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Abstract

The Cenozoic evolution of the Pyrenean-Cantabrian mountain belt was driven by both internal and 

external processes, such as tectonics, erosion and deposition. This alpine belt is made up by the 

Pyrenees and the Cantabrian Mountains, and is characterized by significant lateral variations in 

total shortening, structural styles and topography. This thesis aims to better constrain the controls 

on exhumation and topography development during syn- to post-orogenic times, from the Eocene 

to the Pliocene, by focusing on two characteristic parts of the belt: the Southern Central Pyrenees 

and the Central Cantabrian Mountains. To this purpose, a multi-disciplinary approach is 

developed, combining low-temperature thermochronology with different numerical modeling 

tools. To better understand lateral variations in exhumation of the belt, a new low-temperature 

thermochronology dataset is presented for the Cantabrian domain. The first part of this thesis 

presents new apatite fission-track data and (U-Th)/He analysis on zircons, constraining the timing 

and amount of exhumation along the central Cantabrian cross-section. In particular, the Eocene to 

Oligocene ages obtained from the different thermochronometers allow us to infer a more important 

amount of burial and, consequently, a thicker Mesozoic sedimentary section than previously 

considered, thereby also refining the structural style of the section at the upper crustal scale. 

The extensive thermochronological dataset existing in the central Pyrenees is then used to

reconstruct the late-stage evolution of the South Central Axial Zone by thermo-kinematic inverse 

modeling. The model predicts rapid exhumation of the area during late Eocene (late syn-orogenic) 

times, followed by a post-orogenic evolution that is strongly controlled by base-level changes. As 

a consequence of the establishment of endorheic conditions in the adjacent Ebro foreland basin, 

together with the strong erosion of the Axial Zone, the southern foreland area was infilled by an 

important amount of erosional deposits in late Eocene to early Oligocene times. The models allow 

us to constrain the level of infilling at ~2.6 km and to date the excavation of these sediments at 

~10 Ma, following opening of the Ebro basin toward the Mediterranean Sea. The thickness of 

sediments draping the foreland fold-and thrust belt was verified using fission-track analysis and 

(U-Th)/He measurements on apatites from foreland sediments. Thermal modeling of the data 

provides an estimate of 2 to 3 km of sediments on top of the foreland and confirms its incision in 

Late Miocene times.  The effect of syn-orogenic deposition on the building and late evolution of 

the southern Pyrenean fold-and-thrust belt has been modeled in the last chapter of this thesis using 

a 2D thermo-mechanical numerical modeling approach. The models highlight the potential effect 

of syn-tectonic sedimentation on thrust kinematics at several stages of wedge building. Our 

modeling also shows that the addition of an Oligocene sediment blanket perturbs the thrusting

sequence by stabilizing the central part of the external wedge and enhancing both frontal and 

internal accretion; a pattern that reproduces the observed deformation in the Southern Central 

Pyrenees.
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Résumé 

L’évolution Cénozoique de la chaîne Pyreneo-Cantabrienne est contrôlée par des processus 

internes et externes, comme la tectonique et les processus d’érosion et de sédimentation. Les effets 

de ces différents mécanismes font actuellement l’objet de nombreuses études, en particulier dans 

les systèmes orogéniques, pour comprendre les contrôles de la tectonique et du climat (via les 

processus de surface) pendant les différentes phases d’exhumation d’une chaîne de montagne. La 

chaîne Pyrénéo-Cantabrienne est une chaîne alpine se composant des Pyrénées à l’Est et des 

Montagnes Cantabriennes à l’Ouest, et qui présente d’importantes variations latérales en termes de 

raccourcissement total, de style structural et de topographie. Cette thèse a donc pour but de mieux 

contraindre ces variations le long de la chaîne depuis l’Eocène au Pliocène, c’est-à-dire pendant et 

après l’inversion lithosphérique Cénozoique, et en se concentrant particulièrement sur deux zones 

caractéristiques : le Sud des Pyrénées centraux et le centre des Montagnes cantabriennes. L’étude 

de ces deux zones permet également d’identifier et d’analyser les interactions entre la tectonique et 

les processus de surface au syn- et post-orogénique, et notamment les couplages entre la chaîne et 

son avant-pays. Pour ce faire, une approche multi-disciplinaire combinant la thermochronologie 

basse température avec différents modèles numériques en 2 et 3 dimensions, a été adoptée.

En effet, la thermochronologie basse température est un outil fréquemment utilisé pour étudier 

l’exhumation d’une zone orogénique ; en combinant différent thermochronomètres, on peut 

déduire des périodes d’exhumations ainsi que des vitesses de soulèvement, renseignant ainsi 

directement sur les phases d’exhumations d’une zone. Contrairement aux Pyrénées, la chaine 

cantabrienne centrale est une région où très peu de datations thermochronologiques ont été 

effectuées. Pour illustrer les variations latérales d’exhumation dans la chaîne, de nouveaux âges 

thermochronologiques effectués dans les Cantabrides centrales sont présentées dans une première 

partie de cette thèse. Ces nouvelles données de traces de fission sur apatites et d’analyses (U-

Th)/He sur zircons donnent ainsi une bonne estimation de la quantité d’exhumation le long dune 

coupe Nord-Sud, indépendamment contrainte par sismique réflexion. En particulier, les âges 

Eocène ((U-Th)/He sur zircons) à Oligocène (traces de fission sur apatite) obtenus nous ont permis 

de donner un calendrier précis de la déformation alpine dans cette zone, concordant avec les 

observations géologiques en mer, ainsi qu’une quantité d’enfouissement (et donc une épaisseur de 

sédiments ante-orogéniques) plus importante que ce qui avait été proposé auparavant. De plus, ces 

nouvelles données nous permettent d’apporter des contraintes supplémentaires afin de  raffiner la 

coupe structurale à l’échelle de la croute supérieure.

Les chapitres suivants se concentrent sur l’évolution syn- à post-orogénique des Pyrénées 

centraux. Dans une première partie, l’importante base de données thermochronologiques dans le 

centre-Sud de la Zone Axiale est utilisée pour reconstruire l’évolution tardive du Sud de la chaîne 

et de son avant-pays, jusqu’au bassin de l’Ebre. Des données (U-Th)/He sur apatite et trace de 
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fission sur apatites et zircons sont incorporées au modèle thermo-cinématique Pecube, qui, couplé 

à une méthode d’inversion (Neighbourhood Algorithm) prédit des valeurs de vitesses 

d’exhumation pour différentes périodes de temps ainsi que les quantités de sédiments déposés dans 

les vallées nécessaires pour reproduire avec la meilleure probabilité les données 

thermochronométriques. Ainsi, le modèle prédit une exhumation rapide à l’Eocène supérieur, puis 

une évolution post-orogénique contrôlée par les variations du niveau de base du bassin de l’Ebre 

au Sud. En effet, l’endorhéisme du bassin conjugué à la forte érosion de la Zone Axiale ont 

favorisé le remplissage du flanc Sud de la Zone Axiale depuis l’Eocène supérieur par une quantité 

importante de sédiments, produits de l’érosion des zones internes. Les modèles nous ont également

permis de dater l’incision de ces sédiments à ~10 Ma, date que nous interprétons comme 

correspondant à l’ouverture du bassin de l’Ebre vers la Méditerranée. 

Dans le chapitre suivant, une extension des conclusions du chapitre précedent à l’avant-pays Sud-

Pyrénéen est proposée par la datation thermochronologique en plusieurs sites situés dans les 

bassins de Tremp-Graus et d’Ager. L’épaisseur des sédiments ayant recouvert la chaine plissée 

d’avant-pays Sud-Pyrénéen est donc précisément contrainte par des analyses trace de fission et des 

mesures (U-Th)/He sur des apatites prélevées dans les grès du Crétacé supérieur. Ce chapitre 

s’attache également à démontrer que des grains détritiques avec des âges (U-Th)/He faiblement 

reproductibles peuvent provenir d’une même histoire thermique, en prenant en compte deux 

facteurs prépondérants : la valeur du eU (concentration effective d’uranium) et l’histoire anté-

déposition du grain. Ainsi, une fois ces facteurs identifiés, la modélisation thermique de ces 

données nous permet de trouver par inversion un même chemin temps-température pour les 

différents échantillons. Les résultats donnent en effet une estimation de 2 à 3 km de sédiments 

recouvrant le bassin Sud-Pyrénéen, et confirment également le signal d’une incision de ces

sédiments au Miocène supérieur. 

Enfin, après avoir quantifié dans la sédimentation syn-orogénique dans le temps, le dernier 

chapitre se concentre sur l’effet de cette sédimentation sur la construction puis l’évolution tardive 

de la chaine plissée d’avant-pays. Un modèle dynamique en 2 dimensions a été utilisé pour 

reconstruire les différentes étapes de la construction de la chaîne, de façon a reproduire la 

géométrie et la cinématique des chevauchements de l’avant-pays sud-pyrénéen. Les résultats 

mettent en lumière les contrôles potentiels de la sédimentation syn-tectonique à différentes étapes 

de la croissance du prisme, sur la croissance et la cinématique des chevauchements. En période de 

construction de la chaîne, une sédimentation syn-tectonique même modérée contrôle au premier 

ordre la longueur des unités chevauchantes et la largeur du prisme, tout comme la flexure de 

lithosphère. L’ajout d’une sédimentation tardi-orogénique importante perturbe la séquence de 

déformation en stabilisant la partie centrale du prisme externe et en favorisant l’accrétion interne et 

frontale. Ces observations sont d’ailleurs en accord avec la séquence de déformation observée dans 

les Pyrénées centraux.
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Pour conclure, l’approche combinant thermochronologie et modélisation numérique m’a permis de 

préciser l’évolution Cénozoïque de la chaîne Pyrénéo-Cantabrienne. Les nouvelles données 

provenant des Cantabrides centrales démontrent les variations latérales d’exhumation de la chaîne, 

avec des âges d’exhumation plus récents d’Est en Ouest. En effet, pendant que les Pyrénées 

subissent un pic d’exhumation rapide à l’Eocène supérieur, l’exhumation alpine commence dans 

les Cantabrides centrales. Ensuite, alors que la tectonique apparait comme le mécanisme principal 

d’exhumation des Cantabrides à l’Oligocène, l’évolution tardi-orogénique des Pyrénées centraux 

est fortement influencée par la sédimentation syn-orogénique, puis par les variations du niveau de 

base du bassin de l’Ebre jusqu’au Miocène supérieur. 
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Part I- Introduction and Methodology 

The aim of this thesis is to study the lateral and temporal variations of exhumation patterns of the 

Pyrenean-Cantabrian mountain belt, and the links between the orogenic growth and the foreland

basins evolution. In this thesis, I present a comparative study between two representative parts of 

the belt: the Central Pyrenees (to the east) and the central Cantabrian Mountains (to the west). In 

the Cantabrian domain, very few low-temperature thermochronology data are available and we 

will thus bring more constraints by dating more precisely the Alpine exhumation (Part II).

Then, the Parts III and IV will be focused on the Central Pyrenees, where I will present new low-

temperature thermochronology and different type of modeling, evidences for the important 

feedbacks between the orogen and its adjacent foreland basin. We will in particular investigate the 

timing and amount of syn-tectonic sedimentation deposited on the southern foreland and study its 

implications. The notions developed in each chapter and the general geodynamical history of the 

Pyrenean-Cantabrian mountain belt will first be detailed in this introduction.
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Chapter I-1 Introduction 

I-1.1 Collisional orogeny

Plate convergence and ensuing continental collision is accompanied by important thickening of the 

lithosphere by folding and thrusting. The Critical Coulomb wedge model (Chapple 1978; Davis et 

al. 1983; Dahlen 1984; Dahlen et al. 1984) has proved very successful in explaining many features 

of the upper and outer brittlely deforming parts of collisional orogens. To set the stage for my 

study, I will start by detailing the basics of the critical wedge model and its application to doubly-

vergent-wedges, as well as the associated foreland systems. I will then review the possible 

interactions between surface processes and tectonics in orogenic settings, and focus in particular 

on the potential effects of base level change on a mountain belt. 

I-1.1a Wedge development

Many collisional orogen develop an overall wedge shape during their evolution. In particular, the 

expression of wedge growth is well imaged by the propagation of the foreland fold-and-thrust belt, 

the most external part of an orogen. The understanding of the process of orogenic wedge 

propagation has its roots in work developed in the 1970’s and 1980’s.  Development of an 

orogenic prism as a wedge has been first hypothesized by Elliott (1976), for whom the main factor 

controlling the gravitational forces acting on a thrust belt its the regional surface slope. Chapple 

(1978) then presented an analytical model for wedge development based on the fundamental 

assumptions that (1) both the foreland and the fold-and thrust belt are wedge-shaped, thinning 

toward the foreland; (2) the whole wedge is thickened, and most of shortening concentrates at its

back; and (3) a very weak basal layer delimits the domain were deformation is concentrated and 

shortening occurs. He also suggested that most of the natural thin-skinned thrust belts could not be 

reproduced by the conceptual model without this very weak layer at the base and horizontal

parallel compression.

In this framework, the first formulation of the critical behavior for wedge development was 

proposed by Davis et al. (1983). They described the prism evolution as a function of a critical 

taper: the wedge deforms until it reaches a steady state and then slides stably. Deformation of the 

rocks is assumed to follow a Coulomb criterion for failure, which linearly links the normal and 

shear stresses. Two factors act against the failure of a material: the cohesion and the internal 

friction. The combination of these two factors defines a failure envelope as:
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(1)

With , the shear stress; C0, the Cohesion; µ, the coefficient of internal friction, such that

( is the internal friction angle); , the normal stress; and Pf

Throughout the wedge, three main forces act on a unit segment: the gravitational forces (

, the fluid pressure.

) ,

the frictional resistance to sliding along the basal décollement ( ) and the normal stress ( , as 

represented in Figure I - 1.

Figure I - 1. Schematic representation of the forces acting on a wedge, under a compressional 

regime. Modified from Davis et al. (1983).

Using a small-angle approximation and in the absence of pore fluid, the equilibrium state in a 

wedge can be formulated as follows (Davis et al. 1983):

(2)

From the equilibrium of forces, the solution for the taper angle definition for a dry, frictional and 

cohesionless material has been written as (Dahlen 1990):

(3)

With , the topographic slope; , the basal slope; , the internal friction angle of the wedge

material and , the basal friction angle. Therefore, the critical taper at which the wedge is 
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on the verge of failure is only controlled by the topographic and basal slopes, and the rheology of 

the materials. s different domains for the critical behavior (Figure I 

– 2).The critical envelope (blue curve in Figure I – 2) bounds the different domains and represents

the combination of the taper values for which the wedge is critical. For these values, sliding and so 

re is no

Coulomb failure because of a low stress state, and so the wedge can deform by sliding without any 

internal deformation. The subcritical domain represents the values for which the taper is less than 

the critical value. A wedge located in that domain will increase its taper until attaining the critical 

state.  For reference, most of the fold-and- between 10° and -

between 0° and 20°.

Figure I - 2. Stability domains defined by the 

Willett (1992).

I-1.1b Doubly-vergent wedges

A strong assumption of the critically tapered models is that they have a rigid backstop, which

forces the deformation to propagate in only one direction. In natural settings, an orogenic wedge is 

built from the subduction and the collision of two plates. Deformation is therefore distributed over 

the whole system. The first numerical modeling of a doubly-vergent wedge was published by 

Willett et al.(1993). They modeled, in a 2-D plane, the underthrusting of one plate below another, 

at a meeting point called S (or singularity) point. The subduction and the deformation from this S-

point thus lead to the creation of a doubly vergent wedge, with a pro-wedge on the side of the 

subducting plate and a retro-wedge on the side of the overriding plate (Figure I-3).  

The general evolution of such a doubly-vergent system can be divided into three stages, as shown 

in Figure I - 3. First (stage 1), shear zones rooted at the singularity point develop at 45°, in 

agreement with the plastic Coulomb rheology used for this modeling, and accommodate the 

deformation in a triangular-shaped zone bounded by two major thrusts. Then (stage 2) deformation 

propagates toward the side of the subduction, defining the pro-wedge. Finally (stage 3), the retro-

wedge area deforms and the retro-front propagates toward the external part. 

We will see in the following that the evolution of a doubly-vergent wedge will be strongly 

dependent of climatic conditions through erosion. Moreover, we will show in section I.1.2 that this 
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evolution can also be perturbed by the inherited (pre-orogenic) structure of the margin, as is the 

case in the Pyrenees.

Figure I - 3. First numerical model of a doubly-vergent wedge by Willett et al. (1993). Stages 1,2 

and 3 represent the main steps of wedge development as detailed in the text.

I-1.1c Foreland basin systems

Synchronous to the wedge development, crustal thickening leads to increase the load on the 

underlying lithosphere. Thus the lithosphere is deflected and creates a flexural depression

(foreland basin) that is deepest at the termination of the orogenic wedge (Figure I - 4). The shape 

of the basin is directly controlled by the flexural parameters of the elastic lithosphere. One of the 

most important of them is the flexural rigidity (D), representing to what degree the plate can bend 

(Watts 2001):

(4)

With D the flexural rigidity in Nm; Te the equivalent elastic thickness of the lithosphere (km); E 

Young’s modulus (~1010

The equivalent elastic thickness of a lithospheric plate (T

, the Poisson (~0.5) are the elastic parameters. 

e

Figure I - 4

) represents the portion of the plate that 

is not plastically or viscously deformed, and is still elastic. This is a main parameter controlling the 

shape of the foreland basin ( ). For instance, if Te is very high, the rigidity will be strong 

and so the plate will deflect with a large wavelength. The foreland basin will consequently be wide 

and shallow, as in the Appalachians, where Te ~100 km (Watts 2001). Conversely, a plate with a 

thin elastic thickness will experience a strong deflection under the loading and so will create a 

deep and narrow foreland basin, as in the southern Pyrenees, where the Te of the Iberian plate is 
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~20 km under the Ebro basin (Zoetemeijer et al. 1990a). Lithospheric flexure thus creates the 

space for the foreland basin system (Figure I - 5).

Figure I - 4. Effect of the orogenic load on an elastic lithosphere . The plate is deflected towards 

the belt defining a depresional area (basin).

The hinterland of an orogenic wedge is the place where erosion dominates through fluvial or 

glacial processes and the products of this erosion are deposited in the adjacent foreland basin. 

Several zones of deposition have been defined in a foreland basin system (Figure I - 5) called  

wedge-top, foredeep, forebulge and back-bulge depozones according to the classification of 

DeCelles and Giles (1996) . The three more external zones comprise areas where sediments are 

deposited without being involved in the orogenic deformation; the geometry and thickness of the 

different zones is mainly constrained by the flexural profile. 

Figure I - 5. Schematic cross-section of the external domain of an orogenic wedge and its 

associated foreland basin, with the denominations of the main areas constituting the foreland 

system, redrawn from DeCelles and Giles (1996).
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The wedge-top depozone is the area of sedimentation that is incorporated in the propagating fold-

and-thrust belt. Due to their relatively short transport distance from the hinterland, wedge-top 

sediments are usually the coarsest in the basin, with conglomerates and sandstones drained by the 

fluvial or alluvial systems. As wedge-top basins develop while the wedge continues to grow, 

wedge-top sedimentation is contemporaneous with activity of either the frontal thrust or the out-

of–sequence thrusts and backthrusts, carried as “piggy-back” basins of the deformed wedge (Ori 

and Friend 1984). The deposition on an active thrust leads to characteristic growth strata 

geometries (DeCelles and Giles 1996; Vergés et al. 2002b). Moreover, their continental facies 

make them a useful tool for dating the deformational history of a wedge by magnetostratigraphy 

(Burbank et al. 1992a for example). I will focus in particular on wedge-top sedimentation for the 

comprehension of fold-and-thrust belt evolution. 

I-1.1d Feedback between tectonics and surface processes

Surface processes tend to affect the topographic slope of an orogenic wedge, and thus modify the 

critical taper and perturb the orogen growth process.  Feedbacks between tectonics and surface 

processes  are still debated today (Johnson and Beaumont 1995a,Molnar and England 1990, Kooi 

and Beaumont 1996). Erosion and deposition are the main surface processes influencing the 

growth of an orogenic wedge. Whereas deposition of sediments occurs in the most external part, 

erosion affects the internal range.  

Figure I - 6 Schematic representation of the pro-wedge of an orogen and the main parameters 

influencing its growth.

Erosion effects on a mountain building are numerous, modifying the width of the belt and the 

exhumation pattern, as suggestedd by numerical models (Willett 1999b). Depending on the 

topography, the rock type and the climate, erosion affects the orogenic core (Figure I - 6) by 
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removing materials from the highest mountains, and so participating actively in the exhumation of 

rocks. Moreover, it forces isostatic compensation that can lead to increase the peak elevation of the 

range. Conversely, tectonic uplift and climate change are the main mechanisms enhancing erosion. 

The more erosion perturbs the internal evolution, the more sediments will be produced and 

deposited in the foreland system. Their deposition is controlled by the capacity of the rivers to 

transport the sediments, which is itself affected by both climatic variations and tectonic uplift 

(Whipple 2001) as well as by the base level. The base level is a boundary condition to an orogenic 

system, defined as the limit for river incision, and so it delimits the area of predominance of 

deposition. In general cases, base level refers to the sea level, but locally it can be an intra-

mountainous level or the foreland basin level when the foreland basin is endorheic as has been the 

case in the Southern Pyrenees. 

Base level evolution and the feedbacks with the orogenic system have been principally studied in 

terms of response to base-level lowering, which can be triggered by sea-level fall or opening of the 

foreland basin. By several modeling techniques (see Burbank and Anderson 2005, for example), 

the main consequence of this change in drainage conditions is the propagation of a wave of 

incision upstream, toward the hinterland. The effects of base-level rise have also been studied

using analogue  and numerical modeling (Babault et al. 2005a , Carretier and Lucazeau 2005). The

main results of these experiments show that piedmont sedimentation in the foreland perturbs the 

erosion dynamics of the range (Figure I - 7) , and prevent it from attaining its steady state while 

the aggradation of the sediments is faster than the relief uplift. Therefore the system of 

erosion/sedimentation in an orogenic context is fully coupled and especially when conditions are 

favorable for sediment accumulation (endorheic foreland basin, enhanced erosion). The Pyrenean 

pro-wedge effectively experienced such drainage conditions and we will investigate the effects of 

wedge-top sedimentation of the fold-and-thrust belt in Parts III and IV.

Figure I - 7. analogue modeling 

results of the response of orogenic 

topography to a sudden increase in 

base level, (from Babault 2004).
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I-1.2 The Pyrenean-Cantabrian mountain belt

I-1.2a General overview

The Pyrenean-Cantabrian mountain belt extends ~1000 km from east to west and is ~100 km wide.

The Pyrenean part straddles the border between Spain and France and the Cantabrian part follows

the Spanish coast of the Bay of Biscay.

The belt is divided into several units, the Pyrenees to the East, the Basque-Cantabrian basin in the 

center and the Cantabrian Mountains to the west. Several denominations have been used for 

defining the Cantabrian domains of this belt (see the review of Barnolas and Pujalte 2004 ); Figure 

I - 8 shows the terminology that I will use in this thesis.

The Pyrenean-Cantabrian belt has been formed from Late Cretaceous to Oligocene-Miocene times,

and is a consequence of the closure of the Tethys Ocean, that led to the onset of building of the 

Alpine-Himalayan belt, of which the Pyrenean-Cantabrian belt is the western termination. 

The outcropping rocks reflect the polyphased history experienced by the range, from the Variscan 

orogeny to the Alpine compression. Basement rocks outcrop in the Pyrenean part and the Central 

and Western Cantabrian Mountains; Mesozoic and Cenozoic sediments are present in the foreland 

areas and in the Basque-Cantabrian basin. 

The Central Pyrenees and the Central Cantabrians are the area of highest relief, with the highest 

peaks reaching 3404 m for the Pic d’Aneto in the Central Pyrenees and 2648 m in the Picos de 

Europa massif in the central Cantabrians. Even if the mountain belt has not been active since 

Oligocene-Miocene times, the high areas are associated with strong relief.

In the following, I will review the main characteristics of the geological and geodynamic history of 

the range and of its adjacent southern basins. Details on the geological history of the central 

Pyrenean and central Cantabrian Mountains will be provided at the beginning of each chapter.
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I-1.2b  Variscan orogeny

Well before the alpine orogeny, structuration of the two ranges has been influenced by a complex 

kinematic evolution. A major phase of deformation took place during the Variscan orogeny, which 

led to the creation of the Armorican arc. Building of the Variscan belt occurred from 500 to 250 

Ma and resulted from the collision of several plates against Gondwana. The belt was subsequently 

broken up during the Mesozoic opening of the Atlantic Ocean.  In the north-west of Spain, the 

heart of the Armorican arc is called the Asturian arc (Julivert 1971; Pérez-Estaùn et al. 1988) that 

formed during the late Stephanian to early Permian, although its origin is still matter of debate. In 

the center of the asturian arc, the Cantabrian zone represents the external part of the Variscan belt

(Figure I - 9). The first phase of deformation in that area was driven by east-west compression that 

produced a thin-skinned imbricate thrust structure progressing from west to east. Then, the 

formation of the arc tightened the structures. The Central Coal basin unit and Ponga units (that we 

will further study Part II) were therefore the latest to be emplaced. 

Figure I - 9. (a) Map of the Ibero-Armorican arc and its main zones. (b) E-W cross section 

through the Cantabrian Zone. Modified from Carrière (2006) and Pérez-Estaùn et al. (1988).

I-1.2c Mesozoic kinematics

The evolution of the proto-Pyrenean-Cantabrian belt was influenced by its pre-Cenozoic 

structuration, and the patterns of convergence (e.g. the tectonic regime) of the Iberian plate to the 

European plate are therefore determinant. Two Mesozoic rifting periods led to the formation of the 

extensional Pyrenean basins, in late Jurassic and  in early Cretaceous times (Puigdefabregas and 
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Souquet 1986, Sibuet et al. 2004). These rifted basins connected the Atlantic Ocean to the west

with the Tethys to the east.

The Mesozoic geodynamic history has recently been strongly debated in terms of kinematics. 

There are several scenarios for the reconstitution of the Mesozoic movement of the Iberian plate 

and the opening of the Bay of Biscay  (Srivastava et al. 1990; Olivet 1996; Sibuet et al. 2004; 

Jammes et al. 2009); one of the most popular models , proposed by Olivet (1996) is presented in 

Figure I - 10.

To summarize,  these studies are mainly based on the magnetic anomaly patterns in the Atlantic 

ocean and the Bay of Biscay, the uncertainties of which leave room for several interpretations.  

The common feature among the several models is the presence of major left-lateral strike slip 

movement from late Jurassic to early Cretaceous depending on the models. The difference in

timing for this movement is associated to the different mode of opening of the Bay of Biscay. The 

two end-members models for this opening are 1) driven by the left-lateral strike-slip movement 

along the North Pyrenean Fault (Figure I - 10, Olivet 1996; Jammes et al. 2009); or 2) driven by a 

scissor-type opening (Roest and Srivastava 1991; Srivastava et al. 2000; Sibuet et al. 2004). The 

consequences of the two models are determinant for the study of the mountain growth. The first 

model implies oblique convergence and a synchronous collision from east to west; the second 

model implies a diachronous collision starting in the Eastern Pyrenees. From thermochronological 

data shown in the following, we will see that the signal of a diachronous collision is not very well 

constrained.

Figure I - 10. Kinematic reconstruction of the Iberian plate (IB) movement in respect to the 

European plate (EU). Modified from Olivet (1996) .

Opening of the Bay of Biscay occured until the Santonian-Campanian  (85-70 Ma), when the 

inversion of the Mesozoic basins started (Sibuet et al. 2004). This extension phase resulted in 

creating from east to west the present-day Pyrenean-Cantabrian range the Organya basin , the 

Basque Cantabrian basin, and affected the central Cantabrians by reactivating east-west structures 

and creating new small basins.
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I-1.2d Cenozoic contractional deformation

Consequently to the Mesozoic extension, the convergence of the Iberian micro-plate toward the 

European plate started in Late Cretaceous times by inversion of the Mesozoic basins followed by

underthrusting of the Iberian crust underneath the European crust.  The collision led to a doubly-

vergent orogen, presenting several structural variations along-strike. The polyphased regional 

history developed previously (Variscan orogeny in the Cantabrian domain and Mesozoic 

extension) inferred a pre-structuration that led to varying collisional patterns along-strike. 

Moreover, the Pyrenees developed as a classical continental collisional belt (see section I.1)

whereas the Cantabrian Mountains were built by the inversion of the Iberian continental margin.

Figure I - 11. Deep Seismic profiles and their interpretations for the central Pyrenees and the 

central Cantabrian mountains. a) ESCIN-2 seismic profile;  b)ECORS seismic profile 

The continuity of the northward underthrusting of the Iberian crust from the Pyrenees to the 

Cantabrians has been demonstrated by numerous deep seismic reflection profiles, such as ECORS 

in the Pyrenees (Figure I - 11b, ECORS Pyrenees Team 1988 ) and ESCI-N in the Cantabrian 
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mountains (Figure I - 11a, Pulgar et al. 1997). In the eastern Cantabrian Mountains (Basque-

Cantabrian basin) this continuous pattern has also been confirmed by the 3-D modeling of gravity 

and seismic data (Pedreira et al. 2003; Pedreira 2007). 

Figure I - 12. Crustal cross-sections along-strike of the Pyrenean-Cantabrian mountain range. 

From Pedreira (2007). a) Central Pyrenees (Muñoz 1992), b) Western Pyrenees (Teixell 2004), 

c)Western Cantabrian mountains (Pedreira 2005), d)Central Cantabrian mountains (Gallastegui 

2000). AB, Aquitaine Basin; AZ, Axial Zone; EB, Ebro basin; LDB, Le Danois Bank; NPCF, 

North Pyrenean-Cantabrian front; SPCF, South Pyrenean-Cantabrian front.

These authors conclude that the contractional deformation between the Pyrenees and the 

Cantabrian mountains is partitioned by large NE-SW lateral structures in the Basque-Cantabrian

basin. 
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The amount of shortening also varies from west to east; from 82 km in the Eastern Pyrenees  

(Vergés et al. 1995) to 165 km in the Central Pyrenees (Beaumont et al. 2000), 125 km in the 

Western Pyrenees (Teixell 1998), and 96 km of shortening in the Central Cantabrians (Gallastegui 

2000). The different crustal structural styles are presented in Figure I - 12.

We will see in the following section that the peak of exhumation, as recorded by low-temperature 

thermochronology, was not synchronous along-strike of the Pyrenean-Cantabrian mountain belt.

The bounds for frontal activity are synchronous in the Pyrenees but young towards the west.

Timing estimates of the frontal thrusting activity are provided by continental deposits that are well 

preserved in most of the frontal area of the Pyrenean-Cantabrian belt. The latest frontal activity 

was dated to Chattian times in the Eastern (28 Ma, Vergés et al. 1995; Vergés et al. 2002a), 

Central (26 Ma, Meigs et al. 1996) and Western Pyrenees (Teixell 1998).  More details on the 

thrusting sequence of the central Pyrenees are presented in Chapter IV-2.

To the west, in the Cantabrian Mountains, the frontal activity has been estimated to be more 

recent, even though the dating of the Oligocene-Miocene sediments is less precise there. In the 

Eastern Cantabrians (Basque-Cantabrian basin), early Miocene sediments are deformed by Alpine 

compresional structures  and therefore date the latest activity (Camara 1997). Finally, the frontal 

activity of the Central Cantabrian mountains is dated by the conglomeratic deposits sealing the 

syn-tectonic sediments, which are late Miocene in age (Vallesien, 11.6-9 Ma). Precise dating of 

the syn-tectonic conglomerates is in progress at the University of Oviedo (see Part II), the ages 

reported by the geological map (Guardo, 1:50000) are Oligocene to middle Miocene.

I-1.2e  Spatial exhumation patterns

By studying the variations in apatite fission-track (AFT) ages, we can obtain an overview of the 

large-scale patterns of exhumation in the Pyrenean-Cantabrian belt. Low-temperature 

thermochronology (and AFT in particular) has been extensively used, to discuss both the tectonic 

activity and the geomorphologic evolution (Jolivet et al. 2007 and Gunnell et al. 2009 for 

instance). In this section, we will use the numerous AFT results (Figure I - 13) to support a 

description of the exhumation patterns and their variations.

On the Pyrenean side, the oldest AFT age (106.3 ±5.3 Ma)  has been measured in the Arize massif 

(Morris et al. 1998), to the north (retro-side) of the central  range; whereas the youngest AFT age 

(10.9 ±1 Ma, Jolivet et al. 2007) comes from the Bielsa granite to the south-west. In between, the 

majority of the ages are Eocene-Oligocene in age. On the Cantabrian side, the oldest age is in the 

western Cantabrians and is dated to Permian times (262 ± 18 Ma) , whereas the youngest date is 

Oligocene in age (27.4 ± 4.8 Ma) and located in the Central part ( both dated by Carrière 2006); 

the majority of the Cantabrian ages are Permian to Mesozoic. The youngest ages of exhumation 

are therefore found in the Pyrenees and the Alpine exhumation is concentrated in Eocene to 

Oligocene times. 
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But the most interesting information produced by these ages is their spatial distribution. In the 

Pyrenees, the AFT ages show clear pattern, with oldest (Cretaceous to Eocene) ages in the north 

and youngest (Eocene to Miocene) to the south, in agreement with the geodynamic reconstructions 

of Verges et al. (1995) ; Teixell (1998) or Beaumont et al (2000) that all predict more important 

exhumation at the early stages of compression in the retro-side of the wedge, which then migrates 

to the pro-side. This evolution is quite different from the classical model of doubly-vergent orogen

development (Willett et al. 1993) that predicts the first deformation on the pro-side. The existence 

of a weak and thinned area around the North-Pyrenean Fault could explain the concentration of 

deformation on the retro-side.

In contrast to the Pyrenees, no north to south progression of exhumation is evidenced in the 

Cantabrian Mountains;  the low number of Cenozoic ages and also the structural style can be the 

cause for this. Conversely, east-west patterns of denudation are clearer in the Cantabrian 

Mountains. The AFT ages are not reset (Mesozoic) in the western part and a few Oligocene ages 

are present in the center, implying that the central Cantabrians probably experienced the most 

exhumation. We will see in Part II that this trend is confirmed by our AFT and (U-Th)/He on 

zircons (ZHe) results. 

In the Pyrenees, this east-west propagation of exhumation is not evident. In the Western part, 

Oligocene ages are present in the south-western and central area. To the west, the young Miocene 

ages published by Jolivet et al (2007) are interpreted more in terms of out-of sequence thrusting of 

the Bielsa thrust. 

Finally, exhumation rates obtained by combining different thermochronometers and their thermal 

modeling date the maximum of Pyrenean exhumation. Results from the Eastern and Central 

Pyrenees lead to similar conclusions. Gunnel et al. (2009) report rapid cooling of their samples  in 

the 40-30 Ma interval, followed by quiet conditions (very slow to no exhumation) until present. In 

the Central Pyrenees, the estimations are more precise, owing to the presence of age-elevation 

profiles. From their dataset, Fitzgerald et al. (1999) predicted exhumation rates between 2 and 4 

km.Myr-1 between 36 and 30 Ma, and then ~0.06 km.Myr -1 until 6 Ma. From their thermal 

modeling, Gibson et al (2007) predicted an exhumation rate of 1.5 mm.yr-1 between 31 and 29 Ma 

and then 0.03 to 0.09 mm.yr-1

Patterns of exhumations of the central Cantabrian Mountains will be studied in Part II In the 

Western Cantabrian Mountains, the dataset produced by Grobe et al.(2010) and Martin-Gonzalez 

et al. (2011), suggest exhumation rates in the rate of 0.05 mm.yr

from that time to present. Even if the two estimations are slightly 

different, they both agree with a peak of exhumation in late Eocene-early Oligocene.

-1 between 100 and 50 Ma, then 

0.02 mm.yr-1 in the Paleogene and 0.06 mm.yr-1

In summary, with this extensive dataset, we can follow an Eocene-Oligocene main exhumation 

phase from the eastern Pyrenees to the central Cantabrian Mountains. We can also see the 

development of the doubly-vergent Pyrenean wedge, from north to south, pattern that is not visible 

in Neogene.
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in the Cantabrian Mountains area. Finally, the main phase of exhumation occurred in late Eocene-

early Oligocene times and was very important in the Central Pyrenees, whereas, there is not 

enough information on the Cantabrians to deduce Cenozoic exhumation rates. In this thesis, 

additional constraints will be brought to the Central Cantabrians and Central Pyrenean history by 

(U-Th/He) on apatites (AHe), AFT and ZHE dating. Low-temperature thermochronological data

are missing in the Basque-Cantabrian basin, to link the two parts of the range; sampling and dating 

are currently in preparation in the framework of the Pyrtec project (Irene de Felipe Thesis, 

Oviedo).
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I-1.2f The Duero and Ebro basins

As outlined in the introduction, the evolution of a mountain range is strongly linked to the 

evolution of its adjacent foreland basin. On the pro-side of the Pyrenean-Cantabrian domain, two

large basins, the Duero and the Ebro basins, take part in the Cenozoic evolution of the mountain 

belt.  These two basins experienced independent evolution until Pliocene times, when a connection 

between them was established.

The Ebro basin was formed in response to the flexural load of the Pyrenean orogenic wedge; the 

loading of the two other Alpine ranges surrounding the basin (the Catalan Coastal Range to the 

southeast and the Iberian Range to the southwest) also contributed to its formation (Desegaulx and 

Moretti 1988a; Zoetemeijer et al. 1990a). The sedimentology of Paleocene-early Eocene sediments 

in the basin clearly shows that it initially deepened and opened toward the Atlantic Ocean in the 

West (Puigdefabregas and Souquet 1986). The connection of the Ebro basin with the Atlantic 

Ocean was closed at 36 Ma (Costa et al. 2009) and the basin became endorheic. From that time, 

the sedimentation is continental at its border to lacustrine in its center. The modeling performed by 

Garcia-Castellanos et al.(2003) showed that the basin evolved as an asymmetric main lake. The 

preservation of the endorheic conditions for ~25 Myr was helped by the uplift of the Catalan 

coastal ranges and the climatic conditions (dry and warm). The onset of the connection of the Ebro 

River to the Mediterranean has been discussed by several authors (Garcia-Castellanos et al. 2003; 

Babault et al. 2006; Urgeles et al. 2011) and we will see in Chapter III-1 that the modeling of 

thermochronological data is in favor of a pre-Messinian opening to the Mediterranean Sea. 

Figure I - 14. Picture of the south Pyrenean mountain front and the Ebro foreland basin, in the 

Western Pyrenees.View from the top of one of the conglomeratic relief, looking toward the south-

east.

The Duero basin drains the Iberian Chain to the east, the Cantabrian Mountains to the north and 

the Spanish Central System to the south. Until Paleocene times, the basin was open to the Atlantic 

ocean and its sedimentation was marine to terrestrial (Santisteban et al. 1996). The basin became 

endorheic in Paleocene times, with the closure of the connection to the Atlantic to the north by the 
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onset of uplift of the western Pyrenean massifs. The capture of the fluvial network in the south-

west of the basin (in early Miocene times) re-opened the basin toward the Atlantic. Exorheic 

drainage then extended progressively to the center of the basin but the conditions remained 

endorheic in the northern part. Complete capture of the basin only occurred in late Miocene-

Pliocene times (Mediavilla et al. 1996). 

Both basins had their drainage system perturbed by uplift of the surrounding mountain ranges, 

which led to their closing and tuned them into long-lived, internally drained basins before re-

opening again when the main Alpine contraction was over. This is a common feature of the basins 

developed in contractional settings and that are controlled by their adjacent orogen. Moreover, as 

shown by Figure I - 15 and Figure I - 16, their sedimentary environments are imprinted by the 

uplift of the Pyrenean–Cantabrian belt. While the large sediment input supplied by the Pyrenees 

mainly occurred in Oligocene times in the north of the Ebro basin, sedimentation in the Duero 

basin was maximum in late Oligocene-Miocene times. This time offset from east to west thus 

reflects the propagation of the exhumation from the Pyrenees to the Cantabrian mountains, that is, 

however, not so striking at smaller scale.

It is important to note, however, that the contribution of the Pyrenean-Cantabrian range to the two 

basins is not similar. The Pyrenees extended along the entire northern margin of the Ebro basin,

making them the primary contributor in both sediment supply and flexural control. The Duero 

basin is fed by several other important orogenic systems such as the Spanish Central system and 

the Iberian range, and is also strongly controlled by them. Therefore, the ratio between fluvial 

network area and basin size is much less in the case of the Duero basin and one can think that the 

influence of the Cantabrians was of less importance on the range in terms of erosion and 

sedimentation than the Ebro evolution. 

The Duero basin drainage was exorheic since Miocene times but it has never been totally 

excavated compared to the Ebro, which leads to a very different topographic profile between the 

two basins (Figure I - 17). Indeed, in the Central Cantabrian profile, we can see that the southern 

flank has been poorly incised, as the base level is still 1000m high today, which will have had a 

significant effect on the late-stage exhumation of the southern Cantabrians.  
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Figure I - 15. Paleoenvironmental reconstructions of the Duero basin, from Late Cretaceous to 

Messinian times. Redrawn from Vera (2004).
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Figure I - 16 Paleoenvironmental reconstructions of the Ebro basin, from late Eocene to 

Messinian times. Redrawn from Vera (2004).
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Finally, the Duero basin is linked to the history of the high-elevated central area of the Iberian sub-

continent (called the Meseta), of which the present-day patterns and the formation are still a matter 

of debate. Several processes have been invoqued for explaining this high-elevation area. The most 

recent ones are 1) lithospheric folding of the Iberian plate (Cloetingh et al. 2002; de Vicente et al. 

2007), and 2) the conjugated effect of the infilling of the endhorheic basin by the uplift of the 

Alpine ranges around, conjugated with isostatic adjustement from crustal thickening (Casas-Sainz 

and de Vicente 2009). 

Figure I - 17. Topographic profiles of the central Pyrenees and central Cantabrian Mountains.

Maximum, minimum and mean elevations are indicated.

I-1.2g Cenozoic climatic evolution

The Cenozoic era is characterized by a climate that has deeply modified by the emplacement of ice 

sheets. With the numerous studies using stable isotopes like 18O or 13

Figure I - 18

C (see , For instance, Zachos 

et al. 2001) several main climatic events have been defined, like the Early Eocene climatic 

optimum, the Eocene-Oligocene cooling event, and the late Miocene warming , characterized by 

extreme changes in temperatures or by onset of changing climatic conditions. Among these

climatic events, the Eocene–Oligocene climatic transition is one of the largest global cooling 

events ( ) of the Cenozoic (Katz et al. 2008). The establishment of large permanent 
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Antarctic ice sheets (Coxall et al. 2005; Lear et al. 2008) was accompanied by the decrease in 

carbon dioxide concentration and a major sea-level fall. 

Figure I - 18. Cenozoic climatic data. Left- 18O compilation of Zachos et al. 2001.

Right-hand side, summary of the climatic data for the northern Spain (by Garcia-Castellanos et al. 

2003).

Climatic conditions have been inferred for northern Spain by several studies performed in the 

Spanish Pyrenees and Ebro basin. In the Spanish Pyrenees, Schmitz and Pujalte (2007) found 

evidence for a drastic change in the hydrological cycles during the Paleocene-Eocene thermal 

maximum, with conditions becoming more humid, and important seasonal rains. 

Subsequently, the Eocene-Oligocene boundary has also been reported in northern Spain by the 

palynological study of Cavagnetto and Anadon (1996), who relate the transition from a tropical to 

a dryer and more contrasted (increased seasonality) climate in the early Oligocene.

The late Oligocene was the time of very warm and humid conditions, recorded by clay 

assemblages in the Ebro basin (Mayayo et al. 2011); these authors also note a passage to drier 

conditions consequently to the Mi-1 glaciations a the Oligocene-Miocene boundary. During the 

Miocene, a maximum of humid and cool conditions was identified at 9.4 (Vallesian) by the 
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analysis of palustrine sediments (Alonso-Zarza and Calvo 2000) and stable isotopes (Arenas et al. 

1997). Since that time, the regional climate became warmer and drier.

I-1.3 Motivations and outline of the manuscript

The Pyrenean-Cantabrian mountain range is characterized by significant lateral variations in 

topography, amount of shortening (Muñoz 1992; Teixell 1998; Beaumont et al. 2000; Gallastegui 

2000; Vergés et al. 2002a) and structural style (section I.1.2, Pedreira 2007). The Central Pyrenean 

part of the range presents all the characteristics of a classical collisional orogen, with a well-

developed thin-skinned foreland (Muñoz 1992). The Cantabrian Mountains are a thick-skinned 

belt (Alonso et al. 1996; Pulgar et al. 1999), much more asymmetric and with a well-developed 

submarine fold-and-thrust belt on the retro-side. On the pro-side, the orogen core directly 

overthrusts the Duero foredeep basin without an intervening fold-and-thrust belt (Figure I - 12).

The lateral variations of exhumation patterns as shown by the thermochronological data are much 

less clear. A majority of Eocene to Oligocene ages are represented in the Pyrenees (section I.2.5), 

whereas most of the low-temperature data in the Central and Western Cantabrian Mountains 

indicate Mesozoic cooling ages. Only a few samples provide evidences for Eocene-Oligocene 

exhumation in that part of the range. 

Moreover, the two areas did not experience the same pre-collisional history. The Cantabrian 

domain was strongly imprinted by the Variscan orogeny and the different episodes of Mesozoic 

extension while the Pyrenean domain has been strongly influenced by the Mesozoic rifting period.

Therefore, tectonic inheritance appears to have conditioned the inversion of the two areas by 

leading to different tectonic styles. 

However, external controls such as erosion in the internal parts and deposition in the foreland 

basins are integrally part of the orogenic system and could also have influenced the belt evolution. 

Indeed, the Pyrenean and the Cantabrian belts are both bounded to the South by large basins (the 

Ebro and the Duero respectively) that have been endorheic during a major part of the Cenozoic. 

The Duero basin has been filled by an important amount of Oligocene-Miocene foredeep 

sediments while the Southern Pyrenean foreland is suspected to have experienced a syn- to post–

tectonic burial by wedge-top sediments sourced from the hinterland. Therefore, the Pyrenean-

Cantabrian belt is favourable for investigations of feedbacks between the orogen dynamics and the 

variations in the foreland basins.

Better understanding the controls on lateral variations of these feedbacks and thereby on orogen 

dynamics, passes through a more complete description of the exhumation history of the Pyrenean-

Cantabrian mountain belt, including its potential lateral variability, combined with numerical 

modelling of the tectonic evolution of the belt and its surface response as well as the coupling 

between these. 
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But the central Cantabrian range clearly misses constraints on exhumation, compared to the 

Pyrenees. For this reason, part II focuses on obtaining new age constraints on the Alpine 

exhumation of the central Cantabrians by low-temperature thermochronology. A few apatite 

fission-track ages already showed Eocene and Oligocene exhumation, and the aim is to bring more 

constraints to shed light on potential north-south and/or east-west variability as is the case in the 

Pyrenees. Apatite fission-track and (U-Th)/He thermochronology data will thus be presented that 

provide important information and basic constraints on the exhumation as well as on the Alpine 

structure.

In the next part (part III), we first use the low-temperature thermochronological data that already 

exists in the Central Pyrenees, to understand the feedbacks between the internal range uplift and its 

foreland and to investigate a possible Neogene acceleration in exhumation rate. Using a 3D 

thermal-kinematic modelling, we present a new interpretation of the data, by testing the effects of 

a significant wedge-top sedimentation during syn-orogenic times, and its incision by base-level 

fall in post-orogenic times. In the second chapter, the extent and thickness of syn- to post-

orogenic sediments predicted in the southern flank of the Axial zone to the Southern Pyrenean 

foreland are tested by new low-temperature thermochronology data ((U-Th)/He on apatite data 

from the foreland fold-and-thrust belt), and their thermal modelling, using a new inversion model 

to predict time-temperature paths. 

Finally, we present in part IV a study of the effects of wedge-top sedimentation at the early and 

late stages of the development of the Pyrenean range on the thrusting sequence of the foreland 

fold-and-thrust belt by 2D thermo-mechanical modelling of an orogenic wedge. In the first 

chapter, we apply to the growing wedge a first syn-tectonic sedimentation at the early stage of its 

development. In the second chapter, the wedge undergoes different amounts and styles of wedge-

top sedimentation in its late evolution, reproducing the important conglomeratic sedimentation that 

covered the southern Pyrenean foreland in Oligocene times.

This multi-disciplinary approach will lead us to emphasize the influence of the coupling between 

surface processes and base level changes on the mountain belt evolution.

The next chapter will outline the different methods employed in this study: low-temperature 

thermochronology (AHe, AFT, ZHe), forward and inverse thermo-kinematic models, 2-D thermo-

mechanical model.
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Chapter I-2 Methodology 

I-2.1 Introduction

As outlined in the introduction, a mountain belt is the locus of numerous interactions between 

tectonics and surface processes. We are focusing here on the evolution of the Pyrenean-Cantabrian 

range during their syn-orogenic and post-orogenic phases; therefore we have to consider the whole 

system, including processes of erosion/deposition, tectonics, and also drainage conditions (e.g.

piedmont evolution) that are all linked together (Figure I-19). The diversity of processes involved 

implies to use multiple methodologies. In this thesis, characterization and quantification of the 

patterns of exhumation is performed using different low-temperature thermochronometers ((U-

Th)/He on apatite and zircon, apatite fission track) as well as two different numerical models. The 

first is the 3D thermo-kinematic model Pecube (Braun 2003) that uses the thermochronological 

data to deduce exhumation as well as topographic evolution through time. It will be used here with 

in-situ data located in the southern central Axial Zone of the Pyrenees, and will help us to quantify 

exhumation rates and the late syn-orogenic to post-orogenic topographic evolution of the orogen. 

The results will be used as an input for the second modeling technique; in which the evolution of 

the foreland fold-and-thrust belt will be modeled with the 2D thermo-mechanical model Sopale

(Fullsack 1995). This model is used to study the evolution of the foreland-fold-and-thrust belt and 

in particular the interactions between syn-tectonic sedimentation and the thrusting sequence at a 

critical period of orogen growth.

Figure I-19. Summary of the methods developed in this chapter and their relationship with the 

principal geological processes involved in the evolution of a mountain belt and its foreland.
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In the following chapters, we will also investigate the evolution of the Pyrenean-Cantabrian 

mountain belt in terms of the timing and amount of exhumation/burial and therefore use different 

low-temperature thermochronometers : (U-Th)/He in apatite and zircon as well as fission-track 

analysis in apatites. For instance, the fission-track thermochronometer in apatite will inform us on 

when the sample passed through the 120°C isotherm (its closure temperature) and kinetic 

parameters as the track length and the width of the etch pits (Dpar) will return information about 

how long the sample stayed in the Partial Annealing Zone, from which we derive the rock 

exhumation rate. The use of several thermochronometers provide an efficient way to obtain robust 

time boundaries on the timing and rates of exhumation. In chapter III-2, (U-Th)/He 

thermochronology on zircon and apatite fission tracks allow us to delimit the timing of the onset 

and end of Alpine exhumation in the Cantabrian Mountains and also to locate the structural units 

that experienced most exhumation, shown by samples in which both thermochronometers were 

reset.

In the following sections, I will briefly review the basics of the different methods as well as their 

implementation in my thesis work.

I-2.2 Low-temperature Thermochronology

I-2.2a (U-Th)/He thermochronometry

The (U-Th)/He method is based on the me 4He) produced during the 

radioactive decay of 238U, 235U and 232

-ejection. The 

-particles that are produced during the radioactive decay of U and Th can travel up to 20 µm in 

the crystal lattice. The stopping-distance is slightly different for apatite and zircon, with values of 

19.68, 22.83 and 22.46 µm for 

Th, and on the diffusion of these particles within the host 

mineral. The closure temperature of the system was calibrated at 180±20 °C (Reiners et al. 2002; 

Reiners et al. 2004) for zircon, and at 75 ±15 °C (Wolf et al. 1998; Farley 2000) for apatite.

238U, 235U and 232Th respectively in apatite and 16.65, 19.64, and 

19.32 µm for 238U, 235U and 232

Thus, the size and shape of the mineral have to be taken into account by a correction factor called 

F

Th in zircons Farley et al. 1996. These stopping distances imply that 

the -particles can be ejected from the crystal or be assimilated (implantation) from an adjacent 

crystal of apatite, zircon or monazite. The crystal should therefore be large enough (more than 60 

µm) and well-shaped to be able to precisely infer the age from the U, Th and He measurements.

t Farley et al. 1996. Based on the assumption that the parent elements are homogeneously 

distributed in the crystal, Ft approximates the loss of 4 -ejection (assuming that 

implantation is insignificant).
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The F t correction factor is calculated from measurements of the length, thickness and width of the 

grain and from the U/Th ratio, following the equations (Farley 2002):

(5)

With a1 and a2 geometric mineral coefficient; the surface to volume ration; a238 derived from the 

Th/U ratio. Every individual He age is corrected by dividing it by its F t factor. 

I-2.2b Apatite (U-Th)/He thermochronometry

All apatites used in this study were prepared in the Grenoble laboratory. After crushing and 

seaving of the samples, the apatites were separated by magnetic (Frantz) and heavy liquid 

separation protocol that allows to separate the different minerals by densities (F. Senebier). The 

grains were then selected according to their morphology (euhedral, rounded) during picking 

selection under an optical microscope, and each grain was placed into a platinum basket. Particular 

attention was paid to the presence of inclusions of actinide-rich minerals such as zircons or 

monazite during grain selection. These minerals do not fully dissolve during the apatite 

preparation phase and therefore an excess in He concentration appears, leading to an overestimate 

in the apatite He ages. Therefore the clearest apatite grains were chosen. 

He extraction and U and Th measurement were performed in the Thermochronology laboratory at 

Orsay-Paris-sud university in collaboration with Cécile Gautheron. Details of the analytical 

procedure for He extraction are provided in Chapter III-2.

Ejection factors have been determined using the Monte Carlo simulation technique of Gautheron 

et al.(2006) and the equivalent-sphere radius has been determined using the procedure outlined by 

Gautheron et al.(2010) (http://h0.web.u-psud.fr/ UThHeNe_MonteCarloSimulation). The influence 

of damage caused by radioactive decay reactions in the apatite mineral on He retention has 

recently been demonstrated by Flowers et al. (2009) and Gautheron et al. (2009), who proposed 

methods to incorporate this effect in He- -recoil damage appears to lead to 

significantly increased retention of He and can be a predominant cause for errors in the age 

determination, especially in slowly cooled samples. 

I-2.2c Zircon (U-Th)/He analysis 

Zircons present several characteristics that make their (U-Th)/He age determination easier and 

more accurate than for apatite: it has high concentrations of U and Th and is one of the most 

resistant minerals to weathering. Finally, as zircons are much more U-rich than apatites, problems 

of inclusions are of less importance. 
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Sample preparation for zircon is the same as for apatite, except that they are found in the 

>3.3g.cm-3-density fraction after heavy liquid separation. Subsequently to measuring and picking, 

3 grains per sample were selected using a binocular microscpe and each of them was placed in a 

Nb tube. They were sent to the thermochronology laboratory of the University of Tübingen 

(Germany) for analysis. In general we analyzed 3 aliquots per sample. The samples were analyzed 

in the Patterson helium-extraction line at the University of Tübingen, and after Helium analysis the 

grain packages were sent to the University of Arizona at Tucson for U and Th measurements using 

an ICP-MS. The analytical procedure is detailed in Part II .

I-2.2d Apatite fission-track thermochronology

The fission-track dating technique is based on the recognition of crystal-lattice damage caused by 

the spontaneous fission of 238

linear track of ionization damage in the mineral. Fission of 

U in Uranium-rich minerals like apatite, zircon and titanite. 

238 U nuclei occurs spontaneously, but 

it can also be induced in 235

Counting of spontaneous fission tracks permits quantifying how much decay of 

U by neutron irradiation in a nuclear reactor. 
238U has occurred, 

the amount of tracks in a crystal will strongly depend on the initial concentration of 238U, and the 

rate of 238U decay. The thermochronometric age equation is:

(7)

With the total decay constant for 238U, the spontaneous fission decay constant for 238U, 

the number of spontaneous fission tracks, and the number of 238

The 

U atoms in the samples.

238U concentration is determined by irradiating the sample with thermal neutrons in a nuclear 

reactor. This causes 235U to fission, creating induced tracks that will provide an estimate of the 

amount of 235U and, as the ratio 235/238 is constant, of the 238U abundance. Initial sample 

preparation for fission-track analysis is similar to that for apatite (U-Th)/He. After separation, 

apatite grains were mounted in epoxy, polished to reveal an internal surface and etched with 5.5 M 

HNO3 for 20 seconds at 21 °C. The external detector method was used to determine variations in 

U concentration between the grains. A low-U mica sheet (the external detector) is attached to the 

grain mounts before irradiation, and will register the induced fission tracks. After irradiation, the 

user counts the density of tracks on a given surface of the grain and on the same position on the 

mica that is fixed to the mount. Thus, the number of spontaneous (Ns) and induced (Ni) tracks is 

derived from the same grain and therefore results from the same concentration. 
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Finally, Zeta calibration (Hurford and Green 1983) is used to reduce uncertainties in the constants 

and in the neutron fluence received, as well as the counting technique that can vary according to 

the counter. In Grenoble, the calibration parameter Zeta was determined using Durango and Fish 

Canyon Tuff standards, dated by different methods (Ar40-Ar39, U-Pb) at 31.02 ±0.22 Ma 

(McDowell et al. 2005) and 27.8 ± 0.2 Ma (Hurford and Hammerschmidt 1985) , respectively. 

Standards from five different irradiations were counted and the resulting Zeta value is in the Table 

I - 1. The glass dosimeter used is IRMM-540.

Irradiation code standard mean Zeta Standard Error

04-2007 Dur 255.2 8.2

Dur 228.6 7.3

13-2007 Dur 226.1 21.4

FCT 255.7 30.7

12-2007 FCT 261.4 18.1

FCT 180.5 19.2

05-2010 Dur 188.1 14.1

Dur 184.8 7.6

FCT 183.4 12.9

FCT 189.1 13.4

09-2010 Dur 222.1 14.1

FCT 263.2 16.1

mean Zeta 

12/01/2011
217.9 3.5

Table I - 1 Zeta measurements from Durango (Dur) and Fish Canyon Tuff (FCT) standard 

apatites

The fission tracks can be repaired and even erased (annealing) when the crystal is kept at a 

temperature higher than 120 ± 10 °C; this temperature defines the upper limit of the Partial 

Annealing Zone (PAZ). This zone, between 60°C and 120 °C, is the temperature range where the 

crystal lattice damage will tend to repair by shortening from both ends, therefore, the longer the 

sample has stayed in the PAZ, the shorter the tracks will be. The PAZ is thus defined as the 

temperature range in which annealing takes place at rates that are comparable to track production. 

It has been shown by several annealing experiments that the annealing kinetics of fission tracks in 

apatite depend on the chemical composition (Green et al. 1986; Carlson et al. 1999; Barbarand et 

al. 2003), especially on the Chlorine content although cation substitution such as REE, Mn, Sr also 

appears to play a role. The track etch pit size, and particularly its length parallel to the c-
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crystallographic axis (called Dpar ) can be a proxy for estimating the composition of an apatite. The 

experiments of Green et al.(1986) and Carlson et al. (1999) showed also that the annealing rate 

depends on the crystallographic orientation of the tracks in the crystal, the tracks parallel to the c-

axis anneal slowly. Therefore, only track lengths parallel to the c-axis and Dpar were measured at 

1250-magnification, using an Olympus BH2 optical microscope and the FTStage 4.04 system 

(Dumitru 1993). As the tracks register the thermal history of the grain, their distribution is a key 

parameter in evaluating variable cooling rates.
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I-2.3 Numerical modeling

I-2.3a 3-D Thermo-kinematic modeling

There is now an important amount of thermochronological data in south-central Pyrenees that have 

generally been interpreted and modeled independently. In Chapter III-1, I use this important 

dataset as an input for thermo-kinematic models to constrain the complete denudation and 

topographic history of the area from Eocene to present times.

Model description

The thermo-kinematic modeling is based on Pecube (Braun 2003; see also Braun et al. in review),

a finite-element code that solves the heat-transfer equation (Carslaw and Jaeger 1959) in 3 

dimensions, following this formulation: 

With T(x,y,z,t -3), c the heat capacity (J.kg-1.K-1), v

the rock uplift velocity with respect to the base of the crustal block (km.Myr-1 ), and H the 

radioactive heat production (W.m-3

This equation is solved in a crustal block for a prescribed exhumation (rock advection) and 

topographic history. In this version of the code, rock advection is controlled by a single fault, 

carrying a velocity field, with a variable geometry and located outside the model domain, to avoid 

boundary effects.

).

Topographic changes are implemented by modifying two parameters (called here amplitude and 

filling) applied to a Digital Elevation Model of the present-day topography. The amplitude A(t) 

can be assumed as the paleo-relief, varying from a plateau to the present-day relief (incised valleys 

in the case of the Pyrenees). In the modeling study presented in chapter 3 A(t) was fixed to 1, i.e.

the paleorelief is at the present-day relief, because we found that the thermochronological dataset 

could not sufficiently resolve this parameter.

The filling factor F(t) was specifically added to the code to simulate the deposition of prograding 

conglomerates on the south-central Pyrenees area. It imposes a minimum value of the elevation on 

each point of the grid to reproduce infilling and excavation of the Pyrenean paleo-valleys (see

Figure I-20), through the equation:
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With z the elevation through time, A(t) the amplitude of the relief and F(t) the reference filling 

value. The value of F(t) was explored by inversions presented in Chapter III-1.

Other important parameters have to be defined, in particular the basal and surface temperatures, 

heat production and elastic thickness; they can be fixed or inverted as well.

Figure I-20. Schematic representation of the parameters controlling a Pecube model run. 

For each node, Pecube calculates time-temperature paths for particles that end up at the surface. 

Thermochronological age-prediction models are used to calculate thermochronometric ages that 

are compared to the input dataset. Here, we use the AFT annealing model of Stephenson et al.

(2006), the ZFT annealing model of Tagami et al. (1998), and the AHe diffusion model of Farley 

(2000) for reasons outlined in Chapter III-1.

The calculated ages are then compared to the input data to estimate the fit of the model. The 

statistic evaluation of this misfit is defined by the objective function (Glotzbach et al. 2011; Braun 

et al. in review) :

mi oi

ii 1

n
2

(10)

With µ the misfit value, n the number of data and, for each data point i, o i the observed value (age 

or mean track length), mi the modeled (predicted) value, and i the observed (1 ) error.
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This approach is very useful to set first-order constraints on exhumation scenarios but a precise 

evaluation of each parameter (such as exhumation rates and topographic parameters at different 

timesteps) requires an inverse approach.

Inverse modeling

For inverse modeling, Pecube was coupled with the Neighborhood Algorithm (Sambridge 1999b; 

a). This approach defines an optimal model (i.e a best-fitting set of parameters) within a predefined 

parameter space, and then evaluates the level of constraint that the data resolve for each parameter. 

These two steps (Figure I-21) are called sampling stage (Sambridge 1999b) and appraisal 

stage(Sambridge 1999a), respectively.

In more detail, during the sampling stage the parameter space is divided into Voronoi cells 

centered on each model. During an initial iteration, 96 randomly chosen forward models are run 

and their misfit is assessed using Equation 5. Subsequent iterations also use 96 forward models but 

for which the parameter space is gradually restricted to the best-fitting 83% of models from the 

previous iteration. Note that this resampling value is high, in order not to force the convergence 

and to fully explore the parameter space, just eliminating the most unlikely parameter values. At 

the end of the sampling stage, we thus have a large collection of models that converge to an 

optimal combination of parameter values as a function of their misfit (see scatter plots Chapter III-

1), but these solutions are strongly dependant on the calibration of the sampling stage itself. 

Indeed, with this procedure, it is obvious that the number of iterations should be proportional to 

the number of free parameters. For instance, inversions of 10000 models and of 20000 models 

returned roughly the same results but with a much better defined convergence in the second case. 

The limit to the number of models run is set by the computational time, which can become very 

long if the user does not have access to a large number of CPUs to run the code.  

Figure I-21. Representation of the sampling stage and appraisal stage. At the initial stage, the 

parameter space is delimited by large Voronoi cells, that are precising through iterations. The 

sampling stage allows to define a best-fit model ensemble (combination of parameter values) and 

then the appraisal stage calculates the probability density function of each parameter value. 
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To more quantitatively assess these results, a Bayesian estimate of parameter values is calculated 

during the appraisal stage by re-sampling the models and calculating the marginal posterior 

probability density function (L) of each parameter, following the equation (Sambridge 1999a):

The PDF directly provides a measure of the distribution of likely parameters value , in most of the 

case with one or two peak-values. From the PDFs, we can graphically infer the optimal parameter 

value (peak) and deduce its incertitude by taking the values at the half-gaussian height of the peak. 

I-2.3b  2D thermo-mechanical modeling

In order to reproduce the development of the southern pyrenean wedge (Chapter IV-2), we use the 

Arbitrary Lagrangian Eulerian (ALE) finite-element numerical model Sopale (Fullsack 1995), 

which computation of deformation of visco-plastic materials at a range of scales. The model has 

been used to study geodynamic processes at large scale (lithosphere-asthenosphere) and at the 

scale of the upper crust (see examples in Figure I-22). Sopale is a thermo-mechanical model,

computing both mechanical deformation and thermal evolution. Therefore the temperature field 

and the rheologies are coupled to control the mechanical behavior. The materials are deforming 

primarily by the stress exerted by the boundary conditions, and according to their own rheological 

properties. In our case, we will consider the upper crustal scale, confining our materials to a plastic 

temperature independent rheologies. 

Figure I-22. Examples of different scales of modeling using Sopale. a) Modeling of extension at 

lithospheric scale (Huismans and Beaumont 2007). b) Modeling of the evolution of a fold-and-

thrust belt with surface processes at the upper crustal scale (Stockmal et al. 2007).  
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The model is used to solve the creeping-flow deformation of plastic materials in 2 dimensions 

(Fullsack 1995; Willett 1999a; Huismans and Beaumont 2003). The equation of motion for the 

creeping-flow deformation of materials is governed by the quasi-static force balance and 

conservation of mass equations:

, j=1, 2 (12)

With P the pressure, the effective viscosit,; the comporents of velocity, the density, and g 

the vertical gravitational acceleration.

The constitutive law relating the stress to strain rate is: 

(13)

With the strain rate tensor defined by:

(14)

Material properties are mainly represented by the density, the cohesion and the internal friction 

Part IV correspond to values that have been used previously by 

Stockmal et al (2007) to model fold-and-thrust belt evolution.

To localize strain in plastic shear zones, the model uses the Drucker-Prager yield criterion 

(equivalent to Mohr-Coulomb) to model the plastic behavior for incompressible deformation in 

plane strain. Yielding occurs when:

(15)

Where is the second invariant of the deviatoric stress, p is the dynamic pressure 

(mean stress) c is the cohesion and is the effective internal friction angle. The values of c and 

were chosen to reproduce frictional sliding of rocks. The angle includes the variations 

of Pore fluid pressure (P f) , which reduces the effective stress and is defined by 

(16)
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Several mechanisms can lead to brittle weakening of rocks Huismans and Beaumont 2007 and 

references therein), including cohesion loss, mineral transformations, and increased pore fluid 

pressures. In the models presented here strain weakening is introduced using a parametric 

approach. The friction angle decreases linearly with increasing strain in the range 0.5<

<1.0, where represents the square root of the second invariant of deviatoric strain (Figure I-23).

Figure I-23. Strain softening behavior of materials used in the thermo-mechanical models. In Part 

IV, it is applied to materials I and II. The material has a defined internal friction angle until a 

certain state of strain is attained. It then decreases linearly towards the lower friction angle and 

stays with that value until the end of the run.

Three main mechanisms can lead to strain weakening of rocks (see Huismans and Beaumont 2007

and references therein) : cohesion loss of the material, mineral transitions that affect the internal 

friction angle , and increase in pore fluid pressure. Moreover, Huismans and Beaumont (2007)

showed from numerical tests that the main controlling parameter on the model behavior is the 

value of when softening starts, then transition to the weaker state is rapid due to the 

important positive feedback between strain softening and strain accumulation.

To compute the deformation at large scales, two grids are superposed: an Eulerian and a

Lagrangian grid (ALE formulation, Fullsack 1995). The Eulerian grid is the finite element 

discretization grid and is used to compute the velocity and the pressure. The Lagrangian grid 

carries material properties and the accummulated strain. The Lagrangian grid moves according to 

the velocity field calculated on the Eulerian grid. 
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Part II- Alpine exhumation of the 

Cantabrian Mountains  

The low-temperature thermochronological data can give a good estimate of the timing and amount 

of uplift of the Pyrenean-Cantabrian mountain range. In particular, we observed in the introduction 

that the AFT data were revealing a progression of exhumation form north to south in the Pyrenees. 

It also shows that the signal of a continuation of this alpine exhumation is lost around the central 

Cantabrian mountains (with a few Cenozoic ages) while the Western Cantabrian Mountains 

present only Mesozoic ages. We can interpret these different dates as showing an east-west 

propagation of the exhumation of the Pyrenean-Cantabrian belt, but there is still a lack of data in 

the Eastern (Basque-Cantabrian basin) and Central Cantabrians. Moreover, the central Cantabrian

structure has been revealed by the interpretations of the deep seismic reflexion profiles ESCI-N, 

but the surface evolution is still enigmatic, mostly because of the overprinting of Alpine and 

Variscan structures.

We will present in this chapter new apatite fission-track (AFT) data and (U-Th)/He measurements 

on zircons (ZHe) to investigate the Alpine exhumation of the central part of the Cantabrian 

Mountains. In the future, this study will be combined with the data produced by Luis Barbero 

(University of Cadiz) to publish a consistent low-temperature thermochronological dataset of the 

area, and discuss the consequences of these data on the structure of the range.
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II.1 Introduction

From Eocene to Miocene times, Pyrenean deformation linked to the Iberian and European plate 

convergence is known to have propagated from the Eastern Pyrenees to the Cantabrian mountains 

via the Basque-Cantabrian basin. This Mesozoic basin with a complex history does not allow to 

follow clearly the Alpine (e.g. Eocene to Miocene N-S compression phase) patterns of exhumation

to the west. Nevertheless, several geophysical studies have imaged the southern Pyrenean 

contractional front continuing westward until the center of the Cantabrian mountains, where its 

orientation turns towards the north (e.g. Martin-Gonzalez and Heredia 2011). Moreover, the ESCI-

N deep seismic reflection profiles have permitted to image the deep structure of the Cantabrian 

Mountains and adjacent Bay of Biscay margin in some details (Alvarez-Marron et al. 1996; Pulgar 

et al. 1996; Fernández-Viejo et al. 1998; Fernández-Viejo et al. 2000; Gallastegui 2000; Pedreira 

et al. 2003). The most common interpretation is that north-verging underthrusting of the Iberian 

lower crust and mantle, well established under the Pyrenees, is continuous towards the west under 

the Cantabrian Mountains. The ESCIN-2 seismic profile, in the central part of the range, suggests 

for the upper crustal structure a single south-vergent wedge, underlain by a crustal-scale 

décollement and thrust ramp, emerging at the southern front of the mountain belt (Figure II-1). To 

the south of the Cantabrian Mountains, the Duero foreland basin comprises Cenozoic syn- to post-

orogenic sediments that are not precisely dated, rendering them of limited use to constrain the age 

of Cenozoic deformation. Moreover, the Variscan orogeny has strongly imprinted the Cantabrian 

basement rocks, making the Alpine folds and faults very difficult to observe in the field. The 

shortening calculated from structural reconstructions is maximum in the central part of the 

Cantabrian mountains (96 km, Gallastegui 2000) and the timing of deformation has been 

constrained by several field studies onshore and tectono-sedimentary observations offshore 

(Alonso et al. 1996; Alvarez-Marron et al. 1996; Pulgar et al. 1999). N/S compression is thus 

estimated to have affected the Cantabrian Mountains from Late Eocene until Oligocene-Miocene 

times. Thermochronological ages published in the western Cantabrians (Carrière 2006; Grobe et 

al. 2010; Martin-Gonzalez et al. 2011) do not show any evidence of significant Alpine exhumation 

in the Asturian Arc, west of our study area. Published apatite fission-track (AFT) ages range from 

Triassic to upper Cretaceous (cf. Figure I-13), and there is a lack of data in the central Cantabrians, 

where the Alpine shortening is supposed to be the most important; only two AFT samples to the 

east have yielded Oligocene ages (Carrière 2006).

Thermochronology is used here to help constraining both the timing and pattern of Alpine 

exhumation in the Cantabrian Mountains. This chapter aims to unravel the Alpine history by 

dating more precisely the main episode of deformation as well as quantifying the amount of 

Alpine exhumation. To that purpose, we present in the following apatite AFT ages and (U-Th)/He 

analyses on zircons that allow us to clarify the Alpine deformation history and to add some 

constraints on the structural cross-section. Finally, the last section reports (U-Th)/He 
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measurements on apatites which were not used in the interpretation due to their poor 

reproducibility, and discusses potential reasons for their scatter.

II.2 Geological background

The present-day Cantabrian Mountains represent the western continuation of the Pyrenean orogen 

and result from the collision of the Iberian plate with the European plate. To the east the Iberian 

plate has underthrusted the European plate to build the Pyrenees (Choukroune and ECORS Team 

1989; Muñoz 1992; Vergés et al. 1995; Teixell 1998; Pedreira et al. 2003). To the west, the 

Cantabrian Mountains reflect inversion of the northern Iberian margin rather than a full continental 

collision, the onset of margin inversion occurred within the Iberian plate itself. The Cantabrian 

Mountains are bounded by the Iberian massif to the west, the Mesozoic Basco-Cantabrian basin to 

the east, and the Duero foreland basin to the south.  

II.2-1 Structural inheritance

To understand the Cenozoic deformation of the Cantabrian Mountains (as shown in Figure II-1), 

one needs to take into account that this area experienced a long-term polyphased deformation 

history, starting with the Variscan orogeny.; followed by two phases of Mesozoic extension and 

finally the Alpine deformation phase. The Variscan orogeny, which affected the Cantabrian 

Mountains during the Carboniferous, had a major impact on the structure of the belt. It led to the 

construction of the western arcuate structure called the Asturian Arc (Julivert 1971; Pérez-Estaùn 

et al. 1988). In the center of the Asturian Arc, the Cantabrian zone represents the external part of 

the Variscan belt. The Variscan phase of deformation in that area is driven by east-west 

compression that produced a thin-skinned imbricate thrust structure progressing from west to east. 

The Central Coal Basin unit and Ponga units (Picos de Europa area) are therefore the external units 

of the Variscan belt. These units were then unconformably overlain by Stephanian sandstones that 

date the end of Variscan deformation. The orogenic episode led to the development of major E/W 

trending thrusts in the eastern and central part of range and N/S trending arcuate faults to the west; 

most of the large structures observed today were formed during this first orogenic event. Some of 

the E/W faults in the Eastern Cantabrians were reactivated during the subsequent phase of 

Mesozoic extension as well as during the Alpine convergence phase (Alonso et al. 1996; Pulgar et 

al. 1999). 

The first Mesozoic extension episode started during Permian and Triassic times (Lepvrier and 

Martinez-Garcia 1990) and a second phase affected the area from the Late Jurassic to the early 

Cretaceous, consequently to the opening of the Bay of Biscay (Olivet 1996). Extension was 

maximum during Albian-Aptian times, leading to create and reactivate E-W faults that define horst 
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Figure II - 1(a) Geological map of the Cantabrian Mountains with relief from the SRTM digital 

elevation model. White dots represent samples that could not be analyzed because of a lack of 

apatites. The black dots are the sampling sites were AFT and ZHe analysis could be performed. 

(b) Crustal-scale cross section based on the ESCIN-2 and ESCIN-4 profiles (see map for 

localization); modified from Gallastegui (2000); (c) upper crustal cross-section showing Alpine 

onshore structures, modified from Pulgar et al. (1999). BCB: Basque-Cantabrian Basin.
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and graben systems, mostly in the present-day eastern Cantabrian Mountains and in the Basque-

Cantabrian Basin. The Mesozoic basins then experienced a long phase of subsidence before the 

Cenozoic reactivation of the structures. This last inversion is striking in the Oviedo Basin, of 

which the normal faults were inverted to create a piggy-back Tertiary basin propagating toward the 

south.

II.2-2 Alpine deformation in the Central Cantabrians

The Alpine phase of deformation initiated in the northern Cantabrian margin during the Late 

Eocene with inversion of extensional structures to form a south-vergent accretionary wedge 

(Figure II-1b). Dating of this phase in constrained by offshore syn-tectonic sediments that are late 

Eocene in age (Alonso et al. 1996, Alvarez-Marron et al. 1997, Gallastegui 2000)The end of N-S

compression can be extrapolated from the age of the uppermost syn-tectonic and the lowermost 

post-tectonic strata south of the southern front of the range, in the Duero basin (Figure II-2).

Figure II - 2 Panoramic view of the southern Cantabrian mountain front, with Oligocene-Miocene 

conglomerates of the Cuevas alluvial system, showing impressive growth strata. Further south, 

these syn- tectonic sediments are unconformably overlain by horizontal Miocene sediments (Photo 

Peter Van der Beek).

From the geological map (Guardo, 1:50000 ) syn-tectonic strata are dated to the Paleogene-

Neogene, and are unconformably overlain by Late Miocene strata. Their absolute age still lacks 

precision due to their continental depositional environment, which renders biostratigraphic dating 

of these rocks difficult. Absolute dating of the syn-tectonic sediments is in progress at the 

University of Oviedo. The structural cross-section published by Alonso et al. (1996, Figure II-1c) 

is based on field observations. These authors interpreted the structure of the range as a crustal-

scale fault-bend-fold accommodated by a major ramp that roots at 15-20 km depth and emerges at 

the southern front of the belt. From the bending of the Mesozoic layers, the authors extrapolated a 

dip of the ramp of 18° towards the north. 

All other Alpine thrusts that emerge at the surface are north verging. They mainly crop out in the 

northern and southern parts of the section. That is where they are visible because they offset 

Mesozoic sediments; in the center of the belt, where only deformed basement crops out, Alpine 
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thrusts are very hard to distinguish from Variscan ones. The deformation is of thick-skinned style, 

and cover and basement deformed jointly during the Alpine deformation. 

II.2-3 Evolution of the Duero foreland basin 

The Duero basin is a large intracontinental basin that drains several mountain ranges surrounding 

it: the Iberian Chain to the east, the Cantabrian Mountains to the north and the Central System to 

the south. Before the Alpine uplift of these ranges, the basin was open to the north and east and 

sedimentation was marine to terrestrial (Santisteban et al. 1996). The onset of uplift of the western 

Pyrenean massifs in Paleocene times closed this connection and the basin became endorheic. The 

south-west of the basin re-opened toward the Atlantic by capture of the fluvial networks in the

early Miocene. From that moment, exorheic drainage extended progressively but in the north-east, 

alluvial fans still continued to be connected to central lacustrine environnements. Complete 

capture of the basin only occurred in late Miocene-Pliocene times (Mediavilla et al. 1996). 

The Northern part of the basin has been filled by 2.5 km of Oligocene to Miocene deposits, most 

of which were sourced from the Cantabrian Mountains. Alpine loading within the Cantabrian 

Mountains led to a flexural isostatic subsidence of around 1.5 km (Alonso et al. 1996). Assuming 

that the basin was at sea level before the onset of Alpine deformation; filling and subsidence 

values account for the present-day elevation of the basin of 1000m. The basin is thus significantly 

overfilled, which can be explained by its endorheic character during much of the Cenozoic, as well 

as its semi-arid and little erosive climate. 

At the Cantabrian Mountain front, the Oligocene-early Miocene infilling of the basin was 

perturbed by the development of a fault-propagation fold on top of the main crustal ramp. This is

especially clear in the eastern part of the range, where the deposits show spectacular growth strata 

geometries (Figure II - 2). These formations record the evolution of the Cantabrian drainage 

system, with two groups of alluvial fan deposits. In the oldest one, pebble provenance indicates a 

distant source at least in the central parts of the range, whereas in the younger alluvial fans, the 

sources of the deposits were identified mainly in the frontal Cretaceous limestones and 

Carboniferous massifs (Alonso et al, 1996), illustrating the migration of the source from the 

hinterland to the foreland.

II.3 Methodology

II.3-1 Sampling sites

Two field trips were necessary to collect sufficient material to produce the ages; all the collected 

samples are plotted in Figure II-1a. The initial sampling strategy was to collect along the ESCIN-2

seismic profile, form the Atlantic coast to the Duero basin. We collected ~20 samples, mostly in 
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sandstones (Triassic, Albian and Stephanian); one sample comes from the Peña Prieta granodiorite 

and we sampled a vertical profile as well (e.g. 6 samples along a profile from the valley bottom to 

mountain top, with ~1200 m difference in height) in the center of the section. However, all but 3 

samples (CC4, CC14 and CC10) proved to be nearly devoid of apatite. 

The subsequent sampling trip (~30 samples) targeted to sample a N-S profile across the Central 

Coal Basin (Westphalian and Stephanian sandstones), an E-W profile along the northern limit of 

the Duero basin (Stephanian sandstones, Cretaceous Utrillas Fm. and Paleogene Vegaquemada 

Fm.), and also to go back to samples which provided a few apatites from the first field trip. We 

also sampled in the syn-tectonic conglomeratic deposits of the Cuevas system (on top of the 

Vegaquemada Fm.), at the southern front of the eastern section shown in Figure II-2.

We collected and prepared 50 samples of > 5 kg each, but only 5 of these produced sufficient 

apatites for fission-track analysis (see Figure II - 1a for location), while most of the samples 

yielded sufficient high-quality zircons for ZHe dating. The stratigraphic position of the samples 

that provided usable amounts of apatite and zircon is shown in Figure II-3.

II.3-2 Apatite Fission-Track dating 

For this study, apatite grains were separated from overall fine to medium grained sandstone 

samples using heavy liquid and magnetic separation techniques (cf. Chapter 2). Apatite aliquots 

were mounted in epoxy, polished to expose internal crystal surfaces, and etched with 5.5 M HNO3

Fission track ages were calculated using the zeta-calibration method and the standard fission-track 

-test and age dispersion (Galbraith and Green 

1990; Galbraith and Laslett 1993) were used to assess the homogeneity of AFT ages. Two samples 

(both from the southern front) yielded dispersed ages incompatible with a single age component, 

the grain-age distributions of these samples were decomposed into major grain-age components or 

peaks, using binomial peak fitting (Stewart and Brandon 2004).

for 20 seconds at 21 °C. Low-U muscovite sheets were fixed to the mounts, to be used as external 

detectors, and then samples were sent for irradiation in the FRM II Research Reactor at the 

Technische Universität München (Germany). Apatite samples were irradiated together with IRMM 

540R dosimeter glasses and Durango and Fish Canyon Tuff age standards. After irradiation the 

mica sheets of all samples and standards were etched for 18 min at 21 °C in 48% HF. The samples 

and standards were counted dry at 1250-magnification, using an Olympus BH2 optical microscope 

and the FTStage 4.04 system of Dumitru (1993) . Due to the low yield of grains in most samples, 

as many grains as possible were counted for each sample.

We were able to measure horizontal confined track lengths in three samples. The widths of tracks 

crossing the etched internal surface (Dpar) were measured using the same digitizing techniques as 

used for measuring track length. 
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Figure II - 3. Synthetic stratigraphic column with sample positions. Letters refer to the photos of 

characteristic sampled formations presented in Figure II- 4. Modified after Garcia-Ramos and 

Gutierrez-Claveral (1995) ; Alonso et al.(1996) ; Gomez-Fernandez et al.(2000) and Herrero et 

al.(2010).
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Figure II - 4 Field photos showing characteristic formations of the Cantabrian Mountains area. 

White letters localize these formations on the stratigraphic column of Figure II - 3. A) Cuevas 

alluvial fan deposits ,b): Vegaquemada Fm. at the southern front, sampling site of CC11; 

c):Upper cretaceous Utrillas Fm., at the southern front, located between the eastern profile and 

CCB profile; d):Stephanian turbidites (center of the eastern profile), photo of the CC8 sample 

outcrop; e): View of the Picos de Europa limestone massif near by the city of Potes.
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II.3-3 (U-Th)/He analyses on zircons

Among the samples yielding sufficient zircons, 6 were selected for (U-Th)/He dating, according to 

the quality of the grains and their geographic distribution along the eastern cross-section. 

Clear and undisturbed zircon grains without inclusions were selected using a binocular 

-correction factor Ft

(Farley et al. 1996) Single grains were subsequently packed in Nb-tubes for (U-Th)/He analysis. 

We analyzed 3 aliquots per sample in the Patterson helium-extraction line at the University of 

Tübingen (Germany), which is equipped with a 960 nm diode laser to extract the helium gas. 

Zircon grains were heated for 10 minutes at 20 Amps. Each grain was heated and analyzed a 

second time to make sure that the grain was degassed entirely in the first step. The re-extracts 

generally released <1% of the amount of gas released during the first step. After helium analysis, 

the grain packages were sent to the University of Arizona at Tucson (USA) for U and Th 

measurements using an ICP-MS.The analytical error of the mass spectrometer measurements are 

generally very low and do not exceed 2%. In contrast, the reproducibility of the sample age 

constitutes a much larger error. We therefore report the mean (U-Th)/He age and the standard 

deviation of the measured aliquots as the sample error.

II.4 Results

Results are reported in Tables 1, 2 and 3, plotted on the geological map (Figure II - 5) and will also 

be presented on structural cross sections (Figure II - 7) in order to discuss the structural 

implications of these new data. In the following, ages will be interpreted in terms of Alpine 

exhumation, therefore we will name refer to Cenozoic ages as “reset” ages.

Apatite fission-track results show three samples with a single grain-age population and two with 

multiple populations (Figure II-6 and Table II-3). Measurements of mean track length were only 

possible for samples OC16, CC10 and OC24 (Figure II - 6); even though only a small number of 

lengths could be measured, they all show very short mean track lengths implying slow cooling 

through the AFT Partial Annealing Zone (PAZ). In contrast, the zircon (U-Th)/He ages are very 

well constrained, only the CC4 sample has more than 10 % uncertainty. Interestingly, this sample 

is located between a sample to the north with old (Triassic) ages and the group of young samples 

to the south; it may thus record partial resetting of the ZHe system. 
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Figure II - 5. New AFT and ZHe ages plotted on the geological map. ZHe ages are in blue and 

AFT ages in red. OC 16 and CC10 gave ages with multiple populations, the first age written 

represents the main age peak.

Most of the data are located along a transect across the central Cantabrians. The AFT and ZHe 

data delimit three areas characterized by distinct age patterns. From the northern extremity to the 

CC4 sample, the data indicate an Alpine AFT age (CC4, 30.4 ±2.1 Ma) associated with non- or 

partially-reset ZHe ages (CC1, 259 ± Ma; CC4, 209.6 ±74 Ma). 

sample 
Stratigraphic age 

(Ma) 
P1 ± (Ma) P2 ± (Ma) P3 ± (Ma) 

OC16 300  109.3 ± 5.3 (79.4 %) 198.6 ± 22.3 (20.6 %) 

CC10 110 56.5 ± 6.4 (6.9 %) 110.7 ± 14.9 (50 %) 164.3 ± 11.9 (43.1 %) 

Table II - 3. Details of AFT results for samples with multiple populations. P1,2 and 3 are the 

best-fit values of the peak ages calculated by Binomfit software.

The second region regroups samples from CC6 to the center of the section, and is characterized by 

both Alpine reset AFT and ZHe ages. In this area, the ZHe ages are very similar and associated 
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with low uncertainties (ages of 37.5 ± 5 Ma; 37±1 Ma; and 39.3±1 Ma for respectively CC6, 8 and 

14). The combination of both the young AFT (28.9±2.9 Ma, CC14) and ZHe ages clearly indicates 

that this is the area that experienced most exhumation during Alpine deformation. Moreover, the 

combination of these two ages in sample CC14 indicates that it took ~10 Myr (39 Ma to 29 Ma) to 

the sample to travel from the lower limit of the ZHe PRZ (160°C) to the lower limit of the AFT 

PAZ (100 °C). Based on the thermal gradient measurements of Fernàndez et al.(1998), the average 

geothermal gradient in the Cantabrian Mountains area is of 20 ± 3 °C.km-1, thus the CC14 sample 

provides an estimated exhumation rate of 0.3 km.Myr-1

Finally, the third set of data, located in the southern part of the cross-section shows AFT ages with 

multiple populations (

from middle Eocene to Oligocene times.

Figure II - 6) and an unreset Variscan ZHe age. 

Figure II - 6. Grain-age population, track length measurements and HeFTy modeling of t-T paths

for samples CC10 and OC16.

Samples OC16 and CC10 (deposited respectively during Stephanian and Albian times) both have 

Albian peak ages (109 ± 5 Ma and 111 ± 5 Ma respectively) and secondary Jurassic peak ages 

(199 ± 22 Ma and 164 ± 12 Ma). Measured track lengths are very short in both samples, with a 

mean track length of 8.9 µm for OC16 (n=26) and 10.1 µm for CC10 (n=31), indicating that the 

samples were not deeply buried after deposition and stayed a long time in the PAZ. Individual 

thermal modeling of the data was performed with HeFty using AFT annealing model of Ketcham 

(2007). Forward models were run to fit the track length and Dpar distribution as well as the central 

age (i.e. not taking into account the different age populations). Modeled T-t paths do not show the 

same Mesozoic history for the two samples (even though they have similar peak ages), sample 

CC10 experienced Jurassic exhumation and Cretaceous re-burial, whereas the sample OC16 only 
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shows a slow and progressive Mesozoic burial until Cenozoic times. This difference is probably 

constrained by the depositional ages (Albian for CC10 , Stephanian for OC16) and by the MTL 

value that is a bit larger for CC10. Moreover, note that these modeling results should be 

interpreted carefully as the number of track lengths counted is only of 26 and 31 whereas it should 

be around a hundred in order to obtain statistically well constrained T-t paths. It is interesting to 

note that even if the samples do not have Alpine reset AFT ages, the modeling shows a similar 

timing of Cenozoic exhumation to the samples from the north (CC14 for instance), i.e. since 20-30 

Ma. Finally, the sample OC24, located to the west in the Central Coal Basin, also indicates 

Oligocene exhumation, with an age of 26.8±1.3 Ma. Unfortunately, the other samples collected in 

this area did not provide enough apatites to be analyzed; we will therefore discuss this result later 

by confronting it to the AFT ages produced by Carrière (2006).

II.5 Implications

These new AFT and ZHe ages allow us to better constrain Alpine exhumation of the central 

Cantabrian Mountains in terms of its timing and spatial distribution. The ZHe ages provide a 

minimum estimate of the onset of Alpine inversion in the Bartonian (39 Ma), which is 

synchronous to the thrusting in the accretionnary wedge offshore, dated at late Eocene (Alvarez-

Marron et al. 1996; Gallastegui 2000). The maximum ending time of this deformation phase is 

constrained by the youngest AFT ages that are late Oligocene in age.  It is also worth noting that 

the “reset ages” located in the center of the eastern structural section do not show any propagation 

of exhumation from north to south.

Central Cantabrian cross-section

In the central part of the Cantabrian Mountains (Figure II - 7a), the thermochronological ages 

highlight the exhumation patterns that are, to first order, in agreement with the structural 

interpretation of Alonso et al. (1996) and Pulgar et al. (1999). Unreset ages are encountered in the 

northern and southern extremities of the range, where burial and exhumation is suppose to be less,

and the reset ages are located in the center of the section, between the Cabuerniga fault and the 

Ubierna fault. These two major faults are known to be Mesozoic extensional faults reactivated 

during the Cenozoic compression. They both played a major role in the Basque-Cantabrian Basin; 

the Cabuerniga fault continues until the Picos de Europa unit, whereas the Ubierna fault extends 

until the Central coal basin area, where it is named Leon fault. The reset zircon ages imply, 

however, larger amount of burial than previously predicted by Alonso et al. (1996), who

constrained the continuation of the Mesozoic cover from the outcrops of Jurassic and Cretaceous 

strata in the northern area. When projecting the amount of burial needed to reset the AFT and ZHe 

systems, assuming that the thickness of Paleocene and early Eocene is not significant and that the 
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geothermal gradient is 20°C/km (Fernàndez et al. 1998), 1.5 to 4 km of additional Mesozoic 

sediments are required, with respect to what was previously hypothesized (see Figure II - 7). This 

addition leads to a reconstructed Mesozoic cover of a maximum of 7 km thick, which is equivalent 

to the thickness of the Mesozoic cover reconstructed by Espina et al. (1996) in their section of the 

western Cantabrian basin (~10 km to the east of the II/II’ section in Figure II-7) shown in Figure II 

- 8. This observation leads to position the projected Mesozoic strata in the footwall of the 

Cabuerniga fault at the same level as in footwall of the Ubierna fault. Therefore, the structure 

becomes more symmetric in terms of burial, which also probably implies some differences in the 

deeper structure. A more symmetric pop-up structure defined by the Cabuerniga and Ubierna 

faults could fit our data better than the fault-bend-fold structure drawn by Alonso et al. (1996). I 

am currently working in collaboration with David Pedreira from the University of Oviedo on a 

new balanced cross-section of the eastern Cantabrians that is consistent with both the structural 

and geophysical data and with my new thermochronological ages.
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Figure II - 7. N/S cross-sections located in the central (a, section II/II’) and in the western 

Cantabrians (b, section I/I’), with projected ages from this study and Carrière (2006).Aft ages are 

in red; ZHE ages in black. Structural cross-section are redrawn from Pulgar et al. (1999). The red 

area represents the projection of the limits of the observed ZHe PRZ (160-200°C) for samples 

CC6, CC8 and CC14 and of the AFT PAZ (100-120°C) for CC4. This area represents the 

minimum burial needed to obtain the ZHE and AFT ages, and so therefore marks the estimated top 

of Mesozoic sediments limit.

West-Central Cantabrian cross-section

Due to the lack of suitable samples, exhumation patterns along the west-central cross-section are 

much less constrained. Our single AFT age in the center of the Central Coal Basin (OC24) 

suggests a burial of 5 to 6 km (with an AFT PAZ between 100 and 120°C and assuming a 
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geothermal gradient of 20°C/km) that is consistent with the 3 to 4 km of projected Mesozoic 

sediments inferred by Pulgar et al. (1999). The AFT ages produced by Carrière in  his PhD thesis 

(2006) are also in agreement with the published structure, as he reports an Oligocene AFT age 10 

km to the south of our sample, and the unreset ages to the south, where the amount of Alpine 

exhumation is supposed to be less. 

Figure II - 8. Present-day and reconstructed pre-Alpine cross-section of the Western Basque-

Cantabrian Basin (from Espina et al. 1996), corresponding to the section III/III’ and IV/IV’ 

localized in FigureII-7. Position of samples in the eastern cross-section was projected for 

comparison. 

II.6 Unsuccessful apatite He analyses

In order to refine our understanding of the Cenozoic exhumation history of the Cantabrian 

Mountains, four samples, with several aliquots each, were selected for apatite (U-Th)/He analysis. 

The samples are derived from Variscan granitoids (IN, Ra and Pi09) and Triassic sandstones (LIN) 

outcrops located in the north, center and south of the central Cantabrians, and were collected by 

Luis Barbero (University of Cadiz). The apatites were picked in Grenoble and a single grain per 

aliquot was put in a Pt tube before sending them to Paris-Sud University (Orsay) for analysis. He-

degasing as well as U and Th measurements were performed by Cécile Gautheron. 
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Figure II - 9. Localization of the four samples with their AHe results.

The results are presented in Table II - 4, and present several evident inconsistencies that led us 

to reject this dataset for interpretation, only one grain in sample Pi09 presenting an Alpine age. 

The main issues inferred from these results are: 

1) None of these ages are reproducible. Individual aliquots from the same sample are very 

different from each other; the Pi09 sample, for instance, has three grains dated at 28.9, 52.3 and 

117.8 Ma.

2) Nearly all the AHe ages are older than the corresponding AFT ages reported in Table 1, 

whereas the AHe closure temperature (Tc) is 75 ± 15 °C and the AFT Tc is 110 ± 10°C. For 

example, the LIN sample, which is equivalent to the CC4 sample (dated by AFT and ZHe, Tables 

II-1 and II-2), has an AFT age of 30.4 Ma and AHe ages ranging from 157 Ma to 1186 Ma.

3) Some of the AHe ages derived from granodiorites are older than the emplacement age of the 

host rock. The oldest AHe age derived from a granodiorite is Cambrian in age (Ra3, 525 Ma) 

whereas the age of emplacement of these granodiorites is Permian (Fernández-Suárez et al. 2000).

Several causes can explain these problems. The most obvious one is the presence of U-rich 

mineral inclusions in the apatites, like zircon or monazite inclusions. Even if the apatites were 

picked very carefully, there is still the possibility of little inclusions that are not visible under an 

optical microscope but could have produced an important amount of He. Secondly, the 

presence of U and Th-rich mineral neighbors could also have biased the He measurement
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in these apatites that are relatively poor (<50 ppm) in U/Th (Spiegel et al. 2009), as well as 

chemical zonation of Uranium and Thorium in the minerals (Meesters and Dunai 2002). 

Moreover, several authors have pointed out that dispersion of replicate ages is often encountered in 

samples from slowly-cooled terrains (Fitzgerald et al. 2006; Gautheron et al. 2009). From our AFT 

ages, we know that exhumation was probably quite slow, as the mean track lengths are ~10 ±1 µm. 

Moreover, the (U-Th)/He analysis on zircons combined with AFT ages allows us to obtain an 

estimated maximum cooling rate of 6°C.Myr-1

More generally, numerous studies document problems of measuring AHe ages older than 

corresponding AFT ages (Persano et al. 2002; Hendriks and Redfield 2005; Green et al. 2006; 

Green and Duddy 2006). Some authors hypothesized that the AFT ages are “too young” (e.g. 

Hendriks and Redfield 2005), but the majority of them postulated that differences between AFT 

ages and AHe ages are not coming from anomalous fission track annealing behavior but 

effectively from the (U-Th)/He system itself.  More precisely, Shuster et al. (2006) inferred from 

diffusion experiments that the kinetics of He diffusion is affected by the amount of radiation 

damage in the crystal, which may be a principal cause responsible for unexpectedly old He ages.

The effect of radiation damage and the way the defects caused by the e -particles are 

themselves annealed are further investigated by Gautheron et al.(2009) and Flowers et al. 

(2009). These authors proposed different He-diffusion models including build-up and annealing of 

radiation damage, which help to explain some problematic (U-Th)/He ages. Unfortunately, the age 

scatter between aliquots in the samples analyzed here is too important to try to use these models 

with our data. 

, that can be considered as moderately low.

To conclude, there are several ways for explaining these ages and the valuable explanation would 

probably be a combination of all the causes developed earlier. One of the most probable 

explanations for our scattered AHe ages remain the presence of U-rich mineral inclusions. 
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II.7 Conclusions

The strong imprint of the earlier Variscan deformation phase experienced by the higher (central) 

part of the Cantabrian Mountains as well as the lack of appropriate rocks for thermochronological 

analysis have revealed the isolation of the Alpine deformation patterns difficult. Nevertheless, the 

combination of apatite fission-track analysis and (U-Th)/He measurements on zircons has allowed 

us to define more precisely the timing and evolution of Alpine exhumation. In the eastern part of 

the range, where alpine shortening is known to be maximum, the combined AFT and ZHe data 

provide a precise timing of the onset of exhumation during at least late Eocene times at latest, as 

well as its ending time during or after the Oligocene.  Moreover, the spatial distribution of reset 

and unreset ages allowed us to re-interpret the amount of burial and exhumation in the center of 

the section, and consequently the structure. AFT ages produced independently by Luis Barbero 

(University of Cadiz) in the east and center of the range confirm our observations of Eocene-

Oligocene Alpine exhumation. 
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Part III- Cenozoic evolution of the 

South-Central Pyrenees: 

thermochronology and thermo-

kinematic modeling 

According to the thermochronological data, while the central Cantabrian Mountains were uplifting

in Oligocene times, the main phase of exhumation was ending in the Pyrenees. The onlap of 

conglomeratic erosional products on the southern flank of the Axial Zone was hypothesized by 

Coney et al. (1996), and been proved by magnetostratigraphic studies. Nevertheless, the amount, 

extend and timing of in- and un- filling of these conglomerates still need to be quantified. 

In this Part, we will first demonstrate by 3D thermo-kinematic modeling that the 

thermochronological dataset existing can be re-interpreted when adding this conglomeratic 

infilling in the model. The maximum elevation of the deposit and the timing of their incision will 

be quantified by inverse modeling; and compared to the geological history of the Southern 

Pyrenees and of the Ebro basin. This study has recently been accepted to Basin Research for 

publication. In the second chapter, we attempt to extend our conclusions to the southern foreland 

fold-and-thrust belt. By producing new AFT and (U-Th/He) measurements on apatites and 

incorporating them in a new thermal inverse model, to study the late-stage burial/exhumation 

history of samples located in the southern foreland. Despite the scatter of the AHe data, we will 

show that they all agree for the same Neogene exhumation phase.
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Chapter III-1 Post-orogenic Evolution of the Southern 

Pyrenees: constraints from Inverse Thermo-Kinematic 

Modeling of Low-Temperature Thermochronology Data 

Charlotte Fillon and Peter van der Beek

Institut des Sciences de la Terre, Université Joseph Fourier – Grenoble 1,

BP 53, 38041 Grenoble Cedex, France

Basin Research, in press

III-1.1 Abstract

The late-stage evolution of the southern central Pyrenees has been well documented but 

controversies remain concerning potential Neogene acceleration of exhumation rates and the 

influence of tectonic and/or climatic processes. A popular model suggests that the Pyrenees and 

their southern foreland were buried below a thick succession of conglomerates during the 

Oligocene, when the basin was endorheic. However, both the amount of post-orogenic fill and the 

timing of re-excavation remain controversial. We address this question by revisiting extensive 

thermochronological datasets of the Axial Zone. We use an inverse approach that couples the 

thermo-kinematic model Pecube and the Neighborhood inversion algorithm to constrain the 

history of exhumation and topographic changes since 40 Ma. By comparison with independent 

geological data, we identified a most probable scenario involving rapid exhumation (>2.5 km Myr-

1) between 37 and 30 Ma followed by a strong decrease to very slow rates (0.02 km My-1) that 

remain constant until the present. Therefore, the inversion does not require a previously inferred 

Pliocene acceleration in regional exhumation rates. A clear topographic signal emerges however: 

the topography has to be infilled by conglomerates to an elevation of 2.6 km between 40 and 29 

Ma and then to remain stable until ~9 Ma. We interpret the last stage of the topographic history as 

recording major incision of the southern Pyrenean wedge, due to the Ebro basin connection to the 

Mediterranean, well before previously suggested Messinian ages. These results thus demonstrate 

temporally varying controls of different processes on exhumation:  rapid rock uplift in an active 

orogen during late Eocene, whereas base-level changes in the foreland basin control the post-

orogenic evolution of topography and exhumation in the central Pyrenees. In contrast, climate 

changes appear to play a lesser role in the post-orogenic topographic and erosional evolution of 

this mountain belt.
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III-1.2 Introduction 

The evolution of mountainous topography and of sediment flux to foreland basins is generally 

considered to be controlled by tectonics and surface processes (e.g., Flemings and Jordan 1989; 

Johnson and Beaumont 1995b). Base-level changes in the foreland have received less attention, 

but should also influence mountain belt evolution, as both numerical and analogue models have 

demonstrated strong coupling between eroding upland ranges and adjacent sedimentary basins

(Babault et al. 2005a; Carretier and Lucazeau 2005; Densmore et al. 2007). This influence is 

enhanced in an internally drained foreland basin, where sediments will accumulate and be stored 

until the system opens again (Sobel et al. 2003; Garcia-Castellanos 2007). Syn-orogenic 

accumulation of sediments provides a regional load on the system, which will influence the 

deformation of the orogenic wedge (e.g., Storti and McClay 1995; Mugnier et al. 1997; Ford 2004)

and modify patterns of tectonic and/or erosional exhumation. During the post-orogenic phase, the 

history of foreland basin fill and erosion constitutes an important, but not easily interpretable, 

record of climatic and / or geodynamic events that have affected the “dead” mountain belt (e.g., 

McMillan et al. 2006; Wobus et al. 2010).

The southern Pyrenees constitute a key region to study the interaction between mountain-belt 

development and foreland basin evolution, because of an exceptionally preserved syn- and post-

orogenic stratigraphic record (e.g., Puigdefàbregas et al. 1992; Vergés et al. 2002a; Sinclair et al. 

2005). However, although the main orogenic phase is well constrained by an extensive dataset 

including seismic imagery (ECORS Pyrenees Team 1988), structural and thermochronological 

data (Muñoz 1992; Fitzgerald et al. 1999; Beaumont et al. 2000; Vergés et al. 2002a; Sinclair et al. 

2005; Metcalf et al. 2009), the post-orogenic evolution of the belt remains subject to debate in 

terms of its geomorphic evolution and the potential tectonic and climatic controls thereon.

In the southern central Pyrenees, the peak of exhumation during upper Eocene times (Fitzgerald et 

al. 1999; Sinclair et al. 2005) coincides with the closure of its southern foreland basin, the Ebro 

basin (Riba et al. 1983). The basin remained endorheic until Late Miocene or Pliocene times. 

During this long period, the basin experienced a phase of infilling by the erosion products of the 

internal zone of the belt, which are characterized in the southern fold-and-thrust belt by a thick pile 

of conglomeratic deposits. 

Although the general evolution of the southern Pyrenean foreland outlined above is commonly 

accepted, controversies exist regarding its influence on the morphologic evolution of the mountain 

belt, the timing of opening of the basin and the geodynamic significance of late-stage incision. It 

has been argued that the base-level change associated with filling of the endorheic basin led to the 

development of high-elevation low-relief surfaces within the internal zone of the belt (the 

‘Pyrenean peneplain’Babault et al. 2005b) but both this interpretation and the actual existence of 

such a peneplain have been called into question (Gunnell and Calvet 2006). Opening of the Ebro 
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basin to the Mediterranean has been argued to coincide with the Messinian Salinity Crisis (Coney 

et al. 1996) but also to either pre- (Garcia-Castellanos et al. 2003) or post- (Babault et al. 2006)

date it (see Arche et al. 2010 for a recent review). Re-incision of the Pyrenees and their foreland 

basin has been related to Pliocene climatic change (Babault et al. 2005b) or to headward 

propagation of the base-level fall associated with basin opening (Coney et al., 1996; Garcia-

Castellanos et al., 2003). Finally, low-temperature thermochronological data from the central 

Pyrenees have been variously interpreted in terms of requiring increased late-Neogene exhumation 

(Fitzgerald et al. 1999) or slow steady post-orogenic exhumation since the Oligocene (Gibson et 

al. 2007).

This paper revisits these questions by using numerical modeling to integrate all of the existing 

thermochronology data that have played a key role in quantifying the post-orogenic erosion history 

of the Pyrenees. Specifically, we aim to quantify the thickness of post-orogenic conglomerates that 

accumulated in the southern foreland during the phase of endorheism, to date the onset of their 

incision, and to test the inferred increase of exhumation rates during Pliocene-Quaternary times in 

the mountain belt. By doing so, we aim to link the history of the Ebro basin with the evolution of 

the thick sequence of Oligocene conglomerates and the post-orogenic exhumation history of the 

internal part of the orogen. Our results therefore also provide an independent constraint on the 

timing of opening of the basin to the Mediterranean Sea, as we interpret the onset of valley 

incision as resulting from the base-level drop associated with this opening. In the following, we 

first briefly outline the geological setting of the southern Pyrenees and Ebro foreland basin, 

synthesize the existing thermochronological dataset and describe our numerical inversion 

technique. We then present our model results and discuss their significance for the inferred post-

orogenic history of the southern Pyrenean foreland and its tectonic, climatic and base-level 

controls.

III-1.3 Geological setting

III-1.3a Structure and Geodynamic Evolution of the Pyrenees 

The Pyrenean mountain belt is a doubly-vergent orogenic wedge resulting from inversion of a

highly extended basin between the Iberian and European plates. Collision started during the Late 

Cretaceous and reached its peak in the central Pyrenees during Eocene-Oligocene times (Muñoz 

1992; Beaumont et al. 2000; Vergés et al. 2002a). The belt is structured into three main tectonic 

units Muñoz 1992: the North Pyrenean unit, which corresponds to the retro-wedge, the central 

Axial Zone and the South Pyrenean unit, together making up the pro-wedge (Figure III-1). The 

narrow northern Pyrenean wedge imbricates basement and cover rocks north of the North 

Pyrenean Fault (NPF) and is bounded by a large retro-foreland basin, the Aquitaine Basin. The 

southern pro-wedge is much wider, with a succession of well-marked tectonic units including a
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central antiformal stack of basement rocks (Axial Zone), a foreland fold-and-thrust belt (the South 

Pyrenean unit) and the Ebro pro-foreland basin (Muñoz 1992; Vergés et al. 2002a). The amount of 

shortening varies along the belt and reaches a maximum of around 165 km (Muñoz 1992; 

Beaumont et al. 2000) in our study area along the ECORS seismic profile.

Figure III- 1. (a) Geological map of the Pyrenees (modified from BRGM-IGME, 2008).  BI: 

Bielsa massif; ML: Maladeta massif; MM Marimaña massif. Line indicates cross-section (b); box 

indicates study area shown in Figure III-2. (b) Cross-section of the southern (pro-) wedge of the 

Pyrenees, based on the ECORS seismic profile (modified from Muñoz, 1992).

Due to the pre-collisional structure of the northern Iberian margin, the north-south collision led to 

temporal migration of compressional deformation from East to West and from North to South. 

This along- and across-strike migration is well reflected in the patterns of both exhumation and 

foreland deposition (Puigdefàbregas et al. 1992; Vergés et al. 2002a; Sinclair et al. 2005).

Exhumation patterns are constrained by an extensive thermochronological database, consisting 

mainly of apatite fission-track (AFT) data, with subordinate zircon fission-track (ZFT), K-feldspar 

and mica 40Ar/39Ar and apatite (U-Th)/He (AHe) data. To summarize, exhumation started in the 

early Eocene (~50 Ma) in the central Pyrenees, as recorded by AFT data from the northern 

Pyrenean zone (Yelland 1990; Morris et al. 1998; Fitzgerald et al. 1999) and ZFT and K-feldspar 
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40Ar/39

In this study, we focus on three domains of the central Pyrenees, along the ECORS profile (Figure 

III-1): the central Axial Zone, the southern foreland fold-and-thrust belt and the southern foreland 

basin. The Axial Zone is an antiformal stack built by three thrust sheets (Rialp, Orri and Nogueres) 

that were emplaced between Late Cretaceous (Nogueres) and early Oligocene (Rialp) times 

(Muñoz 1992; Beaumont et al. 2000). The foreland fold-and-thrust belt developed generally in-

sequence from north to south. The onset of exhumation in the Nogueres Zone (northern limit of 

the foreland) coincided with activation of the Boixols thrust in the foreland during Late Cretaceous 

times (Beaumont et al., 2000; Sinclair et al., 2005). Deformation subsequently migrated southward 

with activation of the Montsec thrust in the Paleocene and the Sierras Marginales system in the 

middle Eocene, while the Orri and Rialp units were piling up farther north. At the same time, out-

of-sequence thrusting was active in the Nogueres zone (Capote et al. 2002; Sinclair et al. 2005).

The most recent deformation in the fold-and-thrust belt has been dated to the early Miocene (20-25 

Ma; Meigs et al. 1996), since then, the belt is considered as tectonically inactive.

Ar data from the Axial Zone (Sinclair et al. 2005; Metcalf et al. 2009). A late Eocene (~36-

30 Ma) phase of very rapid exhumation is recorded by AFT data in the southern Axial Zone 

(Fitzgerald et al. 1999; Sinclair et al. 2005; Gibson et al. 2007; Metcalf et al. 2009). The youngest 

AFT and AHe ages (~10-15 Ma) are encountered in the southernmost part of the Axial Zone in the 

central (Barruera zone; Gibson et al., 2007) and the southwestern (Bielsa massif, Jolivet et al. 

2007) Pyrenees. 

The foreland fold-and-thrust belt exposes a continuous succession of Cretaceous to upper 

Oligocene marine to continental sediments that record the syn-tectonic infilling and piggy-back 

progression of the foreland basin (Vergés and Muñoz 1990; Puigdefàbregas et al. 1992).

Remarkable late-orogenic conglomerate deposits started covering the basin from late Eocene times 

onward (Coney et al. 1996). These were fed by the rapidly exhuming Axial Zone, as revealed by 

pebble provenance studies (Vincent 2001). Three main conglomeratic remnants have been

preserved from subsequent erosion in the central southern Pyrenees: the Sis, Gurp and Pobla de 

Segur massifs (from west to east; Figure III-2). The depositional sequence of these conglomerates 

has recently been clarified by magneto-stratigraphy (Beamud et al. 2003, 2011), which dates the 

onset of infilling to the middle Eocene (~40 Ma) while the youngest preserved deposits are 

Oligocene (27-28 Ma). Detrital AFT ages from granitic pebbles in the conglomerates (Beamud et 

al. 2011; Rahl et al. 2011) are 43-61 Ma at the bottom of the succession to 27-42 Ma at the top, 

confirming the simultaneity of exhumation of Axial Zone rocks and the infilling of the fold-and-

thrust belt valleys by conglomerates a few tens of km to the south.
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III-1.3b Ebro basin drainage history

The Ebro foreland basin was formed in response to the flexural load of the Pyrenean orogenic 

wedge, although it was also influenced by loading of the two other alpine ranges surrounding the 

basin: the Catalan Coastal Range to the southeast and the Iberian Range to the southwest 

(Desegaulx and Moretti 1988b; Zoetemeijer et al. 1990b). During late Eocene times, the 

connection with the Atlantic Ocean was closed (36 Ma; Costa et al. 2009) and the basin became 

endorheic. Continental and lacustrine sedimentation continued until at least the middle Miocene 

(13 Ma), the age of the youngest sediments dated by magneto-stratigraphy and outcropping in the 

center of the basin (Pérez-Rivarés et al. 2004). Some time after this, the modern connection of the 

Ebro River to the Mediterranean should have been established, but there are different possible 

scenarios for the timing of opening to the Mediterranean Sea. 

In the 1990’s, it was commonly accepted that the Ebro connected to the Mediterranean during the 

Messinian Salinity Crisis (5.9-5.3 Ma; Krijgsman et al. 1999), and the connection was understood 

to be driven by margin incision due to the large associated sea-level drop in the Mediterranean 

Nelson and Maldonado 1990. Coney et al. (1996) further developed this idea and made the link 

between conglomerate “backfilling” (cf. above) and the drainage history of the Ebro basin. In their 

model, the southern Pyrenees were all but buried under their own erosional products during the 

endorheic phase of the basin and were re-excavated since the Messinian reopening of the Ebro 

basin toward the Mediterranean. The Messinian timing of basin opening has, however, been 

challenged by several authors. On the one hand, Babault et al. (2006) suggested, using numerical 

models and morphological analyses that the connection to the Mediterranean should have occurred 

after the Messinian, probably during Pliocene times. Their main argument is the absence of 

evidence for Messinian canyons incising the Ebro basin, in contrast to other large rivers draining 

into the Mediterranean. On the other hand, Garcia-Castellanos et al. (2003) modeled the Ebro 

basin evolution using a 3D model combining surface processes and crustal-scale deformation; they 

argue that the Messinian sea-level drop could not have triggered opening of the basin because its 

duration was too short to induce capture. From consideration of the sediment budget between the 

Pyrenees, the Ebro basin and the Ebro delta, they predicted that opening occurred between 13 and 

8.5 Ma. In their model, capture was triggered by erosional lowering of the Catalan Coastal Range 

topographic barrier, sediment overfilling of the basin and/or changing climatic conditions, from 

dry to humid, during late Miocene times. These issues were further discussed by Arche et al. 

(2010), who infer capture of the Ebro around 9-8.5 Ma from analysis of pre-Messinian sediments 

in the Valencia Trough (the Castellon group). Finally, recent 3D seismic data from the Ebro delta 

Urgeles et al. 2011 show clear evidence for a late Miocene “proto-Ebro” river, as they image a 

major through-going river just below the Messinian Erosion Surface (MES) as well as clinoform 

geometries, dated to the Serravalian-Tortonian (13.8 to 7.2 Ma) and inferred to correspond to a 

paleo-Ebro delta.
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Figure III- 2. Schematic geological map of the study area, showing distribution of main units and 

location of thermochronological data (AFT ages in black, AHe ages in blue), from Fitzgerald et al. 

(1999), Sinclair et al. (2005), Gibson et al. (2007) and Metcalf et al. (2009).
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III-1.3c Thermochronological data and exhumation of the central Pyrenees

Our thermo-kinematic modeling is based on 31 published AFT ages and 17 published AHe ages 

(Fitzgerald et al., 1999; Sinclair et al., 2005; Gibson et al., 2007; Metcalf et al., 2009). The data 

were collected in the Maladeta and Marimaña massifs, located within the Orri thrust sheet in the 

footwall and the hanging wall of the Gavarnie thrust respectively, as well as from the Nogueras 

zone, the southernmost part of the Orri thrust sheet (Figure III-2). Samples from the Maladeta and 

Marimaña massifs are from Late Carboniferous granites and the Nogueras zone samples are from 

Cambrian to Triassic volcanic rocks. To improve the constraint on predicted T-t paths, we also use 

track-length data from 29 AFT samples. 

AFT ages range from a maximum of 38.6±3.2 Ma for the topographically highest sample in the 

Marimaña massif to 17.2±3.4 Ma for the lowest sample in the Nogueras zone; AHe ages similarly 

range from 31.6±0.9 Ma to 17.2±3.8 Ma (Figures III-2 and III-3). The mean track lengths (MTL) 

vary between 12.3 µm (for a sample toward the base of the Maladeta profile) to 14.3 µm. Samples 

from elevations >2000 m generally have MTL > 14 µm, indicating rapid cooling through the AFT 

Partial Annealing Zone (PAZ), while lower-elevation samples are characterized by MTL between 

13-14 µm. Although somewhat different etching procedures were used to reveal tracks in the 

different studies, no systematic offsets in either AFT ages of MTL are observed between the 

different datasets (Figure III-3); we thus assume that the combined dataset is homogeneous. 

Sinclair et al. (2005) and Gibson et al. (2007) also reported AFT and AHe data for 3 samples from 

the Barruera massif, just south of Maladeta, which show significantly younger ages as compared to 

the Maladeta and Marimaña samples at similar elevations (~20 Ma for AFT and 10-15 Ma for 

AHe), interpreted to reflect local out-of-sequence thrusting. We decided to exclude these samples, 

as they would have further complexified the regional exhumation history while not adding to the 

overall understanding of it.

A combined age-elevation plot for all the data (Figure III-3) shows that the samples from different 

massifs line up along a common age-elevation relationship, consistent with the inference that 

exhumation of the southern central Axial Zone rocks results from uniform passive uplift of the 

Orri unit (Figure III-1) by stacking of underlying basement units. AFT data from above ~1500 m 

elevation show a steep slope with ages between 40 and 30 Ma, implying rapid exhumation during 

that time and fitting the long MTL. Lower samples record a decrease in exhumation rates from 30 

Ma to at least 18 Ma. AHe ages mimic this pattern with a steep age-elevation slope between 20 

and 30 Ma for samples from above ~2000 m and a lower slope below that. Fitzgerald et al. (1999) 

used the AFT age–elevation pattern from the Maladeta massif to predict exhumation rates between 

2 and 4 km Myr-1 for the phase of rapid exhumation between 36 and 30 Ma, which subsequently 

strongly decreased to ~0.06 km Myr -1 until 6 Ma. They also suggested from thermal modeling that 

post-Miocene acceleration of exhumation had to occur to fit the age-elevation relationship. In 
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contrast, Gibson et al. (2007) found that their combined AFT and AHe data did not require such a 

late-stage acceleration in exhumation, a finding that was challenged by Babault et al. (2009; see 

also Sinclair et al. 2009).

Figure III- 3. Combined age/elevation plot for all available low-temperature thermochronology 

data showing apatite fission-track ages (AFT in red), apatite (U-Th)/He ages (AHe in orange), and 

mean AFT track lengths (MTL in blue; note separate scale bar). Errors bars for AHe and AFT 

ages represent 1-

(2007) and Metcalf et al. (2009).

Finally, Sinclair et al. (2005) published 4 zircon fission-track (ZFT) ages that range from 49.3±2.6 

Ma in the Maladeta and Marimaña massifs to 159±33 Ma in the Nogueras zone, implying that total 

exhumation since 40 Ma was insufficient to exhume rocks with fully reset ZFT ages, consistent 

with recent combined modeling of AFT and K-feldspar 40Ar/39Ar time-temperature paths by 

Metcalf et al. (2009). We will include this constraint in our thermo-kinematic models as outlined 

below.

III-1.4 Numerical modeling

III-1.4a Model set up

Our thermo-kinematic modeling is based on Pecube (Braun 2003; see also Braun et al. in review),

a finite-element code that solves the heat-transfer equation in 3 dimensions in a crustal block for a 

prescribed exhumation (rock advection) and topographic history as well as a number of fixed 

physical parameters. The crustal block has spatially constant material properties, representative of 
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the continental crust (Table III-1). In our case, we also adopt spatially constant vertical rock 

advection and model the area as a single uplifting block. As discussed previously, the 

thermochronology data record spatially homogeneous exhumation of the study area since ~40 Ma, 

allowing us to make this simplifying first-order assumption.

Parameter value

Crustal density 2700 kg m

Mantle density

-3

3200 kg m

Equivalent elastic thickness

-3

25 km

Young’s modulus 1011

Poisson ratio

Pa

0.25

Crustal thickness 40 km

Thermal diffusivity 25 km² Myr

Basal crustal temperature

-1

720 °C

Sea-level temperature 15 °C

Atmospheric lapse rate 4 °C km

Crustal heat production 

-1

0.95 µW m-3

Table III - 1. Fixed thermo-kinematic and elastic parameters used in Pecube inversions. Crustal 

thickness is based on ECORS seismic profile (ECORS Pyrenees Team, 1988); basal temperature 

and crustal heat production are set to obtain a surface heat flow of 70 mW m-2 and corresponding 

geothermal gradient of 33 °C km-1 (e.g., Fernàndez & Banda, 1989; Fernàndez et al., 1998).

Poisson ratio, Young’s modulus and equivalent elastic thickness are used for calculating the 

isostatic rebound in response to relief change. Equivalent elastic thickness is constrained by 

flexural models (Zoetemeijer et al., 1990).

We aim to constrain the history of regional exhumation rates as well as the amount and timing of 

backfilling and re-excavation of the southern Pyrenees, using the available thermochronological 

data as constraints. The regional exhumation history is modeled as a number of exhumation 

phases, characterized by a constant exhumation rate between a beginning and end time. In order to 

maintain reasonable computing time, the topographic surface is obtained by downgrading the 

Shuttle Radar Topography Mission (SRTM) digital elevation model to a resolution of 1 km, 

sufficient to obtain accurate results as demonstrated by Valla et al. (2011). To test the hypothesis 

of backfilling by conglomerates, we have modified the way in which topographic evolution is 

parameterized in Pecube, in comparison to recent models (e.g., Valla et al. 2010; Glotzbach et al. 

2011): here we impose a minimum elevation (H) to the topography to control the thickness of 

sediments infilling the valleys (Figure III-4). An increasing minimum elevation through time 
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models sedimentation in those areas where the present-day topography is lower than the prescribed 

minimum elevation, whereas a decreasing minimum elevation models erosion in those areas. The 

material added to fill the valleys has the same thermal properties as the crustal block. The total 

local erosion rates for locations at elevations lower than H are thus obtained by summing the 

regional exhumation rates and the local valley incision rate (rate of change in H). 

The evolution from one topographic step to another can be either exponential or linear (Braun & 

Robert, 2005); we choose to let it evolve linearly in our models in order to limit the number of 

parameters. Valley infilling and incision is compensated by flexural isostasy, itself controlled by 

the value of the elastic thickness (25 km; Table III-1), constrained by flexural models of the 

Pyrenees (Zoetemeijer et al., 1990). Hence, the elevation changes predicted by our modeling 

pertain to the isostatically balanced paleo-topography (i.e. the elevation changes are considered 

with respect to an external reference frame). 

III-1.4b Pecube inversions

Pecube predicts time-temperature paths for each node that ends up at the surface at the end of the 

model run and uses these together with thermochronological age-prediction models to calculate 

thermochronometric ages. Here we use the AFT annealing model of Stephenson et al.( 2006), the 

ZFT annealing model of Tagami et al. (1998), and the AHe diffusion model of Farley (2000).

More elaborate models exist that take into account the kinetic effects of apatite composition for 

AFT and -damage for AHe (e.g., Ketcham et al. 2007; Flowers et al. 2009; Gautheron et al. 

2009). However, of the two AFT studies used here, Fitzgerald et al. (1999) did not report kinetic 

parameters, while the newer studies (Sinclair et al., 2005; Gibson et al., 2007) reported apatite 

kinetics (based on Dpar

mi oi

ii 1

n
2

values) very close to that of Durango apatite, on which the Stephenson et 

al. (2006) model is calibrated. Likewise, apatite U-Th concentrations reported by Gibson et al. 

(2007) and Metcalf et al. (2009) are typically a few tens of ppm, within the range where the 

conventional model of Farley (2000) predicts He-diffusion in apatite satisfactorily (Flowers et al.,

2009; Gautheron et al., 2009). Predicted thermochronological ages are compared to the observed 

data to assess the overall fit of the model. To evaluate statistically the difference between modeled 

and observed ages, we use the objective function defined by Glotzbach et al. (see also 2011; Braun 

et al. in review):

(1)

With µ the misfit value, n the number of data and, for each datapoint i, o i the observed value (age 

or mean track length), mi the modeled (predicted) value and i the observed (1- ) error. We thus 

fit the model to the set of thermochronological (AFT, AHe, ZFT) ages and mean AFT lengths. 
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Pecube attributes an age equal to the model onset time (40 Ma in our case) to thermochronological 

systems that were not sufficiently heated to be reset during the model run, which is the case for the 

ZFT data used here. We therefore include the constraint provided by the unreset ZFT ages by 

setting them to 40 Ma, with the same relative error as the original data.

The inverse approach couples Pecube with the Neighborhood Algorithm (Sambridge 1999a;b),

allowing us to define an optimal model (i.e a best-fitting set of parameters) within a predefined 

parameter space (sampling stage), as well as to evaluate the level of precision with which each 

parameter is resolved the data (appraisal stage). In more detail, during the sampling stage the 

parameter space, as defined by the user, is divided into Voronoi cells centered on each model 

(combination of parameter values). During an initial iteration, 96 randomly chosen forward models 

are run and their misfit is assessed using Equation 1. Subsequent iterations also use 96 forward 

models but for which the parameter space is gradually restricted to the best-fitting 80 models from 

the previous iteration. The results presented here are obtained by 200 iterations after the initial 

seed and therefore each represent 19296 forward models. At the end of the sampling stage, we thus 

have a large collection of models that converge to an optimal combination of parameter values as a 

function of their misfit, but these solutions are strongly dependant on the calibration of the 

sampling stage itself (number of iterations, percentage of models resampled, etc; cf. Braun et al.,

in review). Therefore, to more rigorously assess these results, a Bayesian estimate of parameter 

values is calculated during the appraisal stage by re-sampling the models and calculating the 

marginal posterior probability density function (PDF) of each parameter. For more details on the 

appraisal stage, see Valla et al. (2010) and Glotzbach et al. (2011).

III-1.4c Parameter space

There are four main sets of parameters that can vary in Pecube: topographic settings, kinematics 

(i.e., vertical exhumation rates), timing of change in topography or exhumation rates, and thermal 

parameters. We have run a total of about 45 inversions with varying degrees of freedom for these 

sets of parameters. We have found that optimal thermal parameters rapidly converge to values that 

are consistent with available data on the thermal structure of the Pyrenean foreland (Fernàndez and 

Banda 1989; Fernàndez et al. 1998): surface heat flow of ~70 mW m-2 and a corresponding 

geothermal gradient of 30-35 °C km-1. In the models shown here, therefore, thermal parameters are 

fixed to obtain a near-surface geothermal gradient of 33 °C km-1 (Table III-1). Similarly, the 

timing of major changes in exhumation rates converged rapidly in the earlier inversions; these 

timings were therefore also fixed in later inversions. We focus on the post-orogenic history of the 

southern Pyrenees here; the two main issues that we are interested in are whether the data require 

Pliocene acceleration of regional exhumation rates and whether they allow to quantitatively 

constrain valley infilling by conglomerates in terms of thickness and timing. We thus define 
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different phases of syn- and post-orogenic exhumation as well as minimum paleo-elevations of 

valley bottoms (H) at different times (Figure III-4).

Figure III- 4. Free model parameters that are inverted for. (a) Evolution of exhumation rate (V1 –

V4) and minimum elevation (H1, H2) through time. Grey shading and black arrows show prior 

range in parameters describing exhumation rates (V1-V4); yellow arrows show prior ranges in 

parameters describing topographic change and their timing (H1, H2, T1, T2). The timing of 

change in exhumation rate is fixed at 37 (V1 – V2), 30 (V2 – V3) and 6 (V3 – V4) Ma, 

respectively; the time of change in minimum elevation (T1, T2) is allowed to vary. Note that in 

model A all the parameters are independent, whereas H2 is set equal to H1 in model B. (b) 

Schematic north-south topographic cross-section across the study area, showing the extent of the 

modeled domain, the bounding fault controlling model exhumation and the implementation of the 

minimum-elevation value H through time.

We present here our two final inverse-model results that differ only with respect to the evolution 

of sediment infilling (minimum elevation of topography) during Miocene times. Both models start 

at 40 Ma and include four phases of exhumation, the timing of which is fixed (given rapid 

convergence on these times during earlier inversions) at 40-37, 37-30, 30-6 and 6-0 Ma (Figure 
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III-4). Velocities during these phases are allowed to vary between 0-2 km My-1 during the 1st, 3rd

and 4th phases (V1, V3, V4), while the exhumation rate between 37-30 Ma (V2) is allowed to vary 

between 0-4 km My-1

The topographic (valley infilling and excavation) history is modeled using three phases (Figure 

III-4). Infilling starts at the onset of the model run (40 Ma), as constrained by magnetostratigraphic 

data (Beamud et al. 2003, 2011). The models invert for the minimum elevation at the end of 

infilling (H1) and at the onset of excavation (H2). The minimum elevation at the end of infilling 

varies between 1.5 km (the preserved top of the conglomerate remnants; e.g., Beamud et al., 2011) 

and 3 km, whereas the elevation at the onset of excavation is allowed to vary between 0-3 km. The 

timing of the end of infilling (T1) represents the time when the thickness of sediments was 

maximum; given the evidence for conglomeratic sedimentation at least up to 27-28 Ma (Beamud

et al., 2011), T1 is allowed to vary between 20-30 Ma. The timing of onset of excavation (T2) is 

allowed to vary between 1-15 Ma, in order to include all suggested times of establishment of a 

through-going Ebro River and associated incision (e.g. Coney et al. 1996, Garcia-Castellanos et al. 

2003; Babault et al. 2005b, 2006). In model A (inversion 26) H1 and H2 are independent, whereas 

in model B (inversion 28) H2 is constrained to be equal to H1, so as to explicitly model a stable 

period without erosion or deposition between times T1 and T2. Thus, model A has 8 free 

parameters, while model B has 7. Table III-2 synthesizes the free parameters, their prior bounds 

and optimal values after inversion.

. V2 models the late Eocene-early Oligocene phase of rapid exhumation 

inferred from the thermochronology data by all authors (Fitzgerald et al. 1999; Sinclair et al. 2005; 

Gibson et al. 2007; Metcalf et al. 2009), while the post-orogenic time period is split in two phases 

(V3, V4) in order to specifically test for a Pliocene increase in exhumation rates, as argued for by 

Fitzgerald et al. (1999) and Babault et al. (2005b, 2009).

III-1.5 Results

Inversion results are presented in Figures III-5 (model A) and III-6 (model B), respectively, and 

synthesized in Figure III-7 and Table III-2. Figures III-5 and III-6 show scatter plots of individual 

forward-model misfit projected on planes defined by different sets of parameters, permitting to 

visualize the model convergence. They are associated with 1D and 2D posterior marginal 

probability density functions (PDFs) for the different parameters and parameter combinations. The 

optimal value for each parameter presented below and in Table III-2 corresponds to the modal 

(peak) value of the 1D marginal PDF and its uncertainty is calculated as the Gaussian half-width 

of the calculated PDF. Figure III-7 shows synoptic 2D marginal-probability plots that illustrate the 

evolution of regional exhumation rates (V) and valley filling (H) through time. Model B shows 

better-defined convergence during the sampling stage than model A, leading to more tightly 

constrained estimates of optimal parameter values after the appraisal stage. However, both models 
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are characterized by reasonably to well-defined parameter PDF’s, from which optimal parameter 

values can be estimated with confidence, and by similar optimal misfit values.

III-1.5a Exhumation history

Predicted regional exhumation rates (V) for the 4 defined phases are similar for models A and B 

(Figures III-5-7; Table III-2): both models show fairly rapid exhumation between 40 and 37 Ma 

and very rapid exhumation from 37 to 30 Ma, followed by a major decrease to very slow rates 

until the present. In model A, exhumation rates increase from V1 = 0.5±0.2 km Myr-1 between 40-

37 Ma to V2 = 3.5±0.3 km Myr-1 between 37-30 Ma. In model B, the increase is a bit less strong, 

from V1 = 1.0±0.6 km Myr-1 to V2 = 2.8±0.3 km Myr-1. Over the last 30 Ma, rates are constant, 

very slow and similar in both models: V3 = V4 = 0.02±0.05 km Myr-1

In both cases, the regional exhumation rates predicted by our inversions are in good agreement 

with a first-order analysis of the thermochronological data. The few ZFT ages limit exhumation 

rates prior to 30 Ma, whereas initial inversions without these data predicted unrealistically high 

exhumation rates of ~6 km Myr

. Neither model thus predicts 

or requires a recent increase in regional exhumation rates.

-1 during this time interval; the AFT ages and track lengths 

constrain the rapid exhumation phase and, finally, AHe ages allow to constrain the late-stage 

exhumation with better precision. Thus, exhumation for the “syn-orogenic” phases (40-30 Ma) is 

well defined and inferred rates are in agreement with previous studies. In contrast, the “post-

orogenic” (<30 Ma) exhumation rates are very low and the topographic changes play an important 

role in fitting the data.

III-1.5b Topographic evolution

We next consider the influence of the conglomerates infilling paleovalleys in modifying the relief 

and local burial/erosion histories. We focus here on the evaluation of 1) the maximum thickness of 

sediments infilling the valleys, 2) the timing and rates of incision of the valleys, and 3) the 

possibility that a stable filled topography existed for some time during the Oligocene-Miocene.  It 
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Figure III- 5. Inversion results for model A (inversion 26): Scatter plots are 2D projections of the 

8-dimensional parameter space on planes defined by combinations of two parameters. Each dot 

indicates an individual forward-model run; dots are coloured according to misfit. Star indicates 

overall best-fit model. 1D and 2D marginal posterior parameter probabilities are also indicated 

as probability-density functions (PDF’s) along each axis and 1- -

% confidence) contours within the scatter plots, respectively. See text for discussion.
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Figure III- 6. As Figure III-5 but for model B (inversion 28). Note that this is a 7-parameter 

model; since H2 is not an independent parameter (H2 = H1) in this inversion, it is not plotted 

here.
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is worth noting that the highest current elevation in the study area is 3382 m, whereas the lowest is 

212 m and the average valley-bottom elevation in the Nogueres zone (the lowest part of the study 

area) is around 800 m, so that H-values lower than 800 m mean that no relief changes are applied 

to the area. Moreover, the H-value expresses the minimum elevation of the model topography 

through time, so the present-day topography has to be subtracted from it to obtain the predicted 

local thickness of sediments.

In model A, the infilling elevation increases continuously from no infilling at 40 Ma to 2.6±0.1 km 

(H1) at 29.8±0.7 Ma (T1). These results imply infilling of the Axial Zone valleys at a maximum 

rate of ~0.23 km Myr-1; the valleys reach their maximum fill immediately after the end of the rapid 

exhumation phase. The model subsequently predicts excavation of the valleys, with H2 = 0.0±0.5 

km at T2 = 9.9±2.1 Ma, implying maximum erosion of 2.6 km in 20 Myr at a rate of ~0.13 km 

Myr-1 during T1-T2. Thus, in this model valley excavation starts immediately after the peak 

infilling at ~30 Ma and, unexpectedly, incision rates drop during Late-Miocene times. 

Parameter code Unit Prior range Inversion results

Model A Model B

Exhumation rate 40-37 Ma V1 km Myr 0 – 2-1 0.5 ± 0.2 1.0 ± 0.6

Exhumation rate 37-30 Ma V2 km Myr 0 – 4-1 3.5 ± 0.3 2.8 ± 0.3

Exhumation rate 30-6 Ma V3 km Myr 0 – 2-1 0.02 ± 0.04 0.02 ± 0.05

Exhumation rate 6-0 Ma V4 km Myr 0 – 2-1 0.02 ± 0.05 0.02 ± 0.05

Valley infilling at time T1 H1 km 1.5 – 3 2.6 ± 0.1 2.56 ± 0.02

Valley infilling at time T2 H2 km 0 – 3* 0.0 ± 0.5 2.56 ± 0.02

End of valley infilling T1 Ma 30 - 20 29.8 ± 0.7 29.8 ± 0.3

Onset of valley excavation T2 Ma 15 - 0 9.9 ± 2.1 9.2 ± 0.5

Number of parameters 8 7

Lowest misfit µ 584 596

Table III - 2. Free kinematic, topographic and timing parameters used in Pecube inversions. 

Prior range is the predefined range within which the parameter values are allowed to vary; 

inversion results give modal value of parameter PDF and Gaussian half-width of the PDF after 

the NA appraisal stage. *Note that in model B (inversion 28), H2 is set equal to H1 and is thus not 

an independent parameter.

Model B was thus designed to include a phase of stable topography between the end of valley 

infilling and the onset of excavation, by setting H2 = H1. This model predicts a similar infilling 

scenario: from no infilling at 40 Ma to 2.56±0.02 km  (H1) at 29.8 ± 0.3 Ma (T1). However, in this 
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case, incision starts only at 9.2±0.5 Ma (T2). Considering a mean elevation of 2400 m for the 

Maladeta / Marimaña area and 1400 m for the Nogueras zone, we evaluate a mean sediment 

thickness of 1200 m on top of the Nogueres zone, whereas the summits of the Maladeta and 

Marimaña massifs were not covered. This model predicts valley excavation at a rate of 0.28±0.02 

km Myr-1 since late Miocene (Tortonian) times. Thus, Late-Miocene to recent local erosion rates 

varied between 0.02±0.05 km Myr-1 for areas above H2 to a maximum of 0.30±0.07 km Myr-1 for 

valley bottoms.

Figure III- 7. Synoptic probability-density plot showing evolution of exhumation rate (V) and 

valley filling (minimum elevation H) parameters through time for models A (inversion 26) and B 

(inversion 28). This plot synthesizes the inversion results by combining the PDF’s calculated 

individually for parameters V1-V4 and H1-H2 (Figures III-5 and III- 6) as a function of time. The 

time-evolution of the H parameter is interpolated linearly between each value. Colour coding 

shows probability of any particular exhumation rate and minimum elevation as a function of time; 

thin black lines show 95% confidence contours.

The differences between the two models thus lie principally in the predicted post-orogenic 

excavation of the conglomerates infilling the valleys. Syn-orogenic infilling and the maximum 

amount of sediments are similar for the two models. However, model A predicts an immediate 

onset of excavation in Oligocene times, whereas model B predicts that incision started during the 
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late Miocene. Both models imply that an important amount of sediments has covered the southern 

Axial Zone and that incision started well before the Messinian or Pliocene, whatever the detailed 

evolution of topography during Neogene times. We will argue below that the scenario predicted by 

model B appears much more consistent with independent geological and geomorphological data 

for the evolution of the Ebro drainage system than that of model A.

III-1.5c Comparison with observed ages

Two forward models corresponding to the optimal values for exhumation rates and topographic 

changes inferred from the inversions were run to compare modeled and observed age patterns. 

Figure III-8 shows the observed and modeled ages plotted against elevation. AFT ages predicted 

by model A fit the steep age-elevation gradient above 1700 m elevation very well but fail to 

reproduce the distinct break-in-slope in the observed age-elevation relationship. AHe ages 

predicted by this model similarly line up along a steep age-elevation trend, toward the older limit 

of the observed ages. 

Figure III- 8. Fit of predicted ages (optimal models A and B, black circles) to observed ages 

(white circles with error bars); both are shown with respect to elevation (compare with Figure III-

3). 
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Model B reproduces the AHe-age pattern much better. AFT ages predicted by this model show a 

similar pattern to that observed, including a clear break-in-slope, but the upper, steep part of the 

profile is offset by 1 to 3 Ma from the observed ages. Nevertheless, model B appears to better 

reproduce the observed age-elevation relationships for both thermochronometers; these results 

reinforce our preference for model B. This comparison also shows that the timing of final incision 

of the conglomerates is mainly constrained by the slope of the age-elevation relationship at low 

elevations, i.e. in localities that have been covered by conglomerates.

III-1.6 Discussion

III-1.6a Limitations of the model

Before we start exploring the implications of our model results for the late syn-orogenic and post-

orogenic evolution of the southern Pyrenees and Ebro basin, it is appropriate to first outline some 

limitations of the model and assess their influence on the results. Most of these limitations tend to 

affect our inferred syn-orogenic exhumation and topographic history more strongly than the post-

orogenic history.

First, we assume thermal parameters and physical properties of rocks to be constant. Heat 

production, thermal diffusivity and temperature at the base of the model were inverted for in initial 

inversions and the results systematically converged toward constant values that were consistent 

with measured heat flow in the region (Fernàndez and Banda 1989; Fernàndez et al. 1998). We 

therefore decided to fix these in order to limit the number of free parameters in the models and 

focus on the exhumation history and topographic evolution. However, potential variations in 

thermal conductivity, in particular sediment-blanketing effects, are not taken into account (see 

Section 6.3 for further discussion).

Another simplification is to model the whole area as a single vertically exhuming block. 

Obviously, the area is structured by several major thrusts (Figure III-1) that show a complicated 

activation sequence and potential re-activation or out-of sequence thrusting (cf. Section 2.1). There 

are, however, three main arguments to justify this approach. First, the main phase of exhumation 

in this part of the Pyrenees took place while the currently widely exposed Orri thrust sheet was 

uplifted as the passive roof of the underlying Rialp thrust sheet (Muñoz 1992; Beaumont et al. 

2000); K-feldspar 40Ar-39Ar data suggest that internal thrusting in the Orri thrust sheet had ceased 

by ~50 Ma (Metcalf et al. 2009). Secondly, as discussed in Section 3, the thermochronological 

data show a uniform age-elevation trend, implying uniform first-order patterns of exhumation, 

even though they are located in different thrust sheets. Thirdly, our main interest here is in the 

post-orogenic evolution of the study area, while the central Pyrenean topography was passively 

eroded. Our approach does not allow us to assess the effects of potential late-stage out-of-sequence 

thrusting in the study area, as suggested for the Barruera massif just south of Maladeta (Sinclair et 
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al. 2005; Gibson et al. 2007). We therefore exclude these more local complexities from our 

analysis, which focuses on the first-order exhumational and topographic history of the study area.

The topographic evolution is implemented in a very simple manner in Pecube, in this case by 

imposing an evolving minimum elevation to the model. This implies linear and constant erosion 

rates through time (we can control this parameter only by changing directly the relief parameters), 

and deposition consists in filling up the topography to the specified minimum elevation (cf. 

Section 4.1). We acknowledge that the topographic history may have been much more complex 

than this, although published provenance data for the preserved late-orogenic conglomerates 

suggest that planform drainage patterns have been relatively stable since the Eocene (Vincent 

2001). However, this approach allows us to explore the first-order variation in post-orogenic 

topography with a minimum number of parameters.

Moreover, the initial topography at the onset of the model run is the same as the present-day 

topography. Several inversions were performed to try to quantify the initial topography, but these 

proved unsuccessful: none of the inversions converged to a clearly defined parameter set. 

Paleotopography has proven to be the most difficult parameter to constrain from inversion of 

thermochronological datasets (Valla et al. 2010; 2011) and as there are no published data that 

constrain the paleotopography of the Pyrenees, we choose to use the present-day topography as the 

initial topography. We note that stacking of the Nogueres and Orri units was already well 

underway at 40 Ma so we expect significant topography to have existed at that time already. 

Finally, one may be somewhat disappointed by the degree of fit of our optimal model predictions 

with the observed data (Figure III-8). Obviously, fitting a simple linear trend to the data provides a 

visually more satisfying concordance to the data. However, our model predictions result from a 

physically based model that aims to fit the entire dataset using realistic time-temperature paths for 

rock particles. In fact, we feel this is a strength rather than a weakness of the model, and we 

believe that the discrepancies between earlier interpretations result from consideration of a partial 

dataset and incomplete exploration of possible tectonic and geomorphic scenarios.

III-1.6b Neogene acceleration in exhumation rates?

The two main results of our modeling with respect to the exhumation history of the southern 

Pyrenees are: (1) there is a clear signal of rapid exhumation during the late Eocene-early 

Oligocene (37-30 Ma); and (2) there is no evidence for a late-Neogene or Quaternary acceleration 

in exhumation rates. 

Although the syn-orogenic exhumation is not the main focus of this study, an assessment of the 

inferred rates and comparison with earlier studies is appropriate. Morris et al. (1998) modeled 

cooling histories for single AFT samples and concluded that most rapid exhumation took place 

between 35-30 Ma at rates of ~0.25 km Myr-1 to the east of the ECORS profile area; no data from 

the study area were available at that time. Fitzgerald et al. (1999) subsequently showed that the 
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AFT age-elevation relationship in the Maladeta massif requires much more rapid exhumation (2-4

km Myr-1) during this time. Gibson et al. (2007) used Pecube forward modeling to suggest 

exhumation rates of 1-1.5 km Myr-1 during the Late Eocene-Early Oligocene from their AFT and 

AHe data (but without taking Fitzgerald et al.’s (1999) data into account). Finally, Metcalf et al.

(2009) suggested cooling rates of only ~10 °C Myr-1 for this time period from thermal modeling of 

K-feldspar 40Ar/39Ar and AFT data, but without taking the age-elevation relationship into account. 

Our prediction of maximum exhumation rates of 2.5 km Myr-1

Both models consistently show very slow post-orogenic regional exhumation rates, of the order of 

0.02 km Myr

at 37-30 Ma, while qualitatively 

comparable with these previous results, is at the high end of these estimates. These high rates are 

required by the nearly vertical AFT age-elevation trend for samples above ~1700 m elevation. 

They are limited by the inclusion of the ZFT data as well as the 4-8 Ma difference between AFT 

and AHe ages at similar elevations (Figure III-3), but the fact that only 4 ZFT ages are available 

and that their inclusion in the model is somewhat artificial (cf. Section 3.1) may limit their 

moderating effect on predicted syn-orogenic exhumation rates. 

-1

Neither of our two final scenarios supports a Late-Neogene or Quaternary acceleration in 

exhumation rates, as suggested by Babault et al. (2005b; 2009). In fact, such an acceleration was 

not predicted by any of our inversions. We conclude that regional denudation in the Pyrenees 

appears not to have been significantly affected by Late Neogene-Quaternary climate change 

(Zhang et al. 2001; Molnar 2004), providing some support for the suggestion that such changes 

may have had little influence on erosion rates (Willenbring and von Blanckenburg 2010).

. Our preferred model B implies such slow regional rates while the topography was 

largely buried under the conglomerates, and predicts the same value during excavation. In model 

A, exhumation rates also drop to close to zero immediately after 30 Ma. Such a rapid drop from 

very high to very low rates is inconsistent with conceptual models that suggest exponentially 

decreasing exhumation rates once orogenesis ceases (e.g. Baldwin et al. 2003), but supports earlier 

interpretations of the data (e.g., Fitzgerald et al., 1999; Gibson et al., 2007). It is possibly linked to 

rapid relief reduction due to conglomeratic infilling of the valleys, which nearly smothered the 

topography by 30 Ma (Figure III-9).

III-1.6c Age and thickness of conglomerate deposits

Coney et al. (1996) first proposed that the conglomerates present today in the northern part of the 

south Pyrenean foreland (Figures III-1, III-2) once extended farther north, onlapping onto the 

Axial Zone. The magnetostratigraphic studies of Beamud et al. (2003, 2011) in the La Pobla de 

Segur area confirmed that the oldest sediments of the La Pobla massif were deposited in the 

paleovalley south of our study area at 40 Ma and then prograded northward, starting to infill the 

Senterada basin in the southern part of the Nogueres Zone at 32 Ma. Northward progradation and 

onlapping of conglomerates is a logical outcome of our model when the minimum elevation H 
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increases, because the elevation of valley bottoms increases northward and valley infilling only 

occurs in the Axial Zone when H 

suggest onlapping of valley bottoms in the Axial Zone from ~37 Ma onward, in reasonable

agreement with the magnetostratigraphic constraints.

Figure III- 9. 3D visualization of the preferred scenario (model B) showing evolution of the 

thermal structure and topographic changes through time. Note strong compression of isotherms 

due to rapid exhumation between 37-30 Ma. Representative exhumation path for a rock sample in 

a valley bottom at the southern edge of the model is also shown.

Our models suggest that the conglomerate deposits reached an elevation of 2.6 km, implying a 

maximum thickness of about 2 km in the Axial Zone (Figure III-9); as stated previously, this 

estimate takes the isostatic response to topographic change into account. The total thickness in the 

foreland is difficult to extrapolate from our models, as they assume a simple horizontal upper 
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surface for the conglomerates, whereas in reality, these certainly wedged out toward the foreland. 

The thickness of sediments should have decreased toward the centre of the basin, or they would 

have overtopped the topographic barrier imposed by the Catalan Coastal Range (Garcia-

Castellanos et al., 2003). Although a thickness of ~2 km may seem large, it has been argued 

previously that such overburden is required to explain recent cooling recorded by AFT length

distributions and AHe ages of low-elevation samples within the Axial Zone (Fitzgerald et al.,

1999; Metcalf et al., 2009). Recently, two independent studies (Beamud et al., 2011; Rahl et al.,

2011) have shown that AFT ages from granitic cobbles at the base of the conglomerate deposits in 

the foreland are partially reset, again implying that significant overburden once existed. The exact 

thickness of sediments may be modulated by the geothermal gradient within the covering 

conglomerates. We cannot place any constraint on that value; if the gradient in the conglomerates 

was much higher than the current 30-35 °C km-1

A question that remains unanswered is what drove the relatively sudden deposition of these 

significant amounts of sediment. It is obvious from the provenance data (Vincent, 2001) and the 

simultaneity of rapid exhumation in the Axial Zone with conglomerate deposition (Beamud et al.,

2011; this study), that the Axial Zone was the major source for these proximal sediments. Thus, 

erosion of the Axial Zone became important enough to completely over-feed the drainage system. 

Costa et al. (2009) have recently shown that the connection of the Ebro basin to the Atlantic Ocean 

closed at 36 Ma, leading to endorheic conditions; closure of the basin could thus be linked with the 

“non-evacuation” of the conglomerates. However, conglomerate deposition probably started a few 

Myr before the basin became endorheic. Moreover, it is hard to imagine how distal closure of the 

basin (nearly 400 km from the study area) would lead to an immediate response in very proximal 

sites. Therefore, it appears that this important change in the depositional system was controlled by 

increased erosion of the source area rather than by basin closure. Huyghe et al.(2009) analyzed 

erosional and accretionary fluxes through time in the south-western Pyrenean foreland fold-and-

thrust belt and suggested that climatic changes during the Eocene-Oligocene transition could be 

measured in the Pyrenean foreland due to 

sediment-blanketing effects, the sediment thickness could have been correspondingly less. 

However, the conglomerates consist mainly of Axial Zone lithologies (Vincent 2001)so it is 

difficult to argue for significantly lower thermal conductivity (required for sediment blanketing) 

within them, in comparison to the underlying substrate. Moreover, rapid deposition, together with 

the relatively high permeability of the conglomerates, would lead to a decreased rather than an 

increased geothermal gradient (Dempster and Persano 2006) implying that our estimate of 

sediment thickness may be a minimum. In any case, our model predicts that there was sufficient 

overburden in the northern part of the south Pyrenean foreland to partially reset the AFT system 

and fully reset the AHe thermochronometer in underlying deposits. We are currently collecting 

such data to test the model.
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the predominant factor in increasing denudation. However, our models do not allow us to decipher 

whether increased Axial Zone erosion was triggered by tectonics or climate change.

III-1.6d Timing of and controls on post-orogenic incision

Although closure of the Ebro basin cannot be directly linked to the onset of conglomerate 

deposition, the Neogene drainage evolution of the Ebro appears to have significantly influenced 

their subsequent incision. Given that our models do not provide support for Pliocene-Quaternary 

climatic control on post-orogenic erosion (cf. Section 6.2), re-excavation of the topography is most 

simply explained as being driven by a base-level drop, promoted by establishment of a connection 

between the Ebro Basin and the Mediterranean (Coney et al. 1996; Garcia-Castellanos et al. 2003).

Our model B shows that the thermochronological data can be fit by imposing a stable filled 

topography between 29 and 9 Ma, with subsequent incision continuing to the present. Since 

propagation of the base-level drop at the outlet of the basin would take several Myr to propagate 

~500 km to our study area (e.gWhipple 2001, Loget and Van den Driessche 2009), this result sets 

a minimum age constraint for establishment of a connection to the Mediterranean. This timing is 

consistent with the model proposed by Garcia-Castellanos et al. (2003), who suggested an opening 

date between 13 and 8 Ma. It is also consistent with the presence of Tortonian lacustrine sediments 

in the center of the basin (Riba et al. 1983) and with the recent imaging of a major river system 

below the Messinian erosion surface in the Ebro delta area, as well as the presence of Serravalian-

Tortonian deltaic sediments (Urgeles et al. 2011). Our modeling therefore strongly supports a 

Tortonian or earlier, rather than Messinian or Pliocene, connection of the Ebro Basin to the 

Mediterranean.

In contrast, the post-orogenic topographic evolution suggested by model A is not supported by 

independent data, which leads us to reject that model even though it has a similar optimal misfit to 

model B (Table III-2).  Model A would imply that Ebro basin endorheism lasted only a few Myr, 

which is inconsistent with the field observations, such as the middle-Miocene lacustrine sediments 

in the center of the basin. Thus, it appears that base-level variations exert the major control on the 

post-orogenic erosion and topographic development of the southern Pyrenees, rather than tectonics 

or climate. In particular, endorheic conditions led to low erosion rates and kept the topography 

stable; whereas re-establishment of a through-going drainage system drove valley incision and re-

excavation of the topography, much of which must have been already established during 

orogenesis.

III-1.7 Conclusions

By combining all available low-temperature thermochronology data and including appropriate 

patterns of topographic change through time, we have developed a consistent model for the post-

orogenic evolution of the southern Pyrenees and show that this was controlled primarily by the 
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evolution of drainage patterns and base level within the Ebro basin. Our preferred model for the 

topographic and erosional evolution of the Pyrenees (Figure III-9) leads us to the following 

conclusions:

(1) The southern Axial Zone experienced rapid exhumation (>2.5 km Myr-1) from 37 to 30 Ma, 

simultaneous with the onset of valley infilling by conglomerates. Our results do not allow us to 

discriminate between a tectonic or climatic trigger for this strong pulse of exhumation. 

Subsequently, exhumation rates strongly decreased to 0.02 km Myr-1

(2) By the end of the syn-orogenic phase at 30 Ma, the valleys were infilled by erosional products 

up to an elevation of 2.6 km and this valley-fill remained stable until ~9 Ma. We interpret this 

pattern as the consequence of endorheism of the Ebro basin, which permitted the accumulation of 

a significant amount of sediments, from conglomeratic in our study area to lacustrine in the center 

of the basin. Therefore, triggering of the infilling would be the consequence of increased 

denudation of the Axial Zone, but the subsequent stability of the overfilled topography is due to 

endorheism of the basin. 

from 30 Ma to the present, 

indicating a rapid transition to stable post-orogenic conditions and no discernable influence of late-

Neogene / Quaternary climate change on erosion rates in the Pyrenees.

(3) The model predicts a decrease of the maximum elevation of the conglomerates with a constant 

rate from 9 Ma to present, which we interpret as reflecting incision of the valleys. In the absence 

of a clear climatic trigger for this incision, it is most easily explained as reflecting the propagation 

of a major base-level drop, due to establishment of a connection to the Mediterranean, toward the 

headwaters of the Ebro basin. We thus propose that the opening of the basin occurred at the latest 

during Tortonian times and that late-Neogene / Quaternary climate change had little effect on the 

post-orogenic erosional history of the Pyrenees.
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Chapter III-2 Quantifying the timing and extent of post-

orogenic sedimentation in the southern Pyrenean 

foreland 

III-2.1 Introduction

The southern central Pyrenees have figured prominently in studies of external wedge building, 

thrusting sequences and interactions between tectonics and surface processes. This is mainly due 

to the exceptional exposure of syn-tectonic strata (Puigdefabregas and Souquet 1986; Vergés and 

Muñoz 1990) and the quality of the ECORS seismic profile (ECORS Pyrenees Team 1988) shot 

through this area. Nevertheless, no low-temperature thermochronological data has been published 

from the foreland fold-and-thrust belt, except in the conglomeratic massifs (Beamud et al. 2011; 

Rahl et al. 2011), which revealed the timing of the episode of rapid erosional unroofing of the 

Axial Zone.

Using thermo-kinematic modeling of the thermal evolution of the Southern Axial Zone presented 

in the previous chapter (III-1), we have shown that the conglomerates could have prograded 

toward the hinterland until 30 Ma and remained stable until 9 Ma. From the late Miocene to the 

present, valley incision is necessary to reproduce the low-temperature thermochronology data; we 

interpreted the onset of the valley incision as resulting from excavation of the Ebro basin when it

opened to the Mediterranean. Moreover, we estimated a thickness of ~2 km for the deposits on the 

southern flank of the Axial Zone. We thus have proposed a scenario of topographic evolution from 

Axial Zone data that we extrapolated to the southern Pyrenean foreland, but no data were available 

to test our model predictions.

Apatite (U-Th)/He thermochronology is a powerful tool to quantify the exhumation in fold-and-

thrust belts as the closure temperature is relatively low (75 ±15 °C, Wolf et al. 1998; Farley 2000).

Yet, this thermochronometer is very sensitive and requires high-quality samples, making the 

application of this method quite difficult in sedimentary terrains. 

In this chapter, we present new apatite fission-track (AFT, closure temperature 110 ± 10°C) and

apatite (U-Th)/He (AHe, closure temperature 75 ± 15°C) data of sandstones collected in the 

Tremp-Graus and Ager basins to provide estimates of the thickness and extent of the overlying

conglomerate deposits, as well as to further constrain the timing of excavation of the basin. We 
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will show that despite relatively scattered AHe ages, we could perform thermal modeling and 

obtain consistent Mesozoic to Cenozoic exhumation histories for 3 samples.

III-2.2 Tectono-sedimentary evolution 

The south-central Pyrenean fold-and-thrust belt (also called South Central Unit, SCU) developed 

consequently to the collision of the Iberian plate and the European plate in Late Cretaceous times.

The underthrusting of the Iberian plate created the Pyrenean doubly-vergent wedge. The southern 

Pyrenees evolved as the pro-wedge by inversion of Cretaceous extensional structures 

(Puigdefabregas and Souquet 1986, Bond and McClay 1995) followed by in-sequence thrust 

propagation towards the South (Vergés and Muñoz 1990; Muñoz 1992; Vergés et al. 1995; 

Beaumont et al. 2000). The fold-and-thrust belt propagated further in the central part of the range, 

compared to the regions east and west of it, by sliding on a thick Triassic evaporitic layer.

Thrusting is at first order in-sequence, with activation of the Boixols thrust in the Late Cretaceous, 

followed by the Montsec thrust from Paleocene to late Eocene, which transported the Tremp-

Graus Basin in a piggy-back manner (Puigdefàbregas et al. 1992), and finally the frontal thrust 

(Sierras Marginales area), active from middle Eocene to late Oligocene times (see Figure III-10 for 

locations). There is, however, evidence of out-of sequence thrusting as well as reactivation of the 

Boixols and Montsec thrusts (Capote et al. 2002, Sinclair et al. 2005) simultaneously with the in-

sequence wedge development (the thrusting sequence will be discussed in detail in Chapter IV-2).

From the ECORS seismic profile (ECORS Pyrenees Team 1988; Choukroune and ECORS Team 

1989), as well as modeling and thermochronological studies of the Southern Axial Zone 

(Beaumont et al. 2000; Sinclair et al. 2005; Fitzgerald et al. 2006; Gibson et al. 2007; Metcalf et 

al. 2009), the exhumation of the internal units (Nogueres, Orri and Rialp) is known to have

occurred by vertical stacking (Muñoz 1992; Vergés et al. 1995) and to have been focused during 

middle to late Eocene times. From the compilation of the important dataset of low-temperature 

thermochronology we modeled (see previous chapter) rapid exhumation at a rate of 2.8±0.3 mm 

Myr-1

This rapid exhumation was associated with strong erosion of the southern Axial Zone massifs, the 

products of which were deposited in pre-existing paleo-valleys as a thick discordant pile of 

conglomerates (Sis, Gurp and La Pobla massifs, Figures III-10 and III-11),which probably

represent sediment transfer zones, supplying the Huesca fan system (Figure III-11, Vincent 2001). 

between 37 and 30 Ma in that area.
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Figure III- 10. a) Simplified geological map of the southern central Pyrenees, (modified from ICC 

2002), with sample positions. b) Topographic cross-section following the line A/A’ in a),the 

sample positions have been projected on the section. 

The link between the uplift of the internal massifs and deposition of the conglomerates massifs has 

been confirmed by pebble provenance studies (Vincent 2001) and by apatite fission-track analysis 

of pebbles from the Sis conglomerates (Beamud et al. 2011; Rahl et al. 2011), which both reveal 

unroofing of the Axial zone and deposition of its erosional products in the basin. 
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The present-day remnants of these major syn- to post-tectonic conglomerate deposits include the 

Senterada and La Pobla basins (Beamud et al. 2003; Beamud et al. 2011), the Sis conglomerates 

(Vincent, 2001), the Oliana fan (to the East of the CSU, Burbank et al. 1992b) and the Huesca fan 

(South-Southwest of our study area, Friend et al. 1996) and are ~1000 m thick at maximum.

Magnetostratigraphic studies constrain the deposition of the Sis conglomerates at 40 to 27 Ma 

(Beamud et al. 2003; Beamud et al. 2011) and deposition of similar conglomerates to the east of 

the CSU, near the Oliana area (Burbank et al. 1992a) at 40 to 36 Ma.

The period of strong exhumation/erosion/deposition was synchronous with the closure of the Ebro 

foreland basin. Its connection to the Atlantic was closed at 36 Ma (Costa et al. 2009), and from 

that time the basin was endorheic until late Miocene times (Arenas and Pardo 1999; Garcia-

Castellanos et al. 2003; Urgeles et al. 2011, previous chapter). During this period, the basin was 

progressively filled by conglomeratic deposits at its borders that graded to lacustrine sediments in 

its center, and developed into a large overfilled foreland basin. 

Figure III- 11. Reconstructed Oligocene-Miocene situation of the principal fan systems of the 

southern Pyrenean foreland basin, modified from Vincent (2001) and Jones (2004). The black box 

indicates the location of Figure III-10; number circles indicate sample locations.

III-2.3 Pre-depositional history

Recently, two independent studies have reported zircon fission-track, U-Pb and (U-Th)/He ages on 

zircons of samples located in the Tremp-Graus basin (Filleaudeau et al. 2011; Whitchurch et al. 

2011). Zircon (U-Th)/He analysis of Garumnian sandstones of the Tremp basin (sample ORC2 
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collected at the same location than our sample AN03; Filleaudeau et al. 2011) shows 3 main age 

populations, interpreted to reflect distinct Mesozoic exhumation events: Triassic, Early Cretaceous 

and Late Cretaceous (Figure III-12a). Whitchurch et al. (2011) also published results of detrital 

zircon fission-track dating of samples collected from different sandstone and conglomerate 

formations of the southern Pyrenees. These authors found the same Early and Late Cretaceous 

exhumation events (Figure III-12b) in the Garumnian sandstones of the Ager basin (equivalent to 

our AN01 sample) together with Carboniferous (Variscan) ZFT ages. The sample collected from 

the Aren formation (stratigraphic unit just below the Garumnian in the Tremp basin) presents only 

an Early Cretaceous and a Carboniferous age peak. The combination of these two datasets have 

several implications for the Mesozoic exhumation and drainage patterns that we will not discuss 

here; however they both show the same phase of Early Cretaceous exhumation at 134 ± 15 Ma (all 

uncertainties combined), with less well expressed events at ~80 Ma, ~225 Ma and 300-330 Ma. 

Figure III- 12. a) (U-Th)/He analysis on zircons from Garumnian sandstones of the Tremp basin 

(sample collected from same outcrop as AN03; Filleaudeau et al. 2011). b) Zircon fission-track 

age distribution for the Aren formation of the Tremp basin (depositional age 73 Ma) and the 

Garumnian formation of the Ager basin (corresponding to sample AN01), from Whitchurch et al. 

(2011).
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III-2.4 Low-temperature thermochronology

During an initial sampling field trip, we collected sandstones from different formations of the 

Tremp basin: Santonian turbidites, earliest Paleocene “Garumnian” sandstones and Ilerdian 

sandstones. However, only the Garumnian sandstones yielded a sufficient amount of apatites to 

permit (U-Th)/He and fission-track analysis. A second sampling trip was thus necessary to collect

Garumnian sandstones exclusively.

III-2.4a Apatite Fission-Track (AFT) thermochronology

The sample AFT preparation followed the analytical procedure described in Chapter I-2, samples 

were prepared and counted in Grenoble laboratory. Due to the low yield of grains in most samples, 

as many grains as possible were counted for each sample. Fission-track ages were calculated using 

the zeta-calibration method and the standard fission-track age equation (Hurford and Green, 1983). 

The ²-test and age dispersion (Galbraith and Green 1990; Galbraith and Laslett 1993) were used 

to assess the homogeneity of AFT ages. Three samples yielded dispersed ages incompatible with a 

single age component, the grain-age distributions of these samples were decomposed into major 

grain-age components or peaks, using binomial peak fitting (Stewart and Brandon 2004, Table III-

1). We were able to measure some horizontal confined track lengths and the widths of tracks 

crossing the etched internal surface (Dpar) in the four samples. 

III-2.4b Apatite (U-Th)/He analysis

Apatites were extracted and carefully selected according to their morphology in the Grenoble 

laboratory (see Chapter I-2 for details). Each grain was placed into a platinum basket and sent to 

the thermochronology laboratory at Orsay-Paris-sud University (Cécile Gautheron). Between two 

to five replicates have been analyzed per sample. The platinum baskets were heated using a diode 

laser to 1030±50 °C during 5 minutes, allowing total He degassing; a reheat under the same 

conditions allowed checking for the presence of He trapped in small inclusions. The 4He content

was determined by comparison with a 2-3 10-7 ccSTP 3He spike. After He extraction, platinum 

baskets were placed into single-use polypropylene vials. Apatite grains were dissolved one hour at 

90°C in a 50µl HNO3 solution containing a known content of 235U and 230Th, and then filled with 1 

ml of ultrapure MQ water. The final solution was measured for U and Th concentrations by 

quadrupole ICP-QMS (seriesII CCT Thermo-Electron at LSCE, Gif/Yvette France). A procedure 

similar to Evans et al. (2005) was followed. The analysis was calibrated using internal and external 

age standards, including Limberg Tuff, Durango and FOR3, with mean AHe ages of 16.8±0.7 Ma, 

31.8±0.5 Ma, and 110.7±7.0 Ma respectively. These values are in agreement with literature data,

i.e. 16.8±1.1 Ma (Kraml et al. 2006) for the Limberg Tuff, 31.02±0.22 Ma (McDowell et al. 2005)

for Durango and 112 ± 10 Ma for the internal FOR3 standard. The 1- error on AHe age should be 
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considered at 8%, reflecting the sum of errors in the ejection factor correction and age dispersion

of the standards.

III-2.5 Results

III-2.5a Data

Apatite fission tracks were counted and measured in 4 samples located in the north (AN04), center 

(AN03, AN02) and south (AN01) of the basin (see Figure III-10 for location); the results are 

reported in Figure III-13 and Table III-3. Only the AN01 sample, located in another structural unit 

compared to the others, shows a single age component (144 ± 11 Ma) associated with very short 

mean track length (MTL, 10.1 µm). Moreover, we note that the ZFT results for the Garumnian 

sample of the Ager formation is not fully consistent with our AFT age (AN01) of 144±11 Ma, but 

this can be easily explained by the low number of grains (8) that we could count for this sample 

and which could have led us to “miss” some younger grains.

The three other samples have multiple age populations, but similar principal peak ages, with a 

main peak at 65.3±3.7 Ma, 76.4±4.2 Ma and 81.2±4.7 Ma for samples AN02,03 and 04 

respectively (Figure III-13); this peak gradually youngs toward the south. MTLs range from 11.3 

to 12.2 µm, indicating relatively slow long-term exhumation rates, and Dpar values are almost 

similar for the four samples (2.1 to 2.2 µm). Apatite (U-Th)/He analyses were performed on 4 

samples as well, AN01,02,03 and AN05; this last sample is located at the same level as AN04 but 

further West (near the town of Aren, Figure III-10). The first striking feature of the AHe ages is 

that the single-grain ages are not reproducible and scatter from 3.9 to 169 Ma. A more consistent 

dataset can be extracted from samples AN02 and AN03, which include 4 late Miocene-Pliocene 

ages (3.9 to 11.3 Ma). The ages cannot be interpreted directly, even though young ages probably 

imply Miocene burial and exhumation of the basin, which we want to test here. A first indication 

for the potential cause of the scatter in AHe ages is provided by the apparent relationship between 

sample ages and their uranium content (Figure III-14), which we examine in terms of the effective 

uranium concentration (eU = [U]+0.24 [Th], expressed in ppm). The eU content of the Garumnian 

samples present very low (4 ppm) to moderate (25 ppm) values and the AHe age vs eU correlation 

(Figure III-14) shows rapidly increasing ages for eU > 15ppm, with less variation below this eU 

concentration, consistent with the variation of the AHe closure temperature with eU as predicted 

by Shuster et al.(2006) and Shuster and Farley (2009). Only sample AN05 does not fit this 

correlation, and we suspect that this may be related to its very high eU (and, in particular, quite 

extreme Th concentration) compared to the other samples. We thus make the hypothesis here that 

the age scatter is influenced by the eU content of the grains and could result from a similar thermal 

history.
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Figure III- 13. Radial plot representation of the counting data of samples AN01,02, 03, and 04.

The radial plots are centered on the central value, and  the red line represents the stratigraphic 

age (65 Ma.). Only the A -test.

In the following, we attempt to model the T-t paths with a thermal inversion model (Gallagher et 

al. 2009, Gallagher 2011) that also incorporates different kinetic models for He-diffusion.

Figure III- 14. eU vs AHe ages for the four samples. Sample AN05 has been separated from the 

others due to its high uranium content, which contrasts with the other samples. 
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III-2.5b Thermal modeling 

Due to the complexity of our dataset (large variations in AHe ages and eU), we use an inverse 

thermal model (Gallagher et al. 2009) that incorporates recent kinetic models of He diffusion 

proposed by Flowers et al. (2009) and Gautheron et al. (2009) (cf Chapter II-1) for a description of 

these models). The model allows to invert for both thermal history and AFT annealing/AHe 

diffusion parameters by a Markov chain Monte Carlo (MCMC) sampling method. During a first 

stage of modeling, an initial model (with initial T-t points and kinetic parameters) is tested to 

obtain a first model probability that fits the parameters. Then the model slightly perturbs the 

parameters to recalculate the probability. If the probability is higher than in the first–stage model, 

the new model is accepted; else, the previous model is retained. This procedure is repeated 

according to the number of iterations the user chooses, giving at the end a large number of models 

with their associated probabilities.

In this study, the parameter space (time, t, and temperature, T) has been subdivided into three T-t

boxes: from 300 Ma (beginning of the model run) to 70 Ma with temperatures from 140°C to 0°C, 

from 70 to 60 Ma with temperatures of 10±10 °C (e.g. surface conditions during deposition of the 

Garumnian series), and finally from 60 Ma to present, with temperature ranges of 140 °C-0 °C. By 

doing this, the only constraint we impose on the model is the deposition time. In a subsequent set 

of inversions, we tested the hypothesis of Eocene burial/exhumation related to the thrusting 

sequence of the southern Pyrenean fold-and-thrust belt, by adding a late Eocene near-surface 

temperature constraint on the samples AN02 and AN03. 

The results are the products of 200000 iterations, which is a sufficient amount to obtain a stable 

and robust solution (see discussion in Gallagher 2011). The model of Ketcham et al. (2007) is used 

for fission-track annealing in apatite and the He diffusion models of Gautheron et al. (2009) and 

Flowers et al. (2009) which both take into account alpha-recoil damage and annealing will be used 

in this study. These two models include -recoil damage on the He-diffusion 

process; this damage increases He retentivity using a linear (Gautheron et al. 2009) or cubic

(Flowers et al. 2009) law. The main difference in the predicted AHe ages between the two models 

is found for low amounts of eU (15-25 ppm). As illustrated in Figure III-14, this is the case when

-damage of the apatite grains correspond to the slope change in the diffusion law 

defined by natural and experimental data (Shuster et al. 2006;Shuster and Farley 2009). The 

simulations will give us slight differences in the modeled thermal histories, but because no

consensus has been found yet between these two models, we will present all results. Inversions 

performed with the two models are called respectively A (Gautheron et al. 2009) and B (Flowers et 

al. 2009) in the following. Moreover, we present results of inversions for samples AN01, 02 and 

03, which were double-dated; the samples with only AFT analysis (AN04) or only AHe 
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measurements (AN05) were combined for a test model but do not provide sufficient thermal 

constraints to obtain a well-defined T-t path.

III-2.5c Inferred thermal histories 

A general remark concerning the models is that they all predict very similar T-t paths, with burial 

from the deposition time to Miocene-Pliocene times followed by exhumation until the present-day.

However, when comparing the maximum Cenozoic temperature of burial (Tmax), the B-models 

systematically predict lower values than the A-models, whereas the timing associated with the 

peak temperature (tmax

The pre-deposition T-t path is poorly constrained, as is the case for the other models. The only 

exception is model B of sample AN03, which predicts a well-constrained pre-depositional history 

with linear cooling from the Early Cretaceous (130°C at 100 Ma) to the time of Garumnian

deposition. That model predicts burial to 70 °C between 11 and 5 Ma, before being exhumed. This 

sample clearly shows difference in behavior of the two models: while model A predicts a variable 

pre-depositional history and important burial during the Miocene, model B fits the ages with a 

linear pre-deposition exhumation history associated with a lower Miocene maximum temperature.

Finally it is worth noting that these two models return quite different probabilities for sample 

AN03; the probability is much better for model B. This could be explained by the fact that this 

sample has the largest proportion of grains with moderately high eU concentrations. As noted 

previously, in those circumstances, the model of Flowers et al. (2009) appears to better reproduce

the kinetics of He diffusion, as it includes a transition from the little effect of eU on the kinetics to

a rapid increase in retentivity.

) does not vary systematically from one model to another. The T-t path of 

sample AN03 is quite different from one kinetic model to another (Figure III-15). Model A 

suggests a scenario in which sample AN03 was buried to 95 °C at ~20 Ma and then could have 

stayed at that temperature until no later than 12 Ma. From that time, exhumation is linear to the 

present.

Model
Tmin 

(°C)

Mean

Temperature 

Tmax 

(°C )

Time min 

(Ma)
Mean Time

Time max 

(Ma)

AN03A 77 86 95 12 16  20

AN03B 60 65 70 5 7.5  10

AN02A 95 100 105 5 6.5 8

AN02B 75 85 95 6 7  8

AN01A 82 87 92 1 2  3

AN01B 65 72.5 80 10 15 20

Table III - 5. Summary of the main modeling predictions for post-depositional reheating,

graphically measured on Figure III-15.
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Figure III- 15. Modeled t-T paths for samples AN01, 02 and 03 and the two different models for 

He diffusion kinetics. The two black curves represent the 95% confidence interval for the t-T

paths, the central black curve is the expected model (weighted mean model), the white curve is the 

mode model (combination of all models sampled) and the yellow the maximum likelihood model 

(best data fit). t-T paths are colored according to their probability (scale on the right hand side) 

which varies according to the models. The black boxes represent the parameter space explored; 

the horizontal scale is fixed from the oldest track to the present-day.
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T-t paths predicted by both models for sample AN02 are much more similar. The burial is more 

important in model A; which predicts that the sample stayed at 105°C during the period 5-8 Ma, 

whereas model B predicts burial to a maximum of 95 °C between 6 and 8 Ma. Thus the results for 

this sample are very consistent; both models predict significant burial until the end of Miocene 

times. Finally, both models could not resolve a well-constrained pre-deposition T-t path.

Sample AN01 presents the most surprising results. This sample has the most contrasted AHe ages 

(7Ma and 77 Ma); its Early Cretaceous (144 Ma) AFT age consists of a single population. The 

sample is also furthest from the preserved conglomeratic massifs. Nevertheless, both models 

predict significant burial, to a maximum of 92°C and 80°C for models A and B respectively. 

Moreover, model A presents very young and rapid final exhumation (3 to 1 Ma), whereas model B 

predicts exhumation between 10 and 20 Ma, in better agreement with the other models presented 

previously. 

Figure III- 16. Burial temperature results plotted against central AFT ages, according to 

geographic position of the samples. Tmax and Tmin are the maximum and minimum temperature of 

Cenozoic burial.

Finally, we observe that the maximum Cenozoic burial temperatures predicted by the models are 

in agreement with their corresponding AFT ages (Figure III-16), Tmax values are higher for 

samples with younger AFT ages, which is in favor of a more recent and deeper burial.

III-2.5d Eocene additional constraint

The first set of models does not resolve an Eocene signal of an exhumation linked to the tectonic 

activity of the fold-and-thrust belt. However, the late Eocene conglomerates generally rest 

uncomformably on the earlier syn-tectonic sediments (Figure III-10), implying an initial period of 

burial and unroofing in the Late Cretaceous-Eocene. We thus test here the addition of a late 
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Eocene near-surface constraint, to possibly highlight the Paleogene thermal history of the samples.

This constraint is represented by an additional T-t box at time 40 to 35 Ma and temperatures below 

40°C. We only run this model for samples AN02 and AN03, since AN01 is located in the footwall 

of the Montsec thrust (Figure III-10) there is no reason to believe it was close to the surface in 

Eocene times.There is essentially no difference between predicted cooling paths for these two 

models for the AN02 and AN03 samples: the most probable paths show that the samples stayed 

close to the surface (or were shallowly buried) from their deposition to late Eocene times and then 

record the same first-order burial/exhumation histories as the previous models (Figure III-17). 

Moreover, the AN02-A model is not very well constrained, whereas the T-t paths were well-

defined in the previous inversion. Therefore, we conclude that we cannot resolve the Eocene 

burial, because it was not important enough to be recorded by the AFT and AHe systems, or was

completely overprinted by the subsequent (post-Eocene) burial and exhumation.

Figure III- 17. Summary of the thermal modeling results for the samples AN02 and AN03 with an 

additional constraint on the parameter space at Eocene times. Symbols and colors as in Figure 

III-15.
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We will thus only discuss the results of the previous section (II-2.5c), which have been obtained 

by a more open parameter space and provide better constrained T-t paths.

III-2.6 Discussion

III-2.6a Exhumation scenario

Even if the modeling presents a variable range of maximum burial temperatures and associated 

timing, the first-order pattern of the T-t paths in all cases shows significant burial during post-

Eocene times with subsequent exhumation starting in the late Miocene–early Pliocene. For 

samples AN02 and AN03, the modeling predicts post-depositional burial to a Tmax of 60°C to 105 

°C, and an onset of final exhumation between 5 and 20 Ma. The average geothermal gradient in 

the SCU, commonly used for AFT interpretations (Beamud et al. 2011)  has been constrained by 

numerical modeling (Zeyen and Fernàndez 1994) at 30 °C.km-1,with theoretical values for the 

thermal conductivity of sediments (2.5 W.m-1.K-1). According to Fernàndez et al. 1998, the 

average geothermal gradient for the SCU area is 22 ± 4°C/km, therefore lower than the value for 

the Pyrenean Axial Zone (~33°C/km); this discrepancy is apparently due to the high thermal 

conductivity measured (2.47 to 3.22 W.m-1.K-1) in the sediments. As there no consensus on the 

subject, we will use in the following a 30°C.km-1 gradient to calculate estimates of thickness of the 

sediments, thus providing a minimal value of burial. The minimal burial can be estimated at 2 to 

3.5 km of sediments and final exhumation rates at 0.1 to 0.7 km.Myr-1

Results from the thermo-kinematic model of the previous chapter imply a thickness of ~2 km of 

conglomeratic deposit, covering the southern central Pyrenees. The model also predicted re-

incision of the conglomerates from Tortonian times (11.6 to 7.5 Ma) with an exhumation rate of 

0.02 km Myr

. We interpret this burial as 

due to deposition of the Eocene-Oligocene conglomerates, products of the Axial Zone erosion. 

The results presented here are thus equal to or higher than the thermo-kinematic modeling results

of low-temperature thermochronological data located in the southern Axial Zone (presented in the 

previous section), and allow us to extend our interpretations to the Pyrenean foreland.

-1 for the higher areas to 0.3 km Myr-1 in the valley bottoms. We could not resolve the 

precise scenario for excavation (how long did it last, did it proceed at constant rates, etc), mostly 

because our dataset (youngest AFT age of 17.2 Ma in the Nogueres zone) could not resolve 

Pliocene T-t histories. In this study, we measured younger AHe ages, that allow to more precisely 

resolve the Pliocene evolution; they imply that there was continuous excavation of the basin, from 

late Miocene-Pliocene to present. 

III-2.6b Sedimentary extent

The inferred amounts of burial are consistent with what we expected for the samples AN02 and 

AN03, as these were sampled close to the conglomeratic massifs and the Axial Zone. A more 
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surprising result comes from sample AN01, which is located in another structural unit, south of the 

Montsec thrust, and quite far from the Axial Zone. The closest conglomeratic outcrops are located 

further east and have been dated by magnetostratigraphy at 40 to 36 Ma (Burbank et al. 1992a).

Nevertheless, the inversion results suggest 2.6 to 3.0 km burial before onset of final exhumation 

between 2 and 15 Ma, and therefore excavation rates of 0.17 to 1.5 km Myr-1

Moreover, as discussed previously (previous chapter, Garcia-Castellanos et al., 2003), the Ebro 

basin remained endorheic from 30 Ma to 9 Ma, accumulating an important amount of 

conglomeratic to lacustrine sediments from the border to the center of the basin. Our modeling 

result thus comforts the idea of an overfilled basin, by a significant amount of sediments (at least 2 

km). This is also consistent with indications for partial resetting of the AFT system in the lower 

part of these deposits (Beamud et al. 2011; Rahl et al. 2011).

. Thus, the Ager 

basin, South of the Montsec thrust (Figure III-10) seems to record the same post-Eocene 

burial/exhumation history as the Tremp basin, implying that infilling by the Huesca fan sediments 

extended to that basin (Figure III-11). These values are comparable to the ones of the northern 

samples. The burial of the Ager basin, which is not drawn in the paleo-geographic reconstructions 

(Figure III-11 ), could result from an extension of the Huesca fan further to the east, or from 

extension of the Oliana fan towards the west.

III-2.6c Sensitivity to eU variations 

In the section 4.1, we formulated the hypothesis that the scatter in AHe ages could come from the 

variations in eU contents. We present in Figure III-18, a test of sensitivity of the model results to 

these variations. We extracted from the inverse modeling results the expected T-t paths and used 

them to predict AHe ages through HeFTy for eU varying from 5 to 30 ppm. It is worth noting that 

this test was performed with the He-diffusion model of Flowers et al. (2009), as the model of 

Gautheron et al. (2009) is not incorporated in HeFTy. When comparing the curves to our AHe 

data, we can see that the AN02 and AN03 samples are in excellent agreement with the modeled 

path. Therefore, this test shows that the scatter of these two samples can be largely explained by 

the eU content. 

Conversely, the AN01 sample data does not follow the modeled path and so measured ages could 

have been influenced by another parameter, such as a different pre-depositional history. We will 

thus test that possibility in the next section.

III-2.6d Influence of the pre-depositional history

The modeling results provide values for the amount and timing of Cenozoic exhumation that range 

from 70 to 105 °C during 20 to 1 Ma; however, our dataset does not allow us to better define these 

intervals. The models are limited by the requirement of fitting the strongly variable AHe ages, 

which are only partly explained by varying eU content.
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Figure III- 18. Sensitivity of the expected model to eU variations. The colored curves represent 

predicted AHe ages as a function of eU for the T-t paths of the expected B-models, and for eU 

varying from 5 to 30 ppm. The dots represent the data shown in Figure III-14.

The model cannot take into account the variable pre-depositional history of these detrital grains. 

Here, we will test to what degree such variable pre-depositional exhumation histories could 

explain the encountered variability of AHe ages.

We conclude from the higher-temperature data discussed in section 3 that detrital grains show 

variable pre-depositional exhumation ages, between ~80 and ~300 Ma. From this starting point, 

we tested the influence of the pre-depositional history and the eU content by performing forward 

modeling with HeFTy (Ketcham 2005), using the annealing modeling of Ketcham et al. (2007)

for AFT and the He-diffusion model of Flowers et al. (2009), with a equivalent sphere radius of 

100 µm, for AHe. We imposed the post-depositional scenario from the inversion results presented 

previously, and tested how the final AHe age varies as a function of eU values (from 5 to 30 ppm),

post-depositional Tmax (70, 80 and 90°C) and age of initial (pre-depositional) exhumation, as 

illustrated in Figure III-19 . The results are presented in Figure III-20 for Tmax

For the 3 T

of 70, 80 and 90°C,

in which predicted ages are plotted as contours.

max tested, the modeling reveals the same patterns, in agreement with the relationship

we expect between AHe age, eU content and temperature of burial. The modeled ages are older 

when the initial exhumation starts earlier and when the grains have larger eU contents. The

predicted ages are younger when Tmax increases; the maximum modeled AHe ages are 165, 150 

and 80 Ma, respectively, for Tmax at 70, 80 and 90 °C. Moreover, for the same eU, the age scatter 

decreases with increasing Tmax. For example, with an eU of 16 ppm (the average eU value of our 
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grains), the modeled ages vary from 20 to 130 Ma for Tmax 70°C; from 10 to 85 Ma for Tmax 80 °C, 

and from 10 to 20 Ma for Tmax 90°C.

Figure III- 19. Schematic set up and methodology for the forward modeling runs using HeFTy. 

The green path represents one test and the grey ones the different combinations tested. 

These forward models confirm the hypothesis that the pre-depositional history of the samples can 

have a major effect on AHe age variations.

With these results, we can also identify what variability in timing of pre-depositional exhumation 

would be required to explain the scatter in our AHe ages, by plotting our samples on the contour 

plots with their own age and eU values. First of all, the main observation is that the Tmax = 80°C 

plot provides the best-fit to the combined data; for both Tmax = 70°C and Tmax

To conclude, these forward models show that the pre-depositional history of a detrital sample can 

considerably influence the measured AHe ages as well as the inferred temperature of burial. In our 

= 90 °C there are 

several grains with ages that cannot be explained. Secondly, when looking at the 80°C-plot, we 

can conclude that all the grains except AN11 fit with a pre-depositional exhumation phase starting 

between 170 and 90 Ma, which is in good agreement with the ZHe and ZFT age distributions of

Filleaudeau et al. (2011) and Whitchurch et al. (2011) that both record an Albian exhumation 

phase. These results are in agreement with the fact that the expected model for AN02 and AN03 

predicts an onset of initial exhumation before Late Cretaceous times. Only the AN11 grain is 

outside of this range and suggests Permian initial exhumation. Our previous observations showed 

that the age dispersion between the two grains of this sample cannot be explained by the eU 

content only. We thus propose that variable pre-depositional exhumation histories, with at least 

one grain recording Permian initial cooling is another factor that explains the AN11 grain age. 
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Figure III- 20. Test of pre-depositional exhumation history. AHe ages were calculated by HeFTy 

forward modeling, with the kinetic model of Flowers et al. (2009);  for several eU contents, Tmax

and starting times of pre-depositional exhumation. Measured values of our samples were then 

plotted (black squares), or represented as dashed lines when they do not resolve a starting time.
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case, it seems that a combination of variable eU and variable timing of initial exhumation, which is 

consistent with higher-temperature detrital ZHe and ZFT data, can explain the scatter in AHe ages. 

A Tmax of 80°C appears to best fit the combined AHe data; this Tmax in the range of predictions for 

all the models of Figure III-15, except AN03B. Moreover, the forward models suggest that most 

apatite grains record an Albian pre-depositional exhumation phase.

III-2.7 Conclusions 

We have succeeded in modeling our dataset of AFT and AHe double dating on sedimentary 

apatites to obtain consistent T-t paths using the He-diffusion kinetics that are a function of 

radiation damage and its annealing.This study reveals the importance of combining AFT and AHe 

jointly to provide sustainable constraints on thermal history in sedimentary rocks. Tests with 

constraining only the depositional time give more consistent and realistic results than the one with 

an additional constraint of en Eocene exhumation phase. The modeling of AN01, 02 and 03 

samples all predict a burial from Late Cretaceous to Miocene-Pliocene times to reach temperatures 

of 60 to 105°C, equivalent to 1.8 to 3.2 km of burial. The timing for the onset of exhumation is 

from 20 to 1 Ma, with an average time of 9.5 Ma. From the study of the pre-depositional 

exhumation of the samples, we selected the post-Eocene history implying a Tmax

The reason for age scatter of our AHe dataset were also investigated and reveal an important

contribution of the eU content, as well as the influence of the pre-depositional history, for 

explaining these ages. 

of 80°C that 

precise our estimate of onset on exhumation at 7-18 Ma time period. We also infer from this 

modeling that an Albian exhumation phase is represented by a majority of grains.

This modeling results showing a similar post-orogenic exhumation phase for the southern 

Pyrenean foreland and for the southern Axial Zone, are consistent with previous models (Chapter 

III-1) and suggest Late Miocene (pre-Messinian) onset of Ebro basin incision. They also confirm 

that an important amount of detrital sediments covered the southern Pyrenean flank, and filled the 

Ebro basin, consequently to the onset of endorheism. Additional low-temperature measurements in 

the Ager basin and in the Sierras Marginales could be useful to precise our observations. 

Sedimentological field studies on the Huesca and Oliana fans would also be helpful to understand 

the patterns of infilling of the Ebro basin.
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Part IV- 2-D Modeling of the Southern 

Pyrenees 

The amount and thickness of syn- to post-tectonic conglomeratic sedimentation have been précised 

in the previous chapter by thermo-kinematic modeling and low-temperature thermochronological 

data. These studies have shown that the thick Oligocene sedimentation was extending at least to 

the South of the Montsec thrust, in the southern fold-and-thrust belt. The first part of the previous 

chapter also confirms that the infilling started around 40 Ma , when the range was experiencing its 

main phase of exhumation. Therefore, this Chapter investigates the potential effects of the addition 

of this important amount of sediments on the evolution of the fold-and-thrust belt, and in particular 

on its thrusting sequence. Two level of syn-tectonic sedimentation will by applied to a 2D model 

of a thin-skinned wedge. In the first part, the effect of an early deposition of syn-tectonic 

sedimentation will be studied in general terms (this section was submitted to Geology). In the 

second part, we will apply a secondary sedimentation (representing the conglomeratic 

sedimentation) to a model of the Pyrenean pro-wedge, discuss on the consequences on the 

thrusting sequence and compare it to observations of out-of-sequence and reactivations in the 

southern Pyrenees.   
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Chapter IV-1 Syn-tectonic sedimentation effects on the 

growth of fold-and-thrust belts 

Charlotte Fillon1,2, Ritske Huismans2 and Peter van der Beek1

1 Institut des Sciences de la Terre, Université Joseph Fourier, BP53, 38041 Grenoble, France
2 Department of Earth Science, Bergen University, Bergen, N-5007, Norway

Submitted to Geology

IV-1.1 Abstract

We use two-dimensional dynamical modeling to investigate the effects of syn-tectonic 

sedimentation on fold-and-thrust belt development by testing variable syn-tectonic sediment 

thicknesses and flexural rigidities. Modeling results highlight the strong influence of these 

parameters on the structural style of a fold-and-thrust belt. In particular, there is a first-order 

control on the thrust sheet length and their spacing as well as the development of piggy-back 

basins. Thrust sheets are longer when sediment thickness and/or flexural rigidity increases, 

consistent with critical taper theory. A comparison of these results with observations from a 

number of several fold-and-thrust belt suggests that these natural systems record the first-order 

control exerted by syn-tectonic sedimentation.
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IV-1.2 Introduction

The potential controls of surface processes on the tectonic evolution of mountain belts are slowly 

becoming better understood (e.g., Whipple 2009). Whereas erosion can strongly influence the 

growth of orogenic cores, syn-tectonic wedge-top sedimentation appears the dominant process 

influencing external, thin-skinned fold-and-thrust belts, as shown by both numerical and analogue 

models of fold-and-thrust belt development (Huiqi et al. 1992; Marshak and Wilkerson 1992; 

Boyer 1995; Storti and McClay 1995; Mugnier et al. 1997; Hardy et al. 1998; Simpson 2006; 

Stockmal et al. 2007; Malavieille 2010). Erosion products from the core of a mountain belt are 

transported to the foreland and deposited while the orogenic wedge continues to grow, thus 

interacting with the development of the foreland fold-and-thrust belt. This interaction can be 

understood in terms of both critical-taper (Davis et al. 1983; Dahlen 1984; 1990) and minimum-

work (Hardy et al. 1998) theory: sedimentation on top of the wedge increases the taper angle and 

the work necessary to reactivate and create new internal thrusts, thus promoting wedge 

propagation on the décollement level; sedimentation on the lower part of the wedge having the 

opposite effect. The influence of sedimentation on the structural development of fold-and-thrust 

belts has been studied principally using analogue models. Storti and McClay (1995), for instance, 

showed that adding syn-orogenic sediments on top of a wedge reduces the number of thrusts, the 

internal shortening and the critical taper, and leads to longer thrust sheets. However, the surface 

taper and geometry of fold-and-thrust belts are also affected by flexural controls on plate bending, 

which are not easily incorporated in analogue models (but see Hoth et al. 2007a). Numerical 

models of fold-and-thrust belt formation more easily integrate these effects and have now reached 

sufficiently high numerical resolution that their predictions can be compared with observations in 

natural systems (Stockmal et al. 2007). In this paper we use two-dimensional forward dynamic 

models to investigate depositional controls on fold-and-thrust belt development. We focus in 

particular on the effects of syn-tectonic sedimentation and on the influence of flexure, and show 

that both exert first-order controls on wedge geometry and thrust propagation: increasing the

thickness of syn-tectonic sediments and/or flexural rigidity leading to the activation of fewer and 

longer thrust sheets. We show that these general results are consistent with observational 

constraints on structure and wedge-top sedimentation in natural fold-and-thrust belts. 

IV-1.3 Model set up

We use a 2D Arbitrary Lagrangian-Eulerian (ALE) finite element technique (Fullsack 1995) to 

model thin-skinned fold-and-thrust belt development. Model materials are frictional-plastic 

(Stockmal et al. 2007) and are characterized by a strain-dependent friction angle allowing for 

localization of deformation (Huismans and Beaumont 2003, see supplementary material for 

details).
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Figure IV - 1. Model geometry and boundary conditions. Dotted line on the right side of the box 

represents the continuity of the Lagrangian grid up to 800 km from the backstop; Eulerian grid 

extends to 400 km. Syn-tectonic deposition starts at 5 m.y. See text and Supplementary Table 1 for 

model parameter values.

The reference model 1 (Figure IV-1) consists of 4 materials: (I) a strong strain-weakening 

frictional-plastic material, with a high friction angle representing basement rocks; (II) an 

intermediate strength strain-weakening frictional-plastic material with lower friction angle for 

sediments, and (III) a very weak viscous internal décollement between these two layers, 

representing evaporites. A second weak viscous décollement (IV) is located at the base of the 

model. The initial geometry resembles a pre-existing wedge at critical taper and an adjacent, pre-

existing sedimentary basin into which deformation propagates. A 1 cm yr-1 velocity boundary 

condition is imposed on the right side and base of the model (Figure IV-1). The left side of the 

model domain is fixed horizontally, except at the base, where the basal décollement is evacuated at 

the same velocity. Gravitational loading is compensated by flexural isostasy, the wavelength of 

which is controlled by the flexural rigidity. Default parameter values for the models are provided 

in Supplementary Table 1. 

In the models presented here, we focus exclusively on the effects of sedimentation, and therefore 

do not include erosional processes. Syn-orogenic sedimentation starts at 5 m.y, after some initial 

deformation, in models 2-6. From that moment, all topography below a fixed reference height 

representing base-level is filled with sediments (e.g., Figure IV-1). This representation of 

sedimentation is very simple but is consistent with the first-order infilling geometry pattern in an 

orogenic wedge and its foreland basin system (see DeCelles and Giles 1996, for example) : the 

accommodation space is filled by sediments that are subsequently deformed, and the elevation of 

the reference level forces sedimentation to occur only in the foreland fold-and-thrust belt domain. 

Varying base-level allows for testing the effect of varying sediment input in the foreland basin. 



133

IV-1.4 Model Results

We present two sets of models that demonstrate the sensitivity of the model behavior to syn-

tectonic sedimentation (Figure IV-2) and to flexural rigidity (Figure IV- 3). The first set includes 

three models with no (Model 1), moderate (Model 2) and strong (Model 3) syn-orogenic 

sedimentation. The second set investigates the response to changes in flexural rigidity (from 1021

to 1023 N m) for an intermediate sediment deposition model.

Reference Model, No Deposition - Model 1: During the initial stage, deformation only affects the 

strong coulomb “basement”, building an initial high-relief orogenic wedge with a system of pro-

and retro- thrusts (pop-up structures; Figure IV- 2 at 5 m.y.), a common feature of all models 

presented. After 5 m.y., deformation migrates into the intermediate-coulomb “pre-tectonic 

sediments”; from this time on short thrusts develop in-sequence. All thrusts verge toward the 

foreland with similar lengths of about 17 km. No back-thrusts develop and there is almost no 

reactivation or out-of-sequence thrusting. By 12 m.y., nine thrust sheets have developed with a 

regular spacing.

Moderate Deposition - Model 2: Model 2 experiences syn-tectonic sedimentation up to an 

intermediate reference level after 5 m.y., (see Figure IV-1). At 5 m.y., the pre-tectonic sediments 

start forming a back-thrust towards the hinterland, favored by the development of a basement 

duplex. The first frontal thrust initiates at 7 m.y., creating a 34-km wide wedge-top basin. With 

further shortening, deformation migrates back into the internal parts of the wedge and is 

partitioned between frontal and basal accretion .At 9 m.y., a second thrust forms 112 km from the 

backstop. Flexural subsidence resulting from the weight of the growing internal wedge, provides 

more sediment accommodation space and the formation of a second smaller wedge-top basin 

between the two frontal thrusts. At 12 m.y. deformation is partitioned between the frontal thrust, 

the reactivated back-thrust and internal basement deformation. The average thrust-sheet length is 

30 km and the maximum sediment thickness is 4 km.
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Strong Deposition - Model 3: The generic behavior of Model 3 is similarly to Model 2 but the 

increased sediment thickness results in longer thrust sheets. At 5 m.y. a back-thrust is formed followed 

by emergence of the first external thrust around 7 m.y. at more than 100 km from the backstop. At 9 

m.y., shortening is still accommodated by the frontal thrust, which accumulates more displacement 

than in model 2. A second thrust initiates just before 12 m.y. The wedge-top basin is around 43 km 

wide and the maximum sediment thickness is 6 km, for an average thrust-sheet length of 55 km. 

Sensitivity to Flexural Rigidity – Models 4-6: We subsequently test the sensitivity to variations in 

flexural rigidity (1021, 1022, 1023N) in models 4-6 with a constant intermediate base-level (Figure IV-

3). The three models are all shown at 8 m.y. The evolution of Model 5, which has the reference model 

rigidity, is very similar to that of Model 2. The lower flexural rigidity in Model 4 favors a narrow 

foreland basin and the formation of a shorter 34-km thrust sheet. In contrast, Model 6 with a higher 

flexural rigidity favors the development of a wide foreland basin and the formation of a much longer 

94-km thrust sheet. In all these models the location of initiation of the thrust sheets coincides with the 

edge of the foreland basin where sediments taper out. 

Figure IV - 3. Model panels at 8 m.y. for models with different flexural rigidity (Model 4: 1021 N m;

Model 5: 10 22 N m; Model 6: 1023 N m), corresponding to elastic thicknesses of 4.8, 10.4 and 22.4 km 

respectively (for Poisson ratio of 0.25 and Young modulus of 1011 N m-2). Models were run with syn-

orogenic sedimentation reference level of 2.15 km. 
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IV-1.5 Discussion

A similar evolution characterizes wedge development in all models, independent of the amount of syn-

tectonic sediments (Figure IV- 2, supplementary Fig.1) : 1) initiation of a frontal thrust; 2) out-of-

sequence internal deformation and passive retreat of the external thrust belt; and 3) initiation of a new 

in-sequence thrust, resembling the frontal-accretion cycles described by Hoth et al. (2007). The main 

differences between the models are the locus and timing of thrust activation. The model without syn-

orogenic sedimentation propagates most rapidly. Thrusts are very short, numerous, and do not 

accommodate much shortening, whereas the thrust sheets length increase with the amount of sediment 

depositing and activate later.

In all models the first external thrust and the subsequent frontal thrusts emerge at the point where the 

sediments taper out. This can be explained by two arguments. The fact that the sedimentary layer is 

very thin at that place induce that this zone is most stress–concentrated, making the localization of a 

thrust easier. Moreover, this place represents where the thrusting will need the less work to occur, the 

sediment column is thinner and so thrusting from the décollement level to the surface is easier. Thus, 

while sediments continue to deposit (Model 3), this zone migrates towards the foreland and so do the 

location of thrust activation.

The extent of syn-tectonic sedimentation asserts a first-order control on the location of the frontal 

thrusts. This extent is itself primarily governed by flexural parameters controlling the foreland basin 

shape. For lower flexural rigidities (Figure IV- 3, Model 4) a narrow and deep foreland basin is 

formed, limiting the extent of foredeep sedimentation with consequently shorter thrust sheets initiating 

where sediments taper out. In contrast, for higher flexural rigidities a wider foreland basin develops, 

promoting sedimentation much further out in the foreland and formation of longer thrust sheets. 

The models presented here demonstrate that the extent and thickness of syn-tectonic sediments 

strongly affects the structural style of fold-and-thrust belts. The sediments are deposited horizontally,

effectively stabilizing the wedge (e.g. Willett and Schlunegger 2010). In the most external parts where 

the sediments taper out and the angle of the basal décollement ( ) tends to zero, the wedge reaches 

critical state. After the formation of the first thrust the surface attains a negative slope 

stabilising the wedge (supplementary Fig.2). Further syn-tectonic sedimentation in front of the active 

thrust enlarges the stable wedge and promotes formation of a new frontal thrust. A second factor is the 

increased frictional strength resulting from loading by wedge top sedimentation, causing the new 

thrust to be formed where sediments are thinnest (Davis et al. 1983; Hardy et al. 1998). The evolution 

of ime  confirms that the wedge evolves according to critical taper 

° -1 to +1 °, which is in good agreement with the typical 

values for these kind of thrust belts (Ford 2004). The activation of a new thrust corresponds to the 

+ is maximal.
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IV-1.6 Comparison to natural systems

The numerical models presented here suggest that syn-tectonic wedge top sedimentation exerts a 

major control on foreland fold-and-thrust belt development. Other parameters, such as the relative 

strength of the décollement level, different rheologies, thickness of pre-orogenic sediments and pre-

existing structures in the basement, are expected to play a role as well. We compare our results to 

observed structural style, sediment thickness, and flexural rigidity of several thin-skinned fold-and-

thrust belts around the world (Figure IV-4; Supplementary Table 2 for data sources). Cross-sections 

for three different fold-and-thrust belts (Pyrenees, Canadian Rockies and Apennines) illustrate the 

correlation between thrust-sheet length and syn-tectonic sediment thickness and distribution (e.g. 

Figure IV-4a). The southern Pyrenean fold-and-thrust belt is characterised by a very thick succession 

of syn-orogenic sediments, thrust sheets up to 30 km in length and a wide piggy-back basin,

comparable to the structure of Models 2 and 3 (Figure IV-2).

Figure IV - 4. (a) Cross-sections of fold-and-thrust belts with different thickness of syn-tectonic 

sediments and thrust sheet length, from top to bottom: ECORS section, Pyrenees Muñoz 1992,

Apennines Butler et al. 2004 and Canadian Rockies Ollerenshaw 1978. (b) Average thrust-sheet 

length plotted against maximum sediment thickness for the Western Alps, France (Alp); Sub-Andean 

belt, North-West Bolivia (An1); Sub-Andean belt, South Bolivia (An2); Apennines (Ap); Brooks 

Ranges, Alaska (Br); Canadian Rockies (Can); Carpathians (Car) and southern Pyrenees (Pyr). The 

values for sediment thickness and thrust length were measured on at least three thrust sheets of the 

fold-and-thrust belt and then averaged; see Supplementary Table 2 for values and references. 

The Apennines, with intermediate syn-tectonic sediment thickness are characterised by moderate 

thrust sheet length. The fold-and-thrust belt of the Canadian Rocky Mountains developed very short 

thrust sheets where syn-tectonic sediments are thin and longer thrust sheets where syn-tectonic 

sediments are thicker suggesting that temporal variations in sediment supply may lead to spatial 

variations in thrust-belt structure.  
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The average thrust-sheet length of a number of fold-and-thrust belts is plotted as a function of 

maximum syn-tectonic sediment thickness (Figure IV-4b). The belts are also discriminated according 

to their elastic thicknesses (See Supplementary table 2 for data sources). Although these fold-and-

thrust belts differ strongly in age and tectonic setting, a clear correlation between syn-orogenic 

sedimentation and thrust-sheet length appears: belts with thicker and more extensive syn-tectonic 

deposits have systematically longer thrust sheets. The effect of flexural rigidity is less obvious, 

although ranges developed on thicker elastic lithosphere appear to be characterized by the longest 

thrust sheets. 

Only the Brooks Range appears to lie outside the observed trend, what we can explain by a strong 

pulse of post-orogenic erosion that has removed several kilometers of sediment from this range (Cole 

et al. 1997; O'Sullivan et al. 1997), so that syn-tectonic deposits may have initially been much thicker.

IV-1.7 Conclusions

We have shown dynamical models provide a general explanation for the effect of syn-tectonic wedge 

top sedimentation on the formation of thin-skinned fold-and thrust belts. The model results show that 

an increase in syn-tectonic sedimentation leads to significantly longer thrust sheets. Variations in 

flexural rigidity enhance this effect by widening the basin and therefore extending the area of sediment 

deposition. A range of natural thin-skinned fold-and-thrust belts show a linear correlation between 

maximum sediment thickness and thrust-sheet length, confirming the inference from the numerical 

models.
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IV-1.8 Supplementary Material

Supplementary methods

Rheology 

In order to reproduce and localize deformation in fault zones, the model uses a classical yield criterion. 

Once yielding occurs, materials of the deformed area rapidly experience strain softening. In this 

model, the Drucker-Prager pressure-dependent yield criterion is used to model the plastic behavior for 

incompressible deformation in plane strain. Yielding occurs when:

(1)

Where is the second invariant of the deviatoric stress, p is the dynamic pressure 

(mean stress), c is the cohesion and is the effective internal friction angle. The values of c and 

were chosen to reproduce frictional sliding of rocks. The angle includes the variations of 

Pore fluid pressure (P f), which reduces the effective stress and is defined by

(2)

Several mechanisms can lead to brittle weakening of rocks Huismans and Beaumont 2007 and 

references therein), including cohesion loss, mineral transformations, and increased pore fluid 

pressures. In the models presented here strain weakening is introduced using a parametric approach. 

The friction angle decreases linearly with increasing strain in the range 0.5< <1.0, where

represents the square root of the second invariant of deviatoric strain. 

Models parameters values

Material number Description

I Strong Coulomb , with strain softening 38                               25

II Intermediate Coulomb, with strain softening 38                               18

III Very weak internal décollement                 1

IV Weak basal décollement                10

Cohesion 2  MPa

Density 2.3 103  km.m-3

Eulerian grid 801 x 81 cells                           400 x 12.5 km

Lagrangian grid 1601 x 81 cells                         800 x 12.5 km

Supplementary Table 1: Fixed parameter values for numerical model runs.



140

Supplementary models

Influence of the strength of internal decollement strength on the thrust sheet lengths

The rheology of the internal decollement forms a major control on the wedge development. In order to 

test this influence, we run several models with increasing the strength of the internal décollement 

material (characterized by its internal friction angle ). We present in supplementary Figure 2 

snapshots of models with at 2.5°, 5°, 7.5°, and 10° at the time when their first external thrust 

activate. Syn-tectonic sedimentation in these supplementary models was set at the same level as in the 

models of Figure IV-2 but starts at 3 Myr. 

Despite the differences in structural styles (in particular in model b), the first sedimentary thrust sheets 

are shortening with increasing . The first thrust activates at 98, 100 and 87 km from the backstop, in 

model a, b, c, and d respectively. We note that in model c ( = 7.5°) the basement and the 

sedimentary layers deform jointly, because the difference in strength between the basement, the 

décollement and sedimentary layers is minimized. We thus conclude from this set of models that the 

rheology of the decollement level has an impact on the thrust sheet length by shortening them, but this 

effect is much less significant than the effect of syn-tectonic sediments on the wedge propagation and 

thrust sheet length. 

Supplementary Figure 1: Tests of the influence of the strength of the internal decollement on the 

thrust sheet lengths. Model set up is the same than in Figure IV-2 but with syn-tectonic sedimentation 

starting at 3 Ma. Strength of the decollement is represented by the internal friction angle , that is 

2.5°, 5°, 7.5°, and 10° for model a,b,c and d respectively.
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Strain rates and velocity field 

Supplementary Figure 2 documents the strain-rate evolution for the same models and at the same 

timesteps as shown in Figure IV-2. The green zones (at 7 m.y in models 1 and 3 for example) 

show the diffuse pattern of strain repartition, that is subsequently followed by localization on big 

faults. In the three models, most of the displacement coming from the right side of the model is 

accommodated by the fontal thrust and by underthrusting below the décollement level. In Model 1 

(without syn-tectonic sedimentation), at 5 my, displacement is localized at the front but in the 

internal parts as well, with active backthrusting at around 50 km. Then this internal displacement 

progressively decreases to almost zero at 12 m.y. On the opposite, the velocity field in the fold-

and-thrust belt shows that each thrust is active, but always less than the frontal thrust. Model 2 and 

3 are very similar in terms of velocity field patterns. The backthrusting that occurs at 5 m.y. is very 

efficient at that time while the internal part experiences little displacement. At 7 m.y. the frontal 

thrust records most of the displacement, and the internal part (especially around 50 km from the 

backstop) show moderate and top-directed velocity field, this pattern is reproduced until the 9 m.y 

timestep. Finally, at 12 m.y, only the fold-and-thrust belt records displacement, the internal part 

become much less active. It is also worth noting that the velocity field shows very well the 

progression of underthusting below the internal decollement level towards the left side of the 

model. Strain localization allows identifying the most active faults. In the three models, the strain 

is accumulated on 1) the frontal thrust , 2) the décollement level and 3) the largest faults in the 

internal parts. Among these structures, the décollement level is the one that concentrates most 

strain. 
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Data and references for natural systems

Range

Average 

thrust length 

(km)

Maximum 

thickness of 

syn-tectonic 

sediments (km)

Reference 

for cross-

sections

Elastic 

thickness

(km)

Reference for Te

Canadian Rockies 

(Can)
5.5 ± 3.1 1.5 ± 0.7

Ollerenshaw 

1978
20 to 40 Flück et al. 2003

Sub-andean belt 

(An2, S Bolivia)
6.3  ± 2.2 1.5 ± 0.3 Horton 1998 30 to 40 

DeCelles and 

Horton 2003

Apennines (Ap) 8.6 ± 4.1 1.8 ± 0.6
Butler et al. 

2004
8 to 15

Royden and 

Karner 1984

Carpathians (Car) 12.9 ± 1.4 1.5 ± 0.6
Hippolyte et 

al. 1999
3 to 16 

Zoetemeijer et al. 

1999

Pyrenees (Pyr) 13.8 ± 4.6 2.5 ± 0.3 Muñoz 1992 20 to 30 
Zoetemeijer et al. 

1990

Swiss molassic 

basin (Alp)
14 ± 2 1.5 ± 0.3

Beck et al. 

1998
5 to 15 

Sinclair et al. 

1991

Sub-andean belt 

(An1, NW 

Bolivia)

15.6 ± 4.3 3.1 ± 0.8
Baby et al. 

1995
30 to 40

DeCelles and 

Horton 2003

Brooks ranges 

(Br)
20  ± 5 1 ± 0.2

Cole et al. 

1997
65 to 75 Nunn et al. 1987

Supplementary Table 2: Sediment thicknesses, thrust-sheet lengths, and equivalent elastic 

thicknesses for natural fold-and-thrust belts. Measurements of thrust sheet length and their 

associated syn-tectonic sedimentation thickness was taken in three places of the fold-and thrust 

belt at least. The sediment thickness was measured at the place where the vertical thickness is 

maximum, i.e in the center of a piggy-back basin for example. The thrust sheet length was defined 

by the length from the place where the thrust is differentiating to its surface emergence.
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Chapter IV-2 Influence of surface processes on the late-

stage evolution of the southern Pyrenees 

IV-2.1 introduction

The theoretical evolution of a thrusting sequence is controlled, at first-order, by the critical taper 

behavior that induces a cyclicty between thickening of the wedge and frontal accretion (Chapple 

1978; Davis et al. 1983; Dahlen et al. 1984; Hoth et al. 2007b). Since wedge thickening is 

controlled not only by internal deformation but also by surface processes, there should be a 

feedback/coupling between wedge deformation and erosion/sedimentation (Willett 1999b; Willett 

2010).

The effects of wedge-top sedimentation on an orogenic wedge have been studied by several 

authors using analogue and numerical modeling (Huiqi et al. 1992; Marshak and Wilkerson 1992; 

Boyer 1995; Storti and McClay 1995; Mugnier et al. 1997; Hardy et al. 1998; Simpson 2006; 

Malavieille 2010). In the previous chapter, we have shown by numerical modeling that the 

addition of syn-tectonic wedge–top sedimentation during the early stages of wedge development 

has the effect to perturb the patterns of thrust activation and to lengthen the thrust sheets. We 

concluded that these effects were the consequences of the taper angle modification by wedge-top 

sedimentation as well as forcing frontal accretion by minimizing the energy where sediments taper 

out. Similarly, the impact of erosion on the evolution of an orogenic wedge has been extensively 

studied by numerical and analogue modeling (Mugnier et al. 1997; Willett 1999b; Persson et al. 

2004; Bonnet et al. 2007; Stockmal et al. 2007; Malavieille 2010). 

In the southern Pyrenees, the rapid exhumation of the Axial Zone during late Eocene times 

produced a significant amount of sediments that were deposited to the south and covered the 

southern foreland (see Part III). Several field observations, geochronological studies and restored 

cross-sections (Burbank et al. 1992a; Puigdefàbregas et al. 1992; Meigs et al. 1996; Beaumont et 

al. 2000; Capote et al. 2002; Beamud et al. 2011) have shown that the southern Pyrenean wedge 

propagation was still active while these sediments were deposited, with evidence for exhumation 

in parts of the Southern Axial Zone, as well as in the center and south of the foreland fold-and-

thrust belt, continuing until late Oligocene times. 
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The purpose of this chapter is to investigate how the erosion of the internal Massif and the 

deposition of resulting conglomerates on top of the fold-and-thrust belt could have influenced the 

thrusting sequence by stopping, enhancing or reactivating the thrust sheets. To reproduce the 

Pyrenean pro-wedge development, this modeling study incorporates a 2-step history of wedge-top 

sedimentation: wedge-top basins are filled to a prescribed base-level (as in the previous chapter) 

from the early stages of wedge development and an additional prograding wedge of sediments is 

added to the model when the fold-and-thrust belt is already developed. We will present several 

combinations of sedimentation geometries and discuss their influence on the thrusting sequence. 

Finally, these results will be compared to the southern Pyrenean thrusting sequence, in order to 

extract the critical parameters driving this sequence.  

IV-2.2 Geological setting

IV-2.2a General context

The Pyrenean range is a collisionnal belt resulting from the convergence since the late Cretaceous 

of the Iberian and the European plates (Choukroune and ECORS Team 1989; Roure et al. 1989; 

Muñoz 1992; Beaumont et al. 2000). The underthrusting of the Iberian crust towards the North 

created a doubly-vergent orogen, the exhumation patterns and geometry of which are strongly 

asymmetric (Fitzgerald et al. 1999; Sinclair et al. 2005). The Pyrenean exhumation history can be 

divided into three phases (Figure IV-6): 1) From Late Cretaceous-Paleocene, exhumation in the 

Northern part (retro-side), contemporaneous with inversion of the Mesozoic basins in the South 

(Burbank et al. 1992b); then 2) development of the southern fold-and thrust belt (pro-side) and 

exhumation of the Nogueres basement unit in the central Axial Zone (Paleocene to middle 

Eocene); and 3) simultaneous continuous southern foreland progression and stacking of the Orri 

and Rialp units under the Nogueres unit to form the Axial Zone antiformal stack (Figure IV-5),

Vergés and Muñoz 1990; Beaumont et al. 2000). The main exhumation phase inferred from 

thermochronological data occurred during Eocene times (Muñoz 1992; Fitzgerald et al. 1999; 

Beaumont et al. 2000; Vergés et al. 2002a; Sinclair et al. 2005). From Cenomanian to early 

Miocene times, Beaumont et al. (2000) calculated a total shortening of 165 km in the Central 

Pyrenees, which is a Maximum of several along-strike shortening estimates (Vergés et al. 1995; 

Teixell 1998).

The Pyrenean range is flanked to the North and South by two fold-and-thrust belts and foreland 

basins: the Aquitaine basin and the Ebro basin respectively. The southern pro-side of the Pyrenean 

wedge, is much better developed than the northern one and shows a very well exposed succession 

of Mesozoic and Cenozoic deposits (Late Cretaceous turbidites to Oligocene-Miocene 

conglomeratic deposits). The ECORS cross section through the Central Pyrenees (Figure IV-5)

shows the thin-skinned development of the southern fold-thrust belt, favored by a thick and 
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continuous décollement level of Triassic evaporites that helped inverting the Mesozoic basins. 

This structural cross-section also shows the three main thrust sheet units transported by the 

Boixols thrust, the Montsec thrust and the Sierras Marginales frontal thrust, respectively. Further 

south, the Ebro foreland basin extends from the south of the Basque-Cantabrian basin (to the 

West) to the Mediteranean Sea (to the East), draining the Pyrenees, the Iberian range and the 

Catalan coastal range. 

Figure IV - 5. a) Geological Map of the Pyrenees with location of the section A-A’ shown below. 

b) Summary of the timing of exhumation and thrust activity from the literature. Timing of thrust 

activity was extracted from Muñoz (1992); Meigs et al (1996); Meigs and Burbank (1997); Capote 

et al.(2002); Sinclair et al.(2005); Rahl et al. (2011); thermochronological constraints are based 

on Fitzgerald et al.(1999) ; Sinclair et al.(2005) ; Gibson et al . (2007) ; Metcalf et al. (2009) and 

Beamud et al. (2011). Structural cross-section of the central Pyrenees is based on the ECORS 

seismic profile and redrawn from Muñoz (1992).
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Figure IV - 6. 2-D geodynamic reconstruction of the central Pyrenees evolution from Late 

Cretaceous to present-day. From Beaumont et al. (2000).
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Beamud et al. (2003, 2010) have dated the conglomeratic deposition from late Lutetian (~40 Myr) 

to Rupelian times (~28 Myr). Currently exposed remnants of these conglomeratic deposits are 

more than 1 km thick. Reconstruction of the extent of the conglomerates indicates that they 

prograded on the Southern flank of the Axial Zone during the Oligocene (e.g. Coney et al. 1996). 

We have shown in part II that their initial thickness was more than 2 km.

IV-2.2b South central Pyrenean thrusting sequence 

The thrusting sequence in the southern Pyrenean pro-wedge (Figure IV-5) is at first order in-

sequence: while the internal basement units were being emplaced (Nogueres, Orri, and Rialp), 

thrust sheets propagated over the décollement level of Triassic evaporites building the foreland 

fold-and-thrust belt. In the foreland, the first thrust to be activated was the Boixols thrust (to the 

east of the present-day Tremp basin), a former Mesozoic normal fault as shown by thickening of 

the Lower Cretaceous strata in its hangingwall. Then inversion of this structure in Late Cretaceous 

times (Bond and McClay 1995) formed the San Corneli anticline. There is some evidence for Late 

Eocene reactivation of this thrust; in particular the tilting of Bartonian-early Priabonian (40-37 

Ma) conglomerates (lower Ermita, Pesonada units, Mellere 1993) deposited in the backlimb of the 

San Corneli anticline, whereas the Oligocene conglomerates above are horizontal. Further south, 

the thickening of the Garumnian formation strata (Late Cretaceous-Paleocene) indicates that the 

Montsec thrust was active during Paleocene time (Puigdefàbregas et al. 1992), dating therefore the 

southward in-sequence propagation of the thrust sequence and the initiation of the Tremp-Graus 

basin as a piggy-back basin. Montsec thrust activity lasted until the late Eocene, as dated by 

Magnetostratigraphy of the syn-tectonic conglomerates at the Eastern termination of the Montsec 

thrust (Burbank et al. 1992b). Activity of the present-day frontal thrust (Sierras Marginales) started 

earlier so that this thrust was active simultaneously with the Montsec (Burbank et al. 1992b); it 

stayed active until middle Oligocene times (26 Ma, Meigs et al. 1996). In detail, it is important to 

note that the relationships between Oligocene conglomeratic deposits and the structures in the 

Montsec-Sierras Marginales area show evidence for out-of sequence thrusting and reactivation at a 

smaller scale until late Oligocene times.

Going back toward the hinterland, the Morreres backthrust (Figure IV-5), is inferred to be active 

from early Eocene to Oligocene times (Mellere 1993; Capote et al. 2002) and delimits to the North 

the Boixols thrust sheet and the fold-and-thrust belt in general.

In the internal part of the wedge, exhumation occurred by stacking of the Nogueres, Orri and Rialp 

basement units. They were emplaced from Late Cretaceous to middle Eocene (Nogueres), from 

Paleocene to middle Oligocene (Orri), and during Oligocene (Rialp) times respectively (Muñoz 

1992; Capote et al. 2002; Saura and Teixell 2006). Underthrusting by the Orri unit and resulting 

uplift of the Nogueres zone created rotated structures (called “têtes plongeantes”, Seguret 1972), of 

which the relationship with conglomeratic sediments documents the timing of activity.
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The conclusions presented in Chapter II-1 from modeling of a combination of low-temperature 

thermochronological data (Fitzgerald et al. 1999; Sinclair et al. 2005; Gibson et al. 2007; Metcalf 

et al. 2009) provide constrains on the rate of exhumation of the southern Axial Zone. It documents 

a moderate exhumation rate (1km.Myr-1) from 40 to 37 Ma, followed by a rapid exhumation phase 

(2.8 km.Myr-1) between 37 to 30 Ma, followed by a very slow exhumation phase (0.02 km.Myr-1

In situ apatite fission-track ages range from early Eocene to Oligocene in the Marimaña, Maladeta 

and Barruera Massifs, with late Oligocene ages found in the southernmost Barruera Massif and in 

the Nogueres zone (19.5 Ma and 17.2 Ma respectively). Moreover, Apatite (U-Th)/He results from 

Gibson et al. (2007) include 3 ages ranging from 10.5± 0.8 Ma to 15.9 ±1.3 Ma in the Barruera 

Massif, and thus significantly younger than the other AFT data of the area. We have shown before 

that the syn-tectonic conglomeratic sedimentation was very thick and probably covered the 

southern Pyrenean foreland. In the following we will use dynamic models of fold and thrust belt 

formation to test if syn-tectonic wedge top conglomerate deposition could be the cause for the 

observed out-of-sequence thrusting.

)

from 30 Ma to present. The late Eocene-early Oligocene (37-30 Ma) exhumation of the axial zone 

is contemporaneous with significant infilling of the foreland by conglomerates. Nevertheless, these 

results do not incorporate the evidence for out-of sequence thrusting provided by structural 

observations presented before, as well as the young AFT and AHe ages in the Barruera area 

(Sinclair et al. 2005; Gibson et al. 2007). 

IV-2.3 Model description

A 2D Arbitrary Lagrangian Eulerian (ALE) finite element model (Fullsack 1995) was used to 

investigate the relationships between the thin-skinned wedge development and wedge top 

sedimentation. This numerical model allows for visco-plastic rheologies but for our purpose, we 

limit its use to the upper crust, e.g. the first 15 km, and therefore do not include viscous 

deformation. The model reproduces localization of deformation by using a classical yield criterion 

and applying strain softening on the basement and sedimentary layers. Further details on the model 

and its parameters are further developed in the previous chapter (IV-1) and in the chapter I-2.

The superposition of the two grids (Lagrangian and Eulerian) allows for computation of large-

scale deformation. The Lagrangian marker grid tracks the material, its properties, and the 

accumulated strain. Its position is updated according to the velocity field computed on the Eulerian 

grid. The Eulerian grid is 400 km long by 12.5 km thick and has a resolution of 801 x 81 cells 

respectively. The Lagrangian grid is two times longer (Table IV-1) to provide enough material to 

enter the system at the right-hand side of the model (1601 x 81 cells).
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Figure IV - 7. Model set up. a)Situation at the beginning of the model run. b)Start of primary syn-

tectonic sedimentation (same properties as Material II). c)Start of addition of a prograding syn-

tectonic sedimentation. See Table IV-1 for the parameter properties

IV-2.3a Model geometry and Materials

The model domain is 200 km long and 15 km high at the left-hand side. The model includes 

different materials (see Table IV-1 and Figure IV-7): 1) a strong Coulomb material with a high 

friction angle and strain softening represents the basement (Mat. I); 2) an intermediate Coulomb 

material with moderate internal friction and strain softening (Mat. II); 3) a very weak internal 

décollement with a very low friction angle (Mat. III) located between the strong and the 

intermediate Coulomb materials and 4) a weak basal detachment with low friction angle at the 

base of the model box (Mat. IV). All materials have the same cohesion and the same density (see 

Table IV-1 for model parameters). Several runs testing the rheological parameters of the different 

materials were performed; the main modeling results are shown in the additional run section.

Material II (representing sediments) is 3-km thick and starts at 100 km from the backstop in order 

to produce a first “internal wedge” before deforming sediment, as it occurred in the Pyrenees. The 

initial topography has been slightly perturbed to favor the wedge development. 
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Material number Description
Internal friction 

I Strong Coulomb , with strain softening 38                               25

II
Intermediate Coulomb, with strain 

softening

38                               18

III Very weak internal décollement               1

IV Weak basal décollement                 10

Cohesion
2 MPa

Density
2.3 103 kg.m-3

Eulerian grid 801 x 81 cells                      400 x 12.5 km

Lagrangian grid 1601 x 81 cells                800 x 12.5 km

Erosion
Slope dependent, rate: 1mm.yr

for a 1:1 slope

-1

Deposition
Primary sedimentation reference level  h=2.05 km

Start at 5 Ma

Secondary sedimentation Prograding half-Gaussian

Start at 12 Ma 

Flexural rigidity 1.10
22 

N.m
-1

Table IV - 1. Main parameters for model runs. See Figure IV-7 for the geometric distribution of 

different materials in the model and the geometry of the sediment deposition. 

IV-2.3b Boundary conditions

A constant velocity of 1 cm.yr-1

The effects of varying flexural parameters will not be tested here and all the models have the same 

flexural rigidity, that is 1.10

is imposed on the right side and on the base of the model domain. 

The left side is fixed, except at the base were a slot allows for some weak Coulomb material to 

escape, to avoid the stacking of this material in the wedge. Gravitational loading is compensated 

by flexural isostasy, the wavelength of which is controlled by the flexural rigidity of an elastic 

beam below the basal décollement.

22
N.m

-1 and so an elastic thickness (Te) of 11.7 km with Poisson ratio 

of 0.25 and Young modulus of 7.1010. This value of Te is the most satisfying when fitting the 

reconstructed flexural profile of the Pyrenees and with different modeling studies (Zoetemeijer et 

al. 1990a; Gaspar-Escribano et al. 2001) which predicted Te of 10 to 20 km below the Ebro 
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foreland basin. We have performed several additional runs varying the flexural rigidity, a few of 

them are presented in the next section (additional runs).

IV-2.3c Surface processes 

For models 2 to 6, we modify the sedimentation patterns twice during the model runs. “Primary 

sedimentation” fills up the topography to a reference level and starts at 5Myr (see previous 

section). A “secondary sedimentation” phase is modelled as prograding towards the right-hand 

side with a half-gaussian shape and starting at 12 Myr at which time the model shows a backthrust 

and 3 thrust sheets (representing the Boixols, the Montsec and Frontal thrusts). Model behavior is

rate independent, which implies that the models can be interpreted at any desired time scale. The 

amount of convergence can be directly compared to the natural system, in the following we will 

consider that the model age has to be multiplied by 3 to obtain an average of “real” geological 

time. The parameters of prograding sedimentation can be chosen such to produce local or 

distributed sedimentation. The sedimentary body is allowed to evolve through time by prograding 

(towards the foreland) with an imposed velocity. In order not to cover the entire system with these 

sediments, we limit progradation to 2 Myr. After that time, the sedimentary body stays stable. 

However, the southern Pyrenees and Axial Zone also experienced episodes of strong erosion, 

which is not included in models 1 to 5; models including erosion will be presented in the last 

section of this chapter. The surface processes were simplified to focus exclusively on the effects of 

wedge-top sedimentation. In a first set of models the geometry of the sedimentary body is 

kinematically controlled (elevation, extent and shape).

IV-2.4 Results

We will present in the following the results of 6 model runs. In order to compare the thrusting 

sequence and the wedge behavior, the first model (Figure IV-8 and IV-9, model 1) do not include 

secondary sedimentation. The other models (models 2 to 5) investigate the effects of different 

geometries of deposition of the secondary sedimentation, tested with short (Figure IV-10), 

moderate (Figure IV-11) and long extent (Figure IV-12), and low and high elevation (Figure IV-

13). The results will then be compared to the Pyrenean thrusting sequence (Figure IV-14). In the 

following, the fold-and-thrust belt thrusts will be referred to as F1, F2 F3 and F4 from the left to 

the right hand-side in order of their formation 
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Model number 1
st

ErosionSedimentation
2

nd

Elevation                  Extent

Sedimentation

1 Yes No No

2 Yes No Low Low

3 Yes No Low Moderate

4 Yes No Low High

5 Yes No High Moderate

6 Yes Yes Low Moderate

Table IV - 2. Description of parameters for models 1-6.

IV-2.4a Base model (1) – no secondary sedimentation

This model includes only primary sedimentation, which starts at 5 Myr and consists of 

sedimentary material, similar to material II (Figure IV-7). Thrusting first occurs in the basement 

layer on the left-hand side of the box, creating the internal wedge. Then, the deformation in the 

sedimentary layers starts at 4.2 Myr, with backthrusting of the sediments onto the basement 

initiating the formation of the external wedge. The thrust sheets propagate in-sequence activation 

at 6.4, 8.6 and 11 Myr, respectively for the first, second and third thrust. As the syn-tectonic 

sedimentation thickness is one of the major controlling factors on the thrust sheets length (see 

previous chapter IV-1), the reference elevation of the sediments was tuned to 2.05 km to obtain 

thrust sheets with lengths comparable to those observed in the southern Pyrenees, which are ~30 

km long (Figure IV-5). At 12 Myr, basement is deformed by large pro- and retro- thrusts and the 

external wedge resembles the late Eocene geometry of the South Pyrenean foreland fold-and-thrust 

belt as predicted by Beaumont et al. (2000) (Figure IV-6). To compare with the following models, 

we will now focus on details of the base model evolution between 12 and 14 Myr. Scaled to the

Pyrenees evolution compared to the model, these 2 Myr can be taken to represent the 10 Myr 

period between 40 and 30 Ma, when strong erosion in Axial Zone and important deposition of its 

erosional products in the foreland occured.
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Figure IV - 8. Model 1 evolution from 4 to 12 Myr. The numbers correspond to the order of 

thrusts activation. The thrust are named in the text F1,2,3 and 4 following their order of 

appearance. 

In the model (Figure IV-9) deformation in the internal zone is very active until 13.2 Myr and then 

decreases. At 12.2 Myr, the in sequence thrusts F3 and F4 are active (Figure IV-9a); between 12.8 

and 13.6 Myr deformation moves to the rear of the wedge with most activity on F1 and the internal 

wedge which accommodate most of the displacement (Figure IV-9b-c). At 13.6 Myr, the 

décollement level is less efficient; deformation is localized on F2 with the major shear connecting 

to the basal décollement (Figure IV-9c). At 14.2 Myr, deformation moves again to the front of the 

wedge with F4 becoming the most active thrust (e.g. Figure IV-9d). A new frontal thrust initiates 

at 13.6 Myr but does not accommodate any significant shortening before 14.6 Myr.

The overall evolution of this model is characterized by distributed deformation on all the thrusting 

structures with cycling between frontal and rear accretion. The pattern of wedge propagation is 

firstly a wedge retreat with concentration of deformation on F2, and subsequently forward wedge 

propagation again by the new frontal thrust.
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IV-2.4b Models including Secondary sedimentation 

In the following models, we will test the effect of the deposition of a secondary prograding wedge 

with various geometries on the evolution of the wedge between 12 and 14 Myr (see Table IV-3 for 

parameters values).

Low elevation, short extent (model 2) 

In model 2 we test the effect of a prograding wedge that has a low elevation and short extent 

covering only thrust F1 (Table IV-2). At 12.2 Myr, 3 zones are very active and accommodate most 

of the displacement: the frontal thrusts F3 and F4, and the shear zones in the internal zone of the 

wedge (e.g. Figure IV-10a-b). Secondary sedimentation decreases the activity on the backthrust in 

the internal area F1 in comparison to model 1. Strain starts to accumulate at 12.8 Myr at the future 

location of a new frontal thrust that will become efficient at 13.6 Myr (Figure IV-10b-c, f-g). At 

that time, F2 is completely deactivated. Deformation in the internal basement wedge localizes on a 

long pro-vergent thrust and the décollement level accommodates practically all the shortening. 

From 13.6 Myr there is a change in distribution of shortening; only the new frontal thrust 

accommodates displacement, the other shear zones are much less active. The internal zone is only 

deforming below the décollement level, with small conjugated shears that are equally spaced (e.g. 

Figure IV-10c and IV-10g). At 14.2 Myr, the new frontal thrust still accommodates most of the 

displacement, but shear zones F2, F3 and F4 and the internal zone are reactivated as well. The 

main difference with model 1 without secondary sedimentation is that the backthrust, F1 (the main 

locus of additional sedimentation) is completely deactivated.

 h(0) (km) h(inf) (km) x0( km) length (km) 
v(prog) 

(cm.yr-1) 

2 6.5 2.05 40 20 0.5 

3 6.5 2.05 40 45 0.5 

4 6.5 2.05 40 70 0.5 

5 7.5 2.05 40 40 0.5 

      
Table IV - 3. Sedimentary wedge characteristics for models 2 to 5 presented in the following 

section, position of the corresponding parameters presented in the Figure above.



159

Low elevation, moderate extent (model 3)

In model 3 the prograding wedge has the same low elevation as in model 2 but an intermediate 

horizontal extent covering thrusts F1 and F2 initially and F3 after progradation at t=14 Ma (Table 

IV-2). The model behavior at 12.2 Myr is very similar to that of model 2, with the most of the 

deformation distributed between the front and the internal part of the wedge (e.g. Figure IV-11a 

and IV-11e). The only difference is that F2 is completely inactive in this model, as it is completely 

covered by the prograding wedge, while thrusts F3 and F4 are only partially covered. The model 

behavior at 12.8 Myr is also quite close to that of model 2, but the accumulation of strain in the 

frontal part of the wedge is more efficient, showing a faster activation of the new frontal thrust as 

compared to model 2 (Figure IV-11b and IV-11f). At 13.6 Myr model 3 exhibits uniform strain 

distribution over the entire wedge with all shear zones being moderately active (Figure IV-11c and 

IV-11g). Most of the strain is at this stage accumulated on the frontal and the most internal thrusts, 

and displacement is once again localized on the décollement level and the frontal thrust. The strain 

rate at 13.6 Myr (Figure IV-11g) also shows the delimitation of the secondary sediments, with 

propagation of deformation from material II through the secondary sediments. The basement 

below the middle décollement is intensively deformed by conjugated thrusts that are preferentially 

pro-verging. Finally, at 14.2 Myr, F2 becomes inactive, the internal zone is reactivated and most 

deformation is accommodated on shear zone F1 and the decollement (e.g. Figure IV-11d and IV-

11h).
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Low elevation, long extent (model 4) 

At 12.2 Myr, thrust F4 takes up most of the deformation. At the same time the new frontal thrust is 

starting to form as shown by the strain accumulation in the foreland (e.g. Figure IV-12a and IV-

12e). Similar to models 2 and 3, the deformation is distributed between the frontal part of the 

wedge and the internal zones. F2 is completely covered by sediments and inactive at this stage. 

Between 12.8 and 13.6 Myr, most strain is accumulating on the new frontal thrust and in the 

internal area, thrust F3 is somewhat reactivated, and F4 is abandoned (Figure IV-12b and IV-12f). 

Finally, at 14.2 Myr, there is still small to moderate activity on all the faults but most of the 

shortening is localizing on the frontal thrust and a new frontal thrust is initiating (Figure IV-12d

and IV-12h). 

High elevation, moderate extent (model 5)

Model 5 (Figure IV-3) has the same prograding wedge extent as model 3 but a larger thickness 

providing a larger load in the internal area (Table IV-2). The top of the prograding wedge is 1.2 

km higher then in models 2-4. This model is designed to test the consequences of aggrading 

conglomerates on the southern flank of the Axial Zone. Even if the sediments cover some faults of 

the Axial Zone in this set up, there are almost no differences in activity of these faults compared to 

model 3. Initiation of a new frontal thrust takes place at 12.8 Myr, no deformation is 

accommodated by F1. The subsequent evolution at 13.6 and 14.2 Myr is almost the same as in 

model 3, with the main activity on the frontal thrust and the Axial Zone thrusts and some 

distributed deformation on the other thrusts. The main difference with model 3 is that F4 continues 

to be active during the entire interval from 12-14 Myr.



16
3

F
ig

u
re

 I
V

 -
1

2
.

M
o

d
el

 4
 e

vo
lu

ti
o
n

 f
ro

m
 1

2
.2

 t
o

 1
4

.2
 M

yr
, 

sa
m

e 
le

g
en

d
 a

s 
in

 F
ig

u
re

 I
V

-9
.



16
4

F
ig

u
re

 I
V

 -
1

3
.

M
o

d
el

 5
 e

vo
lu

ti
o
n

 f
ro

m
 1

2
.2

 t
o

 1
4

.2
 M

yr
, 

sa
m

e 
le

g
en

d
 a

s 
in

 F
ig

u
re

 I
V

-9
.



165

IV-2.5 Interpretations and discussion 

IV-2.5a Effects of secondary sedimentation on the thrusting sequence

The sequence of fault activation for the above models described is summarized in Figure IV-14.

The model without secondary sedimentation shows a complex thrusting sequence with 

deformation cycling between in sequence frontal thrusting and wedge accretion, out of sequence 

thrusting in the internal area, and distributed deformation on the intermediate thrusts. A 2-step 

acrretionnary cycle is recognized. First, the wedge thickens with activity concentrated on the 

internal faults and on the backthrust; secondly, it propagates towards the foreland with the 

activation of a new frontal thrust. This sequence is very similar to the pro-wedge frontal accretion 

cycle descibed by Hoth et al (2007b) in their anologue modeling of a doubly-vergent orogen. In 

details, this complex thrusting sequence illustrates that accretion and wedge propagation require a 

complex deformational sequence activity. This inherent variability in the tectonic signal of frontal 

accretion and wedge thickening was also recognized by Naylor and Sinclair (2007) and occurs 

without perturbing the system with external processes.

The results from models with additional syn-tectonic secondary sedimentation show that the 

thrusting sequence is actually simplified by reducing the activity of several thrust in the center of 

the fold-and-thrust belt. Deformation in the most internal domain is similar for the various models 

run; the internal thrusts are always active although the details of strain localization differ. The 

models with the same extent but with different elevation of the secondary prograding sedimentary 

wedge (models 3 and 5) exhibit the same pattern of deformation for the most internal thrusts. 

Increasing the thickness of syn-tectonic sedimentation reduces the activity of the backthrust, 

showing that the activity is transferred from the most internal to the external thrusts to 

accommodate the addition of sediments. However, it should be noted that the internal thrusts are 

also very close to the left-hand side border and therefore probably influenced by the effect of the 

backstop. 

Toward the foreland, the prograding wedge reduces deformation of the thrusts it covers in the 

piggy-back basin area; the stabilizing effect of the wedge appears proportional to the extent and 

thickness of sediments. As shown in Figure IV-14, this area of limited deformation (called “stable 

domain”) increases with extending sedimentation. However, in most cases, it does not mean that 

the thrusts  are totally deactivated, as it was observed in the minimum work models of Hardy et al. 

(1998).
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Figure IV - 14. Summary of the thrusting sequence of the models 1-5 presented in Figures IV-9 to 

IV-13. Thrust activity color code was simplified from the strain rate legend of the previous figures. 

Grey annotations are the Main interpretations.
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Hardy et al. (1998) observed from 2D-kinematic-mechanical modeling that sedimentation, by 

increasing the frictional work on faults can “blanket” them. Our model results suggest that 

covering a thrust does not systematically lead to stopping its activity; this only happens in the 

models when 1) the thickness of sediments is large; 2) the thrust has just been covered by the 

sediments, in which case it is deactivated for a relatively short time interval of 0.2-0.4 Myr. In 

detail, the models indicate that during or after a thrust has been covered, strain will again localize 

on the thrust, which will also penetrate through the syn-tectonic sediments, as shown for instance 

by the conjugated faults patterns of model 5 at 70 km from the backstop at 14.2 Myr. 

Finally, by reducing the activity of internal thrusts, the addition of secondary sedimentation favors 

frontal accretion; the further the secondary sedimentary wedge extends, the faster a new frontal 

thrust will activate. Models 1, 2, 3, and 4 with an increasingly extend of the secondary wedge 

show progressively earlier frontal thrust activation (e.g at 14.4, 13.2, 13 and 12.4 Myr 

respectively). The new thrusts also propagate further following the secondary sedimentation, with 

a locus at 145, 160, 165, and 180 km for the models with increasing extent of sediments. This last 

observation is in agreement with the conclusions of the previous chapter, showing that the thrust 

sheet length is controlled by the extent of syn-tectonic sedimentation. 

The evolution of an orogen has been explained by several authors as following critical wedge 

behavior (Chapple 1978; Boyer and Elliott 1982; Davis et al. 1983; Dahlen et al. 1984; Boyer 

1995). Following this theory, the wedge thickens by accommodating the convergence, until it 

attains a critical state (cf introduction). This state is defined by a critical value of the taper angle, 

the sum of topographic and basal slope, and by the internal and basal strength. Upon reaching the 

critical state, further addition of material to the wedge allows it to grow self similarly with 

deformation propagating towards the foreland by creating a new frontal thrust. As described in the 

previous section, this behavior is well reproduced by model 1 without secondary sedimentation 

(previous chapter). In the other models, we impose a secondary sedimentation geometry that is 

controlled at each timestep; however, the results from these models seem to follow a first-order 

critical behavior as well. By adding wedge-top sediments the load increases and consequently the 

fle

favored. 

IV-2.5b Comparison to the Pyrenees

From the studies presented in the previous sections (part III), we have evidence for a significant 

burial of the southern Pyrenean fold-and-thrust belt by late syn-orogenic conglomerates. Analysis 

of mechanical model results presented here suggests that the addition of this secondary 

sedimentation may have affected the thrusting sequence to different degrees, depending on the 

extent and elevation of the sedimentary deposits. Previous authors (Capote et al. 2002; Sinclair et 

al. 2005) note that the southern Pyrenean wedge thrusting sequence exhibited out-of-sequence 
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thrusting and reactivation of existing thrusts. The apatite (U-Th)/He measurements published by 

Gibson et al. (2007) are one of the main arguments for out of sequence deformation. These data 

indicate AHe ages of 15.9, 13.8, and 10.5 Myr on samples collected in the Barruera Massif, to the 

Southwest of the Maladeta Massif. These ages were interpreted (Gibson et al., 2007) as the “final 

pulses of activity” inherent to the natural wedge evolution as also proposed by Naylor and Sinclair 

2007. From our modeling, we have shown (e.g. Figure IV-14) that the addition of secondary 

wedge-top sedimentation could effectively enhance the activity in the internal zone. Models 3, 4 

and 5, indicate that the larger the extent and thickness of secondary sedimentation, the more 

deformation localizes in the internal zone. Despite this analogy, it is worth noting that we model 

here only one side of the orogen with plastic deformation only. Therefore, interpreting deformation 

of the internal part should be done with caution.

The other main expression of perturbation of the thrusting sequence is provided by field 

observations of deformation of the Oligocene conglomerates. As described in section IV-2.2b,

deformation of the conglomerates is visible in the footwall of the Boixols thrust and also in the 

Sierras Marginales thrust sheet, close to the Montsec (Meigs et al. 1996). In our models, the 

Boixols thrust (compared to F2) exhibits moderate activity only following the addition of 

secondary sediments and we do not observe preferential reactivation of F2 as suggested by the 

data. Nevertheless as pointed out before, this does not necessarily mean that the thrust was totally 

deactivated. We indeed see some indications of strain concentration on this shear zone, even if it 

was covered by an important thickness of sediments. We also see evidence that deformation 

propagating through the secondary sediments. Finally, late deformation of the Sierras Marginales 

is to first order compatible with our modeling results. Whatever the thickness and extent of 

sediments is, the frontal area (F4 and frontal thrust) remain active during and after secondary 

deposition.

IV-2.5c Climatic triggering of the erosional pulse? Preliminary results

The deposition of a large amount of conglomerates during the late Eocene to Oligocene implies 

significant erosion of the Axial Zone during this time interval. Consequently we can ask the

question what mechanism drives this important erosion (tectonics, climate, or both). In the 

Pyrenees, Huyghe et al. (2009) argue for a climatic control on the late Eocene exhumation, by 

summing the erosional and the accretionary fluxes through time, and showing that there was no 

increase in tectonic flux. They concluded that a major climate change such as the Eocene-

Oligocene transition (Zachos et al. 2001) is more likely to explain the increase in erosional flux in 

the southern Axial Zone. This climatic transition has been associated by several authors to an 

increase in seasonality; which could lead to a more efficient erosion (Molnar 2004).

We present here the results of modeling an erosional pulse applied to the model 3 set-up (moderate 

extent and a low reference level of sedimentation), the resulting model (Model 6) is compared to 
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model 3 in Figure IV-15. By keeping the convergence rate the same and activating erosion at 10 

Myr, we aim to reproduce a climatic forcing. Erosion starts at 10 Myr, and secondary 

sedimentation starts at 12 Myr, as in the other models. Erosion is proportional to the surface slope 

with a rate of 1 mm.yr-1 for a 45° slope.

Three Main differences can be observed between the model 3 and 6:

1) The frontal accretion occurs faster. In model 6, at 10 Myr, strain concentrates around 150 

km, leading to activate the new frontal thrust 1 Myr earlier than in model 3. This pattern is 

reproduced at 13 Myr.

2) Reactivation of F4 is favored in model 6. At 12 Myr, and at 14 Myr, the thrust just behind 

the frontal thrust is very active and accommodates most of the deformation. 

3) Appearance of stacking patterns in the internal units. From 11 Myr, strain localizes on 

curved faults that grow vertically. 

These preliminary results show a thrusting sequence that is not very different from the models 

with secondary sedimentation only, and so could fit the thrusting sequence of the southern 

Pyrenees. The addition of erosion effectively reduces the taper and size of the wedge and therefore 

promotes thrusting in a more proximal position at F4 rather then allowing the wedge to grow and 

form a new thrust at F5. As mass removal by erosion is more efficient in the internal zone more 

mass is accreted to the base in this area. We also observe a stacking geometry in the internal zone 

that could be compared to the uplift mode of the Orri and Rialp units, exhumed from the early 

Eocene to late Oligocene. 

This additional model has several limitations. Most notably, the surface processes are not mass 

conserving and the deformation is only plastic, rendering a direct comparison with the Pyrenean 

evolution less straightforward. Nevertheless, these observations are an interesting starting point for 

discriminating between a tectonic or a climatic trigger for the rapid late orogenic exhumation of 

the southern Pyrenees.
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Figure IV - 15. left panel: Strain rate evolution from 10 Myr to 14 Myr for Model 3 (Figure IV-

11). Right panel: strain rate evolution for model 6, equivalent to Model 3 but with slope-dependent 

erosion starting at 10 Myr. 
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IV-2.6 Conclusions

The southern Pyrenean wedge experienced an episode of strong erosion in late Eocene-Oligocene 

times, which produced a significant amount of sediments in the adjacent southern foreland basin, 

deposited as a thick series of conglomerates. The thickness of these sediments has been estimated 

at more than 2 km (part III), covering part of the southern fold-and thrust belt, while it was still 

actively deforming. Using a 2D mechanical model, we have studied what the effects of addition of 

these conglomeratic sediments may have been on the late stage evolution of the southern Pyrenean 

foreland. By modifying the wedge geometry, the secondary sedimentation affects the thrusting 

sequence, stabilizing the central part of the fold and thrust belt where the sediments are deposited, 

and favoring frontal accretion. The different geometries of the secondary sedimentary body that 

have been tested here show that even an extended and important sedimentation can reproduce the 

patterns of deformations in the southern Pyrenees, such as reactivation and out-of-sequence 

thrusting highlighted by several authors. The addition of erosion in the axial zone (e.g. model 6) 

show that 1) vertical stacking of the Axial Zone units could result from erosion rather than driving 

it, and 2) an increase in erosional efficiency related to a climatic change could be responsible for 

the strong exhumation of the southern Pyrenees during late Eocene-Oligocene times, however this 

hypothesis needs further investigation.
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Additional runs 

The models presented in the previous chapters (IV-1 and IV-2) are the result of a complete 

parameter study that I performed at the University of Bergen. In order to understand the model 

behavior and the control of each parameter on the wedge development, I first analyzed model 

results for 

varying flexural rigidity as well (see Table IV-4). A selection of the more representative model 

runs is thus presented in this section to illustrate the main characteristics of the wedge 

development when changing parameters. The Figures IV-16 to IV-19 illustrate the study on the 

was not tested. The surface processes were deactivated for these tests. Although the final set of 

parameter properties used in the previous model was chosen to correspond to the parameters used 

by Stockmal et al. (2007), we know from this parameter study what are the effects of the variations 

The last two models runs (Figures IV-20 and IV-21) are showing results for changing the flexural 

rigidity with syn-tectonic sedimentation depositing at similar base-level (2.05 km). Snapshot of 

these models were already presented in the model results section of chapter IV-I. For comparison, 

all the models presented previously were preformed with an intermediate flexural rigidity of 1.10
22 

N.m
-1. From the model runs presented here, we see that the flexural rigidity is a first-order 

controlling parameter on the wedge shape and development, acting directly on the depth

and extend of the foreland basin (see chapter IV-I for further discussion).

Model number
Material I Material II Material Flexural rigidity 

(D, 
-1

Sopen65

)

38-18 38-18 1 1.10

Sopen66

22

38-18 38-25 1 1.10

Sopen67

22

38-25 38-25 1 1.10

Sopen75S

22

38-18 38-25 3.5 1.10

Sopen90_f21

22

38-18 38-25 1 1.10

Sopen90_f23

21

38-18 38-25 1 1.10
23

Table IV - 4 Summary of the parameters changed in the additional runs presented in the 

following. 



173

Figure IV - 16sopen65. Material I : =38-18 ; Material II : =38-18; Material III :

. To be compared to sopen 67 for the effect of a stronger Material I. More shortening 

is accommodated on the basement thrust, creating longer thrusts (nappes).
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Figure IV - 17 sopen66 Material I : =38-18 ; Material II : -25; Material III :

To be compared to sopen 67 for the effect of a stronger Material II.A stronger mat.II lead 

to propagate slightly further the thrust sheets.
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Figure IV - 18 sopen67 Material I : -25 ; Material II : -25; Material III :

. To be compared to sopen 65 and 66 for the effect of a weaker Material I and II 

respectively; and to sopen75S for the effect of a weaker décollement level. A stronger 

mat.I mainly favors pop-up style deformation in the internal part.
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Figure IV - 19. sopen75S. Material I : =38-18 ; Material II : -25; Material III :

To be compared to sopen67 for the effect of a stronger décollement level. With a 

stronger décollement level, the thrusts are activating closer to the internal wedge .
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Figure IV - 20 sopen90_f21. Material I : =38-18 ; Material II : -25; Material III :

1.1021 N.m
-1

.To be compared to sopen90_f23 for the effect of 

changing the flexural rigidity.
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Figure IV - 21 sopen90_f23. Material I : =38-18 ; Material II : -25; Material III :

1.1023 N.m
-1

.To be compared to sopen90_f21 for the effect of 

changing the flexural rigidity.
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By combining low-temperature thermochronology with different types of modeling, I have aimed 

to better constrain the lateral variability in exhumation of the Pyrenean-cantabrian mountain belt, 

as well as identify the feedbacks between the range and its foreland basins.

The different studies on both the central Pyrenees and the central Cantabrian Mountains presented 

in this manuscript lead me to focus particularly on the Eocene to Miocene times, when exhumation 

of the range and the erosion were important, combined to changes in drainage conditions from 

exorheic to endorheic in both the Duero and the Ebro basin. We can thus precise the evolution of 

the two study area as follows (Figure V - 1):

During Eocene times, the central Pyrenean fold-and-thrust belt propagates by frontal accretion of 

thrusting units. I have shown in Chapter IV-1 that the amount and extent of syn-tectonic 

sedimentation was a major factor controlling the thrust sheet length, pattern that appears to be 

reproduced in several natural thin-skinned fold-and-thrust belts. In particular, the Pyrenean fold-

and-thrust belt develops with an overall in-sequence pattern, with the activation of the Boixols 

thrust, the Montsec thrust and the associated piggy-back Tremp-Graus basin, and finally the 

Sierras Marginales frontal thrust.  

In Bartonian times (40-37 Ma), exhumation is moderate in the central Axial Zone with 

exhumation rates of 1 mm.yr-1

At the same time, in the Central Cantabrian Mountains, the onset of Alpine inversion is 

documented in the retro fold-and-thrust belt offshore (Alonso et al. 1996; Alvarez-Marron et al. 

1997), and highlighted by our new (U-Th)/He ages of zircons onshore. The ages of 37 and 39 Ma 

were measured in the center of the central section, south of the Cabuerniga fault (Part II).

, derived from the thermo-kinematic modeling of the low-

temperature thermochronological data (Chapter III-1). 

Finally, in late Eocene times, the Ebro basin became endorheic (Costa et al. 2009) due to the 

closure of its connection to the Atlantic, while the Duero basin is already closed from the 

Paleocene onward (Santisteban et al. 1996). 

The Eocene-Oligocene transition is marked by a pulse of erosion in the central Axial Zone of 

which the causes are still debated. In Chapter IV-2 I showed preliminary results in favor of a 

climatic control on this enhanced erosion; however this hypothesis needs to be confirmed by a 

more elaborated study. 

In Oligocene times, I documented evidence for the continuation of Alpine deformation in the 

central Cantabrian Mountains. Several apatite fission track ages in the center of the Cantabrian

section are Oligocene (30Ma and 27 Ma). While the central part of the range is still active, the 

erosion products are accumulating in the Northern margin of the Duero basin, developing a 

progressive unconformity along the range front.
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In the central Pyrenees, exhumation rates strongly decreased to 0.02 km Myr-1

By the end of the syn-orogenic phase at 30 Ma, the south Pyrenean valleys were infilled by 

erosional products up to an elevation of 2.6 km and this valley-fill remained stable until ~9 Ma.

from 30 Ma to the 

present, indicating a rapid transition to stable post-orogenic conditions, possibly aided by partial 

burial of the range under its own erosional products.

From (U-Th)/He measurements on apatites of the Southern foreland fold-and-thrust belt, we could 

extend these conclusions to the foreland. We thus extrapolated the thickness of the conglomeratic 

deposits of ~2 km until the south of the Montsec area, in the Ager basin, suggesting an extension 

of the paleogeographic location of the fluvial system.

Figure V - 1 Summary of the main conclusions from this PhD work. Comparison of the Central 

Pyrenees and Central Cantabrians through time. The topographies have been modified from the 

present-day topography. This schematic representation is not to scale.
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Consequences of this important burial on the thrusting sequence have been studied in Chapter IV-

2. By modifying the wedge geometry, the secondary sedimentation perturbs the thrusting 

sequence, stabilizing the central part of the fold-and-thrust belt and promoting both frontal 

accretion and internal activity. The different geometries of the sedimentary body that have been 

tested inform us that even an extended and thick sedimentation can reproduce the patterns of 

deformations in the southern Pyrenees, such as reactivation and out-of-sequence thrusting 

highlighted by several authors (Gibson et al. 2007). However, such sedimentation does not 

promote out-of-sequence thrusting and the rapid erosion of the internal Axial Zone may be an 

important control.

Finally, both the thermo-kinematic modeling in the Axial Zone and the low-temperature data in 

the foreland predict an exhumation in late Miocene times (around 9 Ma). We interpret this 

exhumation as the consequence of the excavation of the Ebro basin, that unfilled the foreland and 

so exhumed the samples. We thus propose that the opening of the basin occurred at the latest 

during Tortonian times and that late-Neogene / Quaternary climate change had little effect on the 

post-orogenic erosional history of the Pyrenees.

To conclude, the approach combining thermochronology and numerical modeling allowed me to 

precise the Cenozoic evolution of the Pyrenean-Cantabrian mountain belt. The new

thermochronological data from the Cantabrian Mountains, allow constraining the lateral variations 

in exhumation of the belt, from East to West. While the Pyrenees experienced a pulse of rapid 

exhumation in the late Eocene; exhumation starts in the Cantabrian Mountains. Then in Oligocene 

times, the central Pyrenees are mainly controlled by surface processes that led to the burial of the 

southern foreland. Simultaneously, the Cantabrian Mountains are still exhuming and deforming.

Moreover, the constraints brought by the low-temperature thermochronological data allow us to 

refine the thickness of Mesozoic sediments that must have covered the Cantabrian Mountains and 

therefore the amount of inversion and the structure of the range.

The comparison of the evolution of the central Pyrenees and central Cantabrians also shows

different patterns of control of syn-tectonic sedimentation and base-level changes on orogenic 

building. In the Pyrenees, I have shown that the Oligocene-Miocene burial and exhumation of the 

foreland and the Axial Zone can be interpreted in terms of surface processes. Therefore, the base-

level of the Ebro strongly controlled the late evolution of the southern Pyrenees, and more 

generally, could influence the thrusting sequence when the amount of sediments is large enough.

It is also interesting to compare the interactions between the range and its foreland in the 

Cantabrian Mountains. The present-day topography (Figure I-17) could effectively be comparable 

to the Oligocene topography of the Central Pyrenees.
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But there are a few differences between the two areas. Firstly, the Cantabrian part of the belt does

not present a wedge-top depozone and so the sediments directly deposit in the foredeep area.

Secondly, the Cantabrian Mountains are of thick-skinned style whereas the Central Pyrenees are 

thin-skinned. Therefore, one can easily think that a more important amount of sediments will be 

needed to perturb the range growth, as we showed for the Southern Pyrenees. Finally, however the 

Duero basin is exorheic since Paleocene times and it has never been excavated as the Ebro basin 

did. Thus, with our dataset, we conclude that the influence of the Duero base-level on the

Cantabrian range development is less than that of the Ebro basin for the Pyrenees. Yet, this 

interpretation may be challenged by combining our low-temperature ages with the AFT ages 

produced by Luis Barbero (University of Cadiz).

A few ideas for future work emerge from this PhD study; the Cantabrian Mountain area is the 

place where a lot of work still needs to be done. 

For instance, the western central section still lacks low-temperature thermochronological ages. As 

the lithologies are very poor in apatites, more ZHe analyses could be performed. 

From the central section, we are now working on an re-interpretation of the upper crustal structure, 

which could also change some patterns on the deeper structure; in particular, there is still a strong 

debate on the indenting lower crust under the Cantabrian Mountains. Moreover, numerical 

modeling could also document the evolution of this part of the belt, at the crustal scale, and also at 

shallower scale to test the influence of the Duero base–level on the Cantabrian deformation 

sequence.

In the Pyrenean part, the investigation of a climatic influence on the wedge development could be 

very interesting. However, the surface processes could not be correctly modeled through a 2-D

model and 3-D will be needed to reproduce the fluvial and alluvial behavior. 
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