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Abstract

Evolution et apprentissage automatique pour l’annotation
fonctionnelle et la classification des homologies lointains en

protéines.

Résumé

La détection d’homologues lointains est essentielle pour le classement fonctionnel et struc-
tural des séquences protéiques et pour l’amélioration de l’annotation des génomes très
divergents. Pour le classement des séquences, nous présentons la méthode «ILP-SVM
homology», combinant la programmation logique inductive (PLI) et les modèles proposi-
tionnels. Elle propose une nouvelle représentation logique des propriétés physico-chimiques
des résidus et des positions conservées au sein de l’alignement de séquences. Ainsi, PLI
trouve les règles les plus fréquentes et les utilise pour la phase d’apprentissage utilisant des
modèles d’arbre de décision ou de machine à vecteurs de support. La méthode présente
au moins les mêmes performances que les autres méthodes trouvées dans la littérature.
Puis, nous proposons la méthode CASH pour annoter les génomes très divergents. CASH
a été appliqué à Plasmodium falciparum, mais reste applicable à toutes les espèces. CASH
utilise aussi bien l’information issue de génomes proches ou éloignés de P. falciparum.
Chaque domaine connu est ainsi représenté par un ensemble de modèles évolutifs, et les
sorties sont combinées par un méta-classificateur qui assigne un score de confiance à chaque
prédiction. Basé sur ce score et sur des propriétés de co-ocurrences de domaines, CASH
trouve l’architecture la plus probable de chaque séquence en appliquant une approche
d’optimisation multi-objectif. CASH est capable d’annoter 70% des domaines protéiques
de P. falciparum, contre une moyenne de 57% pour ses concurrents. De nouveaux do-
maines protéiques ont pu être caractérisés au sein de protéines de fonction inconnue ou
déjà annotées.

Mots-clefs

Biologie computationelle, approche discriminative, programmation logique inductive, ma-
chine à vecteurs de support, ensemble de modèles, optimisation multi-objectif.
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Combining evolution and machine learning for functional
annotation and classification of remote homologous proteins.

Abstract

Detection of remote homologous proteins is essential for functional and structural classifi-
cation of protein sequences and for the completion of the annotation for highly divergent
genomes. Here, we present two new methods to address these problems. For the first prob-
lem, we introduce ILP-SVM Homology that combines inductive logic programming (ILP)
and propositional models. It proposes a novel logical representation of physico-chemical
properties, conserved amino acid positions and conserved physico-chemical positions in
sequence alignments. Based on these signals, ILP finds the most frequent patterns and
uses them to train models, such as decision trees and support vector machines. ILP-SVM
Homology achieves at least equal performance when compared with other methods. To
address the second problem, we propose CASH, a large-scale pipeline to annotate highly
divergent genomes. CASH was applied to the Plasmodium falciparum, but it is applicable
to any species. In CASH we explore different evolutionary pathways including those that
are phylogenetically distant from P. falciparum. As a result, each known domain is repre-
sented by an ensemble of heterogeneous models, and the outputs are combined through a
meta-classifier that assigns a confidence score to each prediction. Based on this score and
on properties as domain co-occurrence, CASH finds the most probable architecture for
each query sequence by resolving a multi-objective optimization problem. CASH provides
domain annotation for 70% of proteins in P. falciparum, while its competitors achieve
at most 57%. We find additional domains into already annotated proteins, and predict
domains for proteins with unknown function.

Keywords

Computational Biology, Discriminative approaches, Inductive Logic Programming, Sup-
port Vector Machine, Ensemble of models, Multi-objective optimization.
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Chapter 1

Introduction

1.1 Background

In the last decade, the large-scale sequencing and genome projects have completed the

genome of many distinct organisms. With the sequence in hand, the challenge is to

analyze and to interpret this massive amount of biological data (genes and proteins). The

biochemical role of each protein is crucial to the understanding of the complex cellular

machinery of these different organisms. Proteins are macromolecules formed by a chain

of amino acids. This chain is typically folded by producing a particular three-dimensional

structure that is related to biological function of the protein. When proteins have their

function characterized they are deposited into public databases [1, 2, 3, 4], where they can

be scanned to infer important properties for new proteins, such as function [5], functional

sites [6], structure [7], and evolutionary relationships [8].

Here, we focalize our attention on the functional characterization of new proteins.

This is an important problem in Computational Biology, playing a crucial role in sequence

annotation and protein family classification. A solution to the problem will have a prac-

tical strong impact to guiding laboratory experiments. In order to infer the function of a

target protein, computational methods search into public databases for a known protein

that be homologous to the target. Homologs are proteins derived from a common ancestor

and that probably share the same function. Thus, one could try to assign to the target

protein the function of known homologous protein. This process is called functional an-

notation transfer. Traditional approaches, such as BLAST [9] and FASTA [10], deal with

the homology detection problem by searching for regions of local similarity among pairs of

sequences. They can successfully detect protein homology when the identity (percentage
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of identical amino acids in a pairwise alignment), is greater than 30%. However, proteins

can be homologs even in the case of low sequence identity. They are known as remote

homologous proteins, that is, they have a common ancestor but they have diverged signif-

icantly in their primary sequence during their evolutionary history. This is an important

and hard problem: the development of methods addressing the problem of identifying

remote homology in proteins is essential for functional and comparative proteomic.

Generative methods are an alternative to the traditional methods and they are often

more effective in detecting remote homologous proteins. First, they train a model to repre-

sent a group of homologous sequences (a protein family), and then match a query sequence

against the model to evaluate the similarity of the query sequence to the group/family.

Profile Hidden Markov Models (pHMMs) [11] and PSI-BLAST [12] are examples of such

approaches, also known as family-based or sequence-profile based approaches. Although,

sequence-profile approaches achieve better performance than methods based on pairwise

comparison only [13], they still largely fail to detect distant homologous proteins. A sig-

nificant improvement over those methods were made possible by comparing profile-profile

instead of sequence-profile. Methods such as PROF-SIM [14], COMPASS [15] and HH-

search [16] build a profile from the query protein and then compare it against a profile

database constructed from the target proteins.

Limitations in the performance of generative methods has motivated researchers to

follow mainly two directions, i) to combine extra information to previous approaches, such

as phylogenetic [17], protein structure information [18, 19], and domain co-occurrence

[20, 21, 22, 23, 24, 25] and ii) to search for new accurate methods. Among the new ap-

proaches, a family of methods called "discriminative", have been able to attain additional

accuracy to remote homology detection by modeling the differences between positive and

negative examples. The most popular discriminative method applied to the remote ho-

mology detection problem is Support Vector Machine (SVM) [26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Basically, SVMs learn a classification function, from

positive and negative training examples, that optimally separates the unseen data into two

categories, for instance, homologous and non-homologous proteins. The kernel function

that measures the similarity between a pair of examples plays a key role in the SVM per-

formance. Typically, each protein sequence is represented by a fixed-length vector, where
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each vector’s item is a protein’s property, and the kernel function is defined to be the

inner product between different vectors. An alternative to this standard kernel function

is pre-compute a kernel matrix where each element is the measure of similarity between a

pair of examples [32, 36].

The main difference among SVM approaches is the protein property representation.

Since, remote homology detection is a hard problem, the protein property representation

plays a key role in the performance of the method. Sophisticated and effective representa-

tions can be obtained if relational learning algorithms are employed, such as Inductive logic

programming (ILP) [43]. This idea has been exploited by several methods [44, 45, 46, 47]

as an attempt to improve the performance of remote homology detection.

1.2 Challenges of detecting remote protein homology

The functional characterization of proteins still represents a challenge for computational

biology. A number of protein sequences of different organisms have been identified but their

specific functions remain unknown. In particular, the genome of some of these organisms is

so divergent that almost half of the proteins into the genome remain without any putative

annotation. This is the case of Plasmodium falciparum genome, the organism that causes

Malaria in human. The development of accurate methods for remote homology detection

based on sequences is crucial to improve functional annotation. In fact, these methods

can help to improve the classification of remote homologous proteins that are later used

to annotate highly divergent genomes. It is known that structural properties can improve

the performance of remote homology detection methods [19, 18], but approaches that use

this kind of information cannot be used into large-scale systems, since structures are not

available for most existing proteins. Thus, an intelligent use of information coming from

sequence is necessary to hope for a large scale annotation. Such systems should exhibit a

feasible computational time in order to treat the large amount of biological data.

1.3 Significance and contribution of the thesis

To tackle these challenges, we introduced two approaches for remote homology detection.

The first method called ILP-SVM Homology [48] is a hybrid approach that combines in-

ductive logic programming and propositional models for classifying remote homologous
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proteins, and the second method, called CASH - Combination of Annotations by Species

and pHMMs [49] - combines several computational approaches and explores protein path-

ways of evolution to provide annotation of highly divergent genomes.

For the development of ILP-SVM Homology method, our motivation was to explore

the first-order logic language to represent, in a more sophisticated way, properties of

homologous protein sequences. We have used sequential properties, as done in previous

approaches [47, 45, 44, 46], and we introduced a novel representation based on conserved

amino acid positions and conserved physico-chemical positions in a Multiple Sequence

Alignment (MSA). From these representations, we induced through the Inductive Logic

Programming (ILP) a set of logical rules that summarize essential features of protein

functions. These rules were transformed in features that were used to train propositional

models, such as Decision Trees (DT) and SVM. We used the SCOP [8] database to perform

our experiments by evaluating protein recognition within the same superfamily, where a

common evolutionary origin is not easily deduced from sequence identity. Our results

show that our methodology, when using SVM, performs significantly better than some of

the state of the art methods, and that it is comparable otherwise. The contributions of

this hybrid methodology can be summarized as follows:

• We have proposed for the first time a logical representation based on conserved

amino acid positions in a MSA. We have related this new representation with a

sequential representation [47, 45, 44, 46] creating a new one that takes into account

conserved physico-chemical positions in a MSA. Our results showed that these two

new representations perform better than sequential ones.

• We proposed the use of SVM in place of DT and this strategy achieved better

performance.

• We showed that exploring only conserved positions in a MSA is more suitable to the

remote homology detection problem than exploring all amino acids positions. We

demonstrated that remote homologous proteins seem to share a number of restricted

properties in order to keep their function, and we succefully represented these prop-

erties by first-order logic predicates. Based on this set of properties, an ILP system
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was able to filter logical rules that summarize essential features of homologous pro-

teins.

• By validating our approach, we showed that the performance of our model is at least

comparable, but in some cases better than some of its competitors. This includes

the cases where sequence identity is low (that is, below 30%). The output of our

method can be interpreted biologically to provide insights into conserved features of

homologous protein families.

For the development of CASH method, our motivation was to explore alternative

evolutionary protein pathways and to provide a large-scale pipeline for highly divergent

genomes annotation. In fact, CASH is a hybrid methodology that employs both genera-

tive and discriminative methods. First, CASH proposes the use of additional generative

models to represent each known Pfam domain [50]. For this, it constructs PSI-Blast pro-

files starting from a large and differentiated panel of homologous sequences associated to a

protein domain. Second, CASH combines these models with existing pHMMs by providing

an ensemble of generative models to represent each known domain. Third, the outcomes

of generative models are processed and transformed into features used to train a discrimi-

native method (SVM) that assigns a confidence score to each domain prediction. Finally,

based on this score and on other properties, as domain co-occurrence [20, 21, 22, 23, 24, 25],

CASH finds the most probable architecture for each query protein sequence by resolving

a multi-objective optimization problem. Applied to the P. falciparum genome, CASH

achieved superior performance when compared to any state-of-art methods. It finds ad-

ditional domains into already annotated proteins, and predicts domains for proteins with

unknown functions. The method has been compared to Pfam, CODD [24] and dPUC [25].

In the following, we highlighted CASH contributions:

• The use of alternative profiles created from orthologous sequences was proposed in

[51]. It explored a very small set of sequences, made no use of prediction combination

strategies, and it just considered the profile that best matches a target sequence

in order to provide its annotation. Here, we increased the number of orthologous

sequences what allowed us to explore different evolutionary protein pathways within
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the life phylogenetic tree, and possibly those of species that are phylogenetically

distant from P. falciparum. Moreover, we proposed to combine predictions coming

from different profiles to produce a more reliable domain annotation.

• CASH proposes, for the first time, to represent each known Pfam domain through

an ensemble of heterogenous models that compete for the best detection signals.

Also, it employs a meta-learning [52, 53] combination strategy that uses a second

classifier (SVM) trained from features that were obtained by pre-processing outputs

of heterogenous models. Our meta-features have, as aim, to highlight individual

model results that can help the prediction, when a consensus among base models is

not observed, and to provide an indication of the performance of all models.

• In order to find the most likely domain arrangement/architecture for a given query

sequence, we introduced a novel algorithm that treats this problem as a multi-

objective optimization problem. For that, a set of objective functions is defined

for each candidate solution, objective functions are arranged in order of importance,

and constraints are formulated on these functions that are optimized one by one. To

the best of our knowledge, it is the first time that the domain architecture problem

is addressed as a multi-objective optimization problem.

We demonstrated that when homologous sequences are too divergent, signals of

homology must be explored in a more intelligent way. We did it by exploring only the

most important patterns characterizing homologous proteins in the ILP-SVM-Homology

method, and by exploring alternative protein evolutionary pathways through the construc-

tion of additional profiles in the CASH method.

1.4 Publications

The following publications arose from works conducted during the course of this thesis

research:

• Bernardes, J. S., Carbone, A. and Zaverucha, G. “A discriminative method for

family-based protein remote homology detection that combines inductive logic pro-

gramming and propositional models”, published in BMC Bioinformatics (2011) [48].
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It is a following research of previous works reported in [19, 6]. The main ideas and

algorithms of this paper are presented in chapter 4.

• Bernardes, J. S., Zaverucha, G., Vaquero C., and Carbone, A. “Combining evo-

lution and machine learning for functional annotation in Plasmodium falciparum

annotation”, to be submitted to the Genome Research Journal. The main ideas,

methodology and results of this work are presented in chapter 5.

1.5 Organization of the thesis

In chapter 2, we present some basic ideas about proteins, their functions, and their struc-

tures. We present some concepts of protein evolution and explain the problem treated in

this thesis. In Chapter 3, we review the main state-of-art methods for remote homology

detection. In Chapter 4, we present the ILP-SVM-Homology method, we show and dis-

cussed the results, and we draw some conclusion about this work. In Chapter 5, CASH

pipeline is presented in details, results are discussed, and conclusions are given. In Chapter

6, we conclude this thesis and discuss some direction for future work.
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Chapter 2

Proteins

This chapter introduces some basic concepts about proteins that are objects of

this study. In section 2.1, we discuss the importance of proteins for living organisms,

and present some concepts about their structures and functions. Proteins in different

organisms can share a common ancestor, and they are called homologous proteins, we

discuss their evolutionary relationships in section 2.2, also we describe in section 2.2.1,

the remote homology detection problem, that is the central problem addressed in this

thesis. We finalize this chapter presenting in section 2.3 some key concepts needed for

understanding the rest of the thesis.

2.1 Structure and function

The deoxyriboNucleic Acid (DNA) carries the genetic information of the living organism

cells, this information is encoded within thousands of genes. Each gene serves as a recipe

on how to build a protein molecule. Two cellular processes are involved in the synthesis of

a protein: transcription [54] and translation [55]. During the process of transcription the

genetic information stored in a gene is transferred to a molecule called message RiboNucleic

Acid (mRNA), and during the process of translation this information is decoded by the

ribosome (a cellular component) to produce a specific amino acid chain that will fold

into an active protein. The information encoded in the mRNA is "read" according to the

genetic code, which relates the DNA sequence to the amino acid sequence in the protein.

Each group of three nucleotides in mRNA constitutes a codon, and each codon specifies a

particular amino acid. Amino acids are considered as building blocks of proteins. An amino

acid is a molecule containing an amine group (NH2), a carboxylic acid group (CO2H),
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and a side-chain that is specific to each amino acid. Basically, there are 20 different

amino acids, and they can be divided according to their physico-chemical properties. The

most important properties are charge, hydrophobicity, hydrophilicity, size, and side-chain

specificity, see Figure 2.1, that shows for each amino acid its chemical formula (side chains

are highlighted in red) and its physico-chemical properties. These 20 amino acids can

be arranged in several different ways to create a number of different proteins. Proteins

are typically folded into a particular three-dimensional structure that is related to their

biological function. Physico-chemical properties of amino acid proteins play a major role

in folding protein structure. For instance, the water-soluble proteins tend to have their

hydrophobic residues buried in the middle of the protein, whereas hydrophilic side-chains

are exposed to the aqueous solvent.

(G) (A) (V)

(L) (M) (I)

(F) (Y) (W)

(S) (T) (C)

(P) (N) (Q)

(K) (R) (H)

(D) (E)

Figure 2.1: Amino acids and their physico-chemical properties.

Proteins are involved in a huge number of activities within a cell, such as: the gene

regulation, the RNA transcription, the protein translation, the transport of materials, the
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catalysis of biochemical reactions (enzymes), they act as receptors for hormones, etc. Fre-

quently, the function of a protein is determined by its structure. During the synthesis of

a protein, that is, the cell process where proteins are produced, the protein structure is in

its primary form. This form, also called primary structure, refers to amino acid sequence

of the protein. Amino acids are held together by chemical bonds, which are made during

the process of protein synthesis. As a next step regular local sub-structures, known as

secondary structure, are formed. There are two main types of secondary structures: the

alpha helix and the beta strand [56]. These regular structures are connected by a “loop"

[56]. Loops are uncoiled regions of variable sizes. Next, the alpha-helices, beta-strands

and loops are folded into a compact globule by forming the three-dimensional structure.

Many proteins are formed by a larger assembly of several protein molecules, usually called

subunits. These subunits form complexes called quaternary structure. Figure 2.2 illus-

trates the four structural descriptions of the protein. Note that, they describe different

structural subunits of the protein, and they do not illustrate intermediate steps of the

folding process. No precise knowledge of the folding process is yet available.

Figure 2.2: Protein structure phases.
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2.2 Homologous proteins

Similarities among species suggest that all living organisms have origin in the same ances-

tor. Evolutionary processes, such as gene duplications [57] and mutations [58] give rise to

diversity at every level of biological organization, including species and molecules such as

proteins. For instance, when a gene is essential for a given species it can be duplicated,

and two copies of this gene are produced. For example, in Figure 2.3-A the gene A was

duplicated, and two identical copies A1 and A2 were created, these homologous genes are

called paralogs. After duplication, genes A1 and A2 evolve independently, and they can

suffer mutation events by producing paralogous genes A3 and A4, respectively, see Figure

2.3-B. Through speciation [59] new species arise, as shown in Figure 2.3-C, where species

II and III were created from species I. Homologous genes in different species are called

orthologs, see Figure 2.3-D. Since proteins are produced from genes, homologous genes

produce homologous proteins.

A common way for studying the evolutionary relationships in homologous proteins is

to perform a Multiple Sequence Alignment (MSA), as shown in Figure 4.1. The alignment

of homologous proteins consist of trying to place amino acids in positions that derive from

a common ancestral amino acid. To do so, we need to introduce gaps, which represent

insertion or deletion into sequences. Thus, an alignment is a hypothetical model of muta-

tions (substitutions, insertions, and deletions) that occurred during sequence evolution.

2.2.1 Remote homologous proteins

Homology can be detected easily if a strong sequence similarity is observed among proteins.

A possible way to measure this similarity is to determine sequence identity among homol-

ogous proteins, that is, the percentage of identical amino acids in a protein alignment.

If sequence identity is greater than 30%, homology can be asserted [60] with confidence.

Otherwise, we say that these proteins are in the “Twilight zone”, where homology signals

get blurred, and more evidences are needed to confirm the homology. However, proteins

can be homologs even in the case of low sequence identity. They are known as remote

homologous proteins, that is, they have a common ancestor but they have diverged sig-

nificantly in their primary sequence during their evolutionary history. To illustrate the



2.2. Homologous proteins 27

A

A
1

A
2

duplication

A. Species I

Paralogous genes

B.
A

1
A

2

mutations

Species I

A
3

A
4

C.

speciation

Species I

A
3

A
4

A
3

A
4

A
3

A
4

Species II Species III

A
3

A
4

D.

A
31

A
41

S
pe

ci
es

 II

A
3

A
4

A
32

A
42

S
p ec ie s III

mutations mutations

Paralogous genes Paralogous genes

Orthologous genes

Paralogous genes

Figure 2.3: Representative schema to ilustrate paralogous, orthologous and ho-
mologous genes.

concept, observe Figure 2.4-A that shows two homologous proteins: on the top, see their

sequence alignment, where identical amino acids are indicated by the symbol ∗, and on

the bottom, see their structural alignment. Note that, sequence identity in the sequence

alignment is low and that the hydrophobic blocks (highlighted in grey), known to play

an important role in protein structural stability [61] are not aligned. Based only on these

observations, we cannot assert that these proteins are homologs and only an analysis of

their structural similarities can conclude it. On the other hand, non-homologous pro-

teins such as those show in figure 2.4-B can present physico-chemical similarities like the

conservation of hydrophobic blocks, but their structures show clearly that they are not

homologs. This shows that remote homology detection is hard when using only sequence

properties. To make it possible, we should mine valuable properties from homologous
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protein sequences that allow us to identify homologous proteins, and in the same time,

avoid false predictions. For this, we propose two methods presented in chapters 4 and 5.

1fleI  AQEPVKGPVSTKPGSCPIILIRCAMLNPPN----RCLKDTDCPGIKKCCEGSCG-MACFVP-Q
1udkA  ---------NEKSGSCPDMSM---PIPPLGICKTLCNSDSGCPNVQKCCKNGCGFMTCTTPVP
                    ****          *       *  *  **   ***   ** * *  *

A.

B.
1fleI -AQEPVKGPVSTKPGSCPIILIRCAMLNPPNRCLKD---TDCPG-IKKCCEGSCGMACFVPQ----
1a0aA MKRESHKHAEQARRNRLAVALHELASLIPAEWKQQNNVSSAAPSKAATTVEAACRYIRHLQQNGST
         *  *             *   * * *             *       *  *       *

Figure 2.4: Pairs of proteins aligned by amino acid sequence and structures.

Remote homology detection is a challenge for the computation biology. There is

still a number of proteins with unknown function, and although structural properties can

be useful to decrease this number, this information is not available for most proteins, and

consequently, it cannot be used in large-scale approaches. In this scenario, it is necessary

to develop intelligent strategies to address the remote homology detection problem, as

those presented in chapters 4 and 5.
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2.3 Protein families, domains and motifs

Homologous proteins can be organized into protein families. Proteins in a family typically

have similar three-dimensional structures, functions, and some times significant sequence

similarity. To organize homologous proteins in families can serve to extract important

rules and to provide rich automatic functional annotation. For example, sequences within

a protein family can be aligned to identify regions of similarity that may be a consequence

of functional, structural, or evolutionary relationships between the sequences. Also, the

evolution of these proteins can be studied by reconstructing a phylogenetic tree [62] that

shows how proteins in this family have evolved.

At the functional level, proteins can be organized in domains ormotifs. A domain is a

part of the protein sequence which can fold into a stable structure independently on the rest

of the sequence. Proteins considered as related often share the same domain(s). Domains

are considered as building blocks and they may be recombined in different arrangements

to create proteins with different functions. Many proteins consist of several structural

domains, and they are called multi-domain proteins. Motif is a short stretch of amino acid

sequence that potentially encode the function of proteins. Frequently, they are located

inside protein domains.

There is a number of different classification systems to organize protein. They are

based on different classification categories: (1) hierarchical protein families, such as: PIR-

PSD [63] and ProtoMap [64], (2) families of protein domains such as Pfam [50], TIGRFAMs

[65] and ProDom [66], (3) sequence motifs such as PROSITE [67] and PRINTS [68], (4)

structural classes, such as SCOP [8] and CATH [69], and (5) integrations of various family

classifications, such as iProClass [70] and InterPro [71]. These tools can be interrogated

to provide the probable function for a query sequence (that is, a protein with unknown

function). For this, computational approaches discussed in the next chapter are employed.





Chapter 3

Methods for remote homology
detection

In this chapter, we review the main methods developed for addressing the problem

of remote homology detection. Basically, these methods can be divided into three cate-

gories: methods that search for sequence similarity, described in section 3.1, generative

methods that build a probabilistic model to represent each protein family and then eval-

uating each query sequence to see how well it fits the model, explained in section 3.2,

and discriminative methods that model the difference between positive (homologous) and

negative (non homologous) sequences to discriminate between members and non-members

of a given protein family, reviewed in section 3.3. Finally, we compare these methods and

discuss their performance and computational time (section 3.4).

3.1 Sequence Similarity Searching

Sequence Similarity Searching (SSS) is the most commonly employed computational tool

for the protein annotation task. BLAST [9] and FASTA [10] are examples of such method.

Although, both tools use different approaches, they adopt the same basic principle by

locating short matches between two sequences. First, words of fixed length are extracted

from the query sequence (that is, the sequence that one wishes to annotate). Second,

exact matches (usually very short words) between the query sequence and sequences of

a database with known proteins are identified. Third, best hits are extended to look for

longer stretches of similarity, see Figure 3.1. In order to select the best hits, SSS uses

a score system based on substitution score matrix, such as BLOSUM62 [72], and gap
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penalty.

Query sequence

Words of length k are extracted from the 
query sequence (k is usually 3 for a protein 
sequence).

Query words are compared to the sequence 
database and exact matches are found.

Best hits are extended in both directions to 
detect alignments with score greater than 
some threshold.

1

2

3

Figure 3.1: Basic principle of the Sequence Similarity Searching.

SSS optimizes speed over sensitivity. This property is essential and renders BLAST

and FASTA the algorithms applicable to huge genome databases. Before these heuristic

methods were introduced, query protein searches against huge databases were done with

exhaustive search, through algorithms like the Smith-Waterman [73] one that revealed to

be too time consuming. Contrary to the Smith-Waterman algorithm, SSS methods cannot

guarantee optimal alignments. However, it provides a statistical significance score for

pairwise alignments establishing a confidence level for the alignments. For this, it assigns

to each alignment an expected score E (E-value) [74] that is computed with respect to the

database. The E-value for an alignment x having a score s on the database D denotes the

number of times that an unrelated sequence in D would obtain a score s∗ higher than s

by chance.

The performance of SSS methods is directly related to sequence identity of the query

sequence and its homologs. These methods can be used to detect homology when sequence

identity is greater than 30%, but they fail to give satisfiable answers when sequences are

in “Twigthlight zone” (that is, when sequence identity is smaller than 30%). Thus, SSS

methods are not expected to be suitable to remote homology detection.



3.2. Generative methods 33

3.2 Generative methods

An alternative to SSS are generative methods. First, they train a probabilistic model

to represent a group of homologous sequences (a protein family), and then they match

a query sequence against the model to evaluate the similarity of the query sequence to

the group/family. Position-Specific Iterative BLAST (PSI-BLAST) [12], explained in sec-

tion 3.2.1, and profile Hidden Markov Models (pHMMs) [11], described in section 3.2.2

are examples of such approaches, also known as family-based or sequence-profile based ap-

proaches. Finally, in the section 3.2.3 we present how the performance of generative meth-

ods can be improved by using domain co-occurrence information [20, 21, 22, 23, 24, 25].

3.2.1 Position-Specific Iterative BLAST

Position-Specific Iterative BLAST (PSI-BLAST) [12] is an iterative method that builds

a probabilistic model based on Position Specific Score Matrix (PSSM) [75], and uses it

to search for new matches in a subsequent iteration. In each iteration PSSM is updated

by using sequences obtained in the previous iteration. The first PSSM is built from the

multiple alignment of sequences extracted from BLAST results, while subsequent PSSMs

are refined by using new matches. Figure 3.2 summarizes the PSI-BLAST flowchart. Note

that, PSI-BLAST can be executed for a fixed number of iterations N or until convergence

(when no new matches are found).

Query sequence

Sequence
database

1th Iteration

Sequences extracted
 from BLAST results

Alignment (1)

PSSM (1)
2th Iteration

PSSM (2)

Alignment (2)

new matches (2)

3th Iteration

PSSM (N)
Nth Iteration

... ...

Figure 3.2: PSI-BLAST flowchart.

A PSSM is a probabilistic model built for a specific query sequence, and it can
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be seen as an evolutionary model, since it describes the amino acid distribution for each

query sequence position. PSSM assumes independence between positions in the query

sequence, as it calculates scores at each position independently from the amino acids at

other positions. In PSI-BLAST, a PSSM is used in place of a standard substitution matrix,

such as BLOSUM62 [72]. It achieves better results because it defines for each amino acid

in the query sequence a different rate of mutation (substitution, deletion and insertion)

[76] that depends on its position in the query sequence.

3.2.2 Profile Hidden Markov Models

A Profile Hidden Markov Models (pHMM) [11] is a probabilistic model built from a mul-

tiple alignment of homologous sequences. A pHMM represents an alignment by using a

sequence of nodes, usually one node per alignment position. Each node is composed of

three states: match (M), insert (I) and delete (D) that represent the rate of mutation

(substitution, deletion and insertion) respectively. Match states model conserved regions

in the alignment, while insert and delete states model “indel” regions. Figure 3.3 shows a

general architecture for a pHMMs, where squares (in blue), diamonds (in red) and circles

(in yellow) represents match, insert and delete states respectively, and edges represent

allowed state transitions. Note that, Begin and End states are included.

Begin

I0

D1

M1

I1

D2

M2

I2

M3 End

D3

I3

MN

DN

IN

...

Figure 3.3: General architecture for profile hidden Markov models.

Profile HMMs have probabilities on two events: a transition from a state to another

state (represented by edges in Figure 3.3), and the probability that a specific state will emit

a specific character (say, a specific amino-acid when comparing proteins). Only match and

insert states generate characters. Delete states are quiet. Therefore, each match and insert

state has an emission probability distribution, for proteins this distribution will have 20
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entries, one per amino acid. Transitions can define the architecture of the pHMM. Systems

such as SAM [77] allow transitions between all types of states, totaling 3 transitions per

state, hence 9 per node, as showed in Figure 3.3. This is not always the case, and the

HMMER system [78], for instance, relies on the Plan7 model [78], which does not allows

I → D and D → I transitions.

Performance of a pHMM critically depends on the quality of the estimated emission

and transition probabilities. Emission probabilities are obtained by counting amino-acid

frequencies at each alignment position. Unfortunately, the global alignment will usually

have too few sequences to estimate all the parameters with sufficient confidence. Priors,

such as mixtures of Dirichlets components [79] (a method for estimating probabilities of

amino acids given small samples), is used to compensate for the small sample size and avoid

over-fitting. A second major issue when estimating parameters is the relationship between

the sequences themselves. Clearly, the information that a residue is better conserved across

a number of very different sequences should carry more weight than the information the

residue is conserved across a large number of very similar sequences. Most pHMMs thus

include a sequence weighting step, which may be based on sequence trees [80], as in

HMMER, or in entropy [81], as in SAM. In all cases, closer sequences carry less weight

than more divergent sequences. Last, notice that the total weight of the sequences governs

how much we trust the sequences versus the prior. Increasing the total weight of the

sequence counts over the priors reinforces our trust in the sequence data, but may lead to

over-fitting.

After the probability estimations, a pHMM can be used for aligning and scoring

a query sequence with the model. For this, dynamic programming algorithms, such as

Forward [82] and Viterbi [82] are employed. These algorithms compute the probability

that a given query sequence Sn be matched by the pHMM M(w), where n is the length

of the query sequence, and w is the set of estimated parameters for the pHMM. In other

words, they compute the maximum likelihood given by,

P (Sn|M(w)) =
∑
π

P (Sn, π|M(w)), (3.1)

where π is a sequence of consecutive states in the pHMM M(w) (also called pathway)

that starts in the Begin state, ends in the End state, and Sn is observed. The Forward al-
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gorithm finds the maximum likelihood by considering partial probabilities fj(i) associated

to sub-sequences Si = (x1, . . . , xi) (i ≤ n). The probability fj(i) is obtained by summing

probabilities of all possible state sequences that end at the j-th state, since Si is observed.

Thus, the maximum likelihood for Sn is computed recursivelly by the algorithm 1.

Algorithm 1 Forward
Require: f0(0) = 1, fk(0) = 0 (k 6= 0)
for i = 1→ n do
fj(i) = ej(xi)

∑
k fk(i− 1)akj

end for
Ensure: P (Sn) =

∑
k fk(n)ak0

where ej(xi) is the emission probability for the character xi provided by the state j, and

akj is the transition probability from k to j states.

The Viterbi algorithm also provides pHMM’s state sequence that better has rec-

ognized the query sequence, that is, it maps each amino acid in the query sequence to a

match (M), insert (I) or delete (D) states. Thus, it computes both the maximum likelihood

for a sequence Sn and the most probable pathway π∗ = argmaxπ(x, π|M(w)). Similar to

the Forward algorithm, Viterbi uses the partial probability of observing Si through the

pathway π∗ starting in the Begin state and ending in j-th state. The Viterbi algorithm is

presented in 2. In order to produce the most likely pathway for Sn, Viterbi storages in the

variable ptri(j) a pointer for the previous state that achieved the best partial probability.

Algorithm 2 Viterbi
Require: v0(0) = 1, vk(0) = 0 (k 6= 0)
for i = 1→ n do
vj(i) = ej(xi)maxk(vk(i− 1)akj)
ptri(j) = argmaxk(vk(i− 1)akj)

end for
Ensure: P (Sn, π) = maxk(vk(n)ak0)
Ensure: π∗n = argmaxk(vk(n)ak0)

3.2.3 Methods based on domain co-occurrence

The majority of proteins are multidomains, domains do not form random combinations,

and we observe fewer combinations than the statistically expected ones. This suggests

functional cooperation, that is, two or more domains can interact to determine the pro-

tein function. Recently, this cooperation, also called domain co-occurrence, has been used
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to improve the performance of domain recognition methods [20, 21, 22, 23, 24, 25]. In

this section, we reviewed two of these methods that were applied to P. falciparum an-

notation: CODD (Co-Occurrence Domain Discovery) [24] and dPUC (domain Prediction

using context) [25]. The performance of these methods is compared to the CASH method

in chapter 5.

Both methods proposed to improve pHMM performance, and they were implemented

on Pfam database [50], a collection of protein domains largely used for annotation task.

They detect a set of potential Pfam domains Pt, for a given protein sequence st, by

setting a permissive Pfam threshold and by allowing overlaps. They pre-compute a list L,

containing domain pairs that present strong co-occurrence, directly from the list of domain

architectures in Uniprot database [83]. CODD ranks Pt by ordering Pfam scores. It starts

by assigning to st a set of domains Qt, that were obtained by Pfam. Then, it iteratively

tries to add to Qt a domain di ∈ Pt if di does not overlap with domains in Qt, and if it

co-occurs with some domain in Qt according to L. On the other hand, dPUC represents

Pt as nodes in a graph, where edges connect non-overlapping domains in st. It weights

each node with normalized Pfam scores, and it weights edges with a special context score

that captures the propensity of pairwise domains combinations in L. Then, dPUC finds a

set of domains for st by looking for the maximum-weighted clique in the graph.

3.3 Discriminative methods

Generative methods still largely fail to detect distant homologous proteins. In this sce-

nario, discriminative approaches have emerged as an alternative to these methods, and

have been able to attain additional accuracy to remote homology detection. The most

popular discriminative method applied to the remote homology detection problem is Sup-

port Vector Machine (SVM) [84] revised in section 3.3.1. Some drawbacks of SVM, such

as its incompatibility with relational data, have motivated researchers to explore other

discriminative approaches, such as Inductive logic programming (ILP) [43]. In section

3.3.2, we revised some first-order logic concepts that are essential for the understanding

of methods based on ILP. We shall describe two methods based on ILP that have been

applied to remote homology detection problem [44, 45, 46, 47] .
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3.3.1 Support vector machine

SVMs have been widely applied to remote homology detection [26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. In order to discriminate between members and

non-members of a given protein family, SVMs learn the following classification function

f(x) =
∑

i:xi∈X+

λiK(x, xi)−
∑

i:xi∈X−

λiK(x, xi), (3.2)

where X+ and X− are positive and negative training examples, K(x, xi) is a function

that measures the similarity between a pair of examples, and λi are non-negative weights

computed during training by maximizing the function K also called kernel function. After

the SVM training phase, a given query sequence x is predicted to be member (non member)

of a protein family if the function f(x) is positive (negative).

The classification function plays a key role in SVM performance. Typical approaches

represent x as a fixed-length vector, where each vector’s item is a protein property, and

design a kernel function taking the inner product between these vectors. Several feature

protein vector representations have been proposed. SVM-Fisher [26] represents each pro-

tein x as a vector of Fisher scores. These scores are obtained comparing x to the pHMM

built from the positive training sequences (a protein family). SVM-pairwise [30] also uses

scores to compose its feature vector, those are extracted from pairwise alignments of x and

each sequence in the training set. Some methods use representations based on primary-

sequence motifs, where a sequence x is represented in a vector space indexed by a set of

pre-computed motifs [27]. GPkernel [39] is another method based on motifs, but instead

of using pre-computed motifs coming from an existing database, it generates motifs from

training data. Other methods have used structural motifs in place of primary-sequence

ones for feature extraction task. The SVM-I-sites method [28] constructs the feature vector

of a protein x by comparing the x profile (built by using PSI-BLAST) to the pre-computed

I-sites library of local structural motifs. Later, this work was improved taking into account

the order and relationship of the I-sites motifs [31]. A series of works have explored the

use of k-mers (short subsequences of size k). Mismatch kernel [29] represents a sequence x

as a vector of k-mers occurrence, that is, each vector position has a non-zero weight if the

k-mer is present in x and zero weight otherwise. A k-mer is said to be present in x if x

contains a substring that has at most n mismatches to the k-mer. Profile kernel [35] vector
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representation is similar to the Mismatch kernel representation. However, it considers a k-

mer to be present if x contains a substring whose PSSM-based ungapped alignment scores

with the k-mer is above a user defined threshold. A feature vector representation based

on distances between k-mers was introduced in [37]. Statistical and relevant features have

been extracted from all possible k-mers (coming from training protein sequences) by using

latent semantic analysis (an efficient feature extraction technique from natural language

processing) in [38]. Later, this work was improved by using Top-n-grams that extracts

from protein sequence frequency profiles [40].

Some approaches have followed a way that is alternative to the feature protein

vector representation and pre-compute a kernel matrix where each element is the measure

of similarity between a pair of examples. This matrix can be used directly as a kernel

function. Some new tools have followed this way, such as SVM-LA [32], which measures

the similarity between a pair of sequences by summing up scores obtained from its local

alignment, and SW-PSSM [36], which uses profiles scoring schemes for measuring the

similarity between pairs.

Most of SVMs are family-based, that is, a protein family is required to train them,

and the aim is to classify unseen proteins as member or non-member of this family. Cer-

tainly, these methods are limited to the number of known families. In order to overcome

this drawback, a new SVM category has been proposed, that is, pairwise SVM [41, 42].

Here, the aim is to rank proteins that are homologs to a given query protein. These meth-

ods are an alternative to the most commonly used methods in the biology community,

that is: BLAST and PSI-BLAST.

In fact, in the SVM-HUSTLE [41] a training strategy was presented that could

convert a family-based SVM into a pairwise SVM. Like PSI-BLAST it iteratively searches

for homologs against a database by using BLAST in the first iteration. Next, it trains

concurrent SVMs from positive sequences selected from BLAST output, and negative

sequences selected randomly from the remaining database. Then, trained SVMs scan the

database searching for new homologs that are added to the positive set. The algorithm

stops when no new sample is classified as positive or when a maximum number of iterations

is achieved.

To improve the performance some methods have applied the semi-supervised training
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strategy, that is, they combine information from labeled (known proteins) and unlabeled

(unknown proteins) databases in order to recruit more training sequences. This strategy

is generally applied when unlabeled data is abundant while labeled data is limited, and

this is the actual scenario of protein classification, since there is a large group of still

unannotated proteins. However, semi-supervised approaches can become computationally

hard when unlabeled large databases are used, such as the non-redundant protein database

(NR). Among methods that employ this strategy are RANKPROP [85], SVM-HUSTLE

[41], Top-N-Gram [40] and SW-PSSM [36].

3.3.2 Inductive logic programming

ILP is a relational data-mining method that uses first-order logic predicates to represent

background knowledge, theories and examples (positives and negatives). From those an

induction system can learn a hypothetical logic program which entails all the positive and

none of the negative examples. This logic program is a comprehensible set of logical rules

that can be used to classify unseen examples. We start this section by reviewing some

basic concepts of first-order logic predicate that is essential to understand ILP systems, and

then we present two methods that employ ILP to address the remote homology detection

problem.

First-order logic concepts

First-order logic, also called predicate logic, represents logic sentences in a more sophis-

ticated way than propositional logic. For example, consider the following sentences: “the

amino acid i is hydrophobic” and “the amino acid m is hydrophobic”. In propositional

logic these sentences are treated as two unrelated propositions. On the other hand, the

first-order logic can related them creating the predicate hydrophobic(X), which asserts

that the amino acid represented by the variable X is hydrophobic. First-order logic allows

us to define relations about properties that are shared among objects. For example, we

can observed from Table 4.3 that a tiny amino acid is also a small amino acid. Then, we

can denote this relation by using the logical rule Ra: ∀(X)(tiny(X) → small(X)), where

the symbol → is a logic connective used to denote a conditional (if/then) statement, and

the symbol ∀ (“for all”) is the universal quantifier symbol. The other quantifier is the ∃



3.3. Discriminative methods 41

(“there exists”) called existential quantifier. The part of Ra before connective → is called

antecedent and the part after is called consequent. The standard logic connectives are

∧ for conjunction, ∨ for disjunction, → for implication, ↔ for bi-conditional and ¬ for

negation. Next, we define some syntax rules for the first-order logic language. A variable

(X,Y and W in Table 4.3) is a term. If t1, . . . , tn are terms and f is a function symbol

then f(t1, . . . , tn) is a term, where n is arity (number of arguments) of the function, and

n ≥ 0. A function of zero arity (n = 0) is a constant (c, k, cg, 24, 27, . . . in Table 4.7). If

t1, . . . , tn are terms and p is a (n ≥ 0) predicate symbol then p(t1, . . . , tn) is an atomic

formula, also called here predicate. More complex formulae can be built using the logical

connectives and quantifiers. A substitution s = X/i is an assignment of term i to variable

X. For example, when s is applied to the predicate hydrophobic(X) an instantiation of

the predicate hydrophobic(i) is created. A ground predicate is a predicate without any

variables.

ILP approaches applied to remote homology detection

To the best of our knowledge, researchers have developed two approaches for applying ILP

to remote homology detection. The first method is known as Homology Induction (HI)

[44, 45] and uses ILP to improve on conventional sequence-based homology method. First,

a standard method for homology detection such as PSI-BLAST is run to find homologous

sequences for a given query sequence. Second, HI learns rules which are true for sequences

of high similarity to the query sequence and false for general sequences (assumed to be non

homologous to the query sequence). Next, the rules learnt by HI are used to discriminate

sequences in the twilight zone between the homologous and non-homologous. HI employs

a logical representation based on protein sequence properties such as physico-chemical

conservation, relative molecular weight, amino acid frequency (taken alone or in pairs),

and others. HI was compared with PSI-BLAST achieving best performance. However, the

method is bound to the performance of standard method chosen in the first step.

The second method uses a hybrid ILP-propositional machine learning method to

predict protein functional classes directly from sequences [46, 47]. First, it represents each

sequence in a homologous group through first-order logic predicates. It creates predicates

based on properties extracted directly from sequences, such as frequency distribution of
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single residues, and on properties predicted from sequences such as secondary structure

elements. Second, it uses WARMR [86], an ILP data-mining program, to identify the most

frequent patterns for the homologous group. Third, it converts these frequent patterns

(logical rules) into binary attributes to be used in propositional learning. For each query

sequence, to be represented, a binary attribute takes the value 1 if the corresponding

logical rule succeeds, and it takes the value 0 otherwise. Finally, these attributes are used

to train decision trees (DTs) [87] that are later used to discriminate between members and

non-members of the homologous groups.

3.4 Comparing different methods

Methods based on only sequence similarity searching are still the most used to detect

homology and to transfer annotation in proteins. Although, they do not achieve good per-

formance on remote homologous proteins, their heuristics provide a feasible computational

time. Generative methods, that previously compute a probabilistic model for each protein

family, are seen as an alternative to the traditional methods, since their computational

time remains acceptable while better performance is achieved. However, they still fail in

detecting remote homologous proteins. On the other hand, discriminative methods that

model the difference between members and non-members of given protein family are more

effective for remote homology detection, but their computational time make them not

applicable to the large-scale protein annotation and classification. In conclusion, remote

homology detection problem is still a challenge for computational biology and there is not

a method that works well in all cases.
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ILP-SVM Homology

In this chapter we describe the ILP-SVM Homology method, a computational framework

for remote homologous protein classification that combines inductive logic programming

and propositional models. In section 4.1, we present our motivation for the combination of

different models and introduce the framework. In section 4.2, we describe the framework

and in section 4.3 we present and discuss the results. The conclusion of this work is

presented in section 4.4.

4.1 Background

SVM methods (reviewed in section 3.3.1) are among the most effective and accurate meth-

ods for solving the remote homology detection problem. They classify query sequences as

member or non-member of homologous proteins, but they do not provide any insight to

the user concerning the reasons for the separation. Moreover, SVM is not able to work

directly over relational data. However, biological data is naturally relational. For exam-

ple, a specific amino acid in a protein could belong to an α-helix and at the same time

belong to the active site of that protein. Therefore, methodologies that explore relational

data are expected to be more suitable to deal with biological data. In this vein, we focus

our attention on Inductive Logic Programming (ILP) [43], see section 3.3.2. Through ILP

we can relate properties of the homologous protein, and represent background knowledge

for a protein family. From these an ILP system can learn a hypothetical logic program

that summarizes essential rules that can help to understand what determines a protein

function. Remote homologous proteins seem to share only the essential properties in order

to keep their function, and these properties can be represented by first-order logic predi-
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cates. For instance, Figure 4.1 shows the partial alignment of “Glucocorticoid receptor-like

(DNA-binding domain)” superfamily sequences. The sequence identity of this alignment is

smaller than 30%. We can observe that some positions are completely conserved (marked

by ∗). Also, there are positions which are partially conserved (marked by •). Methods that

have the ability of exploring only these positions most likely will outperform the methods

that consider the whole alignment, since non-conserved positions could add noise to the

model. For these reasons, we believe that the combination of these two approaches can

improve the performance of remote homology detection.

|
20

* * *

YGVYSCEGCKGFFKRTVRKDLTYT--CRDNKDCLIDKRQRNR
YGVRTCEGCKGFFKRTVQKSAKYI--CLANKDCPVDKRRRNR
YGVSACEGCKGFFRRSIQKNMIYT--CHRDKNCVINKVTRNR
YGVHACEGCKGFFRRSIQQNIQYKR-CLKNENCSIVRINRNR
YRCITCEGCKGFFRRTIQKNLHPSYSCKYEGKCVIDKVTRNQ
FDYVICEECGKEFMDSYLMDHFDLPTCDD---CRDAD-----
FDYVICEECGKEFMDSYLMNHFDLPTCDN---CRDAD-----
----LCMVCKKNLDSTTVAVHGDEIYCKS---CYGKKYGPKG
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----RCAKCGKSLESTTLADKDGEIYCKG---CYAKNFGPKG
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---NKCGACGRTVYHAEEVQCDGRSFHRC---CF--------
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Figure 4.1: Partial alignment of “Glucocorticoid receptor-like (DNA-binding
domain)” superfamily sequences.

As described before, ILP has already been applied to the protein classification task

[45, 47, 44, 46], and we shall review these methods in section 3.3.2. Methods presented in

[46, 47] have combined ILP and propositional models (Decision Trees) to predict protein

functions. Our work is based on the same basic approach. However, there are significant

differences. First, we have proposed a novel first-order logical representation based on

conserved amino acid positions in a multiple sequence alignment (MSA). Second, we have

related the first-order logical representation based on sequence properties, proposed in

[46, 47, 88], with our novel representation based on conserved positions for creating a

hybrid representation that takes into account conserved physico-chemical positions in a

MSA. Third, we have joined features created by these representations to train propositional

models. In a general way, this combination of features has improved the performance of
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models. Fourth, we have proposed to use SVM as propositional machine learning method

rather than DTs.

An overview of our methodology is showed in Figure 4.2. It is divided into two

parts: a training phase (Figure 4.2-A) and a test phase (Figure 4.2-B). In the training

phase, each sequence in the positive training set is represented through first-order logic

predicates. WARMR [89], an ILP system, learns logical rules on the set. These rules

are converted into binary attributes in order to train propositional models; this step is

called propositionalization. Next, each sequence in the positive and negative training set

is represented through binary attributes, and finally propositional models, such as DTs or

SVM, are trained. In the test phase, each sequence in the positive and negative test set is

represented through binary attributes that correspond to the logical rules learned during

the training phase. Next, the propositional model is tested and its output is divided into

sequences classified as positives and sequences classified as negatives.

Positive training set Negative training set

WARMR Logical Rules

Training of the
Propositional Model

A)

Positive test set Negative test set

Sequences classified 
as positives

Training phase

Binary
representation

First-order logic 
representation

Construction of the 
binary representation

First-order logic 
representation

First-order logic 
representation

B) Test phase

Propositionalization

Convertion of logical rules
into binary attributes

Test of the
Propositional Model

Binary
representation

Construction of the 
binary representation

Propositionalization

 Logical rules converted
into binary attributes during 

the traning phase

Sequences classified 
as negatives

First-order logic 
representation

First-order logic 
representation

Figure 4.2: ILP-SVM-Homology flowchart.
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4.2 Methods

Here, we present our approach in detail. First, we describe the benchmark used for

performing our experiments (section 4.2.1). Second, we present the first-order logical rep-

resentations for protein sequences (section 4.2.2), a step that is essential for using ILP

systems. We present three kinds of logical representations. The first, named sequential,

is based on properties coming directly from sequences. This representation being already

proposed in previous works [46, 47, 88]. The second, named alignment, is based on con-

served amino acid positions in a MSA. In the third representation, we related the first two

representations creating a new one that takes into account conserved physico-chemical

positions in a MSA as well. To the best of our knowledge the second and the third logical

representations have been proposed here for the first time. Third, we present WARMR,

the ILP system used here to learn logical rules, and explain how these rules are converted

into binary attributes to train propositional models. Fourth, we describe the method-

ology used to assess and compare different methods (section 4.2.4). Finally, we discuss

parameter settings and tools used in this work (section 4.2.5).

4.2.1 Dataset description

In order to evaluate our methodology we used a common superfamily benchmark, that

is the SCOP database [8]. SCOP is a reference dataset for evaluating the performance

of remote homology detection methods [38, 40, 19, 32, 37]. SCOP classifies all protein

domains of known structure into a hierarchy with four levels: class, fold, superfamily, and

family. In our study, we work at the superfamily level: it groups families for which a

common evolutionary origin is not easily deduced from sequence identity, but rather from

an analysis of structural and functional features. To provide a good comparability with

previous approaches, we used the same database version used in [40, 37, 38, 32, 30, 28].

It contains 54 families and 4352 proteins selected from SCOP version 1.53. All protein

sequences were extracted from the Astral database [90] and all pairwise alignments have

E-value no greater than 10−25.

We adopted the leave-one-family-out experimental methodology, as used in previous

works. Thus, the sequences of each SCOP family are taken as positive test samples, and
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the proteins outside the family but within the same superfamily are taken as positive

training samples. Negative samples are selected from outside of the superfamily and are

separated into training and test sets. Previous works have considered random samples

by splitting the remaining SCOP database (that is, SCOP minus the positive dataset)

into training and test respecting the same ratio as the positive samples. This strategy

produces unbalanced datasets: negative instances far outnumber the positive instances.

For example, for the family test set “Nuclear receptor” in the “Glucocorticoid receptor-like

(DNA-binding domain)” superfamily, there are 20 positive training sequences and 3204

negative training sequences. We show the complete list with the distribution of positive

and negative samples in Table 4.1. If an unbalanced dataset is used to train a classifier,

this latter will tend to predict that most of the incoming data belong to the majority class,

that is the negative class. As a result, it would present poor predictive accuracy over the

minority class, that is the positive one. To the best of our knowledge, previous works do

not use a performance measure that evaluates the predictive accuracy over the minority

class. They have used the area under the ROC curve (AUC-ROC) as performance measure,

and AUC-ROC can present an excessively optimistic view on the algorithm performance

when there is a large difference between positive and negative sample distributions [91].

We showed this behavior in Table 4.2, where the AUC-ROC presents higher values than

the area under the Precision-Recall curve (AUC-PR). Moreover, methods as “ILP-SVM-

Seq” and “ILP-SVM-Alncons”, appear to be comparable in ROC Space, while in PR space,

“ILP-SVM-Alncons” has a clear advantage over “ILP-SVM-Seq”.
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Table 4.1: Distribution of positive and negative samples for the original unbal-
anced database.

SCOP Family Tr+ Tr− Te+ Tr−
7.3.5.2 12 2330 9 1746
2.56.1.2 11 2509 8 1824
3.1.8.1 19 3002 8 1263
3.1.8.3 17 2686 10 1579
1.27.1.1 12 2890 6 1444
1.27.1.2 10 2408 8 1926
3.42.1.1 29 3208 10 1105
1.45.1.2 33 3650 6 663
1.4.1.1 26 2256 23 1994
2.9.1.2 17 2370 14 1951
1.4.1.2 41 3557 8 693
2.9.1.3 26 3625 5 696
1.4.1.3 40 3470 9 780
2.44.1.2 11 307 140 3894
2.9.1.4 21 2928 10 1393
3.42.1.5 26 2876 13 1437
3.2.1.2 37 3002 16 1297
3.42.1.8 34 3761 5 552
3.2.1.3 44 3569 9 730
3.2.1.4 46 3732 7 567
3.2.1.5 46 3732 7 567
3.2.1.6 48 3894 5 405
2.28.1.1 18 1246 44 3044
3.3.1.2 22 3280 7 1043
3.2.1.7 48 3894 5 405
2.28.1.3 56 3875 6 415
3.3.1.5 13 1938 16 2385
7.3.10.1 11 423 95 3653
3.32.1.11 46 3880 5 421
3.32.1.13 43 3627 8 674
7.3.6.1 33 3203 9 873
7.3.6.2 16 1553 26 2523
7.3.6.4 37 3591 5 485
2.38.4.1 30 3682 5 613
2.1.1.1 90 3102 31 1068
2.1.1.2 99 3412 22 758
3.32.1.1 42 3542 9 759
2.38.4.3 24 2946 11 1349
2.1.1.3 113 3895 8 275
2.1.1.4 88 3033 33 1137
2.38.4.5 26 3191 9 1104
2.1.1.5 94 3240 27 930
7.39.1.2 20 3204 7 1121
2.52.1.2 12 3060 5 1275

Continued on next page
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SCOP Family Tr+ Tr− Te+ Tr−
7.39.1.3 13 2083 14 2242
1.36.1.2 29 3477 7 839
3.32.1.8 40 3374 11 927
1.36.1.5 10 1199 26 3117
7.41.5.1 10 2241 9 2016
7.41.5.2 10 2241 9 2016
1.41.1.2 36 3692 6 615
2.5.1.1 13 2345 11 1983
2.5.1.3 14 2525 10 1803
1.41.1.5 17 1744 25 2563

Table 4.2: AUC-ROC and AUC-PR for ILP-SVM models trained from the
original unbalanced database.

AUC-ROC AUC-PR
ILP-SVM-Seq 0.81 0.10
ILP-SVM-Alncons 0.83 0.21
ILP-SVM-Seq-Alncons 0.85 0.22

Our analysis of protein sequence-identity in this unbalanced database, see Figure

4.3-A (right), shows that around 46% of protein pairs have at least 30% of sequence-

identity. Also, around 25% have sequence-identity between 90 and 100%, Figure 4.3-A

(left). Moreover, we observed a bias in the composition of negative and positive classes:

pairs of sequences in the negative set have, on average, higher sequence-identity than

pairs of sequences in the positive set. This average is 22% for positive sequences, 4.3-B

(right), against 57% for negative sequences, 4.3-B (left). We argue that this unbalanced

database is not appropriate to evaluate the performance of remote homology detection

methods, mainly because negative sequences are not into the Twilight Zone. Thus, we

adopted a new experimental methodology to train and to test discriminative methods

applied to the remote homology detection problem. The positive samples were taken

as before, that is, within a SCOP superfamily. However, several negative samples were

constructed by randomly selecting sets of sequences from the remaining SCOP database

of size that is comparable to the size of the positive set. We constructed as many negative

samples as it is needed to statistically cover the remaining SCOP database. For this, let
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Tr+ and Te+ be sizes of positive training and positive test sets, respectively. Also, let

D∗ = D − (Tr+ + Te+) be the size of the remaining SCOP database, where D is the total

number of sequences in the SCOP database. Thus, we repeated the random selection of

negative samples T times, where T is given by equation 4.1.

T = bD∗/min(Tr+,Te+)c, (4.1)
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Figure 4.3: Analysis of sequence-identity for the original unbalanced database.

In order to examine more systematically the performance of remote homology de-

tection methods, we produced a database of sequences from the original one getting only

sequences with identity smaller than 30%. It is named S30 and the original database Sfull .

S30 contains 25 families and 2362 sequences.

4.2.2 Logical representations

In order to use ILP systems, such as WARMR, first we have to represent each training and

test examples as relational data. Good ILP overviews, including first-order logic concepts,

can be found in [43, 92, 93]; we describe them briefly in the section 3.3.2. We created
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three kinds of predicates, the first, called sequential predicates, represent each protein in

terms of its physico-chemical properties and the frequency of their amino acids (taken

alone or in pairs). The second, called alignment predicates, are based on conserved amino

acid positions within a protein MSA. Additionally, we related both predicates to represent

conserved physico-chemical positions within a protein MSA. The next sections explain

them in detail.

Sequential predicates

The sequential predicates are based on properties that can be calculated directly from se-

quences. These include groups of amino acids that share some physico-chemical properties

as done in [88], see Table 4.3 from property 1 to 16. Additionally, we created predicates

to represent the distribution for singles and pairs of residues as done in [44, 45, 46, 47],

showed in Table 4.3 properties 17 and 18. All predicates used in this study are listed in

Table 4.3, where X is the sequence identifier, Y is the percentage of amino acids with

some physico-chemical property. For the predicate aminoacidRatio(X ,W ,Y ), X is the

sequence identifier, W is an amino acid, and Y is the percentage of amino acid W within

sequence X. For the predicate aminoacidPairRatio(X ,W ,Y ), X and Y are defined as

before, and W is a pair of amino acids. The variable Y can assume only numerical values,

however ILP systems such as WARMR are not very suitable for handing with numerical

values. To overcome this limitation we map each percentage value Y to bY /10 c+ 1 , as

done in [46, 47].

Alignment predicates

Additionally, we created a predicate based on conserved positions in a protein MSA. The

predicate that represents each alignment position is col(X ,W ,Z ), where X is the sequence

identifier, Z is the alignment position where the amino acid W belongs. To illustrate how

these predicates are created, see Figure 4.4. The sequences in the positive training set

(S+) are aligned and a ground predicate is created for each amino acid in each alignment

position. For example, the ground predicate col(s1 , v, 1 ) means that the sequence s1 has

the amino acid v in the first alignment position.

The creation of these ground predicates for the sequences of the positive training
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Table 4.3: Sequential Predicates.

Property {amino acid set} Predicate
1- small {A,G,S,T} small(X,Y)
2- polar {D,E,H,K,N,Q,R,S,T,W,Y} polar(X,Y)
3- polar uncharged {N,Q} polarUncharged(X,Y)
4- aromatic {F,H,W,Y} aromatic(X,Y)
5- charged {D,E,H,I,K,L,R,V} charged(X,Y)
6- positively charged {H,K,R} positivelyCharged(X,Y)
7- negatively charged {D,E} negativelyCharged(X,Y)
8- tiny {A,G} tiny(X,Y)
9- bulky {F,H,R,W,Y} bulky(X,Y)
10- aliphatic {I,L,V} aliphatic(X,Y)
11- hydrophobic {I,L,M,V} hydrophobic(X,Y)
12- hydrophilic basic {K,R,H} hydrophilicBasic(X,Y)
13- hydrophilic acidic {E,D,N,Q} hydrophilicAcidic(X,Y)
14- neutral weakly hydrophobic {A,G,P,S,T} neutralWeakHydrophobic(X,Y)
15- hydrophobic aromatic {F,W,Y} hydrophobicAromatic(X,Y)
16- acidic {E,D} acidic(X,Y)
17- amino acid ratio aminoacidRatio(X,W,Y)
18- amino acid pair ratio aminoacidPairRatio(X,W,Y)

v s e g

v t c g

1 2 3 4
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s2

Alignment positions

Alignment of positive 
training sequences

Logical atoms for s1  
col(s1, v, 1), col(s1, s, 2),

Logical atoms for s2 

col(s2, v, 1), col(s2, t, 2)
col(s2, c, 3), col(s2, g, 4)col(s1, e, 3), col(s1, g, 4)

 Positive training 
Sequences (S+)

Figure 4.4: Creating ground predicates from alignment positions.

set is a trivial task, since they can be extracted directly from the MSA. However, how can

we create ground predicates for the query sequences? We aim to find out how a query

sequence is aligned in respect to the positive training alignment (homologous proteins).

If the query sequence is closely matched to the positive training alignment, probably this

suggests much higher conservation than for a query sequence weakly matched. Therefore,

we must fix the positive training alignment and align a query sequence against it, that

is, we aligned each query sequence with the consensus sequence of the positive training



4.2. Methods 53

alignment. To do this, we built a pHMM (see section 3.2.2) from the positive training

alignment, and used it for matching the query sequences.

To illustrate the logical representation, observe Figure 4.5. First, the positive train-

ing sequences are aligned (Figure 4.5-A). Second, a pHMM is built from this alignment.

Note that, each alignment position corresponds to a pHMM state: match (M), insert (I)

and delete (D), see Figure 4.5-B. Third, Viterbi algorithm (see 3.2.2) is used to align a

query sequence q1 with the pHMM. Viterbi provides the pHMM’s state sequence that

better has recognized the query sequence (Figure 4.5-C). Since, we know the mapping

between alignment positions and pHMM states we can create ground predicates for q1 in

a similar way to Figure 4.4, see Figure 4.5-D.

Alignment Positions
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training sequences
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...
sM

1 2 3 .... L
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v g e ... ... tq1

M1 I1 M2 ... ... MN Viterbi of sequence q1
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A)

D)
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Figure 4.5: Using pHMMs to create ground predicates for alignment positions.

Relating sequential and alignment predicates

Through first-order logic, new knowledge statements can be extracted from data relations.

For example, observe position 34 in the alignment shown in Figure 4.1. All amino acids in

this position are small (see Table 4.3) thus, we can learn a logical rule that relates position
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34 to small amino acids (see R6 in Table 4.7). This rule allows us to introduce the new

concept of “conserved physico-chemical position” in a MSA.

4.2.3 Construction of propositional classifiers

In our approach we aim to build models that will be able to explore the most frequent

patterns in the homologous protein datasets. As a first step we run WARMR program to

learn these most frequent patterns on the positive training set. The WARMR algorithm

discovers frequent patterns on databases applying an extended version of APRIORI algo-

rithm [94]. WARMR learns association rules over multiple relations in relational datasets.

Basically, WARMR algorithm works as a filter on all possible rules selecting, for example,

those rules with confidence above a threshold. The confidence of an association rule is

a percentage value that shows how frequently the rule occurs. In other words, the con-

fidence value indicates how reliable this rule is. As a second step (propositionalization

step), we converted each rule learned by WARMR into a binary attribute (feature) for

the training of propositional learning methods. An attribute ai has value 1 for a specific

protein sequence if the corresponding query ri succeeds, and 0 if the query fails. Finally,

we trained two propositional models from these attributes, DTs and SVMs.

4.2.4 Comparison between different methods

To statistically analyze remote homology detection methods, we run them several times

over the same positive set, but over several negative sets. In each run the number of

positive samples is equal to the number of negative samples. Since datasets are now

balanced curves in the AUC-PR space are similar to curves in the AUC-ROC space [91].

Therefore, we just show AUC-ROC as the classification accuracy measure. For each protein

family, the AUC-ROC score was averaged over T runs (see equation 4.1), and the overall

performance of each method was averaged over all families.

4.2.5 Parameter settings and tools used

We used CLUSTALW [95] version 2.0.10 in order to provide the positive training align-

ments. The CLUSTALW parameters were kept at default. We used HMMer [78] version

2.3.2 (default parameters) to build the pHMMs from positive training alignments. These

pHMMs were used to score query sequences and their output was used to construct logi-
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cal representations based on alignment positions. In order to learn logical rules we used

WARMR. The confidence parameter (c%) of the WARMR filters the most frequent pat-

terns, that is, only those with frequency above c% are considered. We tested several

threshold values for c% and the best results were obtained with 25% for logical represen-

tations based on sequential properties and based on conserved amino acid positions, and

50% for the representation based on conserved physico-chemical positions.

Next, the rules generated by these representations were converted into binary at-

tributes for training propositional models. We have created two kinds of propositional

models: DT and SVM. For SVM we have used the publicly available Gist SVM pack-

age version 2.1.1 http://svm.sdsc.edu. We used radius basis function as kernel func-

tion and other parameters by default, and DT models were built using the WEKA

software (default parameters) available in http://www.cs.waikato.ac.nz/~ml/weka/

index_downloading.html. In order to compare our approach with state of the art

methods, we consider SVM-LA [32], SVM-Ngram-LSA [38], PSI-BLAST and HMMer-

3.0. SVM-LA is a complex method kernel that defines a similarity measure between

protein pairs by summing up scores obtained from their local alignment. The SVM-

LA parameters were kept as default. SVM-Ngram-LSA extracts N-gram from protein

sequences and uses them to train a SVM model. To consider only the most signifi-

cant N-grams it applies Latent Semantic Analysis (LSA), which is a feature extraction

technique from natural language processing. We downloaded SVM-Ngram-LSA from

http://www.insun.hit.edu.cn/news/view.asp?id=413 and used it with parameters de-

scribed in [38]. HMMer-3.0 was trained from MSAs produced by CLUSTALW, and all

parameters were kept as default. PSI-BLAST was ran on two configurations: in the first,

we used the same dataset used to train the other methods and 4 iterations; in the second

we used nrdb90 and 20 iterations. We also considered to compare to Top-N-gram [40], a

recent work that applies SVM to the remote homology detection problem. However, the

program was unavailable. We used chi-square as a feature selection approach, and we set

the parameter δ to 0.05 and 0.25 values, as done in [89], δ specifies the confidence level

for the chi-square test selection. We carried out rank-sum test [96] to compare the curves

showed in Figure 4.6.

http://svm.sdsc.edu
http://www.cs.waikato.ac.nz/~ml/weka/index_downloading.html
http://www.cs.waikato.ac.nz/~ml/weka/index_downloading.html
http://www.insun.hit.edu.cn/news/view.asp?id=413
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Table 4.4: Average AUC for Sfull and S30 databases.

Methods Sfull S30
ILP-SVM-Seq 0.79 0.77
ILP-SVM-Alncons 0.81 0.81
ILP-SVM-Alnps 0.80 0.81
ILP-SVM-Seq-Alncons 0.85 0.80
ILP-SVM-Alncons-Alnps 0.82 0.82
ILP-SVM-Seq-Alncons-Alnps 0.87 0.82
ILP-DT-Seq 0.67 0.65
ILP-DT-Alncons 0.70 0.69
ILP-DT-Alnps 0.68 0.67
ILP-DT-Seq-Alncons 0.72 0.69
ILP-DT-Alncons-Alnps 0.71 0.71
ILP-DT-Seq-Alncons-Alnps 0.74 0.71
SVM-Ngram-LSA 0.79 0.77
SVM-LA 0.87 0.80
PSI-BLAST 0.75 0.69
HMMer-3.0 0.63 0.60

4.3 Results and Discussion

In order to assess our methodology, we have trained DTs and SVMs using representa-

tions described in Methods (section 4.2.2). We called Seq those models that are trained

from sequential properties only, and we named Alncons those models that are trained from

conserved amino acid positions in a MSA. We have created a hybrid representation that

takes into account conserved physico-chemical positions in a MSA (see R6 in Table 1),

the resulting models were called Alnpc, where pc is an abbreviation for physico-chemical

properties. Additionally, we created models by joining Seq, Alncons and Alnpc features.

We named ILP-SVM and ILP-DT models trained from our methodology. Table 4.4 sum-

marizes results (see also Figure 4.6 that shows only ILP models with best performance).

ILP-DT models did not reach good performance on Sfull and S30 databases (see Meth-

ods). ILP-SVM-Seq-Alncons-Alnpc models outperformed all other ILP methods for both

databases.

We highlighted that the novel logical representation, based on conserved amino acid

positions (Alncons) and based on conserved physico-chemical positions (Alnpc) in MSA,

that we propose here, is able to achieve better prediction accuracy than the sequential
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logical representation commonly used by related works. This result is expected since it

is known that MSAs contain more functional and structural information than properties

extracted from unaligned sequences. On the one hand, the combined models (Seq-Alncons,

Alncons-Alnpc and Seq-Alncons-Alnpc) were able to attain better accuracy than single models

(Seq, Alncons and Alnpc) for the Sfull database. On the other hand, for the S30 database,

the sequential logical representation does not contribute to improve the model perfor-

mances. Based on the observation that MSA information is richer than sequential prop-

erties, we tested the hypothesis that below 30% of sequence-identity, MSA information is

still rich enough to build accurate models and that sequential properties might add noise

within combined models. In fact, we observed that ILP-SVM-Alncons outperformed ILP-

SVM-Seq-Alncons, while ILP-SVM-Seq-Alncons-Alnpc and ILP-SVM-Alncons-Alnpc achieved

a similar performance.

When we compare ILP-SVM models with ILP-DT models, all ILP-SVM models

outperformed ILP-DTs. In fact, SVMs are often more accurate than DTs. We observed

that ILP-DTs have produced fewer and simpler rules for both databases and they presented

a poorer classification on test examples. In order to provide a comparison with [46, 47], we

considered for comparison the ILP-DT-Seq model, since it uses all properties handled in

[46, 47], except those predicted from sequences, such as secondary structure. Our results

show that all models proposed here outperformed ILP-DT-Seq for both databases.

When we combine the representations the number of features can increase creating

sparse data. However, this can be avoided by using a feature selection technique. Here,

we applied chi-square statistical test to remove class uncorrelated rules. We set δ for 0.05

and 0.25, see Methods. Table 4.5 shows how AUC values vary according to δ and without

the chi-square test. We can observe that for most methods the performance was kept with

δ=0.05 with a significant reduction in the number of features. On the other hand, δ=0.25

worsened the performance for all methods. In fact, for some families δ=0.25 removed all

logical rules.

We compared our best models, that is, those trained from Seq-Alncons-Alnpc features,

with two models based on SVM (SVM-Ngram-LSA [38] and SVM-LA [32]), and also

with two other widely used methods: HMMer-3.0 [78] and PSI-BLAST [12]. We carried

out rank-sum tests [96] to compare models listed in Figure 4.6, and we show in Table
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4.6 statistical measures for this comparison, we consider a result with p ≤ 0.05 to be

significant.. For both databases, ILP-SVM-Seq-Alncons-Alnpc outperformed SVM-Ngram-

LSA, PSI-BLAST and HMMer-3.0, and achieved comparable performance to SVM-LA.

ILP-DT-Seq-Alncons-Alnpc model achieved better results than HMMer-3.0, and achieved

similar performance to PSI-BLAST. Based on ILP-SVM-Seq-Alncons-Alnpc performance,

we can conclude that the combination of alignment information and sequence properties,

and the strategy of selecting only the most important features can yield a more accurate

model than those that explore all alignment positions, as HMMer-3.0 and PSI-BLAST,

and those that extract Ngram from unaligned sequences, such as SVM-Ngram-LSA.

Although the results show that ILP-SVM-Seq-Alncons-Alnpc outperformed some state-

of-art methods, we emphasize that the performance of PSI-BLAST depends on the number

of iterations and on the size of the database used to build the profiles. Thus, to extract

the maximum performance of PSI-BLAST, we adopt the semi-supervised training strategy

and we used nrdb90 as unlabeled database and set the number of iterations to 20, as done

in [42]. Unsurprisingly, it performed better than our ILP-SVM models. For example, PSI-

BLASTnr20 achieved a AUC of 0.88 for the database Sfull and 0.83 for the database S30 .

Certainly, methods trained from the nrdb90 database are expected to build more accurate

models and be more effective in annotating remote homologous proteins. However, the

computation time of methods that adopt semi-supervised training depends on size of the

unlabeled database. Therefore, PSI-BLAST run on this configuration is computational

time consuming. In conclusion, when supervised training strategy is employed ILP-SVM

methods obtain better or comparable performance than its competitors.

In order to provide an example of the biological interpretation of the logical rules

constructed by WARMR, we show in Table 4.7 some rules which have been learned on

members of the “Glucocorticoid receptor-like (DNA-binding domain)” superfamily. Note

that, we show in Table 4.7 (top) original rules learned by WARMR, and 4.7 (bottom) their

interpretation. Rules R1, R2 and R3 were learned from conserved amino acid positions

(Alncons) and R6 from conserved physico-chemical positions (Alnpc), see Figure 4.1, while

rules R4 and R5 were learned from sequential properties. These rules represent only the

conserved properties of “Glucocorticoid receptor-like (DNA-binding domain)” superfamily

members, that is, these rules catched essential features identifying the superfamily mem-
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Table 4.7: Some logical rules learned by WARMR on “Glucocorticoid receptor-
like (DNA-binding domain)” sequences (see Figure 4.1).

WARMR output

R1 : Homologous(A):- col(A,c,24), col(A,c,27), col(A,c,51) 1.0
R2 : Homologous(A):- col(A,c,45) 0.7
R3 : Homologous(A):- col(A,k,29) 0.45
R4 : Homologous(A):- hydrophobic(A,2) 0.7
R5 : Homologous(A):- aminoacidPairRatio(A,cg,1) 0.77
R6 : Homologous(A):- col(A,B,34), small(B) 1.0

Interpretation

R1 : 100% of homologous proteins have the C amino acid in positions 24, 27 and 51.
R2 : 70% of homologous proteins have the C amino acid in position 45.
R3 : 45% of homologous proteins have the K amino acid in position 29.
R4 : 70% of homologous proteins have between 10 and 20% of hydrophobic amino
acids.
R5 : 77% of homologous proteins have at least 1 pair of CG. R6 : 100% of homologous
proteins have a small amino acid in positions 34.

bers. This was possible by using first-order logic predicates to represent the properties of

each superfamily member, and by applying ILP in order to filter the essential features.

4.4 Conclusion

We have combined ILP and propositional models for improving the accuracy of remote

homology detection methods. Our approach can be segmented into three parts. First,

training sequences are represented through first-order logic predicates. Similar to [46,

47, 88], we have used a representation based on sequence properties. Additionally, we

introduced a novel representation based on conserved amino acid positions in protein

alignments. Also, we related the logical representation based on sequential properties

with our logical representation based on conserved positions creating a new representation

for conserved physico-chemical positions in a MSA. Second, we executed WARMR, an ILP

system, in order to find only the most frequent patterns in our training set. Third, the

logical rules learned in the previous stage were converted in binary attributes for training

propositional models. Here, we applied decision trees and the widely used support vector
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machine as propositional methods.

Our methodology is partly similar to the study developed in [46, 47]. However, we

proposed a novel logical sequence representation based on conserved positions in MSA;

we combined this representation with the logical representation based on sequence prop-

erties only, proposed in [46, 47, 88]; we applied SVMs rather than DTs. We showed that

the prediction performance of our method, that uses logical representation of alignment

information, is better than the prediction performance of our models trained only on the

sequential representation. Also, the combined representations improved the performance

of ILP-DT models in any sequence identity range and the performance of ILP-SVM for

the original database. We carried out comparisons among the models proposed here with

models based on SVM (SVM-Ngram-LSA and SVM-LA), a model closer to the model pro-

posed in [46, 47], that is, ILP-SVM-Seq, HMMer-3.0 and PSI-BLAST. Our experiments

showed that for the same data set, ILP-SVM models achieves a superior or a compa-

rable performance for any sequence identity range. In particular, our method produces

a human-understandable output that can provide insights about conserved features of

protein families.

We can conclude that the first-order logic language is suitable to represent conserved

protein properties, and that from this representation, an ILP system can learn the es-

sential rules that discriminate between homologous and non-homologous proteins. Our

methodology supports the intuition that proteins with remote evolutionary relationship

have suffered several mutational events, and that only essential amino acids and their

physico-chemical properties are kept in evolved sequences. Thus, computational meth-

ods that explore only the conserved positions are more suitable to the remote homology

detection problem than the methods that explore all amino acids within sequences.

We have confirmed through this study that conserved alignment positions play an im-

portant role in recognizing remote homologous proteins contrary to sequential properties

extracted from unaligned sequences. We highlight that sequential properties can be useful

for helping to identify remote homologous proteins, however, when the sequence identity

is smaller than 30%, this information might become noise and worsens the performance
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of methods, as we observed for ILP-SVM-Seq-Alncons.

Another advantage of our methodology is the simplicity to include additional sequence

properties. For this we can create a new predicate that represents the property and no

modification of the algorithm is necessary. In this study, we used only properties that

can be extracted directly from sequences or from conserved alignment positions. We

considered a limited number of amino-acid physico-chemical properties (only 16), since

our logic sequential representation is based on previous ones [46, 47]. However, the Amino

Acid Index Database [?] has defined amino acid numerical indices for more than 500

different kinds of physico-chemical properties. Some methods used these indices to train

SVM and achieved a good performance [42]. Thus, we intend to create a logic sequential

representation that takes into account properties of the Acid Index Database. Other

points that we would like to explore are: the presence of short hydrophobic blocks in

homologous proteins, as well as, structurally conserved amino acids [19], and functional

amino acids, that is, active and binding sites. Moreover, we would like to replace WARMR

with MineSeqLog [97]. MineSeqLog is an extension of WARMR that works on sequences

where each sequence is an ordered list of ground predicates. This approach seems to be

more suitable to deal with protein sequences, since the amino acid order is taken into

account. PSI-BLAST performs better when run on nrdb90 with 20 iterations, and the use

of PSI-BLAST output, as done in [40], to train our models provides another path to be

explored.



Chapter 5

CASH - Combination of
Annotations by Species and
pHMMs

In this chapter we present CASH, a large-scale pipeline for remote homologous

protein annotation. CASH combines several computational approaches and explores in a

more sophisticated way protein properties in order to provide a system for annotation of

divergent protein sequences. In section 5.1, we discuss the problem of protein annotation

in highly divergent genomes, like P. falciparum, and we present our motivation for the

developing of the method. In section 5.2, we detail the framework is detailed and in

section 5.3 we present and discuss CASH’ results. The conclusion of this work is presented

in section 5.4.

5.1 Background

Malaria is one of the most debilitating pathogenic infections responsible for the death of

around 800.000 people per year, primarily children and pregnant women in sub-Saharan

Africa (WHO 2010). Fatal malaria is almost exclusively caused by P. falciparum, an or-

ganism eukaryote unicellular. The completion of its genome has opened up a multitude of

avenues for providing enhanced knowledge in the complex mechanisms that contribute to

the development and dissemination of this pathogen along with exploration and identifica-

tion of novel drugs and vaccine targets. However, around 48% of the open reading frames

predicted in this genome, remarkably rich in A and T (on average 85%), remain without

any putative annotation [98, 99, 100, 101, 102]: PlasmoDB [98] (version 8.1) identifies
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2638 proteins with unknown or hypothetical function over 5491 genes.

This poor annotation is due to weak similarity of P. falciparum proteins with the

sequences of known eukaryotic. This can also be consequence of the inefficiency of large-

scale annotation tools that still are based on simple and fast similarity search method [9],

see section (3.1). More effective tools (generatives methods, see section 3.2) have been

proposed to decrease the number of unknown proteins. These methods create protein

family signatures, for all known family, and try to recognize these patterns into proteins

with unknown function. The most used generative methods construct a profile Hidden

Markov Models (pHMM) to represent a consensus of signals that characterize a given

protein family [50, 103, 65, 63, 13, 104, 105]. However, these tools still largely fail to

detect distant homologous proteins. An alternative is to use discriminative methods, see

section 3.3. Although, these new methods have achieved good performance on bench-

mark databases, they have a significant computational cost to be applied in large-scale

annotation task. Thus, researchers have tried to improve the performance of generative

methods by adding to them extra information, such as phylogenetic [17] and protein struc-

ture information [18, 19]. The coexistence of domains within a protein has revealed to be

another very powerful tool to annotate divergent protein sequences [106], especially for

the P. falciparum genome [24, 107, 25]. However, the number of proteins with unknown

functions in P. falciparum remains high (around 43%) even after domain co-occurrence

analysis. The main reason for this is that relevant signals in homologous sequences might

become too weak to be identified by generative methods that build a single probabilistic

model by representing the protein family consensus. In other words, if sequences within

the protein family are very divergents or if the pool of homologous is biased (too small or

overrepresented by sequences of certain species) this gereral profile can fail in detecting

remote homologous members.

The use of alternative profiles created from ortholog sequences has helped to identify

new general transcription factors in P. falciparum [51]. Motivated by the positive results

of Callebaut et al’s, we proposed CASH [49], a pipeline that construct additional profiles

to represent a single Pfam domain [50]. Contrary to Callebaut et al’s [51] that explored a

very small set of orthologous sequences, we increased the number of sequences what allow

us to explore different evolutionary pathways within the life phylogenetic tree, and possibly



5.2. Methods 67

those of species that are phylogenetically distant from P. falciparum. In our approach,

these additional profiles are combined with existing pHMMs to search for homologous

sequences in P. falciparum genome. The outcomes of those profiles are processed and

transformed into features used to train a meta-classifier (Support Vector Machine (SVM))

that assigns a confidence score to the domain predictions. Based on this score and on

other properties, as domain co-occurrences, CASH finds the most probable architecture

(domain arrangements) for each P. falciparum protein sequence by resolving a multi-

objective optimization problem. CASH have been applied to the P. falciparum genome,

but the framework is highly generic and can be applied to any other genome.

5.2 Methods

Here, we present our approach in detail. First, we describe databases used in this work

(section 5.2.1). Second, we explain our criteria for selection of representative species or

orthologous sequences (section 5.2.2) used to build additional profiles, here called phy-

logenetic models. Third, we explain how Pfam methodology works (section 5.2.3) and

how we modify it including phylogenetic models (section 5.2.4). Fourth, we describe how

to combine those models to produce a more reliable prediction (section 5.2.5). Fifth, we

present a novel algorithm that finds the most likely domain arrangement, for a given pro-

tein sequence to be annotated, taking into account domain co-occurrences (section 5.2.6).

Sixth, we describe how our predictions were obtained (section 5.2.7), how we carried out

comparisons with early results (section 5.2.8), and how our results can be visualized and

interpreted. Finally, we discuss parameter settings and tools used in this work (section

5.2.10)

5.2.1 Databases

Our method extends Pfam, an important collection of protein domains, that has been

widely used for annotating proteins with unknown function. We used version 24 down-

loaded from (http://pfam.sanger.ac.uk) that contains 11912 protein domains. In order

to assess the performance of our method, we applied it to the P. falciparum genome. For

this, we have used PlasmoDB (http://PlasmoDB.org), that is the official repository of

the P. falciparum genome, used as a reference database by malaria researchers. Version

http://pfam.sanger.ac.uk
http://PlasmoDB.org
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8.1 contains 5491 proteins. Note that by “unknown functions" we shall refer to several key

words used in PlasmoDB: unknown function, product unspecified, hypothetical protein,

pseudogene and conserved Plasmodium falciparum protein family.

5.2.2 Selection of representative species from the eukaryotic tree of life

Phylogenetic models were built from 46 species selected from the eukaryotic phylogenetic

tree: (i) 10 species are close to the P. falciparum, and they belong to the alveolata clade,

and (ii) 36 species are spread out the entire eukaryotic tree and represent distant clades.

See complete list in Table A.1 annexe A.

5.2.3 Pfam methodology

Let Di be an arbitrary protein domain in the Pfam database. Di identifies a set of protein

sequences sij that share evolutionary and structural properties, Si = {si1, . . . , sin}. Each sij

is associated to a protein in the Uniprot database [83], that provides a taxonomy for it.

Pfam defines a subset Si∗ that contains only seed sequences, that is, only representative

members of Si. It aligns sequences in Si∗ to build a profile hidden Markov model, pHMMi∗,

that represents the consensus of the seed alignment, and it describes the common features

of the sequences in Si∗. Pfam provides a library of pHMMs, one for each domain. This

library can be used to scan databases of proteins with unknown function localizing regions

of the sequence that belong to known Pfam domains. Figure 5.1 (only solid lines) shows

the Pfam flowchart.
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Figure 5.1: Pfam and CASH flowchart. Pfam methodology is showed in solid lines,
while modifications proposed by CASH are shown in dotted lines.
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5.2.4 Phylogenetic Models

The pHMMi∗ is a probabilistic model explaining how sequences in the seed set Si∗ have

evolved. In contrast, we shall build a number of new models by exploiting information

coming from evolutionary paths associated to specific species. We shall take all sequences

from our 46 selected species (see previous section). If a selected species is not represented

within Si, we shall use a close species following the map established in Table A.1 an-

nexe A. If this is not possible, we randomly choose a new species in Si. Each selected

sequence will be used as a query to search, with PsiBlast, for similar sequences within

the non-redundant protein database (NR). As a result, several probabilistic models are

created, here named, PHMi
1, . . . , PHMi

mi , with mi ≤ 46, and PHM is the abbreviation for

“Phylogenetic Models”, see Figure 5.1 (dotted lines).

5.2.5 Combining Models Predictions

We modify Pfam original library, in such a way that, a single domain Di is now represented

by an ensemble model E ={PHMi
1, . . . , PHMi

mi , pHMMi∗} [108]. Ensembles are usually

build by applying: (i) a single learning algorithm to subsets of the training data, like

Bagging [109] and Boosting [110], or (ii) different learning algorithms to a single dataset,

like Stacking [111, 112]. We combined both approaches to construct E . For this, we trained

two algorithms (PSI-BLAST and HMMer) from different datasets (individual sequences

used as query to train PSI-BLAST, and seed alignments to train HMMer), because this

hybrid approach produces more heterogeneous models.

After the ensemble training phase, we need to combine its output models to produce

a final decision. For this, one can employ plurality voting [113] or meta-learning techniques

[52, 53]. We implemented a meta-learning decision strategy that uses a second classifier

(SVM) trained from features that were obtained by pre-processing outputs of base models,

see schema of Figure 5.2. In general, base model outputs (frequently confidence scores) are

used directly in the training of the second classifier, also called meta-classifier [111]. We

have applied this general approach, but it did not achieve good performance, possibly for

two reasons. First, the high divergence of the Plasmodium Falciparum genome implies that

the distribution of confidence scores in the training set is different from the distribution in

the testing data. Second, our models are very heterogeneous, since they were trained from
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different source data, thus, it is not expected that there is necessarily an agreement among

their predictions. Because of these two observations, any decision strategy that tries to

find a consensus into base model answers is expected to fail. To avoid it, we designed meta-

features which aim: (i) to highlight individual model results, when a consensus among base

models is not observed, and (ii) to provide an indication of the performance of all models.

Base models

SVMi

Final Decision

Pre-processing

Model outputs

Meta-classifier

...

Meta-features

PHM1

C1

i

...
PHMm

Cm

i
i

i

pHMM
Cm + 1

i*

i

Figure 5.2: Meta-classifier for model prediction combination.

We defined five meta-features as follows. Let C = {C1, . . . , Cmi , Cmi+1} be the set of

base models for an arbitrary domain Di, where C1, . . . , Cmi are phylogenetic models, and

Cmi+1 is the pHMMi∗. We let st be a query-sequence that we wish to score against all

models in C, and C∗ a subset of C, where each Cj ∈ C∗ is a base model that best matched

an exclusive segment of st, that is, no two members of C∗ matched overlapped segments.

Thus, for a single st we create x meta-examples, where x is the size of C∗. This is done

because several copies of the domain Di can be found in st and we want to represent each

of them.

To achieve goal (i), we extract from the Cj output three features: the E-value, the hit

length, and a binary feature that indicates if the E-value of Cj is smaller than a threshold

T ′. For goal (ii), we define two features concerning the percentage of models in C that

supports the prediction of Cj . For this, we say that a model Ci supports the prediction

of a model Cj if their matches on st overlap with each other, and the overlapping size is
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greater than 50%. Thus, the fourth meta-feature is defined as the percentage of models

that supports Cj having E-values smaller than a threshold T ′′. The fifth feature represents

the percentage of models that support Cj and that are built from species that belong to

the clade of st. Our motivation is based on the assumption that species of the same clade

tend to share more domains than species of different ones. Note that, we do not penalize

predictions that are obtained from models built from species of distant clades, we just

wish to use this evolutionary information to reinforce the presence of a domain when it is

observed in species close to st. We discuss T ′ and T ′′ thresholds in the section “Parameter

settings and tools used”.

From these five meta-features, we trained a meta-classifier (SVM) to distinguish

between real domains and false predictions. SVM is a linear classifier that discriminates

two classes by finding a large-margin separation among their training samples. We built an

one-vs-rest SVM [114], to conduct binary classifications for each domainDi, independently,

as seen in Figure 5.2. For this, we used as positive training set all sequences in the Si,

except those used in the training of base-models, and we randomly selected negative

training sequences that are not in Si. For both sets, we selected only one sequence per

species to increase the training set diversity. Positive and negative datasets have the same

size, in order to avoid unbalanced sets.

After the training phase, each query sequence st in the P. falciparum genome is

scored by each one of the base models, and the five features are extracted from their

outputs, as indicated in Figure 5.2. Then, the SVMi (trained to recognize the domain Di)

is asked to determine if the domain Di is found in the protein sequence st, and to provide

a confidence score. However, from a biologist’s perspective, it is more valuable to identify

the most likely domains that occur in st and that are not overlapping. This is known

as a multiclass classification problem. To enable a set of one-vs-rest SVMs (one for each

domain) to work with this problem, it is essential to calibrate the output of each classifier

into a confidence measure, like the posterior probability. Since standard SVMs do not

provide such probabilities, we employed Platt’s method [115] to map SVM outputs into

posterior probabilities. As a result, SVM’s probabilities are comparable and one can assign

to st the domain that achieves the highest predictive value, as done in [116]. However,

the tendency of the domains to occur preferentially with a small set of other domains in a
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protein sequence can favor lower confidence domains. Thus, we present in the next section

a novel algorithm to determine the most probable domain arragenment for st that takes

into account domain combinations.

5.2.6 Resolving protein domain architectures

Recently, domain co-occurrence information has been used to improve the performance

of domain recognition methods [20, 21, 22, 23, 24, 25]. Here, we consider two of these

methods that were applied to P. falciparum annotation: CODD (Co-Occurrence Domain

Discovery) [24] and dPUC (domain Prediction using context) [25], see section 3.2.3 for a

revision of these methods.

dPUC presents two advantages over CODD: it takes into account co-occurrence of

repeated domains, and penalizes higher confidence domains without co-occurrence. How-

ever, we believe that there are two points into dPUC’s approach that could be improved.

First, it did not consider multi-domain co-occurrence to compute protein architectures

(its importance is illustrated in Figure 5.3, where two architecture are proposed for a

hypothetical protein p. Suppose that both individual domain scores and pairwise domain

co-occurrence probabilities are slightly better in the first architecture. However, suppose

that the three-domain combination abc has never been observed before, while def is known

to be frequent. Naturally, methods based on only pairwise domain combination will se-

lect the first architecture as the most probable, likely making a wrong decision). Second,

dPUC has combined individual domain scores and co-occurrence information into a very

simplified function, that is then optimized. However, we argue that this combination is

non trivial, and that the function could be more complex: domain and co-occurrence

scores could be weighted, and extra information, like multi-domain combination scores,

could be included. To address these two points, we propose a novel algorithm treating the

protein domain architecture problem as a multi-objective optimization problem.

a

d

Architecture 1

Architecture 2

b c

e f

p

p

Figure 5.3: Importance of using multi-domain combinations.

First, our algorithm enumerates all possible architectures, subjected to the domain
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co-occurrence constraints, and then it elects the architecture that maximizes a set of

objective functions. To do so, let st be a query sequence, Pt be its set of potential Pfam

domains (Figure 5.4-A), L be a list having all domain architectures found in Uniprot [83]

(Figure 5.4-C), G be an interval graph where nodes represent domains in Pt and edges

connect overlapping domains (Figure 5.4-B). Note that, domain overlap is allowed if it is

less than 30 amino acids, and it comprises at most 50% of the match, as done in [106], or if

it was already observed in Uniprot proteins, as done in [25]. We also letMIS(n,G) be the

Maximal Independent Set(MIS) of the graph G containing the node n. We recall that an

independent set is a set of nodes in G, such that no edge connects two vertices in the set,

and that a maximal independent set is a set that is not a proper subset of any independent

set. Our algorithm enumerates all maximal independent sets taking each domain di ∈ Pt

that satisfies the following constraint: a node dj is in MIS(di, G) iff di and dj co-occur,

that is, if both are present in the some architecture in L (Figure 5.4-D). The set of all

feasible solutions is ordered by putting on the top the architecture containing domains with

highest scores. We call this set L′, and from it we wish to find the optimal architecture. For

this, we associate a set of functions to each candidate solution, and we treat this problem

as a multi-objective optimization problem. There exist many methods to find a solution

for this problem [117] and we used a variation of the lexicographic approach proposed

in [118], where objective functions are arranged in order of importance, constraints are

formulated on these functions, and the following optimization problems are solved one at

a time:

Maximize
x∈X

Fi(x)

subject to Fj(x) ≤ Fj(x∗j ) + δj j = 1, . . . , i− 1, i > 1,
i = 1, 2, . . . , I

(5.1)

where i = 1, 2, . . . , I indexes the preferred order of the functions, Fj(x) ≤ Fj(x∗j ) + δj

is a constraint on the jth function, Fj(x∗j ) represents the optimum for Fj , and δj is a

positive constant that defines a value tolerance for each objective function (values for it

are discussed in the next section). For each function Fi, we find the maximum value x∗i ,

such that Fj(x∗i ) ≤ Fj(x∗j ) + δj , for all j < i. Note that, if we set δj = 0, the final solution

is dictated by the initial objective-function ranking process. On the other hand, if we set

δj > 0, we expand the decision region and allow other functions be optimized.
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Figure 5.4: Illustration of CASH computing framework

The lexicographic approach makes sense only iff x∗i can be computed for all Fi’s,

and we ensure this by applying our objective-functions to the list of feasible architectures

L′. We designed four functions according to several objectives: a. To ensure that higher

confidence domains are in the final architecture, we define

F1(x) = arg max{SVMprob(xi)} (5.2)

where xi is a domain contained in some feasible architecture x ∈ L′, and SVMprob(xi) is

the SVM probability for xi. b. To maximize the number of Multi-Domain Co-Occurrences

(MDCO) , we define

F2(x) = MDCO(x), (5.3)

whereMDCO(x) is the multi-domain co-occurrence factor, that is the number of domains

in x co-occuring in L. For instance, observe Figure 5.4-D, F2(acg) = 3, because acg is

found in L (Figure 5.4-C). On the other hand, F2(adg) = 2, because only ad and dg

are found in L. c. Pairwise combinations are useful to decide between two architectures

presenting the same MDCO, and we define

F3(x) = pairDCO(x), (5.4)

where pairDCO(x) counts the number of domain pairs of x that co-occurring in L. d. To

select the architecture with highest score domains, we define
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F4(x) = 1
N

N∑
1

SVMprob(xi) (5.5)

where N is the number of domains in x.

5.2.7 Prediction analysis

In order to filter out false predictions, firstly, we cut off all predictions with domain

coverage smaller than 40%. Secondly, we consider a threshold for SVM probabilities,

so that, a prediction is validated if its SVMprob > 0.5. Moreover, we set a permissive

threshold (SVMprob > 0.05) to validate co-occurrence domain predictions.

We assessed the physico-chemical conservation of our predictions (Table 5.6) by

comparing each sequence predicted to the distribution of amino acids of the multiple

sequence alignment used to build the profiles. For this, we first score each query sequence

st by using CASH library, and then we analyze the hit-match produced by pHMM and

by the phylogenetic profile that better match st. From these hit-matches, we compute

true positive, true negative, false positive and false negative rates for each aligned amino

acid in the st. Then, we calculate performance measures like: accuracy (Acc), sensitivity

(Sen), specificity (Spe) and positive predictive value (PPV).

5.2.8 Comparison with earlier results

We carried out direct comparisons with standard Pfam predictions. With CODD and

dPUC approaches direct comparisons was not possible because of unavailability of the

CODD’s source code, and the incompatibility of dPUC’s code with the version 24 of

Pfam. To provide some comparisons, we compute the percentage of agreement between

their predictions and CASH ones, and the percentage of improvement of CASH on the

Standard Pfam, that was then compared to performance measures provided by CODD

and dPUC.

5.2.9 Visualizing our results

All results are available in a web site at http://www.lgm.upmc.fr/PFAM_annotation/.

The site has a user-friendly interface that allow user search for Pfam domains by using

Pfam accession number or key words, and for P. falciparum proteins by using PlasmoDB

accession number or annotation keywords. The results are shown as a list of proteins that

http://www.lgm.upmc.fr/PFAM_annotation/
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match with search criteria. Previous annotations provided by PlasmoDB and previous

domain predictions suggested by Pfam, CODD, dPuc and CASH are shown for each query

protein. Also, we show graphically protein domain organizations proposed by CASH and

its competitors. If CASH architecture weas already observed in the annotated proteins,

we compare them by highlighting their similarities.

5.2.10 Parameter settings and tools used

We built an ensemble model for each Pfam domain by considering Pfam pHMMs, and by

building additional phylogenetic models. Profiles HMMs were downloaded directly from

the Pfam web site, while phylogenetic profiles were built by taking specific species from the

eukaryotic tree of life as queries to train PsiBlast (version 2.2.23 for 5 iterations) on the NR

database (downloaded in February 2011). In order to detect more potential Pfam domains,

we set a permissive search E-value (100) in both tools, and we turned off the bias filter

in the HMM tool. We combined the predictions of those profiles by training a SVM from

features coming from profile outputs. For SVM, we used the LIBSVM tool [119] (version

.3.0) with default parameters, and we turned on the option “-b” to provide probability

estimates. The software is available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

We designed five features to highlight the best prediction, and to provide a measure

of the performance of all profiles. For a given query sequence st, we set the E-value,

the hit length and we defined a binary feature by setting a restrictive E-value threshold

(T ′ = min(1−30, EvDi), where EvDi is the greatest E-value observed among proteins in

domain Di). From all predictions, we extracted features that concern the percentage of

models that agree with the best prediction. For the fourth feature, we computed the

number of profiles with E-value smaller than T ′′ = 100. For the fifth feature, we just

counted the number of phylogenetic models that were built from species sharing the same

clade with st. If we do not observe predictions coming from close species, we ignore the

feature with no penalization.

In order to find the best domain architecture for a given query sequence, we intro-

duced a novel algorithm that generates a set of feasible architectures based on domain co-

occurrence constraints, and finds the most likely by optimizing the four objective-functions

above. We experimentally set the tolerance values δj for each function Fj (j ≤ 3) Eq. 5.1.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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To favor higher confidence domains we set δ1 = 0.1 if F1(x∗1) > 0.5, otherwise we consider

domain co-occurrence by setting δ1 = 0.25. Since, we wish to maximize the number of

domain co-occurrences, we set δ2 = δ3 = 0.

The phylogenetic tree showed in Fig 5.5A was obtained by combining sub trees

(constructed by joining sequences of two distinct clades) into a super tree [120]. We used

Neighbor Joining [121](contained in the Phylip package version 3.67) to build the su-trees.

The super tree was built by using the program supertree with the algorithm proposed in

[122].

5.3 Results and Discussion

A large number (2638) of P. falciparum proteins has no functional domain annotation in

PlasmoDB and they remain with no putative annotation even after the analysis of known

predictive methods such as (2050) [24, 25]. By comparing our predictions to those obtained

with Pfam version 24 (Pfam24), we observe that for the same range of E-values we perform

better, since the number of proteins remaining with no predictions is significantly smaller

after the CASH application. There are 2312 proteins (Table 5.1, for E-values ≤ 1, where

bold values highlight best performance) in Pfam24 with no identified putative domains,

and with CASH this number has been drastically reduced to 1664, providing the 28.03%

improvement over Pfam. These values describe the impact of CASH on the full genome,

but indeed CASH realizes a domain analysis. Its predictions contribute new information

to single domain proteins as well as multi-domain proteins having a yet unraveled do-

main architecture. Hence, besides finding domains for never annotated proteins, CASH

attempts to complete domain architectures whenever needed.

Table 5.1: Number of proteins with no domain annotation in Pfam and CASH.

E-value Pfam24 CASH Improvement(%)
1e-60 4755 4426 6.92
1e-30 3938 3399 13.69
1e-15 2962 2436 17.76
1e-05 2318 1795 22.56
1 2312 1664 28.03
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To predict domains and domains architectures in P. falciparum sequences we con-

struct several models by using two computational approaches that underlie different evo-

lutionary assumptions. The known profile Hidden Markov Model (pHMM), exploited also

by other annotation approaches like Pfam [50], CODD [24] and dPUC [25], is constructed

to provide a general profile capturing the consensus of homologous sequences. The idea

behind this model is that homologous proteins should share common physico-chemical and

structural features that could be described by a sequence profile based on the entire set

of homologs [11]. Here, we introduce another class of models, called phylogenetic models,

built by taking individual homologous sequences as reference sequences, and by construct-

ing different profiles for each one of these sequences. The idea behind the construction of

these models is that protein evolution pathways are limited due to the numerous structural

and functional constraints that a protein undergoes. This means that the evolutionary

constraints that drive a protein evolution in a specific species and the corresponding sig-

nals identifiable in a sequence, might be more easily detectable by looking closely at the

way some other species found its own evolutionary solution. The hope in doing this is

that single species, possibly very distant from P. falciparum, will share their evolutionary

solutions with P. falciparum. The construction of phylogenetic models constitutes a basic

difference between our approach and those based on pHMM.

The reference sequences generating phylogenetic models were chosen to be represen-

tative of the whole tree of eukaryotic life, see section 5.2.2. We defined a reference tree of

species (Figure 5.5-A) that represents well the Alveolata clade but that spans also across

very distant eukaryotic clades, see list of species in (Figure 5.5-B). The tree was built

from Pfam ribosomal protein families [123] (109 Pfam families coming from small and

large ribosomal subunits, see list of families in B.1 annexe B). Sequences of these families

were divided in 7 groups according to their clades (Alveolata, Amoebozoa, Cryptophyta,

Diplomonadida, Fungi, Kinetoplastida, Metazoa, and Viridiplantae). We considered all 21

pairs of clades, and for each pair, we concatenated as many ribosomal families as possible

to build a subtree. We removed from concatenated sequences those subsequences showing

no similarity, such as N- and C-terminals, if any. The tree was obtained by building a

supertree [122] from the subtrees.

For each Pfam domain and the set of homologous sequences associated to it, we
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Figure 5.5: Reference phylogenetic tree of 46 species.

selected those homologous sequences that belong to the species in the tree, or eventually

searched for homologous sequences that are close to the ones in the reference tree, see sec-

tion 5.2.2. In Figure 5.5-C, we report the distribution of species used to predict domains,

for all Pfam domains and all protein sequences in PlasmoDB. The 50.3% of the contribu-

tion is provided by homologs belonging to the Alveolata clade and the 49.7% of homologs

is provided by other clades and among them Metazoa, Fungi, Viridiplantae and Kineto-

plastida appear as the most represented (see the E-value distribution in Fig. 5.5C). A

non negligeable contribution is also recorded from viruses, bacteria and archaea homologs,

represented by the label other in Figure. 5.5C.

Table 5.2 compares domain predictions obtained by Pfam24 and CASH. The number

of predictions for all P. falciparum proteins (Table 5.2-top) and for all proteins with
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unknown function (Table 5.2-bottom) is reported with respect to a level of confidence

estimated by an E-value (as in Table 5.1). We present in separated columns predictions

with domain co-occurrence (Cooc) and the total number of predictions including those

with no domain occurrence (T). Note that, we detailed CASH predictions by showing how

many are obtained with profile hidden Markov models (pHMM) and with phylogenetic

models (PHM). For phylogenetic models, we reported two values n/m, where n is the

difference between CASH predictions and pHMM predictions and m is the number of

predictions obtained exclusively from phylogenetic models.

Table 5.2: Comparison of CASH and Pfam domain predictions.

Domain predictions for all proteins in PlasmoDB
CASH

Pfam24 Total pHMM PHM
E-value Cooc T Cooc T Cooc T Cooc T
1e-60 297 810 566 1243 119 425 447/255 818/461
1e-30 908 1958 1433 2746 364 892 1069/704 1854/1193
1e-15 1687 3429 2365 4313 694 1486 1671/1135 2827/1876
1e-05 2827 5058 3579 5849 1466 2394 2113/1370 3455/2211
1 3178 5414 4832 7196 2262 3207 2570/1755 3989/2670

Domain predictions for proteins with unknown function
in PlasmoDB

1e-60 6 51 14 83 4 38 10/9 45/35
1e-30 23 177 104 378 16 113 88/76 265/220
1e-15 68 412 222 740 35 202 187/161 538/449
1e-05 246 803 490 1194 177 413 313/246 781/614
1 265 824 822 1604 327 576 495/409 1028/840

CASH predictions seem to exploit phylogenetic models in an exclusive manner. It

agrees on the 96% of Pfam24 predictions (Table 5.4), but it proposes a total of 1782

more predictions (this value was obtained by subtracting bold values in Table 5.2-top)

at E-values ≤ 1 (this is the threshold used by dPUC for comparison). Notice that Pfam

annotation is based on pHMMs, and that if we consider CASH pHMM predictions only,

the number of CASH predicted domains is smaller than that of Pfam (3207 against 5414

proteins). This is because CASH predictions based on pHMM are often also obtained by

phylogenetic models with a better E-value and counted as phylogenetic models predictions.

In particular, about 780 (this value was obtained by subtracting bold values in Table
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5.2-bottom) of the 1782 newly predicted domains belong to proteins that have unknown

function in PlasmoDB, and the remaining 1002 domain predictions appear within known

domain architectures.

We highlighted in Table 5.3 domain predictions found only by CASH. For this, we

compared our prediction with those obtained by Pfam24, CODD and dPuc, see section

5.2.8 for details of this comparison. In the top, we show new protein architectures proposed

for the first time. In the Middle, enrichment of known protein architectures with additional

domains. In the bottom, we present the number of functional domains unknown before to

exist in the P. falciparum genome. Note that, the number of predictions is reported with

respect to a level of confidence estimated by an E-value, as in Table 5.1, and the notation

is the same presented in Table 5.2. By looking close at CASH predictions highlighted

for the first time we notice that no contribution coming from pHMM seems to help, for

all classes of predictions, most of the predictions are based on phylogenetic models. For

instance, Table 5.3 (bottom) gives an account of 984 new domains (unknown to exist in

P. falciparum before) of which 690 co-occur within known architectures. Of these domains,

558 are obtained exclusively by phylogenetic models, with no pHMM prediction (at E-value

< 1).

To eliminate false positives from domain predictions, we used a score provided by a

Support Vector Machine (SVM). The SVM discriminates potential annotations by evalu-

ating which predicted domain is more probable among those displaying a small E-value,

a sufficiently large domain length, the proximity to P. falciparum to the reference species

generating the phylogenetic models leading to annotation, and a large consensus among

models leading to the prediction. Scores issued by the SVM filter boosts weak domain

predictions that positively satisfy several of the conditions and penalizes high confidence

domains if the combination of conditions are not supporting the prediction. In Table 5.4,

we show that SVM improves predictions (CASH) of about 8% over a score system based

on best E-values (CASHBEv). This means that CASH accumulates 33% of improvement

on Pfam24 and 36.04% improvement on Pfam23, where CODD and dPUC did less than

12%. Note that, these last two tools have been evaluated only on Pfam23, see details in

section 5.2.8.
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Table 5.3: Domain predictions found only by CASH.

In proteins predicted for the first time
CASH

Total pHMM PHM
E-value Cooc T Cooc T Cooc T
1e-60 1 2 0 0 1/1 2/2
1e-30 12 25 0 0 12/12 25/25
1e-15 25 60 0 0 25/24 60/59
1e-05 64 121 7 11 57/56 110/105
1 124 198 25 32 99/95 166/156
Enrichment of known protein architectures

1e-60 4 6 0 0 4/4 6/6
1e-30 41 58 0 0 41/41 58/58
1e-15 103 134 0 0 103/102 134/132
1e-05 204 260 0 0 204/177 260/220
1 543 640 14 14 529/445 626/521

Predictions of new functional domains
1e-60 6 14 1 2 5/4 12/11
1e-30 45 88 1 3 44/41 85/82
1e-15 136 251 1 3 135/130 248/243
1e-05 276 471 31 54 245/225 417/388
1 690 984 94 132 596/558 852/803

Table 5.4: Improvements compared to Pfam (versions 23 and 24).

CASH CASHBEv CODD dPUC
Pfam23 36.04 28.02 11.7 10.03
Pfam24 33.00 25.84 - -

Also, we showed in Table 5.5 that CASH based on the usage of SVM performs bet-

ter than CASHBEv when it is compared with earlier results provided by Pfam24, Pfam23,

CODD and dPUC. The percentage of agreement with other annotation tools is about 10%

greater when we use CASH with scores provided by SVM.

More than half of the domains predicted at a given E-value are co-occurring domains

(Table 5.2 and Table 5.3). The co-occurrence hypothesis greatly enhances the level of

confidence on the prediction. This is because the majority of proteins are multidomains,

domains do not form random combinations, and we observe fewer combinations than the

statistically expected ones. This suggests functional cooperation, that is, two or more



5.3. Results and Discussion 83

Table 5.5: Agreement between CASH and other annotation tools.

Pfam24 Pfam23 CODD dPUC
CASH 96.22 84.51 81.33 82.95
CASHBEv 85.04 73.53 70.13 72.49

domains can interact to determine the protein function. The use of this cooperation or

domain co-occurrence to determine the most likely domain arrangement (architecture) of

a given protein yields better performance, since weak domain predictions can be included

into the protein architecture thank to the presence of another co-occurrent domain [20,

21, 22, 23].

Phylogenetic models used in domain prediction provide a profile of the protein that

is usually more conserved than the one obtained by consensus with pHMM. We tested

this observation with a global evaluation of physico-chemical properties conservation on

CASH predictions realized over all proteins in PlasmoDB (Table 5.6-top), and realized

over domain predictions obtained only by CASH (Table 5.6-bottom). Physico-chemical

conservations in Table 5.6 were computed as described in section 5.2.7, and hold values

indicate better performance. Different amino acids groups are analyzed for the two model-

ing approaches: profile hidden Markov models (pHMM) and phylogenetic models (PHM).

It is not surprising that hydrophobic amino acids are the most conserved in divergent

domain sequences and that they appear as the most conserved in our predictions. But the

striking fact is that by comparing PHM and pHMM we obtain in a systematic way that

Accuracy, Sensitivity, Specificity and PPV are better for phylogenetic profiles.

According to our results, CASH has proposed new architectures for protein with

no annotation, and also proposed additional domains for annotated proteins. We analyze

these kind of predictions by looking close two examples showed in Figures 5.6 and 5.7.

Figure 5.6-B show that “KIF-1 binding protein C terminal” domain was predicted for the

P. falciparum protein MAL13P1.370, while no prediction was obtained by Pfam, see Fig-

ure 5.6-A. CASH prediction was detected by a phylogenetic model built from Plasmodium

vivax sequence with E-value 3e-96. No homologue of this protein is known in P. falci-

parum. We analyze predictions obtained by other phylogenetic models, and we observe

that several models support this prediction, see Figure 5.6-C where color dots highlight
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Table 5.6: Comparison of Physico-chemical conservation

Physico-chemical conservation analysis of
all proteins in PlasmoDB

PHM pHMM
Amino acid group Acc Sen Spe PPV Acc Sen Spe PPV

VILMFWA 0.92 0.84 0.93 0.82 0.88 0.74 0.92 0.76
DE 0.97 0.68 0.98 0.69 0.97 0.41 0.99 0.71
C 1.00 0.63 1.00 0.91 1.00 0.45 1.00 0.90
G 0.99 0.77 0.99 0.71 0.99 0.61 0.99 0.69
P 0.99 0.75 0.99 0.70 0.99 0.52 1.00 0.73
KR 0.96 0.66 0.98 0.72 0.96 0.38 0.99 0.72
HY 0.99 0.64 0.99 0.77 0.99 0.37 1.00 0.78

NSTQ 0.94 0.58 0.97 0.71 0.94 0.31 0.98 0.71
Physico-chemical conservation analysis of

proteins predicted for the first time by CASH
VILMFWA 0.84 0.74 0.85 0.57 0.80 0.71 0.81 0.51

DE 0.95 0.48 0.96 0.44 0.95 0.44 0.96 0.41
C 1.00 0.69 1.00 0.81 1.00 0.74 1.00 0.79
G 0.98 0.67 0.98 0.45 0.98 0.68 0.98 0.38
P 0.99 0.71 0.99 0.52 0.99 0.71 0.99 0.47
KR 0.94 0.48 0.96 0.44 0.94 0.44 0.96 0.40
HY 0.98 0.47 0.99 0.54 0.98 0.48 0.98 0.50

NSTQ 0.90 0.42 0.94 0.48 0.90 0.38 0.94 0.45

predictions obtained with different e-value ranges. The localization of species showed in

Figure 5.6-C was inspired by Figure 1 in [124]. Pfam did not predict the domain KBP_C

in the protein MAL13P1.370 with an acceptable E-value, according to Pfam “gathering”

thresholds. We show in Figure 5.6-D (left) that the physico-chemical conservation be-

tween the profile of P. vivax and the sequence of P. falciparum (MAL13P1.370) is much

higher than the conservation obtained with pHMM showed in Figure 5.6-D (right), in

both physico-chemical conservations were computed as in Table 5.6. Because this higher

conservation the phylogenetic model built from P. vivax sequence was able to detect the

domain KBP_C in the protein MAL13P1.370, while the pHMM has failed.

To illustrated how CASH can enrich architectures of known proteins we consider

predictions for the P. falciparum protein PFE0100w showed in Figure 5.7. Pfam was able

to detect only the domain VPS11_C (Figure 5.7-A), while CASH detected two additional

domains: zf-C3HC4 and clathrin (Figure 5.7-B). In the clathrin domain prediction one ob-

serves that phylogenetic models with highest E-values are spread, explaining the difficulty
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Figure 5.6: CASH domain prediction for MAL13P1.370 a protein with no an-
notation.

of annotating this protein with a pHMM approach (Figure 5.7-C). As showed in the first

example, physico-chemical conservation is much higher for the phylogenetic model predic-

tion than for the pHMM prediction, see Figure 5.7-D, where the profile generated by a

Dichtyostelium discoideum sequence predicted homology in PFE0100w with E-value 9e-24

(Figure 5.7-D (bottom)), while the pHMM made a prediction with E-value 1.9e-08 (Figure

5.7-D (top)). Physico-chemical conservation is illustrated graphically for the prediction

based on pHMM (Figure 5.7-D (top)) and the one based on D. discoideum profile (Figure

5.7-D (bottom)). Each prediction is represented by a display showing physico-chemical

conservation for each position of the multiple sequence alignment (MSA) generating the

profile. For each position, a color scale maps the physico-chemical class most represented

at that position. The P. falciparum sequence is reported for both display together with

the physico-chemical match, indicated by a ‘*’, between the corresponding residue in the

P. falciparum sequence and the alignment, if existing.
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Figure 5.7: PFE0100w architecture enrichment.

5.4 Conclusion

We demonstrated that when sequences in a protein family are too divergent or too con-

served, signals of homology are easier to trace when profile are constructed on single species

rather than by consensus. We showed that this situation often occurs and that by com-

bining in a unique tool pHMMs and phylogenetic models one can reinforce the predictive

power. In CASH, the two kinds of models are run in parallel and compete against best

signals detection.

Several observations can be drawn from our results. First, the high number of

predictions that could not be identified by pHMM approaches underlies that a specific

understanding of the evolutionary process extracted from specific species can be of essential
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help in remote homology identification. This suggests that protein evolution follows a

probably restricted number of pathways, that phylogenetic proximity is not a universal

criteria to understand protein evolution and that global constraints do not always capture

the essence of protein constraints.

At this regard, it has been observed that evolutionary pressures on networks of

residues (that is, groups of residues which are physically connected in the structure) within

a protein family play an important role in preserving or changing the protein function,

structure, mechanical and folding properties [125, 126, 127, 128, 129]. In particular, the

coexistence of several networks within a protein family and the sharing of residues between

networks make the relations among residues an entangled evolutionary process, which is

therefore highly non-random. The existence of possibly strong constraints supports the

idea that the number of evolutionary solutions should be limited.

This observation, stated before for mutational events in bacterial and viral species,

has, at our knowledge, never been reported nor exploited before in the computational

search of highly divergent proteins. A reminiscent idea was present in the manual search

strategy used in [130].

CASH achieved excellent results over P. falciparum genome. It predicts domains for

70% of proteins in PlasmoDB. However, our goal is to contribute for functional annotation

of proteins in P. falciparum. For this, we are carrying out a carefully manually analysis

on CASH domain predictions to suggest functional annotation for unannotated proteins,

and possibly reannotate proteins with new CASH domain predictions. Moreover, We

are analyzing P. falciparum domain predictions to provide insights about its biological

processes. Among predicted domains, we observed that some are over-represented in the

P. falciparum genome. For instance, there are 134 domains with more than 3 and up

to 167 occurrences. Among them, there is a considerable number that has been never

detected before by other methods, see Table C.1. Also, we observed that some domain

combinations (some of them detected by the first time) seem to be important for the

parasite, since they occur more than 3 times, see Table C.2. We believe that interesting

information can be drawn from a careful analysis of our domain predictions.

CASH has been applied to the P. falciparum genome but its strategy can be applied

to any other genome. In fact, the framework is highly general and independent on P. falci-
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parum characteristics. As a future step we would like to create phylogenetic models for all

species associated to the each Pfam domain. From this, the user could be choose between

to run CASH by using all models or to select a species set of interest for his/her study.

Technically speaking, CASH is realized with the usage of an SVM. This choice can be

revisited and other decision strategies could be employed instead, like multi-response linear

regression [131] for instance. Investigation of new strategies will be realized in future work.



Chapter 6

General conclusions and future
work

One of the fundamental challenges in computational biology is the identification

of evolutionary related proteins for which primary sequences have significantly diverged

(remote homologies). Remote homology detection is the problem of finding homology

between sequences (proteins or genes), when the actual sequence identity is low (usu-

ally, lower than 30%). In a general way, homology detection methods are today quite

important to aid for sequence annotation, protein classification and to guide laboratory

experiments. Without the development of these methods the detection of homology from

sequence would not be possible. However, remote protein homology detection is consid-

ered as a problem that has not been resolved yet in bioinformatics. There is still a large

number of proteins with no identified function as well as a significant part of the genome of

some organisms is still remains unannotated. This is the case of Plasmodium Falciparum,

organism that causes malaria in human, whose the function of almost half of proteins is

unknown. The identification of pathogenic proteins could help to derive the design of new

drugs as medicine and the creation of specific cures for the disease.

The low similarities among remote homologous proteins makes this task a challenge.

Some researchers have used extra information, such as structural protein features to de-

velop more effective tools. However, this information is not available for most of existing

proteins, and it cannot be used in large-scale annotation system. Another alternative is the

use of discriminative methods that archive better performance than traditional methods.

However, their high computational time made these methods unpopular among biologists.
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Since sequence information is abundant contrary to the structural one, new ap-

proaches for remote homology detection should try to explore in a more sophisticated way

properties coming from protein sequences to provide an effective annotation system and a

useful protein classification tool. In this scenario, we proposed two new methods. The first,

called ILP-SVM Homology [48] is a method for remote homologous protein classification.

It proposes a novel representation for homologous properties based on the first-order logic

language. The use of this language allow us to represent important sequential properties

and relate them by exploring the relational power of the language. From this, WARMR

(an ILP system) induces essential logic rules that aim to explain what homologous pro-

teins have in common. These rules can be use to discriminate between homologous and

non-homologous sequences. For this, we convert them into a feature vector that is used to

train propositional models, such as DTs and SVMs. Assessed on benchmarch databases,

our results show a superior/equal performance when compared to state-of-art methods.

However, through our experiments we conclude that a suitable logical language of rep-

resentation and an appropriated inductive system can mine important rules helping to

detect more remote homologous proteins and, in the same time, providing insights into

conserved features of homologous protein families.

As a second method, we propose CASH - Combination of Annotations by Species

and pHMMs [49], that is specialized in annotation of highly divergent genomes. CASH

is a pipeline that combines several computational approaches to provide a more effective

annotation system. We propose to explore alternative evolutionary paths to represent

each known protein domain in the Pfam database [50]. In fact, CASH creates an ensemble

of models for each Pfam domain by combining additional profiles constructed out of sim-

ilar sequences obtained from different species, and existing pHMMs. The output of these

models are processed and transformed into features that are used to train a meta-classifier

that assigns a confidence score to each domain prediction. Based on this score and other

sequential properties, CASH proposes a domain architecture for a given query sequence

by resolving a multi-objective optimization problem. The analysis of our results highlight

that CASH is an effective large-scale annotation system and that it is able to decrease

the number of unannotated proteins in Plasmodium Falciparum. The use of additional

profiles created from a large and differentiated panel of homologous sequences was able to
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enrich the representation of Pfam domains by improving the performance of the annota-

tion system. Domain co-occurrences played a key role in the annotation process, since the

presence of low confidence domains in a query sequence could be asserted thanks to the

presence of other co-occurrent domains. Moreover, the strategy of resolving protein ar-

chitectures by optimizing multi-objective functions seems to be a suitable approach, since

several aspects of the problem can be considered.

In the future we wish to improve our methods and to study a way of connecting them.

The performance of both methods could be improved applying other machine learning

algorithms, such as multi-response linear regression [131] in CASH, and MineSeqLog [97]

in ILP-SVMHomology. Another alternative is to explore sequential protein properties such

as the presence of functional sites into homologous proteins, as done in [6], and available

structural properties, as done in [132]. A possibility for combining our methods is to

incorporate ILP-SVM Homology as a new feature for the CASH’s meta-classifier training.

For instance, for each Pfam domain we could learn its most frequent patterns, and use

the outputs to discriminate query sequences through a score that computes the matches

between the query sequence and the most frequent patterns of the domain. As these

patterns are learnt from a protein alignment, we shall decide which alignments to take into

account, that is, consensus alignments used to build pHMMs or specific alignments used

to build phylogenetic models. Unfortunately, to consider all available alignments would

make CASH time consuming when applied to a large-scale annotation (this was already

observed in our computational experiments). However, the strategy could be applied to

a reduced number of protein domains of interest, as those involved in the transcription

process or the RNA silencing for instance.

Motivated by our excellent results over P. falciparum we would like to apply CASH

to other highly divergent genomes, like Diatoms for instance, upon which around 40-

50% of proteins are unannotated. Diatoms are organism found throughout marine and

freshwater environments, and are believed to be responsible for around one-fifth of the

primary productivity on Earth [133]. To the best of our knowledge, diatoms genomes

have been annotated by using only sequence similarity searching methods and traditional

generative models. We believe that CASH could decrease significantly the number of

unannotated proteins contributing for understanding some important cellular mechanisms
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in Diatom species.

Finally, we would like that CASH be used by the biologist community in place of

traditional methods. For this, we will develop a user friendly web-server that will allow

biologists to analyze their protein sequences.



Appendix A

List of representative species used
in CASH system

Table A.1 shows 46 species that were selected from the eukaryotic life tree in order to

build phylogenetic models (first column). If one species does not exists into a given Pfam

domain, we try to replace it with a similar species (second column)

Table A.1: Representative species.

Reference species Alternative species
Plasmodium falciparum Plasmodium falciparum (strain isolate Nig32/Nigeria, isolate ro-33/Ghana, iso-

late Dd2, isolate FCH-5, isolate kf1916, isolate 3D7, isolate 7G8, isolate
tak 9, isolate 311, isolate FCBR/Columbia, isolate Camp/Malaysia, isolate
CDC/Honduras, isolate FC27/Papua New Guinea, isolate FCR-3/Gambia, iso-
late thtn/Thailand, isolate imr143, isolate fid3/India, isolate K1/Thailand, iso-
late le5, isolate mad20/Papua New Guinea, isolate NF7/Ghana, isolate NF54,
isolate Palo Alto/Uganda, isolate FcB1/Columbia, isolate fcm17/Senegal, isolate
t4/Thailand, isolate v1, isolate Wellcome, isolate HB3, isolate mad71/Papua
New Guinea)

Plasmodium knowlesi Plasmodium knowlesi (strain H, nuri)
Plasmodium vivax Plasmodium vivax (Brazil I, India VII, IQ07, Mauritania I, North Korean, strain

Belem, strain Salvador I)
Plasmodium yoelii yoelii Plasmodium yoelii (17, killicki, nigeriensis, YM)
Plasmodium berghei Plasmodium berghei (strain Anka)
Plasmodium chabaudi Plasmodium chabaudi adami
Babesia bovis Babesia bigemina, Babesia canis, Babesia gibsoni, Babesia divergens, Babesia

odocoilei, Babesia microti
Theileria parva Theileria annulata, Theileria buffeli, Theileria cervi, Theileria lestoquardi, Thei-

leria mutans, Theileria orientalis, Theileria sergenti (isolate Ikeda), Theileria
sergenti, Theileria sergenti (isolate Chitose), Theileria taurotragi

Paramecium caudatum Paramecium primaurelia, Paramecium tetraurelia, Paramecium bursaria
Chlorella virus (1, AR158, NC1A, FR483, IL3A, MT325, NY2A, XZ-6E)

Tetrahymena americanus Tetrahymena australis, Tetrahymena borealis, Tetrahymena capricornis, Tetrahy-
mena canadensis, Tetrahymena cosmopolitanis, Tetrahymena caudata, Tetrahy-
mena elliotti, Tetrahymena furgasoni, Tetrahymena hyperangularis, Tetrahy-
mena leucophrys, Tetrahymena malaccensis, Tetrahymena mimbres, Tetrahy-
mena nanneyi, Tetrahymena nippisingi, Tetrahymena patula, Tetrahymena pig-
mentosa, Tetrahymena paravorax, Tetrahymena pyriformis, Tetrahymena ros-
trata, Tetrahymena sonneborni, Tetrahymena thermophila, Tetrahymena tropi-
calis
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Candida albicans Candida apicola, Candida antarctica, Candida albicans (strain WO-1), Candida
boidinii, Candida dubliniensis (strain CD36/CBS 7987/NCPF 3949/NRRL Y-
17841), Candida glabrata, Candida glycerinogenes, Candida maltosa, Candida
milleri, Candida norvegensis, Candida oleophila, Candida parapsilosis, Candida
rugosa, Candida sp. (strain HA167), Candida shehatae, Candida stellata, Can-
dida tenuis, Candida tropicalis, Candida tsukubaensis, Candida tropicalis (strain
ATCC MYA-3404/T1), Candida zemplinina

Yarrowia lipolytica Yarrowia lipolytica (strain 11p-1, 11P-2, 12p-1, 25L, 29L, 3m-1, 3w-1, 8c-1,
8p-1, 8s-3, 9w-1, D30L, DKl1, KS1, M15S06, SM-22, SSJO2005, TFM01)

Zygosaccharomyces rouxii Zygosaccharomyces rouxii (strain ATCC 2623/CBS 732/IFO 1130/NBRC
1623/NCYC 568), Zygosaccharomyces bailii, Zygosaccharomyces bisporus, Zy-
gosaccharomyces kombuchaensis, Zygosaccharomyces lentus, Zygosaccharomyces
machadoi, Zygosaccharomyces mellis, Zygosaccharomyces microellipsoides, Zy-
gosaccharomyces mrakii, Zygosaccharomyces pseudorouxii

Entamoeba histolytica Entamoeba histolytica (2759071, DS4-868, HM-1:IMSS, HM-3:IMSS, KU27,
KU48, KU50, MS96-3382), Entamoeba dispar, Entamoeba invadens

Dictyostelium discoideum Dictyostelium citrinum, Dictyostelium mucoroides, Dictyostelium purpureum,
Dictyostelium sp. (strain GA11)

Giardia lamblia Giardia ardeae, Giardia intestinalis, Giardia microti, Giardia muris, Giardia
psittaci, Giardia sp. AM1, Giardia sp. BR1, Giardia sp. MM1, Giardia sp.
QE1, Giardia sp. quenda, Giardia sp. SM-2004, Giardia sp. Swemouse185

Saccharomyces cerevisiae Saccharomyces cerevisiae (A364A, CAT-1, CBS 7960, CEN.PK113-7D,
CLIB215, CLIB324, CLIB382, EC9-8, FL100, G600, I14, IL-01, KRY8, M22,
MMY112, NC-02, PW5, Sigma1278b, SK1, (strain ATCC 204508/S288c),
(strain AWRI1631), (strain AWRI796), (strain FostersB), (strain FostersO),
(strain JAY291), (strain Kyokai no. 7/NBRC 101557), (strain Lalvin
EC1118/Prise de mousse), (strain Lalvin QA23), (strain RM11-1a), (strain VIN
13), (strain YJM789), (strain Zymaflore VL3), T7, T73, UC5, W303, WE372,
Y10, Y12, Y9, YJM269, YJM280, YJM320, YJM326, YJM421, YJM428,
YJM451, YJM653, YJSH1, YPS1009, YPS163, Saccharomyces diastaticus

Schizosaccharomyces pombe Schizosaccharomyces pombe (DM3650, DM3755, DM3757, NCYC132, OY26,
SPK1820, (strain 972/ATCC 24843), strain SPY73 975 h+, Schizosaccha-
romyces japonicus, Schizosaccharomyces japonicus (strain yFS275/FY16936),
Schizosaccharomyces kambucha, Schizosaccharomyces octosporus

Guillardia theta Galdieria sulphuraria, Cyanophora paradoxa, Reticulomyxa filosa
Enterocytozoon bieneusi Enterocytozoon bieneusi (strain H348), Enterocytozoon bieneus, Enterocytozoon

salmonis, Enterocytozoon sp. (IS2005R, IS2005S, IS2005T, IS2005U, IS2005V,
IS2005W, ST-2009a)

Encephalitozoon cuniculi Encephalitozoon hellem, Encephalitozoon intestinalis
Aspergillus aculeatus Aspergillus amstelodami, Aspergillus awamori, Aspergillus clavatus, Aspergillus

fumigatus (strain CEA10/CBS 144.89/FGSC A1163), Aspergillus ficuum,
Aspergillus flavus (strain ATCC 200026/FGSC A1120/NRRL 3357/JCM
12722/SRRC 167), Aspergillus fumigatus, Aspergillus giganteus, Aspergillus
japonicus, Aspergillus kawachi, Aspergillus niger (strain CBS 513.88/FGSC
A1513), Aspergillus nomius, Aspergillus oryzae, Aspergillus parasiticus, As-
pergillus pallidus, Aspergillus pseudotamarii, Aspergillus restrictus, Aspergillus
saitoi, Aspergillus shirousami, Aspergillus sojae, Aspergillus terreus (strain
ATCC 20542/MF4845, NIH 2624/FGSC A1156), Aspergillus tubingensis, As-
pergillus viridinutans, Aspergillus wentii

Caenorhabditis brenneri Caenorhabditis briggsae, Caenorhabditis elegans, Caenorhabditis japonica,
Caenorhabditis remanei

Leishmania amazonensis Leishmania braziliensis, Leishmania chagasi, Leishmania donovani, Leishma-
nia enriettii, Leishmania guyanensis, Leishmania infantum, Leishmania major,
Leishmania mexicana, Leishmania peruviana, Leishmania pifanoi, Leishmania
tarentolae, Leishmania tropica, Leishmania RNA virus 1 - 1 (isolate Leishmania
guyanensis)

Trypanosoma brucei brucei Trypanosoma brucei gambiense, Trypanosoma brucei rhodesiense, Trypanosoma
congolense, Trypanosoma cruzi, Trypanosoma equiperdum, Trypanosoma evansi,
Trypanosoma lewisi, Trypanosoma rangeli, Trypanosoma vivax, Trypanosomati-
dae

Schistosoma japonicum Schistosoma bovis, Schistosoma haematobium, Schistosoma mansoni
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Drosophila melanogaster Drosophila adunca, Drosophila acanthoptera, Drosophila adiastola, Drosophila
americana, Drosophila affinidisjuncta, Drosophila affinis, Drosophila algonquin,
Drosophila ambigua, Drosophila ananassae, Drosophila atripex, Drosophila ari-
zonae, Drosophila austrosaltans, Drosophila athabasca, Drosophila auraria,
Drosophila aracataca, Drosophila azteca, Drosophila bakoue, Drosophila bocqueti,
Drosophila bifasciata, Drosophila borealis, Drosophila bipectinata, Drosophila
busckii, Drosophila buzzatii, Drosophila capricorni, Drosophila crassifemur,
Drosophila cyrtoloma, Drosophila dasycnemia, Drosophila differens, Drosophila
dossoui, Drosophila disjuncta, Drosophila ercepeae

Drosophila elegans Drosophila emarginata, Drosophila equinoxialis, Drosophila erecta, Drosophila
eugracilis, Drosophila ezoana, Drosophila ficusphila, Drosophila flavomon-
tana, Drosophila fima, Drosophila funebris, Drosophila grimshawi, Drosophila
guanche, Drosophila hawaiiensis, Drosophila heteroneura, Drosophila hy-
dei, Drosophila iki, Drosophila immigrans, Drosophila insularis, Drosophila
jambulina, Drosophila kanekoi, Drosophila kikkawai, Drosophila kitumensis,
Drosophila kuntzei, Drosophila lacicola, Drosophila lebanonensis, Drosophila li-
neosetae, Drosophila limbata, Drosophila lini, Drosophila lowei, Drosophila lit-
toralis, Drosophila lusaltans, Drosophila lutescens

Drosophila mauritiana Drosophila microlabis, Drosophila madeirensis, Drosophila miranda, Drosophila
milleri, Drosophila mimica, Drosophila montana, Drosophila mojaven-
sis, Drosophila mercatorum, Drosophila mediostriata, Drosophila mettleri,
Drosophila mulleri, Drosophila melanica, Drosophila mayaguana, Drosophila
navojoa, Drosophila neocordata, Drosophila nebulosa, Drosophila nasuta F,
Drosophila nigra, Drosophila narragansett, Drosophila nasuta, Drosophila
obscura, Drosophila orena, Drosophila pseudoobscura bogotana, Drosophila
pinicola, Drosophila persimilis, Drosophila picticornis, Drosophila plan-
itibia, Drosophila punjabiensis, Drosophila petalopeza, Drosophila prosaltans,
Drosophila pseudoobscura pseudoobscura, Drosophila paulistorum

Drosophila pavlovskiana Drosophila robusta, Drosophila repleta, Drosophila saltans, Drosophila sub-
saltans, Drosophila sucinea, Drosophila sechellia, Drosophila simulans,
Drosophila silvestris, Drosophila soonae, Drosophila sp., Drosophila ser-
rata, Drosophila subsilvestris, Drosophila sturtevanti, Drosophila subobscura,
Drosophila tanythrix, Drosophila teissieri, Drosophila takahashii, Drosophila
tolteca, Drosophila tropicalis, Drosophila tristis, Drosophila tsacasi, Drosophila
varians, Drosophila virilis, Drosophila vallismaia, Drosophila wheeleri,
Drosophila willistoni, Drosophila yakuba

Homo sapiens Homo sapiens neanderthalensis
Macaca mulatta Macaca arctoides, Macaca assamensis, Macaca balantak, Macaca balantak x

tonkeana, Macaca brunnescens, Macaca cyclopis, Macaca fascicularis, Macaca
fuscata, Macaca hecki, Macaca hecki x tonkeana, Macaca leonina, Macaca maura,
Macaca maura tonkeana, Macaca munzala, Macaca nemestrina, Macaca nigra,
Macaca nigrescens, Macaca ochreata, Macaca pagensis, Macaca radiata, Macaca
siberu, Macaca silenus, Macaca sinica, Macaca sp., Macaca speciosa, Macaca
sylvanus, Macaca thibetana, Macaca tonkeana

Mus musculus Mus musculus albula, Mus musculus bactrianus, Mus musculus brevirostris, Mus
musculus castaneus, Mus musculus domesticus, Mus musculus gentilulus, Mus
musculus homourus, Mus musculus molossinus, Mus musculus musculus casta-
neus, Mus musculus musculus domesticus, Mus musculus wagneri

Rattus norvegicus Rattus norvegicus albus
Danio rerio Danio aff. (albolineatus, dangila DP-2005, tweediei), Danio albolineatus (pul-

cher), Danio cf. dangila CTOL01570, Danio cf. rerio Assam, Danio choprai,
Danio dangila, Danio feegradei, Danio kerri, Danio kyathit, Danio margarita-
tus, Danio nigrofasciatus, Danio roseus, Danio sp. (Bangladesh, CTOL02798,
CTOL03307, Hikari, Ozelot, pantheri, SH-2001, snakeskin, SSH-2005, tinwini,
tweediei)

Gallus gallus Gallus gallus bankiva, Gallus gallus jabouillei, Gallus gallus murghi, Gallus gal-
lus spadiceus

Tetraodon nigroviridis Tetraodon biocellatus, Tetraodon cutcutia, Tetraodon fangi, Tetraodon fluviatilis,
Tetraodon mbu, Tetraodon miurus, Tetraodon palembangensis

Xenopus tropicalis Xenopus (Silurana) cf. tropicalis BJE-2004, epitropicalis, sp. BOLD:AAH0940,
sp. LIN463-07, sp. LIN464-07, sp. new tetraploid 1, sp. new tetraploid 2

Brugia malayi Brugia buckleyi, Brugia cf. malayi ex canine (Kadakkarappally 1/2), Brugia
pahangi, Brugia patei, Brugia timori

Heterodera glycines Heterodera arenaria, Heterodera aucklandica, Heterodera australis, Heterodera
avenae, Heterodera betae, Heterodera bifenestra, Heterodera cajani, Heterodera
cardiolata, Heterodera carotae, Heterodera cf. (graminophila TSH-2005, iri
TSH-2005, medicaginis TSH-2005), Heterodera ciceri, Heterodera circeae,
Heterodera cruciferae, Heterodera cynodontis, Heterodera cyperi, Heterodera
elachista, Heterodera fici, Heterodera filipjevi
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Caenorhabditis briggsae Caenorhabditis angaria, Caenorhabditis brenneri, Caenorhabditis drosophi-
lae, Caenorhabditis elegans, Caenorhabditis japonica, Caenorhabditis mau-
pasi, Caenorhabditis plicata, Caenorhabditis remanei, Caenorhabditis sonorae,
Caenorhabditis (11 MAF-2010, 12 KK-2010, 5 AC-2008, 5 DRD-2008, 7 MAF-
2007, 9 AC-2009, 9 MAF-2010, DF5070, JLR-2009, JU727, SB341)

Nematostella vectensis Nematostella sp. JVK-2006
Branchiostoma belcheri 2̆03a Branchiostoma californiense, Branchiostoma floridae, Branchiostoma

japonicum, Branchiostoma lanceolatum, Branchiostoma malayanum
Oryza sativa Oryza sativa subsp. indica, Oryza sativa subsp. japonica
Vitis vinifera Vitis thunbergii, Vitis tiliifolia, Vitis treleasei, Vitis vulpina, Vitis wilsonae, Vitis

champinii, Vitis doaniana, Vitis yeshanensis
Arabidopsis thaliana Arabidopsis arenicola, Arabidopsis arenosa, Arabidopsis cebennensis, Arabidopsis

croatica, Arabidopsis halleri, Arabidopsis lyrata, Arabidopsis neglecta, Arabidop-
sis pedemontana, Arabidopsis petrogena, Arabidopsis suecica



Appendix B

List of Pfam Ribosomal families

Table B.1 shows 109 Pfam families used in the building of phylogenetic reference tree.

The first column correspond to the Pfam accession number and the second is a small

description about the family.)

Table B.1: List of Pfam ribosomal proteins.

Pfam Accession Number Description
PF00163 Ribosomal protein S4/S9 Nterminal domain
PF03947 Ribosomal Proteins L2, Cterminal domain
PF00177 Ribosomal protein S7p/S5e
PF00164 Ribosomal protein S12
PF00252 Ribosomal protein L16p/L10e
PF00181 Ribosomal Proteins L2, RNA binding domain
PF00318 Ribosomal protein S2
PF00203 Ribosomal protein S19
PF00189 Ribosomal protein S3, Cterminal domain
PF00237 Ribosomal protein L22p/L17e
PF00238 Ribosomal protein L14p/L23e
PF00410 Ribosomal protein S8
PF00411 Ribosomal protein S11
PF00253 Ribosomal protein S14p/S29e
PF00276 Ribosomal protein L23
PF00312 Ribosomal protein S15
PF00416 Ribosomal protein S13/S18
PF00828 Ribosomal protein L18e/L15
PF00673 Ribosomal L5P family Cterminus
PF01084 Ribosomal protein S18
PF00281 Ribosomal protein L5
PF00338 Ribosomal protein S10p/S20e
PF00466 Ribosomal protein L10
PF00453 Ribosomal protein L20
PF00333 Ribosomal protein S5, Nterminal domain
PF00347 Ribosomal protein L6
PF00380 Ribosomal protein S9/S16
PF00687 Ribosomal protein L1p/L10e family
PF00861 Ribosomal L18p/L5e family
PF00573 Ribosomal protein L4/L1 family
PF03946 Ribosomal protein L11, Nterminal domain
PF03719 Ribosomal protein S5, Cterminal domain
PF00572 Ribosomal protein L13
PF00297 Ribosomal protein L3
PF00298 Ribosomal protein L11, RNA binding domain
PF00366 Ribosomal protein S17
PF00886 Ribosomal protein S16
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Table B.1: List of Pfam ribosomal proteins.

Pfam Accession Number Description
PF00831 Ribosomal L29 protein
PF00417 Ribosomal protein S3, Nterminal domain
PF01783 Ribosomal L32p protein family
PF00471 Ribosomal protein L33
PF00542 Ribosomal protein L7/L12 Cterminal domain
PF01245 Ribosomal protein L19
PF01196 Ribosomal protein L17
PF01016 Ribosomal L27 protein
PF00444 Ribosomal protein L36
PF01250 Ribosomal protein S6
PF00829 Ribosomal prokaryotic L21 protein
PF00327 Ribosomal protein L30p/L7e
PF01281 Ribosomal protein L9, Nterminal domain
PF00830 Ribosomal L28 family
PF01632 Ribosomal protein L35
PF01197 Ribosomal protein L31
PF03948 Ribosomal protein L9, Cterminal domain
PF01649 Ribosomal protein S20
PF00468 Ribosomal protein L34
PF01165 Ribosomal protein S21
PF02482 Sigma 54 modulation protein / S30EA Ribosomal protein
PF01386 Ribosomal L25p family
PF01248 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family
PF00428 60s Acidic Ribosomal protein
PF00827 Ribosomal L15
PF01655 Ribosomal protein L32
PF01599 Ribosomal protein S27a
PF01015 Ribosomal S3Ae family
PF01201 Ribosomal protein S8e
PF00900 Ribosomal family S4e
PF01092 Ribosomal protein S6e
PF01280 Ribosomal protein L19e
PF01667 Ribosomal protein S27
PF01090 Ribosomal protein S19e
PF01246 Ribosomal protein L24e
PF01157 Ribosomal protein L21e
PF01198 Ribosomal protein L31e
PF08069 Ribosomal S13/S15 Nterminal domain
PF00935 Ribosomal protein L44
PF01020 Ribosomal L40e family
PF00833 Ribosomal S17
PF01282 Ribosomal protein S24e
PF01780 Ribosomal L37ae protein family
PF01775 Ribosomal L18ae/LX protein domain
PF01200 Ribosomal protein S28e
PF01199 Ribosomal protein L34e
PF01907 Ribosomal protein L37e
PF01294 Ribosomal protein L13e
PF01283 Ribosomal protein S26e
PF01251 Ribosomal protein S7e
PF00832 Ribosomal L39 protein
PF01929 Ribosomal protein L14
PF04758 Ribosomal protein S30
PF01777 Ribosomal L27e protein family
PF03297 S25 Ribosomal protein
PF01247 Ribosomal protein L35Ae
PF01158 Ribosomal protein L36e
PF08079 Ribosomal L30 Nterminal domain
PF01776 Ribosomal L22e protein family
PF01159 Ribosomal protein L6e
PF01781 Ribosomal L38e protein family
PF01778 Ribosomal L28e protein family
PF01249 Ribosomal protein S21e
PF01779 Ribosomal L29e protein family
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Table B.1: List of Pfam ribosomal proteins.

Pfam Accession Number Description
PF03939 Ribosomal protein L23, Nterminal domain
PF05635 S23 Ribosomal protein
PF08561 Ribosomal protein L37
PF10501 Ribosomal subunit 39S
PF05162 Ribosomal protein L41
PF03868 Ribosomal protein L6, Nterminal domain
PF11993 Ribosomal S4
PF08136 30S Ribosomal protein subunit S22 family





Appendix C

Domains and architectures
over-represented in P. falciparum

Table C.1 shows domains over-represented, that is, predicted at least 3 times. We also

show the number of predictions for CASH’ competitors. Table C.2 show the most frequent

architectures (domain arragenment) found by CASH and its competitors. we report only

the architectures that were predicted for at least 3 proteins.

Table C.1: List of domains frequently found in the P. falciparum genome.

Pfam Domain Name Domain Description Pfam24 CODD dPuc CASH
Ag332 Erythrocyte membrane-associated giant

protein antigen 332
29 151 153 167

PFEMP PFEMP DBL domain 114 116 114 150
RRM_1 RNA recognition motif. (a.k.a. RRM,

RBD, or RNP domain)
92 107 102 119

VAR1 Mitochondrial ribosomal protein (VAR1) 0 0 0 116
LRR_1 Leucine Rich Repeat 11 44 35 100
DnaJ DnaJ domain 50 49 47 53
AP2 AP2 domain 37 41 41 51
SART-1 SART-1 family 1 1 1 50
TPR_2 Tetratricopeptide repeat 2 37 12 48
s48_45 Sexual stage antigen s48/45 domain 29 24 29 48
AAA ATPase family associated with various cel-

lular activities (AAA)
42 42 41 47

HEAT HEAT repeat 3 29 20 46
Kelch_2 Kelch motif 4 8 3 44
P_fal_TIGR01639 Protein of unknown function

(P_fal_TIGR01639)
38 32 26 42

RCC1 Regulator of chromosome condensation
(RCC1) repeat

14 12 16 42

SMC_N RecF/RecN/SMC N terminal domain 5 7 7 37
IMCp Inner membrane complex protein 9 0 0 32
Collagen Collagen triple helix repeat (20 copies) 1 0 0 28
BicD Microtubule-associated protein Bicaudal-D 0 0 0 24
Merozoite_SPAM Merozoite surface protein (SPAM) 6 7 5 23
RAP RAP domain 16 18 15 22
PPR PPR repeat 2 12 12 21
E1-E2_ATPase E1-E2 ATPase 16 12 13 19
DUF1777 Protein of unknown function (DUF1777) 1 5 1 19
Sel1 Sel1 repeat 16 15 13 19
S-antigen S-antigen protein 3 4 4 18
Hydrolase_4 Putative lysophospholipase 10 0 0 18
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Table C.1: List of domains frequently found in the P. falciparum genome.

Pfam Domain Name Domain Description Pfam24 CODD dPuc CASH
Borrelia_P83 Borrelia P83/100 protein 0 0 0 17
PPAK PPAK motif 0 0 0 16
SPARC_Ca_bdg Secreted protein acidic and rich in cysteine

Ca binding region
1 0 0 16

Cornifin Cornifin (SPRR) family 0 0 0 15
TSP_1 Thrombospondin type 1 domain 9 9 10 14
Lactamase_B Metallo-beta-lactamase superfamily 6 6 6 14
Abhydrolase_1 alpha/beta hydrolase fold 6 9 8 13
Fibrinogen_BP Fibrinogen binding protein 1 0 0 13
PT PT repeat 0 1 5 12
PCI PCI domain 9 8 8 12
eIF2A Eukaryotic translation initiation factor

eIF2A
3 6 3 11

PH PH domain 3 8 5 11
Viral_helicase1 Viral (Superfamily 1) RNA helicase 2 0 0 11
EamA EamA-like transporter family 4 4 5 11
DUF1565 Protein of unknown function (DUF1565) 0 0 0 11
Suf Suppressor of forked protein (Suf) 1 1 0 11
Macoilin Transmembrane protein 0 0 0 10
SET SET domain 6 7 6 10
ResIII Type III restriction enzyme, res subunit 2 4 3 10
PduV-EutP Ethanolamine utilisation - propanediol

utilisation
1 0 0 10

Transformer Fruit fly transformer protein 0 0 0 9
CLASP_N CLASP N terminal 1 0 0 9
FAST_1 FAST kinase-like protein, subdomain 1 0 6 0 9
Vps4_C Vps4 C terminal oligomerisation domain 1 4 3 9
TryThrA_C Tryptophan-Threonine-rich plasmodium

antigen C terminal
4 0 0 9

IstB IstB-like ATP binding protein 0 0 0 9
DMP1 Dentin matrix protein 1 (DMP1) 0 0 0 9
Hydrolase_3 haloacid dehalogenase-like hydrolase 3 5 6 9
Med15 ARC105 or Med15 subunit of Mediator

complex non-fungal
0 0 0 9

Poxvirus_B22R Poxvirus B22R protein 0 0 0 9
C1_1 Phorbol esters/diacylglycerol binding do-

main (C1 domain)
0 5 2 8

zf-B_box B-box zinc finger 3 5 5 8
Peptidase_S9 Prolyl oligopeptidase family 4 1 1 8
TIL Trypsin Inhibitor like cysteine rich domain 0 0 5 8
AhpC-TSA AhpC/TSA family 5 4 4 8
Clathrin_propel Clathrin propeller repeat 1 4 4 8
DUF1080 Domain of Unknown Function (DUF1080) 0 2 0 8
DUF577 Family of unknown function (DUF577) 0 0 0 7
NTP_transf_2 Nucleotidyltransferase domain 2 3 3 7
Cenp-F_N Cenp-F N-terminal domain 0 0 0 7
DNA_primase_S Eukaryotic and archaeal DNA primase

small subunit
1 1 1 7

RHD3 Root hair defective 3 GTP-binding protein
(RHD3)

2 1 1 7

Filamin Filamin/ABP280 repeat 2 4 2 7
V-SNARE_C Snare region anchored in the vesicle mem-

brane C-terminus
2 0 0 6

PAP_central Poly(A) polymerase central domain 1 1 1 6
Trehalose_recp Trehalose receptor 0 0 0 6
BRCT BRCA1 C Terminus (BRCT) domain 2 3 2 6
BRAP2 BRCA1-associated protein 2 0 0 0 6
DUF258 Protein of unknown function, DUF258 0 0 0 6
zf-UBP Zn-finger in ubiquitin-hydrolases and other

protein
3 3 2 6

SidE Dot/Icm substrate protein 0 0 0 6
Trypan_PARP Procyclic acidic repetitive protein (PARP) 1 0 0 6
CPSF_A CPSF A subunit region 2 2 2 6
GLTT GLTT repeat (6 copies) 0 0 0 6
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Table C.1: List of domains frequently found in the P. falciparum genome.

Pfam Domain Name Domain Description Pfam24 CODD dPuc CASH
BK_channel_a Calcium-activated BK potassium channel

alpha subunit
1 3 3 6

BNR BNR/Asp-box repeat 0 0 0 6
Taxilin Myosin-like coiled-coil protein 0 0 0 5
RPAP2_Rtr1 Rtr1/RPAP2 family 1 1 1 5
Sfi1 Sfi1 spindle body protein 0 0 0 5
Ricin_B_lectin Ricin-type beta-trefoil lectin domain 1 1 2 5
Nucleoside_tran Nucleoside transporter 1 1 1 5
FeoB_N Ferrous iron transport protein B 0 0 0 5
Rad51 Rad51 2 2 2 5
DUF827 Plant protein of unknown function

(DUF827)
0 0 0 5

DUF3447 Domain of unknown function (DUF3447) 0 0 0 5
LRR_2 Leucine Rich Repeat 0 2 0 5
Arch_ATPase Archaeal ATPase 1 0 0 5
CfAFP Choristoneura fumiferana antifreeze pro-

tein (CfAFP)
0 0 0 5

Daxx Daxx Family 1 0 0 4
Cenp-F_leu_zip Leucine-rich repeats of kinetochore protein

Cenp-F/LEK1
0 0 0 4

Fmp27_WPPW RNA pol II promoter Fmp27 protein do-
main

0 0 0 4

SpoIIE Stage II sporulation protein E (SpoIIE) 1 0 1 4
Abhydrolase_4 TAP-like protein 0 0 0 4
zf-TRAF TRAF-type zinc finger 0 0 0 4
PRP21_like_P Pre-mRNA splicing factor PRP21 like pro-

tein
1 0 0 4

Vicilin_N Vicilin N terminal region 0 0 0 4
Apis_Csd Complementary sex determiner protein 0 0 0 4
DUF445 Protein of unknown function (DUF445) 1 0 0 4
Prominin Prominin 0 0 0 4
DUF1664 Protein of unknown function (DUF1664) 0 0 0 4
zf-C3H1 Putative zinc-finger domain 0 0 0 4
Ion_trans Ion transport protein 0 0 0 4
SCP-1 Synaptonemal complex protein 1 (SCP-1) 0 0 0 4
EGF_2 EGF-like domain 0 0 0 4
STOP STOP protein 0 0 0 4
DUF1162 Protein of unknown function (DUF1162) 0 0 0 3
ATG_C ATG C terminal domain 0 0 0 3
GRP Glycine rich protein family 0 0 0 3
MAP7 MAP7 (E-MAP-115) family 0 0 0 3
DBP Duffy-antigen binding protein 0 0 0 3
Cse1 Cse1 0 0 0 3
GSPII_E Type II/IV secretion system protein 0 0 0 3
Gp58 gp58-like protein 0 0 0 3
Cyclin_C Cyclin, C-terminal domain 0 0 0 3
Pentapeptide_2 Pentapeptide repeats (8 copies) 0 0 0 3
SDA1 SDA1 0 0 0 3
TCO89 TORC1 subunit TCO89 0 0 0 3
DUF2220 Uncharacterized protein conserved in bac-

teria C-term(DUF2220)
0 0 0 3

DNA_pol3_delta DNA polymerase III, delta subunit 0 0 0 3
DUF2353 Uncharacterized coiled-coil protein

(DUF2353)
0 0 0 3

SusD SusD family 0 0 0 3
TrkA_N TrkA-N domain 0 0 0 3
YHS YHS domain 0 0 0 3
ITAM Immunoreceptor tyrosine-based activation

motif
0 0 0 3

RNase_Zc3h12a Zc3h12a-like Ribonuclease domain 0 0 0 3
Cys_rich_FGFR Cysteine rich repeat 0 0 0 3
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Table C.2: List of the most frequent domain architecture found in the P. falci-
parum genome.

Domain Architecture Pfam24 CODD dPuc CASH
VAR1-VAR1 0 0 0 42
PFEMP-PFEMP 30 30 30 33
PFEMP-PFEMP-PFEMP-Duffy_binding-Duffy_binding 0 0 0 20
VAR1-VAR1-VAR1 0 0 0 15
HEAT-HEAT 0 7 6 14
LRR_1-LRR_1-LRR_1 2 5 4 14
AP2-AP2 10 11 11 13
s48_45-s48_45 8 5 7 12
TPR_1-TPR_2-TPR_2 0 7 2 11
PPAK-PFEMP-PFEMP-Duffy_binding-Duffy_binding 0 0 0 10
efhand-SPARC_Ca_bdg 0 0 0 10
LRR_1-LRR_1-LRR_1-LRR_1-LRR_1 1 2 2 10
PPAK-PFEMP-PFEMP-PFEMP-Duffy_binding-Duffy_binding 0 0 0 8
IMCp-IMCp 0 0 0 8
Duffy_binding-Merozoite_SPAM 2 3 1 8
RCC1-RCC1-RCC1 2 2 2 8
RRM_1-DUF1777 0 3 0 8
RCC1-RCC1 2 2 4 8
PPAK-PFEMP-Duffy_binding-Duffy_binding 0 0 0 8
SART-1-SART-1 0 0 0 7
LRR_1-LRR_1-LRR_1-LRR_1-LRR_1-LRR_1 0 1 1 7
Abhydrolase_1-Hydrolase_4 0 0 0 7
Peptidase_S9-Hydrolase_4 2 0 0 7
NTP_transf_2-PAP_central 0 0 1 6
MMR_HSR1-PduV-EutP 1 0 0 6
RRM_1-Transformer 0 0 0 6
AP2-AP2-AP2 3 4 4 6
LRR_1-LRR_1 0 4 4 6
SMC_N-SMC_N 1 0 0 6
Ycf1-Ycf1-Ycf1 0 0 0 5
PFEMP-PFEMP-PFEMP-PFEMP-Duffy_binding 0 0 0 5
efhand-efhand-SPARC_Ca_bdg 0 0 0 5
Adap_comp_sub-Clat_adaptor_s 2 3 1 5
Pkinase-Poxvirus_B22R 0 0 0 5
VAR1-VAR1-VAR1-VAR1 0 0 0 5
LRR_1-LRR_1-LRR_1-LRR_1 0 1 1 5
zf-B_box-zf-B_box 1 1 2 4
TPR_2-TPR_2-TPR_2 0 1 0 4
Helicase_C-ResIII 1 1 1 4
efhand-efhand-Pkinase-SPARC_Ca_bdg 0 0 0 4
Kelch_1-Kelch_2-Kelch_2-Kelch_2-Kelch_2 0 0 0 4
Kelch_2-Kelch_2-Kelch_2-Kelch_2 0 0 0 4
RCC1-RCC1-RCC1-RCC1 2 2 1 4
VAR1-VAR1-VAR1-VAR1-VAR1 0 0 0 4
DUF1080-DUF1080 0 0 0 4
s48_45-s48_45-s48_45 2 2 2 4
DEAD-Helicase_C-SART-1 0 0 0 4
zf-CCCH-zf-C3H1 0 0 0 4
Kelch_2-Kelch_2 0 1 1 4
S-antigen-S-antigen 1 0 0 3
Duffy_binding-Duffy_binding-EBA-175_VI-DBP 0 0 0 3
Cyclin_N-Cyclin_C 0 0 0 3
SidE-SidE 0 0 0 3
BicD-BicD-BicD 0 0 0 3
AAA-AAA-CDC48_N-CDC48_2-Vps4_C 0 1 1 3
E1-E2_ATPase-E1-E2_ATPase-Hydrolase-Hydrolase_3 0 0 0 3
PFEMP-PFEMP-PFEMP-Duffy_binding-Duffy_binding-
Duffy_binding-Duffy_binding

0 0 0 3

RHD3-RHD3 1 0 0 3
WD40-CPSF_A 0 0 0 3
TP6A_N-DUF2220 0 0 0 3
Filamin-Filamin 0 0 1 3
ABC_tran-ABC_tran-DUF258 0 0 0 3
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Table C.2: List of the most frequent domain architecture found in the P. falci-
parum genome.

Domain Architecture Pfam24 CODD dPuc CASH
ABC_tran-DUF258 0 0 0 3
Pkinase-Collagen 0 0 0 3
AAA-IstB 0 0 0 3
Abhydrolase_4-Hydrolase_4 0 0 0 3
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