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Laurent THÉRY
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l’effort qui m’a été consacré.
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les membres de ma famille qui m’ont soutenu et accompagnés dans ma vocation à devenir la
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Introduction

Formal verification in general has taken a huge leap in the last decade, and machine checked
proofs of formal properties can be handled on sizable artefacts. A formal proof of the four-
colour theorem (which eluded proof attempts by mathematicians for more than one century)
has been given by Gonthier and Werner in [71]. CompCert [109], a lightly-optimising compiler
for a large subset of the C programming language has been programmed and proved semantically
preserving in the formal system Coq. The implementation in C of the seL4 micro-kernel [99] has
been proved to implement correctly its specification in the formal system Isabelle/HOL. Formal
verification has become so much accessible that a whole graduate level course on Software
Foundations [125] has been formalised and machine-checked and that the material for the course
is literally its proof script.

Context of the thesis

Formal verification has its roots in the work of Frege, during the late 19th century, who gave the
first formal presentation of first order logic, effectively laying the ground for formal proofs. A
formal proof is a proof whose validity can be verified by checking that each step of the derivation
is well-formed with respect to a given formal system.

The first tool to automatically check the correctness of a proof, called “Automath” was
developed by de Bruijn in the late 1960s, quickly followed by the Nqthm theorem prover by Boyer
and Moore. There is a difference in spirit between these two systems: the former aimed solely
at checking derivations (i.e., proof terms) that were written by hand, while the latter aimed
at being a fully automatic theorem prover (though relying on user-guidance to find proofs).
There is a profound dichotomy underlining these two approaches: while checking formal proofs
is usually simple, the problem of finding proofs may be computationally intractable, when even
possible.

Indeed, Church and Turing independently proved during the 1930s that the validity problem
of first-order logic formulae (a particular case of Hilbert’s Entscheidungsproblem) is undecidable,
and thus finding a proof of a general theorem using pure automation is challenging. However,
some particular expressive, yet decidable, fragments are amenable to efficient automated theo-
rem proving. For instance, the satisfiability problem (SAT) of a Boolean formula is NP-complete
in general, but many practical instances can be solved quickly using modern algorithms. The
satisfiability modulo theory problem (SMT) is an extension of SAT in which predicates from a
variety of underlying (decidable) first-order theories are allowed. Arguably, abstract interpre-
tation and model checking belong to the realm of automated theorem proving, and focus on
properties about programs and finite state systems.

On the contrary, the act of checking formal proofs is amenable to mechanical verification,
but producing a formal proof requires to make explicit every step of the proof. To cope with the
amount of details imposed by the formal setting, the introduction of automation is mandatory
to help the user to build proofs. Modern interactive theorem provers feature tactics that ease
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the burden of formal proofs while producing verifiable proof terms. A proof script is a succession
of definitions, statement of theorems and their proofs. The proof script is usually built as the
result of an interaction between the theorem prover and the user. During a proof, the theorem
prover accounts for the remaining goals before the proof may be deemed complete, and the user
provides a succession of tactics to achieve each one. Tactics may transform or solve goals, or
may decompose goals into several other goals. Powerful tactics make it possible to focus on the
key arguments that require insight, while leaving the remaining (simple) parts to be discharged
by automation.

Interactive theorem proving in Coq. A recent survey [157] compared formalisations of
the proof of the irrationality of

√
2 in 17 different provers. A more restrictive list appears in

the introduction of [46], namely ACL2, Coq, Isabelle/HOL1, PVS and Twelf. Among those,
Coq [153] is our interactive prover of choice in this thesis. Coq is based originally on the
Calculus of Constructions [54], extended with inductive types (the Calculus of Inductive Con-
structions [55]). Coq is intimately built on the Curry-de Bruijn-Howard isomorphism, that is
the correspondence between the types of the λ-calculus, seen as statements, and the terms of
the λ-calculus that are the proof objects. In this setting, proving a theorem (seen as a type)
requires to provide a λ-term that inhabits this type. This isomorphism is traditionally presented
through the similarity between the two following rules: function application in the λ-calculus
on the left, and modus-ponens on the right.

f : A → B x : A

f x : B

A =⇒ B A

B

The rules are identical except for the parts on the left of the columns: indeed, x : A must be
interpreted as “x proves A” rather than as “x is of type A”. Then, f x proves B since f proves
A =⇒ B, and x proves A. As an example, a proof of

(A → B → C) → (A → B) → A → C

is the function
λ(f : A → B → C)(g : A → B)(x : A).(f x (g x)).

Coq terms are equipped with a notion of reduction. For instance, the addition of Peano
numbers can be defined in Coq so that 2+2 reduces to 4. The reduction rules of Coq form a
confluent and strongly normalising system: every term has a normal form. For instance, given
a predicate P over natural numbers, the normal form of the proposition P (2 + 2) is P 4. The
following conversion rule allows one to benefits from the above observation: a term t with type
A as also type B whenever A and B have the same normal forms.

t : A A ≡ B

t : B

Therefore, given a term t of type P 4 then t is also a proof for P (3+1) or P (12/3) or P ((λx.4)12),
by conversion. That is, arbitrary computations may occur as part of the proof, but do not appear
in the proof term.

Coq features dependent product types which unify the notions of logical implication, universal
quantification and polymorphism. That is, λ-abstractions are typed with the dependent product
using the following rule: if for all x with type A, the term t has type B, the term λx : A.t has

1Representative of the HOL family
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type ∀x : A,B, where B can mention the variable x. If x does not appear in B, the type ∀x : A.B
shall be written A → B and represents either a function from A to B or a logical implication
between the propositions A and B. Using dependent types, it is possible for instance to define
the type vector A n of vectors of size n and elements of type A, as well as a an higher-order
map function that operates on vectors, of type:

∀A, ∀B, (A → B) → ∀(n : N), vector A n → vector B n.

Note that in this case, the type of map expresses the fact that the length of the vector does not
change. Another example of use of dependent types is the term t of type ∀x : N, x = x that
states that equality is reflexive. By conversion, t 4 is a proof term for 2 + 2 = 4, but also for
1664/(25 ∗ 13) = 5− 1.

Constructive type theory. Using Coq, a proof of A is a term t of type A that provides
a computable inhabitant of A: the constructive type theory underlying Coq forbids the use of
non-constructive terms such as the axiom of the excluded middle

A ∨ ¬A

The axiom says that either A or ¬A is provable but it does not specify which. (Other non-
constructive equivalent axioms are Peirce’s law and the elimination of the double-negation.)
Therefore, in Coq, a proof of A ∨ B provides either a proof of A or a proof of B; and a proof
of ∃x, x + 1 = 2 ∗ x packages a witness, 1, and a proof that 2 = 2. In fact, this restriction to
the constructive logic is a prerequisite to make all the functions that can be built in the system
computable. Another such prerequisite is that each function must terminate, either provably or
structurally.

The de Bruijn criterion. Coq is composed of two main parts: a small kernel which is
just a type-checker for the proof terms; and a proof engine that allows the user to build proof
terms using tactics. This separation makes it possible to check the proof terms independently
from their elaboration, thus meeting the de Bruijn criterion: the amount of code that must be
trusted is kept small, and it is possible to provide independent proof checkers. (Note that Coq
features such a minimalist stand-alone proof checker.) Moreover, the recent addition of a plugin
mechanism to Coq allows to work with user-defined extensions that enrich it with new features
(for instance, new tactics), without compromising the whole system: each new tactic must in
the end build a proof-term whose correctness is checked by the kernel.

Programming in Coq. Coq’s programming language (the definition of terms) may be seen
as an extension of ML with explicit polymorphism, inductives and dependent types, restricted
to terminating functions. The absence of distinction between programs and proof terms makes
it possible to use programs in proofs. Consider for instance the following inductive predicate:

Inductive le : nat → nat → Prop :=
| le_n : ∀ n, le 0 n
| le_S : ∀ n m, le n m → le (S n) (S m).

A proof of le 3 5 is the term le_S 2 4 (le_S 1 3 (le_S 0 2 (le_n 2))). Remark that the size of
this proof term grows with the (unary) size of the first argument.

Alternatively to this inductive presentation of this predicate, one can define by recursion a
function leb: nat → nat → bool that checks that its first argument is smaller than its second
argument. (Note that the result of this function is a Boolean, not a proposition.)
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Fixpoint leb (n m : nat) :=
match n,m with
| 0,_ ⇒ true
| S n, S m ⇒ leb n m
| _, 0 ⇒ false
end.

It is then possible to prove a lemma that links the computational function leb, with the inductive
predicate le:

Lemma leb_le: ∀ a b, leb a b = true → le a b.

Hence, a possible proof of the proposition le 16 64 is the term leb_le 16 64 (eq_refl true)
where eq_refl has type ∀ x, x = x. Here, we use computations as part of a proof: the normal
form of leb 16 64 is indeed true. The type-checker can indeed check that the type of eq_refl
true is convertible with leb 16 64 = true, which yields a valid proof of the statement le 16 64.
This approach is called computational reflection, and in this particular case, leb is a reflexive
decision procedure for the predicate le. While this example is trivial, this approach is central
in some of our contributions. We shall give more details about this feature of Coq, at the end
of this introduction.

Contributions

A decision procedure for Kleene algebras

We started this introduction with the enumeration of some outstanding achievements in formal
proofs that were done during the last decade. Then, we pointed out the fact that building
formal proofs in proof assistants is eased by powerful tactics.

Binary relations are pervasive in formal proofs about programming languages meta-theory [125],
compiler verification [109], or modelisation of memory models [3]. From a mathematical point
of view, proofs dealing with binary relations are arguably best presented when the relations
are considered as abstract objects that are equipped with operations like composition, union,
reflexive and transitive closure, converse, etc. Consider for instance the following example where
R and S are arbitrary homogeneous binary relations, ◦ is relation composition, ∪ is union, �

is the reflexive and transitive closure and ⊆ is relation inclusion.

S ◦ (S ◦ S� ◦R� ∪R�) ⊆ S ◦ S� ◦R�.

Recall that by definition

R ⊆ S � ∀x∀y, xRy =⇒ xSy

x(R ◦ S)z � ∃y, xRy ∧ ySz

and ponder the fact that the above expression is more synthetic than the usual point-wise
formulation, which requires to handle explicitly the existential quantification induced by the
composition. In this point-free presentation of binary relations, called relation algebra, the rea-
soning is done via the axiomatisation of operations on binary relations. Moving to this algebraic
setting makes it possible to implement various decision procedures for decidable fragments of
relation algebra. In particular, binary relations with union, composition, and reflexive and
transitive closure form a model of Kleene algebra, whose equational theory is decidable.

Our first contribution is a formalisation of Kleene algebras in Coq, equipped with an efficient
decision procedure for the equational theory. This decision procedure required the formalisation
in Coq of some usual finite automata constructions: construction of finite automata from regular
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expressions, removal of �-transitions, determinisation, and equivalence checking. Moreover,
Kozen’s theorem [100] must be formalised to apply this decision procedure to any model of
Kleene algebras. This theorem states that the model of regular languages is initial among
models of Kleene algebra: that is, any equation valid in the model of regular languages is valid
in any other model of Kleene algebra, and a fortiori, in the model of binary relations.

This contribution do not aim at being minimalistic, and we make ours the following quote
from Georges Gonthier:

“Perhaps this is the most promising aspect of formal proof: it is not merely a method
to make absolutely sure we have not made a mistake in a proof, but also a tool that
shows us and compels us to understand why a proof works.”

Indeed, verifying a simple decision procedure for regular expression equivalence and showing
how to reduce equations between binary relations to equations between regular languages can be
done without relying on Kozen’s theorem and do not require a big formalisation. Neither does
using out-of-the-shelf automated theorem provers with the rules of Kleene algebras. However,
formalising Kozen’s theorem compelled us to formalise automata in Coq but also to formalise
a small algebraic hierarchy and to work with matrices which are essential to Kozen’s proof.
Moreover, taking care of the efficiency of the various steps of the decision procedure prompted
us to change some early design-choices of algorithms and data-structures. Finally, this de-
cision procedure is packaged as a general purpose tactic that may be used in arbitrary Coq
developments.

Tools for rewriting modulo associativity and commutativity

Our second contribution aims at solving a practical and pervasive problem: a lot of small and
trivial proof steps have to be done by the user to handle simple associativity and commutativity
proofs. These steps are tedious to write and pollute the proof script. For instance, in relation
algebra, the composition of relation is associative, and the union is both associative and com-
mutative, and one often needs to use these properties in proofs just to be able to perform a
step that requires insight. We investigated how to define a new high-level rewrite tactic that
helps the user to focus on the proof steps that require sapience, by leveraging automatically the
associativity and commutativity (AC) properties of some operators.

At the heart of this new rewriting tactic, there is a decision procedure for equality modulo
associativity and commutativity. No need to say, this decision procedure is built using computa-
tional reflection. One of our main contributions is that we also use a novel reification technique
that makes it possible to rewrite with an arbitrary numbers of associative commutative (or
associative only) user-defined operations, with or without neutral elements, in the context of
an user-defined equivalence relation (a setoid relation). This novel reification technique makes
the tactic easy to apply for the user, without additional overhead.

A formalisation of hardware circuits in Coq

Verification of hardware components is a well-trodden ground. Some of the earliest practical
works involving automated or interactive theorem proving dealt with proofs of correctness for
hardware components. As a consequence, model checking as seen significant industry adoption,
and interactive theorem proving methods are used by major hardware companies. Arguably, in-
teractive verification of circuits is usually done on high-level models of circuits that are specified
as predicates of the logic. For instance, an adder circuit may be modelled as the following pred-
icate, where nat_to_bv converts a Peano integer to a bit-vector (modelled as a list of Booleans)
while bv_to_nat is the dual function.
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Definition ADD (a b out: list bool) : Prop := out = nat_to_bv (bv_to_nat a + bv_to_nat b).

This is a rather high-level representation of an adder circuit, suitable to be used as a base block
in the formalisation of bigger circuits. More detailed adder implementations, defined as the
composition of smaller blocks or basic “gates” (that is, predicates), can be proved correct w.r.t.
the high-level one above. This kind of embedding of circuits is called a shallow-embedding:
circuits are defined as predicates of the logic of the underlying theorem prover.

Our third contribution is a Coq library for the specification and verification of hardware
components that defines a deep-embedding of circuits in Coq: circuits are modelled as a Coq
data-type, equipped with a meaning function. This library builds upon the rich dependent types
of Coq to define a data-structure that represents circuits that are “inherently well-formed”. We
shall demonstrate that using a small number of constructions makes it possible to build gate-
level descriptions of circuits, which are yet amenable to high-level specifications. For instance,
we shall prove that a gate-level description of an adder implements a high-level function, the
addition of machine words. Using dependent-types makes it easier to define and reason about
circuit generators : Coq functions that build circuits of, e.g., parametric size.

This work stems from the will to formalise other categories of finite state systems than the
finite state automaton that underlies the decision procedure for regular language equivalence.
Therefore, in our setting, the modelled circuits may be purely combinatorial (without state-
holding elements), as well as synchronous (with state holding elements).

Coq features at work

These three contributions rely heavily on a small number of Coq properties. First, we define
decision procedures using computational reflection: this requires that some computation may
happen during proof-checking. Moreover, even the statements of the correctness of our deci-
sion procedures could hardly be stated without dependent types. (Note that with respect to
meta-level tactics, decision procedures built using computational reflection have the advantage
that their behaviour is specified in the type system of the prover itself.) Finally, our first two
contributions rely on the presence of type-classes in Coq. Type-classes are useful to define ab-
stract and modular algebraic structures in a way that provides support for notation overloading
but also for sharing theorems between various instances of a given structure. But type-classes
are also crucial for the automatic inference of properties of function symbols that underlies our
rewriting modulo AC tactic.

This set of features (computation inside propositions, dependent types, and type-classes
based modularity) is not present in any other current proof assistant. We reckon that our
formalisations are quite Coq specific, in the sense that they rely on these particular features. We
shall review through this manuscript several related contributions formalised in other theorem
provers, and give some hints about the practical usefulness of these Coq features. This justifies
après coup our choice of Coq as working framework.

Some Coq features

This section is devoted to a presentation of some advanced Coq features that will be used
thoroughly in this dissertation. We assume that the reader has some basic familiarity with the
Coq system. Some introductory textbooks are: Software Foundations by Pierce et al [125]; the
tutorial Coq in a Hurry by Bertot [21]; the Coq’Art by Bertot and Casteran [22]; or Certified
Programming With Dependent Types by Chlipala [46].
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Figure 1 A map function on length-indexed lists (vectors)

Inductive vect (A: Type) : nat → Type :=
vnil : vect A 0

| vcons : ∀ {n} (x:A), vect A n → vect A (S n).

Notation "x :: y" := (vcons _ x y).
Notation "[]" := (vnil _).

Context {A B : Type} (f : A → B).
Fixpoint map {n} (v: vect A n) : vect B n :=
match v with
| [] ⇒ []
| x :: v ⇒ (f x) :: (map v)

end.

Dependent types.

From the (functional) programmer point of view, a type gives an approximation of the behaviour
of a function. For instance in OCaml, the type of the map function on lists,

(α → β) → α list → β list

puts strong restrictions on what the underlying map function may do. Dependent types allows
for more expressive specifications through types, but also, arguably, for sheerer expressiveness
in what functions may do.

A good introduction to dependent types is the data type of length-indexed lists, called vect

(see Fig. 1). This is a refinement of the usual list type that makes manifest the length of the
underlying list. Note that this refinement does not incur much overhead, thanks to notations:
for instance, we define a map function on vectors in Fig. 1 as we would have done on lists. Yet,
the type of map proves for free the fact that the length of the resulting vector is equal to the
length of the argument.

The vernacular command Context binds variables in a Coq section: the map function in
Fig. 1 takes 5 arguments. However, the arguments A, B and n may be inferred by Coq from the
type of the function f and the vector v: therefore, we declare these three arguments as implicit
arguments using curly-braces instead of parentheses in the binders. In the following, we shall
freely use the Variable keyword as a synonym of Context when we do not want to declare
implicit arguments.

A vector is the data-structure of choice to package the arguments of an n-ary homogeneous
function: a function that takes n arguments of a given type A, and returns a result of type
A. The type type_of A n of such an n-ary function may be defined as follows and, given an
inhabitant of type_of A n and a vector of arguments of length n, it is possible to apply the
former to the latter using the apply function. (Note that we choose to reverse the intuitive
order of the arguments of apply in the actual Coq definition in order to keep it simple, without
adding much dependent-type boilerplate.)

Fixpoint type_of A n : Type :=
match n with
| 0 ⇒ A
| S n ⇒ A → type_of A n

end.

Fixpoint apply {A} {n} (v : vect A n) : type_of A n → A:=
match v with
| [] ⇒ fun f ⇒ f
| x:: v ⇒ fun f ⇒ apply v (f x)

end.

Remark that the type of apply forbids the application of, e.g, an unary function to a vector of
length 3. In the following examples, we use the Eval command to compute the result of the
application of an n-ary homogeneous function to a vector of length n.

Eval compute in apply (1 :: 2 :: 3 :: []) (fun x y z ⇒ x+y+z). (* 6 : nat *)
Eval compute in apply (1 :: 6 :: []) (fun x y ⇒ x+y). (* 7 : nat *)
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Basic introduction to type-classes in Coq.

The overall behaviour of Coq type-classes [147] is quite intuitive. The following excerpt shows
a simple Haskell program on the left-hand side, that exploits a type-class Hash to get a number
out of certain kind of values; and its translation into its Coq equivalent on the right-hand side.

class Hash a where
hash :: a → Int
instance Hash Int where
hash = id
instance (Hash a) ⇒ (Hash [a]) where
hash = sum . map hash
main = print
(hash 4, hash [4,5,6], hash [[4,5],[]])

Class Hash (A : Type) :=
{ hash: A → nat }.
Instance hash_n: Hash nat :=
{ hash x := x }.
Instance hash_l A: Hash A → Hash (list A) :=
{ hash l := fold_left (fun a x ⇒ a + hash x) l 0 }.
Eval simpl in
(hash 4, hash [4;5;6], hash [[4;5];[]]) .

Coq type-classes are firstorder; everything is done with plain Coq terms. In particular, the
Class keyword produces a dependent record and the Instance keyword acts like a standard
definition. With the above code we get values of the following types:

Hash: Type → Type
hash: ∀ A, Hash A → A → nat

hash_n: Hash nat
hash_l: ∀ A, Hash A → Hash (list A)

The function hash is a class projection: it gives access to a field of the class. The subtlety
is that the first two arguments of this function are implicit: they are automatically inserted
by unification and type-class resolution. More precisely, when we write “hash [4;5;6] ”, Coq
actually reads “@hash _ _ [4;5;6] ”. By unification, the first placeholder has to be list nat,
and Coq needs to guess a term of type Hash (list nat) to fill the second placeholder. This
term is obtained by a simple proof search, using the two available instances for the class Hash,
which yields “@hash_l nat hash_n”. This proof search step is called type-class resolution. Ac-
cordingly, we get the following explicit terms for the three calls to hash in the above example.

input term explicit, instantiated, term
hash 4 @hash nat hash_n 4
hash [4;5;6] @hash (list nat) (@hash_l nat hash_n) [4;5;6]
hash [[4;5];[]] @hash (list (list nat)) (@hash_l (list nat) (hash_l nat hash_n)) [[4;5];[]]

Defining an algebraic structure. Then, consider a possible Coq definition of a group struc-
ture and some related lemmas in Fig. 2. Again, type-classes provide overloading: the notations
provided for the class-projections (op, inv and unit) leave the group structure implicit. This
makes it possible to write much shorter and readable terms, by letting Coq infer the obvious
boilerplate: for instance, the notation x∗y expands to @op G x y in the three lemmas from the
right-hand side. What is more important is that these lemmas are parameterised by an arbi-
trary group structure: upon use, the type-classes resolution mechanism shall instantiate the
group parameter in a suitable manner. (Note that we do not advocate that this definition of
a group structure is the best way to proceed in Coq. We shall come back on this point in the
next chapter.)

Some useful type-classes. Some examples of type-classes from Coq’s standard library that
are of common use in this manuscript are given in Fig. 3: they are useful to express properties
about binary relations. The syntax :> in the definition of Equivalence indicates that an
instance of the Equivalence class may be seen as an instance of, e.g., Reflexive. Finally,
we will often deal with proper morphisms (See Fig. 4): functions that are compatible with an
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Figure 2 Group theory using type-classes

Class group := {
X : Type;
op : X → X → X;
inv : X → X;
unit : X;
op_ass: ∀ x y z, op (op x y) z = op x (op y z);
op_inv: ∀ x, op x (inv x) = unit;
unit_right : ∀ x, op x unit = x

}.

Notation "x * y" := (op x y).
Notation "1" := unit.
Notation "~ x" := (inv x).

Section t.
Context {G :group}.

Lemma unit_unique: ∀ x, x∗x = x → x = 1.
Proof. ... Qed.

Lemma inv_unique: ∀ x y, x∗y = 1 → y = ˜x.
Proof. ... Qed.

Lemma inv_distr: ∀ x y, ˜(x∗y) = (˜y)∗(˜x).
Proof. ... Qed.

End t.

Figure 3 Definitions from the standard library

Context {A} (R: relation A).
Class Reflexive := reflexivity : ∀ x, R x x.
Class Symmetric := symmetry : ∀ x y, R x y → R y x.
Class Transitive := transitivity :
∀ x y z, R x y → R y z → R x z.

Class Equivalence := {
Equivalence_Reflexive :> Reflexive R ;
Equivalence_Symmetric :> Symmetric R ;
Equivalence_Transitive :> Transitive R }.

user-defined relation and map equals to equals2. As an example, Qeq is the usual equality on
rational numbers: the following instance states that addition on rational numbers maps equal
numbers w.r.t. Qeq to equal numbers w.r.t. Qeq.

Instance q_add_compat : Proper (Qeq ⇒ Qeq ⇒ Qeq) (Qplus). Proof. ... Qed.

Coq’s rewrite tactic is able to leverage this kind of information to perform generalised rewriting
steps that involve user defined equalities: in a nutshell, type-class resolution may be used to
compose instances of the Proper type-class to build a proof that replacing a term with a related
one is valid in a given context.

Some pointers. This concludes our very short introduction to type-classes in Coq; we invite
the reader to consult [147, 153] for more details.

2In the following, a set equipped with an user-defined equivalence relation is called a setoid

Figure 4 Proper morphisms

Class Proper {A} (R : relation A) (m : A) : Prop := proper_prf : R m m.

(* The relation R in Proper is usually instantiated with the following definition. *)
Definition respectful (A B : Type) (R : relation A) (R’ : relation B) : relation (A → B) :=
(fun (f g : A → B) ⇒ ∀ x y : A, R x y → R’ (f x) (g y)).

Notation " R ⇒ R’ " := (@respectful _ _ R R’)
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Proof by computational reflection

Computational reflection (or reflection in short) is a general purpose technique that aims at
replacing proof steps with computations. Poincaré once pointed out that one does not “prove”
“2+2=4”, but that one “checks” it [128] (by computing the normal form of 2+ 2). This simple
example demonstrates that computation may help to simplify proofs: the reduction of 2 + 2 in
4 is trivial, but the same methodology may be applied to the embedding of complex decision
procedures as functions in the logic of the proof assistant.

A typical example of use of reflection occurs when proving that some numbers are composite.
Suppose defined a predicate Composite : positive → Prop over positive numbers (represented
as binary numbers, for efficiency reasons). A typical proof that a number is composite would
require human acumen (or the use of external tools) to find a suitable decomposition. How-
ever, since compositeness is a decidable property, one can define in Coq a decision procedure
is_composite: positive → bool, e.g., by implementing a factorisation algorithm, and then
prove that this decision procedure is correct :

Lemma dp_correct (n : positive) : is_composite n = true → Composite n.

Therefore, a proof that 576077 is composite is the following:

Goal Composite 576077. Proof. exact (dp_correct 576077 (eq_refl true)). Qed.

Then, it is possible to gain extra confidence in this decision procedure by proving its com-
pleteness which amounts to strengthening the above implication in an equivalence. However,
proving the completeness of a decision procedure is not mandatory: it may be easier in practice
to define semi-decision procedure; or proving completeness may not be worth the burden. (Note
that usually, completeness of a decision procedure requires its termination [106] which must be
ensured nevertheless for any Coq function.)

Finally, remark that the size of the above proof is constant except for the fact that it must
mention the number whose compositeness we assess. This is of little importance in this partic-
ular case but the same applies to more elaborate reflexive decision procedures. For instance,
this means that a proof of a Boolean tautology using a reflexive SAT-solver would not mention
the actual derivations built by the solver: the fact that such derivations exist would be checked
when running the decision procedure. However, a reflexive decision procedure will be executed
by Coq’s reduction machinery, which is comparatively slow with respect to the execution of,
e.g., OCaml programs. Therefore, a reflexive tactic that may be used intensively gains from
being implemented using efficient algorithms and data structures.

Digression: validation of traces. Efficient external tools, for instance SMT-solvers or com-
puter algebra systems implemented in arbitrary languages, may be used as tactics provided that
there is some way to interpret their results as proof-terms. While the interfacing of external
tools with Coq to produce such proof-terms may be challenging, this is how some Coq tactics
are implemented: for instance, firstorder (a semi-decision procedure for first order logic) and
omega (a decision procedure for quantifier-free Presburger arithmetic goals).

A popular middle ground between proof-term producing oracles and reflexive decision pro-
cedures is called trace validation: that is, to use an external tool focused on proof-search
(implemented with any suitable optimisation) that produces a witness (a more or less detailed
solution to the given problem); and to check this witness using a verified decision procedure.
Depending on the level of details of the witness, and the particular problem at hand, more or
less computations are required from the checker. For instance, for the above example about
checking that a number n is composite, a suitable witness could be:

- a factor f of the number (the checker must verify that f divides n);

10



Figure 5 Reification primer

Inductive term: Type :=
| Op : term → term → term
| Unit: term
| Inv: term → term
| Const : X → term.

Fixpoint eval t : X :=
match t with
| Op s t ⇒ (eval s) ∗ (eval t)
| Inv s ⇒ inv (eval s)
| Unit ⇒ 1
| Const x ⇒ x end.

- or a factor f and the quotient q (the checker must verify that f ∗ q = n);

- or the list of the prime factors of n with their multiplicities (the checker must verify that
their product is n).

Note that this approach works best when finding a witness is computationally difficult while
checking it remains “easy” (and that the size of the witness remains tractable).

Reification. In Coq, computation is possible on open terms: it is possible to compute the
result of plus 0 n even if n is free. Yet, it is not possible to compute the result of plus n 0,
since plus is defined by recursion on its first argument. Therefore, reflexive decision procedure
need to be applied to closed terms to avoid getting stuck in computations. This requires to
“reflect” goals into a concrete syntax in which free variables are reified into constants and terms
are reified as abstract syntax trees.

We shall give the intuition about general purpose reification mechanisms through an exam-
ple. We settle in the context of an abstract group with carrier X, an inverse inv : X → X, an
associative operation ∗: X → X → X and its right unit 1: X. We define a data type for reified
expressions in Fig. 5, together with an interpretation function (or “evaluation function”). From
a general point of view, a data-type for reified expressions is meant to describe a syntactic rep-
resentation of the algebraic structure at hand: here, we have one constructor for each element
of the algebraic structure (Op, Unit and Inv). The Const constructor is a catch-all case for
subexpressions that cannot be modelled in this data type. Such subexpressions may be free
variables but also arbitrary terms of type X. For instance, consider the following evaluation that
maps a reified term to an “user-level” term.

Variable a b : X. Variable f : X → X.
Eval compute in eval (Inv (Op (Op Unit (Const a)) (Inv (Const (f b))))).
(* inv (1 * a * inv (f b)) *)

From a general point of view, the reification process abstracts from a given model and put
forward the underlying algebraic structure as an abstract syntax tree. This makes it possible
to define algorithms that operate at the level of the algebraic structure, and prove them using
algebraic laws.

As an example, we define and prove correct a function that simplifies the occurrences of the
neutral element. In Fig. 6, we define “smart constructors” Op’ and Inv’ that handle the actual
simplifications, and the fixpoint simpl. It is then possible to prove for instance that simpl

preserves the evaluation (relying implicitly on axioms similar to the ones in Fig. 2).

Lemma simpl_correct: ∀ t, eval (simpl t) = eval t.

However, the definition of a (correct) decision procedure for equations in such groups requires
the ability to test (in the logic) the equality of the terms that occur under the Const constructor,
which is usually not possible (consider for instance the case where X is Prop, on which it is not
possible to perform case analysis). The usual practice is to add a level of indirection: that is,

11



Figure 6 Simplification of reified terms

Definition Op’ s t :=
match s,t with
| Unit, _ ⇒ t
| _, Unit ⇒ s
| s,t ⇒ Op s t

end.

Definition Inv’ t :=
match t with
| Unit ⇒ Unit
| t ⇒ t

end.

Fixpoint simpl t :=
match t with
| Op s t ⇒ Op’ (simpl s) (simpl t)
| Inv s ⇒ Inv’ (simpl s)
| t ⇒ t

end.

Figure 7 Reification with environments

Inductive term: Type :=
| Op : term → term → term
| Unit: term
| Inv : term → term
| Var : nat → term.

Variable env : nat → X.

Fixpoint eval t : X :=
match t with
| Op s t ⇒ (eval s) ∗ (eval t)
| Inv s ⇒ inv (eval s)
| Unit ⇒ 1
| Var x ⇒ env x

end.

to define an environment to store the constants and index them with, e.g., natural number.
This requires to replace the Const constructor with a Var constructor (that contains the index
of the underlying constant in the environment) and to parametrise the eval function with an
environment (see Fig. 7). As an example, consider the following evaluation that maps a reified
term to an “user-level” term, using the provided environment.

Let env := fun x ⇒ match x with | 0 ⇒ a | 1 ⇒ f a | _ ⇒ b end.
Eval compute in eval env (Op (Var 0) (Inv (Op (Var 1) (Var 2)))). (* a * inv (f a * b) *)

This allows one to build simplification functions that rely on the identity of constants: e.g., this
makes it possible to implement a function that simplifies Op (Inv (Var x)) (Var x) into Unit.
Then, let dp be a reflexive decision procedure such that the following dp_correct lemma holds.

Lemma dp_correct: ∀ (s t: term) env, dp s t = true → eval env s = eval env t.

In order to apply the dp_correct reflexive decision procedure to a goal a = b, the user must
provide the terms s, t, env, such that eval env s is convertible with a and eval env t is con-
vertible with b. While it is possible to do it “by hand”, this step is usually done by a reification
tactic, implemented at the meta-level. We describe such a reification tactic in chapter 2.

Notes about this document

We discuss our efficient decision procedure for Kleene algebras in chapter 1. We describe our
tactics for working modulo associativity and commutativity in chapter 2. Finally, we consider
our formalisation of circuits in chapter 3.
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Chapter 1

Tools for Kleene algebras

Introduction

A starting point for this work is the following remark: proofs about abstract rewriting (e.g.,
Newman’s Lemma, equivalence between weak confluence and the Church-Rosser property, ter-
mination theorems based on commutation properties) are best presented using informal “di-
agram chasing arguments”. This is illustrated by Fig. 1.1, where the same state of a typical
proof of the theorem “weak-confluence implies the Church-Rosser property” is represented three
times. Informal diagrams are drawn on the left. The upper-right part corresponds to a naive
formalisation where the points related by relations are mentioned explicitly. This is not satis-
factory: a lot of points have to be defined, and the goal is stated in a rather verbose way. On
the contrary, if we move to an algebraic setting (the lower right-hand side part), where binary
relations are seen as abstract objects that can be composed using various operators (e.g., union,
intersection, relational composition, iteration), statements become rather compact, making the
goal easier to read and reason about.

More importantly, moving to the abstract “point-free” setting makes it possible to implement
decision procedures. For instance, once we rewrite the hypothesis in the left-hand side of the
last goal of Fig. 1.1, we obtain the inclusion S� ◦ R� ◦ R� ⊆ S� ◦ R�. This is a straightforward
theorem of Kleene algebras: the tactic we describe in this chapter proves it automatically.

1.1 Definitions

In this section, we review some basic definitions of finite automata theory that will be used in
the later sections.

Figure 1.1 Diagrammatic, concrete, and abstract presentations of the same state in a proof.

· S�

��
H·

R ��

S� ��
·

· R�

��

· S�

��
·

·
R ��

S� ��

·
R� ��

? R�

��

∀p, r, q, pRr → rS�q → ∃s, pS�s ∧ sR�q
pRq qS�s sR�q�

∃s, pS�s ∧ sR�q�

R ◦ S� ⊆ S� ◦R�

R ◦ S� ◦R� ⊆ S� ◦R�
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1.1.1 Regular expressions and automata

In the context of automata theory, we call an alphabet a non-empty set Σ, which is a set of base
elements (or letters or variables). A word is a finite sequence of letters, with the special case of
the empty word, written �. The set of words on Σ is written Σ�. A language on the alphabet
Σ is a set of words on Σ. We define several operations on languages:

K ∪ L � {u | u ∈ K or u ∈ L}
K · L � {u · v | u ∈ K, v ∈ L}

L� �
�

0≤n

Ln

where L0 � {�} and Ln+1 � Ln · L for 0 ≤ n

Definition 1 (Regular expression). The family of regular expressions over an alphabet Σ, writ-
ten REΣ, is the smallest set such that:

• 0,1 and a ∈ Σ are regular expressions;

• if E and F are regular expressions, then E + F , E · F and E� are regular expressions.

The standard interpretation of regular expressions maps each regular expression E to the
language L(E):

• L(0) = ∅, L(1) = {�}, L(a) = {a} for a ∈ Σ

• L(E + F ) = L(E) ∪ L(F ), L(E · F ) = L(E) · L(F ), L(E�) = L(E)�

The family of regular sets over a finite alphabet, written RLΣ, is defined as the image of
REΣ by L.

Different regular expressions may denote the same language. This leads to the notion of
equivalent regular expressions: two regular expressions E and F are equivalent (written E ∼ F )
if they denote the same language, i.e., if L(E) = L(F ). The easiest way to prove such equiv-
alences is to go through finite automata theory: indeed, we shall see that languages that can
be described by finite automata are exactly the same as the languages denoted by regular
expressions [98].

Definition 2 (Finite automata). Let Σ be an alphabet. We formally denote a non-deterministic
finite automata (or NFA) A on the alphabet Σ by a 4-uple �Q,T, I, F � where Q is a finite set
of states, T is a finite subset of Q×Σ×Q called the set of transitions, I is a subset of Q called
the set of initial states, and F is a subset of Q called the set of final (or accepting) states.

The transition function δA of the automata A is the mapping from Q × Σ to P(Q), where
P(Q) denote the power set of Q, such that for each state p and each letter a,

δA(p, a) = {q | (p, a, q) ∈ T}

This transition function is extended to words by δA : Q× Σ� → P(Q) such that:

δA(p, �) = {p} δA(p, a · w) =
�

q∈δ(p,a)

δ(q, w)

Finally, the language recognised by A is the set of words that may lead from an initial state to
an accepting state. Formally,

L(A) =
�

p∈I

�
w ∈ Σ� | δA(p, w) ∩ F �= ∅

�

Note that when the automaton is obvious, we may drop the subscripts for δ and δ.
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Automata are often depicted as labeled graphs called transition diagrams: there is a vertex
for each state in Q, and an arc from q to q� labeled by a in the graph for each transition (q, a, q�)
in T . In this dissertation, accepting states are marked with a double circle, and unlabeled
arrows point to the starting states. (In the following, transitions diagrams will be the preferred
notation for describing finite automata.)

Alternatively, automata can be depicted by transitions matrix where the rows and the
columns of the matrix correspond to states (since the labels of the states are irrelevant, we
can assume that the states are labelled by integers, e.g., ranging from 0 to |Q|− 1). Generally
speaking, we define a matrix over R of size (n ×m) (that is, n lines and m columns) to be a
family of elements of R indexed by the cartesian product of the integers sets {0, . . . , n− 1} and
{0, . . . ,m− 1}. The family of rectangular (n × m) matrices over elements R will be written
M(n,m)(R). In the particular case of a transition matrix, the element at row i and column j is
the subset of the alphabet that labels transitions going from i to j. To be more precise, given
an automata �Q,T, I, F � on an alphabet Σ, its transition matrix M is defined by:

Mij = {a ∈ Σ | (i, a, j) ∈ T} .

Example 1. In this example, the alphabet is Σ = {a, b}. We present on the left an automata A,
and its transition diagram on the right. The language recognised by A is L(A) = L(Σ� ·a ·b ·Σ�),
i.e., the set of words that contain the factor a · b.

Q = {0, 1, 2}
T = {(0, a, 0), (0, b, 0), (0, a, 1),

(1, b, 2), (2, a, 2), (2, b, 2)}
I = {0}
F = {2}

0 a
����

a

��

b

�� 1
b
�� 2

a

��

b

��

Its transition matrix is:

M =




{a, b} {a} ∅
∅ ∅ {b}
∅ ∅ {a, b}





We presented the definition of non-deterministic finite automata: the transition function δ
returns a set of states. In the previous example, being in state 1 and reading the letter a allows
the automata to go to state 1 or to state 2: an NFA has the power to be in several states at
once while reading a word. We now turn to the definition of other kinds of automata.

Definition 3. A non-deterministic finite automaton with �-transitions (or �-NFA) on an al-
phabet Σ is a 4-uple A = �Q,T, I, F � where Q is a finite set of states, I and F are subsets of
Q, and T is a subset of Q× (Σ ∪ {�})×Q.

The only difference between NFAs and �-NFAs is that the latter allow the automata to take
transitions labelled by the empty word. Despite this relaxation, �-NFAs can recognise the same
class of language as NFAs. Indeed, an NFA is an �-NFA, and it is possible to convert an �-NFA
to an NFA through the removal of �-transitions. This construction goes as follows: given an
�-NFA A = �Q,T, I, F �, we build the NFA A� = �Q,T �, I �, F � such that:

R = {(x, y) | (x, �, y) ∈ T}
T � =

�
(p, a, q�) | (p, a, q) ∈ T and (q, q�) ∈ R�

�

I � = {j | i ∈ I and (i, j) ∈ R�} .

The relation R is called the �-transitions relation; R� corresponds to the usual reflexive and
transitive closure of a binary relation. The new set of initial states I � corresponds to former
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initial states, as well as the states that can be accessed from an initial state using only �-
transitions, i.e., the reflexive and transitive closure of the �-transitions. Similarly, the new set of
transitions T � corresponds to all the former transitions, postfixed by the reflexive and transitive
closure of the �-transitions. While A and A� have the same number of states, A� may have
far more transitions than A. However, the language recognised by A� is equal to the language
recognised by A.

Definition 4. A deterministic finite automaton on an alphabet Σ is an NFA A = �Q,T, I, F �
where |I| = 1, and for all q ∈ Q and a ∈ Σ, |δ(q, a)| ≤ 1. Moreover, A is complete if |δ(q, a)| = 1
for all states and input letters.

In the following, we will only consider complete deterministic finite automata (written
DFAs). We assume, without loss of generality, that the transition function of a DFA has
type Q× Σ → Q.

The equivalence of DFAs and NFAs was first studied by Rabin and Scott [130]. The simplest
construction of a DFA is called the subset construction: it builds a DFA with one state for each
subset of the set of states of the original NFA. Often, only a few such sets of states can be
accessed from the initial state of the DFA: inaccessible states can be thrown away, effectively
reducing the number of states of the DFA. The construction we present here is actually called
the accessible subset construction.

Given an NFA N = �Q,T, I, F �, we build a DFA D = �Q�, T �, {I} , F �� such that

∆(P, a) = {q ∈ Q | ∃p ∈ P, (p, a, q) ∈ T}

Q� =
�

n∈N
Qn where

�
Q0 = {I}
Qn+1 =

�
a∈Σ {∆(P, a) | P ∈ Qn}

T � =
�
(P, a,∆(P, a)) | P ∈ Q�, a ∈ Σ

�

F � =
�
P | P ∈ Q�, P ∩ F �= ∅

�

Note that the cardinal of Q� is bounded by 2|Q| (hence, this construction is well-defined), but
is often much smaller in practice. The language recognised by D is equal to the language
recognised by N . Moreover, we can define an injection ρ from [1, . . . , |Q�|] to subsets of Q such
that:

∀s ∈ Q�, ∀a ∈ Σ, ρ(δD(s, a)) =
�

p∈ρ(s)

(δN (p, a))

To sum up, the three classes of automata we defined (DFAs, NFAs and �-NFAs) recognise the
same class of languages. We shall now find that the languages denoted by regular expressions
are exactly the languages accepted by finite automata, namely the regular languages.

Theorem 1 (Kleene). Let L be a language.

∃A, L(A) = L ⇐⇒ ∃E : REΣ, L(E) = L

Figure 1.2 shows the constructions required to prove this equivalence. An arrow from A to
B means that there is a construction from an object of type A to an equivalent object of type
B. A dotted arrow indicates that there is an injection from A to B. We have already studied
the removal of �-transitions, and the accessible subset construction. We proceed to prove that
for every regular expression, there is an equivalent �-NFA.
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Figure 1.2 Showing the equivalence of four different notations for regular languages

�-NFA
(2)

�� NFA��

(3)

��
REΣ

(1)

��

DFA

��

(4)
��

(1) Automata construction

(2) �-transitions removal

(3) Accessible subset construction

(4) State elimination

1.1.2 From regular expressions to automata

There are several ways of constructing an �-NFA from a regular expression. We choose here
Thompson’s construction [155] because of its simplicity, and to lay the ground for the remaining
of this chapter (we will discuss this choice of presentation in §1.9). All of the automata we
construct here are �-NFAs which may have several initial and accepting states. We proceed by
structural induction on the given regular expression and the corresponding steps are depicted
in Fig. 1.3. (Note that in some constructions of Fig. 1.3, we use larger arrows to indicate that
we consider sets of initial states, or all-pairs transitions between two sets of states in these
drawings. Conversely, we will have to consider sets of final states.)

The base cases for the induction are the variable case, the � case and the ∅ case (which
corresponds to an automaton with two states and no transition). The �-NFA in Fig. 1.3(a)
clearly recognises the corresponding language. There are three inductive cases to consider,
depending on the shape of the regular expression:

Case A+B. By induction, there are two �-NFAsMA = �QA, TA, IA, FA� andMB = �QB, TB, IB, FB�
such that L(A) = L(MA) and L(B) = L(MB). Since we may rename the states of a �-
NFA, we may assume that QA and QB are disjoint. We build the following automaton,
as depicted in Fig. 1.3(b):

MA+B = �QA ∪QB, TA ∪ TB, IA ∪ IB, FA ∪ FB�

Case A ·B. Similarly, for the product, we build the following automaton (as shown in Fig. 1.3(c))
where we add �-transitions between the final states of MA, and the initial states of MB:

MA·B = �QA ∪QB, TA ∪ TB ∪ {(f, �, i) | f ∈ FA, i ∈ IB} , IA, FB�

Case A�. By induction, there is an �-NFAs MA = �Q,T, I, F � such that L(A) = L(MA). We
assume that the state labelled with 0 is not in Q. We build the following automaton,
as depicted in Fig. 1.3(d), where we add �-transitions between the accepting states and
initial states of MA, as well as an automaton in parallel that recognises {�}:

MA� = �Q ∪ {0} , T ∪ {(f, �, i) | f ∈ F, i ∈ I} , I ∪ {0} , F ∪ {0}�

Theorem 2. Let M be the automaton built from a regular expression E using Thompson’s
construction. We have:

L(M) = L(E).

Proof. The proof is routine induction over the structure of the regular expression E.
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Figure 1.3 Thompson’s construction
(a)

0��
a/�/∅

�� 1

(b)

IA�� TA FA

IB�� TB FB

(c)

IA�� TA FA
� �� IB TB FB

(d)

0�� IA�� TA FA

�

��

1.1.3 Building regular expressions from automata

There are two standard methods to compute a regular expression that denote the language recog-
nised by an automaton. The first one is combinatorial [88], and goes through the construction of
regular expressions that describe progressively broader sets of paths in the transition diagram of
a DFA D = �(qi)0≤i≤n, T, {q0} , F �. One can define by induction regular expressions that denote
sets of words that label paths from a state qi to a state qj without using states numbered higher
than a given k:

Ek
ij =Ek−1

ik ·
�
Ek−1

kk

��
· Ek−1

kj + Ek−1
ij ,

E0
ij =

�
{a | δ(qi, a) = qj} if i �= j,

{a | δ(qi, a) = qj} ∪ {�} if i = j.

Then, En
ij denotes the language recognised by the whole automaton starting at state qi and

going to state qj . Let E be the sum of the regular expressions En
0j for qj in F . Then, E denotes

the language recognised by the automaton:

L(D) = L(E).

The second method, namely the state elimination method [87], is less combinatorial and
more intuitive. The idea is to eliminate one by one states in an automaton to reduce its size. In
order to do so, we have to consider automata that have regular expressions as labels1. Figure 1.4
shows a generic state s about to be eliminated in an automaton with n+1 states. The arc from
qi to s is labelled by Qi, and the arc from s to qj is labelled by Pj . (Note that the Pi’s and Qi’s
may be the regular expression 0 if some of these arcs do not exist.) Without loss of generality,
we can assume that s is the state with number n + 1, which gives a particular block shape to
the transition matrix of the automaton: the (n × n) matrix R corresponds to transitions not
going through s, the (1× 1) matrix S corresponds to transitions going from s to s, the (n× 1)
rectangular matrix Q corresponds to the transitions going from one of the qi’s to s, and the
(1× n) rectangular matrix P corresponds to the transitions going from s to one the qi’s.

1In this case, the language recognised by an automaton is the language denoted by the union, over all paths
going from the initial state to a final state, of the regular expressions that label that path (i.e., the concatenation
of the regular expressions that label the transitions in the path).
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Figure 1.4 A state s about to be eliminated (transition diagram and transition matrix)

q0

R0n

��

R00 ��

Q0

��

q0

◦ s
S��

P0

��

Pn ��

◦

qn
Rnn

��

Rn0

��

Qn

��

qn





...
...

· · · Rij · · · Qi
...

...
· · · Pj · · · S





Figure 1.5 Result of eliminating s from Fig. 1.4 (transition diagram and transition matrix)

q0

R0n+Q0·S�·Pn

��

R00+Q0·S�·P0

��
q0

◦ ◦

qn

Rnn+Qn·S�·Pn

��

Rn0+Qn·S�·P0

��

qn





...
· · · Rij +Qi · S� · Pj · · ·

...





Figure 1.5 shows what happens when we remove the state s. In order to compensate for the
elimination of s, we introduce, for each pair (qi, qj), a regular expression that represents all the
paths that start at qi, go through s, perhaps doing some loops, and finally go to pj . A suitable
regular expression is Qi · S� · Pj .

Then, the strategy to compute a regular expression from a DFA D = �Q,T, {q0} , F � is to
apply the state elimination to remove all states except the initial state and a given final state qj ,
producing a reduced finite automaton with one2 or two states. It is then easy to compute the
regular expression Ej associated to this given final state. Indeed, the following generic two-state
automaton recognises the language denoted by (R+ S · U� · T )� · S · U�.

·��
S

��

R

�� �
T

��

U

��

A regular expression that denotes the language recognised by D is the sum of the Ej ’s over qj
in F . Note that the state-elimination method may be seen as a general transformation of the
transition matrix of an automaton. In fact, it can also be applied to NFAs or �-NFAs, if the
final summation is extended to several initial states. This is actually why we presented this
construction: we will see analogues of it in later sections.

2If the initial state is also a final state.
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We have now completed the proof of Thm. 1. We proceed to use the aforementioned au-
tomata construction to actually check the equivalence of regular expressions.

1.1.4 Checking equivalence of regular expressions.

To prove that two regular expressions denote the same language, we can check that the DFAs
corresponding to these expressions are equivalent.

The Myhill-Nerode theorem [117] provides a first method to check equivalence of DFAs.

Theorem 3 (Myhill-Nerode). Let L ⊂ Σ∗. The following statement are equivalent:

1. There is a DFA that recognises L.

2. The relation ≡L defined by x ≡L y � ∀w ∈ Σ�, x ·w ∈ L ⇐⇒ y ·w ∈ L is of finite index.

Thus, for a given DFA A, there exists a DFA B with a minimum number of state that
recognise the same language; and such a minimised DFA is unique (except that states can be
given different names). The number of states of B corresponds to the number of equivalence
classes of ≡L(A). Thus, two DFAs are equivalent, if their respective minimised DFAs are equal
up-to isomorphisms, which can be checked by exploring all state permutations.

There is a more direct and efficient approach that does not require minimisation: one can
perform an on the fly 2-simulation check, using an almost linear algorithm by Hopcroft and
Karp [1]. This algorithm proceeds as follows: it computes the disjoint union of the two DFAs, and
checks that the former initial states are equivalent by constructing incrementally an equivalence
relation on states. Intuitively, two states are equivalent if they can match each other’s transitions
to reach equivalent states, with the constraint that no accepting state can be equivalent to a
non-accepting state. Formally, a suitable equivalence relation ≈ is called a 2-simulation and
satisfies:

∀q, q� ∈ Q, ∀a ∈ Σ, q ≈ q� =⇒ (δ(q, a) ≈ δ(q�, a) and q ∈ F ⇐⇒ q� ∈ F )

This implies that starting from two equivalent states, the automaton recognises the same lan-
guage.

Example 2. Here, we prove that L(x · (y · x)�) = L((x · y)� · x). We first build a DFA that
recognise each side of the equation:

1 x
��

y
��

�� 2

y
��

x
��

3
x
��

y��⊥x,y ��

1�
x
��

y
��

�� 2�

y

��

x
��⊥�x,y

��

Then, we check that the following relation is a 2-simulation relation:

⊥ ≈ ⊥� 2 ≈ 2� 3 ≈ 1� ≈ 1

Since the initial states of the two automata are in the 2-simulation relation ≈, the automata
recognise the same language. Hence, x · (y · x)� ∼ (x · y)� · x holds.

From the implementation point-of-view, it suffices to fold through pairs of states along the
transition relation, starting from the pair of initial states, and to maintain a data structures that
keeps track of the equivalence classes of states. Using an efficient disjoint-sets data structure
makes it possible to merge equivalence classes in quasi-constant time [57], and makes the whole
equivalence testing algorithm run in quasi-linear time w.r.t. to the size of the disjoint sum
automaton.
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Figure 1.6 The rules of Kleene algebra

x+ (y + z) ≡ (x+ y) + z x+ y ≡ y + x x+ x ≡ x x+ 0 ≡ x

x · (y · z) ≡ (x · y) · z x · 1 ≡ x 1 · x ≡ x

x · (y + z) ≡ x · y + x · z (x+ y) · z ≡ x · z + y · z x · 0 ≡ 0 0 · x ≡ 0

1 + x · x� ≡ x� (Ax1)
x · y ≤ y

x� · y ≤ y
(Ax2)

y · x ≤ y

y · x� ≤ y
(Ax3)

x ≡ y y ≡ z

x ≡ z

x ≡ y

y ≡ x
x ≡ x

x ≡ x� y ≡ y�

x · y ≡ x� · y�
x ≡ x� y ≡ y�

x+ y ≡ x� + y�
x ≡ x�

x� ≡ x��

1.1.5 Toward the axiomatisation of the equality of regular languages

We have recalled that the languages recognised by finite automata are the same as the languages
denoted by regular expressions. We have also recalled that it is possible to check the equivalence
of regular expressions through finite automata constructions. We now devote a section to the
axiomatisation of the equality of regular languages, in the more general context of Kleene
algebras, as proposed by Kozen [100].

1.2 Kleene algebras

The equational theory ofREΣ has been called the algebra of regular events, and was first studied
by Kleene [98], who posed axiomatisation as an open problem. Redko [132] proved in 1964 that
no finite set of equational axioms can characterise the algebra of regular events. Salomaa [137]
gave two complete axiomatisations in 1966 that depend on inference rules that are not valid
under substitution, making the axiomatisations unsound under non-standard interpretations3

Other axiomatisations involve infinitary treatment, which is not suited for algebraic reasoning.
In order to solve the problem in an algebraic fashion, we need to move to the context of Kleene
algebras.

Definition 5 (Kleene algebra). A Kleene algebra [100] is a structure K = �K,+, ·, �, 0, 1� with
binary operations + and ·, unary operation �, and constants 0 and 1 that satisfies the axioms
and inference rules in Fig. 1.6 (where ≤ is the preorder defined by x ≤ y � x+ y ≡ y).

Terms of Kleene algebras, ranged over using lower-case letters, are called regular expressions,
irrespective of the considered model.

1.2.1 Examples of Kleene algebras

Kleene algebras abound in computer science, and we are going to give some examples. An
important one is RLΣ.

3Interpretations of the regular expressions that differ from L.
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Example 3 (Regular languages). The structure �RLΣ,∪, ·, �, ∅, {�}� is a Kleene algebra.

If we consider two regular expressions α and β that are provably equal using the rules in
Fig. 1.6, we have α ∼ β. That is, the axioms of Kleene algebra together with the axioms
of equational reasoning constitute a correct deductive system for the equivalence of regular
expressions.

The next example comes from the starting point for this work: proofs involving binary
relations, as we mentioned in §1.
Example 4 (Binary relations). If we consider the family of binary relations on a set X with
operations

Id � {(x, x) | x ∈ X}
R ◦ S � {(x, z) | ∃y, (x, y) ∈ R ∧ (y, z) ∈ S}
R ∪ S � {(x, y) | (x, y) ∈ R ∨ (x, y) ∈ S}

R� �
�

0≤n

Rn (where R0 � Id and Rn+1 � Rn ◦R for 0 ≤ n )

then the structure �P(X ×X),∪, ◦, �, ∅, Id� is a Kleene algebra.

This means that the equational theory of Kleene algebras can be used as an alternative to
“long-winded low-level proofs” in order to prove lemmas like the following:

S ◦ (S ◦ S� ◦R� ∪R∗) ⊆ S ◦ S� ◦R� [154]

(S ∪R)� ⊆ S� ∪R� ∪R� ◦ S� ∪R� ◦ (S� ◦R�)+ ◦ S�

In fact, these are just two inequalities of regular expressions, (interpreted over relations instead
of regular languages). We shall see that decidability of the equivalence of regular expressions
can be lifted to binary relations. Since the above inequations hold in the model of regular
languages, they also hold in the model of homogeneous relations.

From binary relations, we can move to finite graphs to find other examples of Kleene algebras:
The family of boolean matrices of size (n× n) can represent adjacency matrices; if we consider
weighted graphs, we can interpret the family of (n × n) matrices over R+ ∪ {∞} as weighted
adjacency matrices. Both form Kleene algebras. Indeed, given a Kleene algebras of elements,
it is possible to construct a general star operation on matrices, which happens to correspond
to the computation of all-pairs shortest paths for tropical algebras, or to the computation of
all-pairs reachability for the Kleene algebras of booleans. Generally speaking, if K is a Kleene
algebra, then the family of square matrices over K form a Kleene algebra.

Example 5 (Tropical algebra). We consider a (min,+) algebra (or tropical algebra4), with
operators:

x⊕ y = min {x, y} x⊗ y = x+ y x� = 0

The structure T = �R+ ∪ {∞} ,⊕,⊗, �,∞, 0� is a Kleene algebra. Moreover, the family of
square matrices over T form a Kleene algebra M(n,n)(T). The matrix multiplication correspond
to the distance product:

(A×B)(i,j) =
n

min
k=1

�
A(i,k) ⊕B(k,j)

�
.

The star operation on matrices correspond to the computation of all-pairs shortest paths.

4Note that there are many variations on this particular Kleene algebra. For instance, it is possible to consider
the whole extended real number line, taking a ⊕ b as minimum, a ⊗ b as addition with −∞ ⊗ ∞ = ∞, and a�

being 0 for non-negative a and −∞ for negative a. This forms also a Kleene algebra.
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We shall present the construction of the Kleene algebra of matrices over a given Kleene
algebra in the next section. Yet note that this is a generic construction: in the previous example,
it happens that the (generic) matrix multiplication corresponds to the distance product and that
the (generic) star operation on matrices corresponds to the computation of all-pairs shortest
paths. The next example shows how this construction may be used in practice.

Example 6 (Computing shortest paths in a graph). Consider the following oriented graph,
where each edge is weighted (we use lines for bi-directional edges). The corresponding weighted
adjacency matrix M is given in the middle (lines and columns are not labelled but correspond
to the vertices of the graph in the usual alphabetic order). Finally, we represent the matrix M�

on the right.

a

41

c
2

3

b

3

e
1

d

f

1

��

1

��





∞ 4 1 ∞ ∞ ∞
4 ∞ 2 3 ∞ ∞
1 2 ∞ ∞ 3 ∞
∞ 3 ∞ ∞ 1 ∞
∞ ∞ 3 1 ∞ ∞
∞ ∞ ∞ 1 1 ∞









0 3 1 5 4 ∞
3 0 2 3 4 ∞
1 2 0 4 3 ∞
5 3 4 0 1 ∞
4 4 3 1 0 ∞
5 4 4 1 1 0





Graph Weighted adjacency matrix All-pairs shortest path

1.2.2 Elementary consequences

We have given several examples of models of Kleene algebras. We can now derive some elemen-
tary standard properties from the axioms of Kleene algebra [53, 100]: each of these theorems
will apply to any model of Kleene algebra.

Theorem 4. For any regular expression a, a∗ is the unique element satisfying (Ax1), (Ax2)
and (Ax3). Moreover, the following identities hold:

x� ≡ x� · x� ≡ (x�)� ≡ (x+ 1)� ≡ 1 + x� · x.

Theorem 5 (Bisimulation rule). The following implication holds:

a · x ≡ x · b =⇒ a� · x ≡ x · b�

Theorem 6 (Denesting rule). The following equation holds:

(x+ y)� ≡ x� · (y · x�)�

Theorem 7 (Sliding rule). The following equation holds:

x · (y · x)� ≡ (x · y)� · x

1.2.3 Deciding equations of Kleene algebras

We have studied several models of Kleene algebras, and some general standard theorems. The
remainder of this section is devoted to the mechanisation of proofs of equations in Kleene
algebra. Thanks to finite automata theory [98, 130], we know that equality of regular languages
is decidable:
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“two regular expressions are equivalent if and only if the corresponding deterministic
automata are equivalent”.

However, this result does not directly apply to arbitrary models of Kleene algebras. We actually
need a more recent theorem by Kozen [100] (independently proved by Krob [105]):

“two regular expressions α and β denote the same regular language if and only if
α ≡ β is derivable using the axioms of Kleene algebra”.

In other words, regular languages are the initial model of Kleene algebras: we can resort to
finite automata algorithms to solve equations in an arbitrary Kleene algebra K.

A note on the vocabulary. We make precise the signification we attach to some words. In
the following, we will study Kozen’s initiality theorem, and the corresponding implementation
of a decision procedure for Kleene algebras in Coq, the latter being the main focus of this
chapter.

This decision procedure will be sound, i.e., we prove that equations holding in the model of
regular languages can be lifted to arbitrary Kleene algebras. This decision procedure will be
complete: every equation that is a consequence of the axioms of Kleene algebra is provable using
this methodology. Therefore, even if Kozen’s theorem was named “A completeness theorem for
the algebra of regular events” because the axioms of Kleene algebras he proposed are complete
for the equational theory of regular languages, we will prefer to use the term “initiality theorem”
to avoid confusion.

1.2.4 The main idea

The main idea of Kozen’s proof is to encode finite automata using matrices over a Kleene
algebra K, and to replay the algorithms at this algebraic level. Indeed, a finite automaton with
transitions labelled by the elements of K can be represented with three matrices �u,M, v� ∈
M(1,n)(K) ×M(n,n)(K) ×M(n,1)(K) such that n is the number of states of the automaton; u
and v are 0-1 vectors respectively coding for the sets of initial and accepting states; and M is
an analogue of the transition matrix: Mi,j is a regular expression that labels transitions from
state i to state j. In the following section, we will make precise the translation in this setting of
the various kinds of finite automata from §1.1, but we first give an example to give the intuition
behind these matricial automata, and Kozen’s proof.

Example 7. Consider the following non-deterministic finite automaton with �-transitions, with
three states:

1

a
��

b

��

2
c

��

c
��
3

�

�� a,b���� ��

This automaton can be represented with the following matrices:

u =
�
1 1 0

�
M =




0 a b
c 0 c
0 1 a+ b



 v =




0
0
1
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We remark that the product u ·M · v is a scalar (i.e., a regular expression), which can be
thought of as the set of one-letter words accepted by the automaton—in the example, b + c.
Similarly, u ·M ·M ·v corresponds to the set of two-letters words accepted by the automaton—in
the example a · c+ (b+ c) · (a+ b), or fully expanded:

a · c+ b · a+ b · b+ c · a+ c · b.

Therefore, to mimic the behaviour of a finite automaton, we just need to iterate over the matrix
M . This is possible thanks to another theorem, which actually is the crux of the initiality
theorem: “square matrices over a Kleene algebra form a Kleene algebra”. We hence have a
star operation on matrices, and we can interpret an automaton algebraically, by considering the
product u ·M� · v. Again, in the example, this computation yields

(a · c+ b+ c) · (a+ b+ c)� · (a+ b)�

which denotes exactly the language recognised by the automaton.

To show his initiality theorem, Kozen relies and improves on earlier work to show how to
encode the classical combinatorial constructions of §1.1 into such matricial automata. This is
the topic of the next section.

1.3 Initiality theorem

In this section, we give an account of the proof of Kozen’s initiality theorem from [100], for the
sake of self-containedness. Even if there are some differences with regards to this seminal paper,
we will omit most of the proofs in this section: the corresponding lemmas will be formalised in
Coq in the next sections.

1.3.1 Typed Kleene algebras

From matrices to typed Kleene algebras. As was hinted above, matrices over a Kleene
algebra are the key ingredient of Kozen’s initiality theorem. However, we will need to work with
rectangular matrices at several places, to prove the correctness of some steps of the algorithm.
(Moreover, dealing with rectangular matrices allows one to treat vectors as a special case of
matrices, and thus to factorise proofs.)

While square matrices over a semiring form a semiring, this is not immediately the case for
rectangular matrices: the various operations are only partial. For instance, it is not possible
to take the product of two matrices whose dimensions do not agree. In order to alleviate
this problem, Kozen relied on several ad-hoc arguments in his proof [100]. He later defined
and studied the notion of typed Kleene algebra [103], in which objects have types. While the
main motivation was non-square matrices, there are many other interpretations [101, 103]:
heterogeneous binary relations (rather than binary relations on a single set), traces, Kleene
algebra with tests.

Typed Kleene algebras lay the ground to argue formally why some theorems of Kleene
algebra hold even for non-square matrices. For instance, Thm. 5:

a · x ≡ x · b → a� · x ≡ x · b�

holds even if a is interpreted as a n× n matrix, b as a m×m matrix, and x as a n×m matrix.
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Figure 1.7 From Kleene algebras to typed Kleene algebras.

X: Type.

dot: X → X → X.
one: X.
plus: X → X → X.
zero: X.
star: X → X.

dot_neutral_left: ∀ x, dot one x ≡ x.
...

T: Type.
X: T → T → Type.

dot: ∀ n m p, X n m → X m p → X n p.
one: ∀ n, X n n.
plus: ∀ n m, X n m → X n m → X n m.
zero: ∀ n m, X n m.
star: ∀ n, X n n → X n n.

dot_neutral_left: ∀ n m (x: X n m), dot one x ≡ x.
...

Adding types. The idea is to introduce a type discipline in which regular expressions α have
types of the form n → m, where n and m are elements of a set of indices (or types). That is, we
generalise the algebraic structures using types. An example is given in Fig. 1.7: a typical Coq
signature5 for Kleene algebras is presented on the left-hand side; we moved to the signature on
the right-hand side, where a set T of indices is used to constrain the various operations. These
abstract indices can be thought of as matrix dimensions. We actually moved to a categorical
setting: T is a set of objects, X n m is the set of morphisms from n to m (written n → m), one
is the set of identities, and dot is composition. The semi-lattice operation (plus) operates on
fixed (but arbitrary) homsets, and accordingly zero has all types. Kleene star operates only on
square morphisms—those whose source and target coincide.

Removing types. As we mentioned, typed structures not only make it easier to work with
rectangular matrices, they also give rise to a wider range of models. In particular, we can
consider heterogeneous binary relations rather than binary relations on a single fixed set. This
leads to the following question: how can the initiality theorem be extended to this more general
setting? Consider for example the equation x · (y · x)� ≡ (x · y)� · x we studied in §1.1.4 in
the model of regular languages and showed to be a general theorem (Thm. 7). This is also a
theorem of typed Kleene algebras as soon as x and y are respectively given types n → m and
m → n, for some n,m.

n

x
��

n x �� m

y

�� m

y

��
n

x

��

x �� m

However, how to ensure that the automata algorithms respect types and actually give valid,
well-typed, proofs? For instance, what is the typed equivalent of the subset-construction and
equivalence checking that apply to the above automata? Extending the decision procedure to
work with typed elements would require to devise typed analogues to the usual finite automata
algorithms. For instance, it would most certainly require to keep track of the types of nodes.
Instead of going in this direction, we rely on the following theorem, which allows one to erase

5We use Coq here since we will actually use the signature on the right-hand side in the later sections.
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types, i.e., to transform a typed equality goal into an untyped one:

� u ≡ v Γ � u� α : n → m Γ � v � β : n → m

� α ≡ β : n → m
(∗)

Here, Γ � u � α : n → m reads “under the evaluation and typing context Γ, the untyped
term u can be evaluated to α, of type n → m”; this predicate can be defined inductively in a
straightforward way, for various algebraic structures. The theorem can then be rephrased as
follows: “if the untyped terms u and v are equal modulo the rules of Kleene algebra, then for all
typed interpretations α and β of u and v, α and β are equal modulo the rules of typed Kleene
algebra”.

We rely on corresponding theorems for semi-lattices, monoids, semirings, and Kleene alge-
bras, so that all decision procedures for untyped settings can be used in typed settings—and in
particular with rectangular matrices. Therefore, in the following, we will also use the symbol ≡
to denote equations in the setting of typed Kleene algebras. See Pous’ work [129] for a theoreti-
cal study of these untyping theorems; also note that Kozen [103] investigated a similar question
and came up with a slightly different solution: he solves the case of the Horn theory rather than
the equational theory, at the cost of working in a restrained form of Kleene algebras.

1.3.2 Matrices over a Kleene algebra

It is a well-known result that square matrices over a semiring form a semiring [53], and this
result can be extended to rectangular matrices in the light of the previous remarks. We now
proceed to the construction of the typed Kleene algebra of matrices over a given Kleene algebra.
In the following, we fix K to be a given Kleene algebra.

We have to define a star operation on matrices and prove that it satisfies the laws (Ax1),
(Ax2) and (Ax3). We will proceed in two steps. First, we will give an intuitive definition of
the star operation on matrices (denoted �), and we will then relate this definition to the usual
definition of Kozen [100] (denoted �, as usual). The star operation on matrices has been called
closure [1] in the context of closed semirings6, and we may use this term to reflect the analogy
with computations of, e.g., transitive closure of transitions relations.

An intuition on the closure of a matrix. This definition is made by induction on the size
of the square7 matrix X. The problem is trivial if the matrix is empty or of size 1 × 1: we
simply use the star operation on the elements. Otherwise, partition X into four blocks:

X =

�
A B
C D

�

Note that the size of the blocks do not matter, as long as one take square matrices for A and
D. Then, the star operation � on the matrix X may be defined as:

�
A B
C D

��
�

�
E F
G H

�
where






E = (A+B ·D� · C)�

F = E ·B ·D�

G = D� · C · E
H = (D + C ·A� ·B)�

6Closed semirings are idempotent semiring equipped with an infinite summation operator, that satisfies in-
finitary associativity, commutativity, idempotence, and distributivity laws. The sole purpose of countable sums
seem to define the � operation and semi-rings always form Kleene algebras [102].

7Remember that in a typed Kleene algebra, the Kleene star operates only on square morphisms, i.e., elements
of type X n n.
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The special case where C is zero might give more insight:

�
A B
0 D

��
=

�
A� A� ·B ·D�

0 D�

�
(‡)

This definition can be explained if we interpret the matrix X of size n + m as a graph
G = (V,X), where the vertices are partitioned in two sets V1 (resp. V2) of size n (resp. m).
The matrix A (of size n× n) represents the edges between vertices of V1; the matrix D (of size
m×m) represents the edges between vertices of V2; the matrix B represents the edges that go
from V1 to V2; the matrix C represents edges from V2 to vertices in V1. This arrangement can
be depicted as:

V1

B

��
A �� V2

C

��
D

��

In this interpretation, X� is the reflexive and transitive closure of the transition relation X, as
it is hinted by the definition of the four quadrants of X�. Indeed, a path between two vertices of
V1 can be decomposed in two elementary forms: either it stays in V1 (taking an edge in A); or it
jumps to V2 (B), loops in V2 (D�), and jumps back to V1 (D). Each path between two vertices
of V1 can be represented as a succession of edges in A+B ·D� ·C. Hence, E = (A+B ·D� ·C)�

represents all the paths between vertices of V1. A path from V1 to V2 may stay in come and go
between V1 and V2 (taking an edge in E), and then finally jumps to V2 (taking an edge in B)
to remain there (taking an edge in D�). Hence, the upper-left quadrant of X� is E ·B ·D�. The
other quadrants are defined through similar reasoning.

An equivalent definition. The actual definition of X� by Kozen [100] is different: there,
the lower-right quadrant is expressed as H � = D� +D� ·C ·E ·B ·D�. We may trace back this
expression to the textbook by Aho et al. [1, p. 205] where the authors study the complexity of
the computation of the reflexive and transitive closure of a transition matrix. They compute
the quadrants of the matrix through a sequence of steps:

X� =

�
E� F �

G� H �

�
where






T1 = D�

T2 = B · T1

E� = (A+ T2 · C)�

F � = E� · T2

T3 = T1 · C
G� = T3 · E�

H � = T1 +G� · T2

i.e.






E� = (A+B ·D� · C)�

F � = E ·B ·D�

G� = D� · C · E
H � = D� +G� ·B ·D�

First, we can prove that these two constructions compute the same result.

Theorem 8. For all square matrix X, we have X� ≡ X�

Proof. The proof goes by induction on the size of the matrix. For the inductive case, the
following equations hold trivially.

E ≡ E� F ≡ F � G ≡ G�
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Then, to show H ≡ H � we can show that the following equation holds even if c and d are
interpreted as rectangular matrices:

d� + d� · c ·
�
a+ b · d� · c

�� · b · d� ≡ (d+ c · a� · b)�

The proof of this equation is routine:

d� + d� · c · (a+ b · d� · c)� · b · d� ≡ d� + d� · c · a� · (b · d� · c · a�)� · b · d� by Thm. 6

≡ d� · (1 + (c · a�) · ((b · d�) · (c · a�))� · (b · d�)
≡ d� · (1 + (c · a� · (b · d�))� · (c · a�) · (b · d�)) by Thm. 7

≡ d� · (c · a� · b · d�)� by Thm. 4

≡ (d+ c · a� · b)� by Thm. 6

(Note that, an elegant alternative to the trial and error method to find this proof is to use the
decision procedure from the later sections: it verifies instantaneously the equation.)

While the second construction may look more mysterious, it is of high practical interest:
using these steps to compute X�, one needs only to compute the star of 2 matrices of lesser
size, and 6 matrix multiplications. However the definition of X� we gave above requires to
compute the star of 4 matrices and 7 matrix multiplications. (Note that this is not innocuous:
it is demonstrated in [1] that the time T (n) to compute the closure of a square matrix of size
n using the efficient method is of the same order than the time M(n) required to multiply two
square matrices of size n: if T (3n) ≤ 27T (n) and 4M(n) ≤ M(2n) then T (n) ∈ Θ(M(n)).
Using the alternate inefficient construction yields an exponential blowup.)

In the following, we will therefore use the usual (and efficient) definition of the star operation.

Theorem 9. For any X ∈ M(n,n)(K), the matrix X� satisfies the axioms of Kleene algebra.
That is,

1 +X ·X� ≡ X�

and for any U ∈ M(n,m)(K),

X · U ≤ U → X� · U ≤ U

U ·X ≤ U → U ·X� ≤ U

Proof. The proof that this operation satisfies the laws of Kleene algebra is complicated. It
is done in [100] for the case where U is a square matrix, but can be extended to rectangular
matrices. Note that the initial remark that Kleene algebras are closed under the formation of
matrices essentially goes back to Conway’s book [53].

To conclude, the standard sum and product operations on matrices together with the above
star operation define a typed Kleene algebra (we will make this claim formal in the Coq section).
We will now use these matrices to build matricial representation of automata, suitable for
algebraic reasoning.

1.3.3 Finite automata

In this section, we refine the intuition we gave in §1.2.3 about the notion of automata over an
arbitrary Kleene algebra.
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Definition 6 (Matricial finite automaton). A matricial finite automaton over a given Kleene
algebra K is a triple �u,M, v� ∈ M(1,n)(K)×M(n,n)(K)×M(n,1)(K): n is the number of states
of the automaton; the states of the automata are the row and columns indices; u and v are 0-1
vectors respectively coding for the sets of initial and accepting states; and M is the transition
matrix: Mi,j labels transitions from state i to state j.

Definition 7 (Evaluation). The evaluation8 of the automaton �u,M, v� is the product u ·M� ·v.

We proceed to revisit the various kinds of automata from §1.1 in the matricial setting. By
imposing some constraints on the matrices u and M , we get various kinds of automata:

- An automaton �u,M, v� is simple if there exist 0-1 matrices J and Ma such that:

M = J +
�

a∈Σ
a ·Ma

(this corresponds to the usual definition of �-NFAs);

- in addition, if J is equal to the zero matrix, then the automaton is �-free (this corresponds
to the usual definition of NFAs);

- finally, if u and all rows of Ma have exactly one 1, then the automaton is deterministic
(this corresponds to the usual definition of DFAs)

In the following, we shall convert some matricial automata to the combinatorial definitions.
Starting from a simple matricial automaton �u,M, v� with n states such that

M = J +
�

a

a ·Ma,

we define:

Q = [1, . . . , n]

I = {i | u0i = 1}
F = {i | vi0 = 1}
T = {(p, a, q) | (Ma)pq = 1} ∪ {(p, �, q) | Jpq = 1}

The automaton �Q,T, I, F � recognise the language denoted by the regular expression u ·M� ·
v. We will not use the converse transformation in the following, i.e, from the combinatorial
automata to matricial automata. However, converting matricial automata to combinatorial
automata allows us to employ, e.g, the Hopcroft-Karp algorithm as an oracle, to build a 2-
simulation relation that can be faithfully used in the matricial setting. We will come back to
this in §1.3.4.

The next example show that the above definition of matricial automata encompasses au-
tomata whose transitions are labelled by arbitrary regular expressions.

Example 8. The following automaton is not simple:

1

a·b

�� a �� 2�� u =
�
1 0

�
M =

�
a · b a
0 0

�
v =

�
0
1

�

8Note that the evaluation of an automaton is actually an element of the Kleene algebra K. The language
accepted by this automaton is the image under L of the regular expression u · M� · v. Since we are mainly
interested in syntactic objects in the following, we could nevertheless use the term “language accepted by the
automata” to denote this regular expression.
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It evaluates to the regular expression

�
1 0

�
·
�
a · b a
0 0

��
·
�
0
1

�
≡

�
1 0

�
·
�
(a · b)� (a · b)� · a

0 1

�
·
�
0
1

�
by (‡)

≡ (a · b)� · a.

1.3.4 Proving the correctness and completeness

Kozen’s initiality theorem states that to prove that an equality α ≡ β holds, it suffices to check
that the underlying regular languages are equal. Thus, the algorithmic part is not different
from the verification of α ∼ β, and goes through the conversion of the regular expressions to
deterministic automata. The novelty with respect to this algorithmic construction is that Kozen
show how to encode algebraically the combinatorial constructions of §1.1.2 in the matricial
automata setting, and that each matricial automata construction preserves the evaluation (in
the formal sense that it is possible to derive the equality of the evaluation of the two automata
from the axioms of Kleene algebra). The equality of regular languages is then lifted to a theorem
that holds in any Kleene algebra.

The first step is to construct a matricial automaton equivalent to a given regular expression.
This construction is implicit in the work of Kleene [98] and appears in the work of Conway [53].
The second step is to eliminate the �-transitions that appears in this automaton. The algebraic
analogue to the �-transition closure of §1.1 appears in the work of Sakarovitch [136]. The third
step is to determinise the automaton to obtain a DFA. The algebraic analogue to the subset
construction was introduced by Kozen [100], and independently by Krob [105]. The fourth step
is to check that the two deterministic automata corresponding to the initial regular expressions
are equivalent. Kozen [100] showed how to encode algebraically the minimisation of finite
automata, and conclude his proof by showing that if the underlying minimised automaton are
isomorphic, then, the evaluations of the matricial automata are equal (which yields a proof that
the original regular expressions are indeed equal in any Kleene algebra). We will present an
alternative to this construction, an algebraic analogue of the equivalence test of DFAs, which is
more efficient in practice.

The overall structure of the proof is depicted in Fig. 1.8. The kind of matricial automaton
involved is recalled on the left-hand side; the outer part of the righ-hand side corresponds
to computations: starting from two regular expressions α and β, two DFA A3 and B3 are
constructed and tested for equivalence. The proof corresponds to the inner equalities (==): we
show that each automata construction preserves the semantics of the initial regular expression,
through computation of the evaluation (the dotted arrows).

The automata construction depicted in this section are not meant to be efficient, and are
done through matrix constructions: we give here an account of Kozen’s proof, and efficiency is
not required for decidability. However, we lay the ground to argue why the efficient constructions
of §1.6 (where we give a more computational account of the initiality theorem as it is currently
implemented in our Coq development) are also valid.

Building automata. There are several ways of constructing an �-NFA from a regular ex-
pression. Following Kozen [100], we choose here Thompson’s construction [155] because of its
simplicity. We presented this construction in §1.1.2 . Its algebraic analogue is only a matter
of block matrix constructions, and we easily show that the �-NFA built from α evaluates to α,
using algebraic laws. Note that this algorithm constructs an automaton which may have several
initial and accepting states.

It proceeds by structural induction on the given regular expression. The corresponding
matrix construction steps are depicted in Fig. 1.9, and are the exact counterparts of the con-
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Figure 1.8 The big picture of the soundness proof
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structions in Fig. 1.3. For each case, we provide three matrices that correspond to the vector
of initial states, the transition matrix, and the vector of final states.

- Figure 1.9(a) corresponds to the base cases (variable, one, zero).

- Figure 1.9(b) corresponds to union (plus): we recursively build two matricial sub-automata
A = �iA, A, fa� and B = �iB, B, fb�, and add them in parallel. This corresponds to the
formation of the disjoint union of the set of states, taking the initial states to be the union
of the start states of A and B, and the final states to be the union of the final states A
and B. The transition matrix features exactly the transitions that occurred either in A
or B with no transition going from A to B nor from B to A.

- Figure 1.9(c) corresponds to concatenation (product): we add �-transitions between the
accepting states of the first sub-automaton and the initial states of the second sub-
automaton. This is the purpose of the upper right corner of the transition matrix: fA · iB
is a rectangular matrix of 0 and 1 that represents exactly these �-transitions.

- Figure 1.9(c) corresponds to iteration (star): we add �-transitions between the accepting
states and initial states of the sub-automaton (the factor fA · iA): we shall see that if
�iA, A, fA� evaluates to the regular expression α, then the automaton �iA, A+ fA · iA, fA�
evaluates to α · α�. Therefore, we add in parallel an automaton that evaluates to 1.

It remains to prove that these automaton evaluate to the correct regular expressions.

Theorem 10. Let A = �u,M, v� be the automaton obtained with the construction in Fig. 1.9
with a regular expression α. The automaton A is simple and the equation u ·M� · v ≡ α can be
derived from the rules of Kleene algebras.

Proof. The proof goes by induction on the structure of the regular expression. In each case, we
consider the product u ·M · v, and use the law (‡) to compute the star of the matrix M which
is triangular by blocks. For the base case, let α ∈ {a/�/∅}, we have:

�
1 0

�
·
�
0 α
0 0

��
·
�
0
1

�
≡

�
1 0

�
·
�
1 α
0 1

�
·
�
0
1

�

≡ α.
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Figure 1.9 Thompson’s construction
(a) Base cases

�
1 0

� �
0 a/�/∅
0 0

� �
0
1

�

(b) Plus

�
iA iB

� �
A 0
0 B

� �
fA
fB

�

(c) Product
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0
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(d) Star

�
1 iA
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1 0
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� �
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The other constructions are obtained in a very similar way. By induction hypothesis, we have
α ≡ iA · A� · fA and β ≡ iB · B� · fB. We show that the automaton depicted in Fig. 1.9(b)
evaluates to α+ β:

�
iA iB

�
·
�
A 0
0 B

��
·
�

fA
fB

�
≡

�
iA iB

�
·
�
A� 0
0 B�

�
·
�

fA
fB

�

≡ iA ·A� · fA + iB ·B� · fB
≡ α+ β.

Similarly, the automaton shown in Fig. 1.9(c) evaluates to α · β:
�
iA 0

�
·
�
A fA · iB
0 B

��
·
�

0
fB

�
≡

�
iA 0

�
·
�
A� A� · fA · iB ·B�

0 B�

�
·
�

0
fB

�

≡ iA ·A� · fA · iB ·B� · fB
≡ α · β.

Finally, the automaton shown in Fig. 1.9(d) evaluates to α�:

�
1 iA

�
·
�
1 0
0 A+ fA · iA

��
·
�

1
fA

�
≡

�
1 iA

�
·
�
1 0
0 (A+ fA · iA)�

�
·
�

1
fA

�

≡ 1 + iA · (A+ fA · iA)� · fA
≡ 1 + iA ·A� · (fA · iA ·A�)� · fA (using Thm. 6)

≡ 1 + iA ·A� · fA · (iA ·A� · fA)� (using Thm. 7)

≡ 1 + α · α�.

Remark that all the above matrices are simple by construction.

Removing �-transitions. The automata A = �u,M, v� obtained with Thompson’s construc-
tion may contain �-transitions: we have to get rid of these. Since the above construction builds
simple automata, the transition matrices can be written as

M = J +M � with M � =
�

a∈Σ
a ·Ma
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where J and the Ma are 0-1 matrices, and J corresponds to the graph of �-transitions. As
we explained in §1.1, the first step of the removal of �-transitions requires to compute their
reflexive and transitive closure. Then, the set of initial states and the transition relation are
updated. The algebraic counterpart of the computation of the reflexive and transitive closure
of the �-transitions is the computation of the matrix J�, as we hinted at in §1.2.1. Therefore,
we build the following �-free matricial automaton A = �u · J�,M � · J�, v�, and we prove that it
evaluates to the same regular expression as A. Algebraically, we have:

u ·
�
J +M ��� · v ≡ u · J� ·

�
M � · J�

�� · v (cf Thm. 6)

≡ (u · J�) ·
�
M � · J�

�� · v.

Determinisation. We now turn to the algebraic analogue to the subset construction. The
goal here is to build a DFA ��u, �M, �v� whose states correspond to set of states from an initial
NFA �u,M, v� with states Q.

Let P(Q) denote the power set of Q. An element s of P(Q) can be identified with its
characteristic vector es in {0, 1}Q. We let X denote the 0-1 matrix of size |P(Q)|× |Q| defined
by:

Xs,j �
�
1 if j ∈ s

0 otherwise

The intuition behind X is that this is a “decoding matrix”: it sends characteristic vectors
of states of the DFA to the corresponding subset of states of the NFA. By definition, we know
that:

M =
�

a∈Σ
a ·Ma

For each a ∈ Σ, let �Ma be the |P(Q)|× |P(Q)| matrix that sends a set of states s to the set of
the images of the elements of s. We remark that the vector es·Ma corresponds to the set of the

images of s by transitions labelled with a. Therefore, the row s of �Ma is defined as:

es · �Ma � es·Ma

Using the above definition, for each a in Σ, the matrix �Ma has exactly one 1 on each line. Then,
let

�M �
�

a∈Σ
a · �Ma �u � eu �v � X · v

Theorem 11. The automaton ��u, �M, �v� is simple, deterministic, and evaluates to the same
regular expression as �u,M, v�.

Proof. By construction, the automaton is deterministic: �u and each line of �Ma contains exactly
one 1. Moreover, the following commutation properties hold:

�M ·X ≡ X ·M (1) �u ·X ≡ u (2) �v ≡ X · v (3)

If we interpret X as a decoding marix, (1) can be read as follows: executing a transition in
the DFA and decoding the result amounts to decoding the given state, and executing parallel
transitions in the NFA. Similarly, (2) proves that the initial state of the DFA corresponds to
the set of initial states of the NFA. Finally, (3) states that the final (set of) states of the DFA
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correspond to (set of) states that contain at least one final state of the NFA. By Theorem 5,

we deduce �M� ·X ≡ X ·M� from (1). Then, we conclude with (2,3):

�u · �M� · �v ≡ �u · �M� ·X · v
≡ �u ·X ·M� · v
≡ u ·M� · v

Accessible subset construction. Here, we consider a refinement of the above construction
to yield a DFA such that all states are accessible, using the standard depth-first enumeration
of the accessible subsets we presented in §1.1. Remember, starting with a NFA with n states
N = �[1...n] , T, I, F � that corresponds to the matricial automaton �u,M, v�, the accessible
subset construction returns a DFA D with �n states, together with an injective function ρ from
[1...�n] to subsets of [1...n]. We let X be the rectangular (�n, n) 0-1 matrix defined by:

Xs,j �
�
1 if j ∈ ρ(s)

0 otherwise

For each a ∈ Σ, let �Ma be the �n× �n matrix that sends an accessible set of state s to the set of
the images of the elements of s. By analogy with the previous construction, the row s of �Ma is
defined as:

es · �Ma � e(ρ(s)·Ma)

By analysis of the algorithm, it is possible to prove commutation properties that correspond
to the above (1,2,3), and that the matricial DFA ��u, �A, �v� built using the accessible subset
construction evaluates like the starting matricial NFA.

Note that there is a slight difference in spirit between the algebraic version of accessible
subset construction and the algebraic version of the “normal” subset construction: the former
construction actually relies on an external algorithm to compute the DFA and the bijection ρ.
By contrast, the latter construction is only a matter of matrix construction. In the following
sections, when we implement the decision procedure for Kleene algebras in Coq, we will put a
strong emphasis on this: we shall see how we reflect efficient automata constructions to proofs
that the evaluation of the automata are preserved.

Checking equivalence. We now proceed to the equivalence check. In his seminal paper,
Kozen used an algebraic analogue of automata minimisation to check equivalence of DFAs.
Here, we use a slightly different method, relying on the computation of a 2-simulation relation
between DFAs: we give an algebraic analogue to this equivalence test, and shows that it suffices
to conclude Kozen’s proof. This is a minor deviation from Kozen’s proof, but does not appear
in his work, thus we will give more details than in previous steps.

Given two DFAs A = �iA, A, fA� and B = �iB, B, fB�, we start by computing the automaton
�u,M, v� that corresponds to their disjoint union (using the “plus” construction of Fig. 1.9).
Then, we use an external algorithm to compute a 2-simulation relation ≈ that relates the former
initial states iA and iB. (Note that here, we use a 2-simulation relation that relates states of
the disjoint union automaton, rather than states in two different automata. However, it is clear
that there exists a 2-simulation that relates the former initial states in the disjoint union if and
only if there exists a 2-simulation that relates the initial states of the original DFAs.) This
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relation is then used to define a square 0-1 matrix that encodes the equivalence relation on
states obtained with a successful run of the algorithm:

Yi,j �
�
1 if i ≈ j

0 otherwise

This matrix satisfies the following properties:

1 ≤ Y (1) Y · Y ≤ Y (2) Y ·M ≤ M · Y (3)

iA · Y ≡ iB · Y (4) Y · v ≡ v (5)

Equations (1, 2) correspond to the fact that Y encodes a reflexive and transitive relation.
Equation (3) comes from the fact that Y is a simulation: transitions starting from related states
yield related states. The last two equations assess that the starting states are related (4), and
that related states are either accepting or non-accepting (5).

Proof of equation (3). This is the most interesting case. If we unfold the matricial product, we
have to check that the following inequation holds for any states i and k :

�

j

Yij ·Mjk ≤
�

r

Mir · Yrk .

It suffices to check9 that, for any state j, we have:

Yij ·Mjk ≤
�

r

Mir · Yrk .

If i ≈ j does not hold, the left-hand side is 0, and the inequation holds. Otherwise, we have to
check that:

i ≈ j � Mjk ≤
�

r

Mir · Yrk .

By unfolding the definition of M , this inequation must hold for each letter a ∈ Σ:

i ≈ j � (Ma)jk ≤
�

r

(Ma)ir · Yrk

If δ(j, a) �= k, the left-hand side is 0, and the inequation holds trivially. Otherwise, we have to
check that:

i ≈ j, δ(j, a) = k � 1 ≤
�

r

(Ma)ir · Yrk

It suffices to prove that 1 ≤ (Ma)ir · Yrk when r = δ(i, a). That is, to check the left-hand side
statement (or, the corresponding right-hand side diagram):

i ≈ j, δ(j, a) = k, r = δ(i, a) � 1 ≤ Yrk i ��

≈

δ(i, a)

≈?

j �� δ(j, a)

Since the relation ≈ is a 2-simulation, the above property holds.

9Recall that a ≤ b � a+ b ≡ b, and hence, if a ≤ c and b ≤ c hold, then a+ b ≤ c hold.
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These properties allow us to conclude using algebraic reasoning: from (1, 2, 3) and Kleene
algebra laws, we deduce

M� · Y ≡ Y · (M · Y )� . (6)

Correctness follows:

iA ·M� · v ≡ iA ·M� · Y · v (by 5)

≡ iA · Y · (M · Y )� · v (by 6)

≡ iB · Y · (M · Y )� · v (by 4)

≡ iB ·M� · Y · v (by 6)

≡ iB ·M� · v . (by 5)

Then, we remark that:

iA ·A� · fA ≡ iA ·M� · v
≡ (iA + iB) ·M� · v (by idempotence)

≡ iA ·A� · fA + iB ·B · fB.
Using a symmetric argument, we have:

iB ·B� · fB ≡ iA ·A� · fA + iB ·B� · fB.
Therefore, we conclude:

iA ·A� · fA ≡ iB ·B� · fB.
In other words, if two (matricial) DFAs are equivalent, then we obtain a proof that the

evaluation of these automata are equal modulo the rules of Kleene algebras. That is, we obtained
the bottom line equality of Fig. 1.8.

1.3.5 Conclusion

We can now conclude Kozen’s proof. By combining the proofs from the above paragraphs
according to Fig. 1.8, we prove that if two regular expressions are equivalent, then the corre-
sponding equality can be derived from the rules of Kleene algebras. That is, if α and β denote
the same language, then the equation α ≡ β is derivable: the rules of Kleene algebras from 1.6
are complete for the algebra of regular events.

Theorem 12 (Completeness). Let α and β be two regular expressions over Σ that denote the
same language, i.e., α ∼ β. Then α ≡ β holds.

Proof. Let A = �iA, A, fA� and B = �iB, B, fB� be deterministic finite automata over Σ such
that

α ≡ iA ·A� · fA β ≡ iB ·B� · fB
The DFAs A and B must be equivalent, otherwise, the languages denoted by α and β would

not be equal. Therefore, we can apply the construction from the previous paragraph, and
obtain:

iA ·A� · fA ≡ iB ·B� · fB.
Hence, we have derived:

α ≡ β.
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Intermezzo

From Kozen’s theorem, we define a reflexive tactic. This means that we implement a decision
procedure for equivalence of regular expressions as a Coq program, and prove its correctness
and completeness within the proof assistant:

Definition decide_kleene: regex → regex → bool := ...
Theorem Kozen94: ∀ a b, decide_kleene a b = true ↔ a ≡ b.

The above statement corresponds to correctness and completeness with respect to the syn-
tactic “free” Kleene algebra: regex is the inductive Coq type for regular expressions over a given
set of variables, and ≡ is the inductive equality predicate generated by the axioms of Kleene
algebras and the rules of equational reasoning (see Fig. 1.10). This decision procedure on the
syntactic free Kleene algebra can be lifted to other models of Kleene algebras using reification
mechanisms: in particular, this decision procedure can be used to decide equations that involve
heterogeneous binary relations, homogeneous binary relations, or, more generally, every typed
or untyped model of Kleene algebra we mentioned in §1.2.1. (See §1.4.6 for more details about
our reification mechanism.)

Moving to Coq, some design choices must be made in order to implement the aforemen-
tioned decision procedure and prove it correct and complete. Indeed, there is a fair amount of
preliminary work and definitions that must be done to be able to proceed to the end. Here we
summarise the salient points of the previous section as the requirements we had to take into
account for the design of the underlying library.

Efficiency. The equational theory of Kleene algebras is PSPACE-complete [113]: this means
that the decision procedure must be written with care in Coq, using efficient out-of-the-shelf
algorithms. Notably, the matricial representation of automata is not efficient enough10,
so that formalising Kozen’s mathematical proof (from the previous §1.3) would not scale
computationally. Instead, we need to choose appropriate data-structures for automata
and algorithms, and to reflect these data-structures in matricial automata representation
only in proofs, using adequate translation functions.

Matrices. As explained in §1.3, Kozen’s proof relies on the theory of matrices over regular
expressions, which we thus need to formalise. As the later proof requires a lot of matricial
reasoning, the formalisation of matrices must be easy to use from the proof point of
view. Yet, we need to formalise the (slightly more complicated) theory of non-square
matrices over a Kleene algebra to handle Kozen’s proof. In fact, these two requirements
can be handled together thanks to the generalisation to typed Kleene algebras: while
only square matrices form a model of Kleene algebra, rectangular matrices form a model
of typed Kleene algebras. This makes it possible to internalise vectors as a special case
of rectangular matrices: this saves us from re-defining their theory separately, and from
offsprings like special functions to handle various products between a vector and a matrix.

Modular development. Following mathematical and programming practices, we aim at a
modular development. That is, we need to share notations, theorems and tactics as much
as possible between structures to improve readibility, usability, and maintainability.

10Note that the first release of our decision procedure was made using algorithms working on such matricial
automata.
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Figure 1.10 Regular expressions, axiomatic equality

Inductive regex: Set :=
| dot: regex → regex → regex
| plus: regex → regex → regex
| star: regex → regex
| one: regex
| zero: regex
| var: positive → regex.

Notation "x · y" := (dot x y).
Notation "x + y" := (plus x y).
Notation "x�" := (star x).
Notation "1" := (one).
Notation "0" := (zero).

Inductive eq: regex → regex → Prop :=
| eq_trans: Transitive eq
| eq_sym: Symmetric eq
| eq_refl: Reflexive eq

| dot_compat: Proper (eq ⇒ eq ⇒ eq) dot
| plus_compat: Proper (eq ⇒ eq ⇒ eq) plus
| star_compat: Proper (eq ⇒ eq ⇒ er) star.

| dot_assoc: ∀ x y z, eq (x·(y·z)) ((x·y)· z)
| dot_neutral_left: ∀ x, eq (1·x) x
| dot_neutral_right: ∀ x, eq (x·1) x

| plus_neutral_left: ∀ x, eq (0+x) x
| plus_idem: ∀ x, eq (x+x) x
| plus_assoc: ∀ x y z, eq (x+(y+z)) ((x+y)+z)
| plus_com: ∀ x y, eq (x+y) (y+x)

| dot_ann_left: ∀ x, eq (0·x) 0
| dot_ann_right: ∀ x, eq (x·0) 0
| dot_distr_left: ∀ x y z,

eq ((x+y)·z) ((x·z)+(y·z))
| dot_distr_right: ∀ x y z,

eq (x·(y+z)) ((x·y)+(x·z))

| star_make_left: ∀ x, eq (1+x�·x) (x�)
| star_make_right: ∀ x, eq (1+x·x�) (x�)
| star_destruct_left: ∀ x y,

eq (x·y+y) y → eq (x�·y+y) y
| star_destruct_right: ∀ x y,

eq (y·x+y) y → eq (y·x�+y) y
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1.4 Underlying design choices

According to the above constraints and objectives, a central decision was to build on the intro-
duction of type-classes in Coq [147]. This section is devoted to the explanation of our methodol-
ogy: how to use type-classes to define the algebraic hierarchy in a modular way, how to formalise
typed algebras, how to reify the corresponding expressions.

1.4.1 Using type-classes to structure the development

We use type-classes to achieve two tasks: 1) sharing and overloading notation, basic laws,
and theorems; 2) getting a modular definition of Kleene algebra, by mimicking the standard
mathematical hierarchy: a Kleene algebra contains an idempotent semiring, which is itself
composed of a monoid and a semi-lattice. This very small hierarchy is summarised below.

SemiLattice <:
Monoid <:

IdemSemiRing <: KleeneAlgebra

A peculiarity of our implementation of this hierarchy is that we want to work with the typed
versions of the above algebraic structures, to handle heterogeneous binary relations in the end,
as well as rectangular matrices in the proof of Kozen’s initiality theorem. Thus, we will use
type-classes reminiscent of the typed signature that was hinted at in Fig. 1.7.

1.4.2 Separation between operations and laws

The problem of formalising mathematical structures or algebraic hierarchies in type theory is
well-known and usually considered as difficult [13, 24, 49, 67, 68]. One of the key difference
in solutions to this problem is the amount of bundling emphasised by a given solution: to
rephrase it, when defining the classes for algebraic structures, the question is whether or not to
package operations together with their laws. At one end of the spectrum lies the fully unbundled
approach, where each component of a “structure” is passed as a separate argument to function
and theorems. At the other end of the spectrum, existing solutions encompass nested dependent
records (coined as telescopes [39]) and the more refined (and more recent) packed classes [67].

There are several issues at hand with the use of dependent records: how to share an op-
eration between various algebraic structures (structures with identical operations can differ by
axioms); how to deal with the so-called multiple inheritance problem; how to deal with the
long projections paths that appears if we stack up algebraic structures (accessing deeply nested
components has an increasing cost).

There are other issues at hand with the use of the fully unbundled approach: it induces
a proliferation of arguments for theorem and definitions, which increases dramatically the size
of the terms, making theorem proving impractical. For instance, in the proof of the Cayley-
Hamilton theorem [67], one need to consider the “ring of polynomials over the ring of matrices
over a general commutative ring”, which would yield an exponential blowup, would the fully
unbundled approach be used.

We actually split the two: we separated the operational contents from the proof contents.
It makes it possible to define structures sharing the same operations (hence notations), but not
necessarily the same laws. It also solves the ”diamond problem”: shared operations between
algebraic structures (the proof contents) are not spuriously distinguished by the projection-paths
that access them. However, this is a risky move, because of the efficiency issues we mentioned.
Since we basically stop at Kleene algebra, this choice is not critical for the library in its current
state. However, based on preliminary experiments, having this separation is problematic when
considering richer structures like residuated Kleene lattices [92] or allegories [66].
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Figure 1.11 Classes for the typed algebraic operations.

Class Graph := {
T: Type;
X: T → T → Type;
equal: ∀ n m, relation (X n m);
equal_:> ∀ n m, Equivalence (equal n m) }.

Class Monoid_Ops (G: Graph) := {
dot: ∀ n m p, X n m → X m p → X n p;
one: ∀ n, X n n }.

Notation "x ≡ y" := (equal _ _ x y).
Notation "x · y" := (dot _ _ _ x y).
Notation "1" := (one _).

Class SemiLattice_Ops (G: Graph) := {
plus: ∀ n m, X n m → X n m → X n m;
zero: ∀ n m, X n m;
leq: ∀ n m, relation (X n m) :=

fun n m x y ⇒ plus n m x y ≡ y }.

Class Star_Op (G: Graph) := {
star: ∀ n, X n n → X n n }.

Notation "x ⊆ y" := (leq _ _ x y).
Notation "x + y" := (plus _ _ x y).
Notation "0" := (zero _ _).
Notation "x�" := (star _ x).

1.4.3 Classes for algebraic operations.

We associate an intuitive notation to each operation, by using the name provided by the corre-
sponding class projection. To make the effect of these definitions completely clear, assume that
we have a graph equipped with monoid operations (i.e., a typing context with G: Graph and
Mo: Monoid_Ops G) and consider the following proposition:

∀ (n m: T) (x: X n m) (y: X m n), x·y ≡ 1.

If we unfold notations, we get:

∀ (n m: T) (x: X n m) (y: X m n), equal _ _ (dot _ _ _ x y) (one _).

Necessarily, by unification, the six place-holders have to be filled as follows:

∀ (n m: T) (x: X n m) (y: X m n), equal n n (dot n m n x y) (one n).

Now comes type-class resolution: the functions T, X, equal, dot, and one, which are class projec-
tions, have implicit arguments that are automatically filled by type-class resolution (the graph
instance for all of them, and the monoid operations instance for dot and one). All in all, the
above concise proposition actually expands into:

∀ (n m: @T G) (x: @X G n m) (y: @X G m n), @equal G n n (@dot G Mo n m n x y) (@one G Mo n).

1.4.4 Classes for algebraic laws.

We now move away from the syntax to the actual algebraic structures: the type-classes that
package the laws for the corresponding four algebraic structures we are interested in. They are
given in Fig. 1.12; we use the section mechanism to assume a graph together with the operations,
which become parameters when we close the section.

The Monoid class actually corresponds to the definition of a category: we assume that com-
position (dot) is associative and has one as neutral element. Its first field, dot_compat, requires
that composition also preserves the user-defined equality: it has to map equals to equals. (This
field is declared with a special symbol (:>) and uses the standard Proper class, which is ex-
ploited by Coq to perform rewriting with user-defined relations; doing so adds dot_compat as
a hint for type-class resolution, so that we can automatically rewrite in dot operands whenever
it makes sense.) Also note that since this class does not mention semi-lattice operations nor
the star operation, it does not depend on SLo and Ko when we close the section. We do not
comment on the SemiLattice class, which is quite similar.
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Figure 1.12 Classes for the typed algebraic structures.

Section.
Context (G: Graph) {Mo: Monoid_Ops G} {SLo: SemiLattice_Ops G} {Ko: Star_Op G}.

Class Monoid := {
dot_compat:> ∀ n m p, Proper (equal n m ⇒ equal m p ⇒ equal n p) (dot n m p);
dot_assoc: ∀ n m p q (x: X n m) (y: X m p) (z: X p q), x·(y·z) ≡ (x·y)·z;
dot_neutral_left: ∀ n m (x: X n m), 1·x ≡ x;
dot_neutral_right: ∀ n m (x: X m n), x·1 ≡ x }.

Class SemiLattice := {
plus_compat:> ∀ n m, Proper (equal n m ⇒ equal n m ⇒ equal n m) (plus n m);
plus_neutral_left: ∀ n m (x: X n m), 0+x ≡ x;
plus_idem: ∀ n m (x: X n m), x+x ≡ x;
plus_assoc: ∀ n m (x y z: X n m), x+(y+z) ≡ (x+y)+z;
plus_com: ∀ n m (x y: X n m), x+y ≡ y+x }.

Class IdemSemiRing := {
Monoid_:> Monoid;
SemiLattice_:> SemiLattice;
dot_ann_left: ∀ n m p (x: X m p), (0 : X n m) · x ≡ 0;
dot_ann_right: ∀ n m p (x: X p m), x · (0 : X m n) ≡ 0;
dot_distr_left: ∀ n m p (x y: X n m) (z: X m p), (x+y)·z ≡ x·z + y·z;
dot_distr_right: ∀ n m p (x y: X m n) (z: X p m), z·(x+y) ≡ z·x + z·y }.

Class KleeneAlgebra := {
IdemSemiRing_:> IdemSemiRing;
star_make_left: ∀ n (x: X n n), 1 + x�·x ≡ x�;
star_destruct_left: ∀ n m (x: X n n) (y: X n m), x·y ⊆ y → x�·y ⊆ y;
star_destruct_right: ∀ n m (x: X n n) (y: X m n), y·x ⊆ y → y·x� ⊆ y }.

End.

The first two fields of IdemSemiRing implement the expected inheritance relationship: an
idempotent semiring is composed of a monoid and a semi-lattice whose operations properly
distribute. By declaring these two fields with a :>, the corresponding projections are added as
hints to type-class resolution, so that one can automatically use any theorem about monoids
or semi-lattices in the context of a semiring. Note that we have to use the textual version of
0 (zero) in two laws to explicitly give its domain and co-domain; indeed, in both cases, the
argument n cannot be inferred from the context, it has to be specified.

Finally, we obtain the class for Kleene algebras by inheriting from IdemSemiRing and requiring
the three laws about Kleene star to hold. The fact that Kleene star is a proper morphism for
equal is a consequence of the other axioms; this is why we do not include a star_compat field
in the signature.

The following example illustrates the ease of use of this approach. Here is how we would
state and prove a lemma about idempotent semirings:

Goal ∀ ‘{IdemSemiRing} n (x y: X n n), x·(y+1)+x ≡ x·y+x.
Proof.
intros; rewrite dot_distr_right, dot_neutral_right. (* (x·y+x)+x ≡ x·y+x *)
rewrite ←plus_assoc, plus_idem; reflexivity.

Qed.
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Figure 1.13 Instances for heterogeneous binary relations and languages.

Definition rel A B := A → B → Prop.
Instance rel_G: Graph := {
T := Type;
X := rel;
equal A B R S := ∀ i j, R i j ↔ S i j }.

Proof...
Instance rel_Mo: Monoid_Ops rel_G := {
dot A B C R S :=
fun (i: A)(j: C) ⇒ ∃ k: B, R i k ∧ S k j;

one A := fun (i j: A) ⇒ i=j }.
...
Instance rel_KA: KleeneAlgebra rel_G.
Proof...

Definition lang A := list A → Prop
Instance lang_G A: Graph := {
T := unit;
X _ _ := lang A;
equal _ _ L K := ∀ w, L w ↔ K w }.

Proof...
Instance lang_Mo A: Monoid_Ops (lang_G A) := {
dot _ _ _ L K :=
fun w ⇒ ∃ u v, w=u·v ∧ L u ∧ K v;

one _ := fun w ⇒ w=[] }.
...
Instance lang_KA: KleeneAlgebra lang_G.
Proof...

In the above example, the ‘{IdemSemiRing} notation introduces and gives names to a a generic
idempotent semiring as well as all its parameters (a graph, monoid operations, and semi-lattice
operations); when we use lemmas like dot_distr_right or plus_assoc, type-class resolution
automatically finds appropriate instances to fill their implicit arguments. Of course, since such
simple and boring goals occur frequently in larger and more interesting proofs, we actually
defined high-level tactics to solve them automatically. For example, we have a reflexive tactic
called semiring_reflexivity which would solve this goal directly: this is the counterpart to
ring [76] for the equational theory of typed, idempotent, non-commutative semirings.

1.4.5 Concrete structures

It remains to populate the above classes with concrete structures, i.e., to declare models of
Kleene algebra. We sketched the case of heterogeneous binary relations and languages in
Fig. 1.13. As expected, it suffices to define a graph equipped with the various operations,
and to prove that they validate all the axioms. The situation is slightly peculiar for languages,
which form an untyped model: although the instances are parametrised by a set A coding for
the alphabet, there is no notion of domain/co-domain of a language. In fact, all operations
are total, they actually lie in a one-object category where domain and co-domain are trivial.
Accordingly, we use the singleton type unit for the index type T in the graph instance, and all
operations just ignore the superfluous parameters.

1.4.6 Reification: handling typed models.

We also need to define a syntactic model in which to perform computations: since we define
a reflexive tactic, the first step is to reify the goal (an equality between two expressions in an
arbitrary model) to use a syntactical representation.

For instance, suppose that we have a goal of the form S·(R·S)� + f R ≡ f R + (S·R)�·S,
where R and S are binary relations and f is an arbitrary function on relations. The usual
methodology in Coq consists in defining a syntax and an evaluation function such that this goal
can be converted into the following one:

eval (var 1·(var 2·var 1)� + var 3) ≡ eval (var 3 + (var 1·var 2)�·var 1),

where eval implicitly uses a reification environment, which corresponds to the assignment:

{1 �→ S; 2 �→ R; 3 �→ f R}.
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Figure 1.14 Typed syntax for reification and evaluation function.

Context ‘{KA: KleeneAlgebra}.
Variables src, tgt: label → T.
Inductive reified: T → T → Type :=
| r_dot: ∀ n m p,

reified n m → reified m p → reified n p
| r_one: ∀ n, reified n n
| ...
| r_var: ∀ i, reified (src i) (tgt i).

Variable env: ∀ i, X (src i) (tgt i).
Fixpoint eval n m (x: reified n m): X n m :=
match x with
| r_dot _ _ _ x y ⇒ eval x ·eval y
| r_one _ ⇒ 1
| ...
| r_var i ⇒ env i
end.

Typed syntax. The situation is slightly more involved here since we work with typed models:
R might be a relation from a set A to another set B, S and f R being relations from B to A. As
a consequence, we have to keep track of domain/co-domain information when we define the
syntax and the reification environments. The corresponding definitions are given in Fig. 1.14.
We assume an arbitrary Kleene algebra (in the previous example, it would be the algebra of
heterogeneous binary relations) and two functions src and tgt associating a domain and a co-
domain to each variable (label is an alias for positive, the type of positive numbers, which we
use to index variables). The reified inductive type corresponds to the typed reification syntax:
it has dependently typed constructors for all operations of Kleene algebras, and an additional
constructor for variables, which is typed according to functions src and tgt. To define the
evaluation function, we furthermore assume an assignation env from variables to elements of
the Kleene algebra with domain and co-domain as specified by src and tgt.

Then it suffices to parse the goal, looking for type-class projections to detect projections of
interest (recall for example that a starred sub-term is always of the form @star _ _ _ _, regard-
less of the current model—this model is given in the first two placeholders) to reify a goal to
this typed syntax. At first, we implemented this step as a simple Ltac tactic. For efficiency and
simplicity reasons, we finally moved to an OCaml implementation in a small plugin: this allows
one to use efficient data structures like hash-tables to compute the reification environment, and
to avoid type-checking the reified terms at each step of their construction. (Note that the latter
point renders the trivial user-level reification implementable in Ltac unpractical for large goals,
making the use of an OCaml plugin almost mandatory.)

Untyped regular expressions. To build a reflexive tactic using the above syntax, we need
a theorem of the following form (keeping the reification environment implicit for the sake of
readability):

Theorem f_correct: ∀ n m (x y: reified n m), f x y = true → eval x ≡ eval y.

The function f is the decision procedure; it works on reified terms so that its type has to be
∀ n m, reified n m → reified n m → bool. However, as we explained in §1.3.1 it would be
rather impractical to implement this decision procedure in the typed setting. Therefore, we
rely on the untyping theorem we mentioned for Kleene algebras (and which is developed further
in [129]), and build a decision procedure for the regular expressions regex from Fig. 1.10. From
the computational point of view, this is the main model we shall work with. (Note however that
we shall of course use typed models, especially matrices, in the proof part.) As announced, we
will get:

Definition decide_kleene: regex → regex → bool := ...
Theorem Kozen94: ∀ x y: regex, decide_kleene x y = true ↔ x ≡ y.

(Here the symbol ≡ expands to the inductive equality predicate eq from Fig. 1.10.)
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1.5 Matrices

In this section, we describe our implementation of matrices, building on the previously described
algebraic framework. Matrices are indeed the crux of Kozen’s initiality theorem.

1.5.1 Coq representation for matrices

We assume a Graph G: Graph, and an object u: T. We furthermore abbreviate the type X u u

as X, and we shall see that this is without loss of generality for the constructions of interest in
this proof. The type X is the type of elements of the matrices, sometimes called scalars. We
shall now discuss two possible implementations of matrices over X.

Dependently typed presentation. A matrix can be seen as a partial map from pairs of
integers to X. A Coq type for matrices and a sum operation could be defined as follows:

Definition MX (n m: nat) := ∀ i j, i<n → j<m → X.
Definition mx_equal n m (M N: MX n m) i j (Hi: i < n) (Hj: j < m) :=

M i j Hi Hj ≡ N i j Hi Hj
Definition plus n m (M N: MX n m) i j (Hi: i<n) (Hj: j<m) :=

M i j Hi Hj + N i j Hi Hj.

This corresponds to the dependent types approach: a matrix is a map to X from two integers
and two proofs that these integers are lower than the bounds of the matrix. Except for the
concrete representation, this is the approach followed in [23, 28, 67]. With such a type, every
access to a matrix element is made by exhibiting two proofs, to ensure that indices lie within the
bounds. This is not problematic for simple operations like the above plus function: it suffices to
pass the proofs around. However, this requires more boilerplate for other functions, like block
decomposition operations.

Infinite functions. We actually adopt another strategy: we move bounds checks to equality
proofs, by working with the following definitions:

Definition MX n m := nat → nat → X.
Definition mx_equal n m (M N: MX n m) i j (Hi: i < n) (Hj: j < m) := M i j ≡ N i j

Here, a matrix is an infinite function from pairs of integers to X, and equality is restricted to
the domain of the matrix. With these definitions, we do not need to manipulate proofs when
defining matrix operations, so that subsequent definitions are easier to write. For instance, the
functions for matrix multiplication is given in Fig. 1.15. For multiplication, we use a naive
function to compute the appropriate sum: there is no need to provide an explicit proof that
each call to the matrices is performed within the bounds.

Figure 1.15 Definition of matricial product and identity matrix.

Context {SLo: SemiLattice_Ops G}.
Fixpoint sum i k (f: nat → X) :=
match k with
| O ⇒ O
| S k ⇒ f i + sum (S i) k f
end.

Context {Mo: Monoid_Ops G}.
Definition mx_dot n m p (M: MX n m) (N: MX m p) :=
fun i j ⇒ sum O m (fun k ⇒ M i k · N k j).

Definition mx_one n: MX n n :=
fun i j ⇒ if eq_nat_bool i j then 1 else 0.
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Correctness. Actually, nothing prevents us from, e.g., accessing M outside its bounds, when
extracting sub-blocks. However, if the definitions of the operations were wrong, we would not
be able to prove some obvious properties about them. Indeed, harmony lemmas that relate
different operations allows to get rid of wrong definitions: for instance, we can check that
re-composing the extracted sub-blocks of a matrix is equal to the original matrix.

Bounds checks are required a posteriori only, when proving properties about these matrices
operations, e.g., associativity of the product. These proofs are done within the interactive proof
mode, so that they can be solved with high level tactics like omega. (Note that this separation
between proofs and programs could also be achieved syntactically—even with a dependently
typed definition of matrices—by using Coq’s Program feature. We prefer our approach for its
simplicity: Program tends to clutter the computational part of terms, and reasoning about them
becomes un-easy.)

Although the correctness proof of our algorithm heavily relies on matricial reasoning, and in
particular block matrix decompositions, we have not found major drawbacks to this approach
yet. We actually believe that it would scale smoothly to even more intensive usages of matrices,
e.g., linear algebra [70].

Phantom types. Unfortunately, these non-dependent definitions allow one to type the fol-
lowing code, where the three additional arguments of dot are implicit:

Definition ill_dot n p (M: MX n 16) (N: MX 64 p): MX n p := dot M N.

This definition is accepted because of the conversion rule: since the dependent type MX n m does
not mention n nor m in its body, these type informations can be discarded by the type system
using the conversion rule (we actually have MX n 16 = MX n 64). While such an ill-formed
definition will be detected at proof-time, it is a bit sad not to benefit from the advantages of
a strongly typed programming language here to get rid of this bogus definition at once. We
solved this problem at the cost of some syntactic sugar, by resorting to an inductive singleton
definition, reifying bounds in phantom types:

Inductive MX (n m: nat) := box: (nat → nat → X) → MX n m.
Definition get (n m: nat) (M: MX n m) := match M with box f ⇒ f end.
Definition plus (n m: nat) (M N: MX n m) := box n m (fun i j ⇒ get M i j + get N i j).

Coq no longer equates types MX n 16 and MX n 64 with this definition, so that the above ill dot

function is rejected, and we can trust inferred implicit arguments (e.g., the m argument of dot).
From a practical point of view, this makes the code dealing with matrics a lot easier to debug.

(Note that get can be declared as a coercion, to reduce the syntactic overhead. Moreover,
once the development finished, we could actually drop the inductive! This would actually result
in a slight improvement in performance – removing the superfluous ι reductions that occur when
get is applied to a matrix.)

Computation. We also advocate this lightweight representation from the efficiency point of
view. First, using non-dependent types is more efficient: not a single boundary proof gets
evaluated in matrix computations (e.g., matrix multiplications). Second, using functions to
represent matrices is two-edged: on the one hand, if the matrix resulting of a computation
is seldom used, then computing its elements by need is efficient; on the other hand, making
numerous accesses to the same expensive computation may be a burden. To this end, we
defined a memoisation operator that computes all elements of a given matrix, stores the results
in a map, and returns the closure that looks up in the map rather than recomputing the result.
This memoisation operator is proved to be an identity; it can be inserted in matrix computations
in a transparent way, at judicious places.
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Definition mx_force n m (M: MX n m): MX n m :=
let l := mx_to_lists M in box n m (fun i j ⇒ nth i (nth j l)).

Lemma mx_force_id : ∀ n m (M : MX n m), mx_force M ≡ M.

The first version of our decision procedure used such matrix computations for the construc-
tion of automata using Thompson’s algorithm and the removal of �-transition (which amounts
to the computation of the star of a 0-1 matrix). While we have later chosen to avoid such matrix
computations to be more efficient, there may be some interesting way to improve efficiency while
keeping this simple interface. For instance, we could consider using binary indexing and more
efficient data-structure for memoisation, or to have specialised constructors and operations for
sparse matrices.

Dénès and Bertot recently argued in a similar fashion that using “untyped” representations
in computations yields better performance. They give computational and efficient counterparts
to the algebraic operations on matrices provided in the ssreflect library (in which matrices
are defined as dependently-typed finite functions). While their current untyped representation
is based on lists of lists, they plan to rely on the forthcoming addition of native persistent-
arrays and native integers [9] in the logic of Coq to improve the overall performances. (Note
that our definition of matrices is actually agnostic from the point of view of the underlying
representation, and that this makes it possible to tailor the underlying data-structure—be it a
function, lists of lists, or a representation of sparse matrices—to the actual problem at hand.)

1.5.2 Lifting the algebraic hierarchy

As expected, we declare the previous operations as new instances, so that we can directly use
notations, lemmas, and tactics with matrices. The type of these instances are given below:

Instance mx_G: Graph := { T := nat; X := MX; equal := mx_equal }.

Instance mx_SLo: SemiLattice_Ops G → SemiLattice_Ops mx_G.
Instance mx_Mo: SemiLattice_Ops G → Monoid_Ops G → Monoid_Ops mx_G.

Instance mx_SL: ‘{SemiLattice G} → SemiLattice mx_G.
Instance mx_ISR: ‘{IdemSemiRing G} → IdemSemiRing mx_G.

Thus, starting with an arbitrary (typed) idempotent semiring of elements X, we can build
the (typed) idempotent semiring of rectangular matrices over these elements.

1.5.3 Computing the star of a matrix

Using the previous instances to get notations, lemmas, and tactics about matrices, we conclude
this section with the Kleene star operation. The type of these instances are given below:

Instance mx_Ko: SemiLattice_Ops G → Monoid_Ops G → Star_Op G → Star_Op mx_G.
Instance mx_KA: ‘{KleeneAlgebra G} → KleeneAlgebra mx_G.

We have to define the star operation on matrices, and show that it satisfies the laws for Kleene
star. We conclude this section about matrices by a brief description of this construction in
Coq—see §1.3.2 for more details.

Recall that the construction proceeds by induction on the size of the matrix: the problem
is trivial if the matrix is empty or of size 1 × 1; otherwise, we decompose the matrix into four
blocks and we recurse as follows [1]:

�
A B
C D

��
=

�
E E ·B ·D�

D� · C · E D� +D� · C · E ·B ·D�

�
where

�
D� = D�

E = (A+B ·D� · C)�
(†)
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Figure 1.16 Definition of the star operation on matrices.

Definition mx_star’ x n
(sx: MX x x → MX x x)
(sn: MX n n → MX n n)
(M: MX (x+n) (x+n)): MX (x+n) (x+n) :=
let A := mx_sub00 M in
let B := mx_sub01 M in
let C := mx_sub10 M in
let D := mx_sub11 M in
let D’ := sn D in
let E := sx (A+B·D’·C) in
mx_blocks

E (E·B·D’)
(D’ · C·E) (D’+D’·C·E·B·D’) .

Definition mx_star_11 (M: MX 1 1): MX 1 1 :=
fun _ _ ⇒ (M O O)�.

Fixpoint mx_star n: MX n n → MX n n :=
match n with
| O ⇒ fun M ⇒ M
| S n ⇒ mx_star’ mx_star_11 (mx_star n)
end.

Theorem mx_star_block x n (M: MX (x+n) (x+n)):
mx_star (x+n) M ≡
mx_star’ (mx_star x) (mx_star n) M.

Proof...

As long as we take square matrices for A and D, the way we decompose the matrix does not
matter (we actually have to prove it). In practice, since we work with Coq natural numbers
(nat), we choose A of size 1× 1: this allows recursion to go smoothly and helps to keep proofs
simple. We reckon that using a divide-and-conquer scheme might be more efficient. Yet, the
definition of the star of a matrix is used only in proofs: we may freely use the slower and more
simple version.

The corresponding code is given in Fig. 1.16. First, we implement a function mx_star’ that
decomposes its input into four quadrants, according to the above definition by blocks (†). The
function mx_star’ is defined through open-recursion: it takes as arguments two functions to
perform the recursive calls (i.e., to compute A� and D�). The final function mx_star is defined
as a fixpoint to tie the knot of the recursion, using mx_star_11 to compute the star of a 1× 1
matrix by using the star operation on the underlying element. Note that by making explicit
the general block definition with the auxiliary function mx_star’, we can easily state theorem
mx_star_block: equation (†) holds for each possible decomposition of the matrix. In particular,
it makes it possible to prove interesting lemmas like the following, which are necessary as soon
as one needs to deals with block matrices.

Lemma mx_blocks_star_diagonal n m (M: MX n n) (N: MX m m) :
(mx_blocks M 0 0 N)� ≡ mx_blocks (M�) 0 0 (N�).

Lemma mx_blocks_star_trigonal n m (M: MX n n) (N: MX m m) (P: MX n m):
(mx_blocks M P 0 N)� ≡ mx_blocks (M�) (M� · P · N�) 0 (N�).

The lemmas above conclude our study of our formalisation of matrices in Coq.

1.6 The algorithm and its proof

We now focus on the heart of our library, the implementation of the decision procedure. We
first discuss the implementation of the various kinds of automata we will need in Coq, before
discussing how we amended the computational part of Kozen’s proof for efficiency reasons.

1.6.1 Representation of automata in Coq

The various representations of finite automata we need are depicted in Fig. 1.17. The first record
type (MAUT.t) correspond to the matricial representation of automata from §1.3.4 (through
this section, MX n m is the type of n × m matrices over regular expressions): it is exactly a
representation of the matricial automata, that packages together the number of states (field
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Figure 1.17 Coq types and evaluation functions of the four automata representations.

Module MAUT.
Record t := build {
size: nat;
initial: MX 1 size;
delta: MX size size;
final: MX size 1
}.
Definition eval(A: t): regex :=
mx_to_scal ((initial A)·(delta A)�·(final A)).

End MAUT.

Module eNFA.
Record t := build {
size: state;
labels: label;
epsilon: state→stateset;
delta: label→state→stateset;
initial: state;
final: state }.
Definition to_MAUT(A: t): MAUT.t.
Definition eval A := MAUT.eval (to_MAUT A).
End eNFA.

Module NFA.
Record t := build {
size: state;
labels: label;
delta: label→state→stateset;
initial: stateset;
final: stateset }.
Definition to_MAUT(A: t): MAUT.t.
Definition eval A := MAUT.eval (to_MAUT A).
End NFA.

Module DFA.
Record t := build {
size: state;
labels: label;
delta: label→state→state;
initial: state;
final: stateset }.
Definition to_MAUT(A: t): MAUT.t.
Definition eval A := MAUT.eval (to_MAUT A).
End DFA.

size), the matrix of initial states, the transition matrix, and the matrix of final states. The
function MAUT.eval computes the term of the syntactic Kleene algebra that is the evaluation of
the automaton and casts it to a scalar. (Like in the previous section, we are solely interested
here in syntactic objects, and will therefore use the words “the evaluation of the automata” to
denote the regular expression that results from MAUT.eval.) It must be noted that this matricial
representation is computationally inefficient11; however, it is only used in proofs.

Then, we can use some properties of �-NFAs, NFAs, and DFAs to provide some tailored, more
computational, definitions in Coq that overcome the inefficiencies of the matricial representation.
The field labels bounds the maximal label that occur in a given automaton (this allows one to
iterate over a subset of the whole alphabet Σ in some automata constructions). The transition
relations are encoded as maps indexed by labels and states (fields delta and epsilon): we rely
on the efficient implementations of finite sets and finite maps from the standard Coq library as
the data-structure underlying the functions.

The only peculiarity is our representation of �-NFAs that features a single initial state
and a single final state. This is without loss of generality12, and is tailored for our �-NFA
construction algorithm: it happens that the efficient automata construction we implemented
produces automata with a single initial state, and a single final state, justifying this choice of
representation. The other fields should be self-explanatory. In each case, we define a translation
function to matricial automata (to_MAUT), so that each kind of automata can eventually be
evaluated into a regular expression.

11Indeed, the elements of the matrix are regular expressions that may need to be simplified, e.g., a·1+1� ·(b+0).
A more efficient representation is a family of boolean matrices, one for each letter of the alphabet, and one to
account for �-transitions.

12All �-NFAs can be represented that way.
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Figure 1.18 Overall picture for the algorithm and its correctness.
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5. Equivalence check

1.6.2 Road-map

The algorithm we chose to implement to decide whether two regular expressions denote the
same language follows the same major steps as in §1.3.4. However, we have to take a particular
care about efficiency; this drives our choices about both data-structures and algorithms, which
differ slightly from the previous ones. We summarise here our implementation choices:

1. normalise both expressions to turn them into “strict star form” to reduce their size, and
improve on the efficiency of the later steps;

2. build �-NFAs using a variant of Ilie and Yu’s construction [91], which produces smaller
automata than Thompson’s construction;

3. remove �-transitions to get NFAs;

4. use the accessible subset construction to get DFAs;

5. check that the two DFAs are equivalent using Hopcroft and Karp’s algorithm.

The overall structure of the algorithm and the correctness proofs are depicted in Fig. 1.18
(which is the counterpart of Fig. 1.8). Datatypes are indicated on the left-hand side. Again, the
outer part corresponds to computations, while the inner-part corresponds to the equalities: we
prove that each automata construction preserves the semantics of the initial regular expression.
That is, each kind of automata can be translated to a matricial automata (MAUT.t) which can
then be evaluated to a regular expression equal to the original one.

1.6.3 Normalisation to strict star form

Recall that the equational theory of regular expression is not finitely based [132]: there is
no complete rewriting system that decides equivalence of regular expressions. Yet, regular
expressions may be simplified using convergent rewriting systems (that preserve equivalence)
in order to reduce their size. And actually, we shall see that reducing regular expressions to a
particular kind of normal forms may be leveraged to get a simpler and more efficient algorithm
to remove �-transitions.

50



Figure 1.19 Converting expressions to strict star form

Fixpoint remove (e: regex) :=
if contains_one e then
match e with
| RegExp.plus a b ⇒
plus_but_one (remove a) (remove b)

| RegExp.dot a b ⇒
plus_but_one (remove a) (remove b)

| RegExp.star e ⇒ e
| e ⇒ e

end else e.

Fixpoint ssf (e: regex) : regex :=
match e with
| RegExp.plus a b ⇒
RegExp.plus (ssf a) (ssf b)

| RegExp.dot a b ⇒
dot’ (ssf a) (ssf b)

| RegExp.star e ⇒
star’ (remove (ssf e))

| e ⇒ e
end.

We use the syntactic simplification procedure proposed by Brüggemann-Klein [38] to trans-
form any stared expression x�, where x accepts the empty word, into an equivalent expression y�

such that y does not accept the empty word. That is, we put the regular expressions into strict
star form: all occurences of the star operation act on strict regular expressions, that do not
accept the empty word. For instance, this procedure transforms the expression on the left-hand
side below into an equivalent strict star form regular expression on the right-hand side:

((a+ 1) · ((b+ 1)� · c+ d�))� → (a+ b� · c+ d)�

In Coq, this procedure translates into two simple fixpoints described in Fig. 1.19, and
“smart” constructors dot’ and star’ that respectively avoid building terms like x · 1, and
1�. The plus_but_one function is slightly different: it avoids adding 1 or 0 under a star. The
following theorem corresponds to the first step of the overall proof, as depicted in Fig. 1.18.

Theorem ssf_correct: ∀ x, ssf x ≡ x.

We also prove the completeness of this procedure, i.e., that it returns expressions in strict
star form. In the following, we will prove that applying our automata construction to this
particular kind of expression yields particular �-NFAs, that are then amenable to more efficient
�-transitions removal.

Inductive strict_star_form: regex → Prop := ...
Theorem ssf_complete: ∀ x, strict_star_form (ssf x).

1.6.4 Automata constructions algorithms

At first, we implemented Thompson’s construction, for its simplicity; we finally switched to a
variant of Ilie and Yu’s construction [91], which produces smaller automata. This algorithm
constructs an automaton with a single initial state and a single accepting state (respectively
denoted by i and f); it proceeds by structural induction on the given regular expression. The
corresponding steps are depicted on the left-hand side of Fig. 1.20; the first drawing corresponds
to the base cases (zero, one, variable); the second one is union (plus): we recursively build the
two sub-automata between i and f ; the third one is concatenation: we introduce a new state,
p, build the first sub-automaton between i and p, and the second one between p and f ; the
last one is for iteration (star): we build the sub-automata between a new state p and p itself,
and we link i, p, and f with two �-transitions. The corresponding Coq code is given on the
right-hand side. We use an accumulator (A) to which we recursively add states and transitions
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Figure 1.20 Construction algorithm—a variant of Ilie and Yu’s construction.
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Fixpoint build x i f A :=
match x with
| zero ⇒ A
| one ⇒ add_one i f A
| var a ⇒ add_var a i f A
| plus x y ⇒ build x i f (build y i f A)
| dot x y ⇒

let (p,A) := incr A in
build x i p (build y p f A)

| star x ⇒
let (p,A) := incr A in
add_one i p (build x p p (add_one p f A))

end.

(the functions add_one and add_var respectively add epsilon and labelled transitions to the
accumulator—the function incr adds a new state to the accumulator and returns this state
together with the extended accumulator). We give an example to illustrate the way states are
numbered by the algorithm.

Example 9. The strict star form expression a · d+ (a+ b� · c+ d)� yields the automaton:
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We actually implemented this algorithm twice, by using two distinct datatypes for the
accumulator: first, with a high-level matricial representation; then with efficient maps for storing
�-transitions and labelled transitions. Doing so allows us to separate the correctness proof into
an algebraic part, which we can do with the high-level representation, and an implementation-
dependent part, showing that the two versions are equivalent.

In Fig. 1.21, we amend the record types MAUT.t and eNFA.t from Fig. 1.17 to remove the
fields for initial and final states: the initial and final state of the automata are always numbered
respectively 0 and 1. (The other difference being that we exhibit the underlying maps rather
than functions on the efficient side—pre_eNFA.) On the high-level side—pre_MAUT, we use
generic matricial constructions: adding a transition to the automaton consists in performing
an addition with the matrix containing only that transition (mx_point i f x is the matrix with
x at position (i,f) and zeros everywhere else); adding a state to the automaton consists in
adding an empty row and an empty column to the matrix, thanks to the mx_blocks function
that builds a matrix out of four quadrants. We do not include the corresponding details for the
low-level representation: it would require to delve on the particular implementations we used for
maps and sets, they are slightly verbose and they can easily be deduced. Notice that pre_eNFA
does not include a generic add function: while the matricial representation allows us to label
transitions with arbitrary regular expressions, the efficient representation statically ensures that
transitions are labelled either with epsilon or with a variable (a letter of the alphabet).
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Figure 1.21 Two intermediate representations for automata

Module pre_MAUT.
Record t := mk {
size: nat;
delta: MX size size }.

Definition to_MAUT i f A := MAUT.mk
(mx_point 0 i 1) (delta A) (mx_point f 0 1).

Definition eval i f := MAUT.eval ◦ (to_MAUT i f)

Definition add (x: regex) i f A :=
mk _ (delta A + mx_point i f x)

Definition add_one := add 1.
Definition add_var a := add (var a).
Definition incr A := let mk n M := A in
(n, mk (n+1) (mx_blocks M 0 0 0)).

Fixpoint build x i f A := (* Fig. 1.22 *).

Definition empty := mk 2 0.
Definition regex_to_MAUT x :=
to_MAUT 0 1 (build x 0 1 empty).

End pre_MAUT.

Module pre_eNFA.
Record t := mk {
size: state;
labels: label;
epsmap: statemap stateset;
deltamap: statelabelmap stateset }.

Definition to_eNFA i f A := ...

Definition add_one i f A := ...
Definition add_var a i f A := ...
Definition incr A := ...

Fixpoint build x := (* Fig. 1.20 *).

Definition empty := mk 2 0 [] [].
Definition regex_to_eNFA x :=
to_eNFA 0 1 (build x 0 1 empty).

End pre_eNFA.

The final construction functions, from regex to MAUT.t or eNFA.t, are obtained by calling
build between the two states 0 and 1 of an empty accumulator. (Note that the occurrence
of 0 in the definition of pre_MAUT.empty denotes the empty (2, 2)-matrix; similarly, [] denotes
the empty map on the right-hand side). Since the two versions of the algorithm only differ by
their underlying data structures, proving that they are equivalent is routine (here, [=] denotes
matricial automata equality):

Lemma constructions_equiv: ∀ x, regex_to_MAUT x [=] eNFA.to_MAUT (regex_to_eNFA x).

Let us now focus on the algebraic part of the proof. We have to show:

Theorem construction_correct: ∀ x, MAUT.eval (regex_to_MAUT x) ≡ x.

The key lemma is the following one: calling build x i f A to insert an automaton for the regular
expression x between the states i and f of A is equivalent to inserting directly a transition with
label x (recall that transitions can be labelled with arbitrary regular expressions in matricial
automata); moreover, this holds whatever the initial and final states s and t we choose for
evaluating the automaton.

Lemma build_correct: ∀ x i f s t A, i<size A → f<size A → s<size A → t<size A →
eval s t (build x i f A) ≡ eval s t (add x i f A).

As expected, we proceed by structural induction on the regular expression x. As an example of
the involved algebraic reasoning, the following property of star w.r.t. block matrices is used twice
in the proof of the above lemma: with (x, y, z) = (e, 0, f), it gives the case of a concatenation
(e · f); with (x, y, z) = (1, e, 1) it yields iteration (e�). In both cases, the state (p) generated
by the construction corresponds to the last line and the last column on the left-hand side: x
labels the transition going from i to p, y labels the transition going from p to p, and z labels
the transition going from p to f .

Note that this laws follows from the general characterisation of the star operation on block
matrices (Equation (†) in Sect. 1.5.3), and that this is the analogue of the state elimination
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method we explained in §1.1.3. However, the situation is somehow simpler here, since we are in
the simple case where there is a single initial state and a single final state.
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In the special case where A is the empty accumulator, lemma build_correct gives:

MAUT.eval (regex_to_MAUT x) ≡ eval 0 1 (build x 0 1 empty)
≡ eval 0 1 (add x 0 1 empty)

≡
�
1 0
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·
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0 x
0 0

��
·
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0
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0 1
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·
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≡ x

i.e., theorem construction_correct.
Finally, by combining the equivalence of the two algorithms (lemma constructions_equiv)
and the correctness of the high-level one (theorem construction_correct), we obtain the
correctness of the efficient construction algorithm. In other words, we can fill the two triangles
corresponding to the second step in Fig. 1.18:

Theorem construction_correct’: ∀ x, eNFA.eval (regex_to_eNFA x) ≡ x.

1.6.5 Digression: Comparison with Ilie and Yu’s construction

Let us make a digression here to compare our algorithm that constructs �-NFAs with the one
proposed by Ilie and Yu [91, Algorithm 4, p. 144]. The steps of the recursive procedure, as
presented in Fig. 1.20, are exactly the same; the only difference is that they refine the automaton
by merging some states and removing useless transitions on the fly:

(a) the state introduced in the dot case is removed when it is preceded or followed by a single
�-transition;

(b) all states along an �-cycle introduced in the star case are merged into a single state;

(c) if at the end of the algorithm, the initial state only has one outgoing �-transition, the initial
state is shifted along this transition;

(d) duplicated transitions are merged into a single one.

Consider for example Fig. 1.22, where we have executed the construction algorithm of
Fig. 1.20 on two regular expressions (these are the expressions from Sect. 1.6.3—the right-
hand side expression is the strict star form of the left-hand side one). Running Ilie and Yu’s
construction on the right-hand side expression of Fig. 1.22 yields the automaton below. This
automaton is actually smaller than the one we generate: two states and two �-transitions are
removed using (a) and (c). Moreover, thanks to optimisation (b), Ilie and Yu also get this
automaton when starting from the left-hand side expression, although this expression is not in
strict star form.
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Figure 1.22 Running the construction algorithm on an expression and its strict star form.
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These optimisations are all more or less difficult to implement or to prove. For instance, we
did not implement (a) because this optimisation is not simple to code efficiently nor to validate
at the algebraic level. Similarly, while step (c) is easier to implement, proving its correctness
would require substantial additional work. On the contrary, our presentation of the algorithm
directly enforces (d): the data structures we use systematically merge duplicate transitions.
The remaining optimisation is (b), which would be even harder to implement and to prove
correct than (a). Fortunately by working with expressions in strict star form, the need for this
optimisation vanishes: we shall see that �-cycles cannot appear.

In the end, although we implement (b) by putting expressions in strict star form first, the
only difference with Ilie and Yu’s construction is that we do not perform steps (a) and (c).

The only interesting occurrences of (a) are expressions in strict star form (and thus do not
contain products where one of the operands is equal to 1) with sub-terms like a� · b or a · b�
(note that a,b and c may be arbitrary expressions). For these expressions, we would build the
automata below:
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�
��
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f

In these two cases, the optimisation (a) would remove the superfluous intermediate state p�.
Would it be needed for efficiency reasons, we could handle these by extending the construction
of Fig.1.20 with the following special cases:

...
| dot (star a) b ⇒ let (p,A) := incr A in
add_one i f (build a p p (build b p f A))
| dot a (star b) ⇒ let (p,A) := incr A in
build a i f (build b p p (add_one p f A))
...

i �
�� p b

a

f i a p
�
��

b

f

The proof of these two special cases would be similar to the proof of the star case, or to the
proof of the dot case, using the same lemma on block matrices. Note that these two cases
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also cover expressions with sub-terms like a� · b� or a� · (b� + c�). However, these two cases do
not cover expressions with sub-terms like a · b� · c where we would build the automaton on the
left-hand side below, while, in the end, Ilie and Yu’s construction would build the automaton
on the right-hand side below:

· a · �
��

b

· c · · a ·

b

c ·

1.6.6 Epsilon-transitions removal

The automata obtained with the above construction contain �-transitions: each starred sub-
expression produces two �-transitions, and each occurrence of 1 gives one �-transition. Indeed,
their transitions matrices are of the form

M = J +N with N =
�

a

a ·Na

where J and the Na are 0-1 matrices. These matrices just correspond to the graphs of epsilon
and labelled transitions.

We have already seen how the �-transitions are removed algebraically 1.3.4. It involves the
computation of the reflexive and transitive closure of the matrix J . Although this is how we
prove the correctness of this step, computing J� algebraically is inefficient: we have to implement
a proper transitive closure algorithm for the low-level representation of automata. We actually
rely on a property of the construction from §1.6.4: when given regular expressions in strict
star form, the produced �-NFAs have acyclic �-transitions. Intuitively, the only possibility for
introducing an �-cycle in the construction from §1.6.4 comes from star expressions. Therefore,
by rewriting all occurrences of the star operation so that they act on strict regular expressions,
we prevent the formation of �-cycles.

Consider again Fig. 1.22. There are two epsilon-loops in the left hand-side automaton,
corresponding to the two occurrences of star that are applied to non-strict expressions ((b+1)�

and the whole term). On the contrary, in the automaton generated from the strict star form—the
second regular expression, the states belonging to these loops are merged and the corresponding
transitions are absent: the �-transitions form a directed acyclic graph (here, a tree).

This acyclicity property makes it possible to use a very simple algorithm to compute the
transitive closure. With respect to standard algorithms for the general cyclic case, this algorithm
is easier to implement, slightly more efficient, and simpler to certify.

Concretely, this means that: 1) we proved that our construction algorithm returns �-NFAs
whose reversed �-transitions are well-founded, when the argument is in strict star form; 2) based
on this assumption we implemented a simple transitive closure algorithm, using well-founded
recursion and memoisation; 3) we proved that this algorithm actually yields an automaton (of
type NFA.t) whose translation into a matricial automaton is exactly �u · J�, N · J�, v�, so that
the above algebraic proof applies. This closes the third step in Fig. 1.18.

1.6.7 Determinisation

Determinisation is exponential in worst case: this is a power-set construction. However, exam-
ples where this bound is reached are rather contrived: the empirical complexity is tractable.
The algorithm we implemented is the accessible subset construction from §1.1.

Given an NFA.t, the algorithm constructs a bijection from reachable set of states to states
of the DFA.t, numbering them “on the fly”, and stores the transition relation over these new
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Figure 1.23 Depth-first determinisation: main step

Definition step (loop: Store → stateset → state → Store)
(p: stateset) (np: num) (a: label) (s: Store) : Store :=
let q := delta_set a p in
let ’(table,d,next) := s in
match StateSetMap.find q table with
| None ⇒
let t’ := StateSetMap.add q next table in
let d’ := StateLabelMap.add (np,a) next d in
loop (t’, d’, S next) q next

| Some nq ⇒ (table, StateLabelMap.add (np,a) nq d, next)
end.

states. We maintain the following data-structure through the standard depth-first enumeration
of the subsets accessible from the set of initial states:

Notation Table := (statesetmap state).
Notation Delta := (statelabelmap state).
Notation Store := (Table ∗ Delta ∗ state).

A Table corresponds to the bijection built so far from reachable sets of states to states of the
DFA. The map Delta corresponds to the transition relation over the states of the DFA. A Store

is the combination of these two parts, together with a bound which represents the next fresh
state, or equivalently, the size of the Table. The initial store contains a single state, which
corresponds to the set of initial states of the NFA. This initial store is then extended through
the iteration of the function step in Fig. 1.23.

Assuming that the set of states p is mapped to the state np, step loop p np a s updates
the store s such that all sets of states accessible from the image of p by a transition a have
been added to the store. There are two cases to consider. If the set of state nq has already
been added to the table, it suffices to add a transition labelled by a from np to nq in the store.
Otherwise, we have to allocate a fresh state in the store that corresponds to the set q, and to
iterate through the sets accessible from q.

Note that we use a form of open recursion through the loop argument to deal with a Coq-
specific technical difficulty in the concrete implementation of this algorithm that comes from
termination. Indeed, the main loop function is intuitively the following:

Fixpoint loop (s: Store) p np := fold_labels (step loop p np) max_label s.

Of course, we cannot use this definition as it is: there is no structurally decreasing argument for
the fixpoint. Since the main loop is executed at most 2n times (there are 2n subsets of [1 . . . n]),
we could try to use this bound directly. However, while we can easily determinise NFAs with
500 states in practice, computing 2500 is obviously out of reach (the binary representation of
numbers does not help since we need to do structural “unary” recursion); we thus have to
iterate lazily. We tried to use well-founded recursion. However, this requires to mix some non-
trivial proofs about termination with the code. (Note that we actually defined our �-transitions
removal function by well-founded recursion, only because it was the only way to take advantage
of the acyclic nature of the �-transition relation.) Here, we use the following “pseudo-fixpoint
operators”, defined in continuation passing style:

Variables A B: Type.
Fixpoint linearfix n (f: (A → B) → A → B) (k: A → B) (a: A): B :=
match n with O ⇒ k a | S n ⇒ f (linearfix n f k) a end.
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Fixpoint powerfix n (f: (A → B) → A → B) (k: A → B) (a: A): B :=
match n with O ⇒ k a | S n ⇒ f (powerfix n f (powerfix n f k)) a end.

Intuitively, linearfix n f k lazily approximates a potential fixpoint of the functional f: if a
fixpoint is not reached after n iterations, it uses k to escape. The powerfix operator behaves
similarly, except that it escapes after 2n−1 iterations: we prove that powerfix n f k a is equal
to linearfix (2n − 1) f k a. Thanks to these operators, we can write the code to be executed
using powerfix, while keeping the ability to reason about the simpler code obtained with a naive
structural iteration over 2n: both versions of the code are easily proved equivalent, using the
intermediate linearfix characterisation. The final algorithm to build the store is as follows.

Definition build_store := powerfix size
(fun loop (s: Store) (p: stateset) (np: state) ⇒ fold_labels (step loop p np) max_label s)
(fun s _ _ ⇒ s) initial_store initiaux 0.

It is then routine to use this store to build a DFA.t

Definition NFA_to_DFA : NFA.t → DFA.t := ...

The proof of correction of this construction is not trivial though. It involves the exhibition
of an invariant of the construction and of a variant (to ensure progress and termination). (Note
that we omit here a detailed description of this invariant and this proof to focus on more
interesting constructions.) It is then possible to prove that the DFA.t we built translates into a
matricial automaton which satisfies the equations from §1.3.4. Finally. the following theorem
allows us to fill the two squares corresponding to the fourth step in Fig. 1.18.

Theorem correct: ∀ (A: NFA.t), DFA.eval (NFA_to_DFA A) ≡ NFA.eval A.

1.6.8 Equivalence checking

The next step of Fig. 1.18 is to check the equivalence of the two DFAs we built. Recall the
algebraic proof we made in 1.3.4: we showed how the equivalence of two states in the disjoint
union of the two DFAs yields a proof of the equivalence of the evaluation of the underlying
matricial automata. Therefore, we introduce in Coq a construction of the disjoint union D of
two DFAs A and B, and prove that it is possible to tweak the initial state of the resulting
automaton so that it evaluates either to the same language as A or the same language as B. In
the following snippet of code, pi0 and pi1 are similar to inl and inr: they build the disjoint
union of the set of states of the two automata. Note that since states are encoded by positive

numbers, we can use xO and xI.

Lemma eval_left: ∀ (A B: DFA.t), wf A →
eval (change_initial (merge_DFAs A B) (pi0 (initial A))) ≡ eval A.

Lemma eval_right: ∀ (A B: DFA.t), wf B → max_label A = max_label B →
eval (change_initial (merge_DFAs A B) (pi1 (initial B))) ≡ eval B.

The simulation check algorithm by Hopcroft and Karp [1] we presented in §1.1.4 requires
the implementation of a union-find data structure. To our knowledge, there is only one imple-
mentation of disjoint-sets in Coq [109]. However, this implementation uses sig types to ensure
basic invariants along computations, so that reduction of the corresponding terms inside Coq is
not optimal: useless proof terms are constantly built and thrown away. Although this drawback
disappears when the code is extracted (the goal in [109] was to obtain a certified compiler, by
extraction), this is problematic in our case: since we build a reflexive tactic, computations are
performed inside Coq. Conchon and Filliâtre also certified a persistent union-find data struc-
ture in Coq [50], but this development consists in a modelling of an OCaml library, not in a
proper Coq implementation that could be used to perform computations. Therefore, we had to
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Figure 1.24 Checking equivalence

Variable A : DFA.t.
Let f := DFA.final A.
Let d := DFA.delta A.

Let ml := DFA.max_label A.
Let size := DFA.size A.
Let final s := StateSet.mem s f.

Fixpoint loop n (T: DS.T) (x y: state) :=
match n with
| S n ⇒
let ’(b,T) := DS.test_and_unify T x y in
if b then Some T else
if eq_bool_bool (final x) (final y)
then fold_num_option

(fun a T ⇒ loop n T (d a x) (d a y))
ml T

else None
| O ⇒ Some T

end.

re-implement and prove this data structure from scratch. Namely, we implemented disjoint-sets
forests [57] with path compression and the usual “union by rank” heuristic, along the lines
of [109], but without using sig-types. We provide a functor that defines an efficient disjoint set
implementation, given a module that packages a type of elements and efficient maps indexed
by these elements. However, we omit the details of the implementation and the proofs, since
they quite closely follow [109].

The Coq code for checking equivalence of DFAs is given in Fig. 1.24. We first compute the
disjoint union automaton that corresponds to the given DFAs. Then, the algorithm relies on
a single primitive from the disjoint set data structure, namely the test_and_unify function,
that tests whether two states have already been declared equivalent (directly or through the
reflexive and transitive closure of the equivalence relation). If the two states were equivalent,
the function returns the updated version of the data structure (using the path compression
algorithm), and the boolean true. If the two states were not already equivalent, the function
returns the updated version of the data structure, in which they have been declared equivalent
(using the union by rank heuristic), and the boolean false. In the latter case, we have to check
that the states were both final or both non-final, and proceed recursively to consider all the
pairs of states accessible from these states by a transition a. (Note that since recursion is not
structural, we need to explicitly bound the recursion depth. Here, the size of the disjoint union
automaton (n+m) does the job.)

An invariant of this algorithm is that if the disjoint set data structure relates two states, then
both are final or non-final. Another (bureaucratic) one is that the disjoint set data structure
is well formed. More interesting is the variant we use to prove the correctness of the algorithm
(See Fig. 1.25). We denote the equivalence relation induced by a disjoint set data structure T

as �T�, and the number of equivalence classes in T as measure T. Given two states x and y such
that �T� x y holds, it may be the case that the transitions of x and y along a label a have not
yet been added to T. Therefore, we introduce the following definition: for an arbitrary relation
on states R, we say that S closes R if, whenever R x y holds, then S δ(a, x) δ(a, y) holds.
Graphically, we have:

close R S = x R

��

y

��
δ(a, x) S δ(a, y)

We say that R is closed up-to S whenever close R (R ∪ S) holds for all S. Intuitively, S may
be seen as a list of pair of states that have not been added to the disjoint set, but which are
accessible in one transition from a pair of equivalent states. Now, suppose that �T� is closed
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Figure 1.25 Variant of the equivalence check

Definition close (R S : relation state) :=
∀ a x y (Ha: a<ml)(Hx: x<size)(Hy: y<size),
R x y → S (d a x) (d a y).

Definition progress T T’ := ∀ R,
close (�T�) (�T� ∪ R) → close (�T’�) (�T’� ∪ R).

Record variant (T T’: DS.T) (x y : state) : Prop :=
{ ci_prog : progress T T’;
ci_le : ∀ u v, �T� u v → �T’� u v;
ci_measure : measure T’ ≤ measure T;
ci_sameclass : �T’� x y }.

up-to S, and that we declare two states x and y as equivalent (denoted T+ [x, y]). We show
that

close �T� (�T� ∪ S) =⇒ close �T+ [x, y]� (�T+ [x, y]� ∪R ∪ S)

where
R = {(δ(a, x), δ(a, y)) | a ∈ Σ} .

Intuitively, the disjoint set structure grows, and we have to add pairs of elements to the up-to
part, in order to match this growth. However, in the end, the up-to part will be subsumed
by the relation induced by the disjoint set structure. Indeed, we prove that the disjoint set T’
returned by the loop function starting from T verifies the following lemma:

Variables x y : state.
Hypothesis Hx : below x size.
Hypothesis Hy : below y size.
Variable T T’ : DS.T.
Hypothesis H: (loop A (Datatypes.S size) nil T x y) = Some T’.

Lemma loop_variant : variant T T’ x y.

Then, starting with the empty disjoint set structure, and using the empty relation as R, we
obtain the following lemma:

Lemma loop_correct : close (�T�) (�T�).

It is then possible to prove that the algebraic properties we mentionned in §1.3.4 hold. Finally,
the following theorem allows us to fill the bottom part of Fig. 1.18.

Theorem valid i j: i ∈ A → j ∈ A → equiv A i j = None →
eval (change_initial A i) ≡ eval (change_initial A j).

1.6.9 Completeness: counter-examples

By combining the proofs from the above sections according to Fig. 1.18, we obtain the correct-
ness of the decision procedure: if decide_kleene a b returns true, then a≡b, and thanks to
the untyping theorem (∗) from §1.3.1, we deduce that a and b are equal in any typed Kleene
algebra.

We also proved the converse implication, i.e., completeness. This basically amounts to ex-
hibiting a counter-example in the case where the DFAs are not equivalent. From the algorithmic
point of view, this is almost straightforward: it suffices to record the word that is being read in
the algorithm from §1.6.8; when two states that should be equivalent differ by their accepting
status, we know that the current word is accepted by one DFA and not by the other one. Ac-
cordingly, the decide_kleene function actually returns an option (list label) rather than a
boolean, so that the counter-example can be given to the user.

From the proof point of view, to obtain the reverse implication of the equivalence we men-
tioned in §1.2.3 we just have to show that languages (i.e., predicates over list of labels) form a

60



Kleene algebra in which the language accepted by a DFA is exactly the language obtained with
DFA.eval:

Theorem interp_DFA_eval: ∀ A: DFA.t, DFA_language A [=] interp (DFA.eval A).

(DFA.eval actually returns a regular expression which we need to interpret as a language;
DFA_language A is the predicate that corresponds to word acceptance in the DFA A, from
Def. 2; [=] is language equality, i.e., pointwise equivalence of the predicates.)

1.6.10 Efficiency

We shall now consider the actual performances of the decision procedure we implemented. On
typical use cases, the tactic returns instantaneously. We had to perform additional tests to
check that the decision procedure scales on larger expressions. This would be important in a
scenario where equations to be solved would be generated automatically by an external tool.
Alternatively, and more speculatively, this decision procedure might be used as a black-box
inside other decision procedures yielding inputs with size that we cannot foresee.

A key factor for efficiency turns out to be the concrete representation of numbers (i.e., states
in our automata), which we detail first.

Numbers, finite sets, and finite maps. To code the decision procedure, we mainly needed
a good representation of numbers, of finite sets, and of finite maps. Coq provides several
representations for natural numbers: Peano integers (nat), binary positive numbers (positive),
and big natural numbers in base 231 (BigN.t), the latter being shipped with an underlying
mechanism to use machine integers and perform efficient computations. (On the contrary,
unary and binary numbers are allocated on the heap, as any other datatype.) Similarly, there
are various implementations of finite maps and finite sets, based on ordered lists (FMapList),
AVL trees (FMapAVL), or uncompressed Patricia trees (FMapPositive).

While Coq standard library features well-defined interfaces for finite sets and finite maps,
the different definitions of numbers lack this standardisation. In particular, the provided tools
vary greatly depending on the implementation. For example, the tactic omega, which decides
Presburger’s arithmetic on nat, is not directly available for positive13. To abstract from this
choice of basic data structures, and to obtain a modular code, we designed a small interface
to package natural numbers together with the various operations we need, including sets and
maps. We specified these operations with respect to nat, and we defined several automation
tactics. In particular, by automatically translating goals to the nat representation, we can use
the omega tactic in a transparent way, notwithstanding the actual definition of numbers we
used.

However, note that we do not parameterise the implementations of finite sets and finite maps
by the definition of numbers: it would miss some opportunities for synergies. For instance, using
Coq’s positive numbers makes it possible to use efficient radix-2 search trees as maps (and sets):
accessing an element is done by reading the key without having to make comparison as would
be the case using AVL based trees. Hence, our decision procedure remains modular w.r.t. to
the implementation of numbers, but this modularity may be more coarse grained than usual.

Tests. We experimented with several implementations of this interface, to compare their rel-
ative performances: we measure the time required by the decision procedure to prove x = x,
where x is a given regular expression. We denote by “number of internal nodes” the number of

13Note that there is some ongoing standardisation work on this
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plus, dot, or star nodes in the abstract syntax tree of the regular expression, and we denote
by the “number of variables” the size of the underlying alphabet.

Of course, unary natural numbers behave badly since they bring an additional exponential
factor. However, thanks to the efficient implementation of radix-2 search trees for finite maps
and finite sets (FMapPositive and FSetPositive), we actually get higher performances by using
positive binary numbers rather than machine integers (BigN.t), even if the latter benefits from
machine arithmetic. This is no longer true with the extracted code: using machine integers is
faster on large expressions with a thousand internal nodes . We could of course benefit from
the addition of imperative features to Coq, as proposed in [9]. The use of persistent arrays
together with better support for machine-integers would certainly improve over the situation
we describe.

We performed intensive tests on randomly generated regular expressions. The decision
procedure tends to run in less than one second for expressions with 200 internal nodes and
30 variables, and less than one minute for even larger expressions (1000 internal nodes, 100
variables), which are very unlikely to appear in “human-written” proofs. The above timings
correspond to the “tactic scenario”, where execution takes place inside Coq; when extracting
to OCaml, the resulting code executes approximately 20 times faster.

We do not include a more precise timing table here for several reasons: timings are machine-
dependent, generating random regular expressions in a uniform way is difficult, and the nature
of the algorithm makes it highly non-deterministic from the complexity point of view. Indeed,
the running time is roughly proportional to the sizes of the generated DFAs, and these sizes
greatly vary from one case to another (exponential in the worst case, pretty small in the average
case). In particular, with large expressions, the mean time recorded on a thousand random tests
is not significant: the standard deviation is too high. Nonetheless, our benchmarks are available
for the interested reader [33].

1.7 Additional constructions

We now turn to the presentation of two other automata constructions we used at some point in
our development, but were later dropped.

1.7.1 Using Thompson’s construction, and matrix computations

In the algebraic presentation of Kozen’s proof (§1.3), we used Thompson’s construction, for
the sake of simplicity. We also used it for a while as our automata construction algorithm in
the Coq part, until we understood that we could prove algebraically the correction of a more
efficient construction.

More precisely, our automata construction was building a 3-uple of Coq matrices, following
exactly Thompson’s construction from Fig. 1.9. At this point, we relied heavily on matrix
computations, and the use of cleverly placed memoisation operators to take advantage of the
call-by-value evaluation of Coq’s vm_compute machinery.

At first, we tried to work with matrices over arbitrary regular expressions, prove that these
matrices were simple, and use these hypotheses in proofs. However, from the computational
point of view, it was obviously wrong. A slightly better idea was to define an automata in
terms of a 0-1 matrix of �-transitions J , and a family of 0-1 matrices of labelled transitions Ma.
Using the (degenerated) Kleene algebra of booleans14 as the elements of these matrices allowed
for slightly more efficient computations: for instance, the summation occurring in the matrix
product could be implemented lazily.

14where + is ’or’, · is ’and’, and x� is true
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Figure 1.26 Coq code for minimisation.

(* a : label *)
(* i : state *)
(* p,q,pt,pf,inv : set state *)
(* P : set (set state) *)
(* L : set (label * set state) *)

Variables states, finaux: stateset.
Variable labels: set label.
Variable delta: state → label → state.

Definition delta_inv:
label ∗ stateset → stateset := ....

Definition splittable p inv :=
let (pt,pf) := partition (fun i ⇒ i ∈ inv) p
in if is_empty pt || is_empty pf

then None
else Some (pt,pf).

Definition update_splitters p pf pt L :=
fold (fun a L ⇒ if (a,p) ∈ L
then {(a,pf),(a,pt)} ∪ L \ {(a,p)}
else
if cardinal pf < cardinal pt
then {(a,pf)} ∪ L
else {(a,pt)} ∪ L

) labels L.

Definition split inv P L :=
fold (fun p acc ⇒
match splittable p inv with
| None ⇒ acc
| Some (pf,pt) ⇒
let (P,L) := acc in
({pf, pt} ∪ P \ p,
update_splitters p pf pt L))

end
) P (P,L).

Function loop (P,L) {wf RPL (P,L)} :=
match choose L with
| None ⇒ P
| Some x ⇒ loop

(split (delta_inv x) P (L\x))4
end.

Definition partition :=
loop
{finals, states\finals}
(labels × {finals}).

In this setting, it was possible to actually compute the matrix J� and the matrices Ma · J�,
yielding a matricial NFA. However, this construction step was most surely the bottleneck of our
decision procedure: the construction algorithm using block matrices was building big automata,
and we had to compute the star of the whole �-transition matrix whatever the number of �-
transitions. Indeed, the matrices we built were rather sparse. This led us to restart almost from
scratch, and to seek more efficient constructions.

The decisive move was to add the conceptual and notational overhead of the “low-level”
representations of automata eNFA.t, NFA.t and DFA.t, emphasising a clear separation between
the computational world, and the world in which proofs were to be made. In a nutshell, this
experience led us to believe that making a distingo between the low-level implementation that
will compute, and the high-level representation used in proof is worth the effort.

1.7.2 Minimisation algorithms

In the first version of this decision procedure, we followed scrupulously the computational con-
tent of Kozen’s proof. Therefore, we implemented and proved correct a minimisation algorithm.
The Coq implementation is sketched in Fig. 1.26: it consists in a ‘while’ loop containing two
nested ‘for’ loops, translated using the fold operation of finite sets. The termination of the
external loop is ensured using a well-founded relation (the algorithm could be rewritten so as
to use structural recursion only, we found the resulting code less clear and harder to prove,
however).

The idea of the algorithm is to start from an initial partition of states (final and non final
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states), and to refine this partition whenever one of its elements is splittable: i.e., when a
move from a set of state can lead to two different sets by a transition with a given label a. The
implementation of this predicate is made efficient by pre-computing the inverse transition graph
(delta inv).

We implemented a variant of Hopcroft’s minimisation algorithm [77, 86]. This algorithm
uses a set L of splitters, i.e., pairs (label, state set) w.r.t. which one must attempt to split
classes of the partition. The crux of the algorithm is to keep from adding too much redundancy
in L: if a pair (a,q) is not in this set, then either every class of the partition is already split
w.r.t. (a,q), or L contains enough pairs to subsume (a,q).

We met two problems with this algorithm. First, the “process the smaller half” optimisa-
tion (the inner if of the update_splitters function) happened to be rather difficult to prove
correct. Second, this partition refinement algorithm runs in O(n log n) only when one combines
the “process the smaller half” idea (which is presented here) with a doubly-linked list repre-
sentation of partition blocks. The latter point is required to be able to compute the function
update_splitters(q) in time O(|δ−1(q)|).

We devoted some time to the definition of a refined version of this algorithm, using the correct
underlying data structures. However, we later moved to the equivalence check we presented
in §1.6.8, which made the minimisation step useless. With hindsight, we realise that such
a minimisation step may have been the perfect candidate for verification. Indeed, we could
have used an oracle (read: an OCaml or a Coq program) to build a minimised automaton,
and a certified verifier (the equivalence test from §1.6.8) could have been used to check this
result. (Note however that verifying that a minimised automaton is the minimal automaton
corresponding to a given DFA requires more computations, but this is not necessary for many
practical applications which only require smaller automata.)

1.8 Some complete examples

To conclude this chapter, we present some interesting examples of use of our tactics to solve
practical problems. For the sake of readability, we shall remain high-level: the interested reader
may consult the corresponding proof scripts [33].

1.8.1 Mechanised Church-Rosser theorems

We sketch the definition of the model of Kleene algebras that corresponds to the binary relations
from Coq standard library: this allows to give short mechanised proofs of so-called “Church-
Rosser” theorems. First, recall that the composition of binary is defined as follows:

Definition comp A (R S : relation A) : relation A := (fun x z ⇒ ∃ y, R x y ∧ S y z).

Then, note that homogeneous binary relations form an untyped model: the instances in the
left-hand side of Fig. 1.27 are parametrised by a set A coding for the domain and the co-domain
of the relations, and all operations are total. As it was the case with languages, we use the
singleton type unit for the index type T in the graph instance, and all operations just ignore
the superfluous parameters.

We state some such “Church-Rosser” theorems from [151] on the right-hand side of Fig. 1.27.
While these theorems cannot be solved automatically using our tactic, they can nevertheless be
given short proofs (i.e., less than 7 lines) that make intensive use of the kleene_reflexivity

decision procedure. (Note that while we state them in the particular model of homogeneous
relations, these theorems are actually valid in any Kleene algebra.)
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Figure 1.27 Some Church-Rosser theorems

Context {A: Type}.
Instance RG: Graph := {
T := unit;
X n m := relation A;
equal n m := same_relation A}.

Instance RSL_Ops: SemiLattice_Ops RG :=
{ plus n m := union A;
zero n m := empty (* fun x y ⇒ False *)}.

Instance RM_Ops: Monoid_Ops RG :=
{ dot n m p := comp A;
one n := eq}.

Instance RS_Op: Star_Op RG :=
{ star n := clos_refl_trans A}.

Variable (a b : relation A).
Theorem SemiConfluence_is_ChurchRosser:
b · a� ⊆ a� · b� ↔ (a+b)� ⊆ a� · b�.

Theorem WeakConfluence_is_ChurchRosser:
b� · a� ⊆ a� · b� ↔ (a+b)� ⊆ a� · b�.

Theorem BubbleSort:
b · a ⊆ a · b → (a+b)� ⊆ a� · b�.

Theorem Hindley_Rosen:
b·a ⊆ a�·(b+1) → b�·a� ⊆ a�·b�.

1.8.2 McNugget Numbers and the Coin Problem

A number n is a McNugget number when it can be expressed as 6x+9y+20z, with x, y, z being
positive numbers. A well-known mathematical riddle ask what is the highest number N that is
not a McNugget number. That is, find the least N such that:

∀n,N ≤ n =⇒ ∃x, ∃y, ∃z, n = x ∗ 6 + y ∗ 9 + z ∗ 20.

There exists many similar problems. For instance, one can prove that

∀n, 8 ≤ n =⇒ ∃x, ∃y, n = x ∗ 3 + y ∗ 5.

More generally, let (ai)1≤i≤p be a family of relatively prime numbers. The Coin Problem
asks what is the biggest n that cannot be expressed as a sum of multiples of the ai. While being
an interesting mathematical problem on its own, this is also a good source of examples for our
tactic. For instance, the inequation

∀n, 8 ≤ n =⇒ ∃x, ∃y, n = x ∗ 3 + y ∗ 5

can be translated into the following inequality in Kleene algebras

a8 · a� ≤ (a3 + a5)� where

�
a0 = 1

a(n+1) = a · an.

The following excerpt shows that these inequations can be stated, and proved, in the context
of an abstract Kleene algebra. Our decision procedure solves these two inequations almost
instantaneously.

Context {KA: KleeneAlgebra}.
Variable t : T.
Variable a : X t t.

Fixpoint pow {A} n (x : X A A) : X A A :=
match n with
| 0 ⇒ 1
| S n ⇒ x · pow n x
end.

Goal pow 8 a · a� ⊆ (pow 3 a + pow 5 a)�.
simpl pow. Time kleene_reflexivity. (* 0.01 s *)
Qed.

Goal pow 43 a · a� ⊆ (pow 6 a + pow 9 a + pow 20 a)�.
simpl pow. Time kleene_reflexivity. (* 0.01 s *)
Qed.

65



1.9 Related works and discussion

Finite automata theory

The notion of strict star form §1.6.3 was inspired by the standard notion of star normal form [38]
and the idea of star unavoidability [91]. To the best of our knowledge, using this notion to get
�-NFAs with acyclic epsilon-transitions is a new idea.

Our presentation of finite automata (§1.1) laid the ground for Kozen’s proof and our Coq
implementation (which follows roughly the same steps). In particular, we went through the
construction of �-NFAs and the subsequent removal of epsilon-transitions. However, there exists
several direct translations from regular expressions to NFAs, e.g., the Berry-Sethi construction
of the position automaton and its ulterior refinements, the continuation automaton [43, 91] and
the equation automaton [45]. It has been demonstrated in [44] that the equation automaton is a
quotient of the continuation automaton, which is in turn a quotient of the position automaton.
Moreover, each of these construction may be implemented to run in quadratic time with respect
to the size of the input regular expression (see for instance the survey of these constructions
given in [131]).

A preliminary investigation shows that these direct constructions of NFAs from regular
expressions may be more efficient than our implementation of a variant of Ilie and Yu’s con-
struction (without all the optimisations that are required to build a quotient of the position
automaton) followed by the removal of the epsilon-transitions. That is, we implemented Berry-
Sethi’s construction of the position automaton, and assessed the variation of the performances
of our decision procedure. While this new version of decision procedure seems to be slightly less
efficient on small examples, we measured an improvement of roughly 40% on bigger expressions.

This suggests that our tactic would benefit from switching to a (certified) implementation
of one of the aforementioned direct construction of NFAs. Note that we would not need to
give a proof of these constructions in the matricial setting: we could use the fact that our
existing decision procedure is complete with respect to the model of regular languages (see
§1.6.9). Hence, it would be possible to use a more efficient algorithm as a decision procedure
for the equational theory of Kleene algebra, as soon as we are able to prove that it decides the
equivalence of regular expressions.

Formalising finite automata theory

In a recent paper, Krauss and Nipkow [104] described an elegant equivalence checker for regular
expressions, based on derivatives of regular expressions. It works by constructing a bisimulation
relation between derivatives of regular expressions. The regular expressions are then mapped
to binary relations, which yields an automatic and complete proof method for (in)equalities of
binary relations over union, composition, (reflexive) and transitive closure. They state:

“[F]ormalising Kozen’s theorem is not easy—the proof amounts to replaying the well-
known automaton constructions in an algebraic setting, using matrices. Moreover,
the automata theory needed does not come for free either.”

Indeed, they manage to lift their decision procedure based on regular expression derivatives to
the binary relations, which yields a low-cost and elegant alternative to a whole development
of automata theory and the formalisation of Kozen’s proof. Compared with our development,
they cut corners in three places: going this way requires less notational and conceptual overhead
(matrices, automata); they only formalise the soundness proof (not completeness), which is
sufficient to build a tactic; they concentrate on the claimed main use case, namely homogeneous
binary relations. To conclude, they rightfully state:
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“In a nutshell, the succinctness of our development is the result of the chosen for-
malisation and of concentrating on the essentials.”

Indeed, their approach is much simpler for several reasons. First, they implemented an
algorithm based on Brzozowski’s derivatives [41, 135], which is much simpler than ours, but
also less efficient: the DFAs are produced directly from the regular expressions, but they can be
much larger [91]. Second, they do not prove Kozen’s initiality theorem: they prove correctness
in the model of regular languages and they use a nice mathematical trick to reach the model of
binary relations. As a consequence, their tactic cannot be used with other models like matrices,
(min,+) algebras, or weighted relations. Third, they do not formalise the proof of completeness,
or equivalently, the fact that the algorithm always terminates (Isabelle/HOL computations do
not need to terminate so that they can use a “while-option” combinator). Indeed, proving
termination and completeness belongs in the realm of meta-theory and is not required to use
the tactic. Finally, we do not include detailed comparisons of the relative performances of our
implementations of certified procedure for regular expression equivalence. Yet, in the tactic
scenario, we claim that our decision procedure is roughly one order of magnitude faster than
theirs on simple expressions (with 100 internal nodes and 10 variables), and roughly two orders
of magnitude faster than theirs on bigger expressions (500 internal nodes and 50 variables).

More recently, Wu, Zhang and Urban [158], developed a formalisation of the Myhill-Nerode
theorem based on regular expressions. In this paper, they argue that formalising automata in
HOL-based theorem provers is difficult because

“they need to be represented as graphs, matrices or functions, none of which are
inductive data-types. Also, convenient operations for disjoint unions of graphs, ma-
trices and functions are not easily formalisable in HOL.”

Then, they take the view that a regular language is one language where there exists a regular
expression that matches all of its strings. The reason is that regular expressions can be defined as
an inductive datatype. The paper proceed to prove that a central result of regular languages—
the Myhill-Nerode theorem—can be recreated by only using regular expressions. Recall that
this theorem states that a language has finitely many equivalence classes of words if and only
if the language is regular, where the Myhill-Nerode relation on a language A is

RA x y � ∀z, (x · z ∈ A) ⇐⇒ (y · z ∈ A).

We made no attempt at formalising this theorem, however, there seems to be little obstacle to
the formalisation of its text-book proofs using our library.

Wu, Zhang and Urban argue that their development is more concise than similar develop-
ments in Coq15, one by Filliâtre [64] and one by Almeida et al [5]: the former aimed at formalising
Kleene’s theorem, while the latter aimed at proving the correctness of Mirkin’s construction of
partial derivative automata in Coq. While Wu, Zhang and Urban do not make a comparison
with ours, we reckon that their development is more concise. However, ours subsumes the proof
of Kleene’s theorem (the language described by regular expressions are exactly the one defined
by finite automata), comprises efficient automata constructions, and was aimed at the proof of
Kozen’s theorem and its later use as a decision procedure.

Note that while they justify their work by the fact that formalising automata “can be a real
hassle in HOL-based provers”, and that neither Isabelle/HOL nor HOL4 nor HOL-light support
matrices and graphs with libraries, we did not encounter such difficulties in Coq (omitting the
intrinsic difficulty of working with rectangular matrices at some points).

15but not really comparable in scope
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In addition to the formalisations of Filliâtre and Almeida et al we mentioned, note that
Briais also formalised decidability of regular languages equality [35] (but not Kozen’s initiality
theorem). However, his approach is not computational, so that even straightforward identities
cannot be checked by letting Coq compute.

Even more recently, Coquand and Siles [56] formalised Bzrozowski’s algorithm in Coq. They
complete the formal investigations made by Krauss and Nipkow [104], who did not prove formally
the termination of their algorithm; and by Almeida et al [5] who did not finish the proof of
correctness of their procedure. To this end, Coquand and Siles introduce a new definition of
finiteness in type theory, which can be put to use to define functions by well-founded recursion.
Thus, they can use the proof that the set of derivatives of a regular expression is finite as the
recursive argument for the decision procedure for equivalence of regular expressions. (Note that
they use a trick by B. Barras and G. Gonthier that “guards” the proof of well-foundedness
by adding constructors in a lazy fashion. Thus, the actual proof of well-foundedness of an
example is never computed.) Yet, note that their algorithm performs poorly on medium to big
expressions. Again, we do not include detailed benchmarks, but in the tactic scenario, their
decision procedure is several order of magnitude slower than ours on expressions with, e.g., 50
internal nodes and 4 internal variables, and do not scale to bigger expressions. For instance, we
could not check that the McNugget inequation holds using their implementation in a reasonable
amount of time.

Algebraic tools for binary relations

The idea of reasoning about binary relations algebraically is old [60, 152]. Among others [97,
121], Struth applied this idea within an interactive theorem prover [151]. He later turned to
automated first-order theorem provers (ATP): Höfner and him verified facts about various rela-
tion algebras [84, 85] using Prover9, a resolution/paramodulation based ATP. Our approaches
are quite different: we implemented a decision procedure for a decidable theory, whereas their
proposal consists in feeding a generic automated prover with the axioms of some algebras, and
to see how far the prover can go by itself. As a consequence, their methodology applies directly
to a very wide class of goals and algebras, while we are restricted to the equational theory
of Kleene algebras. On the other hand, our tactic always terminates, while Prover9 is unpre-
dictable: even for very simple goals, it can diverge, find a proof immediately, or find a proof in
a few minutes [85].

Narboux defined a set of Coq tactics for diagrammatic proofs [115]. He works in the concrete
setting of binary relations, which makes it possible to represent more diagrams, but does not
scale to other models. The level of automation is rather low: it basically reduces to a set of
hints for the auto tactic.

Formalisation of algebraic hierarchies.

The problem of formalising mathematical structures or algebraic hierarchies in type theory is
well-known and usually considered as difficult [13, 24, 49, 67, 68]. Thanks to the recent addition
of first-class type-classes [147], we can use a very simple and naive solution here, which gives us
overloading for notations, lemmas, and tactics, as well as modularity, sharing, and a basis for
reification (Sect. 1.4).

Spitters and van der Weegen [148] recently described how to implement algebraic hierarchy
using type-classes. They take the radical view that bundling of operations and laws should be
kept to a minimum. We discussed the drawbacks of this approach in §1.4.2, and emphasise
the efficiency issues that appear with this solution: in practice, type-class resolution becomes
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too slow to be used in sizable developments that feature many instances. While technical
improvements may make the situation slightly better, there is strong evidence that more involved
solutions, like packed classes[67], are necessary to define large algebraic hierarchies.

More recently, Foster, Struth and Weber [65] demonstrated the use of the Isabelle/HOL
theorem prover to build the basis of a repository of algebraic structures. They implement a
theory hierarchy for relation and Kleene algebras using Isabelle’s local specification facilities
(called locales), which allow for modular development. Their hierarchy includes several refine-
ments of Kleene algebra, and they prove more than (simple) 800 facts in this setting, using the
automated theorem proving features included in Isabelle/HOL. Note that they cannot reuse the
decision procedure from [104] to decide (in)-equations in Kleene algebra, since it only applies
to the specific model of binary relations.

1.10 Conclusion

We have proved the correctness and completeness of an efficient reflexive decision procedure for
Kleene algebras. That is, we have carried a variant of Kozen’s proof of the initiality of the model
of regular languages for Kleene algebras in Coq via executable finite automata constructions.
Moreover, in order to get an efficient decision procedure, we had to use efficient data structures
and efficient out-of-the-shelf automata algorithms. To our knowledge, this is the first certified
efficient implementation of these algorithms and their integration as a generic tactic.

Our development is roughly 11 000 lines long, which decompose as 5300 lines of specifications
(functions, definition of instances of type-classes, etc), 4500 lines of proof, and 1000 lines of
comments. More precisely, the algebraic hierarchy (including matrices) accounts for around
2000 lines of specification, and 1200 lines of proofs. The decision procedure by itself (and
its correctness proof) accounts for around 1800 lines of specification and definitions, and 2400
lines of proofs. The definition of several models of Kleene algebra or general purpose libraries of
definitions and lemmas (especially about finite sets and finite maps) accounts for the remainder.

In the end, we did not use much automation besides tactics to decide equations in (non-
commutative) semirings, proof search hints for the usual auto tactic of Coq, and decision
procedure for arithmetic goals (like omega). Note that using type-classes to share lemmas
between structures was obviously crucial for keeping the “proof script vs definitions” ratio
down.

However, the amount of algebraic reasoning we had to handle prompted our decision to
investigate tactics to rewrite equations modulo associativity and commutativity of some oper-
ators.
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Chapter 2

Tactics for rewriting modulo AC

The amount of algebraic reasoning we had to handle to complete the decision procedure of
the previous chapter prompted our decision to investigate tactics to rewrite equations modulo
associativity and commutativity of some operators.

In this chapter, we propose a solution to this short-comings for the Coq proof-assistant:
we extend the usual rewriting tactic to automatically exploit commutativity and associativity
(AC), or just associativity (A) of some operations.

2.1 Introduction

Motivations. Typical hand-written mathematical proofs deal with commutativity and asso-
ciativity of operations in a liberal way. Unfortunately, a proof assistant requires a formal jus-
tification of all reasoning steps, so that the user often needs to make boring term re-orderings
before applying a theorem or using an hypothesis. Suppose for example that one wants to
rewrite using a simple hypothesis like H: ∀ x, x+−x = 0 in a term like a+b+c+−(c+a). Since
Coq standard rewrite tactic matches terms syntactically, this is not possible directly. Instead,
one has to reshape the goal using the appropriate commutativity and associativity lemmas:

Lemma add_comm: ∀ x y, x+y=y+x. Lemma add_assoc: ∀ x y z, x+(y+z)=(x+y)+z.

(* ((a+b)+c)+-(c+a) = ... *)
(* (b+(a+c))+-(c+a) = ... *)
(* b+((a+c)+-(a+c)) = ... *)

rewrite (add_comm a b), ← (add_assoc b a c).
rewrite (add_comm c a), ← add_assoc.
rewrite H. (* b+0 = ... ** )

This is not satisfactory for several reasons. First, the proof script is too verbose for such a simple
reasoning step. Second, while reading such a proof script is easy, writing it can be painful: there
are several sequences of rewrites yielding to the desired term, and finding a reasonably short
one is difficult. Third, we need to copy-paste parts of the goal to pick the right occurrences
when rewriting the associativity or commutativity lemmas: this is not a good practice since the
resulting script breaks when the goal is subject to small modifications. (Note that one could
also select occurrences by their positions, but this is at least as difficult for the user which then
has to count the number of occurrences to skip, and even more fragile since these numbers
cannot be used to understand the proof when the script breaks after some modification of the
goal.)

Trusted unification vs untrusted matching. There are two main approaches to imple-
menting rewriting modulo AC in a proof-assistant. First, one can extend the unification mech-
anism and the conversion test of the system to work modulo AC [126, 150]. This option is quite
powerful, since most existing tactics would then work modulo AC. In the case of Coq, it however
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requires non-trivial modifications of the core (the unification mechanism) and the kernel (the
conversion test) of the proof assistant. As a consequence, this obfuscates the meta-theory: we
need a new proof of strong normalisation and we increase the trusted code base. Moreover,
this would make the unification mechanism less efficient: unification modulo AC yields finite
sets of unifiers, while there is at most one unifier [124] in the Calculus of Constructions (in the
decidable fragment where terms are restricted to higher-order patterns).

On the contrary, we can restrict ourselves to pattern matching modulo AC and use the core-
system itself to validate all rewriting steps [32]. While being less powerful in theory, this does
not require modification of the kernel of the proof-assistant, and does not affect the efficiency
of the general purpose unification algorithm. We chose this option.

Contributions, scope of the library. Besides the facts that such tools did not exist in Coq
before and that they apparently no longer exist in Isabelle/HOL (see §2.9 for a more thorough
discussion), the main contributions of this work lie in the way standard algorithms and ideas
are combined together to get tactics that are efficient, easy to use, and covering a large range
of situations:

- We can have any number of associative and possibly commutative operations, each pos-
sibly having a neutral element. For instance, we can have the operations min, max, +,
and ∗ on natural numbers, where max and + share the neutral element 0, ∗ has neutral
element 1, and min has no neutral element.

- We deal with arbitrary user-defined equivalence relations. This is important for rational
numbers or propositions, for example, where addition and subtraction (resp. conjunction
and disjunction) are not AC w.r.t Leibniz equality, but for the relation Qeq (resp. iff).

- We handle “uninterpreted” function symbols: n-ary functions for which the only assump-
tion is that they preserve the appropriate equivalence relation. For example, subtraction
on rational numbers is a proper morphism for Qeq, while pointwise addition of numera-
tors and denominators is not. (Note that any function is a proper morphism for Leibniz
equality.)

- The interface we provide is straightforward to use: it suffices to declare instances of the
appropriate type-classes for the operations of interest, and our tactics will exploit this
information automatically. Moreover, since the type-class implementation is first-class,
this gives the ability to work with polymorphic operations in a transparent way. For
instance, concatenation of lists is declared as associative once and for all.

Methodology. Recalling the example from the beginning, an alternative to explicit sequences
of rewrites consists in making a transitivity step through a term that matches the hypothesis’
left-hand side syntactically.

a, b, c: Z
H: ∀ x, x + −x = 0
====================
((a+b)+c)+−(c+a) = ...

transitivity (b+((a+c)+−(a+c))).
(* ((a+b)+c)+-(c+a) = b+((a+c)+-(a+c)) *)
ring. (* aac_reflexivity *)
(* b+((a+c)+-(a+c)) = ... *)
rewrite H.
(* b+0 = ... *)

Although the ring tactic [76] solves the first sub-goal here, this is not always the case (e.g.,
there are AC operations that are not part of a ring structure). Therefore, we have to build a
new tactic for equality modulo A/AC: aac_reflexivity. Another drawback is that we have
to copy-paste and modify the term manually, so that the script can break if the goal evolves.
This can be a good practice in some cases: the transitivity step can be considered as a robust
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Figure 2.1 Classes for declaring properties of operations.

Variables (X: Type) (R: relation X) (op: X → X → X).
Class Associative := law_assoc: ∀ x y z, R (op x (op y z)) (op (op x y) z).
Class Commutative := law_comm: ∀ x y, R (op x y) (op y x).
Class Unit (e: X) := { law_id_left: ∀ x, R (op e x) x; law_id_right: ∀ x, R (op x e) x }.

and readable documentation point; in other situations we want this step to be inferred by the
system, by pattern matching modulo A/AC [90].

All in all, we proceed as follows to achieve a whole automation of the process. Let ≡AC

denote equality modulo A/AC; to rewrite using a universally quantified hypothesis of the form
H : ∀x, px = qx in a goal G, we take the following steps, which correspond to building the
proof-tree on the right-hand side:

1. choose a context C and a substitution σ such
that G ≡AC C[pσ] (pattern matching modulo
AC);

2. make a transitivity step through C[pσ];

3. close this step using a dedicated decision pro-
cedure (aac_reflexivity);

4. use the standard rewrite;

5. let the user continue the proof.

G ≡AC C[pσ]
3

H

...

C[qσ]
5

C[pσ]
4

G
2

For the sake of efficiency, we implement the first step as an OCaml oracle, and we check
the results of this (untrusted) matching function in the third step, using the certified decision
procedure aac_reflexivity. We define a reflexive tactic [4, 32, 76]: like in the previous chapter,
this means that we implement the decision procedure as a Coq function over “reified” terms,
which we prove correct inside the proof assistant. This step was actually quite challenging:
to our knowledge, aac_reflexivity is the first Coq reflexive decision procedure that handles
uninterpreted function symbols. (By contrast, existing reflexive decision procedures in Coq,
like ring, work for a fixed structure and cannot deal with uninterpreted function symbols.) In
addition to the non-trivial reification process, a particular difficulty comes from the (arbitrary)
arity of these symbols. To overcome this problem in an elegant way, our solution relies on a
dependently typed syntax for reified terms.

2.2 User interface

In this section, we shall see the user interface of our tools and in particular how we declare new
operations

Declaring A/AC operations. We rely on type-classes [147] to declare the properties of
functions and A/AC binary operations. This allows the user to extend both the decision pro-
cedure and the matching algorithm with new A/AC operations or units in a very natural way.
Moreover, this is the basis of our reification mechanism (see §2.5.3).

The classes corresponding to the various properties that can be declared are given in Fig. 2.1:
being associative, commutative, and having a neutral element. Basically, a user only needs to
provide instances of these classes in order to use our tactics in a setting with new A or AC
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Figure 2.2 Example instances.

Instance plus_A: Associative eq plus.
Instance plus_C: Commutative eq plus.
Instance plus_U: Unit eq plus O.

Instance app_A X: Associative eq (app X).
Instance app_U X: Unit eq (app X) (nil X).

Instance and_A: Associative iff and.
Instance and_C: Commutative iff and.
Instance and_U: Unit iff and True.
Instance and_P: Proper (iff ⇒ iff ⇒ iff) and.
Instance not_P: Proper (iff ⇒ iff) not.

operations. These classes are parameterised by a relation, R, so that one can work with an
arbitrary equivalence relation.

Fig. 2.2 also contains examples of instances. Note that polymorphic values (app, nil) are
declared in a straightforward way; for propositional connectives (and, not), we also need to
show that they preserve equivalence of propositions (iff), since this is not Leibniz equality.
We use for that the standard Proper type-class (when the relation R is Leibniz equality, these
instances are inferred automatically). Of course, while we provide these instances, more can be
defined by the user.

Example usage. The main tactics we provide are aac_rewrite, to rewrite modulo A/AC,
and aac_reflexivity to decide an equality modulo A/AC. Here is an simple example where
we use both of them in the context of operations on sets:

H1: ∀ x y z, x∩y ∪ x∩z = x∩(y∪z)
H2: ∀ x y, x∩x = x
a, b, c, d: set
=====================
(a∩c ∪ b∩c∩d) ∩ c = (a ∪ d∩b) ∩ c

Proof.
aac_rewrite H1; (* c ∩ (a ∪ b∩d) ∩ c = ... *)
aac_rewrite H2; (* c ∩ (a ∪ b∩d) = ... *)
aac_reflexivity.
Qed.

As expected, we provide variations to rewrite using the hypothesis from right to left, or in the
right-hand side of the goal.

Listing instances. There might be several ways of rewriting a given equation: several sub-
terms may match, so that the user might need to select which occurrences to rewrite. The
situation can be even worse when rewriting modulo AC: unlike with syntactical matching, there
might be several ways to instantiate the pattern so that it matches a given occurrence modulo
AC. (E.g., matching the pattern x + y + y at the root of the term a + a + b + b yields two
substitutions: {x �→ a + a; y �→ b} and the symmetrical one – assuming there is no neutral
element.) To help the user, we provide an additional tactic, aac_instances, to display the
possible occurrences together with the corresponding instantiations. The user can then use the
tactic aac_rewrite with the appropriate options.

2.3 Some complete examples

In this section, we do not aim at showing impressive examples of use of AC in proofs, like the
examples that were studied in the context of Maude [48]. We shall rather see how these tactics
apply in concrete examples that arise in day-to-day Coq proofs that occur in various contexts.

2.3.1 Homogeneous binary relations

Our first example takes place in the context of abstract rewriting that was used in the introduc-
tion of the previous chapter. We define in Fig. 2.3 some notations for the usual operations on
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Figure 2.3 Homogeneous binary relations

Require Import Relations.
Import Instances.Relations.
Variable A : Type.
Notation "R�" := (clos_refl_trans A R).
Notation "R+S" := (union A R S).
Notation "R·S" := (comp A R S).
Notation "R ≤ S" := (inclusion A R S).
Notation "R ≡ S" := (same_relation A R S).

Notation "1" := (@eq A).

Lemma plus_destruct R S T : R ≤ T → S ≤ T → R + S ≤ T.
Lemma star_induction R S : 1 + R·S ≤ S → R� ≤ S.
Lemma star_trans R: (R� · R� ) ≡ (R�).
Lemma one_leq_star R : 1 ≤ R �.
Lemma star_absorb R : R · R� ≤ R�.
Lemma distr_l R S T : ((R + S) · T) ≡ (R·T + S·T).

homogeneous binary relations from Coq’s standard library, as well as some lemmas. We import
the standard instances that declare these operations as associative and commutative (depending
of the operation) from a module of our library, Instances.Relations.

Then, the following proof that weak-confluence entails the Church-Rosser property follows
the pen-and-paper mathematical proof.

Variables R S: relation A.
Theorem WeakConfluence_is_ChurchRosser (H: R · S� ≤ S� · R�): (R+S)� ≤ S� · R�.
Proof.
apply star_induction; apply plus_destruct.
(* 1 ≤ S� · R� *)
do 2 rewrite ← one_leq_star.
(* 1 ≤ 1 · 1 *)
• aac_reflexivity.
(* (R + S) · (S� · R�) ≤ S� · R� *)
rewrite distr_l; apply plus_destruct.
(* R · (S� · R�) ≤ S� · R� *)
aac_rewrite H.
(* S� · R� · R� ≤ S� · R� *)
• aac_rewrite (star_trans); reflexivity.
(* S · (S� · R�) ≤ S� · R� *)
• aac_rewrite (star_absorb); reflexivity.

Qed.

In this proof, the use of the tactic aac_rewrite makes the reordering of parentheses implicit.
We only use the tactic aac_reflexivity in a trivial way to solve a sub-goal that only deals
with the fact that the identity relation eq is the neutral element for the composition of relations.
(Note that we could have used the tactic kleene_reflexivity from the previous chapter in
three places, instead of the lines starting with •.)

2.3.2 Arithmetic in Z

While Coq features some decision procedures like nsatz that decides systems of equations
over commutative rings or lia that solves linear arithmetic goals over Z, these tactics do not
provide much help when they cannot solve the goal. Therefore, our rewriting modulo AC tactic
complement these decision procedures, to ease the proof-engineering.

Our second example takes place in the context of proofs about hardware circuits that im-
plement arithmetic functions. This involves a lot of reasoning about machine-integers of fixed
precision. For instance, the correctness proof of an adder circuit from the next chapter requires
to prove the goal given in Fig. 2.4.

Note that in this setting, our rewriting tactic uses the AC properties of the multiplication
and the addition inside the arguments of mod, an uninterpreted symbol. (As a matter of fact, the
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Figure 2.4 Arithmetic in Z

Theorem Zmult_plus_distr: ∀ n m p : Z, (n + m) ∗ p = n ∗ p + m ∗ p.
Theorem Zmod_plus_weak: ∀ a b : Z, (a + b) mod a = b mod a
Theorem Zmod_small: ∀ a n : Z, 0 ≤ a < n → a mod n = a.

Variables low k: Z. Variables n m: nat.
Hypothesis Hlow: 0 ≤ low < 2n.
Hypothesis Hk: 0 ≤ k < 2m.
Goal ((2m + k) ∗ 2n + low) mod (2n ∗ 2m) = ((2m + k) mod 2m) ∗ 2n + low.
Proof.
aac_rewrite Zmult_plus_distr.
aac_rewrite Zmod_plus_weak in_right.
(* (2m ∗ 2n + k ∗ 2n + low) mod (2n ∗ 2m) = k mod 2m ∗ 2n + low *)
rewrite (Zmod_small k 2m Hk).
(*(2m ∗ 2n + k ∗ 2n + low) mod (2n ∗ 2m) = k ∗ 2n + low*)
aac_rewrite Zmod_plus_weak.
(* (2n ∗ k + low) mod (2n ∗ 2m) = k ∗ 2n + low *)
rewrite Zmod_small.
(* 2n ∗ k + low = k ∗ 2n + low *)
aac_reflexivity.
... (* proof of 0 ≤ 2n ∗ k + low < 2n ∗ 2m *)

Qed.

mod operation is not handled by other current Coq tactics such as lia, omega, . . . ) Generally,
aac_rewrite allows for more economical design of libraries: for instance, the Zmod_plus_weak
lemma from Fig. 2.4 usually comes in two flavours.

Theorem Zmod_plus_weak_r: ∀ a b : Z, (a + b) mod a = b mod a
Theorem Zmod_plus_weak_l: ∀ a b : Z, (b + a) mod a = b mod a

Since these two lemmas collapse modulo AC, we argue that a systematic use of our tactics could
simplify the design of libraries (removing useless lemmas). Note that, in our example in Fig. 2.4,
this means that we may use rewrite instead of the first two occurrences of aac_rewrite,
provided that we pick the right flavour of each lemma. Yet, we consider that a consistent use
of aac_rewrite is an elegant alternative to the profusion of lemma to remember.

Note that we could also enrich libraries with more powerful theorems. For instance, even
if the following one is stated in Coq’s standard library: it is seldom applicable as it is, using
Coq’s rewrite tactic.

Theorem Zmod_full: ∀ a b c, (c∗a + b) mod a = b mod a.

2.3.3 Operations on bit-vectors

Our third example takes place in the context of proofs about bit-vectors (fixed-length list of
booleans). We assume the definition of bit-vectors and the existence of some basic operations
on them in Fig. 2.5. In particular, notice the map2 function that takes as argument a binary
boolean function f and generates a function on pairs of vectors of size n by applying f pointwise.
The instances on the right-hand side of Fig. 2.5 illustrate the fact that if the underlying function
is AC or A, then so is the function operating on vectors. Moreover, if the underlying function
has a neutral element, then the function operating on vectors has also a neutral element (which
is a constant vector).
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Figure 2.5 Operations on bit-vectors

Import Instances.Bool.
Variable bvector : nat → Type.
Variable map2: (bool → bool → bool) →
∀ n, bvector n → bvector n → bvector n.

Variable map: (bool → bool) →
∀ n, bvector n → bvector n.

Variable const : bool → ∀ n, bvector n.

Notation "u ∧ v" := (map2 andb _ u v).
Notation "u ∨ v" := (map2 orb _ u v).
Notation "u ⊕ v" := (map2 xorb _ u v).
Notation "¬ u" := (map negb _ u).

Instance map2_A {f} {A: Associative eq f} {n}:
@Associative (bvector n) (eq) (map2 f n).

Instance map2_C {f} {C: Commutative eq f} {n}:
@Commutative (bvector n) (eq) (map2 f n).

Instance map2_U {f} {u:bool} {C: Unit eq f u} {n}:
@Unit (bvector n) (eq) (map2 f n) (const u n ).

Notation "0" := (const true _).
Notation "1" := (const false _).

Figure 2.6 Some lemmas about bit-vectors

Lemma bv_and_or_distr : ∀ n (v1 v2 v3 : bvector n), v1 ∧ (v2 ∨ v3) = (v1 ∧ v2) ∨ (v1 ∧ v3).
Lemma bv_and_neg_false : ∀ n (v : bvector n), v ∧ ¬ v = 0.
Lemma bv_and_false : ∀ n (v : bvector n), 0 ∧ v = 0.
Lemma bv_and_empty : ∀ n (u v : bvector n), u ∧ v = 0 → u ∧ ¬ v = u.

We present some lemmas about these operations on bit-vectors in Fig. 2.6 where we leave
the operators priority implicit. (Note that these lemmas look exactly like their counterparts on
booleans, thanks to the property we mentioned above.) We proceed to prove a typical goal that
arises in the context of randomised algorithms about boolean bit-vectors [11].

Variable n : nat. Variable K x y : bvector n.
Hypothesis H : y ∧ K = 0.
Goal ((K ∧ ¬x) ∨ y) ∧ ¬K = y.
aac_rewrite (bv_and_or_distr n). (* (¬K ∧ y) ∨ (¬K ∧ (¬x ∧ K)) = y *)
aac_rewrite (bv_and_neg_false n). (* (0 ∧ ¬x) ∨ (¬K ∧ y) = y *)
rewrite bv_and_false. (* 0 ∨ (¬K ∧ y) = y *)
aac_rewrite (bv_and_empty n y K); [ reflexivity | assumption ].

Qed.

While this goal amounts to a Boolean problem (which would be solved likewise), we want
to draw the attention to the fact that the use of our tactics seems to ease the proof-engineering
in this context.

2.4 Definitions

We have presented the user-interface of our tactics, and some complete examples. In this section,
we review some basic definitions of term rewriting that will be used in the later sections. (Note
that the amount of mathematical background required here is much lighter than in the previous
chapter.)

Definition 8. A signature Σ is a set of function symbols where each f ∈ Σ is associated with
an arity n ∈ N. The elements of Σ with arity 0 are called constants.

In the following, we let f, g, h, . . . range over function symbols, reserving letters a, b, c, . . .
for constants.
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Definition 9. Let Σ be a signature and X be a set of variables such that Σ ∩X = ∅. The set
T (Σ, X) of Σ-terms over X is inductively defined as

• X ⊆ T (Σ, X)

• for all n ≥ 0, for all f ∈ Σ with arity n, and for all t1, . . . , tn ∈ T (Σ, X), we have
f(t1, . . . , tn) ∈ T (Σ, X).

That is, variables are terms, and application of function symbols to terms yields terms. We
denote terms that do not contains variables by T (Σ). We shall emphasise the presence of
variables in terms as follows: unless stated otherwise, a term is an element of T (Σ), while a
pattern is an element of T (Σ, X) (that may contain variables).

Definition 10. Let Σ be a signature, and X a set of variables. A substitution is a partial
function of type X → T (Σ) that maps variables to terms.

In the following, we let σ range over substitutions. Substitutions are extended to partial
functions from patterns to terms in T (Σ) as expected. To simplify notations, we shall use σ
to denote both the substitution and its extension. Moreover, we shall use the usual postfix
notation for substitutions, writing pσ instead of σ(p).

Definition 11 (Identities). Let Σ be a signature, and X a set of variables. An identity is a
pair (s, t) ∈ T (Σ, X)× T (Σ, X). Identities will be written as �s, t�.

Definition 12 (Equational theory). The equational theory generated by an arbitrary set E of
identities corresponds to the equations that may be derived using the following inference rules:

�s, t� ∈ E

E � s ≡ t

E � s ≡ t E � t ≡ u

E � s ≡ u

E � s ≡ t

E � t ≡ s E � s ≡ s

E � s ≡ t

E � sσ ≡ tσ

E � s1 ≡ t1 . . . E � sn ≡ tn

E � f(s1, . . . , sn) ≡ f(t1, . . . , tn)

In the following, binary function symbols (written with an infix symbol, �) can be associative
(axiom A�) and optionally commutative (axiom C�); these symbols may be equipped with a
left and right unit u (axiom Uu,�):

A� : x � (y � z) ≡ (x � y) � z C� : x � y ≡ y � x Uu,� : x � u ≡ x ∧ u � x ≡ x

We use ⊕i (or ⊕) for associative-commutative symbols (AC), and ⊗i (or ⊗) for associative only
symbols (A). We denote by ≡AC the equational theory generated by these axioms on T (Σ). For
instance, in a non-commutative semi-ring (+, ∗, 0, 1), ≡AC is generated by

E = {A+, C+, A∗, U1,∗, U0,+} .

As was hinted at in the introduction, we shall prove that certain equalities are derivable
from the rules of equational reasoning and the axioms of AC for some operations. This is a
particular instance of the word problem.

78



Definition 13 (Word problem). Let Σ be a signature, X a set of variables, and E a set
of identites. The word problem for E is the problem of deciding E � s ≡ t for arbitrary
s, t ∈ T (Σ, X). In the following, we focus on the ground word problem, the word problem
restricted to terms s and t that do not contain variables.

We now turn to equational unification: the unification of two terms, w.r.t a set of identities.

Definition 14. Let Σ be a signature, X a set of variables, and E a set of identites. A E-
unification problem is a finite set of equations S = {�s1, t1�, . . . , �sn, tn�} between terms in
T (Σ, X). A solution to this problem is a substitution σ such that

∀i, 1 ≤ i ≤ n,E � σ(si) ≡ σ(ti)

In the following, we are only interested in a restricted case of equational unification: the
matching problem.

Definition 15. Let Σ be a signature, X a set of variables, and E a set of identites. Let p be a
pattern (i.e., p ∈ T (Σ, X)) and t a term of T (Σ). A solution to the matching problem (denoted
p ≤E t) is a substitution σ such that E � σ(p) ≡ t.

Finally, the following folk theorem is an obvious prerequisite for the decision procedure for
equality modulo AC, and the existence of an algorithm for matching modulo AC.

Theorem 13. The ground word problem for ≡AC and the matching modulo AC problem are
decidable.

2.5 Deciding equality modulo AC

In this section, we describe the stand-alone aac_reflexivity tactic, which decides equality
modulo AC in Coq. Recall that this tactic is extensible through the definition of new type-
class instances, and deals with uninterpreted homogeneous function symbols of arbitrary arity.
For the sake of clarity, we initially omit the case where binary operations have units. We will
describe this case in a second time in §2.7.1.

A two-level approach. We use the so called 2-level approach [14]: we define an inductive
type for terms, T, and a function eval: T → X that maps reified terms to user-level terms,
in some type X equipped with an equivalence relation R, which we sometimes denote by ≡.
This allows us to reason and compute on the syntactic representation of terms, whatever the
user-level model.

We follow the usual practice which consists in reducing equational reasoning to the compu-
tation and comparison of canonical forms. We define a function norm: T → T that computes
the canonical form of a given reified term and we prove it correct: that is, it is possible to derive
a proof of equality between the images of a term and its canonical form, via the evaluation
function eval.

Definition norm: T → T := ...
Lemma eval_norm: ∀ u, eval (norm u) ≡ eval u.
Theorem decide: ∀ u v, compare (norm u) (norm v) = Eq → eval u ≡ eval v.

In the terminology of [14], this is what is called the autarkic way : the verification of the equality
is performed inside the proof-assistant, using the conversion rule. To prove eval u ≡ eval v, it
suffices to apply the theorem decide and to let the proof-assistant check by computation that
the premise compare (norm u) (norm v) = Eq holds.
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Note that the formalisation of the completeness of compare is not required in the above
decide theorem: this is usual when implementing such decision procedures [76].

As usual, the implementation of decision procedure needs to meet two objectives. First,
the normalisation function (norm) must be efficient, and this dictates some choices for the
representation of terms. Second, the decision procedure can only be applied to terms in the
image of the evaluation function (eval): therefore, there is an incentive to have an expressive
representation of terms in the reified setting. However, we shall syntactically rule out ill-formed
terms (that is, terms whose image by eval is ill-typed), to keep eval simple (that is, not
requiring to handle “run-time errors” in any way).

2.5.1 Representation of reified terms

Parametrisation. We emphasized that existing reflexive decision procedures in Coq, like
ring, work with a fixed signature. For instance, a ring structure is parametrised by two asso-
ciative and commutative binary operations ⊕ and ⊗, such that ⊕ is distributive over ⊗; and
by two constants 0 and 1 that are neutral elements for ⊕ and ⊗. Declaring a new ring requires
to prove that a given ring signature satisfies the ring axioms. Then, each time the ring tactic
is invoked in a given ring structure, it builds an environment that maps a set of indices to
sub-terms that are neither ring constants, nor ring operations applied to other terms. As an
example, the following Coq expression

Zmod (a+b) a+ b = b+ Zmod (b+a) a

would be reified as
var 1+ var 3 = var 3+ var 2

in the environment

{1 �→ Zmod (a+b) a; 2 �→ Zmod (b+a) a; 3 �→ b} .

In this case, ring would fail to prove the equation: the reified terms have different variables
(that is, indexes) on each side.

By contrast, each time the tactic is invoked, we compute the signature, which is then used
as a parameter of the reified terms (the “reification environment”). To be more precise, the
reification environement is the disjoint sum of a signature for the binary associative (and option-
aly commutative) symbols and a signature for the function symbols (including the constants).
Note that the only constraint we put on the second signature is that function symbols must be
homogeneous: the type of the arguments and the type of the result of the function must be the
same. Informally, the complete environment would be

{1 �→ Zmod; 2 �→ a; 3 �→ b} ∪ {4 �→ +} .

Packaging the reification environment. We need Coq types to package information about
binary operations and uninterpreted function symbols. They are given in Fig. 2.7, where
respectful is the definition from Coq standard library for declaring proper morphisms. We
first define functions to express the fact that n-ary functions are proper morphisms. An “unin-
terpreted symbol package” contains the arity of the symbol, the corresponding function, and the
proof that this is a proper morphism. A “binary package” contains a binary operation together
with the proofs that it is a proper morphism, associative, and possibly commutative (we use
the type-classes from Fig. 2.1).

The fact that symbols arity is stored in the package is crucial: by doing so, we can use
standard finite maps to store all function symbols, irrespective of their arity. More precisely,
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Figure 2.7 Types for symbols.

(* type of n-ary homogeneous functions *)
Fixpoint type_of (X: Type) (n: nat): Type :=
match n with O ⇒ X | S n ⇒ X → type_of X n end.

(* relation to be preserved by n-ary functions *)
Fixpoint rel_of (X: Type) (R: relation X) (n: nat): relation (type_of X n) :=
match n with O ⇒ R | S n ⇒ respectful R (rel_of n) end.

Module Bin.
Record pack X R := {
value: X → X → X;
compat: Proper (R ⇒ R ⇒ R) value;
assoc: Associative R value;
comm: option (Commutative R value) }.

End Bin.

Module Sym.
Record pack X R := {
ar: nat;
value: type_of X ar;
compat: Proper (rel_of X R ar) value }.

End Sym.

we use two environments, one for uninterpreted symbols and one for binary operations; both
of them are represented as non-dependent functions from a set of indices to the corresponding
package types:

Variables (X: Type) (R: relation X).
Variable e_sym: idx → Sym.pack X R.
Variable e_bin: idx → Bin.pack X R.

(The type idx of indices is an alias for positive, the set of binary positive numbers; like in the
previous chapter, this allows us to define the above functions efficiently, using positive maps).

Syntax of reified terms. We now turn to the concrete representation of terms. The first
difficulty is to choose an appropriate representation for AC and A nodes, to avoid manipulating
binary trees. As it is usually done, we flatten these binary nodes using variadic nodes. Since
binary operations do not necessarily come with a neutral element, we use non-empty lists (resp.
non-empty multi-sets) to reflect the fact that A operations (resp. AC operations) must have at
least one argument.

Note that we could require A operations to have at least two arguments but this would
slightly obfuscate the code. Moreover, this does not fit nicely with multi-sets, and thus, would
prevent some code sharing. In the same fashion, we could ensure in the data-type that A/AC
symbols cannot have a term headed by the same symbol as argument. For the sake of simplicity,
we enforce this constraint only on the canonical forms of terms.

The second difficulty is to prevent ill-formed terms, like “abs 16 64”, where a unary function
is applied to more than one argument. One could define a predicate stating that terms are
well-formed [51], and use this extra hypothesis in later reasonings. We found it nicer to use
dependent types to enforce the constraint that symbols are applied to the right number of
arguments, according to their declared arity: it suffices to use vectors of arguments rather than
lists.

The resulting data-type for reified terms is given in Fig. 2.8. This definition allows for
a simple and total implementation of eval, given on the right-hand side. For uninterpreted
symbols, recall the trick from our introductory example which consists in using an accumulator
to store the successive partial applications, until the function gets all its arguments.

As expected, this syntax allows us to reify arbitrary user-level terms. For instance, take
(a∗S(b+b))−b. We first construct the following environments where we store information about
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Figure 2.8 Data-type for terms, and related evaluation function.

(* non-empty lists/multisets *)
Inductive nelist A :=
| nil: A → nelist A
| cons: A → nelist A → nelist A.

Definition nemset A := nelist (A∗positive).

(* reified terms *)
Inductive T: Type :=
| bin_ac: idx → nemset T → T
| bin_a : idx → nelist T → T
| sym: ∀ i, vT (Sym.ar (e_sym i)) → T
with vT: nat → Type :=
| vnil: vT O
| vcons: ∀ n, T → vT n → vT (S n).

Fixpoint eval (u: T): X :=
match u with
| bin_ac i l ⇒ let o:=Bin.value (e_bin i) in

nefold_map o (fun(u,n)⇒copy o n (eval u)) l
| bin_a i l ⇒ let o:=Bin.value (e_bin i) in

nefold_map o eval l
| sym i v ⇒ xeval v (Sym.value (e_sym i))
end
with xeval {i} (v: vT i): Sym.type_of i→ X :=
match v with
| vnil ⇒ (fun f ⇒ f)
| vcons _ u v ⇒ (fun f ⇒ xeval v (f (eval u)))
end.

all atoms:

e_sym e_bin

1 ⇒ � ar := 1; value := S; compat := ... �
2 ⇒ � ar := 0; value := a; compat := ... �
3 ⇒ � ar := 0; value := b; compat := ... �
_ ⇒ � ar := 2; value := minus; compat := ... �

1 ⇒ � value := plus; compat := ... ;
assoc := _ ; comm := Some ... �

_ ⇒ � value := mult; compat := ... ;
assoc := _ ; comm := None �

These environment functions are total: they associate a semantic value to indices that might
be considered as out-of-the-bounds. This makes using it convenient and easy to reason about:
there is no need to return an option or a default value in case undefined symbols are encountered
in the term1. However, this requires environments to contain at least one value. We can then
build a reified term whose evaluation in the above environments reduces to the starting user-level
terms:
Let t := sym 4 �bin_a 2 [(sym 2 ��); (sym 1 �bin_ac 1 [(sym 3 ��,1) ;( sym 3 ��,1) �)]; sym 3 ���.
Goal eval e_sym e_bin t = (a∗S(b+b))−b.
reflexivity.

Qed.

Note that we cannot use two environments e_bin_a and e_bin_ac: since each environment
requires a default value, it would not be possible to reify terms (and to use our tactics) in a
setting with only A or only AC operations. Moreover, having a single environment for all binary
operations makes it easier to handle neutral elements (see §2.7.1).

2.5.2 The algorithm and its proof

Canonical forms are computed as follows: terms are recursively flattened under A/AC nodes
and arguments of AC nodes are sorted with respect to a total order. We give excerpts of this
algorithm below, focusing on AC nodes (the treatment of A nodes is somewhat simpler). First,
we define smart constructors that prevent building unary AC or A nodes.

Definition bin_ac’ i (u: nemset T): T := match u with nil (u,1) ⇒ u | _ ⇒ bin_ac i u end.
Definition bin_a’ i (u: nelist T): T := match u with nil (u) ⇒ u | _ ⇒ bin_a i u end.

1Note that “undefined” symbols shall not occur in the terms built using our tactics, but that we nevertheless
have to handle them somehow in the evaluation.
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Figure 2.9 Normalisation of multi sets

Definition extract_ac i (s: T): nemset T :=
match s with bin_ac j m when i = j ⇒ m | _ ⇒ [s,1] end.

(* taking n copies of a given non-empty multiset *)
Definition copy_mset n (l: nemset T): nemset T :=
match n with xH ⇒ l | _ ⇒ nelist_map (fun (v,m) ⇒ (v,n∗m)) l end.

Fixpoint nefold_map {A B : Type} (comb: B → B → B) (f : A → B) : nelist A → B := ...

Definition norm_mset norm i (u: nemset T): nemset T :=
nefold_map merge_sort (fun (x,n) ⇒ copy_mset n (extract_ac i (norm x))) u

Then, we define a function norm_msets norm i that normalises (w.r.t. norm) and sorts a
multi-set, ensuring that none of its children starts with an AC node with index i. Similarly,
we define a function norm_list that normalises and flattens a non-empty list. Finally, the
canonisation function is given below:

Fixpoint norm (u: T): T := match u with
| bin_ac i l ⇒ if is_commutative e_bin i then bin_ac’ i (norm_msets norm i l) else u
| bin_a i l ⇒ bin_a’ i (norm_lists norm i l)
| sym i l ⇒ sym i (vnorm l)
end
with vnorm {i} (l: vT i): vT i := match l with
| vnil ⇒ vnil
| vcons _ u l ⇒ vcons (norm u) (vnorm l) end.

Remark that norm depends on the information contained in the environments: indeed, the
look-up is_commutative e_bin i in the definition of norm is required to make sure that the
binary operation i is actually commutative (remember that we need to store A and AC symbols
in the same environment, so that we might2 have AC nodes whose corresponding operation is not
commutative). Similarly, to handle neutral elements (§2.7.1), we will rely on the environment
to detect whether some value is a unit for a given binary operation.

Correctness and completeness. We prove that the normalisation function is sound w.r.t
to the evaluation function. That is, the images through eval of a reified term and its canonical
form are equal w.r.t. the user-level equivalence relation ≡ (note that eval and norm implicitly
depend on e_bin and e_sym).

Theorem eval_norm: ∀ u, eval (norm u) ≡ eval u.

The proof of this theorem relies on the above defensive test against ill-formed terms, the look-up
made by norm before going through an AC node. Since invalid AC nodes are left intact, we
do not need the missing commutativity hypothesis when proving the correctness of norm. It is
then routine to prove the correctness of the decision procedure.

Theorem decide (u v: T) : compare (norm u) (norm v) = Eq → eval u ≡ eval v.

We did not prove completeness in Coq. First, this is not needed to get a sound tactic.
Second, this proof would be quite verbose: we should axiomatize what is equality modulo AC
on reified terms and prove that reified terms that are provably equal modulo AC are equal via

2Again, this shall not occur in the terms built using our tactics, but we nevertheless have to handle this
situation
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the evaluation function. Third, we would not be able to completely prove the completeness
of the resulting tactic anyway, since one cannot reason about the reification function in the
proof-assistant [30, 76].

Efficiency. The dependently typed representation of terms we chose in order to simplify
proofs does not preclude efficient computation. Technically, we rely on vm_compute [75] which
performs strict evaluation. Thus, there is a slight overhead due to the passing of the extra
arguments w.r.t. the untyped syntax with a well-formedness predicate. Algorithmically, the
complexity of the procedure is dominated by the merging of sorted multi-sets, which relies on
a linear comparison function. We did not put this decision procedure through an extensive
testing; however, we claim that it returns instantaneously on practical examples.

Moreover, the size of the generated proof is linear with respect to the size of the starting
terms. The proof term we generate is the application of the decide theorem to the type of the
carrier X, the setoid relation we consider R, the reification environments e_sym and e_bin, the
reified terms u and v, and a proof term for Eq = Eq. (Recall that the Coq has to check that the
premise compare u v = Eq of the decide theorem is convertible to Eq = Eq.)

exact (decide X R e_sym e_bin u v (eq_refl comparison Eq))

Notice that the size of the reification environments is linear with respect to the size of the
original terms, and that the reified terms are smaller than the original terms.

By contrast, using the tactic language to build a proof out of associativity and commutativity
lemmas would usually yield a quadratic proof. That is, the proof term built by each invocation of
the standard rewrite tactic with the associativity and commutativity lemmas contains explicitly
the sub-terms that the lemmas are applied to, and the context in which this rewrite step takes
place.

2.5.3 Reification

Following the reflexive approach to solve an equality modulo AC, it suffices to apply the above
theorem decide (§2.5.2) and to let Coq compute. To do so, we still need to provide two
environments e_bin and e_sym and two terms u and v whose evaluation is convertible with the
user-level terms.

Type-class based reification. In the previous chapter, we relied on projections of type-
classes fields to guess how to reify the terms. However, this would force the users to use our
definitions and notations from the beginning, or to use ad-hoc tactics to make projections
appear.

Instead, we let the users work with their own definitions, and we exploit type-classes to
perform reification. The idea is to query the type-class resolution mechanism to decide whether
a given subterm should be reified as an AC operation, an A operation, or an uninterpreted
function symbol. Recall that the definition of the Associative class is as follows.

Class Associative (X: Type) (R: relation X) (op: X → X → X) := law_assoc: ...

We reify the goal with respect to a given carrier type Y, and a given setoid relation S: relation Y.
Upon encoutering a term f a b whose head-symbol is of type Y → Y → Y, we query the type-
class resolution mechanism for an instance of the class Associative Y S f. If the resolution
succeeds, we register the binary symbol f as associative and we proceed to query for an instance
of the class Commutative Y S f; otherwise, we stop the analysis of this symbol.

To be more precise, we use a two-phases analysis. The inference of binary A or AC operations
takes place first, by querying for instances of the classes Associative and Commutative on all
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binary applications that occur in the term, including terms like f a b c, which is a binary
application of f a to two arguments b and c. (Note that we do not require a to be of the same
type as b and c here, which makes it possible to handle parametrised associative operations
like List.app.) The remaining difficulty is to discriminate whether other applications should be
considered as a function symbol applied to several arguments, or as a constant. On an example,
considering the application f (a+b) (b+c) c, it suffices to query for Proper instances in the
following order:

1. Proper (R ⇒ R ⇒ R ⇒ R) (f) ?
2. Proper (R ⇒ R ⇒ R) (f (a+b)) ?
3. Proper (R ⇒ R) (f (a+b) (b+c)) ?
4. Proper (R) (f (a+b) (b+c) c) ?

The first query that succeeds tells which partial application is a proper morphism, and with
which arity. The last query always succeeds since the relation R is reflexive: the inference of
constants – symbols of arity 0 – is the catch-all case of reification. We then proceed recursively
on the remaining arguments; in the example, if the second call is the first to succeed, we do not
try to reify the first argument (a+b): the partial application f (a+b) is considered as an atom.

Reification language. We use OCaml to perform this reification step. Using the meta-
language OCaml rather than the meta-language of tactics Ltac is a matter of convenience: it
allows us to use more efficient data-structures. For instance, we use hash-tables to memoise
queries to type-class resolution, which would have been difficult to mimic in Ltac or using
canonical structures [73].

The resulting code is non-trivial, but too technical to be presented here. Most of the
difficulties come from the fact that we reify uninterpreted functions symbols using a dependently
typed syntax, and that our reification environments contain dependent records: producing such
Coq values from OCaml is tricky to get right, and is quite verbose.

Finally, we wrap up the previous elements in a tactic, aac_reflexivity, which automates
this process, and solves equations modulo AC. To be more precise, given a goal whose head
symbol is R with type relation X, the tactic:

1. checks that R is an equivalence relation

2. does a traversal of the terms to compute the set of AC/A symbols and the set of uninter-
preted symbols that are morphisms for R and memoize this information in a map indexed
by Coq terms;

3. does a second traversal of the terms, to reify them according to the signature that was
inferred in the previous step;

4. builds a proof term that applies the decide theorem;

5. makes a call to vm_compute to make sure that the premise of decide holds.

Note that knowing the relation R is crucial to be able to infer the signature. However, it is
possible to lift the requirement that R is an equivalence relation. We define a new type-class
AAC_lift (see Fig. 2.10) that is used to find the equivalence relation w.r.t. which operations
are A, AC or proper morphisms, starting from the relation appearing in the goal.

For instance, in the context of nat, one can define an instance AAC_lift le eq. This makes
it possible to use the tactic aac_reflexivity or to make rewriting modulo AC steps on goals
with head-symbol le: if the tactics find a proof of equality modulo AC/A in the setting of eq,
this proof will be lifted to the relation le. More precisely, suppose we want to rewrite modulo
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Figure 2.10 Lifting

Class AAC_lift X (R: relation X) (E : relation X) := {
aac_lift_equivalence : Equivalence E;
aac_lift_proper : Proper (E ⇒ E ⇒ iff) R

}.

(* simple instances, when we have a subrelation, or an equivalence *)
Context {X: Type} {R: relation X} {E: relation X} {HE: Equivalence E}.
Instance aac_lift_subrelation {HR: @Transitive X R} {HER: subrelation E R}: AAC_lift R E .
Instance aac_lift_proper {HR: Proper (E ⇒ E ⇒ iff) R}: AAC_lift R E.

AC the equation H : ∀x, px = qx in the left-hand side of the goal foo < bar, we would build
the following proof-tree:

aac reflexivity
pσ =AC foo

qσ < bar

pσ < bar
rewrite H

foo < bar

2.6 Matching modulo AC

We now turn to the second part of our work: the implementation of the oracle in OCaml that
gives the possible instantiations of the rewriting identity (i.e., a universally quantified equality).
This mainly boils down to matching. Recall that solving a matching problem modulo AC
consists in, given a pattern p and a term t, finding a substitution σ such that pσ ≡AC t. While
this is a well-trodden area, with many known algorithms [51, 63, 90, 120], we present here a
simple and concise one, which can be made efficient enough for our needs.

Naive algorithm. Matching modulo AC can easily be implemented non-deterministically.
For example, to match a sum p1 ⊕ p2 against a term t, it suffices to consider all possible
decompositions of t into a sum t1⊕t2. If matching p1 against t1 yields a solution (a substitution),
it can be used as an initial state to match p2 against t2, yielding a more precise solution, if any.
To match a variable x against a term t, there are two cases depending on whether or not the
variable has already been assigned in the current substitution. If the variable has already been
assigned to a value v, we check that v ≡AC t. If this is not the case, the substitution must
be discarded since x must take incompatible values. Otherwise, i.e., if the variable is fresh, we
add a mapping from x to v to the substitution. To match an uninterpreted node f(q) against
a term t, it must be the case that t is headed by the same symbol f , with arguments u; we just
match q and u pointwise.

We write σ : p� t : ρ to state that, starting with a substitution σ, it is possible to match p
against t, yielding the substitution ρ. The non-deterministic matching algorithm is described in
Fig. 2.11, using inference rules. Note that this algorithm is fairly general: it just tries matching
with all equivalent terms w.r.t. the given equational theory. However, we shall see that it can
be implemented to be efficient enough for our purposes.

Monadic implementation. We implemented a monad for non-deterministic and backtrack-
ing computations, along the lines of [149]. In this setting, it is possible to express the fact that a
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Figure 2.11 Matching algorithm.

t ≡AC t1 �i t2 σ1 : p1 � t1 : σ2 σ2 : p2 � t2 : σ3

σ1 : p1 �i p2 � t : σ3

t = f(ti) σi : pi � ti : σi+1

σ0 : f(pi)� t : σn

σ(x) = v v ≡AC t

σ : x� t : σ

σ#x

σ : x� t : σ ∪ {x �→ t}

Figure 2.12 Search monad primitives.

val (�=): α m → (α → β m) → β m
val (�|): α m → α m → α m
val return: α → α m
val fail: unit → α m

computation may return one, several or no values. Therefore, it allows for expressing programs
in a concise and elegant fashion: the monad threads computations between functions that take
one argument and return collections of results. Fig. 2.12 presents the primitive functions offered
by this monad: �= is a backtracking bind operation, while �| is the non-deterministic choice.

We have an OCaml type for terms similar to the inductive type we defined for Coq reified
terms: applications of A/AC symbols are represented using their flattened normal forms. From
the primitives of the monad, we derive functions operating on terms (Fig. 2.13): the function
split_ac i implements the non-deterministic split of a term t into pairs (t1, t2) such that
t ≡AC t1 ⊕i t2. If the head-symbol of t is ⊕i, then it suffices to split syntactically the multi-set
of arguments; otherwise, we return an empty collection. The function split_a i implements
the corresponding operation on associative only symbols.

The matching algorithm proceeds by structural recursion on the pattern, which yields to
the implementation presented in Fig. 2.14 (using an informal ML-like syntax). A nice property
of this algorithm is that it does not produce redundant solutions, so that we do not need
to reduce the set of solutions before proposing them to the user. While keeping this simple
implementation, there is some room for minor improvements. Indeed, representing terms and
patterns using normal forms enable some low-level optimisations: we can consider not only the
head-symbol of the pattern, but also a few more symbols before engaging in a costly operation.
For instance, if the pattern has the form x⊕ p, and if x is not fresh in the current substitution
σ, it is obviously a poor solution to try all decompositions of the term: a better solution is to
remove the factor σ(x) from the term (modulo AC or A).

Correctness. Following [51], we could have attempted to prove the correctness of this match-
ing algorithm. While this could be an interesting formalisation work per se, it is not necessary
for our purpose, and could even be considered an impediment. Indeed, we implement the
matching algorithm as an oracle, in an arbitrary language – that happens in our case to be
the meta-language in which the proof assistant is written. Thus, we are given the choice to

Figure 2.13 Search monad derived functions.

val split_ac: idx → term → (term ∗ term) m
val split_a : idx → term → (term ∗ term) m
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Figure 2.14 Backtracking pattern matching, using monads.

mtch (p1 ⊕i p2) t σ = split_ac i t �= (λ (t1,t2) → mtch p1 t1σ �= mtch p2 t2)
mtch (p1 ⊗i p2) t σ = split_a i t �= (λ (t1,t2) → mtch p1 t1 σ �= mtch p2 t2)
mtch (f(p)) (f(u)) σ = fold_2 (λ acc p t → acc �= mtch p t) (return σ) p u
mtch (var x) t σ when Subst.find σ x = None = return (Subst.add σ x t)
mtch (var x) t σ when Subst.find σ x = Some v = if v ≡AC t then return σ else fail()

use a free range of optimisations, and the ability to exploit all features of the implementation
language. In any case, the prophecies of this oracle, a set of solutions to the matching problem,
are verified by the reflexive decision procedure we implemented in §2.5.

Efficiency Let us comment on the above algorithm. First, note that the complexity of match-
ing modulo AC with constants is NP-complete [16], even in the elementary [63] case where there
is a single AC operator, variables and constants. Second, the usual efficient implementations of
matching modulo AC involve algorithms for solving diophantine equation[52, 63]. Therefore, the
simple algorithm we describe could probably not compete with the state-of-the-art algorithms
on big terms [62]. However, it may be the case that the size of the terms and patterns which
are likely to appear in a standard Coq proof do not justify such an heavy machinery. Indeed,
we implemented a slightly refined version of the above algorithm, which performs quite well
in practice. We may argue that terms that appear in day-to-day Coq proofs feature a lot of
uninterpreted symbols, and comparatively few associative and commutative symbols.

2.7 Bridging the gaps

Combining both the decision procedure for equality modulo AC and the algorithm for matching
modulo AC, we get the aac_rewrite tactic for rewriting modulo AC in Coq. To be more precise,
given an universally quantified equality H : ∀x, px = qx to be rewritten in the left-hand side
of a goal R t s, the matching algorithm is used as an oracle to find a substitution σ such that
pσ ≡AC t. Then, we make a transitivity step to the term pσ and we use the standard rewrite

tactic to rewrite H. (Note that it is crucial to make the transitivity step in such a way that
p syntactically appear in the goal.) It is then possible to close the first goal generated by the
transitivity step using aac_reflexivity. We now turn to lifting some simplifying assumptions
that we made in the previous sections.

2.7.1 Neutral elements

The decision procedure from §2.5 and the matching algorithm from §2.6 were defined in a
context where AC or A operations did not have neutral elements. However, adding support for
neutral elements (or “units”) is of practical importance:

- to let the aac_reflexivity tactic decide more equations (like a+max (0, b ∗ 1) = a+ b);

- to avoid requiring the user to normalise terms manually before performing rewriting steps
(e.g., to rewrite using ∀x, x+ x = x in the term a ∗ b+ b ∗ a ∗ 1);

- to propose more solutions to pattern matching problems (consider rewriting the identity
∀xy, x · y ·x⊥ = y in a · (b · (a · b)⊥), where · is an associative only operation with a neutral
element u: the variable y should be instantiated with the neutral element u).

Therefore, we shall refine the signature we work with to let some AC or A symbols have
units. We proceed to examine the necessary refinements for the various parts of our setting.
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Figure 2.15 Additional environment for terms with units.

Variable e_bin: idx → Bin.pack X R

Record binary_for (u: X) := {
bf_idx: idx;
bf_desc: Unit R (Bin.value (e_bin bf_idx)) u .

Record unit_pack := {
u_value: X;
u_desc: list (binary_for u_value) }.

Variable e_unit: idx → unit_pack.

Extending the pattern matching algorithm. Matching modulo AC with units does not
boil down to pattern matching modulo AC against a normalised term: a · b · (a · b)⊥ is a normal
form and the algorithm of Fig. 2.14 would not give solutions with the pattern x · y · x⊥. The
patch is straightforward: it suffices to let the non-deterministic splitting functions (Fig. 2.13)
use the neutral element possibly associated with the given binary symbol. For instance, calling
split_a on the previous term would return the four pairs �u, a · b · (a · b)⊥�, �a, b · (a · b)⊥�,
�a · b, (a · b)⊥�, and �a · b · (a · b)⊥, u�, where u is the neutral element of ·.

Extending the syntax of reified terms. The obvious idea is to replace non-empty lists
(resp. multi-sets) by lists (resp. multi-sets) in the definition of terms in Fig. 2.8. This has two
drawbacks. First, unless the evaluation function (Fig. 2.8) becomes a partial function, every
A/AC symbol must then be associated with a unit (which precludes, e.g., min and max to be
defined as AC operations on relative numbers). Second, two symbols cannot share a common
unit, like 0 being the unit of both max and plus on natural numbers: we would have to know
at reification time how to reify 0 – is it an empty AC node for max or for plus?

Instead, we add an extra constructor for units to the data-type of terms, and a third envi-
ronment to store all units together with their relationship with binary operations. The actual
definition of this third environment requires a more clever crafting than the other ones. The
starting point is that a unit is nothing by itself, it is a unit for some binary operations. This con-
nection must be tracked, otherwise, the reified data-type become meaningless: if in the reified
world, one forgets that 0 is a unit for plus, we cannot prove that the normalisation functions
preserve equality. Thus, the type of the environment for units has to depend on the e_bin

environment. This type is given in Fig. 2.15. The record binary_for u stores the connection
between a binary operation (pointed to by its index bf_idx) and the constant u. Then, each
unit is bundled with the list of operations it is a unit for (unit_pack): like for the environment
e_sym, these dependent records allow us to use plain, non-dependent maps.

In the end, the syntax of reified terms depends3 only on the environment for uninterpreted
symbols (e_sym), to ensure that arities are respected and the environment for units (e_unit)
depends on the environment for binary operations (e_bin).

Extending the decision tactic. Updating the Coq normalisation function to deal with units
is fairly simple but slightly verbose. Like we used the e_bin environment to check that bin_ac
nodes actually correspond to commutative operations, we exploit the information contained in
e_unit to detect whether a unit is a neutral element for a given binary operation. Normalisation
of non-empty multi-sets and non-empty lists is straightforward: it suffices to flatten (resp.
flatten and sorts) the arguments of associative (resp. associative and commutative) symbols,
taking care of the potential collapses that occur when a given operation is applied only to copies
of its unit.

3as in “dependent types”
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Extending the reification mechanism. The above modifications are comparatively simpler
w.r.t the modifications that must be done in the OCaml reification code. While it was already
quite technical, it becomes even more complicated. A practical consideration is that calling
type-class resolution on all constants of the goal, to get the list of binary operations they are a
unit for, would be too costly.

Indeed, the presence of units is the actual reason for the two passes of inference (See §2.5.3).
That is, we perform a first pass on the goal, where we infer all AC/A operations, and for each
of these, we query the type-class inference mechanism for instances of the class Unit. Then,
we construct the reified terms in a second pass, using the previous information to distinguish
units from regular constants. However, if the two phases were mixed, we may end up reifying
would-be units as constants. (Consider for instance the expression 1+b∗b in which one wants
to rewrite H: ∀ x y, x + x∗y∗y: the expressions 1 may have to be reified before encountering
the AC operation ∗ it is a unit for.)

In the end, the OCaml code for the reification (including the inference of the reification
environments) and the posterior reconstruction of Coq terms to apply the decide theorem is
roughly 1100 lines long4.

2.7.2 Subterms

Another point of high practical importance is the ability to rewrite in subterms rather than at
the root. Indeed, the algorithm of Fig. 2.14 does not allow to match the pattern x⊕ x against
the terms f(a⊕ a) or a⊕ b⊕ a, where the occurrence appears under some context. Technically,
it suffices to extend the (OCaml) pattern matching function and to write some boilerplate
to accommodate contexts; the (Coq) decision procedure is not affected by this modification.
Formally, subterm-matching a pattern p in a term t results in a set of solutions which are pairs
�C,σ�, where C is a context and σ is a substitution such that C[pσ] ≡AC t.

Variable extensions. It is not sufficient to call the (root) matching function on all syntactic
subterms: the instance a⊕ a of the pattern x⊕ x is not a syntactic subterm of a⊕ b⊕ a. The
standard trick consists in enriching the pattern using a variable extension [123, 144], a variable
used to collect the trailing terms. In the previous case, we can extend the pattern into y⊕x⊕x,
where y will be instantiated with b. It then suffices to explore syntactic subterms: when we try
to subterm-match x⊕ x against (a⊕ c)⊗ (a⊕ b⊕ a), we extend the pattern into y⊕ x⊕ x and
we call the matching algorithm (Fig. 2.14) on the whole term and the subterms a, b, c, a ⊕ c
and a⊕ b⊕ a. In this example, only the last call succeeds.

More generally, when rewriting with an identity x⊕· · ·⊕y ≡ t, one generates a fresh variable
v, and uses the identity v⊕ x⊕ · · ·⊕ y ≡ v⊕ t as a rewrite rule. When dealing with associative
only symbols at the top of the rewrite rule, the extension of an identity x⊗ · · ·⊗ y ≡ t requires
two fresh variables v1 and v2: the rewrite rule becomes v1 ⊗ x⊗ · · ·⊗ y ⊗ v2 ≡ v1 ⊗ t⊗ v2.

The problem with subterms and units. However, this approach is not complete in the
presence of units. Let 0 be a unit for ⊕ and 1 be a unit for ⊗. Suppose for instance that we
try to match the pattern x⊕ x against a⊗ b (recall that ⊗ is associative only). If the variable
x can be instantiated with the neutral element 0 for ⊕, then the variable extension trick gives
four solutions:

a⊗ b⊕ [] (a⊕ [])⊗ b a⊗ (b⊕ [])

(These are the returned contexts, in which [] denotes the hole; the substitution is always

4We also defined a general purpose library of bindings for Coq constants like nat, list, etc which amounts
to an additionnal 600 lines.
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{x �→ 0}.) Unfortunately, if ⊗ also has a neutral element 1, there are infinitely many other
solutions:

a⊗ b⊗ (1⊕ []) a⊗ b⊕ 0⊗ (1⊕ []) a⊗ b⊕ 0⊗ (1⊕ 0⊗ (1⊕ [])) . . .

(Note that these solutions are distinct modulo AC, they collapse to the same term only when
we replace the hole with 0.) The latter solutions seem really peculiar and they only appear
when the pattern can be instantiated to be equal to a neutral element (modulo A/AC). From
a mathematical viewpoint, the problem is that in this case, matching becomes infinitary : for
any matching problem, there is a minimal (read: without redundancy) complete (read: without
missing substitutions) set of solutions, but there exists matching problems for which this set
is infinite. Therefore, we opted for a pragmatic solution in this case: we simply ignore such
solutions, displaying a warning message. The user can still instantiate the rewriting lemma
explicitly, or make the appropriate transitivity step using aac_reflexivity.

2.7.3 Ruling out dummy cases.

Consider the following rewriting problem:

Hypothesis H: ∀ x y, x ∗ y + x ∗ z ≡ x∗(y+z).
Goal a∗b∗c + a∗c + a∗b ≡ a∗(c+b∗(1+c)).

Even if we side-step from the aforementioned problem, and consider only the matching
subterms that are not making nested units appear, there is still too many solutions. E.g, one
would definitely like to rule out solutions in which x is instantiated with 1. Thus, we introduce an
option to our matching modulo AC algorithm that prevents a universally quantified variable to
be instantiated with a unit. The tactic aac_rewrite implements this policy and omits the most
peculiar solutions, while aacu rewrite does not impose such a restriction. It must be noted
that the above restriction does not prevent aac_rewrite to deal with units: it solely prevents
some affectations to variables. For instance, rewriting the identity x+ x = x in a ∗ (1 + 0) + a
is still possible.

2.8 Digression: Alternative problems and solutions

We have presented the elements at the core of our tactic to rewrite universally quantified
equations modulo AC. This tactic addresses the problem of performing small rewriting steps
in complex proofs. We shall now put our solution in perspective with some slightly different
problems.

2.8.1 Completion modulo AC

Completion aims at transforming a set of identities into a confluent term rewriting system.
While completion modulo AC may of course not terminate, it has been shown that it is the
case when the input set of identities is ground [94, 110]. Integrating completion modulo AC in
Coq would make it possible to obtain powerful normalisation tactics either with respect to a
set of ground identities, or with respect to an arbitrary set of rewriting rules that is confluent
and terminating modulo AC.

From our experience, it is not often the case that the need arises for such normalisation
tactics. Most of the time, one need either to show that an equality holds modulo AC or
to perform small, carefully selected rewrite steps. Moreover, normalising a goal w.r.t. the
completion of an arbitrary set of rewriting rules may yield results that are unpredictable for the
users.
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2.8.2 Congruence closure modulo AC

Congruence closure is a particular instance of the word problem where the set of identities
does not contain variables. In this case, the word problem is decidable in quasi-linear time [61,
116]. Congruence closure may be extended to handle the associativity and commutativity of
given operators [10]. Integrating a decision procedure for congruence closure modulo AC in Coq
would be a drop-in replacement for aac_reflexivity, and it would subsume some of the use
cases for our rewriting tactic: when the user only rewrites ground equations and concludes his
goal using a congruence closure decision procedure. Yet, rewriting modulo AC is still useful
when rewriting universally quantified equations, or when the resulting goals cannot be solved
by congruence closure.

2.8.3 CoqMT

CoqMT [12, 150] is an extension of Coq that investigates the incorporation of trusted user-
defined decision procedure in the conversion test. We could envision to define an external and
trusted decision procedure for equality modulo AC (by extraction of our decision procedure).
However, there are two issues at hand. First, recall that the theory decided by aac_reflexivity
is extensible through the declaration of instances: it is unclear that this could be embedded
inside the framework of CoqMT. Second, for efficiency issues, one may want to rely on the
extended conversion mechanism solely in selected steps of a proof which requires a more fine-
grain control than what is possible in CoqMT.

2.8.4 Extension to the multi-sorted case

A drawback from the encoding of terms from §2.5 is that it does not support heterogeneous
uninterpreted symbols. Indeed it might be the case that uninterpreted symbols have different
types for their arguments, and their result. A typical use case would be proofs about arithmetic:
for instance Zpower_nat has type Z → nat → Z. One may want to use a rewriting rule that
uses associativity and commutativity in both arguments. We propose in Fig. 2.16 a data type
for reified multi-sorted terms, focusing on the function symbols (the handling of AC/A symbols
and units is almost orthogonal). This is a direct extension of the mono-sorted terms from §2.5,
transforming the number of arguments (of type nat) into a list of indexes of types (of type
list eqType).

While this encoding of reified terms (extended with AC/A symbols and units) is appealing,
there are several issues that must be considered. First, reified terms in this setting require
more parametrisation, which increases the size of the generated proof terms. Second, the actual
reification becomes more technical to handle, and requires more interactions with the type class
resolution mechanism. It is yet unclear that such interaction could be done in a predictable
way for the user, yielding the “correct” reification. We leave a more thorough investigation of
this question as a future work.

2.9 Related Works

Boyer and Moore [32] are precursors to our work in two ways. First, their paper is the earliest
reference to reflection we are aware of, under the name “Metafunctions”. Second, they use this
methodology to prove correct a simplification function for cancellation modulo A. By contrast,
we proved correct a decision procedure for equality modulo A/AC with units which can deal
with arbitrary function symbols, and we used it to devise a tactic for rewriting modulo A/AC.
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Figure 2.16 Reified heterogeneous terms

Notation eqType := pos.

(* Type equipped with a setoid-relation *)
Class EqType := {
X: Type;
equal: relation X;
equal_equivalence:> Equivalence equal}.

(* Environment for types *)
Variable Types : eqType → EqType.

(* Type of heterogeneous functions of arity l *)
Fixpoint type_of (l : list eqType) (x : eqType ) :=
match l with
| nil ⇒ @X (Types x)
| cons t q ⇒ @X (Types t) → type_of q x end.

(* Relation to be preserved by heterogeneous functions of arity l *)
Fixpoint rel_of (l : list eqType) (x : eqType ) : relation (type_of l x) :=
match l with
| nil ⇒ @equal (Types x)
| cons t q ⇒ respectful (@equal (Types t)) (rel_of q x) end.

Record sym := mk_sym {
args : list eqType;
res : eqType;
val : type_of args res;
compat : Proper (rel_of args res) val}.

Variable env : idx → sym.
Inductive T : eqType → Type :=
Sym : ∀ (i : idx), vT (args (env i)) → T (res (env i))

with vT : list eqType → Type :=
| vT_nil : vT nil
| vT_cons : ∀ E l, T E → vT l → vT (E::l).

Ring.

While there is some similarity in their goals, our decision procedure is incomparable with the
Coq ring tactic [76]. On the one hand, ring can make use of distributivity and opposite laws to
decide equations in a ring structure, e.g, it can prove x+−x = 0 or x2 − y2 = (x− y) ∗ (x+ y).
On the other hand, aac_reflexivity can deal with an arbitrary number of AC or A operations
with their units, and more importantly, with uninterpreted function symbols. For instance, it
proves equations like f(x∩y)∪g(∅∪z) = (g z)∪f(y∩ x), where f, g are arbitrary functions on
sets. However, it must be noted that on the common subset, ring ought to be more efficient:
first, the reification process is more involved in our case; second, the decision procedure for
equalities in rings can take advantage of special purpose optimisations.

Rewriting modulo AC in HOL and Isabelle.

Nipkow [119] used the Isabelle system to implement matching, unification and rewriting for
various theories including AC. He presents algorithms as proof rules, relying on the Isabelle ma-
chinery and tactic language to build actual tools for equational reasoning. While this approach
leads to elegant and short implementations, what is gained in conciseness and genericity is lost
in efficiency, and the algorithms need not terminate. Moreover, the rewriting modulo AC tools
he defines are geared toward automatic term normalisation. By contrast, our approach focuses
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on providing the user with tools to select and make one rewriting step efficiently.
Slind [144] implemented an AC-unification algorithm and incorporated it in the hol90 sys-

tem, as an external and efficient oracle. It is then used to build tactics for AC rewriting,
cancellation, and modus-ponens. While these tools exploit pattern matching only, an applica-
tion of unification is in solving existential goals. Apart from some refinements like dealing with
neutral elements and A symbols, the most salient differences between our works are that we use
a reflexive decision procedure to check equality modulo A/AC rather than a tactic implemented
in the meta-language, and that we use type-classes to infer and reify automatically the A/AC
symbols and their units.

Support for the former tool [119] has been discontinued, and it seems to be also the case for
the latter [144]. To the best of our knowledge, even though HOL-light and HOL provide some
tactics to prove that two terms are equal using associativity and commutativity of a single given
operation, tactics comparable to the ones we describe here no longer exist in the Isabelle/HOL
family of proof assistants.

However, Isabelle implements ordered rewriting5 [111] to handle permutative rewrite rules,
i.e., identities in which the left-hand side and the right-hand side are equal up-to the renaming
of the free variables. Examples of permutative rewrite rules include commutativity x+y = y+x,
but also other equations like x− y− z = x− z − y in arithmetic. The idea of ordered rewriting
is to rewrite using such rules only when terms become smaller w.r.t. a given lexicographic
ordering on ground terms. For instance, using this strategy, commutativity would rewrite b+ a
into a + b, but would not rewrite a + b into b + a if a + b is strictly smaller than b + a. Using
a meta-level rewriting tactic that implements ordered rewriting, makes it possible to normalise
ground terms with AC symbols lexicographically, and covers AC rewriting in some cases.

Rewriting modulo AC in Coq.

Contejean [51] implemented in Coq an algorithm for matching modulo AC, which she proved
sound and complete. The emphasis is put on the proof of the matching algorithm, which cor-
responds to a concrete implementation in the CiME system. Although decidability of equality
modulo AC is also derived, this development was not designed to obtain the kind of tactics we
propose here (in particular, we could not reuse it to this end). Finally, symbols can be unin-
terpreted, commutative, or associative and commutative, but neither associative only symbols
nor units are handled.

Gonthier et al. [73] have recently shown how to exploit a feature of Coq’s unification algo-
rithm to provide “less ad hoc automation”. In particular, they automate reasoning modulo AC
in a particular scenario, by diverting the unification algorithm in a complex but really neat way.
Using their trick to provide the generic tactics we discuss here might be possible, but it would
be difficult. Our reification process is much more complex: we have uninterpreted function sym-
bols, we do not know in advance which operations are AC, and the handling of units requires a
dependent environment. Moreover, we would have to implement matching modulo AC (which
is not required in their example) using the same methodology; doing it in a sufficiently efficient
way seems really challenging.

Nguyen et al. [118] used the external rewriting tool ELAN to add support for rewriting
modulo AC in Coq. They perform term rewriting in the efficient ELAN environment, and
check the resulting traces in Coq. This allows one to obtain a powerful normalisation tactic
out of any set of rewriting rules which is confluent and terminating modulo AC. Our objectives
are slightly different: we want to easily perform small rewriting steps in an arbitrarily complex
proof, rather than to decide a proposition by computing and comparing normal forms.

5This idea previously appeared in the Boyer-Moore theorem prover [31].
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The ELAN trace is replayed using elementary Coq tactics, and equalities modulo AC are
proved by applying the associativity and commutativity lemmas in a clever way. On the con-
trary, we use the high-level (but slightly inefficient) rewrite tactic to perform the rewriting
step, and we rely on an efficient reflexive decision procedure for proving equalities modulo AC.
(Alvarado and Nguyen first proposed a version where the rewriting trace was replayed using
reflection, but without support for modulo AC [7].)

From the user interface point of view, leaving out the fact that the support for this tool
has been discontinued, our work improves on several points: thanks to the recent plug-in and
type-class mechanisms of Coq, it suffices for a user to declare instances of the appropriate
classes to get the ability to rewrite modulo AC. Even more importantly, there is no need to
declare explicitly all uninterpreted function symbols, and we transparently support polymorphic
operations (like List.app) and arbitrary equivalence relations (like Qeq on rational numbers,
or iff on propositions). It would therefore be interesting to revive this tool using the new
mechanisms available in Coq to provide (again) tactics for proofs by normalisation.

Alvarado defined in his thesis [6] a dependently typed representation of terms of multi-sorted
algebras in order to implement rewriting in a reflexive manner. His representation captures
exactly the well-formed and well-sorted terms, and is roughly similar to the one we presented
in §2.16. However, he argued that his dependently-typed representation of terms could hinder
computations, and had to resolve issues with the use of dependent equality in previous versions
of Coq. We look forward to pursue our investigation of a reflexive decision procedure for equality
modulo AC in a multi-sorted setting to assess to what extent these remarks still apply.

Maude.

Although this is not a general purpose interactive proof assistant, the Maude system [48], which
is based on equational and rewriting logic, also provides an efficient algorithm for rewriting
modulo AC [63]. Like ELAN, Maude could be used as an oracle to replace our OCaml matching
algorithm. This would require some non-trivial interfacing work, however. Moreover, it is
unclear to us how to use these tools to get all matching occurrences of a pattern in a given term:
they are designed to perform normalisation with a set of rules which are a priori confluent and
terminating.

2.10 Conclusion

The Coq library corresponding to the tools we presented is available from [34]. We do not use
any axiom and the code consists in total of about 1400 lines of Coq and 3600 lines of OCaml.
We conclude this chapter with potential directions for future works.

Heterogeneous terms. Our decision procedure cannot deal with functions whose range and
domain are distinct sets, each equipped with AC or A symbols. We could extend the tactic
to deal with such objects, and allow one to rewrite equations like ∀uv, �u + v� ≤ �u� + �v�,
where � · � would be a norm in a vector space. This would require a more involved definition
of reified terms and environments to keep track of type informations (see Fig. 2.16), and the
corresponding reification process seems the most challenging difficulty.

Heterogeneous operations. We could also attempt to handle heterogeneous associative op-
erations, like multiplication of non-square matrices, or composition of morphisms in a category.
For example, recall the dot law from the previous chapter which has type

∀n∀m∀p,X n m → X m p → X n p
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Apart from making it possible to use the tools for reasoning modulo AC we developed in the
context of typed Kleene algebra, this would also be helpful for proofs in category theory. Again,
the first difficulty is to adapt the definition of reified terms; for instance, this would certainly
require dependently typed non-empty lists to handle associative operators.

Other decidable theories. While we focused on rewriting modulo AC, we could consider
other theories whose matching problem is decidable. Such theories include, for example, the
Abelian groups and the boolean rings [29] (the latter naturally appears in proofs of hardware
circuits). Another possibility would be to add support for commutative only symbols, that
are useful to deal with arithmetic over floating-point numbers: while this would make our
development more verbose, we foresee no difficulty in doing this.

Other tactics. While we focused on rewriting modulo AC and on the decision of equations
modulo AC, we could provide other tactics. For instance, some early user-feedback has shown
that cancellation and modus ponens modulo AC could be useful to simplify the proof engineer-
ing.

Library support for reification. The technicity of our reification mechanism and, e.g., the
changes that were required to add support for units, make us doubt that there could be a
“universal reification framework” that fits all uses. In particular, we made different implemen-
tation choices in this chapter and in the previous one: in the latter, we chose to be efficient,
while we privileged the flexibility of use here. However, we could try to provide some library
of commonly used bindings to Coq data-structures, and to implement some common reification
“recipes” that could be adapted to the various problem at hand. This would lower the amount
of knowledge of Coq internals required to develop reification tactics.
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Chapter 3

Verifying hardware circuits in Coq

In this chapter, we describe a new library to model and verify hardware circuits in Coq. This
library allows one to easily build circuits by following the usual pen-and-paper diagrams and its
main novelty is that it defines a deep-embedding circuits: we use a (dependently typed) data-
type that models the architecture of circuits, and a meaning function. We propose tactics that
ease the reasoning about the behaviour of the circuits, and we demonstrate that our approach
is practicable by proving the correctness of various examples: a text-book divide and conquer
adder of parametric size, some higher-order combinators of circuits, and some sequential circuits:
a buffer, and a register.

Introduction

Verification of hardware components has been thoroughly investigated. However, obtaining
provably correct hardware of significant complexity is usually considered challenging and time-
consuming.

A common practice of hardware verification is to take a given design in an hardware de-
scription language and to argue about this design in a formal way, using a model checker or a
theorem prover. There are two pitfalls with this. First, usual hardware description languages
have limited support for the verification of parametrised designs (like designs parametrised by
a size): each occurrence of such a parametric design ought to be verified separately. The second
hurdle is the hierarchical verification of sizable artefacts. Model checking methods like the ones
based on BDDs [40] and SAT engines have the advantage of being fully automated and thus
can be used by non-specialists people1. Yet, they can only deal with circuits of fixed size and
suffers from combinatorial explosion.

Thus, a completely different approach is to design hardware using theorem provers [26, 59,
74, 79, 95]. There are two different flavours to the modelisation of circuits (and more generally,
programming languages) in a theorem prover. In a shallow-embedding, circuits are written
directly in the logic of the theorem prover, while in a deep-embedding, circuits are represented
as a particular data type of the theorem prover.

Shallow-embeddings For instance, the overall method introduced by Gordon and Mel-
ham [74, 112] to model circuits in higher-order logic is to use predicates of the logic to express
the possible behaviour of devices. Depending on the level of detail of the formalisation, designs
may be built using gate level primitives such as AND, OR or inverter gates, but also using higher-
level primitive circuits. As an example, the Xor circuit and the Not circuit may be modelled as

1While formal verification using proof-assistants like Coq remains an art
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Figure 3.1 Building circuits using a shallow-embedding

D Da bx D Da bx

∃x

D(a, x) ∧D(x, b) ∃x,D(a, x) ∧D(x, b)

follows:

Xor(i1, i2, o) � (o = ¬(i1 = i2)) Not(i, o) � (o = ¬i)

These circuits may be combined using the usual conjunction of the underlying logic, and exis-
tential quantification may be used to hide internal “ports” of the devices (see Fig. 3.1).

While this particular example of shallow-embedding models circuits with predicates of the
logic, it is also possible to represent circuits using functions of the theorem prover. In this
setting, serial composition of circuits is modelled through function composition, and there is
no such things as “ports”. Such encodings have been used in large scale projects such as the
VAMP project [26] in PVS, the formal verification of the floating -point adder of a commercial
microprocessor [134] in ACL2, or the verification of the FM9801 microprocessor [138] in ACL2.

Generally, using a shallow-embedding to represent circuits in a theorem prover makes it easy
to model circuits: the wiring of components is done through function applications using the
(meta-level) substitution of the language of the theorem prover and one may freely use recursion
to define recursive structures. Moreover proving that a circuit meets some specification amounts
to the proof of an entailment between logical formulas.

However, the lack of “syntax” of shallow-embeddings has its disadvantages. First, there are
functions and predicates that do not represent circuits, which makes quantifying over circuits
slippery. Moreover, it is not possible to build functions that operate over circuits: there is
no way to do, e.g., pattern-matching on the definition of a predicate. The fact that these
functions must be built at the meta-level [146] precludes one from proving their correctness.
Incidentally, meaningful properties of circuits like their latencies, or their gates number must
also be computed at the meta-level, making it impossible to state inside the theorem prover
that a given circuit meets some complexity bounds, for instance.

Deep-embeddings. By contrast, we define a deep-embedding of circuits in Coq. That is, we
define a data-type for circuits, and a meaning function. Therefore, we can write (and reason
about) Coq functions that operate on the structure of circuits.

One of the usual of deep-embeddings is that defining a data type that represents logical
formulas or programs requires to deal explicitly with variables bindings and substitutions. We
actually side-step this difficulty by relying on circuit combinators. These combinators make
precise the interconnection of circuits, yet making implicit low-level diagram constructs such
as wires and ports. Note that while the circuit diagrams we describe have nice algebraic prop-
erties [37, 107], we do not prove algebraic laws here. A more detailed introduction to our
deep-embedding of circuits is presented in the next sections.

Dependent-types. There has been a lot of work describing and verifying circuits in the HOL
and ACL2 family of theorem provers. However, Coq features dependent types that are more
expressive. The seminal Veritas language experiment [79] and the more recent VAMP project
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Figure 3.2 A recursive n-bit ripple-carry adder
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in PVS [26] hinted that these allow for specifications that are both clearer and more concise.
We also argue that dependent types are invaluable for developing circuits reliably: some errors
can be caught early, when type-checking the circuits or their specifications.

Recursive circuits. Circuit diagrams are also used to present recursive or parametric designs.
We use Coq recursive definitions to generate circuits of parametric size, e.g., to generate an n-
bit adder for a given n. Then, we reason about these functions rather than on the tangible
(fixed-size) instantiations of such generators. Remark that circuits modelled by recursion have
already been verified in other settings [95, 112]. By contrast, the novelty of our approach is that
we derive circuit designs in a systematic manner: we structure circuits generators by mimicking
the usual circuit diagrams, using our combinators. Then, the properties of these combinators
allow us to prove the circuits correct.

Dependable circuits. We are interested in two kinds of formal dependability claims. First,
we want to capture some properties of well-formedness of the diagrams. Second, we want to be
able to express the functional correctness of circuits – the fact that a circuit complies to some
specification, or that it implements a given function. Obviously, the well-formedness of a circuit
is a prerequisite to its functional correctness. We will show that using dependent types, we can
get this kind of verification for free. As an example, the type-system of Coq will preclude the
user to make invalid compositions of circuits: e.g., serial composition of circuits will ensure that
the dimensions of the circuits agree. Hence, we can focus on what is the intrinsic meaning of a
circuit, and prove that the meaning of some circuits entails a high-level specification, e.g., some
functional program.

3.1 Overview of our system

In this section, we give a global overview of the basic concepts of our methodology first, before
giving a formal Coq definition to these notions in the next section. We take this opportunity
to illustrate the use of our system to represent parametrised circuits through the example of a
simple n-bit ripple-carry adder: it computes an n-bit sum and a 1-bit carry-out from two n-bit
inputs and a 1-bit carry-in. The recursive construction scheme of this adder is presented in
Fig. 3.2 (data flows from left to right), using a full-adder, i.e., a 1-bit adder, as basic building
block. The HL (resp. COMBINE) sub-circuit is a mere combinator that decomposes a bit-vector
(resp. compose two bit-vectors).

Circuit interfaces. Informally, we want to build circuits that relate n input ports to m
output ports, where n,m are integers. For instance, the gate AND has two inputs and one
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output, while the recursive n-bit adder has 2n+1 inputs and n+1 outputs. (Remark that the
interfaces of circuits should not be confounded with their semantics: we shall later reason about
the valuation of ports, i.e., mappings from the ports to a given semantic domain.) However,
using integers to number the ports does not give much structure: the fact that the n-bit adder
has 2n + 1 input ports does not specify how they are grouped. Yet, this information must be
made precise.

Informally, circuit interfaces are defined as an abstract magma with an operation � (i.e.,
combining in parallel a circuit with a input ports and a circuit with b input ports yields a
circuit with a � b input ports): in this abstract setting, the interfaces n � n � 1, n � 1 � n, and
1 � n � n are distinct. The magma of natural numbers, equipped with addition, is a particular
model of this setting that yields a quotient of the interfaces by the relation “having the same
number of ports”. Since we require a more fine grain description of the interfaces, we move
away from this particular model: we use arbitrary finite-types as indexes for the ports rather
than integers [80].

That is, a circuit with three inputs may have the input interface 1 ⊕ 1 ⊕ 1 where ⊕ is the
disjoint sum of types (associative to the left) and 1 is a singleton type. Then, a circuit that
relates inputs indexed by n to outputs indexed by m has type C n m, where n and m are
types. As an example, the full-adder, a circuit with three inputs and two outputs, has type
C (1⊕ 1⊕ 1) (1⊕ 1) and the n-bit adder has type C (1⊕ n · 1 ⊕ n · 1) (n · 1 ⊕ 1), where n ·A
is an n-ary disjoint sum.

Note that this makes it possible to use other types than units to give more precise descrip-
tions. Consider below the description of an n-bit comparator circuit that may be given the type
C (n · 1 ⊕ n · 1) (CMP).

Inductive CMP : Type := | Eq | Lt | Gt. } CMP

1n

1n

On this particular example, we argue that using the three-elements type CMP yields a more
precise description of the output interface of this circuit, that leaves less room for confusion
than using 1⊕ 1⊕ 1, an other three-elements type.

Circuits combinators. The n-bit adder is made of several sub-components that are com-
posed together. We use circuit combinators (or combining forms [142]) to specify the connection
layout of circuits. For instance, in Fig. 3.2, the dashed-box is built by composing in parallel two
HL circuits that are then composed serially with a combinator that reorders the ports. These
combinators leave the connection points implicit in the circuits and focus on how information
flow through the circuit. In particular, the port names given in Fig. 3.2 do not correspond to
variables, and are provided for the sake of readability.

In our “nameless” setting, ports have to be duplicated and reordered using plugs: a plug
is a circuit of type C n m, defined using a map from m to n that defines how to connect an
output port (indexed by m) to an input port (indexed by n). Since we use functions rather
than relations, this definition naturally forbids short-circuits, e.g., two input ports connected
to the same output port.

Meaning of a circuit. We now depart from the syntactic definitions of circuits to give an
overview of their semantics. The meaning of a circuit x of type C n m is defined as a relation
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between a valuation of its input ports and a valuation of its output ports. We assume a semantic
domain T, and define a valuation of a type n as a function of type n → T. In the following,
and depending on the context, the type T may be instantiated either by Booleans (written B)
or by streams of Booleans (written nat → B). We denote by x �n

m ins �� outs the meaning of
x, a relation between ins : n → T and outs : m → T. Note that this relation, which is defined
by induction on the structure of x is an abstract mathematical characterisation, which may be
either axiomatic or computational (we will come back to this point later).

Abstracting from the implementation. The semantics of a circuit defines precisely its
behaviour, but may be too precise, e.g., it may leak some internal implementation details (recall
that it is defined by induction over the structure of the circuit). The standard technique [112]
to prove that circuits meet some high-level specifications is to prove the following kind of
entailment, where the high-level specification R abstracts the behaviour of the circuit RIPPLE n:

∀ins, ∀outs, (RIPPLE n � ins �� outs) → R outs ins

Then, recall that ins (resp. outs) are valuations of the input (resp. output) ports, and that, e.g.,
the semantics of an AND gate is a relation between 1⊕ 1 → B and 1 → B. While it is possible
to write specifications for these kind of objects, this is not much practical considered that, for
instance, a value of type 1⊕1 → B is isomorphic to a value of type B×B. Therefore, a decisive
move in this work was to build on type-isomorphisms as a refinement of data-abstraction [112].
This makes it possible to give elegant and high-level specifications to circuits: given that a value
of type 1 ⊕ n · 1 ⊕ n · 1 → B is isomorphic to a value of type B ×Wn ×Wn (where Wn is the
type of integers from 0 to 2n− 1), we prove that the parametric n-bit adder depicted in Fig. 3.2
implements the addition with carry on Wn.

3.2 Formal development

We now turn to the formal definition of the concepts that were overviewed in the previous
section.

3.2.1 Circuit interfaces

We hinted that we use arbitrary Coq types as interfaces for the circuits, endowed with the
disjoint-sum operation (denoted ⊕). We use the one-element type 1 as a basic interface, and we
define n-ary disjoint sums of a given type A (written n ·A) as a Coq fixpoint. As an example,
the type n · (1 ⊕ 1) is an interface for a circuit with n pairs of input ports. However, using a
single singleton type for all ports can be confusing: there is no way to distinguish one 1 from
another, except by its position in the interface (which is frustrating). Hence, we use an infinite
family of one-element types 1x where x is a tag.

Inductive tag (t : string) : Type := _tag : tag t. (* we write 1t for tag t*)

In the following, we parametrise circuits definitions by the tags that appear in the interfaces.
Despite the small notational overhead of this tagging discipline, we argue that it makes it easy
to follow circuit diagrams to define circuits in Coq without much room for mistakes: ill-formed
combinations of circuits are ruled out by the Coq-type system. (Note that this use of tags make
it possible to make names appear in the interfaces, even if our setting remain nameless. Yet,
this is only a lightweight improvement on the use of positions to identify ports.)

A physical circuit may only have a finite number of ports. Therefore, we restrict ourselves to
a setting in which types that appear as interfaces are finite. We use the usual interpretation of
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Figure 3.3 Isomorphisms between types

· • ·
A → T ∼= σ B → T ∼= τ

A⊕B → T ∼= (σ × τ)
ιx

1x → T ∼= T

0 → T ∼= 1

A → T ∼= σ

n · 1A → T ∼= vector σ n

Kuratowski finiteness [93]: a type is finite if and only if its elements can be enumerated by a list.
We define a finite type A as a Coq dependent record that packages a duplicate-free list of all
elements of A along the lines of [72]. However, this finiteness property is almost a meta-property
of our circuits: we may safely omit this requirement from now (and, we shall come back on this
in later sections).

3.2.2 Type isomorphisms

Recall that the meaning of a circuit is a relation between valuations of the interfaces like, e.g.,
n · 1 → B, which are not much palatable. We use type-isomorphisms as “lenses” to express the
specification of circuits in terms of user-friendly types: for instance, the previous type turns out
to be isomorphic to Wn.

In a nutshell, we define in Coq an isomorphism between two types A and B as a pair of
functions iso:A → B and uniso: B → A that are proved to be inverse of each other.

Class Iso (A B : Type) :={
iso : A → B;
uniso : B → A}.

Class Iso_Props {A B: Type} (I : Iso A B):= {
iso_uniso : ∀ (x : B), iso (uniso x) = x;
uniso_iso : ∀ (x : A), uniso (iso x) = x}.

In the following, we denote by A ∼= B an isomorphism between A and B (i.e., an instance of
both type-classes above). As an example, a pivotal parametrised instance states the duality
between disjoint-sums in the domain of the valuations and cartesian products.

Context {A B σ τ : Type} (IA: A → T ∼= σ) (IB: B → T ∼= τ).
Instance Iso_sum : (A ⊕ B → T) ∼= σ × τ := ...

We define some notations and give examples of such isomorphisms in Fig. 3.3. For instance, let
T be the set of Booleans: we denote by ι • ι an isomorphism between 1⊕ 1 → B and B× B.

Isomorphisms naturally form a groupoid endowed with a unary inverse function (of type
A ∼= B → B ∼= A) and an (associative) partial composition (of type A ∼= B → B ∼= C → A ∼= C).
While we rely lightly on these properties in some proofs, we will not emphasise their use in the
sequel. However, note that there may be several isomorphisms between two given types: we rely
on a small set of base constructions (like the above Iso_sum) in order to tame this complexity
when reasoning about, e.g., compositions of isomorphisms.

3.2.3 Plugs

“Plugs” are circuits of type C n m defined as a mapping from the output ports, indexed by m,
to the input ports, indexed by n. For instance, consider the plug of type C (n ⊕ m) m from
Fig. 3.4(a) that “forgets” the first group of input ports (types must be read bottom-up on these
diagrams). This plug is defined as the following function:

m → n⊕m
x �→ inr x

102



Figure 3.4 Some examples of plugs

(a) (b) (c)

C (n⊕m) m C m (m⊕m) C (n⊕m⊕ p) (p⊕ (n⊕ n))

Observe that we define plugs as usual Coq functions to get small and computational definitions
of maps. Yet, since these maps operate on the indexes of the (output) ports, there is no way
to embed an arbitrary function inside our circuits to compute, e.g., the Boolean and of the
valuations of two ports. Therefore, we argue that our formalisation remains a deep-embedding
of circuits, despite this particular use of Coq functions.

The two other examples from Fig. 3.4 may be read as follows: (b) is a a fork, i.e., a circuit
that duplicates its inputs and (c) implements some re-ordering and duplication of the ports.
(Remark that, for the sake of clarity, we shall leave implicit the associativity of the ⊕ operation
on the diagrams.) A possible definition of (b) is the following function:

m⊕m → m
inl x �→ x
inr x �→ x

We do not give a definition of (c): it would be quite verbose and not much interesting. It
happens that we did not write it in Coq: if the type of the circuit gives enough information,
like the examples above, it is actually possible to define such plugs using proof-search. Indeed,
plugs that deal with the associativity of the ports, or even re-orderings of ports, are completely
defined by the type of their interfaces, and we define a Coq tactic that computes these maps.
It amounts to some case splitting and little automation. While we skip this short Ltac code,
we emphasise that it relies on the auto tactic: therefore, it is of the responsibility of the user
to ensure that the plug found by proof-search is the “right one” whenever several exist.

In the following formal definition of circuits, we shall therefore omit such simple plugs, not
only for the sake of readability, but also because we do so in the actual Coq code: we leave
holes in the code (thanks to the Coq Program feature) that will be filled automatically using the
aforementioned proof-search. Yet, we still need to state what function implements a given plug,
up-to isomorphism, on a case-by-case basis. We shall come back on this later in this section.

3.2.4 Abstract syntax

We now turn to the definition of the data-type that underlies our deep-embedding of circuits
in Coq. This definition is parametrised by a set of constants or atoms, i.e., a collection of base
gates from which all other circuits are defined.

A common approach to the representation of a typed language in a proof assistant is to
define first the abstract syntax of terms, and to provide a separate inductive definition that
discriminates terms that are well-formed or well-typed. This approach has the disadvantage
that definitions and lemmas about circuits become cluttered with well-formedness preconditions
that must be proved “by hand” explicitly. Since we are only interested in well-formed circuits,
we follow the Church-style or intrinsic approach [17]. That is, we use a dependently typed
syntax and build the typing rules as part of the definition of the terms. Therefore, all circuits
are well-formed by construction. Put succinctly, we ensure that the dimensions of circuits that
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Figure 3.5 Syntax

Variable atom: Type → Type → Type.
Inductive C : Type → Type → Type :=
| Atom : ∀ (n m : Type), atom n m → C n m
| Plug : ∀ (n m : Type) (f : m → n), C n m
| Ser : ∀ (n m p : Type), C n m → C m p → C n p
| Par : ∀ (n m p q : Type), C n p → C m q → C (n ⊕ m) (p ⊕ q)
| Loop : ∀ (n m p : Type), C (n ⊕ p) (m ⊕ p) → C n m.

are composed by the combinators of the language agree, and we eliminate the possibility to
connect circuits “in the wrong direction”.

As we hinted at in the previous section, we rely on circuits combinators in a nameless setting:
the information flow is made explicit by the combinators, not by the use of variables. These
combinators draw some inspiration from string diagrams and traced monoidal categories [140]
but we shall not consider this relationship in the following.

We present our representation of circuits in Fig. 3.5. First, the base cases of our inductive
definition are atoms (Atom) and plugs (Plug). Second, circuits may be composed in series and in
parallel. We denote serial composition (Ser) with the infix � symbol, and parallel composition
(Par) with &. Finally, we provide a feedback operator (Loop) that permits retroaction. (Note
that our definition of circuits is concise, and ponder the fact that it enforces statically their
well-formedness. If we were to describe circuits as graphs with ports and wires, ensuring these
properties would require some boilerplate.)

3.2.5 Structural semantics

We now depart from the syntax of circuits to describe their semantics. Let T be a given
semantical domain. Recall that the meaning of a circuit of type C n m is a relation between a
valuation of its input ports (of type n → T) and a valuation of its output ports (of type m → T).

This relation is defined as an inductive predicate over the structure of the circuit. First, the
relation enforced by a circuit x�y between two valuations a and c corresponds to the conjunction
of the relation induced by x between a and a fresh valuation b and the relation induced by y
between b and c. Then, the relation induced by a circuit x&y between the valuations a and b is
slightly more complicated. Informally, it corresponds to the conjunction of the relation induced
by x (resp. y) on the “left parts” (resp. “right parts”) of a and b. To make this formal, recall
that, syntactically, the domains of the valuations a and b are disjoint-sums. Thus, we define
an operation on such valuations of type n ⊕ m → T that returns (resp. drops) the first part
of the valuation to yield a result of type n → T (resp. m → T). (Note that these combinators
and their semantics are somehow similar to the one that were used in the first versions of the
SIGNAL programming language [108], except that their approach uses names.)

We present the definition of these operations on valuations in Fig. 3.6, along with the seman-
tics of each circuit combinators. Note that we use inference rules rather than the corresponding
Coq inductive for the sake of readability. Recall that the syntax of circuits was parametrised
by a given set of basic gates, atom: Type → Type → Type. Likewise, the semantics of circuits
is parametrised by the semantics of these specific atoms, that is, a definition of type spec, as
defined below.

Definition spec (atom: Type → Type → Type) (T: Type) :=
∀ (a b : Type), atom a b → (a → T) → (b → T) → Prop.
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Figure 3.6 Meaning of circuits (omitting the rule for Atom)

Context {T : Type}.
Definition left {n} {m} (x : (n ⊕ m) → T) : n → T := fun e ⇒ (x (inl _ e)).
Definition right {n} {m} (x : (n ⊕ m) → T) : m → T := fun e ⇒ (x (inr _ e)).
Definition lift {n} {m} (f : m → n) (x : n → T) : m → T := x ◦ f.
Definition app {n m} (x : n → T) (y : m → T) : n ⊕ m → T :=
fun e ⇒ match e with inl e ⇒ x e | inr e ⇒ y e end.

KSer
x �n

m ins �� middle y �m
p middle �� outs

x� y �n
p ins �� outs

KPar
x �n

p left ins �� left outs y �m
q right ins �� right outs

x&y �n⊕m
p⊕q ins �� outs

KPlug
Plug f �n

m ins �� lift f ins
KLoop

x �n⊕p
m⊕p app ins r �� app outs r

Loop x �n
m ins �� outs

We typically instantiate the atom and spec parameters in the combinatorial setting (with
T being B) and in the sequential setting (with T being nat → B). This parametricity actually
makes it easier to define circuits transformations, or, e.g., to lift properties of combinational
circuits into the synchronous setting as we shall see in §3.4. (Remark that the definition of
spec makes an unavoidable use of dependent types, short of dropping the aforementioned para-
metricity of our definition of circuits and their semantics.)

3.2.6 Modular proofs of circuits

We shall mention that we develop circuits in a modular way: to build a complex circuit, we
define a Coq functor that takes as an argument a module that packages the implementations of
the sub-components, and the proofs that they meet some specifications. This means that our
proofs are hierarchical: we do not inspect the definitions of the sub-components when we prove a
circuit. This makes it possible to enrich our library of verified circuits in an incremental manner
on top of a concrete module that contains the chosen set of base gates and their specifications.

This modularity requires both to define behavioural abstractions, expressed through the
logical entailment of weak specifications by the meaning relation, and high-level specifications,
that do not make the valuations appear. We represent these abstractions through the definitions
of particular type-classes below. The first one specifies that a given circuit meets a given
specification up to two isomorphisms, while second one is a particular instance of the first,
usable when the behaviour of the circuit may actually be described as a function.

Context {n m N M : Type} (Rn : (n→T) ∼= N) (Rm : (m→T) ∼= M).
Class Realise (c : C n m) (R : N → M → Prop) := realise: ∀ ins outs,

c �n
m ins �� outs → R (iso ins) (iso outs).

Class Implement (c : C n m) (f : N → M) := implement: ∀ ins outs,
c �n

m ins �� outs → iso outs = f (iso ins).

We typically defines instances of the second type-class to express rich specifications for, e.g.,
combinational circuits or stream transformers, while retaining the first one for more peculiar
relational specifications.
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Figure 3.7 A proof-system for plugs

Inductive monoid : Type :=
| Var : Type → monoid
| � : monoid → monoid → monoid.

Inductive � : monoid → monoid → Type :=
| M : ∀ A B C, A � C → B � C → (A � B) � C
| L : ∀ A B C, A � B → A � (B � C)
| R : ∀ A B C, A � B → A � (C � B)
| I : ∀ A, A � A.

Figure 3.8 Two evaluations of plug derivations

Variable (f : Type → Type) (op: Type → Type → Type).
Fixpoint meval (A : monoid) : Type := (* written A

op
f *)

match A with | Var x ⇒ f x | A � B ⇒ op (meval A) (meval B) end.

Fixpoint to_plug {A B} (x: A � B):

A
⊕
id → B

⊕
id :=

match x with
| M a b c l r ⇒ app (to_plug l) (to_plug r)
| L a b c l ⇒ fun x ⇒ inl (to_plug l x)
| R a b c r ⇒ fun x ⇒ inr (to_plug r x)
| I _ ⇒ fun x ⇒ x
end.

Fixpoint to_effect {A B} (x : A � B):

B
×
λx.x→T → A

×
λx.x→T :=

match x with
| M a b c l r ⇒ fun e ⇒ (to_effect l e,to_effect r e)
| L a b c l ⇒ fun e ⇒ (to_effect l (fst e))
| R a b c r ⇒ fun e ⇒ (to_effect r (snd e))
| I _ ⇒ (fun x ⇒ x)
end.

3.2.7 Digression: a Curry-Howard isomorphism at work

Having to write down the functions implemented by plugs yields quite verbose code, and having
to write them at all is not satisfactory. Intuitively, the Curry-Howard isomorphism that makes
it possible to find the functions that operate on wires should be extendable to find the related
functions that operate on the values. This is indeed the case. We define in Fig. 3.7 a proof
system for plugs, and we define two interpretations for derivations in this system: one that
yields a plug, and one that yield the function that the plug implements.

For instance, recall the above example (c) that had type C (n⊕m⊕ p) (p⊕ (n⊕ n)). We
give below a derivation of the formula p � (n � n) � (n �m) � p:

M

R
I

p � (n �m) � p
L

L

M
I I

n � n � n

n � n � n �m
n � n � (n �m) � p

p � (n � n) � (n �m) � p

This derivation may be evaluated to the plug, that is, a function of type

(p⊕ (n⊕ n)) → (n⊕m⊕ p);

and the derivation may be evaluated to the function implemented by the plug, which has type

((n → T)× (m → T)× (p → T)) → ((p → T)× ((n → T)× (n → T))).

We give the definitions of these two evaluations in Fig 3.8, and we prove that the plug actually
implements its computed effect up to (trivial) isomorphisms.
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Figure 3.9 Definition of a half-adder

XOR

AND

b

a
s

c
Context a b s c : string.
Definition HADD : C (1a ⊕ 1b) (1s ⊕ 1c) :=
Fork2 (1a ⊕ 1b) � (XOR a b s & AND a b c).

Lemma derivation_correct {A B} (X : A � B): Implement B
•
A
•
(Plug (to_plug X)) (to_effect X).

We mentioned that we use proof-search for (simple) plugs, combined with hand-written
specifications, which is actually quite verbose. Using the derivation evaluations we present
here make it possible to use a single phase of proof-search to compute both the plug and its
specification, and could be used to reduce the verbosity of some of our definitions.

3.3 Proving some combinational circuits

In this section, we shall give some complete examples that demonstrate the use of the previous
definitions, focusing on acyclic combinational circuits: more precisely, we implement some basic
arithmetic circuits. We instantiate atom with a singleton inductive definition that corresponds
to the NOR gate, T with B and spec accordingly. All other circuits in this section are defined
and proved correct starting from these definitions. We first illustrate our proof methodology on
a half-adder. Then, we present operations on n-bits integers that will be used to specify n-bit
adders.

3.3.1 Proving a half-adder

A half-adder is a circuit that adds two 1-bit binary numbers together, producing a 1-bit number
and a carry-out. We present a diagram of this circuit, along with its formal definition, in
Fig. 3.9. The left-hand side of the following Coq excerpt is the statement we prove: the circuit
HADD implements the function hadd on Booleans (defined as λ(a,b).( a ⊕ b, a ∧ b), where ⊕ is
the Boolean exclusive-or, and ∧ is the Boolean and) up to isomorphisms (we use the notations
from Fig. 3.3 for these). The Coq system ask us to give evidence of the goal on the right-hand
side.

Instance HADD_Spec : Implement
(ιa • ιb) (* iso on inputs *)
(ιs • ιc) (* iso on outputs *)
HADD hadd.

I : 1a ⊕ 1b → B, O : 1s ⊕ 1c → B
H : HADD �1a⊕1b

1s⊕1c
I �� O

====================
@iso (ιs • ιc) O = hadd (@iso (ιa • ιb) I)

We have developed several tactics that help to prove these kind of goals. First, we automatically
invert the derivation of the meaning relation in the hypothesis H, following the structure of the
circuit, to get rid of parallel and serial combinators. This leaves the user with one meaning
relation hypothesis per sub-component in the circuit (plugs included). Second, we use the
type-class Implement as a dictionary of interesting properties. We use it to make fast-forward
reasoning by applying implements in any hypothesis stating a meaning relation for a sub-
component. The type-class resolution mechanism will look for an instance of Implement for
this sub-component, and transform the “meaning relation” hypothesis into an equation. (Note
that at this point, the user may have to interact with the proof-assistant, e.g., to choose other
Implement instances than the ones that are picked automatically, but in many cases, this step
is automatic.) At this point, the goal looks like the left-hand side of the following excerpt:
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Figure 3.10 Operation on fixed-width integers

Record word (n:nat) := mk_word {val : Z; range: 0 ≤ val < 2n}. (* Wn *)

Definition repr n (x : Z) : Wn := ...
Definition high n m (x : W(n+m)) : Wm := ...
Definition low n m (x : W(n+m)) : Wn := ...
Definition combine n m (low : Wn) (high : Wm) : W(n+m) := ...
Definition carry_add n (x y : Wn) (b : B) : Wn ∗ B :=

let e := val x + val y + (if b then 1 else 0) in (e mod 2n,2n ≤ e)

Definition Φn
x : (n · 1x → B) ∼= (Wn) := ...

I : 1a ⊕ 1b → B, O : 1s ⊕ 1c → B
M : (1a ⊕ 1b)⊕ (1a ⊕ 1b) → B
H0: iso M = (fun x ⇒ (x,x)) (iso I)
H1: iso (left O) = uncurry ⊕ (iso (left M))
H2: iso (right O)= uncurry ∧ (iso (right M))
==========================
iso O = hadd (iso I)

I: B ∗ B, O: B ∗ B,
M : (B ∗ B) ∗ (B ∗ B),
H0: M = (fun x ⇒ (x,x)) I
H1: fst O = uncurry ⊕ (fst M)
H2: snd O = uncurry ∧ (snd M)
==================
O = hadd I

Third, we move to the right-hand side of the excerpt: we massage the goal to make some
instances of iso commute with the left, right and app operations, to push the applications
of iso to the leaves. Then, we generalise the goal w.r.t. the sub-terms headed by iso. That
is, all occurrences of, e.g., iso O of type B ∗ B are replaced with a fresh variable O of the same
type. (Note that the user may be required to interact with Coq if different isos are applied to
the same term in different equations.)

Finally, the proof context deals only with high-level data-types, and functions operating on
these. The user may then prove the “interesting” part of the lemma, in the same way as it
would have been done using a shallow-embedding.

3.3.2 n-bits integers

From now, we use a dependently typed definition of n-bits integers, along the lines of the fixed-
size machine integers of [109]. We describe some operations on these integers in Fig. 3.10, but
we omit the actual definitions of these functions when they can be inferred from the type. In the
following, we prove that various (recursive) circuits implement the carry_add function (that
adds two n-bit numbers and a carry) up-to the Φ isomorphism.

3.3.3 Two specifications of a 1-bit adder

A full-adder adds two 1-bit binary numbers with a carry-in, producing a 1-bit number and a
carry-out, and is built from two half-adders. We present a diagram of this circuit, along with
its formal definition in Fig. 3.11 (in which we omit the plugs, as we announced in §3.2).

From this circuit, we can derive two specifications of interest. First, the meaning of the
full-adder can be expressed in terms of a Boolean function that mimics the truth-table of the
circuit. Second, we can prove that this circuit actually implements the carry_add function
up-to isomorphism. We prove these two specifications using the aforementioned tactics: the
only difference is the content of the interesting parts.
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Figure 3.11 Definition of a full-adder

HADDb

a

c1

s1 HADD c2

scin cin

c1 OR
cout

s

Context a b cin sum cout : string.
Program Definition FADD :
C (1cin ⊕ (1a ⊕ 1b)) (1sum ⊕ 1cout) :=
(ONE 1cin & HADD a b "s1" "c1")
� ... (* associativity plug *)
� (HADD cin "s1" sum "c2" & ONE 1”c1”)
� ... (* associativity plug *)
� (ONE 1sum & OR "c2" "c1" cout).

Figure 3.12 Implementation of the ripple-carry-adder from Fig. 3.2

Program Fixpoint RIPPLE cin a b cout sum n :
C (1cin ⊕ n · 1a ⊕ n · 1b) (n · 1sum ⊕ 1cout) :=

match n with
| O ⇒ ... (* Associativity *)
| S p ⇒ ... � (ONE (1cin) & HIGHLOWS a b 1 p)
� ... � (FADD a b cin sum ‘‘c’’ & ONE (p · 1a ⊕ p · 1b))
� ... � (ONE (1 · 1sum) & RIPPLE ‘‘c’’ a b cout s p)
� ... � COMBINE sum 1 p & ONE (1cout)

end.
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Instance FADD_1 : Implement
(ιcin • (ιa • ιb)) (* iso on inputs *)
(ιsum • ιcout) (* iso on outputs *)
FADD
(fun (c,(x,y)) ⇒ (x⊕(y⊕c),(x∧y)∨c∧(x⊕y))).

Instance FADD_2 : Implement
(ιcin • (Φ1

a • Φ1
b)) (* iso on inputs *)

(Φ1
sum • ιcout) (* iso on outputs *)

FADD
(fun (c,(x,y)) ⇒ carry_add 1 x y c).

3.3.4 Ripple-carry adder

We present in Fig. 3.12 the formal definition of the ripple-carry adder from Fig. 3.2 (again, the
plugs are omitted). This definition is based on two new circuits to split wires, and combine
them. Indeed, to build a 1 + n-bit adder, the lowest-order wire of each parameter is connected
to a full-adder, while the n high-order wires of each parameter are connected to another ripple-
carry adder. Conversely, the wires corresponding to the sum must be combined together. We
use two plugs to define the HL and the COMBINE circuits.

Definition HL x n p : C ((n+ p) · 1x) (n · 1x ⊕ p · 1x):= Plug ...
Definition COMBINE x n p : C (n · 1x ⊕ p · 1x) ((n+ p) · 1x):= Plug ...

We prove that these functions on wires implement their counterparts on vectors, and then, on
words. (These proofs are easy, yet not automatic.) Finally, these gates are easily combined
two-by-two to build HIGHLOWS and COMBINES that work with two sets of wires at the same time
to get more economical designs (i.e., designs with fewer sub-components).

Lemma HL_Spec x n p: Implement
(Φn+p

x ) (Φn
x • Φp

x) (HL x n p)
(fun x ⇒ (low n p x, high n p x)).

Lemma COMBINE_Spec x n p: Implement
(Φn

x • Φp
x) (Φ

n+p
x ) (COMBINE x n p)

(fun x ⇒ (combine n p (fst x) (snd x))).

Finally, we prove by induction on the size of the circuit that it implements the high-level
carry_add addition function on words. (Note that this is a high-level specification of the circuit:
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Figure 3.13 Divide and conquer adder
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the carry_add function is not recursive and discloses nothing of the internal implementation of
the device.) The interesting part of this proof boils down to the lemma add_parts, which we
used as example in the previous chapter (§2.3.2).
Lemma add_parts n m (xH yH: word m) (xL yL : word n) cin:
let (sumL,middle) := carry_add n xL yL cin in
let (sumH,cout) := carry_add m xH yH middle in
let sum := combine n m sumL sumH in
carry_add (n + m) (combine n m xL xH)(combine n m yL yH) cin = (sum,cout).

Instance RIPPLE_Spec cin a b cout sum n : Implement (RIPPLE cin a b cout s n)
(ιcin • (Φn

a • Φn
b )) (Φn

sum • ιcout) (fun (c,(x,y)) ⇒ carry_add n x y c).

From the electrical engineer point of view, this design is simple (a linear chain of 1-bit
adders) and slow (each full-adder must wait for the carry-in bit from the previous full-adders).
In the next subsection, we address the case of a more efficient adder, which is more complicated,
and a better benchmark for our methodology.

3.3.5 Divide and conquer adder

A von Neumann adder improves on the delay of the previous ripple-carry adder by using a
divide and conquer scheme [2]. That is, the adder computes both the sum when there is a carry-
in, and the sum when there is no carry-in. It is then possible to compute at the same time
the sum for the high-order bits, and the sum for the low-order bits. Hence, we build a circuit
that computes four pieces of data: s (resp. t), the n-bit sum of the inputs, assuming that there
is no carry-in (resp. assuming that there is a carry-in); p the carry-propagate bit (resp. g the
carry-generate bit), which is true when there is a carry-out of the circuit, assuming that there
is a carry-in (resp. that there is no carry-in).

In a nutshell, the 2n+1-adder circuit computes in parallel the 4-uple of results for the high-
order and low-order part of the inputs, each of size 2n. Then, the propagate and generate bits
for both parts can be combined by the PG circuit to compute the propagate and generate bits for
the entire circuit. In parallel, the FIX circuit is made of two 2n-bit multiplexers (easily defined
with a fixpoint using 1-bit multiplexers), and select the suitable high-order parts of the sum,
w.r.t. the propagate and generate carry-bits of the low-order adder.

We provide two diagrams in Fig. 3.13 that depict the base case and the recursive case
of the construction of DC n, the divide-and-conquer 2n-adder, but we omit the actual Coq
implementation for the sake of readability. We prove that this circuit implements the following
Coq function:
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Figure 3.14 Some useful isomorphisms

Definition Iso_stream A B C : ((A → B) ∼= C) → (A → stream B) ∼= (stream C) := ...
Definition Iso_stream_prod A B : (stream A ∗ stream B) ∼= (stream (A ∗ B)) := ...
Definition Iso_stream_vector A n : (vector (stream A) n) ∼= (stream (vector A n)) := ...

Definition dc n :W2n ∗ W2n → B ∗ B ∗ W2n ∗ W2n := fun (x,y) ⇒
let (s,g) := carry_add 2n x y false in
let (t,p) := carry_add 2n x y true in (g,p,s,t).

Instance DC_Spec n : Implement (DC n) (Φ2n
x • Φ2n

y ) (ιg • ιp • Φ2n
s • Φ2n

t ) (dc n).

Note that this is again a high-level specification of the circuit w.r.t. its definition: the
specification does not disclose the underlying computational behaviour. For instance, the dc

function is not recursive. While the proof is conceptually as simple as the proof of the ripple-
carry adder, and roughly 210 lines for the whole design, the definition of the plugs and their
specification is quite verbose and amounts to a huge part of the remaining 400 lines of the
file. We look forward to remove these rough edges by using thoroughly the Curry-Howard
isomorphism we presented in §3.2.7.

3.4 Sequential circuits: time and loops

While we have focused the previous case studies on combinational circuits, our methodology can
be applied to sequential circuits, with or without the loops that were allowed in the syntax of
circuits in §3.2.4. In this section, we instantiate T with streams of Booleans (of type nat → B),
atom with a two-case inductive definition that corresponds to the NOR and REG gates. We
instantiate spec accordingly, stating that the REG delays a stream for one unit of time. That
is, the gate REG implements the following pre function in the particular case of Booleans.

Definition pre {A} (d : A):
stream A → stream A := fun f t ⇒
match t with | 0 ⇒ d | S p ⇒ f p end.

Hypothesis REG_Realise_stream a out:
Implement (REG a out) (ιa) (ιout)
(pre false).

Recall that there may be several isomorphisms between two given types: to handle the
complexity of reasoning with streams, we rely on a few isomorphisms, listed in Fig. 3.14. For
instance, this is how we define the following bijections between valuations of n-ary disjoint sums
and streams of vectors of Booleans or streams of n-bit words.

Remark useful_iso_1 n : (n · 1) → stream B ∼= stream (vector B n) := ...
Remark useful_iso_2 n : (n · 1) → stream B ∼= stream (Wn) := ...

Lifting combinational circuits. We first demonstrate that the parametricity of our defini-
tion of the semantics of circuits may be put to good use to prove the functional correctness of
some designs in the Boolean setting, and then to mechanically lift this proof of correction to the
Boolean stream setting, for the same set of gates. Recall that the meaning relation Semantics,
denoted �, is parametrised by the semantics of the basic gates: here, we shall drop this notation
to make explicit this parameter.

We define an inductive predicate wf in Fig. 3.15 which is a characterisation of loop-less and
delay-less circuits, built on gates that operate on streams in a point-wise manner. We first prove
that the fact that this property on gates may be lifted to circuits. Then, we prove that if such
a circuit implements a function f in the base setting, then, the same circuits implements the
function Stream.map f in the stream setting.
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Figure 3.15 Lifting combinational circuits

Variables (atom : Type → Type → Type) (T : Type).
Variables (specif1 : spec atom T) (specif2 : spec atom (stream T)).

(* value of the stream at time t *)
Definition time {n} (v: n → stream T) (t: nat): n → T :=...

Definition wf_atom n m (c : atom n m) := ∀ ins outs (H : specif2 n m c ins outs),
∀ (t : nat), specif1 n m c (time ins t) (time outs t).

Inductive wf : ∀ n m (c : circuit atom n m), Prop :=
| wf_Atom : ∀ n m t, wf_atom n m t → wf n m (Atom atom t)
| wf_Ser : ∀ n m p x1 x2, wf n m x1 → wf m p x2 → wf n p (x1 � x2)
| wf_Par : ∀ n m p q x1 x2, wf n p x1 → wf m q x2 → wf (n + m) (p + q) (x1 & x2)
| wf_Plug : ∀ n m f , wf n m (Plug atom f).

Variables (n m : Type) (x : circuit atom n m) (Hwf: wf n m x).
Lemma lifting ins outs: Semantics atom (stream T) specif2 x ins outs →
∀ t, Semantics atom data specif1 x (time ins t) (time outs t).

Corollary lifting_map N M (Rn: (n → T) ∼= N) (Rm: (m → T) ∼= M) (f: N → M):
Implements x Rn Rm f → Implements x (Iso_stream Rn) (Iso_stream Rm) (Stream.map f).

Note that the occurrences of Semantics in the lifting_map lemma are in a contravariant
position, which explains the apparent reversal of the implication.

From a practical point of view, this result makes it possible to integrate seamlessly combi-
national circuits into sequential circuits, carrying the proofs in the former (simpler) setting.

A buffer. A REG delays one wire by one unit of time; a FIFO buffer generalises this behaviour
in two dimensions, by chaining layers of REG one after another. While this circuit is simple, it
is a good example for the use of high-level combinators that capture the underlying regularity
in some common circuit patterns. For instance, consider the two following definitions, that
replicate a sub-component in a serial or parallel manner.

Variable CELL : C n n.
Fixpoint COMPOSEN k : C n n :=
match k with
| 0 ⇒ Plug id
| S p ⇒ CELL � (COMPOSEN p)
end.

Variable CELL : C n m.
Fixpoint MAP k : C (k · 1n) (k · 1m):=
match k with
| 0 ⇒ Plug id
| S p ⇒ CELL & (MAP p)
end.

We prove that the COMPOSEN combinator implements a higher-order iteration function, up-to
isomorphism: if CELL implements a given function f, then COMPOSEN k implements the iteration
of f k times. Respectively, we prove that the MAP circuit implements the higher-order map

function on vectors. Hence, we define a FIFO buffer in one-line, and we prove that it implements
the function below. While we do not detail the underlying proof, it is done in the same fashion
as the proofs of combinational circuits.

Definition FIFO x n k : C (k · 1x) (k · 1x) := COMPOSEN (MAP (REG x x) k) n.
Definition fifo n k (v : stream (vector B k)) : stream (vector B k) :=
fun t ⇒ if n < t then v (t − n) else Vector.repeat k false.

Instance FIFO_Spec x n k : Implement (FIFO x n k) (useful_iso_1 n) (useful_iso_1 n) (fifo n k).
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Figure 3.16 A memory element

Context a load out : string.
Program Definition MEMORY:
C (1load ⊕ 1a) 1out :=
Loop (1load ⊕ 1a) 1out 1out
(... � MUX2 a out load "in_reg"
� REG "in_reg" out � Fork2 1out).

M
U
X

REG

load

a out

outout

Figure 3.17 A shallow representation of Moore automata

Variable I O σ : Type.
Record Moore := { λ : σ → O; δ : σ → I → σ}.

Fixpoint iterate (M: Moore) (x: σ) (ins: stream I) (k: nat): σ :=
match k with | 0 ⇒ x | S n ⇒ δ M (iterate M x ins n) (ins n) end.

Definition outputs (M: Moore) x (ins: nat → I) k : O := λ M (iterate M x ins k).

A memory element. Our next goal is to demonstrate how we deal with state-holding struc-
tures. Hence, we turn to the implementation of a 1-bit memory element, as implemented in
Fig. 3.16. The memory is meant to hold 1-bit of information through time, which does not fit
nicely in the Implement framework (which express the outputs of the circuit as a function of
the sole inputs2). Hence, a first solution is to use a relational specification through the use of
Realise:

Record reg_ti := {va : bool; vload : bool}.
Instance Memory_Spec : Realise (... : 1load ⊕ 1a → stream B ∼= stream reg ti) (ιout) MEMORY
(fun ins outs ⇒ outs = pre false (fun t ⇒ if vload (ins t) then va (ins t) else outs t)).

In this setting, the state of the memory is stored inside the history of the stream (the previous
values that were taken by the output). While it is possible to reason about state-holding devices
in this manner [74, 112], this is not the nicest way to reason about state-holding structures.
Therefore, we move to the usual specification of synchronous circuits through Moore machines,
a particular kind of finite state machine in which the internal state is updated w.r.t. the inputs,
and the outputs are determined by the internal states (see Fig. 3.17). Hence, we specify the
above memory w.r.t. its usual Moore automaton.

Definition reg_m : Moore reg_ti bool bool :=
{| λ := id; δ := fun state ins ⇒ if vload ins then va ins else state|}.

Instance Memory_Spec : Realise (... : 1load ⊕ 1a → stream B ∼= stream reg ti) (ιout) MEMORY
(fun ins outs ⇒ ∀ t, outs t = Moore.outputs reg_m false ins t).

Notice that a straightforward composition of such specifications amounts to the standard
composition from automata theory, taking the Cartesian product of the state sets and combin-
ing the transition functions accordingly. However, in the definition of Moore automata from
Fig. 3.17, remark that the type of the states σ may be an arbitrary Coq type. For instance, this
makes it possible to use a rich specification as a refinement of the state-space of the underlying
automaton. We leave a more thorough investigation of state-holding devices to future work.

2Therefore, it is not possible to use recursively the definition of the outputs when defining the outputs.
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3.5 Comparing shallow-embeddings and deep-embeddings

We have presented the core of our deep-embedding of circuits in Coq, and some simple case
studies. We now turn to put this work in perspective, thoroughly discussing the pros and cons
of shallow and deep embeddings of circuits. We distinguish three possibilities:

a) modelling circuits as predicates written in a subset of the logic of the theorem prover
(synchronous circuits being represented as predicates over streams);

b) modelling circuits as functions written in a subset of the programming language of the
theorem prover (synchronous circuits being modelled as transition functions of finite state
systems, i.e., functions of type α× σ → β × σ);

c) modelling circuits as a data-type, endowed with a meaning function.

Concrete case studies. Using b), defining a circuit is no more difficult than writing a pro-
gram. This makes it possible to design and verify sizable artifacts. For instance, a formal proof
of a microprocessor designed using the PVS proof assistant was conducted in the recent VAMP
project [26] and the complexity of this design is claimed to be comparable with industrial con-
trollers with built-in floating point units. Generally speaking, using a) or c) requires to make
explicit the wiring in the definitions of circuits, which induces an overhead when doing proofs.
Recall that we developed some tactics to handle this overhead, but the overall ease of use is not
on par with the comfort provided by b), and thus, the case studies are less impressive.

Simulating and checking designs. Using predicates to model hardware does not permit
to simulate the circuits in order to get rid of logical errors, before proving them. However,
the description of hardware as functions makes it easy to simulate the circuits: this is only a
matter of running the function in the host theorem prover. Using a deep-embedding, this must
be implemented somehow. In our particular case, we define a simulation function that yields
a computational denotation of a given circuit. (Note that this requires the user to provide a
suitable interpretation of each basic gate.)

Variable sem : ∀ a b, atom a b → (a → T) → option (b → T).
Fixpoint simulation n m (c : circuit atom n m) : (n → T) → option (m → T) := ...

For the sake of simplicity, we only consider loop-free circuits here, hence the option in the
type of the result. However, if we moved from Booleans to the three-valued Scott’s domain
(unknown, true, false), we could envision computing fixpoints of the simulation function using
Knaster-Tarski’s theorem to handle loops. More generally, moving to the three-valued Scott’s
domain would allow us to consider the constructive semantics of circuits [143].

Notice that this simulation function defines a (partial) map from valuations to valuations
which may be lifted to a (partial) map with a more meaningful type using type isomorphisms.
For instance, this makes it possible to validate that the (simulated) outputs of the adders of §3.3
conform to their computational specification, before proving that they meet this specification.

Definition test n x y cin :=
let I := @uniso (ι • Φn • Φn) (cin ,x, y)
in match sim (RIPPLE n) I with
| None ⇒ None
| Some x ⇒ Some (@iso (Φn • ι) x)
end.

Eval compute in
test 4 (Word.repr 4 8) (Word.repr 4 7) false.
(* Some ({| val := 15; ...|} , false) *)

Eval compute in
test 4 (Word.repr 4 8) (Word.repr 4 7) true.
(* Some ({| val := 0; ...|} , true) *)

Meta-properties of circuits. Using the same ideas than for simulation, we may give other
interpretations [27] of circuits defined using a deep-embedding. For instance, we can compute
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the number of gates used, or the length of the critical path of a combinational circuit and thus
prove that a given design meets some gate-count or delay complexity properties. As an example,
we could check that the recurrence relation expressing the delay D or the number of gates G of
the divide-and-conquer 2n-adder from §3.3.5 are given by:

D(n) = 3(1 + n)

G(n) = 3(n+ 5)2n − 6

Dealing with this kind of intensional properties seems unfeasible using a shallow-embedding.
Indeed, the above quantities must be computed at a meta-level and cannot be used in theorems.

Compilation and circuit transformations. Given an embedding of circuits in a theorem
prover, we may consider two kinds of operations: synthesis of circuits (that is, compilation
from an arbitrary embedding of a programming language to circuits); or transformations from
circuits to circuits. Broadly speaking, these operations are translations from one language, to
another.

One may take the radical view [145] that each of these languages is embodied by particular
kind of terms of the programming language of the theorem prover, and not by particular abstract
syntax tree types. (That is, program syntax and operational semantics need not to be formalised
since all “languages” happen to be terms enjoying exactly the same semantics.) In this context,
all the above transformations are implemented at the meta-level, and they may be verified as
particular cases of translation validation [127]. Yet, there is no strong evidence that this is
possible beyond some particular simple compilation schemes; one cannot prove general results
of semantics preservation for these translations; and it is not possible to argue formally about
the termination or the completeness of such meta-level programs.

Generally, shallow-embeddings of source languages do not permit to define the aforemen-
tioned kind of transformations as programs written inside the theorem prover: predicates and
functions cannot be structurally analysed3 by other functions.

However, Boolean functions may be analysed computationally : given a (combinational)
fonction from (tuples of) Booleans to (tuples of) booleans, one could compute its underlying
truth table using Shannon’s formula. This truth table may be represented as a Binary Deci-
sion Diagram (BDD) and used to perform analysis and simplifications on the underlying circuit.
Synchronous Decision Diagrams [156] generalise the construction of BDDs to the representation
of (sequential) circuits. The construction of an SDDs from a given function f on streams of
Booleans is by nature an infinite process that terminates if and only if the function f may be
implemented by some finite state automaton. But constructing an SDD from a given finite cir-
cuit may yield a circuit that is less efficient than the original one. To the best of our knowledge,
such transformations from shallow-embeddings of circuits to a deep-embedding have never been
implemented in theorem provers. Indeed, reasoning about the (non-terminating) SDD construc-
tion algorithm may be hard.

Therefore, the use of a deep-embedding of circuits seem almost mandatory to implement
and prove circuits-to-circuits transformations.

For instance, Cortadella, Kishinevsky and Grundmann [58] present a protocol to build
latency-insensitive (or elastic) designs that is claimed to be amenable to efficient implemen-
tation, and they describe how usual synchronous circuits may be made elastic in an automatic
way. We still need to investigate whether this elasticisation method may be easily implemented
using our particular deep-embedding, and if possible, conduct a formal proof of semantics
preservation.

3Their abstract syntax tree are not available
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Implementable constructs. Remark that a deep-embedding of circuits makes it mandatory
to settle on a given set of atoms. In our particular case, Coq’s strong normalisation ensures
that terms of type C n m reduce to constructors of the inductive definition of circuits. We
actually defined a Coq function that computes a net-list representation of a given circuit, under
the extra hypothesis that all its interface types are finite (which is not a strong requirement for
real-life circuits). Remark that this function amounts to a mere pretty-printing of the circuits in
our setting: it suffices to affect fresh names to ports of basic gates and to track the connections
induced by the combinators. We do not prove properties about this pretty-printer.

Using a shallow-embedding, computing a net-list representation of a circuit must be done at
the meta-level, and there are two sources of non-implementable constructs. First, the underlying
language elements used in a circuit definition may be difficult to interpret in hardware. As an
example, we may ponder on how to translate the application of an higher-order map function
to a bit-vector. Second, several simplification may be used to model circuits. For instance, [89]
studies the proof of correctness of an out-of-order execution processor with a reorder buffer,
which is implemented as an unbounded buffer for the sake of simplicity. Yet, this is not directly
implementable in hardware.

Summary. First, we have argued that it is currently easier to conduct the verification of
sizable artifacts, like the VAMP project [26], using a shallow-embedding. However, we have
also argued that going through a deep-embedding is required to verify circuits transformations,
or to prove meta-properties of circuits. In the next section, we build on the above discussion to
discuss several related works.

3.6 Comparisons with related work

In this presentation, our approach was to study how to create provably correct hardware inside
a proof assistant. We shall not discuss the reverse approach, translating a conventional HDL
description of a circuit to a proof assistant to do a posteriori verification of circuits: we argue
that to verify circuits efficiently in a theorem prover, one has to exploit the structure of the
designs, and in particular, their recursive structure. Neither shall we discuss model-checking
methods [47]: we are interested in total functional correctness, not on partial verification.

Shallow-embeddings of circuits.

There has been a substantial amount of work on specification and verification of hardware in
HOL. In [74, 112], HOL is used as an hardware description language and as a formalism to
prove that a design meets its specification. They model circuits as predicates in the logic, using
a shallow-embedding that merges the architecture of a circuit (a predicate) and its behaviour
(another predicate). These seminal works demonstrated how to model iterated structures, and
how to reason about temporal concepts.

Building on the former methodology, Slind et al [146] define a compiler from a synthesisable
subset of HOL that creates correct-by-construction clocked synchronous hardware implementa-
tions. This approach is a particular case of translation validation [127]: the input function is
refined by a proof procedure (i.e., a tactic) that uses rewriting to build a theorem that contains
as a sub-term the synthesised circuit and a proof of its correctness. The generated hardware
implementation is a predicate, that expresses the connection of primitive hand-shake devices.
This formula may then be syntactically mapped to some Verilog constructs.

The synthesisable subset of HOL considered is at first limited to combinational (tail-recursive)
functions mapping words to words. Functions that do not fall in this subset must be refined to a
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tail-recursive form manually or using special purpose proof procedures (the authors provide one
such tool that transforms linear-recursion to tail-recursion). Data-refinements from functions
on other types than words must be also done by hand. Since the transformation from functions
to circuits is done via automatic rewriting of suitable lemmas, users may tinker with the proof
scripts to extend the synthesisable subset of HOL with e.g., let-expressions, or to optimise the
translation. This methodology allows the designer to focus on high-level abstraction instead of
reasoning and verifying at the gate level. However, this gives little control on the generated
circuit, and the subset of HOL that may be synthesised this way is rather small. By contrast,
our work complements their behavioural “correct by design” synthesis from a subset of the
high-level language of the theorem-prover with bottom-up structural verification of circuits.

In the Boyer-Moore theorem prover (untyped, quantifier-free and first-order), Brock and
Hunt proved the correctness of functions that generate correct hardware designs. Their frame-
work allows for the definition of Mealy machines and their hierarchical composition. They first
studied the correctness of an arithmetic and logic unit, parametrised by a size [95]. The same
approach was then used to verify a simple, non-pipelined microprocessor design [36]. The veri-
fication of these examples fall out of what may be proved automatically using the Boyer-Moore
theorem prover and requires to provide it with proofs scripts. By contrast, our case studies are
less ambitious, but we may argue that our use of dependent-types to rule out ill-formed circuits
simplifies their first-order, untyped presentation of circuits.

In Coq, Paulin-Mohring [122] proved the correctness of a multiplier unit, using a shallow-
embedding: sequential circuits are modelled as Moore automata. More recently, Coupet-Grimal
and Jakubiec [59] investigated how to take advantage of Coq’s dependent types and co-inductive
types in hardware verification: they use a shallow embedding of Moore and Mealy automata
to describe and reason about sequential circuits. We still need to investigate some examples of
sequential circuits studied in these papers.

In PVS, Beyer et al [25, 26] model circuits as functions of the PVS programming language.
Then, they define an external and non-verified tool, pvs2hdl, that translates PVS programs to
Verilog. The considered subset of PVS allows one to define (recursive, combinational) functions
that have bits and bit-vectors as inputs and outputs, and allows for parameterised designs (e.g.,
a ripple-carry adder of arbitrary size). It is then extended to model clocked circuits, using a
shallow-embedding of Mealy automata. The translation to hardware is defined as a syntactic
mapping from PVS constructs to Verilog constructs. For instance, function definitions in PVS
correspond to the definition of hardware modules in Verilog, while function calls correspond to
the usage of such modules. (Note that this non-trivial transformation may require to unfold
high-level constructions of the language like unrolling recursive definitions, or expanding func-
tions applications.) Non-synthesisable constructs may not appear in the definitions of circuits:
for instance, this prevents to use higher-order functions on bit-vectors. By contrast, arbitrary
Coq constructs may appear in our definition of circuits: strong normalisation ensures that terms
of type circuit are synthesisable.

Deep-embeddings of circuits.

Melham [112] gave a deep-embedding of circuits in HOL at the transistor level and defined
meaning functions w.r.t. two models of the transistors behaviour: a simple switch model (where
values are represented by Booleans), and a threshold model (where values are represented in
the three-valued Scott’s domain). Then, he studied under which conditions on the circuits
the two models agree. By contrast, our deep-embedding of circuits is more high-level (we do
not deal with transistors), but our circuits are still amenable to high-level proofs of functional
correctness.
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Hunt and Reeber [96] formalised the DE2 language in ACL2, the successor of the Boyer-
Moore theorem prover. The DE2 language defines a deep-embedding of finite state machines,
that are then amenable to formal reasoning, through the evaluation of the DE2 definitions to
ACL2 models. Since the underlying system is limited to first-order logic, it is not possible to
prove semantics preservation for the kind of circuits transformations we mentioned in §3.5.

Verification of microprocessors.

Using the Boyer-Moore theorem prover, Brock and Hunt verified the simple, non-pipelined
FM9001 processor [36]. Later, using ACL2, Sawada and Hunt [138] showed the correctness of
an entire out-of-order processor using a Tomasulo’s scheduler, with precise interrupts and a
store buffer.

More recently, an outstanding work in microprocessors verification using theorem proving
was conducted in the VAMP project [26]. Using PVS, the authors designed and verified:

“a processor with full DLX instruction set, delayed branch, Tomasulo scheduler,
maskable nested precise interrupts , pipelined fully IEEE 754 compatible dual preci-
sion floating point units with variable latency, as well as separate, coherent instruc-
tion and data caches.”

This microprocessor was then synthesised and implemented on an FPGA. Arguably, this design
is by far the most complex processor formally verified to date.

In Coq, Arditi [8] studied the correctness of some hardware circuits in the more general
context of microprocessor verification. The complexity of the studied circuits is roughly similar
to our case studies, and not on par with the two previous examples.

Algebraic definitions of circuits.

Circuit diagrams have nice algebraic properties. Lafont [107] studied the algebraic theory of
Boolean circuits, and described rewriting systems and the associated canonical forms of circuits.
While he mainly considered the “basic” Boolean circuits, his methods may be useful to study
reversible Boolean circuits or quantum Boolean circuits. We look forward to apply similar
algebraic methods to reason about circuits formalised using our deep-embedding.

Hinze [82] studied the algebraic structure of parallel prefix circuits. That is, he defined
combinators that make it possible to describe succinctly all standard designs of this restricted
class of circuits, and to prove them correct using algebraic reasoning. In particular, note that
this class of circuits encompasses some classical adder circuits, e.g. carry-lookahead adders, or
parallel sorting circuits. Defining these combinators on top of our deep-embedding of circuits
should make it easy to define and verify parallel prefix circuits.

Functional languages in hardware design.

Sheeran [141] made a thorough review of the use of functional languages in hardware design,
and of the challenges to address. Our work is a step towards one of them: the design and
verification of parametrised designs, through the use of circuit combinators.

Lava [27] is a language embedded in Haskell to describe circuits, allowing one to define
parametric circuits or higher-order combinators. While much of our goals are common, one
key difference is that our encoding of circuits in Coq avoids the use of bound variables (we use
only combinators). Moreover, we use dependent types, that are required to deal precisely with

118



parametric circuits. Finally, we prove the correctness of these parametric circuits in Coq, while
verification in Lava is reduced to the verification of finite-size circuits.

Bluespec is a proprietary language that may be described as an extension of Haskell, extend-
ing the language to handle the design of circuits. Bluespec builds on the TRAC language [83]
that compiles high-level description of circuits described as term-rewriting systems to circuits
(expressed at the register transfer level, in Verilog).

Ghica [69] gave a denotational semantics of a functional language with imperative features,
based on Reynolds’ Syntactic Control of Interference [133], in terms of handshake circuits (which
are incidentally shown to form a closed monoidal category). One advantage of the presented
synthesis technique is the simplicity of the generated circuits: for instance, abstraction, appli-
cations, sequential composition, assignment or dereferencing of variables reduce to mere wiring.

Synchronous languages in hardware design.

Synchronous languages such as Esterel [19], Lustre [78], SIGNAL [108] and others may be
used to describe the functional specification of hardware or software components of embedded
systems. Such synchronous programs may then be translated to hardware implementations
or synthesised to hardware circuits. Case studies in an industrial context [20] gave empirical
evidence that the use of synchronous languages such as Esterel could help to build correct
hardware design through compilation, that were one order of magnitude less verbose than their
counterparts developed using conventional hardware description language. That is, the use of
high-level primitives allows for more economical designs. Moreover, synchronous languages have
been endowed with formal semantics. For instance, Schneider [139] studied an embedding of the
Esterel programming language in HOL, and proved correct its translation to equations systems
of guarded commands (which are a representation of hardware circuits).

3.7 Conclusion

We have presented a deep-embedding of circuits in Coq that allows one to build and reason about
gate-level circuits, yet proving high-level specifications through the use of type-isomorphisms.
We have hinted that dependent types are useful to prove automatically some well-formedness
conditions on the circuits, and help to avoid time consuming mistakes. Then, we demonstrated
how to prove by induction the correctness of some arithmetic circuits of parametric size: this
could not have been possible without mimicking the structure of the usual circuit diagrams to
define circuit generators in Coq. Note that the code of this library is rather small: around 4000
lines, including the examples. Finally, we conclude this chapter with potential directions for
future works.

More case studies. We could continue the case studies described in §3.3. In particular, we
would like to investigate how to construct parallel prefix circuits in our framework [82, 141], or to
investigate the design-space of combinational and sequential multipliers, to yield real arithmetic
and logic units.

Other settings. We also look forward to study how our methodology applies to other set-
tings than Booleans or streams of Booleans. For instance, if we move from Booleans to the
three-valued Scott’s domain (unknown, true, false), we may interpret circuits in the so-called
constructive semantics. We also hope that some of our methods could be applied to the proba-
bilistic setting.
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Figure 3.18 A dependently-typed WHILE language

Inductive aexp (E: list nat) : nat → Type :=
| AVar: ∀ n (i : Var E n), aexp E n
| AConst: ∀ n, Word.word n → aexp E n
| APlus: ∀ n, aexp E n → aexp E n → aexp E n
| ALo: ∀ n m, aexp E (n + m) → aexp E n
| AHi: ∀ n m, aexp E (n + m) → aexp E m
| ACat: ∀ n m, aexp E n → aexp E m → aexp E (n + m).

Inductive bexp (E: list nat) : Type :=
| BTrue: bexp E
| BFalse: bexp E
| BEq: ∀ n, aexp E n → aexp E n → bexp E
| BLt: ∀ n, aexp E n → aexp E n → bexp E
| BNot: bexp E → bexp E
| BAnd: bexp E → bexp E → bexp E.

Inductive com (E: list nat) : Type :=
| CSkip: com E
| CAss: ∀ n (v : Var E n) , aexp E n → com E
| CSeq: com E → com E → com E
| CIf: bexp E → com E → com E → com E
| CWhile: bexp E → com E → com E
| CNew: ∀ n, aexp E n → com (snoc E n) → com E

Front-ends. A preliminary investigation indicates that our definition of circuits is a good
target for the compilation of a dependently typed variant of the WHILE language (see Fig. 3.18)
defined along the lines of Ghica’s Geometry of Synthesis [69]. Therefore, an interesting alterna-
tive to the gate-level description of, e.g., sequential multipliers or their use inside an iterated
divider would be to generate these circuits from an high-level WHILE program. This would be a
particular example of behavioural synthesis, that is, the generation of circuits using high-level
front-ends. Then, we could envision to mix circuits defined in our “assembly” language of
combinators with generated circuits.
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Conclusion

Contributions and conclusion

We followed two different lines of research in our work. The first one deals with the addition of
general purpose automation to Coq: using a proof assistant, an user may expect help when the
goals belong to some decidable logical fragments. The second one deals with the development
of particular formalisations in Coq: either “gratuitous” ones (our deep-embedding of hardware
circuits), or “necessary” ones to build reflexive tactics (the proofs leading to Kozen’s theorem).
We summarise our contributions below, which interleave these two lines of works through the
definition of reflexive decision procedures.

An efficient decision procedure for Kleene algebras. First, we presented a reflexive
tactic for deciding the equational theory of Kleene algebras. This tactic relies on a careful
implementation of efficient finite automata algorithms, so that it solves casual equations instan-
taneously and properly scales to larger expressions. The underlying decision procedure is proved
correct and complete: correctness is established w.r.t. any model by formalising Kozen’s ini-
tiality theorem; and a counter-example is returned when the given equation does not hold. The
correctness proof is challenging: it involves both a precise analysis of the underlying automata
algorithms and a lot of algebraic reasoning. In particular, we had to formalise the theory of
matrices over a Kleene algebra.

Tools for rewriting modulo AC. Second, we presented a set of tools for rewriting AC,
solving a long-standing practical problem. We use two building blocks: an extensible reflexive
decision procedure for equality modulo AC; and an OCaml plug-in for pattern matching modulo
AC. We handle associative only operations, neutral elements, uninterpreted function symbols,
and user-defined equivalence relations. We defined a new reification method based on the use
of type-classes: we can infer these properties automatically, so that end-users do not need to
specify which operation is A or AC, or which constant is a neutral element.

A library to verify hardware circuits. Third, we presented a new library to model and
verify hardware circuits in Coq. This library allows one to easily build circuits by following the
usual pen-and-paper diagrams. The main novelty of our contribution is that we define a deep-
embedding: we use a (dependently typed) data-type that models the architecture of circuits,
and a meaning function. We proposed tactics that ease the reasoning about the behaviour of
the circuits, and we demonstrated that our approach is practicable by proving the correctness
of various circuits.
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Perspectives

The use of combinational reflection. In his survey and critique on the use of reflection,
Harrison [81] wrote:

“The idea of computational reflection is not to make a formal system stronger but
rather to make its deductive process more efficient by utilising information which
avoids having to construct formal proofs in full detail.”

We shall ponder this statement. First, consider the particular example of equality modulo AC.
Indeed, our decision procedure alleviates the need to produce a proof of equality in full detail,
but this would be tractable (regardless of the size of the proofs). However, the above quote makes
perfect sense in the case of our decision procedure for Kleene algebras: constructing a formal
proof of a given arbitrary theorem directly from the rules of Kleene algebras is difficult. Even if,
from a theoretical point of view, an algorithm to compute derivations could be extracted from
a proof of correction of the decision procedure, it is not straightforward to use our development
to do so; moreover, such an algorithm may be unusable in practice.

It might be the case that this particular use of combinational reflection is actually simpler
than exhibiting proof-trees using the rules of Kleene algebras, but we look forward to investigate
to what extent the scales could be tipped in favour of the use of an external solver coupled with
some traces verification.

An automata library. We could expand our library of automata constructions to provide a
complete library dedicated to formal languages. First, we should improve on our preliminary
implementations of minimisation algorithms. Then, our development could be supplemented
with theoretical results such as the pumping lemma, or the Myhill-Nerode theorem. We could
also implement decision procedures for emptiness or finiteness of regular sets, or certified grep-
like tools.

A more ambitious project would be to implement an automata-based decision procedure
for the Weak Second-Order Theory of 1 Successor, WS1S [42]. Note that Presburger arith-
metic (with existential and univeral quantifiers) is definable as a restricted fragment of WS1S,
and that we could revisit en cours de route the decision procedure implemented by Berghofer
and Reiter [18] in Isabelle. In another decidable fragment of WS1S, Basin and Klarlund [15]
demonstrated how to represent classes of combinational or sequential circuits (for instance, n-
bit adders), and perform automatic verification of some correctness properties. Although the
decision problem for WS1S formula is of non-elementary complexity, Basin and Klarlund report
that their decision procedure may be used in practice. The usability of a Coq implementation
is an open question.

Formal behavioural synthesis. By contrast with our structural description of circuits, be-
havioural descriptions aim to specify circuits by their input/output behaviours without describ-
ing their implementation details. Then, hardware implementations are synthesised through
optimising compilation. There is empirical evidence [83] that, on big designs, such synthesis
of high-level description yields more efficient implementations than hand-optimised low-level
description circuits. Indeed, hand-optimisations have diminishing returns, and do not scale
well beyond small examples. Moreover, inter-block synchronisation mechanisms must be im-
plemented on an ad-hoc basis—and are usually scattered throughout the whole circuit, thus
difficult to maintain. Among behavioural description languages, term-rewriting systems [83],
statically allocated functional languages [114] or synchronous languages [19] have been endowed
with formal semantics. We look forward to study to what extent behavioural synthesis from one
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of these languages is amenable to formal verification. While most surely, optimising compilation
should be out of reach, simpler synthesis schemes and simpler circuits-to-circuits transforma-
tions (for instance, elasticisation [58]) are more likely to be amenable to formal proof.
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Abstract

This thesis describes three formalisations in Coq. The first chapter is devoted to the imple-
mentation of an efficient decision procedure for Kleene algebras : as regular languages are the
initial model of Kleene algebras, we can resort to finite automata algorithms to solve equations
in an arbitrary Kleene algebra. The second chapter presents a set of tools for rewriting modulo
associativity and commutativity built using two components: a reflexive decision procedure for
equality modulo AC and an OCaml plug-in for pattern matching modulo AC. The third chapter
defines a deep-embedding of hardware circuits using dependent types that is used to model and
prove the functional correctness of parametrised circuits.

Résumé

Cette thèse décrit trois travaux de formalisation en Coq. Le premier chapitre s’intéresse à
l’implémentation d’une procédure de décision efficace pour les algèbres de Kleene, pour lesquelles
le modèle des langages réguliers est initial : il est possible de décider la théorie équationelle des
algèbres de Kleene via la construction et la comparaison d’automates finis. Le second chapitre
est consacré à la définition de tactiques pour la réécriture modulo associativité et commutativité
en utilisant deux composants : une procédure de décision réflexive pour l’égalité modulo AC,
ainsi qu’un greffon OCaml implémentant le filtrage modulo AC. Le dernier chapitre esquisse une
formalisation des circuits digitaux via un plongement profond utilisant les types dépendants de
Coq ; on s’intéresse ensuite à prouver la correction totale de circuits paramétriques.


