it is cumbersome to account for both data and control depen-
dence during analysis, compiler often convert control dependences into data depen-
dences using a technique called if-conversion [3]. If-conversion introduces additional
boolean variables that encode the conditional predicates; every statement whose ex-
ecution depends on the conditional is then modified to test the boolean variable. In
the transformed code data dependence subsumes control dependence.

3.2.3 Loop Dependence Analysis

Loop dependence analysis is the task of determining whether statements within
a loop body form a dependence, with respect to array access and modification,
induction, reduction and private variables, simplification of loop-independent code
and management of conditional branches inside the loop body. Loop dependence
analysis is mostly done to find ways to do automatically parallelization, by means
of vectorization, shared memory or others. Loop dependence analysis occurs on a
normalized loop of the form:

for i1 to U1

for i2 to U2

...

for in to Un

body

where "body" may contain:

S1: a[f1(i1, ..., in), ..., fm(i1, ..., in)] := ...

...

S2 : ... := a[h1(i1, ..., in), ..., hm(i1, ..., in)]

Where a is an n-dimensional array and fn, hn, etc. are functions mapping from
all iteration indexes in to a memory access in a particular dimension of the array.
For example, in C:

for(i = 0; i < u1; i++)

for(j = 0; j < u2; j++)

a[i+4-j] = b[2×i − j] + i;

f1 would be i+4− j, controlling the write on the first dimension of a and f2 would
be 2 − j, controlling the read on the first dimension of b.
In general, the body of a loop contains many instructions and the scope of the
problem is to find all possible dependences between them. To be conservative, any
dependence which cannot be proved false must be assumed to be true.
Independence is shown by demonstrating that no two instances of two instructions
S1 and S2 access or modify the same variable or the same box in arrays. When a
possible dependence is found, loop dependence analysis usually makes every attempt

21

to characterize the relationship between dependent instances, as some optimizations
may still be possible. It may also be possible to transform the loop to remove or
modify the dependence.
In the course of (dis)proving such dependences, a statement S may be decomposed
according to which iteration it comes from. For instance, S[1, 3, 5] refers to the iter-
ation where i1 = 1, i2 = 3 and i3 = 5. Of course, references to abstract iterations,
such as S[d1 + 1, d2, d3], are both permitted and common.

• Iteration vectors A specific iteration through a normalized loop is referenced
through an iteration vector, which encodes the state of each iteration variable.
For a loop, an iteration vector is a member of the Cartesian product of the
bounds for the loop variables. In the normalized form given previously, this
space is defined to be U1U2...Un. Specific instances of statements may be
parametrized by these iteration vectors, and they are also the domain of the
array subscript functions found in the body of the loop. Of particular rele-
vance, these vectors form a lexicographic order which corresponds with the
chronological execution order.

• Dependence Vectors To classify data dependence, compilers use two impor-
tant vectors: the distance vector (σ), which tells what is the distance between
fn and hn, and the direction vector (ρ), which tells in which direction this
distance points to. The distance vector is defined as σ = (σ1, . . . , σk) where
σn is σn = in − jn The direction vector is defined as ρ = (ρ1, ..., ρk) where ρn

is:

– (<) if σn > 0 → [fn < hn]

– (=) if σn = 0 → [fn = hn]

– (>) if σn < 0 → [fn > hn]

Example:

for(i = 0; i<N;i++)

for(j=0;j<M;j++)

for(k=0;k<L;k++)

S1 a[i+1, j, k-1] = a[i, j, k] + 10;

S1 has a true dependence on itself. The distance vector is σ = (1, 0,−1) and
the direction vector is ρ = (<, =>).

• Classification A dependence between two operations a and b can be classified
according to the following criteria:

– Operation type:

∗ if a is a write and b is a read, this is a flow dependence

∗ if a is a read and b is a write, this is an anti-dependence

22

∗ if a is a write and b is a write, this is an output dependence

∗ if a is a read and b is a read, this is an input dependence

– Chronological order:

∗ if Sa < Sb, this is a lexically forward dependence

∗ if Sa = Sb, this is a self-dependence

∗ if Sa > Sb, this is a lexically backward dependence

– Loop dependence:

∗ if all distances (σ) are zero (same place in memory), this is loop in-
dependent

∗ if at least one distance is non-zero, this is a loop carried dependence

3.3 Loop Transformations

This section catalogs the loop transformations themselves. For each transformation
we provide an example, define its benefits and shortcomings.

3.3.1 Loop Fusion

Loop Fusion, also called "Loop Jamming", is a compiler optimization, a loop trans-
formation, which replaces multiple loops with a single one [27][3].
Example in C

int i, a[100], b[100];

for (i = 0; i < 100; i++)

a[i] = 1;

for (i = 0; i < 100; i++)

b[i] = 2;

is equivalent to:

int i, a[100], b[100];

for (i = 0; i < 100; i++)

{

a[i] = 1;

b[i] = 2;

}

Note:

• To fuse two loops they must have the same loop bounds.

• Two loops with same bounds may be fused if there doesn’t exist statement S1
in the first loop and statement S2 in the second loop such that they have a
dependence S2 −→(<) S1, this means that S1 depends on S2 and direction
vector is always "<", in the fused loop. This would be incorrect because before
fusion all instances of S1 execute before any S2 which is not the case after
fusion.

23

• Some optimizations like this don’t always improve the run-time performance.
This is due to architectures that provide better performance if there are two
loops rather than one, for example due to increased data locality within each
loop. In those cases, a single loop may be transformed into two, which is called
loop fission

• We will see later, in our work, that our technique "Prolog Epilog Merging in
Nested Loops" can be applied when Fusion can not.

3.3.2 Loop Interchange

Loop interchange is the process of exchanging the order of two iteration variables
[3]. For example, in the code fragment:

for j= 0 to 10

for i=0 to 20

a[i,j] = i + j;

loop interchange would result in:

for i=0 to 20

for j=0 to 10

a[i,j] = i + j;

On occasion, such a transformation may lead to opportunities to further optimize,
such as vectorization of the array assignments.

The Utility of Loop Interchange: one major purpose of loop interchange is
to improve the cache performance for accessing array elements. Cache misses occur
if the contiguously accessed array elements within the loop come from a different
cache line. Loop interchange can help prevent this. The effectiveness of loop in-
terchange depends on and must be considered in light of the cache model used by
the underlying hardware and the array model used by the compiler. In the C pro-
gramming language, the array elements from the same row are stored consecutively
(Ex: a[1,1],a[1,2], a[1,3]...), namely row-major. On the other hand, FORTRAN pro-
grams store array elements from the same column together(Ex: a[1,1],a[2,1],a[3,1]...)
, called column-major. Thus the order of two iteration variables in the first example
is suitable for C program while the second example is better for FORTRAN. Opti-
mizing compilers can detect the improper ordering by programmers and interchange
the order to achieve better cache performance.

Caveat: like any other compiler optimization, loop interchange may lead to worse
performance because cache performance is only part of the story. Take the following
example:

for i = 1, 10000

for j = 1, 1000

a(i) = a(i) + b(j,i) ×c(i)

24

Loop interchange on this example can improve the cache performance of accessing
b(j,i), but it will ruin the reuse of a(i) and c(i) in the inner loop, as it introduces
two extra loads (for a(i) and for c(i)) and one extra store (for a(i)) during each it-
eration. As a result, the overall performance may be degraded after loop interchange.

Safety: it is not always safe to exchange the iteration variables due to depen-
dences between statements for the order in which they must execute. To determine
whether a compiler can safely interchange loops, dependence analysis is required.

3.3.3 Loop Tiling

Loop tiling, also known as loop blocking, strip mine and interchange, unroll and
jam, or supernode partitioning, is a loop optimization used by compilers to make
the execution of certain types of loops more efficient [67][69].
Overview Loop tiling partitions a loop’s iteration space into smaller chunks or
blocks, so as to help ensure data used in a loop stays in the cache until it is reused.
The partitioning of loop iteration space leads to partitioning of large array into
smaller blocks, thus fitting accessed array elements into cache size, enhancing cache
reuse and eliminating cache size requirements.
Example The following is an example of matrix vector multiplication. There are
three arrays, each with 100 elements. The code does not partition the arrays into
smaller sizes.

int i, j, a[100][100], b[100], c[100];

int n = 100;

for (i = 0; i < n; i++)

{

for (j = 0; j < n; j++)

{

c[i] = c[i] + a[i][j] ×b[j];
}

}

After we apply loop tiling using 2 × 2 blocks, our code looks like:

int i, j, x, y, a[100][100], b[100], c[100];

int n = 100;

for (i = 0; i < n; i += 2)

{

for (j = 0; j < n; j += 2)

{

for (x = i; x < min(i + 2, n); x++)

{

for (y = j; y < min(j + 2, n); y++)

{

c[x] = c[x] + a[x][y] ×b[y];
}

}

}

}

The original loop iteration space is n by n. The accessed chunk of array a[i, j] is
also n by n. When n is too large and the cache size of the machine is too small,
the accessed array elements in one loop iteration (for example, i = 1, j = 1 to n)
may cross cache lines, causing cache misses. Another example using an algorithm

25

for matrix multiplication:
Original matrix multiplication:

for (I = 1; I<= M; I++)

for (K = 1; K<= M; K++)

for (J = 1; J<= M; J++)

Z(J, I) = Z(J, I) + X(K, I) * Y(J, K)

After loop tiling B × B:

for (K2 = 1; K2<= M; K2 = K2 + B)

for (J2 = 1; J2<= M; J2 = J2 + B)

for (I = 1; I<= M; I++)

for (K1 = K2; K1<= MIN(K2 + B - 1, M); K1++)

for (J1 = J2; J1<= MIN(J2 + B - 1, M); J1++)

Z(J1, I) = Z(J1, I) + X(K1, I) * Y(J1, K1)

It is not always easy to decide what value of tiling size is optimal for one loop
because it demands an accurate estimate of accessed array regions in the loop and
the cache size of the target machine. The order of loop nests (loop interchange) also
plays an important role in achieving better cache performance.

3.3.4 Retiming

One of the most important techniques our idea is based on is Retiming. Although
our shifting is more complex, the basic notions of instructions moving forward stay
always the same. In the following section we are going to see the idea of retiming
in a detailed way.

• Retiming and its Effect Retiming [33] is a transformation technique which
rebuilds iterations of a loop nest by redistributing instructions. Each instruc-
tion Ii is retimed by some integral amount r(I) ≤ 0 representing the offset
between Ii’s original iteration and its iteration following retiming. Since re-
timing moves instructions forward in th execution flow of a program, it alters
the distances of any dependences involving said instructions. Thus we may be
able to further break the loop-carried dependences of a program by retiming
the code by a properly selected retiming factor to extract parallelism. As an
example, consider the sample loop in Fig. 3.1.

for i= 1 to N

 {

 x = a[i] + b[i];

 a[i+1] = x;

 b[i] = b[i] + 1;

 a[i+3] = a[i+1] -1;

 a[i+2] = a[i+1] + 1;

 }

/* 1 */

/* 2 */

/* 3 */

/* 4 */

/* 5 */

Fig. 3.1. Loop Code Before Retiming

26

Its flow of execution is pictured at the top of Fig. 3.3. If we begin by retiming
instruction 1 once, we shift each occurrence of instruction 1 forward by one
iteration, as seen by the second line of Fig. 3.3. In doing so, we reorder instruc-
tions so that instruction 1 moves from the head of the repeating nest to the
tail. This shifting also takes the very first occurrence of instruction 1 out of
the repeating loop nest entirely and makes it a code section all its own, to be
executed before beginning the repeated iterations. This new section is called
the prolog of the schedule. Similarly, shifting removes the last occurrence of
instruction 1 from the final iteration, leaving us with an incomplete iteration
to execute after our repeating loop terminates. This final section is called the
epilog. Fig. 3.2(a) illustrates our revised code at this point, with one iteration
of the loop nest removed and divided between prolog and epilog.

x = a[1] + b[1]; /* 1 */

for i= 1 to N-1

 {

 a[i+1] = x;

 b[i] = b[i] + 1;

 a[i+3] = a[i+1] -1;

 a[i+2] = a[i+1] + 1;

 x = a[i+1] + b[i+1];

 }

a[N+1] = x;

b[N] = b[N] + 1;

a[N+3] = a[N+1] -1;

a[N+2] = a[N+1] + 1;

/* 1 */

/* 2 */

/* 3 */

/* 4 */

/* 5 */

/* 2 */

/* 3 */

/* 4 */

/* 5 */

(a)

x = a[1] + b[1];

a[2]= x;

x = a[2] + b[2];

for i= 1 to N-2

 {

 b[i] = b[i] + 1;

 a[i+3] = a[i+1] -1;

 a[i+2] = a[i+1] + 1;

 a[i+1] = x;

 x = a[i+2] + b[i+2];

 }

b[N-1] = b[N-1] + 1;

a[N+2] = a[N] -1;

a[N+1] = a[N] + 1;

a[N+1] = x;

b[N] = b[N] + 1;

a[N+3] = a[N+1] -1;

a[N+2] = a[N+1] + 1;

/* 1 iter 1 */

/* 2 iter 1*/

/* 1 iter 2 */

/* 3 iter i = 1’ */

/* 4 iter i = 2’ */

/* 5 iter i = 3’ */

/* 2 iter i+1 = 4’ */

/* 1 iter i+2 = 5’ * /

/* 3 iter N-1 */

/* 4 iter N-1 */

/* 5 iter N-1 */

/* 2 iter N */

/* 3 iter N */

/* 4 iter N */

/* 5 iter N */

(b)

Fig. 3.2. (a) After Retiming Instruction Once; (b) After Retiming is completed.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 ...No retiming

r(I1)=1

r(I1)=1, r(I2)=1

r(I1)=2, r(I2)=1

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 ...1

3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 ...1 2

3 4 5 2 1 3 4 5 2 3 4 5 ...1 2 1 3 4 5 2 1 3 4 5 2 1

Fig. 3.3. Alteration of Execution Flow Pattern by Retiming.

We may now proceed in a similar fashion to retime instruction 2, resulting
in the pattern seen in the third line of Fig. 3.3. Each copy of instruction 2
moves forward an iteration, with the first copy moving to the prolog and the
last leaving the epilog. We may also retime instructions within our nest. For
example, retime instruction 1 a second time, as in the last line of Fig. 3.3.

27

The effect is to pick each copy of instruction 1 up out of the middle of its old
iteration and append it to the end of the previous iteration as shown. Retiming
instruction 1 this second time also leaves us with two incomplete iterations
at the end of our execution, which are merged to form the new epilog. (In
general, as noted in [11], there are r(Ii) copies of instruction Ii in the prolog
and (maxIjr(Ij)))r(Ii) copies in the epilog once retiming is complete.) This
final flow pattern from Fig. 3.3 gives us the needed information for constructing
a retimed version of our initial example, which is seen in Fig. 3.2(b).

• Retiming Representation with Directed DFG To this point, we have
discussed the effect of retiming on code. Typically, however, retiming is viewed
solely as an operation on directed graphs which represent control flow within
code. These graphs, called data-flow graphs or DFGs, model a loop nest
by assigning a vertex to each instruction of the loop nest and representing
dependences between relations by directed edges between nodes. These edges
are weighted by delays which indicate what we have dubbed the dependence
distance. For example, the DFG in Fig 3.4(a) models the behavior of the loop
nest in Fig. 3.1. Each Read After Write (RAW) with non-zero characteristic
value found earlier corresponds to a weighted edge in this graph; we have
excluded dependences with value zero from this representation for reasons we
will indicate shortly.
Retiming can now be viewed as pulling delays from a node incoming edges and
pushing them onto the node outgoing edges. (Thus retiming will not affect
the delay count of an edge from a node to itself, making the representation of
zero-characteristic-value dependences in a DFG a useless exercise which only
clouds the issue.) For example, let (i, j) represent the directed edge from
vertex i to vertex j. Retiming node 1 by 1 pulls a delay in from each of the
edges (4, 1) , (5, 1) and (2, 1) and deposits a delay onto edge (1, 2). Retiming
node 2 by 1 then draws this delay from (1, 2) in and pushes it onto edges
(2, 1) , (2, 4) and (2, 5). Thus there are enough delays to retime vertex 1 once
more, resulting in the retimed DFG of Fig 3.4(b). It is well-known that the
effect of retiming by a function r is to alter the delay count of edge e : u → v
from d(e) to d(e) + r(u) − r(v) (this retimed delay count is denoted dr(e)).
Since an edge cannot be assigned a negative number of delays, we must have
dr(e) ≥ 0 for all edges e in order for a retiming to be legal.

3.3.5 Software Pipelining

It is well known that loops monopolize most execution time of programs. The well
known technique for optimizing loop execution under time and resources constraints
is software pipelining, a sort of Retiming. It tries to overlap the execution of different
loop iterations to increase parallelism. Hence, the problem of loop pipelining is
reduced to finding a steady state pattern (a folded loop body) that can execute at
the maximum rate allowed by the dependences [13] [1][6]. In the new steady state,
instructions from different iterations(folds) are executed, see Fig. 3.5.

28

1 2

4 5

3

1 2

4 5

3

(a) (b)

Fig. 3.4. The DFG for Fig: 3.1 (a) Before Retiming; (b) After Retiming

A0

B0 A1

C0 B1 A2

C1 B2 A3

C2 B3

C3

(a)

A0

0 1B A

C i Bi+1 Ai+2

CΙ−2 BΙ−1

CΙ−1

Prolog

Steady state (i=0,. . ., I-3)

Epilog

(b)

Fig. 3.5. overlapped loop execution

The problem is generally: given a set of resource constraints (functional units
and registers), the objective is to find a pipelined loop schedule that minimizes the
execution time.

• Dependence Graph Loops are usually represented by data dependence graph
(DDG). Fig. 3.6 shows an example. Vertices represent computational nodes
and edges represent intra-loop and loop-carried dependences, e.g. Bi (reads
X[i]) depends on Ai (produces X[i]) and Bi+1 (reads Y [i + 1]) depends on Bi

(produces Y [i + 1]). Labels indicate the number of iterations traversed by the
dependence.

• Span Another important aspect to be considered is span, defined as the num-
ber of folds required to obtain the steady state. Smaller span results in shorter
variable lifetimes, reducing in general the schedule register pressure.

• Loop Representation The loop representation here is the same used later
in our problem formulation. Loops can be represented by a doubly weighted
data dependence graph, G = (O, E, λ, δ), called a loop DDG (LDDG), where
O is the set of the operations in the loop, E is the set of dependence edges,
λ and δ are two positive integer associated to each edge where δ represents
the delay, in clock cycles, required for the operation oi to produce its results
(flow or output-dependence cases); or the delay required to read its operand

29

for (i = 0 ; N-1; i++)

 {

 Ai: X[i] = R[i] + S[i];

 Bi: Y[i] = Y[i] + 2*X[i];

 Ci: Z[i] = 4*Y[i+1] + T[i];

 }

Ai

Bi

Ci

1

Fig. 3.6. Loop dependence graph

(anti-dependence case) and λ, Iteration Distance, is the number of iterations
that separates an instance of the operation oi from an instance of the operation
oj[13] [1] .

• Software Pipelining Problem The software pipelining problem can be de-
scribed as follows: The aim is to find a loop schedule σ, a mapping function
from O × N to N(positive integer set), σ(op, i) denotes the execution cycle
where the instance of operation op of the ith iteration is issued if the following
constraints are satisfied:

– Resource constraints: in each cycle, the same resource (or resource stage
for pipelined resource) can not used more than one time.

– Dependence constraints: ∀e = (opi, opj) ∈ E,∀k ∈ N, σ(opi, k) + δ(e) ≤
σ(opj, k + λ(e)).

– Cyclicity constraint: σ must be expressible in the form of a loop, that
is, ∃ α, β ∈ N, ∀ op ∈ O, ∀ i ∈ N and i > 0, σ(op, i) = σ(op, (i
mod β)) + α × (⌈i/β⌉ − 1).

Then we say that σ is a valid loop schedule for the given loop. α/β is called
the average initiation interval of σ. The goal of software pipelining is to find
a valid schedule with the minimum average initiation interval [66].

• Initiation Interval Computing There are many methods for computing
the initiation interval [1][66][26][56][53]. For example, as proposed by au-
thors of paper [31], to calculate the initiation interval II we calculate a lower
bound on the II of the loop: the minimum initiation interval (MII) MII =
max(ResMII; RecMII) where ResMII is determined by the number of avail-
able resources and RecMII by the cycles (recurrences) formed by the depen-
dences of the loop. Clearly, ResMII = n

r
since each functional unit can

execute only 1 instruction/cycle.

30

A recurrence R is a set of edges that form a cycle. Let us define R as

δR =
∑

(u,v)∈R

δ(u, v)

For any operation u such that ∃(u, v) ∈ R, ui must be scheduled at least
|R| cycles before ui+δR

. Therefore, R imposes a minimum initiation interval,
RecMIIR , on the execution of the loop:

RecMIIR = |R|
δR

A loop can have several recurrences. Therefore: RecMII = maxRecMIIR

3.4 Conclusion

This was a survey on loop basic notions and its well-known transformations. Please
keep in mind, data dependence, software pipelining and retiming notions, they will
be repeated a lot in the second part of this thesis, ’Imperfectly Nested Multidimen-
sional Shifting (INMS)’.

31

Chapter 4

Dependence Removal Techniques

4.1 Introduction

Flow (or value-based) dependences are the only "true" dependences of a program.
Anti dependences, occuring when a variable is used in one statement and reassigned
in a subsequently executed statement, and output dependences, occuring when a
variable is assigned in one statement and reassigned in a subsequently executed
statement, are due to storage re-use and can be eliminated at the price of more
memory usage. Removing anti and output dependences may prove very useful to
break data dependence cycles and thereby enable vectorization and/or improve par-
allelization. However, removing all memory-based or "false" (i.e. anti and output)
dependences may have a prohibitive cost. A complete removal of false dependences
is usually achieved, if feasible, via conversion of the original loop nest program into
single assignment form. This turns out to be unnecessarily costly. Indeed, there are
some memory-based dependences whose removal will not improve the paralleliza-
tion. Rather, we should introduce as much memory overhead as needed to expose
all the parallelism of the original program. As much as, but no more than, needed.
In our work, breaking interphase dependences, dependences between two instruc-
tions of two different loops, is useful in parallelization improving too. So how anti
and output dependences can be eliminated? The answer of this question and others
are the aim of this chapter.

4.2 False Dependence Removal Techniques

Many papers have been devoted to the problem of eliminating anti and output
dependences. Proposed methods include ’array data flow analysis’ [21],[36], ’variable
expansion’ [8], ’variable renaming’ [41] and ’node splitting’[41][44]. See the survey
papers of Banerjee, Eigenmann, Nicolau and Padua [61] and Bacon, Graham and
Sharp [17], as well as the books of Wolfe [68] and Zima [70], for further references.
Note that ’array privatization’ [28] is yet another technique that can be applied.

32

4.2.1 Renaming

Scalar renaming consists in giving a different name to occurrences of a scalar locally
used in a program. This allows the removal of anti and output dependences due
to the multiple use of the scalar. This technique can be directly extended to array
renaming. Consider the loop nest in Fig 4.1(a). The dependence graph (Fig 4.1(c))
contains a cycle with an anti dependence from statement S2 to statement S3. In
the graph, ’o’ stands for output dependence, ’a’ for anti-dependence and ’f’ for flow
dependence. Renaming the array "a" in S3 (see the code in Fig 4.1(b)) breaks this
dependence: the new graph (Fig 4.1(d)) is acyclic. Loop statements can now be
parallelized.

 For i =1 to N
 {
 S1 : a(i) = sin(i)

 S2 : b(i + 1) = a(i) + c(i)

 S3 : a(i) = cos(i)

 S4 : c(i+ 1) = a(i)
 }

(a) original code

 For i =1 to N
 {
 S1 : renamed(i) = sin(i)

 S2 : b(i + 1) = renamed(i) + c(i)

 S3 : a(i) = cos(i)

 S4 : c(i+ 1) = a(i)
 }

(b) code after renaming

S1 S2

S3 S4

f

o

a

f

f

S1 S2

S3 S4

f

f

f

(c) original dependence graph (d) graph after renaming

Fig. 4.1. Example of Variable Renaming

4.2.2 Privatization

Consider a loop nest where a scalar variable is written at several iterations. This
implies an output dependence from and to the statement involved in the multiple
writings. Consider the example of Fig. 4.2(a). Since scalar a is written at each
iteration, there is a self output loop around statement2 (see the dependence graph in
Fig. 4.2(c)). To suppress this dependence, we expand a into a linear array, as shown
in Fig. 4.2(b). Again, the new graph (Fig. 4.2(d))is acyclic. This technique can be
extended to multi-dimensional loop nests for expanding scalars, or for expanding
multi-dimensional arrays in the simple cases where the arrays can be considered as
scalars when some loop indexes are fixed.

33

 For i = 1 to N

 {

 S1: c(i) = 3 + a

 S2: a = i + 1

 S3: b(i) = c(i) + a

 }

 temp(0)= a

 For i =1 to N

 {

 S1: c(i) = 3 + temp(i-1)

 S2: temp(i) = i + 1

 S3: b(i) = c(i) + temp(i)

 }

 If (N>=1) a = temp(N)

(a) original code

(b) code after privatization

S1

S2

S3

a

f

f

a

o

f

S1

S2

S3

f

ff

(c) original dependence graph (d) graph after privatization

Fig. 4.2. Example of Variable Privatization

4.2.3 Node Splitting

This technique consists in splitting a statement into two statements, in order to
break cycles in the dependence graph. Consider the example of Fig. 4.3(a). The
dependence graph (Fig. 4.3(c)) contains a cycle involving a flow dependence from
S1 to S2, and an output dependence from S2 to S1. To break this cycle, rather
than writing array a in statement S1, we store the evaluation of the right-hand side
into a temporary array temp. This temporary array is read in S2 instead of array
a. The transformed code is given in Fig. 4.3(b), and the new dependence graph is
represented in Fig. 4.3(d).

The previous example is due to Padua and Wolfe [41]. We generalize [44] the
statement transformation as indicated in Fig. 4.4. The value computed at each
iteration of statement S is stored into a temporary array whose access function is the
same as that of "lhs", the left hand side of S. Obviously, if another statement instance
depends upon a value "lhs(g(i))" computed by S, then the access to "lhs(g(i))" must
be replaced by temp (g(i)). This implies knowledge of the statement instances which
depend upon the value calculated in S (or in S − ′ after the transformation).

The impact of this transformation on the dependences going to and coming from
a statement S is summarized in Fig. 4.5. As shown in [44], if this transformation
is applied to all the statements of the original loop nest then the new dependence

34

For i=1 to N

 {

 S1: a(i) = b(i) + c(i)

 S2: a(i+1) = a(i)+ 2*d(i)

 }

 (a) original code

For i =1 to N

 {

 S’1: temp(i) = b(i) + c(i)

 S1: a(i) = temp(i)

 S2: a(i+ 1) = temp(i) + 2*d(i)

 }

(b) code after node splitting

S1 S2
S’1 S2 S1

o

f

f o

f
(c) original graph

(d) graph after node splitting

Fig. 4.3. Example of Variable Splitting

 For i=1 to N

 {

 ...

 S: lhs(f(i)) = rhs(...)

 ...

 ... = lhs(g(i))

(a) original code

 For i =1 to N

 ...

 S’: temp(f(i)) = rhs(...)

 S: lhs(f(i)) = temp(f(i))

 ...

 ... = temp(g(i))

(b) code after node splitting

Fig. 4.4. Transformation of Statement S

graph contains only flow dependence cycles and output dependence cycles. Further-
more,these cycles correspond to cycles of the initial dependence graph. However,
applying the transformation to all statements is not a good approach. First, it can
be too costly. Moreover, it is useless to transform some statements.

4.2.4 Conversion to Single-assignment Form

The only full transformation to single assignment form (SAF) has been proposed by
Feautrier in [21]. The technique relies on an exact analysis of direct flow dependences
(through parametric integer linear programming) that permits the source of each
array reference to be found, i.e. the statement and the value of the surrounding loop
counters where the desired element of the array has been computed.

35

S

f in a in o in

f out a out
o out

S’

S

f in f out

a out

a in

o in o out

f new

(a) (b)

Fig. 4.5. A statement S with in-coming and out-going dependences (a) before and (b) after generalized Padua and
Wolfe’s transformation

4.3 Conclusion

As we have seen each technique has its advantages and its inconvenients. In our
work we apply renaming technique to break false interphase dependences. We can
apply privatization or any other technique in future to compare with renaming.

36

37

Chapter 5

Knapsack Problem

5.1 Introduction

In the previous chapters we have talked about many different subjects: ’Streaming
Applications’, ’Loop Dependencies and Transformations’ and ’Dependence Removal
Techniques’. In this chapter we are going to see the ’Knapsack Problem’ because in
order to schedule the steady state, with Prolog-epilog Merging scheduling technique,
we need to solve this problem first.
Suppose we are planning a hiking trip; and we are, therefore, interested in filling a
knapsack with items that are considered necessary for the trip. There are N differ-
ent item types that are deemed desirable; these could include bottle of water, apple,
orange, sandwich, and so forth. Each item type has a given set of two attributes,
namely a weight (or volume) and a value that quantifies the level of importance
associated with each unit of that type of item. Since the knapsack has a limited
weight (or volume) capacity, the problem of interest is to figure out how to load the
knapsack with a combination of units of the specified types of items that yields the
greatest total value. What we have just described is called the knapsack problem
[35].
A large variety of resource allocation problems can be cast in the framework of a
knapsack problem. The general idea is to think of the capacity of the knapsack as
the available amount of a resource and the item types as activities to which this
resource can be allocated.

5.2 Formal Definition

Formally, suppose we are given the following parameters:

• wk =the weight of each type−k item, for k = 1, 2, ..., N,

• rk = the value associated with each type−k item, for k = 1, 2, ..., N,

• c = the weight capacity of the knapsack.

38

Then, our problem can be formulated as:

variables: ∀j ∈ {1, . . . , n}, Xj ∈ {0, 1, 2, . . .}
objective: max

∑n

j=1 rjXj

constraints: ∀j ∈ {1, . . . , n},
∑n

j=1 wjXj ≤ W

(5.1)

where X1, X2, ..., XN are nonnegative integer-valued decision variables, defined
by Xk = the number of type-k items that are loaded into the knapsack.
Notice that since the Xs are integer-valued, what we have is not an ordinary linear
program, but rather an integer program. Consequently, the Simplex algorithm can-
not be applied to solve this problem.
As a simple numerical example, suppose we have: N = 3; w1 = 3, w2 = 8 and
w3 = 5; r1 = 4, r2 = 6, and r3 = 5 and finally, c = 8. Observe that of the three
item types, the first type has the greatest value per unit of weight. That is, of the
three ratios, r1/w1 = 4/3; r2/w2 = 6/8; r3/x3 = 5/5 the first ratio is the greatest.
Therefore, it seems natural to attempt to load as many type-1 items as possible into
the knapsack. Since the capacity of the knapsack is 8, such an attempt will then
result in the loading combination X1 = 2, X2 = 0 and X3 = 0, with a total value
of r1X1 + r2X2 + r3X3 = 4 × 2 + 6 × 0 + 5 × 0 = 8. Is this loading combination
optimal? The fact that this combination leaves a wasted slack of 2 in the knapsack
is discomforting. Indeed, it turns out that this combination is not optimal; and that
the optimal combination is to let X1 = 1, X2 = 0, and X3 = 1, which achieves a
total value of 9.
The Knapsack problem often arises in resource allocation with financial constraints.
A similar problem also appears in combinatorics, complexity theory, cryptography
and applied mathematics. The decision problem form of the knapsack problem is
the question "can a value of at least V be achieved without exceeding the weight
W?".
The problem appears in our case too where we have many loops and we can’t retime
all of them because of cycle distance limit. Choosing which loop to be retimed under
cycle distance and buffer size is exactly a knapsack problem.

5.3 Knapsack Problems

The domain of Xj’s values defines the kind of the knapsack problem.

5.3.1 0-1-Knapsack Problem

In the following, we have n kinds of items, 1 through n. Each kind of item j has
a value rj and a weight wj. We usually assume that all values and weights are
nonnegative. The maximum weight that we can carry in the bag is W .
The most common formulation of the problem is the 0-1 knapsack problem, which
restricts the number Xj of copies of each kind of item to zero or one, in our work our

39

problem is also 0-1 knapsack problem. Mathematically the 0-1-knapsack problem
can be formulated as:

variables: ∀j ∈ {1, . . . , n}, Xj ∈ {0, 1}
objective: max

∑n

j=1 rjXj

constraints: ∀j ∈ {1, . . . , n},
∑n

j=1 wjXj ≤ W

(5.2)

5.3.2 Bounded Knapsack Problem

The bounded knapsack problem restricts the number Xj of copies of each kind
of item to a maximum integer value bj. Mathematically the bounded knapsack
problem can be formulated as:

variables: ∀j ∈ {1, . . . , n}, Xj ∈ {0, 1, . . . , bj}
objective: max

∑n

j=1 rjXj

constraints: ∀j ∈ {1, . . . , n},
∑n

j=1 wjXj ≤ W

(5.3)

5.3.3 Unbounded Knapsack Problem

The unbounded knapsack problem places no upper bound on the number of
copies of each kind of item [35]. Of particular interest is the special case of the
problem with these properties:

• it is a decision problem

• it is a 0-1 problem

• for each kind of item, the weight equals the value: wj = rj

Notice that in this special case, the problem is equivalent to this: given a set of
nonnegative integers, does any subset of it add up to exactly W? Or, if negative
weights are allowed and W is chosen to be zero, the problem is: given a set of
integers, does any subset add up to exactly 0? This special case is called the subset
sum problem. In the field of cryptography the term knapsack problem is often used
to refer specifically to the subset sum problem.
If multiple knapsacks are allowed, the problem is better thought of as the bin
packing problem.

5.4 Computational Complexity

The knapsack problem is interesting from the perspective of computer science be-
cause:

• there is a pseudo-polynomial time algorithm using dynamic programming,

40

• there is a fully polynomial-time approximation scheme, which uses the pseudo-
polynomial time algorithm as a subroutine,

• the problem is NP-complete to solve exactly, thus it is expected that no algo-
rithm can be both correct and fast (polynomial-time) on all cases,

• many cases that arise in practice, and "random instances" from some distribu-
tions, can nonetheless be solved exactly.

Several algorithms are available to solve knapsack problems, based on dynamic
programming approach [5], branch and bound approach [35] or hybridations of both
approaches [54][64][45][34]

5.5 Knapsack Problem Solutions

5.5.1 Dynamic Programming Solution

Unbounded Knapsack Problem: If all weights w1, ..., wn and W are nonnega-
tive integers, the knapsack problem can be solved in pseudo-polynomial time using
dynamic programming. The following describes a dynamic programming solution
for the unbounded knapsack problem [35].
To simplify things, assume all weights are strictly positive (wj ≥ 0). We wish to
maximize total value subject to the constraint that total weight is less than or equal
to W . Then for each Y ≤ W , define A(Y) to be the maximum value that can be
attained with total weight less than or equal to Y . A(W) then is the solution to the
problem.
Observe that A(Y) has the following properties:
A(0) = 0 (the sum of zero items, i.e., the summation of the empty set)
A(Y) = max{rj + A(Y − wj) | wj ≤ Y }
where rj is the value of the jth kind of item.
Here the maximum of the empty set is taken to be zero. Tabulating the results
from A(0) up through A(W) gives the solution. Since the calculation of each A(Y)
involves examining n items, and there are W values of A(Y) to calculate, the run-
ning time of the dynamic programming solution is O(nW). Dividing w1..., wn, W
by their greatest common divisor is an obvious way to improve the running time.
The O(nW) complexity does not contradict the fact that the knapsack problem is
NP-complete, since W , unlike n, is not polynomial in the length of the input to the
problem. The length of the input to the problem is proportional to the number,
logW , of bits in W, not to W itself.
0-1 Knapsack Problem A similar dynamic programming solution for the 0-1 knap-
sack problem also runs in pseudo-polynomial time. As above, assume w1, ..., wn, W
are strictly positive integers. Define A(j, Y) to be the maximum value that can be
attained with weight less than or equal to Y using items up to j.
We can define A(j,Y) recursively as follows:
A(0, Y) = 0
A(j, 0) = 0

41

A(j, Y) = A(j − 1, Y) if (wj > Y)
A(j, Y) = max{A(j − 1, Y), rj + A(j − 1 , Y − wj)} if(wj ≤ Y).
The solution can then be found by calculating A(n, W). To do this efficiently we
can use a table to store previous computations. This solution will therefore run in
O(nW) time and O(nW) space.

5.5.2 Greedy Approximation Algorithm:

George Dantzig proposed (1957) a greedy approximation algorithm to solve the un-
bounded knapsack problem. His version sorts the items in decreasing order of value
per unit of weight, rj/wj. It then proceeds to insert them into the sack, starting with
as many copies as possible of the first kind of item until there is no longer space in
the sack for more. Provided that there is an unlimited supply of each kind of item,
if A is the maximum value of items that fit into the sack, then the greedy algorithm
is guaranteed to achieve at least a value of A/2. However, for the bounded problem,
where the supply of each kind of item is limited, the algorithm may be very much
further from optimal[35].

5.6 Conclusion

Our problem is a 0-1 knapsack problem and we are lucky that there is a solution for
this kind of problem as we have presented above.

42

43

Part II

Imperfectly Nested
Multidimensional Shifting (INMS)

45

Chapter 6

Overview of The Problem

6.1 Introduction

As we have said in chapter 1, StreamIt is a tool or a language to implement streaming
applications. It helps programmers by its C-like language and its phased scheduling
module that schedules applications implicitly. Unfortunately the model StreamIt
used to build applications is a restricted SDF model, the application graph is built
from predefined features, which can not model all SDF streaming applications. Also
phased scheduling is not a fine-grained schedule, it is a coarse-grained schedule
[30][29].
Unlike StreamIt, we want to develop a scheduling approach which takes in con-
sideration both the code and buffer sizes and respects machine resources and time
constraints. The schedule will be a fine-grained one and the applications are any
one obeying the SDF model, no restrictions.
In this chapter we cite different specifications and characteristics of applications,
actors and schedule and present a global view of the problem and the Imperfectly
Nested Multidimensional Shifting (INMS) framework.

6.2 Specifications

We are looking for a schedule for applications that have these characteristics:

• Streaming application computational model: the only condition is to be an
SDF application (without the restriction of SteamIt).

• Actor: the basic execution unit, we consider actors consisting only of a basic
block of few sequential instructions, no loops and no branch statements. This
design point is necessary to build a fine-grained schedule. Coarse-grained
actors can be seen as a sub-SDF applications.

• Schedule structure: To schedule SDF applications we schedule the repeated
motif, the steady state. Its schedule consists of actor occurrences (firings)
represented as strings where actor names are preceded by a number specifying

46

how many times this actor executes successively. The number with the actor
occurrences may form a loop, we call it phase. Each phase may be enclosed
at any level in a loop nest. Two phases that are enclosed in by the same loop
have the same level.

• We are looking for a schedule under these constraints:

– Code size: the scheduler should guarantee that the generated code sat-
isfies the bound specified by the system designer. It should save code
size as much as possible, especially because most SDF applications are
embedded ones.

– Buffer size: because of producer-consumer relations between actors, buffer
size is a sensitive constraint. Scheduling too many productions before a
consumption may exceed the buffer size.

– Machine resources: the scheduler tries to execute as many actor occur-
rences in parallel as possible. To achieve this task it manages machine
resources, operation units, registers...The target architecture may be ,for
example, a general-purpose or embedded RISC or VLIW processor.

– Execution time: in a real-time system, to maximize the throughput la-
tency and throughput can be explicitly stated as constraints as well.

6.3 The Global View

The SDF application schedule should respect all constraints cited above and these
constraints are not independent: each one may affect the others negatively, minimiz-
ing the code size increases the buffer size automatically and vice versa and machine
resources uses, implicitly actors firings parallelization, may affect both buffer size
and code size. So finding a fine-grained schedule for an SDF streaming application
consisting of fine-grained actors, a schedule which respects all constraints and takes
advantages of architecture offered parallelism, is to find a compromise between all
these constraints. To achieve this aim we propose to divide the problem into two
sub problems because it is so difficult if not impossible to treat all constraints at
the same time: first, to find a coarse-grained schedule that takes care of code size
and buffer size and then to find the final schedule that respects machine resources
and takes advantages of architecture offered parallelism without breaking other con-
straints. We have called the first process “Pre-scheduling Algorithm” and the second
one “Imperfectly Nested Multidimensional Shifting”.
The diagram in fig 6.1 shows the different scheduling process steps and different
inputs/outputs:

• SDF Streaming Application: it is represented by an SDF graph and the
code written by the programmer.

• Pre-scheduling Algorithm: it computes the minimal steady state schedule
period, there is a minimal steady state for any SDF applications [29] and orders
actor firings composing it according to code size and buffer size bounds.

47

• Pre-scheduled Steady State: the output of the pre-scheduling algorithm,
the pre-scheduled steady state is exactly a loop nest where actor occurrences
replace instructions. We consider loop nests of two levels only. Generalization
to any number of levels is one of our future works.

• Imperfectly Nested Multidimensional Shifting(INMS): this is the gen-
eral framework we propose for fine-grain scheduling of SDF. INMS tries to
pipeline steady state phases (inner loops), by finding the repeated kernel pat-
tern, and executing actor firings in parallel as much as possible while respecting
all constraints.

SDF Application

 Pre-scheduling

 Algorithm

 Pre-scheduled

 Steady State

 INMS

 Scheduling

Fine-grained

 Schedule

Fig. 6.1. Scheduling Process Diagram

6.4 Pre-scheduling Algorithm

The first step to find a fine-grained schedule for the steady state is the pre-scheduling
process. It is to build a schedule that respects code size and buffer size constraints.
We propose here an algorithm that can perform this task. Its idea is very simple,
it takes a schedule that respects code size constraint only as input, a SAS (Single

48

Appearance Schedule) where every actor is listed in the schedule only once. There-
fore the schedule size is minimal but the buffer size is not optimal and it may not
respect the buffer size. Then it decreases buffer consumption till finding a schedule
respecting the buffer size constraint as well. It decreases buffer consumption by
splitting the succession of occurrences of the most greedy actor. One split operation
decreases buffer size considerably without affecting code size by a great change but
it is possible that repeating this operation many times ends up increasing code size
considerably. For this reason the algorithm checks code size each time it splits an
actor. We need to answer the question of which actor should be split. For this rea-
son the algorithm orders actor occurrences according to their consumption of buffer,
’push×actor_occurrence_number’ where push is the number of tokens produced by
an actor firing (see section 3.3) and chooses each time the most greedy actor, de-
fined as the succession of actor occurrences consuming the highest amount of buffer
space. Then it decreases its repetition factor to decrease buffer consumption. Our
algorithm is greedy, it takes into account both the intrinsic push amount and the
repetition factor of the most greedy actor. When we split an actor (the succession
of occurrences) the first copy keeps its place in the schedule and its factor becomes
the old _factor divided by 2 if old_factor is pair and old _factor divided by 2 plus
1 if impair, the second copy is postponed to the end of the schedule and its factor is
old _factor divided by 2. All actor firings that depend on the second copy will take
their places after it in the schedule, it is exactly what the function modif_sched
does. By repeating this procedure and verifying each time buffer and code sizes we
will achieve to build a valid schedule satisfying all the resource constraints if one
exists.
For example 2A5B is a steady state where pushA = 5 and popB = 2, A the producer
and B the consumer. The SAS schedule of this steady state is 2A5B. Now suppose
that the buffer size is less or equals 8 tokens. Because A executes twice successively
so it produces 10 tokens then the consumer starts its execution to consume them.
The greedy actor firings sequence is 2A, 2 the factor and A the actor firing and
pushA = 5. To decrease the buffer consumption the algorithm splits 2A sequence to
two copies and put the second one at the end of the schedule followed by B firings
that depends on it. The Schedule becomes A2BA3B. See the algorithm below

input: an SDF Graph, it can be represented by a matrix where columns repre-
sent nodes and rows represent arcs (see section 2.4.3).

output: the output is the steady state schedule, actor firings sequence. It can
be represented by a string or ordered array.

support functions:

/*comput_steady_state(): computes the steady state of the input SDF graph,

the output is an actor firings sequence */

Vec[] comput_steady_state(SDF_graph);

/* SAS(): computes a Single Appearance Schedule, if it exists it generates

49

a firing sequence from the steady state and SDF graph */

vec[] SAS(vec[] steady_state , int SDF_graph[][]);

/*greedy_node_sort(): order actors from ‘greedy’ to the less one according

to nb_actor_occurrences*push*/

char[nb_actor] greedy_node_sort(vec[] steady_state , int SDF_graph[][]);

/*modif_sched(): it modifies the schedule by making the actor appear many

times in the sequence*/

modif_sched(steady_state , SDF_graph[][] , nb_exec[]);

/*check_buf_size() and check_code_size(): they compare schedule code size

and buffer size with the available buffer or memory*/

check_buf_size(new_sched, SDF_graph[][], buf_size);

check_buf_size(new_sched, SDF_graph[][],code_size);

Algorithm

comput_steady_state(SDF_graph[][]);

/*if SAS doesn’t exist, pick any actor firing sequence satisfying

the code size constraint, or fail if no one is found*/

new_sched = SAS(steady_state, SDF_graph[][]);

old_sched = null;

valid_buf = false;

valid_code = true;

greedy_node_sort(new_sched, SDF_graph[][]);

nb_actor_firings = length(new_sched);

i=0;

while(i <= nb_actor_firings - 1)&&(!valid_code or !valid_buf)

{

if (nb_exec[i]==1) // i is the index of the greedy actor

i=i+1;

else

{

t = nb_exec[i] ;

nb_exec[i] = nb_exec[i]/2;

old_sched = new_sched;

new_sched = modif_sched(new_sched, SDF_graph[][], nb_exec[i], t);

valid_buf = check_buf_size(new_sched, SDF_graph[][], buf_size);

valid_code = check_buf_size(new_sched, SDF_graph[][], code_size);

if (!valid_code)

{

new_sched = old_sched;

i = i + 1;

}

else if (!valid_buf)

{

greedy_node_sort(new_sched, SDF_graph[][]);

nb_actor_firings = length(new_sched);

50

i=0;

}

}

}

if (valid_code && valid_buf) return new_sched;

Algorithm Termination: the algorithm terminates in all possible cases:

• the algorithm may find a schedule with (valid_code = true) and (valid_buf =
true) and the algorithm terminates.

• else either the algorithm continues decreasing buffer size till all actor firing fac-
tors equals one then the algorithm stops its executions because the i counter
will continues its incrementation till it becomes greater than ’(nb_actor_firings−
1)’ in this case.

• or it is the case where code size is not valid ((valid_code = false), so
either we find another greedy actor firing that verifies the code size and
buffer size or the i counter continues its incrementation till it becomes greater
than ’(nb_actor_firings − 1)’ and in both cases the algorithm termina-
tion condition is verified because the algorithm stops its executions if (i >
nb_actor_firings − 1).

6.5 Imperfectly Nested Multidimensional Shift-

ing

Imperfectly nested Multidimensional Shifting (INMS) is the heart of the process. It
tries to find a fine-grained schedule for the pre-scheduled steady state, the output
of pre-scheduling algorithm, which is exactly a loop nest where actor occurrences
replace instructions. So the task of INMS is to schedule this special loop nest; the
number of phases or loops by level may be one or more, the loop nest may be a
perfect one or not and many actor occurrences may appear in the same phase (see
Sections 6.3, 6.4).
INMS is a multidimensional shifting technique: it shifts actor occurrences across
the phase to break dependences between actor firings of the same phase (intraphase
dependences) to extract parallelism. We call this process "Phase Parallelization".
Then it tries to move out prologs and epilogs generated by the first process or
combine them with other prologs epilogs to build some kernel iterations, we call this
process ’Phase Prolog-epilog Moving’. INMS takes care of interphase dependences
as well by checking interphase dependences each time ’Phase Prolog-epilog Moving’
is applied and shifting actor occurrences when necessary. We call this INMS process
"Prolog-epilog Moving Effect on Other Phases".

51

6.5.1 Phase Parallelization

There are a lot of work on loop parallelization. The most important one for our case
is software pipelining. It looks like our problem. It seems that it can solve it but un-
fortunately not. Software pipelining schedules one loop only and not a steady state,
imperfectly nested loops with inter-phase dependences. The first task of INMS is
to software-pipeline as much phases as possible under machine resource constraints.
The output of this process is a loop nest with many pipelined phases. Unfortunately
the code size constraint may be broken down because software pipelining generates
prologs and epilogs inside the global loop and this may increase the code size con-
siderably.

SDF to DDG transformation It is not possible to apply software pipelining
on SDF directly because software pipelining is proposed for DDG graph (Data De-
pendence Graph) which is completely different from SDF graph. There is a great
distinction between them: a dataflow arc in the SDF between two actors translates
into multiple dependence arcs connecting different occurrences of these actor in the
DDG (see Fig 6.2). Then, in order to apply software pipelining algorithm we need
first to transform the SDF graph to a DDG graph, we build an actor occurrences
graph for each phase. This will not increase the code size in reality, authors of pa-
per [58] find that, for most streaming applications, dataflow dependences are 1 − 1
dependences. This means that the number of tokens the producer produces equals
the number of tokens the consumer consumes.

for i=0 to n-1
 for j= 0 to m-1
 {
 2A
 3B
 }

A

B

3

2

A0

A1

B0

B1

B2

0

0

0

0

for i=0 to n-1
 for j= 0 to m-1
 {
 A0
 A1
 B0
 B1
 B2
 }(a) prescheduled steady state

(b) SDF Graph (c) Phase DDG graph (d)Resulting Code

Fig. 6.2. SDF to DDG Transformation

6.5.2 Actor Firing Index

An actor occurrence is defined by its global loop iteration i, its intern loop lp, which
iteration of this loop j and the actor occurrence number in this iteration, r. So an
occurrence of the actor A is the quadruplet A(i, lp, j, r). In the clock system (hour:
min: sec), we can always convert hours and minutes to seconds to have a single
value, a linearized index. We can do the same thing with actor occurrences. The

52

linearized index of an actor occurrence A(i, lp, j, r) is:

k = i × nb_A(Glp) +

lp−1
∑

l=1

nb_A(l) × (l_upbound + 1) + nb_A(lp) × j + r (6.1)

where:

• nb_A(Glp) is the number of A occurrences in the global loop, one iteration of
the global loop precisely

• nb_A(l) is the number of A occurrences in the loop l and l_upbound is the
upper bound of loop l iterator.

• nb_A(lp) is the number of A occurrences in the loop lp

We can index or order firings (occurrences) of an actor A according to their
indexes. Fig. 6.3 shows an example of actor firings ordering.

for i = 0 to n-1
 {
 for j1=0 to 9
 {
 A
 B
 }

 for j2= 0 to 4
 {
 B
 }
 }

0rdering

A0

B0

A1

B1
.
.
.
A9

B9

B10

B11
.
.
.
B14

A10

B15

A11

B16

.

.

.

Fig. 6.3. Actor firings ordering example

6.5.3 Phase Prolog-epilog Moving

The example in Fig. 6.4 shows a pre-scheduled steady state where its phase is soft-
ware pipelined. As we see in this example, generated prolog and epilog increase the
code size and this could break down code size constraint. To solve the problem we
need to make the prolog and the epilog disappear from the global loop but how to
do that? We propose two different solutions: "Phase Prolog-epilog Merging"
and "Phase Epilog Fill-in by other Phases".

53

for i=0 to n-1

 A

 for j=0 to m-2

 {

 B A

 }

 B

for i=0 to n-1
 for j=0 to m-1
 {
 A
 B
 }

A

B

(0,0)

(a) original code

(b) DDG Graph

(c) code after software

 pipelining

Fig. 6.4. Phase Pipelining Example

6.5.3.1 Phase Prolog-epilog Merging

To explain this idea let’s see the example in Fig. 6.5. Fig. 6.5(a) shows three iter-
ations of a global loop enclosing a pipelined phase. Merging the epilog of iteration
(i = 0) with the prolog of iteration (i = 1) forms one kernel iteration, see Fig. 6.5
(b). The first global iteration finishes by B and the second one starts by A, so if we
just move the prolog of iteration (i = 0) out the global loop and merge the prolog of
iteration i with the epilog of iteration (i − 1) then add these new kernel iterations
to the kernel of iteration (i− 1) the prolog and epilog generated by phase pipelining
process will disappear (see Fig. 6.5(c)).
So "Phase Prolog-epilog Merging" omits phase prolog and epilog by moving out the
phase prolog of the first iteration of the global loop and then merging prolog of
iteration i with epilog of iteration (i − 1).

A
for j=0 to m-2
{
 B A
}
B

A
for j=0 to m-2
{
 B A
}
B

A
for j=0 to m-2
{
 B A
}
B

i=0

i=1

i=2

A
for j=0 to m-2
{
 B A
}
B A

for j=0 to m-2
{
 B A
}
B A

for j=0 to m-2
{
 B A
}
B

i=0

i=1

i=2

A
for i=0 to 1
 for j=0 to m-1
 {
 B A
 }
for j=0 to m-2
{
 B A
}
B

(a)

(b)

(c)

Fig. 6.5. Phase Prolog-epilog Merging Example

Remark To distinguish actors that are going to be moved out the global loop,
each actor appears in one phase only. If an actor appears in two phases or more

54

then we need to give to each actor copy a name different than the others otherwise
it will not be possible, in code generation phase, to refer to actors in the global loop
prolog and epilog.

6.5.3.2 Phase Epilog Fill-in by Other Phases

A phase prolog or epilog are an incomplete kernel. Adding to the prolog or the
epilog lacked occurrences make them disappear from the global loop code. "Phase
Epilog Fill-in by Other Phases" does not merge the epilog with the prolog of the
the same phase but it looks for lacked actor occurrences of this epilog in the other
phases. Let’s see the example in Fig. 6.6. The first phase is pipelined and the second
not, we suppose that there is a cycle between A and C of phase 2, C depends on A
with dependence distance equals 0 and A depends on C of the previous iteration,
dependence distance equals 1 see Fig. 6.6(a). In Fig. 6.6(b) three iterations of
the global loop are written one under the other. For i = 0, we remark that the
epilog of the first phase,B, lacks one occurrence of actor A to form the missed kernel
iteration of its phase and we see that actor A appears in second phase too. Moving
one occurrence of A from phase 2 to the epilog of phase 1 will form this missed
iteration. This shifting makes the latest iteration of phase two incomplete, it lacks
one A occurrence to be complete. The second iteration of the global loop , i = 1,
starts by the prolog of the first phase, by A, so we can complete the latest iteration
of the second phase of the first global loop iteration, i = 0, by A prolog of the first
phase of the second loop iteration, i = 1 as we have done in Fig. 6.6(c). Repeating
this process till the latest iteration of the global loop produces code in Fig. 6.6(d).
The latest iteration of the global loop is incomplete, it lacks one A, it forms an
epilog for the global loop where the prolog is A.

This second solution is better, filling in a loop incomplete iteration by actor oc-
currences of another loop consumes less memory and variables life span is shorter
comparing it with variables in the first solution. The disadvantage of this idea is
that it is not always applicable, it is not always possible to compose a phase prolog
from other phases, what if needed actors do not exist in other phases?

Remark Examples in Fig. 6.7 and Fig. 6.8 show how actor occurrence are or-
dered according to the shifting type. We remark that "Phase Epilog Fill-in by Other
Phases" shifting respects order(index) of actor occurrences in the original code but
"Phase Prolog-epilog Merging" does not, because Shifted iterations are filled in only
by occurrences of the same phase then firings of the next iteration of the global loop
may execute before firings of the previous iteration.

6.5.4 Phase Prolog-epilog Moving Effect on Other Phases

Before talking about "Phase Prolog-epilog Moving Effect on Other Phases" we need
to understand first inter-phase dependences and what happens when we shift an
actor occurrence that depends on an actor occurrence of another phase.
Dataflow dependences of streaming applications have a special characteristic: they

55

A
for j=0 to m-2
{
 B A
}
B

i=0

A
for j=0 to m-2
{
 B A
}
B

for j’=0 to m’-1
{
 A
 C
}

for i=0 to 2
{

}

for j’=0 to m’-1
{
A
C
}

A
for j=0 to m-2
{
 B A
}
B

i=1

for j’=0 to m’-1
{
A
C
}

A
for j=0 to m-2
{
 B A
}
B

i=2

for j’=0 to m’-1
{
A
C
}

A

i=0

for j=0 to m-2
{
 B A
}
B A

for j’=0 to m’-2
{
C
A
}
C A

for j=0 to m-2
{
 B A
}
B A

i=1

for j’=0 to m’-2
{
C
A
}
C A

for j=0 to m-2
{
 B A
}
B A

i=2

for j’=0 to m’-2
{
C
A
}
C

for j=0 to m-1
{
 B A
}

for j’=0 to m’-1
{
C
A
}

for i=0 to 1
{

A

for j=0 to m-1
{
 B A
}

for j’=0 to m’-2
{
C
A
}
C

(a)

(b) (c)

(d)

}

Fig. 6.6. Phase Epilog Filing in by Other Phases Example

can change from one actor firing to another. For instance, if we have this sequence
’2A3B’ as a steady state and pushA = 3 and popB = 2 and B depends on A. The
first occurrence of B consumes 2 tokens produced by the first occurrence of A then
the first occurrence of B depends on the first occurrence of A. The second occurrence
of B depends on the first and the second occurrences of A and the third occurrence
of B depends on the second occurrence of A. So what is the dependence rule we will
consider to build the pattern? Then dependence between two actor occurrences is
not like dependence between two instructions and for ’2A3B’ example we can only
say that 3B depends on 2A, 3 executions of B depends on 2 executions of A. So
shifting one B occurrence implies shifting all A occurrences, to avoid any dependence
stealing.
We will see how INMS selects actor occurrences that are in dependence (inter-phase

56

for i = 0 to n-1
 {
 for j1=0 to 9
 {
 A
 B
 }

 for j2= 0 to 4
 {
 A
 C
 }
 }

A0

A1 B0

A2 B1

.

.

.
A9 B8

A10 B9

A11 C0

A12 C1
.
.
.

.

.

.

A14 C3

A15 C4

A16 B10

A17 B11

A

B

(0,0)

A

C

(0,0)

(a) original code

(b) DDG graph

(c) actor occurrence ordering

 after epilog fill-in shifting

Fig. 6.7. Phase Epilog Fill-in by Other Phases example

for i = 0 to n-1
 {
 for j1=0 to 9
 {
 A
 B
 }

 for j2= 0 to 4
 {
 A
 C
 }
 }

A0

A10

A1 B0

A2 B1.
.
.

A9 B8

A15 B9

A11 C0

A12 C1
.
.
.

.

.

.

A14 C3

A25 C4

A26 B10

A27 B11

A

B

(0,0)

A

C

(0,0)

(a) original code

(b) DDG graph

(c) actor occurrence ordering

 after prolog-epilog merging

 shifting

Fig. 6.8. Phase Prolog-epilog Merging Example

dependences) with shifted actors, and how it moves them to the global loop prolog
in section 9.2.3.

6.6 Multi-dimensional Shifting Formalization

A is an actor and A(i, lp, j, r) is an A occurrence. Its dimensions i, lp, j and r are
dependent like the clock system (hour: min: sec). Shifting the A actor occurrence

57

by a shifting distance c may affect only the dimension r or the inner loop iteration
j or the loop index lp or even the global loop iteration i. If the shifting distance, c,
is less than r so it is simply a translation applied on the dimension r. If not so it is
a shifting from one loop iteration to another or completely from a loop to another,
exactly like clock system.
INMS tries to find the right translation distance c for each actor occurrence, taking
in consideration all kinds of resources and time constraints: code size, buffer size,
data dependences, resources (register, operations units) and time (real time appli-
cation).
Suppose INMS has found the right c for each actor occurrence A(i, lp, j, r) so what is
A(i′, lp′, j′, r′), the actor occurrence coordinates after shifting? Finding A(i′, lp′, j′, r′)
is useful for INMS code generation process. To Formalize the shifting we have to
find the relation between A(i′, lp′, j′, r′) and A(i, lp, j, r). How to shift actor occur-
rences determines how to compute i′, j′, lp′ and r′ using i, j, lp and r. As we have
said before, to avoid having prologs and epilogs inside the global loop two multi-
dimensional shifting are possible: Filling in the shifted iterations from the same
phase only, called "Phase Prolog-epilog Merging" and filling in them from the other
phases as well called "Phase Epilog Fill-in by Other Phases". We will see how to
compute A(i′, lp′, j′, r′) in both kinds of shifting.

6.6.1 Phase Prolog-epilog Merging

In this kind of shifting, the last iteration of a loop is filled in by the first iteration of
the same loop of the next global loop iteration. The shifting distance c of an actor
A of a loop lp is less than the number of A actor occurrences in this loop lp. Shift-
ing is a transformation of A(i, lp, j, r) to A(i′, lp′, j′, r′). Given an actor occurrence
A(i, lp, j, r) and a shifting distance c , A(i′, lp′, j′, r′) coordinates are computed as
follow:

• computing the coordinate "j
′

":

j′ = (j − α) mod (upper_bound(lp) + 1) (6.2)

α = ⌊⌊ c
r+1

⌋ × (r+1
c+1

)× 2⌋ and upper_bound(lp) is the upper bound of the loop
lp iterator

– If c > r then

∗ α = 1 because 1/2 ≤ ⌊ c
r+1

⌋ × (r+1
c+1

) < 1

∗ j′ = (j − 1) mod (upper_bound(lp) + 1)

∗ j = 0 is a special case because j − 1 is negative. For this reason we
use the operator modulo in the formula to move this A occurrence to
the latest iteration of its loop (the inner loop), of the prior iteration
of the global loop.

58

– If c ≤ r then α = 0 and j′ = j. Therefore shifting this A occurrence will
affect only the r coordinate.

• computing the coordinate "i
′

":

i′ = i − β (6.3)

and β = ⌊⌊ j′

j+1
⌋ × (j+1

j′+1
) × 2⌋. from (6.3)

– if (j′ ≤ j) then i′ = i − 0 = i.

– else i′ = i − 1, the A occurrence is moved from the global loop iteration
i to its prior.

• computing the coordinate "r
′

":

r′ = (r − c) mod nbA(Lp) (6.4)

where nbA(lp) is the number of A actor occurrences in the loop lp. If r > c
then r′ = r − c else A is moved to the loop lp iteration j′ = j − 1 and
r′ = r − c + nbA(Lp)

• computing the coordinate "lp":

lp′ = lp (6.5)

lp coordinate does not change, it is a "Phase Prolog-epilog Merging" shifting.

6.6.2 Phase Epilog Fill-in by Other Phases

This shifting technique respects the occurrence order (index). (A, k) and (A, k′) two
occurrences of the actor A, if k < k′ then (A, k) is before (A, k′) in the schedule.
At the end of shifting, the latest loop iteration will be filled in by the following
loops containing the A occurrences. Loop containing occurrences of an actor A are
ordered from top to bottom, in an array for example. Shifting operation moves A
occurrences from Lp to Lp iff lp > lp′. It is possible that shifting a loop by ‘c’
occurrences moves occurrences of many loops, it depends on the c value and A actor
occurrence number by loop.

Because it is possible that c > nbA(lp), nbA(lp) is the number of A occurrences
in the loop or phase lp, then two shiftings are possible: from one loop iteration to
another or from a loop to another. Each case is solved separately. Let’s see both
cases:

• Shifting from a loop to another

– Computing the coordinate "lp′"

lp′ = (lp − 1) mod nbr(lp) = γ (6.6)

59

Where nbr(lp) is the number of loops containing the A occurrences. We
use mod operator to include the case where moving an A occurrence
from one global iteration to the previous one.

– Computing the coordinate "j′"

j′ = upperbound(lp′) + 1 − M = α (6.7)

shifting from one loop to another means that c is superior than j ×
nbA(lp)+ r, nbA(lp) is the number of A occurrences in lp, so A should be
firstly shifted in its loop by j × nbA(lp) + r and then shifted in the first

loop containing A by c − j × nbA(lp) + r. with M = ⌊ c−(j×nbA(lp)+r)
nbA(lp′)

⌋

– Computing the coordinate "r′"

r′ = (c − (j × nbA(lp) + r)) mod nbA(lp′) = β (6.8)

We divide by nbA(lp′) and then the remaining is r′, nbA(lp′) is the number
of A occurrences in lp′

• Shifting from one loop iteration to another: means shifting across the
same loop but c may be big enough to move A by many iterations.

– Computing the coordinate "j′"

j′ = j − ⌊
c

nbA(lp)
⌋ − ⌊⌊

σ

r + 1
⌋ × (

r + 1

σ + 1
) × 2⌋ = α′ (6.9)

with σ = c mod nbA(lp) shifting across the same loop with ‘c’ superior
than one iteration occurrences means to shift A by c divided by A occur-
rences number in one iteration and if the remaining is superior than r as
well so we will shift one iteration more.

– Computing the coordinate "r′"

r′ = (r − c) mod nbA(lp) = β′ (6.10)

The number of iterations c contains doesn’t affect r′ at all, because it
depends on the remaining of division and r

– Computing the coordinate "lp′"

lp′ = lp = γ′ (6.11)

because we talk about shifting across the same loop (phase)

To get the general formulas for j’, r’,lp’ we have two factors y and y′, the first one
equals 1 for the first case and 0 in the second case and the second factor y′ is the
opposite of it, it equals 0 for the first case and 1 in the second case. Only one of y
and y′ zero or one at the same time. With the help of y and y′ we have:

60

y = ⌊⌊
z

c + 1
⌋ × (

c + 1

z + 1
) × 2⌋ (6.12)

y′ = ⌊⌊
c

z + 1
⌋ × (

z + 1

c + 1
) × 2⌋ (6.13)

with z = j × nbA(lp) + r

j′ = α × y + α′ × y′ (6.14)

r′ = β × y + β′ × y′ (6.15)

lp′ = γ × y + γ′ × y′ (6.16)

The computation of i′ depends only on lp′, if it is inferior than lp so it is in the
same global loop, i′ = i else it is in the global loop iteration i′ = i − 1.

i′ = i − ⌊⌊
lp′

lp + 1
⌋ × (

lp + 1

lp′ + 1
) × 2⌋ (6.17)

6.7 INMS Implementation

We have presented INMS but we have not said how to realize it. We will see in
chapters 7 and 8 two different ways of INMS Implementation

• Pattern Table Shifting: a heuristic applicable in case of "Phase Epilog
Filing in by Other Phases". It aims to present a polynomial execution time
solution. It transforms the SDF graph to Data dependence graph, DDG, to
apply later software pipelining on each phase. The result of this process is
kernel tables, one table by phase representing the execution instance of each
actor occurrence within the pattern. Shifting idea is applied here by moving
all actor occurrences in tables to the same column, the same actor occurrences
column for all phase tables.

• Prolog-epilog Merging: we find it the best implementation of INMS. It is
applicable in case of "Phase Prolog-epilog Merging".

.

61

Chapter 7

Pattern Table Shifting

7.1 introduction

Solving the problem, INMS implementation, without dividing it into sub problems
is not possible because we can’t always pipeline all phases. Therefore it is necessary
to find phases to be pipelined then apply prolog-epilog merging. We can look at
the problem as three different sub problems: phases parallelization, prolog-epilog
merging and code generation problems. Because we can shift firings in two different
ways, therefore we can look at the problem in two different ways according to the
shifting technique, "Phase Epilog Fill-in by Other Phases" or "Phase Prolog-epilog
Merging". In this chapter we will see the first kind of shifting, "Phase Epilog Filling
in by Other Phases" and its implementation "Pattern Table Shifting". The solution
we present here is very limited and it is not useful in the general case. We present
it here because it is the first idea we have thought about and it results in shorter
variable lifetimes.

7.2 Heuristic

Software pipelining may be represented by a kernel (pattern) table that gives the
execution instance of all kernel actor occurrences (instructions) where all actor oc-
currences that have the same row number execute in parallel. The column number
is the iteration number of the actor occurrence in the original loop code, before
software pipelining, see the example in Fig. 7.1. One thing we have thought about
is to use this pattern table in our shifting, a heuristic that may solve the problem
in a polynomial time. The idea is to apply software pipelining to each phase of
the pre-scheduled loop nest, the output of the pre-scheduling algorithm, and then
shift the resulting kernel tables to have as a result all occurrences of the same actor,
in different tables, in the same column. Fig. 7.2 shows INMS implemented using
’Patterns Tables Shifting’ heuristic.

As we see in Fig. 7.2, the first thing to do is SDF to DDG Transformation
(see section 6.5.1) because software pipelining is proposed for DDG graph (Data
Dependence Graph), which is different from SDF graph.

62

for i=0 to n-1

 {

 a

 b

 c

 }

a

b

c

0

0

ab

c

0 1

a

for i=0 to n-2

 {

 a || b

 c

 }

b

c

(b) DDG Graph

(c) Resource Table

(d)Pipelined Code
(a)Input Code

Fig. 7.1. Resource Table Example

Nested Loops + SDF Graph

 SDF to DDG

Transformation
Nested Loops + DDG Graph

Software

Pipelining

Pattern Tables
Pattern Table

 Shifting

 Shifted Tables
 =
Fine-grained Schedule

Fig. 7.2. INMS Implementation with ’Pattern Table Shifting’

7.3 Pattern Table Shifting

The ’Patterns Tables Shifting’ is a way of implementing "Phase Epilog Filling in by
Other Phases" shifting technique.To do that, the "Pattern Table Shifting" tries to
move all the actor occurrences that appear in different pattern tables to the same
column. Thus the number of occurrences executed before patterns, for this actor, is
the same for all phases. ’Pattern table Shifting’ is applied only on columns. Actor
row change is not permitted, it increases the kernel span .
In the example depicted by Fig. 7.3, after applying software pipelining to the first
phase, the result is a pattern table showing when each actor occurrence starts its
execution. B of column 0 and A of column 1, both of them in the same row signi-
fies that the A occurrence executes in parallel with the B occurrence of the prior
iteration. Hence, the prolog equals A. In the first table, A is in the column number
1 and in the second table is in the column number 2. Shifting A of the first table to

63

the column number 2 makes both A0 and A1 execute before the pattern. Also B in
the first table is in the column number 0 and in the second table is in the column
number 1. Shifting B of the first table to the column number 1 makes B0 of both
phases execute before their kernels, they are in the prolog. So the prolog is 2AB for
both phases, the epilog of the first phase is B and the epilog of the second phase is
B2C. The fusion of the first phase epilog with the second phase prolog, of the same
global loop iteration, completes the first phase by two kernel iterations,2(AB), and
n − 3 becomes n − 1. Merging the second phase epilog, of the global loop iteration
i, with the first phase prolog, of the global loop iteration i − 1, adds two kernel
iterations to the second phase, 2(CBA), and and m− 3 becomes m− 1. In this way
all prologs and epilogs generated by software pipelining disappear from the global
loop.

This example shows the easiest case, no cycles and actors composing a prolog
may be found in other phases. In most general cases an SDF graph may contain
cycles and an actor may appear in a phase and not in others, ’Pattern Table Shifting’
can do nothing in this case.

7.3.1 Cycle

Cycles in SDF graphs may prevent shifting of pattern tables, because cycle nodes
depend on each other, then shifting one node may imply shifting all cycle nodes
infinitely. In Fig. 7.4, the example is a case where shifting is not possible because of
the cycle formed by dependences. In the steady state m1(ACB)m2(ACD), shifting
the actor C of the first table to the column number 3 implies shifting A , because
C depends on A and dependence distance is 0, and shifting A implies shifting B
because of dependence distance value,0, which implies shifting C and the shifting
continues till no actor remains in the kernel.

7.4 Simple Case Algorithm

We will present here an algorithm for the simple case, no cycle.
A node in the pattern table may be in dependence relation with other nodes of
the same pattern table or of other patterns. A question arising here: if an actor
is shifted, are there any effects on the other actors that are in dependence relation
with this actor, the nodes the actor depends on them and nodes that depend on the
actor? Within a phase:

• if A depends on B, shifting A implies we should shift B especially if Ai depends
on Bi because Bi should execute before Ai.

• if B depends on A, we don’t need to shift B because A still execute before B

This discussion is about a dependence between two actors, what about all the de-
pendence graph? How to shift all tables respecting all dependence relations? We
propose an algorithm that is able to perform this task. It generates shifted tables

64

for k = 0 to L-1
 {

 for i=0 to n-1
 {
 A

 B
 }

 for j=0 to m-1
 {
 A

 B

 C
 }

 }

A

B

C

0

0

A

B

0

for k = 0 to L-1
 {
 A
 for i=0 to n-2
 {
 B A
 }
 B

 A
 B A
 for j=0 to m-3
 {
 C A

 B
 }
 B C
 C
}

B A

C A

B

0 1 2

0 1 2

Software Pipelining

for k = 0 to L-1
 {
 A
 B A
 for i=0 to n-3

 {
 B A
 }
 B

 A
 B A
 for j=0 to m-3
 {
 C A

 B
 }
 B C
 C
 }

B

C A

B

0 1 2

0 1 2

A

P
a

tte
rn

 T
a

b
le

 S
h

iftin
g

A
B A
for k = 0 to L-2
 {

 for i=0 to n-1

 {
 B A
 }

 for j=0 to m-1
 {
 C A

 B
 }

 }

for i=0 to n-1
 {
 B A
 }

for j=0 to m-3
 {
 C A
 B
 }
B C
C

Phase Epilog Fill-in

by other Phases

number of A: L*(n + m)
 B: L*(n +m)

 C: L*m

number of A: 1 + 1 + (L-1)*(n+m) + n + (m-2) = L*(n+m)
 B: 1 + (L-1)*(n +m) + n + (m-2) + 1= L*(n+m)
 C: (L-1)*m + (m-2) + 1 + 1= L*m

Fig. 7.3. Pattern Table Shifting Example

from software pipelining pattern tables but it is applicable for acyclic SDF graph
only.

7.4.1 Algorithm

We will present the algorithm in an informal way.
input: pattern tables and an acyclic specific SDF graph, interphase dependences re-
moved from the original SDF graph because interphase dependences are not treated

65

Fig. 7.4. Cycle Example

here and we don’t need to do so, in another way, this acyclic SDF graph is the union
of all phases DDG graph
output: shifted pattern tables

1. construct a set L of leaves, nodes that no node depends on them.

2. for every leaf A of the set L, do:

(a) find the maximum of its column numbers CL, if A appears in several
phases then it has a specific column number for pattern table

(b) if for all tables containing A, the box with column_nbr = CL and
row_nbr = row_nbr(A) is empty, then move A, in all pattern tables,
to this column CL.

(c) else for all tables containing A, find the empty box with column_nbr =
CL + d and row_nbr = row_nbr(A) and move A, in all pattern tables,
to this column CL + d.

(d) remove A from L and from the graph

3. if the graph is not empty then

• for every nodes B that depends on one or several leaves:

– max_leaves_column_nbr equals the maximum column numbers of
all leaves A that depend on B

– if ((column_nbr(B) + dep_dist(B, A)) ≤ max_leaves_column_nbr)
then

∗ if the box (row_nbr(B) , column_nbr(B)) is empty, column_nbr(B) =
(max_leaves_column_nbr − dep_dist(B, A)) + 1, then move
B to this box to let it execute before A.

∗ else look for the nearest empty box and move B to it, its column_nbr(B)
is (max_leaves_column_nbr − dep_dist(b, A)) + d

66

• go to 1

4. omit empty columns

5. end

7.4.2 Running Example

We are going to see a complete execution of the the algorithm here.

• Fig. 7.5(b) shows an example of software pipelining applied on pre-scheduled
steady state phases. The DDG graph of each phase is in Fig. 7.5(a), after
SDF to DDG transformation of course. The graph in Fig. 7.5(c) represents
the global graph, the union of all phase DDGs.

• The algorithm takes this acyclic graph as input and constructs a set of leaves
L. For the first iteration of the algorithm, L contains only one leaf, D. In
the graph of Fig. 7.6(a), this leaf is in red and its edge is in blue. Because
D appears one time only, in the fourth phase, so no pattern tables shifting
is needed for it, see Fig. 7.6(d). Then the algorithm removes D from L and
from the global graph and looks for nodes that the leave D depends on them,
the algorithm finds one node only E, it is in blue in Fig. 7.6(c). E column
number is greater than D one, dependence relation is verified so no E shifting
is necessary.

• The graph is not empty so the algorithm starts its second iteration and creates
L = {E}. E appears in two different pattern tables with two different column
numbers, its column number in the third phase is 0 and in the fourth phase is
1 (see Fig. 7.7(b)). First, the algorithm tries to shift E of the third phase to
column number 1 but unfortunately this column box is not empty, it contains
the actor C. It is impossible to shift it to the box with column number 2
as well, this box is ’occupied’ in pattern table of phase 4 by B. So the only
nearest box is the one with column number equal three, so E column number
becomes 3 for both phases, the third and the fourth, see Fig. 7.7(d). The
algorithm continues this iteration by removing E from the graph and from the
set L, which becomes empty, and finding nodes that the leaf E depends on
them. These nodes are B and C as Fig. 7.7(a) shows, they are in blue. The
node B appears two times, the first time in the first phase (column number
equals 1) and the second time in the fourth phase (column number equals 2).
The nearest empty boxes for both phases, with the same column number of
course, are those with column number equals 4 (see Fig. 7.7(f)). The C column
number becomes 5 as depicted in Fig. 7.7(g).

• The graph is still not empty. By repeating the same procedure, the set L will
contain C. C occurrences are already in the same column in all phases where
C appears (see Fig. 7.8(b) and Fig. 7.8(c)). Nodes that C depends on them
are B and A. C max_column_number = 5 and B column_number = 4

67

so max_column_number < B column_number then B column_number
becomes 6, these boxes are empty (see Fig. 7.8(e). The same thing happens
with A and A column_number becomes 7 (see Fig. 7.8(f).

• The graph is still not empty and pattern tables are well shifted, every node in
the right place, then the algorithm continues its execution by removing nodes
from the graph, B and A, till it becomes empty. At the end, the algorithm
omits empty column generated, 1, 2, 4, see Fig. 7.9(b) and Fig. 7.9(c)

• The code generated by this transformation is showed in Fig. 7.10. Fig. 7.10(a)
shows the first global loop iteration, i = 0 and Fig. 7.10(b) shows the second
one. Fig. 7.10(c) explains how epilog filling happens, each epilog is filled by
prolog actors of phases that are below this epilog in the code, of the same
global loop iteration, or by prolog actors of phases that are above it in the
code but of the next global loop iteration. The result code is in Fig. 7.10(d)

A
B A
for j1=0 to m1-3
{
 C B A

}

C B
C

A
for j2=0 to m2-2
{
 C A
}
C

C
for j3= 0 to m3-2
{
 E C
}
E

B
E B
for j4= 0 to m4-3
{
 D E B
}
D E
D

for i = 0 to n-1
A

B

C

AC

CE

B

E

D

A

BC

E
D

0

0

0

0

0

0

0
0

0

0 0

0

(a) (b)

(c)

Fig. 7.5. Pre-scheduled Steady State with Phase DDGs

7.4.3 Termination

The algorithm removes each time a leaf from the acyclic graph. Because the graph
is acyclic, so we are sure that the algorithm arrives at an execution state where the
graph is empty, so it terminates.

7.4.4 Correctness

• The algorithm is always able to provide shifted tables, shifting actor is al-
ways possible because we can always find the maximum column number, the

68

C B A

C A

0 1 2

0 1

E C

0 1

D E B

0 1 2

A

BC

E

0
0

0

0 0

C B A

C A

0 1 2

0 1

E C

0 1

D E B

0 1 2

A

BC

E
D

0
0

0

0 0

0

(a)

(b)

(c)

(d)

Fig. 7.6. First Iteration of the Algorithm Execution

maximum of numbers always exists and an empty case always exist as well
CL + d.

• Are these shifted tables a solution? They are a solution if dependence relations
are respected. Then we have to check if the algorithm respects dependence
relations. The algorithm has two actions: shifting leaves and shifting the nodes
that leaves depend on them.

– if a node doesn’t depend on any other node shifting it will not alert
dependence relations, so the algorithm is correct;

– if one or several leaves A depends on B, shifting A may break down
this dependence relations but the algorithm corrects that by the second
action, by treating all nodes that leaves depend on them and shifting
them if it is necessary to meet the dependences relation;

∗ if several leaves depend on a node B, the algorithm keeps dependence
between B and these leaves by checking dependence between B and
the most shifted leaf A, the leaf with the maximum column num-
ber. If the dependence is still respected with this leaf, so it is still
respected with others because they are less shifted than it. Else the
algorithm moves B to the right box to let it execute before the most
shifted leaf A. So the algorithm correctness condition is verified. To
summarize, because the algorithm always affect to a leaf a column
number less than its ascendant nodes, so the dependence relation is
always verified.

69

C B A

C A

0 1 2

0 1

E C

0 1

D E B

0 1 2

A

BC

0
0

0

C B A

C A

0 1 2

0 1

D EB

0 1 2

A

BC

E

0
0

0

0 0

(a)

(b)

(c)

(d)

3

EC

0 1 2 3

C B A

C A

0 1 2

0 1

D EB

0 1 2

(e)

3

EC

0 1 2 3

C A

0 1

D E B

0 1 2

(f)

3

EC

0 1 2 3

4

C A B

0 1 2 3 4

D E B

0 1 2

(g)

3 4

CA B

0 1 2 3 4 5

CA

0 1 2 3 4 5

CE

0 1 2 3 4 5

Fig. 7.7. Second Iteration of the Algorithm Execution

7.4.5 Remarks.

Shifting the pattern tables doesn’t always mean that we have found the fine-grained
schedule. Fig. 7.11 depicts an opposite example. In this example, shifting pattern
tables will let the epilog of the first phase B be filled in by A, an actor in the prolog
of the second phase. Then the prolog and epilog of the first phase may disappear
from the global loop but what about the second loop? To fill in its epilog, two
occurrences of actor C are needed but unfortunately the first phase contains no C
occurrence. So the code in fig. 7.11(3) is better than the one in fig. 7.11(1),in term
of performance, because phases are pipelined but the code in fig. 7.11(1) is better,

70

A

B

0

A

BC

0
0

0

(a)
DDG of ALL Phases

D E B

0 1 2

(d)

3 4

CA B

0 1 2 3 4 5

CA

0 1 2 3 4 5

CE

0 1 2 3 4 5

D E B

0 1 2

(b)

3 4

CA B

0 1 2 3 4 5

CA

0 1 2 3 4 5

CE

0 1 2 3 4 5

D E B

0 1 2

(c)

3 4

CA B

0 1 2 3 4 5

CA

0 1 2 3 4 5

CE

0 1 2 3 4 5

D E B

0 1 2

(e)

3 4

CA B

0 1 2 3 4 5

CA

0 1 2 3 4 5

CE

0 1 2 3 4 5

6

5 6

D E B

0 1 2

(f)

3 4

C AB

0 1 2 3 4 5

C A

0 1 2 3 4 5

CE

0 1 2 3 4 5

6

5 6

7

7

Fig. 7.8. Third Iteration of the Algorithm Execution

in term of code size.

7.5 Conclusion

The heuristic implements INMS approach according to the shifting technique we
called: "Epilog Fill-in with other Phase Firings" . Unfortunately, it is applicable
only for simple cases: no cycle. In addition to this limit, the shifting technique
itself,’Epilog Fill-in with other Phase Firings’, is limited because it is not always
possible to find all actor occurrences composing a phase prolog in other phases.

71

D E B

0 1 2

(a)

3 4

C AB

0 1 2 3 4 5

C A

0 1 2 3 4 5

CE

0 1 2 3 4 5

6

5 6

7

7

D E B

C AB

0 1 2 3 4 5

C A
CE

6 7

D E B

C AB

0 1 2 3 4

C A
CE

(b)

(c)

Fig. 7.9. End of Algorithm Execution

4A
3B
2C
for j1=0 to m1-5
{
 C B A
}
C B
C

4A
2C
for j2=0 to m2-5
{
 C A
}
2C

2C
E
for j3=0 to m3-3
{
 E C
}
E

3B
E
for j=0 to m4-4
{
 D E B
}
D 2E
2D

for i = 0 to n-2
{
 for j1=0 to m1-5
 {
 C B A
 }
 C B
 C
 4A
 2C
 3B

 for j2=0 to m2-5
 {
 C A
 }
 2C
 2C
 4A (i= i+1)

 for j3=0 to m3-3
 {
 E C
 }
 E
 E
 2C (i= i+1)

 for j=0 to m4-4
 {
 D E B
 }
 3B (i= i+1)
 D 2E
 E (i= i+1)
 2D

}

i=0

i=n-1

4A
3B
2C
for j1=0 to m1-5
{
 C B A
}
C B
C

4A
2C
for j2=0 to m2-5
{
 C A
}
2C

2C
E
for j3=0 to m3-3
{
 E C
}
E

3B
E
for j=0 to m4-4
{
 D E B
}
D 2E
2D

for i = 0 to n-2
 for j1=0 to m1- 1
 {
 C B A
 }
 for j2=0 to m2-1
 {
 C A
 }
 for j3=0 to m3-1
 {
 E C
 }
 for j=0 to m4-1
 {
 D E B
 }

4A
3B
2C
E

.

.

.

4A
3B
2C
E

(a)i=0 (b)i=n-1

(c)

(d)

. . .

. . .

Fig. 7.10. Generated Code

72

for k = 0 to L-1
 {

 for i=0 to n-1

 {
 A

 B
 }

 for j=0 to m-1
 {
 C

 A
 }

 }

C

A

0

A

B

0

for k = 0 to L-1
 {
 A
 for i=0 to n-2

 {
 B A
 }
 B

 C
 for j=0 to m-2
 {
 A C
 }
 A

 }

B A

A C

0 1 2

0 1 2

Software Pipelining

P
a

tte
rn

 T
a

b
le

 S
h

iftin
g

Phase Epilog Fill-in

by other Phases

B A

CA

0 1 2

0 1 2

for k = 0 to L-1
 {
 A
 for i=0 to n-2

 {
 B A
 }
 B

 C
 A C
 for j=0 to m-3
 {
 A C
 }
 A

 }

Phase Epilog Fill-in
By other Phases is

not possible because
there is no ’C’ actor

occurrence in the first
 phase

1 2

3

Fig. 7.11. Opposite Example

Because of all these disadvantages it is no more interesting to think about ’Epilog
Filling in with other Phase Firings’ shifting technique.

73

Chapter 8

Prolog Epilog Merging

8.1 Introduction

As we have seen in chapter 7 INMS solution proposed, ’Pattern Tables Shifting’, is
not efficient enough to schedule a streaming application or any other loop nest. It is
applicable only for some simple cases. In this chapter we propose another solution
that can skip ’Pattern Tables Shifting’ limits, the ’Prolog Epilog Merging’. The
conflict between pipelining and code size can often be a side-effect of separating
the optimization of individual inner loops. ’Prolog-epilog Merging’ shows how to
pipeline phases (inner loops) without any overhead on the size of the global outer
loop. We are going to talk about ’Prolog-epilog merging’ as a technique for loop
nest in general and not especially for SDF applications. So when we say nested
loops or loop nest it means both SDF pre-scheduled steady state and loop nest.
Inner loop and phase have the same meaning as well. We will see in the following
sections the ’Prolog Epilog Merging’ shifting technique solution and its improvement
by ’Renaming’.

8.2 Problem Statement

We propose to modulo-schedule (software pipeline) [50] as many phases as possible,
while merging the prolog of each outer iteration of a phase with the epilog of its
previous outer iteration. Such prolog-epilog merging is enabled by an explicit inner
loops retiming and an implicit outer loop retiming (or shifting) [33; 16], at the
cost of a few additional constraints on modulo scheduling. It is then possible to
reintegrate the merged code block within the pipelined kernel, restoring the loop to
its original number of iterations. This operation is not always possible, and depends
on the outer loop’s dependence cycles. Indeed, after software-pipelining, prolog-
epilog merging may affect phases that are in dependence with statements shifted by
the software pipeline (along an inner loop). This makes our problem more difficult
than in the perfectly nested case [53].

74

8.2.1 Running Example

// Global loop

for (i=0; i<n; i++) {

// Phase A

for (j1=0; j1<m1; j1++) {

a1 t = x0[i][j1];

a2 t = t + 1;

a3 x1[i+1][j1] = t + x4[i][j1];

}

0, 0
0, 0

// Phase B

for (j2=0; j2<m2; j2++) {

b1 t = x1[i][j2]

b2 x2[j2] = t;

}

0, 0

1

// Phase C

for (j3=0; j3<m3; j3++) {

c1 t = x2[j3];

c2 s = s + t;

}

0, 0

0

// Phase D

for (j4=0; j4<m4; j4++) {

d1 x4[i+2][j4] = s;

d2 s = x1[i+2][j4+1];

}

0, 00, 1

0

2

// Phase E

for (j5=0; j5<m5; j5++) {

e1 t = x3[i][j5];

e2 x5[i+1][j5] = t;

}

0, 0

1

// Phase F

for (j6=0; j6<m6; j6++) {

f1 t = x5[i][j6];

f2 x3[i+3][j6] = t;

}

0, 0

2
2

0

}

Fig. 8.1. Running example

Our running example is given in Figure 8.1. Statements and phases are labeled.
Both intra-phase and inter-phase dependence vectors are shown. We consider that
scalars are renamed automatically if they create an output dependence

The classical approach to the optimization of such an example is (1) to look for
high-level loop fusions that may improve the locality in inner loops, often resulting
in array contraction and scalar promotion opportunities [2; 63], and (2) to pipeline
the phases (inner loops) whose trip count is high enough. We assume the first
loop fusion step has been applied, and that further fusion is hampered by complex
dependence patterns or mismatching loop trip counts. The result of the second step
is sketched using statement labels in Figure 8.2; notice the modified termination
condition in pipelined phases. As expected, this dramatically improves ILP, at the
expense of code size increase. In addition, some ILP is lost in the prolog and epilog
of each phase, and this results in accumulated overhead across the execution of the

75

global loop.

// Global loop

for (i=0; i<n; i++)

A a1

a1‖a2

for (j1=0; j1<m1-2; j1++)

a1‖a2‖a3

a2‖a3

a3

B b1
for (j2=0; j2<m2-1; j2++)

b1‖b2
b2

C c1
for (j3=0; j3<m3-1; j3++)

c1‖c2
c2

’Prolog Epilog Merging’

D for (j4=0; j4<m4; j4++)

d1

d2

E e1

for (j5=0; j5<m5-1; j5++)

e1‖e2

e2

F f1

for (j6=0; j6<m6-1; j6++)

f1‖f2

f2

Fig. 8.2. Software pipelining all phases independently

The alternative is to shift the prolog of each pipelined phase, advancing it by
one iteration of the global loop, then to merge it with the corresponding epilog of
the previous iteration of the global loop. This is not always possible, and we will
show in the following sections how to formalize the selection of phases subject to
pipelining as a linear optimization problem.

Back to our running example, a possible solution is to pipeline and apply prolog-
epilog merging to phases A, B, E and F . The code after advancing the prologs of
pipelined phases is outlined in Figure 8.3; notice the outermost prolog — resulting
from advancing the first global iteration of the phase prologs — and epilog — the
last global iteration of phase epilogs. Yet this code is incorrect, for two reasons.

• The inter-phase dependence from statement e2 to statement f1 is violated,
since f1 in the prolog of phase F has been anticipated before one full iteration
of phase E; some instances of this violation are depicted by a bold arc on
Figure 8.3. To fix this violation, one may shift the whole phase E, advancing

76

it by one iteration of the global loop. This is possible since the only inter-phase
dependence targeting phase E (statement e1) has a non-null distance.

• A similar problem exists with the inter-phase dependence from statement b2

to statement c1; some instances of this violation are depicted by a bold dashed
arc on Figure 8.3. Yet we will see that this violation cannot be fixed by
shifting, due to the accumulation of shifting constraints on the cycle of inter-
phase dependences involving A, B, C and D. We choose not to pipeline C
in the following; we will later demonstrate the optimality of this choice after
formalizing the global optimization problem.

The final code after pipelining all phases but C,1 prolog-epilog merging, shifting
E, and reintegrating the merged prologs and epilogs into the kernels is outlined
in Figure 8.4; notice the modified termination condition on the global loop, and
the restored termination condition on the pipelined phases (due to prolog-epilog
merging).

The body of the global loop recovered its original size, and prolog/epilog overhead
has disappeared. This major improvement was done at the minor expense of the
loss of ILP on phase D, and some extra code outside the global loop, due to the
global shifting of phase E.2

8.2.2 Inter-Phase Dependences

In the following, shifting is understood as advancing the execution of a statement
by one or more iterations. For example, shifting b1 implies that the first iteration of
b1 (or more) will end up in a prolog of phase B; this prolog will have to be merged
with the epilog of this phase for the previous iteration of the outer loop. Since the
dependence from a3 to b1 is carried by the outer loop, its associated distance (0)
does not tell anything about the precise iterations of b1 within phase B that are
in dependence. Shifting b1 along the inner loop — by any positive amount — is
thus equivalent to shifting the whole phase B by 1 iteration of the outer loop. This
observation is key to converting our prolog-epilog merging problem into a classical
retiming one.

8.3 Characterization of Pipelinable Phases

From the global dependence graph G with multidimensional dependence vectors,
the phase dependence graph Gp is defined as follows:

• nodes of Gp are the phases;

• an arc links a phase A to a phase B if and only if there is a path in G from
a statement a of A to statement b of B; to avoid spurious transitively covered
arcs, we also require this path to contain a single inter-phase arc;

1Attempting to pipeline C does not bring any ILP.
2The first iteration of the global loop executes E only, while the last iteration executes every

phase but E.

77

a1

a1‖a2

b1
c1
e1

f1

// Global loop

for (i=0; i<n; i++)

A for (j1=0; j1<m1-2; j1++)

a1‖a2‖a3

a2‖a3

a3

a1

a1‖a2

B for (j2=0; j2<m2-1; j2++)

b1‖ b2
b2
b1

C

for (j3=0; j3<m3; j3++)

c1‖c2
c2
c1

0

D for (j4=0; j4<m4-1; j4++)

d1

d2

E for (j5=0; j5<m5-1; j5++)

e1‖ e2

e2

e1

F for (j6=0; j6<m6-1; j6++)

f1‖f2

f2

f1

0

a2‖a3

a3

b2
c2
e2

f2

Fig. 8.3. Advancing prologs of pipelined phases (incorrect code)

• the distance associated with an arc of Gp is the sum of the distances, for the
dimension of the global loop, along the corresponding path from a to b in G.

Arcs in Gp will be called phase dependences. They correspond to one inter-phase
dependence and zero or more transitively-covered intra-phase dependence.

Notice the distance associated with a phase dependence takes into account non-
zero distances along the outer dimension of intra-phase dependences.

Figure 8.5 shows the phase dependence graph for the running example.

78

// Prolog for shifted iteration of E

e1

for (j5=0; j5<m5; j5++)

e1‖e2

// Prologs of A, B, and F

a1

a1‖a2

b1
f1

// Global loop

for (i=0; i<n-2; i++)

{

A for (j1=0; j1<m1; j1++)

a1‖a2‖a3

B for (j2=0; j2<m2; j2++)

b1‖b2

C for (j3=0; j3<m3; j3++)

c1
c2

D for (j4=0; j4<m4; j4++)

d1

d2

E for (j5=0; j5<m5; j5++)

e1‖e2

F for (j6=0; j6<m6; j6++)

f1‖f2

}

// Epilog for shifted interation of E

e2

// Shifted iterations of A , B, C, D and F

for (j1=0; j1<m1; j1++)

a1‖a2‖a3

for (j2=0; j2<m2; j2++)

b1‖b2
for (j3=0; j3<m3; j3++)

c1
c2

for (j4=0; j4<m4; j4++)

d1

d2

for (j6=0; j6<m6; j6++)

f1‖f2

// Epilogs of A, B, and F

a2‖a3

a3

b2
f2

Fig. 8.4. Software pipelining with prolog-epilog merging

8.3.1 Causality Condition

Every time a phase is software pipelined, we just showed that merging its prolog
and epilog is equivalent — when considering Gp — to shifting the whole phase by

79

A B C D E F
1 0 0

1

2

0

2

Fig. 8.5. Phase dependence graph

1, the interphase dependence distance will be decreased by one . To guarantee that
all phases can be pipelined and their prolog and epilog merged, it is thus sufficient
that every forward arc in Gp has distance d > 0, and any backward arc has distance
d > 1.

This is of course too restrictive, and in general we are back to a traditional
retiming problem [33]. Pipelining all phases is possible if and only if, for any cycle
C,

∑

p∈C

dp − nb_backward_edges(C) ≥ nb_phases(C). (8.1)

We can state a more general result.
Let us define

kC
def
=

∑

p∈C

dp − nb_backward_edges(C). (8.2)

Théorème 1 For every cycle, the number of phases that can be safely pipelined is
greater than or equal to kC.

This is only a lower bound, as we did not capture in Gp whether pipelining a
phase did result in an intra-phase shifting of the specific statements involved in some
inter-phase dependence.

Proof. Let us prove this result. For any instruction a, let a(i, p, j) denote an
instance of instruction a, given an iteration i of the global loop, a phase p and an
iteration j of p. Let ta(i,p,j) denote the logical execution instance of a(i, p, j) and
a(i, p) denote the set of instances of a at global loop iteration i.

b(i′, p′) depends on a(i, p) with dependence distance d

=⇒ ∀j, j′, ta(i,p,j) < tb(i′,p′,j′) and i ≤ i′. (8.3)

This means that if there is an interphase dependence between a of phase p and b of
phase p′ then all instances of a execute before b, i ≤ i′.

Indeed, a phase dependence in Gp between p and p′ corresponds to dependences
between two sets of statement instances a(i, p) and b(i′, p′).

Software pipelining p′ may imply shifting occurrences of instruction a. We call
cj the associated shifting distance along p′, ci the shifting distance along the global
loop, and we consider two cases.

80

Forward edge. If p′ depends on p with distance d and p′ follows p in the loop nest,
ci must be chosen such that d ≥ 0.

Backward edge. If p′ depends on p with distance d and p′ precedes p in the loop
nest, ci must be chosen such that d > 0.

We may compute ci, taking into account the global loop shifts over outgoing
arcs, the distance d, and whether p′ is pipelined or not. The global loop shifts and
d are the classical retiming variables and parameters. What happens to p′ can be
modeled easily, as we previously observed in Section 8.2.2 that shifting along an
inner loop by any amount cj can be compensated by shifting along the global loop
by 1.

Therefore software pipelining p′ will increase the total pressure over a cycle by
at most 1. This constraint can be modeled by decrementing the distance d when
p′ is pipelined. We are back to a classical retiming problem, from which we deduce
that p′ can be pipelined if decrementing d does not induce any cycle with negative
or null distance in Gp.

A simple recurrence on the number of pipelined phases concludes the proof.

8.3.2 Necessary and Sufficient Condition

In the absence of any information about the statements involved as sink and source of
phase dependences, one may only assume that pipelining a phase will incur a shifting
constraint along the global loop. In this case, the sufficient condition becomes a
necessary one, and the previous proof can be extended to show that the number
of phases that can be pipelined while merging prologs and epilogs is exactly kC , as
defined by (8.2).

Conversely, when considering the full dependence graph G, it is possible to con-
strain the pipelining of individual phases so that to forbid any inner loop shifting
on some specific statements (targets of inter-phase dependences). This will allow to
further pipeline some phases without impacting retimability of the global loop. We
will come back to this extension when describing the complete algorithm.

8.4 Global Optimization Problem

Based on Theorem 1, we can formalize the software pipelining of multiple inner
loops with prolog-epilog merging as a global optimization problem.

8.4.1 Multidimensional Knapsack Problem

First of all, the causality preservation condition in Theorem 1 needs to be extended
to cover the whole phase dependence graph Gp. Indeed, software-pipelining kC

phases for each cycle C may create a retiming conflict, as a phase may belong to
several cycles and can be chosen to be software-pipelined for one cycle and not for
another.

81

The subject is not to software pipeline exactly kC phases for each cycle C but
to minimize the global outer loop execution time. Since for every cycle,kC phases
can be safely pipelined, we have to maximize an objective function under some
constraints. The objective function associated with the (static) cycle count for the
loop nest is the sum over all phases p of

profitp = seqtimep − mpIIp,

where seqtimep is the number of cycles to execute phase p and IIp is the initiation
interval for the pipelined version of phase p and mp the number of iteration of phase
p. Let wCp ∈ {0, 1} denote whether phase p belongs to cycle C. The optimization
problem is the following:

variables: ∀p ∈ {1, . . . , nb_phases}, Xp ∈ {0, 1}

objective: max
∑nb_phases

p=1 profitpXp

constraints: ∀C ∈ {1, . . . , nb_cycles},
∑nb_phases

p=1 wCpXp ≤ kC

(8.4)

This is a multidimensional Knapsack problem, a well known NP-complete prob-
lem; unlike the one-dimensional case, there is no known pseudo-polynomial algo-
rithm [43] but some heuristics give good results [48].

8.4.2 Algorithm

1. If for every cycle
kC ≥ nb_phases

then software-pipeline each phase independently.

2. Otherwise:

• solve the multidimensional knapsack problem to identify which are the
kC phases to pipeline;

• retime the global outer loop, considering phase dependences in Gp, re-
ducing their distance by one every-time the sink phase has been pipelined
and contains intra-phase shifted statements at the sink of an inter-phase
dependence; this step is guaranteed to terminate according to Theorem 1.

3. As an optional extension, pipeline all remaining phases with the additional
constraint that statements at the sink of an inter-phase dependence may not
be shifted; this may be easily modeled in any modulo scheduling algorithm by
placing such statements initially in column 0 [50]. This step is guaranteed not
incur global retiming constraints, because anticipating statements that are not
the sink of a dependence carried by the global loop does not violate a schedule
of the global loop.

4. Generate code, gathering all prologs and epilogs from pipelined phases, and
iterating on them according to the retiming of the global outer loop.

82

8.5 Back to the Running Example

Figure 8.2 showed how to software pipeline all phases independently. This allows
to compute the initiation interval IIp for every phase p. The profit of pipelining a
phase is the difference in (static) execution cycles, between executing the original
inner loop body and the pipelined version. Values given here are not measured nor
real, just to explain the algrithm. Figure 8.6 shows the profit for all phases in the
running example, assuming the trip counts (number of iterations) of all phases are
identical and equal to m = m1 = · · · = m6.

Phase A B C D E F
Profit 2m m m 0 m m

Fig. 8.6. Profit table

The graph Gp was given in Figure 8.5. It consists of two cycles, (ABCD) and
(CEF). These cycles share phase C, which makes the optimization problem even
more interesting as a naive approach may select C to be pipelined for one cycle but
not for the other. Figure 8.7 shows kC , the maximum number of phases that can be
pipelined for each cycle.

Cycle ABCD CEF
kC 2 2

Fig. 8.7. Cycle retiming constraints

Overall, we have to solve the following optimization problem:

Xj ∈ 0, 1
max(2X1 + X2 + X3 + X5 + X6)
X1 + X2 + X3 + X4 ≤ 2
X3 + X5 + X6 ≤ 2

A greedy approximation of the solution orders phases from the most profitable
phase to the less profitable one, and selects as many phases as possible for software
pipelining, while respecting the kC constraint for every cycle C. The result for the
running example is to pipeline A, C, and E, with a total profit of 4m.

A B C D E F
0 0 0

0

1

-1

2

Fig. 8.8. Modified phase dependence graph after pipelining A, B, E and F

The multidimensional knapsack solution is better: phases A, B, E, F are
pipelined, with a total profit of 5m. Figure 8.8 shows the modified phase depen-
dence graph, where pipelined phases are shaded, and the decremented distances of

83

incoming arcs appear in a bold face — following the retiming model of the proof
of Theorem 1. Notice that phase C is more profitable than B, but pipelining B
instead gives us a chance to choose another phase for the other cycle and increases
the total profit. We suppose that the execution time of every instruction is 1. In
the exmaple there are thirteen insturctions so the execution time of the sequential
code is 13×m and after software pipeling of A, B, E and F phases we have a profit
of 5 × m wich corresponds to a speedup of 13/(13 − 8) = 1.625.

As this example shows, it may be overall more effective to pipeline less profitable
phases but maximize the profit on every cycle. This observation is very natural when
the phases have a different trip count, but our running example shows that this may
also occur when cycles in the phase dependence graph are not disjoint.

The resulting code, with prolog-epilog merging and generation of the global loop’s
prolog and epilog was shown in Figure 8.4.

This corresponds to a speedup of 13/(13 − 8) = 1.625.

8.6 Dependence Removal

So far, we did not consider the applicability of data dependence removal techniques,
like privatization and renaming [20; 37]. It is reasonable to assume scalar variables
have been renamed through conversion to SSA form [14], as is the case in modern
optimizing compilers; this guarantees the absence of output (write-after-write) and
anti (write-after-read) dependences on scalar variables. The case of arrays requires
significant static analysis and code generation effort (copy-in and copy-out), and a
memory overhead [20; 37]. We are not worried by the overheads of copy-in and copy-
out, assuming it is amortized over many iterations of the global loop. In addition,
we will not consider privatization as the dependences we try to remove involve dis-
tinct source and sink statements, where array renaming applies. Nevertheless, since
prolog-epilog merging is partly motivated by code size improvements, the memory
costs of array renaming must be severely controlled. Our work is driven by embed-
ded applications, and we assume a constant bound M on the total memory available
for array renaming. Since our technique guarantees the size of the global loop (ker-
nel) does not increase, it is easy to compute such bound, given the original code size
and memory footprint of the global loop, for a given local memory configuration
(local memory size and hierarchy).

Removing a dependence may suppress a cycle, hence yield more pipelinable
phases, but it also consumes more memory. Overall, the solution is a compro-
mise between the pipelining profit (indirecly linked with the number of pipelinable
phases) and the need to keep the amount of extra memory below M . We can model
this tradeoff as an extension to the previous linear optimization problem. When
renaming a left-hand side (LHS) occurrence of an array, incoming anti-dependences
and both incoming and outgoing output dependences to that statement are removed.

We model the decision of renaming an array a in all LHS occurrences of instruc-
tions of a phase p through a variable Ra,p ∈ {0, 1}. Such variables are multiplied to
“big” constants, controlling which constraints should be nullified — depending on

84

which cycle is broken through array renaming. To capture the correlation between
the decision to rename an array and the removal of an inter-phase dependence, it is
important that the inter-phase dependence graph Gp is a multi-graph: each distinct
inter-phase arc in G must yield a distinct arc in Gp. The complete optimization
problem is stated in Fig. 8.9.

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Variables: ∀p ∈ {1, . . . , nb_phases}, Xp ∈ {0, 1}
∀a ∈ {1, . . . , nb_arrays}, ∀p ∈ {1, . . . , nb_phases}, Ra,p ∈ {0, 1}

Objective: max

nb_phases
X

p=1

profitp × Xp

Constraints:

nb_arrays
X

a=1

nb_phases
X

p=1

sizeofa × Ra,p ≤ M

∀C ∈ {1, . . . , nb_cycles},

nb_phases
X

p=1

belongsp,C × Xp ≤ kC + nb_phases ×

nb_arrays
X

a=1

X

p∈C∧assigned
a,p

Ra,p

(8.5)
Fig. 8.9. Optimizing the pipelining profit with array renaming

nb_arrays denotes the number of arrays, and sizeofa denotes the size of array
a, i.e., the memory overhead of renaming one LHS occurrence, assigneda,p states
that array a is assigned in p. The “big” constant is nb_phases: it is multiplied by
the sum of all variables associated with renaming of some array a in some phase p
belonging to a given cycle C. This constant is big enough that the constraint on a
cycle C will be nullified if and only if one or more renaming occurs along the cycle.

8.6.1 Prolog-Epilog Merging with Renaming Algorithm

We may now outline the main steps of the algorithm, assuming a loop nest with
multiple phases enclosed by a single global loop. In this section, we focus on solving
our optimization problem without considering the impact on downstream loop nest
generation methods.

1. If kC ≥ nb_phases for every cycle then software-pipeline each phase indepen-
dently.

2. Otherwise:

• solve the integer linear optimization problem to identify which are the kC

phases to pipeline;

• retime the global outer loop, considering phase dependences in Gp, re-
ducing their distance by one every-time the sink phase has been pipelined
and contains intra-phase shifted statements at the sink of an inter-phase
dependence; this step is guaranteed to terminate according to Theorem 1.

3. Pipeline all remaining phases with the additional constraint that any state-
ment at the sink of an inter-phase dependence may not be shifted; in a modulo
scheduling algorithm, this constraint can be modeled by forcing such state-
ments to be assigned to column 0 [50]. This step is guaranteed not impact
global retiming constraints.

85

4. Generate the kernel, prolog and epilog of the retimed global loop.

5. Generate code for the kernel, prolog and epilog of every pipelined phase.

6. Gather all prologs, hoist them before the global loop, after the prolog of the
retimed global loop, and execute them in the same order as phases in the
global loop.

7. Gather all epilogs, hoist them after the global loop, before the prolog of the
retimed global loop, and execute them in the same order as phases in the
global loop.

8.6.2 Code Generation

The previous algorithms yield multidimensional shifts resulting from phase pipelin-
ing and global loop retiming. However, unlike code generation for single-dimensional
pipelining [52], we are not dealing with multiple repetitive patterns in the phase ker-
nels and can rely on the classical code generation methods [50].

Code generation for the retimed global loop only involves classical loop peeling
and induction variable substitutions of multidimensional loop shifting [15].

Code generation for pipelined phases after prolog-epilog merging is almost iden-
tical to the inner loop pipelining case, except for the following steps.

1. As the loop kernel is now collapsed with the merged prolog and epilog, the
trip count of a pipelined phase is not decreased by the pipeline depth from the
original trip count.

2. When the loop counter occurs in an expression of some shifted statement, one
needs to generate an extra induction variable and schedule an extra integer
addition in the kernel. In our case, if the statement is shifted by k iterations,
the extra induction variable needs to wrap-around [24] before proceeding with
the last k iterations of the phase. This requires an additional comparison
and a conditional move (or a simple mask in case of power-of-two trip counts).
These instructions are off the critical path and are not expected to have a high
overhead, except on small loop bodies. We will come back to the evaluation
of this overhead in the experimental section.

8.7 Related Work and Challenges

We do not aim at extending software pipelining to nested loops, unlike Muthukumar
and Doshi [40], Rong et al. [53; 52] and most previous work on multidimensional
pipelining (see e.g. Ramanujam et al. [49]). We simply leverage the enclosing loop
nest to amortize the startup/flush overhead associated with software pipelining, and
to control the code expansion in inner loops.

Compared to plain shifting of statement iterations, our technique involves a more
complex combination of affine scheduling [22] and iteration domain splitting (a.k.a.
index-set splitting) [23]. This raises many issues, some of which are discussed below.

86

8.7.1 Managing Register Pressure

There is an unfortunate side-effect of retiming a prolog (resp. epilog) along the global
loop: any live variable entering (resp. leaving) the pipelined kernel will interfere with
every variable in other phases. The effect on register pressure can be disastrous [60].
There are multiple ways to tackle this problem.

• The increased pressure is comparable to aggressive scheduling of unrolled or
fused loops [38; 9]. This should be encouraging given the practical impor-
tance of loop fusion among loop optimizations for memory locality and ILP
enhancement.

• Spills resulting from inter-phase liveness can always be spilled outside phases.
This may turn out to be cheaper than executing the low-ILP prolog/epilog of
a deeply pipelined inner loop. It is even more likely to be shorter, especially on
architectures with instruction set support for register spill/refill: register stack
engine on the Itanium [39], register windows on Sparc, or multi-push/multi-
pop operations on CISC instruction sets.

8.7.2 Managing Code Size

Our method results in code growth outside the global loop only. This is nicer to
memory-constrained architectures, but it may still increase cache pollution (or code-
copying on local memories). Furthermore, code growth is amplified by the global
loop retiming induced by prolog-epilog merging. For innermost loops, prolog and
epilog collapsing is an alternative strategy consisting in guarding the phases with
rotating predicate registers [18; 19]. This does not reduce pipeline startup/flush
delays however. In our case, pipeline depth has negligible influence on startup time
since prologs/epilogs are hoisted outside the global loop.

Muthukumar and Doshi extended the technique to multidimensional software
pipelining [40]. They do not target code size reduction, but increased throughput
on perfectly nested kernels with low-trip-count innermost loops. Iterations corre-
sponding to prologs and epilogs are shifted over the entire execution of the inner-
most loop kernel, effectively overlapping iterations of an epilog with those of the
next prolog. Compared to prolog-epilog merging, collapsing is difficult to generalize
to imperfectly nested loops and incurs harder legality constraints. It is also lim-
ited to ISAs with rotating predicate registers. Experimental results on a prototype
implementation inside Intel’s production compiler are encouraging (despite regis-
ter pressure challenges similar to ours); this motivates revisiting Muthukumar and
Doshi’s technique [40] in the context of prolog-epilog merging.

8.7.3 Multidimensional Scheduling

There are clear opportunities for integrating our technique with other forms of multi-
level pipelining, or combined pipelining and unroll-and-jam [9; 53]. E.g., considering
phase C of the running example, it is possible to improve ILP by shifting c1 by one
iteration of the global loop.

87

High-level loop optimizations are also promising application of prolog-epilog
merging. The polyhedral model is an expressive way to define and search for com-
plex sequences of loop transformations [25]. Yet such complex transformations often
induce code size expansion. One source of code duplication comes from multidimen-
sional shifts [62]. It seems possible to integrate our technique in the code-generation
phass of a polyhedral compilation tool [25].

8.8 Conclusion

Prolog-epilog merging may appear as the most natural extension to inner loop
pipelining and the right way to schedule an SDF application steady state. Indeed, it
avoids the code size and startup time overhead of nested prologs and epilogs: these
advantages over loop unrolling are exactly the motivations that drove to the design
of software pipelining algorithms [32]. We formalized the concept of prolog-epilog
merging, combining inner loop pipelining with multidimensional retiming. We com-
bined our technique with array renaming to improve the pipelinability of inner loops.
This results in a global scheduling and memory expansion tradeoff, modeled as a
tractable, integer linear optimization problem.

88

89

Chapter 9

Code generation of Prolog-Epilog
Merging

9.1 Introduction

As we have seen in the previous chapter, chapter 8, Prolog-Epilog Merging technique
has proved efficient in pipelinable phases detection and prologs epilogs merging. Now
phases to be pipelined are selected but how to generate their codes? How to generate
code for prolog-epilog merging? Generating the code for this technique means to
write each actor firing in the right place in the code and recompute its new iterators
i′ and j′, moving an instruction or actor occurrence from one iteration to another
implies a change in iteration and then modifications of iterators values.
This shifting looks like clock system. For example if time is 10 : 15 : 59, one second
after time will be 11 : 16 : 00, so a shifting in time by one second has modified both
minutes and seconds loops, the second coordinate 59 becomes 00 and the minute
coordinate 15 becomes16. Prolog-epilog merging shifting technique does the same
thing. The actor firing A(1, 0) i = 1 and j = 0, in Fig. 9.1, will execute in parallel
with B(0, m− 1) after prolog epilog merging. In the generated code its coordinates
are, i′ = 0 and j′ = m−1, the shifting has transformed point A(1, 0) to A(0, m−1),
so a shifting by one of an actor may have effects on both loops, the inner and the
global ones, 0 becomes m − 1 and 1 becomes 0.
In the following sections we are going to talk about our code generation technique
and its implementation.

9.2 Prolog-Epilog Merging Implementation Idea

INMS framework is composed of three processes:

• The first process:

– if it is an SDF application then it takes the pre-scheduled steady state as
input else if it is any loop nest so this nest itself will be the input

90

for i=0 to n-1
 for j=0 to m-1
 A(i,j)
 B(i,j)

 A(0,0)
 B(0,0)A(0,1)
 B(0,1)A(0,2)
 .
 .
 B(0,m-2)A(0,m-1)
 B(0,m-1)

 A(1,0)
 B(1,0)A(1,1)
 B(1,1)A(1,2)
 .
 .
 B(1,m-2)A(1,m-1)
 B(1,m-1)
 .
 .
 . A(0,0)

 B(0,0)A(0,1)
 B(i,1)A(i,2)
 .
 .
 B(0,m-2)A(0,m-1)
 B(0,m-1)A(1,0)

 B(1,0)A(1,1)
 B(1,1)A(1,2)
 .
 .
 B(1,m-2)A(1,m-1)
 B(1,m-1)A(2,0)
 .
 .
 .
 B(n-2,0)A(n-2,1)
 B(n-2,1)A(n-2,2)
 .
 .
 B(n-2,m-2)A(n-2,m-1)
 B(n-2,m-1)A(n-1,0)

for j=0 to m-2
 B(n-1,j)A(n-1,j+1)
B(n-1,m-1)

A(0,0)

for i’=0 to n-2
 for j’=0 to m-1
 B(i’,j’)A(i’,j’)

for j=0 to m-2
 B(n-1,j)A(n-1,j+1)
B(n-1,m-1)

(a) Original Code

(b) Software Pipelining

(c) Prolog-Epilog Merging

(d)Generated Code

for i=0 to n-1
 A(i,0)
 for j=0 to m-2
 B(i,j) A(i,j+1)
 B(i,m-1)

i=0

i=1

i=0

i=1

i=n-2

Fig. 9.1. Code Generation Example

– selects phases to be pipelined as output, by solving the multi-knapsack
system. To select phases to be pipelined the process should be able to
detect phases first. A phase is a loop and the loop structure is defined
by the language itself, the beginning of each loop is a language key word.
We will see in section 9.2.2.1 how to detect loops in general and loop nest
in particular.

• The second process is software-pipelining the selected phases. In the output
code, selected phases are pipelined and many prologs and epilogs are generated
(inside the global loop) see the example in Fig. 9.1(b).

• The third and the last one, code generation process, takes the code, output

91

of second process, as input and merges the prolog of a phase lp, of the global
loop iteration i, with the lp epilog of the previous global loop iteration i−1 to
form the final code, a loop nest without any prologs nor epilogs inside it (see
Fig. 9.1(c) and Fig. 9.1(d)).

In the previous chapter 8 we have presented the first process. The second one,
software pipelining of selected phases, may be realized by implementing any software
pipelining technique like Swing Modulo Scheduling (SMS) [26] or using any tool
or compiler where software pipelining is implemented. The third process, ’Code
Generation’ is what we are going to see here. It has as input a pre-scheduled steady
state (loop nest) with pipelined phases and has as output the same code with prolog
epilog merged for each pipelined phase. It does this task by merging prolog and
epilog of each pipelined phase and then checking the effect of this merging on the
other phases. We call the first task ’Phase Prolog-Epilog Merging’ and the
second one ’Effect of Phase Prolog-Epilog Merging on Loop Nest’.

Remark: Because we focus on two kinds of applications at the same time, pre-
scheduled steady state (special loop nest) and loop nest, although they are almost
the same thing, so every time there is a different in treatment we specify it.

9.2.1 Phase Prolog-Epilog Merging

Focusing on each phase separately simplifies the problem and lets us understand
clearly what happens when we merge a phase prolog and epilog. Consider that we
have a loop nest with one phase inside only, see Fig 9.1 (a). Merging the prolog and
the epilog of this phase means to move the prolog of the first iteration of the inner
loop outside the global loop and to execute it first; see Fig 9.1(b). Then merging
every prolog of iteration i with the epilog of iteration i− 1, which forms some phase
kernel iterations, and adding them to the phase kernel as in Fig 9.1(d). The upper
bound of phase iterator will be increased by this number of iterations. The latest
global loop iteration is incomplete. It is exactly the phase kernel code followed by
the epilog, see Fig 9.1(d). But how to automate this process?

For each phase,to merge its prolog and epilog we:

1. take the phase prolog from the global loop and put it above, just before it

2. go to the end of the global loop and write again the kernel code, this copy of
kernel is not enclosed by the global loop.

3. take the phase epilog from the global loop and put it below, just after the copy
of the kernel.

4. compute bounds. Shifted prolog decreases the global loop upper bound and
prolog-epilog merging increases the upper bound of the phase (inner loop)
kernel, by the number of iterations formed by its prolog and epilog.

92

5. compute actor occurrence coordinates in this new iterators space. After this
shifting and merging actor occurrence coordinates (i, lp, j, r) becomes (i′, lp, j′, r),
lp is the phase containing this actor occurrence and r is its order in the loop if
the loop contains more than one occurrence (see section 6.5.2); the r dimen-
sion doesn’t change, it always equals one after SDF to DDG transformation
and lp does not change as well because the shifting technique is "Prolog-epilog
Merging". If an actor occurrence appears in the global loop iteration i′ and
phase iteration j′ this doesn’t mean that its coordinates are (i′, j′). We see in
Fig 9.1(c) that B(0, lp,m − 1), i′ = 0, j′ = m − 1 executes in parallel with
A(1, lp, 0), i = 1, j = 0, this means they are in the same iteration although
they do not have the same coordinates. We will see how to compute Actor
coordinates (instruction indexes) in this new iterators space in section 9.2.2.4.

The Example in Fig 9.2 shows the prolog-epilog merging automation process.
The idea is so simple and so efficient. It works with any technique that generates
prologs and epilogs, not only software pipelining, because the idea has no relation
with software pipelining technique, it tries only to merge the prolog and the epilog.
The code in Fig 9.2(e) is better than the code in Fig 9.2(a), in terms of efficiency
and code size, because the code size of the global loop in Fig 9.2(e) is less than the
code size of the global loop in Fig 9.2(a) and in streaming applcations, the number
of iteration of the global loop (n) is largely greater than the number of iteration of
the inner loops (m). Therefore, more the global loop code size is smaller more the
efficiency (execution time) is better.

for i=0 to n-1
 A
 for j=0 to m-2
 B A

 B

(a)Pipelined Phase

A
for i=0 to n-1

 for j=0 to m-2
 B A

 B

A
for i=0 to n-1

 for j=0 to m-2
 B A

 B

for j=0 to m-2
 B A
B

A
for i=0 to n-1

 for j=0 to m-2
 B A

for j=0 to m-2
 B A
B

A
for i=0 to n-2

 for j=0 to m-1
 B A

for j=0 to m-2
 B A
B

(b)Moving Prolog out

(c)Copy the Kernel
 and the Epilog

(d)Moving the Epilog Out (e) Loop bounds modifying

Fig. 9.2. Prolog Epilog Merging Automatizing

9.2.2 Phase Prolog-Epilog Merging implementation

The implementation of ’Phase Prolog-Epilog Merging’ consists of:

93

• loop nest detection

• prolog epilog moving and kernel duplicating

• computing iterator bounds

• computing coordinates of actor occurrences

9.2.2.1 Loop Nest Detection

Because the INMS input may be a pre-scheduled steady state or any other loop
nest, INMS is an SDF application scheduling technique and a loop nest optimization
technique as well, two cases are possible:

• if it is an SDF application schedule, a pre-scheduled steady state, loop nest
detection is not needed, because the SDF application schedule is represented
by one steady state only.

• The code may be composed of many loop nests and each nest may contain
many phases. Because INMS focuses on loop nests, each one separately, so we
need first to detect them.
The idea is very simple: the beginning of each nest is a loop key word, for
example for a C language code it is ’for’ or ’while’. We look at the code as a
text and we try to find the first ’for’ word, if we find it so this is the beginning
of loop nest then the counter will be incremented if ’{’ is read and decremented
if ’}’ is. If the counter value is zero so it is the end of the loops nest. The
program terminates if counter equals zero. Because for every "{" we have "}"
so the program terminates in all cases. The loop nest detection depends on
the language itself, the language in which the code is written, because the loop
key word and structure are defined by the language (in our implementation
we have treated ’for’ loop nest written in ’C’).

9.2.2.2 Prolog Epilog Moving and Kernel Duplicating

The idea is: for every phase, we first detect its kernel, prolog and epilog and then
move the prolog and epilog out of the global loop and copy the kernel code below
the global loop as mentioned in section 9.2.1.

• kernel detection: we detect a phase kernel as we detect any phase (loop), see
section 9.2.2.1.

• prolog epilog detection: because actor occurrences (instructions) in prolog
and epilog appear in kernel code as well so for every kernel we:

1. look for actor occurrences (instructions) that appear in the kernel and
just above it. These actor occurrences form the prolog. Because we
know the loop (phase) upper bound in both the original code and the
pipelined phase, and the dependence graphs (DDGs) before and after

94

software pipeling so we can can easily find the exact number of each
actor occurrence we are looking for, actor occurrences just before the
kernel (the prolog) and actor occurrence just after it (the epilog)

2. look for actor occurrences (instructions) that appear in the kernel and
just below it. These actor occurrences form the epilog.

3. move the prolog out to be executed before the global loop and write the
kernel copy below, to be executed just after the global loop, then we move
the epilog out the global loop as well but below it, the kernel copy plus
the phase epilog form the true epilog.

Two important questions can be asked here:

– how to know if two actors are identical (two instructions) ?

∗ an actor is generally a function so it has a name, two actors are
identical if they have the same name

∗ an instruction is:

· INSTRUCTION: var = EXPRESSION

· EXPRESSION: var | constant | op EXPRESSION | EXPRES-
SION op EXPRESSION | (EXPRESSION)

’=’ is the affectation operator and ’op’ represents all arithmetic and
logic operators. Two instructions are identical if their expressions are
and two expression are identical if they consist of the same operators
and the same operands, except iterators or indexes which may differ
from one expression to another because of shifting. For example
a[i][j] = 5, a[i + 1][0] = 5 and a[0][j − 1] = 5 are all identical but
a = 5 and a[i][j] = 5 are not.

– ’prolog and epilog actors (instructions) appear in kernel as well’ is true
but how many occurrences of each actor do the prolog and epilog con-
sist of, (instruction)? We are not going to move all actor occurrences
(instructions) that appear in the kernel and up it out the global loop,
the same thing for epilog, we need to move out only the right number of
actor occurrences that form the prolog and epilog. INMS have already
selected pipelinable phase and software pipelined them so we have some
data, input, that tell us for every actor how many occurrences have been
moved out of the inner loop (phase). By using these data we can move
out of the global exactly the right number of occurrences, occurrences
composing the prolog. The maximum number of an actor occurrences in
prolog represents the number of iterations that should be added to the
kernel upper bound. Because we have the kernel and the prolog we can
easily built the epilog: prolog plus epilog equals iterations added to the
kernel.

95

9.2.2.3 Computing Iterator Bounds

• For every pipelined phase, after applying Prolog-epilog merging, the kernel
iterator upper bound is increased by the number of iterations formed by the
merged prolog and epilog.

• For the global loop, the upper bound iterator value is modified too. Its new
value equals the previous value minus one because in reality we shift the prolog
actors and no more, the prolog contains less actor occurrences than the phase
itself.

9.2.2.4 Computing of Actor Occurrence Coordinates

Untill now we have not talked about shifting effects on actor occurrence coordinates
or instructions. Actor occurrence coordinates are in function of iterators i and j and
shifting an actor occurrence means to move it from one phase iteration to another
or even from one global loop iteration to anther. Before prolog-epilog merging, the
actor occurrence coordinates are (i, j), we don’t talk about lp and r because they
do not change, so what are its coordinates after merging? It depends on where the
actor occurrence will be, in prolog, kernel or epilog. We will see the epilog case in
9.2.3.3.

• for actor occurrences that are in prolog, we replace the phase iterator j by
zero for the first occurrence and we increment it each time we find another
actor occurrence. If the actor occurrence number is m − 1 (the inner loop
upper bound) then we increment i and we make j = 0 again and we repeat
the process untill all actor occurrences in prolog become assigned.

• for each kernel actor: if the actor appears in the prolog as well then this means
that this actor was shifted by d occurrences, d being the number of the actor
occurrences in prolog.

– if j ≥ d then the actor occurrence coordinates are j′ = j − d and i′ = i,
shifting across inner loop (phase) iterations only.

– else j′ = (m−1)−j and i′ = i−1, shifting across both inner loop (phase)
iterations and global loop ones.

.

9.2.3 Effect of Phase Prolog-Epilog Merging on Loop Nest

Code generation suffers from a serious problem, the inter-phase dependence. We
have defined this dependence as: the actor A of phase lp depends on the actor B
of phase lp′ means m occurrences of A depends on m′ occurrences of B, m and m′

are the number of iterations of phases lp and lp′ respectively, one occurrence by
iteration. We define interphase dependence relation in this way because dependence
between two actors may change from one occurrence to another and we are not

96

going to define dependences between every two actor occurrences. The problem is
that, because of this definition, if A depends on B and the dependence distance is 0
then, shifting one A occurrence implies shifting m′ occurrences of B. Fig 9.3 shows
an example. In Fig 9.3(a) we have a code consisting of two phases and C in the
second phase depends on A of the first phase, the dependence distance is equal to
0. Because it is an interphase dependences, we can only say that m′ occurrences of
C depends on m occurrences of A. To be exact, we need to specify for every C(i, j′)
all A(i, j) occurences that C(i, j′) depends on them. However, if we do so, we will
have a code size and DDG graph explosion. Therefore, we prefer only to say m′

occurrences of C depends on m occurrences of A. In Fig 9.3(b) we see that only the
second phase was pipelined, we suppose that the first phase can not be pipelined
because of dependences between A and B. Now, applying prolog-epilog merging on
the second phase makes C be moved out of the global loop and change the upper
bound value of the second phase, m′ − 2 becomes m′ − 1 and of the global loop,
n− 1 becomes n− 2. The latest incomplete iteration of the global loop will form its
epilog, see Fig 9.3(c). C is moved out of the global loop (it is in the prolog code),
C depends on A (an interphase dependence) and dependence distance is equal to
0 so m occurrences of A should be moved out the global loop and take their place
just before C, see Fig 9.3(d). If the loop nest contains many phases the problem
becomes more complex, so how to generate the code in this case?

9.2.3.1 Idea

Prolog-epilog Merging has been applied on all pipelined phases. To know if we need
to shift occurrences of other actors or not, because of inter-phase dependence, the
idea is:
for every actor A in prolog:

1. find k and r such that the number of A occurrences in prolog (nb_A_occurrences_in_prolog)
is equal to k × m + r, m is the number of iterations of phase lp, k is the
result of the integer division of nb_A_occurrences_in_prolog by m and r
(r = nb_A_occurrences_in_prolog mod m) is the rest of this division.

2. For every actor B that A depends on it we have:

• dAB: the vector distance of the interphase dependence of A on B, it has
one dimension i because an interphase dependence is between two actors
of two different phases.

• dAB 6= 0 means that the A occurrences in phase lp, from global loop
iterations 0 to dAB − 1, don’t depend on B.

• nb_B_occurrences_in_prolog = k′ × m′ + r′: is the number of B oc-
currences already in prolog.

• if (k = (k′ + dBA))

– the first dBA × m occurrences of A don’t depend on B and k′ × m
occurrences of A depend on k′×m′ and we have already this number
of B occurrences in prolog.

97

for i=0 to n-1
 {

for j=0 to m-1
 {
 A
 B
 }

for j’=0 to m’-1
 {
 C
 D
 }

0

for i=0 to n-1
 {

for j=0 to m-1
 {
 A
 B
 }

C

for i=0 to n-2

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-1
 {
 D C
 }

C

for j=0 to m-1
 {
 A
 B
 }

for j’=0 to m’-2
 {
 D C
 }

D

for i=0 to n-2
 {

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-1
 {
 D C
 }

C

for j=0 to m-1
 {
 B
 }

for j’=0 to m’-2
 {
 D C
 }
D

for j=0 to m-1
 {
 A
 }

for j’=0 to m’-2
 {
 D C
 }
D

(a) Original Code
(b) Software Pipelining

(c) Prolog-Epilog Merging

(d)Interphase Dependence Effect

}}

{

}

}

number of A:n*m
 B:n*m
 C:n*m’
 D:n*m’

number of A:n*m
 B:n*m
 C:n*m’
 D:n*m’

number of A:(n-1)*m+m=n*m
 B:(n-1)*m+m=n*m
 C:1+(n-1)*m’+(m’-1)=n*m’
 D:(n-1)*m’+(m’-1)+ 1=n*m’

number of A:=m+(n-1)*m=n*m
 B:(n-1)*m+m=n*m
 C:1+(n-1)*m’+(m’-1)=n*m’
 D:(n-1)*m’+(m’-1)+ 1=n*m’

Fig. 9.3. Effect of Phase Prolog-epilog Merging on Loop Nest

– if (r > 0)

∗ For the remaining r occurrences of A, r < m because it is the
rest of the integer division of nb_A_occurrences_in_prolog by
k, m′ occurrences of B should be moved to the prolog.

∗ k′ = k′ + 1

– dBA = 0

– see the example in Fig 9.5

• if (k > (dBA + k′)) and (r = 0):

– from the first clause, k > (dBA + k′), we can conclude that k can be

98

written: k = k′ + dBA + c and from the second clause, r = 0, we can
say that there are exactly k × m occurrences in the prolog.

– the first dBA×m occurrences of A don’t depend on B and the k′×m
occurrences of A depend on k′×m′ occurrences of B which are already
in prolog. The remaining c × m occurrences of A depend on c × m′

occurrences of B, c = k − (k′ + dBA). So (k − (k′ + dBA)) × m
occurrences of B should be moved to the prolog.

– k′ = k′ + c = k′ + (k − (k′ + dBA) = k − dBA

– dBA = 0

– see the example in Fig 9.6

• if (k > (k′ + dBA)), k = k′ + dBA + c, and r > 0:

– for k × m occurrences of A, (k − (k′ + dBA)) × m occurrences of B
should be moved to the prolog.

– For the remaining r occurrences of A, r < m because it is the rest
of the integer division of nb_A_occurrences_in_prolog by k, m′

occurrences of B should be moved to the prolog. So ((k + 1)− (k′ +
dBA))×m′ B occurrences of actor B should be moved to the prolog

– k′ = k′ + c = k + 1 − dBA

– dBA = 0

• if (k < (k′ + dBA)) then no B shifting is necessary but dBA may change

– if (k > k′) then dBA = dBA − (k − k′)

– else if (k = k′) and (r > 0) dBA = dBA − 1

– else dBA doesn’t change

– see the example in Fig 9.7

• in prolog, moved B occurrences take place just before A occurrences.

9.2.3.2 Algorithm

• The algorithm simply constructs a set of actors, actors that appear in pro-
log then it takes one actor,A, each time from this set, removes it and finds
actors,B, that A depends on them, depends[B][A] 6= −1. For every B it com-
pares k with the sum of dependence distance depends[B][A] and k′, k′ is the
result of the integer division of the number of B occurrences in prolog by m′

as explained before. If (k > (depends[B][A] + K ′)) then the algorithm moves
a number of B occurrences to the prolog according to the r value (r being
the remainder of the integer devision of nb_A_occurrences_in_prolog by m
) and adds B to actors_in_prolog_set if B does not belong to it. It repeats
this process untill the set becomes empty.

declarations

99

A, B: actor, actors may be represented by numbers

depends[][]: is the dependence distance matrix, /* if A depends on

B then (depends[B][A] >= 0) else depends[B][A]=-1 */

m: is the number of iterations of phase lp, the A phase

k: k = nb_A_occurrences_in_prolog div m

r: r = nb_A_occurrences_in_prolog mod m

m’: is the number of iterations of phase lp’, the B phase

k’: nb_B_occurrences_in_prolog div m’

max: integer

global_lp_brn_sup: is the upper bound of the global loop iterator

n: is the number of global loop iteration in the original code,

before any prolog-epilog merging

actors_in_prolog_set: this set contains all the actors that are in prolog

support functions

/* choose(): chooses or selects one actor from actors_in_prolog_set.

No ordering process is needed, we can choose any actor we want.*/

actor choose(actors_in_prolog_set);

/*movetoprolog(): puts q occurrences of A in prolog just after the A

occurrences, in the prolog, if there are some, else it writes them

before actors that depends on A and after actors that A depends on them.*/

movetoprolog(A,q);

/*belongto(): checks if an actor belongs to the actor set*/

boolean belongto(actors_in_prolog_set, B);

/*fill_in(): fills in actors_in_prolog_set by actors in prolog*/

fill_in(actors_in_prolog_set);

/*max_shifted():looks at actors in prolog and find the one that is more

shifted than the other, it is the actor that have the greater k value

and returns k if r=0 and k+1 if r !=0.*/

integer max_shifted(actors_in_prolog_set);

Algorithm

fill_in(actors_in_prolog_set);

while (actors_in_prolog_set != NULL)

{

100

A = choose(actors_in_prolog_set);

actors_in_prolog_set = actors_in_prolog_set - A;

for (B = 0; B < nb_actors; B++)

{

if ((k > (k’+ depends[B][A])) && (depends[B][A]!= -1))

{

if(r == 0)

{

movetoprolog(B, ((k - (k’+ depends[B][A])) * m’));

k’= k - depends[B][A];

}

else

{

movetoprolog(B, (((k+1) - (k’+ depends[B][A])) * m’));

k’ = k + 1 - depends[B][A];

}

depends[B][A] = 0;

if (belongto(actors_in_prolog_set, B) == false)

actors_in_prolog_set = actors_in_prolog_set + B;

}

else if ((k == (k’+ depends[B][A])) && (depends[B][A]!= -1))

{

if (r>0)

{

movetoprolog(B, (((k+1) - (k’+ depends[B][A]))* m’));

k’ = k’ +1;

if (belongto(actors_in_prolog_set, B) == false)

actors_in_prolog_set = actors_in_prolog_set + B;

}

depends[B][A] = 0;

}

else

if (k > k’) depends[B][A] = depends[B][A] - (k -k’);

else if ((k = k’) && (r > 0)) depends[B][A] = depends[B][A] - 1

}

}

fill_in(actors_in_prolog_set);

max = max_shifted(actors_in_prolog_set);

global_lp_brn_sup = n- max;

We fill in again actors_in_prolog_set, at the end of the algorithm, to compute
the value of max, max is used to computed the new value of the global loop
upper bound.

• Execution Example: in Fig 9.4, after phase prolog-epilog merging was ap-
plied, in 9.4(c), Fig. 9.4(d) shows the execution of ’Effect on other Phases
Algorithm’. m′ in the running example is m, B is A and A is C. At the
beginning, actors_in_prolog_set = {C}. C is removed from the set. The

101

algorithm finds that C depends on A and depend[A][C] = 0. Because k = 0,
k′ = 0, depend[A][C] = 0 and r = 1 so ((k+1)−(k′+depends[B][A]))×m′ = m′

so m′ occurrences of A should be moved to the prolog. It is exactly what hap-
pens Fig. 9.4(d) shows that A has been added to the set and it will be removed
after. Because it has no ascendant, the set becomes empty and the algorithm
stops it execution.

• Termination: The algorithm terminates and stop its execution if actors_in_prolog_set
is empty. To reach this execution state, the algorithm should removes actors
from the set without adding new ones.

– This is the case if the inter-phase dependence graph contains no cycle.
If there is no cycle, roots in graphs do not depend on any actors and
because of dependence paths between roots and other actors the algo-
rithm arrives to the execution point where one root or more are in the
actors_in_prolog_set set. Every time we remove an actor A, we add
its ascendants to the actors_in_prolog_set if they don’t belong to it,
removing these roots from actors_in_prolog_set lets it be empty at the
end so the algorithm terminates.

– If the inter-phase dependences graph contains cycles, prolog-epilog merg-
ing assures that we are not going to shift phases infinitely. At most kc

phases can be shifted (section 8.3.1). At most kC phases can be shifted
assures that we will arrive to a shifting that has no effect on other phases,
this means depends[B][A]) > k. So all cycles shifting will arrive to this
execution point, with an actor B where depends[B][A]) > k. A will be
removed form the set and no actor B will be added to so at the end
actors_in_prolog_set will be empty and our algorithm terminates.

• Correctness: in our case the algorithm is correct means there is no case where
an actor should be moved to the prolog and the algorithm doesn’t move it or
a case where an actors should not be moved to the prolog and the algorithm
moves it.

– Suppose there is a case where an actor B should be moved to the prolog
and the algorithm doesn’t move it. An actor B should be moved to
the prolog means that there are some occurrences of A in prolog that
depend on some B occurrences that are in the kernel, which means first
that if there are already some occurrences of B in the prolog then they
are not enough, let’s call this number k′ × m′ + r′. m occurrences of A
depend on m′ occurrences of B and k′ × m′ + r′ occurrences of B are
not enough so k′ < K. If the dependence distance depends[B][A] > k
then no shifting is needed. It is not the case, moving some B actor is
necessary as hypothesis, so depends[B][A] < k and k′ < K. Two cases
are possible: depends[B][A] + k′ > k and depends[B][A] + k′ ≤ k. If
depends[B][A] + k′ > k, no shifting is needed. The actor should be

102

for i=0 to n-2
 {

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-1
 {
 D C
 }

C

for j=0 to m-1
 {
 B
 }

for j’=0 to m’-2
 {
 D C
 }
D

for j=0 to m-1
 {
 A
 }

actor_in_prolog_set={c}

1 actor_in_prolog_set = {C}

c_ascendant = {A}3 C depends on A

2 remove A
actor_in_prolog_set = {}

4 k=0, k’=0, depende[A][C]=0 r=1

5

6 actor_in_prolog_set = {A}

7 actor_in_prolog_set = {}

8 algorithm termination

(d) Effect on other Phases Algorithm Execution

for i=0 to n-1
 {

for j=0 to m-1
 {
 A
 B
 }

for j’=0 to m’-1
 {
 C
 D
 }

0

for i=0 to n-1
 {

for j=0 to m-1
 {
 A
 B
 }

C

for i=0 to n-2

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-1
 {
 D C
 }

C

for j=0 to m-1
 {
 A
 B
 }

for j’=0 to m’-2
 {
 D C
 }

D

for j’=0 to m’-2
 {
 D C
 }
D

(a) Original Code (b) Software Pipelining

(c) Prolog-Epilog Merging

}}

{

}

Fig. 9.4. "Effect on other Phases Algorithm" Execution Example

moved to the prolog as hypothesis so depends[B][A] + k′ ≤ k. If it is the
case, our algorithm will move (k− (k′+depends[B][A]))×m′ occurrences

103

of the actor B to the prolog. So the algorithm is correct.

– Suppose the second case, an actor should not be moved to the prolog
and the algorithm has moved it. If it is moved to the prolog, then the
test if ((k > (k′ + depends[B][A])) && (depends[B][A]! = −1)) is true or
((k == (k′ + depends[B][A])) && (depends[B][A]! = −1)) and r > 0, as
they are the only cases where the algorithm can move actors.

∗ P : If (k > (k′ + depends[B][A]))&&(depends[B][A]! = −1) equals
true, then k is superior than k′ + depends[B][A], k × m occurrences
in prolog needs (k − depends[B][A])m′ to be in prolog.

∗ Q: If ((k == (k′ + depends[B][A])) && (depends[B][A]! = −1)) and
r > 0, then m′ occurrences of B should be moved to the prolog.

∗ If the actor B should not be moved then P and Q are false. Then
either (k < k′− depends[B][A]) or ((k = k′ + depends[B][A])&&(r =
0)) and in these cases the algorithm doesn’t move actor B so the
algorithm is correct.

In both case the algorithm results are correct so the correctness condition
is verified.

9.2.3.3 Epilog Construction

To construct the epilog we check, for each actor A in the global loop, if it is
in prolog too or not, we check the k and r values:

– if (k == 0) and (r == 0) so there is no A occurrence in prolog. Then A
will appear in all epilog iterations, from n-max to n-1.

– if (k == 0) and (r! == 0) so there is r occurrences of A in prolog. Then
A will appear in its phase from global loop iteration n-max to n-2 and r
occurrences of A in the latest gloop iteration, i = n − 1.

– if (k == max) and (r == 0) so A appears max times in prolog and
n − max times in the global loop, which means all its occurrences are in
prolog and global loop, n × m occurrences, so there is no A occurrence
in epilog.

– if (0 < k ≤ max) and (r! = 0) then A will appear in its phase from global
loop iteration n − k to n − 2 and r occurences of A in the latest gloop
iteration, i = n − 1.

– if (0 < k < max) if (r == 0) then A will appear in its phase from global
loop iteration n − k to n − 1

. In this way we can construct the epilog, by respecting execution order con-
dition, the first phase then the second and so on, as in the original code.

104

for i=0 to n-1
 {

for j=0 to m-1
 {
 A
 B
 }

C

for i=0 to n-2

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-1
 {
 D C
 }

C

for j’=0 to m’-2
 {
 D C
 }
D

(b) Software Pipelining of
 the Third Phase

(c) Prolog-Epilog Merging

(d)Effect of C Shifting on A

}

- nb_occurrence_in_prolog(C) = 1

- k= 0, r = 1

- nb_occurrence_in_prolog(A) = 0

- k’= 0, r’ = 0

- C depends on A, dAC = 0

- k = k’ + dAC

- r different than 0

-m occurrence of A should be

moved to the prolog

for i=0 to n-1
 {

for j=0 to m-1
 {
 A
 B
 }

for j’=0 to m’-1
 {
 C
 D
 }

0

(a) Original Code

}

for l=0 to L-1
 {
 E
 }

0

for l=0 to L-1
 {
 E
 }

for i=0 to n-2
 {

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-1
 {
 D C
 }

for j=0 to m-1
 {
 B
 }

for j’=0 to m’-2
 {
 D C
 }
D

for j=0 to m-1
 {
 A
 }

for l=0 to L-1
 {
 E
 }

for l=0 to L-1
 {
 E
 }

C

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-2
 {
 D C
 }
D

for l=0 to L-1
 {
 E
 }

Fig. 9.5. Effect of Prolog-epilog Merging, 1st case

105

for i=0 to n-2
 {

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-1
 {
 D C
 }

C

for j=0 to m-1
 {
 B
 }

for j’=0 to m’-2
 {
 D C
 }
D

for j=0 to m-1
 {
 A
 }

for l=0 to L-1
 {
 E
 }

for l=0 to L-1
 {
 E
 }

- nb_occurrence_in_prolog(A) = m

- k= 1, r = 0

- nb_occurrence_in_prolog(E) = 0

- k’= 0, r’ = 0

- A depends on E, dEA = 0

-k > (k’ + dEA), r = 0

- L occurrence of E should be

 moved to the prolog

for i=0 to n-2
 {

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-1
 {
 D C
 }

C

for j=0 to m-1
 {
 A
 }

}

for l=0 to L-1
 {
 E
 }

for j=0 to m-1
 {
 B
 }

for j’=0 to m’-2
 {
 D C
 }
D

for l=0 to L-1
 {
 E
 }

-

(a)Effect of C Shifting on A
 as showed in Fig 9.5

(b) Effect of A Shifting on E

Fig. 9.6. Effect of Prolog-epilog Merging, 2nd case

9.2.3.4 Recomputing of Actor Occurrence Coordinates

Moving an actor to the prolog because of an inter-phase dependence is dif-
ferent from phase prolog-epilog merging. Moving an actor B because of its
dependence with another actor A that is in the prolog means we are going
to move m′ occurrences of B to the prolog. In this case B coordinates (i′, j′)
in global loop are (i − c, j). the algorithm moves c × m′ to the prolog So
c = (k − (k′ + depends[B][A])) or c = ((k + 1) − (k′ + depends[B][A])). Coor-
dinate j doesn’t change because the shifting is a multiple of m′.

9.3 Technique Extension

the following propositions are not really studied but it is how we see the future
of our technique to be generalized.

106

for i=0 to n-1
 {

for j=0 to m-1
 {
 A
 B
 }

for j’=0 to m’-1
 {
 C
 D
 }

1

for i=0 to n-1
 {

for j=0 to m-1
 {
 A
 B
 }

C

for i=0 to n-2

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-1
 {
 D C
 }

C

for j=0 to m-1
 {
 A
 B
 }

for j’=0 to m’-2
 {
 D C
 }

D

for i=0 to n-2
 {

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-1
 {
 D C
 }

C

for j=0 to m-1
 {
 A
 B
 }
for j’=0 to m’-2
 {
 D C
 }
D

for j’=0 to m’-2
 {
 D C
 }
D

(a) Original Code (b) Software Pipelining of the Second Phase

(c) Prolog-Epilog Merging (d)Interphase Dependence Effect

}}

{

}

}

- nb_occurrence_in_prolog(C) = 1

- k= 0, r = 1

- nb_occurrence_in_prolog(A) = 0

- k’= 0, r’ = 0

- C depends on A, dAC = 1

- k < k’ + dAC

- r different than 0

- No shifting of A is necessary

- dAC becomes 0

0

Fig. 9.7. Effect of Prolog-epilog Merging, 4th case

9.3.1 Parametric Depth Prolog-epilog Merging

From the beginning, 6.3, we always suppose that the loop nest consists of
two levels, what if the number of levels is more than two? One solution is
to specify which level l on which INMS is going to be applied (Prolog-epilog
Merging). During this thesis we always apply software pipelining and prolog-
epilog merging on the inner phases but selecting on which level we apply them
makes the technique more general. We call this generalization ’Parametric
Depth Prolog-epilog Merging’.

107

9.3.2 Combining INMS with Other Optimization Tech-
niques

Another important point is to combine INMS and ’Prolog-epilog Merging’ with
other loop optimization techniques like loop fusion, loop skewing and loop
interchange. Which optimization techniques can be applied before and after
INMS? We think INMS may be applied with other techniques that generate
prologs and epilogs as well, not only software pipelining.

9.4 Conclusion

Prolog-epilog merging implementation, ’Code Generation’, with its both al-
gorithms Phase Prolog_Epilog Merging and Effect of Phase Prolog-
Epilog Merging on Loop Nest solves the problem and generates the code
for prolog-epilog merging technique. The first algorithm plays geometry and
puts different pieces of code, kernel, prolog and epilog, in the right place
and the second one does necessary modifications to respect inter-phase depen-
dences. The result is a code following the "prolog, kernel and epilog" pattern
with the right iterator bounds and actor coordinates. The implementation
confirms that this technique may be used for code compression as well, as we
have seen "Prolog-epilog Merging" tries always to save the global loop code
size.

108

109

Chapter 10

Experiments

10.1 Introduction

We have seen the ’Prolog-epilog Merging’ techniques and its code generation
in chapters 8 and 9. Now we are going to evaluate this technique, with real
benchmarks. Our technique is applicable especially when it is not possible to
apply loo fusion optimization technique. For this reason we will study some
common media and signal-processing applications to see if our technique has
a chance to be applicable or not then we evaluate the ’Prolog-epilog Merging’
efficiency

10.2 Prolog-epilog Merging Applicability

We studied common media and signal-processing applications, including GNU
radio, 802.11a (from Nokia), and polyphase image upscaling (from Philips
Research).1 Combining preliminary transformations including inlining, loop
rerolling, fusion and if-conversion [2], we could find many occurrences of the
“global loop with nested phases” pattern. All these applications exhibit low-
trip-count phases, reinforcing the motivation for prolog-epilog merging. This
pattern is also found in many scientific codes; since we target embedded sys-
tems, we only studied one of those: the computationally intensive part of the
172.mgrid SPEC CPU2000fp benchmark.

We report on the algorithmic underpinnings and optimization interplays of
our approach. This step is required before undertaking a large integration ef-
fort into a back-end optimizer. Figure 10.1 provides basic statistics about the
four applications we studied. It demonstrates the widespread occurrence of
loop nests amenable to prolog-epilog merging. The varying trip-counts across
neighboring phases (often due to data-dependent control) indicates that loop

1Three benchmarks studied in the ACOTES and SARC FP6 European projects:

http://www.hitech-projects.com/euprojects/ACOTES, http://www.sarc-ip.org.

110

fusion is not generally applicable. We also verified the presence of many de-
pendence cycles, at all depths, in the four benchmarks; all such cycles contain
output/anti-dependences. This confirms the relevance of our global optimiza-
tion problem with array renaming.

Benchmark Lines of code Phases at depth... Dependences 6= trip counts
1 2 3 4 5 Flow Anti Output across phases

GNU radio 427 10 n.a. n.a. n.a. n.a. 3 3 0 100%
802.11a 1502 16 n.a. n.a. n.a. n.a. 5 5 2 50%

Upscaling 150 16 n.a. n.a. n.a. n.a. 10 18 6 25%
172.mgrid 502 5 3 20 17 4 37 37 92 100%

Fig. 10.1. Applicability of prolog-epilog merging

10.3 Experiment Results on the Polyphase Im-

age Upscaling Benchmark

This section presents our first results on the polyphase image upscaling bench-
mark. This code iterates on SD (720×480) YUV video frames and interpolates
pixels to double the resolution in both dimensions (1440 × 960). It accesses a
N2×512 lookup-table and two N2 temporary arrays to iteratively apply filter-
ing, interpolation, and image-enhancement steps over N ×N blocks of pixels.
Most time is spent in three-dimensional, imperfectly nested loops, spanning
over 150 lines of C code whose control-flow skeleton is depicted in Fig. 10.2.
The 16 phases are labeled A to P . Most of them have N2 iterations except a
couple with N2 − 1. The value of N can be as low as 2 for low-quality inter-
polation and can grow beyond 5 for very high quality filtering. The default
value is N = 3 (a typical 3 × 3 stencil).

for (ln = 0; ln < iheight; ln++) {

for (px = 0; px < iwidth; px++) {

//// Phase A

for (index = 0; index < N*N; index++) { ... }

...

//// Phase P

for (index = 0; index < N*N; index++) { ... }

}

}

Fig. 10.2. Skeleton of the interpolation code

All 16 phases can be pipelined (independently of prolog-epilog merging): the
dependence graph for this kernel features some intra-phase loop-carried depen-
dences but those are associated with reductions and do not hamper pipelining.
There are no flow (read-after-write) inter-phase dependences, but many out-
put and anti-dependences on the two N2 temporary arrays; those dependences
can be removed through array renaming. The strongly connected components
are {A, B, C}, {D, E, H, K, N}, {F, G}, {I, J}, {L, M}, {O, P}.

111

Memory Profit
0 918

16 918
36 1107
72 1161

108 1215
144 1269 0 16 36 72 108 144

0

1

2

3

4

S
p
e
e
d
u
p

Memory expansion

Fig. 10.3. Trading memory for performance

To break all dependence cycles in the inter-phase dependence graph, the max-
imal renaming cost is 4 × N2 × 4 bytes: 4 dependences removed through the
renaming of arrays of N2 32 bit integers. This is very little, both w.r.t. the
size of most local memories or L2 caches, and w.r.t. the code size itself. It
suggests that array renaming may be a practical solution to allow to pipeline
most phases while maintaining the memory overhead close to zero.

Nevertheless, considering the default value N = 3, we evaluated the impact
of array renaming, varying the upper bound on memory expansion from 0 to
16N2 = 144 bytes. The static cycle count for one iteration of the global loop
is 1773; the linear optimization problem yields the profit (in static cycles) and
speedup figures in Fig. 10.3. This experiment exhibits 5 steps where extra
memory expansion translated into effective improvement of the total profit.
It confirms the soundness and relevance of the array renaming for pipelining
tradeoff, but more benchmarks should be studied before lessons about the
analytical properties of this tradeoff can be learnt.

The next experiment we conducted concerns the interplay of our technique
with loop nest optimizers. We studied the behavior of ICC 10.1, the state-
of-the-art optimizing compiler from Intel, targeting the Itanium 2 processor
(Madison) 1.3 GHz. Among the high-level loop transformations, ICC can per-
form loop tiling, unroll-and-jam and loop fusion. Only the latter is relevant
for this streaming code with little temporal locality. The optimization log
shows that 3 pairs of phases are fused, the only relevant ones (in terms of
performance) being phases A and B. ICC fails to fuse two phases because of
mismatching loop trip counts (N2 − 1), and it fails to fuse phases L to P due
to non-uniform or misaligned dependences. After fusion, 13 phases remain to
exercise our technique. This example first shows that our technique is inter-
esting as a complement to loop fusion: phases A and B could be fused yet still
exhibit opportunities for pipelining and prolog-epilog merging; in addition, our
technique is applicable in cases where loop fusion is not.

The last set of experiments aim to evaluate the overheads of prolog-epilog
merging w.r.t. plain inner loop pipelining. Those overheads correspond to
the extra instruction to compute shifted index variables (see Section 8.6.2)
and to the register pressure induced by live inter-phase variables (see Sec-
tion 8.7.1). We considered multiple architecture-compiler pairs: Intel Core 2
Duo 2.4 GHz and Intel Itanium 2 (Madison) 1.3 GHz with GCC 4.3 and ICC

112

10.1, IBM Cell PowerPC 3.2 GHz with GCC 4.1, STMicroelectronics ST231
400 MHz (embedded VLIW, 4-issue) with st200cc 1.9.0B (Open64). We used
-O3 optimization, with pipelining turned off, with and without loop unrolling,
and manually pipelined the most significant phases (source-level). In all cases,
prolog-epilog merging performed better than unpipelined code, and sometimes
even better than plain pipelining (phase L with GCC). We also verified that
lower values of N improve the benefit of prolog-epilog merging: no iteration
is spent on startup/flush except at the very beginning/end of the global loop
[40]. This preliminary experiment confirms that the intrinsic overheads of our
technique can be amortized.

10.4 Conclusion

The study of these benchmarks demonstrates the widespread occurrence of
loop nests amenable to prolog-epilog merging. The varying trip-counts across
neighboring phases (often due to data-dependent control) indicates that loop
fusion is not generally applicable and ’Prolog-epilog Mergining’, especially with
renaming, has proved its efficiency.

113

Chapter 11

Conclusion

Streaming applications are not any general applications. Much better results
can be exepected when using special languages designed for them. One of the
most important point in these languages design is Scheduling. In this thesis
we study how to schedule and optimize a streaming application statically,
taking into account code size and buffer size simultaneously. We will see in
the following sections our contributions and future work

11.1 Our Contributions

The goal of our work is to focus on the problem of streaming application
scheduling, it is one of the most important and difficult point in conception of
special-purpose stream language. Our contributions are:

1. Conception Idea: developing a fine-grained scheduling approach: an
actor is a block of few instructions without loop or branch statement,
this is useful to build a fine-grained schedule and to exploit offered par-
allelism; an SDF schedule is an infinite execution of a periodic sequence,
steady state and this sequence schedule is exactly a loop nest schedule
where actors replace instructions, with some differences like the inter-
phase dependences. Hence, all our scheduling works are based on this
similitude between nested loop schedule and steady state one. In this
way, we take advantage of nested loops scheduling methods and exploit
machine parallelism perfectly. Also, loops scheduling and parallelism take
advantage of our proposed techniques and algorithms because they are
applicable for both nested loops and steady state (Sections 6.2) and 6.3).

2. Pre-scheduling: a coarse-grain scheduling algorithm. It tries to find a
schedule that respects code size and buffer size constraints by choosing
a schedule that respects code size constraint and trying to modify it to
respect buffer size as well (Section 6.4). .

114

3. INMS Framework: it is a dedicated form of multidimensional retiming
for streaming computations, to break down dependence relations between
actors and exploit parallelism. It does both an explicit shifting of inner
loops and an implicit shifting of the outer loop. By shifting some actor
occurrences it gives more chance to phases to be pipelined and to paral-
lelism extraction and by merging prolog and epilog it tries to respect the
code size constraint (Section 6.5).

4. Pattern Table Shifting: in this heuristic, we have tried to implement
INMS using "resource table shifting" idea for "epilog filling in with other
phases firings" shifting technique. It represents a good solution but only
for simple cases, no cycle and at most one actor occurrence per phase
(Chapter 7).

5. Prolog-epilog Merging: it is the solution we have proposed for both
streaming applications and nested loops. It may appear as the most
natural extension to inner loop pipelining. Indeed, it avoids the code size
and startup time overhead of nested prologs and epilogs: these advantages
over loop unrolling are exactly the motivations that drove to the design of
software pipelining algorithms [32]. We formalized the concept of prolog-
epilog merging, combining inner loop pipelining with multidimensional
retiming (Chapter8).

6. Combining Prolog-epilog Merging with Renaming: we combine
our technique with array renaming to pipeline more phases. This results
in a global scheduling and memory expansion tradeoff, modeled as a
tractable, integer linear optimization problem (Section 8.6).

7. Code generation process: with its both algorithms Phase Prolog-
Epilog Merging and Effect of Phase Prolog-Epilog Merging on
Loop Nest, it solves the problem and generates the code for for prolog-
epilog merging technique. The first algorithm puts different pieces of
code, kernel, prolog and epilog, in the right place and the second one
does necessary modifications to respect inter-phase dependences. The
result is a code looks like "prolog, kernel and epilog" with right iterators
bounds and actor coordinates.

11.2 Future Work

We believe that prolog-epilog merging is a good idea and is a very natural
extension of inner loop pipelining to imperfectly nested loops. We will continue
working on it trying to:

– focus on combining our technique with other optimization techniques like
loop fusion, loop skewing, loop interchange.

115

– automatize the solution, to develop a tool that has as input a streaming
application code or nested loops and as output a code well scheduled and
optimized with prolog-epilog merging technique.

– integrate prolog-epilog merging in used compilers like GCC.

– generalize our technique for any number of nest levels.

– apply prolog-epilog merging with any technique that generates prolog and
epilog.

– apply prolog-epilog merging to solve code compression problems.

– answer the question if is it interesting to combine between both shifting
techniques, ’Prolog-epilog Merging’ and ’Epilog Filling’?

116

117

Bibliography

[1] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software pipelining.
ACM Computing Surveys, 27(2):367–432, 1995.

[2] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architec-
tures. Morgan and Kaufman, 2002.

[3] R. Allen, K. Kennedy, and Randy. Optimizing Compilers for Modern
Architectures:A Dependence-based Approach. Morgan and Kaufman, 2001.

[4] S. Amarasinghe, M. L. Gordon, M. Karczmarek, J. Lin, D. Maze, R. M.
Rabbah, and W. Thies. Language and compiler design for streaming
applications. (3), 2005.

[5] R. Andonov and V. Poirriez. Unbounded knapsack problem : dynamic
programming. European Journal of Operational Research, 123: 2. 168–
181, 2000.

[6] D. F. Bacon, S. l. Graham, and O. J. Sharp. Compiler transformations
for high-performance computing. ACM Computing Surveys, (7), 1993.

[7] V. Bove, Jr., and J.A. Cheops: A reconfigurable data-flow system for
video processin. IEEE trans. On Circuits and Systems for Video Tech-
nology, 5(6):140–149, April 1995.

[8] T. Brandes. The importance of direct dependences for automatic paral-
lelization. International Conference of Supercomputing, pages 407–417,
1988.

[9] S. Carr, C. Ding, and P. Sweany. Improving software pipelining with
unroll-and-jam. In Proceedings of the 29th Hawaii Intl. Conf. on System
Sciences (HICSS’96) Volume 1: Software Technology and Architecture.
IEEE, 1996.

[10] P. Caspi, G. Hamon, and M. Pouzet. Lucid synchrone, un language de pro-
grammation des systèmes réactifs. In Systèmes Temps-réÌel: Techniques
de Description de VéÌrification - ThéÌorie et Outils, pages 217–260. Nico-
las Navet. Hermes, 2006.

118

[11] L.-F. Chao. Scheduling and behavioral transformations for parallel sys-
tems. PhD thesis, Dept. of Comput. Sci.Princeton Univ, 1993.

[12] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and
M. Pouzet. N-synchronous kahn networks , a relaxed model of synchrony
for real-time systems. ACM International Conference on Principles of
Programming Languages POPL’06, (1), january 2006.

[13] J. Cortadella, R. M. Badia, and F. Sanchez. A mathematical formulation
of the loop pipeling problem. (10), 1995.

[14] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control depen-
dence graph. ACM Trans. Prog. Lang. Syst., 13(4):451–490, Oct. 1991.

[15] A. Darte and G. Huard. Loop shifting for loop parallelization. Intl. J. of
Parallel Programming, 28(5):499–534, 2000.

[16] A. Darte, G.-A. Silber, and F. Vivien. Combining Retiming and Schedul-
ing Techniques for Loop Parallelization and Loop Tiling. Parallel Pro-
cessing Letters, 7(4):379–392, 1997.

[17] S. L. G. David F. Bacon and O. J. Sharp. Compiler transformations for
high-performance computing. ACM Computing Surveys, 26(4), 1994.

[18] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt. Overlapped loop support
in the Cydra 5. In Intl Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’89), pages 26–38, Apr. 1989.

[19] C. Dulong, R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, J. Ng, and
D. Sehr. An overview of the Intel IA-64 compiler. Intel Technical Journal,
Q4, 1999.

[20] P. Feautrier. Array expansion. In Intl. Conf. on Supercomputing (ICS’88),
pages 429–441, St. Malo, France, July 1988.

[21] P. Feautrier. Dataflow analysis of array and scalar references. Int. J.
Parallel Programming, 20(1):23–51, 1991.

[22] P. Feautrier. Some efficient solutions to the affine scheduling problem,
part I, multidimensional time. 21(6):315–348, Dec. 1992.

[23] P. Feautrier, M. Griebl, and C. Lengauer. On index set splitting. In
(PACT’99), Newport Beach, CA, Oct. 1999.

[24] M. P. Gerlek. Beyond induction variables: detecting and classifying se-
quences using a demand-driven ssa form. ACM Trans. Prog. Lang. Syst.,
17(1):85–122, Jan. 1995.

119

[25] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and
O. Temam. Semi-automatic composition of loop transformations for deep
parallelism and memory hierarchies. Intl. J. of Parallel Programming,
2006. Special issue on Microgrids. 57 pages.

[26] M. Hagog and A. Zaks. Swing modulo scheduling for gcc. GCC developers’
Summit, (14), 2004.

[27] J. L. Hennessy and D. A. Patterson. Computer Architecture: a quantita-
tive approach (3rd ed.). Morgan Kaufmann, 2003.

[28] Z. L. Junjie Gu and G. Lee. Symbolic array dataflow analysis for array
privatization and program parallelization. Supercomputing 95, 1995.

[29] M. Karczmarek. Thesis, constrained and phased scheduling of syn-
chronous data flow graphs for streamit language. (13), December 2002.

[30] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased scheduling of
stream programs. LCTES’03, (12), 2003.

[31] M. Lam. Software pipelining: an effective scheduling technique for vliw
machines. SIGPLAN, pages 318–328, June 1988.

[32] M. S. Lam. Software pipelining: An effective scheduling technique for vliw
machines. In ACM Principles, Logics, and Implementations of High-Level
Programming Languages, 1988.

[33] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Algo-
rithmica, 6(1):5–35, Dec. 1991.

[34] S. Martello and P. Toth. A mixture of dynamic programming and branch-
and-bound for the subset-sum problem. Manag. Sci, 30:765-771.

[35] S. Martello and P. Toth. Knapsack problems: Algorithms and computer
implementation. John Wiley and Sons, 1990.

[36] D. E. Maydan, S. P. Amarasinghe, and M. Lam. Array dataflow anal-
ysis and its use in array privatization. In Principles of Programming
Languages, 1993.

[37] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array dataflow analysis
and its use in array privatization. In Principles of Programming Languages
(PoPL’93), pages 2–15, Charleston, South Carolina, Jan. 1993.

[38] K. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with
loop transformations. ACM Transactions on Programming Languages and
Systems, 18(4):424–453, july 1996.

[39] C. McNairy and D. Soltis. Itanium 2 processor microarchitecture. IEEE
Micro, pages 44–55, Mar. 2003.

120

[40] K. Muthukumar and G. Doshi. Software pipelining of nested loops. In
Intl. Conf. on Compiler Construction (CC’01), 2003.

[41] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for su-
percomputers. Communications of the ACM, 29(12):1184–1201, 1986.

[42] T. M. Parks. Bounded scheduling of process networks. PhD thesis, (21),
1995.

[43] R. Parra-Hermandez and N. J. Dimopoulos. A new heuristic for solving
the multichoice multidimensional knapsack problem. IEEE Transactions
on Systems, Man, and Cybernetics — Part A: Systems and Humans,
35(5), Sept. 2005.

[44] Y. R. Pierre-Yves Calland, Alain Darte and F. Vivien. On the removal of
anti and output dependences. Application Specific Systems, Architectures
and Processors. IEEE Computer Society Press, pages 353–364, 1996.

[45] G. Plateau and M. Elkihel. A hybrid algorithm for the 0-1 knapsack
problem. Methods of Oper. Res. Journal, 49:277–293, 1985.

[46] M. Pouzet. Lucid synchrone, un langage synchrone d’ordre superieur.
mémoire d’habilation à diriger des recherches. (11), 2002.

[47] M. Pouzet. Lucid synchrone version 3.0, tutorial and reference manual.
(16), April 2006.

[48] J. Puchinger, G. R. Raidl, and U. Pfershy. The multidimensional knap-
sack problem: Structure and algorithms. Technical Report No. 006149
INFORMS Journal of Computing, Mar. 2007.

[49] J. Ramanujam. Optimal software pipelining of nested loops. In Inter-
national Symposium on Parallel Processing, pages 335–342, Washington
D.C., 1994.

[50] B. R. Rau. Iterative modulo scheduling: an algorithm for software pipelin-
ing loops. In MICRO 27: Proceedings of the 27th annual international
symposium on Microarchitecture, pages 63–74, New York, NY, USA, 1994.
ACM Press.

[51] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. L?pez-Lagunas,
P. R. Mattson, and J. D. Owens. A bandwidth-efficient architecture for
media processing. International Symposium on Microarchitecture, (18),
November 1998.

[52] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R. Gao. Code
generation for single-dimension software pipelining for multi-dimensional
loops. In Proceedings of the International Symposium on Code generation
and Optimization(CGO’04), pages 175–186, Mar. 2004.

121

[53] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R. Gao. Single-
dimension software pipelining for multi-dimensional loops. In Proceed-
ings of the International Symposium on Code generation and Optimiza-
tion(CGO’04), pages 163–184, Mar. 2004.

[54] D. P. S. Martello and P. Toth. Dynamic programming and strong bounds
for the 0-1 knapsack problem. Manag. Sci, 45:414–424, 1999.

[55] R. Stephens. A survey of stream processing. Acta Informatica,
34(19):491–541, October 1995.

[56] A. Stoutchinin. An integer linear programming model of software pipeling
for the mips r8000. PACT: Proceedings of the 4th International Confer-
ence on Parallel Computing Technologies, (4), 1997.

[57] B. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language for
streaming application. Technical Memo, august 2001.

[58] W. Thies. An empirical characterization of stream programs and its im-
plications for language and compiler design. PACT, September 2010.

[59] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language
for streaming application. International Journal of parallel programming,
33(17), june 2005.

[60] S. Touati and C. Eisenbeis. Early Control of Register Pressure for Soft-
ware Pipelined Loops. In Intl. Conf. on Compiler Construction (CC’03),
Warsaw, Poland, Apr. 2003. Springer-Verlag.

[61] A. N. U. Banerjee, R. Eigenmann and D. Padua. Automatic program
parallelization. Proceedings of the IEEE, 81(2):211–243, 1993.

[62] N. Vasilache, A. Cohen, and L.-N. Pouchet. Automatic correction of loop
transformations. In Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT’07), Brasov, Romania, Sept. 2007.

[63] S. Verdoolaege, M. Bruynooghe, G. Janssens, and F. Catthoor. Multi-
dimentsional incremetal loops fusion for data locality. In ASAP, pages
17–27, 2003.

[64] N. Y. Vincent Poirriez and R. Andonov. A hybrid algorithm for the
unbounded knapsack problem. Discrete Optimization Journal, 2009.

[65] E. Waingold and et al. Baring it all to software: Raw machines. IEEE
Computer, 30(8):86–93, September 1997.

[66] J. Wang, C. Eisenbeis, M. Jourdan, and B. Su. Decomposed software
pipelining: a new perspective and a new approach. Int. J. Parallel Pro-
gram., 22(22):351–373, 1994.

122

[67] M. Wolfe. More iteration space tiling. Supercomputing Journal, pages
655–664, 1989.

[68] M. Wolfe. High Performance Compilers For Parallel Computing. Addison-
Wesley Publishing Company, 1996.

[69] M. E. Wolfe and M. A. Lam. Data locality optimizing algorithm. PLDI
Journal, pages 30?44, 1991.

[70] H. Zima and B. Chapman. Supercompilers for parallel and vector com-
puters. ACM Press, 1990.

