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Engineering quantum coherence in the integer quantum Hall effect regime
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pour les repas et les cafés que nous avons partagé tous ensemble dans la bonne humeur. Merci aussi aux ami(es) de jogging et de pauses café: Gwen, Dorothée, Areta, Coralie, Andreas... Merci à tous les autres et à mon vélo en particulier. Get a bicycle. You will not regret it. If you live. -Mark Twain condensed matter of a Mach-Zehnder interferometer (MZI) so as to study coherence in this regime. The unexpected periodic lobe structure of the visibility as function of the bias voltage suggests that interactions play an important role.

In the first part, we explain how edge states emerge in the IQHE regime. We picture the state of the art on the edge states coherence. Then we present the MZI from the experimental point of view.

Next we show our results, first concerning the visibility at finite bias: our measurements confirm a prediction about a quantum phase transition as function of the interfering edge state dilution. We don't see any significant manifestation of energy relaxation in the visibility. Finally, having identified the adjacent edge state as the noisy environment limitating coherence thanks to previous works, we have designed a new kind of sample to decrease the coupling of the system to this environment in a controlled manner. We thus decreased dephasing by half, in quantitative agreement with the theory developped previously in our group.

Amélioration de la cohérence quantique dans le régime d'effet Hall quantique entier

Cette thèse est consacrée à l'amélioration de la cohérence dans le régime d'effet Hall quantique entier (EHQE) à facteur de remplissage ν = 2, obtenu en appliquant un fort champ magnétique perpendiculairement au plan d'un gaz bidimensionnel d'électrons formé à l'interface d'une hétérostructure semiconductrice d'AlGaAs/GaAs. On obtient alors des conducteurs unidimensionnels chiraux (états de bord) permettant de réaliser l'équivalent électronique de l'interféromètre de Mach-Zehnder (IMZ), pour étudier la cohérence dans ce régime. L'observation inattendue d'une structure périodique en forme de lobes dans la visibilité des interférences en fonction de la tension appliquée en entrée suggère un rôle non négligeable des interactions.

Dans un première partie nous expliquons l'émergence des états de bord dans le régime d'EHQE. Nous faisons ensuite l'état de l'art des connaissances concernant leur cohérence, puis nous présentons l'IMZ électronique du point de vue expérimental.

Ensuite, nous détaillons les résultats expérimentaux, d'abord concernant la visibilité à tension finie: nos mesures confirment une prédiction théorique concernant un transition de phase quantique en fonction de la dilution de l'état de bord qui interfère ; nous ne voyons pas d'effet flagrant de la relaxation en énergie. Enfin, de précédents travaux [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF] ayant identifié clairement l'état de bord voisin de celui qui interfère comme l'environnement limitant la cohérence du système, nous avons réalisé un nouveau type d'échantillon afin de diminuer le couplage à cet environnement de manière contrôlée. Nous avons ainsi doublé la cohérence en accord quantitatif avec la théorie issue de précédents travaux [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF].

Mot-clefs: effet Hall quantique entier ; cohérence quantique ; états de bord ; interactions.

Engineering quantum coherence in the integer quantum Hall effect regime

This PhD thesis is devoted to the engineering of quantum coherence in the integer quantum Hall effect regime (IQHE) at filling factor ν = 2, obtained by applying a strong perpendicular magnetic field to a bidimensional electron gas formed at the interface of a GaAlAs/GaAs semiconducting heterostructure. Then unidimensional chiral conductors called edge states appear which can be used as electron beams to build the equivalent in

Introduction

L'objectif principal de cette thèse est l'amélioration de la cohérence quantique dans les systèmes de gaz bidimensionnels d'électrons (GE2D) formés à l'interface d'une hétérostructure semiconductrice de GaAs/AlGaAs, dans le régime d'effet Hall quantique entier (EHQE) à facteur de remplissage ν = 2, obtenu lorsqu'on applique un fort champ magnétique perpendiculairement au plan du gaz.

Dans le régime d'EHQE, la conduction des électrons se fait par l'intermédiaire de canaux unidimensionnels chiraux appelés états de bord, qui assurent un transport ballistique -avec un transmission parfaitement contrôlée -le long des bords du GE2D.

Ces 'rayons électroniques' sont l'équivalent, en matière condensée, des rayons optiques.

On peut en effet les manipuler facilement en taillant l'échantillon de façon appropriée (puisque ces rayons suivent les bords du GE2D). Il existe de plus un dispositif faisant office de lame séparatrice, appelé contact ponctuel quantique (CPQ), consistant en une grille métallique déposée à la surface de l'échantillon qui, grâce à la tension de polarisation qui lui est appliquée, contrôle la largeur du GE2D se trouvant juste en dessous et par là-même, la transmission des rayons électroniques. On dispose ainsi de tous les éléments pour bâtir l'analogue, en matière condensée, des expériences d'optique quantique. Afin d'en savoir plus sur la cohérence des électrons dans le régime d'EQHE, on peut ainsi construire un interféromètre, ici un interféromètre de Mach-Zehnder.

État de l'art

Que savait-on sur la cohérence des électrons dans le régime d'EHQE, au moment où j'ai commencé mon travail de thèse? Mon prédecesseur, Preden Roulleau, a mis en évidence un longueur de cohérence l ϕ de 20 µm à 20 mK, étonnamment courte (l'on espérait une longueur de cohérence plus importante), variant comme l'inverse de la température [START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF] (Fig. 1.1 (gauche)). Il a également identifié une source probable de limitation de cette longueur de cohérence: à ν = 2, il y a deux états de bords qui se propagent le long des bords du GE2D. L'état de bord interne -le plus éloigné du bord -voisin de celui qui interfère (l'état de bord externe), brouille la phase des électrons qui voyagent dans les bras de l'interféromètre, par l'intermédiaire d'un bruit de charge thermique qui fait fluctuer le potentiel interne vu par les électrons [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF] (Fig. 1.1 (droite)).

Auparavant, Neder et al. [4] ont mesuré un comportement curieux de la visibilité en fonction de la tension appliquée en entrée de l'interféromètre V 1 : la visibilité décroît à mesure que la tension augmente en oscillant avec de multiples extinctions tandis que la phase des interférences est rigide le long d'un 'lobe' de visibilité et effectue un saut de π à chaque extinction (Fig. 1.2). Il semble que l'on distingue des structure à lobes multiples (deux lobes au moins de chaque côté du lobe central) mesurées à ν = 2 uniquement, et des structures à un seul lobe de chaque côté du lobe central, observées à ν = 2 et ν = 1.

Ce comportement non attendu dans le cadre d'une théorie de champ moyen à motivé de nombreux travaux théoriques s'intéressant au rôle des interactions entre et à l'intérieur des états de bord [START_REF] Chalker | Decoherence and interactions in an electronic Mach-Zehnder interferometer[END_REF][START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF][7][START_REF] Seok-Chan Youn | Nonequilibrium Dephasing in an Electronic Mach-Zehnder Interferometer[END_REF][START_REF] Kovrizhin | Exactly solved model for an electronic Mach-Zehnder interferometer[END_REF][START_REF] Kovrizhin | Multiparticle interference in electronic Mach-Zehnder interferometers[END_REF][START_REF] Schneider | Theory of the nonequilibrium electronic Mach-Zehnder interferometer[END_REF]. Pour l'instant, il n'y a pas de consensus pour expliquer cette structure.

Comment fitter ces structures de lobes et quels sont les paramètres pertinents, comment varient-ils avec les paramètres de l'expérience ? Les fonctions que nous avons utilisé pour fitter ces différentes structures présentent un seul paramètre ajustable pour les structures simples et deux paramètres pour les structure multiples. ϕ qui croît linéairement avec L (insert) [START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF]. (droite) Échelle gauche: V 0 en fonction du champ magnétique (cercles rouges pleins). Échelle droite: V ϕ (carrés bleus vides) et 4k B T ϕ /e (pointillés) en fonction du champ magnétique. Les variations de V 0 sont proportionnelles à celles de V ϕ (qui caractérise un bruit de partition additionnel dans l'état de bord interne) et de 4k B T ϕ /e. V ϕ et 4k B T ϕ /e tombent l'un sur l'autre, validant notre approche rendant le bruit de charge dans l'état de bord interne responsable de la perte de cohérence [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF][START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF]. différentielle de l'état de bord externe en code couleur, en fonction de la tension de polarisation de la grille SG selon l'axe des abscisses, et en fonction de la tension V 1 sur l'axe des ordonnées.

À l'intérieur d'un lobe la phase des interférences est rigide, et subit un saut de π aux extinctions. D'autres expériences par Altimiras et al. [START_REF] Altimiras | Inelastic mechanisms in mesocopic circuits realized in two dimensional electron gases[END_REF] ont mis en évidence le rôle joué par l'interaction entre les deux états de bord à ν = 2 dans la relaxation d'une distribution hors équilibre lors de sa propagation dans un état de bord. Celle-ci se fait par échange d'énergie avec l'autre état de bord [START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF][START_REF] Altimiras | Nonequilibrium edge-channel spectroscopy in the integer quantum Hall regime[END_REF]. Par ailleurs, en confinant l'état de bord interne dans une boucle fermée de longueur 8 µm, les auteurs ont gelé la relaxation en énergie dans l'état de bord externe (Fig. 1.3), en ouvrant un gap de taille suffisante dans le spectre des excitations de basse énergie de l'état de bord interne.

Interféromètre de Mach-Zehnder électronique

Nous avons étudié deux types d'échantillons toujours à ν = 2, alors que deux états de bord (en rouge et bleu sur la Fig. 1.4) étaient présents. L'état représenté en bleu qui correspond à l'état de bord externe, est celui qui interfère.

Les premiers échantillons étudiés correspondent à la configuration de base de l'interféromètre (Fig. 1.4 (dessus)). L'état de bord interne (en rouge) est réfléchi à tous les CPQs, l'état de bord externe (en bleu) est transmis vers l'interferomètre par le CPQ d'injection, G0.

Il est séparé en deux chemins par le premier CPQ de l'interféromètre, G1, chemins qui sont recombinés au niveau du second CPQ de l'interféromètre, G2. Les deux trajets interfèrent dans le courant transmis vers le contact de mesure (contact n • 3) alors que le courant réfléchi est collecté à la masse de l'échantillon (contact n • 4).

On révèle les interférences dans le courant transmis en faisant varier la phase Aharonov-Bohm des électrons, soit en faisant varier lentement le champ magnétique, soit en changeant la surface entre les deux bras de l'interféromètre, par l'intermédaire de la grille SG qui change la longueur du bras inférieur (noté D sur la Fig. 1.4), avec sa polarisation. Il est aussi possible d'utiliser l'état de bord interne comme une grille pour changer la longueur du bras supérieur (noté U sur la Fig. 1.4), en faisant varier la tension V 2 appliquée au contact n • 2. La période V 0 des interférences ainsi révélées diminue quand le couplage entre les deux états de bord augmente. On montre dans une approche de champ moyen que cette période est proportionnelle à la somme des inverses de la capacité géométrique entre les deux états de bord et de la capacité quantique.

Dans les nouveaux échantillons (Fig. 1.4 (dessous)), des grilles supplémentaires G U et G D permettent, quand on les pince, de confiner l'état de bord interne en petites boucles fermées. On espère ainsi modifier le couplage entre les deux états de bord, et peut-être aussi, ainsi que les travaux de Altimiras et al. le suggèrent [START_REF] Altimiras | Tuning Energy Relaxation along Quantum Hall Channels[END_REF], geler les fluctuations de charges dans l'état de bord interne qui sont responsables de la longueur de cohérence finie selon les travaux de Roulleau et al. [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF] 

Visibilité à tension finie

Dans un premier temps nous avons poursuivi l'étude commencée par P. Roulleau sur la structure de lobes [START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF], pour déterminer de quels paramètres physiques dépendent les deux échelles d'énergie mises en évidence par nos fits (celle caractérisant les lobes simples, et celle caractérisant les lobes multiples).

Dans cette perspective, nous avons regardé comment la structure de lobes multiple était modifiée par la transmission T 0 de l'état de bord externe par le CPQ d'injection, G0

(dilution). Nous avons comparé nos résultats à une théorie développée par Levkiviskyi et al. [START_REF] Levkivskyi | Noise-Induced Phase Transition in the Electronic Mach-Zehnder Interferometer[END_REF] qui prévoit une transition de phase quantique dans la structure de lobes, provoquée par le bruit de partition du CPQ G0, lorsque T 0 = 0.5 (Fig. 1.5 (gauche)). Données et gelées si l'on ouvre un gap assez grand dans le spectre des excitations de l'état de bord interne, les seules fluctuations de charge de l'environnement doivent alors venir de l'état de bord externe contrapropageant sur le bord opposé qui se couple à l'état de bord externe du bras supérieur à travers les bloucles fermées de l'état de bord interne. Le couplage à l'environnement est alors diminué.
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théorie semblent en accord, dans la limite des (grandes) incertitudes expérimentales, qui viennent principalement de la dépendance de la transmission T 0 avec la tension V 1 appliquée à l'entrée de l'interféromètre (Fig. 1.5 (droite)). On observe à T 0 = 0.5 la transition d'une structure multiple pour T 0 > 0.5 avec rigidité de la position des zéros de visibilité, vers une structure simple pour T 0 < 0.5 avec un lobe central dont la taille diverge quand T 0 tend vers 0. 0 0,0 0,2 0,4 (ligne en pointillés) si l'on considère T 0 à tension nulle (symboles vides).

Nous avons également mesuré la visibilité lorsqu'une distribution en double marche est injectée à l'entrée de l'interféromètre par l'intermédiaire de G0, dans le cas d'une structure de lobes simple: nous avons regardé comment la visibilité varie en fonction de la hauteur des marches (paramétrée par les tensions V 1 et V 2 ), à largeur de marches fixée (paramétrée par T 0 ). Nous obtenons une figure en 'papillon' (Fig. 1.6), que nous parvenons à reproduire en utilisant un fit qui semble indiquer que le mécanisme provoquant la structure de lobe simple a lieu avant le CPQ G0... et V 2 pour une transmission T 0 = 0.2 de l'état de bord externe à tensions

V 1 et V 2 nulles. V 1
et V 2 paramètrent la hauteurs des marches de la distribution en double marche qui est injectée dans l'état de bord externe à l'entrée de l'interféromètre. T 0 paramètre leur largeur.

Amélioration de la cohérence quantique dans le régime d'effet Hall quantique entier

Dans cette partie, nous avons mis en oeuvre la grille G U afin de diminuer le couplage entre états de bord dans le bras supérieur du IMZ, et de geler les fluctuations de charge dans l'état de bord interne en le localisant en boucles fermées de taille 8 µm.

A tension V 1 nulle, la cohérence augmente de façon spectaculaire: la visibilité passe de 20 à 50 %, et la contribution du bras supérieur à la dépendance de la visibilité avec la température, T -1 ϕ,U , est divisée par 2, proportionnellement au couplage entre états de bords dans le bras supérieur, mesuré par V -1 0 (Fig. 1.7). Cependant, alors que comme attendu, lorsqu'on ferme l'état de bord interne sur lui même, la période des interférences révélées en variant V 2 est multipliée par 2, on n'observe pas d'effet sur la cohérence, suggérant que les fluctuations de charge dans l'état de bord interne demeurent ou n'influent pas sur la cohérence.

Parallèlement, on constate un élargissement des lobes latéraux de la structure de lobes lorsque le couplage V -1 0 diminue. Cependant le lobe central n'est que très légèrement affecté (Fig. 1.8). On mesure que l'échelle d'énergie caractérisant les lobes multiples est proportionnelle à V 0 , conformément à la théorie de Levkiviskyi et al. [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF], avec le bon ordre de grandeur, et que l'échelle d'énergie caractérisant l'enveloppe gaussienne reste relativement constante (Fig. 1.9). ϕ en fonction de V G U (carrés pleins rouges). L'échelle est telle que les variations de T -1 ϕ et de V -1 0 apparaîssent identiques. La diminution de T -1 ϕ est à peu près proportionnelle à V -1 0 . La ligne bleue pleine correspond au taux T -1 ϕ moins la contribution effective due à l'asymétrie entre les deux bras T -1 T,eff ≈ 5 K -1 , négligeable par rapport aux autres contributions: on considère que celle du bras supérieur T -1 ϕ,U est proportionnelle à V -1 0 , alors celle du bras inférieur est constante de l'ordre de 52 K -1 ; celle du bras supérieur, lorsque G U est ouverte, mesurée indépendemment donne 51 K -1 , une valeur comparable (carré noir plein). 

V c data points fit Levkiviskyi's theory V [START_REF] Kovrizhin | Multiparticle interference in electronic Mach-Zehnder interferometers[END_REF] data points V c /V 10

Introduction

The interest in the edge states on the integer quantum Hall effect comes from the fact that they constitute pure one dimensional systems in which one can tune the interaction with an additional knob: the magnetic field. Thus, they are an ideal test bed for one dimensional physics. They also were good candidates for flying Q-Bits: it is possible (in principle) to entangle edge state electrons from opposite edges via tunneling, and coherence in these systems was believed to be strong because of the great value of the Landau gap compared to the available energies at low temperature. However, so far actual knowledge on quantum coherence and energy relaxation in these systems is scarce, and to achieve the ultimate goal of verifying the violation of Bell inequalities as suggested by Samuelsson et al. [START_REF] Samuelsson | Two-Particle Aharonov-Bohm Effect and Entanglement in the Electronic Hanbury Brown-Twiss Setup[END_REF], we need to find a way to circumvent the rather low coherence length [START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF]. Another question which hasn't been treated in this PhD thesis is the one of fractional quantum Hall effect. Fractional charges were demonstrated to exist by noise measurements, but what about their coherence? and what are the 'good quasiparticles' in this regime, in the sense of quasipaticles whose lifetime is larger than the inverse of the energy?

There is two main aspects to my work. First, on coherence: knowing that dephasing from a well identified environment explain a large part of the results at ν = 2, can we find a way to freeze this environment so as to enhance the coherence? If so, this would confirm our theory on the main cause for dephasing.

Second, we want to see if the recent findings of the LPN group on relaxation can explain the observed features on the visibility of the edge states interferences at finite bias. To do so, we inject an out-of-equilibrium distribution and study the resulting interferences. 

Electron beams in condensed matter

Introduction

How can one obtain electron beams? An electron beam is a one dimensional object. It can be constructed from a two dimensional electrons system by freezing one degree of freedom. This is done by applying a high magnetic field. Following this procedure, we build pure one dimensional chiral electron systems which mimick photon beams.

In this chapter, I will first describe the two dimensional electron system that is used and how it is obtained. Then I will introduce the quantum Hall effect and finally the object of my study: the edge states.

The bidimensional electron gas

The recipe for a high mobility bidimensional electron gas (2DEG) e.g. the two dimensional electron system, is to localize electrons into a trap formed at the interface of two semiconductors with different gaps. I will first detail how electrons are trapped in a two dimensional layer, and then I will give the typical values for the relevant quantities which characterize this conductor.

Formation

The base material of our sample is a bidimensional electron gas (2DEG) which forms at the interface of a GaAs/Al x Ga (1-x) As semiconductor heterostructure (for our samples, x ≈ 0.3). The heterostructures were grown at LPN Marcoussis by U. Gennser and ETH Zurich by W. Wegscheider using molecular beam epitaxy. The 2DEG is trapped in a quantum well at the interface GaAs/AlGaAs, ∼ 100 nm below the surface (Fig. 3.1 (left)). To understand how this quantum well appears, one must observe how valence and conduction bands align in the z direction when both semiconductors are put together.

The Fermi energy E F of the semiconductor with the greater gap, AlGaAs is higher then the one which has a smaller gap, GaAs. As a consequence, electrons depart from the n-doped semiconductor GaAlAs, leaving behind positively charged donnors. This space charge creates an electrostatic potential V (z) which curves the bands as represented on appears, which curves the energy bands of the heterostructure so that a potential well is created at the interface trapping the electrons in a x-y plane.

Typical values

The typical values of the relevant quantities for the GaAs/AlGaAs 2DEGs that we used in our experiments are given in the table of Fig. 3.2 [START_REF] Prange | The Quantum Hall effect[END_REF]. Some are a given, the other are chosen specifically to fullfill necessary conditions so as to observe the quantum Hall effect.

The electron effective mass in GaAs is m e * = 0.068 m e where m e is the bare electron mass. It is determined by the temperature dependence of the amplitude of the Shubnikovde-Haas oscillations and is characteristic of the GaAs/Al 0.3 Ga 0.7 As heterostructure [START_REF] Prange | The Quantum Hall effect[END_REF].

The 2DEG electron surface density n s has to be low enough so that one is able to reach the integer quantum Hall regime at low filling factors ν = n s h/eB (see later § 3.4). We are using a magnet with a maximum field of 12 Tesla at 4 K, therefore we need electron densities lower than 6 × 10 11 cm -2 to reach ν = 2.

From 2D conductance measurements at 4.2 K one gets the mobility µ 0 = σ 0 /n s e where σ 0 is the conductance at zero magnetic field. The mobility is linked to the average time between elastic collisions of electrons at zero magnetic field, τ 0 , through µ 0 = eτ 0 /m e * . For the IQHE to emerge, τ 0 must be large compared to the inverse of the cyclotron frequency:

ω c τ 0 1, which leads to µ 0 B 1.
Samples with mobilities of the order of 10 5 cm 2 .V -1 . s -1 make possible the observation of the QHE at 1 Tesla.

Finally, another relevant quantity is the two dimensional Fermi energy

E F = π 2 n s /m e * ,
the associated Fermi wavelength λ F = 2π/n s and the Fermi velocity

1 v F = 2E F /m e * .
It is noteworthy that during this PhD, many samples were tested at low temperature 

m e * n s µ 0 τ 0 g * E F λ F v F
(m e ) (10 11 cm -2 ) (10 6 cm 2 V -1 .s -1 ) (10 

The Hall effect

Prehistory

When an electrical current flows through a metallic strip under a magnetic field perpendicular to the plane of the strip, it is known since E. H. Hall (1879), that a transverse voltage appears across the strip because of the accumulation of charge on the sides due to the Lorentz force (see Fig. 3.3). This transverse voltage (V H ) is proportional to the current I via the Hall resistance R H , which in turn is proportional to the magnetic field:

R H = B n s e
where n s is the electron surface density. This is the Hall effect. The longitudinal resistance is equal to the zero magnetic field resistance R L = L/σ 0 W , where L is the length of the strip, W its width and σ 0 its zero magnetic field conductivity.

However, as Klaus von Klitzing found later [START_REF] Klitzing | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[END_REF], in two dimensional electron systems like 2DEGs (if the sample is clean enough and if the temperature is low enough), at high magnetic field, the Hall resistance as function of the magnetic field exhibits steps at quantized values as seen on Fig. 3.4 (left)2 . This quantum Hall effect (QHE) owed Klitzing the Nobel Prize in Physics in 1985. For curiosity's sake, we reported on Fig. 3.4 (right) [START_REF] Narayanamurti | Artificially Structured Thin-Film Materials and Interfaces[END_REF][START_REF] Pfeiffer | Electron mobilities exceeding 10 7 cm 2 .V -1 .s -1 in modulation-doped GaAs[END_REF][START_REF] English | GaAs structures with electron mobility of 5 × 10 6 cm 2 .V -1 .s -1[END_REF], the progress that was made on the mobility of the samples as years passed by. Since 1980, the low temperature mobilities have improved by two to three order of magnitude.

It was only in the 80's that appropriate values for the mobility were reached in order to be able to see the QHE (for magnets with maximum field of a few Teslas). 

Conductivity tensor

If we consider a perfect 2DEG under a magnetic field perpendicular to the plane of the gas, in the classical limit, the electrons trajectories are circular orbits gyrated at the cyclotron pulsation ω c = eB/m e * , where m e * is the effective mass of an electron of the conduction band, which takes into account the effect of the lattice. For B ∼ 3 T, the cyclotron period is about T c ∼ 8 × 10 -13 s.

In the classical Hall regime, the conductivity tensor σ defined by j = σE is [START_REF] Ashcroft | Solid state physics. Brooks/Cole[END_REF]:

σ = σ 0 1 + ω 2 c τ 2 0   1 -ω c τ 0 ω c τ 0 1   (3.1)
where σ 0 = n s e 2 τ 0 /m e * is the conductivity in zero magnetic field. The resistivity tensor is then:

ρ = ρ 0   1 ω c τ 0 -ω c τ 0 1   (3.2) 
where ρ 0 = 1/σ 0 is the 2DEG resistivity in zero magnetic field. Diagonal terms correspond to the longitudinal resistivity and do not depend on the magnetic field while off-diagonal terms give the transverse resistivity (equal to the Hall resistance in 2D3 ) which is linear in the magnetic field:

ρ xy = R H = ρ 0 ω c τ 0 = B/n s e.
This classical description of transport in a magnetic field holds as long as the average time between collisions at zero field is small compared to the inverse of the cyclotron frequency4 ω c τ 0 1.

In the limit where samples are clean enough so that an electron excitation of the Fermi sea with velocity v F undergoes many cyclotron orbits before any collision occurs, one must consider quantum effects.

The quantum Hall effect

When one goes at a temperature low enough (there are hints at 4.2 K but features are more marked at 20 mK) one can observe quantization of the transverse resistance of the 2DEG in well defined plateaus with respect to the magnetic field (see Fig. 3.4 (left)). This is the quantum Hall effect.

The origin of the quantum Hall effect lies in the quantization of the electron cyclotron motion, hence the need for clean samples and high magnetic fields: indeed, for the cyclotron motion to be quantized, it must be well defined. An electron must me able to undergo a whole cyclotron orbit before any collision, and for it to be so, collisions must be scarce (high mobility samples) and/or the magnetic field high (ω c τ 0 1).

Let us do a full quantum treatment of the problem [START_REF] Landau | Course of Theoretical Physics, Volume III: Quantum Mechanics (Non-Relativistic Theory[END_REF].

Landau quantization

Lets consider electrons without spin and without interactions, bound to a surface of finite size L x × L y in the horizontal plane, in the presence of a magnetic field perpendicular to this plane. The hamiltonian of the system can be written as H = (p + eA) 2 /2m e * .

Energy spectrum

To derive the energy spectrum let us choose a particular gauge (the result doesn't depend on this choice). The Landau gauge defined by A = (-By, 0), is more convenient for geometries invariant in the x direction. The hamiltonian becomes

H = (p 2 x + (p y -eBy) 2 ) /2m e * .
Since operators H and p x commute, we can seek solutions in the form Ψ k (x, y) = e ikx f k (y), so that the hamiltonian becomes:

H k = p 2 y /2m e * +m e * ω 2 c (y-kl 2 m ) 2 /2
, where l m = /eB is the magnetic length. We recognize the hamiltonian of a one dimensional harmonic oscillator centered in Y k = kl 2 m . Then, the energy spectrum is independent of the wavevector k, and quantized in Landau levels (LLs) in the following manner:

E n = n + 1 2 ω c with n ∈ N (3.3)

Eigenfunctions

Still in the Landau gauge, the eigenfunctions are, for the ground state 5 :

Ψ 0,k (x, y) = 1 √ L x e ikx e -(y-kl 2 m ) 2 /(2l 2 m ) (3.4)
and for an electron form the n th Landau level, H n being the n th Hermite polynom, the eigenfunction becomes:

Ψ n,k (x, y) ∝ e ikx e -(y-kl 2 m ) 2 /2l 2 m H n ((y -kl 2 m ) /l m ).
In the Landau gauge, the eigenfunction are strips in the x direction, centered on the positions Y k with the width l m . In the ground state, l m is the variance of the zero point spatial fluctuations in the y direction. We will derive the following results within the Landau gauge but one must keep in mind that they are independent of the gauge 6 .

Degeneracy

We have seen that the LLs are highly degenerate (for one energy level, many k vectors are possible), let us derive their degeneracy. Considering that all eigenfunctions are products of a plane wave in the x direction an a function of y -kl m , if one imposes periodic boundary conditions in the x direction, then k takes the values k q = 2πq/L x , with q ∈ N. Thus, electrons are centered in Y q = 2πql 2 m /L x , and the degeneracy of the energy levels with respect to k is:

ξ = L x L y 2πl 2 m = Φ B Φ 0 (3.5)
where Φ B = BS is the magnetic flux threading through the sample, with S the surface of the sample, and where Φ 0 = h/e is the quantum flux i.e. the smallest amount of magnetic flux which can be enclosed by an electron cyclotron orbit. This means that the number of electrons that one Landau level can accept (its degeneracy) is equal to the number of flux quanta that go through the sample. 5 The eigenfunctions within the cylindrical gauge are, for the ground state:

Ψ 0,m = 1/ 2πl 2 m 2 m m! z m e |z| 2 /4l 2 m
with m ∈ N * and z = x + iy 6 Actually in the cylindrical gauge the coordinates X and Y of the center of the cyclotron motion are conjugate variables, with commutator [X, Y ] = il 2 m , which shows in a straightforward manner that an electron occupies at least the minimum area h/eB. It also shows that since X and Y are conjugate, the 2D system turns into a pure 1D system.

Modulation of the Electronic Properties

The high degeneracy of the LLs we just mentionned is one key ingredient to the peculiar modulation of the electronic properties of the system. Indeed, the electronic properties are determined by the low energy excitations of the Fermi sea. Therefore they depend on the density of states at the Fermi energy. The latter being peaked periodically at the quantized energy levels 7 , the electronic properties (the Hall resistance, for example) are modulated by the passing of the Fermi energy through these energy levels. At constant electronic density n s , when ramping up the magnetic field, the degeneracy of the energy levels increases linearly. The separation in energy between levels increases as well since the total number of electrons is constant, therefore, the energy levels cross the Fermi level periodically with a periodicity which scales as B -1 .

Filling factor

According to the previous remark, we understand that to describe the physics of the system, we need an index in order to locate the Fermi level with respect to the quantized energy levels of the 2DEG. The filling factor ν which is defined as the number of electrons per flux quantum, serves this purpose:

ν ≡ n s S Φ B /Φ 0 = n s h eB (3.6)
when the Fermi energy lies within the last energy level partially filled, ν is not an integer

([ν] < ν < [ν] + 1)
, when the Fermi energy lies between a full energy level and empty energy levels of superior indexes, ν is an integer.

Until now, we considered an ideal 2DEG under a vertical magnetic field, with no spin, translational invariant, with no particular confinement. In real samples however, electrons have a spin, there is always some disorder, and samples have a finite size. Let us refine our description in the system, we will see that some of these elements are actually not refinements but rather essential ingredients to explain the observed properties of the quantum Hall effect.

Realistic hamiltonian

A realistic hamiltonian for the system should take into account disorder, spin and confinement:

H realistic = H + H disorder + H spin + H confinement

Disorder

Disorder can be present, but it must not be too strong so that the cyclotron orbits are quantized (ω c τ 0 1). As we mentionned earlier, it implies high mobility samples and/or high magnetic fields (µ 0 B 1): for B ∼ 1 T, we need µ 0 10 5 cm 2 .V -1 .s -1 . Nevertheless, we will see later ( ¶ 3.4.3) that disorder is actually essential for the observation of the Hall plateaus [START_REF] Prange | The Quantum Hall effect[END_REF][START_REF] Halperin | Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential[END_REF].

Spin 1/2

If the electrons have a spin, because of the Zeeman gap each LL splits into two energy levels with spin up (↑) and spin down (↓):

E n,↑↓ = n + 1 2 ω c ± 1 2 g * µ B B (3.7)
where µ B = e /2m e is the Bohr magneton and g * the electron effective Landé factor. Each of these levels has the same degeneracy ξ as before and is spin polarized. The Zeeman splitting ∆ z = g * µ B B depends linearly of the magnetic field as does the Landau gap.

At B ∼ 3 T, the Zeeman gap is of the order of ∆ z ≡ 1 K, which is smaller that the Landau gap ( ω c ≡ 70 K) by one order of magnitude. Then for temperatures above 1 K, plateaus corresponding to odd filling factors ν = 2n + 1 should not be visible because of thermal excitations which are enough to populate both spin split energy levels coming from the last LL. This is not the case: at 4.2 K, both plateaus corresponding to ν = 1 and ν = 2 are visible on Fig. 3.5.

The reason for this is that situations corresponding to odd filling factors are further protected by the exchange interaction. Indeed the energy gain per particle can be evaluated [START_REF] Prange | The Quantum Hall effect[END_REF] to be of the order of π 8 where r = 12.9 for GaAs. This is two orders of magnitude higher than the Zeeman gap ∆ z ≡ 1 K. The polarized states are therefore protected by the exchange energy for higher energies than those dictated the Zeeman gap only. Depending on the parity of the filling factor, the excitation gap is determined by: for odd filling factors: the Zeeman gap plus the energy exchange for even filling factors: the Landau gap minus the Zeeman gap

e 2 0 r l m ≡ 200 K at B ∼ 3 T
The result is that the excitation gap for odd or even filling factors is of the same order of magnitude, i.e. high enough so that plateaus for odd as well as even filling factors are visible at 4.2 K.

Confining potential and edge states

Because of the finite size of the sample, one must take into account an additional confining potential. This confining potential is responsible for the emergence of the edge states through which transport occurs. These are the 'electrons beams in condensed matter' that are the object of our study. Let us explain how they appear.

In the semiclassical picture (figure 3.6 (left)), when the confining potential is smooth on the scale of a cyclotron orbit compared to the gap (e∂ y U ω c /l m ), electrons drift along equipotentials with the drift velocity v d = E × B/B 2 8 : in the bulk, electrons do not feel the confining potential, they follow circular cyclotron movements, their drift velocity is zero. On the edges, the confining potential is no longer negligible. We must add the electric potential energy to the unperturbed quantized energies, the energy levels are bent upwards at the edges where the electrons acquire a finite drift velocity. When the Fermi energy lies between two energy levels, the only low energy excitations are these drifting states present at the edges (Fig. 3.6 (right)). Since these states follow equipotential lines they define one dimensional conductors called edge states (ESs) [START_REF] Laughlin | Quantized Hall conductivity in two dimensions[END_REF]. These ES modes are chiral: their direction of propagation is given by the drift velocity so that ESs from opposite edges propagate in opposite directions. Because of the spatial separation between opposite ESs, there is no backscattering, even in the presence of disorder [START_REF] Büttiker | Absence of backscattering in the quantum Hall effect in multiprobe conductors[END_REF]. To be backscattered, an electron must go into the opposite edge. The voltage drop between the drain and the source is localized at the entry points of the ES in the reservoirs [START_REF] Klaß | Imaging of the dissipation in quantum-Hall-effect experiments[END_REF] as figured on Fig. 3.7.

Transport properties

Two points resistance

We will see later that each of these ESs has a two points conductance e 2 /h ( ¶ 3.5.2). At integer filling factor ν, the total two points conductance is therefore equal to the conductance of one ES times the number of ESs, i.e. G 2points = νe 2 /h and the two points resistance is R 2points = h/νe 2 [START_REF] Büttiker | Absence of backscattering in the quantum Hall effect in multiprobe conductors[END_REF].

Hall resistance

The voltage drop between ESs from opposite edges being the same than the one between the drain and the source, the Hall resistance is equal to the two points resistance: R H = h/νe 2 .

However, we have still to explain the existence of plateaus in the Hall resistance as function of the magnetic field. In the following we show that surprisingly, some disorder (not too strong but some disorder still) is necessary.

Need for some disorder

Here we want to show why some degree of disorder is necessary to explain the Hall resistance plateaus as function of the magnetic field 9 . Suppose there is no disorder. As we said before, the modulation of 2DEG electrical properties (Hall plateaus and Shubnikov-de

Haas oscillations) is caused by the periodic passing of the Fermi energy through the energy levels. Quantization of these electrical properties is valid when the Fermi level lies exactly between two levels (see Fig. 3.6 (right)). When an energy level is full, we move straight away to the filling of the next energy level and to the next quantization.

Transition between two quantizations is insured by the filling of the states on the edges, but as soon as l m L y , their number (L x /l m ) becomes vanishingly small compared to the number of states in one energy level (ξ = L x L y /(2πl 2 m )). The range of magnetic field for which quantization is valid is extremely narrow compared to the progressive filling of the energy level: there is no plateau in the Hall resistance as function of the magnetic field.

In the following I will consider electrons without spins: the energy levels I will speak of are the LLs, each with degeneracy ξ. In the case of electrons with spins the energy levels are the spin polarized sub-Landau levels, each with the same degeneracy ξ, and the following approach also applies. Percolation, localized states and Hall plateaus Disorder shifts slightly the energy levels in some random regions of the sample. For an appropriate position of the Fermi level, the (n + 1) th level is empty, the n th level being full (then ν is an integer equal to n). Ramping up B for constant electronic density, electrons from regions of the n th energy level which are above the Fermi level start to percolate towards regions of the n th energy level which are below (Fig. 3.8 (right)).

This percolation can be seen as additional localized drifting states in the bulk following the equipotential lines encircling the valleys or hills created by disorder (Fig. 3.9 (b) and (d)). Ramping up B only changes the size of these localized orbits. The localized states do not change the contribution of the n th energy level to the total current and pin the Fermi energy between two levels for a wider range of B, so that there is a Hall resistance plateau as function of the magnetic field (Fig. 3.9 (a)-(b) and (d)-(e)) [START_REF] Halperin | Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential[END_REF]. Transition between plateaus When B is increased further, opposite current lines from the last energy level (n th ) get closer and become more convoluted until they connect one another. Then everything changes: this connection along the y direction suppresses the connection in the x direction, and the contribution of the n th energy level to the current becomes zero. Actually, on a small range of magnetic field, connection in both directions is possible by tunnel effect. There is then breakdown of the quantization of the Hall resistance -R H being in between two quantized plateau values -and the longitudinal resitance becomes non zero because of backscattering (Fig. 3.9 (c)).
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We have seen how ESs emerge from the quantum Hall effect, in particular we have pointed out the role of disorder: even though it must stay small enough so that quantization of the cyclotron motion holds, disorder is necessary for the Hall plateaus to appear. Additionally, ESs are robust with respect to disorder as long as it is not too strong. This key property makes the ESs one dimensional chiral conductors, ideal to build interferences experiments with 'electron beams'. In the following I detail the general properties of these 1D chiral conductors which, in a first appoach, are considered independent.

Edge states

Previously we showed how ESs appeared with the confining potential. We showed that they were one dimensional chiral conductors. Let us derive the group velocity of the electrons and the conductance of these 1D channels.

Drift velocity

The energy levels are bent at the edges where they cross the Fermi energy and define the ESs. The confining potential U (y) in these regions can be linearized: the cross configuration E ⊥ B of the electromagnetic field [START_REF] Jackson | Classical Electrodynamics Third Edition[END_REF]:

U (y) ≈ ∂ y U (y 0 )y +U 0 where E(y 0 ) = ∂ y U (y 0 )
v g = 1 ∂E 0,k ∂k , 0 = E × B B 2 = v d (3.8)

1D channel conductance

We derive the conductance of one ES, following [START_REF] Büttiker | Absence of backscattering in the quantum Hall effect in multiprobe conductors[END_REF]. The current flowing through the sample has two chiral contributions coming from the upper edge I → (flowing to the source) and from the lower edge I ← (flowing to the drain) (Fig. 3.7). The total current is: 

I = I → -I ← = e v d (ε)n 1D (ε) (n → (ε) -n ← (ε)) dε,
I = e h (f 0 (ε -eV D ) -f 0 (ε -eV S )) dε = e 2 h (V D -V S ) (3.9)
The two points conductance at ν = 1 is therefore equal to the conductance quantum

G Q = e 2 /h.
The ES description as an independant ideal 1D chiral conductor does not take into account interactions between electrons which do not challenge the 1D chiral character of the ESs and their 1D conductance: the transport properties described above, like quantization of Hall resistance are still valid in the presence of e-e interactions. However interferences and relaxation experiments challenge this picture.

A challenged picture

ESs can be considered as independent 1D conduction channels [START_REF] Martin | Suppression of inter-edge-state equilibration due to multiple scattering with impurities[END_REF][START_REF] Martin | Suppression of scattering in electron transport in mesoscopic quantum Hall systems[END_REF][START_REF] Müller | Equilibration length of electrons in spin-polarized edge channels[END_REF] and handled with the scattering theory. They can be used as electrons beams in interference experiments, taking avantage of the existence of ajustable constrictions (quantum point contacts) which are used as beam splitters (chapter 5). These experiments [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF][START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF][START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF][4][START_REF] Ji | An electronic Mach-Zehnder interferometer[END_REF][START_REF] Neder | Interference between two indistinguishable electrons from independent sources[END_REF][START_REF] Neder | Coherence and Phase in an Electronic Mach-Zehnder Interferometer: An Unexpected Behavior of Interfering Electrons[END_REF][START_REF] Preden Roulleau | Finite bias visibility of the electronic Mach-Zehnder interferometer[END_REF][START_REF] Litvin | Decoherence and single electron charging in an electronic Mach-Zehnder interferometer[END_REF][START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF][START_REF] Bieri | Finite-bias visibility dependence in an electronic Mach-Zehnder interferometer[END_REF] probing the coherence of ESs are the focus of this manuscript. They yielded numerous features which cannot yet be explained entirely by any available theory.

Through interference experiments we probe phase breaking by inelastic scattering events 10 , but also blurring of the phase by extrinsic dephasing mechanisms (dephasing by the noisy environment). On the contrary, energy relaxation experiments [START_REF] Altimiras | Inelastic mechanisms in mesocopic circuits realized in two dimensional electron gases[END_REF][START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF][START_REF] Altimiras | Nonequilibrium edge-channel spectroscopy in the integer quantum Hall regime[END_REF][START_REF] Altimiras | Tuning Energy Relaxation along Quantum Hall Channels[END_REF][START_REF] Pothier | Energy Distribution Function of Quasiparticles in Mesoscopic Wires[END_REF][START_REF] Pothier | Energy Distribution Function of Quasiparticles in Mesoscopic Wires[END_REF][START_REF] Pierre | Dephasing of electrons in mesoscopic metal wires[END_REF], by studying the evolution of an out-of-equilibrium electron distribution along its propagation, are not sensitive to the blurring of the electron phase by the environment, and specifically probe inelastic scattering of electrons, which are responsible for decoherence, since they are bound to modify the electron initial distribution during propagation. Altimiras et al. have developped a specific method to realize the spectroscopy of energy distributions of ESs [START_REF] Altimiras | Nonequilibrium edge-channel spectroscopy in the integer quantum Hall regime[END_REF] and found that there was energy relaxation at ν = 2 through energy exchanges between co-propagating ESs [START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF]. They successfully froze energy relaxation in the outer edge state by localizing the inner edge state in a small closed loop (see § 4.5) [START_REF] Altimiras | Tuning Energy Relaxation along Quantum Hall Channels[END_REF]. All of this shows that the ideal independent 1D electron beam picture is too simple, as the theory developped by Degiovanni et al. [START_REF] Degiovanni | Plasmon scattering approach to energy exchange and high-frequency noise in ν = 2 quantum Hall edge channels[END_REF] suggests, invoking inter-edge interactions treated within the bosonization framework of the Tomonaga-Luttinger theory.

Recently, experiments measuring heat transport at ν = 1 found evidence of heat transport in the direction opposite to the ESs flow [START_REF] Granger | Observation of Chiral Heat Transport in the Quantum Hall Regime[END_REF][START_REF] Fertig | A view from the edge[END_REF].

In the following, we amend the simple description of independent edge states by introducing interaction effects in a classical manner (without quantum correlations), the quantum aspect being present only in the 2DEG compressibility [START_REF] Chklovskii | Electrostatics of edge channels[END_REF][START_REF] Chamon | Sharp and smooth boundaries of quantum Hall liquids[END_REF]. We then discuss briefly the effect of interactions in 1D systems [START_REF] Giamarchi | Quantum Physics in One Dimension[END_REF].

Miscellaneous

Edge reconstruction

The one-electron picture doesn't account for the effect of Coulomb interactions which can deeply modify the internal structure of the ES. The repulsive Coulomb interactions and the 2DEG compressibility compete with the attractive confinement potential so that the ES structure depends on which is dominant over the other [START_REF] Chklovskii | Electrostatics of edge channels[END_REF][START_REF] Chamon | Sharp and smooth boundaries of quantum Hall liquids[END_REF].

In the limit of smooth potential, the confining potential varies slowly on the scale of a cyclotron radius l m compared to the energy gap between two LLs. This is the semiclassical limit where ∂ y U ω c /l m . Under the influence of e-e interactions, the charge distribution rearranges itself so as to screen the confinement potential. Electrostatic treatment [START_REF] Chklovskii | Electrostatics of edge channels[END_REF] of the system shows that steps appear in the self-consistent potential at the edge of the sample. [START_REF] Chklovskii | Electrostatics of edge channels[END_REF].
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This leads to a series of compressible and incompressible strips represented on Fig. 3.10.

Shaded regions in Fig. 3.10 (d) correspond to compressible strips: LLs can be partially filled allowing for zero energy excitations and consequently compressibility, metal-like behaviour.

Blank regions correspond to incompressible strips which behave like the former ESs. The electrical potential through incompressible strips is unscreened while it is constant through the metal-like compressible strips [START_REF] Yacoby | Electrical imaging of the quantum Hall state[END_REF]. The width of the strips increases as the filling factor increases.

With a depletion length l = 2000 Å and the Bohr radius a B = h 2 0 r /πe 2 m e * ∼ 100 Å ( r = 12.9 for a GaAs/Al 0.3 Ga 0.7 As 2DEG), for ν = 2 we find for the OES an incompressible strip of width a 1 ∼ √ a B l = 500 Å at a distance x 1 ∼ a 1 l/a B = 3000 Å from the 2DEG edge (Fig. 3.10 (f)).

The presence of these compressible strips allows for additional modes like collective edge magnetoplasmons [START_REF] Glattli | Dynamical Hall Effect in a Two-Dimensional Classical Plasma[END_REF][START_REF] Aleiner | Novel edge excitations of two-dimensional electron liquid in a magnetic field[END_REF]. The existence of compressible and incompressible areas has been observed experimentally [START_REF] Yacoby | Electrical imaging of the quantum Hall state[END_REF] and the limit of smooth potential corresponds to most experimental situations to our knowledge.

One-dimensional interacting system

How does one describe the low energy excitations of ESs? Indeed we have seen through experimental evidence concerning coherence and energy relaxation that interactions play probably a significant role in these 1D systems. On the other hand, it is known that 1D interacting systems do not behave like Fermi liquids but like Tomonaga-Luttinger liquids (the low energy excitations are in the first case electron quasiparticles and in the latter collective plasmons and spin excitations) [START_REF] Giamarchi | Quantum Physics in One Dimension[END_REF]. However, while TL liquid behaviour has been experimentally observed in transport and noise experiments in the fractional quantum Hall regime [START_REF] Saminadayar | Observation of the e/3 Fractionally Charged Laughlin Quasiparticle[END_REF][START_REF] Trauzettel | Effect of interactions on the noise of chiral Luttinger liquid systems[END_REF][START_REF] Heiblum | Measuring the fractional charge and its evolution[END_REF][START_REF] Heiblum | Fractional Charge Determination via Quantum Shot Noise Measurements[END_REF], there is no experimental proof so far that TL framework is necessary to describe experimental observations in the IQHE regime...

Conclusion

We introduced the integer quantum Hall effect and in particular showed how 'electron beams' in the form of ESs appeared from the bidimensional electron gas in the presence of a perpendicular magnetic field. We explained the specificities of the ES which make it a good ballistic conductor even in samples not ballistic in zero magnetic field. However, the role of interactions in these systems is an open question. The independent electron picture can be amended to take into account screening of the confinement potential without too much raucuous, but it still is not enough to explain the recent experimental findings on energy relaxation in the ESs at ν = 2 which seems to come from interaction between ESs.

Theories which provide fits for these experiments go beyond the mean-field approach and use the TL theory [START_REF] Degiovanni | Plasmon scattering approach to energy exchange and high-frequency noise in ν = 2 quantum Hall edge channels[END_REF]. Interference experiments might be useful to better understand the role of interactions in these systems.

Introduction

In this chapter I recall the state of the art on edge states. I introduce my work which will answer some of the open questions, and explain how it is pertinent in the context of the present knowledge on edge states.

I recall the first interferences experiments in ballistic systems [START_REF] Cassé | Temperature dependence of the Aharonov-Bohm oscillations and the energy spectrum in a single-mode ballistic ring[END_REF][START_REF] Hansen | Mesoscopic decoherence in Aharonov-Bohm rings[END_REF][START_REF] Kobayashi | Probe-Configuration-Dependent Decoherence in an Aharonov-Bohm Ring[END_REF] and IQHE interferometers [START_REF] Van Wees | Observation of zerodimensional states in a one-dimensional electron interferometer[END_REF][START_REF] Alphenaar | Influence of adiabatically transmitted edge channels on single-electron tunneling through a quantum dot[END_REF] as well as their results on the finite temperature coherence length [START_REF] Hansen | Mesoscopic decoherence in Aharonov-Bohm rings[END_REF][START_REF] Bird | Coulomb blockade of the Aharonov-Bohm effect in GaAs/Al x Ga (1-x) As quantum dots[END_REF][START_REF] Bird | Observation of Aharonov-Bohm Oscillations in the Magnetoresistance of a GaAs/AlGaAs Quantum Dot[END_REF][START_REF] Bird | Spectral characteristics of conductance fluctuations in ballistic quantum dots[END_REF][START_REF] Bird | Phase breaking in ballistic quantum dots: Transition from two-to zero-dimensional behavior[END_REF][START_REF] Yacoby | Phase rigidity and h/2e oscillations in a single-ring Aharonov-Bohm experiment[END_REF][START_REF] Van Der Wiel | Electromagnetic Aharonov-Bohm effect in a two-dimensional electron gas ring[END_REF][START_REF] Yamauchi | Universality of biasand temperature-induced dephasing in ballistic electronic interferometers[END_REF].

I report the conclusion of Roulleau et al. [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF] on the origin of the zero bias coherence limitation in the electronic Mach-Zehnder interferometer. Then I focus on the finite bias coherence and its peculiar behaviour discovered by Neder et al. [4] which suggests interaction effects. I introduce some of the approaches which try to explain this lobe structure.

Finally, I try to relate those features to the findings of Altimiras et al. [START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF][START_REF] Altimiras | Nonequilibrium edge-channel spectroscopy in the integer quantum Hall regime[END_REF][START_REF] Altimiras | Tuning Energy Relaxation along Quantum Hall Channels[END_REF] on energy relaxation in the edge states of the quantum Hall effect at filling factor two.

Interferences

Fabry-Pérot interferometer

The first interference experiment in the IQHE regime is with a quantum dot (QD) Fabry-Pérot type interferometer (FPI) (see optical equivalent on Fig. 4.2) by Van Wees et al. in 1989 [START_REF] Van Wees | Observation of zerodimensional states in a one-dimensional electron interferometer[END_REF][START_REF] Alphenaar | Influence of adiabatically transmitted edge channels on single-electron tunneling through a quantum dot[END_REF].

Later, Bird et al. [START_REF] Bird | Coulomb blockade of the Aharonov-Bohm effect in GaAs/Al x Ga (1-x) As quantum dots[END_REF][START_REF] Bird | Observation of Aharonov-Bohm Oscillations in the Magnetoresistance of a GaAs/AlGaAs Quantum Dot[END_REF] studied the temperature dependence of coherence in these systems and found an exponential decrease of the visibility: V ∝ exp (-T /T ϕ ). This dependence of the visibility with the temperature was found in other FPIs in the ballistic regime like quantum dots [START_REF] Bird | Spectral characteristics of conductance fluctuations in ballistic quantum dots[END_REF][START_REF] Bird | Phase breaking in ballistic quantum dots: Transition from two-to zero-dimensional behavior[END_REF] and Aharonov-Bohm rings (ABRs) [START_REF] Hansen | Mesoscopic decoherence in Aharonov-Bohm rings[END_REF][START_REF] Yacoby | Phase rigidity and h/2e oscillations in a single-ring Aharonov-Bohm experiment[END_REF][START_REF] Van Der Wiel | Electromagnetic Aharonov-Bohm effect in a two-dimensional electron gas ring[END_REF][START_REF] Yamauchi | Universality of biasand temperature-induced dephasing in ballistic electronic interferometers[END_REF]. The role of thermal smearing was pointed out in [START_REF] Hansen | Mesoscopic decoherence in Aharonov-Bohm rings[END_REF], and taking into account multiple interferences, 

Mach-Zehnder interferometer

Subsequently, the Weizmann group developped a Mach-Zehnder interferometer (MZI) (I will describe it later) with very high visibility [4,[START_REF] Ji | An electronic Mach-Zehnder interferometer[END_REF][START_REF] Neder | Coherence and Phase in an Electronic Mach-Zehnder Interferometer: An Unexpected Behavior of Interfering Electrons[END_REF]. The MZI is an interesting tool for coherence measurements, because contrary to the Fabry-Pérot interferometer, it is a two-path interferometer (Fig. 4.2) which make it less subject to thermal smearing since the paths can be tuned to be of equal length ( ¶ 5.4.2). (right) Mach-Zehnder interferometer. This is a two-path interferometer: if the two paths have the same 'optic length', there is no thermal smearing ( ¶ 5.4.2).
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Additionally, there was a proposal for realizing Bell's inequality violation [START_REF] Samuelsson | Two-Particle Aharonov-Bohm Effect and Entanglement in the Electronic Hanbury Brown-Twiss Setup[END_REF] based on two coupled MZIs that rushed several groups into the race to obtain two electrons interferences: a group in Regensburg [START_REF] Litvin | Decoherence and single electron charging in an electronic Mach-Zehnder interferometer[END_REF][START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF], another in Basel [START_REF] Bieri | Finite-bias visibility dependence in an electronic Mach-Zehnder interferometer[END_REF] and finally ours in Saclay [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF][START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF][START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF][START_REF] Preden Roulleau | Finite bias visibility of the electronic Mach-Zehnder interferometer[END_REF].

Finally the Weizmann's group succeeded in doing two-electrons interferences (though they didn't violate Bell's inequalities) [START_REF] Neder | Interference between two indistinguishable electrons from independent sources[END_REF] 

Coherence and temperature

Pioneering approach in the ballistic regime

Seelig and Büttiker [START_REF] Seelig | Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer[END_REF] developped a theory which reproduced the T -1 dependence of the coherence length in ballistic rings found in [START_REF] Hansen | Mesoscopic decoherence in Aharonov-Bohm rings[END_REF][START_REF] Bird | Coulomb blockade of the Aharonov-Bohm effect in GaAs/Al x Ga (1-x) As quantum dots[END_REF][START_REF] Bird | Spectral characteristics of conductance fluctuations in ballistic quantum dots[END_REF][START_REF] Bird | Phase breaking in ballistic quantum dots: Transition from two-to zero-dimensional behavior[END_REF]. The mechanism which was invoked are e-e interactions and thermal charge fluctuations within the interfering wire.

The interaction was treated in a mean field approach. The relation between the charge and the potential in the wire is mimicked by a geometrical capacitance. The larger is the capacitance, the smaller is the interaction.

First experimental determination

Roulleau et al. (Saclay's group) [START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF] were the first to measure the finite temperature coherence length in a Mach-Zehnder interferometer in the IQHE regime at ν = 2. The procedure which was followed was the same than the one used in [START_REF] Hansen | Mesoscopic decoherence in Aharonov-Bohm rings[END_REF]: first, one measures the temperature dependence of the visibility and finds an exponential dependence. Then one looks at how the temperature dependence scales with the size of the interferometer.

From this, one can extract the coherence length as function of the temperature. ϕ which increases linearly with L (inset) [START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF].

Coherence length at finite temperature

When studying the temperature dependence of the interferences visibility, one finds an exponential dependence V = V 0 exp (-T /T ϕ ) (Fig. 4.3). Doing this for three samples of arm lengths L ∼ 5.6, 8 and 11.3 µm , one finds T -1 ϕ ∝ L (inset of figure 4.3). This proportionality allows to determine a coherence length which varies with the temperature as T -1 : V = V 0 exp (-2L/l ϕ ) , where l ϕ is the coherence length of the quasiparticles in the interferometer 1 .

l ϕ ∝ T -1 with l ϕ = 20 µm @ 20 mK (4.1)
Note that I am talking about 'dephasing' and not 'decoherence'. This is because Roulleau et al. found in their subsequent work [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF] that the origin of the limitation of the coherence length at finite temperature was not intrinsic (like e-e interactions within the interfering ES as invoked in [START_REF] Seelig | Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer[END_REF]) but extrinsic e.g. dephasing by the environment. They were even able to identify this environment.

Theory of dephasing

Without entering too much into detail since I will extensively describe the MZI in chapter 5, let me introduce the system and its environment. The experiments have been conducted at filling factor ν = 2 thus, there are two ESs running on the edge of the 2DEG. The interferences are observed in the outer edge state (OES) (the one closer to the edge which corresponds to the lower Landau sub-level). The coherence length which has been measured has shown a dependence with the magnetic field (see Fig. 4.5) [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF].

What I will show in the following is that the finite coherence length results from charge noise in the environment of the interfering ES. The charge noise blurs the phase acquired by the electrons during their trajectory. This effect depends on the coupling to the environment. At filling factor two, Roulleau et al. showed that the inner edge state (IES)

was the environment of the interfering OES [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF]. I will explain how one characterizes the coupling between the ESs. It is noteworthy that I will also use this method to characterize the coupling when manipulating the ESs with additionnal gates in chapter 7.

Coupling to the environment

Contrary to the simple picture of chapter 3, we find that OES and IES are not independent.

The strength of their coupling can be measured: Fig One can also use the IES as a gate to reveal the interferences by sweeping V 2 (see the oscillations on Fig. 4.4 (c)). Indeed, as explained in chapter 3, the electrochemical potential in the IES is fixed by the bias applied on the injecting ohmic contact: the IES can be seen as a metallic gate at potential V 2 .

The periodicity V 0 of the oscillations revealed by this method is linked to the coupling between the ESs, that we define as the inverse of V 0 . V 0 is found to vary with the magnetic field. The origin of this dependence is not clear but one can try to understand why there is a maximum (Fig. 

G Q = e 2 /h the quantum conductance 2 : V 0 ∝ C -1 + 2C -1 Q .
Increasing the magnetic field should decrease C as the distance between ESs increases. It should also decrease the drift velocity e.g. increase τ which means increase the quantum capacitance. As C and C Q vary in opposite ways with the magnetic field, this can explain the maximum that we are observing.

Of course this approach is too simple and probably does not reflect everything that happens at the microscopic level. Particularly, disorder plays a role as it leads to a trajectory whose length depends on the magnetic field. Incidently so do C, C Q and V 0 . However, as we will see, this dependence of the coupling with the magnetic field perfectly explains the dependence of the coherence length with the magnetic field. of the oscillations with respect to V 2 , V 0 varies with the magnetic field [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF].
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Noise dephasing

Because of the coupling between ESs, charge noise in the IES caused by thermal fluctuations is seen by the electrons travelling in the arms of the MZI and blurs their phase. More precisely, the OES transmitted current averaged over the phase distribution is 3 :

I t = e 2 V 1 h T 1 T 2 + R 1 R 2 + 2 R 1 R 2 T 1 T 2 cos(ϕ) (4.2)
of the order of 10 -2 to 10 -1 , for a drift velocity v d between 10 4 and 10 5 m.s -1 . Therefore, V 0 ∝ C -1 . 3 Eq. (4.2) is derived in chapter 5 in the Landauer-Büttiker formalism. It is the exact analog of the optical case with the incident current

I 0 = G Q V 1 , where G Q = e 2 /h is the quantum conductance.
where T i and R i are the transmission and reflection probabilities of the i th beam splitter

(T i + R i = 1), V 1
is the voltage bias applied to the interfering OES, and ϕ is the phase difference accumulated by an electron going through the interferometer. If we assume a gaussian phase averaging 4 , cos ϕ = cos ( ϕ) e -δϕ 2 /2 the visibility in the differential transmission of the OES is then:

V = V 0 exp - δϕ 2 2 (4.
3)

The upper and lower arms contribute equally to the electron phase fluctuations. The variance of the phase distribution is then

δϕ 2 = (2π) 2 ( δV 2 U + δV 2 D ) /V 2 0
, where V U and V D are the potentials of the upper and lower IES 5 . δV 2 α (α = U, D) is related to the noise power spectrum S αα of V α through δV 2 α = S αα ∆ν , ∆ν being an unknown bandwidth on which fluctuations occur, which is inversely proportional to the time of flight through the interferometer [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF]. The phase fluctuations become:

δϕ 2 = (2π) 2 (S U U + S DD ) ∆ν/V 2 0 .
As one can remark thanks to Eq. ( 4.3), the variance of the phase distribution is responsible for a decrease in the visibility. At finite temperature, the power noise spectrum is the Johnson-Nyquist noise, proportional to the temperature, and phase noise leads to an exponential decrease of the visibility with the temperature. The temperature dephasing rate is 6 :

T -1 ϕ = 2 × 8π 2 k B R Q V 2 0 ∆ν with R Q = h e 2 (4.4)

Check!

To check if this approach is correct, one can generate noise in the environment thanks to an additional QPC G0 at the entry of the interferometer (see chapter 5). Setting the transmission of G0 so that the interfering OES is fully transmitted, and the IES partially transmitted with the transmission T 0 to the upper arm of the interferometer, when bringing 4 For a random variable X with normal distribution N (µ, σ), the random variable exp (X) has the ex-

pectation value exp µ + σ 2 /2 . Following this, exp (±iX) = exp ±iµ -σ 2 /2 and then, cos (X) = e iX + e -iX /2i = cos ( X ) e -σ 2 /2
5 For the upper arm, V U = V 2 and δV 2 U = δV 2 2 , while for the lower arm V D = 0 (the IES is grounded in the lower arm) but δV 2 D = 0 because of thermal noise. 6 The factor 2 stands for the two equal contriutions of the upper and lower arms to dephasing.

V 2 to a finite value, tunable partition noise is generated in the IES coupled to the upper arm of the interferometer.

The excess noise (compared to the situation when V 2 is zero) has the following power spectrum [START_REF] Blanter | Shot noise in mesoscopic conductors[END_REF]:

∆S U U = 2eR Q T 0 (1 -T 0 ) V 2 (coth (eV 2 /k B T ) -2k B T /eV 2 ). When eV 2 k B T , ∆S U U = 2R Q T 0 (1 -T 0 )(eV 2 -2k B T
) , and the visibility depends exponentially on

V 2 : V = V 0 e -T /Tϕ exp (-T 0 (1 -T 0 ) (V 2 -2k B T /e) /V ϕ ) , with V -1 ϕ = 4π 2 eR Q V 2 0 ∆ν (4.5)
From Eqs. (4.4) and (4.5), we see that T ϕ and V ϕ are proportional through:

eV ϕ = 4k B T ϕ (4.6)
This is the relation that is checked on Fig. 4.5: on the right hand scale both V ϕ and 4k B T ϕ /e are reported as function of the magnetic field, and we see that they fall upon each other without any ajustable parameter! This confirms our approach which makes the charge noise in the IES responsible for the dephasing in the OES. Moreover, we find that V ϕ and T ϕ are both proportional to V 0 (and not V 2 0 suggesting that the bandwidth ∆ν is also proportional to V 0 ) with (4k B T ϕ /e) /V 0 = V ϕ /V 0 = 8/55 ≈ 0.15 , which is to be compared to the main-field result derived by Roulleau et al.

(appendix A), V ϕ /V 0 = 1/π 2 ≈ 0.10.
Let me introduce Leviskiviskyi et al.'s theory which also derive the proportionality between V 0 and T ϕ . We will make a quantative comparison between our theory and their's.

Another approach

Levkiviskyi et al. [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF] developped a theory involving beating between two collective modes, a fast charge mode with velocity u and a slow spin mode with velocity v, with u v.

These modes arise because of the coupling between the two ESs and reproduce the multiple side lobe structure of the visibility at finite bias ut it does not reproduce its decay ( § 4.4).

We can derive the coupling from ∂ϕ/∂V 2 = (e/ ) L/2v ≡ 2π/V 0 [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF]. It is given by: In the u v limit, the authors derive the finite temperature coherence length l ϕ = ( /k B ) 2v/πT , and finally l ϕ = (e/k B ) L/ 2π 2 V -1 0 T , which shows that l ϕ depends inversely on the temperature and the coupling between ESs. From this one can extract the temperature dephasing rate:

V -1 0 = e L 4πv (4.7) 
T -1 ϕ = k B e 4π 2 V -1 0 (4.8)
Then they derive 4k B T ϕ /eV 0 = V ϕ /V 0 = 1/π 2 ≈ 0.10 , which is to be compared to our experimental result V ϕ /V 0 ≈ 0.15. This theory predicts the T -1 dependence of the coherence length as well as the propotionality between the temperature dephasing rate T -1 ϕ and the coupling V -1 0 between ESs. Our simple mean field approach, which does not require the bosonization framework, yields also V ϕ /V 0 = 1/π 2 ≈ 0.10 (appendix A).

Here I have shown that so far experimental results are in very good agreement with the theory developed by Roulleau et al. as well as Levkiviskyi et al.'s. However, it is yet not clear why one does not observe additional decoherence. For example, in Seelig et al's theory [START_REF] Seelig | Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer[END_REF], charge noise in the interfering ES and the interaction (mimicked by a capacitance) are responsible for the decoherence. In Levkiviskiy et al.'s, this is also a decoherence rather than dephasing which is responsible for the visibility decrease.

The last point is that dephasing has been measured and theoretically predicted to be proportional to the coupling V -1 0 . Later, I will use this proportionality to analyse the underlying mechanism responsible for the enhancement of the coherence when using additional gates to manipulate the ESs (chapter 7).

In the following section, I will remind the results for the visibility at finite bias and the conclusions of the available theories, in particular Levkiviskyi's which attempts to find a explanation for this 'unexpected behaviour'.

Finite bias visibility

When Ji et al. [START_REF] Ji | An electronic Mach-Zehnder interferometer[END_REF] first observed a monotonous decrease of the visibility with the bias V 1 and subsequently when Neder et al. [4,[START_REF] Neder | Coherence and Phase in an Electronic Mach-Zehnder Interferometer: An Unexpected Behavior of Interfering Electrons[END_REF] reported oscillations of the visibility, much attention was brought to the subject. Indeed, because of the differential nature of the measurement, it is as if we measured monochromatic interferences. When sweeping the bias voltage, it is as if we sweeped the energy of the electron beam. Hence, for non interacting electrons, we do not expect any variation of the visibility. Here, I briefly report the most striking features of the visibility at finite bias.

'Unexpected behaviour' at finite bias

First Neder et al. [4,[START_REF] Neder | Coherence and Phase in an Electronic Mach-Zehnder Interferometer: An Unexpected Behavior of Interfering Electrons[END_REF] from the Weizmann Institute, and then other groups [START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF][START_REF] Preden Roulleau | Finite bias visibility of the electronic Mach-Zehnder interferometer[END_REF][START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF][START_REF] Bieri | Finite-bias visibility dependence in an electronic Mach-Zehnder interferometer[END_REF], observed a curious behaviour in the visibility of the interferences in the MZ, which cannot be explained in the independent electron picture: the visibility in the differential transmission as function of the voltage bias applied at the injection of the MZI, V 1 exhibits oscillations e.g. multiple extinctions with revivals of the visibility in between. The phase of the interferences is rigid within a 'lobe' of visibility (between two successive extinctions) and undergoes π-jumps at extinctions (Fig. 4.6). The energy scale associated with the oscillations is of the order of 10 -20 µV, and there seems to be some additional dephasing which damps the oscillations: one usually does not observe more than 3 -4 extinctions on each side of the lobe structure. These distinctive features are present both at ν = 1 (only one side lobe, 'single side lobe structure') and ν = 2 (both single and multiple side lobes have been observed) [4]. On Bieri et al. reported an enhancement of the visibility [START_REF] Bieri | Finite-bias visibility dependence in an electronic Mach-Zehnder interferometer[END_REF] which was later explained by P. Roulleau in his PhD thesis [START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF] ( ¶ B.1.2). It is noteworthy that this lobe behaviour with the phase rigidity was also observed in Aharonov-Bohm rings in the ballistic regime (at zero magnetic field) [START_REF] Yacoby | Phase rigidity and h/2e oscillations in a single-ring Aharonov-Bohm experiment[END_REF][START_REF] Van Der Wiel | Electromagnetic Aharonov-Bohm effect in a two-dimensional electron gas ring[END_REF][START_REF] Yamauchi | Universality of biasand temperature-induced dephasing in ballistic electronic interferometers[END_REF].

Which parameters does this unexpected lobe structure in the visibility depend on? Here I review the features characterizing the lobe structure, to confront them later to the results of the available theories.

Relevant physical parameters

Temperature The lobe structure is not changed by temperature: it is only renormalized by the value of the visibility at zero bias [START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF][START_REF] Preden Roulleau | Finite bias visibility of the electronic Mach-Zehnder interferometer[END_REF]. Asymmetry Detuning of the first beam splitter G1 from T 1 = 0.5 or modification of the length of one arm does not affect the shape of the lobe structure [START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF]4,[START_REF] Neder | Coherence and Phase in an Electronic Mach-Zehnder Interferometer: An Unexpected Behavior of Interfering Electrons[END_REF][START_REF] Preden Roulleau | Finite bias visibility of the electronic Mach-Zehnder interferometer[END_REF] but only changes the maximum visibility (it does not change the energy scales), following a T 1 (1 -T 1 ) dependence in agreement with Eq. (4.2).

G U =0.06 V V 0 =90 µV Normalized Visibility V 1 (µV) -40 -20 0 20 40 0,0 0,2 0,4 0,6 0,8 1,0 data Our fit V c =13 µV , V 10 =11 µV Litvin's V c =5.2 µV , V 10 =14 µV B=2.628 T=25 mK L=11.3 µm Max.Visibility: 26 % G U =0.3 V V 0 =20 µV Normalized Visibility V 1 (µV)

Magnetic field

On the contrary, the magnetic field influence the form of the lobe structure [4,[START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF]: when increasing the magnetic field along the ν = 2 Hall plateau, Neder et al. [4] found that the periodicity increase first from ∼ 10 µV at the begining of the plateau (ν = 2) to 20 µV at the end. Then it should decrease (but was not measured by Neder et al.) since it is again 10 µV at ν = 1. Litvin et al. [START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF] also observed a maximum of the periodicity, however it is reported at ν = 1.5 and interferences are observed only at the end of the ν = 2 plateau, raising questions about the homogeneity of the sample.

Dilution Dilution of the interfering ES also affects the lobe structure as reported in [START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF][START_REF] Neder | Coherence and Phase in an Electronic Mach-Zehnder Interferometer: An Unexpected Behavior of Interfering Electrons[END_REF][START_REF] Preden Roulleau | Finite bias visibility of the electronic Mach-Zehnder interferometer[END_REF]. As dilution tends towards 100 %, the width of the central lobe diverges.

Interferometer size Yamauchi et al. [START_REF] Yamauchi | Universality of biasand temperature-induced dephasing in ballistic electronic interferometers[END_REF] found that in ballistic interference experiments (AB-rings and QDs in zero magnetic field) as well as in QHE interference expertiments, the energy scales seem to depend linearly on the interferometer length as seen on Fig. 4.1.

The lobe structure is neither affected by an asymmetry of the interferometer (different arm lengths or detuning of one beam splitter from half transmission of the OES) nor by the temperature (it only renormalizes the maximum visibility), the involved energy scales are proportional to the dimensions of the interferometer and depend on the magnetic field as on the dilution 8 . The distinction between multiple and single side lobe structures points towards the existence of two distinctive energy scales. In the following we are interested in finding suitable functions and in justifying them with a theory.

Gaussian enveloppe and something else

To fit the lobe structure, we use two different functions depending on whether it is a single or a multiple side lobes structure. For the single side lobe structure, we once again assume a gaussian phase averaging (as in ¶ 4.3.3), with an additional assumption on the phase variance dependence on the bias voltage, introducing a corresponding energy scale. For the multiple side lobes structure we add a oscillating factor with a distinct energy scale.

These assumptions are justified mainly by the fact that they yield functions which fit our data well. We present another fit function used by Litvin et al. for the multiple side lobe structure which also introduce two energy scales.

Single side lobe structure

In the case of a gaussian phase averaging like the one discussed in § 4.3, the coherent part of the current is the sum of the contributions of the whole energy distribution, and if we assume that the mean phase and the phase variance are independent of the energy, the integral becomes:

I ∼ = (2e 2 V 1 /h) √ R 1 R 2 T 1 T 2 cos ϕ ϕ e -δϕ 2 ϕ /2
, where ϕ signals an average over the phase distribution. If we assume that the variance of the phase distribution

is δϕ 2 ϕ ∝ V 2 1
, the interference term in the transmitted current becomes:

I ∼ = 2e 2 V 1 h T 1 T 2 R 1 R 2 cos ϕ ϕ e -V 2 1 /2V 2 10 (4.9)
8 These aspects will be developped in chapter 6.

with V 10 a fit parameter. The interference term in the differential conductance is then:

G ∼ = dI ∼ dV 1 = 2e 2 h T 1 T 2 R 1 R 2 cos ϕ ϕ 1 - V 2 1 V 2 10 e -V 2 1 /2V 2 10 (4.10)
And the corresponding visibility,

V = V 0 1 - V 2 1 V 2 10 exp - V 2 1 2V 2 10 (4.11)
fits approprietly single side lobe structures (Fig. 4.7 (left)) and needs quite remarkably, only one fit parameter. This fit derives directly from the gaussian term e -V 2 1 /2V 2 10 in the interfering part of the current (Eq. (4.9)): this term alone is sufficient to explain the single side lobe structure.

The phase of the interferences in the differential conductance is given by ϕ

= ϕ ϕ + π θ(V 2 1 /V 2 10 -1)
, where θ is the Heaviside function. As observed in the data, the phase obtained from this fit undergoes π jumps when the term (V 2 1 /V 2 10 -1) which modulates the visibility vanishes. The phase rigidity is respected if we consider that ϕ ϕ does not depend on V 1 . This gaussian envelop has been observed in numerous experiments [4,[START_REF] Neder | Coherence and Phase in an Electronic Mach-Zehnder Interferometer: An Unexpected Behavior of Interfering Electrons[END_REF][START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF] and not only in the IQHE regime [START_REF] Van Der Wiel | Electromagnetic Aharonov-Bohm effect in a two-dimensional electron gas ring[END_REF][START_REF] Yamauchi | Universality of biasand temperature-induced dephasing in ballistic electronic interferometers[END_REF]. it is important to emphasize that to date no theory predicts this envelop. During my PhD thesis I have tried to find what could be the physics involved in such a behaviour (chapter 6).

One notices the particular way Eq. (4.11) is derived: the interfering part of the current is multiplied by a reduction factor. This is not a scattering approach with an energy dependent coherence time of quasiparticle (van der Wiel et al. in Ref. [START_REF] Van Der Wiel | Electromagnetic Aharonov-Bohm effect in a two-dimensional electron gas ring[END_REF]). Here, it seems that this reduction factor is due to an external cause. The question is which one? We will see in chapter 6 that this gaussian envelop is not accounted for by a heating effect. Indeed, to justify the V 2 1 dependence of the phase distribution variance, one could say that applying a bias heats the electrons with a temperature proportional to the dissipated power e.g. ∝ V 2 1 . This seems however too simple and we will see that a heat flux alone cannot explain our findings 9 .

Multiple side lobe structure

To fit multiple side lobes structures we add an oscillating factor to Eq. (4.9):

I ∼ = 2e 2 V 1 h T 1 T 2 R 1 R 2 cos ϕ ϕ cos V 1 V c e -V 2 1 /2V 2 10 (4.12)
where V c is a fit parameter. In addition to a 'not understood' gaussian envelop existing in numerous experiments, there seems to be a 'not fully understood' oscillating term in the visibility which has been so far only observed at ν = 2 10 . The visibility becomes:

V = V 0 - V 1 V c sin V 1 V c + cos V 1 V c 1 - V 2 1 V 2 10 exp - V 2 1 2V 2 10 (4.13) 
This new fit function allows for visibilities larger than one when V c /V 10 < 2/π ≈ 0.64 ( § B.3). However, visibilities in the differential conductance have not the physical signification of visibilities in the transmitted current and are allowed to be larger than one.

According to theses fits, the single side lobe structure arises from a simple gaussian phase averaging with a standard deviation proportional to the bias voltage V 1 . The corresponding energy scale is given by the only fit parameter V 10 . To describe the multiple side lobe structure, we introduce another energy scale, V c , distinct from V 10 .

Other derivations

Other groups didn't make this choice: Litvin et al. in [START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF] chose to fit the multiple side lobe structure with a gaussian term modulated by |cos

(V 1 /V c )|.
The interfering part of the current for the multiple side lobes structure can be written as:

I ∼ = 2e h T 1 T 2 R 1 R 2 eV 1 0 cos ε eV c cos ϕ ϕ e δϕ 2 ϕ /2 dε (4.14)
Then, if we assume a mean phase independent of the energy and the bias, and a phase variance depending only on the energy as δϕ 2 ϕ ∝ ε 2 , when deriving the transmitted current with respect to the bias, we obtain the differential conductance, and then we recover Litvin et al.'s formula for the visibility in the differential transmission:

V = V 0 cos V 1 V c exp - V 1 2 2V 2 10 (4.15)
10 We will see in chapter 7 that this oscillating term might originate from the coupling between ESs.

Our choice

Why did we choose the particular fit given by Eq. (4.13) over Litvin's given by Eq. (4.15)?

One can argue that for the multiple side lobe structure, both fits perform equally well as can be seen on Fig. 4.7 (right). They both yield two distinctive energy scales, however, depending on the fit choice, they do not have the same value.

Which one is the more adequate? Litvin's is simpler than ours: it consists in a gaussian enveloppe modulated by a cosine term whose zeros correspond to the annulations of the visibility. They are equidistant from each other in terms of bias voltage with the periodicity 2πV c . In the case of Eq. (4.13), this is not so straightforward. The zeros positions depend both on the gaussian parameter V 10 and the beating parameter V c . On Fig. 4.7 (right), it seems that Eq. (4.13) fits the zeros positions better than Eq. (4.15), but this is arguable.

The important point is that our 'model' which yields Eq. (4.13), also yields an equation which fits the signal induced by the IES because of the coupling V -1 0 between ESs. Moreover, the fitting parameters obtained for the direct signal (Eq. (4.13)) also work for the induced signal 11 . This strongly favors our approach over Litvin's. Additionally, Eq. (

becomes Eq. (4.11) in the limit V 10 /V c → 0, which is not the case if we follow Litvin et al.

(see appendix B).

The choice of our fit over Litvin's suggests that the dephasing doesn't depend on the energy of the electrons in the distribution, but rather on the mean chemical potential.

We presented the fits that will be used in the future and introduced two energy scales V c and V 10 . Eventually, we will be interested in studying the dependence of V c and V 10 with the magnetic field, the dilution (chapter 6)... and the coupling V -1 0 between the ESs (chapter 7). Indeed, we will find that the coupling is a 'good knob' to tune dephasing by the environment. But for now, we try to justify the V 2 1 dependence of the phase variance which is assumed ad hoc, and we present alternative theories that could explain the lobe structure.

Theory

Before the lobe structure was discovered, Seelig et al. [START_REF] Seelig | Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer[END_REF] predicted a monotonic decay of the visibility with the bias voltage caused by intrachannel interactions at ν = 1 treated in 11 In chapter 7 where we will use the induced signal to compute the coupling between ESs. a mean-field approach. Then Marquardt et al. [START_REF] Marquardt | Influence of Dephasing on Shot Noise in an Electronic Mach-Zehnder Interferometer[END_REF][START_REF] Marquardt | Effects of dephasing on shot noise in an electronic Mach-Zehnder interferometer[END_REF] and Förster et al. [START_REF] Förster | Decoherence and full counting statistics in a Mach-Zehnder interferometer[END_REF] studied the effect of a coupling to a classical fluctuating field and to a quantum bath [START_REF] Marquardt | Fermionic Mach-Zehnder interferometer subject to a quantum bath[END_REF][START_REF] Marquardt | Equations of motion approach to decoherence and current noise in ballistic interferometers coupled to a quantum bath[END_REF]. Finally voltage probe dephasing was investigated by Chung et al. [START_REF] Chung | Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers[END_REF].

In the following, I review some theories starting with the simplest ones which yield fit functions for the single side lobe structure, to show that on two examples at least decoherence does not explain the single side lobe structure. Then I show how a meanfield approach reproduces some features of the multiple side lobe structure although with important discrepancies which are also present in more elaborate theories.

Single side lobe structure -decoherence?

First we focus on the case of the single side lobe structure. We have seen that the model of a gaussian averaging of the phase was able to explain the temperature dependence of the visibility and that it yields an appropriate fit if one assumes a V 2 1 dependence of the phase variance ( ¶ 4.4.3). This model involves dephasing, while we are interested here in the damping of the electron interferences caused by decoherence induced by interactions. We attempt two models of an energy and/or bias dependent coherence time τ ϕ . The interfering part of the current results from the whole energy distribution 12 :

I ∼ (V 1 ) = 2e h T 1 T 2 R 1 R 2 eV 1 0 cos (ϕ (ε, V 1 )) e -τ /τϕ(ε,V 1 ) dε (4.16)
where τ is the time of flight of an electron through the interferometer. The integral spans over all energies above the Fermi energy. Lets assume that the phase difference ϕ doesn't depend on the bias nor on the energy. Then the oscillating term can be taken out of the integral.

We explore two models which yield a gaussian decrease of the visibility as function of the bias:

τ ϕ (ε, V 1 ): τ -1 ϕ ∝ ε 2 and τ -1 ϕ ∝ εV 1 .
The latter model is similar to the phenomelogical one proposed by Van der Wiel et al. [START_REF] Van Der Wiel | Electromagnetic Aharonov-Bohm effect in a two-dimensional electron gas ring[END_REF] who considered τ -1 ϕ ∝ ε. In our model, V 1 stands for the available phase space for the electron in a mean field approximation 13 . One could then expect the prefactor to be proportional to T 1 (1 -T 1 ). 12 Since we are not interested in dephasing, there is no averaging over some phase distribution. 13 At finite bias, the first QPC set at transmission T 1 creates complementary double step distributions in both arms. Some relaxation is susceptible to happen [START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF], and the coherence time of the electron could reflect this. Hence the V 1 dependence of τ -1 ϕ .

First case τ -1 ϕ ∝ ε 2 so that the coherent part of the current reads:

I ∼ = 2e h T 1 T 2 R 1 R 2 cos (ϕ) eV 1 0 e -ε 2 /2ε 2 0 dε (4.17)
which yields

V = V 0 exp - V 2 1 2V 2 10 (4.18) 
where V 10 = ε 0 /e is a parameter. We see that the visibility presents no zero, in disagreement with the experimental observations.

Second case τ -1 ϕ ∝ εV 1 leads to:

I ∼ = 2e h T 1 T 2 R 1 R 2 cos (ϕ) eV 1 0 e -eV 1 ε/2ε 2 0 dε (4.19)
and a visibility:

V = 2V 0 1 + V 2 10 V 2 1 exp - V 2 1 2V 2 10 - V 2 10 V 2 1 (4.20)
with V 10 = ε 0 /e. This formula leads to the existence of a zero at finite bias, however, as one can remark on Fig. 4.7 (left), the shape does not agree with the measurements. In addition as I explained previously, such a mechanism would lead to a dependence of V 10 in T 1 (1 -T 1 ), which is not observed (chapter 6) [4,[START_REF] Preden Roulleau | Finite bias visibility of the electronic Mach-Zehnder interferometer[END_REF].

Multiple side lobe structure -mean field approach

I present a mean field model which predicts multiple lobes with only one ES in an asymmetric MZI. This model inspired by Ref. [START_REF] Seelig | Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer[END_REF], mimicks the interaction between electrons by a capacitance to a fictitious gate. A similar approach was developped by Neder et al. [4].

I use the indices U and D for the upper and lower arm of the interferometer. C is a geometrical capacitance mimicking the interaction, with the larger the capacitance, the lower the interaction. V + and V -are the electrochemical potentials applied on the injecting contact and the small inner contact. U denotes the potential seen by the electrons.

Following the Buttiker approach in Ref [START_REF] Seelig | Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer[END_REF], the charges in the arms are:

Q j (ω) = e 2 ν(ω) (R 1 V + + T 1 V --U j ) with Q j = U j C , ν(ω) = i hω 1 -e iωτ j (4.21)
where j = U, D, and τ j is the time of flight through arm j. In the dc limit, this yields:

U U = R 1 V + + T 1 V - 1 + C/C Q U , U D = R 1 V -+ T 1 V + 1 + C/C Q D (4.22)
where

C Q U (D) = G Q τ U (D)
is the quantum capacitance, and G Q = e 2 /h. One can estimate the ratio between the quantum capacitance and the geometrical capacitance

∼ ε 0 ε r R Q v d
which is of the order of 10 -2 to 10 -1 for a drift velocity between 10 4 and 10 5 m.s -1 . Then the geometrical capacitance is negligible. For a inner ohmic contact set to ground, with

V -= 0 and V + = V 1 , one simply gets U U = T 1 V 1 , U D = R 1 V 1 .
As explained in Ref. [4], for an adiabatic process, this variation of the potential leads to a variation of the electron momentum at energy ε above the Fermi energy, k j (ε) = (ε -eU j )/ v d giving a variation of the phase δϕ j = (ε -eU j ) τ j / . Finally, the phase difference between the two trajectories is:

∆ϕ = (τ U -τ D ) ε -(T 1 τ U -R 1 τ D ) eV 1 + 2π Φ B Φ 0 (4.23)
where Φ B is the magnetic flux through the area of the interferometer at the Fermi energy and Φ 0 = h/e is the quantum of flux.

Case T 1 =0.5 Indeed, the maximum visibility is obtained for T 1 = T 2 = 0.5. If the times of flight through the arms are not identical, ∆τ ≡ τ U -τ D = 0. This situation leads to oscillation in the visibility. To show this, I will not take into account the Gaussian envelop.

In that case the interfering part of the current is:

I ∼ ∝ eV 1 0 cos ε - eV 1 2 ∆τ + 2π Φ B Φ 0 dε (4.24)
yielding the interfering part of the conductance

G ∼ ∝ cos eV 1 ∆τ 2 cos 2π Φ B Φ 0 (4.25)
and hence an oscillation in the visibility with a π shift when the visibility crosses 0 and with a phase rigidity between successive zeros of the visibilty.

Beyond the mean-field approach

Although this model reproduces the periodic oscillations of the visibility, there are discrepancies with the experimental findings.

When the transmission of the first beam splitter is not equal to 0.5, the phase rigidity breaks and the lobes are affected while this is not the case in experiments [START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF]. This problem is also present in more elaborate theories [5-11, 16, 80, 81] although phase rigidity seems restored in the strong interaction limit [START_REF] Kovrizhin | Exactly solved model for an electronic Mach-Zehnder interferometer[END_REF][START_REF] Kovrizhin | Multiparticle interference in electronic Mach-Zehnder interferometers[END_REF]. However, many of these theories are pertubative in tunneling [START_REF] Chalker | Decoherence and interactions in an electronic Mach-Zehnder interferometer[END_REF][START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF][START_REF] Schneider | Theory of the nonequilibrium electronic Mach-Zehnder interferometer[END_REF][START_REF] Levkivskyi | Noise-Induced Phase Transition in the Electronic Mach-Zehnder Interferometer[END_REF][START_REF] Neuenhahn | Dephasing by electron-electron interactions in a ballistic Mach-Zehnder interferometer[END_REF][START_REF] Neuenhahn | Universal Dephasing in a Chiral 1D Interacting Fermion System[END_REF] whereas the experiments are generally conducted at T i = 0.5. A notable exception is the work of Kovrizhin et al. [START_REF] Kovrizhin | Exactly solved model for an electronic Mach-Zehnder interferometer[END_REF][START_REF] Kovrizhin | Multiparticle interference in electronic Mach-Zehnder interferometers[END_REF] inspired by Neder et al. [7] and Youn et al. [START_REF] Seok-Chan Youn | Nonequilibrium Dephasing in an Electronic Mach-Zehnder Interferometer[END_REF] which invokes multiple particles interferences.

Within this mean-field approach, the frequency of the oscillations is proportional to the difference of time of flight between the upper arm and lower arm: there is no lobes in a symmetric interferometer. However, Neder et al. [4] have checked by considerably varying the difference of time of flight that this is not the case in experiments. When one treats interactions non perturbatively the beating energy scale no longer depends on ∆τ [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF][7][START_REF] Seok-Chan Youn | Nonequilibrium Dephasing in an Electronic Mach-Zehnder Interferometer[END_REF][START_REF] Kovrizhin | Exactly solved model for an electronic Mach-Zehnder interferometer[END_REF][START_REF] Kovrizhin | Multiparticle interference in electronic Mach-Zehnder interferometers[END_REF][START_REF] Schneider | Theory of the nonequilibrium electronic Mach-Zehnder interferometer[END_REF][START_REF] Levkivskyi | Noise-Induced Phase Transition in the Electronic Mach-Zehnder Interferometer[END_REF].

Plasmons acquire a phase due to the propagation (t 0 in [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF]) and a phase due to interaction (2∆t in [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF]). Both partially cancel out so that there is a phase rigidity [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF][7][START_REF] Seok-Chan Youn | Nonequilibrium Dephasing in an Electronic Mach-Zehnder Interferometer[END_REF][START_REF] Kovrizhin | Exactly solved model for an electronic Mach-Zehnder interferometer[END_REF][START_REF] Kovrizhin | Multiparticle interference in electronic Mach-Zehnder interferometers[END_REF][START_REF] Schneider | Theory of the nonequilibrium electronic Mach-Zehnder interferometer[END_REF].

The long-range character of the interaction seems to be of importance according to

Refs. [5, 7-11, 80, 81]. Indeed it leads to plasmon dispersion, which could account for multiple lobes structure at ν = 1, through beating of a low energy mode with velocity renormalized by the interactions with a high energy mode with bare drift velocity [START_REF] Neuenhahn | Dephasing by electron-electron interactions in a ballistic Mach-Zehnder interferometer[END_REF][START_REF] Neuenhahn | Universal Dephasing in a Chiral 1D Interacting Fermion System[END_REF],

or multiple particles interferences [7][START_REF] Seok-Chan Youn | Nonequilibrium Dephasing in an Electronic Mach-Zehnder Interferometer[END_REF][START_REF] Kovrizhin | Exactly solved model for an electronic Mach-Zehnder interferometer[END_REF][START_REF] Kovrizhin | Multiparticle interference in electronic Mach-Zehnder interferometers[END_REF]. At ν = 2, Levkiviskyi et al. [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF] who treat pointlike interactions between ESs, predict no dephasing when ∆τ = 0. However, when one takes into account the finite range of the interaction, visibility decay is recovered [START_REF] Schneider | Theory of the nonequilibrium electronic Mach-Zehnder interferometer[END_REF].

Although some theories predict a multiple side lobes structure at ν = 1 [7-10, 80, 81], so far only single side lobe structure has been observed. Schneider et al. [START_REF] Schneider | Theory of the nonequilibrium electronic Mach-Zehnder interferometer[END_REF] treated both cases (ν = 1 and ν = 2) with long-range interaction within and betwen ESs in the tunneling limit and found numerically three lobes at ν = 1 and multiple lobes at ν = 2.

To conclude, this simple mean field model helps us understand why the lobe structure is so puzzling. While models including interactions are able to reproduce some features, it appears that there are always discrepancies which raise doubt about the real mechanism leading to the lobes.

In the next section, I report another kind of experiment which probe energy relaxation in the edge states. Some interesting findings point out the role of interactions between edge states. Inter-edge scattering events are exponentially suppressed when the overlapping between wave functions of electrons from adjacent edges decreases [START_REF] Martin | Suppression of inter-edge-state equilibration due to multiple scattering with impurities[END_REF][START_REF] Martin | Suppression of scattering in electron transport in mesoscopic quantum Hall systems[END_REF], it then depends on the filling factor and on the ES index through the width of the compressible/incompressible strips [START_REF] Chklovskii | Electrostatics of edge channels[END_REF][START_REF] Alphenaar | Selective equilibration among the current-carrying states in the quantum Hall regime[END_REF].

B B V D V S V D V S
The equilibration length at ν = 2 has been measured by Müller et al. [START_REF] Müller | Equilibration length of electrons in spin-polarized edge channels[END_REF] and was found to be larger than several hundreds of microns for ∼ 0.1 K. In the case of ν = 2, suppression of equilibration between ESs is reinforced by spin conservation: an electron tunneling into the adjacent ES requires a nuclear spin-flip. Such an event is rare because of the small hyperfine coupling, hence the large equilibration length.

These experiments show that there is no particle exchange between ESs but what about energy exchange? A recent experiment focus on this aspect.

A recent experiment

Energy relaxation

In the experiment reported in [START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF][START_REF] Altimiras | Nonequilibrium edge-channel spectroscopy in the integer quantum Hall regime[END_REF], the authors studied in the IQHE regime at ν = 2 the relaxation of an out of equilibrium electron distibution in the OES. To do so, they perfected an energy spectroscopy technique to probe the energy distribution in the OES with a quantum dot (QD). On Fig. 4.9 is an image of the sample by a scanning electronic microscope (SEM). Injecting a double step energy distribution in the OES by means of a QPC, they find that the out of equilibrium distribution relaxes into a seemingly hot Fermi distribution which depends on the propagation length along the IES. Data show that relaxation is complete after a L = 10 µm propagation. The authors proved the existence of energy exchanges between the OES and the adjacent IES which with some additional energy loss, seems to explain quantitatively the observed energy relaxation in the OES 14 . 

Conclusion

In this chapter, we explained why the Mach-Zehnder interferometer is an appropriate tool to study coherence in the edge states.

We reported the earlier results on the temperature dependence of the coherence at zero bias at ν = 2 [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF][START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF] and the associated mean-field theory based on a work by Seelig et al. [START_REF] Seelig | Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer[END_REF] which was developped in our group: the coupling of the interfering edge state with its noisy environment which is the adjacent edge state present at ν = 2, is responsible for the limited coherence at finite temperature. An alternative approach by Levkiviskyi et al. [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF] gives the same quantitative result and also points toward coupling between edge states. We then reported the 'unexpected behaviour' [START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF]4,[START_REF] Neder | Coherence and Phase in an Electronic Mach-Zehnder Interferometer: An Unexpected Behavior of Interfering Electrons[END_REF][START_REF] Preden Roulleau | Finite bias visibility of the electronic Mach-Zehnder interferometer[END_REF][START_REF] Litvin | Decoherence and single electron charging in an electronic Mach-Zehnder interferometer[END_REF][START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF][START_REF] Bieri | Finite-bias visibility dependence in an electronic Mach-Zehnder interferometer[END_REF] observed in the visibility af finite bias and its dependence with the various parameters of the experiment.

We reviewed different formulas to fit the data and presented our choice for a fit. The theories available to explain the lobe structure have multiplied these last years [START_REF] Chalker | Decoherence and interactions in an electronic Mach-Zehnder interferometer[END_REF][START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF][7][START_REF] Seok-Chan Youn | Nonequilibrium Dephasing in an Electronic Mach-Zehnder Interferometer[END_REF][START_REF] Kovrizhin | Exactly solved model for an electronic Mach-Zehnder interferometer[END_REF][START_REF] Kovrizhin | Multiparticle interference in electronic Mach-Zehnder interferometers[END_REF][START_REF] Schneider | Theory of the nonequilibrium electronic Mach-Zehnder interferometer[END_REF] but still do not explain the whole range of experimental data. We tried to present these theories in a comprehensive manner that showed their basic ingredients and limits.

Finally we reported a recent experiment by Altimiras et al. [START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF][START_REF] Altimiras | Nonequilibrium edge-channel spectroscopy in the integer quantum Hall regime[END_REF] on energy relaxation in the ESs at ν = 2 which might be present in the MZI and explain the lobe structure.

The authors also found a cure against energy relaxation [START_REF] Altimiras | Tuning Energy Relaxation along Quantum Hall Channels[END_REF].

These elements prompt us in two directions: first, we want to study the finite bias visibility further, trying to relate it to the various theories: Levkiviskyi et al. [START_REF] Levkivskyi | Noise-Induced Phase Transition in the Electronic Mach-Zehnder Interferometer[END_REF] made a prediction on a possible quantum phase transition of the lobe pattern as function of the dilution of the incoming electron beam. We check this prediction. We also try to relate the findings on energy relaxation to the energy scales in our experiment. Second, taking advantage of the conclusions of Altimiras et al. [START_REF] Altimiras | Tuning Energy Relaxation along Quantum Hall Channels[END_REF] on the freezing of energy relaxation, we design a new kind of sample where we try to freeze energy exchanges between the ESs.

By the way, we make a quantitative comparison with the theory of Levkiviskyi et al. [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF].

Before diving into these subjects, let me present the Mach-Zehnder interferometer. 

The electronic

Introduction

We explain here how to make the condensed matter electrical equivalent of the optical Mach-Zehnder interferometer. First we introduce the consitutive elements of the interferometer and the interferometer itself. Then we present the experimental set-up which allows us to observe one electron interferences in the quantum Hall regime at ν = 2.

The elements

Electron beams and mirrors

To realize an electronic Mach-Zehnder interferometer, one needs: i) electron beams which are provided by ESs in the QHE regime as we have seen in § 3.5

ii) mirrors to change the direction of the beams. In the QHE regime the ESs follow naturally the edge of the sample. One can design the paths of the beams just by designing the edges of the sample either with polarized metallic gates or by etching. According to the method used, the confining potential will be different (sharper with the etching method)

and so the velocity of the electrons (greater for an etched edge).

iii) beam splitters: one uses quantum point contacts as beam splitters ( ¶ 5.2.2).

Of course, we study the electronic MZI in the coherent regime [START_REF] Datta | Electronic Transport in Mesoscopic Systems[END_REF] where the dimensions of the sample are smaller than or of the order of the coherence length l ϕ which was measured to be of the order of 20 µm at 20 mK (chapter 4): we study samples whose arm lengths are 5.6, 8 and 11.3 µm (Fig. 5.2).

The quantum point contact

A quantum point contact (QPC) [START_REF] Blanter | Shot noise in mesoscopic conductors[END_REF][START_REF] Van Wees | Quantized conductance of point contacts in a two-dimensional electron gas[END_REF] is defined by an electrostatic depletion of the 2DEG underneath a gate. The metallic gate is deposited on top of the GaAs/AlGaAs heterostrusture with a ∼ 300 nm opening.

On Fig. In the future, except when specified, the IES will be fully reflected at the QPCs. The interferences are observed in the OES and one can forget the IES in a first approach.
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The interferometer

The sample

The electronic Mach-Zehnder interferometer was designed at LPN (Marcoussis) by G. Faini and D. Mailly, on a high mobility 2DEG from A. Cavanna and U. Gennser (density n s = 2.0 × 10 11 cm -2 , mobility µ 0 = 2.5 × 10 6 cm 2 .V -1 .s -1 ). We later worked on a 2DEG provided by W. Wegscheider from ETH (Zurich) with density n s = 1.1 × 10 11 cm -2 and mobility µ 0 = 3 × 10 6 cm 2 .V -1 .s -1 (chapter 7). 

Transmission through the MZI

The electronic MZI takes avantage of the electron beams and the beam splitters in the same way than the optic one: within the single particle Landauer-Büttiker formalism, the transmitted amplitude t of an electron in the OES is the sum of the two amplitudes transmitted through paths U and D (Fig. 5.2). With t i and r i being the transmission and reflection amplitudes of beam splitter

G i (|t i | 2 + |r i | 2 = 1
), the transmitted amplitude through the MZI is:

t = t 1 e iϕ U t 2 -r 1 e iϕ D r 2 (5.1)
where ϕ U (ϕ D ) is the phase accumulated by the electron traveling in the upper(lower) arm of the interferometer.

The transmission probability at the energy ε above the Fermi energy is1 :

|t| 2 = T 1 T 2 + R 1 R 2 + 2 T 1 T 2 R 1 R 2 cos (ϕ (ε)) (5.2)
where

|r i | 2 = R i and |t i | 2 = T i (i = 1, 2)
, and where ϕ (ε) = ϕ U -ϕ D is the Aharonov-Bohm phase [START_REF] Aharonov | Significance of Electromagnetic Potentials in the Quantum Theory[END_REF] corresponding to the area defined by the position of the interfering ES along the upper path U and the lower path D (Fig. 5.2) a small energy ε above the Fermi energy. This phase is linked to the phase at the Fermi energy ϕ F through [START_REF] Chung | Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers[END_REF]: 

ϕ (ε) = ε∆L v d + ϕ F (5.

Revealing interferences

One immediately sees that to reveal the interferences in the transmission of the MZI, there is two possibilities: either sweeping the magnetic field, or changing the area enclosed between the two paths via a gate electrostatically coupled to one arm of the interferometer (SG or the IES in the upper arm).

In the following I describe how we measure the interferences in practice e.g. how and why we work at low temperatures and how we make transport measurements.

Experimental set-up

Low temperatures

To see the quantum Hall effect, we need the thermal energy to be small compared to the Landau gap: k B T ω c . At B ∼ 3 T, this means T 59 K which is not difficult to achieve. However since the length coherence scales as T -1 and is of the order of 20 µm at 20 mK (chapter 4), the lower the temperature, the better.

We worked with a 3 He/ 4 He dilution refrigerator with a typical base temperature of 20 mK with 12 coaxial cables. Our fridge circulates 30 µmoles/s which corresponds to an approximate cooling power of 30 µW at 120 mK.

A superconductive coil allows us to reach a maximum magnetic field of 12 T at 4.2 K.

The experimental space, the mixing chamber and the discrete exchangers are surrounded by a screen thermalized at 170 mK so that 4.2 K black body radiation is suppressed. More importantly, the shield prevents transport of residual 4 He from the 4.2 K surface to the 20 mK surface. The experimental box is thermally anchored to the mixing chamber with a copper rod. Its temperature is measured with a RuO 2 thermometer calibrated between 7 mK and 1 K. The sample is stuck to the sample holder with a PMMA resine. Electrical connections between the sample and the sample holder by golden boundings are done with an ultrasound micro-soldering machine.

At high temperatures electrons are thermalized to the cristal temperature by electronphonon collisions. For the low temperatures we are working at, these processes are no longer efficient to cool the 2DEG. The 2DEG thermalizes itself via the electronic conductivity (Wiedemann-Franz law) to the ohmic contacts which are maintained at low temperature.

To reduce thermal losses, we use homemade coaxial cables made of inox and high resistivity wire. We use specific coaxial cables which strongly attenuate high frequency electromagnetic modes [START_REF] Glattli | A noise detection scheme with 10 mK noise temperature resolution for semiconductor single electron tunneling devices[END_REF]. The attenuation factor is given by A = exp (R(f )/Z c ), where Z c is the characteristic impedance of the coaxial cables and R(f ) their resistance at frequency f , which increases at high frequency because of the skin effect. The coaxial cable typical capacitance is C = 20 pF, the resistance per unit length of the inner conductorwhose diameter is D = 75 µm -is given by R/L = 300 Ω.m -1 . From these values we find an attenuation factor of A = 2 × 10 -3 dB.Hz -1/2 . At 1 GHz, the attenuation of transverse electromagnetic modes is of 6 dB, and increases as the squareroot of the mode frequency.

Transport measurements

Since interferences are seen in the transmission through the interferometer, we are interested in doing transport measurements: we measure differential conductances using standard lock-in techniques3 . The measurement system is represented on Fig. An ac current i ac,in at f 0 = 418 Hz is sent on the sample. The output voltage contains an ac component v ac,out synchronized with the excitation and a noisy component. This output signal is amplified by a low noise amplifier 4 , and demodulated with the reference signal at f 05 : the measured signal is the response of the system excited at the frequency f 0 , around the energy eV i above the Fermi energy, where V i is the dc bias applied in addition to the tiny excitation. Finally we extract the differential conductance G(eV i ) = i ac,in /v ac,out .

The ac excitation must be low enough: its amplitude fixes the energy range on which we probe the system. To observe temperature dependent properties, it is necessary that ev ac,in k B T . In our experiment, the lowest electronic temperature was ∼ 20 mK, which imposes v ac,in 2 µV. On the other hand, to have the best sensitivity we must choose v ac,in close to this limit. Typically we injected an ac current of 0.1 nA, which gives at ν = 2, for a 12.9 kΩ input resistance 6 , v ac,in ∼ 1.3 µV.

One must avoid multiples of 50 Hz. In some experiments realized on the MZI, we used two lock-ins with excitations frequencies f 1 = 418 Hz and f 2 = 619 Hz. To protect the experiment from microwave pollution, the fridge is inside a copper box that prevents the environmental electromagnetic noise from reaching the sample.

To get rid of the resistance of the wires and of the ohmic contacts (resistance of the wires about 200 Ω at 300 K plus ohmic contacts resistance and 2DEG resistance at zero magnetic field about 100 Ω), we should do four points measurements. However, because of the geometry of the sample, we limit ourselves to two points and three points measurements.

We must then figure what we are really measuring.

Two points resistance

To adjust the magnetic field at a value corresponding to a specific integer filling factor in each arm of the interferometer, we proceed as follows. One injects current i (2) ac at ohmic contact n • 3 and leave all the QPCs open. v ac (2) measured at contact n • 3 by lock-in LI2 yields 7 :

R 2points = v ac (2) i ac (2) = R L + R H + offset (wires+contacts) (5.4)
On a Hall plateau, the longitudinal resistance vanishes, leaving only the quantized Hall resistance and the offset due to wires and ohmic contacts (which can be substracted). When sweeping the magnetic field, we observe quantized plateaus of Hall resistance (Fig. 5.4).

From this measurement we can tune the magnetic field to obtain the desired filling factor. 6 Ohmic contacts are grounded before and after the QPCs so that the two points resistance seen at the injection is the Hall resistance: v ac,in = R H i ac,in . 7 I will abusively call Hall resistance the two points resistance. This resistance has the same quantification properties as the Hall resistance, if one neglects the contacts and wire resistance (see § 3.4.3). 

Three points resistance

Three points resistance measurements are done by injecting a current i (1) ac at ohmic contact n • 1 and measuring the corresponding potential drop v ac (1) at contact n • 3 with lock-in LI1:

R 3points = v ac (1) 
i ac (1) = αR H (5.5) where α is 1 if all the QPCs are open and if there is no backscattering. R 3points and α are plotted on Fig. 5.4 as function of the magnetic field.

Characterizing the sample Backscattering

As one can remark on Fig. 5.4, the transmission α reaches one when R H is on a plateau:

as explained in the chapter devoted to the Hall effect (chapter 3), the transport is ballistic and there is no backscattering. However α is not 1 on all the Hall plateau. This is most probably due to the mesoscopic aspect of the sample. While one is measuring R H on a region where the mesa is large, R 3points probes the transmission trough narrow regions.

These regions have a width comparable to the screening length on the edge [START_REF] Chklovskii | Electrostatics of edge channels[END_REF]. Thus the density does not reach the bulk value, which corresponds to the one probed in the two points measurement. It seems that the density in the lower arm is smaller than the density in the bulk but larger than the density in the upper arm. Indeed the variation is not so large. If one estimate it from the plateaus ends, the relative variation is of the order of 8 %.

The origin of the density mismatch between the upper and lower arm is not clear. It could be due either to the presence of the small ohmic contact, or to the additional gates that are present in this particular sample and that we will use later in chapter 7. Nevertheless, it is legitimate to think that such a small density mismatch in both arms cannot lead to a strong velocity drift mismatch.

Characterizing the QPCs

Three points resistance is useful to characterize QPCs. For example, lets examine G0: we let G1 and G2 open and sweep the gate voltage applied to G0. Lock-in LI1 measures a voltage drop proportional to the transmitted current i t : v ac (1) = i t × R H . In most situations, the IES is fully reflected at all QPCs, we then define the transmission of the OES through G0 by: T 0 = 2i t /i ac (1) 8 . If there are impurities, the differential conductance di t /dv 1 as function of the gate voltage V G U shows resonances. This is an impediment when one wants to study the dependence of the interferences on the transmission of one QPC.

Our new samples (from W. Wegscheider) QPC's characteristics are much smoother that the ones of our previous samples (Fig. 5.6), indicating that they have a better mobility.

8 T 0 = 1(0) when the OES is fully transmitted(reflected), the IES being totally reflected.

This data also tells us what voltage we must apply to have a transmission of the OES at QPC G1 and G2 about T 1,2 ∼ 0.5 (the maximum of visibility should be achieved for

T 1 = T 2 = 0.5).
-0,4 -0,2 0,0 0,2 0,4 0,0 0,5 We proceed in the following way: 2 nd step G0 is set so that the IES is fully reflected and the OES fully transmitted (T 0 = 1), on the first plateau of the black curve at V G0 = -0.1 V and we successively measure the differential conductance of G1(G2) as function of V G1 (V G2 ) with G2(G1) open.

Tuning the interferometer

Electron interferences

Once we have obtained the characteristics of gates G0, G1 and G2, we fully reflect the IES at G0, and tune G1 and G2 to the voltages for which we measured a transmission one half of the OES. We note T 1 and T 2 the transmissions of the OES by QPCs G1 and G2. The process described above is not enough to achieve the best tuning of the interferometer. It results from the fact that QPCs are very sensitive to the gate voltage when working around half transmissions of the OES. Cross talk between QPCs is responsible for the detuning.

To fine-tune G1 and G2 we proceed in the following manner: we know that if T 1 = 0.5, the differential transmission of the OES averaged over the oscillations caused by interferences

(the mean transmission) is independant of T 2 since di t /di 0 osc = [1 -T 2 + 2(T 2 -0.5)T 1 ],
then if T 2 > 0.5(T 2 < 0.5), the mean transmission di t /di 0 osc increases(decreases) with T 1 and so with V G1 . On the contrary, if T 2 = 0.5 it is constant. On the curves of figure 5.7 (left), we ajust T 2 so that when we change V G1 , the mean transmitted current remains constant.

The green curve for a given V G2 is decreasing with V G1 , so T 1 < 0.5. We then increase slightly V G2 : the transmitted current is constant, because then we have T 1 = T 2 = 0.5. On figure 5.7 (left), for fixed gate voltages of G2, the voltage applied to G1 is slowly sweeped, to see if there are electronic interferences. Indeed, oscillations of the transmitted signal hint at electronic interferences, with maximum amplitude when G2 is tuned exactly to The MZI samples are designed so that the upper and lower arms have the same length, however in some samples, we observe a small dependence of the phase of the interferences with the bias voltage which hints at a small asymmetry which would lead to thermal smearing. Here we explain what thermal smearing is and how this trivial effect can cause temperature dependence of the visibility. This effect must be systematically checked so as not to confuse it with other interesting effects like decoherence or environment dephasing. 9 During my thesis, I tried several times to observe quantum interferences in the FQHE regime at ν = 1/3.

We never succeed and, to our knowledge, the Weizmann group which tried this experiment also failed.

It is as though a phase shift accompanying trapping or detrapping of quasi-particle in the MZI blurred the phase of interferences (exchange between A. Stern and P. Roche) 

Thermal smearing

Non interacting model

Chung et al. [START_REF] Chung | Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers[END_REF] have studied the effect of a bias voltage V 1 on the visibility, treating the non interacting case. Their theory explains the impact of a finite temperature on the visibility in the case where there is a length difference ∆L between the two arms. Thus a small increase in energy leads to a phase increment δϕ = (e/ v d ) F (s) ∆s ⊥ ds, which gives finally δϕ = ε∆L/ v d , where I have introduced ∆L, the length difference between the upper and down arm of the MZI. The spectral current density a small energy ε away from the Fermi energy is then: Experimentally, we measure the differential conductance, which within this theory is related to the temperature T and the bias voltage V 1 in the following way:

j(ε) = e h (f (ε) -f 0 (ε)) T 1 T 2 + R 1 R 2 + 2 T 1 T 2 R 1 R 2 cos ε E c + ϕ F ( 5 
G(eV 1 ) = e 2 h T 1 T 2 + R 1 R 2 + 2 T 1 T 2 R 1 R 2 πk B T /E c sinh (πk B T /E c ) cos eV 1 E C + ϕ F (5.8)

Visibility

In the non interacting approach, the visibility does not depend on the voltage.

However this model gives a temperature dependence via the sinh, which leads to an exponential dependence of the visibility with the temperature (also called thermal smearing)

when k B T E c . Lets give an idea of why the finite temperature scrambles the phase: the phase increment δϕ = ε∆L/ v d when there is a length difference ∆L = L U -L D between two arms of the MZI, v d being the drift velocity. Since we work at finite temperature, the energy is averaged over a typical energy range of k B T , which leads to an average of the phase of the order of k B T × ∆L/ v d . To be more precise, Eq. (5.8) leads to a visibility:

V = V 0 T /T T sinh (T /T T ) (5.9)
where we have introduced k B T T = v d /π∆L and V 0 the visibility at zero temperature.

This formula gives a quasi exponential dependence of the visibility with the temperature when T T T .

Phase rigidity breaking Additionally, through Eq. (5.8), we see that in this model the phase of the interferences is not rigid when ∆L = 0. The asymmetry of the MZI induces an energy dependence of the phase and is also responsible for thermal smearing T -1 T :

∂ϕ ∂ε = ∆L v d and T -1 T = πk B ∆L v d (5.10)
As already said, our MZI samples are specifically designed to have an upper and lower arm with equal length so as to minimize thermal smearing. This is not possible in FPI samples where interferences occurs by construction between paths of different lengths (see Fig. 4.2). This is the reason why FPI are more sensitive to thermal smearing than MZI [START_REF] Hansen | Mesoscopic decoherence in Aharonov-Bohm rings[END_REF].

Discussion

Can thermal smearing account for the exponential decay of the visibility with the temperature which was reported in chapter 4? Roulleau et al. carefully checked the effect of thermal smearing and found that it could not explain their experimental observations [START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF].

Indeed if it were, the corresponding temperature scale would be T T = 14 mK for the large sample (L = 11.3 µm). This temperature scale would lead to a bias dependence of the phase ∂ϕ/∂V 1 ≈ 0.26 rad.µV -1 which makes ≈ 1.3π over 16 µV, while the data show a rigid phase over this scale.

In the sample that we study in chapter 7 however, we observe a slight dependence of the interferences phase with the bias. From this dependence we extract the value T T = 60 ± 20 mK whereas the temperature dependence scale is measured to be T ϕ = 9 ± 0.4 mK, for a temperature ranging from 20 to 50 mK and a large sample L = 11.3 µm: this time we are not even in the limit were the sinh of the thermal smearing can be approximated by a decaying exponential, and the temperature scales are not of the same order. 

Visibility at finite energy

Introduction

We are now interested in the energy dependence of the electronic Mach-Zehnder interferences. To do that, we simply apply a dc voltage V 1 on the ohmic contact where the interfering electrons are injected (contact n • 1) as represented on the schematic Fig. 6.1. We apply voltages up to 50 µV. We do a differential measurement with a standard lock-in technique: we modulate the current of incoming electrons which have the energy eV 1 above the Fermi energy at equilibrium, with a frequency f 1 , and look at the transmitted current modulated at the same frequency. In a sense we do monochromatic interferences: although we inject electrons with energy from E F up to E F + eV 1 , we only look at electrons with energy E F + eV 1 .
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If we were to do this with laser photons, we would obtain a flat visibility. With electrons in a condensed matter system, this is different. Indeed, electrons are charged and interact with their environment much more than photons (bulk, other electrons, external potential fluctuations....). However, until now the independent electrons picture was enough to describe the general transport properties of the IQHE regime: up to the gap energy ( ω c ∼ This is not what is observed experimentally: as we detailed in chapter 4, the visibility as function of the bias voltage decays and oscillates showing phase rigidity between extinctions with π phase jumps between two subsequent 'lobes'. Once this lobe behaviour and its associated energy scales were discovered, soon arised the question of their dependence on the various physical parameters of the experiment.

Several groups [4,[START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF] did a systematic study of the lobe pattern as function of the magnetic field around ν = 2 and found that the lobes shape depends strongly on the magnetic field (Fig. 6.2): Neder et al. [4] found that at ν = 2, the multiple side lobes structure broadens into a single one as the magnetic field increases, suggesting that both energy scales, the one describing the gaussian behaviour, V 10 , and the one associated with the multiple side lobes, V c , are affected by the magnetic field. (left) Weizmann's Institute [4]: the multiple side lobes structure is present at the lowest magnetic field. Its energy scale and the maximum visibility increase as the magnetic field increases. Then the multiple side lobe structure turns into a single side lobe structure. (middle) Regensburg's University [START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF]. At low magnetic field, a multiple side lobe structure is found which broadens as the magnetic field increases and seems to morph into a single side lobe structure. The strange thing is that the maximum visibility is achieved at ν = 1.5 and that the interferences become visible at the end of the ν = 2 plateau. The determination of the filling factor might be wronged by some asymmetry between the electronic density of the MZI arms. (right) Regensburg's group [START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF].

Energy scales describing the beating of the visibility ( L ) and the gaussian dependence ( 0 ) of the lobe pattern as function of the magnetic field. The energy scale of the temperature dependence (k B T 0 ) is also reported. All energy scales evolve proportionnally to each other.

Litvin et al. [START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF] also found a strong dependence of the lobes on the magnetic field, but strangely enough they found a maximum visibility at ν = 1.5. Heterogeneities in the 2DEG might explain this result. Additionally, both energy scales describing the gaussian behaviour and the beating evolve along the same trend as function of the magnetic field.

We did not make an extended study of the lobe dependence on the magnetic field, however our few points seem to agree with the results of the Weizmann's: multiple side lobes are obtained at the beginning of the ν = 2 plateau, and single side lobes at the end.

It seems then that the magnetic field influence both energy scales V 10 and V c . Do they proceed from the same physical origin? When one changes the magnetic field, one changes at the same time the electronic interactions, the electron trajectory because of disorder, the distance between ESs (hence the coupling between them)... It is difficult to point out one cause in particular. Later (chapter 7), we will present some results showing that we can act on the multiple side lobe structure whitout affecting the gaussian dependence.

For now, we will focus on yet another physical parameter which has an influence over the shape of the visibility as function of the bias voltage: the dilution strength T 0 .

6.2.

Influence of the dilution T 0

Main effects

Another parameter which influences strongly the shape of the lobe pattern is the transmission T 0 of the OES through the injecting QPC, G0.

We represented on Fig. 6.3 two lobe structures for two different values of T 0 : the black curve corresponds to T 0 ∼ 1, whereas the red curve corresponds to T 0 ∼ 0.1. The first zero in the visiblity as function of V 1 seems to go from ∼ 7 µV for T 0 ∼ 1 to ∼ 25 µV for T 0 ∼ 0.1. Additionally, we have a multiple side lobes structure for T 0 ∼ 1 which seems to transform into a single side lobe structure when T 0 ∼ 0.1. The gaussian behaviour seems to be affected by the dilution. We see the effect on the gaussian behaviour in the broadening of the central lobe which is mainly parametrized by V 10 (the dependence of the fit with

V c /V 10 is studied in appendix B).
What is the precise form of this dependence? What about its physical origin? A possible origin is the energy redistribution of the electrons as they propagate: electrons inside the MZI are in an out-of-equilibrium energy distribution at finite bias V 1 thanks to G1 and to G0. Is it possible that they redistribute to reach equilibrium, thus affecting the visibility?

This redistribution (and the shape of the visibility versus the energy) should depend on the available phase space, and in particular on the shape of the out of equilibrium distribution which is set by V 1 , V 2 , T 1 and T 0 . This is the reason why, in section 6.3, we will fix T 0 and study the dependence of the visibility on V 1 , and in particular the evolution of the width of the central lobe as function of T 0 , as well as on V 2 (which was set to 0 until now).

In the next section, we study the multiple side lobe structure as function of T 0 which has been predicted to undergo a quantum transition to a single side lobe structure induced by partition noise in the OES at T 0 = 0.5 [START_REF] Levkivskyi | Noise-Induced Phase Transition in the Electronic Mach-Zehnder Interferometer[END_REF].

A quantum phase transition?

The model and a prediction A model developped by Levkiviskyi et al. [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF] works out at ν = 2. It explains the oscillations in the visibility as function of the voltage bias and the phase rigidity (Fig. 6.4) by the beating of two modes arising from the coupling of two copropagating edge states. These two collective modes are a symmetric fast charge mode and a antisymmetric slow dipolar mode. The authors also reproduce the T -1 dependence of the coherence length ( ¶ 4.3.4).

However, the decay of the envelop is not reproduced, the model is derived in the weak tunneling T 1 → 1 and weak backscattering T 1 → 0 limits while the experiments are done at T 1 = 0.5. Moreover, it does not explain the results for ν = 1. Nevertheless, using this model, the authors predicted a quantum phase transition from a multiple to a single side lobe structure induced by non gaussian noise partition noise generated by G0 [START_REF] Levkivskyi | Noise-Induced Phase Transition in the Electronic Mach-Zehnder Interferometer[END_REF] (Fig. 6.5 (left)). They predict a continuous increase of the dephasing as T 0 decreases from 1 to 0.5 with a rigidity of the zeros position with respect to the voltage bias. At T 0 = 0.5, the multiple side lobe structure transforms into a single side lobe structure, and for T 0 < 0.5, the single zero evolves as (T 0 (1 -T 0 )) -1 .

Results

For V 2 = 0, we measured the visibility as function of V 1 for different values of T 0 ranging from 0 to 1. We didn't impose the value of T 0 but rather the gate voltage V G0 , and we plotted the data as function of the transmission T 0 at zero bias because T 0 varies with the bias. The dependence of T 0 with V 1 might be responsible for smearing the final picture (Fig. 6.5 (right)). The figure we obtain resembles the prediction of Levkiviskyi [START_REF] Levkivskyi | Noise-Induced Phase Transition in the Electronic Mach-Zehnder Interferometer[END_REF] (Fig. 6.5 (left)).

However, the occurence of the transition at precisely T 0 = 0.5 as well as the dependence of the lobe size as function of T 0 requires a more quantitative treatment. Moreover, the lobe structures are not symmetric with respect to V 1 : there is two additional lobes on the positive side whereas there is only one side lobe on the negative side (not represented on Fig. 6.5 (right)).

For all these reasons we chose to look at the position of zeros of the visibility with respect dependence, as can be seen on Fig. 6.6.
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1 I discuss the non-linearities of T 0 as function of the energy later in ¶ 6.3.3.

Levkiviskyi et al's prediction is interesting as it gives the underlying mechanism for the visibility decrease which was not considered in the first paper of Levkiviskyi [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF]. Partition noise from G0 in the OES seems responsible for the visibility decay in [START_REF] Levkivskyi | Noise-Induced Phase Transition in the Electronic Mach-Zehnder Interferometer[END_REF]. However this decay is not gaussian, and does not explain the gaussian decay observed when G0 transmits the OES perfectly or when there is only one edge state (ν = 1).
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Comparison with Levkiviskyi's prediction

We find that if we consider the transmission at finite bias voltage, the results are quantitatively compatible whith the prediction of Levkiviskyi et al. on the following points: first, the rigidity of the zeros visibility, from T 0 = 1 down to T 0 ∼ 0.5. Second, at T 0 = 0.5, the multiple side lobes disappear to give rise to a single side lobe structure. Finally, for T 0 ≤ 0.5 the width of the central lobe increases as [T 0 (1 -T 0 )] -1 .

Gaussian enveloppe

Injecting an out of equilibrium distribution

When diluting the incoming current from the OES by pinching G0 to partial transmission T 0 < 1, we create a two-step out of equilibrium energy distribution in the OES, at the output of the QPC G0 as represented on Fig. 6.7. The two-step distribution results from the mixing by G0 of the electrons of the OES coming from ohmic contacts n • 1 and n • 2.

Its shape is parametrized by the bias voltage applied on ohmic contact n • 1, V 1 , the bias voltage applied on ohmic contact n • 2, V 2 , and the transmission of QPC G0, T 0 . In the previous section, V 2 was set to zero and we were looking at shape of the visibility as function of V 1 (we saw multiple side lobes and single side lobe structures) for various values of T 0 . Here we will be interested in the gaussian shape of the visibility (e.g. the first zero of the visibility) as function of T 0 . It is also possible to study the shape of the visibility with respect to V 2 (with V 1 set to zero), that we have also found to be gaussian. In the next section ( § 6.3) we will see what happens when both V 1 and V 2 have finite values.
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To what end do we study the dependence of the visibility with the shape of the injected energy distribution? Works from another group (LPN's group at Marcousis) showed that in the QHE regime at ν = 2, when put out of equilibrium, the OES relaxes by exchanging energy with the adjacent IES on a typical lengthscale of 10 µm. This energy relaxation was considered as a possible explanation to the peculiar dephasing in the Mach-Zehnder interferometer. Hence came the idea of injecting electrons in an out of equilibrium energy distribution in the MZI and see if there was any effect on the visibility.

Next we study the visibility as function of V 1 with V 2 = 0, and as function of

V 2 while V 1 = 0.
It is important to remark that we inject an out of equilibrium distribution and measure the visibility for quasi particles close to the

E F + eV 1 . A visibility dependence on V 1 (V 2
) cannot be obtained when considering non interacting quasiparticles: such an observation would be a direct manifestation of interaction effects in the IQHE regime.

As function of V 1

For now V 2 is set to zero, and we study the visibility as function of V 1 for different values of T 0 from 0 to 1. The visibility shows a single side lobe pattern. The gaussian parameter V 10 is then extracted as function of T 0 . 

2) (blue and red points)

show the same behaviour, with large error bars with respect to 1/V 2 10 , widening as V 10 decreases, and also large error bars with respect to T 0 because of its dependence with the bias.

The measurement has actually already been done by my predecessor P. Roulleau on two samples with the same size (arm length of L = 8 µm) at the same magnetic field of 5.2 T, the results were reported in [START_REF] Preden Roulleau | Finite bias visibility of the electronic Mach-Zehnder interferometer[END_REF] and are reproduced on Fig. 6.8 (left). At the time, the dependence of V 10 with T 0 was not clear. We could only say that V 10 is decreasing when T 0 increases and diverges when T 0 → 0. We now plot the same data in a different way: 1/V2 10 is represented on Fig. 6.8 (right) as function of T 0 . We see clearly that 1/V 2 10 dependence on T 0 can be considered linear:

V 10 (1) V 10 (T 0 ) 2 = T 0 (6.1)
This yields V 10 (1) ≈ 14 µV and V 10 (1) ≈ 11 µV. We also reported on Fig. 6.8 (right) the above results (L = 11.3 µm, B = 3.44 T) for the negative and the positive first zeros, for the multiple side lobe structure. Albeit large error bars with respect to the y-axis widening when 1/V 2 10 increases, and also with respect to the x-axis because of the bias dependence of T 0 , the data follow the same law. The typical energy scales are now 6 and 6.5 µV. We see that the gaussian parameter V 10 (T 0 = 1) increases when L decreases in agreement with Yamauchi et al. [START_REF] Yamauchi | Universality of biasand temperature-induced dephasing in ballistic electronic interferometers[END_REF].

As function of V 2

Now V 1 is set to zero, and we study the visibility as function of V 2 for different values of T 0 .

The logarithm of the visibility shows a parabolic dependence in V 2 with a coefficient which depends on T 0 (see Fig. 6.9 (left)). The parabolic curves are a direct manifestation of the gaussian shape of the visibility with respect to V 2 . Coefficients 1/(2V 2 20 ) 2 are reported on Fig. 6.9 (right). Their dependence on T 0 seems also linear,

V 20 (T 0 → 0) V 20 (T 0 ) 2 = 1 -T 0 (6.2)
except for T 0 = 0. Indeed when we extrapolate the 1 -T 0 dependence to T 0 = 0, we should get the greatest 1/V 2 20 , however we find that 1/V 2 20 → 0 when T 0 → 0. We tested two samples of different sizes. Sample #1 had an arm length of L = 11.3 µm and was tested at 4.29 T. Sample #2 had an arm length of L = 8 µm, had a lower electron density and the magnetic field was 3.74 T. The crossover between the 1 -T 0 dependence and the point at T 0 = 0 occurs for different values of T 0 on the two samples we tested (T 0 ∼ 0.1 for sample #1 and T 0 ∼ 0.3 for sample #2). The two different samples yielded V 20 (T 0 → 0) ≈ 9 µV for sample #1, and V 20 (T 0 → 0) ≈ 12 µV for sample #2. As for V 10 , we see that the gaussian parameter V 20 (T 0 → 0) increases when L decreases in agreement with Yamauchi et al. [START_REF] Yamauchi | Universality of biasand temperature-induced dephasing in ballistic electronic interferometers[END_REF]. Additionally, the values found for V 20 (T 0 → 0) are of the same order as the ones found for V 10 (T 0 = 1).

Here, once more the result is surprising. Thinking about energy relaxation inside the wire, this would lead to a reduction of the visibility as function of T 0 (1 -T 0 ). At least this is something we would obtain in case of a kernel of interaction independent of the energy. Surprisingly, our findings seems to indicate that the decoherence is proportional to 1 -T 0 while in the previous one (injecting through V 1 ) it was proportional to T 0 . 20 renormalized by its extrapolated value when T 0 → 0 as function of T 0 at zero bias (V 2 = 0), for two different samples. The error bars relative to T 0 (coming from the dependence of T 0 with V 2 ) are centered on the mean value of T 0 which differs from the value of T 0 at zero bias. Red points: V 20 (T 0 → 0) ∼ 9 µV. Black points: V 20 (T 0 → 0) ∼ 12 µV. For T 0 above a certain value which depends on the sample, there is a linear dependence of 1/V 2 20 with T 0 .

Questions

On V 20 dependence on T 0 , how do we explain the deviation from the 1 -T 0 behaviour at T 0 = 0? Why does the crossover occurs at different T 0 for the two samples? Since V 10 (T 0 = 1) and V 20 (T 0 → 0) are of the same order, if we assume that they are equal and putting aside the T 0 = 0 point, the transmitted current can be written as:

I ∝ (T 0 V 1 + (1 -T 0 ) V 2 ) 1 + exp -T 0 V 1 2 + (1 -T 0 ) V 2 2 /V 2 0 cos ( Φ ) (6.3)
There is then only two free parameters in the fit: V 0 and T 0 at zero bias and T 0 in the first term which depends on |V 1 -V 2 | (this will be discussed later).

Dephasing coming from V 1 and V 2 is gaussian and their contributions seems proportional to the amount of current coming from each and transmitted by G 0 , as if the mecanism which provokes this gaussian dephasing were occuring before G 0 .

In the previous experiment, I have shown that measuring interferences at energy eV 1 while keeping V 2 = 0 and measuring interferences at zero energy while applying V 2 = 0 leads to a visibility decrease as a function of V 1 and V 2 . In the two cases cited above, the out of equilibrium distribution in one arm of the interferometer is a single step function. Now if V 1 and V 2 are not equal to zero, nor to the same values, one obtains a double step function.

Once more, if the energy relaxation in the wires is responsible for the finite bias visibility decrease, it should be sensitive to the distribution in the wire. This is what we will study in the next section.

Two-step distribution 6.3.1. Two faces of the same coin

The lobe eraser

We then inject this two-step energy distribution created at G0, with T 0 ∼ 0.5 into the interferometer. We find a strange behaviour (Fig. 6.10 (left)): when V 2 = 0, the visibility as function of V 1 show the usual single side lobe structure. When V 2 = ±20 µV, one side lobe is 'erased', the positive one for V 2 < 0, the negative one for V 2 > 0. Finally the conductance seems to follow the same symmetry as the visibility (Fig. 6.10 (right)): is it enough to explain this 'lobe eraser'3 behaviour?

To have a more complete picture, in the following section we measure the visibility as

function of V 1 for more values of V 2 .
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V 1 for T 0 ∼ 0.5, V 2 = -20 µV (red circles), V 2 = 0 V (full black squares), and V 2 = 20 V (green triangles). For V 2 = 0 V, the structure is symmetric, while for V 2 = -20 µV(V 2 = 20 µV) the side lobe for V 1 > 0(V 1 < 0) is 'erased'. (right)
The conductance varies with V 1 and has the same symmetry as the lobes. 

The butterfly

For each value of V 2 from -40 µV to 40 µV, we measured the visibility as function of V 1 for T 0 = 0.2 at zero bias. The results are plotted on Fig. 6.11. We then see how it is possible to go from a situation where the negative side lobe is 'erased' to the opposite situation where the positive side lobe disappears. The whole picture of the visibility as function of V 1 and V 2 in a 2D colorplot has a tilted butterfly shape: for |V 2 | above a certain value, one of the wings of the butterfly is no longer visible. The tilt angle being ∼ +30 • , the positive(negative) wing disappears when a negative(positive) bias voltage V 2 is applied.

Reproducing the results

Visibility

We try to reproduce these results assuming a gaussian dependence of the interfering part of the current with respect to V 1 and V 2 . The transmitted current is then:

I ∝ (T 0 V 1 + (1 -T 0 ) V 2 ) 1 + cos ( Φ ) exp -V 1 2 /2V 10 2 + V 2 2 /2V 20 2 (6.4)
and the differential conductance:

dI dV 1 ∝ T 0 1 + 1 - V 1 V 2 10 (V 1 + (1/T 0 -1) V 2 ) cos ( Φ ) e -(V 1 2 /2V 10 2 +V 2 2 /2V 20 2 ) (6.5)
Hence, the visibility of the interferences in the differential conductance:

V = V 0 1 - V 1 V 2 10 V 1 + 1 T 0 -1 V 2 exp - V 1 2 2V 10 2 + V 2 2 2V 20 2 (6.6)
This is the formula used to reproduce the results on Fig. 6.12 (c). To obtain the asymmetry observed in the data of Fig. 6.12 (a), one must introduce an offset in the gaussian dependence of Eq. ( 6.4), with respect to V 1 and V 2 (the asymmetry is stronger for V 1 ).

This has been done on Fig. 6.12 (e). According to Eq. (6.6), the gaussian shape of the visibility is modulated by the factor

|1 -2 (V 1 -V 1off ) (V 1 -(1/T 0 -1)V 2 ) /V 2 10
| which sets the zeros in the visibility (appendix B).

Main features

We have measured the visibility of the interferences as function of V 1 and V 2 for two different values of T 0 : T 0 = 0.2 (Fig. 6.12 (a)), and T 0 = 0.95 (Fig. 6.12 (b)) (values at zero bias). We see that the zeros of the visibility follow a curve in the V 1 -V 2 plane which qualitatively resemble the hyperbola described on Fig. B.9 and its evolution as function of T 0 , as far as one can tell on only two points: for T 0 = 0.2, the opening angle of the hyperbola is close to 90 • , and for T 0 = 0.95, it is almost flat (2ϕ ∼ 180 • ). The data are qualitatively reproduced using the fit discussed above (Figs. [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF].12 (c) and 6.12 (d)), and even better when one takes into account an small offset on both V 1 and V 2 (Figs. [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF].12 (e) and 6.12 (f)). The parameters used to reproduce the results are the following:

For T 0 = 0.2 (value at zero bias), the data are plotted on Fig. 6.12 (a). Actually, as we will see later, T 0 depends strongly on |V 1 -V 2 | and varies between 0.2 and 0.5. Thus, for the following fits where T 0 is considered as independent of the bias, we used an intermediate value for the transmission (T 0 = 0.3).

-Fig. 6.12 (c):

V 10 = 26 µV , V 20 = 13 µV , V 1off = V 2off = 0,
-Fig. 6.12 (e):

V 10 = 26 µV , V 20 = 13 µV , V 1off = 0 , V 2off = 2.5 µV,
For T 0 = 0.95, the data are plotted on Fig. 6.12 (b). Here T 0 does not depend so strongly on |V 1 -V 2 |: we used the value T 0 = 0.95 in the following fits which is the zero bias value.

-Fig. 6.12 (d): V 10 = 10 µV , V 20 = 45 µV , V 1off = V 2off = 0, -Fig. 6.12 (f):

V 10 = 10 µV , V 20 = 45 µV , V 1off = 3 µV , V 2off = 1.5 µV.
The reasons for the offsets in V 1 and V 2 might be thermoelectric effects caused by the temperature gradient between the sample at 20 mK and the measurement circuit at 300 K.

Gaussian parameters4 V 10 and V 20 depend on T 0 . This has been studied in a previous section (see ¶ 6.2.3). The fit given by Eq. (6.6) reproduces qualitatively the data: it explains the 'lobe eraser' behaviour as detailed in the following. It can be refined by taking into account the dependence of T 0 with V 1 and V 2 .

Next we explain how the 'lobe eraser' behaviour can be reproduced by this simple fit which is nothing more than a consequence of the gaussian shape visibility.

The 'lobe eraser'

At the beginning of this section, we reported a 'lobe eraser' behaviour (Fig. 6.10): starting from a simple side lobe structure with T 0 ∼ 0.5 and V 2 = 0, we 'erase' the positive(negative) side lobe by applying a negative(positive) voltage bias V 2 = -20 µV(V 2 = 20 µV). We are now able to qualitatively reproduce these results with the fit described above. We can conclude that according to this empirical model, the lobe eraser behaviour can be explained by the mixing of the distributions at G 0 and of the gaussian dependence with respect to V 1 .

Until then, we didn't consider T 0 dependence on the energy. Does T 0 actually depends on V 1 and V 2 ? How does it affect the butterfly pattern?

Refining

Now we look at the transmission T 0 as function of V 1 and V 2 . To do that, we extract the mean value of the differential conductance by averaging it over a side gate voltage sweep so that the interferences oscillations cancel out. The transmission T 0 is then obtained by normalizing the result by the differential conductance through the interferometer when T 0 = 1. We plotted the transmission T 0 thus obtained as function of V 1 and V 2 on Fig. 6.13 (left).

We find that T 0 depends strongly on

|V 1 -V 2 |, rising from T 0 ≈ 0.2 when |V 1 -V 2 | ≈ 0 to T 0 ≈ 0.5 when |V 1 -V 2 | ≈ 15 µV.
The results prompt the following remark: T 0 appears in the term that modulates the visibility and which determines the zeros (see Eq. (B.24

)). If T 0 depends strongly on V 1 -V 2 ,
this should, among other things, deform the hyperbola describing the zeros position that we studied in appendix B. We then compute the visibility obtained when taking into account the dependence of T 0 with V 1 and V 2 reported on Fig. 6.13 (left), and try to fit the data with parameters V 10 , V 1off , V 20 , V 2off . We expect this should refine the fit. The result is represented on Fig. 6.13 (right), it resembles the data a little more, as expected:

we introduced a dependence in |V 1 -V 2 | in the visibility via T 0 that is visible in the data (the figure for the experimental data is a little more streched along the V 1 = V 2 axis than the figure obtained when taking T 0 constant). to the one measured on Fig. 6.12 (a).

Non linearities of the transmission

We observed a strong dependence of T 0 on |V 1 -V 2 |. This is quite unexpected. Indeed, a simple self-biasing hypothesis leads rather to a dependence of T 0 on the mean potential on the ES at the QPC e.g. V 1 + V 2 . A toy model which takes into account the effect of the coupling between IES and OES explain the |V 1 -V 2 | dependence of T 0 . However, it does not explain the intriguing saturation of T 0 for |V 1 -V 2 | 20 µV.

Self-biasing

Self-biasing easily explains a dependence of a QPC transmission on the bias voltage V 1 .

Indeed, the transmission of one QPC is set by the landscape of the electrical potential resulting from the voltage V g applied to the gate and by the electrochemical potential of the incoming electrons which is determined by the bias voltage V 1 : when applying the voltage V g to the gate, one charges the gate with the charge -Q 1 . This charge is screened by a charge of opposite sign Q 1 appearing in the 2DEG as a depletion charge, thus raising the internal potential U 1 seen by an electron traveling in the ES. U 1 also screens the excess charge injected in the ES because of the voltage bias V 1 applied to the injecting ohmic contact (see appendix A) [START_REF] Seelig | Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer[END_REF], it is then fixed by two equations:

Q 1 = ν(ω) (V 1 -U 1 ) = C (U 1 -V g )
where ν(ω) = ie 2 (1 -e iωτ ) /h with τ the electron time of flight, and C is the capacitance between the gate and the ES. Then we have:

U 1 = CV g + ν(ω)V 1 C + ν(ω) (6.7)
The potential barrier which determines the QPC transmission is set by the internal potential U 1 which is shown to depend both on V g and V 1 . This is explained on Fig. 6.14 (left). In the case of QPC G0 at half transmission which generates a double step distribution, both incoming currents are biased with bias voltages V 1 and V 2 . The 'mean bias' is then

V 2 V 1 V g V 1 B V g E F |V 1 -V 2 |=cst T 0 C C V 1 V 2 B V 1 B V g U 1
(V 1 + V 2 ) /2 (Fig. 6.15). The self-biasing hypothesis leads to a V 1 + V 2 dependence of the transmission T 0 .
This is not what is observed on Fig. 6.13 (left). Here is a toy model which explains the observed dependence of the transmission 

T 0 on V 1 and V 2 . V 2 B V 1 V g (V 1 +V 2 )/2
V 1 and V 2 is (V 1 + V 2 )/2.

A toy model

T 0 depends on |V 1 -V 2 |: on Fig. 6.13 (left), the mean differential transmission of the oscillations shows lines of equal transmission running parallel to V 1 = V 2 and symmetric with respect to this line. We try to explain this dependence with the toy model schematized on Fig. 6.14 (right) which takes into account the electrostatic effect of the IES.

Let us look at what happen on a |V 1 -V 2 | = cst line when QPC G0 fully reflects the IES (red on the schematic) and partially transmits the OES (blue) with transmission T 0 . The internal potential on the IES is set by V 1 on the left side of the QPC barrier and V 2 on the right side. Because of the capacitance between the IES and the OES, if one decreases V 1 and increases V 2 by the same amount so that |V 1 -V 2 | remains constant, the energy levels will be deformed as represented on the schematic Fig. 6.14 (right): the potential barrier for the OES will be deformed but will keep the same width an height in a first approximation so that the tunneling rate (and the transmission T 0 ) will stay unchanged.

We have seen the ubiquity of the gaussian shape of the visibiliy, with respect to V 1 as well as to V 2 : it is sufficient to fit everything we observed as long as there is only one single side lobe. We are able to reproduce the 'butterfly' and the intriguing 'lobe eraser' behaviour which is now no longer mysterious. This gaussian shape visibility which seems at the root of our experimental observations hasn't been explained yet. The linear dependence of the coefficients 1/V 2 10 and 1/V 2 20 with T 0 also remains unexplained.

Not long ago, the LPN's group found elements on the energy relaxation in the ν = 2 quantum Hall regime [START_REF] Altimiras | Inelastic mechanisms in mesocopic circuits realized in two dimensional electron gases[END_REF][START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF][START_REF] Altimiras | Nonequilibrium edge-channel spectroscopy in the integer quantum Hall regime[END_REF][START_REF] Altimiras | Tuning Energy Relaxation along Quantum Hall Channels[END_REF]. In the following, we are interested in comparing our results.

The LPN's group proved the existence of energy relaxation in the OES by energy exchange with the co-propagating IES [START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF]. We present their results and try to see if they could explain the ubiquituous gaussian shape of the visibility that we observe. for the linear contribution, we find:

T (1) loss == α 1 |δV d | with α 1 = 0.94 mK.µV -1 (6.8)
Then there is a quadratic contribution:

T (2) loss = α 2 δV 2 d
with α 2 = 0.0075 mK.µV -2 (6.9)

Impact on the visibility

Can the quadratic part of the effective temperature T quadratic contribution [START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF].

We consider temperature dephasing for a large sample (L = 11.3 µm) so that energy relaxation is complete. In this case Roulleau et al. measured [START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF] T ϕ = 22 mK, then

V 10 = T ϕ 2α 2 = 38 µV (6.11)
This is about 3 to 4 times more than the values obtained in ¶ 6.2.3. It seems at first glance that effective heating of the IES by energy relaxation of the OES does not explain quantitatively the observed lobe structure in our experiment.

Pertinence of the comparison

We tried to estimate the energy scale of the gaussian behaviour which would come from phase fluctuations caused by an effective temperature in the IES quadratic with the voltage bias. In order to do so, we studied how in Altimiras et al. experiment the energy lost by the OES depends on δV 2 d . The numerical coefficient α 2 we obtain is then injected in the exponential dependence of the visibility with the temperature which was obtained for our 'big' samples (L = 11.3 µm). From this we extracted a value for the gaussian parameter V 10 which is three times larger that the usual value. How can one explain the discrepancy? An important point is that we do not know whether both experiments were conducted in the same regimes, in particular we do not know if we could have observed interferences at the magnetic field at which they have been working. Additionally, we followed Altimiras et al. by assuming that the steady-state distributions in the ESs were fully characterized by T exc , implying that they are Fermi distributions. This assumption is not correct according to Kovrizhin et al. [START_REF] Kovrizhin | Equilibration of integer quantum Hall edge states[END_REF][START_REF] Kovrizhin | Relaxation in driven integer quantum Hall edge states[END_REF], therefore, characterizing the charge fluctuations in the IES with an effective temperature is quantitatively wrong. This might explain why our approach doesn't yield the right energy scales.

'Something' happening before injection in the MZI?

Inspired by the results of Altimiras et al. [START_REF] Altimiras | Tuning Energy Relaxation along Quantum Hall Channels[END_REF] who brought back a double-step distribution to equilibrium through a floating ohmic contact used as a voltage probe, we try to see if a floating ohmic contact at the injection has any influence on the visibility at finite bias. This attempt is also justified by our findings on the dependences of V 10 and V 20 on T 0 which suggest that the mechanism which causes the gaussian enveloppe happens before G0.

To do so we return the magnetic field to change the direction of the ESs as schematized on Fig. 6.17 (left). Then we can either inject the electrons directly into the interferometer through contact n • 3, or through contact n • 5 so that the electrons go through floating ohmic contact n • 3 before entering the interferometer. However, because of the design of the sample, there is no QPC to indepedently bias the two ESs upon entering the MZI as in the other configuration (B in the opposite direction). Boths ESs are fed with the same bias, then as already reported by Bieri et al. [START_REF] Bieri | Finite-bias visibility dependence in an electronic Mach-Zehnder interferometer[END_REF] and explained by Roulleau [START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF], we do not obtain a lobe structure with well marked extinctions (see Fig. 6.17 (right)). We fit the data on Fig. 6.17 (right) using the fit for a single side lobe structure5 :

V = V 0 1 - V 2 1 V 2 10 2 + 4π 2 V 2 1 V 2 0 exp - V 2 1 2V 2 10
We find the gaussian parameter V 10 = 7.3 µV and the coupling parameter V 0 = 45 µV.

The sample has an arm length L = 11.3 µm. We see that the structure doesn't change on choosing a 'direct' or 'indirect' injection of the electrons.

We also checked the existence of a counter propagating heat flow -which was measured at ν = 1 by Granger et al. in [START_REF] Granger | Observation of Chiral Heat Transport in the Quantum Hall Regime[END_REF] -by applying a DC voltage at contact n • 3, with the magnetic field in the usual orientation (ESs circulating from contact n • 1 to n • 3). No change was detected in the visibility when sweeping this DC voltage.

The conclusion one must draw is that either there is one effect which is not affected by the floating ohmic contact or there is simply no effect taking place before G0. 

Conclusion

In this chapter we adressed several questions pertaining the lobe structure. We checked the prediction of Levkiviskyi et al. on the existence of a quantum phase transition from multiple to single side lobes prompted by partition noise on G0. Our data seem to agree with Levkiviskyi et al.'s theory suggesting that multiple side lobes arise from the beating of two collective modes because of the coupling between ESs. However, it does not explain the gaussian enveloppe which is enough to derive the single side lobe structure, the 'lobe eraser' behaviour and the 'butterfly' pattern. Recent experiments showing the existence of energy relaxation by energy exchange between ESs motivated us to study further the gaussian envelop. We injected an out of equilibrium distribution and observed how the visibility depended on the form of the distribution. The extracted gaussian energy scale dependence with T 0 is unexpectedly linear. We then try to relate quantitatively the results of Altimiras et al. on energy relaxation to our data. Effective heating of the IES by energy relaxation of the OES does not explain the measured gaussian energy scale. To date there is no theory explaining the gaussian envelop and the impact of dilution.

Motivations

From our previous work (chapter 4) we have identified one source of decoherence: the accumulated phase of the electrons travelling in the arms of the interferometer is blurred by potential fluctuations coming from the charge noise of the environment. In the specific case of the IQHE regime at filling factor two, the environment of one ES is the other. Thus, the thermal charge noise in one ES blurs the phase in the other.

The lobe structure in the interferences visibility as function of the bias voltage is a robust pattern that is found at ν = 2 as well as ν = 1 although no multiple side lobes have been found at ν = 1 ( § 4.4). Many theories try to explain this behaviour ( ¶ 4.4.4).

One in particular [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF] reproduces the multiple side lobes behaviour at ν = 2 with plasmonic excitations arising from Coulomb interaction between ESs. In this model, the lobes width is inversely proportional to the coupling strength between ESs. Other theories [START_REF] Seok-Chan Youn | Nonequilibrium Dephasing in an Electronic Mach-Zehnder Interferometer[END_REF][START_REF] Kovrizhin | Exactly solved model for an electronic Mach-Zehnder interferometer[END_REF][START_REF] Kovrizhin | Multiparticle interference in electronic Mach-Zehnder interferometers[END_REF] predict multiple side lobes at ν = 1 invoking multiple particles interferences caused by intra-channel e-e interactions.

According to the work of the LPN group, it seems that at ν = 2, when out of equilibrium, an ES relaxes by exchanging energy with the adjacent ES. The LPN group also provided a cure to energy relaxation of out of equilibrium electrons: one can freeze energy relaxation in one ES by confining the adjacent one in a closed loop of diameter ≤ 10 µm, inducing energy quantization, and thus preventing energy transfer to the adjacent ES as long as the available energy remains lower than the opened gap.

From all this evidence, it seems that coupling to the adjacent ES is responsible for dephasing by potential fluctuations caused by the thermal charge noise, energy relaxation at finite bias in the arms of the interferometer and the beating of two collective modes which gives rise to multiple side lobes structure.

With our new design, we want to adress the following questions: is energy relaxation at finite bias in the arms of the interferometer responsible for the single side lobe pattern in the interferences visibility as function of the bias voltage? Can we freeze it as did the LPN group? This will surely change the coupling to the noisy environment (the adjacent ES), how will it impact decoherence in our system at zero bias like temperature dependence?

Once we suppress the coupling to the noisy environment, what about intrinsic Coulomb interactions within the ES? Will we be able to see their effects more clearly? How will it change the lobe pattern? By decoupling the ESs at ν = 2 will we find a multiple or a simple lobe structure like at ν = 1? Will the energy scales change as predicted by [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF]? Are these aspects -coupling to the noisy adjacent ES, energy relaxation and beating of two modes -compatible and how? In any case, we hope to increase the coherence of the quasiparticles in the interferometer. I will begin by presenting the new sample with its additionnal gates which allow the confinment of the IES. Then I will show how we control the coupling between the interfering ES and its neighbour. I will present the impact of the decreasing coupling on the zero bias visibility and the temperature dependence and finally on the lobe structure. Inspired by the LPN group's findings, we implemented additional gates in the design of the sample to localize the IES into small loop to try to freeze the IES excitations by the opening of a gap. The focus of this chapter will be to report this attempt and its consequences.

Sample

General description

We work around T = 25 mK, at magnetic fields B ∼ 3 T in the middle of the ν = 2 plateau (Fig. 7.1 (left)). The sample was made by D. Mailly, H. LeSueur who did the preparatory tests for the fabrication of the ohmic contacts, G. Faini and U. Gennser at LPN (Marcoussis) on a 2DEG provided by W. Wegscheider from ETH (Zurich).

The surface S enclosed by the two interfering arms of the Mach-Zehnder was measured by revealing the electronic interferences with the magnetic field. Indeed, the amount of magnetic field ∆B needed to vary the phase of the interferences by 2π is related to S through Φ 0 = h/e = ∆BS. We measured S = 40.0 ± 0.1 µm 2 (Fig. 7.1 (right)). The lithographic length of the arms L = 11.3 µm is consistent with the measured area: if we consider the surface S to be a circle, the length of the arms of the interferometer is half of the circle's perimeter which is:

√ πS = 11.2 µm.
The new design features additional gates G U and G D which act respectively on the upper and on the lower arm of the interferometer (Fig. 7.2). We define the transmission of the IES through G U (G D ) as T U (T D ). When we lower T U (T D ) towards 0, the trajectory of the IES (red) is progressively deformed into small loops which are finally disconnected from one another and from the ohmic contact n • 2(n • 4) at localization of the IES, (fig. 7.2 (right)).

2,4 

when G U is open, S = 40.7 ± 0.1 µm 2 when G U is at T U ∼ 0. S increases by ∆S = 0.7 ± 0.2 µm 2 as G U is closed. A more precise estimation of ∆S is done in ¶ 7.3.3.
We thus hope to diminish the coupling between the interfering channel (blue) in the arms of the interferometer and the noisy environment. We also hope that when the IES is localized, we will freeze charge fluctuations in the IES which are though to be the main cause of dephasing in our system, and see some manifestation in the temperature dependence.

Finally, we want to test the theory of charge relaxation occuring in the interfering ES. Will we be able to freeze charge relaxation at localization of the IES and see some incidence in the visibility at finite bias?

For now we must characterize the new gates G U and G D , to see how they modify the Mach-Zehnder interferometer.

Additional gates Asymmetry

The gate G U depletes the 2DEG underneath in the upper arm as compared to the 2DEG in the lower arm: the effect of G U is clear on Fig. 7.1 (left) where the resistance plateau higher polarization in the upper arm (when G1 and G2 are closed,

B i 0 i t G U G D G0 G1 G2 SG 5µm 3 2 4 1 U D V1 V2 B i 0 i t G U G D G0 G1 G2 SG 5µm 3 2 4 1 U 
V G1 = V G2 = -0.2 V)
than in the lower arm (when G1 and G2 are open, V G1 = V G2 = 0.5 V). The fact that conductance starts to decrease at a higher gate voltage in the upper arm than in the lower arm reflects once more that density in the upper arm is smaller than in the upper arm:

when reaching the conductance plateau, the 2DEG below the gates is at filling factor one.

As the lower arm needs more depletion than the upper one, density is larger in the lower arm than in the upper arm as already observed when varying the magnetic field.

There is also additional backscattering in the upper arm because of the fan shape of G U (Fig. 7.2): the total transmission of G U is roughly the product of the transmissions of each 'finger' (if we do not count multiple reflexions), and since each of them probably does not transmit exactly the same amount of current at the same gate voltage, the transition between plateaus which corresponds to the IES reflection occurs on a broader range in the upper arm than in the lower arm.

-0,1 0,0 0,1 0,2 0,3 0,0 0,5 Let us consider that G D is a three way gate with input at potential V in , output at potential V out , ground and fictitious floating ohmic contact M at potential V M . Incoming current can either be transmitted towards output contact, transmitted to ground, or reflected towards contact M. Current from contact M can be transmitted to ground, or reflected towards output. For the sake of simplicity, transmission and reflexion probabilities are set equal whatever the input and the output, and we consider only one ES: T and R are the reflexion and transmission probabilities of the ES.

Applying Landauer-Büttiker relations to the output contact and to contact M, one obtains the following set of equations:

V out = R 2 V M + T V in (7.1) V M = R 2 V in + RT RV M + T 2 V M (7.2)
By eliminating V M , one can extract the differential transmission through the lower gate

G D (for one ES): di t di 0 = V out V in = 1 - 2RT R 2 + 2T (7.3) 
then one injects a fit for T as function of x = V G U in Eq. ( 7.3):

T (x) = 1 1 + e -(x-x 0 )/δx (7.4)
where δx is the width of the transition between plateaus and x 0 its position. The fit parameters are:

-for the reflection of the IES: x 0 = 0.097 V and δx = 0.01 V -for the reflection of the OES:

x 0 = -0.04 V and δx = 0.005 V B V in V out V M G D
-0,10 -0,05 0,00 0,05 0,10 0,15 0,20 0,0 0,5 We obtain a 20 % reduction of the differential transmission at both dips (Fig. 7.4 (right)), whereas experimentally we have a reduction of 50 % for the dip corresponding to the reflexion of the IES and 20 % for the dip corresponding to the reflexion of the OES (see Fig. 7.3 (right)). The 50 % dip might be caused by interference effects for the IES between the direct path from V in to V out and the one going through contact M (Fig. 7.4 (left)).

From now on we will focus on the effect of G U , G D will stay open.

Behaviour at zero bias

Visibility and coupling

The effect of G U on the visibility of the interferences is spectacular as one can see on Fig. 7.5: it goes from ∼ 20 % when G U is open to ∼ 50 % when the IES is localized.

-0,1 0,0 0,1 0,2 0,3 0,0 0,5 Beyond localization of the IES, it seems that the interference signal is no longer a pure cosine, but that some additional signal is super-imposed to the former one with another periodicity, as the data presented on Fig. 7.6 (right) suggest. This probably originates from phase jumps because of electron tunneling between the closed IES dots.

1,0 1,5 2,0 charact. of G U , G1 & G2 closed mean value of di t / dv 1 visibility of the interferences di t / dv 1 (in e 2 /h units) Gate Voltage G U (V)

Going from T

U = 1 to T U = 0 At first G U is open (V G U = 0.3 V)
We are able to continuously go from one situation to the other while measuring the coupling parameter V 0 , even when the IES is disconnected from contact n • 2 (see below). The detuning of the interferometer (cross-talk between G U and G1/G2) is slight so that we don't need to ajust V G1 and V G2 when we increment V G U . This is known by the value of the mean conductance through the MZI which stays at 0.5 (in e 2 /h units) until V G U ≈ 0.1 V (open blue triangles on Fig. 7.5). A departure from this value is a sign of detuning of both QPCs G1 and G2 (this happens for V G U < 0.1 V as can be seen on the blue curve on 

Measuring the coupling

We use the same method than before (chapter 4) to measure the coupling parameter V 0 between ESs in the upper arm.

As long as the IES is connected to contact n • 2, its potential is defined by contact n • 2,

and we can use it as a gate to reveal the interferences, although it becomes less coupled to the upper arm of the interferometer as it is deformed. This is done by sweeping the voltage applied to contact n • 2, namely V 2 . When closing G U , we manage to reveal interferences At some point, this method is no longer suitable to measure V 0 which becomes too large.

down to V G U = 0.08 V,
Additionally, when the IES is localized in small closed dots, stochastic phase shifts appear in the interference signal, probably caused by electron tunneling from contact n • 2 towards the IES dots, when their energy levels are aligned with the Fermi energy. These phase shifts deform the interferences and impede the direct determination of V 0 . We then extract V 0 from the interference signal induced by the IES in the upper arm (see Fig. 7.8 and appendix B).

Finally, V 0 increases sharply at V G U = 0.08 V to reach a plateau at 120 µV (Fig. 7.9 (b)), this is a sign that we have reached localization of the IES for the IES and that it is disconnected from contact n • 2. We still manage to reveal the interferences, via the counterpropagating OES injected at contact n At localization of the IES, V 0 rises sharply and then stabilizes to 120 µV.

ν 0 =34 % V 0 =24 µV V c =12.7 µV V 10 =15 µV ν 1 'direct' visibility ν 2 'induced' visibility ν 0 *|2πV 1 /V 0 | B=2.628 T T=25 mK Visibility V 1 (µV)

Correlation between coupling and visibility

As long as the IES is connected to contact n • 2 (V G U ≥ 0.08 V), the visibility and the coupling are correlated: the visibility increases with V 0 (Figs. 7.9 (a) and 7.10 (a)).

-0,1 0,0 0,1 0,2 0,3 0,0 0,5 This is compatible with our earlier results which make the coupling between the interfering arms of the MZI and the noisy IES responsible for the limitation of the coherence length at zero bias and finite temperature. Indeed the strength of the coupling between the upper arm and the IES connected to contact n • 2 is directly V -1 0 , which we are able to measure and control. We find that when we decrease this coupling, the visibility increases, meaning that coherence is strengthened! However, at V G U = 0.08 V, as we reach T U = 0 and as the IES is localized in small closed loops disconnected from contact n • 2, there is a sharp increase of V 0 , while at the same time the visibility saturates at 50 %. Then V 0 stabilizes. The saturation of the visibility lasts until V G U = 0.05 V (middle of the plateau) where the detuning of the interferometer becomes significant and reduces the visibility (this is seen through the mean value of the differential transmission of the OES which departs from 0.5 on Fig. 7.5).

A relevant effect?

A question we are entitled to ask is whether this enhancement of visibility is not simply caused by the fine-tuning of the interferometer's symmetry between the upper and lower arm when changing G U polarization. Assuming that the drift velocity is the same in both arms and remains constant, if the lengths of the arms of the interferometer differ, the two components of the wave packet entering the interferometer do not overlap exactly in the outgoing signal, reducing the visibility of the interferences. This is the so-called thermal smearing already explained in ¶ 5.4.2

Thermal smearing

At finite temperature T , a difference of length ∆L ϕ = L u -L d between the arms of the interferometer gives rise to an averaged phase difference of order k B T ×∆L/ v d (see ¶ 5.4.2) [START_REF] Chung | Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers[END_REF].

In a non interacting model, the visibility is then given by:

V = V 0 T /T T sinh (T /T T ) with T T = v D πk B ∆L (7.5)
The asymmetry of the interferometer is responsible for a decay of the visibility with the temperature, which becomes exponential when T T T . This decay is easily understood: 

Impact of the upper gate on the arm length

To answer this criticism, we can first adress the following questions: is L U shortened or lengthened under the action of G U ? by how much? and the follow-up question: how does it affect the accumulated phase along the upper arm? Then when V G U goes from 0.3 V to 0.1 V, L U increases by ∆L U ≥ 0. To make an estimation of ∆L U we slowly sweep V G U from 0.3 V to 0.1 V and count the fringes we see in between (Fig. 7.12). We count 257 fringes. Unfortunately we did not sweep V G U until 0.08 V where we believe that localization of the IES occurs. However we can extrapolate the curve of Fig. 7.12 (right) with a 2 nd degree polynom. We find that it would take around 62 extra fringes to reach 0.08 V, which makes N ≈ 319.

This means that between V G U = 0. 

Impact of the upper gate on the drift velocity

To answer the question 'what is the impact of G U on the accumulated phase on the upper arm?' we must know how G U affects the drift velocity.

The accumulated phase on the upper(lower) arm is

ϕ U = εL U / v d,U (ϕ D = εL D / v d,D ), with v d,U (v d,D
) the drift velocity in the upper(lower) arm. The difference of phase accumulated in each arm is given by: The length difference between the two arms is relevant provided that v d is constant. However, this is probably not the case here since we modify strongly the electrical potential landscape when we change the transmission of G U . Then we cannot say how ϕ U evolves with V G U whitout knowing how v d,U is affected.

ϕ = ϕ U -ϕ D = ε L U v d,U - L D v d,D (7.
By looking at the sketch Fig. 7.13 with the equipotential lines, we see that when G U is closing, the bottom of the potential is raised at the places where G U fingers are. The electron following an equipotential line, its path along the upper arm is lengthened as we already remarked, but the slope of the potential along the equipotential is also weakened.

Thus the drift velocity at these places is decreased. In short: as G U is closed, the path of the electron in the upper arm is deformed, e.g. lengthened at the places where the fingers constituting G U are found and where the bottom of the electrical potential is raised. At the same time the electron slows down at these places. We see then that the effect of G U when pinched, both on L U and v d,U is to increase the accumultated phase on the upper arm, ϕ U . 

Effect of the lower gate

We see that pinching G D deforms the lower arm of the intererometer as well (Fig. We can be more specific: the deformation of the surface S comes mostly from the deformation of the trajectory below the fingers. There are five fingers on G U and only one on G D . Then when sweeping G D from V G D = 0.23 V to 0.1 V, we expect to see a number of fringes of the order of 200/5 = 40, since 200 corresponds more or less to the number of fringes for V G U varying from 0.23 V to 0.1 V. Instead, we see 90 fringes, e.g. twice more fringes than expected! Does it means that some finger is not working properly in the upper arm, hence explaining why we do not have a freezing of the charge fluctuations ( § 7.4)?

We previously estimated that the density in the lower arm was larger than the one in the upper by ≈ 8 %. This would make G U more 'efficient' than G D in depleting the 2DEG below so as to 'see more fringes' when sweeping V G U than when sweeping V G D by the same amount. However the density mismatch is small. We are interested in the effect G D has on the visibility of the interferences: starting However, when we look at the mean value of the differential transmission as function of V G D , we see that it departs from its standard value for a well tuned interferometer with respect to T 1 = T 2 = 0.5: cross-talk between G D and G1/G2 is not negligible, so that we have to ajust V G1 and V G2 to get a relevant result. This has been done on our second try.

Eventually we see a small maximum of the visibility around V G D = 0.12 V (blue squares on Fig. 7.15 (right)). G D doesn't seem to have an effect as strong as G U , the reason for this is not known. Anyway, increasing ϕ D doesn't decrease the interferometer visibility.

This invalidates the critic mentioned before: we have shown that the enhancement of visibility we observe when pinching G U is not due to a tuning of the symmetry of the interferometer. It seems that the reason for this is that we decouple the interfering OES in the upper arm from the IES.

With G U we are able to control and in particular, weaken the coupling between the noisy ES coming from the ohmic contact n • 2, and the visibility seems to be correlated to V 0 (it increases) as long as V G U ≥ 0.08 V.

One puzzling fact remains concerning the data presented on Fig. 7.9 (b) and Fig. 7.10 (b):

when V G U ≤ 0.08 V, the coupling sharply decreases while the visibility saturates. We have no difficutly in understanding the sharp increase of V 0 at localization of the IES, but then if dephasing results from the coupling of the OES in the upper arm to the opposite counter-propagating OES through the dots formed by the IES, the visibility should increase accordingly, which is not the case.

A puzzling transition

Expectations

As we have already pointed out, there is a capacitive coupling between the IES and the arms of the interferometer. We are able to measure the static coupling V -1 0 between the IES and the OES in the upper arm of the interferometer. Because of this coupling, potential fluctuations in the IES are directly reflected on the phase of the electrons travelling in the arms of the interferometer, affecting the visibility. The conclusion of our group's previous work [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF][START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF] is that excitations of the IES (thermal charge fluctuations) are responsible for the temperature dependence of the visibility and its limited coherence length.

When closing G U , as long as the IES is connected to contact n • 2 in the upper arm, the static coupling V -1 0 between ESs decreases continuously probably because of the deformation of the IES path. Thermal charge fluctuations on the IES should have a decreasing impact on the loss of coherence on the upper arm of the interferometer and the visibility should increases as the coupling decreases in a correlated manner.

A measurement of the temperature dependence of the visibility would yield an exponential decay with a temperature rate T -1 ϕ decreasing proportionally to the coupling V -1 0 . This variation of the coherence length with the coupling parameter V -1 0 (controlled by G U ) would confirm the observation of such a behavior when varying the magnetic field [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF]. This measurement is done in ¶ 7.5.1.

Localization of the IES

At localization, the IES in the upper arm is formed of small closed loops which are no longer connected to ohmic contact n • 2. In principle, these closed loops open a gap in the excitations at the dot. This gap in the excitations prevents any charge fluctuations inside the dot, as long as the available energy is negligible compared to the gap's value.

One important question is then the real value of this gap. Also, do the small dots close at the same time or close at all? Does a 'zero mode' for the dots (displacement of the mass center) exist, leading to charge fluctuations in the environment of the IES? ...

Evolution of the coupling

Let us explain the sudden increase of V 0 at localization of the IES. We compare the situations just before and after localization of the IES (V G U ≈ 0.08 V): when decreasing V G U , V 0 jumps from 60 µV to 120 µV. This can be explained if we consider that one can modelize this by a transition from the situation of Fig. 7.16 (left) when V G U > 0.08 V to the situation of Fig. 7.16 (right) when V G U < 0.08 V.

Just before localization, the potential of the IES adjacent to the upper arm is still defined by contact n • 2 to which it is connected. After localization however, the adjacent IES is diconnected from contact n • 2 and becomes floating. The counter-propagating OES is still connected to contact n • 2 which defines its electrical potential. Now its the OES which couples the potential fluctuations of contact n • 2 to the upper arm. The coupling occurs through the closed loops formed by the floating IES.

If we follow the model developped by Roulleau et al. and reported in appendix A, in the low frequency limit, the coupling between the OES and the adjacent IES is given by V 0 ∝ 2C -1 Q + C -1 , and as already said in our mean field approach in ¶ 4.4.4, the geometrical capacitance is negligible compared to the quantum capacitance (C C Q ), so that V 0 ∝ C -1 as represented on Fig. However, the value of the drift velocity can vary greatly and is not known with a great accuracy [START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF]. We do not know the size of the dots either: G U and G D might not perform in accordance with the schematic of Fig. 7.2 (bottom) and form larger dots (L loop up to 30 µm), thus dividing the gap value by up to ∼ 4. In the future, we want to implement independent gates to better control the formation of dots and the opening of the gap.

As seen in ¶ 4. According to the works of the LPN group, energy relaxation in the OES which occurs through energy exchange with the IES is also frozen as the IES is localized in small closed loops. If energy relaxation plays a role in the lobe pattern of the visibility, we should see a change at localization of the IES like a sharp increase of the central lobe width. As we will see later, this is not observed either.

An possible explanation is that the IES is not confined into loops of length L loop small enough for the gap opening to be significant. We actually cannot know the loops size.

Another reason could be that v d,U is smaller than expected. In both instances, if the gap is not large enough, there is no freezing of the excitations of the IES, consequently charge fluctuations in the IES still occur and contribute to dephasing of the electrons in the upper arm of the interferometer through capacitive coupling V -1 0 (the one measured just before localization of the IES) however disminished. This could explain why the visibility saturates while the coupling to contact n • 2 is divided by ∼ 2.

In this experiment we have measured the evolution of the visibility and the coupling with the gate voltage applied to the 'magic gate' G U at the base temperature. While we do observe a clear correlation between V and V -1 0 , we have to show that the temperature dependence itself is modified by G U to check that coherence is indeed strengthened. These temperature measurements are reported in the following section. Next we will try to understand what type of mechanism account for our observations. The visibility decays exponentially with the temperature (chapter 4). How does the temperature decay rate, T ϕ -1 , changes with G U ? For temperatures from 23 to 50 mK and for V G U from 0.4 V to 0.09 V, we reveal the interferences and measure V 0 (Fig. 7.17 (left)), as explained in ¶ 7.3.1. We then plot the visibility as function of the temperature for various values of V G U in a semi-log plot. We obtain an array of straight curves (Fig. 7.17 (right)).

-0,1 0,0 0,1 0,2 0,3 0,4 0,0 0,5 Their slope, T ϕ -1 , decreases as G U is closing e.g. the visibility depends less on the temperature as the coupling lessens. Solid red lines on Fig. 7.17 (right) are guides to the eye and give a visibility larger than one at zero temperature: there is probably a cross-over, that we cannot observe since it occurs at temperatures lower than the base temperature (23 mK), between two regimes [START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF]. For temperatures above the visibility decays exponentiallly with the temperature, and for temperatures below, it saturates. Red lines converge on the y-axis, suggesting that both T -1 ϕ and the cross-over temperature change with V G U .

Thermal dephasing has two contributions: one induced on both arms of the interferometer by thermal noise and another which is due to the asymmetry of the interferometer. We are now interested in the latter one.

Estimation of thermal smearing

The temperature rate T -1 T of the thermal smearing is given by ( ¶ 5.4.2):

T -1 T = πk B ∆L v d = πk B ∂ϕ ∂ε (ε=0) (7.8) 
To obtain T -1 T we just have to measure the phase variation with the bias around zero bias, since (∂ϕ/∂ε) = (∂ϕ/∂ (eV 1 )). A good point is that we don't need to know the precise value of the drift velocity or the assymetry ∆L of the MZI.

For a given value of V G U , the differential conductance is plotted in a colorplot, as function of the bias voltage V 1 applied on the injecting ohmic contact (contact n • 1) and of the side gate voltage which reveals the interferences (Fig. 7.18). The bending of the central lobe gives the energy dependence of the phase of the oscillations. We measure T -1

T for different values of V G U ranging from 0.3 to 0.09 V and find that it decreases slightly and that its mean value is (Fig. 7.21):

T -1 T ≈ 16 ± 5 K -1 (7.9) 
Then T T ≈ 60 mK, we are not in the limit T T T where the thermal smearing contribution to the temperature decay of the visibility is exponential. Therefore T -1 Before analyzing the other contributions to the temperature decay of the visiility, we explore further the thermal smearing to draw some interesting information: we make a rough estimation of the drift velocity using two different methods and then conclude on the gap estimation. 

Rough estimation of the drift velocity

From the decrease of the thermal smearing Thermal smearing is not constant when pinching G U as can be seen on Fig. This estimation of the drift velocity is 2 to 10 times smaller than the one used in Ref. [START_REF] Altimiras | Tuning Energy Relaxation along Quantum Hall Channels[END_REF] (v d ∼ 5 × 10 4 m.s -1 ). The uncertainty on this estimation of v d is great because of the uncertainty on δT -1 T which is also important.

From the estimation of the asymmetry ∆L On Fig. 7.19 (left) we see the correlation between δT -1 T and δ (∆L) as G U is closing. This reinforces the idea that the asymmetry of the interferometer is responsible for the energy dependence of the interferences phase.

It also provides us with an estimation of this asymmetry: if T -1 T is indeed proportional to the asymmetry of the interferometer, it would take N = 800 fringes to annul T -1 This leads to an approximate value of ∆L, more precisely to an underestimated value of ∆L and as a consequence, to an underestimated value of the drift velocity.

T from V G U = 0.
However approximate, both these approaches lead to a value of the drift velocity smaller than expected, affecting the gap estimation.

Consequence on the gap estimation

It is then possible that we overestimate the actual value of the drift velocity and hence overestimate the value of the gap which opens in the IES excitation spectrum at localization of the IES. ϕ,D caused by dephasing in the lower arm, we assume that T -1 ϕ,U is proportional to V -1 0 , in agreement with our previous work [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF][START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF]. Indeed, when pinching G U , we probably only affect the upper arm of the MZI.

T -1 ϕ = T -1 ϕ,U + T -1 ϕ,D T -1 ϕ,corr +T -1 T,eff (7.16 
Our goal is to estimate T -1 ϕ,U and T -1 ϕ,D , and possibly reduce T -1 ϕ,U by reducing the coupling V -1 0 of the upper arm to the noisy IES.

Upper arm contribution

As already said, we assume that T

-1 ϕ,corr = T -1 ϕ,D + T -1 ϕ,U , with T -1 ϕ,U = αV -1 0 .
We set the proportionality coefficient α so as to reproduce the observed variations of T -1 ϕ,corr . The When pinching

G U from V G U = 0.3 V to 0.1 V, the coupling V -1 0 is divided by 2 going from 42 × 10 3 V -1 to 21 × 10 3 V -1 .
Then dephasing in the upper arm T -1 ϕ,U is reduced proportionally. As explained in ¶ 7.4.1, the decrease of the coupling described here before localization of the IES is mostly caused by the continuous deformation of the ESs paths along the upper arm.

Lower arm contribution

The contribution of the lower arm T -1 ϕ,D to dephasing is the difference between T -1 ϕ,corr and T -1 ϕ,U . As expected it is found to be mostly constant on Fig. 7.21, largely unaffected by G U .

Its mean value is:

T -1 ϕ,D = 52 ± 7 K -1 (7.18)
We find then that both arms contibute equally to dephasing when G U is open. As one can remark, the improvement of the coherence is rather well explained by a variation of the coupling between ESs. However, the absence of an improvement of the visibility at pinch off remains puzzling. Our results seems to indicate that charge fluctuations continue to exist in the small loop. We don't know why, and so far, possible overestimation of the drift velocity and/or larger loops due to unconnected gates (problem in the fabrication process) may explain this result. We can be more precise by using the expressions for V 1 and V 2 (Eq. (7.19) and Eq. (7.20)):

V 0 -1 T ϕ -1 T T -1 T ϕ,N -1 /2 T ϕ,corr T ϕ,up -1 T 
T -1 T ϕ,down -1 V 0 -1 (10 3 .V -1 ) Gate Voltage G U (V)
U 0.3 V 0.23 V 0.18 V 0.14 V 0.1 V 0.06 V Visibility V 1 (µV) V 1 -40 -20 0 20 40 0,0 0,2 0,4 0,6 0,8 1,0 G U 0.3 V 0.23 V 0.18 V 0.14 V 0.1 V 0.06 V B=2.628 T T=25 mK Visibility V 1 (µV)
in V 1 . For V G U ∈ [0.1 ; 0.3] V, the increase of V 0 compensates the decrease of the coupling V -1 0 so that V 2 is stable. For V G U ∈ [0.06 ; 0.1] V a sharp decrease of V -1 0 while V 0 saturates diminishes V 2 .
for each value of V G U we extract from the 'indirect' visibility V 2 as function of the bias voltage V 1 , the value of the zeros corresponding to ±π/2 × V c . We extract V 0 using the method described earlier, knowing the visibility at zero bias V 0 from V 1 . The values of the gaussian parameter V 10 and of the coupling parameter V 0 are refined by ajusting the fits for both V 1 and V 2 (Fig. 7.24). We then plot V c and V 10 as function of V 0 (Fig. 7.25). We find that V c is proportional to V 0 until localization of the IES after which it is independent of V 0 , while V 10 increases much less: the ratio V c /V 10 goes from 1.1 to 1.7 as V 0 increases from 23 µV to 40 µV.

It seems that the beating parameter V c is much more strongly affected by the coupling between ESs that the gaussian parameter V 10 . This isn't the case when one changes the magnetic field: although the coupling V -1 0 is affected through the magnetic field [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF], it was found that V c and V 10 evolve proportionally to each other when sweeping the magnetic field [START_REF] Litvin | Edge-channel interference controlled by Landau level filling[END_REF]. Additionally, this confirm the existence of two distinct energy scales which proceed from different mechanisms.

Link with other theories/experiments LPN's experiments on energy relaxation

It seems that in our sample the electron drift velocity is five times smaller that in the sample of the LPN group (v d ∼ 1 × 10 4 m.s -1 instead of v d ∼ 5 × 10 4 m.s -1 ). For dots of approximately the same size, we might have a gap opening in the IES excitations five times smaller than the one they obtain. This and/or the fact that the dots might be not small enough, might explain why we observe a saturation of the visibility at localization of the IES (instead of the expected sharp increase caused by the freezing charge fluctuations in the IES) and that we do not observe anything noteworthy on the lobe structure of the visibility as function of the bias voltage at localization of the IES.

With this sample, we are not able to validate or invalidate the idea that energy relaxation in the OES because of coupling to the IES is responsible for the lobe structure in the visibility. In future experiments, one should design a sample where one is able to measure how large is the gap opening at localization of the IES. 

Theory of plasmons beating

The results we obtain are compatible with the model developped by Levkiviskyi et al. [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF].

The multiple side lobe structure changes into a single side lobe structure as the coupling between ESs decreases, suggesting that the multiple side lobe structure is linked to the presence of two ESs.

As the coupling decreases, the energy scale V c which characterizes the multiple side lobe structure increases. V c is linear in V 0 as predicted by Levliviskyi et al. [START_REF] Levkivskyi | Dephasing in the electronic Mach-Zehnder interferometer at filling factor ν = 2[END_REF].

More quantitatively, in this theory, if we consider v u, where u is the group velocity of the fast charge mode, and v is the group velocity of the slow dipolar mode, the visibility's oscillations with the energy are given by the slow mode:

cos 1 εL 2v = cos ε eV c (7.21) Then, V c V 0 = 1 2π with V 0 = e 4πv L (7.22)
On Fig. 7.25 (right) the data and the prediction are reported. We find a discrepancy between the proportionality coefficient yielded by the prediction (V c /V 0 ≈ 0.16) and the one obtained by fitting the data (V c /V 0 ≈ 0.54). They are however, of the same order. The prediction is made by assuming that the coupling of both arms of the MZI to the IES is modified while the data are obtained by tuning only the coupling of one arm (the upper one) to the IES. One would then expect naively that the increase of V c with V 0 would be twice less in the data that in the prediction. We observe the inverse! From the expression for the coupling (Eq. (7.22)) , one can extract the slow dipolar mode velocity v: v = (e/ ) LV 0 /4π and estimate its value.

For 25 µV ≤ V 0 ≤ 45 µV , 3.4 × 10 4 m.s -1 ≤ v ≤ 6.1 × 10 4 m.s -1 (7.23) This estimation of the slow dipolar mode velocity is to be compared to the results from the time of flight experiments [START_REF] Ashoori | Edge magnetoplasmons in the time domain[END_REF][START_REF] Kumada | Edge magnetoplasmon transport in gated and ungated quantum Hall systems[END_REF] which give an estimation of the group velocity as function of the interaction strength. For the 'ungated sample' Kumada et al. find that at filling factor ν = 2, v g ∼ 2 × 10 6 m.s -1 . This group velocity corresponds to the fast charge mode velocity u which is supposed to be large compared to v.

Conclusion

In this chapter, we showed how we weakened the coupling between the upper arm of the interferometer and the IES in a controlled manner. The effect of this 'decoupling' on the visibility at zero bias and its temperature decay was studied: we were able to identify the different contributions to the temperature dephasing and in particular we showed that coherence enhancement was caused by the upper arm contribution which deccreases when one decouples the upper arm from the noisy IES These findings confirm Roulleau et al.

approach of dephasing in the MZI at zero bias. Next we focused on the effect of the decoupling on the visibility at finite bias. We found that the beating parameter V c is proportional to the coupling parameter V 0 as predicted by Levkiviskyi et al. while the gaussian parameter V 10 stays unchanged. This favors the idea that the lobe structure has two aspects: the multiple lobes which seem to come from the beating of two collective modes arising from the coupling between ESs, and 'something else' not yet explained, which causes the decaying 'gaussian' enveloppe and the single side lobe structure.

Conclusion and perspectives

Engineering coherence

We were able to enhance coherence by a factor two in our sytem by tuning the coupling between the system (the outer edge state) and its environment (the inner edge state).

In the near future, we would like to make sure that we freeze charge fluctuations in the environment and see the effect of the system coherence. Another idea is to tune the coupling between edge states through the Zeeman gap by tilting the sample with respect to the magnetic field orientation.

However, when we put the system out of equilibrium, coherence decay seems almost unaffected by the coupling between edge states. This is still not understood.

Understanding decoherence/dephasing

At ν = 2, where the environment of the system is identified as the other edge state, we have now a better understanding of the physics involved in dephasing. The interactions between edge states are responsible for the coupling between the system and its noisy environment, thus decreasing its coherence.

Because of this coupling between edge states, energy exchanges between electronic distributions occurs during their propagation in the edge states. It is not clear yet how this affects the visibility of our sytem out of equilibrium. To investigate this, we would like to see how injecting electrons at a definite energy above the Fermi sea by means of an energy filter at the interferometer entry, modifies the visibility. Indeed, until now whole energy distributions were injected into the MZI.

Theories at ν = 2 are now giving some physical idea of the mechanism involved for the observed multiple oscillations of the visibility with the voltage bias: collective plasmonic modes with different veolcities arise because of the inter channel interaction, and their Conclusion and perspectives beating seems responsible for the multiple side lobes structure. However, this does not explain the remaining dependence of the visibility with the bias voltage (single side lobe structure) at ν = 2 when both edge states are well decoupled, or at ν = 1. The role of intrachannel interactions has still to be experimentally investigated.

Long term

There is still much work to be done in order to improve the robustness of coherence in the interger quantum Hall effect. To find the means of improving the coherence, we must investigate further the reasons for its limitation.

Hoping that in the future we succeed in increasing enough the system coherence, we would like to couple two Mach-Zehnder interferometers to do two-particles interferences and verify the violation of Bell inequalities.

A. Finite frequency coupling

A.1. Phase fluctuations induced by the noisy IES

We first consider the coupling between ESs. Fluctuations of the charge in the IES couple to the charge in the neighbouring arm of the MZI and influence electron transport in this arm. This interaction effect is taken into account by introducing a time dependent potential V 1 (x, t) into the Hamiltonian [START_REF] Seelig | Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer[END_REF]:

H = - 2 2m e * ∂ 2 ∂x 2 + ε 1 + V 1 (x, t)
for the upper arm. Here ε 1 is the sub-band energy due to the lateral confining potential of the arm and m e * is the effective mass of the electron. We make the assumption that the fluctuating potential factorizes in a space and time-dependent part, writing V 1 (x, t) = h 1 (x)eU 1 (t). We will suppose for the following, that h 1 (x) is constant all along the length of the interferometer L. To solve the Schrödinger equation with the Hamiltonian above we make the ansatz:

Ψ ε (x, t) = exp - iεt + ik 1 (ε)x + iϕ(x, t)
where k 1 (ε) = 2m e * (ε -ε 1 )/ and ϕ(x, t) is the phase accumulated due to fluctuations. 

B U 2 3 Q 2 Q 1 V 2 V 1 potential noise S U 1 U 1 (ω): S ϕ (ω) = 4e 2 2 S U 1 U 1 (ω)
sin 2 (ωτ /2) ω 2 (A.2)

A.2. Admittance matrix

In this part we propose the calculation of the admittance matrix G 12 (ω) = dI 1 (ω)/dV 2 (ω).

We concentrate on the limit ω k B T E F . First we consider the charge density injected into the upper arm of the MZI due to a modulation of the voltage at contacts n where Φ U,i is the magnetic phase acquired going through upper arm to point x and χ(r ⊥ )

is the transverse part of the function. We then obtain for the fluctuating part of the charge Performing the integration we get:

δρ 1 (x, ω) = e 2 2h dε √ v 1,ε v 1,ε+ ω e iωx/vε V 1 (ε)F (ε, ω) δρ 2 (x, ω) = e 2 h dε √ v 2,ε v 2,
Q e 1 (ω) = e 2 2h dε F (ε, ω) i ω 1 -e iωτ V 1 (ω) Q e 2 (ω) = e 2 h dε F (ε, ω) i ω 1 -e iωτ V 2 (ω) Q e 3 (ω) = e 2 2h dε F (ε, ω) i ω 1 -e iωτ V 3 (ω)
In the limit ω/k B T 1, we have dε F (ε, ω) ∼ 1. We can rewrite the charge as Q e α (ω) = e 2 ν α (ω)V α (ω) where we have introduced the injectivity ν α (ω) defined as

ν 1 (ω) = i ω 1 2h 1 -e iωτ ν 2 (ω) = i ω 1 h 1 -e iωτ ν 3 (ω) = i ω 1 2h 1 -e iωτ
In the dephasing type experiments V 1 (ω) = V 3 (ω) = 0 while V 2 (ω) is varying. One finally obtains:

Q e 1 (ω) = Q e 3 (ω) = 0 and Q e 2 (ω) = e 2 ν 2 (ω)V 2 (ω)

Now if interactions are taken into account, the excess injected charge will induce a shift in the effective internal potential, which in turn gives rise to a screening charge. This screening charge is proportional to the internal potential eU α (ω) and to the total charge density available for screening. Thus Q s 1 (ω) = -e 2 U 1 (ω) (ν 1 + ν 3 ) and Q s 2 (ω) = -e 2 U 2 (ω)ν 2 . One finally obtains for the total charge in regions 1 and 2:

Q tot 1 (ω) = ν(ω) (-U 1 (ω)) and Q tot 2 (ω) = ν(ω) (V 2 (ω) -U 2 (ω))
with ν(ω) = iG Q (1 -e iωτ ) /ω and G Q = e 2 /h. Moreover, Q tot 1 (ω) and Q tot 2 (ω) are opposite and related to the potential difference via the relation:

Q tot 1 (ω) = -Q tot 2 (ω) = C (U 1 (ω) -U 2 (ω))
which gives three relations for Q tot U,2 (ω):

Q tot 2 (ω) = C (U 2 (ω) -U 1 (ω)) Q tot 2 (ω) = ν(ω) (V 2 (ω) -U 2 (ω)) Q tot 2 (ω) = ν(ω)U 1 (ω)
From these relations we can extract Q tot 2 (ω) as function of V 2 (ω): Q tot 2 (ω) = -V 2 (ω)/ (2ν(ω) -1 + C -1 ). The current in the arm 1 is given by I 1 (ω) = iωQ tot U,2 (ω). We finally obtain:

G 12 (ω) = dI 1 (ω) dV 2 (ω) = -iω 2ν(ω) -1 + C -1 (A.3)

A.3. Noisy inner edge state

To characterize the coupling at finite frequency, one has to know how the fluctuations of the electro-chemical potential V 2 are related to the fluctuations of the internal potential U 1 seen by the electrons in the MZI. What happens is the following: changing V 2 , affects the charge of the IES. This in turn leads to a variation of the potential U 1 which is partially screened. We are describing here the dynamic of the screening [START_REF] Büttiker | Dynamic conductance and the scattering matrix of small conductors[END_REF][START_REF] Prêtre | Dynamic admittance of mesoscopic conductors: Discrete-potential model[END_REF][START_REF] Gabelli | Violation of Kirchhoff's Laws for a Coherent RC Circuit[END_REF][START_REF] Feve | An On-Demand Coherent Single-Electron Source[END_REF]. The notations that I will use, as well as the resulting electrical circuit are represented in admittance G 12 (ω) = dI 1 (ω)/dV 2 (ω) is calculated in detail in section A.2. We just give here the final result:

I 2 (w) V 1 (w) V 2 (w) U 2 (t) U 1 (t) Q 2 Q 1 (up) (down) V 2 (w) U 1 (t) U 2 (t) R Q /2 R Q /2 C C Q C Q a) b)
G 12 (ω) = dI 1 (ω) dV 2 (ω) = -iω 2ν(ω) -1 + C -1 = 1 iν(ω)ω + 1 iCω + 1 iν(ω)ω -1
with V 2 (ω) the electro-chemical potential applied on S2 , I 1 (ω) the current along the OES, ν(ω) = iG Q (1 -e iωτ ) /ω, G Q = e2 /h and C the capacitance between the IES and OES. In the low frequency limit, this expression becomes: 

G 12 (ω) -1 ≈ i ωC Q + R Q 2 + i ωC + i ωC Q + R Q 2 with C Q = G Q τ .
U 1 (ω) = ν(ω) -1 Q tot U,2 (ω) = -ν(ω) -1 2ν(ω) -1 + C -1 V 2 (ω)
with Q tot U,2 (ω) the total charge fluctuation in the region 2. In the low frequency limit:

U 1 (ω) ≈ -C Q -1 2C Q -1 + C -1 -1
V 2 (ω). Then from Eq. (A.1) and from the definition1 of V 0 , we get: In the low frequency limit I(ω) ≈ ω 2 + (eV 0 /h) 2 -1 , which leads to:

V 0 ≈ -e 2C -1 Q + C -1 (A.
V 0 = π 2 V ϕ (A.5)
This is a result of importance which tells that in principle the ratio between V 0 and V ϕ should be universal. It means that without screening of the interaction, whatever be the coupling and the quantum capacitance, the ratio between V 0 and V ϕ should be π. This

is not what we have observed in our experiment (we measure V 0 /V ϕ = π 2 /1.4). Indeed, the approach that we have developed is very simple and we have to think now on the simplifications which are abrupt. The experimental data show that V ϕ is larger than expected which means that there is less dephasing. A natural way is to include something in the model which reduces the bandwidth on which fluctuations play a role. This can be easily done by inserting screening effects which are modelled by two capacitances C 0 which mimic the capacitive coupling of the wires to the ground and will short cut the high frequency fluctuations. Indeed, this screening can also be viewed as modelling the interaction in the wire itself: the larger C 0 is, the fewer interactions there are. However assuming that it exists, I will show that the coupling between ESs modifies their shape.

B.1.1. Edge states independently biased

QPC G0 is tuned so as to fully reflect the IES and fully transmit the OES: IES and OES are fed with different bias. Then, the interferences emitted by contact n • 1 and its capacitively induced signal by the IES emitted at contact n • 2 are measured: the main signal is obtained by sweeping the gate voltage V SG , while the induced signal is seen when sweeping the bias voltage applied to the IES, V 2 . Indeed, when deriving the visibility of the interferences in ¶ 4.4.3, the influence of the charge in the IES on the phase of the electrons in the OES was not considered . However, when a dc bias voltage V 2 is applied at contact n Parameter V 0 defined as the periodicity of the oscillations with respect to V 2 , characterizes the coupling between the ESs. It changes the oscillations phase in Eq. (4.9) along:

G0 G1 SG G2 1 3 D i t i 0 B U 2 V 2 V SG V 1
I ∼ = 2e 2 V 1 h T 1 T 2 R 1 R 2 e -V 2 1 /2V 2 10 cos ϕ -2π V 2 V 0 (B.1)
where V 1 (V 2 ) is the bias voltage applied on contact n • 1(2). One immediately remarks that when the two ESs are fed with the same bias, dI ∼ /dV 1 contains a term resulting from the capacitive coupling. This case is obtained when G0 transmit both ESs completely. Let first assume that V 2 = V 1 , in practice obtained when G0 only transmit the OES. Deriving Eq. (B.1) with respect to V 1 and to V 2 , one obtains:

dI ∼ dV 1 ∝ 1 - V 2 1 V 2 10 e -V 2 1 /2V 2 10 cos ϕ -2π V 2 V 0 dI ∼ dV 2 ∝ 2π V 1 V 0 e -V 2 1 /2V 2 10 sin ϕ -2π V 2 V 0

B.1.2. Edge states biased together

When G0 only transmit the OES, the lobes are well defined with complete extinctions and the phase is rigid within a lobe with a π-jump when the visibility goes to zero as illustrated on Bieri et al. [START_REF] Bieri | Finite-bias visibility dependence in an electronic Mach-Zehnder interferometer[END_REF] have shown that an unexpected enhancement of the visibility could be obtained for a transmission of T 1 close to 1. Roulleau et al. [START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF] showed that this result could be explained with the coupling between ESs. To derive the visibility, one has to take into account the induced signal from the IES which is in quadrature with the main signal, so that the total conductance is given by: with the phase: 

dI ∼ dV 1 ∝ 1 - V 2 1 V 2 10 cos V 1 V c - V 1 V c sin V 1 V c 2 + 2π V 1 V 0 cos V 1 V c 2 e -V 2 1 /2V
θ = ϕ -2π V 1 V 0 -arctan 2π V 1 /V 0 × cos(V 1 /V c ) (1 -V 2 1 /V 2 10 ) cos(V 1 /V c ) -V 1 /V c sin(V 1 /V c ) (B.15)
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 11 Figure 1.1.: (gauche) Visibilité en échelle logarithmique en fonction de la température pour trois échantillons de longueur de bras L = 5.6, 8 et 11.3 µm. La visibilité décroît exponentiellement avec la température avec un taux T -1ϕ qui croît linéairement avec L (insert)[START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF]. (droite) Échelle gauche: V 0 en fonction du champ magnétique (cercles rouges pleins). Échelle droite: V ϕ (carrés

Figure 1 . 2 .

 12 Figure 1.2.: (gauche) Visibilité décroissant avec la tension appliquée en entrée |V 1 | montrant des oscillations avec de multiples extinctions pour un échantillon de longueur de bras L = 8 µm, à B = 4.46 T et T = 13 mK. Il y a deux lobes de chaque côté du lobe central. (droite) Transmission

Figure 1 . 4 .: 1 0

 141 Figure 1.4.: Image de l'échantillon au microscope électronique à balayage. Le courant est injecté au contact n • 1, le contact n • 2 sert à polariser l'état de bord interne (en rouge), que l'on peut utiliser pour mesurer le couplage V -1 0 avec l'état de bord externe (en bleu) dans le bras supérieur, en faisant une expérience de type 'which path'. Le courant transmis est mesuré en 3, grâce à une conversion tension-courant due aux propriétés de l'EHQE. Le contact n • 4 ramène à la masse le courant du bras inférieur qui a été réfléchi à la deuxième séparatrice. (dessus) G U et G D sont ouvertes. Nous sommes dans la configuration de base des premiers échantillons. (dessous) G U et G D transmettent partiellement l'état de bord interne déformé en boucles qui se ferment lorsque G U et G D sont pincées davantage. Les fluctuations de charge dans l'état de bord interne sont

Figure 1 . 5 .

 15 Figure 1.5.: (gauche) Prédiction concernant un transition de phase quantique à transmission T 0 = 0.5 de l'état de bord externe, d'une structure multiple à une structure simple, induite par le bruit de partition du CPQ d'injection, G0 [16]. (droite) Mesures expérimentales. Position des zéros de visibilité, en fonction de T 0 à tension nulle (symboles vides), et à tension V 1 (symboles pleins). La largeur du lobe central diverge conformément à la prédiction de Levkiviskyi et al.

Figure 1 . 6 .:

 16 Figure 1.6.: Visibilité en code couleur en fonction des tensions à l'entrée de l'interféromètre V 1

Figure 1 . 7 .: 1 0 1 0

 1711 Figure 1.7.: Échelle gauche: couplage V -1 0 entre états de bord dans le bras supérieur en fonction de la tension de polarisation appliquée à G U (cercles noirs vides). V -1 0

1 )Figure 1 . 8 .:

 118 Figure 1.8.: Échelle gauche: plot couleur de la visibilité normalisée en fonction de la tension de grille V G U sur l'axe des x, et de la tension de bias V 1 sur l'axe des y. Échelle droite: V -1 0 en
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 3131 Fig. 3.1 (right): a quantum well forms near the GaAs/AlGaAs interface. At equilibrium the Fermi energy is constant everywhere. All parameters are chosen so that the Fermi energy lies within the quantum well effectively trapping the electrons coming from the

( 4 . 2 K

 42 and sometimes 20 mK), just to check the quality of the ohmic contacts and the gates. Having changed of 2DEG provider during my PhD, several months were needed to ajust the fabrication procedure. Finally, the results presented here have been obtained on two different samples for the energy exchange experiment and on one sample for the modified MZI (although with different cooling cycles and magnetic fields).I will now introduce the integer quantum Hall effect starting from the classical Hall effect in order to show how edge states (one dimensional chiral electron beams) emerge from a 2DEG in the IQHE regime.

Figure 3 . 2 .:1Figure 3 . 3 :

 3233 Figure 3.2.: Typical values of the quantities characterizing the GaAs/Al 0.3 Ga 0.7 As 2DEGs that we will use. The effective mass of the electron m e * in units of the bare electron mass (m e ) is listed along the 2DEG electron density (n s ), its zero magnetic field mobility (µ 0 ), the electron effective Landé factor (g * ) [19-21], the average scattering time in zero field (τ 0 ), the Fermi energy (E F ), wavelength (λ F ) and velocity (v F ).

Figure 3 . 4 .

 34 Figure 3.4.: (left) Hall (R H ) and longitudinal (R L ) resistance as function of the magnetic field in an ultrahigh mobility GaAs/AlGaAs 2DEG. R H shows plateaus of quantized values h/(νe 2 ) with ν an integer (integer quantum Hall effect) or a rational (fractional quantum Hall effect). A plateau in R H corresponds to a zero in R L . The periodicity of these Shubnikov-de-Hass oscillations in R L scales as B -1 [26]. (right) Evolution of GaAlAs 2DEGs mobilities since 1978as function of the temperature. It is only since the end of the 80's that high enough mobilities allow the observation of the QHE effect at reasonable magnetic fields[START_REF] Narayanamurti | Artificially Structured Thin-Film Materials and Interfaces[END_REF][START_REF] Pfeiffer | Electron mobilities exceeding 10 7 cm 2 .V -1 .s -1 in modulation-doped GaAs[END_REF][START_REF] English | GaAs structures with electron mobility of 5 × 10 6 cm 2 .V -1 .s -1[END_REF].

Figure 3 . 5 :

 35 Figure 3.5: Two points resistance of a high mobility 2DEG as function of the magnetic field showing Hall plateaus at 4.2 K (red) and 30 mK (blue). Contribution of the ohmic contacts (∼ 300 Ω) has been substracted. The classical relationship R H = B/(n s e) yields the electronic density of the 2DEG: n s = 2 × 10 11 cm -2 .

Figure 3 . 6 .

 36 Figure 3.6.: (left) Semi-classical picture of the ES: in the bulk electrons describe circular cyclotron orbits while they drift along the edges following equipotential lines. (right) LLs as function of the position in the 2DEG. ESs form at the lines (red points on the picture) where the Fermi energy cross the LLs.

Now, knowing thatFigure 3 . 7 .:

 37 Figure 3.7.: Hall bar at filling factor ν = 1. Because of chirality, currents flowing on the lower and upper edges (I → and I ← ) have opposite directions. There is no backscattering because these currents are spatially separated. The electrochemical potential in the ES on the lower(upper) edge is fixed by the voltage bias applied on the drain(source), and is constant in the sample because there is no backscattering during transport. The voltage drop between drain and source -and the dissipation -is localized at the regions where the ES enters a reservoir (red(blue) spot on the drain(source)).

Figure 3 . 9 .

 39 Figure 3.9.: (a) ν = 3. There are three ESs (R H = h/3e 2 ) and no backscattering (R L = 0). (b) As B increases, some regions of the 3 rd energy level (red regions circled by orange ones),

  where v d is the drift velocity in the ES, n 1D the 1D energy density of states per unit length, and n → (n → ) the energy distribution in the D(S) reservoir. D(S) being biased with the voltage V D (V S ), its energy distribution is the Fermi distribution shifted in energy: n →(←) (ε) = f 0 (ε -eV D(S) ). The drift velocity being v d (ε) = 1/ (∂ε/∂k), and the 1D energy density of states being n 1D (ε) = 2π (∂ε/∂k) -1 , we have v d (ε) n 1D (ε) = 1/h. Then,

Figure 3 . 10 :

 310 Figure 3.10: (a)-(c) One electron picture. (a) Top view of the 2DEG plane near the edge. (b) Bending of LLs along the increasing potential energy near the edge. Filled black circles are for filled states, empty circles for empty states. (c) Electron density as function of the distance to the boundary. (d)-(f) Self-consistent electrostatic picture. (d) Top view. Shaded strips represent regions with non integer filling factor (compressible liquid), unshaded strips represent integer filling factor regions (incompressible liquid). (e) Bending of the LLs. Half-filled circles are for partially filled states. (f) Electron density as function of the distance to the middle of the depletion region [50].

Figure 4 . 2 .

 42 Figure 4.2.: (left) Fabry-Pérot interferometer. These interferometers are more sensitive to thermal smearing because interferences occur between paths of different lengths by construction.

Figure 4 . 3 :

 43 Figure 4.3: Semi-log plot of the visibility as function of the temperature for three samples of arm lengths L = 5.6, 8, 11.3 µm. The visibility decays exponentially with the temperature with a rate T -1ϕ which increases linearly with L (inset)[START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF].

  . 4.4 (a) shows a schematic of the MZI with the interfering OES in blue. The IES, represented in red, is capacitively coupled to the OES in the upper arm of the interferometer and can be adressed individually with bias voltage V 2 . Usually, one reveals the interferences by sweeping the voltage V SG applied to a side gate electrostatically coupled to the lower arm of the interferometer thus changing the length of the lower arm (oscillations revealed using this method are shown on Fig. 4.4 (b)).

4 . 5 )

 45 . Using the mean field approach developped by Roulleau et al. and reported in appendix A, one shows that V 0 should depend on the geometrical capacitance between the two ESs and the quantum capacitance C Q = G Q τ , where τ is the time of flight of an electron through the interferometer and

Figure 4 . 4 .

 44 Figure 4.4.: (a) Schematic of the MZI in the limit C C Q . The interfering OES (blue) is capacitively coupled to the IES (red). Electronic interferences are revealed either by sweeping the gate voltage applied to SG (b) or the voltage bias V 2 (c), using the IES as a gate. The periodicity

Figure 4 . 5 :

 45 Figure 4.5: Left scale: V 0 as function of the magnetic field (full red circles). Right scale: V ϕ (empty blue squares) and 4k B T ϕ /e (dashed line) as function of the magnetic field. Fluctuations of V 0 with the magnetic field are proportionnal to the ones of V ϕ and 4k B T ϕ /e. V ϕ and 4k B T ϕ /e fall on each other. All these quantities show a maximum at the end of the ν = 2 plateau [1, 3].

Fig. 4 .Figure 4 . 6 .

 446 Figure 4.6.: (left) Visibility as function of the bias voltage V 1 showing oscillations with multiple extinctions, for a sample of arm length L = 8 µm, at B = 4.46 T and T = 13 mK. The oscillations are damped. One can distinguish two lobes on each side of the central lobe. (right) Colorplot of the differential transmission of the interfering OES as function of the side gate voltage V SG along the x-axis, and the bias voltage V 1 on the y-axis. The oscillations of the differential transmission as function of V SG are extinguished at V 1 ∼ ±13 , ±37 µV (periodicity ∆V 1 ∼ 25 µV). Within a lobe the phase of the visibility is rigid, and undergoes π-jumps at extinction points.

Figure 4 . 7 .:

 47 Figure 4.7.: Lobe structures for the same sample (L = 11.3 µm) but different couplings V -1 0 of the ESs in the upper arm (chapter 7). (left) Single side lobe. (red solid line) Our fit V 10 = 10.5 µV. (black solid line) The fit from the decoherence hypothesis τ -1 ϕ ∝ εV 1 does not perform as well (V 10 = 6.5 µV). (dashed lines) Gaussian enveloppes e -V 2 1 /2V 2 10 associated with each fit. (right) Multiple side lobes. 'Our' fit (black solid line) and Litvin's (red solid line) fit the data (open black circles) equally well. V 10 is about the same for both, but V c shows a factor 2.5.
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 5 Relaxation in the edge states 4.5.1. Pioneering work Is scattering between ESs supressed? Up to which lengthscale? To test scattering between ESs one uses the scheme on Fig. 4.8 first used by Van Wees et al. [82], which allows to selectively bias and probe ESs with QPCs [83, 84]. Up to an equilibration length, there is no scattering between adjacent ESs. Then the conductance of the system Fig. 4.8 (left) with one QPC is equal to the conductance of two QPCs in series on Fig. 4.8 (right).

Figure 4 . 8 .

 48 Figure 4.8.: ν = 2. (left) The QPC totally reflects the IES so that current is carried only by the OES: two points resistance is given by the ν = 1 resistance of the QPC. (right) Still, only the OES carries current: two points resistance is equal to the ν = 1 resistance.

Figure 4 . 9 .:

 49 Figure 4.9.: Sample e-beam micrograph. ESs propagate along lines, dashed lines correspond to out of equilibrium distributions. A double step distribution f QP C is created in the OES outside of the QPC in the lower left corner and propagates on a tunable length L. The resulting distribution f D is probed by the quantum dot (white circle). Colorized QPCs allow to vary the propagation length. The gates not colorized are grounded.
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  Figure 4.10: (top) An out of equi-
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Figure 5 . 1 .

 51 Figure 5.1.: (left) Scanning electronic microscope (SEM) view of a QPC. In false colors, the 2DEG is blue, the two gates forming the QPC are yellow. The ν = 2 ESs are figured with the IES (in red) being fully reflected and the OES (in blue) being partially transmitted. (right) The differential conductance across the QPC is plotted as a function of the gate voltage in units of the quantum conductance G Q = e 2 /h.

Figure 5 . 2 .

 52 Figure 5.2.: SEM view of the sample. The small central ohmic contact (pink) is the main difficulty in the fabrication process. At ν = 2, G0 is used to reflect the IES (in red), and to generate shot noise in the IES in the upper arm( ¶ 4.3.3). It also allows dilution of the OES (in blue) ( § 6.2 and § 6.3). The OES is split at G1 in two paths U and D, which are recombined at G2. To reveal the interferences in the transmitted current i t , one has to vary the Aharonov-Bohm phase threading through the surface S enclosed between the two arms (colorized in blue), by changing either the magnetic field, or S via gate SG or the IES in the upper arm.

3 )

 3 ∆L = L U -L D being the length difference between the upper path (L U ) and the lower path (L D ), and v d = E/B the electron drift velocity 2 . The phase at the Fermi energy is ϕ F = 2π Φ B /Φ 0 , where Φ B is the magnetic flux threading through the area defined by the upper and the lower path at the Fermi energy, Φ 0 = h/e being the flux quantum.

Figure 5 . 3 .: 1 )

 531 Figure 5.3.: Schematic of the measurement system. Lock-in LI1 injects current i (1) ac at frequency f 1 at contact n • 1 and detects the potential drop v (1) ac at the same frequency at contact n • 3. Current polarization for LI1 is realized through a 10 MΩ resistor at 4.2 K to minimize the low frequency cut off due to the coaxial cables. LI2 injects current i (2) ac at f 2 and measures v (2) ac at contact n • 3.

Figure 5 . 4 :

 54 Figure 5.4: Plateaus in R 2points shrink and R 3points lowers as the temperature rises because of variable range phonon-assisted hopping between localized states [18] inducing backscattering. At 30 mK for ν = 1, backscattering is absent at the beginning of the plateau (α = 1) and appears as the magnetic field is increased (α < 1). Wires and contacts resistances (∼ 600 Ω) have been substracted from R 2points .
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 55 Figure 5.5: Two points resistance (black) and differential transmission through the lower (red) and upper arm of the MZI (green) as function of the magnetic field at T ∼ 25 mK. The transmission through the upper arm decreases at a lower magnetic field than through the upper arm, hinting of a smaller density in the upper than in the lower arm.

Asymmetry

  On Fig.5.5 backscattering is not the same in the upper and lower arm of the interferometer.

Figure 5 . 6 .:

 56 Figure 5.6.: Characteristics of QPCs G0 (black curve), G1 (red curve) and G2 (green curve).

1

  st step We measure the differential conductance between contacts n • 1 and n • 3, with G1 and G2 open while we sweep the gate voltage applied on G0 (black curve on figure 5.6).

T 2

 2 = 0.5. The interferences revealed with the side gate and shown on Fig. 5.7 (right) have a 34 % visibility at 12 mK. This is for a low density sample which was meant for the study of coherence in the fractional quantum Hall regime 9 with arm length L = 11.3 µm. The visibility of the interferences in the differential transmission is given by: Min are the maximum and minimum values of the differential transmission as a function of Φ AB .

Figure 5 . 7 .

 57 Figure 5.7.: (left) The IES is reflected at all QPCs. (red curve) With T 2 = 1, the transmission through the MZI goes from 1 to 0 when G1 is closed. (green curve) T 2 < 0.5, di t /di 0 osc decreases as T 1 increases. Interferences are seen in the oscillations of di t /di 0 around its mean value. (blue curve) di t /di 0 osc is constant, meaning that T 2 = 0.5. The oscillations of di t /di 0 have a maximum amplitude directly reflecting the amplitude of the interferences revealed with the side gate. (right) Electronic interferences with a 34 % visibility, revealed when sweeping the side gate voltage.

First let us derive

  how the phase should vary with the energy when there is a length difference. Lets consider s which measures directly the path length, i.e. (x(s), y(s)) (coordinates of the electron), and the local coordinate s ⊥ , perpendicular to the equipotential line. In these coordinates, an ES which follows the equipotential line a small energy ε away from E F acquires an additional phase δϕ = ∆s ⊥ /l 2 m ds, where l 2 m = /eB and e (dU/ds ⊥ ) ∆s ⊥ = ε. Moreover, we know that the potential gradient dU/ds ⊥ is related to the local electric field by F (s) = -dU/ds ⊥ . From this relation we can define the drift velocity of the guiding center of the cyclotron orbit at point s of the edge state v d (s) = F (s)/B.

. 7 )

 7 with ϕ F the Ahoronov Bohm (AB) phase through the area defined by the position of the ES at the Fermi energy, f 0 (ε) = (1 + exp (ε/k B T )) -1 the Fermi distribution function of the grounded terminal, f (ε) = f 0 (ε -eV 1 ) the distribution function of the terminal injecting the current and E c = v d /∆L. The current is given by I = j(ε) dε.

Figure 6 . 1 .:

 61 Figure 6.1.: Schematic of the Mach-Zehnder interferometer at ν = 2. The injecting QPC, G0 is set as to fully reflect the IES. The interfering electrons are injected at contact n • 1 with the energy E F + eV 1 , where V 1 is the dc voltage applied to contact n • 1. Interferences are revealed by sweeping the gate voltage V SG applied to the side gate SG or by using the IES in the upper arm like a gate polarized with the dc voltage V 2 applied to contact n • 2. The latter method gives access to the coupling between the IES and the OES in the upper arm ( ¶ 4.3.3).
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 62 Figure 6.2.: Lobe pattern as function of the magnetic field measured by two different groups:

Figure 6 . 3 :

 63 Figure 6.3: Visibility as function of the bias voltage V 1 for two different dilutions of the incoming current in the OES. T 0 ∼ 1 (black curve), T 0 ∼ 0.1 (red curve). The multiple side lobes structure seems to transform into a single side lobe structure and the shape of the visibility as function of V 1 is strongly affected by T 0 : the width of the central lobe goes from ∼ 7 µV when T 0 ∼ 1 to ∼ 25 µV for T 0 ∼ 0.1.

Figure 6 . 4 :

 64 Figure 6.4: Visibility and phase shift as function of the bias computed by Levkiviskyi et al [6]. The multiple extinctions are reproduced along with the phase rigidity between them. The π phase jumps are recovered. However, the decay of the oscillations with the bias voltage is non existent unless ∆L = 0.

Figure 6 . 5 .

 65 Figure 6.5.: (left) Prediction on a quantum phase transition induced by non gaussian noise at T 0 = 0.5 from a multiple side lobe structure to a single side lobe structure [16]. (right) 3D plot of the visibility as function of the bias voltage V 1 for various values of the transmission T 0 at zero bias. The final picture resembles the prediction of Lekvkiviskyi et al. .

Figure 6 . 6 .:

 66 Figure 6.6.: Zeros positions with respect to the bias voltage V 1 both as function of the transmission T 0 at zero bias (open symbols) and at the bias voltage V 1 (full symbols). The error bar with respectto T 0 is due to its dependence with the bias voltage V 1 and is centered on its mean value. As function of the transmission at finite bias (full symbols), second and third zeros are visible for T 0 ≥ 0.5 and the position of the zeros seems fixed. Their non-observation for T 0 < 0.5 might also be explained by the fact that we didn't reach these transmissions at finite bias. For smaller values of T 0 , if one considers that the zero bias conductance is the good parameter, the size of the central lobe increases as [T 0 (1 -T 0 )] -1 below T 0 = 0.5 (dashed lines). It is also compatible with a T -1/2 0 dependence (solid lines).

Figure 6 . 7 .

 67 Figure 6.7.: (left) Energy distribution in the injected OES (blue) at G0 output. The energy distribution for the OES is an out of equilibrium double step distribution created by QPC G0 set to transmission T 0 < 1 for the OES. V 1 is the bias voltage applied on contact n • 1 and V 2 is the bias voltage applied on contact n • 2. (right) Schematic of the Mach-Zehnder interferometer.

Figure 6 . 8 .

 68 Figure 6.8.: (left) V 10 renormalized by its value at T 0 = 1 as function of T 0 [40], follows the same variations for two samples. (right) Same data plotted as 1/V 2 10 as function of T 0 : 1/V 2 10 seems proportional to T 0 . Data from the 'dilution experiment' ( ¶ 6.2.2) (blue and red points)

Figure 6 . 9 .

 69 Figure 6.9.: (left) Logarithm of the visibility is parabolic in the bias voltage V 2 showing the gaussian shape of the visibility. As T 0 increases, the curvature of the parabola decreases until the curve is almost flat. (right) The parabola coefficient 1/V 2 20 renormalized by its extrapolated value when T 0 → 0 as function of T 0 at zero bias (V 2 = 0), for two different samples. The error

Figure 6 .

 6 Figure 6.10.: (left) Visibility as function of the bias voltage V 1 for T 0 ∼ 0.5, V 2 = -20 µV (red

Figure 6 . 11 .:

 611 Figure 6.11.: Visibility as function of the bias voltages V 1 and V 2 for T 0 = 0.2 at zero bias.

Figure 6 . 12 .:

 612 Figure 6.12.: Colorplots of the visibility as function of the bias voltage V 1 applied on contact n • 1 along the x-axis, and the bias voltage V 2 applied on contact n • 2 on the y-axis, with G0 set to transmission T 0 ∼ 0.2 at zero bias (a), and to transmission T 0 ∼ 1 (b). Visibility obtained with the formula (6.6) with fit parameters T 0 = 0.3 (c) and T 0 = 1 (d) (in the fit T 0 is considered independent of the bias). Ajusting the fit with an offset on V 1 and V 2 with T 0 = 0.3 (e) and T 0 = 1 (f).

Figure 6 .

 6 Figure 6.13.: (left) Colorplot of the transmission T 0 as function of V 1 and V 2 . We clearly see that T 0 depends on |V 1 -V 2 |. (right) Colorplot as function of V 1 and V 2 of the visibility obtained with Eq. (6.6) with offsets on V i and the dependence of T 0 measured on the left figure. Fit parameters are V 10 = 27 µV, V 20 = 13 µV, V 1off = 1 µV, V 2off = 2 µV. The shape of the 'butterfly' is closer

Figure 6 .

 6 Figure 6.14.: (left) A QPC is polarized with gate voltage V g with a single ES biased with voltage V 1 . The transmission is controlled by the height of the potential barrier with respect to the ES chemical potential (eV 1 ), and not with respect to the ground. For a fixed value of the gate voltage V g , the transmission of the QPC depends on V 1 . This is the so-called self biasing. (right) First two energy levels with the potential barrier created by G0: the IES (red) is fully reflected, the OES (blue) transmitted with transmission T 0 . The IES potential is V 1 on the left side and V 2 on the right side. Because of the capacitance between ESs, sweeping V 1 and V 2 with |V 1 -V 2 | constant does not change T 0 since it keeps the height and width of the barrier unchanged.

Figure 6 . 15 :

 615 Figure 6.15: For a QPC set at transmission 0.5 for an incoming ES, the 'mean bias' when the two incoming currents are biased with voltages V 1

6. 3 . 4 .

 34 Energy relaxation?Dependence of the effective temperature with the bias Le Sueur et al. report in[START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF] the evolution of T exc , an effective temperature which measures the energy of the particule-holes pairs in the out of equilibrium distribution in the OES after a propagation over the length L, with the voltage difference δV d applied across the QPC which creates the out of equilibrium distribution in the OES. The data show that when L is close to zero (L = 0.8 µm), T exc is close to its predicted value just outside of the QPC, linear in δV d , T qpc = √ 3e/2πk B |δV d |. As L increases, the OES distribution looses energy, exchanging it with the 'cool' Fermi distribution in the adjacent IES and maybe with other degrees of freedom. We introduce T loss (L) ≡ T qpc -T exc (L) which measures the amount of energy associated with the electron-holes pairs that has been lost to the environment or exchanged with the IES during propagation. After a propagation over L ≥ 10 µm, the distribution in the OES no longer evolves, it has reached a steady state. Let us look then at the dependence of T loss (L = 30 µm) with δV d . Assuming that all the energy that has been lost by the OES distribution is exchanged with the IES, we want to see if an effective temperature quadratic in δV d in the IES could explain the gaussian dependence of the interfering current in the MZI. It looks like T loss (L = 30 µm) has two contributions, one linear with δV d , the other quadratic (Fig. 6.16):

( 2 )Figure 6 . 16 :

 2616 Figure 6.16: Energy lost by the OES during its L = 30 µm propagation along the IES, expressed in terms of the effective temperature T loss , as function of the voltage difference δV d between the two steps of the out-of-equilibrium energy distribution generated in the OES. T loss dependence with δV d is shown to have a linear and a

Figure 6 .

 6 Figure 6.17.: (left) The magnetic field has been flipped: injection occurs at contact n • 3 ('direct' injection) or n • 5 ('indirect' injection) and the transmitted current is collected at contact n • 1. G0 fully reflects the outgoing IES. Because there is no QPC to separate IES and OES upon entering the MZI, both ESs are biased with the same bias voltage V 1 . (right) Visibility as function of the bias voltage. Red dots: 'direct' injection. Black open dots: 'indirect' injection. ESs are biased at contact n • 5 then supposedly thermalized at contact n • 3 before entering the interferometer. Red thick line: fit with parameters V 10 = 7.3 µV and V 0 = 45 µV.

Figure 7 . 1 .

 71 Figure 7.1.: (left) Two points resistance (black) and differential transmission through the upper (green) and lower arm (red) as function of the magnetic field ,around ν = 2. Electronic density is smaller in the upper arm. (right) Differential transmission of the OES as function of the magnetic field variation, for G U open (black), and G U pinched with the IES localized (red). The surface between the two arms is estimated from the oscillations periodicity: S = 40.0 ± 0.1 µm 2
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 721 Figure 7.2.: SEM view of the sample. Current is injected at contact n • 1. Contact n • 2 biases the IES in the upper arm and is used to measure the coupling V -1 0 and in the 'which path' experiment. The transmitted current is measured at contact n • 3, thanks to the voltage-current convertor provided by the quantum Hall state, and contact n • 4 grounds the backscattered current in the lower arm. (top) G U and G D are open. The OES (blue) in the arms of the interferometer is coupled to the IES (red). (bottom) G U and G D are at transmission T U,D < 1 for the IES deformed into small orbits which will close when the transmission T U,D will reach 0. Then if charge fluctuations in the closed red dots are indeed frozen by the opening of a gap in the IES excitations, the only charge fluctuations in the environment are in the opposite OES which is coupled to the interfering one through the IES dots with a lower coupling.

Figure 7 . 3 .

 73 Figure 7.3.: (left) G U . (black) G1 and G2 open, current flows through the lower arm. (red) G1 and G2 closed, current flows through the upper arm. Backscattering occurs earlier in the upper arm than in the lower arm when closing G U ,because of the smaller density. (right) G D . (black) G1 and G2 open, transmission is 1 except between plateaus when some of the current is lost at contact n • 4. (red) G1 closed and G2 open, current is reflected into the upper arm by G1, we measure the part reflected by G D . (green) G1 open and G2 closed, we measure the current reflected by G D in the upper arm and then by G2 towards contact n • 3.

Figure 7 . 4 .

 74 Figure 7.4.: (left) Schematic of the model for G D . G D is a three way gate with input V in , output V out , ground and fictitious floating ohmic contact M at potential V M . The input current can be transmitted towards the output contact, to ground, or reflected towards contact M. Current from contact M can be transmitted to ground, or reflected towards the output contact. (right) The experimental characteristics of G D for G1 closed and G2 open (red squares) and open (black circles) are well reproduced by the model (solid lines), in particular the two dips when G1 and G2 are open (blue curve), although the dip at V G D ≈ 0.1 V is twice larger in the data maybe because of interferences in the IES.

Figure 7 . 5 .:

 75 Figure 7.5.: The visibility increases from 20 % at full transmission of the IES (V G U ≈ 0.3 V) to almost 50 % when the IES is completely localized (V G U ≈ 0.1 V). Localization of the IES has no dramatic effect on the visibility which saturates well into the transmission plateau. When G U is pinched further, the interference signal is no longer a pure cosine leading to widening of the error bars. Departure of the mean conductance from 0.5 (in e 2 /h units) is a sign of detuning of QPCs G1 and G2 from half transmission of the OES, thus decreasing the visibility.

  and the Mach-Zehnder is in the configuration represented on Fig. 7.2 (top). We obtain a visibility of ∼ 20 % (Fig. 7.1 (right)). For intermediate transmissions, the Mach-Zehnder is in the configuration of Fig. 7.2 (bottom) where the upper IES is deformed in small loops. The visibility increases up to 50 %.

Fig. 7 Figure 7 . 6 .:

 776 Fig. 7.5).

  only, we need to sweep V 2 on a larger domain because the period of the interferences V 0 , increases from 25 µV to 80 µV (Figs. 7.7 (a) and 7.7 (b)) as the coupling between the IES and the upper arm of the MZI is decreasing.

Figure 7 . 7 .:

 77 Figure 7.7.: Interferences revealed with the upper IES used as a gate, (a) before localization of the IES (V G U ∈ [0.1; 0.055] V), (b) and across(V G U ∈ [0.1; 0.28] V). As G U is closing,the amplitude and period V 0 of the oscillations increase, then the amplitude saturates while the periodicity V 0 doubles. At localization, a stochastic phase shift appears, uncorrelated with the side gate voltage, probably from stochastic charging of the IES dots when their energy levels are aligned with the Fermi energy. These phase shifts hinder the determination of V 0 .
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 2 along the top edge of the sample, in blue on Fig.7.2 (bottom) -in the same manner than previously the IES is used to reveal the interferences through its capacitive coupling to the upper arm of the interferometer. It is indeed coupled to the upper arm of the interferometer through the closed loops of the IES.
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 7879 Figure 7.8: Fitting the visibility of the induced signal by the adjacent IES in the upper arm as function of the voltage bias V 1 also yields an estimation of V 0 (appendix B).

Figure 7 .

 7 Figure 7.10.: On all graphs G U transmission through the upper (red curve) and the lower arm (black curve) are figured on the left scale. On the right scale, as function of V G U : (a) The visibility increases with V 0 until localization of the IES where it saturates. (b) Zoom. The visibility remains constant far into the T U = 0.5 plateau. It finally decreases because of detuning as we have checked by seeing the departure of the mean transmission from the optimum value when tuned (Fig. 7.5 (top)).

  the phase difference at energy ε away from the Fermi energy is ϕ(ε) = ε∆L/ v d + ϕ F , where ϕ F = 2πΦ B /Φ 0 is the phase at the Fermi energy. If ∆L = 0, the phase difference depends on the energy of the electrons, and then at finite temperature the broadening of the Fermi distribution blurs the interferences. It is possible that by changing V G U , L U and the drift velocity in the upper arm are affected, 'improving the symmetry' of the interferometer. A change in the surface enclosed by both arms was indeed measured on Fig. 7.1 (right) upon changing V G U . If thermal smearing were responsible for the temperature dependence of the interference visibility, an improvement of the symmetry of the MZI arms would decrease the thermal decay rate T -1T , and the sample being at a finite temperature, the visibility would increase.

Figure 7 . 11 .:

 711 Figure 7.11.: Schematic of the OES path with G U and G D open (left), and with G U and G D pinched (right): the OES is deformed so that the lengths of the upper and lower arm of the interferometer are increased. The IES is not figured.

Figure 7 .

 7 Figure 7.12.: (left) Interferences in the differential transmission of the OES, revealed with G U . As G U is closing, the path of the OES which constitutes the upper arm is deformed and its length changes. The amplitude increases as the IES transmission decreases. Red crosses mark the positions of the fringes. (right) For V G U from 0.3 V to 0.1 V, we manage to reveal N = 257 fringes. The fringe index, hence the variation of the accumulated phase on the upper arm, is not linear with the gate voltage: it accelerates when getting closer to localization of the IES.

7 )

 7 If the drift velocity is the same in both arms and remains constant equal to v d under the action of G U then ϕ = ε∆L/ v d , where ∆L = L U -L D .

Figure 7 . 13 .:

 713 Figure 7.13.: Schematic of the potential landscape in the upper arm. As the red solid lines (isopotential lines) spacing increases, the landscape becomes flatter and the drift velocity decreases. The OES path just before G U pinch-off is figured by the turquoise solid line. The area in dark(lighter) blue corresponds to the surface increase ∆S when pinching G U a little(a lot).∆S increases as one gets closer to pinch-off.

Figure 7 .

 7 Figure 7.14.: (left) Interferences in the OES differential transmission, revealed with G D . As G D is closing, the path of the ES forming the upper arm is deformed and its length changes. Red crosses mark the positions of the fringes. (right) For V G D from 0.23 V to 0.1 V, we manage to reveal N = 90 fringes.

Figure 7 .

 7 Figure 7.15.: (left) Left scale: (black circles) G U characteristic through the upper arm. Right scale: (red full circles) interferences visibility. As the IES transmission decreases, visibility doubles, is stable on the first half of the di t /di 0 = 0.5 plateau, then decreases as detuning becomes significant as seen in the departure of di t /di 0 osc from 0.25 (blue open triangles). (right) Left scale: (black circles) G D characteristic, G1 closed. Right scale: interferences visibility. (red full circles) MZI tuned for G U open, with V G U = 0.1 V. The visibility decreases steadily as G D is closing. (blue full squares) MZI is tuned for V G U = 0.1 V, the visibility increases slightly before decreasing. MZI detuning is seen through (green triangles) 1 st try, and (magneta triangles) 2 nd try. Detuning far stronger in the 1 st try might explain the absence of a visibility maximum.
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 7161 It is then straightfoward to see that the coupling V should be divided by 2 when going from the situation before localization of the IES to the situation after. This is roughly what is observed. However, this is for zero mode excitation of the ES. What about finite wave vectors? Indeed, if the IES is actually confined into small closed loops, there should be a radical change in the spectrum of the excitations of the IES in the upper arm occuring when we reach localization of the IES.

Figure 7 . 16 .:

 716 Figure 7.16.: Schematic of the MZI in the low frequency limit and in the case C C Q . (left) Schematic of the ESs before IES localization. The OES in the upper arm (blue) is coupled to the noisy IES (red) through capacitance C. (right) After localization, the OES is coupled to the counterpropagating OES through the IES loop with two capacitances C in series.
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 33 thermal charge fluctuations in the counter-propagating OES couple to the upper arm through the closed dots of the IES. We have just determined that the coupling is divided by ∼ 2 compared to the situation just before localization of the IES. If the gap estimation is correct, charge fluctuations in the IES for energies below ∼ 26 µeV (T 300 mK) should be frozen because of the opening of a gap in the spectrum of the IES excitations as the IES is localized in small closed loops. This should translate into a radical improvement of the coherence. However the visibility saturates as the coupling is divided by ∼ 2 at localization of the IES.

Figure 7 .

 7 Figure 7.17.: (left) Left scale: G U characteristics. Right scale: semi-log plot of visibility as function of the gate voltage V G U , for different temperatures T ∈ [22 ; 62] mK. (right) Same data as function of the temperature for V G U ∈ [0.09 ; 0.4] V, showing the exponential decay of the visibility. The decay rate T -1 ϕ decreases as the IES transmission T U goes from 1 to 0.

  the non-trivial contribution. A precise estimation of the thermal smearing effective (additive) contribution yields 5 K -1 . On Fig. 7.21 we reported the evolution of the non corrected temperature decay rate T -1 ϕ (ref filled squares), the thermal smearing temperature rate T -1 T , along with the corrected temperature decay rate T -1 ϕ (blue solid line), as function of the gate voltage V G U : the correction is slight, thermal smearing does not contribute much to the temperature decay rate. This is compatible with the conclusion of ¶ 7.3.3 which stated that an improvement of the symmetry of the MZI arms could not explain the spectacular improvement of the zero bias visibility when pinching G U .
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 718 Figure 7.18: Colorplot of the differential transmission as a function of V SG along the x-axis and V 1 along the y-axis. Only the central lobe is shown. For each of these plots for a given value of V G U , the parameter T -1T is extracted from the central lobe bending.

1 T 1 T = 7 ± 5

 1175 7.19: though T -fluctuates a lot, one sees that it globally decreases when G U closes. This decrease is evaluated to be δT -

Figure 7 .

 7 Figure 7.19.: T -1 T (left scale, black line) and fringe index (right scale, green circles) as function of V G U . A mapping yields for v d : (left) 1 and (right) 0.4 × 10 4 m.s -1 (extreme case)

- 1 T= 16 K

 116 3 V, which corresponds to ∆L = π S Φ 0 B × N = 354 nm and v d = 1 × 10 4 m.s -1 (7.12) with T -1 . The 'extreme' mapping of Fig. 7.19 (right) provide us with a lower bound for ∆L and v d : we estimate N min = 350, then (∆L) min = 154 nm and (v d ) min = 0.4 × 10 4 m.s -1 (7.13) Both estimations are compatible with Eq. (7.11) suggesting that the decrease of thermal smearing is indeed caused by an improvement of the symmetry between the MZI arms. However, a large uncertainty comes from the subjectivity of the fitting procedure, and from the relation linking the area and the trajectory length. The relation obtained by assimilating the paths to half circles is approximate: the real trajectory is affected by disorder and the upper gate probably deforms the ES as represented on Fig. 7.11 (right).

) T - 1 Fig. 7 .- 1 0

 171 Fig. 7.21 that the variations of the non-trivial temperature decay rate T -1 ϕ,corr and of the coupling V -1 0 are remarkably similar, strongly suggesting a microscopic connection between these two quantities. Decomposing T -1 ϕ,corr into the temperature decay rate T -1 ϕ,U caused by dephasing in the upper arm, and T -1ϕ,D caused by dephasing in the lower arm, we assume that T -1 ϕ,U is proportional to V -1 0 , in agreement with our previous work[START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF][START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF]. Indeed, when pinching G U , we probably only affect the upper arm of the MZI.

2 1 T

 1 The thermal smearing temperature rate T -is not additive, the thermal smearing contribution is an effective one and has been estimated in section 7.5.2: T -1 T,eff ≈ 5 K -1
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 7201 Figure 7.20: Partition noise experiment. G U is open (V G U = 0.3 V). Semi-logarithmic plot of the visibility as function of the bias voltage V 2 for G 0 at transmission ∼ 0.5 for the IES (the OES being fully transmitted). The visibility decays exponentially with |V 2 | because of the additional partition noise with a rate (4V ϕ ) -1 (4V ϕ = 13.5 µV). In terms of thermal dephasing for the upper arm: T -1 ϕ,U = T -1 ϕ,N /2 = 51 K -1 .
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 721111 Figure 7.21.: Left scale: (black open circles) coupling V -1 0 as function of the gate voltage V G U .

V 2 Figure 7 .

 27 Figure 7.22.: Smart plot of the visibility as function of the bias voltage V 1 . (left) 'Direct' visibility V 1 . The visibility at zero bias V 0 increases, the side lobes broden and the second side lobe decreases in size asG U closes. (right) 'Indirect' visibility V 2 . At V G U = 0.1 V, a zero at -π/2 × V c indicates a multiple side lobes structure, whereas there is no sign of a second side lobe in V 1 . For V G U ∈ [0.1 ; 0.3] V,the increase of V 0 compensates the decrease of the coupling

1 )Figure 7 . 23 .:

 1723 Figure 7.23.: Left scale: colorplot of the normalized visibility as function of the gate voltage V G U on the x-axis, and the bias voltage V 1 on the y-axis. Right scale: V -1 0 as function of V G U .

10 Figure 7 . 25 .:

 10725 Figure 7.25.: Left scale: V c and V 10 as function of V 0 . Right scale: V c /V 10 as function of V 0 . As G U is closing, the central lobe width mainly parametrized by V 10 hardly increases, while the 1 st side lobe width measured by V c increases linearly with V 0 until localization of the IES (V G U = 0.08 V) after which it remains constant.

U 1

 1 (ω)e iωt and ϕ(x, t) = dω 2π ϕ(x, ω)e iωt Since h 1 (x) is constant all along the length of the interferometer L, one obtains by WKB approximation: τ = L/v d is the time of flight through the MZI and L stands for the length of one arm of the interferometer. This last relation allows to relate the phase noise S ϕ (ω) to the

Figure A. 1 :

 1 Figure A.1: Schematic representation of the charge injectivity: we have to consider three sources. We are interested in the charge Q 1 (Q 2 ) in the outer(inner) ES.
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 13 contact n • 3 being the inner ohmic contact connected to the ground on Fig. A.1).The charge distribution in the sample can be expressed through the Fermi-fieldΨ(r, t) = α dε hv α,ε e -iεt/ ψ α (r, ε)â α (ε)which annihilates an electron at point r and time t. âα (ε) is an operator which creates an electron coming from contact n • α, in a state of energy ε, and ψ α (r, ε) is a scattering state describing carriers with energy ε incident from contact n • α, with phase velocity v α,ε .The charge density in the ring at point r and time t is ρ(r, t) = e Ψ † (r, t) Ψ(r, t). Fourier transforming with regard to time and quantum averaging we get ρ(r, ω) = ρ(r, ω) , whereρ(r, ω) = e β,γ dε √ v β,ε v γ,ε+ ω ψ * β (r, ε)ψ γ (r, ε + ω) â † β (ε)â γ (ε + ω)The average charge may be split into an equilibrium part ρ (0) (r, ω) and a contribution due to the external voltage at contact n • α, δρ α (r, ω): ρ(r, ω) = ρ (0) (r, ω) + δρ α (r, ω). When calculating the quantum average of the charge density operator the effect of the external voltage V α (t) is taken into account through the modified distribution function for charge carriers coming in from reservoir α. The distribution for contact n • α to linear order in the applied voltage is:â † α (ε)â α (ε + ω) = δ( ω)f α (ε) + e h V α (ω)F (ε, ω)where V α (ω) is the Fourier component to frequency ω of the voltage V α (t) and F (ε, ω)is defined through F (ε, ω) = (f α (ε) -f α (ε + ω)) / ω.When T 0 = 1 and T 1 = 0.5, the scattering states ψ α (r, ε) in the arms of the interferometer for a constant internal potential are of the formψ 1 (r, ε) = ψ 3 (r, ε) = χ(r ⊥ ) √ 2 exp (ik ε x + iΦ U,1 (x))and ψ 2 (r, ε) = χ(r ⊥ ) exp (ik ε x + iΦ U,2 (x))

  ε+ ω e iωx/vε V 2 (ε)F (ε, ω)δρ 3 (x, ω) = e 2 2h dε √ v 3,ε v 3,ε+ ω e iωx/vε V 3 (ε)F (ε, ω)To find the charge Q e α (ω) induced by the Fourier component of the potential V α (ω) into upper arm of the MZI we integrate over the length of the arm, L U : Q e α (ω) = L U 0 dx δρ α (x, ω).

  Fig. A.2 (a). The

Figure A. 2 .

 2 Figure A.2.: (a) Schematic representation coupled via a geometrical capacitance C. (b) Low frequency equivalent circuit with V 1 set to ground. The two relaxation resistances R Q /2 in series with the coupling capacitance C acount for the non ideality of the two 'gates' (the ESs) forming the capacitor C. The quantum capacitances C Q account for the 1D density of states in the ESs.

  We deduce from the expression the schematic representation of the coupling between the IES and OES Fig. A.2 (b). The OES is composed of a quantum capacitance C Q with a relaxation resistance R Q /2 in series because of the non ideality of the lateral gate (IES). We are interested in the fluctuations of the potential U 1 (ω) as a function of V 2 (ω):
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 401 Finally for the fluctuations ofU 1 (ω), S U 1 U 1 (ω) = |ν(ω) -1 / (2ν(ω) -1 + C -1 )| 2 S 22 (ω) which can be written: |ων(ω)| 2 S U 1 U 1 (ω) = |G 12 (ω)| 2 S 22 (ω). We now consider the case of whitepartition noise S 22 = 2eR Q V 2 T 0 (1 -T 0 ). Using Eq. (A.2) and δϕ 2 = ∞ ϕ (ω) dω/2π, one finds 2 for V ϕ -dω, with I(ω) = ω 2 + ω tan (ωτ /2) -1 + G Q /C 2 -1

2 V ϕ - 1 ≡ 2 B. Fitting the lobe structure B. 1 .

 2121 2 δϕ 2 /T 0 (1 -T 0 ) V Our approachIn this section, we consider the coupling between the IES and the OES, which in a mean field approximation can be simply viewed as a capacitive coupling. The scheme one uses to feed the ESs with different bias is represented in Fig. B.1. The IES is figured in red and the outer interfering ES in blue. The coupling between the IES and the OES was first demonstrated by Neder et al. [97]: the IES was used as a 'which path' detector in the two-path MZI. Here we propose an approach based on a mean field approximation which catches most of the features of the lobe structure when the two ESs are fed with the same bias. Of course a mean field approximation alone does not lead to a lobe structure.

Figure B. 1 :

 1 Figure B.1: Schematic of the MZI with the IES (red) and the OES (blue) fed with distinct bias V 1 and V 2 respectively.

Figure B. 2 .:

 2 Figure B.2.: Interferences revealed with SG (left), with the IES used as a gate (right). V 0 is defined as the periodicity of the oscillations with respect to V 2 . For this particular sample of arm length L = 11.3 µm, V 0 = 45 µV is large because of the upper gate G U which decouples the IES and the OES (chapter 7).

Figure B. 4 .

 4 Figure B.4.: (left) IES and OES are independently biased: the differential transmission as function of the bias voltage V 1 shows lobes with well marked extinctions. Within a lobe the phase of the oscillations as function of the side gate voltage V SG is rigid and undergoes π-jumps at extinction points. (right) IES and OES are biased by the same ohmic contact: we no longer see well defined lobes and the phase is no longer rigid (the data are from a different sample).

Figure B. 5 :Figure B. 8 . 2 Figure B. 9 .:

 5829 Figure B.5: Both ESs are fed with the same bias voltage V 1 . The visibility as function of V 1 shows no lobe structure with well marked extinctions (red dots), but can be fitted by Eq. (B.17) with parameters V 10 = 7.3 µV and V 0 = 45 µV, for a sample of arm length L = 11.3 µm.

3.8.: (left

  ) The n th energy level is full and the n + 1 th is empty (ν = n is an integer). The
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	Hall resistance is quantized: R H = h/νe 2 . (right) As B increases, the Fermi energy decreases
	relatively to the energy levels. The n th level empties progressively into the regions below the
	Fermi level. The quantization of R H holds as long as the number of ESs remains equal to n e.g.
	on a wider range of B than when there is no disorder.	

H

Figure

  , however, it brought new interest to QHE ESs.

	The decay of the interferences visibility with temperature in the MZI in the IQHE regime
	at filling factor two was first studied by Roulleau et al. in [2] and showed a temperature
	scale linear with the interferometer size, of the order of 22 mK for an MZI of arm length
	L = 11.3 µm. From these measurements Roulleau et al. extracted the coherence length
	l ϕ ∝ T -1 of the order of 20 µm at 20 mK (see § 4.3).
	Let me recapitulate the results on finite temperature coherence in the MZI in the IQHE
	regime.

  Fig.5.1 (right) is plotted the differential conductance di t /dv 1 through such a QPC as a function of the voltage V gate applied on its gates. At V gate = 0.5 V the 2DEG underneath the gate is not depleted, both ESs are fully transmitted (di t /dv 1 = 2e 2 /h). When one decreases the voltage applied on the gate, the counter-propagating ESs from opposite edges are brought closer together and the probability for one incoming electron to be reflected in the outgoing ES on the opposite edge by tunneling effect becomes non zero, the differential conductance decreases. First, only the IES is reflected: the intermediate plateau at di t /dv 1 = e 2 /h as function of V gate indicates that the IES is fully reflected while the OES is still fully transmitted. In that case, it means that when one decreases V gate further, one begins to reflect the OES until reaching pinch-off (di t /dv 1 = 0).

	On

5.1 (left) a sketch of the ESs trajectory is represented. Here, the filling factor is two so that there are two ESs: the inner edge state (IES) represented in red and the outer edge state (OES) represented in blue on Fig. 5.1 (left).

. Analysis of the temperature dependence

  For a dot of size L loop ∼ 8 µm, and for a drift velocity:0.4 × 10 4 m.s -1 v d 3 × 10 4 m.s -1 (7.14)the gap E loop = hv d /L loop is estimated to be between:Here I show how the theory developed by Roulleau et al. explains our results. Lets assume that the temperature dephasing rate can be decomposed as follows:

	2 µV ≡ 24 mK E loop 16 µeV ≡ 180 mK	(7.15)
	We cannot really draw any conclusion at this point on whether we do open a gap large
	enough in the IES low energy excitations to freeze them	
	7.5.3	

As said before, the criterion for observation of quantum Hall effect is ω c τ 0 1

In two dimensions resistivity and resistance are homogeneous: I being the current, V L the longitudinal voltage difference, V H the transverse voltage difference or Hall voltage, L the ribbon length and W its width, the current density is j = I/W and the longitudinal electrical field E L = V L /L so that the longitudinal resistivity is ρ xx = R L (W/L), where R L is the longitudinal resistance.

We see that for B ∼ 3 T since T c ∼ 8 × 10 -13 s, we are in the opposite limit T c τ 0 (see tabular 3.2).

Those 'energy levels' can either be spin-split branches of LLs or LLs of a 2DEG with no spin, in both cases with the degeneracy ξ and a gap which depends linearly of the magnetic field.

The essential reason is that one needs to break the translational invariance in the x-direction in order to observe Hall plateaus. Disorder does that[START_REF] Prange | The Quantum Hall effect[END_REF][START_REF] Jackson | Classical Electrodynamics Third Edition[END_REF] 

The factor

comes from the fact that both arms of equal length L of the interferometer contribute equally to dephasing.

This will be explained further in chapter 7.

I will check in ¶ 6.3.4 how energy exchange between ESs can increase the temperature in the neighbouring ES and I will show that it cannot alone explain this behaviour.

Kovrizhin et al. [85,[START_REF] Kovrizhin | Relaxation in driven integer quantum Hall edge states[END_REF] say that the relaxed distriution is actually not a Fermi distribution, and that the procedure used in[START_REF] Sueur | Energy Relaxation in the Integer Quantum Hall Regime[END_REF][START_REF] Altimiras | Nonequilibrium edge-channel spectroscopy in the integer quantum Hall regime[END_REF] to quantified energy exchanges with an effective temperature is ambiguous.

Indeed, this expression does not include any decoherence/dephasing processes!

Here we assume that it is the same in both arms.

We use the lock-in amplifier model 5210, EGG Princeton Applied Research.

We use the low noise preamplifier model LI75A, NF electronic instruments.

The lock-in amplifier realizes an average of the output signal during a time constant τ av , and strongly reduces the bandwidth defined by ∼ 1/τ av and hence the noise.

Coefficients 1/(2V 2 20 ) are extracted directly from the fits, this is why the error bars with respect to the y-axis are smaller than on Fig.6.8 (right).

This behaviour was reported in P. Roulleau PhD thesis manuscript[START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF].

For T 0 ∼ 0.3, we took the same paramaters as the ones used to reproduce the data when taking into account the dependence of T 0 with V 1 and V 2 (see below 'refining').

We recall the fit derivation in ¶ B.1.2.

This non linearity is present for G D with a lower amplitude (see Fig.7.14 (right)).

2π/V 0 ≡ ∂ϕ/∂V

Remerciements

through the upper arm of the interferometer is shifted to a lower magnetic field than the one corresponding to transmission through the lower arm. The electronic density in the upper arm is therefore smaller by 8±2%. This is deduced from the ratio between the upper limit of the resistance plateaus with respect to the magnetic field: B U = 2.60 ± 0.03 T for the upper arm , and B D = 2.82 ± 0.03 T for the lower arm.

Using these curves, we optimized the value of the field so that despite the asymmetry, backscattering was minimum: we chose a field for which the three points resistance through both arms was at its plateau value. Additional backscattering due to G U is visible in the characteristics of G U (Fig. 7.3 (left)): the transition between plateaus happens on a broader range of gate voltage when the current goes in the upper arm (red curve) than when it flows through the lower arm (black curve), probably because of the respective shapes of G U and G D (see explaination below).

We also wanted to obtain interferences with the best contrast possible. This was achieved by setting the magnetic field to B = 2.628 T, which corresponds to the maximum value for which there is no backscattering in the upper arm according to Fig. 7.1 (left).

In the case of a symmetric MZI, experience tells us that maximum coherence length is obtained at the end of the ν = 2 plateau, where coupling between ESs is minimum [START_REF] Roulleau | Noise Dephasing in Edge States of the Integer Quantum Hall Regime[END_REF][START_REF] Roulleau | Etude de la cohérence quantique dans le régime d'effet Hall quantique entier[END_REF].

Here because of the asymmetry, time of flight through each arm is in general different (the electronic densities being different), leading to thermal smearing. In our situation, coherence is influenced by the coupling of the OES to the environment and the symmetry of the MZI, which are both affected by the magnetic field.

Characteristics of the additional gates

Here I will characterize the new gates (see Fig. 7.3). We proceed in the same manner as for the other gates: the injecting QPC G 0 is fully open (V G0 = 0.5 V), we inject current at the ohmic contact n We find that even when the magnetic field is such that transmission is equally good in the upper and lower arms when G U and G D are open, backscattering by G U occurs at

Visibility at finite bias

Energy exchange is shown to be frozen when opening a gap in the IES low energy excitations ( § 4.5) [START_REF] Altimiras | Tuning Energy Relaxation along Quantum Hall Channels[END_REF]. If energy exchanges are responsible for the finite bias visibility decrease, our set-up should strongly modify the robustness of the interferences with regard to the bias.

More precisely, will we observe multiple or single side lobe structures? Will there be a change in the energy scales? How will they depend on V -1 0 ? We are interested in the effect of G U on the lobe structure. We measured, for various values of V G U from 0.3 V to 0.06 V the visibility of the interferences as function of the voltage bias V 1 (Fig. 7.22).

Multiple or simple side lobe structure?

As before, we see an increase of the visibility at zero bias. We also observe a multiple side lobes structure when G U is open, with a second side lobe small in visibility (Fig. 7.22 (left)).

The side lobes are more easily seen in the visibility of the interferences induced by the IES (Fig. 7.22 (right)), because of an amplification effect: the visibility of the interferences induced by the IES is proportional to V 1 . The consequence is that when there is no second side lobe visible in the 'direct' visibility, we can still see it in the 'indirect' visibility. We note V 1 the 'direct' visibility and V 2 the 'indirect' visibility. For a multiple side lobes structure, there are given by the following expressions (see appendix B):

The presence in the 'indirect' visibility V 2 of a zero at a finite value of V 1 followed by a revival of the visibility is a sign of a second side lobe. According to the Eq. (7.20), the

We use this expression to fit V 2 near V 1 ≈ 0 to extract the value of the coupling V -1 0 . We already showed the data obtained using this method on Fig. 7.21.

Transition and lobe width

Eventually, as G U closes, the second side lobe is no longer visible. There might be a transition from a multiple side lobes structure to a single side lobe structure occuring as G U is closing and the IES is being localized, but this is not clear because second side lobes are not very high in visibility. On Fig. 7.22, we remark that the width of the structure in terms of bias voltage V 1 seems to increase as G U is closing.

To investigate this point further, we normalize the visibility of each lobe structure to its visibility at zero bias, and plot it in a two dimensional colorplot, as function of the gate voltage V G U on the x-axis, and as function of the bias voltage V 1 on the y-axis (Fig. 7.23).

We see that the width of the central lobe remains constant whatever the value of V G U , and that indeed the width of the side lobes increases as V G U decreases. It increases from 20 µV to 30 µV until localization of the IES after which it remains constant. (black points). The fits are figured in solid lines. (a)

To better fit the data we also take into account the effect of thermal smearing through the parameter V T (appendix B). 

which yields for the visibilities of the single side lobe structure:

For multiple lobe structures, Eq. (4.12) becomes:

which finally gives:

From these equations, one derives the visibility of the interferences: approach. From these one extracts the fit parameters V c , V 0 and V 10 .

Effect of thermal smearing

In the case where there is an asymmetry between the arms of the MZI, we do not obtain full extinctions in the lobe structure. It is noteworthy that it does not affect the 'indirect' visibility V 2 . This is because the phase of the interferences depends on the energy. One can derive functions that take thermal smearing into account to better fit the visibility V 1 .

For multiple lobe structures, the interference term of the transmitted current is:

where V T = v d /e∆L characterizes the thermal smearing. Then the interfering parts of the differential conductances are given by:

From these equations, one derives the visibility of the interferences:

Now that we have observed and characterized the coupling between the IES and the OES, we are going to treat the case when G0 transmit both ESs. The physics remaining the same, we can guess that the measured current will be the sum of the two terms given by Eqs. (B.4) and (B.5).

Then the visibility is:

which, for a single side lobe structure becomes:

(B.17)

We see indeed, through Eq. (B.15) that the phase is no longer rigid and that the fit given by Eq. (B.17 

B.2. Litvin's approach B.2.1. Visibilities

Following Litvin's approach, voltage bias V 2 on the IES shifts the averaged phase ϕ ϕ because of charging effects:

which yield the interfering parts of the differential conductances:

with V 10 = ε 0 /e. Then the visibilities for the multiple side lobes structure are given by: 

B.2.2. Comparison with our approach

We found in ¶ 4. In practice, our fit for the 'indirect' visibility V 2 works well, in particular beyond the first finite zero ±π/2 V c . We can then conclude that Litvin's fit is not appropriate, which invalidates his approach. It seems then that the 'gaussian averaging' result rather from a mean-field mechanism independent on the energy of the electron as suggestes by our approach with the variance of the phase distribution quadratic with the voltage bias:

B.3. Fits analysis B.3.1. Fit functions

Here I recall the functions used to fit the visibility as funtion of the bias voltage respectively for the single and for the multiple side lobes structures:

B.3.2. Zeros

It is not always possible to fit the data with these functions: the lobe structure is not always symmetric because of resonances in the QPCs, the interferometer can be detuned when the bias voltage is sweeped (cross-talk), the transmissions (for example T 0 ) can depend on the bias, etc... In these situations, one will rather look at the zeros of the visibility, and how they depend on the parameters of the system like the magnetic field, the dilution or the coupling between ES. Next step is seeing how the fit parameters depend on these physical parameters, and maybe finding an explanation for their origin. The choice of the fit function becomes then important, since it determines how the zeros depend on the fit parameters: if we choose Eq. (4.15) to fit the multiple side lobe structure, it is very simple, the zeros are just the zeros of |cos (V 1 /V c )|. In our case, it is not so straightforward, the zeros depend on both V 10 and V c . We must evaluate how exactly the zeros of the visibility depend on these parameters. The zeros position is given by the equation:

which can be written as: when V c /V 10 → 0, the zeros are in principle given by tan (

, however, we never reach this limit: in practice we observe multiple side lobes which correspond to

Now let us see what happens in the domain of V c /V 10 usually accessible, that is to say for V c /V 10 between 1 and 2. For a given V c , we see that the width of the central lobe increases by 50 % when going from V c /V 10 = 2 to V c /V 10 = 1, whereas the first side lobe increases by 23 %.

How do these energy scales depend on the other parameters of the experiment like, the magnetic field? In the following, we study how these zeros vary with V 1 and V 2 as function of the parameters T 0 and V 10 .

B.3.3. Dependence on the dilution

The zeros are determined by the following equation:

This is a conic section in the x -y plane of equation:

. We do the usual transformations to make this equation more explicit: we rotate the coordinate system by an angle θ so that the term in xy vanishes in the new sytem (new coordinates x and y , see Fig. B.9). This is achieved with:

and correlatively:

Fitting the lobe structure For large values of V c /V 10 (∼ 2), the multiple side lobes fit much resembles the one of the single side lobe. Multiple lobes become visible for V c /V 10 ≤ 1.5. When the blue dashed line is crossed (for V c /V 10 < π/2), side lobes reach visibilities larger than 1. In practice, only multiple side lobes for V c /V 10 ≥ 1 are observed.

After a few trigonometry tricks, we obtain the equation of an hyperbola:

x -x off a In the rotated coordinate system, the asymptots of the hyperbola make an angle ±ϕ with the x absciss axis:

The asymptots only depend on T 0 (opening between branchs and rotation angle)

The apex a depends on V 10 and T 0 . It gives the central lobe width.

Analysis as function of T 0

If we study more precisely the evolution of the hyperbola as function of T 0 according to this empirical fit, we see that as