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Abstract

The main subject of this thesis is the physics of spin glasses. Spin-glass models have been introduced in
the 70s in order to describe the behavior of dilute magnetic alloys. Afterwards it has been discovered that some
spin-glass models could be considered prototype models to understand the behavior of supercooled liquids.
More recently, a close analogy between combinatorial optimization problems and the physics of spin glasses
allowed to establish fruitful links between the two domains.

In the first part of this thesis we present the results of the study of Kac-glass models in sandwich geometry.
One of the main debated problems in the physics of supercooled liquids is the existence of static correlation
functions which present a peculiar behavior near the glass transition. Recently, the so called point-to-set corre-
lation functions have been introduced. These correlation functions are be able to detect the amorphous order
near the glass transition, which standard point-to-point correlations functions are completely blind. Quite
interestingly, in the framework of Kac-glass models, it is possible to analytically calculate these functions,
introduced in spherical geometry. Motivated by some recent numerical experiments which measured the en-
ergy of ”amorphous domain walls” between metastable states, we considered Kac-glass models in ”sandwich”
geometry. This allowed us to test if point-to-set correlation functions are sensitive to the geometry of the
system and to characterize the energy needed to put different metastable states in contact with each other.

In the second part of this thesis we study the problem of fluctuations of the pseudo-critical temperature
due to the disorder in some spin-glass models. The distribution of the pseudo-critical point and its scaling
properties in finite-size disordered systems are highly debated issues which have attracted the attention of
physicists since the very first works by Harris. In a first work, we have investigated the finite-size behavior
of the Sherrington–Kirkpatrick (SK) model via a full analysis of the Plefka expansion. We have introduced
a definition of finite-size pseudo-critical temperature and showed that its fluctuations are described by the
Tracy–Widom (TW) distribution. The TW distribution, which describes the fluctuations of the largest eigen-
value of a Gaussian random matrix, describes also the fluctuations of observables of a broad number of physical
and mathematical models, like directed polymers in disordered media and growth problems. To our knowledge,
this is the first time that this ubiquitous distribution is found in connection with the fluctuations of a physical
observable in spin-glass models. In order to have a better understanding of this subject, in a subsequent work,
we have investigated the SK model and the Edward–Anderson (EA) model via numerical simulations. We
have introduced a suitably defined pseudo-critical temperature, which can be measured via numerical simu-
lations, and studied its fluctuations due to disorder. We have found that for the SK model the fluctuations
are described by the TW distribution and for the EA model by the Gumbel distribution. This result shows a
strong link between the field of Extreme Value Statistics and the physics of spin glasses.

In the third part of this thesis, we show how typical tools of physics of disordered systems and combinatorial
optimization can be used to investigate problems in other domains, like financial problems. In finance, the
estimation of the robustness of a financial network to shocks and crashes is a topic of paramount importance in
assessing the stability of an economic system. The banking system is thought to be a fundamental channel in
the propagation of shocks to the entire economy: the economic distress of an insolvent bank can be transmitted
to its creditors by interbank linkages, thus a shock can easily propagate to the whole network. Unfortunately,
detailed data on banks bilateral exposures are not always available and the reconstruction of bilateral exposures
from incomplete data sets becomes a central issue for the estimation of risk. A commonly used tool for this
task is the so-called entropy maximization method, which does not assume any heterogeneity in the structure
of the network. This assumption leads to an underestimation of the extent of contagion. We introduce a
message-passing algorithm to overcome this limitation and to sample the space of possible structures for
the network. We test our algorithm on ensembles of synthetic data encoding some features of real financial
networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally
we find that this algorithm can be used to control the amount of information regulators need to require from
banks in order to efficiently constrain the reconstruction of the network.
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Introduction

Incipit

Tous les problèmes de géométrie se peuvent facilement réduire à tels termes, qu’il
n’est besoin par après que de connôıtre la longueur de quelques lignes droites pour
les construire.

René Descartes
La géométrie, 1637

The incipit of this manuscript is also the incipit of “La géométrie” by René Descartes, one
of the most important oeuvres in the history of mathematical literature. A long historical
tradition identifies with the oeuvres of Descartes (and Fermat) the beginning of “analyti-
cal geometry” [1]. The adjective “analytical” refers to the classical subject of mathematical
analysis done in algebraic terms. In the second book of “La géométrie”, Descartes lays the
groundwork of the analytical approach to Euclidean geometry.

“La méthode” by Descartes sheds some light on how the human knowledge evolves and
grows. The capability of overcoming barriers between different and apparently unconnected
scientific domains allows to transfer languages and methods from one discipline to another.
These different languages and methods can then merge and proliferate, with a general benefit
for various disciplines.

Evidently, statistical mechanics itself, the main subject of the present manuscript, is a
product of this process of evolution of human knowledge, that, in some sense, can be consid-
ered a paraphrase of the contaminatio of Latin poetry.

If in the last centuries contaminatio typically took place between disciplines in the same
scientific domain, in the last years we have witnessed a spill over of physics to other scientific
fields. In recent times, physicists, and in particular statistical physicists, have focused their
attention on problems coming from biology, engineering, computer science and finance.

Statistical mechanics of disordered systems in general, and spin-glass theory in particular,
were very precocious scientific disciplines in this sense. In 1988, Philip Anderson wrote in the
columns of Physics Today [2]:

The history of spin glass may be the best example I know of the dictum that a
real scientific mystery is worth pursuing to the ends of the Earth for it’s own sake,
independently of any obvious practical importance or intellectual glamour. (...)
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The pursuit of the spin glass mystery led, inter alia and aside from all the good
solid-state physics that resulted, to new algorithms for computer optimization, a
new statistical mechanics, a new view of protein structure, a new view of evolution
and new ideas in neurosciences.

The approach to the works presented in this manuscript wants to be in the lines of
Descartes and Anderson method, drawing from a pool of ideas and methods coming from
physics and beyond. Ideas from Spin-Glass Theory are used to study the supercooled liquid
phase of glass-forming liquids. The ubiquitous results of Random Matrix Theory in connection
with Extreme Value Statistics Theory allow to investigate some features of Spin-Glass models.
Finally, from the fruitful interaction of Spin-Glass Theory and Computer Science, we put
forward a new algorithm of immediate application in Financial problems. In figure 1 we show
how the process of contaminatio between the cited topics was strictly interconnected in past
literature.

Figure 1: A pictorial representation of the subjects touched in this manuscript. SGT stand for
Spin-Glass Theory, RMT for Random Matrix Theory and EVST for Extreme Value Statistics
Theory. The direction of the arrows identifies the direction of a contaminatio between two
topics in literature.

Let us give a short overview of the history and the theory of spin-glass models, the common
background of the present work.

Brief historical overview

Spin-Glass models have been systematically studied since the pioneering work of Samuel Ed-
ward and Philip Anderson published in 1975 [3]. The purpose was to introduce a model for
the description of a class of dilute magnetic alloys, which, some years before, acquired the
name of spin glasses. In the same year, David Sherrington and Scott Kirkpatrick [4] applied
the ideas introduced by Edward and Anderson to a model, which allowed an exact mean-field
approach. They concluded that this approach was ill-defined as it led to a solution with neg-
ative entropy. In a suite of inspired papers [5, 6], Giorgio Parisi introduced the so-called full
Replica Symmetry Breaking (fRSB) scheme for mean-field spin-glass models, which allowed
to solve the negative-entropy conundrum and to understand physical properties of the spin-
glass phase. The classical reference which gives a unified view on the first period of spin-glass
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history is the book of Mezard, Parisi and Virasoro [7].

Since in the eighties the solution of the Sherrington and Kirkpatrick (SK) model was still
an open and debated question, some physicists tried to introduce simpler spin-glass models
which shared the same features of the SK model. In 1981, Bernard Derrida introduced the
Random Energy Model [8] and in 1984 the p-spin model, a generalization of the SK model,
was studied in detail by David Gross and Marc Mezard [9]. For these models, a 1-step Replica
Symmetric Breaking (1RSB) scheme was shown to be correct. This allowed to classify spin-
glass models in two main categories, depending on the correct Replica Symmetric Breaking
scheme to solve the model: 1RSB or fRSB. In 1987 Theodore Kirkpatrick and Peter Wolynes
noticed a close analogy between the phenomenology of 1RSB models and the one of glass-
forming liquids and structural glasses [10]. In the following years, in a remarkable series of
papers [11, 12, 13, 14], Kirkpatrick, Thirumalai and Wolynes reached a deep understanding
of this class of spin-glass models and its connections with structural glasses, and proposed
the spin-glass inspired “Random First Order Transition” theory of the glass transition.

After the initial successful application of spin-glass models to the study of magnetic alloys
and glass forming liquids, in recent years many physical systems have been described using
methods and ideas borrowed from spin-glass physics. Let us just mention some of them:

• Colloidal dispersions [15]

• Quantum glasses [16]

• Random lasers [17]

• Granular materials [18]

• Biological systems [19]

Among the systems that can be described and analyzed using the language of disordered
systems, there are problems of combinatorial optimization [20]. It has been observed that
some algorithms used to solve problems of combinatorial optimization display an easy-hard
transition. The presence of such a transition suggested that they should be studied with
the typical tools of phase transitions in statistical mechanics. There has been an upsurge of
interest in studying combinatorial optimization problems from a statistical physics point of
view, both for theoretical analysis [21] and for algorithmic developments [22, 23]. Conversely,
some very clever optimization algorithms are adopted by physicists in their studies of ground
states of disordered systems [24].

Overview on Spin-Glass Theory

The mathematical model introduced by Edward and Anderson (EA) in [3] in order to describe
spin-glasses behaviour can be considered the simplest generalization of the widely studied
Ising model describing ferromagnets. The basic degrees of freedom are Ising spins Si ∈
{−1,+ 1} sitting on the vertices of a cubic regular graph in d dimensions. The Hamiltonian
reads:

H[S,J ] = −
∑

(ij)

JijSiSj +B
∑

i

Si , (1)

where
∑

(ij) means the sum over each edge of the graph. The coupling constants Jij can be
both ferromagnetic and anti-ferromagnetic, i.e. they can be gaussian random variables. Main
features of this model, shared also by other spin-glass models, are:
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• disorder : the disorder is incorporated in the Hamiltionian of the model by means of
random couplings J , which are considered quenched. The value of a generic observable
O(J) depends on the realization of the disorder J . One can show that observables which
are intensive quantities are self-averaging. This means that in the thermodynamic limit
– the system size which goes to infinity – the distribution of the observable O(J) is a
delta function centered in O(J), where · · · means the average over the distribution of
the disorder J .

• frustration: frustration in spin-glass models was firstly pointed out by Gerard Toulouse
in [25]. The geometrical frustration is due to the fact that bonds between interacting
spins can be negative. When trying to minimize the energy of a configuration, not all
the spins can be “satisfied”, then some of them are “frustrated”.

The EA model is, nowadays, poorly understood: an analytical solution is still missing and
the existence of a finite-temperature phase transition relies entirely on numerical simulations
[26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. On the other hand, much more insight
has been reached for the SK model. The Hamiltonian of the SK model is the same of the
EA model, but the underlying graph is a complete graph: no notion of space is present. For
this model a mean-field approach is expected to be correct. Already in the original work
[4], it has been shown that the SK model exhibits a finite-temperature phase transition from
an high-temperature paramagnetic phase to a low-temperature spin-glass phase. In simple
terms, with “spin-glass phase” we mean a phase in which a magnetic order is present, but the
order is not ferromagnetic. In the following, will try to be more precise and understand how
it is possible to characterize a spin-glass phase transition.

Before considering disordered models, let us briefly analyze the ferromagnetic Ising model,
the simplest mathematical model to describe magnetic materials. The definition of the Ising
model is the same as the EA model. The only difference is that the couplings are positive
uniform numbers: Jij = J > 0. For B = 0, in the thermodynamic limit, for d ≥ 2,
the Ising model undergoes a paramagnetic-ferromagnetic phase transition at a finite critical
temperature Tc. The order parameter of the phase transition is the magnetization:

mi,±(T ) = lim
B→0±

lim
N→∞

〈Si〉 (2)

where 〈· · · 〉 means the average over the Boltzmann measure at temperature T . For T > Tc,
m±(T ) = 0: the system is in the paramagnetic phase. For T < Tc, mi,±(T ) = ±M(T ): the
system is the ferromagnetic phase. A phase transition can also be characterized by dynamical
properties. Suppose that at time t = 0 the system is at equilibrium: we choose a reference
configuration S(0) drawn with Boltzmann weight. We average Si(t) over a dynamics which
respects the detailed balance starting from the reference configuration S(0):

mi,S(0) = lim
t→∞

lim
N→∞

〈Si(t)〉S(0) . (3)

In the low-temperature phase, T < Tc, we obtain that mi,S(0) = ±M(T ), depending on the
initial configuration S(0): ergodicity is broken. A phase transition can also be identified via
the peculiar behaviour of some physical observables: a discontinuity or a divergence. The
ferromagnetic susceptibility – which measures the rate of change of the average magnetization
with respect to an infinitesimal uniform change of the external field – is divergent in all the
ferromagnetic phase.

We can conclude that in the ferromagnetic phase the system can be found in two quasi-
states that can be identified by the external magnetic field, at the level of thermodynamics,
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or by the initial condition, at the level of dynamics. We see that the two quasi-states are
invariant under translation and connected by the Z2 symmetry. Turning to the case under
consideration, if a model presents a phase where the quasi-states are neither invariant under
translation nor connected by any simple symmetry, we say that the system is in the spin-glass
phase.

We have already pointed out that the SK model exhibits a low-temperature spin-glass
phase. In contrast to the ferromagnetic case, the spin-glass phase is much more difficult
to characterize. Thouless, Anderson and Palmer [40] firstly discovered that the number of
quasi-states in the low-temperature phase is exponential. Given the presence of the disorder
it is also impossible to detect quasi-states via a uniform magnetic field. A long debate on
what is the correct order parameter of the spin-glass transition took place within the spin-
glass community. To cut a long story short, Parisi discovered that the order parameter of the
spin-glass transition is the overlap distribution [7]. Given a realization of the disorder, one
can sample two independent spin configurations S1 and S2 with the associated Boltzmann
weight and measure the overlap between the two configurations: q12 = 1/N

∑
i S

1
i S

2
i . For

a given realization of the disorder J , we denote the overlap distribution with PJ(q). The
order parameter of the spin-glass transition is the overlap distribution P (q): the infinite-size
limit of PJ(q) averaged over the disorder distribution . The second moment of the overlap
distribution is related to the spin-glass susceptibility χSG:

∫
P (q)q2dq −

[∫
P (q)qdq

]2

=
1

N
χSG (4)

In the paramagnetic phase, P (q) is a delta function centered in 0, while in the spin-glass
phase it acquires a non-trivial structure. Spin-glass models can be classified in two categories
depending on the behaviour of P (q) in the low-temperature phase:

• continuous: spin-glass models for which a fRSB scheme is correct belong to this class,
e.g. the SK model. Below Tc, P (q) has support in [qmin(T ), qmax(T )]. P (q) is a positive
function in the support and displays two deltas at the extremes. The support shrinks
continuously to a point for T → T−c . The spin-glass susceptibility diverges in the
spin-glass phase.

• discontinuous: spin-glass models for which a 1RSB scheme is correct belong to this
class, e.g. the p-spin model with p > 2. Below Tc, P (q) is composed of two delta picks
at q0(T ) and q1(T ).

Outline of the thesis

The purpose of the present work is to present new analytical and numerical results regarding
the following three topics:

Kac spin-glass models in sandwich geometry

Fully-connected spin-glass models in the 1RSB class have been the starting point for
the construction of RFOT theory for glass-forming liquids. Fully-connected models are
plagued by the unphysical infinite-range nature of the interactions. Finite dimensional
spin-glass models in the Kac limit have been introduced in order to take into account in a
tractable way the finite range of interactions of glass-forming liquids. On the other hand,
the recently-introduced point-to-set correlation functions are a correct framework to
identify the static amorphous order developing in glass-formers near the glass transition.
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In chapter 2, we extend the approach of Franz and Montanari, originally introduced to
calculate point-to-set correlation functions in spherical geometry in Kac-glass models,
to a different geometry, the so-called sandwich-geometry. This will allow us to measure
the energy cost and the surface tension to put different metastable states in contact,
one of the main ingredients of RFOT theory. Our results have been published in [41].

Fluctuations of the pseudo-critical temperature in spin-glass models

The non-analytic behaviour of thermodynamic functions characterizes a phase tran-
sition in infinite-size systems. In finite-size systems the divergences of physical ob-
servables, that would result from such a non-analytical behaviour, are suppressed and
replaced by smooth maxima, which allows one to identify a pseudo-critical point. In
disordered systems, the pseudo-critical point is a random variable depending on the re-
alization of the disorder. In chapter 4 and 5, we present our approaches to characterize
the probability distribution of the pseudo-critical point in some spin-glass models: the
SK model and the EA model. We will show the important role played by Extreme Value
Statistics theory in this characterization. Our results have been published in [42, 43].

Interdisciplinary applications

The correct evaluation of risk is a central topic in finance. Different kinds of risk can be
identified. Recent financial crisis points out the importance of systemic risk in financial
systems. We say that a financial system is affected by systemic risk, if the failure of
a single institution can easily provoke a chain of bad economic consequences – some-
times referred to as a domino effect. The banking system is considered a fundamental
framework in which financial contagion can take place. Institutions are often left with
the problem of assessing the stability of financial systems by incomplete information
sets, e.g. incomplete informations of interbank liabilities. In chapter 7 we introduce a
message-passing algorithm for the reconstruction of financial networks from incomplete
informations in order to obtain a correct evaluation of systemic risk. Our results have
been presented in [44].
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Chapter 1
The glass transition

It is customary, when one is about to write about glasses, to cite what Philip Anderson wrote
in the columns of Science in 1995 [45] :

The deepest and most interesting unsolved problem in solid state theory is prob-
ably the theory of the nature of glass and the glass transition.

And in fact, nowadays, a satisfying ”theory of the nature of glass” is still missing.

In this chapter we will provide an introduction to what is the ”nature of glass” and to
the ”glass transition” [46]. Different approaches have been proposed in the last years in order
to formulate a ”theory of the nature of glass”, see [47, 48] for recent reviews. In our intro-
duction we will focus on the so-called Random First Order Transition (RFOT) Theory [49].
We present some recent developments, namely the introduction of point-to-set correlation
functions, which allow to introduce a protocol to measure the elusive amorphous static order
in glasses.

Statistical physics of disordered system gave a large contribution to the comprehension
of the nature of glasses, providing paradigmatic models that exhibited surprising common
features with the phenomenology of glasses. We will introduce Kac-glass models, i.e. finite-
range spin-glass models that can be solved in the Kac limit. Within this framework it has been
possible to define and calculate point-to-set correlation functions, showing that a point-to-set
correlation length diverges at a finite critical temperature [50].

1.1 Phenomenology of the glass transition

1.1.1 What is a glass?

Before trying to answer this question, let us answer a simpler question: what is a crystal? If
a liquid is frozen below its melting temperature Tm, it can nucleate and undergo a first order
phase transition towards a symmetry-broken state characterized by a periodic arrangement
of the particles: it becomes a crystal. A crystal is a solid: it does not flow when subject to
an infinitesimal stress and, more formally, its static shear modulus is non zero (see [51] for
an interesting discussion).

Let us now come back to the previous question. If we cool a liquid below its melting
temperature in such a way that it cannot nucleate to the crystalline phase, we obtain a
supercooled liquid. The supercooled liquid just below the the melting temperature is in a
metastable state – the true ground state is crystalline – but it can be considered in a sort of
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”local” equilibrium, since equilibrium theorems still hold. If we continue cooling the super-
cooled liquid, we would observe an impressive increase of the viscosity of the liquid until we
reach a certain temperature Tg, called the glass-transition temperature, at which the system
falls out of equilibrium. At this temperature the liquid does not flow any more since equili-
bration times are longer than experimental times: the liquid has become a glass. A glass is a
solid: like a crystal, it does not flow when subject to infinitesimal stress. Contrary to the crys-
tal, a glass has the same symmetries of a liquid. We can say that a glass is an amorphous solid.

Let us remark that the definition of glass-transition temperature is only conventional and
anthropocentric. Tg is defined as the temperature at which the viscosity of the liquid is
equal to 1013 Poise: it becomes too viscous to reach equilibrium in ”human experimentally
accessible” time scales. It is clear that the glass transition has a dynamical characterization.
On the other hand, typical thermodynamic observables does not present any peculiarity
approaching Tg – except the entropy, as we will see in few lines. This begs the question:
from the point of view of statistical mechanics, shall we be interested to a ”transition” which
is clearly not a thermodynamic transition? The answer is yes, since – as we will see in the
following – the glass transition can be the precursor of an ideal glass transition, characterized
by thermodynamical signatures that the usual thermodynamic phase transition are not able
to describe.

1.1.2 The ideal glass transition

Even tough it is not possible to perform equilibrium measures in the glass phase, T < Tg,
also called in the literature deep supercooled phase, it could be interesting to perform ex-
trapolations. Let us give two examples.

Entropy crisis: In 1948 [52], Kauzmann performed some extrapolations of the excess
entropy – the difference between the entropy of the supercooled liquid and the entropy
of the crystal – in the deep supercooled phase. A plot is shown in figure 1.1 (left). We
remark that, for some systems, the extrapolated excess entropy seems to vanish at a
finite temperature TK , named Kauzmann temperature.

Relaxation time: The impressive increase of the relaxation time – or of the viscosity –
of liquids in the supercooled phase is vividly shown in the so-called ”Angell plot” [53],
figure 1.1 (right). Approaching Tg, the relaxation time increases up to 14 decades in
a narrow range of temperatures. A qualitative classification in ”Strong” and ”Frag-
ile” glass-forming can be made on the how the viscosity changes as a function of the
temperature – see figure 1.1 (right). A good fit of the relaxation time is given by the
Vogel-Fulcher-Tamman law [54, 55, 56]:

τR(T ) = τ0 exp

(
DT0

T − T0

)
. (1.1)

This functional form, which dates from the twenties, allows to interpolate between
strong – T0 ∼ 0 – and fragile – T0 > 0 – behaviour. Let us stress that, once again, the
temperature T0 must be extrapolated from data.

It is quite interesting that in most systems the quantitative relation TK ∼ T0 is valid. If
this equality holds, some kind of phase transition should take place at T0 ∼ TK . This phase
transition should be characterized by a dynamic – a diverging relaxation time – and by a
thermodynamic signature – the vanishing of the excess entropy causes a downward jump of
the specific heat. This thermodynamic phase transition at TK = T0, usually called in the
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Figure 1.1: Left: temperature dependence of the entropy difference between several super-
cooled liquids and their stable crystals at atmospheric pressure. ∆Sm is the melting entropy
and Tm is the melting temperature. The figure is taken from [46] and adapted from [52].
Right: representation of liquid viscosities showing Angell’s strong-fragile pattern. The figure
is taken from [46] and adapted from [57, 58].

literature ideal glass transition, can then be responsible of the phenomenology that we see
at the accessible temperatures. As said before, the glass ”transition” at Tg becomes only a
precursor of the real ideal glass transition at TK .

1.1.3 The Goldstein scenario

One of the most appealing theoretical frameworks which tries to describe the behaviour of
supercooled liquids was introduced by Goldstein [59] forty years ago. The paradigm of Gold-
stein scenario is that the slow dynamics of supercooled liquids can be understood in terms of
the topology of the energy landscape of the system. This should be characterized by a global
minimum – corresponding to the crystal – and by local amorphous minima. Below Tg, the
system evolves in the phase space through activated jumps between different amorphous min-
ima, separated by potential energy barriers. In the real space, the potential energy barriers
correspond to the local rearrangements of particles. Let us stress that the idea of describing
the slowing dynamics of a system in terms of a corrugated energy – or free-energy – landscape
provides a quite general framework to describe observed behaviours in liquids and glasses but
also in other scientific domains. Some years later, it was found that this feature is also shared
by some mean-field spin-glass models.

The entropy crisis phenomenon presented above has a clear description in the Goldstein
scenario. We can hypothesize that the entropy of an equilibrium liquid SL can be split in two
parts: a vibrational contribution corresponding to the intra-minimum short-time vibrational
dynamics Svib, and a configurational contribution given by the large number N of different
amorphous minima Sconf = 1/N logN . On the other hand the entropy of the crystal can have
only a vibrational contribution. If we assume that the vibrational contribution to the entropy
of the liquid and of the crystal are the same, we obtain that the excess entropy measured in
Kautzmann experiment is the configurational entropy of the supercooled liquid. According
to this scenario, lowering the temperature, the number of amorphous minima decreases. We
can think that the slow dynamics of supercooled liquids is due to the difficulty of the system
to jump between the decreasing number of amorphous minima. If at TK the excess entropy
vanishes, at the ideal-glass-transition temperature the number of thermodynamic amorphous
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minima becomes sub-exponential. The system remains trapped within one of these minima
and the ergodicity is broken.

Let us now consider the behaviour of the viscosity of fragile glass formers. The viscosity
change as a function of the temperature follows a super-Arrenius law: the energy barriers
between amorphous minima grow as temperature is decreased. As stressed before, the energy
barriers correspond to local rearrangement of particles. Therefore, it is natural to think that
when barriers increase, it is because the number of particles involved in the rearrangement
increases: an amorphous order propagates into the glass former when the temperature is
lowered.

1.1.4 What is missing?

We ended the last paragraph saying that an amorphous order should propagate into the su-
percooled liquid when the temperature is lowered. This is quite natural, since an increasing
relaxation time is in general accompanied by an extension of the cooperative regions. The
finding of a static correlation function displaying an increasing correlation length approaching
the glass transition should be a strong hint that the ideal glass transition is a correct picture
of the behaviour of glass forming liquids. Despite several years of researches in the field,
the existence of a diverging static correlation length is still an open question. Simple static
correlation functions are featureless in the supercooled regime, notwithstanding the dramatic
changes in the dynamics. The static structure of the particles in a supercooled liquid close
to Tg, and even in a out-of equilibrium glass former below Tg, is indistinguishable from that
of a liquid at temperatures well above Tg. In order to detect increasing lengthscales two
possibilities have been pursued.

Firstly, it has been observed that the dynamics of glass-froming liquids is very heteroge-
neous [60]. The heterogeneity in the dynamic can be quantified by multi-point correlation
functions allowed to detect growing dynamic correlation lengths [61, 62, 63, 64]. On the other
hand, a possibility is to look for a static growing lengthscale using nonstandard thermody-
namic methods. Recent analytical [65] and numerical [66] results suggest that point-to-set,
instead of usual point-to-point, correlation functions must be considered in order to detect
the amorphous order in supercooled liquids.

1.2 Some theoretical framework

We concluded the last section with the claim that point-to-set correlation functions can be a
correct thermodynamic tool to detect the amorphous order propagating in supercooled liquids
approaching the glass transition. In order to justify this statement, in this section we present
some theoretical frameworks to the glass transition that have been introduced in the past.
We firstly present the p-spin model [9], a spin-glass model in the 1RSB class, presenting some
interesting analogies with the phenomenology of the glass transition presented in previous
sections. Inspired by the phenomenology of 1RSB models [11, 12, 13], Kirkpatrick, Thirumalai
and Wolynes [67, 14] proposed the Random First Order Transition (RFOT) theory of the glass
transition. Recently RFOT has been rephrased in a thermodynamical framework by Biroli
and Bouchaud [68], allowing to introduce a protocol to detect amorphous order in supercooled
liquids, and than to the introduction of point-to-set correlation functions.
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1.2.1 1RSB spin-glass models

The Random Energy Model [8], the p-spin model [9] and the q-states Potts glass model [69]
belong to the universality class of 1RSB spin-glass models. In the following we will consider
the spherical p-spin model, see [70] for a pedagogical introduction. The simplicity of this
model allows to study analytically its features. The Hamiltonian reads:

H[J,S] = −
∑

i1<i2<···<ip
Ji1i2...ipSi1Si2 · · ·Sip p ≥ 3 (1.2)

where the spins are real continuous variables. In order to keep the energy finite, we have
to impose a constraint on the spins

∑N
i Si = N . The couplings are Gaussian independent

random variables with variance p!/(2Np−1). The study of the thermodynamics of the p-spin
model allows to identify a critical temperature Ts. In order to correctly calculate the free
energy of the model for T ≤ Ts, a one-step replica-symmetric ansatz must be used. On the
other hand, the study of the dynamics allows to identify a second critical temperature Td > Ts
where ergodicity breaking takes place. Quite remarkably, the thermodynamic is completely
blind to this purely dynamic transition.

The physical features of this model become particularly transparent in terms of the
Thouless-Anderson-Palmer (TAP) approach [40]. This approach can be considered as a gen-
eralization of the Curie-Weiss approach to study ordered magnets. In both approaches a
free-energy function is constructed as a function of an order parameter. The minima of the
free energy are identified with the states of the system. In the case of ordered ferromagnets,
we consider a global order parameter: the magnetization. Two regimes can be identified in
function of the temperature: an high temperature regime, where the only minimum of the
free energy is the paramagnetic minimum, and low temperature regime, where two ferro-
magnetic minima appear. In the case of disordered system, a local order parameter must be
considered, i.e. the local magnetization. We will not enter here in the details of the deriva-
tion of the TAP free energy since more attention will be devoted in chapter 3 for the SK model.

Once the TAP free energy function is calculated, we can investigate its shape as a function
of the temperature. Like for ferromagnetic systems, the high temperature phase is charac-
terized by the only paramagnetic minimum. At low enough temperature, the free energy
presents a corrugated landscape characterized by the presence of many amorphous minima.
We introduce the complexity, i.e. the equivalent of the configurational entropy in the case
of glass-forming liquids, sc(T,f) = 1

N logN (T,f) which counts the number N of minima of
the free energy function of temperature T at given free energy f . This allows to write the
partition function of the system as:

Z(T ) =

∫
df exp

[
−Nf
T

+Nsc(T,f)

]
. (1.3)

For large N we can evaluate the integral using the saddle-point approximation:

Z(T ) = exp [−Nβ(f∗(T )− Tsc(f∗(T ),T ))] ≡ exp[−Nβf̂(T )] (1.4)

The value f∗(T ) which dominates the integral must verify the equation

∂sc(T,f)

∂f


f∗

=
1

T
(1.5)

and f∗ is a function of the temperature T . Let us consider the behaviour of the complexity –
the number of metastable states – as a function of the temperature. In this range T ∈ [Ts, Td]



22 The glass transition

the complexity is an increasing function, which vanishes at Ts and jumps discontinuously
to zero at Td. For temperatures T > Td the only minimum of the TAP free energy is the
paramagnetic minimum, while for T < Ts the number of minima is sub-exponential. If we
consider the behaviour of the free energy, we notice that in the region T ∈ [Ts, Td] the free en-
ergy of the system f̂(T ) is lower than the free energy f∗(T ) of the metastable maxima which
dominates the integral (1.3). For T > Td the free energy of the system must be evaluated in
the paramagnetic minimum: let’s say fp(T ). What happens at Td? Quite remarkably, at Td,

f̂(T ) and fp(T ) perfectly match: the free energy is not singular at the dynamical transition.
On the other hand, at Ts a true thermodynamic transition takes place: since the complexity
vanishes, the specific heat makes a jump downward.

The phenomenology of the p-spin model, and in general of 1RSB models, presents some
interesting analogy with the phenomenology of structural glasses. The presence of metastable
states slowing the dynamics – remarkably, the dynamical equation for the p-spin model and
the ones for the Mode Coupling Theory [71], the analytical theory of liquids, are formally
the same – and the entropy crisis at low temperature are common features of these two so
different classes of systems. Some artificial features plague mean-field 1RSB models, that one
can try to fix in order to have models closer to reality:

• The long range nature of interactions: in real systems only nearest-neighbors interact.

• The presence of quenched disorder: glass formers are liquids, the frozen disorder is an
artifact of spin glasses.

• The absence of crystalline phase: which is always present in glass formers.

1.2.2 Random First Order Transition Theory

In this section we will present how it is possible to construct a theory for finite-dimensional
glassy systems inspired by the physics of 1RSB spin-glass models [11, 12, 13]. The original
works date back to the eighties, when Kirkpatrick, Thirumalai and Wolynes formulated the
Random First Order Transition (RFOT) Theory. In [14], a real space thermodynamic de-
scription of metastable states in supercooled liquids was introduced, partly inspired by the
p-spin results. The main assumption of RFOT is that different physical portions of a finite-
dimensional glass former can be found in different states. Let us suppose that metastable
states present a phenomenology close to the 1RSB presented in the previous section. The
system is at equilibrium, which implies that every state has the same free energy f∗. In order
to keep different metastable states in contact, the system must present interfaces separating
different states and thus pay a free-energy cost. One of the main points of RFOT is to char-
acterize the typical length scale ξ of metastable states. Let us suppose that the system is
found in a metastable state α and that a different metastable state, γ, tries to nucleate in
a region of size R. In that case, the system should pay a free-energy cost due to the new
surface created:

∆Fcost = Y (T )Rθ (1.6)

where θ ≤ d − 1 and Y (T ) is a surface tension. On the other hand, being the system at
equilibrium, the new metastable state γ has the same free energy than α. The thermodynamic
drive to rearrange a region of radius R is provided by the fact that such a region has an
exponentially large number of available states. The system has a free-energy entropic gain:

∆Fgain = −Tsc(T )Rd . (1.7)
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The balance of entropic gain and surface cost balance at a length scale

ξ =

(
Y (T )

Tsc(T )

) 1
θ−d

(1.8)

which can be considered as the typical size of a metastable state. The picture deriving from
the RFOT theory is thus the following. Suppose that a region of a glass former is pulled by a
thermal fluctuation in a new metastable state. If its size is smaller than ξ, the new metastable
state is unstable: the surface tension pushes it back to the old state. On the other hand, if
the size of the region is larger than ξ, this can nucleate in one of the exponentially-numerous
accessible metastable states. In the Goldstein scenario, larger metastable regions would cor-
respond to larger energy barriers to cross dynamically to reach the new state. Metastable
regions larger than ξ are thermodynamically stable, but need exponential time to rearrange.
We can conclude that the typical size of metastable states is ξ. According to the so-called
mosaic picture, we can then imagine a glass former as an ensemble of continuously rearrang-
ing metastable states, excited by thermal fluctuations, each one of a typical size ξ, called the
mosaic length scale.

Recently a reformulation of the RFOT theory has been proposed [68]. The supercooled
and spin-glass communities devoted a lot of interest to this new reformulation as it allowed
to set up a protocol to detect the amorphous order in supercooled liquid. Maybe that the
old question ”What is missing?” of section 1.1.4 has finally found an answer.

1.2.3 RFOT theory revisited

In the first part of this section we will present the gedankenexperiment proposed in [68] in
order to reformulate RFOT. Let us suppose that a glass former is trapped in a metastable
state α. We identify a sphere of radius R and freeze the system outside the sphere in the
state α. We concentrate on the thermodynamics of the system inside the sphere: the frozen
system outside the sphere acts as a pinning field, an amorphous boundary condition, on the
inside one. The partition function Zsphere is the sum of two parts: a contribution from the
metastable states α:

Zin = exp(−βfαRd) (1.9)

and a contribution from the metastable states different from α:

Zout =
∑

γ 6=α
exp(−βfγRd − βY (T )Rθ) (1.10)

If we consider R large enough in order to apply the saddle point method, we obtain:

Zsphere = Zin + Zout

= exp(−βfαRd) +
∑

γ 6=α
exp(−βfγRd − βY (T )Rθ)

' exp(−βfαRd) +

∫
df exp[sc(T, f)Rd − βfRd − βY (T )Rθ]

' exp(−βf∗Rd) + exp[sc(T )Rd − βf∗Rd − βY (T )Rθ]

Since the state α is an equilibrium state at a temperature T , its free energy is the same
than the other states dominating the integral: f∗(T ). As in the 1RSB spin-glass models, the
configurational entropy sc(T ) ≡ sc(T, f

∗(T )). The partition function allows us to evaluate
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the probability pin for the system sphere to remain in the state α or pout to move to another
of the exponentially numerous equilibrium states.

pin(R) =
Zin

Zsphere
=

exp [βY Rθ]

exp [βY Rθ] + exp [scRd]
(1.11)

pout(R) =
Zout

Zsphere
=

exp [scR
d]

exp [βY Rθ] + exp [scRd]
(1.12)

The role of the so-called ”entropic driving force” and of the surface tension generated by the
pinning field are now clear: according to equation (1.11), Y (T ) is the force trying to keep the
sphere in the original state, according to equation (1.12), sc(T ) is the reason to get out of
the original state. This writing also allows to give a clear interpretation to the mosaic length
ξ, introduced in RFOT by the equation (1.8). In this framework, a typical length-scale ξ can
be defined as the length such that the two probabilities balance:

ξ =

(
Y (T )

Tsc(T )

) 1
θ−d

. (1.13)

For small values of R, R < ξ, the surface tension term dominates, and we have

pin ∼ 1 , (1.14)

pout ∼ 0 (1.15)

so that the sphere has a very small probability to change state due to the overwhelming effect
of the pinning field at the interface. On the other hand, for R > ξ we have the opposite,

pin ∼ 0 , (1.16)

pout ∼ 1 (1.17)

and the sphere is found in a different state with probability one: the pinning field and the
surface energy are thermodynamically overwhelmed by the configurational entropy.

1.2.4 Point-to-set correlation functions

The discussion of RFOT theory exposed in section 1.2.3 gives a protocol to measure the
mosaic length in glass-former. The protocol is the following:

• Consider an equilibrium configuration C in a glass former.

• Divide the system in two regions delimited by a sphere of radius R.

• Freeze the particles outside the sphere and let the particle inside the sphere free to relax
to a configuration C ′.

• Introduce a notion of ”similarity” between the configuration C and C ′ in the center of
the sphere.

• According to the previous discussion, we expect that, for small R, the boundary con-
ditions are strong and keep C ′ close to C. For large R, the boundary becomes less
efficient and the system is free to rearrange.

• Define a static correlation length ls, for example as the smallest value of R such that
the similarity between C and C ′ becomes smaller than a preassigned value ε.
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Figure 1.2: Plot of measured point-to-set correlation function in the soft-spheres numerical
experiment performed in [66].

• Mean over different equilibrium realizations of C and C ′.

Let us stress that the ”similarity” between different configurations must be defined in the
center of the sphere. This is one of the main ingredients in the definition of point-to-set
correlation functions. Rigorous analytical results have been obtained in [65]. In this work, a
time scale τ and a point-to-set length scale l are defined according to the previous description.
They satisfy the following inequalities:

C1l ≤ τ ≤ exp {C2l
d} (1.18)

where C1 and C2 are model dependent constants and d is the dimension of the system. The
bounds between τ and l show that the growth of the relaxation time τ must be accompanied
by the growth of a static correlation length l, if this is properly defined in terms of point-to-set
correlation functions. This result sheds light on the conundrum of the existence of a static
signature of the glass transition. A static signature exists, but, in order to be identified, we
need a correct tool. Point-to-set correlation functions are one of these correct tools. Also
other frameworks have been recently proposed [72, 73, 74]. On the contrary, point-to-point
correlation functions are featureless near the glass transition.

The numerical study of soft-sphere particles – a model of interacting particles which
presents features of a fragile glass-forming liquid – in bounded geometry has been a good
background to test the predictions of this section. The protocol introduced above was imple-
mented with Monte Carlo simulations in [75, 66]. This led to the measure of the growth of a
static correlation length in a glass forming-linquid as the temperature was lowered, see figure
(1.2).

In the following section we will introduce a spin-glass model with Kac interactions which
allowed to calculate analytically point-to-set correlation functions.
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Figure 1.3: Static (filled squares) and dynamic (empty squares) lengths ls and ld. The
vertical lines correspond to the dynamic and thermodynamic glass transition: Td ' 0.575
and Ts ' 0.541. The lengths behave respectively as ls ∼ (T − Ts)−1 and ld ∼ (T − Td)−1/4,
as depicted in the inset of the figure. The figure is reprinted from [50].

1.3 Kac Spin-Glass models

Kac models are classical tools of statistical physics to study the relationship between finite
dimensional systems and their mean-field counterparts. Variables interacting through a po-
tential of range r0 are considered in these models. For any finite values of r0 the general
properties of finite dimensional systems, such as convexity of free-energy and absence of in-
finite life metastable states, hold. These properties break down in mean-field theory, which
can be recovered in the case of r0 scaling as the linear system size L and both lengths tend
to infinity together. The relation between the two regimes can be understood studying the
so-called Kac limit, where one considers a large interaction range r0 → ∞ after having per-
formed the thermodynamic limit L → ∞. The resulting theory is an improved mean-field
theory that incorporate spatial dimensions [76, 77, 78, 79, 80, 81, 82, 50, 83], see [84] for a
recent review.

1.3.1 The model

We consider a finite-dimensional version of the spherical p-spin model, defined on a d-
dimensional cubic lattice Λ of linear size L, whose elementary degrees of freedom are spins
Si ∈ R with i ∈ Λ. We introduce the interaction range γ−1 > 0 and a non negative rapidly
decreasing function ψ(x) normalized by:

∫
ddxψ(|x|) = 1. We define the local overlap of two

configurations S1 and S2 as:

QS1S2(i) = γd
∑

j∈Λ

ψ(γ|i− j|)S1
jS

2
j . (1.19)

We impose that configurations are subjected to the local spherical constraint: QS1S1(i) = 1
∀i ∈ Λ. We then introduce the finite-range p-spin Hamiltonian:

Hp[S,J ] = −
∑

i1,...,ip

Ji1,...,ipSi1 ...Sip (1.20)
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where the couplings Ji1,...,ip are i.i.d. random variables with zero mean and variance:

E
[
J2
i1,...,ip

]
= γpd

∑

k∈Λ

ψ(γ|i1 − k|)...ψ(γ|ip − k|) . (1.21)

γ−1 is the interaction range since only variables located at vertices i and j such that |i− j| <
γ−1 really interact. This also implies that the Hamiltonian is a random variable with zero
mean and variance:

E
[
H[S1,J ]H[S2,J ]

]
=
∑

i∈Λ

f(QS1S2(i)) , (1.22)

where f(x) is a polynomial with positive coefficients, for example f(x) = xp, if we consider
a pure p-spin model. The model can be analyzed in the Kac limit: L, γ−1 →∞ with L� γ−1.

1.3.2 Point-to-set correlation functions

Point-to-set correlation functions can be suitably defined in Kac-glass models. In this section
we will introduce the definition and the results obtained by Franz and Montanari in [50]. A
more detailed physical analysis will be presented in chapter 2.

In order to define a point-to-set correlation function, we fix a reference configuration Sα

drawn from the equilibrium Boltzmann measure and we consider a second configuration S
that is constrained to be close to Sα outside a sphere B(l) of radius l. Configurations S are
then sampled with Boltzmann weight inside B(l) with the boundary condition determined
by Sα. We define a static point-to-set correlation length ls to the smallest value of l such
that the correlation between Sα and S decays below a preassigned value ε. Let us be more
precise in the following lines.

Let us consider an observable O of the system. Given a configuration Sα, in order to
sample with Boltzmann weight configurations S which must be close to Sα outside of the
sphere B(l) we introduce the constrained Boltzmann measure 〈·〉α(l), given by:

〈O〉α(l) ≡ 1
Z[Sα]

∫
dSO(S)e−βH[S,J ]

∏
i∈B(l) δ(QSαS(i)− q̄) (1.23)

where
∫

denotes integration over configurations satisfying the local spherical constraint and
q̄ ≤ 1. The partition function is:

Z[Sα] ≡
∫

dSe−βH[S,J ]
∏
i∈B(l) δ(QSαS(i)− q̄) .

Since the local overlap is a measure of the the similarity between S and the reference config-
uration Sα, a point-to-set correlation function can be defined by:

G(l) ≡ E {ESα [〈QSαS(0)〉α(l)]} (1.24)

where E and ESα denotes the mean over the disorder and over the reference configuration
Sα. The static length scale ls is:

ls ≡ min{l|G(l) < ε} . (1.25)

In figure (1.3) we plot the results obtained in [50] concerning the calculation of point-to-set
length scale in the p-spin Kac model. We see that a static critical temperature Ts, where ls
diverges, can be identified.
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A dynamical correlation length can also be defined. Let us consider a system initialized
by setting S(t = 0) = Sα and constrained to remain close to Sα outside the sphere B(l)
at all subsequent times, and let τ(l) the shortest time such that the correlation function
〈S0(0)S=(t)〉conn decays below ε. We can define a dynamic correlation length ld by the
property that τ(l) is exponentially divergent as γ → 0 for l < ld, and stays bounded for l > ld.
In figure (1.3) we see that this analysis allows to identify a dynamical critical temperature
Td where the dynamical correlation length ld diverges.



Chapter 2
Kac-glass models in sandwich geometry

2.1 Motivations

We have seen that point-to-set correlation functions have been introduced in the context
of RFOT in order to measure the amorphous overlap between different states. We have also
seen that they can be suitably defined and analytically calculated in Kac-glass models. The
very definition of point-to-set correlation functions relies on a spherical geometry. It can be
interesting to test if the physical picture presented above is peculiar of the spherical geometry,
or if it is a quite general phenomenon independent of the geometry of the system. To this
aim, we have studied the behaviour of Kac-glass models in the so called sandwich-geometry
[41].

The sandwich-geometry is implemented by considering three regions of the lattice Λ:
A+(l), A−(l) and a box B(l), Figure (2.1). In this geometry point-to-set correlation func-
tions can be defined as before, considering the system free to evolve in the central region
B(l), with the boundary conditions imposed by the fixed reference configuration in A+(l)
and A−(l). Let us stress that the main difference between the spherical and the sandwich
geometry is the fact that the first one is bounded, while the second one is unbounded. We
will see that, in the context of Kac-glass models, point-to-set correlation functions behave
exactly the same in the two geometries. Some time after our work, Gradenigo et al. [85]
analyzed the same problem in the framework of numerical simulations on a soft-spheres glass
model. In the same work, also the RFOT in sandwich geometry has been studied.

The main assumption of RFOT is that a supercooled liquid is composed of different

-�

-� L

l

α α

-�

-� L

l

α β

Figure 2.1: The sandwich-geometry for a system αα (left) and αβ (right). The box B(l) is
the central region, A+(l) and A−(l) are the lateral ones.
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metastable states which are in contact. Mosaic length scales can be determined by the
competition of a surface-tension cost between different states and and entropic gain. The
interfaces between different metastable states are usually referred to as ”amorphous domain
walls”. In recent numerical experiments, Cammarota et al. [86] measured the energy paid to
put different metastable states in contact. The procedure is the following: freeze two states
α and β, exchange a sphere of the state α with a sphere of the state β and let the system
evolve. We can show that a spherical – or in general a bounded – geometry is not the good
framework to measure the energy cost to put different metastable states in contact. In order
to do this, let us consider, for simplicity, a Ising-like model described by an Hamiltonian H.
We freeze a configuration Sα in a region A of the system. We study the thermodynamic
considering only configurations S constrained to be close to Sα is A:

Z[Sα] =
∑

S

e−βH[S]χA[S,Sα] , (2.1)

where

χA[S1,S2] =

{
1 if S1

i = S2
i ∀i ∈ A

0 otherwise
. (2.2)

The thermodynamic average of an observable O of the system is obtained by averaging with
constrained Boltzmann measure the configurations inside the sphere and with Boltzmann
measure the configurations Sα:

〈O〉 =
∑

Sα

e−βH[Sα]

Z

∑

S

χA[S,Sα]
e−βH[S]

Z[Sα]
O(S) . (2.3)

This average coincides with the usual thermodynamical one: 1
Z

∑
S e
−βH[S]O(S). This simple

fact has deep implications: in the case in which A is a sphere of radius R, on average, the
energy per degree of freedom is independent of R. If, for typical choices of the position of the
sphere, one finds that two thermodynamic states coexist for a well defined value of R, they
will have the same energy.

The same argument may not be true if we consider a different geometry, i.e. the sandwich
geometry. In that geometry, a good prescription, in order to measure energetic cost to
put different metastable states in contact, is to fix a reference configuration Sα in A+(l), a
different reference configuration Sβ in A−(l), and let the system in B(l) free to evolve with
the boundary conditions imposed by the fixed reference configurations. This analysis will be
presented in detail in the following sections. The same experiment has been carried in the
context of numerical simulations of soft spheres by Gradenigo et al. in [85].

2.2 Definitions

In the following we will consider a system in the sandwich geometry. As introduced before,
we can consider two kinds of systems:

• system αα: we fix a configuration Sα drawn from the Boltzmann equilibrium measure.
We consider the thermodynamics of configurations S constrained to be close to Sα both
in A+(l) and in A−(l);

• system αβ: we fix two configurations Sα and Sβ drawn from the Boltzmann equilibrium
measure. We consider the thermodynamics of configurations S constrained to be close
to Sα in A+(l) and to Sβ in A−(l).
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Let be O an observable of the system and q̄ ≤ 1. For a system αβ, we can define the
constrained Boltzmann measure 〈·〉αβ(l) by:

〈O〉αβ(l) ≡ 1

Z[Sα
A+ ,S

β

A− ]

∫
dSO(S)e−βH[S,J ]

×∏i∈A− δ(QSαS(i)− q̄)∏i∈A+ δ(QSβS(i)− q̄) (2.4)

where
∫

denotes integration over configurations satisfying the local spherical constraint. The
partition function is:

Z[SαA+ ,S
β
A− ] ≡

∫
dSe−βH[S,J ]

×∏i∈A− δ(QSαS(i)− q̄)∏i∈A+ δ(QSβS(i)− q̄) . (2.5)

For a system αα, the constrained Boltzmann measure 〈·〉αα(l) is obtained by imposing the
constraint

∏
i∈A+∪A− δ(QSαS(i)− q̄).

Let us define some observables we are interested in. In the following, the symbol E
represents the average over both the distribution of fixed configurations Sα and Sβ and the
disorder. The free energy Fαβ(l) is:

Fαβ(l,T ) ≡ − 1

β
E
[
lnZ[SαA+ ,S

β
A− ]
]
. (2.6)

The internal energy Uαβ(l,T ):

Uαβ(l,T ) ≡ E [〈H[S,J ]〉αβ(l)] = E
[
− ∂

∂β
lnZ[SαA+ ,S

β
A− ]

]
.

The same quantities can be straightforwardly be defined for a system αα. We are interested
to measure

Y (l,T ) ≡ lim
γ→0

lim
L→∞

Fαβ(l,T )− Fαα(l,T )

Ld−1
. (2.7)

Y (l,T ) can be interpreted as a free-energy cost per unit area to put different metastable states
at a distance l, then an effective, distance-dependent, surface tension. On the other hand,
the energy cost to put different metastable states in contact can be written as:

K(l,T ) ≡ lim
γ→0

lim
L→∞

Uαβ(l,T )− Uαα(l,T )

Ld−1
. (2.8)

We will see in the following section that all these quantities can be calculated in the Kac
limit.

2.3 Some calculations

In this section we will briefly present how the quantities defined before can be calculated
in the Kac limit. Let us consider a system αβ and compute the free energy Fαβ(l,T ). The
average of the partition function over E can be taken by introducing replicas along the lines
of [78, 50]:

Fαβ(l,T ) ≡ − 1

β
E
[
lnZ[SαA+ ,S

β
A− ]
]

= − 1

β
lim

m,n→0

1

n
EJ
[
Zm−2

∫
dSαdSβ exp

[
−β(H[Sα,J ] +H[Sβ,J ])

]
Zn[SαA+ ,S

β
A− ]

]
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Performing the mean over the disorder EJ [· · ·] we obtain:

Fαβ(l,T ) = − 1

β
lim

m,n→0

1

n

∫ m+n∏

a=1

dSaC(l) exp


β

2

2

∑

i∈Λ

∑

1≤a,b≤n
f(Qab(i)))




where C(l) is the constraint:

C(l) =
m+n∏

a=m+1


 ∏

i∈A+

δ(Qsm−1sa(i)− q̄)
∏

i∈A−
δ(Qsmsa(i)− q̄)


 .

Integrals over spin variables are then treated for an (m+n)×(m+n) matrix order parameter
qab(i):

Fαβ(l,T ) = − 1

β
lim

m,n→0

1

n

∫ ∏

i∈Λ

m+n∏

a,b=1

qab(i)C(l) exp


∑

i∈Λ


β

2

2

∑

1≤a,b≤n
f(qab(i))) +

1

2
log det q(i)




 .

Performing the coarse graining – rescaling the position to define x = iγ ∈ [−L̂, L̂]d, L̂ ≡ γL
– we obtain:

Fαβ(l̂,T ) = − 1

β
lim

m,n→0

1

n

∫
[dqab] exp


 1

γd

∫
dx


β

2

2

∑

1≤a,b≤n
f((ψ ∗ q)ab(x))) +

1

2
log det q(x)




C(l̂) .

We introduce the following notation:

Fαβ(l̂,T ) = − 1

β
lim

m,n→0

1

n

∫
[dqab]e

− 1

γd
Sαβ(qab) . (2.9)

The dependency upon γ is now completely explicit and, for γ → 0, the functional integral can
be performed using the saddle-point method. We look for a replica symmetric saddle point
qRS
ab (x). This is characterized by three scalar functions p1(x), p2(x) and q(x); p1 and p2 are

the local overlap between the constrained configuration and the reference configuration Sα

and Sβ respectively and q is the local overlap of two constrained configurations when they
belong to the same metastable state (see Appendix 2.6 for more details). Using this ansatz
we obtain that Sαβ(qab) = n

∫
Lαβddx+O(n2), where:

Lαβ(x) = −β2

2 [f(1) + 2f((ψ ∗ p1)(x)) + 2f((ψ ∗ p2)(x))− f((ψ ∗ q)(x))] +

+1
2

[
log(1− q(x))− p2

1(x)+p2
2(x)−q(x)

1−q(x)

]
(2.10)

with:

(ψ ∗ q)(x) =

∫
ddyψ(|y − x|)q(y) . (2.11)

The constraint enforcing S to be close to Sα in A−(l̂) and to Sβ in A+(l̂) is fulfilled by setting
p1(x) = q̄ for x ∈ A−(l̂) and p2(x) = q̄ for x ∈ A+(l̂). We obtain Fαβ(l̂,T ) by evaluating the
fields p1(x), p2(x) and q(x) in the saddle point of the action S0

αβ =
∫

ddxLαβ(x). The internal

energy Uαβ(l̂,T ) can be calculated in the same lines (see Appendix 2.7 for more details) and
expressed in terms of the saddle point fields p1(x), p2(x) and q(x):

Uαβ(l̂,T ) = −β
∫

dx [1 + f((ψ ∗ p1)(x)) + f((ψ ∗ p2)(x))− f((ψ ∗ q)(x))] . (2.12)

We introduce a simplification in the Lagrangians: we expand the terms of the form
f((ψ ∗ q)(x)) in gradient of q(x) and we truncate to the second order obtaining f(q(x)) −
cf ′′(q(x))(∇q)2(x) where c = 1

2d

∫
z2ψ(|z|)dzd (in our running example c = 1). We find the

saddle-point fields iterating numerically the Euler-Lagrange equations of (2.10).
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Figure 2.2: Plot of the profiles of the saddle-point field p1(x) for a system αβ at temperature
T = 0.8 for different values of the box l̂. At this temperature ξ̂s ∼ 24.
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Figure 2.4: Plot of Y (l,T ) for different temperatures as a function of the width of the box l̂.
We remember that Ts ≈ 0.766287 and Td ≈ 0.813526.
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2.4 Results

The overlap profiles

The system αα has been studied in spherical geometry in [50]. We have verified that the
physical picture of the αα system does not depend on the geometry: the saddle point equa-
tions for the fields p(x) and q(x) are the same in spherical and sandwich geometry. We
can thus borrow some results from [50]. Two critical temperatures characterize the system:
Ts ≈ 0.766287 and Td ≈ 0.813526.

Setting the temperature of the system T & Td, we identify two lengths: l̂0(T ) and ξ̂d(T ),
such that, for widths of the box l̂ ∈ [l̂0(T ), ξ̂d(T )], the action S0

αα has two local minima. A
minimum is characterized by a saddle-point field p(x) rapidly decaying to zero in the interior
of the box: we name this low-overlap minimum. The other minimum is characterized by a
saddle-point field p(x) everywhere large: we name this high-overlap minimum. For l̂ > ξ̂d
(l̂ < l̂o) only the low-(high-)overlap minimum exists. ξ̂s(T ) is defined as the minimum value
of l̂ such that the low-overlap minimum is the global minimum of the action. Within this
picture we can identify two characteristic length scales: a dynamic length scale ξ̂d(T ) and a
static length scale ξ̂s(T ). The interpretation of these length scales has been given in section
1.3.2. The critical temperatures Ts and Td are defined as the temperatures at which ξ̂s(T )
and ξ̂d(T ) respectively diverge.

On the other hand, in the case of a system αβ, the action S0
αβ has always a single minimum.

Profiles of the saddle-point field p1(x) can be seen in Figure 2.2.

The free energy

We present in Figure 2.3 the plot of the sub-extensive part of the free energy of high-
(low-)overlap minimum F̂Hαα(l̂) (F̂Lαα(l̂)) divided by the size l̂ for a system at a temperature
Ts < T < Td. ξ̂s(T ) is the value of l̂ where F̂Lαα(l̂) and F̂Hαα(l̂) cross. We name the global free

energy of a system αα Fαα(l̂) = min
{
FLαα(l̂), FHαα(l̂)

}
.

The sub-extensive part of the free energy of the unique minimum F̂αβ(l̂)/l̂ for a temper-

ature Ts < T < Td is also plotted in Figure 2.3. At all temperatures and values of l̂ that we
have studied, the sub-extensive part of the free energy of a system αβ F̂αβ(l̂) is close to the

sub-extensive part of the low-overlap free energy of a system αα F̂αα(l̂), as can be seen in
the inset of Figure 2.3.

In Figure 2.4 we follow the evolution of l̂-dependent surface tension Y (l̂,T ) for systems at
different temperatures T > Ts. We note that the static correlation length ξ̂s(T ) separates two
regimes. For l̂ < ξ̂s(T ), Y (l̂,T ) has a power-law followed by a linear decrease. For l̂ > ξ̂s(T ),
as we see in the inset of Figure 2.4, the decrease becomes exponential:

Y (l̂,T ) ∼ C e−l̂/l̃, (2.13)

with l̃ weakly dependent on the temperature and showing no evident relation with ξ̂s. This
shows that the surface tension Y (l̂,T ) is sensibly different from zero only for l̂ . ξ̂s. A similar
result has been obtained in [87]. In that case the interface free energy has been obtained
changing the boundary conditions along one direction, from periodic to anti-periodic.

Particular attention must be spent in the case T = Ts. At Ts, the static correlation length
ξ̂s diverges. This means that the high-overlap minimum is the global minimum of the action
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S0
αα for all the values of l̂. We see in Figure 2.4 that, for T approaching Ts, the profile of
Y (l̂,T ) takes the shape of a plateau. Consequently, at the critical temperature Ts, in the limit
l̂ → ∞, the surface tension Y (l̂,Ts) does not fall to zero and takes a limiting value Y (Ts).
Arguably, the value Y (T ) is different from zero for temperatures T < Ts.

According to phenomenological arguments [68], the static correlation length ξ̂s(T ) can be
interpreted as the typical size of metastable states of a system at a temperature T . Following
this idea, in a system αβ we are freezing a patchwork of metastable states of size ξ̂s(T ) outside
the box and letting the system free to rearrange inside the box. If the width of the box is
larger than the typical metastable-state size, l̂� ξ̂s(T ), the system inside the box has enough
space to rearrange in many different metastable states. On the contrary, when the width of
the box is smaller than the metastable-state size, l̂ < ξ̂s, since there is not enough space
to create metastable states on the interior, the frozen states are in contact and “repel” each
other. This explains why the surface tension Y (l̂,T ) is significantly different from zero only
for l̂ < ξ̂s(T ) and why the overlap profiles p1(x) and p2(x) between frozen metastable states
and the interior of the box decrease faster for small boxes. At the critical temperature Ts the
size of metastable states diverges. Consequently, the surface tension takes a finite value also
in the limit l̂→∞.

The internal energy and the entropy

We verified that for a system αα the high-overlap and the low-overlap phases have the same
internal energy Uαα(l̂,T ), as motivated in section 2.1. In Figure 2.5 we follow the evolution
of the sub-extensive part of Uαβ(l̂)−Uαα(l̂) for different temperatures of the system. In this
case, we note a power-law followed by a an exponential decrease.

We also computed the configurational entropy Σ as a function of the size l̂ of the box,
Figure 2.6. For a system αα only the low-overlap phase presents a configurational entropy
Σαα different from zero. As noticed in [50], for l̂ < l̂1RSB the replica-symmetric solution is
incorrect since it gives a negative entropy. We found that the same is true for a system αβ.
In the inset of Figure 2.6 we plot the difference between the configurational entropy of the
two systems. We note that this quantity is a decreasing function of the size l̂ of the system.
This is consistent with the observation that the system loses memory of the frozen exterior
for large sizes of the box.
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Figure 2.5: Plot of Uαβ(l̂) − Uαα(l̂) for different temperatures as a function of the width of

the box l̂. We remember that Ts ≈ 0.766287 and Td ≈ 0.813526.
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2.5 Conclusions and perspectives

In this chapter we have investigated the behaviour of a Kac spin-glass model in the so-called
sandwich geometry. This particular geometry gives us the correct framework in which the
energy cost to put different metastable states in contact can be measured. In the lines of
our work, numerical experiments have been performed by the group of Cavagna in Rome
[85]. A good qualitative agreement between the analytical and numerical results has been
found. Within the sandwich-geometry framework it has been also possible to measure the
free-energy cost to put metastable states in contact, that can be interpreted as a distance-
dependent surface tension, one of the main ingredients of the Random First Order Theory
Transition for the glass transition.

Given the recent numerical experiments of Cavagna, it would be interesting to consider the
analytical and numerical results in a unifying framework which is able to correctly describe
the physical behaviour of a glassy system in confined geometry.

2.6 Appendix: The overlap matrix

We give an explicit formulation of the overlap matrix in the replica symmetric ansatz qRS
ab (x);

the overlap matrix is an (m+ n)× (m+ n) matrix with m and n real numbers; if we take r
and n integer, we can visualize the matrix in the following way:

qRS =

[
A B
BT C

]
. (2.14)

The n × n matrix C is the overlap matrix between configuration that are taken with con-
strained Boltzmann measure and subjected to local spherical constraint; the replica symmetric
ansatz imposes that Cab = q(x) for all a 6= b and the spherical constraint that Caa = 1; then
C can be written in the form:

C =




1 q(x) q(x) . . . q(x)
q(x) 1 q(x) . . . q(x)
. . . . . . . . . . . .
q(x) q(x) q(x) . . . 1


 . (2.15)

The m×m A matrix is the overlap matrix between configuration that are taken with Boltz-
mann measure and subjected to local spherical constraint; we impose the out of diagonal
elements equal to zero, then we obtain that A is the identity matrix: A = 1.

The m × n B matrix is the overlap matrix between configuration that are taken with
Boltzmann measure and configuration that are taken with constrained Boltzmann measure;
we impose all the elements of this matrix equal to zero, except the last two lines that are
equal to p1(x) and to p2(x); then A can be written in the form:

B =




0 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
p1(x) p1(x) . . . p1(x)
p2(x) p2(x) . . . p2(x)



. (2.16)
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2.7 Appendix: Calculation of the energy

The internal energy of a system αβ is:

Uαβ(l) ≡ E [〈H[s,J ]〉αβ(l)] = E
[
− ∂

∂β
lnZ[sαA+ ,s

β
A− ]

]

We give an explicit derivation of Uαβ(l); similar calculations allow to obtain the free energy
Fαβ(l). We introduce two different temperatures β1 and β2 and n and m replicas of the
system;

Uαβ(l) = E
[
Esα

[
Esβ

[
− ∂

∂β
lnZ[sαA+ ,s

β

A−
]

]]]

= − ∂

∂β2
E
[

1

Z2[β1]

∫
dsαdsβ exp

[
−β1

(
H[sα,J ] +H[sβ ,J ]

)]
lnZ[sα,sβ ,β2]

]

= lim
m,n→0

1

n

(
− ∂

∂β2

)

E
[
Zm−2[β1]

∫
dsαdsβ exp

[
−β1(H[sα,J ] +H[sβ ,J ])

]
Zn[sα,sβ ,β2]

]

where:

C =

m+n∏

a=m+1


 ∏

i∈A+

δ(Qsm−1sa(i)− q̄)
∏

i∈A−
δ(Qsmsa(i)− q̄)


 .

Then performing the expectation value over the disorder, the derivative and reimposing equal
the temperatures we obtain:

Uαβ(l) = lim
m,n→0

−β
n

∫ ∏m+n
a=1 dsaC exp

[
β2

2

∑
i∈Λ

∑
1≤a,b≤n f(Qab(i)))

]

×∑i∈Λ

[∑
a,b∈C f(Qab(i)) + 1

2

∑
a,b∈B f(Qab(i)) + 1

2

∑
a,b∈BT f(Qab(i))

]
.

Integrals over the spin variables are then traded for an (m + n) × (m + n) matrix order
parameter qab(i).

Uαβ = lim
m,n→0

−β
n

∫ ∏
i∈Λ

∏m+n
a,b=1 qab(i)C exp

[∑
i∈Λ

(
β2

2

∑
1≤a,b≤n f(qab(i))) + 1

2
log det q(i)

)]

×∑i∈Λ

[∑
a,b∈C f(qab(i)) + 1

2

∑
a,b∈B f(qab(i)) + 1

2

∑
a,b∈BT f(qab(i))

]
.

Performing the coarse graining:

Uαβ = lim
m,n→0

−β
n

∫
[dqab]

∫
dx
[∑

a,b∈C f((ψ ∗ q)ab(x)) + 1
2

∑
a,b∈B,BT f((ψ ∗ q)ab(x))

]

× exp
[

1
γd

∫
dx
(
β2

2

∑
1≤a,b≤n f((ψ ∗ q)ab(x))) + 1

2
log det q(x)

)]
C .

Using the replica symmetric matrix presented in 2.6 we obtain:

Uαβ = lim
n→0

−β
n

∫
[dq][dp1][dp2]

[
n

∫
dxH(x) + o(n2)

]
exp

[
− n

γd

∫
dxL(x) + o(n2)

]

where:
H(x) = 1 + f((ψ ∗ p1)(x)) + f((ψ ∗ p2)(x))− f((ψ ∗ q)(x)) ;

L(x) = β2

2
[1 + 2f((ψ ∗ p1)(x)) + 2f((ψ ∗ p2)(x))− f((ψ ∗ q)(x))] +

+ 1
2

[
log(1− q(x))− p21(x)+p22(x)−q(x)

1−q(x)

]
.

We evaluate the action S0
αβ =

∫
ddxLαβ(x) in the saddle point fields p1, p2 and q and we

obtain that:

Uαβ(l̂) = −β
∫

dxH(x) . (2.17)
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Part II

Spin-glass models and Extreme
Value Statistics





Chapter 3
The problem of fluctuations of
pseudo-critical temperatures

The characterization of phase transitions in terms of a non-analytic behaviour of thermody-
namic functions in the infinite-size limit has served as a milestone in the physical understand-
ing of critical phenomena. In laboratory and numerical experiments the system size is always
finite, therefore the divergences that would result from such a non-analytical behaviour are
suppressed, and are replaced by smooth maxima occurring in the observation of physical
quantities as a function of the temperature. In disordered systems the pseudo-critical tem-
perature, defined e.g. as the temperature at which this maximum occurs, is a fluctuating
quantity depending on the realization of the disorder. A question naturally arises: can the
fluctuations of the pseudo-critical temperature be understood and determined on employing
tools from probability theory?

In these chapters we shall attempt to answer this question, investigating the fluctuations
of the pseudo-critical temperature in some spin-glass models via analytic and numerical ap-
proaches. We will show how Extreme Value Statistics, a branch of probability theory, plays
a fundamental role in this problem.

3.1 Motivations

We have seen in the Introduction that spin-glass models are characterized by the presence of
disorder in the Hamiltonian via random couplings. The value of a generic observable O(J)
depends on the realization of the disorder J . At first glance, this fact may look problem-
atic: should we expect different physical behaviours for every realization of the disorder?
Fortunately the answer is negative, since spin-glass models are built in such a way that self-
averaging holds. This means that, in the thermodynamic limit, the value of observables which
are extensive quantities does not fluctuate. In a more formal way, the distribution of O(J) as
a function of the realization of J converges to a delta function in the thermodynamic limit.
This property allows to have tractable models and thus to average out the disorder in the
physical description.

If the system size is finite, the fluctuations of physical observables due to disorder can be
strong. It may be interesting to describe these fluctuations: their scaling with the system size
and the possibility of a limiting distribution for them. Recently, some authors analyzed the
problem of the fluctuations of the ground-state energy of the SK model and of other spin-glass
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Figure 3.1: A pictorial representation of a possible definition of the pseudo-critical tem-
perature TNc (w) of a finite-size disordered model and its characterization in terms of its
probability-distribution function p(TNc (w))

models [88, 89, 90]. This problem is also interesting from an Extreme-Value-Statistics point
of view, since the the ground state is the minimum over an ensemble of correlated energies.

In this section we will consider the pseudo-critical temperature of a disordered system.
It is well-known [91, 92, 93, 94] that criticality of a physical system can emerge only in the
thermodynamic limit: at finite size the divergences of physical observables, characterizing the
phase transition, are replaced by smooth maxima. In order to characterize the critical point of
finite-size systems, a suitably-defined pseudo-critical temperature must be introduced, being
the temperature at which such maxima occur. In pure systems the pseudo-critical temper-
ature Tc(N) is shifted with respect to the critical temperature Tc and, in the limit of large
systems, Tc(N) converges to Tc: limN→∞ Tc(N) = Tc. On the other hand, in disordered sys-
tems a pseudo-critical temperature Tc(N,J) is a random variable depending on the realization
of the disorder, as depicted in figure 3.1. We expect that, similarly to pure systems, in the
limit of large size, the mean of a pseudo-critical temperature over the disorder converge to
the infinite-size critical temperature: limN→∞ Tc(N,J) = Tc. We also expect that, in some
sense, the pseudo-critical temperature is a self-averaging quantity: its distribution converges
to a delta in the large-size limit.

In the past, the characterization of the fluctuations of the pseudo-critical temperature of
disordered system attracted a lot of attention from the physical community. The celebrated
Harris criterion [95], for the behaviour of critical exponents in finite-dimensional disordered
systems, relies on an argument about the local fluctuations of the critical temperature. More
recently, several efforts have been put forward to study the fluctuations of the pseudo-critical
temperature for disordered finite-dimensional systems [96, 97, 98, 99, 100, 101] and their
physical implications. For instance, recently Sarlat et al. [102] showed that the theory of
finite-size scaling, which is valid for pure systems, fails in a fully-connected disordered models
because of strong sample-to-sample fluctuations of the critical temperature.

In this chapter we will introduce the tools that will allow us to study the problem of
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fluctuations of the pseudo-critical temperature in spin-glass models in the following chapters.
In section 3.2 we introduce the Random Matrix Theory (RMT). We show how some results
of RMT have been used in the context of spin-glass models. In section 3.3 we introduce the
TAP approach to spin-glass models. We analyze the TAP equations for the SK model and
we present how some results of RMT theory allow to identify the critical temperature of the
SK model. Finally, in section 3.4, we will introduce some results of Extreme Value Statistics,
specifically the celebrated Tracy-Widom distribution, discovered in the context of RMT, and
we present some physical applications of this ubiquitous distribution.

3.2 Some results of Random Matrix Theory

Ensembles of matrices with random entries have been systematically studied since the pio-
neering works of Wigner [103] and Dyson [104]. The purpose was to develop a statistical
theory of energy levels of heavy nuclei, such that the unknown Hamiltonian (representing
the complicated interactions among nucleons) is replaced by a statistical ensemble of ran-
dom Hamiltonians satisfying minimal symmetry requirements. After the initial successes in
Nuclear Physics, the field of random matrices has developed with countless applications in
physics, mathematics and beyond. Let us mention number theory, in connection with Rie-
mann’s hypothesis [105], computational biology and genomics [106], quantum gravity [107]
and multivariate data analysis and financial applications [108].

In order to define a Random Matrix Model, we have to consider an ensemble of N ×
N matrices X and the joint probability density function (jpdf) of the entries P [X] :=
P (X11, . . . , XNN ). We can require the following properties:

1. the entries are sampled independently from each other: P [X] =
∏
i,j Pij(Xij)

2. there is a group of invariance for the probability density of entries: P [GXG−1] = P [X],
where G is an element of the invariance group

The Gaussian ensemble is composed by square matrices having independent and normally
distributed entries (real, complex or quaternion numbers), supplemented by an appropriate
group invariance (orthogonal, unitary and symplectic respectively). These three ensembles
are labelled by the Dyson’s index β = 1,2,4 and are named Gaussian Orthogonal Ensemble
(GOE), Gaussian Unitary Ensemble (GUE) and Gaussian Symplectic Ensemble (GSE) . The
joint probability density of the entries can be written in the compact form:

P [X] = AN exp[−βtr(X2)/2] (3.1)

where AN is a normalization constant. Given the group invariance, the information encoded
in the jpdf of entries is overabundant. The jpdf P [X] in terms of N2 independent elements
can be traded for a jpdf in terms of the N real non-independent eigenvalues λ1, . . . , λN . For
the Gaussian ensembles the jpdf of the eigenvalues takes the form:

P (λ1, . . . , λN ) = BN exp


−β

2




N∑

i=1

λ2
i −

∑

i 6=j
ln(|λi − λj |)




 (3.2)

This joint law allows one to interpret the eigenvalues as the positions of charged particles,
repelling each other via a 2-d Coulomb potential (logarithmic); they are confined on a 1-d line
and each is subject to an external harmonic potential. The parameter β that characterizes
the type of ensemble can be interpreted as the inverse temperature.
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For a given Random Matrix Ensemble, one is interested in computing the density of
eigenvalues ρ(λ,N) ≡ 〈∑N

i=1 δ(λ− λi)〉/N , where 〈. . . 〉 stands for the average over the jpdf.
In the limit N →∞, the density of eigenvalues can be easily calculated via the Coulomb gas
analogy, introduced by Dyson [104]. On the other hand, it can be formally rewritten as:

ρ(λ,N) =

∫ +∞

−∞

N∏

i=2

dλiP (λ, λ2, . . . , λN ) . (3.3)

Wigner was able to compute this marginal and this is one of the central results in the random
matrix theory, known as the celebrated Wigner semi-circular law:

ρ(λ,N) =

√
2

Nπ2

[
1− λ2

2N

]1/2

(3.4)

which is true for every β and for N large. The semicircle has support in [−
√

2N,
√

2N ].

3.2.1 RMT and spin-glass models

Generally speaking, we can say that one of the main features of disordered systems, and thus
of spin-glass models, is a corrugated energy (or free-energy) landscape. A corrugated energy
landscape can be characterized by a huge number of local stationary points, which can be
minima, maxima or saddles. If s are the local degrees of freedom of the model that we are
considering, the stability of a stationary point s∗ is encoded in the eigenvalues of the Hessian

matrix Mij = ∂H[s]
∂si∂sj

∣∣∣
s∗

. Positive (negative) eigenvalues of the Hessian matrix correspond to

stable (unstable) directions. A minimum is characterized by a positive definite spectrum of
the Hessian matrix. In spin-glass models, given the presence of disorder, the Hessian matrix
of a stationary point is a random matrix. In some cases, results form RMT can be used to
study the stability of stationary points in spin-glass models. In the following sections we
will study the stability of the paramagnetic minimum of the TAP free energy for the SK
model. Since its Hessian matrix belongs to the GOE ensemble, we will see that the Wigner
semicircle law allows to identify in a very elegant way the critical temperature of the model
in the thermodynamic limit.

Let us give a further example. In the previous part we have discussed the phenomenology
of the p-spin model. The energy landscape of this spin-glass model is corrugated and the
number of stationary points with given energy E ∈ [Emin, Emax] is exponential. One is able
to compute [70] the average spectrum of the Hessian matrix of all minima with a given energy
E, ρ(λ;E), and see how it changes with E. Given the Gaussian nature of the disorder, ρ(λ;E)
is described by the Wigner semicircle law:

ρ(λ;E) =
1

2π

√
E2
th − (λ− E)2 (3.5)

where Eth is the so-called threshold energy, which depends on the parameters of the model.
When E < −|Eth| the semicircle is entirely contained in the positive semi-axis. At E = |Eth|
the semicircle touches the origin and for E > |Eth| a part of the semicircle is contained in
the negative axis, as depicted in figure 3.2. Therefore, at the threshold energy Eth a topolog-
ical transition occurs between a region of the landscape mainly populated by stable minima
(E < −|Eth|), and a region mainly populated by unstable saddles (E > −|Eth|). These results
shade some light on the dynamical transition of the p-spin model. The energy of the minima
visited by the system at the dynamical transition Td is exactly equal to the threshold energy
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Figure 3.2: A pictorial representation of the averaged spectrum ρ(λ,E) of the Hessian matrix
of the stationary points of the energy of the p-spin model as a function of their energy. For
E < −|Eth| the spectrum is entirely contained in the positive semi-axis. At E = |Eth| the
spectrum touches the origin and for E > |Eth| a part of the spectrum is contained in the
negative axis.

Eth. As pointed out in [47], at equilibrium, for T < Td, the system is trapped within minima
of the energy, with all the eigenvalues of the Hessian larger than zero: ergodicity is broken.
For T > Td, on the contrary, the typical stationary point is a saddle, with a finite fraction
of negative eigenvalues. Saddles do not trap the dynamics for infinite times, since, sooner
or later, driven by thermal fluctuations, the system finds the negative modes and leaves the
saddle: ergodicity is not broken. The thermal dynamical transition in the p-spin model can
then be considered a manifestation of the topological one.

In order to go further in the comprehension of the phenomenology of the p-spin model, it
can be interesting to evaluate the probability of finding a stationary point which is a saddle
in the minima regime and vice versa. This problem has been firstly attached by Cavagna et
al. in [109], where it has been shown that saddles exist in the regime dominated by minima,
but the probability of these saddles to occur is exponentially small in N . The same problem
can be formulated in RMT language by studying the distribution of the index of a Random
Matrix. The fraction of positive eigenvalues c = N+/N , or index, of a random matrix is a
random variable whose distribution P (c,N) was firstly studied by Cavagna et al. [110] and
more recently exactly calculated by Majumdar et al. [111]. With Coulomb-gas techniques,
the authors of [111] obtained that to leading order in N

P (c,N) ≈ exp [−βN2φ(c)] (3.6)

where the exact rate function φ(c) is symmetric around c = 1/2 and universal (independent
of the Dyson index β). The symbol ≈ stands for the precise logarithmic law:

lim
N→∞

logP (N+ = cN)

βN2
= −φ(c) (3.7)
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3.3 The TAP approach to spin-glass models

The aim of this section is to introduce the TAP approach to spin-glass models by paying
particular attention to the SK model, along the lines of [112]. The TAP approach can
be considered a generalization of the Curie-Weiss approach to ferromagnets: a free-energy
function is constructed as a function of a local order parameter. Pure states of the system can
be identified as the minima of this free energy. We will show that it is possible to obtain the
critical temperature of the SK model in the thermodynamic limit by studying the stability
of the high-temperature paramagnetic minimum.

3.3.1 Derivation of the TAP free energy

Let us consider a system described by local degrees of freedom ~S and by an Hamiltonian H[~S].
A general result of statistical mechanics [113] states that it is always possible to decompose
the equilibrium Gibbs measure PG(~S) as a sum over pure states:

PG(~S) =
∑

α

wαP
α(~S) (3.8)

where α labels the pure states and wα is such that
∑

αwα = 1. A second result in finite-
dimensional systems is the clustering property: connected correlation in a pure state vanishes
at large distance. Since on complete graphs there is no notion of distance, for fully-connected
models the clustering property translates in a factorization of the measure in a pure state:

Pα(~S) =
∏

i

Pαi (Si) . (3.9)

The single-spin probability distribution in a pure state α, Pαi (Si), is specified by the average
magnetization of the spin Si, m

α
i =

∑
Si
SiP

α
i (Si). In the case of Ising spins we can rewrite

Pαi (Si) = (1 + mα
i )/2. We can conclude that, in a fully-connected model, a pure state α is

completely identified by the set of magnetizations mα
i . Let us finally remark that, if in finite-

dimensional systems pure states can be selected via boundary conditions, in fully-connected
models the only way to select pure states is via external fields. If in the ferromagnetic Ising
model the two pure ferromagnetic states are identified by a global magnetization, in the SK
model, for every realization of the disorder {Jij} each state is characterized by a local amor-
phous magnetization. The TAP approach to the SK model aims at constructing a free-energy
function as a function of the local magnetization ~m such that pure states can be identified
with the local minima of the free energy. In their original work [40], Thouless, Anderson and
Palmer presented as ”a fait accompli” the so called TAP free energy: they added the Onsager
reaction term to the mean-field free energy. In the following we follow the approach of Yedidia
and Georges [114] which allows to obtain a systematic derivation of the free energy. The same
approach was introduced some years before by Plefka [115]. The idea is the following.

The free energy of a system of spins ~S described by an Hamiltonian H[~S] with a local
external field ~b is:

−βF [β,~b] = log


∑

~S

exp

[
−βH[~S] + β

∑

i

Sibi

]
 (3.10)

and the local magnetization mi[β,~b] = − d
dbi
F [β,~b]. If we consider the Legendre transform of

F [β,~b] we obtain a free energy as function of the local magnetic fields ~m:

−βΓ[β, ~m] = −βmax
~b

[
F [β,~b] +

∑

i

bimi[β,~b]

]
. (3.11)
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In this way the local fields ~b = ~b[β, ~m] are fixed to enforce the magnetization ~m. By construc-
tion Γ[β, ~m] is a concave function of ~m. In order to construct a free-energy function such
that the minima can be identified with the pure states, we are interested to calculate the
high-temperature expansion of Γ[β,~b]. In the Yedidia–Georges approach [114] the following
free-energy function is considered:

−βG[β, ~m] = log


∑

~S

exp

[
−βH[~S] + β

∑

i

λi(β)(Si −mi)

]
 (3.12)

where the local fields λi(β) are that to ensure 〈Si −mi〉 = 0 for every temperature β. The
free-energy function is then expanded around β = 0, an high-temepratrue expansion:

−βG[β, ~m] = −βG[0, ~m]− ∂(βG[β, ~m])

∂β

∣∣∣∣
β=0

β +
∂2(βG[β, ~m])

∂β2

∣∣∣∣
β=0

β2

2
+ . . . (3.13)

Developing at β = 0 we have reduced our problem to a problem of independent spins. For a
system described by an Hamiltonian

H[~S] = −
∑

(i,j)

JijSiSj , (3.14)

where (i,j) means the sum over different pairs, the expansion of βG[β, ~m] until order 4 in β
is:

−βG[β, ~m] =−
∑

i

[
1 +mi

2
ln

(
1 +mi

2

)
+

1−mi

2
ln

(
1−mi

2

)]
(3.15)

+ β
∑

(i,j)

Jijmimj

+
β2

2

∑

(i,j)

J2
ij (1−m2

i )(1−m2
j )

+
2β3

3

∑

(i,j)

J3
ij mi(1−m2

i )mj(1−m2
j )

+ β3
∑

(i,j,k)

JijJjkJki(1−m2
i )(1−m2

j )(1−m2
k)

− β4

12

∑

(i,j)

J4
ij(1−m2

i )(1−m2
j )(1 + 3m3

i + 3m3
j − 15m2

im
2
j )

+ 2β4
∑

(ijk)

J2
ijJjkJkimi(1−m2

i )mj(1−m2
j )(1−m2

k)

+ β4
∑

(ijkl)

JijJjkJklJli(1−m2
i )(1−m2

j )(1−m2
k)(1−m2

l )

+ . . . (3.16)

where the notation (i,j), (i,j,k) and (i,j,k,l) means that one has to sum over all the distinct
pairs, triplets and quadruplets of spins. Unfortunately Feynman rules for a fully diagram-
matic expansion have not been found. We note that the first two terms of the expansion
are the terms that would be recovered via the mean-field approximation, which is correct for
infinite-ranged ferromagnetic models. The term of order β2 is the so called Onsager reac-
tion term, introduced by Thouless, Anderson and Palmer in their original work [40]. This
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high-temperature expansion, known as Plefka or Yedidia-Georges expansion, is a systematic
method for deriving TAP equations for different class of models and has been extensively
used in several different contexts in physics, from classical disordered systems [116, 117, 118]
to general quantum systems [119, 120, 121, 122].

3.3.2 Analysis of TAP equations in the thermodynamic limit

Let us consider the Hamiltonian of a model on a complete graph:

H[S] =
∑

i 6=j
JijSiSj . (3.17)

For this model, the stationary conditions

d

dmi
[−βG(β, ~m)] = 0 (3.18)

become:

−arctanh (mi) + β
∑

j( 6=i)
Jijmj − β2mi

∑

j( 6=i)
J2
ij(1−m2

j ) +O(β3) = 0 (3.19)

which are the so-called TAP equations for i = 1, . . . , N . In the case of fully connected
ferromagnetic model (Jij = 1/N for all (i,j)) we expect that at the minimum of the free
energy the magnetizations are all equal, mi = m. In this case the terms O(βn) with n ≥ 2
vanish for N → ∞ and we recover the stationary equation of the mean-field approach. In
the SK model Jij are Gaussian random variables with zero mean and variance J2

ij = J2/N ,

then the terms O(β2) in the TAP free energy are now relevant, but for N large we can
replace the J2

ij with their average. Still, the terms O(β3) can be neglected as they vanish for
N →∞. At high temperature these equations have only the paramagnetic solution mi = 0.
It can be interesting to study the stability of the paramagnetic solution as a function of the
temperature. We introduce the Hessian matrix of the paramagnetic minimum Mij :

βMij =
d [−βG(β, ~m)]

dmidmj

∣∣∣∣
~m=0

= (1 + β2J2)δij − βJij . (3.20)

Since the coupling matrix Jij belongs to the GOE ensemble, we can exploit results of RMT and
obtain that its spectrum, in the thermodynamic limit, is described by the Wigner semicircle
with support in [−2J, 2J ]. Consequently the spectrum of Mij , i.e. ρ(λ, β), has support on
[(1 − βJ)2, (1 + βJ)2], as depicted in figure 3.3. The minimal eigenvalue of the spectrum is
λmin = (1−βJ)2. We obtain that in the high-temperature regime, ρ(λ, β) has support in the
positive region, the paramagnetic minimum is stable. At β = 1/J , the minimal eigenvalue
vanishes and the semicircle touches 0: zero modes appear suggesting that for β > 1/J the
paramagnet becomes unstable. Contrary, according to TAP equations for β > 1/J , it seems
that the paramagnet is stable for all temperatures. This strange result is in fact incorrect:
the paramagnet becomes indeed unstable at low temperature. In fact, it can be shown
that the TAP equations do not make sense for the paramagnet at β > 1/J [123]. Since
Mij corresponds to the inverse susceptibility matrix χ−1

ij , at β = 1, the susceptivity matrix
presents a diverging mode: β = 1 can be considered the critical temperature of the SK model.
This result is consistent with the one obtained by Parisi via the replica approach [113].
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Figure 3.3: Pictorial representation of the averaged spectrum ρ(λ,T ) of the Hessian matrix
of the paramagnetic minimum of the TAP free energy of the SK model as a function of the
temperature T . The critical temperature of the SK model can be identified by the vanishing
of the minimal eigenvalue, i.e. the spectrum touching the origin.

3.4 Extreme Value Statistics

The aim of Extreme Value Statistics (EVS) theory is to describe properties of atypical re-
alizations of on ensemble of random variables: events which lie in the tails of distributions.
Let us consider the maximum Xn over an ensemble of n random variables (x1, x2, . . . , xn),
defined via:

Xn = max(x1, x2, . . . , xn) . (3.21)

Given the probability distribution P (x1, x2, . . . , xn), we are interested in characterizing the
probability distribution of Xn. This characterization can help solving practical problems. In
1709 Nicolas Bernoulli tried to answer the question: given an ensemble of n people dying
randomly in a lapse of t years, what is the typical mean-life of the last survived person? The
same kind of problems can also be found extreme events in hydrology [124] – water-flood of
rivers – or geology [125] – earthquakes. More recently, EVS drew the attention of the financial
community in the evaluation of risk [126]. One of the roles of financial markets is actually to
allow different actors in the economic world to trade their risks, which requires pricing them.
Let us suppose that the price of a stock in a market at day t xt changes daily randomly:

xt+1 = xt + η (3.22)

where η is a random variable. What is the probability that the biggest loss is larger than a
value Λ in a period of n days?

A complete presentation of the theory of EVS can be found in the book of Gumbell [127],
but let also cite the first articles on this topic [128, 129, 130, 131]. In this section we will
introduce the results of the theory of EVS for independent and identically distributed (iid)
random variables and some recent results of physical interest on the case of correlated random
variables.
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3.4.1 Extreme Value Statistics for iid random variables

Let us consider an ensemble of independent and identically distributed (iid) random variables
(x1, x2, . . . , xn) with p(x) the probability density function (pdf) of every random variable. The
joint pdf of (x1, x2, . . . , xn) is:

P (x1, x2, . . . , xn) =
n∏

i=1

p(xi) . (3.23)

We define Xn = max(x1, x2, . . . , xn) and we introduce the scaling variable

z =
Xn − an

bn
. (3.24)

The non-universal coefficients an and bn - depending on the pdf p(x) - are such that the
following limit exists:

lim
n→∞

P

[
Xn − an

bn
< z

]
= Fk(z) . (3.25)

In the case of iid random variables the theorem [131] assures the existence of a pair of
sequences (an, bn) such that the limit of equation 3.25 converges to one of the following
distributions:

Gumbel : FI(z) = exp(−e−z) (3.26)

Frechet : FII(z) =

{
0 if z ≤ 0

exp(−z−γ) if z > 0
(γ > 1) (3.27)

Weibull : FIII(z) =

{
exp(−|z|γ) if z ≤ 0

1 if z > 0
(γ > 1) . (3.28)

For pdf p(x) decreasing more rapidly than any power-law for x→∞, the limiting distribution
of z is Gumbel. The Frechet distribution is the limiting distribution of z for power-law pdf
p(x) ∼ 1/xγ+1 for x→∞. In the case the support of the pdf p(x) is limited on a domain [I, S]
or ]−∞, S] and near the right bound S p(x) behaves as (S−x)γ−1, the limiting distribution
of z is Weibull.

3.4.2 The Tracy–Widom Distribution

We have seen that for independent random variables the limiting distribution of extreme val-
ues belong to three universality classes. Fewer results are known in the theory of EVS in the
case of non-independent random variables. A natural question is: what are the universality
classes when the random variables are correlated? Recently there has been an attempt at
identifying universality classes with the different schemes of replica-symmetry breaking in-
troduced in spin-glass theory [132]. A breakthrough in the field has been achieved by Tracy
and Widom [133, 134, 135, 136]. Tracy and Widom were able to calculate analytically the
limiting distribution of the largest eigenvalue of some classes of random matrices. Quite
remarkably, in the following years it has been found that this new distribution had evident
connections with other physical and mathematical models. In this section we will present how
the Tracy–Widom distribution has been introduced and some applications of physical interest.

We have seen in the previous sections that the eigenvalues of a Gaussian random matrix
are correlated random variables. The jpdf is:

P (λ1, . . . , λN ) = BN exp


−β

2




N∑

i=1

λ2
i −

∑

i 6=j
ln(|λi − λj |)




 (3.29)
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Figure 3.4: The Tracy-Widom distribution for β = 1, 2, 4. Image taken from [137].

Let us now concentrate on the largest eigenvalue of a gaussian random matrix λmax. From
the Wigner semicircle law it is clear that limN→∞〈λmax〉/

√
2N = 1. If we consider N large

but finite, this quantity has sample-to-sample fluctuations around its infinite-size mean
√

2N .
It can be interesting to characterize the scaling in N of these fluctuations and the limiting
distribution for N large but finite. This has been done quite recently by Tracy and Widom.
They showed that the random variable ξ =

√
2N1/6[λmax −

√
2N ], in the limit of large N ,

has a non-trivial limiting N -independent probability distribution

lim
N→∞

Prob[ξ < z] = Fβ(z) (3.30)

whose form depends on the value of the Dyson’s index β. The function Fβ(z), called the
Tracy-Widom (TW) distribution function, can be computed as a solution of a nonlinear
Painlevé differential equation. Let us reproduce its limits in the case β = 2:

F2(x) =

{
1−O(exp[−4z3/2/3]) as z →∞
exp[−|z|3/12] as z → −∞ .

The probability density function fβ(x) =
dFβ(x)

dx thus has highly asymmetric tails. The density
is depicted in figure 3.4. A convenient way to express these typical fluctuations of λmax around
its mean

√
2N is to write, for large N:

λmax =
√

2N +
χ√

2N1/6
(3.31)

where the random variable χ is distributed according the TW distribution.

We want to stress that the TW distribution is very robust. It has been shown that it
is the limiting distribution of the largest eigenvalue of matrices drawn from a larger class of
ensembles, e.g. when the entries are independent and identically distributed random vari-
ables drawn from an arbitrary distribution with all moments finite [138]. Fluctuations of
the largest eigenvalue of the adjacency matrix of a random regular graph are described by
the TW distribution [139]. Interested in financial applications, Biroli, Bouchaud and Potters
[140] extended these results to the case of a random matrices where each entry is drawn
independently from a power-law distribution [141].
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It is quite remarkable that the fluctuations of observables of a wide range of models are de-
scribed by the TW distribution, as pedagogically presented in the lecture notes of Majumdar
[142]. The TW distribution is the limiting distribution of the length of the Longest Increasing
Subsequence of random permutations [143], and in the Longest Common Subsequence prob-
lem [144] of biological inspiration. In physical models, the TW distribution appeared in a
range of models describing growth processes of interfaces. In order to give an example of the
growth process of an interface, consider the propagation of water on a sheet of paper when
a glass of water falls accidentally on the table. In order to understand this kind of physical
phenomena, discrete and continuous growth models have been introduced. Let us consider
the class of discrete models which directed polymers [145], polynuclear growth models [146]
and ballistic deposition models [144] belong to. It has been numerically tested that this class
of models share the same universal exponents of continuous non-linear Kardar-Parisi-Zhang
equation [147] describing the evolution of an interface. Recently, it has been also shown that
all these discrete growth models share the same common scaled height distribution (Tracy-
Widom). This finding allows to put the universality on a much stronger basis, going beyond
just the second moment of the distribution. On the other hand, for flat and droplet initial
condition, it has been shown that the limiting distribution of the height fluctuations of the
KPZ equation is described by the TW distribution [148, 149]. Despite several mathematical
efforts, the experimental evidence for the appearance of the KPZ universality class is quite
elusive. Let us cite the recent experimental work on turbulent liquid crystal growth [150, 151]
where the KPZ behaviour has been identified and the full distribution of the height fluctu-
ations measured, showing a good agreement with the TW distribution. Quite interestingly,
the TW distribution has been found to describe also the conductance fluctuations in two- and
three- dimensional Anderson insulators [152, 153] and has been measured in coupled random
lasers [154].



Chapter 4
Fluctuations of the pseudo-critical
temperature in SK model: an analytical
approach

4.1 Motivations

In this chapter we will focus on the problem of fluctuations of a suitably-defined pseudo-
critical temperature of the SK model due to the presence of disorder. We will use an analytical
approach in order to investigate this problem. The problem of fluctuations of the pseudo-
critical temperature relies on a definition of pseudo-critical temperature. This definition is
subject to some arbitrariness, but some features must be verified in order to be consistent
with the thermodynamic limit. First of all, the probability distribution of this quantity must
shrink to a delta function centered on β∞c if the system size tends to infinity, N →∞. On the
other hand, we can expect that, for large but finite N , the fluctuations of the pseudo-critical
temperature follow the scaling form:

βNc (w) = β∞c + a
ϕ(w)

Nα
(4.1)

where ϕ(w) is a random variable distributed according to a limiting size-independent distri-
bution p(ϕ) and α a scaling exponent.

In chapter 3 we have considered the TAP approach to the SK model. The TAP approach
is well suited in order to describe disorder sample-to-sample fluctuations of a physical ob-
servable, since the TAP free energy is constructed for every single realization of the disorder
and not averaged over the disorder distribution. We have seen that the critical temperature
can be identified studying the stability of the paramagnetic minimum of the TAP free energy
in the high-tempertature phase in the thermodynamic limit. The stability of the paramag-
netic minimum is encoded in the spectrum of its Hessian matrix. The Hessian matrix is a
random matrix, depending on the realization of the disorder, drawn from the GOE ensemble
of Gaussian Random Matrices. In the thermodynamic limit, its spectrum is described by
the Wigner semicircle law and has positive support in the high-temperature phase, so that
the paramagnet is stable. The critical temperature can be identified by the vanishing of the
minimal eigenvalue of the Hessian matrix, corresponding to an instability of the paramagnetic
minimum and to a diverging susceptivity. In the present chapter we want to generalize this
approach to systems of finite but large size N . In this case, we can exploit the results by
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Tracy and Widom (TW) concerning the fluctuation of the minimal eigenvalue of a random
matrix in the GOE ensemble. In order to do that, we have to perform a careful analysis of
the Plefka-Yedidia-Georges expansion. The results of this work have been published in [42].

4.2 The Model

Let us write the Hamiltonian of the SK model in the following form:

H[{Si},{xij}] = − J

N1/2

N∑

i 6=j=1

xijSiSj +
N∑

i=1

hiSi (4.2)

where Si = ±1 and the couplings {xij}i 6=j=1,··· ,N ≡ {x} are distributed according to normal
distribution with zero mean and unit variance, and J is a parameter fixing the strength of
the interaction energy between spins. We have seen in chapter 3 that the TAP free energy
can be obtained as an expansion in powers of the parameter

α ≡ βJ

N1/2
,

where β is the inverse temperature of the model, as shown by Plefka [115] and Yedidia and
Georges [114]. It is a general fact that, if the model is on a complete graph, the Plefka
expansion truncates to a finite order in α, because the terms of higher order should vanish in
the thermodynamic limit. In particular, for the SK model the orders of the expansion larger
than three vanish [155] in the limit N →∞, in such a way that the expansion truncates, and
one is left with the first three orders of the α-series, which read:

− βf({mi}, β) = −
∑

i

[
1 +mi

2
ln

(
1 +mi

2

)
+

1−mi

2
ln

(
1−mi

2

)]

+α
∑

(ij)

xijmimj

+α2
∑

(ij)

x2
ij(1−m2

i )(1−m2
j ), (4.3)

where (ij) means the sum over all distinct pairs and mi ≡ 〈Si〉 is the local magnetization,
i. e. the thermal average 〈· · · 〉 of the spin Si performed with the Boltzmann weight given
by Eq. (4.2) at fixed disorder {x}. In the thermodynamic limit, N → ∞, for temperatures
T > Tc, the only minimum of TAP free energy of the SK model is the paramagnetic minimum
mi = 0 ∀i. Below the critical temperature, the TAP free energy presents exponentially-many
different minima, the system is in the glassy phase. The Hessian matrix of f is defined by:

βHij ≡ β
∂hi
∂mj

=
∂2(βf)

∂mi∂mj
, (4.4)

and evaluated in the paramagnetic minimum at leading order in N is:

βHij = (1 + β2J2)δij − αxij . (4.5)

The rest of this chapter is structured as follows. In Section 4.3, we generalize Eq. (4.5) to finite
sizes, in the simplifying assumption that the Plefka expansion can be truncated up to order
α2, which is known as the TAP approximation. We then study the finite-size fluctuations of
the minimal eigenvalue λ of the susceptibility matrix, and find them to be governed by the
TW distribution. In Section 4.4, we extend this simplified approach by taking into account
the full Plefka expansion, by an infinite re-summation of the series. Hence, in Section 4.5, we
give a suitable definition of a finite-size pseudo-critical temperature, and show the fluctuations
of the latter to be governed by the TW distribution.
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4.3 Finite-size analysis of the Hessian matrix in the TAP ap-
proximation

In this Section we study the finite-size fluctuations due to disorder of the minimal eigenvalue
of the Hessian matrix βHij of the paramagnetic minimum mi = 0∀i, by considering the free
energy f in the TAP approximation, Eq. (4.3). Back to the TAP equations (4.3), the inverse
susceptibility matrix in the paramagnetic minimum for finite N reads:

βHij = −αxij + δij


1 + α2

∑

k 6=i
x2
ki




= −αxij + δij
(
1 + β2J2

)
+ δij

(βJ)2

√
N

zi2, (4.6)

where

zi2 ≡
√
N


 1

N

∑

k 6=i
x2
ki − 1


 . (4.7)

According to Eq. (4.7), zi2 is given by the sum of N − 1 independent identically-distributed
random variables x2

ij . By the central limit theorem, at leading order in N the variable zi2 is
distributed according to a Gaussian distribution with zero mean and variance 2

pN (zi2 = z)
N→∞→ 1√

4π
e−z

4/4, (4.8)

where pN (zi2 = z) denotes the probability that zi2 is equal to z at finite size N . We set

βHij ≡ δij
(
1 + β2J2

)
+ αMij . (4.9)

According to Eq. (4.7), the diagonal elements of Mij are random variables correlated to
out-of-diagonal elements. The statistical properties of the spectrum of a random matrix
whose entries are correlated to each other has been studied heretofore only in some cases.
For instance, Staring et al. [156] studied the mean eigenvalue density for matrices with a
constraint implying that the row sum of matrix elements should vanish, and other correlated
cases have been investigated both from a physical [157] and mathematical [158] point of view.

For βJ = 1 if zi2 were independent on {x}, the matrix Mij would belong to the GOE
ensemble. In that case, for N large but finite, we know that the fluctuations of the minimal
eigenvalue λ of the Hessian matrix βHij due to the disorder would be described by the scaling
form:

λ =
1

N2/3
φ, (4.10)

where φ is a random variable distributed according to the TW distribution pGOE(φ). As
shown in Appendix 4.7, this is indeed the case for zi2, which can be treated, at leading order
in N , as a random variable independent on xij . The general idea is that zi2 is given by the
sum of N − 1 terms all of the same order of magnitude, and only one amongst them depends
on xij . It follows that at leading order in N , zi2 can be considered as independent on xij .
Since in Eq. (4.6) zi2 is multiplied by a sub-leading factor 1/

√
N , in Eq. (4.6) we can consider

zi2 at leading order in N , and treat it as independent on xij . To test this independence
property, we set βJ = 1, generate numerically S � 1 samples of the N × N matrix βHij ,
and compute the average density of eigenvalues of βHij , together with the distribution of the
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minimal eigenvalue λ for several sizes N . The averaged eigenvalue distribution ρN (λ) as a
function of λ is depicted in Fig. 4.1, and tends to the Wigner semicircle as N is increased,
showing that the minimal eigenvalue λ tends to 0 as N →∞. The finite-size fluctuations of
λ around 0 are then investigated in Fig. 4.2. Defining φ in terms of λ by Eq. (4.10), in Fig.
4.2 we depict the distribution pN (φ) of the variable φ for several sizes N , and show that for
increasing N , pN (φ) approaches the TW distribution pGOE(φ). Let us introduce the central
moments

µN1 ≡ EN [φ],

µNi ≡ EN [(φ− EN [φ])i]∀i > 1

of pN (φ), and the central moments

µGOE
1 ≡ EGOE[φ],

µGOE
i ≡ EGOE[(φ− EGOE[φ])i] ∀i > 1

of the TW distribution, where

EN [·] ≡
∫
dφ pN (φ) · ,

EGOE[·] ≡
∫
dφ pGOE(φ) · .

In the inset of Fig. 4.2 we depict µNi for several sizes N and µGOE
i as a function of i, showing

that µNi converges to µGOE
i as N is increased. In Figure 4.3 this convergence is clarified by

depicting ∆µNi ≡ (µNi − µGOE
i )/µGOE

i for several values of i > 1 as a function of N . ∆µNi is
found to converge to 0 for large N . In the inset of Fig. 4.3 we depict ∆µN1 as a function of N ,
showing that the convergence of the first central moment with N is much slower than that of
the other central moments. It is interesting to observe that a slowly-converging first moment
has been recently found also in experimental [150] and numerical [159] data of models of
growing interfaces where the TW distribution appears.
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The analytical argument proving the independence property of zi2 has been thus confirmed
by this numerical calculation. Hence, the main result of this Section is that the finite-size
fluctuations of the minimal eigenvalue of the Hessian matrix βHij in the TAP approximation
for βJ = 1 are of order N−2/3 and are distributed according to the TW law. These fluc-
tuations have already been found to be of order N−2/3 in a previous work [160], and more
recently reconsidered [161], following an independent derivation based on scaling arguments,
even though the distribution has not been worked out. Our approach sheds some light on
the nature of the scaling N−2/3, which is non-trivial, since it comes from the N−1/6-scaling
of the TW distribution, which is found to govern the fluctuations of λ.

We now recall that both the derivation of this Section and the previously-developed anal-
ysis of Bray and Moore [160] rely on the TAP approximation, i. e. neglect the terms of the
Plefka expansion (4.11) of order larger than 2 in α. As we will show in the following Sec-
tion, these terms give a non-negligible contribution to the finite-size corrections of the TAP
equations, and so to the finite-size fluctuations of the critical temperature, and thus must be
definitely taken into account in a complete treatment.
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4.4 Finite-size analysis of the Hessian matrix within the full
Plefka expansion

In this Section we compute the Hessian matrix βHij for a system of large but finite size N
by taking into account all the terms of the Plefka expansion, in the effort to go beyond the
TAP approximation of Section 4.3. Notwithstanding its apparent difficulty, here we show
that this task can be pursued by a direct inspection of the terms of the expansion. Indeed,
let us formally write the free-energy f as a series in α,

f({m}, β) =

∞∑

n=0

αnfn({m}, β). (4.11)

For n < 3, the fns are given by Eq. (4.3). For n > 3, fn is given by the sum of several
different addends, which proliferate for increasing n, as shown in chapter 3. It is easy to show
that at leading order in N , there is just one term contributing to fn, and that such term can
be written explicitly as

fn({m}, β)
N→∞≈

∑

i1>···>in−1

xi1i2xi2i3 · · ·xin−1i1 (4.12)

×(1−m2
i1)× · · · × (1−m2

in−1
).

It follows that by plugging Eq. (4.12) in Eq. (4.11) and computing the Hessian matrix βHij

for mi = 0, one obtains a simple expression:

βHij = −αxij + δij


1 + α2

∑

k 6=i
x2
ki + 2

∞∑

n=3

αn
∑

i1>···>in−1

xii1xi1i2 · · ·xin−1i




= −αxij + δij
(
1 + β2J2

)
+ δij

1√
N

[
(βJ)2zi2 + 2

∞∑

n=3

(βJ)n√
(n− 1)!

zin

]
. (4.13)



4.4 Finite-size analysis of the Hessian matrix within the full Plefka expansion 61

where

zin ≡
√

(n− 1)!

N
n−1

2

×

×
∑

i1>···>in−1

xii1xi1i2 · · ·xin−1i,∀n > 2. (4.14)

According to Eq. (4.14), one has that at leading order in N

Ex[zin] = 0 ∀n > 2,

Ex[(zin)2] = 1 ∀n > 2, (4.15)

where in the second line of Eq. (4.15) the multiple sum defining zin has been evaluated at
leading order in N .

We observe that the random variables zin and xjk in Eq. (4.13) are not independent, since
each zin depends on the bond variables {x}. Following an argument similar to that given in
Section 4.3 for zi2, we observe that, by Eq. (4.14) and at leading order in N , zin is given by a
sum of O(Nn−1) terms which are all of the same order of magnitude. Each term is given by
the product of n−1 bond variables xii1xi1i2 · · ·xin−1i forming a loop passing by site i. For any
fixed i,j,k and n, only O(Nn−2) terms amongst the O(Nn−1) terms of zin are entangled with
the random bond variable xjk. It follows that at leading order in N , zin can be considered
as independent by xjk. Since the sum in the second line of Eq. (4.13) has a 1/

√
N factor

multiplying each of the zins, we can consider the zin at leading order in N . Hence, in Eq.
(4.13) we can consider each of zins as independent on xjk. In Appendix 4.8 we show that at
leading order in N the distribution of zin is a Gaussian with zero mean and unit variance for
every i and n > 2, while in Appendix 4.9 we show that at leading order in N the variables
{zin}n,i are mutually independent. Both these predictions are confirmed by numerical tests,
illustrated in Appendix 4.8 and 4.9 respectively.

Hence, at leading order in N the term in square brackets in Eq. (4.13) is nothing but the
sum of independent Gaussian variables, and is thus equal to a random variable σ× ζi, where
ζi is Gaussian with zero mean and unit variance, and

σ2 = 2(βJ)4 + 4

∞∑

n=3

(βJ)2n

(n− 1)!

= 2(βJ)2{2(e(βJ)2 − 1)− (βJ)2}

It follows that Eq. (4.13) becomes

βHij = −αxij + δij

(
1 + β2J2 +

σ√
N
ζi

)

= −αx′ij + δij
(
1 + β2J2

)
, (4.16)

where
x′ij ≡ xij − δij

σ

βJ
ζi. (4.17)

Because of the additional diagonal term in Eq. (4.17), the matrix x′ij does not belong to
the GOE ensemble, but it falls in the class of Wigner matrices. It has been shown by
Soshnikov[138] that the presence of the diagonal elements in Eq. (4.17) does not alter the
universal distribution of the maximal eigenvalue of x′ij , which is still distributed according to
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the TW law. Hence, we have that, for N large but finite, the fluctuations of the the minimal
eigenvalue λ of the Hessian matrix in the paramagnetic minimum βHij due to the disorder
are described by the relation:

λ = (1− βJ)2 +
βJ

N2/3
φGOE, (4.18)

where φGOE is a random variable depending on the disorder sample xij , and distributed ac-
cording to the TW law.

To summarize, in this Section we have calculated the Hessian matrix βHij , by considering
the full Plefka expansion. In this framework additional diagonal terms are generated. These
terms were not present in the TAP approximation. For large but finite N , all these additional
terms can be handled via a resummation to all orders in the Plefka expansion. As a result,
we obtain that the fluctuations of the minimal eigenvalue λ of the Hessian matrix are still
governed by the TW law, as in the TAP case treated in Section 4.3.

4.5 Finite size fluctuations of the pseudo-critical temperature

We can now define a finite-size critical temperature, and investigate its finite-size fluctuations
due to disorder.

In the previous Sections we have shown that for a large but finite size N , the minimal
eigenvalue of the Hessian matrix of βf({m}, β) evaluated in the paramagnetic minimum
mi = 0, is a function of the temperature and of a quantity φGOE, which depends on the real-
ization of the disorder {x}. Since the TW law, i. e. the distribution of φGOE, has support for
both positive and negative values of φGOE, the subleading term in Eq. (4.18) can be positive
or negative. Accordingly, for samples {x} such that φGOE < 0, there exists a value of βJ ≈ 1
such that λ(βJ) = 0. Since the Hessian matrix is by definition equal to to inverse susceptivity
matrix, a vanishing mode of the Hessian matrix implies that the spin-glass susceptibility in
the paramagnetic minimum diverges. This fact is physically meaningless, since there cannot
be divergences in physical quantities at finite size. This apparent contradiction can be easily
understood by observing that if λ(βJ) = 0, the true physical susceptibility is no more the
paramagnetic one, but must be evaluated in the low-lying non-paramagnetic minima of the
free-energy, whose appearance is driven by the emergent instability of the paramagnetic min-
imum.

According to this discussion, in the following we will consider only samples {x} such
that φGOE > 0. For these samples, the spectrum of the Hessian matrix at the paramagnetic
minimum has positive support for every temperature: the paramagnetic solution is always
stable. We define a pseudo-inverse critical temperature βcJ as the value of βJ such that λ
has a minimum at βcJ , as depicted in figure 4.4

dλ

dβJ

∣∣∣∣
βJ=βcJ

≡ 0

= −2(1− βcJ) +
1

N2/3
φGOE (4.19)

where in the second line of Eq. (4.19), Eq. (4.18) has been used. This definition of pseudo-
critical temperature has a clear physical interpretation: the stability of the paramagnetic
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Figure 4.4: A pictorial representation of the definition of the pseudo-critical temperature
given in Eq. (4.19).

minimum, which is encoded into the spectrum of the Hessian matrix βHij , has a minimum
at β = βc.

According to Eq. (4.19), the finite-size critical temperature βc is given by

βcJ = 1− 1/2

N2/3
φGOE, (4.20)

where φGOE depends on the sample {x}, and is distributed according to the TW law.

Eq. (4.20) shows that the pseudo-critical temperature of the SK model, defined via Eq.
(4.19), is a random variable depending on the realization of the quenched disorder: finite-
size fluctuations of the pseudo-critical temperature are of order N−2/3, and are distributed
according to the TW law. This has to be considered the main result of this chapter.

4.6 Conclusions and perspectives

In this section we have studied the problem of fluctuations of a finite-size pseudo-critical
temperature of a spin-glass model on a complete graph, the Sherrington-Kirkpatrik model.
We have performed a finite-size analysis of the TAP free energy and studied the stability of
the paramagnetic minimum in the high-temperature phase. A definition of pseudo-critical
temperature was introduced, and, exploiting results from Extreme Value Statistics in the
context of Random Matrix Theory, we have shown that the fluctuations of the pseudo-critical
temperature due to the disorder are described by the relation:

βNc ({x})J = 1− 1/2

N2/3
φGOE({x}), (4.21)

where φGOE({x}) is a random variable depending on the realization of the disorder and dis-
tributed according to the Tracy-Widom distribution. To our knowledge, this is the first time
that the fluctuations of the pseudo-critical temperature of the SK model are studied. We con-
sider this result interesting since this is also the first time that the ubiquitous Tracy-Widom
distribution plays a role in spin-glass models.
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This result opens several perspectives. First of all, it could be interesting to introduce
a definition of pseudo-critical temperature which can be measured in numerical experiments
since it is not possible to use the present one. It could be interesting then to test with numer-
ical simulations which features of the present result are definition-dependent and which are
universal. Numerical simulations can then be extended to other spin-glass models, like the
Edward-Anderson model, for which the present analysis can not be pursued. This analysis
has been done and the results will be presented in chapter 5.

In recent years, we have witnessed a growing interest for spin-glass models for which the
coupling strengths are drawn from a Lévy distribution [162, 163, 164, 165]. The main featere
of these distributions are power-law tails resulting in diverging moments. On the other hand
some insight on the spectral theory of random matrices with Lévy-distributed entries have
been achieved [166, 140]. In the light of these results, it could be interesting to investigate
the fluctuations of the pseudo-critical for the Lévy-spin-glass models.

On the other hand, it could be interesting to consider spin-glass models in the 1RSB
universality class, which present a dynamical critical temperature, like the p-spin model,
and study the fluctuations of the pseudo-critical temperature in that case. We have seen
that results from Random Matrix Theory allowed to obtain information about the dynamical
critical temperature in the context of the topological transition of the p-spin model, according
to the discussion introduced in Chapter 3. Is it possible to exploit the results of Tracy and
Widom in order to characterize the fluctuations of a pseudo-critical temperature also in this
context?

4.7 Appendix: Proof of the asymptotic independence of xij
and zi2

Here we show that at leading order in N the variables xij and zi2 are independent, i. e. that
at leading order in N

pN (xij = x, zi2 = z) = pN (xij = x)× pN (zi2 = z). (4.22)

Let us explicitly write the left-hand size of Eq. (4.22) as

pN (xij = x, zi2 = z) = E{xik}k 6=i [δ(xij − x)δ(zi2 − z)],

= Exij


δ(xij − x)E{xik}k 6=i,k 6=j


δ


√N


 1

N

∑

k 6=i,k 6=j
x2
ki − 1


− zij2






 (4.23)

where Exlm,xno,··· denotes the expectation value with respect to the probability distributions
of the variables xlm, xno, · · · , δ denotes the Dirac delta function, and

zij2 ≡ z −
x2
ij√
N
. (4.24)

Proceeding systematically at leading order in N , the second expectation value in the second
line of Eq. (4.23) is nothing but the probability that the variable

√
N( 1

N

∑
k 6=i,k 6=j x

2
ki− 1) is

equal to zij2 . We observe that according to the central limit theorem, at leading order in N
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this probability is given by

E{xik}k 6=i,k 6=j


δ


√N


 1

N

∑

k 6=i,k 6=j
x2
ki − 1


− zij2




 =

1√
4π

e−
(zij2 )

2

4 . (4.25)
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By plugging Eq. (4.25) into Eq. (4.23) and using Eq. (4.24), one has

pN (xij = x, zi2 = z) =
1√
4π

∫
dxijP (xij)δ(xij − x)×

×e−
(z−x2

ij/
√
N)

2

4

= P (x)
1√
4π

e−
(z−x2/

√
N)

2

4

= pN (xij = x)× pN (zi2 = z), (4.26)

where in the first line Eq. (4.26) we explicitly wrote the expectation value with respect to xij
in terms of the probability distribution P (xij), while in the third line proceeded at leading
order in N , and used Eq. (4.8).

4.8 Appendix: Computation of the probability distribution of
zin

Here we compute the probability distribution of zin at leading order in N . Let us define a
super index L ≡ {i1, . . . , in−1}, where L stands for ‘loop’, since L represents a loop passing
by the site i. Let us also set XL ≡ xii1xi1i2 · · ·xin−1i. By Eq. (4.14) one has

zin =

√
(n− 1)!

N
n−1

2

∑

L

XL,∀n > 2. (4.27)

We observe that the probability distribution of XL is the same for every L. Hence,
according to Eq. (4.27), zin is given by the sum of equally distributed random variables.
Now pick two of these variables, XL, XL′ . For some choices of L,L′, XL and XL′ are not
independent, since they can depend on the same bond variables xij . If one picks one variable
XL, the number of variables appearing in the sum (4.27) which are dependent on XL are
those having at least one common edge with the edges of XL. The number of these variables,
at leading order in N , is O(Nn−2), since they are obtained by fixing one of the n− 1 indexes
i1, · · · , in−1. The latter statement is equivalent to saying that if one picks at random two
variables XL, XL′ , the probability that they are correlated is

O(Nn−2/Nn−1) = O(N−1). (4.28)

Hence, at leading order in N we can treat the ensemble of the variables {XL}L as inde-
pendent. According to the central limit theorem, at leading order in N the variable

√
(n− 1)!

N
n−1

2

zin =
1

Nn−1

(n−1)!

∑

L

XL

is distributed according to a Gaussian distribution with mean Ex[XL] = 0 and variance

Ex



(√

(n− 1)!

N
n−1

2

zin

)2

 =

Ex[X2
L]

Nn−1

(n−1)!

=
1

Nn−1

(n−1)!

, (4.29)

where in Eq. (4.29) Eq. (??) has been used. It follows that at leading order in N , zin is
distributed according to a Gaussian distribution with zero mean and unit variance

pN (zin = z)
N→∞→ 1√

2π
e−

z2

2 , (4.30)
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where pN (zin = z) is defined as the probability that zin is equal to z at size N .

Eq. (4.30) has been tested numerically for the first few values of n: pN (zin = z) has been
computed by generating S � 1 samples of {x}, and so of zin. For n = 3,4, the resulting
probability distribution pN (zin = z) converges to a Gaussian distribution with zero mean and
unit variance as N is increased, confirming the result (4.30). This convergence is shown in
Fig. 4.5, where pN (z1

4 = z) is depicted for different values of N together with the right-hand
side of Eq. (4.30), as a function of z.

4.9 Appendix: Independence of the zins at leading order in N

Let us consider two distinct variables zin, z
j
m, and proceed at leading order in N .

Following the notation of Appendix 4.8, we write Eq. (4.14) as

zin =

√
(n− 1)!

N
n−1

2

∑

L

XL, (4.31)

zjm =

√
(m− 1)!

N
m−1

2

∑

L′
XL′ , (4.32)

where L,L′ represent a loop of length n,m passing by the site i,j respectively. Some of the
variables XL depend on some of the variables XL′ , because they can depend on the same
bond variables xij . Let us pick at random one variable XL appearing in zin, and count the

number of variables XL′ in zjm that are dependent on XL. At leading order in N , these are
given by the number of XL′ having at least one common bond with XL, and are O(Nm−2).
Hence, if one picks at random two variables XL, XL′ in Eqs. (4.31), (4.32) respectively, the
probability that XL, XL′ are dependent is

O(Nm−2/Nm−1) = O(N−1).

It follows that zin and zjm are independent at leading order in N , i. e. for N →∞

pN (zin = z, zjm = z′) = pN (zin = z)× pN (zjm = z′), (4.33)

where pN (zin = z, zjm = z′) denotes the joint probability that zin equals z and zjm equals z′,
at fixed size N .

Eq. (4.33) has been tested numerically for n = 3,m = 4: pN (z1
3 = z, z1

4 = z′) has
been computed by generating a number S � 1 of samples of {x}, and so of z1

3 , z
1
4 . As a

result, the left-hand side of Eq. (4.33) converges to the right-hand side as N is increased,
confirming the predictions of the above analytical argument. This is shown in Fig. 4.6, where
p1024(z1

3 = z, z1
4 = z′) is depicted together with the N → ∞-limit of the right-hand side of

Eq. (4.33) (see Eq. (4.30)), as a function of z,z′.
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Chapter 5
Fluctuations of pseudo-critical temperatures
in spin-glass models: a numerical study

5.1 Motivations

In chapter 3 we have introduced the problem of fluctuations of a pseudo-critical tempera-
ture in a finite-size disordered system due to the presence of disorder. In chapter 4 we have
presented an analytical approach to this problem, studying the stability of the paramagnetic
minimum of the TAP free energy in the high-temperature phase, considering the full analysis
of the Plefka expansion. A definition of pseudo-critical temperature has been introduced and,
borrowing results from Random Matrix Theory and Extreme Values Statistics, we obtained
that the fluctuations of such pseudo-critical temperature are distributed according to the
Tracy-Widom (TW) distribution, at least in a given temperature range.

In order to get a better understanding of the role played by Extreme Value Statistics in
connection with the fluctuations of physical observables in spin-glass models, we have investi-
gated the fluctuations of the pseudo-critical temperatures by means of numerical simulations.
Generally speaking, the presence for disorder and frustration, which are responsible of a cor-
rugated (free) energy landscape, renders the numerical investigation of spin-glass models a
daunting task. Sophisticated computational methods, like parallel tempering and multi-spin
coding, allow to simulate efficiently these models.

First, in order to investigate numerically the fluctuations of a pseudo-critical tempera-
ture, one must introduce a definition of such a temperature. Unfortunately, observables which
present a sharp peak as a function of the temperature in the critical region, which can play the
role of a pseudo-critical temperature, do not exist in spin-glass models. On the other hand, we
know, by the full-RSB scheme introduced in the Introduction, that the variance of the overlap
distribution, i.e. 〈q2〉, is an indicator of the spin-glass transition. The spin-glass susceptibility
χSG = N〈q2〉 is a quantity that diverges in all the spin-glass phase and stays finite in the
paramagnetic phase. We have decided to consider these observables in our numerical sim-
ulations. A precise definition of the pseudo-critical temperature will be given in the following.

In our numerical simulations we have considered two fully-connected spin-glass models:
the Sherrington-Kirpatrick model with gaussian and binary couplings, and a short-range
spin-glass model, the Edward-Anderson model with binary couplings. The binary nature of
interactions of some of these models allows to implement the fast multi-spin coding simulation
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technique. We observe that the features of fluctuations of the pseudo-critical temperature
are quite similar in the SK model with both gaussian and binary couplings, described by the
same scaling exponent and by the same limiting distribution, once again the TW distribution.
On the other hand, we observe that for the EA model the fluctuations are described with
good accuracy by the Gumbel distribution. These two results put in evidence a strong
link between the fluctuations of a physical observable in spin-glass models and the theory of
Extreme Value Statistics. If the features of the fluctuations of the pseudo-critical temperature
of the SK model, in some sense, can be explained by the analysis presented in chapter 4, the
features concerning the EA model are, to our eyes, quite unexpected. We propose a tentative
argument in order to understand our observations. The results presented in this chapter have
been published in [43].

5.2 Models and the observables

Let us firstly introduce the models and the physical observables that we have considered in
our numerical simulations. We consider a system of N spins Si = ±1 located at the vertices
of a graph, interacting via the Hamiltonian

H[~S] = −
∑

(i,j)

JijSiSj , (5.1)

where the sum runs over the interacting spin pairs (i,j). We consider:

• GSK: Sherrington-Kirpatrick model with Gaussian couplings [4]. The underlying graph
of the model is a complete graph: the interacting spin-pairs are all the distinct pairs.
The couplings Jij are independent identically distributed (i.i.d.) Gaussian random
variables with zero mean and variance 1/N .

• BSK: Sherrington-Kirpatrick model with binary couplings [167]. The underlying graph
of the model is a complete graph. The couplings Jij are i.i.d. random variables equal
to ±1/

√
N with equal probability.

• EA: 3-d Edwards-Anderson model [3]. The underlying graph of the model is a three-
dimensional cubic lattice with periodic boundary conditions: the interacting spin-pairs
are the nearest-neighbors pairs. The couplings Jij are i.i.d. random variables equal to
±1 with equal probability.

Let us now define the physical observables used to carry on the numerical analysis of the
problem. Given two real spins replicas ~S1, ~S2, their mutual overlap

q ≡ 1

N

N∑

i=1

S1
i S

2
i (5.2)

is a physical quantity characterizing the spin glass-transition in the thermodynamic limit
[5, 31]:

〈q2〉J (β) =

{
0 β < βc
> 0 β > βc

(5.3)

where 〈· · · 〉J denotes the thermal average performed with the Boltzmann weight defined by

the Hamiltonian H[~S], β ≡ 1/T is the inverse temperature, and · · · stands for the average
over quenched disorder J ≡ {Jij}ij . The spin-glass susceptivity χGS is related to the second
moment of the overlap probability distribution P (q) by:

χSG(β) = N〈q2〉J (β) . (5.4)
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parameter B as a function of the temperature T for N = 128,256 and average pseudo-critical
temperature T 128

c .



72 Fluctuations of pseudo-critical temperatures in spin-glass models: a numerical study

A further observable is the Binder parameter

B(T ) ≡ 1

2

(
3− 〈q4〉J

(〈q2〉J )2

)
, (5.5)

measuring the deviation of the overlap probability distribution P (q) [113] from a Gaussian
distribution. People usually define an average finite-size pseudo-critical temperature TNc ,
which depends on the system size N , as the temperature at which the Binder parameter of
a system of size 2N crosses the Binder parameter of a system of size N [168].

We are now in a position to define a finite-size critical temperature TcJ = 1/βcJ , and
study its fluctuations with respect to quenched disorder. We consider as observable 〈q2〉J
as a function of the temperature T for several samples of the quenched disorder J . In
analogy with Eq. (5.3), we define the critical temperature βcJ as the value of β such that
〈q2〉J (βcJ ) significantly differs from zero, i. e. is critical. Since a typical critical value of the
square overlap at size N is 〈q2〉J (βcN ), the above qualitative definition is easily cast into the
quantitative relation

〈q2〉J (βcJ ) = 〈q2〉J (βcN ) . (5.6)

Both for the GSK and BSK model, βNc is chosen to be the average critical temperature at
size N , which is defined as the temperature at which the Binder parameter, Eq. (5.5), of a
system of size N equals the Binder parameter of a system of size 2N . For the EA model
we simply take βcN to be equal to the infinite-size critical temperature βc = 0.855 [169],
because in this case the Binder parameters cross at a temperature which is very close to the
infinite-size critical temperature βc. The definition of the pseudo-critical temperature given
by Eq. (5.6) is qualitatively depicted in Fig. 5.1.

The distribution of βcJ can be characterized by its mean βcJ , its variance σ2
N ≡ β2

cJ −
βcJ

2
and by the PDF pN (xJ ) of the natural scaling variable

xJ ≡ (βcJ − βcJ )/σN . (5.7)

We can expect that, to leading order in N , σN ∼ N−φ and that, for large N , pN (xJ ) converges
to a nontrivial limiting PDF p∞(xJ ).

5.3 Some details on numerical methods

The observables of the SK and the EA model have been computed with MC simulations,
which have been performed with the Parallel Tempering (PT) algorithm [170, 171, 172]. As
explained in a recent review [173], the general idea of parallel tempering is to simulate M
replicas of the system, each replica at a different temperature. The high-temperature systems
are generally able to sample large volumes of phase space, whereas low-temperature systems,
whilst having precise sampling in a local region of phase space, may become trapped in local
energy minima during the timescale of a typical computer simulation. Parallel tempering
achieves good sampling by allowing the systems at different temperatures to exchange com-
plete configurations. Thus, the inclusion of higher temperature systems ensures that the lower
temperature systems can access a representative set of low-temperature regions of phase space.

The multispin-coding technique [31] has been implemented for the studied models with
binary couplings. In the simulation of a system with binary variables, only one bit is required
for storing the information of a single spin, then a computer word can store the information
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of several spins at the same time. The Monte Carlo spin flip process can then be implemented
with the logical commands. This technique allows to reduce both storage and cpu times.

In table 5.1 we report the parameters used in our numerical simulations for the three
models considered: the GSK, the BSK and the EA. N is the system size, i.e. the number of
spins, Nreplica is the number of replicas used in the parallel tempering algorithm, βmin and
βmax define the thermal window investigated in our simulations and Nsamples is the number
of disorder samples simulated at a given system size and at given temperature. The large
number of samples investigated allows to have a good statistics in the estimation of the
distribution of the pseudo-critical temperature. Also larger sizes for the BSK model have
been investigated (N = 1024,2048,4096) but the small number of samples, compared to the
number of samples of smaller sizes, does not allow to investigate the probability distribution
of the pseudo-critical temperature. On the other hand, these sizes allowed us to have a better
estimation of the scaling exponent φ.
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Figure 5.3: Distribution of the pseudo-critical point both for the SK model with Gaussian cou-
plings (GSK) and for the SK model with binary couplings (BSK). PDF pN (xJ ) of the rescaled
critical temperature xJ for systems sizes N = 32,64,128,256 with 1.6× 104 ≤ S ≤ 4.7× 104

(GSK) and 2.9 × 104 ≤ S ≤ 9.8 × 104 (BSK) disorder samples, Tracy-Widom distribution
pTW(xJ ) (solid curve) and Gaussian distribution pG(xJ ) (dashed curve), both with zero
mean and unit variance. The plot has no adjustable parameters, and is in logarithmic scale
to highlight the behaviour of the distributions on the tails. Top inset: width σT N as a func-
tion of N and fitting function f(N) = aN−φ + bN−2φ, yielding φ = 0.34 ± 0.05. Bottom
inset: same plot as in the main plot in linear scale.
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5.4 Numerical results for the SK model

Monte Carlo simulations for the GSK and BSK model allowed for a numerical computation
of 〈q2〉J , of the Binder parameter B(T ) and so of βcJ for several disorder samples J .

In figure 5.2 we plot the Binder parameter for the GSK model for the investigated sizes and
temperatures. Let us now concentrate on the investigation of the fluctuations of the pseudo-
critical temperature. Data show that as the system size N is increased, βcJ approaches βc.

Setting TcJ ≡ 1/βcJ , σ2
T N ≡ T 2

cJ − TcJ
2 ∼ N−φ, the power law fit of σT N shown in Fig.

5.3 gives the value of the scaling exponent φ = 0.31±0.07 (GSK) and φ = 0.34±0.05 (BSK).
These values of φ are both consistent with the value φ = 1/3 that one would expect from
scaling arguments by considering the variable y ≡ N1/3(T − Tc) introduced in [174]. On
the other hand, the measured value of the scaling exponent φ is also consistent with other
measures performed by another group [175], while our work was being achieved.

The PDF pN of the rescaled variable xJ is depicted in Fig. 5.3. The curves pN (xJ )
collapse quite satisfyingly indicating that we are close to the asymptotic regimeN →∞. Even
though one could naively expect the fluctuations of the pseudo-critical point to be Gaussian,
Fig. 5.3 shows that this is not the case. In fact we find that the limiting distribution describing
the fluctuations of the pseudo-critical temperature, defined via equation (5.6), is described
with a good accuracy by the Tracy-Widom distribution, at least in the high-temperature
phase βcJ < 1. It is then interesting to compare this result with the one obtained by the
analytic approach presented in chapter 4. We observe that within the two approaches, the
analytical and the numerical one, notwithstanding we are forced to introduce two different
definition of pseudo-critical temperature, it seems that the limiting distribution, i.e. the
Tracy-Widom distribution, is in some sense universal, with respect to the distribution of the
disorder (BSK and GSK) and to the choice of the definition. On the other hand, since the
scaling exponent φ measured in this section is not compatible with the one obtained via the
analytic approach φ = 2/3, we can conclude that the scaling exponent is definition-dependent.
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Figure 5.4: Binder parameter B as a function of the temperature T for N =
43,63, 73, 83, 93, 103,113, 123 (in black, red, blue, brown, yellow, green, violet, cyan respec-
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an estimate of sample-to-sample fluctuations.
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Figure 5.5: Distribution of the pseudo-critical point for the EA model. PDF pN (xJ ) of the
rescaled variable xJ for systems sizesN = 43,83,123,163 with 2.4×104 ≤ S ≤ 3.2×104 disorder
samples, Gaussian distribution pG(xJ ) (solid curve), Tracy-Widom distribution pTW(xJ )
(dashed curve) and Gumbel distribution pGu(xJ ) (dotted curve), all with zero mean and unit
variance. The plot has no adjustable parameters, and is in logarithmic scale to highlight the
behaviour of the distributions on the tails. Top inset: width σβ N as a function of N , and
fitting function f(N) = aN−φ, with scaling exponent φ = 0.23± 0.03 . Bottom inset: same
plot as in the main plot in linear scale.
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5.5 Numerical results for the 3-d EA model

Monte Carlo simulations for the EA model allowed for a numerical computation of 〈q2〉J , of
the Binder parameter B(T ) and so of βcJ for several disorder samples J .

In figure 5.4 we plot the Binder parameter for the GSK model for the investigated sizes
and temperatures. Let us now concentrate on the investigation of the fluctuations of the
pseudo-critical temperature. Similarly to the SK model, the width σβ N of the distribution of
the pseudo-critical point βcJ shrinks to zero as the system size N is increased: a power law fit
σβ N = aN−φ gives the value of the scaling exponent φ = 0.23± 0.03 (inset of Fig. 5.5). The
PDFs pN (xJ ) of the rescaled critical temperature seem to approach a limiting distribution
as N is increased, as depicted in Fig. 5.5, coinciding with the Gumbel distribution.

Both φ and the PDF have the following interesting features. As far as the exponent φ
is concerned, we recall [96] that for systems known to be governed by a random fixed point
like the EA model it was predicted that the scaling exponent satisfies 1/φ = dν, where d is
the dimensionality of the system. The value of the critical exponent ν = 1.8± 0.2 for the EA
model is known from numerical simulations [31], yielding a value of φ = 0.19± 0.02 which is
compatible with that measured from the fluctuations of the critical temperature.

As far as the limiting distribution p∞(xJ ) is concerned, we recall that [176] a disordered
system like the EA behaves as an ensemble of independent sub-systems S1, . . . ,SM , where
each sub-system Si has a random local critical temperature βic, the local critical temperatures
{βic}i being IID random variables depending on the local realization of the disorder. We can
argue that, for a single realization of the disorder J , the pseudo-critical temperature βcJ
results from the fact that β has to be taken large enough to bring all of the sub-systems {Si}i
to criticality. Thus, βcJ is the maximum over the ensemble of the local critical temperatures
βcJ = maxi β

i
c. If this picture is correct, βcJ is distributed according to one of the the EVS

limiting distributions of independent variables: the Gumbel, Fréchet, or Weibull distribution.
Assuming that the distribution of βic decays exponentially for large βic, the distribution of
βcJ is the Gumbel one. We want to stress that this argument would not hold for the SK
model, where there is no geometric structure.
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GSK

N βmin ≤ β ≤ βmax Nreplica Nsamples

32 0.2 ≤ β ≤ 2.2 30 46911

64 0.8 ≤ β ≤ 1.6 30 19946

128 0.8 ≤ β ≤ 1.6 30 25135

256 0.8 ≤ β ≤ 1.6 30 15545

BSK

N βmin ≤ β ≤ βmax Nreplica Nsamples

32 0.2 ≤ β ≤ 2.2 20 98950

64 0.5 ≤ β ≤ 2 20 33392

128 0.5 ≤ β ≤ 2 20 79104

256 0.5 ≤ β ≤ 2 20 28993

512 0.5 ≤ β ≤ 2 20 3393

EA

N βmin ≤ β ≤ βmax Nreplica Nsamples

43 0.5 ≤ β ≤ 2 16 27367

83 0.5 ≤ β ≤ 2 16 32419

123 0.5 ≤ β ≤ 2 16 24001

163 0.5 ≤ β ≤ 2 16 24513

Table 5.1: Simulation parameters for the GSK, BSK and EA models. N is the system size,
i.e. the number of spins, Nreplica is the number of replicas used in the parallel tempering
algorithm, βmin and βmax define the thermal window investigated in our simulations and
Nsamples is the number of disorder samples simulated at a given system size and a given
temperature.

5.6 Conclusions and perspectives

In this chapter we have investigated the fluctuations of a suitably-defined pseudo-critical tem-
perature due to the presence of disorder in fully-connected and nearest-neighbours spin-glass
models via numerical simulations. In the case of the fully-connected Sherrington-Kirkpatrick
model we find that such fluctuations, for large system size, are described by a limiting dis-
tribution which coincides with the Tracy-Widom distribution, introduced in chapter 3 in the
context of the fluctuations of the largest eigenvalue of gaussian random matrices. To our
knowledge, this is the first time that the ubiquitous Tracy-Widom distribution plays a role in
the description of the fluctuations of a physical observable in spin-glass-models context. This
connection has been suggested by the analytical approach to the same problem presented in
chapter 4.

On the other hand we have investigated the fluctuations of the pseudo-critical tempera-
ture in nearest-neighbours Edward-Anderson model. In this case, we find that the limiting
distribution describing the fluctuation of the pseudo-critical temperature coincides with the
Gumbel distribution. A tentative argument, based on the local fluctuations of the quenched
disorder, to explain this result has been proposed. These two results shed some light on the
important role played by the Extreme Value Statistics theory in connection with the descrip-
tion of spin-glass models.

The present work opens several perspectives. As far as the SK model is concerned, we
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recall that the TW distribution describes typical fluctuations of the maximal eigenvalue of
a Gaussian Orthogonal Ensemble random matrix, while the large deviations regime of these
fluctuations has been studied only recently [177]. It would be interesting to study numer-
ically the large deviations regime of the fluctuations of the critical temperature, where the
distribution of the pseudo-critical point should be described by the large deviations function
derived in [177].

Moreover, in order to bridge the gap between a mean-field and a short-range interactions
regime, it could be interesting to investigate the fluctuations of the pseudo-critical temper-
ature in spin-glass models with tunable long-range interactions, like those introduced in [178].

As far as the EA model is concerned, it would be interesting to test experimentally the
scenario found here in Fe0.5Mn0.5TiO3 [179] or Eu0.5Ba0.5MnO3 [180] spin-glass materials.
Indeed, ac-susceptibility measurements in these systems show [179] that the spin-glass critical
temperature can be identified as the temperature where the susceptibility develops a cusp.
Accordingly, the pseudo-critical point could be easily identified and measured, and one could
test whether the resulting rescaled pseudo-critical point distribution converges to the Gumbel
distribution as the system size is increased.
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Part III

Interdisciplinary Applications





Chapter 6
Financial Crisis, Systemic Risk and Stress
Tests

Financial crisis are usually followed by long periods of recession of economy. How to explain
this fact? According to the point of view of Friedman and Schwartz [181], financial crises
raise the cost of intermediation and restrict credit, which in turns restrain the level of activity
in the real sector and ultimately can lead to periods of low growth and recession. Financial
crises occur quite often if compared to other crises. This suggests that the financial sector
is unusually susceptible to shocks. Moreover, shocks that initially affect only some financial
institutions easily propagate to larger sectors of the financial system and then infect the whole
system. The risk that contagion can spread from small parts of the financial system to the
whole system, is usually referred to as Systemic Risk.

Governments and international organizations are increasingly worried about systemic risk,
under which ”the world’s financial system can collapse like a row of dominoes” [182]. One
of the main purposes of financial supervisory authorities and central banks is to maintain
systemic financial stability, thus a correct evaluation of Systemic Risk becomes mandatory.
Given the enormous social cost of financial crisis, authorities have often decided to bail out
troubled financial institutions rather than risking that their default might provoke the failure
of other institutions.

The banking system is considered a fundamental framework in which financial contagion
can take place. Troubled banks may default on their interbank liabilities and hence cause
other banks to default triggering a domino effect. The stability of a banking system is con-
stantly monitored by financial supervisory authorities. Stress Test are commonly used tools
to quantify Systemic Risk in financial networks [183].

6.1 Introduction: the fear of contagion

6.1.1 The 2008-09 financial crisis

The financial crisis of 2008-09 had its origins in the housing market. Problems in a relatively
small portion of the home mortgage market triggered the most severe financial crisis in the
United States since the Great Depression. Some authors [184] stress the central role played
by the presence of Systemic Risk in the propagation of the crisis. Let us resume in few
lines the main steps of the crisis. In the second half of 2007 banks and other financial



84 Financial Crisis, Systemic Risk and Stress Tests

firms realized significant losses in their investments in home mortgages and home-mortgages
securities. Some authors [185] relate these events to the high proliferation of sub-prime
loans and to the burst of the housing bubble. This provoked the failure and near-failure
of some major financial firms: Bear Stearns, IndyMac Federal Bank, the Federal National
Mortgage Association (Fannie Mae), the Federal Home Loan Mortgage Corporation (Freddie
Mac), Lehman Brothers, American International Group (AIG) and Citigroup. International
financial markets realized significant losses in much of 2008 and 2009. According to [184],
”Systemic risk concerns were at the heart of the Federal Reserve’s decision to facilitate the
acquisition of Bear Stearns by JPMorgan Chase in March 2008 and the U.S. Department of
the Treasury’s decisions to place Fannie Mae and Freddie Mac into conservatorship and to
assume control of AIG in September 2008”. In other words, some financial institutions have
been ”saved”, since they have been considered ”too-big-to-fail”, to prevent the risk that the
shock of failures would propagate inside the financial network. In a speech at the Federal
Deposit Insurance Corporation’s Forum in 2008 [186] , the Federal Reserve Chairmen Ben
Bernanke explained:

Our analyses persuaded us [...] that allowing Bear Stearns to fail so abruptly at
a time when the financial markets were already under considerable stress would
likely have had extremely adverse implications for the financial system and for
the broader economy. In particular, Bear Stearns’ failure under those circum-
stances would have seriously disrupted certain key secured funding markets and
derivatives markets and possibly would have led to runs on other financial firms.

6.1.2 When genius failed: Long-Term Capital Management

The history of Long-Term Capital Management (LTCM) is vividly described in the book
of Roger Lowenstein: ”When Genius Failed: The Rise and Fall of Long-Term Capital Man-
agement” [187]. LTCM was a prominent U.S. hedge found founded in March 1994 by John
Meriwether, with a small group of associates, most notably economists Robert Merton and
Myron Scholes, who received the Nobel Prize in economics in 1997. LTCM was very success-
ful: by the end of 1997 it had achieved annual rates of return of around 40 percent and had
nearly tripled its investors’ money. A temporary market irrationality in bond pricing affected
markets during august 1998. In the same month Russian government devalued the ruble and
defaulted on its bonds. LTCM lost hundred of millions of dollars and approached a default.
The Governors of U.S. Federal Reserve was concerned that the default of LTCM can trigger
a domino effect on financial markets. In the speech of William McDonough, President of Fed.
Reserve Bank of New York [188]:

Had Long-Term Capital been suddenly put into default, its [derivatives] coun-
terparties would have immediately ”closed out” their positions. If counterparties
would have been able to close-out their positions at existing market prices, losses,
if any, would have been minimal. However, if many firms had rushed to close-
out hundreds of billions of dollars in transactions simultaneously, they would
have been unable to liquidate collateral or establish offsetting positions at the
previously-existing prices. Markets would have moved sharply and losses would
have been exaggerated.

A group consisting of banks and insurance-holding company offered to buy out the share-
holders of LTCM for $250 million and put $3.75 billion into the fund as new capital.
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6.2 Systemic Risk in banks networks

In financial literature a common definition of Systemic Risk is still unsettled. According to
Schwarcz [182], a common factor in the various definitions of systemic risk is that ”a trigger
event, such as an economic shock or institutional failure, causes a chain of bad economic con-
sequences – sometimes referred to as a domino effect. These consequences could include (a
chain of) financial institution and/or market failures. Less dramatically, these consequences
might include (a chain of) significant losses to financial institutions or substantial financial-
market price volatility”. In this section we will consider networks of banks. We will present
the reasons why the banking system is considered so fragile and the channels which the shocks
can propagate through inside the system.

6.2.1 The ”fragility” of the banking system

In public policy, banks’ failures are feared for the risk that wave of failure can propagate to
other banks, then to the whole banking system and even beyond to financial system or to
domestic economy. The same fear is not perceived if we consider the failure of other firms,
e.g. airline companies or steel factories or grocery stores. On the contrary, in these fields,
the surviving firms benefits from the failure of a competitor: they can expand their market.
What makes the banking sector peculiar? Two reasons are identified to make the banking
system so ”fragile”:

• Interconnectedness. Banks are closely interconnected with each other through lending
to and borrowing from each other. Via the payment clearing system, it is believed that
the failure of bank can quickly propagate to the others.

• High leverage. Compared to most non financial firms, banks, and other financial insti-
tutions, have a low capital-to-assets ratio, which means that they are highly leveraged.
In order to give an example concerning the 2008-09 crisis: ”Investment banks were es-
pecially highly leveraged before the crisis, with debt-to-equity ratios of approximately
25 to 1. That is, for every dollar of equity, investment banks issued an average of $25
of debt. By comparison, commercial banks, which are subject to minimum capital re-
quirements, had leverage ratios of approximately 12 to 1.14 High leverage means that
financial firms enjoyed high rates of return on equity when times were good but also a
high risk of failing when markets turned against them” [184].

6.2.2 The channels of contagion

Different channels of contagion can be identified. In our analysis we will concentrate on
the Systemic Risk arising from interbank lending. Stress tests to evaluate Systemic Risk on
this channel of contagion rely on the following mechanism. A bank or a group of banks are
assumed to default: they are not able to pay back their borrowings in the loan market. This
provokes losses to their creditor banks. If the losses of creditor banks exceed their capital,
also creditor banks default. Since every default weakens the surviving banks, this could lead
to a cascade of bank failures. Other channels of contagion can be identified. Contagion can
take place if an institution does not meet its obligations in payments systems [189]. In the
following lines we will present another way of contagion, deriving from deposit withdrawals,
also know as ”bank run”.
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6.2.3 Bank run

The classic example of systemic risk in the context of financial network is a ”bank run”.
The inability of a bank to satisfy withdrawal-demands causes its failure, in turn causing
other banks or their creditors to fail. The triggering event can be considered exogenous to
the system, i.e. the panic of depositors that ”run” to the bank to quickly withdraw their
money. Because banks keep only a small fraction of their deposits on hand as cash reserves,
a bank may have insufficient cash to pay all withdrawal-demands, causing it to default. The
interconnectedness of the banking system then becomes the channel of propagation of the
shock: one bank’s default on an obligation to another may adversely affect that other bank’s
ability to meet its obligations to yet other banks. The shock of failures can propagate and
the domino effect takes place.

As pointed out in [182], ”This scenario is most graphically illustrated by the Great De-
pression. In response to the stock market downturn of August 1929 and the crash of October
1929, depositors en masse attempted to convert their bank deposits into cash. Many banks
were unable to satisfy all of these demands, causing them to fail and contracting the money
supply. These failures, in turn, caused many otherwise solvent banks to default, and many
companies, deprived of liquidity, were forced into bankruptcy. During the height of the Great
Depression, from 1930 to 1933, there were approximately two thousand bank failures yearly”.

6.3 Theoretical framework for interbank lending

Let us consider an ensemble B = {b0, . . . ,bN−1} of N banks, in which each bank in B may
borrow to or lend money from other banks in B. This structure is encoded in the so-called
liability matrix L, an N × N non-symmetric matrix describing the instantaneous state of
a credit network ‡1. Each element Lij denotes the funds that bank j ∈ E borrowed from
bank i ∈ B (regardless of the maturity of the debt). We fix the convention that Lij ≥ 0
∀(i,j) ∈ B × B, Lii = 0 ∀i ∈ B. With this definition, the expression ri =

∑
j Lij represents

the total credit which the institution i possesses against the system, while cj =
∑

i Lij
represents the total debt owed by the institution j to the environment.‡2 This matrix contains
information about the instantaneous state of a credit network, and it is sufficient to estimate
the risk of contagion in many cases of practical relevance.

Lij =




0 L12 L13 . . . L1N

L21 0 L23 . . . L2N

L31 L32 0 . . . L0N

. . . . . . . . . . . . . . .
LN1 LN2 LN3 . . . 0




→
→
→
→
→

r1

r2

r3

. . .
rN

↓ ↓ ↓ ↓ ↓
c1 c2 c3 . . . cN

The construction of the liability matrix L depends on the informations that we have about
bilateral exposures between banks. These informations can be obtained from credit registers
and supervisory report of banks or by balance data sheets of banks. We can distinguish
beween two cases:

• Complete information: in some countries, for instance in Italy, Hungary, and Mexico,
using credit registers and supervisory reports, one is able to obtain informations about

‡1The network topology can also be studied, see [190, 191]

‡2Without loss of generality we consider a closed economy (
∑
i ri =

∑
j cj), by using bank b0 as a placeholder

to take into account flows of money external to the system.
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all the bilateral exposures between banks. Then the liability matrix elements Lij can
be fully identified.

• Incomplete information: in some countries, from credit registers and supervisory
reports, one is able to obtain only partial information about the liability exposures
between banks. Credit registers or supervisory reports cover only exposures exceeding
a threshold that is defined either in terms of the absolute amount of the exposure or
as a fraction of the lender’s capital. This allows to identify only some elements of
the liability matrix L. An alternative source of information that is widely available is
banks’ balance sheets, which only contain information on total interbank lending and
borrowing of the reporting institution, from which one is able to identify the vectors ri
and ci.

In the case of incomplete information, one is left with the problem of reconstructing the
liability matrix from partial informations. This case will be extensively discussed in the
following chapter. Let us now suppose that one owns the liability matrix of banking network.
Widely used tools to asses the stability of the network to shocks and then to evaluate Systemic
Risk are stress tests.

6.4 Stress Tests: how to measure Systemic Risk

A widely used measure of vulnerability in financial literature is the stress-test introduced
by Furfine [192], which is a sequential algorithm to simulate contagion. Suppose that the
liability matrix L is given and let us define Cz the initial capital of a bank z in the system
B. The idea of the algorithm is simple: suppose that such bank z of the ensemble B fails
due to exogenous reasons. Then it is assumed that any bank i ∈ B loses a quantity of money
equal to its exposure versus z (Liz) multiplied by an exogenously given parameter α ∈ [0,1]
for loss-given-default. Then if the loss of the bank i exceeds its capital Ci, bank i fails.
This procedure is then iterated until no more banks fail, and the total number of defaults is
recorded.

The procedure described above can be formally rephrased in the following steps:

Step 0: A bank z ∈ B fails for external reasons. Let us define D0 = {z}, S0 = B\{z}.
For the banks i ∈ S0 we set C0

i = Ci.

Step t: The capital Ct−1
i at step t− 1 of banks i ∈ St−1 is updated according to

Cti = Ct−1
i − α

∑

j∈Dt−1

Lij

with α ∈ [0,1]. A bank i ∈ St−1 fails at time t if Cti < 0. Let us define Dt, the ensemble of
all the banks i ∈ St−1 that failed at time t and St = St−1\Dt the ensemble of banks survived
at step t.

Step tstop: The algorithm stops at time tstop such that Dtstop = ∅.

We want to stress the importance of the loss-given-default parameter α in order to es-
timate the extent of contagion. The parameter α is considered fixed for every step of the
algorithm. In literature we can find different estimations of the values of the loss-given-default
parameter. According to James [193] the typical losses on assets of a failing bank including
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the cost of resolution are around 40%. According to Kaufman [194], creditor banks are able
to recover the 95% of their exposures. When authors perform Stress Tests, given the small
knowledge about the loss-given-default-parameter, they usually try a large range of values.
Some authors also tried to endogenise the loss-given-default parameter in the Stress-Test
model [195] introducing a clearing mechanism. As explained by Upper [183], this requires
a series of assumptions that are far from harmless. In literature, Stress Tests are usually
performed considering the failure of a single institution, as introduced by Furfine. This as-
sumption is reasonable if we suppose that the failing bank, hit by a shock, has a completely
different risk profile than other banks. But, as seen in the case of financial crisis of 2008-09,
external shocks can hit several banks simultaneously. In that case, the Stress-Test algorithm
must be modified considering groups of banks failing simultaneously.

In his original work [192], Furfine has investigated the contagion in the U.S. banking
system using the Federal Reserve’s large-value transfer system (Fedwire) data during Febru-
ary and March 1998. Using a search algorithm, he was able to identify all the transactions
between the 719 financial institutions that have been conducted via Fedwire. Exposures
obtained via the analysis of Fedwire represent only a small fraction of U.S. total interbank
exposures (approximately 14 % [192]). This work also provides evidence that smaller banks
generally have larger funds exposures relative to their capital level.

In financial literature the stability of the banking system of different countries has been
studied. Let us cite the works of Angelini, Maresca and Russo [189] and Mistrulli [196] for the
Italian system , Sheldon and Maurer for the Swiss system [197], Furfine for the U.S. system
[192], Degryse and Nguyen for the Belgian system [198], Wells for the U.K. system [199] and
Upper and Worms for the German system [200]. A complete review on the topic is given by
Upper in [183]. Given the differences on the structures of the banking systems in different
countries and of methodologies used to analyze data, it is difficult to give a unified picture of
the stability of the banking systems in different countries. As a broad picture [183] we can
conclude that the results of the literature seem to suggest that contagion due to exposures in
the interbank loan market is an unlikely event, in the sense that it happens in only a small
number of scenarios considered, but that it could have substantial effects on the health of the
banking system of many countries if it does occur.



Chapter 7
Advanced financial network reconstruction
for the estimation of systemic risk

7.1 Motivations

In the previous chapter we have shown that banking system is considered a fundamental
framework in which financial contagion can take place. Troubled banks may default on their
interbank liabilities and hence cause other banks to default triggering a domino effect. We
have also seen that detailed data on banks bilateral exposures are not always available. In-
stitutions are often left with the problem of assessing the resilience of a system to financial
shocks by relying on an incomplete information set.

In this framework the reconstruction of bilateral exposures becomes a central issue for
the estimation of risk. The so called entropy-maximization method is a commonly used tool
to reconstruct financial networks from incomplete information [189, 197, 198, 199, 200]. The
main limitation of this procedure is that it assumes a market structure which can be quite
different from the actual one: it tends to spread the debt as evenly as possible.

Allen and Gale [201] were the first authors to point out the crucial role that the ”archi-
tecture” of the financial network can play in connection with the extent of the spread of the
contagion. Complete networks have been shown to be more robust than incomplete networks,
see also [202]. In the lines with this thesis, we expect that the reconstruction of the liability
matrix via the entropy-maximization method leads to an undervaluation of the extent of
contagion. This thesis has been tested by Mistrulli [196] in the context of the Italian banking
system, where complete informations on the interbank exposures are available. Stress-Test
simulations have been performed on real bilateral exposures and on reconstructed bilateral
via entropy-maximisation method. The comparison shows that, depending on the structure
of interbank linkages, entropy-maximisation method can lead both to undervaluation and to
overvaluation of the risk of contagion, concluding that the maximum-entropy approach may
not be very reliable in the evaluation of the severity of contagion.

In order to have a correct, or at least a more reliable, evaluation of risk of contagion,
reconstruction procedures which allows to consider different network architectures must be
considered. In a recent work [44], we have introduced a message-passing algorithm which
allows to tune the sparsity of the reconstructed network.
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7.2 Framework

Let us consider a set of N banks B = {b0, . . . ,bN−1}, in which each bank in B may borrow
to or lend money from other banks in B. This structure is encoded in the so-called liability
matrix L, an N ×N weighted, directed adjacency matrix describing the instantaneous state
of a credit network. Each element Lij denotes the funds that bank j ∈ B borrowed from
bank i ∈ B (regardless of the maturity of the debt). We fix the convention that Lij ≥ 0
∀(i,j) ∈ B × B, Lii = 0 ∀i ∈ B. With this definition, the expression L→i =

∑
j Lij represents

the total credit which the institution i possesses against the system (also known as out-
strength), while L←j =

∑
i Lij represents the total debt owed by the institution j to the

environment (in-strength).‡1 This matrix contains information about the instantaneous state
of a credit network, and it is sufficient to estimate the risk of contagion in many cases of
practical relevance. Indeed one is often unable to obtain from empirical data the complete
expression for the matrix L. Data are typically extracted by a bank balance sheets or by
institutional databases [190], and partial informations have to be coherently integrated into
a list of plausible liability matrices. In the following discussion, we will suppose that three
different types of informations about L are available, as typically reported in the literature
[200]:

1. All the debts larger than a certain threshold θ are known. This allows us to rescale all
the elements of L by θ, so that we consider without loss of generality liability matrices
for which all the unknown elements are bound to be in the interval [0,1]. We assume
to have at most order N elements exceeding such threshold.

2. We assume a certain set of entries (which we take to be of order N) to be known. This
corresponds to banks or bank sectors for which some particular position needs to be
disclosed by law.

3. The total credit L→i and the total debit L←j of each bank are known. Acceptable
candidates for liability matrices need to satisfy a set of 2N linear constraints, whose
rank is in general R ≤ 2N − 1 (due to the closed economy condition).

We remark that we have defined a set of constraints of order N elements, which is too small
to single out a unique candidate for the true unknown liability matrix. The possible solutions
compatible with the observations define a space Λ, whose members we denote with L̂. Let
U be the set of not directly known (i.e. non-fixed by to constraints of type (1) and (2))
entries of the liabilities matrix. Then those entries of the liability matrix (whose number is
M = |U |) are real numbers subject to domain constraints (they must be in [0,1]) and linear
algebraic constraints (the sum on the rows and on the columns must be respected). The ratio
M/R ≥ 1 controls the degree of underdetermination of the network, and is typically much
larger than one.

7.3 Dense reconstruction

A possible procedure to study the robustness of a financial network when the complete infor-
mation about the liability matrix is not uniquely specified, is to pick from the set of candidate
matrices Λ a representative matrix, and to test the stability uniquely for the network specified
by such L̂. In this case a criteria has to be chosen to select a particular matrix out of the
Λ space, including some assumptions about the structure of the true Lij . A choice which

‡1Without loss of generality we consider a closed economy (
∑
i L
→
i =

∑
j L
←
j ), by using bank b0 as a

placeholder to take into account flows of money external to the system.
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is commonly adopted [189, 197, 198, 199, 200] is based on the maximum-entropy criteria,
which assumes that banks spread their lending as evenly as possible. The problem in this
case amounts to finding a vector ~L = {Lα}α∈U (the unknown entries of the liability matrix)
whose entries comply with the algebraic and domain constraints and minimize the distance
from the uniform vector ~M = {Mα}α∈U (such that ∀α Mα = 1), where the distance is
quantified by the Kullback-Leibler divergence:

DKL(~L, ~M) =
∑

α

Lα log
Lα
Mα

The minimization of such function is a standard convex optimization problem, that can be
solved efficiently in polynomial time. In financial literature this algorithm is known with the
name of Maximal Entropy (ME) reconstruction, for some details see [203]. We remark that
no entry is exactly set to zero unless this is required by the algebraic constraints.

7.4 Sparse reconstruction: a statistical-mechanics approach

As we have seen in the Introduction, statistical physics (and in particular statistical mechan-
ics of spin-glass models) has been increasingly successful in analyzing and solving complex
problems coming from graph theory and theoretical computer science [204]. For some NP-
complete problems, using a statistical mechanics approach, it was possible to obtain results
which had not been found before using classical mathematical methods. Concerning graph
theory, let us cite the statistical mechanics approach to a NP-complete problem, the vertex-
cover problem, studied in [205]. In the present section, we present how typical tools of
statistical mechanics of spin-glass models and theoretical computer science, e.g. the belief-
propagation algorithm, can be used to face the problem introduced in this chapter, namely
the problem of the reconstruction of sparse banks liability networks.

ME might not be a particularly good description of reality since the number of counter-
parties of a bank is expected to be limited and much smaller than N , while ME tends to
produce completely connected structures. In the case of real networks the degree of market
concentration can be higher than suggested by ME. This systematically leads to an under-
estimation of risk, as a structure in which the debt is distributed homogeneously among the
nodes is generally known to be able to absorb shocks more effectively than a system in which
few nodes dominate the network [196]. In order to be closer to reality and to estimate more
accurately the risk contagion it is then necessary to reconstruct liability matrices whose de-
gree of sparsity (i.e. the fraction of zero entries of L̂) can be tuned, and eventually taken to
be as big as possible. This corresponds to the choice of topologies for the interbank networks
in which the number of links can be explicitly regulated by means of a control parameter. We
present in this section an algorithm which, given the fraction λ̂ of entries which are expected
to be exactly zero, is able to reconstruct a sample of network structures compatible with this
requirement, and to find a λmax which bounds the maximum possible degree of sparsity. We
focus the discussion on the generic case in which topological properties of the original credit
network such as the sparsity parameter λ or the number of counter parties of each bank are
not known, without imposing any specific type of null model. The purpose of the algorithm
is to provide an efficient mean to explore the space Λ, and to illustrate how the result of the
stress-testing procedures may vary according to the density of zeroes of the matrix L̂ which
is assumed.

To be more specific, let us define the notion of support of a liability matrix as follows: given
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an N × N weighted, directed adjacency matrix L, we define its support a ∈ {0,1}N2
as the

N ×N adjacency matrix such that

ai,j(L) =
{ 1 if Lij > 0

0 otherwise
.

The sparsity λ associated with a specific network structure a is defined as λ{ai,j} = 1 −
(
∑

ij ai,j)/N(N−1). Finally, given a network structure â and a set of liability matrices Λ, we

say that â is compatible with Λ if there exists at least a matrix L̂ ∈ Λ such that ai,j(L̂) = âi,j .
Now we consider a liability matrix L which is partially unknown in the sense of section 7.2,
and address the following issues: (i) is it possible to fix a fraction λ̂ of the unknown entries
to zero without violating the domain and the algebraic constraints? More formally, this cor-
responds to ask whether it exists a matrix L̂ ∈ Λ such that λ̂ = λ(a(L̂)). More generally, (ii)
how many supports â with fixed sparsity λ̂ are compatible with Λ? The algorithm solves this
problems by sampling from the space of all compatible supports a(Λ) potential candidates
whose degree of sparsity is constrained to be λ̂, and by evaluating the volume of such support
sub-space. As one can easily expect, there will be a range of [λmin, λmax] of fractions of fixed
zeros compatible with the constraints: trivially λmin = 0 corresponds to the dense network,
which always admits a compatible solution, but we are able to find a non-trivial λmax which
corresponds to the maximally sparse network of banks. A plot of the logarithm of the number
of possible supports as a function of λ̂ is given in figure 7.1 (× signs) for a network as the
ones described in section 7.5. Once a support is given, the liability matrix elements can easily
be reconstructed via ME.‡2

The algorithm that we use to sample the candidate network structures â employs a
message-passing technique which is able to overcome the problem of explicitly inspecting
the compatibility of each network. The main idea is that we want to associate to each ad-
jacency matrix a a sampling probability P0{ai,j}, that is strictly zero for non-compatible
supports and is otherwise finite. Sampling uniformly from the space of compatible supports
would correspond to the choice that P0{ai,j} = 1/|a(Λ)| iff ai,j ∈ a(Λ) and zero otherwise.

Indeed, to fix the required degree of sparsity of the network λ̂ one can consider the modified
sampling probability

P0{ai,j} =
1

Z

{
z
∑
ij ai,j if a ∈ a(Λ)
0 otherwise

,

where Z is a normalization constant and the fugacity z controls the average degree of sparsity
of the sampled network, and is fixed in order to recover λ̂ =

∑
a P0{ai,j}

∑
i 6=j(1− ai,j). The

variable log z is analogous to a chemical potential in physics, in the sense that it is used to
select denser or sparser sub-graphs (i.e. tuning the λ̂ parameter). The probability distribution
P0{ai,j} can also be seen as the β →∞ limit of

P0{ai,j} =
1

Z
e−βH0{ai,j}z

∑
ij ai,j , (7.1)

where we introduce the formal cost function H0{ai,j} which vanishes for a ∈ a(Λ) and is 1
otherwise. Probability distributions of the form (7.1) are typically hard to compute explicitly
due to the presence of the normalization constant Z, but their approximate marginals can be

‡2As shown in figure 7.2 and 7.3, ME tends to underestimate the risk of contagion even in the case in which
the true support a(L) is known, thus suggesting that other reconstruction algorithms should be employed for
the estimation of the non-zero entries of a partially known liability matrix. Indeed, it is clear from those same
simulations that inferring the support corresponding to the original network is a significant first step towards
a more correct estimation of the risk of contagion.
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Figure 7.1: Entropy S of the space of compatible configurations ai,j at fixed sparsity λ̂ with
the energy H(ai,j) (+ sign) and true energy H0(ai,j) (× sign) for the examples discussed in
the text. S is defined as the logarithm of the number of configurations {ai,j} with H = 0 (or
H0), divided by the number M of possibly non-zero entries ai,j . The solid line plotted for
comparison is the entropy of a system of independent links ai,j with the same density (i.e.
number of non-zero links). The probability for a solution of H0(ai,j) to be also a solution of
H(ai,j) is also plotted on the same graph (dashed line).

estimated efficiently (i.e. within a time scaling linearly in the number of unknown variables
M) by means of the iterative algorithms such as the one described in the appendix. The
solution that one obtains for the marginals

p0 i,j =
∑

a

P0{ai,j}δ(ai,j = 1) (7.2)

corresponds to the probability that the entry ai,j is equal to one in the ensemble of network

structures which (i) are compatible with Λ and (ii) have an average degree of sparsity λ̂.
Being able to compute those marginals allow to sample efficiently the space of solution by
employing procedures such as the decimation one described in the appendix, in which at each
step the most biased variable (i,j) is fixed to ai,j = 1 with probability pi,j , and a reduced
problem in which such ai,j is held fixed is successively solved. Once all variables are fixed, an
adjacency matrix ai,j is selected out of the space of solutions and can be used as a candidate
network structure.

Unfortunately, the energy function H0 is hard to manipulate, and we need to resort to an ap-
proximate energy function H, whose structure is derived in the following paragraph. Suppose
that a liability matrix with unknown entries is given, together with of the vectors of total
credit (L→i ) and the one of total liabilities (L←i ). Then without loss of generality one can
assume the known entries to be equal to zero, as the values of the known entries can always
be absorbed into a rescaled value of the L→i and L←i , and the problem can be restricted just
to the unknown entries of the matrix. Under this assumption we can define the set of banks
B ⊆ B which are linked to the unknown entries of the liability matrix. Each node of B is
a bank and the directed edges are the elements of U . For each node i of B the sum of the
incoming entries L→i =

∑
j Lij and of the outgoing entries L←j =

∑
i Lij is known. Let k←i

(k→i ) be the number of incoming (outgoing) links in the subset of edges where Li,j > 0. Since
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Li,j ≤ 1, the number k←i (k→i ) of incoming (outgoing) links is at least the integer part of L←i
(L←i ) plus one. Therefore, one can define a cost function‡3

H{ai,j} =
∑

i

[θ (L→i − k→i ) + θ (L←i − k←i )] (7.3)

over the dynamical variables ai,j = 0,1 which identify the subset of edges, with

k→i =
∑

j

ai,j , k←i =
∑

j

aj,i .

Then we can construct the probability function

P{ai,j} =
1

Z
e−βH{ai,j}z

∑
ij ai,j (7.4)

which we employ to sample the space of candidate network structures. Notice that all sub-
graphs ai,j with H = 0 are feasible candidates for the support of solutions Li,j > 0 to the
problem. In general, the constraints are 2N linear equations and, as long as the number
on non-zero elements Li,j is larger than 2N solutions exist, but it is not granted that they
have Li,j ∈ [0,1] for al i,j. In other words, all the compatible solutions have to satisfy the
constraint H = 0, but the converse is not true (as shown in figure 7.1), because some support
ai,j may not admit a solution with Li,j ∈ [0,1] for al i,j. Equivalently, the cost function
H0{ai,j} involves constraints that the approximate H is not able to capture.
Message passing algorithms can be derived along the lines of Refs. [206] to solve efficiently
the problem of sampling the space of solutions of (7.3) as described in detail in appendix.
In particular we propose a generalization the algorithm employed in Ref. [206], in which we
consider hard constraints enforced by inequalities rather than equalities and add a fugacity
parameter z in order to control the density of links of the solutions.

7.5 Application to synthetic data

In this section we will show how our algorithm of reconstruction of the liability matrix Lij
(presented in section 7.4) gives more realistic stress-test results if compared with ME recon-
struction algorithm (presented in section 7.3).
We choose to present the results obtained for specific ensembles of artificial matrices, whose
structure should capture some of the relevant features of real credit networks‡4. The first case
that we analyze is the simplest possible network with a non-trivial topology, namely the one
in which every entrance of the liability matrix Lij with i 6= j is set to zero with probability
λ, and otherwise is a random number uniformly chosen in [0,1]. We set the banks initial
capital Ci to random numbers uniformly chosen in [Cmin, Cmax]. We impose the threshold
θ = 1, which means that all the entrance of the liability matrix are unknown (a worst-case
scenario). We then reconstruct the liability matrix via ME algorithm and via our algorithm
trying to fix the fraction λ̂ of zeroes equal to λ. Then we stress-test via the Furfine algorithm
the three liability matrices: the true one, the one reconstructed via ME algorithm one and
the reconstructed by means of our message-passing algorithm, varying the loss-given-default
α in [0,1]. The results of our simulations are shown in figure 7.2. We clearly show that the

‡3Here θ(x) = 0 for x < 0 and θ(x) = 1 otherwise is the Heaviside step function.

‡4Our attempts to obtain data on real financial networks, such as those in Refs. [196, 190], from central banks
were unsuccessful. We focus on ensembles of homogeneous networks (i.e. non-scale free). This is appropriate
since the unknown part of the financial network concerns small liabilities, and there is no a priory reason to
assume a particularly skewed distribution of degrees for the unknown part of the financial newtork.
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Figure 7.2: Plot of mean fraction of failed banks vs loss-given-default parameter α. The mean
is done by averaging over the defaulting bank which starts the contagion. Results are obtained
by considering: true liability matrix (solid line), reconstructed via ME algorithm liability
matrix (thick dashed line) and the maximally sparse matrix (+ signs). Plots were obtained
for a network of N = 50 banks with entries uniform in [0,1], where the link probability was
fixed to 0.3 and the initial capital was set to Ci = C = 0.3. One can easily see that a better
estimation of the true risk of contagion is obtained if the reconstruction of the liability matrix
is done by enforcing the correct sparsity of the network rather than with the ME algorithm:
the results obtained by putting the correct support (soft dashed line), corresponding to the
original network structure a(Lij), are also plotted, as well as the ones obtained by using a
typical support (× signs), corresponding to the choice of a random, compatible support ai,j
whose degree of sparsity matches the one of the original network. Errors bars refer to the
fluctuations of the default ratio associated with the choice of a specific support out of the
ensemble the compatible ones at fixed degree of sparsity.

ME algorithm underestimates the risk of contagion, while more realistic results are obtained
if the original degree of sparsity λ is assumed.

Notice that even when the degree of sparsity is correctly estimated, stress tests on the
reconstructed matrix still underestimate systemic risk. This is because the weights Lα on the
reconstructed sub-graph are assigned again using the ME algorithm. This by itself produces
an assignment of weights which is much more uniform than a random assignment of Lij on
the sub-graph, which satisfies the constraints. As a result, the propagation of risk is much
reduced in the ME solution.

The second ensemble that we consider is a simple extension of the first one, in which
the only modification that we have introduced implements heterogeneity in the size of the
liabilities Lij . In particular we consider matrix elements distributed according to

p(Lij) ∼ (b+ Lij)
−µ−1 .

Also in this case we can show (figure 7.3) that a more accurate estimation of the default
probability is achieved by enforcing the sparsity parameter of the reconstructed network to
be the correct one. In this case the maximally sparse curve is less informative than in the
uniform case. This is easily understood as due to the fact that the typical element Lij ∼ 10−2

is much smaller than the threshold θ = 1, so that a number of zero entries substantially larger
than the original one can be fixed without violating the hard constraints.
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Figure 7.3: A plot analogous to the one in figure 7.2 for the case of power-law distributed
entries of the liability matrix. This plots was obtained for a network of size N = 50, where
the link probability was fixed to 1/2. The parameters for the distribution of the entries were
set to b = 0.01 and µ = 2, while the capital of each bank was fixed to Ci = C = 0.02.

In both cases, when the true sparsity of the network is unknown, focusing on the sparsest
possible graph likely over-estimates systemic cascades, thereby providing a more conservative
measure for systemic risk than the one obtained by employing ME alone.

7.6 The role of the threshold

In the discussion above we disregarded the role of the threshold θ above which an exposure Lij
has to be made publicly available to regulators by setting it equal to 1. Indeed the problem of
setting such threshold is a central problem to build a regulatory policy, hence the discussion
of the reliability of the reconstruction algorithm varying θ while keeping fixed the true L is
in practice particularly relevant. An appropriate way to address this issue is the following:
given a network ensemble (such as the ones described in previous section) and a threshold θ,
how many network structures are there with a compatible support? In particular, we remark
that among all such compatible supports the maximally sparse one can be used to bound
from above the maximum amount of risk given a policy for the thresholding. In particular
for each value of θ, we empirically find that λmax[θ] enjoys the following properties:

1. The maximum sparsity λmax(θ) is a decreasing function of θ. In particular for θ → 0
one has λmax(θ)→ λ;

2. The entropy S(λ̂(θ))→ 0 when the threshold goes to 0.

An example of this behavior for an ensemble of networks with power-law distributed weights
is represented in figure 7.4, while in 7.5 we plot the entropy S(λmax) structures as a function
of θ. Therefore the algorithm described in section 7.4 provides quantitative measures for the
uncertainty induced by the choice of a given threshold θ on network reconstruction. Ideally
θ should be chosen so that maximally sparse structures are close to the true ones, and that
the space of compatible structures is not too large (small entropy).
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Figure 7.4: We plot the entropy of the space of compatible distributions (i.e. of the solutions
of H{ai,j}) as a function of the sparsity parameter λ̂ by varying the threshold θ from 1 (top
curve) to 0.01 (bottom curve). The dashed line signals the transition point where solutions
cease to exist. We consider power-law distributed entries for the true network (D = 30,
λ ≈ 0.3, b = 0.01 and µ = 2). This shows how the volume of the space is reduced by a change
of the threshold and how λmax gets closer to λ by lowering θ.

Figure 7.5: The entropy of the space of solutions H{ai,j} as a function of the threshold for
the same network as the one depicted in figure 7.4.
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7.7 Conclusions and perspectives

In this chapter we have shown how it is possible to estimate the robustness of a financial
network to exogenous crashes by using partial information. In particular we analyzed how
the results of such estimation crucially depend on the topological properties of the underlying
network, and showed that the number of links in a credit network dramatically control its
resilience: connected networks can in most cases spread the response to external shocks more
evenly than sparse ones.

We have also proposed an efficient message-passing algorithm for the reconstruction of the
topology of partially unknown credit networks, in order to estimate with more accuracy their
robustness. Such algorithm allows (i) to sample the space of possible network structures,
which is assumed to be trivial in many algorithms commonly employed for network recon-
struction, and (ii) to produce typical credit networks, respecting the topological constraint
on the total number of links.

Finally, we test our algorithms on ensembles of synthetic credit networks which incorpo-
rate some of the main features of real credit networks (sparsity and heterogeneity), and find
that the quality of the stress-test when only partial information is available critically depends
on the assumptions about the network topology. In particular we find that ME underesti-
mates the risk of contagion if the sparsity of the real ensemble is big enough, while with our
algorithm we are able to estimate it more correctly. We remark that a worst case analysis of
the topology is possible using this message-passing algorithm, as we are able to produce the
maximally sparse (hence, maximally fragile) possible structure for the network.

Further developments of this work are indeed possible, in particular the identification and
the reconstruction of other relevant topological features of credit networks would be relevant
for a more accurate estimation of the contagion risk.

On the other hand, it would be interesting to test the algorithm on real data, as the
ones used in financial literature to test the stability of banking systems of different countries.
Unfortunately (or fortunately) it is not an easy task to gain access to bilateral exposures
of banking systems. If our algorithm would produce plausible reconstructions of financial
network, it can be directly implemented by regulators or monitors of financial stability.

7.8 Appendix: The message-passing algorithm

We describe here the algorithm which we use to sample the solution space of the energy
function

H{ai,j} =
∑

i

[θ (L→i − k→i ) + θ (L←i − k←i )]

which we derived along the line of [206]. Specifically, given as an input an incomplete liability
matrix, whose information is encoded into a set of N in-strength L←i , N out-strength L→i
and a set of U unknown entries of cardinality M = |U |), we provide an algorithm which for
any positive value of the fugacity z returns an adjacency matrices ai,j sampled according to
the probability distribution (7.4)

P{ai,j} =
1

Z
e−βH{ai,j}z

∑
ij ai,j .

The procedure that we describe can further be separated in two main tasks: (i) given a
probability distribution of the form (7.4), finding an efficient mean to calculate marginals pi,j
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defined analogously to (7.2) and (ii) given a fast algorithm to calculate marginals, using them
to find an adjacency matrix ai,j distributed according to P{ai,j}.

7.8.1 Calculation of the marginals

The structure of the problem admits a graphical representation as a factor graph, in which
|U | variable nodes are associated to the ai,j degrees of freedom, while the constraints are
represented as factor nodes. In particular, there are 2N function nodes, labeled a ∈ {i →
, ← i, i = 1, . . . ,N} each with ka variable nodes attached. Let the variables be denoted
xa,b = xb,a = 0,1 with a,b and let ∂a be the set of neighbors of node a. Let M = 1

2

∑
a |∂a|

be the total number of variables. For each variable xa,b we define the message µa→b as the
reduced marginal

µa→b =
∑

x

P{xa,b| 6 b}δ(xa,b = 1) ,

where P{xa,b| 6 b} denotes the restriction of the probability measure (7.4) to a problem in
which the function node b is absent. Such messages need to fulfill self-consistent relations
(BP equations) [20] which can be written in terms of the statistical weights‡5

V m
S→a =

∑

U∈S:|U |=m

∏

b∈U
µb→a

∏

c∈S\U
(1− µc→a)

and they read

µa→b =

∑ka−1
m=La−1 z

m+1V m
∂a\b→a∑ka−1

m=La−1 z
m+1V m

∂a\b→a +
∑ka−1

m=La
zmV m

∂a\b→a
(7.5)

=
V La−1
∂a\b→a + zW∂a\b→a

V La−1
∂a\b→a + (1 + z)W∂a\b→a

W∂a\b→a =

ka−1∑

m=La

zm−LaV m
∂a\b→a . (7.6)

Here z is the fugacity of links, and controls the average degree of sparsity λ̂ of the supports
in the solution space. For z → 0 we obtain the equation for the sparsest possible graph

µa→b =
V La−1
∂a\b→a

V La−1
∂a\b→a + V La

∂a\b→a
,

whereas for z →∞ we recover the maximally connected graph µa→b = 1 for all a and b ∈ ∂a.

Once the fixed point of Eqs. (7.5,7.6) is found by iteration, for a given z, one can compute
the marginals

pa,b =
µa→bµb→a

µa→bµb→a + (1− µa→b)(1− µb→a)

‡5Since ka can be as large as N , the direct computation of V mS→a involved in principle 2ka terms, which may
be very large. A faster way to compute it is to use the recursion relation

V mS→a = (1− µb→a)V mS\b→a + µb→aV
m−1
S\b→a, ∀b ∈ S .

In practice this allows one to build V mS→a adding one at a time the nodes in S. This procedure involves of
order m2 ≤ k2

a operations.
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that link (a,b) is present, and the entropy

S(z) =
∑

a

log

ka∑

m=La

V m
∂a→a −

1

2

∑

a

∑

b∈∂a
log [µa→bµb→a + (1− µa→b)(1− µb→a)]

To plot the number of solutions (or of different supports) as a function of the sparsity pa-
rameter λ̂, and the associated entropy Σ(λ̂) one should use the fact that:

eMS(z) =

∫ 1

0
dλ̂ eMΣ(λ̂)+M(1−λ̂) log z

and hence perform the back-Legendre transform.

7.8.2 Decimation

We describe in the following a decimation procedure to generate the configurations ai,j once
that the problem of computing marginals pi,j is controlled. For simplicity we choose to present
a simple version of the algorithm, while more detailed description of this procedure and a
discussion of its efficient variants can be found in reference [20].

Step 0: Define the set U (0) = U , and the in- and out-strengths L
(0)
a = La. The candi-

date network structure is defined as a
(0)
i,j = 0 if (i,j) ∈ U and a

(0)
i,j = a(Lij) otherwise.

Step t+1: Find the marginals p
(t)
i,j corresponding of the probability distribution P (t){ai,j} as-

sociated to the reduced problem defined by the incomplete matrix of unknown entries U (t) and

in- and out-strengths L
(t)
a . Select the most biased variable (i?,j?) = argmin(i,j)∈U(t) min[p

(t)
i,j , 1−

p
(t)
i,j ] and set:

a
(t+1)
i?,j? = 1 with prob. pi?,j?

U (t+1) = U (t) \ (i?,j?)

L
→ (t+1)
i = L

→ (t)
i − ai?,j?

L
← (t+1)
i = L

← (t)
i − ai?,j?

Step tstop: The algorithm stops at time tstop such that U (tstop) = ∅. The candidate support

ai,j = a
(tstop)
i,j so-obtained is distributed according to the probability distribution (7.4).



Conclusions

This thesis is devoted to the study of statistical mechanics of disordered systems. We paid
attention both to fundamental problems of spin-glass theory and to more direct applications
of statistical mechanics tools to problems of interdisciplinary interest, like financial problems.

The spin-glass models considered in our work are the ’classical’ models introduced in
1975 by Edward and Anderson and by Sherrington and Kirkpatrick. On the one hand, the
spin-glass phase of the SK model has been deeply understood thanks to the inspired works
of Parisi. This phase presents an interesting range of features and new non-standard tools of
statistical mechanics are needed to characterize them. Undoubtedly, the study of this model
has led to the discovery of a new, exciting and challenging branch of physics, that nowadays
we would call the ’spin-glass physics’. On the other hand, the correct physical picture of
the EA model is still an open question. Long debates took place in the spin-glass commu-
nity concerning the validity of the SK framework also for the EA model. Other competing
theories have been proposed. Nowadays a definitive answer is still missing. In our work
we investigated the problem of the characterization of the fluctuations of the pseudo-critical
temperature in spin-glass models, by means of an analytic approach, for the SK model, and
by numerical simulations for both models. We find an interesting connection with Extreme
Value Statistic Theory for correlated and independent random variables. The ubiquitous
Tracy-Widom and Gumbel distributions have been shown to describe these fluctuations. If
it is true what Italo Calvino said about classics: ’A classic is a book that has never finished
saying what it has to say.’, we can safely say that the spin-glass models considered in these
works certainly deserve to be regarded as classics within spin-glass theory.

Our attention was also devoted to the study of spin-glass models in connection with the
physics of supercooled liquids. If the introduction of point-to-set correlation functions in
spherical geometry can be considered a fundamental step forward in the detection of the
elusive amorphous order of supercooled liquids near the glass transition, spin-glass models
with Kac interactions provided a framework in which these new ideas can be analytically
measured and studied. We devoted our attention to the study of Kac-glass models in the so-
called sandwich geometry. This unbounded geometry gives us a correct framework in which
main ingredients of the Random First Order Transition Theory can be measured, like the
energy and the free energy cost to put different metastable states in contact. The approach
we have proposed can be easily implemented in numerical experiments of glass-forming liq-
uids. This has been done by the group of Cavagna in Rome. A good qualitative agreement
between analytic and numerics has been found.

In order to widen our horizons of research, we have finally focused on problems coming
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from a non-physical domain, i.e. finance, that can investigated via tools of statistical me-
chanics. The recent financial crisis sharpened the perceived fear by economic institutions
that the financial default of a single state can provoke a European or worst a global chain of
defaults. We say that a financial network in which shocks affecting a single or a small number
of institutions can easily propagate to all the network is affected by systemic risk. In this
context, we speculated that statistical physics may give a correct framework to understand
this problem. In financial literature it is a common belief that the interbank lending network
is a fundamental channel in which financial contagion can take place. Financial regulators
constantly monitor the stability of financial networks by means of stress-tests, but are often
left with the problem of evaluating this stability from incomplete data sets, e.g. incomplete
interbank lending liabilities matrices. The correct reconstruction of this incomplete informa-
tion becomes then mandatory in order to have a truthful estimation of systemic risk. We
introduced a message-passing algorithm to investigate this problem. Message-passing algo-
rithms have been extensively applied to problems in computer science and spin-glass theory.
Our algorithm allows to tune the sparsity of the reconstructed financial network. This ingre-
dient is completely missed by algorithms so far presented in the literature, e.g. the maximum
entropy algorithm. This fact typically leads to a severe under-estimation of the risk of con-
tagion. In order to quantify these ideas we tested our algorithm on synthetic data.

Before concluding, it is appropriate to give a list of open problems and directions for
future research that may stem from the present thesis:

• the study of fluctuations of the pseudo-critical temperature in spin-glass models has
been limited to the static critical temperature of the EA and the SK model, charac-
terized by a distribution of the disorder with finite variance. In this context it would
be interesting to extend this analysis considering other distributions of the disorder,
like second-moment diverging Lévy distributions. In a numerical approach this would
require more refined simulations techniques [163]. On the other hand, our investiga-
tions was limited to typical fluctuations, while a step forward in the comprehension
of the subject would be to characterize the large deviations regime. Recent results in
the context of Random Matrix Theory provided universal functions that we expect to
describe this regime. Also in this case, improved simulations techniques must be im-
plemented [207]. The analysis can also be extended to the study of the fluctuations of
the dynamical critical temperature in 1RSB spin-glass models. The topological phase
transition of the p-spin model gives us some hints that the ubiquitous Tracy-Widom
distribution could play an important role also in the description of this model.

• in the context of Kac-glass models in connection with the glass transition, we have
already pointe out that numerical simulations on glass-forming liquids models have
been performed by the group of Cavagna in Rome. It would be very interesting to
provide a unified framework for the problem of glass formers in sandwich geometry.
The analytic approach of Kac-spin glass models combined with numerical simulations
results and phenomenological arguments of RFOT could lead to a better comprehension
of the role that this particular geometry plays in connection with the glass transition.

• the algorithm that we proposed for a correct evaluation of systemic risk has been tested
on synthetic data. The real aim of this work is to test the algorithm on real data, but,
unfortunately, this kind of information is very difficult to obtain from banks or financial
institutions.

Various algorithmic improvements can also be implemented in order to simulate more
realistic scenarios. First of all, in financial literature, it has been shown that, for
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historical reasons, banks belonging to lending networks are clusterised in sectors [208].
An improved algorithm capable of taking into account this fact would surely be able to
give a more truthful estimation of risk. On the other hand the parameter which tunes
the sparsity of the reconstructed network is freely adjusted in the actual development of
the algorithm. We can tune from maximally connected network to a worst-case scenario
of maximally sparse networks. An optimal criterion to rely upon for identifying the
correct heterogeneity of the network is very much called for.

The end of this manuscript is also the end of these three years devoted to research in fun-
damental physics. Since we believe that physics can progress only thanks to pleasure and
amusement on doing it, we want to conclude this manuscript with a citation of Isaac Asimov:

The most exciting phrase to hear in science,
the one that heralds new discoveries,
is not ”Eureka!” (I found it!) but ”That’s funny...”

Isaac Asimov
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1. Introduction

The introduction of point-to-set correlation functions [1]–[5] allowed important progress
in understanding the growth of static correlations in supercooled liquids near the glass
transition. These non-standard correlation functions measure how deeply the effect
of amorphous boundary conditions penetrates within a system. In order to introduce
them, let us consider a large ensemble of interacting particles becoming glassy at low
temperature. We assume that the liquid is trapped in a metastable state. We freeze the
motion of all the particles outside a sphere of radius R. Then we let the particles inside
the sphere be free to move and eventually to rearrange in a different metastable state. The
effect of the external particles is to create a pinning field favouring internal configurations
which best match the frozen exterior. For small radius R, the effect of the pinning field
on the interior of the sphere is strong. In that case the sphere remains in the same state.
In contrast, for large radius R, the effect becomes weak and the sphere can be found in a
different state. Roughly speaking, a point-to-set correlation function measures the overlap
between the initial state and the one reached after the rearrangement of the system. It
has been found in numerical experiments that on lowering the temperature the effect of
the amorphous boundary conditions propagates deeper into the region [3, 4].

A standard random first-order transition (RFOT) [6, 1] assumes that the competition
between an entropy-rich state with high energy and an entropy-poor state with low
energy can explain the transition from high-overlap to low-overlap metastable states of the
previous system, as the radius of the sphere is increased. As we are going to show, such
a mechanism has to be reconsidered. In order to do this, let us consider, for simplicity,
an Ising-like model described by a Hamiltonian H . We freeze a configuration Sα in a
region A of the system. We study the thermodynamics considering only configurations S
constrained to be close to Sα in A:

Z[Sα] =
∑

S

e−βH[S]χA[S, Sα] (1)

doi:10.1088/1742-5468/2010/04/P04008 2
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Figure 1. The sandwich geometry for a system αα (left) and αβ (right). The
box B(l) is the central region; A+(l) and A−(l) are the lateral ones.

where

χA[S1, S2] =

{
1 if S1

i = S2
i ∀i ∈ A

0 otherwise.
(2)

The thermodynamic average of an observable O of the system is obtained by averaging
with a constrained Boltzmann measure the configurations inside the sphere and with a
Boltzmann measure the configurations Sα:

〈O〉 =
∑

Sα

e−βH[Sα]

Z

∑

S

χA[S, Sα]
e−βH[S]

Z[Sα]
O(S). (3)

This average coincides with the usual thermodynamical one: (1/Z)
∑

S e−βH[S]O(S). This
simple fact has deep implications: in the case in which A is a sphere of radius R, on
average, the energy per degree of freedom is independent of R. If, for typical choices of
the position of the sphere, one finds that two thermodynamic states coexist for a well
defined value of R, they will have the same energy. Possible mechanisms for coexistence
should therefore have a purely entropic origin [7].

In recent numerical experiments [8] the energy cost of putting different metastable
states in contact has been measured. The procedure is the following: freeze two states α
and β, exchange a sphere of the state α with a sphere of the state β and let the system
evolve. Inspired by this idea, in the present work we want to introduce a different point-
to-set correlation function defined as the free-energy cost for putting different metastable
states at distance l. In order to do that, we consider a sandwich geometry: two regions
of the space divided by a box of width l, and then freeze different metastable states at
opposite sides of the box; figure 1. This system is well suited for study in the framework
of a p-spin model with Kac interaction [5], [9]–[13].

The paper is organized as follows. In section 2 we introduce the model that we
consider and the basic definitions; in section 3 we briefly illustrate how to obtain the free
energy of the system; more details on these calculations can be found in the appendices A
and in B; in section 4 we present our results and in section 5 we draw our conclusions.

2. The model

We consider a finite-dimensional version of the spherical p-spin model, defined on a d-
dimensional cubic lattice Λ of linear size L, whose elementary degrees of freedom are
spins Si ∈ R with i ∈ Λ. We introduce the interaction range γ−1 > 0 and a non-negative

doi:10.1088/1742-5468/2010/04/P04008 3
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rapidly decreasing function ψ(x) normalized by
∫

ddxψ(|x|) = 1. We define the local
overlap of two configurations S1 and S2 as

QS1S2(i) = γd
∑

j∈Λ

ψ(γ|i− j|)S1
jS

2
j . (4)

We impose that configurations are subject to the local spherical constraint: QS1S1(i) =
1 ∀i ∈ Λ. We then introduce the finite-range p-spin Hamiltonian:

Hp[S, J ] = −
∑

i1,...,ip

Ji1,...,ipSi1 · · ·Sip (5)

where the couplings Ji1,...,ip are i.i.d. random variables with zero mean and variance:

E
[
J2

i1,...,ip

]
= γpd

∑

k∈Λ

ψ(γ|i1 − k|) · · ·ψ(γ|ip − k|). (6)

γ−1 is the interaction range, since only variables located at vertices i and j such that
|i− j| < γ−1 really interact. This also implies that the Hamiltonian is a random variable
with zero mean and variance:

E
[
H [S1, J ]H [S2, J ]

]
=
∑

i∈Λ

f(QS1S2(i)), (7)

where f(x) is a polynomial with positive coefficients, for example f(x) = xp, if we consider
a pure p-spin model; in the following we will consider f(x) = 1

10
x2 +x4, where the quartic

term ensures having a regular gradient expansion of the free-energy density.
We analyse the model in the Kac limit: L, γ−1 → ∞ with L � γ−1, where the model

can be solved by means of the saddle-point approximation.
The sandwich geometry is implemented by considering three regions of the lattice Λ:

A+(l), A−(l) and a box B(l); figure 1. In order to put the same or different states at
opposites sides of the box, we introduce two different systems, that we call αα and αβ:

• system αα: we fix a configuration Sα drawn from the Boltzmann equilibrium measure;
we consider the thermodynamic of configurations S constrained to be close to Sα both
in A+(l) and in A−(l);

• system αβ: we fix two configurations Sα and Sβ drawn from the Boltzmann
equilibrium measure; we consider the thermodynamics of configurations S constrained
to be close to Sα in A+(l) and to Sβ in A−(l).

We consider a system αβ. Let O be an observable of the system and q̄ ≤ 1. The
constrained Boltzmann measure 〈·〉αβ(l) is

〈O〉αβ(l) ≡ 1

Z[Sα
A+ , S

β
A−]

∫
dSO(S)e−βH[S,J ]

∏

i∈A−

δ(QSαS(i) − q̄)
∏

i∈A+

δ(QSβS(i) − q̄) (8)

where
∫

denotes integration over configurations satisfying the local spherical constraint.
The partition function is

Z[Sα
A+ , S

β
A−] ≡

∫
dS e−βH[S,J ]

∏

i∈A−

δ(QSαS(i) − q̄)
∏

i∈A+

δ(QSβS(i) − q̄). (9)

doi:10.1088/1742-5468/2010/04/P04008 4
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The symbol E represents the average over both the distributions of fixed configurations
Sα and Sβ and the disorder; the free energy of the system Fαβ(l) is then

Fαβ(l, T ) ≡ − 1

β
E[lnZ[Sα

A+, S
β
A−]]. (10)

For a system αα, the constrained Boltzmann measure 〈·〉αα(l) is obtained by imposing the
constraint

∏
i∈A+∪A− δ(QSαS(i) − q̄); then Fαα(l, T ) ≡ −(1/β)E[lnZ[Sα

A+∪A−]]
As we will see in the following, Fαβ(l, T ) and Fαα(l, T ) can be calculated in the Kac

limit, γ → 0 taken after L → ∞. This allows us to measure the free-energy cost per unit
area for putting different metastable states at a distance l:

Y (l, T ) ≡ lim
γ→0

lim
L→∞

Fαβ(l, T ) − Fαα(l, T )

Ld−1
; (11)

this quantity can be interpreted as an effective, distance-dependent, surface tension.

3. Calculations

In the following we consider a system αβ; a system αα can be treated in the same way.
In order to calculate Fαβ , the average E can be taken by introducing replicas along the
lines of [12, 13] (more details on calculations can be found in appendix B). Integrals over
spin variables are then treated for an (m + n) × (m + n) matrix order parameter qab(i).

We rescale the position to define x = iγ ∈ [−L̂, L̂]d, L̂ ≡ γL to get

Fαβ(l̂) = − 1

β
lim

m,n→0

∫
[dqab]e

−(1/γd)Sαβ(qab). (12)

The dependence upon γ is now completely explicit and, for γ → 0, the functional
integration can be performed using the saddle-point method. We look for a replica
symmetric saddle point qRS

ab (x). This is characterized by three scalar functions p1(x),
p2(x) and q(x); p1 and p2 are the local overlaps between the constrained configuration
and the reference configuration Sα and Sβ respectively and q is the local overlap of two
constrained configurations when they belong to the same metastable state (see appendix A
for more details). Using this ansatz we obtain that Sαβ(qab) = n

∫
Lαβ ddx+O(n2), where

Lαβ(x) = −β
2

2
[f(1) + 2f((ψ ∗ p1)(x)) + 2f((ψ ∗ p2)(x)) − f((ψ ∗ q)(x))]

+
1

2

[
log(1 − q(x)) − p2

1(x) + p2
2(x) − q(x)

1 − q(x)

]
(13)

with

(ψ ∗ q)(x) =

∫
ddy ψ(|y − x|)q(y). (14)

The constraint forcing S to be close to Sα in A−(l̂) and to Sβ in A+(l̂) is fulfilled by setting

p1(x) = q̄ for x ∈ A−(l̂) and p2(x) = q̄ for x ∈ A+(l̂). We obtain Fαβ(l̂) by evaluating
the fields p1(x), p2(x) and q(x) in the saddle point of the action S0

αβ =
∫

ddxLαβ(x).

The resulting free energy will present an extensive part O(Ld) which will be the same
for a system αα and for a system αβ. Then, in the calculation of the surface tension

doi:10.1088/1742-5468/2010/04/P04008 5
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Y (l̂, T ), the extensive part of the free energy will be erased and contributions will come
only from the sub-leading order O(Ld−1); the resulting form of the surface tension is

Y (l̂, T ) = F̂αβ(l̂, T ) − F̂αα(l̂, T ), where F̂αβ(l̂, T ) = (1/β)
∫ l̂

0
dxLαβ(x).

We introduce a simplification in the Lagrangians: we expand the terms of the form
f((ψ ∗ q)(x)) in the gradient of q(x) and we truncate to the second order, obtaining
f(q(x)) − cf ′′(q(x))(∇q)2(x) where c = (1/2d)

∫
z2ψ(|z|) dzd (in our running example,

c = 1). We find the saddle-point fields by numerically iterating the Euler–Lagrange
equations of (13).

4. Results

The system αα has been studied in spherical geometry [5]; we verified that in the sandwich
geometry the behaviour does not change with respect to the spherical case. Two critical
temperatures characterize the system: Ts ≈ 0.766 287 and Td ≈ 0.813 526.

Setting the temperature of the system T � Td, we find two lengths: l̂0(T ) and ξ̂d(T ),

such that, for widths of the box l̂ ∈ [l̂0(T ), ξ̂d(T )], the action S0
αα has two local minima.

A minimum is characterized by a saddle-point field p(x) rapidly decaying to zero in the
interior of the box; we name this the low-overlap minimum. The other minimum is
characterized by a saddle-point field p(x) everywhere large; we name this the high-overlap

minimum. For l̂ > ξ̂d (l̂ < l̂0) only the low-overlap (high-overlap) minimum exists.

ξ̂s(T ) is defined as the minimum value of l̂ such that the low-overlap minimum is the
global minimum of the action. The critical temperatures Ts and Td are defined as the
temperatures at which ξ̂s(T ) and ξ̂d(T ) respectively diverge.

For a better comprehension, we present in figure 3 the plot of the sub-extensive part
of the free energy of the high-overlap (low-overlap) minimum F̂H

αα(l̂) (F̂ L
αα(l̂)) divided

by the size l̂ for a system at a temperature Ts < T < Td. ξ̂s(T ) is then the value

of l̂ where F̂ L
αα(l̂) and F̂H

αα(l̂) cross. Then the global free energy of a system αα is

Fαα(l̂) = min{F L
αα(l̂), FH

αα(l̂)}.
On the other hand, in the case of a system αβ, the action S0

αβ always has a single
minimum. Profiles of the saddle-point field p1(x) can be seen in figure 2. The sub-extensive

part of the free energy of the unique minimum F̂αβ(l̂)/l̂ for a temperature Ts < T < Td

is also plotted in figure 3. At all temperatures and values of l̂ that we have studied, the
sub-extensive part of the free energy of a system αβF̂αβ(l̂) is close to the sub-extensive

part of the low-overlap free energy of a system ααF̂αα(l̂), as can be seen in the inset of
figure 3.

In figure 4 we follow the evolution of l̂-dependent surface tension Y (l̂, T ) for systems at

different temperatures T > Ts. We note that the static correlation length ξ̂s(T ) separates

two regimes. For l̂ < ξ̂s(T ), Y (l̂, T ) has a power law followed by a linear decrease. For

l̂ > ξ̂s(T ), as we see in the inset of figure 4, the decrease becomes exponential:

Y (l̂, T ) ∼ Ce−l̂/l̃, (15)

with l̃ weakly dependent on the temperature and showing no evident relation with ξ̂s.
This shows that the surface tension Y (l̂, T ) is appreciably different from zero only for

l̂ � ξ̂s. A similar result has been obtained in [14]; in that case the interface free energy

doi:10.1088/1742-5468/2010/04/P04008 6
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Figure 2. Plot of the profiles of the saddle-point field p1(x) for a system αβ

at temperature T = 0.8 for different values of the box l̂. At this temperature,
ξ̂s ∼ 24.

Figure 3. Main figure: plot of the sub-extensive part of the free energy divided
by the size as a function of l̂ for a system at a temperature T = 0.7874 of:
the high-overlap minimum of a system αα, F̂H

αα(l̂)/l̂; the low-overlap minimum

of a system αα, F̂L
αα(l̂)/l̂; the unique minimum of a system αβ, F̂αβ(l̂)/l̂. The

static correlation length ξ̂s is pointed out. Using this scale F̂L
αα(l̂) and F̂αβ(l̂) are

indistinguishable. Inset: the difference F̂L
αα(l̂) − F̂αβ(l̂) on a logarithmic scale.

has been obtained by changing the boundary conditions along one direction, from periodic
to anti-periodic.

Particular attention must be paid to the case T = Ts. At Ts, the static correlation
length ξ̂s diverges. This means that the high-overlap minimum is the global minimum of
the action S0

αα for all the values of l̂. We see in figure 4 that, for T approaching Ts, the

profile of Y (l̂, T ) takes the shape of a plateau. Consequently, at the critical temperature

Ts, in the limit l̂ → ∞, the surface tension Y (l̂, Ts) does not fall to zero and takes a

doi:10.1088/1742-5468/2010/04/P04008 7
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Figure 4. Plot of Y (l, T ) for different temperatures as a function of the width of

the box l̂. We recall that Ts ≈ 0.766 287 and Td ≈ 0.813 526.

limiting value Y (Ts). Arguably, the value Y (T ) is different from zero for temperatures
T < Ts.

According to phenomenological arguments [1], the static correlation length ξ̂s(T ) can
be interpreted as the typical size of metastable states of a system at a temperature T .
Following this idea, in a system αβ we are freezing a patchwork of metastable states of
size ξ̂s(T ) outside the box and letting the system be free to rearrange inside the box. If the

width of the box is larger than the typical metastable-state size, l̂ � ξ̂s(T ), the system
inside the box has enough space to rearrange in many different metastable states. In
contrast, when the width of the box is smaller than the metastable-state size, l̂ < ξ̂s, since
there is not enough space to create metastable states on the interior, the frozen states
are in contact and then ‘repel’ each other. This explains why the surface tension Y (l̂, T )

is significantly different from zero only for l̂ < ξ̂s(T ) and why the overlap profiles p1(x)
and p2(x) between frozen metastable states and the interior of the box decrease faster
for small boxes. At the critical temperature Ts the size of the metastable states diverges.
Consequently, the surface tension takes a finite value also in the limit l̂ → ∞.

Other observables of the system have been considered. We studied the internal energy
U . We verified that for a system αα the high-overlap and the low-overlap phases have the
same energy, as motivated in section 1. In figure 5 we follow the evolution of Uαβ(l̂)−Uαα(l̂)
for different temperatures of the system. A detailed derivation of this quantity can be
found in appendix B. In this case, we note a power law followed by an exponential
decrease.

We also computed the configurational entropy Σ as a function of the size l̂ of the box;
figure 6. For a system αα only the low-overlap phase presents a configurational entropy
Σαα different from zero. As noticed in [5], for l̂ < l̂1RSB the replica symmetric solution is
incorrect since it gives a negative entropy. We found that the same is true for a system
αβ. In the inset of figure 6 we plot the difference between the configurational entropies
of the two systems. We note that this quantity is a decreasing function of the size l̂ of
the system. This is consistent with the observation that the system loses memory of the
frozen exterior for large sizes of the box.

doi:10.1088/1742-5468/2010/04/P04008 8
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Figure 5. Plot of Uαβ(l̂) − Uαα(l̂) for different temperatures as a function of the

width of the box l̂. We recall that Ts ≈ 0.766 287 and Td ≈ 0.813 526.

Figure 6. Main figure: the configurational entropy Σαα(l) as a function of l for
a system αα and Σαβ(l) for a system αβ at a temperature T = 0.8. Inset: the
difference Σαβ(l) − Σαα(l).

5. Conclusions

In this paper we have studied a distance-dependent surface tension, defined as the free-
energy cost for putting metastable states at a given distance. This has been done in the
framework of a disordered microscopic model with Kac interactions that can be solved
in the mean-field limit. We have found that the surface tension is appreciably different
from zero only for distances between metastable states smaller than the static correlation
length of the system. A description of this behaviour in terms of a phenomenological
droplet argument has been proposed. Other observables, like the internal energy and the
configurational entropy, have been studied. The behaviour of the configurational entropy
allowed us to identify under which size the replica symmetric ansatz becomes incorrect
and a 1-RSB solution must be considered.

doi:10.1088/1742-5468/2010/04/P04008 9
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Appendix A

We give an explicit formulation of the overlap matrix in the replica symmetric ansatz
qRS
ab (x); the overlap matrix is an (m+ n) × (m+ n) matrix with m and n real numbers; if

we take r and n integer, we can visualize the matrix in the following way:

qRS =

[
A B
BT C

]
. (A.1)

The n× n matrix C is the matrix of overlap between configurations that are taken with
constrained Boltzmann measure and subject to the local spherical constraint; the replica
symmetric ansatz imposes that Cab = q(x) for all a �= b and the spherical constraint that
Caa = 1; then C can be written in the form

C =

⎡
⎢⎣

1 q(x) q(x) . . . q(x)
q(x) 1 q(x) . . . q(x)
. . . . . . . . . . . .
q(x) q(x) q(x) . . . 1

⎤
⎥⎦ . (A.2)

The m×m A matrix is the matrix of overlap between configurations that are taken with
Boltzmann measure and subject to the local spherical constraint; we impose that the out
of diagonal elements are equal to zero, and then we obtain that A is the identity matrix:
A = 1.

The m × n B matrix is the matrix of overlap between configurations that are taken
with Boltzmann measure and configurations that are taken with constrained Boltzmann
measure; we impose that all the elements of this matrix are equal to zero, except the last
two lines that are equal to p1(x) and to p2(x); then A can be written in the form

B =

⎡
⎢⎢⎢⎣

0 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
p1(x) p1(x) . . . p1(x)
p2(x) p2(x) . . . p2(x)

⎤
⎥⎥⎥⎦ . (A.3)

Appendix B

The internal energy of a system αβ is

Uαβ(l) ≡ E [〈H [s, J ]〉αβ(l)] = E
[
− ∂

∂β
lnZ[sα

A+ , s
β
A−]

]
.

We give an explicit derivation of Uαβ(l); similar calculations allow us to obtain the free
energy Fαβ(l). We introduce two different temperatures β1 and β2 and n and m replicas

doi:10.1088/1742-5468/2010/04/P04008 10
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of the system:

Uαβ(l) = E
[
Esα

[
Esβ

[
− ∂

∂β
lnZ[sα

A+ , s
β
A−]

]]]

= − ∂

∂β2

E
[

1

Z2[β1]

∫
dsα dsβ exp

[
−β1

(
H [sα, J ] +H [sβ, J ]

)]
lnZ[sα, sβ, β2]

]

= lim
m,n→0

1

n

(
− ∂

∂β2

)

× E
[
Zm−2[β1]

∫
dsαdsβ exp

[
−β1(H [sα, J ] +H [sβ, J ])

]
Zn[sα, sβ, β2]

]

where

C =
m+n∏

a=m+1

[∏

i∈A+

δ(Qsm−1sa(i) − q̄)
∏

i∈A−

δ(Qsmsa(i) − q̄)

]
.

Then taking the expectation value over the disorder, the derivative, and reimposing equal
temperatures we obtain

Uαβ(l) = lim
m,n→0

−β
n

∫ m+n∏

a=1

dsa C exp

[
β2

2

∑

i∈Λ

∑

1≤a,b≤n

f(Qab(i))

]

×
∑

i∈Λ

⎡
⎣∑

a,b∈C

f(Qab(i)) +
1

2

∑

a,b∈B

f(Qab(i)) +
1

2

∑

a,b∈BT

f(Qab(i))

⎤
⎦ .

Integrals over the spin variables are then traded for an (m + n) × (m + n) matrix order
parameter qab(i):

Uαβ = lim
m,n→0

−β
n

∫ ∏

i∈Λ

m+n∏

a,b=1

qab(i)C exp

[∑

i∈Λ

(
β2

2

∑

1≤a,b≤n

f(qab(i)) +
1

2
log det q(i)

)]

×
∑

i∈Λ

⎡
⎣∑

a,b∈C

f(qab(i)) +
1

2

∑

a,b∈B

f(qab(i)) +
1

2

∑

a,b∈BT

f(qab(i))

⎤
⎦ .

Performing the coarse graining,

Uαβ = lim
m,n→0

−β
n

∫
[dqab]

∫
dx

⎡
⎣∑

a,b∈C

f((ψ ∗ q)ab(x)) +
1

2

∑

a,b∈B,BT

f((ψ ∗ q)ab(x))

⎤
⎦

× exp

[
1

γd

∫
dx

(
β2

2

∑

1≤a,b≤n

f((ψ ∗ q)ab(x)) +
1

2
log det q(x)

)]
C.

Using the replica symmetric matrix presented in appendix A we obtain

Uαβ = lim
n→0

−β
n

∫
[dq][dp1][dp2]

[
n

∫
dxH(x) + o(n2)

]
exp

[
− n

γd

∫
dxL(x) + o(n2)

]

doi:10.1088/1742-5468/2010/04/P04008 11
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where

H(x) = 1 + f((ψ ∗ p1)(x)) + f((ψ ∗ p2)(x)) − f((ψ ∗ q)(x));

L(x) =
β2

2
[1 + 2f((ψ ∗ p1)(x)) + 2f((ψ ∗ p2)(x)) − f((ψ ∗ q)(x))]

+
1

2

[
log(1 − q(x)) − p2

1(x) + p2
2(x) − q(x)

1 − q(x)

]
.

We evaluate the action S0
αβ =

∫
ddxLαβ(x) in the saddle-point fields p1, p2 and q and we

obtain that

Uαβ(l̂) = −β
∫

dxH(x). (B.1)

References

[1] Biroli G and Bouchaud J P, On the Adam–Gibbs–Kirkpatrick–Thirumalai–Wolynes scenario for the
viscosity increase in glasses, 2004 J. Chem. Phys. 121 7347

[2] Montanari A and Semerjian G, Rigorous inequalities between length and time scales in glassy systems, 2006
J. Stat. Phys. 125 23

[3] Cavagna A, Grigera T S and Verrocchio P, Mosaic multi-state scenario versus one-state description of
supercooled liquids, 2007 Phys. Rev. Lett. 98 187801

[4] Biroli G, Bouchaud J P, Cavagna A, Grigera T S and Verrocchio P, Thermodynamic signature of growing
amorphous order in glass-forming liquids, 2008 Nat. Phys. 4 771

[5] Franz S and Montanari A, Analytic determination of dynamical and mosaic length scales in a Kac glass
model , 2007 J. Phys. A: Math. Theor. 40 F251

[6] Kirkpatrick T R, Thirumalai D and Wolynes P G, Scaling concepts for the dynamics of viscous liquids near
an ideal glassy state, 1989 Phys. Rev. A 40 1045

[7] Franz S and Semerjian G, Analytical approaches to time and length scales in models of glasses, 2010 at press
[8] Cammarota C, Cavagna A, Gradenigo G, Grigera T S and Verrocchio P, Evidence for a spinodal limit of

amorphous excitations in glassy systems, 2009 J. Stat. Mech. L12002
[9] Franz S and Toninelli F L, The Kac limit for finite-range spin glasses, 2004 Phys. Rev. Lett. 92 030602

[10] Franz S and Toninelli F L, Finite-range spin glasses in the Kac limit: free energy and local observables,
2004 J. Phys. A: Math. Gen. 37 7433

[11] Franz S and Toninelli F L, A field-theoretical approach to the spin-glass transition: models with long but
finite, 2005 J. Stat. Mech. P01008

[12] Franz S, First steps of a nucleation theory in disordered systems, 2005 J. Stat. Mech. P04001
[13] Franz S, Metastable states, relaxation times and free-energy barriers in finite-dimensional glassy systems,

2006 Europhys. Lett. 73 492
[14] Moore M A, Interface free energies in p-spin glass models, 2006 Phys. Rev. Lett. 96 137202

doi:10.1088/1742-5468/2010/04/P04008 12



Article 2





PHYSICAL REVIEW B 84, 144417 (2011)
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We investigate the finite-size fluctuations due to quenched disorder of the critical temperature of the
Sherrington-Kirkpatrick spin glass. In order to accomplish this task, we perform a finite-size analysis of the
spectrum of the susceptibility matrix obtained via the Plefka expansion. By exploiting results from random
matrix theory, we obtain that the fluctuations of the critical temperature are described by the Tracy-Widom
distribution with a nontrivial scaling exponent 2/3.
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I. INTRODUCTION

The characterization of phase transitions in terms of a
nonanalytic behavior of thermodynamic functions in the
infinite-size limit has served as a milestone1–5 in the physical
understanding of critical phenomena. In laboratory and numer-
ical experiments, the system size is always finite so that the
divergences that would result from such a nonanalytic behavior
are suppressed, and are replaced by smooth maxima occurring
in the observation of physical quantities as a function of the
temperature. In disordered systems, the pseudocritical tem-
perature, defined as the temperature at which this maximum
occurs, is a fluctuating quantity depending on the realization
of the disorder. A question naturally arises: Can the fluctu-
ations of the pseudocritical temperature be understood and
determined with tools of probability theory? Several efforts
have been made to study the fluctuations of the pseudocritical
temperature for disordered finite-dimensional systems6–9 and
their physical implications. For instance, recently Sarlat et al.10

showed that the theory of finite-size scaling, which is valid
for pure systems, fails in fully-connected disordered models
because of strong sample-to-sample fluctuations of the critical
temperature.

The extreme value statistics of independent random vari-
ables is a well-established problem with a long history
dating from the original work of Gumbel,11 while less results
are known in the case where the random variables are
correlated. The eigenvalues of a Gaussian random matrix
are an example of strongly-correlated random variables.12

Only recently, Tracy and Widom calculated13–16 exactly the
probability distribution of the typical fluctuations of the
largest eigenvalue of a Gaussian random matrix around its
infinite-size value. This distribution, known as Tracy-Widom
distribution, appears in many different models of statistical
physics, such as directed polymers17,18 or polynuclear growth
models,19 showing profound links between such different
systems. Conversely, to our knowledge no evident connections
between the Tracy-Widom distribution and the physics of spin
glasses have been found heretofore.20

The purpose of this work is to try to fill this gap. We consider
a mean-field spin glass model, the Sherrington-Kirkpatrick
(SK) model,21 and propose a definition of finite-size critical
temperature inspired by a previous analysis.8 We investigate
the finite-size fluctuations of this pseudocritical temperature

in the framework of extreme value statistics and show that the
Tracy-Widom distribution naturally arises in the description
of such fluctuations.

II. THE MODEL

The SK model21 is defined by the Hamiltonian

H [{Si},{xij }] = − J

N1/2

N∑
i>j=1

xijSiSj +
N∑

i=1

hiSi, (1)

where Si = ±1, the couplings {xij }i>j=1,...,N ≡ {x}, xji ≡
xij∀i > j are distributed according to normal distribution with
zero mean and unit variance

P (x) = 1√
2π

e− x2

2 , (2)

and J is a parameter tuning the strength of the interaction
energy between spins.

The low-temperature features of the SK model have been
widely investigated in the past and are encoded in Parisi’s
solution,22–27 showing that the SK has a finite-temperature
spin glass transition at Tc = J in the thermodynamic limit
N → ∞. The critical value Tc can be physically thought of as
the value of the temperature where ergodicity breaking occurs
and the spin glass susceptibility diverges.25–27

While Parisi’s solution has been derived within the replica
method framework, an alternative approach to study the SK
model had been previously proposed by Thouless, Anderson,
and Palmer (TAP).28 Within this approach, the system is
described in terms of a free energy at fixed local magnetization,
and the physical features derived in terms of the resulting
free-energy landscape. Later on, Plefka29 showed that the
TAP free energy can be obtained as the result of a systematic
expansion in powers of the parameter

α ≡ βJ

N1/2
,

where β is the inverse temperature of the model. This α

expansion, known as Plefka expansion, has thus served as
a method for deriving the TAP free energy for several classes
of models, and has been extensively used in different contexts
in physics, from classical disordered systems,30–32 to general
quantum systems.33–36 It is a general fact that, if the model is

144417-11098-0121/2011/84(14)/144417(9) ©2011 American Physical Society
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defined on a complete graph, the Plefka expansion truncates to
a finite order in α, because higher-order terms should vanish
in the thermodynamic limit. In particular, for the SK model,
the orders of the expansion larger than three are believed37 to
vanish in the limit N → ∞ in such a way that the expansion
truncates, and one is left with the first three orders of the α

series, which reads

−βf ({mi},β) = −
∑

i

[
1 + mi

2
ln

(
1 + mi

2

)
+ 1 − mi

2

× ln

(
1 − mi

2

)]
+ α

∑
i>j

xijmimj

+ α2

2

∑
i>j

x2
ij

(
1 − m2

i

)(
1 − m2

j

)
, (3)

where mi ≡ 〈Si〉 is the local magnetization, i.e., the thermal
average 〈〉 of the spin Si performed with the Boltzmann weight
given by Eq. (1) at fixed disorder {x}.

In the thermodynamic limit N → ∞, for temperatures T >

Tc, the only minimum of βf ({m},β) is the paramagnetic one
mi = 0 ∀i. Below the critical temperature, the TAP free energy
has exponentially many different minima: the system is in a
glassy phase. In this framework, the phase transition at Tc can
be characterized by the inverse susceptibility matrix, which is
also the Hessian of βf

βχ−1
ij ≡ β

∂hi

∂mj

= ∂2(βf )

∂mi∂mj

. (4)

The inverse susceptibility matrix in the paramagnetic mini-
mum at leading order in N is

βχ−1
ij = (1 + β2J 2)δij − αxij . (5)

Random-matrix theory states that the average density of
eigenvalues of x,

ρN (λ) ≡ Ex

[
1

N

N∑
i=1

δ(λ − λi({x}))
]

, (6)

has a semicircular shape38 on a finite support [−2
√

N,2
√

N ],
whereEx denotes expectation value with respect to the random
bonds {x}, and λi({x}) is the ith eigenvalue of x. Equation
(6) is nothing but the density of eigenvalues of the Gaussian
orthogonal ensemble (GOE) of Gaussian random matrices.12,39

Due to self-averaging properties, the minimal eigenvalue of
βχ−1 in the paramagnetic minimum is λ = (1 − βJ )2. This
shows that, for T > Tc, λ is strictly positive and vanishes at
Tc, implying the divergence25 of the spin glass susceptibility
1/β2Tr[χ2]. Since λ is also the minimal eigenvalue of the
Hessian matrix of βf in the paramagnetic minimum, we
deduce that this is stable for T > Tc and becomes marginally
stable at Tc.

This analysis sheds some light on the nature of the spin glass
transition of the SK model in terms of the minimal eigenvalue
λ of the inverse susceptibility matrix (Hessian matrix) in
the thermodynamic limit. In this paper we generalize such
analysis to finite sizes, where no diverging susceptibility nor
uniquely-defined critical temperature exists, and the minimal
eigenvalue λ acquires fluctuations due to quenched disorder.

We show that a finite-size pseudocritical temperature can
be suitably defined and investigate its finite-size fluctuations
with respect to disorder. As a result of this work, these
fluctuations are found to be described by the Tracy-Widom
distribution.

The rest of the paper is structured as follows. In Sec. III, we
generalize Eq. (5) to finite sizes, in the simplifying assumption
that the Plefka expansion can be truncated up to order α2,
which is known as the TAP approach. We then study the
finite-size fluctuations of the minimal eigenvalue λ of the
susceptibility matrix, and show that they are governed by the
TW distribution. In Sec. IV, we extend this simplified approach
by taking into account the full Plefka expansion, by performing
an infinite re-summation of the series. Hence, in Sec. V,
we give a suitable definition of a finite-size pseudocritical
temperature, and show that its fluctuations are governed by
the TW distribution. In Sec. VI, this result is discussed in
the perspective of generalizing it to more realistic spin glass
models.

III. FINITE-SIZE ANALYSIS OF THE SUSCEPTIBILITY IN
THE TAP APPROXIMATION

In this section, we study the finite-size fluctuations due to
disorder of the minimal eigenvalue of the inverse susceptibility
matrix βχ−1 at the paramagnetic minimum mi = 0 ∀i, by
considering the free energy f in the TAP approximation,
Eq. (3). We want to stress the fact that large deviations
of thermodynamics quantities of the SK model have been
already studied heretofore. For example, Parisi et al. have
studied40,41 the probability distribution of large deviations of
the free energy within the replica approach. The same authors
studied the probability of positive large deviations of the free
energy per spin in general mean-field spin-glass models,42 and
showed that such fluctuations can be interpreted in terms of
the fluctuations of the largest eigenvalue of Gaussian matrices,
in analogy with the lines followed in the present work.

Back to the TAP equations (3), the inverse susceptibility
matrix in the paramagnetic minimum for finite N reads

βχ−1
ij = −αxij + δij

⎛
⎝1 + α2

∑
k 	=i

x2
ki

⎞
⎠

= −αxij + δij (1 + β2J 2) + δij

(βJ )2

√
N

zi
2, (7)

where

zi
2 ≡

√
N

⎛
⎝ 1

N

∑
k 	=i

x2
ki − 1

⎞
⎠ . (8)

According to Eq. (8), zi
2 is given by the sum of N − 1

independent identically-distributed random variables x2
ij . By

the central limit theorem, at leading order in N the variable zi
2

is distributed according to a Gaussian distribution with zero
mean and variance 2

pN

(
zi

2 = z
) N→∞→ 1√

4π
e−z2/4, (9)
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where pN (zi
2 = z) denotes the probability that zi

2 is equal to z

at finite size N .
We set

βχ−1
ij ≡ δij (1 + β2J 2) + αMij . (10)

According to Eq. (8), the diagonal elements of Mij are
random variables correlated to out-of-diagonal elements. The
statistical properties of the spectrum of a random matrix whose
entries are correlated to each other has been studied heretofore
only in some cases. For instance, Stäring et al.43 studied
the average eigenvalue density for matrices with a constraint
implying that the row sum of matrix elements should vanish,
and other correlated cases have been investigated both from a
physical44 and mathematical45 point of view.

In recent years, a huge amount of results has been obtained
on the distribution of the minimal eigenvalue of a N × N

random matrix drawn from Gaussian ensembles, such as GOE.
In particular, Tracy and Widom13–16 deduced that for large N ,
small fluctuations of the minimal eigenvalue λGOE of a GOE
matrix around its leading-order value −2

√
N are given by

λGOE = −2
√

N + 1

N1/6
φGOE, (11)

where φGOE is a random variable distributed according to
the Tracy-Widom (TW) distribution for the GOE ensemble
pGOE(φ). It follows that for βJ = 1 if zi

2 was independent on
{x}, the matrix Mij would belong to the GOE ensemble, and
the minimal eigenvalue λ of βχ−1 would define a variable φ

according to

λ = 1

N2/3
φ, (12)

and φ would be distributed according to the TW distribution
pGOE(φ).

As shown in Appendix A, this is indeed the case for zi
2,

which can be treated, at leading order in N , as a random
variable independent on xij . The general idea is that zi

2 is given
by the sum of N − 1 terms all of the same order of magnitude,
and only one amongst these N − 1 terms depends on xij . It
follows that at leading order in N , zi

2 can be considered as
independent on xij . Since in Eq. (7) zi

2 is multiplied by a
sub-leading factor 1/

√
N , in Eq. (7) we can consider zi

2 at
leading order in N , and treat it as independent on xij .

To test this independence property, we set βJ = 1, generate
numerically S 
 1 samples of the N × N matrix βχ−1, and
compute the average density of eigenvalues of βχ−1, defined
as in Eq. (6), together with the distribution of the minimal
eigenvalue λ for several sizes N . The eigenvalue distribution
ρN (λ) as a function of λ is depicted in Fig. 1, and tends to the
Wigner semicircle as N is increased, showing that the minimal
eigenvalue λ tends to 0 as N → ∞.

The finite-size fluctuations of λ around 0 are then investi-
gated in Fig. 2. Defining φ in terms of λ by Eq. (12), in Fig. 2 we
depict the distribution pN (φ) of the variable φ for several sizes
N , and show that for increasing N , pN (φ) approaches the TW
distribution pGOE(φ). Let us introduce the central moments

μN
1 ≡ EN [φ],

μN
i ≡ EN [(φ − EN [φ])i] ∀i > 1
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0 1 2 3 4

ρ
(λ

)

λ

ρSC(λ)
ρ64(λ)

ρ128(λ)
ρ256(λ)
ρ512(λ)

ρ1024(λ)

FIG. 1. (Color online) Density of eigenvalues ρN (λ) of the matrix
βχ−1 for N = 64,128,256,512,1024 (in red, blue, yellow, green, vio-
let respectively), βJ = 1 and S = 16 × 103, and Wigner semicircular
law ρSC(λ) = 1/(2π )

√
4 − (2 − λ)2 (black) as a function of λ. ρN (λ)

approaches ρSC(λ) as N is increased.

of pN (φ), and the central moments

μGOE
1 ≡ EGOE[φ],

μGOE
i ≡ EGOE[(φ − EGOE[φ])i] ∀i > 1

of the TW distribution, where

EN [·] ≡
∫

dφ pN (φ) · ,

EGOE[·] ≡
∫

dφ pGOE(φ) · .

In the inset of Fig. 2 we depict μN
i for several sizes N and

μGOE
i as a function of i, showing that μN

i converges to μGOE
i

as N is increased.
In Fig. 3, this convergence is clarified by depicting �μN

i ≡
(μN

i − μGOE
i )/μGOE

i for several values of i > 1 as a function
of N . �μN

i is found to converge to 0 for large N . In the inset
of Fig. 3, we depict �μN

1 as a function of N , showing that
the convergence of the first central moment with N is much
slower than that of the other central moments. It is interesting
to observe that a slowly-converging first moment has been
recently found also in experimental46 and numerical47 data
of models of growing interfaces where the TW distribution
appears.

The analytical argument proving the independence property
of zi

2 has been thus confirmed by this numerical calculation.
Hence, the main result of this section is that the finite-size
fluctuations of the minimal eigenvalue of the susceptibility
matrix βχ−1 in the TAP approximation for βJ = 1 are of
the order of N−2/3 and are distributed according to the TW
law. These fluctuations have already been found to be of
the order of N−2/3 in a previous work,48 and more recently
reconsidered,49 following an independent derivation based on
scaling arguments, even though the distribution has not been
worked out. Our approach sheds some light on the nature of
the scaling N−2/3, which is nontrivial, since it comes from the
N−1/6 scaling of the TW distribution, which is found to govern
the fluctuations of λ. Moreover, the fact that we find the same
scaling as that found in such previous works can be considered
as a consistency test of our calculation.

144417-3



MICHELE CASTELLANA AND ELIA ZARINELLI PHYSICAL REVIEW B 84, 144417 (2011)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -2 0 2 4 6

p
(φ

)

φ

-200

-100

0

100

2 4 6 8

μ
i

i

pGOE(φ)
p128(φ)
p256(φ)
p512(φ)

p1024(φ)
p2048(φ)
p4096(φ)

μ128
i

μ256
i

μ512
i

μ1024
i

μ2048
i

μ4096
i

μGOE
i

FIG. 2. (Color online) Distribution pN (φ) for N = 128,256,512,1024,2048,4096 (in red, yellow, blue, brown, violet, green respectively)
and 105 � S � 4 × 105 samples, and the Tracy-Widom distribution pGOE(φ) for the GOE ensemble (black), as a function of φ. For increasing
N , pN (φ) approaches pGOE(φ), confirming the asymptotic independence of the diagonal elements (11) by each of the off-diagonal elements xij

for large N . Inset: μN
i for sizes N = 128,256,512,1024,2048,4096 (in red, yellow, blue, brown, violet, green respectively), 105 � S � 4 × 105,

and μGOE
i (black) as a function of i > 1.

We now recall that both the derivation of this section and
the previously-developed analysis of Bray and Moore48 rely
on the TAP approximation, i.e., neglect the terms of the Plefka
expansion (13) of order larger than 2 in α. As we will show
in the following section, these terms give a non-negligible
contribution to the finite-size corrections of the TAP equations,
and so to the finite-size fluctuations of the critical temperature,
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0.4

128 256 512 1024 2048 4096

Δ
μ
N i

N

2.4
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FIG. 3. (Color online) Relative difference �μN
i between the

central moments μN
i of the distribution pN (φ) for 105 � S � 4 × 105,

and the central moments μGOE
i of the Tracy-Widom distribution as

a function of N = 128,256,512,1024,2048,4096, for i = 2,3,4,5
(in red, blue, black, orange respectively). For increasing N , μN

i

approaches μGOE
i , confirming the asymptotic independence of zi

2 by
each of the off-diagonal elements xij for large N . Inset: relative
difference of the first central moment �μN

1 as a function of N (brown).
�μN

1 approaches 0 very slowly as N is increased.

and thus must be definitely taken into account in a complete
treatment.

IV. FINITE-SIZE ANALYSIS OF THE SUSCEPTIBILITY
WITHIN THE FULL PLEFKA EXPANSION

In this section, we compute the inverse susceptibility matrix
βχ−1 by taking into account all the terms of the Plefka
expansion, in the effort to go beyond the TAP approximation
of Sec. III. Notwithstanding its apparent difficulty, here we
show that this task can be pursued by a direct inspection of
the terms of the expansion. Indeed, let us formally write the
free-energy f as a series29 in α,

f ({m},β) =
∞∑

n=0

αnfn({m},β). (13)

For n < 3, the fn’s are given by Eq. (3). For n > 3, fn is given
by the sum of several different addends,37 which proliferate
for increasing n.

It is easy to show that at leading order in N , there is just one
term contributing to fn, and that such a term can be written
explicitly as

fn({m},β)
N→∞≈

∑
i1>···>in−1

xi1i2xi2i3 · · · xin−1i1

× (
1 − m2

i1

) × · · · × (
1 − m2

in−1

)
. (14)
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It follows that by plugging Eq. (14) into Eq. (13) and
computing βχ−1 for mi = 0, one obtains a simple expression
for the inverse susceptibility at the paramagnetic solution

βχ−1
ij = −αxij + δij

(
1 + α2

∑
k 	=i

x2
ki + 2

∞∑
n=3

αn

×
∑

i1>···>in−1

xii1xi1i2 · · · xin−1i

)

= −αxij + δij (1 + β2J 2) + δij

1√
N

×
[

(βJ )2zi
2 + 2

∞∑
n=3

(βJ )n√
(n − 1)!

zi
n

]
. (15)

where

zi
n ≡

√
(n − 1)!

N
n−1

2

∑
i1>···>in−1

xii1xi1i2 · · · xin−1i ,∀n > 2. (16)

According to Eq. (16), one has that at leading order in N ,

Ex

[
zi
n

] = 0 ∀n > 2,
(17)

Ex

[(
zi
n

)2] = 1 ∀n > 2,

where in the second line of Eq. (17) the multiple sum defining
zi
n has been evaluated at leading order in N .

We observe that the random variables zi
n and xjk in Eq. (15)

are not independent, since each zi
n depends on the bond

variables {x}. Following an argument similar to that given in
Sec. III for zi

2, we observe that, by Eq. (16) and at leading order
in N , zi

n is given by a sum of O(Nn−1) terms which are all of the
same order of magnitude. Each term is given by the product of
n − 1 bond variables xii1xi1i2 · · · xin−1i forming a loop passing
by site i. For any fixed i, j, k, and n, only O(Nn−2) terms
amongst the O(Nn−1) terms of zi

n are entangled with the
random bond variable xjk . It follows that at leading order in
N , zi

n can be considered as independent by xjk . Since the sum
in the second line of Eq. (15) has a 1/

√
N factor multiplying

each of the zi
n’s, we can consider the zi

n at leading order in
N . Hence, in Eq. (15) we can consider each of the zi

n’s as
independent on xjk .

In Appendix B we show that at leading order in N , the
distribution of zi

n is a Gaussian with zero mean and unit
variance for every i and n > 2, while in Appendix C we
show that at leading order in N the variables {zi

n}n,i are
mutually independent. Both these predictions are confirmed by
numerical tests, illustrated in Appendix B and C respectively.

Hence, at leading order in N the term in square brackets
in Eq. (15) is nothing but the sum of independent Gaussian
variables, and is thus equal to a random variable σ × ζi , where
ζi is Gaussian with zero mean and unit variance, and

σ 2 = 2(βJ )4 + 4
∞∑

n=3

(βJ )2n

(n − 1)!

= 2(βJ )2{2(e(βJ )2 − 1) − (βJ )2}.

It follows that Eq. (15) becomes

βχ−1
ij = −αxij + δij

(
1 + β2J 2 + σ√

N
ζi

)
= −αx ′

ij + δij (1 + β2J 2), (18)

where

x ′
ij ≡ xij − δij

σ

βJ
ζi. (19)

Because of the additional diagonal term in Eq. (19), the matrix
x ′

ij does not belong to the GOE ensemble. Notwithstanding this
fact, it has been shown by Soshnikov50 that the presence of
the diagonal elements in Eq. (19) does not alter the universal
distribution of the maximal eigenvalue of x ′

ij , which is still
distributed according to the TW law. Hence, denoting by λ the
minimal eigenvalue of βχ−1, we have

λ = (1 − βJ )2 + βJ

N2/3
φGOE, (20)

where φGOE is a random variable depending on the sample xij ,
and distributed according to the TW law.

In this section, we have calculated the inverse susceptibility
matrix βχ−1, by considering the full Plefka expansion. In
this framework, additional diagonal terms are generated that
were not present in the TAP approximation. These additional
terms can be handled via a resummation to all orders in the
Plefka expansion. As a result, we obtain that the fluctuations
of the minimal eigenvalue λ of the susceptibility βχ−1 are
still governed by the TW law, as in the TAP case treated in
Sec. III.

V. FINITE SIZE FLUCTUATIONS OF THE CRITICAL
TEMPERATURE

We can now define a finite-size critical temperature, and
investigate its finite-size fluctuations due to disorder. In the
previous sections, we have shown that for a large but finite
size N , the minimal eigenvalue of the inverse susceptibility
matrix, i.e., the Hessian matrix of βf ({m},β) evaluated in
the paramagnetic minimum mi = 0, is a function of the
temperature and of a quantity φGOE, which depends on
the realization of the disorder {x}. Since the TW law, i.e., the
distribution of φGOE, has support for both positive and negative
values of φGOE, the subleading term in Eq. (20) can be positive
or negative. Accordingly, for samples {x} such that φGOE < 0,
there exists a value of βJ ≈ 1 such that λ(βJ ) = 0, in such
a way that the spin-glass susceptibility in the paramagnetic
minimum diverges. This fact is physically meaningless, since
there cannot be divergences in physical quantities at finite
size. This apparent contradiction can be easily understood by
observing that if λ(βJ ) = 0, the true physical susceptibility
is no more the paramagnetic one, but must be evaluated in
the low-lying nonparamagnetic minima of the free energy,
whose appearance is driven by the emergent instability of
the paramagnetic minimum. According to this discussion, in
the following we will consider only samples {x} such that
φGOE > 0.
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For these samples, the spectrum of the Hessian matrix at
the paramagnetic minimum has positive support for every
temperature: The paramagnetic solution is always stable, and
the paramagnetic susceptibility matrix χ is physical and finite.
We define a pseudoinverse critical temperature βcJ as the value
of βJ such that λ has a minimum at βcJ :

dλ

dβJ

∣∣∣∣
βJ=βcJ

≡ 0

= −2(1 − βcJ ) + 1

N2/3
φGOE, (21)

where in the second line of Eq. (21), Eq. (20) has been
used. This definition of pseudocritical temperature has a
clear physical interpretation: The stability of the paramagnetic
minimum, which is encoded into the spectrum of the Hessian
matrix βχ−1, has a minimum at β = βc. According to Eq. (21),
the finite-size critical temperature βc is given by

βcJ = 1 − 1/2

N2/3
φGOE, (22)

where φGOE depends on the sample {x}, and is distributed
according to the TW law.

Eq. (22) shows that the pseudocritical temperature of the
SK model is a random variable depending on the realization
of the quenched disorder. Finite-size fluctuations of the
pseudocritical temperature are of the order of N−2/3, and are
distributed according to the TW law. This has to be considered
the main result of this paper.

VI. DISCUSSION AND CONCLUSIONS

In this paper, the finite-size fluctuations of the critical
temperature of the Sherrington-Kirkpatrick spin glass model
have been investigated. The analysis is carried on within the
framework of the Plefka expansion for the free energy at fixed
local magnetization. A direct investigation of the expansion
shows that an infinite resummation of the series is required to
describe the finite-size fluctuations of the critical temperature.
By observing that the terms in the expansion can be treated
as independent random variables, one can suitably define a
finite-size critical temperature. Such a critical temperature
has a unique value in the infinite-size limit, while it exhibits
fluctuations due to quenched disorder at finite sizes. These
fluctuations with respect to the infinite-size value have been
analyzed, and have been found to be of the order of N−2/3,
where N is the system size, and to be distributed according to
the Tracy-Widom distribution.

The exponent 2/3 describing the fluctuations of the pseu-
docritical temperature stems from the fact that the finite-
size fluctuations of the minimal eigenvalue λ of the inverse
susceptibility matrix are of the order of N−2/3. Such a scaling
for λ at the critical temperature had already been obtained
in a previous work,48 where it was derived by a completely
independent method, by taking into account only the first three
terms of the Plefka expansion. The present work shows that
a more careful treatment, including an infinite resummation
of the expansion, is needed to handle finite-size effects. The

exponent 2/3 derived by Bray and Moore48 is here rederived
by establishing a connection with recently-developed results in
random matrix theory, showing that the scaling N−2/3 comes
from the scaling of the Tracy-Widom distribution, which was
still unknown when the paper by Bray and Moore48 was
written.

As a possible development of the present work, it would be
interesting to study the fluctuations of the critical temperature
for a SK model where the couplings are distributed according
to a power law. Indeed, in a recent work52 the distribution of
the largest eigenvalue λ of a random matrix M whose entries
Mij are power-law distributed as p(Mij ) ∼ M

−1−μ

ij has been
studied. The authors show that if μ > 4, the fluctuations of λ

are of the order of N−2/3 and are given by the TW distribution,
while if μ < 4 the fluctuations are of the order of N−2/μ−1/2

and are governed by Fréchet’s statistics. This result could be
directly applied to a SK model with power-law distributed
couplings. In particular, it would be interesting to see if there
exists a threshold in the exponent μ separating two different
regimes of the fluctuations of Tc.

Another interesting perspective would be to generalize the
present approach to realistic spin glass models with finite-
range interactions. For instance, a huge amount of results has
been quite recently obtained for the three-dimensional Ising
spin glass,53–60 and for the short-range p-spin glass model in
three dimensions,61 yielding evidence for a finite-temperature
phase transition. It would be interesting to try to generalize
the present work to that systems, and compare the resulting
fluctuations of the critical temperature with sample-to-sample
fluctuations observed in these numerical works. Accordingly,
the finite-size fluctuations deriving from the generalization of
this work to the three-dimensional Ising spin glass could be
hopefully compared with those observed in experimental spin
glasses,62 such as Fe0.5Mn0.5TiO3.

Finally, a recent numerical analysis63 inspired by the
present work has investigated the sample-to-sample fluctua-
tions of a given pseudocritical temperature for the SK model,
which is different from that defined in this work. Even though
the relatively small number of samples did not allow for a
precise determination of the probability distribution of that
pseudocritical point, the analysis yields a scaling exponent
equal to 1/3, which is different from that of the pseudocritical
temperature defined here. As a consequence, the general scal-
ing features of the pseudocritical temperature seem to depend
on the actual definition of the pseudocritical point itself, even
though different definitions of the pseudocritical temperature
must all converge to the infinite-size pseudocritical tempera-
ture as the system size tends to infinity. As a future perspective,
it would be interesting to investigate which amongst the fea-
tures of the pseudocritical point are definition-independent, if
any.
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APPENDIX A: PROOF OF THE ASYMPTOTIC
INDEPENDENCE OF xi j AND zi

2

Here we show that at leading order in N , the variables xij

and zi
2 are independent, i.e., that at leading order in N

pN

(
xij = x,zi

2 = z
) = pN (xij = x) × pN

(
zi

2 = z
)
. (A1)

Let us explicitly write the left-hand size of Eq. (A1) as

pN

(
xij = x,zi

2 = z
)

= E{xik}k 	=i

[
δ(xij − x)δ

(
zi

2 − z
)]

,

= Exij

⎡
⎣δ(xij − x)E{xik}k 	=i,k 	=j

×
⎧⎨
⎩ δ

⎡
⎣√

N

⎛
⎝ 1

N

∑
k 	=i,k 	=j

x2
ki − 1

⎞
⎠ − z

ij

2

⎤
⎦

⎫⎬
⎭
⎤
⎦ , (A2)

where Exlm,xno,··· denotes the expectation value with respect
to the probability distributions of the variables xlm,xno, . . ., δ

denotes the Dirac delta function, and

z
ij

2 ≡ z − x2
ij√
N

. (A3)

Proceeding systematically at leading order in N , the second
expectation value in the second line of Eq. (A2) is nothing
but the probability that the variable

√
N ( 1

N

∑
k 	=i,k 	=j x2

ki − 1)

is equal to z
ij

2 . We observe that according to the central limit
theorem, at leading order in N this probability is given by

E{xik}k 	=i,k 	=j

⎡
⎣δ

⎛
⎝√

N

⎛
⎝ 1

N

∑
k 	=i,k 	=j

x2
ki − 1

⎞
⎠ − z

ij

2

⎞
⎠

⎤
⎦

= 1√
4π

e− (z
ij
2 )2

4 . (A4)

By plugging Eq. (A4) into Eq. (A2) and using Eq. (A3), one
has

pN

(
xij = x,zi

2 = z
) = 1√

4π

∫
dxijP (xij )δ(xij − x)

×e− (z−x2
ij

/
√

N)2

4

= P (x)
1√
4π

e− (z−x2/
√

N)2

4 (A5)

= pN (xij = x) × pN

(
zi

2 = z
)
,

where in the first line we explicitly wrote the expectation value
with respect to xij in terms of the probability distribution (2),
while in the third line proceeded at leading order in N , and
used Eq. (9).

APPENDIX B: COMPUTATION OF THE PROBABILITY
DISTRIBUTION OF zi

n

Here we compute the probability distribution of zi
n at lead-

ing order in N . Let us define a super index L ≡ {i1, . . . ,in−1},
where L stands for loop, since L represents a loop passing by
the site i. Let us also set XL ≡ xii1xi1i2 · · · xin−1i . By Eq. (16)

one has

zi
n =

√
(n − 1)!

N
n−1

2

∑
L

XL,∀n > 2. (B1)

We observe that the probability distribution of XL is the same
for every L. Hence, according to Eq. (B1), zi

n is given by the
sum of equally distributed random variables. Now pick two of
these variables, XL and XL′ . For some choices of L,L′, XL and
XL′ are not independent, since they can depend on the same
bond variables xij . If one picks one variable XL, the number
of variables appearing in the sum (B1) which are dependent
on XL are those having at least one common edge with the
edges of XL. The number of these variables, at leading order
in N , is O(Nn−2), since they are obtained by fixing one of the
n − 1 indexes i1, . . . ,in−1. The latter statement is equivalent to
saying that if one picks at random two variables XL and XL′ ,
the probability that they are correlated is

O(Nn−2/Nn−1) = O(N−1). (B2)

Hence, at leading order in N , we can treat the ensemble of the
variables {XL}L as independent. According to the central limit
theorem, at leading order in N , the variable

√
(n − 1)!

N
n−1

2

zi
n = 1

Nn−1

(n−1)!

∑
L

XL

is distributed according to a Gaussian distribution with mean
Ex[XL] = 0 and variance

Ex

[(√
(n − 1)!

N
n−1

2

zi
n

)2
]

= Ex

[
X2

L

]
Nn−1

(n−1)!

= 1
Nn−1

(n−1)!

, (B3)

where in Eq. (B3) Eq. (2) has been used. It follows that at
leading order in N , zi

n is distributed according to a Gaussian
distribution with zero mean and unit variance

pN

(
zi
n = z

) N→∞→ 1√
2π

e− z2

2 , (B4)

where pN (zi
n = z) is defined as the probability that zi

n is equal
to z at size N .

Eq. (B4) has been tested numerically for the first few values
of n: pN (zi

n = z) has been computed by generating S 
 1
samples of {x}, and so of zi

n. For n = 3 and 4, the resulting
probability distribution pN (zi

n = z) converges to a Gaussian
distribution with zero mean and unit variance as N is increased,
confirming the result (B4). This convergence is shown in Fig. 4,
where pN (z1

4 = z) is depicted for different values of N together
with the right-hand side of Eq. (B4), as a function of z.

APPENDIX C: INDEPENDENCE OF THE zi
n’s AT LEADING

ORDER IN N

Let us consider two distinct variables zi
n and z

j
m, and proceed

at leading order in N . Following the notation of Appendix B,
we write Eq. (16) as

zi
n =

√
(n − 1)!

N
n−1

2

∑
L

XL, (C1)

zj
m =

√
(m − 1)!

N
m−1

2

∑
L′

XL′ , (C2)

144417-7



MICHELE CASTELLANA AND ELIA ZARINELLI PHYSICAL REVIEW B 84, 144417 (2011)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3

p
(z

1 4
=

z
)

z

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3

p
(z

1 4
=

z
)

z

0.12

0.16

-1.5 -1.4 -1.3 -1.2

p
(z

1 4
=

z
)

0.12

0.16

-1.5 -1.4 -1.3 -1.2

p
(z

1 4
=

z
)

z

p64(z
1
4 = z)

p128(z
1
4 = z)

p256(z
1
4 = z)

p512(z
1
4 = z)

p1024(z
1
4 = z)

1/
√

2πe−z /2

FIG. 4. (Color online) Probability distribution pN (z1
4 = z) for
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distribution 1/

√
2πe−z2/2 with zero mean and unit variance (black),

as a function of z. As N is increased, pN (z1
4 = z) converges to

1/
√

2πe−z2/2, as predicted by the analytical calculation, Eq. (B4).
Inset: zoom of the above plot explicitly showing the convergence of
pN (z1

4 = z) to 1/
√

2πe−z2/2 as N is increased.

where L,L′ represent a loop of length n,m passing by the site
i,j respectively. Some of the variables XL depend on some of
the variables XL′ , because they can depend on the same bond
variables xij . Let us pick at random one variable XL appearing
in zi

n, and count the number of variables XL′ in z
j
m that are

dependent on XL. At leading order in N , these are given by
the number of XL′ having at least one common bond with XL,
and are O(Nm−2). Hence, if one picks at random two variables
XL,XL′ in Eqs. (C1), (C2) respectively, the probability that
XL,XL′ are dependent is

O(Nm−2/Nm−1) = O(N−1).
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FIG. 5. (Color online) p1024(z1
3 = z,z1

4 = z′) for S = 105 samples
(red), and the N → ∞ limit of the right-hand side of Eq. (C3) (black),
as a function of z,z′. For large N , pN (z1

3 = z,z1
4 = z′) equals pN (z1

3 =
z) × pN (z1

4 = z′), as predicted by Eq. (C3). Hence, at leading order
in N , the variables z1

3 and z1
4 are independent.

It follows that zi
n and z

j
m are independent at leading order

in N , i.e., for N → ∞
pN

(
zi
n = z,zj

m = z′) = pN

(
zi
n = z

) × pN

(
zj
m = z′), (C3)

where pN (zi
n = z,z

j
m = z′) denotes the joint probability that

zi
n equals z and z

j
m equals z′, at fixed size N .

Eq. (C3) has been tested numerically for n = 3,m = 4:
pN (z1

3 = z,z1
4 = z′) has been computed by generating S 
 1

samples of {x}, and so of z1
3,z

1
4. As a result, the left-hand

side of Eq. (C3) converges to the right-hand side as N is
increased, confirming the predictions of the above analytical
argument. This is shown in Fig. 5, where p1024(z1

3 = z,z1
4 =

z′) is depicted together with the N → ∞ limit of the
right-hand side of Eq. (C3) [see Eq. (B4)], as a function
of z,z′.
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We study the probability distribution of the pseudocritical temperature in a mean-field and in a short-

range spin-glass model: the Sherrington-Kirkpatrick and the Edwards-Anderson (EA) model. In both

cases, we put in evidence the underlying connection between the fluctuations of the pseudocritical point

and the extreme value statistics of random variables. For the Sherrington-Kirkpatrick model, both with

Gaussian and binary couplings, the distribution of the pseudocritical temperature is found to be the Tracy-

Widom distribution. For the EA model, the distribution is found to be the Gumbel distribution. Being the

EA model representative of uniaxial magnetic materials with quenched disorder like Fe0:5Mn0:5TiO3 or

Eu0:5Ba0:5MnO3, its pseudocritical point distribution should be a priori experimentally accessible.

DOI: 10.1103/PhysRevLett.107.275701 PACS numbers: 64.70.Q�, 02.10.Yn, 02.50.�r

Disordered uniaxial magnetic materials having a glassy
behavior like Fe0:5Mn0:5TiO3 [1] and Eu0:5Ba0:5MnO3 [2]
have interested physicists for decades. Since the first pio-
neering work of Edwards and Anderson (EA) [3], these
systems have been studied by means of spin-glass models
with quenched disorder, which were later considered in
their mean-field version by Sherrington and Kirkpatrick
(SK) [4]. In the thermodynamic limit, Parisi’s solution for
the SK model [5] predicts a phase transition at a finite
critical temperature separating a high-temperature para-
magnetic phase from a low-temperature glassy phase.
Differently, for the EAmodel there is no analytical solution
and the existence of a finite-temperature phase transition
relies entirely on numerical simulations [6].

Even though criticality in a physical system can emerge
only in the thermodynamic limit [7,8], in laboratory and
numerical experiments the system size is always finite:
singularities of physical observables are smeared out and
replaced by smooth maxima. In order to characterize the
critical point of finite-size systems, a suitably defined pseu-
docritical temperature must be introduced, e.g., the tem-
perature at which such maxima occur. In finite-size systems
with quenched disorder, such a pseudocritical temperature
is a random variable depending on the realization of the
disorder. The characterization of the distribution of the
pseudocritical point and of its scaling properties is still an
open problem which has drawn the attention of physicists
since the very first works of Harris [9–13]. Further studies
of such distributions in spin glasses have been performed in
a recent work [14], where some of the authors showed a
connection between the fluctuations of the pseudocritical
temperature of the SK model and the theory of extreme
value statistics (EVS) of correlated random variables.

The EVS of independent identically distributed (IID)
random variables is a well-established problem: a funda-
mental result [15] states that the limiting Probability
Distribution Function (PDF) of the maximum of IID

random variables belongs to three families of distributions:
the Gumbel, Fréchet, or Weibull distribution. Much less is
known about the EVS of correlated random variables. A
noteworthy case of an EVS distribution of correlated ran-
dom variables that has been recently discovered is the
Tracy-Widom (TW) distribution [16], describing the fluc-
tuations of the largest eigenvalue of a Gaussian random
matrix. The TW distribution has been found to describe the
fluctuations of observables of a broad number of physical
and mathematical models, like the longest common se-
quence in a random permutation [17], directed polymers
in disordered media [18], and polynuclear growth models
[19], which can be described by the Kardar-Parisi-Zhang
equation [20,21]. Recently the TW distribution has been
found to describe the conductance fluctuations in two- and
three- dimensional Anderson insulators [22,23] and has
been measured in growing interfaces of liquid-crystal tur-
bulence [24,25] experiments.
In this Letter we study the distribution of the pseudo-

critical temperature in the SK and in the EA model by
means of numerical simulations. Our numerical findings
show that the fluctuations of the pseudocirtical temperature
of the SK model both with Gaussian and binary couplings
are described by the TW distribution. This result suggests
that the features of the fluctuations of the pseudocritical
temperature are universal, i. e., stable with respect to the
distribution of the disorder. To our knowledge, this is the
first time that the ubiquitous TW distribution is shown to
play a role in spin glasses. Moreover, our numerical analy-
sis shows that the fluctuations of the pseudocritical point of
the EA model are described by the Gumbel distribution.
These two results shed light on the role played by EVS in
spin glasses.
To pose the problem, let us consider a system of N spins

Si ¼ �1 located at the vertices of a graph, interacting via

the Hamiltonian H½ ~S� ¼ �P
ði;jÞJijSiSj, where the sum

runs over the interacting spin pairs (i, j). For the SK model
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with Gaussian couplings (GSK) and for the SK model with
binary couplings (BSK) the interacting spin pairs are all the
distinct pairs. The couplings Jij are IID Gaussian random

variables with zero mean and variance 1=N for the GSK

model [4], and are equal to�1=
ffiffiffiffi
N

p
with equal probability

for the BSK model [26]. For the EA model the interacting
spin pairs are the nearest-neighbor pairs on a three-
dimensional cubic lattice with periodic boundary condi-
tions, and Jij are IID random variables equal to �1 with

equal probability [3]. For the BSK and EA model, the
binary structure of the couplings allowed for the use of
an efficient asynchronous multispin-coding simulation
technique [6], yielding an extensive number of disorder
samples and system sizes.

Let us now define the physical observables used to carry
on the numerical analysis of the problem. Given two real

spin replicas ~S1, ~S2, their mutual overlap q � 1
N

P
N
i¼1 S

1
i S

2
i

is a physical quantity characterizing the spin-glass transi-

tion in the thermodynamic limit [5,6]: hq2iJ ð�Þ ¼ 0 if

�< �c, hq2iJ ð�Þ> 0 if �>�c, where h� � �iJ denotes
the thermal average performed with the Boltzmann weight

defined by the Hamiltonian H½ ~S�, � � 1=T is the inverse
temperature, and � � � stands for the average over quenched
disorder J � fJijgij. The finite-size inverse pseudocritical
temperature �c J of a sample with a realization J of the

disorder can be defined as the value of � at which hq2iJ ð�Þ
significantly differs from zero, i. e., becomes critical. This
qualitative definition is made quantitative by setting

hq2iJ ð�c J Þ ¼ hq2iJ ð�N
c Þ: (1)

Both for the GSK and BSK model, �N
c is chosen to be the

average critical temperature at size N, which is defined as

the temperature at which the Binder ratio B � 1=2ð3�
hq4iJ =hq2iJ 2Þ of a system of sizeN equals the Binder ratio

of a system of size 2N. For the EA model we simply take
�N

c to be equal to the infinite-size critical temperature
�c ¼ 0:855 [27], because in this case the Binder ratios
cross at a temperature which is very close to the infinite-
size critical temperature �c. The definition (1) and �N

c are
qualitatively depicted in Fig. 1. The distribution of �c J

can be characterized by its mean �c J , its variance �
2
� N �

�2
c J � �c J

2, and by the PDF pNðxJ Þ of the natural scal-
ing variable xJ � ð�c J � �c J Þ=�� N. We can expect

that, to leading order in N, ��N � N��, and that for large

N, pNðxJ Þ converges to a nontrivial limiting PDF p1ðxJ Þ.
Sherrington-Kirkpatrick model.—Let us start discussing

the distribution of �c J for the GSK and BSK model.

Monte Carlo (MC) simulations have been performed with
parallel tempering for system sizes N ¼ 32, 64, 128, 256
(GSK) and N ¼ 16, 32, 64, 128, 256, 512, 1024, 2048,
4096 (BSK), allowing for a numerical computation of
hq2iJ and so of �c J for several samples J . The data

shows that as the system size N is increased, �c J

approaches �c. Setting TcJ �1=�cJ , �2
T N � T2

c J �
Tc J

2 � N��, the power law fit of �T N shown in Fig. 2
gives the value of the scaling exponent � ¼ 0:31� 0:07
(GSK) and� ¼ 0:34� 0:05 (BSK). These values of� are
both consistent with the value � ¼ 1=3 one would
expect from scaling arguments by considering the variable

y � N1=3ðT � TcÞ [28].
The PDF pN of the rescaled variable xJ is depicted in

Fig. 2. The curves pNðxJ Þ collapse quite satisfyingly in-

dicating that we are close to the asymptotic regime N!1.
Even though one could naively expect the fluctuations of
the pseudocritical point to be Gaussian, Fig. 2 shows that
this is not the case.
To understand this fact, let us recall the analysis pro-

posed in a recent work [14] by some of the authors. In order
to study the sample-to-sample fluctuations of the pseudo-
critical temperature one uses the Thouless-Anderson-
Palmer approach for the SK model. In the TAP approach
a free energy function of the local magnetization is built up
for any sample J of the disorder, and its Hessian matrix
Hij calculated at the paramagnetic minimum is a random

matrix in the Gaussian orthogonal ensemble. In the ther-
modynamic limit, the spectrum of Hij is described by the

Wigner semicircle, centered in 1þ �2 and with radius 2�.
The critical temperature �c ¼ 1 of the SK model is iden-
tified as the value of � such that the minimal eigenvalue of
Hij vanishes. In [14] the fluctuations of the pseudocritical

temperature are investigated in terms of the fluctuations of
the minimal eigenvalue of Hij. One introduces a definition

of pseudocritical temperature �̂c J , which is different from
that considered in the present work. The finite-size fluctu-

ations of �̂c J are found to be described by the relation

FIG. 1. Square value of the overlap hq2iJ for a sample J
(dashed curve) for the binary Sherrington-Kirkpatrick model

with N ¼ 128, its average hq2iJ over the samples J (solid

curve) as a function of the inverse-temperature �, and critical
temperatures �N

c and �c J . The dashed vertical lines depict the

definition (1) of �c J . Inset: Binder parameter B as a function of

the temperature T for N ¼ 128, 256, and average pseudocritical
temperature T128

c , with TN
c � 1=�N

c .
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�̂c J ¼ �c � �J =ð2N2=3Þ, where �J is distributed accord-

ing to the TW distribution in the high-temperature region

�̂c J < 1. According to Fig. 2, MC simulations confirm

this analysis: the limiting distribution of pNðxJ Þ is de-

scribed with good accuracy by the TW distribution in the
high-temperature regime �c J < 1 (xJ < 0). The TW dis-

tribution is robust with respect to the choice of the disorder
distribution and to the definition of pseudocritical tempera-
ture. On the other hand, since the exponent � obtained
from MC simulations is not compatible with the exponent

2=3 of �̂c J , we conclude that the scaling exponent is

definition dependent [14,29].
Edwards-Anderson model.—The same analysis has been

performed for the three-dimensional EA model. Physical
observables have been computed with parallel tempering
for system sizesN ¼ L3 with L ¼ 4, 8, 12, 16. Similarly to
the SK model, the width ��N of the distribution of the

pseudocritical point �c J shrinks to zero as the system size

N is increased: a power law fit ��N ¼ aN�� gives the

value of the scaling exponent � ¼ 0:23� 0:03 (inset of
Fig. 3). The PDFs pNðxJ Þ of the rescaled critical tempera-

ture seem to have a finite limit asN is increased, as depicted
in Fig. 3, and this limit coincides with the Gumbel distri-
bution. Both � and the PDF have the following interesting

features. As far as the exponent � is concerned, we recall
[10] that for systems known to be governed by a random
fixed point like the EA model, it was predicted that the
scaling exponent satisfies 1=� ¼ d�, where d is the dimen-
sionality of the system. The value of the critical exponent
� ¼ 1:8� 0:2 for the EA model is known from numerical
simulations [6], yielding a value of� ¼ 0:19� 0:02which
is compatible with that measured from the fluctuations of
the critical temperature. As far as the limiting distribution
p1ðxJ Þ is concerned, we recall that [30] a disordered

system like the EA behaves as an ensemble of independent
subsystems S1; . . . ;SM, where each subsystem Si has a
random local critical temperature �i

c, the local critical
temperatures f�i

cgi being IID random variables depending
on the local realization of the disorder. We can argue that,
for a single realization of the disorderJ , the pseudocritical
temperature�c J results from the fact that� has to be taken

large enough to bring all of the subsystems fSigi to criti-
cality. Thus,�c J is the maximum over the ensemble of the

local critical temperatures�c J ¼ maxi�
i
c. If this picture is

correct, �c J is distributed according to one of the EVS

limiting distributions of independent variables [15]: the
Gumbel, Fréchet, or Weibull distribution. Assuming that
the distribution of�i

c decays exponentially for large�
i
c, the

distribution of �c J is the Gumbel one. We want to stress

that this argument would not hold for the SK model, where
there is no geometric structure.
Conclusions.—In this Letter, we have performed a nu-

merical analysis of the distribution of the pseudocrtical

FIG. 2. Distribution of the pseudocritical point both for the
Sherrington-Kirkpatrick (SK) model with Gaussian couplings
(GSK) and for the SK model with binary couplings (BSK). PDF
pNðxJ Þ of the rescaled critical temperature xJ for system sizes

N ¼ 32, 64, 128, 256 with 1:6� 104 � S � 4:7� 104 (GSK)
and 2:9� 104 � S � 9:8� 104 (BSK) disorder samples, Tracy-
Widom distribution pTWðxJ Þ (solid curve) and Gaussian distri-

bution pGðxJ Þ (dashed curve), both with zero mean and unit

variance. The plot has no adjustable parameters, and is in
logarithmic scale to highlight the behavior of the distributions
on the tails. Top inset: width �T N for the BSK as a function of N
and fitting function fðNÞ ¼ aN�� þ bN�2�, yielding � ¼
0:34� 0:05. Bottom inset: same plot as in the main plot in
linear scale.

FIG. 3. Distribution of the pseudocritical point for the
Edwards-Anderson model. PDF pNðxJ Þ of the rescaled critical

temperature xJ for systems sizes N ¼ 43, 83, 123, 163 with

2:4� 104 � S � 3:2� 104 disorder samples, Gaussian distri-
bution pGðxJ Þ (solid curve), Tracy-Widom distribution pTWðxJ Þ
(dashed curve), and Gumbel distribution pGuðxJ Þ (dotted curve),
all with zero mean and unit variance. The plot has no adjustable
parameters, and is in logarithmic scale to highlight the behavior
of the distributions on the tails. Top inset: width �� N as a

function of N, and fitting function fðNÞ ¼ aN��, with scaling
exponent � ¼ 0:23� 0:03. Bottom inset: same plot as in the
main plot in linear scale.
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temperature in two mean-field spin glasses, the
Sherrington-Kirkpatrick model with Gaussian couplings
and with binary couplings, and in a short-range spin glass,
the Edwards-Anderson model. The analysis for the
Sherrington-Kirkpatrick models shows that the distribution
of the pseudocritical temperature in the high-temperature
phase is described with good accuracy by the Tracy-
Widom distribution, as suggested by an analytical predic-
tion previously published by some of the authors [14]. To
our knowledge, this is the first time that the Tracy-Widom
distribution is shown to play a role in spin glasses. The fact
that both the Sherrington-Kirkpatrick model with Gaussian
couplings and the Sherrington-Kirkpatrick model with
binary couplings yield the Tracy-Widom distribution
suggests that the Tracy-Widom distribution is universal
with respect to the bonds’ distribution.

The analysis pursued for the three-dimensional
Edwards-Anderson model shows that the liming distribu-
tion of the pseudocritical temperature is the Gumbel dis-
tribution. An argument to understand this result has been
proposed. These two numerical analyses put in evidence a
connection between the critical regime of spin-glass mod-
els and the extreme value statistics theory which has never
been proposed heretofore.

The present Letter opens several perspectives. As far as
the Sherrington-Kirkpatrick model is concerned, we recall
that the Tracy-Widom distribution describes typical fluc-
tuations of the maximal eigenvalue of a Gaussian orthogo-
nal ensemble random matrix, while the large deviations
regime of these fluctuations has been studied only recently
[31]. It would be interesting to study numerically the large
deviations regime of the fluctuations of the critical tem-
perature, where the distribution of the pseudocritical point
could be described by the large deviations function derived
in [31]. It would be also interesting to consider the case
where the couplings Jij are Gaussian with a positive bias J0
[32]. Depending on the value of J0, the Sherrington-
Kirkpatrick model has a phase transition from a paramag-
netic to a spin-glass phase or from a ferromagnetic to a
mixed phase [32]: it would be interesting to investigate,
both analytically and numerically, the fluctuations of these
pseudocritical points. Moreover, in order to bridge the
gap between a mean-field and a short-range interactions
regime, it could be interesting to investigate the fluctua-
tions of the pseudocritical temeperature in spin-glass
models with tunable long-range interactions, like those
introduced in [33]. As far as the Edwards-Anderson
model is concerned, it would be interesting to test experi-
mentally the scenario found here in Fe0:5Mn0:5TiO3 [1] or
Eu0:5Ba0:5MnO3 [2] spin-glass materials. Indeed, ac-
susceptibility measurements in these systems show [1]
that the spin-glass critical temperature can be identified
as the temperature where the susceptibility has a cusp.
Accordingly, the pseudocritical point could be identified
and measured, and one could test whether the resulting

rescaled pseudocritical point distribution converges to the
Gumbel distribution as the system size is increased.
We are glad to thank G. Parisi, A. Rosso and P. Vivo
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RECONSTRUCTION OF FINANCIAL NETWORKS FOR ROBUST

ESTIMATION OF SYSTEMIC RISK

IACOPO MASTROMATTEO, ELIA ZARINELLI, AND MATTEO MARSILI

Abstract. In this paper we estimate the propagation of liquidity shocks through inter-
bank markets when the information about the underlying credit network is incomplete.
We show that techniques such as Maximum Entropy currently used to reconstruct credit
networks severely underestimate the risk of contagion by assuming a trivial (fully con-
nected) topology, a type of network structure which can be very different from the one
empirically observed. We propose an efficient message-passing algorithm to explore the
space of possible network structures, and show that a correct estimation of the network
degree of connectedness leads to more reliable estimations for systemic risk. Such algo-
rithm is also able to produce maximally fragile structures, providing a practical upper
bound for the risk of contagion when the actual network structure is unknown. We test
our algorithm on ensembles of synthetic data encoding some features of real financial
networks (sparsity and heterogeneity), finding that more accurate estimations of risk can
be achieved. Finally we find that this algorithm can be used to control the amount of
information regulators need to require from banks in order to sufficiently constrain the
reconstruction of financial networks.

1. Introduction

The estimation of the robustness of a financial network to shocks and crashes is a topic
of central importance to assess the stability of an economic system. Recent dramatic events
evidenced the fragility of many economies, supporting the claim that “the worlds financial
system can collapse like a row of dominoes” [1]. As a result, governments and international
organizations became increasingly concerned about systemic risk. The banking system is
thought to be a fundamental channel in the propagation of shocks to the entire economy:
the economic distress of an insolvent bank can be transmitted to its creditors by interbank
linkages, thus a shock can easily propagate to the whole network. Unfortunately detailed
data on banks bilateral exposures is not always available, and institutions are often left
with the problem of assessing the resilience of a system to financial shocks by exploiting
an incomplete information set. In this framework the reconstruction of bilateral expo-
sures becomes a central issue for the estimation of risk, and requires the application of
sophisticated inference schemes to obtain reliable estimations. Among several methods, a
commonly used tool for this task is the so called entropy maximization method [2, 3, 4, 5].
The main limitation of this procedure is that it assumes a market structure which can

The authors wish to thank F. Caccioli, F. Krzakala, Y. Sun, L. Zdeborova for very useful discussions.
I.M. acknowledges support from GDRE 224 GREFI-MEFI CNRS-INdAM.
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2 IACOPO MASTROMATTEO, ELIA ZARINELLI, AND MATTEO MARSILI

be quite different from the actual one: it tends to spread the debt as evenly as possible,
without assuming any heterogeneity in the structure for the network [6]. Unfortunately
these assumptions lead to an undervaluation of the extent of contagion, as the measure
of the vulnerability to financial contagion depends crucially on the pattern of interbank
linkages. Stress-tests used to quantitatively analyze this dependence confirm this results
both for simulated and real data, as shown in figures 2, 3 and in reference [6].
In this paper we will introduce a message-passing algorithm to overcome this limitation,
and to sample efficiently the space of possible structures for the network. This method
can be used to propose plausible candidates for the real network structure, and to produce
worst case scenarios for the spread of financial contagion. We remark that despite the huge

number of possible network structures (∼ 2N
2)) we are able to sample configuration from

this space in a time which scales quadratically in the number of unknown entries of the
liability matrix.

In section 2 we introduce the main concepts and define the problem of network recon-
struction, while in 3 we present the Maximum Entropy (ME) algorithm, a commonly used
procedure to infer credit networks from incomplete datasets. In section 4 we show the
idea which allows our algorithm to explore the space of network structures and extend the
validity of ME. Section 5 describes the stress-test which we employ to analyze the robust-
ness of financial networks, and in section 6 we apply all these ideas to synthetic datasets.
In section 7 we discuss the reliability of the reconstruction algorithm as a function of the
policy adopted by regulatory institutions. Finally in section 8 we draw our last conclusions.

2. Framework

Let us consider an ensemble B = {b0, . . . , bN−1} of N banks, in which each bank in B may
borrow to or lend money from other banks in B. This structure is encoded in the so-called
liability matrix L, an N ×N non-symmetric matrix describing the instantaneous state of
a credit network. Each element Lij denotes the funds that bank j ∈ B borrowed from
bank i ∈ B (regardless of the maturity of the debt). We fix the convention that Lij ≥ 0
∀(i, j) ∈ B×B, Lii = 0 ∀i ∈ B. With this definition, the expression L→i =

∑
j Lij represents

the total credit which the institution i possesses against the system, while L←j =
∑

i Lij
represents the total debt owed by the institution j to the environment.1 This matrix
contains information about the instantaneous state of a credit network, and it is sufficient
to estimate the risk of contagion in many cases of practical relevance. Indeed one is often
unable to obtain from empirical data the complete expression for the matrix L. Data are
typically extracted by a bank balance sheets or by institutional databases [7], and partial
informations have to be coherently integrated into a list of plausible liability matrices. In
the following discussion, we will suppose that three different types of informations about
L are available, as typically reported in the literature [8]:

1Without loss of generality we consider a closed economy (
∑

i L
→
i =

∑
j L
←
j ), by using bank b0 as a

placeholder to take into account flows of money external to the system.
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(1) All the debts larger than a certain threshold θ are known. This allows us to rescale
all the elements of L by θ, so that we consider without loss of generality liability
matrices for which all the unknown elements are bound to be in the interval [0,1].
We assume to have at most order N elements exceeding such threshold.

(2) We assume a certain set of entries (which we take to be of order N) to be known.
This corresponds to banks or bank sectors for which some particular position needs
to be disclosed by law.

(3) The total credit L→i and the total debit L←j of each bank are known. Acceptable
candidates for liability matrices need to satisfy a set of 2N linear constraints, whose
rank is in general R ≤ 2N − 1.

We remark that we have defined a set of constraints of order N elements, which is too
small to single out a unique candidate for the true unknown liability matrix. The possible
solutions compatible with the observations define a space Λ, whose members we denote
with L̂. Let U be the set of not directly known (i.e. non-fixed by to constraints of type (1)
and (2)) entries of the liabilities matrix. Then those entries of the liability matrix (whose
number is M = |U |) are real numbers subject to domain constraints (they must be in
[0, 1]) and linear algebraic constraints (the sum on the rows and on the columns must be
respected). The ratio M/R ≥ 1 controls the degree of underdetermination of the network,
and is typically much larger than one.

3. Dense reconstruction

A possible procedure to study the robustness of a financial network when the complete
information about the liability matrix is not uniquely specified, is to pick from the set of
candidate matrices Λ a representative matrix, and to test the stability uniquely for the
network specified by such L̂. In this case a criteria has to be chosen to select a particular
matrix out of the Λ space, by doing some assumptions about the structure of the true Lij .
A choice which is commonly adopted [2, 3, 4, 5] is based on the maximum entropy criteria,
which assumes that banks spread their lending as evenly as possible. The problem becomes

in this case to finding a vector ~L = {Lα}α∈U (the unknown entries of the liability matrix)
whose entries respect the algebraic and domain constraints and minimize the distance with

the uniform vector ~Q = {Qα}α∈U (such that ∀α Qα = 1), where the distance is quantified
by the Kullback-Leibler divergence:

DKL(~L, ~Q) =
∑

α

Lα log
Lα
Qα

The minimization of such function is a standard convex optimization problem, that can
be solved efficiently in polynomial time. In financial literature this algorithm is known
with the name of Maximal Entropy (ME) reconstruction. We remark that by using this
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algorithm no entry is exactly put to zero unless it is forced by the algebraic constraints.2

4. Sparse reconstruction

ME might not be a particularly good description of reality since the number of coun-
terparties of a bank is expected to be limited and much smaller than N , while ME tends
to produce completely connected structures. In the case of real networks the degree of
market concentration can be higher than suggested by ME. This systematically leads to
an underestimation of risk, as a structure in which the debt is distributed homogeneously
among the nodes is generally known to be able to absorb shocks more effectively than a
system in which few nodes dominate the network [6]. In order to be closer to reality and
to estimate more accurately the risk contagion it is than necessary to reconstruct liabil-
ity matrices whose degree of sparsity can be tuned, and eventually taken to be as big as
possible. We present in this section an algorithm which, given the fraction λ of entries
which are expected to be exactly zero, is able to reconstruct a sample of network struc-
tures compatible with this requirement, and to find a λmax which bounds the maximum
possible sparsity. The issues that we want to solve are: (i) is it possible to fix a fraction λ
of the unknown entires to zero without violating the domain and the algebraic constraints?
(ii) For a given fraction λ, how many possible reconstructed liability matrices do exist?
The algorithm solves this problems by sampling, for each given λ, the space of all possible
supports for the reconstructed liability matrix such that the constraints are not violated,
and by evaluating the volume of such support space. As one can easily expect, there will be
a range of [λmin, λmax] of fractions of fixed zeros compatible with the constraints: trivially
λmin = 0 corresponds to the dense network, which always admits a compatible solution,
but we are able to find a non-trivial λmax which corresponds to the maximally sparse net-
work of banks. A plot of the logarithm of the number of possible supports as a function
of λ is given in figure 1 (× signs) for a network as the ones described in section 6. Once a
support is given, the liability matrix elements can easily be reconstructed via ME.

We briefly sketch here the idea behind the algorithm, relegating to the appendix the more
technical parts. Suppose that a liability matrix with unknown entires is given, together
with of the vectors of total credit (L→i ) and the one of total liabilities (L←i ). Then without
loss of generality one can assume the known entries to be equal to zero, as the values of the
known entries always can be absorbed into a rescaled value of the L→i and L←i , and restrict
the problem just to the unknown entries of the matrix. Under this assumption we can
define the network G which is the support of the unknown entries of the liability matrix.
Each node of G is a bank and the directed edges are the elements of U . For each node i of

2This algorithm is not the only possible choice to extract a representative matrix out from the set Λ.
Indeed existing algorithms share with the ME the property of returning solutions located in the interior of
Λ. On the other hand, when choosing a point at random in a compact set in very high dimension d, it is
very likely that the point will be very close to the boundary (i.e. at a distance of order 1/d). Hence, it is
reasonable to expect that typical feasible liability matrices are located on or close the boundaries of Λ.
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Figure 1. Entropy S of the space of compatible configurations ai,j at fixed

magnetization λ̂ with the energy H(ai,j) (+ sign) and true energy H0(ai,j)
(× sign) for the examples discussed in the text. S is defined as the logarithm
of the number of configurations {ai,j} with H = 0 (or H0), divided by
the number M of possibly non-zero entries ai,j . The solid line plotted for
comparison is the entropy of a system of independent links ai,j with the
same density (i.e. number of non-zero links). The probability for a solution
of H0(ai,j) to be also a solution of H(ai,j) is also plotted on the same graph
(dashed line).

G the sum of the incoming entries L→i =
∑

j Lij and of the outgoing entries L←j =
∑

i Lij
is known. Let k←i (k→i ) be the number of incoming (outgoing) links in the subset of edges
where Li,j > 0. Since Li,j ≤ 1, the number k←i (k→i ) of incoming (outgoing) links is at
least the integer part of L←i (L←i ) plus one. Therefore, one can define a cost function3

(1) H{ai,j} =
∑

i

[θ (L→i − k→i ) + θ (L←i − k←i )]

over the dynamical variables ai,j = 0, 1 which identify the subset of edges, with

k→i =
∑

j

ai,j , k←i =
∑

j

aj,i.

All sub-graphs ai,j with H = 0 are feasible candidates for the support of solutions Li,j > 0
to the problem. In general, the constraints are 2N linear equations and, as long as the
number on non-zero elements Li,j is larger than 2N solutions exist, but it is not granted
that they have Li,j ∈ [0, 1] for al i, j. In other words, all the compatible solutions have to
satisfy the constraint H = 0, but the converse is not true (as shown in figure 1), because
some support ai,j may not admit a solution with Li,j ∈ [0, 1] for al i, j. We distinguish

3Here θ(x) = 0 for x < 0 and θ(x) = 1 otherwise is the Heaviside step function.
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these two cases by formally introducing a different cost function H0{ai,j} which vanishes
only on the supports ai,j for which an admissible solution ofr Li,j exists. This cost function
involves constraints that the approximate H is not able to capture.
Message passing algorithms can be derived along the lines of Refs. [9, 10] to solve efficiently
the problem of sampling the space of solutions of (1) as described in detail in appendix.
An additional variable (analogous to a chemical potential in physics) can be introduced
in order to select denser or sparser sub-graphs (i.e. tuning the λ parameter). In partic-
ular, this allows one to find the maximally sparse subgraph compatible with the constraints.

5. Furfine stress-test

The aim of this section is to show that some measures of vulnerability of a banking
system to financial contagion, also known with the name of stress-tests, are sensitive to the
way in which the liability matrix is reconstructed. In particular the dense ME reconstruc-
tion typically underestimates the risk of contagion, while more realistic results are found
if one employs a sparsification parameter λ controlling the density of links in a financial
system.

A widely used measure of vulnerability in financial literature is the stress-test introduced
by Furfine [11], which is a sequential algorithm to simulate contagion. Suppose that the
liability matrix L is given and let us define Cz the initial capital of a bank z in the system
B. The idea of the algorithm is simple: suppose that a bank z of the ensemble B fails due
to exogenous reasons. Then it is assumed that any bank i ∈ B loses a quantity of money
equal to its exposure versus z (Liz) multiplied by an exogenously given parameter α ∈ [0, 1]
for loss-given-default. Than if the loss of the bank i exceeds its capital Ci, bank i fails.
This procedure is then iterated until no more banks fail, and the total number of defaults
is recorded.
The procedure described above can be formally rephrased in the following steps:

Step 0: A bank z ∈ B fails for external reasons. Let us define D0 = {z}, S0 = B\{z}.
For the banks i ∈ S0 we set C0

i = Ci.

Step t: The capital Ct−1
i at step t− 1 of banks i ∈ St−1 is updated according to

Cti = Ct−1
i − α

∑

j∈Dt−1

Lij

with α ∈ [0, 1]. A bank i ∈ St−1 fails at time t if Cti < 0. Let us define Dt, the ensemble
of all the banks i ∈ St−1 that failed at time t and St = St−1\Dt the ensemble of banks
survived at step t.

Step tstop: The algorithm stops at time tstop such that Dtstop = ∅.
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We remark that the capital Ci of each bank is exogenously given, and in principle it is
not linked to the liability matrix L. The same holds for α, so that the result of a stress-
test is understood as a curve quantifying the number of defaults as a function of the α
parameter. Finally, the results of the stress-test depend on the first bank z ∈ B which
defaults. Then one may choose either to consider the results of the stress-test dependent
on the z which has been chosen or to average the outcome on all the banks in the system
B; we adopt this second type of measure, and consider the default of all the banks to be
equally likely.

6. Application to synthetic data

In this section we will show how our algorithm of reconstruction of the liability matrix
Lij (presented in section 4) gives more realistic stress-test results if compared with ME
reconstruction algorithm (presented in section 3).
We choose to present the results obtained for specific ensembles of artificial matrices, whose
structure should capture the relevant features of real credit networks4. The first case that
we analyze is the simplest possible network with a non-trivial topology, namely the one in
which every entrance of the liability matrix Lij with i 6= j is set to zero with probability
λtr, and otherwise is a random number uniformly chosen in [0, 1]. We set the banks initial
capital Ci to random numbers uniformly chosen in [Cmin, Cmax]. We impose the threshold
θ = 1, which means that all the entrance of the liability matrix are unknown (a worst-
case scenario). We than reconstruct the liability matrix via ME algorithm and via our
algorithm trying to fix the fraction λ of zeroes equal to λtr. Then we stress-test via the
Furfine algorithm the three liability matrices: the true one, the one reconstructed via ME
algorithm one and the reconstructed by means of our message-passing algorithm, varying
the loss-given-default α in [0, 1]. The results of our simulations are shown in figure 2.
We clearly show that the ME algorithm underestimates the risk of contagion, while more
realistic results are obtained if the correct degree of sparsity λtr is assumed.

Notice, that even with the correct estimate of the sparsity, stress tests on the recon-
structed matrix still underestimate systemic risk. This is because the weights Lα on the
reconstructed sub-graph are assigned again using the ME algorithm. This by itself pro-
duces an assignment of weights which is much more uniform than a random assignment
of Lij on the sub-graph, which satisfies the constraints (see footnote 2). As a result, the
propagation of risk is much reduced in the ME solution.

The second ensemble that we consider is a simple extension of the first one, in which
the only modification that we have introduced implements heterogeneity in the size of the
liabilities Lij . In particular we consider matrix elements distributed according to:

p(Lij) ∼ (b+ Lij)
−µ−1

4Our attempts to obtain data on real financial networks, such as those in Refs. [6, 7], from central
banks were unsuccessful. We focus on ensembles of homogeneous networks (i.e. non-scale free). This is
appropriate since the unknown part of the financial network concerns small liabilities, and there is no a
priory reason to assume a particularly skewed distribution of degrees for the unknown part of the financial
newtork.
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Figure 2. Plot of mean fraction of failed banks vs loss-given-default pa-
rameter α. The mean is done by averaging over the defaulting bank which
starts the contagion. Results are obtained by considering: true liability
matrix (solid line), reconstructed via ME algorithm liability matrix (thick
dashed line) and the maximally sparse matrix (soft dashed line). Plots
were obtained for a network of N = 50 banks with entries uniform in [0,1],
where the link probability was fixed to 1/2 and the initial capital was set to
Ci = C = 0.2. One can easily see that a better estimation of the true risk
of contagion is obtained if the reconstruction of the liability matrix is done
by enforcing the correct sparsity of the network rather than with the ME
algorithm: the results obtained by putting the correct support (× signs) are
also plotted, as well as the ones obtained by using a typical support with a
correctly tuned sparsity parameter (+ signs).

Also in this case we can show (figure 3) that a more correct estimation of the default
probability is achieved by enforcing the sparsity parameter of the reconstructed network
to be the correct one. In this case the maximally sparse curve is less informative than in
the uniform case. This is easily understood as due to the fact that the typical element
Lij ∼ 10−2 is much smaller than the threshold θ = 1, so that a number of zero entries
substantially larger than the correct one can be fixed without violating the hard constraints.

In both cases, when the true sparsity of the network is unknown, focusing on the sparsest
possible graph likely over-estimates systemic cascades, thereby providing a conservative
measure for systemic risk.
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Figure 3. A plot analogous to the one in figure 2 for the case of power-law
distributed entries of the liability matrix. This plots was obtained for a
network of size N = 50, where the link probability was fixed to 1/2. The
parameters for the distribution of the entries were set to b = 0.01 and µ = 2,
while the capital of each bank was fixed to Ci = C = 0.02.

7. The role of the threshold

In the discussion above we disregarded the role of the threshold θ above which an expo-
sure Lij has to be made publicly available to regulators by setting it equal to 1. Indeed the
problem of setting such threshold is a central problem to build a regulatory policy, hence
the discussion of the reliability of the reconstruction algorithm varying θ while keeping
fixed the true L is in practice particularly relevant. An appropriate way to address this
issue is the following: given a network ensemble (such as the ones described in previous
section) and a threshold θ, how many network structures are there with a compatible sup-
port? In particular, we remark that among all such compatible supports the maximally
sparse one can be used to bound from above the maximum amount of risk given a policy
for the thresholding. In particular for each value of θ, we empirically find that λmax[θ]
enjoys the following properties:

(1) The maximum sparsity λmax(θ) is a decreasing function of θ. In particular for
θ → 0 one has λmax(θ)→ λtr;

(2) The entropy S(λ(θ))→ 0 when the threshold goes to 0.

An example of this behavior for an ensemble of networks with power-law distributed weights
is represented in figure 4, while in 5 we plot the entropy S(λmax) structures as a function
of θ. Therefore the algorithm described in section 4 provides quantitative measures for
the uncertainty induced by the choice of a given threshold θ on network reconstruction.
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Figure 4. We plot the entropy of the space of compatible distributions
(i.e. of the solutions of H{ai,j}) as a function of the sparsity parameter
λ by varying the threshold θ from 1 (top curve) to 0.01 (bottom curve).
The dashed line signals the transition point where solutions cease to exist.
We consider power-law distributed entries for the true network (D = 30,
λtr ≈ 0.3, b = 0.01 and µ = 2). This shows how the volume of the space
is reduced by a change of the threshold and how λmax gets closer to λtr by
lowering θ.

Ideally θ should be chosen so that maximally sparse structures are close to the true ones,
and that the space of compatible structures is not too large (small entropy).

8. Conclusions

We have shown how it is possible to estimate the robustness of a financial network to
exogenous crashes by using partial information. We confirm [6] that systemic risk measures
depend crucially on the topological properties of the underlying network, and we show
that the number of links in a credit network controls in a critical manner its resilience:
connected networks tend to absorb the response to external shocks more homogeneously
than sparse ones. We have also proposed an efficient message-passing algorithm for the
reconstruction of the topology of partially unknown credit networks, in order to estimate
with more accuracy their robustness. Such algorithm allows (i) to sample the space of
possible network structures, which is assumed to be trivial in Maximal Entropy algorithms
commonly employed for network reconstruction, and (ii) to produce typical credit networks,
respecting the topological constraint on the total number of links. Finally, we test our
algorithms on ensembles of synthetic credit networks which incorporate some of the main
features of real credit networks (sparsity and heterogeneity), and find that the quality of the
stress-test when only partial information is available critically depends on the assumptions
which are done about the network topology. In particular, we find that ME underestimates
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Figure 5. The entropy of the space of solutions H{ai,j} as a function of
the threshold for the same network as the one depicted in figure 4.

the risk of contagion if the sparsity of the real ensemble is big enough, while our algorithm
provides less biased estimates. We remark that a worst case analysis of the topology is
possible using the proposed algorithm, as we are able to produce the maximally sparse
(hence, maximally fragile) possible structure for the network. Further developments of
this work are indeed possible, in particular the identification and the reconstruction of
other relevant topological features of credit networks would be relevant for a more accurate
estimation of the contagion risk.
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Appendix A. Message-passing algorithm

We describe here the algorithm which we use to sample the solution space of the energy
function:

H{ai,j} =
∑

i

[θ (L→i − k→i ) + θ (L←i − k←i )]

which we derived along the line of [9]. The structure of the problem admits a graphical
representation as a factor graph, in which |U | variable nodes are associated to the ai,j
degrees of freedom, while the constraints are represented as factor nodes. In particular,
there are 2N function nodes, labeled a ∈ {i →,← i, i = 1, . . . , N} each with ka variable
nodes attached. Let the variables be denoted xa,b = xb,a = 0, 1 with a, b and let ∂a be

the set of neighbors of node a. Let M = 1
2

∑
a |∂a| be the total number of variables. The

messages can be written as

µa→b = P{xa,b = 1| 6 b}
where 6 b means ”when the node b is removed”. The BP equations are written in terms of
the statistical weights5

V m
S→a =

∑

U∈S:|U |=m

∏

b∈U
µb→a

∏

c∈S\U
(1− µc→a)

and they read:

µa→b =

∑ka−1
m=La−1 z

m+1V m
∂a\b→a∑ka−1

m=La−1 z
m+1V m

∂a\b→a +
∑ka−1

m=La
zmV m

∂a\b→a
(2)

=
V La−1
∂a\b→a + zW∂a\b→a

V La−1
∂a\b→a + (1 + z)W∂a\b→a

W∂a\b→a =

ka−1∑

m=La

zm−LaV m
∂a\b→a.(3)

5Since ka can be as large as N , the direct computation of V m
S→a involved in principle 2ka terms, which

may be very large. A faster way to compute it is to use the recursion relation

V m
S→a = (1− µb→a)V m

S\b→a + µb→aV
m−1
S\b→a, ∀b ∈ S.

In practice this allows one to build V m
S→a adding one at a time the nodes in S. This procedure involves of

order m2 ≤ k2a operations.
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Here z is the fugacity of links, and controls the degree of sparsity λ of the typical supports
in the solution space. For z → 0 we obtain the equation for the sparsest possible graph

µa→b =
V La−1
∂a\b→a

V La−1
∂a\b→a + V La

∂a\b→a
whereas for z → ∞ we recover the maximally connected graph µa→b = 1 for all a and
b ∈ ∂a.

Once the fixed point of Eqs. (2,3) is found by iteration, for a given z, one can compute
the probability

pa,b = P{xa,b = 1} =
µa→bµb→a

µa→bµb→a + (1− µa→b)(1− µb→a)
that link (a, b) is present, and the entropy

S(z) =
∑

a

log

ka∑

m=La

V m
∂a→a −

1

2

∑

a

∑

b∈∂a
log [µa→bµb→a + (1− µa→b)(1− µb→a)]

To plot the number of solutions (or of different supports) as a function of the sparsity
parameter λ, and the associated entropy Σ(λ) one should use the fact that:

eMS(z) =

∫ 1

0
dλ eMΣ(λ)+M(1−λ) log z

and hence perform the back-Legendre transform.
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