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INTRODUCTION

Introduction

The main topic of the thesis is a study of algebras of polynomials which are bounded

on a given unbounded semialgebraic set. In particular to determine when a polynomial is

bounded on an unbounded semi-algebraic set.

At the origin of this thesis the motivation was to attempt a generalisation to the

case of unbounded sets of a celebrated theorem of Schmüdgen [Sm, 1991]. It states that

every positive polynomial on a compact basic semialgebraic set can be written as a sum

squares of polynomials multiplied by products of polynomials defining the semialgebraic

set. In the proof of Schmüdgen the assumption of compactness is essential. He obtained

this result when solving K-moment problem for compact semialgebraic sets and the proof

makes essential use of functional analysis methods (spectral measures). Schmüdgen’s

Positivstellensatz gives a possibility to construct an algorithm to compute lower bound

of a polynomial on a compact semialgebraic set. The condition that f belongs to an

appropriate preordering is used in programming. Since we obtained a version of the

theorem for bounded polynomials on an unbounded semialgebraic set S, we felt that from

the point of view of applications it was vital to decide efficiently whether f is bounded

on S.

Optimization of polynomials (i.e. finding lower or upper bounds) on semialgebraic sets

is an important and challenging problem, both theoretically and practically. Nowadays

there is a a very intensive activity in this direction, based mostly on sums of squares repre-

sentations and more generally on Real Algebra methods. There is a number of books and

survey articles devoted to various aspects of this subject, for instance [L], [Lt] and [PaS].

In order to extend the method of Schmüdgen to the case of unbounded semialgebraic

sets one can consider the algebra of bounded polynomials on such sets. Actually this is

partially achieved in the last chapter of this thesis, having Schweighofer’s beautiful paper

[Sw] as one of the inspirations for the undertaken study. To this aim it is important

to understand the structure of algebras of polynomials which are bounded on a given

unbounded semialgebraic set. Surprisingly this problem has been studied only recently.

Actually in the PhD thesis of D. Plaumann (Konstanz 2008), supervised by Professor

C. Scheiderer, among other results it was proved that for regular subsets of R2 (i.e. sets

equal to the closure of their interior) those algebras are finitely generated. Recently

Krug in [Krug] has constructed an example of a semialgebraic regular subset of R3 on

which the algebra of bounded polynomials is not finitely generated. However, this set
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INTRODUCTION

is not basic closed, so the question of the finite generation remains open for this type of sets.

Let S be a subset of Rn. Denote by

A(S) = {f ∈ R[X] | f is bounded on S}

the algebra of bounded polynomials on S. The set A(S) is a subring of R[X] and an

algebra over R. Note that if S is bounded, then A(S) = R[X]. Otherwise, the algebra

A(S) is a proper subring of the ring of polynomials.

In this thesis we address several problems concerning algebras of bounded polynomials.

First of all we tackle the problem of deciding the boundedness of a polynomial on a set.

We achieve it for polynomials in two variables for any semialgebraic set in Section 6.1,

using methods developed in Section 2. Also in the latter section we give a method of

finding generators of A(S) for a large class of semialgebraic subsets of R2. In Section 3 we

have established a surprising relation between complex bifurcation values of a polynomial

f and the stability of the family of algebras A(Sc), where Sc = {(x, y) ∈ R2| f(x, y) ≤ c}.

Throughout the thesis instead of Real Algebra methods we preferred to use more

geometric arguments, so we have avoided using standard language of Real Algebra. Since

the problems we are dealing with can be stated quite plainly, we tried to use as simple

and straightforward methods as possible and we hope that we have succeeded.

To simplify the study of algebras of bounded polynomials on a semialgebraic set S, we

will consider some subsets of S which we will call tentacles. A set M is a tentacle of the

set S if M \ B(0, R) is connected for any R > 0 and M is one of the unbounded sets in

the decomposition

S = K ∪M1 ∪ . . . ∪Ml,

where K is compact, l ∈ N0 and M1, . . . ,Ml are closed in S and pairwise disjoint tentacle

sets (see Theorem 1.19). Moreover, if l = 0, then A(S) = R[X]. Otherwise, we have

A(S) =

l
⋂

i=1

A(Mi).

A starting point for the results in Section 2 is the observation that if we consider

semialgebraic subsets of R2, we can assume that a tentacle M is of the form

{(x, y) ∈ R2| β1(y) ≤ x ≤ β2(y), y ≥ R},

where R is a positive real number and β1(1/Y ), β2(1/Y ) are Puiseux series which

parametrise semialgebraic curves. If a tentacle M of the set S is not of the above form

(up to a linear change of coordinates), then A(M) = R, which implies that the algebra

A(S) is trivial. Thus throughout Section 2 we consider a semialgebraic set M of the above

form.
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INTRODUCTION

In Theorem 2.4 we prove that if ord∞β1 6= ord∞β2, then

A(M) = R[XiY d| d ≤ iα],

where we put ord∞β = ordβ(1/Y ) and α = min{ord∞β1, ord∞β2}. Hence the algebra of

bounded polynomials in this instance is generated by monomials. The main point of the

proof is the comparison of the supremum of a polynomial with its appropriate coefficients.

This works whenever the width of the tentacle is essentially more than its distance from

the axis.

In the second part of Section 2 we consider the case when ord∞β1 = ord∞β2 and

β1 6= β2. We introduce a Puiseux series β with a finite expansion, which can be computed

in a finite number of steps from β1 and β2 (see Proposition 2.15). By identification of β

with the y axis we prove Theorem 2.16 whence it follows that

A(M) = R[X,Y ] ∩ R

[

1

Y 1/q
, (X − β)iY d | d ≤ iη

]

,

where η = min{ord∞(β1 − β), ord∞(β2 − β)}. We would like to note that it gives a

straightforward way of checking whether a polynomial f is bounded on M . Indeed,

it is a simple task to write any polynomial in terms of the above ring of bounded

polynomials with Puiseux coefficients (see Proposition 2.13), afterwards it suffices to

check the exponents of Y in such a representation. Note that the algebra A(S) need not

be generated by monomials (or isomorphic to such an algebra). We would like to add

that the introduction of polynomials with Puiseux coefficients lets us treat all algebras

of bounded polynomials on tentacle sets as if they were generated by monomials, which

facilitates their study (compare Section 5). Moreover, usually it is quite difficult to

determine whether a polynomial belongs to a subring given by fixed polynomials, whereas

in the case of this extended ring the representations of f are obtained after simple

symbolic computation (note that β has a finite expansion).

In Section 3 we consider semialgebraic sets of the form

Sc = {(x, y) ∈ R2| f(x, y) ≤ c},

where f is a polynomial and c is a real number. The main result of this section is The-

orem 3.5 on stability of algebras A(Sc). Namely, we prove that the algebras of bounded

polynomials on Sc are, up to some point, insensitive to the change of the parameter c.

More precisely, for any c < c̃ we have

A(Sc) = A(Sc̃)

as long as [c, c̃] ∩ BC(f) = ∅. The set of bifurcation values BC(f) is defined on page 44.

Its most notable feature is that it is finite and can be computed for any polynomial f in

two variables. The main tool in the proof of theorem on stability is a parametric version

of Puiseux theorem and results of Section 2. We hope that this approach illustrates

the connection between the bounded polynomials and the geometry of the fibres of f ,
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and might shed a new light on properties of bifurcation values as well as properness

of polynomial mappings. In R2 it would be also interesting to study the stability of

sets described by more than one polynomial inequality. This still leaves the case of

higher dimensions as an open problem. Although in simple cases (for example for sets

described by monomial inequalities as in Theorem 5.9) it is easy to see that they are

insensitive to the change of parameters, in general the problem does not seem easy to solve.

Section 4 is devoted to the study of algebras of polynomials bounded on sets in Rn

for arbitrary n. The first part deals with a special type of sets, which we call weighted

tentacles and can be viewed as a ”uniform deformation” of a lower-dimensional set along

the y axis. Namely, suppose the set S ⊂ Rn has a nonempty interior. Consider a set

M = {(β1(y)x1, . . . , βn(y)xn, y) ∈ Rn+1| x ∈ S, y ≥ R}

where R > 0 and β1(1/Y ), . . . , βn(1/Y ) are Puiseux series such that βi(y) are convergent

and have constant positive or negative sign for y ∈ [R,∞).

Theorem 4.4 states that if we assume that A(S) is generated by monomials, then

A(M) = A(S)[Y ] ∩ R[XαY d|
n
∑

i=1

αiλi ≥ d],

where λ ∈ Qn is the tuple of weighs of the set M and we write for short Xα = Xα1
1 · · ·Xαn

n .

Let us note that any semialgebraic subset of the real line has either a trivial algebra or

the algebra is equal to R[X] (hence generated by the monomial X). Therefore the above

statement generalizes Theorem 2.1 from Section 2. Moreover, in some instances in higher

dimensions it gives us a practical possibility of deciding the generators of the algebra of

bounded polynomials (as is the case with some examples in Section 6). The method of

proof is essentially the same as in Section 2.1 i.e. uses equivalence of norms in finite

dimensional spaces. Theorem 4.4 generalises and extends results of T. Netzer in [Net] who

deals only with projections of such sets on the first n coordinates and have been attained

using completely different arguments. Hence in [Net] the dimension of S and and the

tentacle is the same, moreover S is assumed compact, of which assumptions he makes

essential use.

In the last part of Section 4 we give an alternative proof (based on the nonproperness

set of Jelonek) of a fact already shown by D. Plaumann and C. Scheiderer in [PlSd] that if S

is an unbounded subset of a proper semialgebraic set in Rn, then the algebra A(S) cannot

be finitely generated. An important ingredient of the proof is Lemma 4.20 which gives

a nice correlation between an algebraic property of an ideal and the geometric property

of a mapping. Also in Section 4 we give an example (Example 4.2 of a semi-analytic

set in R2 with a nonempty interior which has an infinitely generated algebra of bounded

polynomials), which is interesting from the point of view of the results of Plaumann and

Scheiderer on the finite generation of A(S) for regular semialgebraic sets in R2.

Because of the fact that algebras generated by monomials arise naturally in our study,

we turn to their properties in Section 5. Using classical methods of convex geometry we
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show the duality between convex cones of exponents of monomials and the algebras of

bounded polynomials on intersections of sets given by appropriate monomial inequalities

(Theorem 5.9). In particular, we would like to remark that algebras from Theorems 2.4

and 4.4 are generated by monomials. At the end of the section we compute the minimal

number of monomial generators for tentacle sets on the real plane. In this context one

easily sees that computation of the number of elements of the basis for an intersection

and a union of a finite collection of algebras generated by monomials is also only a

combinatorial task.

Suppose again that S ⊂ R2. From Theorem 6.2 on testing curves we get as a corollary

that a polynomial f is bounded on S if and only if it is bounded on a finite number of

generic representatives of a family of curves which depends only on the set S. The proof

of this fact based on the results from Section 2 constitutes the first part of Section 6.

In Section 6.2 we present a version of Schmüdgen’s Positivstellensatz for bounded

polynomials. Take a basic closed semialgebraic unbounded set

S = {x ∈ Rn| g1(x) ≥ 0, . . . , gw(x) ≥ 0}

where g1, . . . , gw are polynomials. A preordering associated with S is the set

T =







∑

σ∈{0,1}w

sσg
σ| sσ ∈

∑

R[X]2







.

Take a polynomial f . Suppose that the polynomials gi which describe S are bounded on

S. Moreover, suppose that Sζ ∩ ζ(S)
Zar

= ζ(S) (the definition of these sets can be found

on page 83). Theorem 6.13 states in particular that if f is bounded and greater than some

positive constant on S, then f ∈ T . In the less likely case when Sζ = ζ(S), it suffices that

f is bounded and positive on S (see Theorem 6.10). In the proofs of both theorems we

used a simple observation that a mapping with generators (or the basis) of an algebra of

bounded polynomials as coordinates is, in some way, the ”canonical” bounded mapping.

Hence in Schmüdgen’s Postivstellensatz we can try to substitute compactness of the set

by the assumption of boundedness of the polynomials. Nevertheless, note that even in the

compact case Theorems 6.10 and 6.13 introduce a property that if a given polynomial f

and polynomials gi which describe the set S lie in a certain subalgebra of R[X], then the

representation of f can be expressed with sums of squares from this subalgebra (compare

Example 6.11).

The author would like to thank first of all her advisors professor Krzysztof Kurdyka

and professor Stanis law Spodzieja for their help and inspiration. My gratitude is infinitely

generated. Among other people who have helped the author to understand and manage

the undertaken study we would like to name in random order: Tomek Rodak for his helpful

comments, Daniel Plaumann and Claus Scheiderer for sharing their insights into the study

of the topic, Zbigniew Jelonek for fruitful discussions, Georges Comte for his prompt help

in the final stages and Adam Grzesiński for continuous spiritual support. Thank you.
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1. PRELIMINARIES

1. Preliminaries

In Preliminaries we will present some basic notions which will be used throughout the

thesis. As the main theme of this work lies in the scope of semialgebraic geometry, we will

start with some facts about semialgebraic sets and Puiseux series with a special emphasis

on those which parametrise semialgebraic curves. Afterwards we introduce the notion of

generators of an algebra, which will be essential in the study of bounded polynomials on

a set. Since a bounded polynomial on an unbounded set is necessarily nonproper, we will

make some remarks in Section 1.4 on the properties of nonproper mappings. At the end of

the Preliminaries we turn to crucial ideas of this thesis: algebras of bounded polynomials

and tentacle sets.

Notations

By R we denote the field of real numbers, by C the field of complex numbers, by N
the set of natural numbers (not including zero) and by N0 the set N ∪ {0}. The set of

real polynomials in variables X1, . . . , Xn we denote by R[X1, . . . , Xn]. For brevity we will

often write X for the system of variables X1, . . . , Xn and R[X] for R[X1, . . . , Xn]. By

convention, we will write uppercase X for variables and lowercase x for points. Every

polynomial of the form Xα1
1 · · ·Xαn

n for α1, . . . , αn ∈ N0 will be called a monomial.

For any set S and i ∈ N by Si we mean the Cartesian product S × · · · × S of i terms,

whereas we put S0 = ∅. Furthermore, if S is a subset of a topological space denote by

IntS the interior of the set S, by S its closure and by FrS its boundary. For any set

S ⊂ Rn there exists a smallest algebraic set (with respect to the relation of inclusion)

which contains S. We will call it the Zariski closure of S and we will denote it by S
Zar

.

We will consider Rn equipped with the standard euclidean norm ‖x‖ =
√

∑n
i=1 x

2
i for

x = (x1, . . . , xn) ∈ Rn. For a set S ⊂ Rn and a point x ∈ Rn we will write dist(x, S) =

infy∈S ‖x − y‖. Let us denote by S(x, r) and B(x, r) a sphere and an open ball in Rn,

respectively, with a centre in x ∈ Rn and radius r > 0. By [a, b], where a, b ∈ R, we denote

the closed segment {t ∈ R| a ≤ t ≤ b} if a < b, the set {a} if a = b and the empty set if

a > b.

Let I be an ideal in R[X]. We will denote by V (I) the set {x ∈ Rn| ∀f∈I f(x) = 0}.

If I = (f1, . . . , fk) then we will write V (f1, . . . , fk) instead of V (I). For any set V ⊂ Rn

13



1.1. Semialgebraic sets

we will also denote by I(V ) the ideal {f ∈ R[X] | ∀x∈V f(x) = 0}. We will write

(f1, . . . , fk)R[X] when we want to make clear that (f1, . . . , fk) is an ideal in R[X].

Last but not least, we say that f has constant sign on U if it is positive, negative or

constantly equal zero on U . When we write f 6= 0, we mean that the function is not

constantly equal zero. If for f : U → R, where U ⊂ Rn, the partial derivatives ∂f
∂xi

for

i = 1, . . . , n are well-defined on U , then we write ∇f = ( ∂f
∂x1

, . . . , ∂f
∂xn

) : U → Rn and call

it the gradient of the function f .

1.1. Semialgebraic sets

We will recall here some basic notions and properties concerning semialgebraic sets.

More details and further information can be found for example in [BCR], [BR] or [PD].

We call a set S ⊂ Rn semialgebraic, if it is a finite union of intersections a finite number

of sets of the forms

{x ∈ Rn| g(x) = 0} or {x ∈ Rn| h(x) > 0},

where g and h are arbitrary real polynomials in n variables. The class of semialgebraic

sets is the smallest class of sets containing the class of algebraic sets which is closed under

union, intersection, complement and projection.

We have the following well-known basic property of semialgebraic sets.

Property 1.1. If S is semialgebraic, then IntS, S, FrS and all connected components

of S are semialgebraic.

Note that for a semialgebraic set S we have IntS is empty if and only if S
Zar

is

a proper algebraic subset.

We will say that a nonempty semialgebraic set S is of dimension n if n is the maximal

natural number such that there exists a homeomorphism φ : Rn ⊃ B(0, 1) → U , where

U ⊂ S is open in S.

A set S is called basic semialgebraic closed if it is of the form

{x ∈ Rn| g1(x) ≥ 0, . . . , gk(x) ≥ 0}

for some g1, . . . , gk ∈ R[X].

A mapping F : Rn → Rk is called semialgebraic if its graph is a semialgebraic set. If

k = 1 then the semialgebraic mapping will be called a semialgebraic function.

We give below a formulation of a well-known statement that we will often use (see

[BCR, Theorem 2.5.5] and [KOS]).
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1. PRELIMINARIES

Theorem 1.2. (Curve Selection Lemma) Let S ⊂ Rn be a semialgebraic set and x ∈
Rn such that there exists a sequence in S converging to x. There exists a continuous

semialgebraic mapping γ : [0, 1) → Rn such that γ([0, 1)) ⊂ S and limt→1− γ(t) = x.

Moreover, if S is unbounded, then there exists a continuous semialgebraic mapping γ :

[0, 1) → Rn such that γ([0, 1)) ⊂ S and limt→1− ‖γ(t)‖ = ∞.

Semialgebraic functions in one variable have a finite number of points where they are

not continuous and a finite number of intervals where they are monotone. Let us turn

now to semialgebraic curves i.e. sets which are images of some continuous semialgebraic

mapping in one variable. As a consequence

Property 1.3. An intersection of two semialgebraic curves is a finite union of points and

images of intervals by continuous semialgebraic mappings.

1.2. Puiseux parametrizations

Let us introduce a symbol T
j
q by following relations

T
1
1 = T, (T

1
kq )k = T

1
q , (T

p
q )k = T

kp
q .

By a Puiseux series we mean a formal series β of the form

β =
∞
∑

j=m

bjT
j
q (1.1)

where m ∈ Z, q ∈ N, bj ∈ R for j ≥ m. If β 6= 0, we can assume that bm 6= 0. Then we

put ordβ = m/q and call the order of β. Additionally we put ord0 = +∞. Sometimes the

above series are called Puiseux-Laurent series, since we allow m < 0.

Definition 1.4. By a Puiseux series at infinity we will mean a Puiseux series in variable

1/Y i.e. a series of the form

β =

∞
∑

j=m

bj

(

1

Y

)
j
q

(1.2)

where m ∈ Z, q ∈ N, bj ∈ R for j ≥ m.

The numbers bj will be called the coefficients of β. If β 6= 0 is a Puiseux series at infinity

of the form (1.2), we can assume that bm 6= 0. By analogy we put ord∞β = m/q and

call it the order at infinity of β. Additionally we put ord∞0 = +∞. We will denote by

supp(β) the set {i/q ∈ Q| bi 6= 0}.

By a complex Puiseux series and a complex Puiseux series at infinity we will mean

the series of the forms (1.1) and (1.2) respectively with complex coefficients.

The set of all Puiseux series considered with addition and multiplication forms a field.

The same is true for the set of all Puiseux series at infinity, complex Puiseux series as
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1.2. Puiseux parametrizations

well as complex Puiseux series at infinity. By the standard properties of order (cf. [W,

Chapter 4]) we get

Property 1.5. Let β, γ be Puiseux series at infinity. Then

(1) ord∞βγ = ord∞β + ord∞γ.

(2) ord∞(β + γ) ≥ min{ord∞β, ord∞γ}.

We have the standard Puiseux theorem (see [W, Theorem 3.2, Chapter 4]).

Theorem 1.6. (Puiseux Theorem) For any polynomial

f = a0(Y ) + . . . + ad(Y )Xd ∈ C[X,Y ]

such that ad 6= 0 there exist Puiseux series β1, . . . , βd with complex coefficients such that

f = ad(Y )Πd
i=1(X − βi(Y )).

Note that the above equality is a formal equality in the ring of complex Puiseux series.

From Puiseux Theorem (cf. [W, Theorem 4.1, Chapter 4]) it follows that any algebraic

set in C2 can be parametrised locally by Puisuex series. In a suitable coordinate system

one can always choose the parametrization (see [W, Theorem 2.2, Chapter 4]) to be of the

special form x = β(tq), y = tq, where q ∈ N, t ∈ U , U is a neighbourhood of the origin

and β is a complex Puiseux series such that β(tq) converges for every t ∈ U .

Consider the projective closure in P2(C) of a nonempty algebraic set f−1(0) ⊂ C2. After

a choice of appropriate affine coordinates we conclude that the set f−1(0) \ (C×B(0, R))

for a sufficiently big real number R is parametrised at infinity by

x = β(tq)

y = tq (1.3)

where q ∈ N, |t|q > R and β is a complex Puiseux series at infinity such that β(tq)

converges for every |t|q > R.

If for a Puiseux series at infinity β there exists a closed half-line I ⊂ R such that β(y)

is convergent for y ∈ I we will say that β is a convergent Puiseux series at infinity. If this

be the case, we will write β : I → R and treat β both as a Puiseux series and a real function.

Take an unbounded semialgebraic curve Γ ⊂ Rn+1. We will say that the tuple of

convergent Puiseux series at infinity β = (β1, . . . , βn) is a special Puiseux parametrization

of the semialgebraic curve at infinity if there exists a closed half-line H ⊂ R and a compact

set K ⊂ Rn+1 such that

Γ = {(β1(y), . . . , βn(y), y) ∈ Rn+1| y ∈ H}

outside IntK. Since we will use only the above parametrizations, we will call such a tuple

simply a Puiseux parametrization.
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1. PRELIMINARIES

Note that if f ∈ R[Y ][X] for y ∈ U , where the set U ⊂ R is connected, has a constant

number of distinct complex and real roots, then it has a constant number of real roots

(see for example [BR, Corollary 1.5.10]). Moreover, possibly after a change of coordinates,

there exists a real R sufficiently big such that every connected component of the set

f−1(0) \B(0, R) ⊂ C2 is parametrised by distinct parametrizations of the form (1.3).

Thus if β is a Puiseux series at infinity such that f(β(yq), yq) = 0 and β(yq0) ∈ R for

some real number yq0 > R, then β(yq) ∈ R for every real yq > R, provided R is sufficiently

big. Therefore, β is a Puiseux series at infinity with real coefficients. In particular we get

that any unbounded semialgebraic curve in R2 has a special Puiseux parametrization at

infinity. This observation enables us to show that

Proposition 1.7. Every unbounded semialgebraic curve in Rn+1 after some change of

coordinates has a special Puiseux parametrization at infinity.

Proof: Indeed, take an unbounded semialgebraic curve Γ. There exists a permutation

of coordinates such that the last coordinate of the curve is unbounded. Consider the

projection πi,n+1 : Rn+1 → R2 onto the ith and (n + 1)st coordinate. From previous

considerations the curve πi,n+1(Γ) ⊂ R2 has a special Puiseux parametrization at infinity

βi. It is easy to see that the tuple (β1, . . . , βn) is a special Puiseux parametrization at

infinity of Γ. �

From simple properties of analytic functions combined with properties of order and

semialgebraic curves (Properties 1.5 and 1.3) we get

Property 1.8. Take a closed half-line I ⊂ R and Puiseux parametrizations of semialge-

braic curves at infinity β, γ : I → R. The following hold:

(1) there exists a half-line H ⊂ I such that (β−γ)(y) has a constant sign for all y ∈ H;

(2) either β = γ or the intersection of their graphs consists of at most finite number of

points;

(3) ord∞β ≥ 0 if and only if β is bounded on some half-line H ⊂ I;

(4) ord∞β > 0 if and only if β converges to 0 at infinity;

(5) if ord∞β > ord∞γ then there exists a half-line H ⊂ I such that |β(y)| < |γ(y)| for

y ∈ H and on the other hand, if there exists a half-line H ⊂ I such that |β(y)| < |γ(y)|
for y ∈ H then ord∞β ≥ ord∞γ.

Proof: Indeed, (1) and (2) follow from properties of analytic functions and semialgebraic

curves. To prove (3)-(5) without loss of generality we can assume that β, γ 6= 0.

Property (3) follows from properties of analytic functions. Indeed, for some q ∈ N we

can write β(Y q) = h(1/Y ), where h =
∑∞

i=p biZ
p. If ord∞β ≥ 0, then p ≥ 0 and in some

neighbourhood of 0 function h is analytic, hence it is bounded on some (possibly smaller)

neighbourhood of 0. In consequence β is bounded on some unbounded set in R. On the

other hand, if β is bounded on a half-line H, then h is bounded on a set either of the form

(0, ǫ) or (−ǫ, 0) for some ǫ > 0. Since h is the sum of a power series, it is also bounded on

a neighbourood of 0. Hence p ≥ 0 and ord∞β = p/q ≥ 0. Analogously we prove (4).
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1.3. Generators of an algebra

To prove (5) observe that from (2) there exists a half-line H ⊂ I such that for y ∈ H

we have
∣

∣

∣

∣

β(y)

γ(y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

( 1y )r(b0 + β̃(y))

( 1y )s(c0 + γ̃(y))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1

y

∣

∣

∣

∣

r−s
∣

∣

∣

∣

∣

b0 + β̃(y)

c0 + γ̃(y)

∣

∣

∣

∣

∣

,

where b0, c0 6= 0, r = ord∞β, s = ord∞γ and β̃, γ̃ are Puiseux parametrizations such that

ord∞β̃, ord∞γ̃ > 0. Hence if r − s > 0, then by (4) we have |βγ (y)| < 1 for y belonging to

some half-line. The second implication in (5) follows immediately from the first one. �

1.3. Generators of an algebra

Let A be a commutative algebra with a unit over R i.e. a linear space over R with a

bilinear mapping · : A×A → A such that (A,+, ·) is a commutative ring with a unit 1A
(see [Lang]). Throughout this paper we will call such A an algebra.

Let ζ ∈ A. We put ζ0 = 1A and ζn+1 = ζ · ζn for n ∈ N0. For ζ = (ζ1, . . . , ζk) ∈ Ak

and α = (α1, . . . , αk) ∈ Nk
0, where k ∈ N, we will write ζα = ζα1

1 . . . ζαk
k .

Note that for any Z ⊂ A, Z 6= ∅ the set

{g(ζ1, . . . , ζk)| k ∈ N, g ∈ R[X1, . . . , Xk], ζ1, . . . , ζk ∈ Z}

is a subalgebra of A. We will denote it by R[Z].

Definition 1.9. We say that an algebra A is generated by a set Z ⊂ A if A = R[Z]. By

convention R[∅] = R.

In other words, an algebra A is generated by a set Z ⊂ A if for any f ∈ A there exist

some k ∈ N, a finite set A ⊂ Nk
0, elements ζ1, . . . , ζk ∈ Z and real numbers aα for α ∈ A

such that

f =
∑

α∈A

aαζ
α,

where ζ = (ζ1, . . . , ζk). Note that by convention ζ0 = 1A. If Z generates A, then we will

talk about the elements of Z as generators of A. If a set is defined by a formula φ, i.e. it

is of the form {ζ| φ(ζ)}, and the union {ζ1, . . . , ζk} ∪ {ζ| φ(ζ)} generates an algebra A we

will write simply A = R[ζ1, . . . , ζk, ζ| φ(ζ)].

Definition 1.10. We will say that Z is a basis of A if it generates A and

∀ζ∈Z ζ /∈ R[Z \ {ζ}].

For brevity we will often say that Z is a basis if it is a basis of R[Z], meaning that

no element of Z can be expressed by a polynomial in other elements of Z. A linear space

spanned over R by some set Z of polynomials usually is not an algebra. For instance

X2 /∈ lin{1, X, Y }. Even if a linear space happens to be an algebra its linear basis need

not be its basis as an algebra. For example lin{Xi| i ∈ N0} is an algebra generated only

by X but the set {Xi| i ∈ N0} is linearly independent over R.
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1. PRELIMINARIES

Property 1.11. The following properties hold.

(1) If Z ⊂ Z ′, then R[Z] ⊂ R[Z ′].

(2) If ζ ∈ R[Z], then R[Z ∪ {ζ}] = R[Z].

(3) If an algebra A is generated by a finite number of elements, then it has a basis.

Proof: The first and second statements are obvious.

Let A = R[Z], where Z is a finite set. We will prove property (3) by induction with

respect to the number of elements of Z. If Z = ∅ then A = R and ∅ a basis of A.

Assume that any algebra generated by k − 1 elements has a basis. Take Z = {ζ1, . . . ζk}.

If ζi 6∈ R[Z \ {ζi}] for i = 1, . . . , k, then Z is a basis of A. If ζi0 ∈ R[Z \ {ζi0}] for

some i0 = 1, . . . , k, then by property (2) we get A = R[Z \ {ζi0}] and by the induction

hypothesis R[Z \ {ζi0}] has a basis. This ends the proof. �

We should note that if R[Z] ⊂ R[Z ′], then we cannot say anything about the relation

between Z and Z ′. For instance R[X −Y,X +Y ] = R[X,Y ], but the sets {X −Y,X +Y }
and {X,Y } are disjoint. This shows us also that a basis need not be unique. Moreover,

an algebra can have two distinct bases which need not have the same number of elements.

Take for example A = R[X2 +X,X2]. Since X = (X2 +X)−X2 then A = R[X], so {X}
is a basis of A. Observe that {X2 + X,X2} forms a basis of A. Indeed, X2 + X 6∈ R[X2]

because ordX2 + X = 1 and ordf(X2) 6= 1 for any polynomial f ∈ R[X]. On the other

hand X2 6∈ R[X2 + X] because if X2 = f(X2 + X) for some polynomial f ∈ R[X], then

(−1)2 = f((−1)2−1) = f(0) = 02. Note that elements of a basis need not be algebraically

independent, since in this example [(X2 + X) −X2]2 −X2 = 0.

From now on we will consider only subalgebras of the algebra of polynomials in n vari-

ables with real coefficients. We will identify 1A with 1 i.e. with the constant polynomial.

Note that a subalgebra of the ring of polynomials which is generated by a finite number

of elements can be viewed as a subsemigroup of monomials (cf. Section 5.1).

1.4. Nonproper mappings

Take a set S ⊂ Rn. We say that a mapping F : S → Rm is not proper at y ∈ Rm if

there is no neighbourhood U of y such that F−1(U) is compact. Put

JF = {y ∈ Rm | F is not proper at y}.

We will call JF the set of nonproperness of F or Jelonek set of F . We will say that

F : S → Rm is proper on S if the set JF is empty. If F is proper on S = Rn, then we will

simply say that F is proper. Obviously, if a mapping F : Rn → Rm restricted to a set

S ⊂ Rn is nonproper on S, then it is nonproper.

Jelonek in [J] has shown that
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1.5. Properties of A(S)

Theorem 1.12. Let n ≥ 2 and F : Rn → Rm be a non-constant polynomial mapping.

The Jelonek set JF is closed, semialgebraic and for every nonempty connected component

U of JF we have

1 ≤ dimU ≤ n− 1.

Moreover, U is unbounded.

In fact, for every point x ∈ JF there exists an image of the real line by a polynomial

mapping contained in JF and passing through x.

In the case when S is unbounded and closed we have that F is proper on S if and only

if for every sequence (an)n∈N of elements of S we have

if lim
n→∞

‖an‖ = ∞, then lim
n→∞

‖F (an)‖ = ∞.

Let f : Rn → R be a function. We say that c is an asymptotic value of f on the set

S ⊂ Kn if there exists a sequence (an) ⊂ S such that

lim
n→∞

‖an‖ = ∞, and lim
n→∞

‖f(an)‖ = c.

We can see that f has asymptotic values on a closed unbounded set S if and only if it is

not proper on S. It is easy to see that in this case

Jf = {y ∈ R | y is an asymptotic value of f}.

We will call asymptotic values of f on Rn simply asymptotic values of f .

Now we will show a proposition used further in the thesis that if a polynomial has

compact fibres then it is proper. Indeed,

Proposition 1.13. For any polynomial f ∈ R[X] if a fibre f−1(a) is compact, then either

f−1([a, b]) is compact for any b ≥ a or f−1([b, a]) is compact for any a ≥ b.

Proof: For polynomials in one variable the claim is obvious, whereas constant polynomials

do not meet the assumptions. Let us suppose that f is a nonconstant polynomial in

n > 1 variables. From the assumption, the set Rn \ f−1(a) has exactly one unbounded

connected component U . We have that either f(U) = (a,∞) or f(U) = (−∞, a), because

otherwise f would be bounded on Rn. Without loss of generality assume the first case.

Hence for every b ≤ a we have f−1([b, a]) is closed and bounded, since f−1([b, a])∩U = ∅.

Therefore, we get the claim. �

In particular Proposition 1.13 implies that a polynomial is proper if and only if all

its fibres are compact. Indeed, if f ∈ R[X] is proper then all fibres of f are compact.

Assume that all fibres are compact. Take any c ∈ R and apply Proposition 1.13 to the

polynomial (f − c)2. We get that the set ((f − c)2)−1([0, 1]) is compact. Hence c cannot

be an asymptotic value of f and so f is proper.
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1. PRELIMINARIES

1.5. Properties of polynomials bounded on a set

In the two following subsections we will give a motivation of studying algebras of

bounded polynomials from the viewpoint of tentacle sets (see Definition 1.18). First

we give properties of polynomials bounded on a given set. Afterwards, we will focus

on decomposition of any semialgebraic set and the relations of algebras of bounded

polynomials on this set.

Let S ⊂ Rn be a given set. By A(S) (or by A if it does not lead to confusion) we

denote the set of all polynomials bounded on the set S. It forms an algebra since any

linear combination as well as multiplication of a finite number of polynomials bounded on

S is a polynomial bounded on S.

For convenience, throughout this work we will set A(∅) = R[X] and treat the empty

set as if it were compact. We will also quite often say that A is trivial if A = R.

Let us give some basic properties of algebras of bounded polynomials

Property 1.14. Let S,M ⊂ Rn. The following hold

(1) if S ⊂ M then A(M) ⊂ A(S);

(2) S is bounded if and only if A(S) = R[X];

(3) A(S) = A(S);

(4) A(S ∪M) = A(S) ∩ A(M);

(5) if (S \M) ∪ (M \ S) is bounded then A(S) = A(M).

Proof: Properties (1) and (4) are obvious.

To prove (2) it suffices to take under consideration the square of the euclidean norm

‖X‖2 which is polynomial. If S is bounded then ‖X‖2 is bounded on S, by definition. Since

x2i ≤ ‖x‖2 for any x ∈ Rn and i = 1, . . . , n, we obtain that Xi ∈ A(S) for i = 1, . . . , n.

Hence R[X] ⊂ A(S). On the other hand, if R[X] = A(S), then ‖X‖2 is bounded on S.

Therefore S is bounded.

Let us note that any polynomial g is continuous and well defined on Rn. Hence if g is

bounded on S then it is bounded on S. This gives us (3).

Since S \ M and M \ S are bounded sets, by (2) and (4) we get A(S) =

A(M ∩ S) ∩ A(M \ S) = A(M ∩ S) and A(M) = A(M ∩ S) by analogy. This gives us

property (4). �

The opposite implication in point (5) of Property 1.14 is not true. For example take

sets S = {x2y2 ≤ 1} and M = {x2y2 ≤ 4}. It is easy to show that A(S) = R[XY ] = A(M)

(cf. Theorem 2.1 in Section 2.1). But S \M is empty and M \ S is not bounded.

Note that A(S ∩M) ⊃ R[A(S)∪A(M)] but equality need not hold. Take for instance

S = {(xy2)2 ≤ 1} and M = {(x2y)2 ≤ 1}. We get that XY ∈ A(S∩M)\R[A(S)∪A(M)],

though (XY )3 does belong to both. Of course, we cannot also demand an equality in the

relation R[A(S) ∪ A(M)] ⊃ A(S) ∪ A(M).
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1.6. Tentacle sets

We will state a trivial but useful remark which we will cite quite often. Let X , Y, Z
be some normed spaces.

Remark 1.15. A function f : X → Y is bounded on M ⊂ X if and only if there exists a

mapping φ : Z → X such that φ(Z) ⊃ M and f ◦ φ is bounded on φ−1(M). Moreover, f

is bounded on M ⊂ X if and only if for any mapping φ : Z → X the superposition f ◦ φ
is bounded on φ−1(M).

Indeed, to show the necessity of the condition in the first part of the remark it is sufficient

to take φ = idX . The sufficiency can be shown by noticing that if one takes a φ such that

φ(Z) ⊃ M then for any x ∈ M there exists z ∈ φ−1(M). Hence for some constant R and

any x ∈ M we have ‖f(x)‖ = ‖f(φ(z))‖ ≤ R. The second part follows from a similar

argument.

We say that a mapping φ : Rn → Rn is an automorphism of some type (eg. polynomial,

rational) if the mapping itself, as well as its inverse are of the given type. We have

Property 1.16. Let φ be a polynomial automorphism of Rn and S some subset of Rn.

Then

A(S) = R[Z] ⇐⇒ A(φ(S)) = R[φ−1
∗ Z], (1.4)

where φ−1
∗ Z = {ζ ◦φ−1| ζ ∈ Z}. In other words, φ induces an isomorphism of the algebras

A(S) and A(φ(S)).

Proof: If we put φ−1
∗ (f) = f ◦ φ−1 and φ∗(f) = f ◦ φ for any f ∈ R[X], then we see

that φ∗ and φ−1
∗ are homomorphisms. Moreover, φ∗ is the inverse of φ−1

∗ . Hence φ∗ is

an isomorphism of R[X]. From Remark 1.15 we get that φ−1
∗ restricted to A(S) is an

isomorphism of A(S) and A(φ(S)). �

In particular, a linear change of coordinates induces an isomorphism of corresponding

algebras. We would like to also note that to study if a polynomial is bounded on a set it

does not suffice to study its leading term. Indeed, look at the example below.

Example 1.17. Take a set S1 = {(x, y) ∈ R2 | 0 ≤ x3 + y ≤ 1}. The polynomial

f1 = X3 + Y is obviously bounded on S1. But its leading term X3 is not bounded on S1.

Take a set S2 = {(x, y) ∈ R2 | 0 ≤ xy ≤ 1} and a polynomial f2 = XY + Y . Its leading

term is bounded on S2, but the polynomial itself is not.

To finish this section let us remark that we can assume that the set of generators of

any algebra A ⊂ R[X] is at most countable. Indeed, A as a linear subspace of R[X] has

an at most countable linear basis. In particular, the linear basis is a set of generators

of the algebra A. Therefore, without loss of generality we will only consider at most

countable sets of generators of any given algebra A ⊂ R[X].
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1. PRELIMINARIES

1.6. Tentacle sets

We will start with a notion frequently used throughout this thesis. Right afterwards

we will give its motivation in Theorem 1.19.

Definition 1.18. A nonempty unbounded semialgebraic set M ⊂ Rn is called a tentacle

set if for any r > 0 the set M \B(0, r) is connected.

Due to the classical properties of semialgebraic sets we have the following

Theorem 1.19. Let S ⊂ Rn be a semialgebraic set. Then there exists l ∈ N0 such that

S = K ∪M1 ∪ ... ∪Ml, (1.5)

where K is a bounded semialgebraic set and Mi are pairwise disjoint tentacle sets which

are closed in S, i.e. Mi ∩ S = Mi. Moreover, if S is basic closed, then K is basic closed.

Proof: If S is bounded then put K = S and l = 0. Assume that S is unbounded.

Consider a rational automorphism of Rn \ {0} given by

φ(x) =
x

‖x‖2

for x ∈ Rn \ {0}. We have that φ(Rn \ B(0, R)) = B(0, 1
R) \ {0} for any R > 0. Since φ

is semialgebraic, then φ(S) ⊂ Rn is semialgebraic. The origin lies in φ(S) \ φ(S). Hence,

by the local conic structure of semialgebraic sets ([BCR, Theorem 9.3.6]), we get that the

number of connected components of φ(S) is equal to the number of connected components

of φ(S)∩S(0, 1
R) for a sufficiently small fixed real number 1

R . Hence there exists R > 0 such

that the number of connected components of φ(S) ∩ B(0, 1r ) for every 1
r ≤ 1

R is constant.

This gives us precisely that the number of connected components of S \B(0, r) for r ≥ R

is equal to some l ∈ N0.

Take K = S ∩B(0, R) and for i = 1, . . . , l denote by Mi the connected components of

S \B(0, R). It is easy to see that if S is a basic closed semialgeraic subset then K is also

basic. �

The above proof follows also for example from adapted cell decomposition (see [BCR,

Theorem 2.3.1]) and is in fact its special restatement, but we feel that this approach gives

a shorter and less technical proof. Note that in the above theorem we rule out tentacles

which sum up to a tentacle.

Remark 1.20. Tentacles Mi in Theorem 1.19 are unique in the following sense. If S =

K ′ ∪M ′
1 ∪ . . . ∪M ′

l′ , where the conditions of Theorem 1.19 hold for M ′
i , i ≤ l′, then l = l′

and there exists R > 0 such that, possibly after some permutation of indices,

Mi \B(0, R) = M ′
i \B(0, R).

In the decomposition (1.5) we can imagine that S is an octopus with K as its trunk

and Mi as its tentacles. Hence we will say that Mi are the tentacles of the set S. The
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1.6. Tentacle sets

author was inspired to call unbounded ”parts” of sets in such a way by the paper [Sw].

Let us remark that using notation from Theorem 1.19 we have

A(S) =
l
⋂

i=1

A(Mi). (1.6)

The equality follows immediately from Theorem 1.19 and Property 1.14. Hence we see

that to study the algebra of bounded polynomials on a semialgebraic set it suffices to

consider the algebras of bounded polynomials on its tentacles. Moreover, since A(S) =

A(S), it suffices to study closed sets. And this is exactly what we are going to do in the

Sections 2 and 5.

Example 1.21. Take

S = {(x, y) ∈ R2| |x| < 1} ∪ {(x, y) ∈ R2| |y| < 1}.

Then S = K ∪M1 ∪M2 ∪M3 ∪M4, where K = {(x, y) ∈ R2| |x| ≤ 1, |y| ≤ 1} and

M1 = {(x, y) ∈ R2| |x| ≤ 1, y ≤ −1}, M2 = {(x, y) ∈ R2| |x| ≤ 1, y ≥ 1},
M3 = {(x, y) ∈ R2| x ≤ −1, |y| ≤ 1}, M4 = {(x, y) ∈ R2| x ≥ 1, |y| ≤ 1}.

It is easy to see that A(M1) = A(M2) = R[X] and A(M3) = A(M4) = R[Y ]. Hence

A(S) = A(S) = R[X] ∩R[Y ] = R. Note that the algebras of bounded polynomials on the

tentacles are nontrivial whence the algebra A(S) is.

Let us turn to the case of subsets of the real plane R2. Now we can state a remark

that explains the notation that will be used throughout Section 2.

Proposition 1.22. Take a semialgebraic set S ⊂ R2. There exists R > 0 such that

after a linear change of coordinates the closure S has a decomposition (1.5) such that for

i = 1, . . . , l if

A(Mi) 6= R

then Mi is of one of the forms

{(x, y) ∈ R2|β1(y) ≤ x ≤ β2(y), y ≥ R} or {(x,−y) ∈ R2|β1(y) ≤ x ≤ β2(y), y ≥ R},
(1.7)

where β1, β2 are Puiseux parametrizations at infinity of continuous semialgebraic curves

well-defined on the half-line [R,∞).

Proof: Indeed, assume that S is unbounded. If FrS is bounded, then for a sufficiently

big R > 0 we have S \B(0, R) = R2 \B(0, R). Obviously, A(S \B(0, R)) = R.

Assume that FrS is unbounded. We can write that FrS ⊂ f−1(0) for some noncon-

stant polynomial f : R2 → R. Change the coordinates so that up to the sign f is of the

form

f = Xd +

d
∑

i=1

ai(Y )Xd−i,
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where deg ai ≤ i. In such case, all tentacles of f−1(0) have special Puiseux parametriza-

tions up to a sign change. Hence a tentacle of S that is not of the form (1.7) must for

some r,R > 0 and Puiseux parametrizations β1, β2 : [R,∞) → R contain a set

{(x, y) ∈ R2| x ≥ r, |y| ≤ R} ∪ {(x, y) ∈ R2| x ≥ r, y ≥ R, x ≥ β1(y)} ∪
∪{(x,−y) ∈ R2| x ≥ r, y ≥ R, x ≥ β2(y)} (1.8)

or a mirror image of this set by symmetry with respect to the y axis. Denote the

above tentacle by M . Take g ∈ A(M). We have A(M) ⊂ R[Y ], because for each y0
the set {(x, y0)| x ∈ R} ∩ M is a half-line, hence the polynomial g(·, y0) is bounded if

and only if g does not depend on X. Therefore we have that g(X,Y ) = g(1, Y ). In

particular, g is bounded on the border of M . We have that there exists C > 0 such that

|g(β1(y), y)| = |g(1, y)| ≤ C for y ≥ R. Hence g cannot depend on Y , otherwise it would

not be bounded. Therefore, the polynomial g is constant. �

Note that if Mi is of the form (1.7), then it still may happen that A(Mi) = R (for

example see Corollary 2.9 in Section 2.1).

Under the notation of the above proposition due to Property 1.8 we can demand that

β1−β2 has a constant sign on the appropriate half-line. In this case we will call β1 and β2
the parametrizations of the borders of a tentacle set. Hence if Int(M) 6= ∅ for a tentacle

M , then we get β1 < β2 on the appropriate half-line. We have that Int(M) = ∅ if and

only if β1 = β2.

Any tentacle of the form (1.7) after a change of coordinates is simply of the form

{(x, y) ∈ R2| β1(y) ≤ x ≤ β2(y), y ≥ R}

where R ∈ R and β1, β2 are Puiseux parametrizations at infinity of continuous semi-

algebraic curves. Therefore on the real plane it suffices to study algebras of bounded

polynomials on nonempty sets of the above form with β1 − β2 of constant sign. For

simplicity of notation we will demand that all tentacle sets in R2 are such sets.
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2. Polynomials bounded

on subsets of the plane

In this section we will give a characterisation of algebras of polynomials bounded on

tentacle sets in the real plane. In the first section we will consider the easier case of

tentacles with parametrizations of their borders having different orders at infinity. For

such tentacles the algebras of bounded polynomials are easily characterised (see Theorems

2.4 and Section 5).

In the second section we will tackle the case of equal orders. We give an efficient method

of checking if a polynomial is bounded on such a tentacle (Proposition 2.13 combined with

Theorem 2.16) by giving a characterisation of an algebra of polynomials with Puiseux

coefficients. We leave out the case of tentacles with empty interior until its study in any

dimension undertaken in Section 4.3.

As to notation, in the cases when we feel that it does not lead to confusion in

expressions of the form A({(x, y) ∈ R2| a ≤ f ≤ b}) or Bq({(x, y) ∈ R2| a ≤ f ≤ b}) we

will often leave out the brackets and write simply A(a ≤ f ≤ b) and Bq(a ≤ f ≤ b).

2.1. Characterisation of polynomials bounded on tentacles

with different orders of the parametrizations of their borders

Throughout this section we will consider a tentacle in R2 of the form

M = {(x, y) ∈ R2| β1(y) ≤ x ≤ β2(y), y ≥ R}, (2.1)

where R > 0 and β1, β2 are Puiseux parametrizations at infinity of two semialgebraic

curves such that the sign of β1 − β2 is constant on [R,∞). It is crucial to note that

throughout this paper such sets are meant to be unbounded, that is β1(y) ≤ β2(y) for

every y big enough. For the purposes of this thesis we assume 0 · ∞ = 0.

Put α = min{ord∞β1, ord∞β2}.

In this section we will give an elementary characterisation of the algebra of bounded

polynomials on the above type of set with ord∞β1 6= ord∞β2 (Theorem 2.4). We will

also, due to Theorem 2.7, attribute the same characterisation to sets M with ”trivial”
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2.1. Polynomials bounded on tentacles with borders of different orders

asymptotics, that is the sets containing a half-line. The key to prove these results is

Theorem 2.1.

We start with some remarks needed to prove the crucial Theorem 2.1. Denote

‖F‖u,v = sup
x∈[u,v]

|F (x)|

for u, v ∈ R, F ∈ R[X]. For u < v it is a norm in R[X].

The mapping

R[X] ∋
d

∑

i=0

AiX
i → d

max
i=0

|Ai|

denoted as ‖ · ‖max is also a standard norm in R[X].

For a function f =
d
∑

i=0
ai(Y )Xi, defined on R × I ⊂ R2 and polynomial with respect

to X we will write degX f = d if ad is not constant zero function and degX 0 = −∞. For

the above f , a given y ∈ I and any λ ∈ R we have

f(λx, y) =
d

∑

i=0

ai(y)(λx)i =
d

∑

i=0

ai(y)λixi.

Given λ > 0 and v < 1 we see that xλ ∈ [vλ, λ] if and only if x ∈ [v, 1]. Therefore,

sup
x∈[v,1]

|F (xλ)| = sup
xλ∈[vλ,λ]

|F (xλ)| = sup
x∈[vλ,λ]

|F (x)| for any function F : R → R. Hence for

any fixed y we have ‖f(X, y)‖vλ,λ = ‖f(λX, y)‖v,1 and

‖f(λX, y)‖max = max
i=0,...d

|λiai(y)|.

Moreover, the space of polynomials in one variable of degree not bigger than d is of a finite

dimension. Hence all norms on this space are equivalent. In particular, for v < 1 there

exist positive constants ω(d, v) = ω, Ω(d, v) = Ω, depending on d and v only, such that

‖F‖v,1 ≥ ω‖F‖max and Ω‖F‖v,1 ≤ ‖F‖max

for any real polynomial F of degree not greater than d.

For a function f =
d
∑

i=0
ai(Y )Xi polynomial with respect to X, some v < 1 and any

positive convergent Puiseux series at infinity β we have

‖f(X, y)‖vβ(y),β(y) = ‖f(β(y)X, y)‖v,1 ≥
≥ ω‖f(β(y)X, y)‖max = ω maxi=0,...,d |βi(y)ai(y)| (2.2)

and

max
i=0,...,d

|βi(y)ai(y)| ≥ Ω‖f(β(y)X, y)‖v,1 = Ω‖f(X, y)‖vβ(y),β(y) (2.3)

for any y > 0 such that β(y) converges to a positive value and f is well defined.
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

Moreover, if β = bα( 1
Y )α+terms of higher degree in 1/Y and a = A0+A1Y +...+AkY

k

then

a · βi = Akbα(
1

Y
)iα−k + terms of higher degree in 1/Y

In other words

a · βi = AkbαY
k−iα + terms of lower degree in Y

for any i ∈ N0. Hence

ord∞(a · βi) = − deg a + i · ord∞β. (2.4)

Now we are prepared to prove a theorem.

Theorem 2.1. Let v < 1 and β be a convergent Puiseux series at infinity with β > 0 on

[R,∞), where R > 0. Set

Kv,β = {(x, y) ∈ R2| vβ(y) ≤ x ≤ β(y), y ≥ R}.

Take f =
d
∑

i=0
ai(Y )Xi ∈ R[X,Y ]. Then the polynomial f is bounded on Kv,β if and only if

i · α ≥ deg ai

for i = 0, ..., d, where α = min{ord∞β, ord∞vβ}.

Proof: In this context α = ord∞β, because we have ord∞vβ = ord∞β for v 6= 0 and

ord∞vβ = ∞ for v = 0. We may assume that degX f = d.

Let us remark that since Kv,β ∩ {(x, y) ∈ R2| y = y0} = [vβ(y0), β(y0)] × {y0} for any

y0 ≥ R, the polynomial f is bounded on Kv,β if and only if there exists a constant C ∈ R
such that for any y0 ≥ R

C ≥ sup
x∈M∩{(x,y)| y=y0}

|f(x, y0)| = ‖f(X, y0)‖vβ(y0),β(y0) (2.5)

Let us assume that f ∈ A(Kv,β). Taking into account equation (2.5) we get that there

exists a constant C such that for any y ≥ R

‖f(X, y)‖vβ(y),β(y) ≤ C.

Therefore, from inequality (2.2) it follows that for any y ≥ R and any i = 0, ..., d we have

C ≥ ‖f(X, y)‖vβ(y),β(y) ≥ ω max
i=0,...,d

|βi(y)ai(y)| ≥ ω|βi(y)ai(y)|

for the constant ω = ω(d, v) depending only on degX f and v.

Since the expressions βi(Y )ai(Y ) for each i = 0, ..., d are bounded on the half-line

{y ∈ R| y ≥ R} and their order at infinity is well defined, we get

0 ≤ ord∞|βi(Y )ai(Y )| = − deg ai(Y ) + i · α

by (2.4).
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Now let us assume that iα ≥ deg ai for all i = 0, . . . , d. In such a case, from (2.4)

and Property 1.8 it follows that all functions βiai are bounded outside some nonempty

neighbourhood of 0. Therefore, combining it with inequality (2.3), we have that there

exists a constant Ω = Ω(d, v) depending only on degX f and v. Furthermore, there exists

a constant C ≥ 0 such that for each y ≥ R we have

C ≥ max
i=0,...,d

|βi(y)ai(y)| ≥ Ω‖f(X, y)‖vβ(y),β(y).

Therefore we proved our claim. �

Let us turn to a kind of symmetry in the behaviour of bounded polynomials in a

corollary that will be often more convenient to use then Theorem 2.1. Let v < 1 and β be

a convergent Puiseux series at infinity with β > 0 on [R,∞), where R > 0. Set

Kv,β = {(x, y) ∈ R2| vβ(y) ≤ x ≤ β(y), y ≥ R},

Sβ = {(x, y) ∈ R2| − β(y) ≤ x ≤ β(y), y ≥ R},
Lβ = {(x, y) ∈ R2| 0 ≤ x ≤ β(y), y ≥ R}.

Figure 1. Sets Kv,β , Sβ and Lβ .

The set Sβ is the union of Lβ and its reflection with respect to the y axis,

whereas Kv,β need not contain a half-line.

Corollary 2.2. Take f =
d
∑

i=0
ai(Y )Xi ∈ R[X,Y ]. The following conditions are equivalent

(1) the polynomial f is bounded on Kv,β

(2) the polynomial f is bounded on Sβ,

(3) the polynomial f is bounded on Lβ,

(4) i · α ≥ deg ai for i = 0, ..., d.

In other words

A(Kv,β) = A(Sβ) = A(Lβ) = R[XiY d| d ≤ i · ord∞β, d, i ∈ N0]
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

Proof: The equivalence of (1) and (4) is the essence of Theorem 2.1. For equivalence of

(2) and (4) we put v = −1. Analogously, for equivalence of (3) and (4) we put v = 0. �

Since the reflection with respect to the y axis is a linear change of coordinates it is

easy to conclude from Theorem 2.1 and Property 1.16 that the assertion of Theorem 2.1

holds also if β has constant negative sign and v > −1. Hence we conclude that

Remark 2.3. The algebra of polynomials bounded on the tentacle

{(x, y) ∈ R2| aβ(y) ≤ x ≤ bβ(y), y ≥ R},

where a2 + b2 > 0 and β 6= 0 is a Puiseux parametrization, is of the form

R[XiY d| d ≤ i · ord∞β, d, i ∈ N0].

Now we will give the characterisation of algebras of bounded polynomials on a tentacle.

Recall that we consider the tentacle M = {(x, y) ∈ R2| β1(y) ≤ x ≤ β2(y), y ≥ R} where

β1, β2 are Puiseux parametrizations and α = min{ord∞β1, ord∞β2}.

Theorem 2.4. If ord∞β1 6= ord∞β2 then

A(M) = R[XiY d| d ≤ iα],

where α = min{ord∞β1, ord∞β2}.

Figure 2. The set Kv,β2
is contained in M for R′′ big enough.

Proof: Without loss of generality we can assume that ord∞β1 > ord∞β2. Obviously

β1 6= β2 and we have that β1, β2 parametrise semialgebraic curves.We have

M ∩ {(x, y) ∈ R2| y = R} = [β1(R), β2(R)].
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Hence β1(R) = vβ2(R) for some v < 1. By Property 1.8 of the orders at infinity of Puiseux

parametrizations, we can demand R to be great enough so that |β1(y)| ≤ |vβ2(y)| for all

y ≥ R. Take Kv,β2 and Sβ2 as on page 30. Then

Sβ2 ⊃ M ⊃ Kv,β2 .

From Corollary 2.2 we get A(M) = R[XiY d| d ≤ iα]. �

Let us illustrate the result with an easy example.

Example 2.5. Tentacle sets given by the following inequalities have the same algebra of

bounded polynomials

1

y2
≤ x ≤ 2

y
,

1

y
≤ x ≤ 2

y
,

∞
∑

i=2

1

yi
≤ x ≤

∞
∑

i=1

2

yi
and

1

y2
≤ x ≤ y − 2

y(y − 1)
,

where y ≥ 3. The algebra of bounded polynomials in each case is precisely R[X,XY ] by

Theorems 2.1 and 2.4.

Now let us drop the assumption that ord∞β1 6= ord∞β2 and assume instead that the

set M contains a half-line of the y axis. First, we show

Proposition 2.6. If M = {0} × [R,∞) for some R ∈ R then

A(M) = R[XY k| k ∈ N0].

Proof: Let f =
d
∑

i=0
ai(Y )Xi ∈ A(M). Then

f(0, y) = const

for y > r. Therefore a0 = const and we obtain f ∈ R[XY k| k ∈ N0]. On the other hand,

if f ∈ R[XY k| k ∈ N0] then obviously f ∈ A(M). �

Since we find it useful, we will draw this general conclusion for sets containing a

half-line on the OY axis. Note that M = {0} × [R,∞) for some R > 0 if and only if

ordβ1 = ordβ2 = ∞ and recall that 0 · ∞ = 0. Hence we can state that

Theorem 2.7. Suppose that {0} × [R,∞) ⊂ M for some R ∈ R. A polynomial f =
∑d

i=0 ai(Y )Xi is bounded on M if and only if deg ai ≤ α · i for every i = 0, ..., d.

Proof: First, in the case when β1 = β2 we see that α = ∞, because necessarily β1 = β2 =

0. From Proposition 2.6 if f is bounded on M , then f ∈ R[XY k| k ∈ N0]. That takes

place if and only if deg a0 ≤ 0. If we put by our convention 0 · ∞ = 0 then f is bounded

on M if and only if deg ai ≤ α · i for every i = 0, ..., d.

Let β1 6= β2. By Remark 2.3 without loss of generality we can assume that |β2| ≥ |β1|
and β2 > 0. Then by Property 1.8 of orders at infinity we have ord∞β2 ≤ ord∞β1. Fixing

a greater R if necessary, we get

{(x, y) ∈ R2| 0 ≤ x ≤ β2(y), y ≥ R} ⊂ M ⊂ {(x, y) ∈ R2| − β2(y) ≤ x ≤ β2(y), y ≥ R}.
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

Thus, using the notation from Corollary 2.2, we obtain

A(Lβ2) ⊃ A(M) ⊃ A(Sβ2),

which by that corollary gives us the equality

A(Lβ2) = A(Sβ2).

This in turn gives that f is bounded on M if and only if it is bounded on Sβ2 . By

Corollary 2.2 we conclude that f is bounded on M if and only if deg ai ≤ i · α for every

i = 0, ..., d. �

Example 2.8. Let

M = {(x, y) ∈ R2| − 1/y ≤ x ≤ 1/y + 1/y2, y ≥ 1}.

We have ord∞(−1/Y ) = 1 = ord∞(1/Y +1/Y 2) and {0}×[R,∞) ⊂ M . From Theorem 2.7

it follows that A(M) = R[X,XY ].

Recall that α = min(ord∞β1, ord∞β2). As an easy consequence of the characterisation

of algebras A given in Theorems 2.4 and 2.7 we get

Corollary 2.9. Suppose that ord∞β1 6= ord∞β2 or M contains a half-line on the y axis.

Then

(1) A(M) = R if and only if α < 0,

(2) A(M) = R[X] if and only if α = 0,

(3) A(M) ) R[X] if and only if α > 0.

The essence of this corollary is that if sets get essentially more ample than a strip,

they cease to admit any bounded polynomials. In particular, if a set contains a cone, then

it does not admit bounded polynomials. Note that, as in the case of the set M2 from

Example 2.10 below, a set need not contain a cone to have a trivial algebra of bounded

polynomials (compare [KM]). The sets which admit a nontrivial algebra of bounded

polynomials can be interpreted as having their distance from the y axis essentially smaller

than their width.

Example 2.10. Let

M1 = {1

y
≤ x ≤ y2, y ≥ 1} and M2 = {y2 ≤ x ≤ y3, y ≥ 1}.

By the above corollary, the only bounded polynomials on these sets are constant.

Note that all of the results in this paragraph are insensitive to x axis and y axis

symmetry as well as an interchange between x and y since they are special cases of linear

change of coordinates. Therefore the assertion of Theorems 2.4 and 2.7 hold for all tentacle

sets of the form (1.7) as well as those with borders parameterized by x instead of y with

the exponents in the characterisations appropriately interchanged. From these remarks

and Theorem 2.4 it follows
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2.2. Polynomials bounded on tentacles with nonempty interior

Figure 3. Typical examples of sets for which A = R

Remark 2.11. Every algebra of bounded polynomials in the case of tentacle sets of the

form (1.7) with ord∞β1 6= ord∞β2 is an algebra of a set of the form

{(x, y) ∈ R2| 0 ≤ x ≤ yα, y ≥ 1} (2.6)

for α = min
i=1,2

ord∞βi ∈ Q.

Let us emphasise that this remark implies that any two tentacle sets of the form

(1.7) with parametrizations of their borders of different orders have the same algebras

of bounded polynomials as long as the minimum of orders is the same. At this

point the question of characterisation of bounded polynomials on tentacle sets with

ord∞β1 = ord∞β2 is resolved fully only for sets containing a half-line. In the next sections

we will turn to that problem.

2.2. Characterisation of polynomials with Puiseux coefficients

bounded on tentacles with nonempty interior

In this section we turn to the problem of deciding whether a polynomial is

bounded on tentacle sets which borders have parametrizations of the same order. We

will achieve this through the study of polynomials with Puiseux coefficients (Definition

2.12 and Proposition 2.13) and giving a characterisation of their algebras in Theorem 2.16.

Denote by Rq[Y ] the ring R[Y 1/q, 1
Y 1/q ] of Laurent polynomials in Y 1/q, where q ∈ N.

Of course, every β ∈ Rq[Y ] is a convergent Puiseux series at infinity (cf. Section 1.2). If

q = 1 these are just Laurent polynomials. By analogy

Definition 2.12. For β ∈ ⋃

q∈NRq[Y ] we will say that β is a Puiseux polynomial.
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

If β =
∑m

i=p ai
(

1
Y

)i/q
, where am 6= 0, then by the degree of β at infinity we mean the

rational number m/q and we write deg∞ β = m/q. We put deg∞ 0 = −∞. Note that

since Y = (1/Y )−1, the order at infinity (the degree at infinity resp.) of β is the same as

its degree (or order resp.) with the sign changed.

Note that β(y) is convergent for every y from the positive half-line if the denominator

q is even and on R \ {0} otherwise. Hence β can be viewed as a semialgebraic function on

its domain of convergence. If β ∈ Rq[Y ] then for any l ∈ N we have β ∈ Rql[Y ]. Therefore

for every two Puiseux polynomials there exists a natural number q such that they both

belong to Rq[Y ].

By Rq[Y ][X] we will denote the ring of polynomials in X with coefficients from

Rq[Y ] and we will say that its elements are polynomials with Puiseux coefficients. Note

that f ∈ Rq[Y ][X] usually is not well defined on {(x, y) ∈ R2| y = 0}. Of course,

R[X,Y ] ⊂ ⋂∞
q=1Rq[Y ][X].

Proposition 2.13. Any f ∈ Rq[Y ][X] has unique coefficients ei,k ∈ R such that

f =
∑

i = 0, . . . , d

k ∈ D

ei,k(X − β)iY k/q, (2.7)

where D ⊂ Z is finite and d = degX f .

Proof: Let f ∈ Rq[Y ][X] be of the form f =
∑d

j=0 ajX
j . Then

f =

d
∑

j=0

aj((X − β) + β)j =

d
∑

j=0

j
∑

i=0

aj

(

j

i

)

βj−i(X − β)i =

=
d

∑

i=0





d
∑

j=i

aj

(

j

i

)

βj−i



 (X − β)i

Denote ci =
∑d

j=i aj
(

j
i

)

βj−i. Note that cd = ad. Since for every i = 0, . . . , d we have

ci ∈ Rq[Y ], we can write

ci =
∑

k∈Di

ei,kY
k/q,

where ei,k ∈ R and a finite set Di ⊂ Z. Put D =
⋃d

i=0Di.

The uniqueness (up to coefficients equal zero) follows immediately from the observation

that f(X,Y q) is a polynomial in X with Laurent polynomial coefficients. �

Note that even if f ∈ Rs[Y ][X] and β ∈ Rt[Y ] for s 6= t, then we can consider

q = ts and obtain coefficients of f in the fashion of the above theorem. We want to

underline that one can apply the above proposition to polynomials. In this case the
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2.2. Polynomials bounded on tentacles with nonempty interior

leading coefficient of f with respect to X − β is a polynomial in Y .

Let us consider a mapping

L(x, y) = (x− β(y), y),

for (x, y) for which β is well defined, where β ∈ Rq[Y ].

The mapping L is a homeomorphism of R× [R,∞) onto itself for any R > 0. Indeed,

it is well defined for any positive R, continuous, surjective and has a continuous inverse

L−1(x, y) = (x + β(y), y) for (x, y) ∈ R× [R,∞).

Denote by L∗ : Rq[Y ][X] → Rq[Y ][X] the mapping f → f ◦ L. We have that L∗ is an

automorphism. Indeed, it is a homomorphism and L−1
∗ defined as L−1

∗ (f) = f ◦ L−1 for

f ∈ Rq[Y ][X] is its inverse.

Throughout this section β, L and L∗ will be as above.

Let us consider a tentacle set

M = {(x, y) ∈ R2| β1(y) ≤ x ≤ β2(y), y ≥ R},

where β1, β2 are Puiseux parametrizations and R > 0. Put α = min{ord∞β1, ord∞β2}.

Let us now focus on the case not yet solved for polynomials, meaning the case of

ord∞β1 = ord∞β2.

We will denote by Bq(M) the subring of Rq[Y ][X] of polynomials with Puiseux coeffi-

cients which are bounded on M . Obviously,

A(M) = Bq(M) ∩ R[X,Y ]

for any q ∈ N. Note that all the properties analogous to Property 1.14 for sets

S,M ⊂ R × [R,∞) where R > 0 hold for algebras of bounded polynomials with Puiseux

coefficients. The correspondence between Bq(M) and A(M) will be studied closer later

(see Section 5 and Remark 2.19). We would like to point out that ( 1y )1/q is bounded for

y ≥ R > 0. Hence R[ 1
Y 1/q ] ⊂ Bq(M) for q ∈ N.

Denote γ1 = β1 − β, γ2 = β2 − β. Then

M = {(x, y) ∈ R2| γ1(y) ≤ x− β ≤ γ2(y), y ≥ R}.

Due to the fact that L is a homeomorphism, we have

L(M) = {(w, z) ∈ R2| w = x− β(y), y = z, γ1(y) ≤ x− β(y) ≤ γ2(y), y ≥ R} =

= {(w, z) ∈ R2| γ1(z) ≤ w ≤ γ2(z), z ≥ R}.

These observations allow us to make the following observation which is needed to prove

the form of algebras of bounded polynomials with Puiseux coefficients, namely
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

Proposition 2.14. We have

Bs(L(M)) = L−1
∗ (Bs(M))

for any s ∈ q · N. In particular

Bs(L(M)) = R[Z] ⇐⇒ Bs(M) = R[L∗Z]

where L∗Z = {L∗ζ| ζ ∈ Z}.

Proof: From Remark 1.15 we get as a straightforward conclusion that a function f : D →
R with D ⊃ M is bounded on M if and only if f ◦L−1 is bounded on L(M) as well as the

inverse. Since L∗ is an isomorphism, we get the claim. In particular, for f ∈ Bq(M) we

Figure 4. A function f is bounded on a set M if and only if f ◦ L−1 is bounded on L(M)

get that

L−1
∗ f = L−1

∗ (
∑

α∈A

aαζ
α) =

∑

aα(L−1
∗ ζ)α

for some finite collection of ζ1, . . . , ζm ∈ Z, a finite set A ⊂ Nm
0 and aα ∈ R for α ∈ A.

For g ∈ Bq(L(M)) it is also obvious that L∗g is generated by elements of Z. �

Now we will prove a proposition which gives us effectively (through a finite search of

coefficients in Puiseux series) a Puiseux polynomial that will be used in the subsequent

theorem.

Proposition 2.15. Let us suppose that β1 6= β2 while ord∞β1 = ord∞β2. Then there

exists a Puiseux polynomial β such that all of the following conditions hold

(1) deg∞β ≤ mini=1,2 ord∞(βi − β)

(2) ord∞β = ord∞β1
(3) ord∞(β1 − β) 6= ord∞(β2 − β).

The choice of β is illustrated on Figure 5.

Proof: We can always rewrite two Puiseux series as having the same denominator q,
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2.2. Polynomials bounded on tentacles with nonempty interior

so we can write β1 =
∑∞

i=p b
(1)
i ( 1

Y )i/q and β2 =
∑∞

i=p b
(2)
i ( 1

Y )i/q with b
(1)
i = b

(2)
i for i =

p, . . . ,m − 1, b
(1)
m 6= b

(2)
m for some m ≥ p (if m = p then the leading coefficients of β1, β2

are not equal). Without loss of generality we can suppose that b
(2)
m 6= 0. Then it suffices

Figure 5. On this figure on the horizontal axis we mark the points of supp(β1) ∪ supp(β2)

whereas on the vertical axis we mark the corresponding coefficients of β1 and β2.

An exemplary Puiseux polynomial β from Proposition 2.15 is marked black.

We can see that in the case on the left, when b
(1)
m , b

(2)
m 6= 0 we have deg

∞
β = ord∞(β1 − β),

whereas in the case on the right we have b
(2)
m = 0 and deg

∞
β < min(ord∞(β1 −β), ord∞(β2 −β)).

Moreover, in such a case β satisfying conditions of Proposition 2.15 is unique. In particular, one

cannot choose β such that there is an equality in the first condition of Proposition 2.15.

to take

β =
m
∑

i=p

b
(1)
i (

1

Y
)i/q.

We have that ord∞β2 − β = m/q and ord∞β1 − β > m/q. Since deg∞ β ≤ m/q, the

conditions (1), (2) and (3) are satisfied. �

Note that we do not need to know the whole formula on β1, β2. It suffices to indicate

a finite number of initiating coefficients of β1, β2. So in particular β might belong to a

Rq[Y ] where q is not divisible by any of the denominators in full representations of β1, β2.

We can view β as a Puiseux polynomial deformation from a set asymptotically close to

the y axis which were studied in Section 2.1.

Theorem 2.16. If β1 6= β2, then there exists a Puiseux polynomial β ∈ Rq[Y ] such that

Bs(M) = R

[

1

Y 1/s
, (X − β)iY d | d ≤ i · min

i=1,2
ord∞(βi − β), i ∈ N0, d ∈ 1/s · N0

]

for any s ∈ q · N.

Proof: First, assume that ord∞β1 6= ord∞β2. Take f ∈ Rq[Y ][X]. In particular, f is

polynomial with respect to X and the degrees and orders of their coefficients are well
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

defined. By (2.2), (2.3) and (2.4) we conclude that in the proof of Theorem 2.1 one can

substitute a polynomial from R[X,Y ] by a polynomial in X with Puiseux polynomial

coefficients. We obtain

Bq(M) = R

[

1

Y 1/q
, XiY d | d ≤ iα, i ∈ N0, d ∈ 1/q · N0

]

for any q ∈ N, where α = min(ord∞β1, ord∞β2). Hence here it suffices to take β = 0.

Assume now that ord∞β1 = ord∞β2. Take β as in Proposition 2.15. We have that

β ∈ Rq[Y ] for some natural number q. Take L : R × [R,∞) → R × [R,∞), where

L(x, y) = (x− β(y), y). After putting γ1 = β1 − β, γ2 = β2 − β we get

L(M) = {(w, z) ∈ R2| γ1(z) ≤ w ≤ γ2(z), z ≥ R},

where ordγ1 6= ordγ2 by Proposition 2.15.

Put η = mini=1,2(ord∞γi). Therefore by the first part of this proof we have

Bs(L(M)) = R[
1

Z1/s
,W iZd | d ≤ iη, i ∈ N0, d ∈ 1/s · N0].

By Proposition 2.14 we have Bs(M) = R[L∗
1

Z1/s , L∗(W
iZd) | d ≤ iη]. Since

L∗
1

Z1/s
=

1

Y 1/s
, L∗(W

iZd) = (X − β)iY d,

we get our claim. �

We give a slight refinement of the above theorem.

Proposition 2.17. If β1 6= β2 and ord∞β1 = ord∞β2, then the Puiseux polynomial β in

Theorem 2.16 can be chosen such that it meets the assumptions of Proposition 2.15 and

deg∞β < min
i=1,2

ord∞(βi − β).

Proof: Indeed, take β from Theorem 2.16. If deg∞ β = mini=1,2 ord∞(βi − β) = η, then

β =
∑m

i=p bi(
1
Y )i/q with bη 6= 0. Without loss of generality we can suppose that bη > 0.

Put γ = β − bη(1/y)η. Hence from Theorem 2.4 and Proposition 2.14 we get

Bs(M) = Bs(β1 − β ≤ x− β ≤ β2 − β, y ≥ R) =

= Bs(−bη(1/y)η ≤ x− β ≤ 0, y ≥ 1) =

= Bs(0 ≤ x− γ ≤ bη(1/y)η, y ≥ 1)

for any s ∈ q · N. Therefore by Theorem 2.16 we have

Bs(M) = R

[

1

Y 1/s
, (X − γ)iY d | d ≤ i · η, i ∈ N0, d ∈ 1/s · N0

]

and deg∞ γ < η ≤ mini=1,2 ord∞(βi − γ). Moreover, ord∞(β1 − γ) = ord∞(β2 − γ) =

mini=1,2 ord∞(βi − β), because γ = β − bη(1/y)η and bη is the first coefficient where β1
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2.2. Polynomials bounded on tentacles with nonempty interior

and β2 differ. Note that γ equals zero if and only if β1 and β2 do not have common

leading coefficients. �

We see that if β meets all the assertions of the above proposition, then it is unique,

because it must be equal to all initiating terms in β1 and β2 which coincide. Nevertheless

in general, one can easily find different Puiseux polynomials which give the same algebra

Bq(M) eg. in Example 2.8 we have B1(M) = R[ 1Y , X,XY ] = R[ 1Y , X − 1
Y , (X − 1

Y )Y ].

From presented results it follows that to know how the set of bounded Puiseux polyno-

mials looks like, we have to study the common asymptotics of the borders of the tentacle.

If the parametrizations of the borders have different orders or different leading coefficients,

then by Theorem 2.16 and Proposition 2.17 the algebras Bq(M) are generated by mono-

mials and the element 1/Y 1/q. Hence the algebras of bounded polynomials are generated

by monomials. But if they have common leading coefficients then we cannot tell as easily

the generators of the intersections Bq ∩ R[X,Y ].

Example 2.18. Take

M1 = {0 ≤ y ≤ 1

x2
, x ≥ 1} and M2 = {0 ≤ x +

1

y
≤ 1

y2
, y ≥ 1}.

We have A(M1) = R[Y,XY,X2Y ] and

Bq(M2) = R[
1

Y 1/q
, (X +

1

Y
)iY d| d ≤ 2i] = R[

1

Y 1/q
, X +

1

Y 1/q
, XY + 1, XY 2 + Y ]

for any q ∈ N. From Proposition 2.13 we have

X2Y = (X +
1

Y
)2Y + 2(X +

1

Y
) +

1

Y
.

This gives us in particular that the set of bounded polynomials on the union of tentacles

M1 ∪ M2 is nonempty, because X2Y ∈ A(M1) ∩ A(M2). Knowing this one can easily

see that R[XY,X2Y,X2Y + Y ] ⊂ A(M1 ∪ M2). The author does not know whether an

equality holds.

As an easy consequence of equivalence (1.4) combined with Theorem 2.4 or Theorem

2.16 in a special case when β is polynomial we get

Remark 2.19. Under notation and assumptions of the previous theorem if β ∈ R[Y ],

then

A(M) = R
[

(X − β)iY d | d ≤ iη, i, d ∈ N0

]

.

This remark gives us that if M is an image by a polynomial automorphism L = (X−β, Y )

of some set with an algebra generated by monomials Xi1Y d1 , . . . , X ikY dk for some k ∈ N,

then A(M) = R[(X − β)i1Y d1 , . . . , (X − β)ikY dk ].

To end this paragraph note that the above theorems are insensitive to symmetry with

respect to x axis and y axis as well as an interchange between x and y, since they are
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

linear change of coordinates (see Proposition 1.16). Therefore, similarly as in the previous

section, the results of Theorem 2.16 and its consequences hold for tentacle sets of the

form (1.7) as well as those with borders parameterized by x instead of y with the exponents

in the characterisations appropriately interchanged.

Remark 2.20. Every algebra of bounded polynomials in the case of tentacle sets of the

form (1.7) with ord∞β1 = ord∞β2 and β1 6= β2 is an algebra of a set of the form

{(x, y) ∈ R2| 0 ≤ x− β ≤ yη, y ≥ 1} (2.8)

for η = mini=1,2 ord∞(βi − β) and a Puiseux polynomial β satisfying conditions of Propo-

sition 2.15 with deg∞ β < η ≤ mini=1,2 ord∞(βi − β).

Note that this representation is not unique (for example in the case of trivial algebras).

The equality of algebras follows directly from Theorem 2.16.

To end this section let us note that we do not tackle in this thesis the prob-

lem of how the intersections of bounded polynomials with Puiseux coefficients with

R[X,Y ] look like. As long as we stay in the scope of algebras generated by monomi-

als, everything is easy (as we will see in Section 5). However, in general, algebras of

bounded polynomials are not generated by monomials (or compositions of monomials

with coordinates of polynomial automorphisms) as we can see in Example 2.18, where

R[X,XY,XY 2+Y ] ⊂ R[1/Y ,X+1/Y ,XY +1, XY 2+Y ]∩R[X,Y ] and Y is not bounded.

Nevertheless, finding a representation of a polynomial in terms of other polynomials tends

to be difficult, whereas symbolic division of f in the wider ring of polynomials with Puiseux

(polynomial) coefficients (as in Proposition 2.13) is always easy to execute. Therefore, we

content ourselves with giving an efficient method of verifying whether a polynomial is

bounded on a set (as will be explained more explicitly in Section 6.1).
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3. STABILITY OF ALGEBRAS OF BOUNDED POLYNOMIALS

3. Stability of algebras

of bounded polynomials

in two variables

The main goal of this section will be to prove in Theorem 3.5 that if we have a family

of sets in R2 defined by a given polynomial inequality where we let the constant terms

vary, then we get only a finite collection of algebras of bounded polynomials i.e. for any

f ∈ R[X,Y ] there exists a finite collection of algebras A1, . . . ,Ak such that A(f ≤ c) = Ai

for some i = 1, . . . , k and every c ∈ R.

Before we prove the theorem we will prepare the tools in Sections 3.1 and 3.2. As to

notation, recall that in expressions of the form A({(x, y) ∈ Rn| a ≤ f(x, y) ≤ b}) we often

leave out the brackets and write simply A(a ≤ f ≤ b) for a polynomial f : Rn → R.

3.1. Bifurcation values

Throughout this section let K be the field of either real or complex numbers. Moreover,

we will assume that the empty set is compact and in consequence that A(∅) is equal to

the ring of polynomials.

We say that a function f : Kn → K is a trivial C∞-fibration over an open set U ⊂ K
if for any c ∈ U there exists a C∞-diffeomorphism

φ : f−1(U) → U × f−1(c)

such that

π ◦ φ = f,

where π is the projection on the first coordinate.

In particular, if f is a trivial C∞-fibration over U , then for any c0 ∈ U we get that

f−1(c0) is diffeomorphic to f−1(c) for c ∈ U . Hence the fibre f−1(c0) is compact if and

only if for every c ∈ U the fibre f−1(c) is compact as well.

We say that a number c ∈ K is a typical value of f : Kn → K if there exists a

neighbourhood U of c such that f is a trivial C∞-fibration over U . If c is not typical
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3.1. Bifurcation values

then we will say that it is a bifurcation value of f . By BK(f) we will denote the set of

bifurcation values of f .

From the definition it is easy to see that

Property 3.1. Let f ∈ K[X]. We have

BK(f + c) = {λ + c| λ ∈ BK(f)}

and

BK(cf) = {cλ| λ ∈ BK(f)}

for any c ∈ K \ {0}.

We will make use of the above property in the next section. Now let us turn to critical

and asymptotic critical values, which are of practical use.

Let f : Kn → K. We say that c ∈ K is a critical value of f if there exists a ∈ Rn such

that

f(a) = c and ∇f(a) = 0.

We say that c ∈ K is an asymptotic critical value of f if there exists a sequence

(ak) ⊂ Rn which tends to infinity such that

f(ak) → c and ‖ak‖ |∇f(ak)| → 0

as ak → ∞. We say that c ∈ K is a generalized critical value of f if it is a critical value

or an asymptotic critical value. We will denote the set of generalized critical values of

f : Kn → K as KK(f).

Every bifurcation value which is not a critical value is necessarily an asymptotic

critical value. If f : Kn → K is a polynomial then BK(f) ⊂ KK(f) and KK(f) is finite (see

[Ha], [KOS], [JK]). Moreover, the set KK(f) has at most (2 deg f + 1)(4 deg f − 3)n points

more then the set of critical values. Note that if we consider a real polynomial f as a

complex polynomial we have BR(f) ⊂ BC(f) ∩ R. For further information on bifurcation

values and generalised critical values see for example [Rab], [KOS], [Par], [JK], [KS] and

[NZ]. We would like also to underline that there exist explicit algorithms to compute the

set of generalized critical values (eg. using Gröbner basis, see [JK]).

Example 3.2. Consider Motzkin’s polynomial

m = 1 + X2Y 2(Y 2 + X2 − 3).

We have

∇m(x, y) = 2xy
(

y(y2 + 2x2 − 3), x(x2 + 2y2 − 3)
)
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3. STABILITY OF ALGEBRAS OF BOUNDED POLYNOMIALS

for x, y ∈ K. Hence after some computation we easily get that the generalized critical

values are

KC(m) = {0, 1} = KR(m),

whereas the sets of critical values and asymptotic critical values are equal. It is known

that the set of complex bifurcation values, real bifurcation values and generalized critical

values of m are equal.

In the case of K = R, i.e. m : R2 → R, it is easy to see that m(x, y) 6= −3 for x, y ∈ R.

Since m is a trivial fibration over (−∞, 0), we get that m
−1(c) = m

−1(−3) = ∅ for every

c < 0. We have that m
−1(12) is diffeomorphic to four disjoint ovals. Hence m

−1(c) is

bounded for every c ∈ (0, 1), because m is a trivial fibration over (0, 1). Analogously we

get that m
−1(c) is unbounded for every c > 1. As to the special fibres, we have that

m
−1(0) consists of four points and m

−1(1) is the union of a sphere S(0,
√

3), the x and y

axis.

3.2. Fibres and bifurcation values of polynomials in two variables

In this section we will focus on polynomials in two variables and the set of complex

bifurcation values.

Let f ∈ C[X,Y ] be nonconstant. There exists a linear change of coordinates such that

it is of the form

f = Xd +

d
∑

i=1

ai(Y )Xd−i, (3.1)

where deg ai ≤ i. Note that if f is a polynomial with real coefficients there exists a linear

change of coordinates L such that L(R2) = R2 and f is of the form (3.1) up to the sign.

We will start with a characterisation of the set of bifurcation values by generalized

critical values. Namely, in the case of two variables we have

BC(f) = KC(f)

for a polynomial f : C2 → C (see [Ha], [Par]) and the number of bifurcation values of f is

less or equal deg f(deg f − 1). One can see that it is much easier to compute generalized

critical values than decide what are the bifurcation values.

We will recall another characterisation of the set of bifurcation values of a polynomial

f in the case of two variables due to Krasinski [Kr]. Assume that f is of the form (3.1)

and let

D(c, Y ) = δ0(c)Y
k + . . . + δk(c)

be the discriminant of the polynomial C3 ∋ (c, x, y) → f(x, y) − c ∈ C with respect

to X with δ0 6= 0 (see [Kr, Chapter 1]). The set of bifurcation values of f is exactly

the union of the set of critical values of f and the set of roots of δ0 (see [Kr, Theorem 18.1]).
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The following theorem is due to Krasinski [Kr2, Lemma 2] and we will sometimes refer

to it as the Parametric Puiseux Theorem (at infinity). The version given below is a slight

reformulation in order to fit it in our setting.

Theorem 3.3. (T. Krasinski, 1991) Let f ∈ C[X,Y ] be of the form (3.1). Take c0 /∈
BC(f). There exist r,R > 0 and holomorphic mappings

Θi : B(c0, r) × {y ∈ C| |y| > R1/q} → C2, i = 1, . . . ,m,

of the form

Θi(c, y) = (θi(c, y), yq),

where each θi is holomorphic with respect to c and θi(c, Y
1/q) is a complex Puiseux series

at infinity for every c. Moreover,

f(Θi(c, ·)) = c

for every c ∈ B(c0, r). Furthermore, for any c ∈ B(c0, r) the set f−1(c) \ (C×B(0, R1/q))

has exactly m connected components and

f−1(c) \ (C×B(0, R1/q)) =
m
⋃

i=1

Θi({(c, y) ∈ C2| |y| > R1/q}).

Hence if we choose a complex Puiseux series at infinity γ such that f(γ(yq), yq) = c0
for |y|q > R, then there exists exactly one i0 such that

{(γ(yq), yq) ∈ C2| |y|q > R} = {(θi0(c0, y), yq) ∈ C2| |y|q > R}.

Let us remind the fact that for a real polynomial f ∈ R[X,Y ] if for y ∈ U the polyno-

mial f(X, y) has a constant number of distinct complex roots, then f(X, y) has a constant

number of real roots for y ∈ U , provided U ⊂ R is connected. Suppose that f is of

the form (3.1). Then from Parametric Puiseux Theorem it follows that on any half-line

I ⊂ (−∞,−R) ∪ (R,∞) the polynomial f(X, ·) has a constant number of complex roots.

Take one of the m families of Puiseux parametrizations at infinity {θ(c, ·)}c∈B(c0,r) of fibres

of the real polynomial f as in the Parametric Puiseux Theorem. From the above consid-

erations we get that if the set graph(θ(c0, ·)) ∩ R2 is unbounded, then graph(θ(c, ·)) ∩ R2

is unbounded for all c ∈ B(c0, r) ∩ R. Moreover, θ(c, ·) : I → R is a convergent Puiseux

series at infinity with real coefficients for every c ∈ (c0 − r, c0 + r) on a half-line I ⊂ R.

Hence

Property 3.4. Let f : R2 → R be of the form (3.1). Under the notation of Theorem 3.3

if [c, c̃] ⊂ B(c0, r) ∩ R, then every tentacle M of the set f−1([c, c̃]) is either of the form

{(x, y) ∈ R2| θi(c1, y1/q) ≤ x ≤ θi(c̃1, y
1/q), y ≥ R̃}

or

{(x,−y) ∈ R2| θj(c2, y1/q) ≤ x ≤ θj(c̃2, y
1/q), y ≥ R̃}

where i, j ∈ {1, . . . ,m}, R̃ > R is sufficiently big, θi(c0, Y
1/q) is a Puiseux parametrization

at infinity and c1 6= c̃1, c2 6= c̃2, c1, c̃1, c2, c̃2 ∈ {c, c̃} are chosen so that the sets above are

nonempty.
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3. STABILITY OF ALGEBRAS OF BOUNDED POLYNOMIALS

Therefore we have that under the above assumptions the tentacles of f−1([c, c̃]) are of

the form (1.7) from Section 1.6 on tentacle sets.

3.3. Stability

The goal of this section is to prove the following

Theorem 3.5. (Stability of algebras of bounded polynomials) Given any polyno-

mial f ∈ R[X,Y ] and numbers 0 < c < c̃ ∈ R such that

[c, c̃] ∩BC(f) = ∅

we have

A(0 ≤ f ≤ c) = A(0 ≤ f ≤ c̃).

The proof of this theorem follows easily from the following lemma.

Lemma 3.6. (Local stability) Let f ∈ R[X,Y ] be such that 0 /∈ BC(f). There exists

an r > 0 such that for every ǫ, δ ∈ (0, r) we have

A(−ǫ ≤ f ≤ ǫ) = A(0 ≤ f ≤ δ).

Proof: First, consider the case when the fibre f−1(0) is compact. Then from the fact that

0 is a typical value it follows that for all c from some neighbourhood of 0, in particular

of the form (−r, r) for some r > 0, the fibres f−1(c) are also compact. From Proposition

1.13 it follows that f−1([−ǫ, ǫ]) and f−1([0, δ]) are compact. Hence

A(−ǫ ≤ f ≤ ǫ) = R[X,Y ] = A(0 ≤ f ≤ δ)

for any 0 < ǫ, δ < r.

From now on we will assume that f−1(0) is not compact. If f is constant, then

necessarily f = 0 and 0 ∈ BC(f). That contradicts the assumption. Hence we will assume

that f is nonconstant. We can change the coordinates with a real linear automorphism

such that f is up to the sign a monic polynomial of the form (3.1). Without loss of

generality we can assume that f is exactly of the form (3.1).

Assume that the fibre f−1(0) has exactly l tentacles. From the Parametric Puiseux

Theorem and Property 3.4 it follows that there exists an r > 0 such that f−1((−r, r)) has

exactly l tentacles. Moreover, each tentacle of the fibre f−1(0) has an unbounded intersec-

tion with exactly one tentacle of f−1((−r, r)) i.e. they are in a one-to-one correspondence.

Choose a Puiseux parametrization at infinity γ ∈ Rq[Y ] of a tentacle of the fibre

f−1(0) and a tentacle M of the set f−1((−r, r)) such that {(γ(y), y) ∈ R2| y ≥ R1/q} ∩M

is unbounded.

Let us consider f as a complex polynomial and choose a family {θ(c, ·)}c∈B(0,r) from

Parametric Puiseux Theorem such that graph(θ(0, Y )) ⊃ graph(γ(Y q)). We can write
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θ(c, Y ) =
∞
∑

i=p

bi(c)1/Y
i,

where bi : (−r, r) → R due to Theorem 3.3 are analytic for i ≥ p and bp 6= 0.

We will now show that the claim of the lemma holds for the tentacle M . In order to

do this consider analytic functions

bk(0) − bk(ǫ)

defined on (−r, r) for k ≥ p. There exists an m ≥ p such that bk(0) − bk(·) = 0 for

p ≤ k < m and bm(0) − bm(·) 6= 0. Take a set

A = {ǫ ∈ (0, r)| (bm(0) − bm(ǫ)) (bm(0) − bm(−ǫ)) = 0} .

From the choice of m the set A is a proper analytic subset of (0, r). For every ǫ ∈ (0, r)\A
we have

m = ord∞(θ(ǫ, Y ) − θ(0, Y )) = ord∞(θ(−ǫ, Y ) − θ(0, Y )). (3.2)

Hence for every ǫ ∈ (0, r) \A the series θ(0, Y ), θ(−ǫ, Y ) and θ(ǫ, Y ) have m− p common

initiating terms.

Take the Puiseux polynomial

β =
m
∑

i=p

bi(0)
1

Y i/q

as in Proposition 2.15.

For every ǫ ∈ (0, r) \A we have

ord∞(β − θ(0, Y
1
q )) > ord∞(β − θ(−ǫ, Y

1
q )) = ord∞(β − θ(ǫ, Y

1
q )) =

m

q
.

Hence from Property 3.4, Proposition 2.15 and Theorem 2.16 it follows that for any ǫ ∈
(0, r) \A the following holds

A(M ∩ f−1([0, ǫ])) = R[X,Y ] ∩ R

[

1

Y 1/q
, (X − β)iY d | d ≤ i · m

q

]

=

= A(M ∩ f−1([−ǫ, 0])). (3.3)

The above algebra depends on the choice of the tentacle M , but does not depend on the

choice of ǫ as long as ǫ /∈ A. For the purposes of the proof for the tentacle M denote

the above algebra as AM . From the fact that 0 is a typical value of f and the above

observation for δ, ǫ ∈ (0, r) \A we have

A(M ∩ f−1([−ǫ, ǫ])) = A(M ∩ f−1([−ǫ, 0])) ∩ A(M ∩ f−1([0, ǫ])) =

= AM ∩ AM = AM = A(M ∩ f−1([0, δ])). (3.4)
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Now we will show that AM does not depend on the choice of ǫ even if ǫ ∈ A. Take

any ǫ ∈ (0, r). Since A is proper analytic there exist δ, ρ ∈ (0, r) \ A such that δ < ǫ < ρ.

Hence

f−1([0, δ]) ∩M ⊂ f−1([0, ǫ]) ∩M ⊂ f−1([0, ρ]) ∩M.

From (3.4) it follows that A(f−1([0, ǫ])) = AM . By analogy we get A(f−1([−ǫ, ǫ])) = AM .

Hence the claim of the lemma holds for the tentacle M .

Denote by M1, . . . ,Ml all tentacles of the set f−1((−r, r)) and by AM1 , . . . ,AMl
the

algebras from equality (3.3). Hence for ǫ, δ ∈ (0, r) we have

A(f−1([−ǫ, ǫ])) =
l
⋂

i=1

A(Mi ∩ f−1([−ǫ, ǫ])) =
n
⋂

i=1

AMi

and

A(f−1([0, δ])) =

n
⋂

i=1

AMi

where AMi are independent on the choice of ǫ or δ. This ends the proof. �

Note that we cannot jump to conclusions regarding the algebra of bounded polynomials

on the set f−1([−r, r]) , where r is as in the Parametric Puiseux Theorem. Indeed,

take the Motzkin polynomial m : R2 → R from Example 3.2. The closure of the set

m
−1((−1, 1)) ⊂ R2 is compact, but the algebra of bounded polynomials on m

−1([−1, 1])

is not R[X,Y ] (see Example 3.9).

Remark 3.7. Under the assumptions of Lemma 3.6 for every ǫ, δ, ρ ∈ (0, r) we have

A(ǫ ≤ f ≤ ρ) = A(−δ ≤ f ≤ 0).

Indeed, from the above lemma and Proposition 3.1 it follows immediately that the above

claim is equivalent to the claim of the lemma.

Now we are ready to prove the Stability Theorem.

Proof of Theorem 3.5: Take 0 < c < c̃ as in the assumptions of the theorem. Since

f−1([0, c]) ⊂ f−1([0, c̃]), we need only prove that A(0 ≤ f ≤ c) ⊂ A(0 ≤ f ≤ c̃).

Suppose to the contrary. Then there exists a polynomial g ∈ R[X,Y ] and a certain

number c0 ∈ (c, c̃] such that g ∈ A(0 ≤ f ≤ c0 − ǫ) and g /∈ A(0 ≤ f ≤ c0 + ǫ) for every

positive number ǫ (see Figure 6). Take δ > 2ǫ > 0 such that both ǫ and δ are sufficiently

small. Hence from the lemma on local stability if we put ρ = δ − 2ǫ, we get

A(c0 − δ ≤ f ≤ c0 − ǫ) = A(−δ + ǫ ≤ f − (c0 + ǫ) ≤ 0) =

= A(−δ + ǫ ≤ f − (c0 + ǫ) ≤ δ − ǫ) = (3.5)

= A(c0 − δ ≤ f ≤ c0 + ρ).
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Figure 6. On this figure we have the values of a mapping with f and g for coordinates. In the proof

of Theorem 3.5 there are in fact two cases. But if c0 is a typical value of f , both are impossible.

In the first case, on the left, g is bounded on {f < c0}. Since c0 is typical, we

have {f ≤ c} = {f < c}. We see from the picture that it is impossible, because g is continuous.

In the second case, g attains a maximum on each fibre of f , but it is impossible that its maximum

tends to infinity due to Lemma 3.6.

Hence if g is bounded on f−1([0, c0− ǫ]) by assumption, then by the equality (3.5) and

properties of typical values we get

g ∈ A(0 ≤ f < c0 − δ) ∩ A(c0 − δ ≤ f ≤ c0 − ǫ) =

= A(0 ≤ f < c0 − δ) ∩ A(c0 − δ ≤ f ≤ c0 + ρ) = A(0 ≤ f ≤ c0 + ρ).

This gives a contradiction and ends the proof. �

Remark 3.8. Note that from the proof of Theorem 3.5 and Lemma 3.6 it follows that the

algebra of bounded polynomials is stable in particular on each of the tentacles of the set

{(x, y) ∈ R2| 0 ≤ f(x, y) ≤ c}.

The essence of the proof of the Theorem 3.5 lies in Lemma 3.6 on local stability. We

chose to show it using the graph of a mapping. This method of proof also indicates possible

applications in the study of properness of polynomial mappings.

Example 3.9. Take the Motzkin polynomial m (see Example 3.2). We have that

A(0 ≤ m ≤ c) = R[X,Y ]

for c ∈ (0, 1), because of Proposition 1.13. Moreover,

A(0 ≤ m ≤ 1) = R[XkY | k ∈ N0] ∩ R[XY k| k ∈ N0] = R[XiY j | i, j ∈ N]
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due to Proposition 2.6 and properties of algebras of bounded polynomials. It is easy to

see that this algebra is infinitely generated (compare Sections 4.3 and 5).

Whereas the set m−1([0, c]) for c > 1 has four tentacles M1, M2, M3 and M4 such that

A(M1) = A(M2) = R[X,XY,XY 2] and A(M3) = A(M4) = R[Y,XY,X2Y ]. Hence

A(0 ≤ m ≤ c) = R[XY,X2Y,XY 2]

for c > 1.

As an easy consequence of the Stability Theorem we get

Corollary 3.10. Let f ∈ R[X,Y ]. If c 6= c̃ and [c, c̃] ∩BC(f) = ∅, then

A(f ≤ c) = A(f ≤ c̃).

Proof: Indeed, it suffices to observe that for C = |c| + |c̃| + 1 we have c + C > 0 and

c̃ + C > 0. Hence from Property 3.1 and Theorem 3.5 we get

A(f ≤ c) = A(f + C ≤ c + C)) = A(f + C < 0) ∩ A(0 ≤ f + C ≤ c + C) =

= A(f + C < 0) ∩ A(0 ≤ f + C ≤ c̃ + C) = A(f ≤ c̃).

This ends the proof. �

Another easy consequence is

Corollary 3.11. Take b < c and b̃ < c̃ such that

[b, b̃] ∩BC(f) = ∅ and [c, c̃] ∩BC(f) = ∅.

We have that

A(b ≤ f ≤ c) = A(b̃ ≤ f ≤ c̃)

as long as b < c and b̃ < c̃.

Proof: We can suppose that c ≤ c̃. By Property 3.1 we have that [c−b, c̃−b]∩BC(f−b) =

∅ = [b− c̃, b̃− c̃] ∩BC(f − c̃). Hence by Theorem 3.5 we get

A(b ≤ f ≤ c) = A(b ≤ f ≤ c̃) = A(b̃ ≤ f ≤ c̃).

This ends the proof. �

Hence for the Motzkin polynomial m : R2 → R by Examples 3.2 and 3.9 we have

A(b ≤ m ≤ c) =

{

R[X,Y ] b ≤ c < 1,

R[XY,X2Y,XY 2] b < c, 1 < c

and the special cases are A(b ≤ m ≤ 1) and A(c ≤ m ≤ c) where b < 1 ≤ c, which do not

admit a finite set of generators.

In [PlSd] it is proved that if S ⊂ R2 admits only tentacles with nonempty interior,

then A(S) is finitely generated. As a consequence we get
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Proposition 3.12. Let f ∈ R[X,Y ]. The algebra A(f ≤ c) is finitely generated for

c ∈ R \BR(f).

Proof: Take c ∈ R \ BR(f). From the properties of typical values and fibrations we

get that either f−1((−∞, c]) is compact or each tentacle of the set f−1((−∞, c]) has a

nonempty interior. This, combined with the result from [PlSd], gives the claim. �

Note that in the above proposition it suffices to take c /∈ BR(f) and the set BR(f) may

be smaller then BC(f) ∩R. It is not clear for the author whether Theroem 3.5 holds also

if we substitute BC(f) by BR(f). Consider the following example given in [KS].

Example 3.13. Consider the polynomial

f(X,Y ) = Y 4 + Y 2.

We have BR(f) = {0} and BC(f) = {−1
4 , 0}. We see that BR(f) ( BC(f). Moreover,

A(f ≤ c) =







R[X,Y ] c < 0,

R[XnY | n ∈ N0] c = 0,

R[Y ] c > 0.

There is no change in the algebras at the complex bifurcation value −1
4 .

To end this section let us remark that under the assumptions of Theorem 3.5 considered

sets have only tentacles with nonempty interior. This assumption is vital as it will be later

shown in Proposition 4.14 in Section 4.3.
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4. Algebras of polynomials bounded

on subsets of Rn

In this section we will study algebras of bounded polynomials on special kinds of sets

of arbitrary dimension n. In the first section we introduce some helpful sets given by

inequalities on generators of the algebra of bounded polynomials (sets of the form (4.1)

and (4.2) below) and study their properties. In the second section we turn to algebras of

bounded polynomials on a special kind of tentacle sets of the form (4.6), which we will

call weighted tentacles relative to a given set. Similar sets have been studied by Netzer

in [Net] and their description presented in this work was inspired by his paper. The

essence of these sets is their structure as ”weighted deformation” of a set whose algebra

of bounded polynomials is already known. In the third section we consider subsets of

algebraic sets and show that their algebras are never finitely generated. This was already

shown by Plaumann and Scheiderer in [PlSd], but we present a different proof based more

on geometrical properties and using the set of nonproper values of a mapping.

4.1. Preliminary remarks

For the rest of this section let S ⊂ Rn and assume that A(S) is generated by a set

{ζi}i∈I = Z ⊂ R[X], where I ⊂ N. Note that we do not assume that S is semialgebraic.

If Z 6= ∅, put

Ci = sup
S

|ζi| and C =
∑

i∈I

C2
i ,

where we let C ∈ R ∪ {∞}. Set

S∩(Z) =
⋂

i∈I

{x ∈ Rn| |ζi(x)| ≤ Ci} (4.1)

and

S2(Z) = {x ∈ Rn|
∑

i∈I

ζ2i (x) ≤ C}. (4.2)

In the case Z = ∅ put S∩(∅) = S2(∅) = Rn. Note that sets S∩(Z) and S2(Z) do depend

on the choice of generators. In cases when the set of generators is given or it does not lead
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to misunderstanding, we will simply write S∩ and S2. It is easy to observe that

S ⊂ S∩ ⊂ S2. (4.3)

Of course, this implies that

A(S) ⊃ A(S∩) ⊃ A(S2). (4.4)

Note that if Z is infinite, the number C may be infinite. Then we have S2 = Rn and

A(S2) = R. Nevertheless,

Property 4.1. For the set Z of generators of A(S) we have

A(S) = A(S∩(Z)).

If the set Z is finite, then

A(S) = A(S2(Z)).

If the set Z is infinite, then there exists a function σ : Z → A(S) such that the set σ(Z)

generates A(S) and

A(S) = A
(

S2 (σ(Z))
)

.

Proof: By (4.4) we need to show only the inclusions A(S) ⊂ A(S∩) and A(S) ⊂ A(S2).

To prove the first two statements of the property we need to note that obviously Z ⊂ A(S∩)

and if Z is finite also Z ⊂ A(S2). Since A(S) = R[Z], from easy properties of generators

(see Property 1.11) we get the first two equalities.

In the case when Z is infinite we can assume that I = N. To choose a set of generators

so that A(S) = A(S2), it suffices to rescale elements of Z conveniently. For i ∈ N put

σ(ζi) =

{

ζi
2i/2Ci

if Ci 6= 0
ζi+1
2i/2

if Ci = 0.
(4.5)

Then sup
S

|σ(ζi)| = 1
2i/2

and σ(Z) = {σ(ζi)}i∈N is still a set of generators of A(S). We have

S2(σ(Z)) = {x ∈ Rn|
∞
∑

i=1

(σ(ζi)(x))2 ≤ 1}

and σ(Z) ⊂ A(S2(σ(Z)). Hence A(S) = A(S2(σ(Z))) for this choice of generators. �

If A(S) is finitely generated, then S∩ and S2 are semialgebraic. However, if A(S) is

not finitely generated, this need not be the case. Indeed, we have

Example 4.2. Take S = {(x, y) ∈ R2| y = 0}. Then from Proposition 2.6 we have

A(S) = R[XkY | k ∈ N0]. After some scaling of this basis similar to (4.5), we have also

A(S) = R

[

XkY + 1√
k!

| k ∈ N0

]

.
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For this choice of generators we get

S2 =

{

(x, y) ∈ R2|
∞
∑

k=0

(XkY + 1)2

k!
≤ e

}

=
{

(x, y) ∈ R2| 0 ≥ y ≥ −2ex−x2
}

.

And A(S) = A(S2), but S2 is not semialgebraic. (Moreover, S2 is not semi-analytic at

infinity.)

4.2. Weighted tentacles

In this section we will turn to sets of a special form and characterisations of their

algebras. There exists a natural class of sets in Rn to which one can easily apply methods

used in our proofs of characterisations of algebras of tentacle sets in R2 in Section 2. The

neat description (4.6) of their special cases studied in this section was inspired by the one

given by Netzer in [Net] and Theorem 4.4 gives a generalisation of one of his results on

algebras of bounded polynomials. We have adapted the form (4.6) of weighted tentacles

since we feel that it is consequent to the form of tentacles we have studied in Section 2.

We will work in the ring R[X,Y ], where X = (X1, . . . , Xn) and X1, . . . , Xn, Y are n+1

independent variables. Put |α| = α1 + . . .+αn. For t = (t1, . . . , tn), x = (x1, . . . , xn) ∈ Rn

let t · x = (t1x1, . . . , tnxn). We will denote by 〈·|·〉 the standard scalar product

〈t|x〉 = 〈(t1, . . . , tn)|(x1, . . . , xn)〉 =
∑

i tixi.

For the rest of this section assume that S ⊂ Rn has a nonempty interior. Let us fix

a Puiseux parametrization β = (β1, · · · , βn) : [R,∞) → Rn of a semialgebraic curve at

infinity such that βi have constant signs on [R,∞), R > 0. Throughout this section set

λ = (λ1, . . . , λn) = (ord∞β1, . . . ord∞βn) ∈ (Q0 ∪ {∞})n.

Consider a set

M = {(β(y) · x, y) ∈ Rn+1| x ∈ S, y ≥ R}. (4.6)

We will call such a set a weighted tentacle relative to S with the weigh λ.

If S is semialgebraic, then M is also semialgebraic. If S has s connected components,

then M has at most s tentacles. Hence if S is semialgebraic and connected, then M has

exactly one tentacle. Note that A(M) = A(M) and M is closed if S is closed.

For any y ≥ R put

My = {(β(y) · x, y) ∈ Rn+1| x ∈ S}.

Needless to say that My is semialgebraic if S is semialgebraic. If for some i = 1, . . . , n we

have βi = 0, then M is a subset of the hyperplane {x ∈ Rn+1| xi = 0}.
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Suppose that β : [R,∞) → Rn from formula (4.6) is a Puiseux parametrization such

that βi 6= 0 for i = 1, . . . , n. In this case My is homeomorphic to S for every y ≥ R. Hence

Int(M) 6= ∅ and so M
Zar

= Rn. Put

β•(x, y) = β(y) · x

for y ≥ R and x ∈ R. It is a semialgebraic mapping. For a given y ≥ R we will denote by

β(y)• the linear mapping Rn ∋ x → β(y) · x. Note that this gives us

β(y)•(S) × {y} = My.

For every y ≥ R the mapping β(y)• is a linear automorphism of Rn with the inverse

Rn ∋ x →
(

1

β1(y)
x1, . . . ,

1

βn(y)
xn

)

∈ Rn.

Hence we will denote the inverse as (1/β(y))• instead of (β(y)•)−1. Similarly as in Section

2.2 we denote β(y)•∗ the automorhism of R[X] given by g → g◦β(y)•. Hence from Property

1.16 we get

A(S) = R[Z] ⇐⇒ A(β(y)•(S)) = R

[(

1

β(y)

)•

∗

Z
]

(4.7)

for y ≥ R. In the particular case when Z is a set of monomials we have

R[Z] = R

[(

1

β(y)

)•

∗

Z
]

.

Hence if A(S) admits a monomial basis, we have A(S) = A((1/β(y))•(S)).

To show how the algebra of bounded polynomials looks like on a weighted tentacle M

relative to S we will show first that for a polynomial f in n + 1 variables there exists a

finite collection of values of the parameter y which check if f as a polynomial in R[X][Y ]

has bounded coefficients on the set S. Put

f =
∑

α∈A

aα(Y )Xα ∈ R[X,Y ], (4.8)

where A is a finite subset of Nn
0 and aα 6= 0 are polynomials in variable Y for α ∈ A. Set

deg aα = dα. Let us remind that degX f = maxα∈A |α| and degY f = maxα∈A dα.

Property 4.3. Put d = degY f . A polynomial f is an element of A(S)[Y ] if and only if

there exist d + 1 distinct real numbers y0, . . . , yd such that

f(X, yi) ∈ A(S)

for i = 0, . . . , d.
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Proof: If d = 0, then the claim is obvious. Assume that d > 0. The necessity is evident.

We will show the sufficiency. We can write f =
∑d

i=0 bi(X)Y i, where bd 6= 0. Let y0, . . . , yd
be d + 1 distinct points. Take the determinant v of the Vandermonde matrix







1 y0 · · · yd0
...

...
. . .

...

1 yd · · · ydd






.

We have that v ∈ R \ {0}. For i = 0, . . . , d denote by vi the determinant of the above

matrix with the ith column replaced by the vertical vector, which is the transposition of

[f(X, y0), . . . , f(X, yd)] .

Then we have that

bi =
vi
v

∈ R[X].

Since by assumption f(X, yi) ∈ A(S), we get that vi ∈ A(S) for every i = 0, . . . , d. Hence

bi ∈ A(S) and f ∈ A(S)[Y ]. �

From the above and formula (4.7) it easily follows that if there exists a countable

collection of points {yi}i∈N such that A(S) = A(β(yi)
•(S)), then to decide whether

g ∈ A(S)[Y ] it suffices to check if g(X, yi) ∈ A(S) for i ∈ N.

Similarly as in Section 2.1 take the nonnegative functions

R[X] ∋
∑

bαX
α → max

α
|bα| ∈ R

and

R[X] ∋ g → sup
x∈S

|g(x)| ∈ R ∪ {∞}.

The first function is a norm on R[X]. The second one is a norm, when restricted to the

set A(S). From the assumption that S has a nonempty interior, it follows that in fact

the set A(S) is the biggest subset of R[X], with respect to inclusion, such that the second

function restricted to this set is a norm.

Suppose that A(S) has a monomial basis {ζi}i∈I . Then the set {ζi| deg ζi ≤ degX f}
is finite. Assume it is equal to {ζi}i=1,...,k. Then the set

{

ζα1
1 · . . . · ζαk

k | αi ∈ N0, 〈(deg ζ1, . . . , deg ζk)|(α1, . . . , αk)〉 ≤ degX f
}

is linearly independent and finite. Moreover, it is a linear basis of the vector space of

polynomials bounded on S and of degree less or equal to degX f . Hence all norms are

equivalent when restricted to the linear space {g ∈ A(S)| deg g ≤ degX f}. In particular,

there exist positive constants ω,Ω which depend only on the set S and degX f such that

for all polynomials g =
∑

bαX
α ∈ A(S) of degree less or equal degX f we have

sup
x∈S

|g(x)| ≥ ω max
α

|bα| (4.9)
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and

max
α

|bα| ≥ Ω sup
x∈S

|g(x)|. (4.10)

Hence we are ready to prove

Theorem 4.4. Suppose that A(S) is generated by monomials. If M is a weighted tentacle

of the form (4.6) relative to the set S with the weigh λ ∈ Qn and βi 6= 0 for i = 1, . . . , n,

then we have

A(M) = A(S)[Y ] ∩ R[XαY d | 〈α|λ〉 ≥ d, α ∈ Nn
0 , d ∈ N0].

Compare the following proof with the proof of Theorem 2.1.

Proof: Take a polynomial f of the form (4.8). Note that f is bounded on M if and only

if there exists C > 0 such that for all y ≥ R we have

sup
(x,y)∈My

|f(x, y)| ≤ C.

Suppose that f is bounded on M . Hence there exists a constant C > 0 such that for

all y ≥ R we have

C ≥ sup
(x,y)∈My

|f(x, y)| = sup
x∈β(y)•(S)

|f (x, y)| = sup
x∈S

|f (β(y) · x, y)| .

It implies that f(X, y) is bounded on β(y)•(S) for every y ≥ R. From Property 4.3 it

follows that f ∈ A(S)[Y ]. Moreover, from inequality (4.9) take the constant ω that does

not depend on y and combine it with the above inequality. For y ≥ R we get that

C ≥ sup
x∈S

|f (β(y) · x, y)| ≥ ω max
α∈A

|βα(y)aα(y)| .

Therefore for every α ∈ A the functions y → βα(y)aα(y) are bounded on the half-line

[R,∞). This by Property 1.8 gives us that

0 ≤ ord∞(βαaα) = ord∞aα + ord∞βα = −dα +
∑

i

αiλi.

Suppose that for every α ∈ A we have dα ≤ 〈λ|α〉 and f is an element of A(S)[Y ].

Then we can find a constant C > 0 such that for all y ≥ R and every α ∈ A we have

C ≥ |βα(y)aα(y)| .

Hence from Property 1.8 for y ≥ R we have

C ≥ max
α∈A

|βα(y)aα(y)| ≥ Ω sup
x∈S

|f (β(y) · x, y)| =

= Ω sup
x∈β(y)•(S)

|f (x, y)| = Ω sup
(x,y)∈My

|f(x, y)|,

where Ω is the constant from inequality (4.10) for polynomials bounded on S and does

not depend on y. Therefore f is bounded on M . �
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Let us look at an easy example below.

Example 4.5. Consider a set

M = {(x, y, z) ∈ R3| (xy(1 + z2))2 ≤ z2, x2y4(1 + z2)4 ≤ z2, z ≥ 1}.

We have that

M =

{(

zx,
y

1 + z2
, z

)

∈ R3| (x, y) ∈ S, z ≥ 1

}

,

where

S = {(x, y) ∈ R2| (xy)2 ≤ 1, (xy2)2 ≤ 1}
is an unbounded semialgebraic set. From the decomposition of S into tentacles and The-

orem 2.4 we get A(S) = R[X,XY,XY 2] ∩ R[Y,XY ] = R[XY,XY 2]. Moreover, we have

ord∞Z = −1 and ord∞
1

1+Z2 = 2. Hence by Theorem 4.4 we get

A(M) = R[XY,XY 2][Z] ∩ R[XiY jZd| d ≤ −i + 2j] =

= R[XY,XY 2, XY Z,XY 2Z,XY 2Z2, XY 2Z3].

In particular, A(M) has a six-element basis.

Observe that if A(S) = R, then A(M) = R. Indeed, from Theorem 4.4 it follows that

A(M) = R[Y ] ∩ R[X(0,...,0)Y d| 0 = 〈(0, . . . , 0)|λ〉 ≥ d, d ∈ N0] = R.

Let us remind that we put R[∅] = R. As a corollary to Theorem 4.4 we get

Corollary 4.6. Take a weighted tentacle M of the form (4.6) relative to the set S with

the weigh λ ∈ Qn and βi 6= 0 for i = 1, . . . , n. Suppose that A(S) 6= R is generated by a

set of monomials Z = {Xα|α ∈ H}, where H ⊂ Nn
0 . Then

A(M) = R

if and only if

〈λ|α〉 < 0

for every α ∈ H.

Proof: Take the set D = {α ∈ Nn
0 | Xα ∈ A(S)} of all powers of monomials bounded on

S. It is easy to see that

D = {m1α1 + . . . + mkαk| k ∈ N, m1, . . . ,mk ∈ N, α1, . . . , αk ∈ H} .

First, note that

〈 λ |m1α1 + . . . + mkαk〉 =
k

∑

i=1

mi〈λ|αi〉.

Therefore, we get 〈λ|α〉 < 0 for every α ∈ H if and only if 〈λ|α〉 < 0 for every α ∈ D.

59



4.2. Weighted tentacles

We have R[Y,Xα| α ∈ H] = A(S)[Y ] and

A(S)[Y ] ∩ R[XαY d| 〈α|λ〉 ≥ d, α ∈ Nn
0 , d ∈ N0] = R[XαY d| 〈α|λ〉 ≥ d, α ∈ D, d ∈ N0].

Hence from Theorem 4.4 it follows that A(M) = R if and only if

R = R[XαY d| 〈α|λ〉 ≥ d, α ∈ D, d ∈ N0].

Suppose that A(M) = R. Hence the set {(α, d) ∈ D × N0| 〈λ|α〉 ≥ d} is empty.

Therefore, for every α ∈ D we must have 〈λ|α〉 < 0. On the other hand, if 〈λ|α〉 < 0 for

every α ∈ H, then R[XαY d| 〈α|λ〉 ≥ d, α ∈ D, d ∈ N0] = R[∅] = R. This ends the proof. �

If we suppose that S is compact, then A(S) = R[X] and as an easy consequence of

Theorem 4.4 we get

Corollary 4.7. For the set M of the form (4.6) where S is compact and βi 6= 0 for

i = 1, . . . , n we have

A(M) = R[XαY d| 〈α|λ〉 ≥ d, α ∈ Nn
0 , d ∈ N0]

where λi = ord∞βi for i = 1, . . . , n.

Corollary 4.8. Suppose that M is a tentacle set of the form (4.6) with S compact. Then

(1) A(M) = R if and only if ord∞βi < 0 for every i = 1, . . . , n,

(2) A(M) = R[X] if and only if ord∞βi = 0 for every i = 1, . . . , n,

(3) A(M) ) R[X] if and only if there exists i ∈ {1, . . . , n} such that ord∞βi > 0.

Proof: Using Corollary 4.7 we easily deduce that A(M) = R if and only if
∑

λiαi < 0 for

every α ∈ Nn
0 . It follows that αi ≤ 0 for i = 1, . . . , n. Since α are arbitrary, we conclude

that λi < 0 for i = 1, . . . , n.

To prove the second point assume that A(M) = R[X]. Hence if XαY d ∈ A(M),

then d = 0. Therefore
∑

i λiαi = 0 for any α ∈ Nn
0 . In particular we can take α =

(0, . . . , 0, 1, 0 . . . , 0). Hence we get that necessarily λi = 0 for i = 1, . . . , n. The sufficiency

is obvious.

Property (3) follows immediately from (2) and (1). �

From the above it follows easily

Example 4.9. In Rn one can define a cone as a union of half-lines C = {t(x1, . . . , xn)| x ∈
S, t ≥ 0}, where S is connected and bounded. Of course, as in this whole section, S has

nonempty interior. Then we can see that from the above corollary it follows that A(C) = R.

Now we will consider the algebras of bounded polynomials on projections of weighted

tentacles. Let πn : Rn+m → Rn, where m ≥ 1, be a projection on the first n coordinates

and denote by π : Rn+1 → Rn the projection that leaves out only the last coordinate. We

easily get

Property 4.10. Let K ⊂ Rn+m be a set. Then for the projection πn we have

A(πn(K)) = A(K) ∩ R[X1, . . . , Xn].
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4. ALGEBRAS OF POLYNOMIALS BOUNDED ON SUBSETS OF Rn

Note that from the above property it follows that if A(S) ⊂ R[X1, . . . , Xk], then

A(S) = A(πk(S)). In such a case for a set M of the form (4.6) we have

A(M) = A ({ ((β1(y), . . . , βk(y)) · (x1, . . . , xk) , y) | (x1, . . . , xk) ∈ πk(S), y ≥ R}) .

For a weighted tentacle M of the form (4.6) we have

π(M) = {β(y) · x| x ∈ S, y ≥ R}.

Let us remind that IntS 6= ∅. If S is bounded and ord∞β1 ≥ 0, . . . , ord∞βn ≥ 0, then

π(M) is bounded. It is unbounded otherwise. Hence of course, if S is semialgebraic, π(M)

has a decomposition (1.19) into tentacle sets. But for S semialgebraic and connected

π(M) need not be a tentacle set as can be easily seen for the set {(z−1x, zy) ∈ R2| (x, y) ∈
B(0, 1)} which has two tentacles.

Proposition 4.11. Suppose that A(S) is generated by monomials. For a set K of the

form

{β(y) · x| x ∈ S, y ≥ R},
where β is a Puiseux parametrization such that βi 6= 0 for each i = 1, . . . , n, we have

A(K) = A(S) ∩ R[Xα| 〈λ|α〉 ≥ 0, α ∈ Nn
0 ].

Proof: The proof follows from Theorem 4.4 and Property 4.10. Indeed, K = π(M) and

A(K) = A(π(M)) = A(M) ∩ R[X] = A(S)[Y ] ∩ R[XαY d| d ≤ 〈λ|α〉] ∩ R[X] =

= A(S) ∩ R[Xα| ∃d∈N0 d ≤ 〈λ|α〉] = A(S) ∩ R[Xα| 0 ≤ 〈λ|α〉].

This ends the proof. �

This proposition can be proved alternatively by an argument similar to the one

presented in the proof of Theorem 4.4. Observe that if every ord∞βi ≥ 0, then

R[Xα| 〈λ|α〉 ≥ 0] = R[X].

In [Net] it is shown that projections of sets of the form (4.6) (necessarily subsets if S

is not compact) have stable preorderings if there holds a condition equivalent to saying

that the algebra of bounded polynomials admits only constant polynomials (compare

[Net, Theorem 5.4] with Proposition 4.10 and Corollary 4.8). The study of stability of

preorderings (as the existence of bounds of degrees of polynomials in these representations)

is also an interesting field from the viewpoint of applications, tightly connected with the

K-moment problem and presently discussed in the context of unbounded set (see for

instance [Sm2], [PS] or [KM]).

We will end this section with remarks on ”model” sets which have the same algebra as

any given set of the form (4.6).

Take a multi-index λ ∈ Qn and a set Z = {ζi| i ∈ I} ⊂ R[X] of monomials that forms

a basis of A(S) i.e. the condition 1.10 from Preliminaries holds. For this basis (possibly
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after rescaling, see Property 4.1 and formula (4.5)) take the set S2 of the form (4.2) such

that A(S) = A(S2). Set

Bλ,Z =
{(

(1/y)λ1 x1 . . . , (1/y)λn xn, y
)

∈ Rn+1| x ∈ S2, y ≥ 1
}

.

Note that Bλ,Z need not be semialgebraic, since S2 needs not be. Directly from the

characterisation of the algebras in Theorem 4.4 and Property 4.1 we get

Remark 4.12. Suppose A(S) has a monomial basis Z. For a weighted tentacle M relative

to a set S with weigh λ ∈ Qn and βi 6= 0 for i = 1, . . . , n we have

A(M) = A(Bλ,Z),

where λi = ord∞βi for i = 1, . . . , n.

The choice is not unique, because there may exist λ̃ 6= λ such that A(Bλ,Z) = A(Bλ̃,Z),

for example in the case when the algebra admits only constants.

In the case when S is compact we can simplify Bλ,Z . Put

Bλ =
{(

(1/y)λ1 x1 . . . , (1/y)λn xn, y
)

∈ Rn+1| x ∈ B(0, 1), y ≥ 1
}

for any λ ∈ Qn. Hence from Remark 4.12 follows

Remark 4.13. If S is compact and βi 6= 0 for i = 1, . . . , n, then

A(M) = A(Bλ),

where λi = ord∞βi for i = 1, . . . , n.

To end the section let us take a look at the two-dimensional case. The sets of the type

(2.6) considered throughout Section 2.1 can be rewritten as either of the form

{(tαx, ty)| (x, y) ∈ [0, 1] × {1}, t ≥ 1} or {(yαx, y)| x ∈ [0, 1], y ≥ 1}.

Whereas sets of the type (2.8) can be rewritten as {(yα(x − β), y)| x − β ∈ [0, 1], y ≥ 1}
where β is a Puiseux polynomial. Hence they are exactly of the type considered above. As

the sets [0, 1] × {1} and [0, 1] are compact, these forms can be interpreted as a kind of an

”uniform deformation” of a compact set. Though every algebra of bounded polynomials

is an algebra on this type of sets, tentacles of the form (1.7) are usually not equal to a set

of this type.

4.3. Subsets of algebraic sets

We will begin with an observation on stability (in the sense of Theorem 3.5 in Section

3) of the algebras of bounded polynomials on subsets of algebraic sets. Afterwards we

will show that these algebras do not admit finite bases. Let us note that we will use a
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4. ALGEBRAS OF POLYNOMIALS BOUNDED ON SUBSETS OF Rn

shortened notation A(f = c) to denote A({(x, y ∈ R2| f(x, y) = c)}).

Let us make a remark that the Stability Theorem from Section 3.3 does not hold if we

substitute the sets f−1([c, c̃]) with simply the fibres f−1(c), unless they are bounded. To

be more precise, we have the following

Proposition 4.14. Take a nonconstant polynomial f : Rn → R and c 6= c̃ ∈ R. If f−1(c)

or f−1(c̃) is unbounded, then

A(f = c) 6= A(f = c̃).

Proof: Without loss of generality suppose that f−1(c̃) is unbounded. We have that

‖X‖2 · (f − c) is bounded on f−1(c). But

‖X‖2 · (f − c)|f−1(c̃) = ‖X‖2 · (c̃− c)|f−1(c̃).

Since c̃− c 6= 0 and f−1(c̃) is unbounded we have that ‖X‖2 · (f − c) /∈ A(f = c̃). �

To find the generators of A(S) for an unbounded S ⊂ f−1(0) it is not sufficient to

consider polynomials neither divisible by f nor generated by f i.e. A(S) * (f)R[X]∪R[f ].

Look at the example below

Example 4.15. Take f = (1 + X2)Y − 1 and

S = f−1(0) =

{

(x, y) ∈ R2| y =
1

1 + x2

}

.

The polynomial f is irreducible. If one takes g = f + y, one gets that g is bounded on S,

but not constant. Hence g /∈ R[f ] and g /∈ (f).

Now we will give an alternative proof that an algebra of polynomials bounded on an

unbounded subset of a proper algebraic set does not admit a finite basis. This fact has

been already shown by Plaumann and Scheiderer in [PlSd] for a more general class of sets

i.e. subsets of proper algebraic subsets of any affine R-variety, but we feel that the proof

below fits better in our setting by making an interesting use of properties of nonproper

mappings and sets of the forms (4.1) and (4.2).

Theorem 4.16. If S ⊂ Rn is an unbounded semialgebraic subset of a proper algebraic

set, then A(S) does not admit a finite set of generators.

The case n = 1 being trivial we will suppose that n ≥ 2. Let us outline the proof of the

above theorem. We will suppose that A(S) is finitely generated. From Lemmas 4.17 and

4.19 we will conclude that S ⊂ S2 = V (ζ1, . . . , ζk). Hence (ζ1, . . . , ζk)R[X] ⊂ R[ζ1, . . . , ζk]

and we will use Lemma 4.20 to show that S is bounded. This will give a contradiction.

First, note that for every S ⊂ Rn the zero ideal is always contained in A(S) and

Rn = {x ∈ Rn| 0 = 0}. Moreover, for any bounded set K we have A(S) = A(S \ K) ∩
A(K) = A(S \K).
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Lemma 4.17. Let S ⊂ Rn be an unbounded semialgebraic set. For any nonzero ideal

I ⊂ R[X] there exists a compact set K such that

S \K ⊂ V (I) ⇐⇒ I ⊂ A(S).

Proof: Indeed, if S\K ⊂ V (I) for some nonzero ideal I ⊂ R[X] and a compact set K then

obviously f = 0 on S \K for any polynomial f ∈ I. Hence f ∈ A(S \K) = A(S). Now

we will show the sufficiency. Suppose I ⊂ A(S) for some nonzero ideal I = (f1, . . . , fk).

Set K = S \ V (I). If K = ∅, the claim holds. Assume that K 6= ∅. Suppose first that

K is unbounded. Take f = f2
1 + . . . + f2

k ∈ I. Of course, f(x) 6= 0 for x /∈ V (f1, . . . , fk).

From Curve Selection Lemma and properties of semialgebraic curves there exists a tuple

of Puiseux series at infinity β : [R,∞) → K such that f ◦ β 6= 0 and we have ‖β(t)‖2 ≥ tp

for t ≥ R and some rational p > 0. Hence (f ◦ β)(t) = a0
1

tr/q
+ a1

1
tr+1/q + . . . for some

r ∈ N0, q ∈ Z and ai ∈ R such that a0 6= 0. Therefore there exists a natural number N

such that s = pN − r/q > 0. Hence for some positive constant C we have

(

‖X‖2N · |f(X)|
)

◦ β(t) ≥ CtpN · 1

tr/q
= cts → ∞

as t → ∞. Therefore, ‖X‖2Nf is not bounded on S. But ‖X‖2Nf ∈ I ⊂ A(S). This

gives a contradiction. Hence K = S \ V (I) is bounded. We get S \K ⊂ V (I). �

Let us illustrate the lemma above.

Example 4.18. Take the Motzkin polynomial m from Example 3.2 and the set

S = {(x, y) ∈ R2| m(x, y) ≤ 1}, which is the union of the closure of the ball B(0,
√

3) and

the locus of XY . By Example 3.9 we see that (XY ) ⊂ A(S), but S
Zar

= R2. Nevertheless,

it suffices to take any compact set K ⊃ B(0,
√

3), so that we get S \KZar
= V (XY ).

Note that if S is unbounded, then there exists a compact set K0 such that

∀K⊃K0 S \K0
Zar

= S \KZar
. (4.11)

Indeed, if the above were not true, then there would have existed an infinite strictly as-

cending sequence of ideals in R[X]. This is impossible, because the ring R[X] is noetherian.

It follows that

Lemma 4.19. Let S be an unbounded semialgebraic subset of Rn such that the set Z of

generators of A(S) is finite. There exists a compact set K such that

S \KZar
= S∩ \KZar

= S2 \KZar
.

Proof: Let us first prove the existence of a compact set K such that the Zariski closures

of S \K and S2 \K are the same. If S
Zar

= Rn, then S2
Zar

= Rn due to the inclusion

S ⊂ S2. Let us suppose that S
Zar 6= Rn. For any compact set K we have

S \KZar ⊂ S2 \KZar
.
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Take K0 which satisfies the condition (4.11). Since the Zariski closure of the set S \ K0

is equal to V (I) for some nonzero ideal I ( R[X], from Lemma 4.17 we get I ⊂ A(S).

Moreover, since Z is finite from Property 4.1 we have A(S) = A(S2) = A(S2 \K0) and

again from Lemma 4.17 it follows that there exists a compact set Z such that (S2\K0)\Z ⊂
V (I). Hence from the choice of K0 if we put K = K0 ∪ Z, we get

S2 \KZar
= S2 \ (K0 ∪ Z)

Zar ⊂ S \K0
Zar

= S \KZar
.

This gives the first equality. We prove the second equality analogously. �

Note that we will prove in Theorem 4.16, that with these assumptions, the above

lemma is trivial, since then for any compact set we will have S \KZar
. It will follow also

that if there exists a compact set K such that S \KZar
= S∩ \KZar 6= Rn, then every

bounded polynomial on S is constant. This is not generally true (see page 63).

Now we will prove the crucial lemma suggested by Z. Jelonek.

Lemma 4.20. Let ζ1, . . . , ζk ∈ R[X1, . . . , Xn], n ≥ 2. If

(ζ1, . . . , ζk)R[X] ⊂ R[ζ1, . . . , ζk], (4.12)

then the mapping (ζ1, . . . , ζk) : Rn → Rk is proper.

Proof: Let us abbreviate ζ = (ζ1, . . . , ζk). From the assumption (4.12) there follows

existence of polynomials fij ∈ R[Y1, . . . , Yk] such that

Xiζj(X) = fij(ζ(X)) (4.13)

for i = 1, . . . , n and j = 1, . . . , k. We get Xi = fij(ζ)/ζj . Consequently it follows that the

fields of fractions R(ζ1, . . . , ζk) = R(X1, . . . , Xn) are equal. Hence k ≥ n ≥ 2.

We will show that the mapping ζ is proper on the set Rn \ ζ−1(0). Take a compact set

K ⊂ Rk such that 0 /∈ K. There exists a constant C such that supK |fij | ≤ C for every i, j.

Since K and {0} are compact and disjoint, there exists ǫ > 0 such that dist(K, 0) = ǫ.

Hence dist(ζ(ζ−1(K)), 0) ≥ ǫ. For every x ∈ ζ−1(K) from ‖ζ(x)‖2 ≥ ǫ2 it follows that

there exists j = j(x) ∈ {1, . . . , k} such that ζ2j (x) ≥ ǫ2/k. Hence from the above and

(4.13) it follows that for the point x and every i = 1, . . . , n we have

|xi| =
‖fij(ζ(x))‖

|ζj(x)| ≤ C
√
k

ǫ
.

Therefore ζ−1(K) is contained in the closed ball B(0, C
√
nk/ǫ). Hence the mapping

ζ : Rn \ ζ−1(0) → Rk \ {0} is proper. Therefore the set of nonproperness Jζ ⊂ {0} for the

mapping ζ : Rn → Rk. However, by Theorem 1.12 of Jelonek, the set Jζ , if nonempty, is

semialgebraic of dimension at least 1. Hence 0 cannot be an asymptotic value of ζ and ζ

is proper on Rn. �
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In fact, using the set of nonproperness for complex mappings (see [J2]) one could prove

that the set of zeroes of the mapping ζ satisfying assumptions of the above theorem is finite.

Proof of Theorem 4.16: Let us assume that A(S) is finitely generated. If ζ1, . . . , ζk are

generators of A(S), then ζ1+c1, . . . , ζk +ck for any constants c1, . . . , ck ∈ R are generators

of A(S) as well. Hence we can assume that the generators ζ1, . . . , ζk are such that for some

unbounded curve γ : [R,∞) → S we have ζi(γ(t)) → 0 as t → ∞ for every i = 1, . . . , k.

Since from assumptions S
Zar

= V (I) 6= Rn for some ideal I ⊂ R[X] we get I ⊂
A(S) 6= R[X] from Lemma 4.17. Hence from Lemma 4.19 there exists a compact set K

such that

{x ∈ Rn|
∑

ζ2i (x) ≤ C} \K
Zar

= S2 \KZar
= V (I).

This gives us
∑

ζ2i ≥ C on Rn \K. Should it be otherwise, then the open set

Z = {x ∈ Rn|
∑

ζ2i (x) < C} \K

would be nonempty. Therefore

Rn = Z
Zar ⊂ S2 \KZar 6= Rn

which gives us a contradiction. Hence
∑

ζ2i = C on S \K.

On the other hand, from the choice of ζi it follows that C =
∑

ζ2i (γ(t)) → 0 as t tends

to infinity. Hence C = 0. From the definition of C we get ζi = 0 on S \ K for every i.

Hence

S \K ⊂ S2 = V (ζ1, . . . , ζk).

Since the ideal (ζ1, . . . , ζk) in R[X] is contained in A(S2) = R[ζ1, . . . , ζk], we can use

Lemma 4.20 and get that V (ζ1, . . . , ζk) is compact. This gives a contradiction. �

Due to Plaumann and Scheiderer (see [PlSd]) we know that the only semialgebraic sets

in R2 which do not admit a finite basis of the algebra of bounded polynomials are the ones

whose every tentacle is a subset of a proper algebraic set i.e. sets S such that there exists a

compact K such that the Zariski closure of S\K is proper. Nevertheless, starting from R3,

unbounded subsets of algebraic sets are not the only ones that do not admit a finite basis.

Recently, an example was given by S. Krug in [Krug] of a semialgebraic set in R3 whose

tentacles have a nonempty interior at infinity (i.e. outside any compact set) such that its

algebra cannot be finitely generated. It can be viewed as a geometric interpretation of a

recent result of S. Kuroda in [Ku] on the existence of counterexamples to Hilbert’s XIVth

Problem in low dimension and transcendence degree. More precisely, in [Ku] it is shown

that there exist infinitely generated subalgebras of the ring of polynomials in four variables

arising from intersections of this ring with a subfield L of the ring of fractions R(X) of

transcendence degree three. Nevertheless, the example of Krug is a semialgebraic set

which is not basic and we feel that in context of Schmüdgen’s Positivstellensatz (compare

Section 6.2) it is an interesting question to ask whether there exist basic sets that do admit

an infinitely generated algebra of bounded polynomials.
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5. Monomial generators

In this section we will focus on algebras of polynomials generated by monomials. First

we will start with the notion of semigroup and some of its basic properties. Afterwards,

we will study the geometric properties of cones of monomials bounded on a given set. As

an example, we will point out the generators of the algebras of polynomials bounded on

tentacle sets with borders of different orders (see Section 2.1). In Theorem 5.9 we show

that any closed convex cone spanned by a finite set of points with rational coefficients is

in fact a convex cone spanned by the generators of an algebra of bounded polynomials on

a suitable unbounded basic semialgebraic set. Hence there is a duality between convex

cones in Rn and sets given by monomial inequalities.

5.1. Generators of semigroups

A semigroup is a set M with a binary operation · : M×M → M such that (ζ ·η) ·θ =

ζ · (η · θ) for every ζ, η, θ ∈ M. A semigroup with a neutral element 1M is called a monoid

(see [Kin]). Any nonempty subset S of M which is closed under the operation · is called

a subsemigroup, any subsemigroup containing the neutral element is called a submonoid.

A monoid where all elements have their inverse is a group.

Example 5.1. Take the set Nm
0 , where m ∈ N, with the operation + of addition on

coordinates

(n1, . . . , nm) + (k1, . . . , km) = (n1 + k1, . . . , nm + km).

Hence it is easily seen that Nm
0 with the above operation is a semigroup with the neutral

element (0, . . . , 0). The set Zm with the above operation forms a group for any m ∈ N.

We will say that an element ζ of a semigroup M is generated by a set Z if there exist

ζi ∈ Z, γi ∈ N0 such that ζ = ζγ11 · · · ζγkk . A submonoid A ⊂ M is said to be generated by

a set Z if Z ⊂ A and each element of A is generated by Z. A set Z is called a basis of A

if it generates A and every ζ ∈ Z is not generated by the set {1}∪ (Z \ {ζ}). For example

X1, . . . , Xn form a basis of the monoid of all monomials in n variables and the basis of the

one-element monoid {1} is empty.

Note that the above notion of generating a semigroup has a counterpart in generators

of algebras (as in Section 1.3). And we will see in Section 5.3 that sometimes they coincide.
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From now on M will stand for the multiplicative semigroup of monomials in n variables.

We will write Xα for Xα1
1 . . . Xαn

n , where α = (α1 . . . , αn) ∈ Nn
0 and X0

i = 1. Monomials

together with multiplication form a monoid. For a set A ⊂ M we put

suppA = {α ∈ Nn
0 | Xα ∈ A}

and we will call it the support of A. The natural identification ı : M ∋ Xα → α ∈ Nn
0

is an isomorphism of the monoid (M, ·) and the monoid Nn
0 regarded with addition on

coordinates (as in Example 5.1). Indeed, ı(1) = ı(X0
1 . . . X

0
n) = (0, . . . , 0) and ı(Xα ·Xγ) =

ı(Xα+γ) = α+γ = ı(Xα)+ı(Xγ). For a set A ⊂ M we have ı(A) = suppA. This approach

will be useful when talking about points in Nn
0 corresponding to monomials in n variables.

Figure 7. Multiplication of monomials XiY d ·XkY m represented as points in N2
0.

If A is a subsemigroup of M, then either A = {1} or A is infinite. Indeed, if 1 6= ζ ∈ A,

then ζi ∈ A for all i ∈ N. Moreover, it is crucial to note that a monomial can be generated

only by monomials of lower degrees. Indeed, for any ζ ∈ M if ζ = ζα1
1 . . . ζαk

k for k > 1,

αi ∈ N and ζi 6= 1 for all i then deg ζi < deg ζ.

Let us establish in M the deglex ordering (as in e.g. [DW]), that is for every ζ, ζ̃ ∈ M
we put

ζ 4 ζ̃ ⇐⇒ deg ζ < deg ζ̃ or (deg ζ = deg ζ̃ and ζ 4lex ζ̃),

where Xα1
1 · . . . ·Xαn

n 4lex Xγ1
1 · . . . ·Xγn

n if and only if either Xα1
1 · · ·Xαn

n = Xγ1
1 · · ·Xγn

n or

for the first l, for which αl 6= γl, we have αl < γl. This ordering is a well-ordering in M.

That means it is linear and each subset of M has the first element. Hence every infinite

subset of M can be written as a string numbered by natural numbers.

Proposition 5.2. Every semigroup A ⊂ M has a unique basis.

Proof: Let us show that a basis of A always exists. We give a procedure of finding it. If

A = {1} then the basis is the empty set. Let us suppose that A is infinite. Write A \ {1}
as a sequence (ζi)i∈N such that ζi 4 ζj for i ≤ j.

68



5. MONOMIAL GENERATORS

Put Z1 = {ζ1}. It is a basis of the monoid generated by ζ1. Suppose we have sets Zi

for all i ≤ n, where n ≥ 0. And that each Zi is the basis of a monoid generated by its

elements. Take ζn+1. Put

Zn+1 =

{ Zn ∪ {ζn+1} if ζn+1 /∈ R[Zn],

Zn otherwise.

Hence the set Zn+1 is a basis of a monoid generated by its elements. Take Z =
⋃∞

n=0Zn.

It is easy to show that Z is a basis of A.

The basis of A is unique. Indeed, take two bases Z = {ζ1, . . . , ζk, . . .} and

Z̃ = {ζ̃1, . . . , ζ̃k, . . .} of A ordered by deglex. Choose the first k such that ζk 6= ζ̃k.

Without loss of generality we can assume that ζk 4 ζ̃k. Since Z̃ is a basis of A, we

get ζk = ζ̃1
α1 · · · ζ̃l

αl
for some l < k, where ζ̃1, . . . , ζ̃l are of lower degree than ζk. But

from the choice of ζk, we get that it is generated by elements of Z. This contradicts the

assumption that Z is a basis. �

5.2. Semigroups of monomials bounded on a set

Take the coordinate system of Nn
0 . Recall that a point α = (α1, . . . , αn) ∈ Nn

0

corresponds naturally to a monomial Xα = Xα1
1 · · ·Xαn

n . Two monomials have the same

degree d if the corresponding points in Nn
0 lie on the same hyperplane {x ∈ Rn | ∑i xi = d}.

Multiplication of two monomials Xα · Xβ = Xα+β in this coordinate system can be

interpreted as translation of the point α by the vector [β]. This is exactly a geometrical

interpretation of the isomorphism between the monoid of monomials with multiplication

and Nn
0 with addition on coordinates. Moreover, since Nn

0 is a monoid, we can speak

about points generating other points (according to the definition of generating in any

monoid).

Take a semialgebraic set S. Denote by M(S) the set of all monomials bounded on the

set S. Since a product of two polynomials bounded on S remains bounded on S, the set

M(S) with multiplication is a semigroup with the constant monomial 1 of degree 0 as the

unit. It is easy to see that

A(S) ⊇ R[M(S)]

and M(S ∪M) = M(S) ∩M(M) for sets S,M ⊂ Rn.

For any set A ⊂ Rn we will denote by conv(A) the smallest convex subset of Rn

containing A. In other words

conv(A) =

{

N
∑

i=1

tiα
(i) ∈ Rn | N ∈ N,

N
∑

i=1

ti = 1, α(i) ∈ A, ti ≥ 0

}

.
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5.2. Semigroups of monomials bounded on a set

We will say that a cone

CA = {tα | t ≥ 0, α ∈ A}
is spanned by a set A. Note that if A is convex, then {Xα | α ∈ CA ∩ Nn

0} is a semigroup

of monomials, because α + β = 2(12α + 1
2β) ∈ CA for any α, β ∈ CA.

We will now give some properties of the semigroup M(S). First, note that when taking

rational exponents of coordinates Xi and treating them as functions we have to use the

absolute value to make sure that appropriate powers are well-defined. Since a function

is bounded on a set if and only if its absolute value is bounded, we can use the absolute

value instead without loss of generality.

Property 5.3. If the monomials ζ1 = Xα(1)
, . . . , ζk = Xα(k)

are bounded on a set S, then

every element of the semigroup

C = Nn
0 ∩ {tα | t ≥ 0, α ∈ conv(α(1), . . . , α(k))}

corresponds to a monomial bounded on S.

Indeed, take β ∈ C. Then |X1|β1 · · · |Xn|βn = (|ζ1|t1 · · · |ζk|tk)t for some rational

t, t1, . . . , tk ≥ 0 and
∑

ti = 1. Since tti ≥ 0, we get that the function |X1|β1 · · · |Xn|βn is

bounded on S. In particular, any monomial Xβ is bounded on S if β ∈ C.

From the above property it follows that the semigroup supp(M(S)) of all expo-

nents of monomials bounded on a given set S always induces a convex cone in Rn i.e.

conv(suppM(S)) is a convex cone. Note that if A = {α(1), . . . , α(k)}, then

Cconv(A) =

{

k
∑

i=1

tiα
(i) | ti ≥ 0, i = 1, . . . , k

}

is a so-called conical hull of points of A.

Property 5.4. If α(1), . . . , α(k) ∈ Nn
0 , then the semigroup

C = Nn
0 ∩ {tα | t ≥ 0, α ∈ conv(α(1), . . . , α(k))}

is finitely generated (as a subsemigroup of Nn
0 ).

Proof: Indeed, C is generated by the finite set

Nn
0 ∩ {tα | 1 ≥ t ≥ 0, α ∈ conv(α(1), . . . , α(k))}.

Since the above set is equal to the set Nn
0∩{tα | t ∈ Q, 1 ≥ t ≥ 0, α ∈ conv(α(1), . . . , α(k))},

we get that for any t = p/q ≥ 1, where p, q are coprime natural numbers,

p

q
(t1α

(1) + . . . + tkα
(k)) ∈ Nn

0 ⇐⇒ 1

q
(t1α

(1) + . . . + tkα
(k)) ∈ Nn

0

for any rationals t1, . . . , tk ≥ 0 such that
∑

ti = 1. �

Hence {Xα| α ∈ C} in the above case is also a finitely generated semigroup.
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5. MONOMIAL GENERATORS

Denote R≥ = {x ∈ R | x ≥ 0} and Q≥ = Q∩R≥. Note that any set H in Rn
≥ given as an

intersection of a finite number of half-spaces (given by hyperplanes passing through zero) is

a cone Cconv(A) in Rn for some finite set A. Indeed, it suffices to consider the intersection of

H with the hyperplane given by the equation
∑

i xi = 1. It will be a convex polytope. Take

its vertexes l1, . . . , lk, which correspond to half-lines in Rn
≥ and choose α(1), . . . , α(k) 6= 0

such that α(i) ∈ {tli | t > 0}. We get H = Cconv(A) for A = {α(1), . . . , α(k)}. Of course,

if Nn ∩ {tli | t > 0} 6= 0, we can demand that α(i) have natural numbers as coordinates.

Hence if H ⊂ Q≥ is an intersection of a finite number of half-spaces, then convH ⊂ Rn is

a cone Cconv(A) spanned by a finite set A ⊂ Nn
0 .

Remark 5.5. Let A ⊂ Rn
≥. The cone CA is closed if and only if there exists a compact

set B such that

CA = CB.
Indeed, if such a compact set exists, then the cone is closed. If the cone is closed, then its

intersection with a hyperplane given by the equality
∑

xi = 1 is compact.

Hence as a consequence of Property 5.4 and the above remark we get

Theorem 5.6. Let S ⊂ Rn. The semigroup M(S) of monomials bounded on the set S is

finitely generated if and only if there exists a finite set A ⊂ Nn
0 such that it spans the cone

conv(supp(M(S))).

Proof: If M(S) is generated by a set Z, then from Property 5.3 and properties of bounded

polynomials we get

conv(suppM(S)) = Cconv(suppZ).

Hence we put A = suppZ. Moreover, by Property 5.4 the above cone is closed if Z is

finite.

On the other hand, assume that conv(suppM(S)) is spanned by a finite set A ⊂ Nn
0 .

Hence the cone is closed. Take the polytope

conv(supp(M(S))) ∩ {x ∈ Rn|
∑

xi = 1}.

Take its vertices γ1, . . . , γl. Then take qi ∈ R such that qi · γi ∈ Nn
0 . Hence M(S) is

generated by monomials Xα, where α are elements of the finite set

Nn
0 ∩ {tα | t ∈ Q, 1 ≥ t ≥ 0, α ∈ conv(q1γ1, . . . , qlγl)}.

This ends the proof. �

Let us note that from the above it follows that if M(S) is finitely generated, then the

intersection of conv(supp(M(S))) with the hyperplane given by the equality
∑

i xi = 1 is

a polytope.

Example 5.7. Take the set S = {(x, y) ∈ R2 | x = 0}. Then M(S) = {XY n | n ∈ N0}
and the cone conv(suppM(S)) is not closed, because it is equal to the first quarter of the

plane without the y axis.
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5.3. Monomial bases of algebras of bounded polynomials

We would like to underline also the constructive aspect of the above considerations in

the following remark.

Remark 5.8. Given the cone conv(suppM(S)) there exists a procedure of finding elements

of the basis. If the cone is finitely generated, then this procedure stops after a finite number

of steps.

Indeed, in the case of a cone infinitely generated one of the possible methods is presented

in the proof of Proposition 5.2. In the case of finite generation it suffices to find a finite

set A such that conv(suppM(S)) = Cconv(A). To do that follow the proof of Theorem 5.6.

Having a finite set of generators it suffices to combinatorially exclude the ones that are

not elements of the basis.

5.3. Monomial bases of algebras of bounded polynomials

In this section we will show in Theorem 5.9 the duality between the points with natural

coordinates from closed convex cones and semialgebraic sets described by appropriate

monomial inequalities. Afterwards, we consider the algebras we have already studied in

Sections 2.1 and 4.2.

Given a convex cone C ⊂ Rn we can define C◦ a polar cone of C by

C◦ = {η ∈ Rn | 〈η|α〉 ≤ 0 for all α ∈ C}.

We have that (C◦)◦ = C (see [HUL]).

We say that a point α ∈ C, where C is a convex set, is an extreme point of C if there

do not exist two distinct points α1, α2 ∈ C such that α = (α1 + α2)/2. If α(1), . . . , α(l) are

extreme points of conv(α(1), . . . , α(l)), then for any i we have

conv
(

α(1), . . . , α(l)
)

6= conv
(

{α(1), . . . , α(l)} \ {α(i)}
)

. (5.1)

For other properties of polar cones and extreme points see [HUL].

Theorem 5.9. Take any closed convex cone

C = {tα ∈ Rn | t ≥ 0, α ∈ conv(A)},

where A ⊂ Nn
0 . Then there exists a semialgebraic set S ⊂ Rn such that

A(S) = R[Xα | α ∈ C ∩ Nn
0 ].

Proof: By Theorem 5.6 we can take a finite set Z of generators of the semigroup C ∩Nn
0 .

Put

S =
⋂

α∈Z

{x ∈ Rn | |xα| ≤ 1}.
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Of course, S is an unbounded semialgebraic set. Moreover, the inclusion C ∩ Nn
0 ⊂

suppM(S) is obvious from the form of the set S. Hence we need to show the inverse

inclusion.

Take any polynomial f =
∑

α∈B aαX
α, where B = suppf ⊂ Nn

0 is finite and aα 6= 0

for α ∈ B. We will show that if suppf * C, then f is not bounded on S.

Take the affine hyperplane H given by the equality
∑

i xi = 1. We can consider

intersections of cones in Rn
≥ with the hyperplane H as images by a mapping π : Rn

≥\{0} →
H such that π(x) is the intersection point of the line {tx ∈ Rn | t ∈ R} with H.

We have that the intersection of H with the cone spanned by the set conv(C ∪B) is a

compact convex set. From Property 5.4 and the fact that the cone spanned by conv(C∪B)

is closed it follows that it is finitely generated as a semigroup. Therefore the intersection

with H must be a polytope. Hence the above intersection has extreme points η(1), . . . , η(l)

such that

Cconv(C∪B) ∩H = conv(η(1), . . . , η(l)).

It is easy to see that η(i) ∈ π(Z ∪ B) for i = 1, . . . , l. Moreover, if η(i) ∈ π(Z) for every

i, then suppf ⊂ C, which is impossible by assumption. Hence there exists m such that

η(m) ∈ π(B \ C). Denote by B′ the nonempty finite set π−1(η(m)) ∩ B. Take the closed

convex cone

C′ = {tα | α ∈ conv({η(1), . . . , η(l)} \ {η(m)}) }.

Of course, C ⊂ C′, B \ B′ ⊂ C′ and B′ ∩ C′ = ∅ from (5.1). Since η(m) /∈ C′ = C′ and

(C′◦)◦ = C′, there exists λ = (λ1, . . . , λn) ∈ (C′)◦ such that 〈η(m)|λ〉 > 0. Since π−1(η(m))

is a half-line and the scalar product is linear, we have 〈η|λ〉 > 0 for every η ∈ B′. Note

that for η, η′ ∈ B′ if η 6= η′, then

〈η|λ〉 6= 〈η′|λ〉. (5.2)

Indeed, 〈η|λ〉 = 〈η′|λ〉 if and only if η − η′ is orthogonal to λ. But there exists t 6= 1 such

that tη = η′, so 〈η − η′|λ〉 = (1 − t)〈η|λ〉 6= 0.

Take a curve γ(t) = (tλ1 , . . . , tλn) for t ≥ 1. We have for α ∈ C ∩ Nn
0 that

|Xα ◦ γ(t)| = |t〈α|λ〉| ≤ 1

for t ≥ 1, because 〈α|λ〉 ≤ 0. In particular the above is true for α ∈ Z. Hence γ([1,∞)) ⊂
S. We have

(f ◦ γ)(t) =
∑

α∈B\B′

aαt
〈λ|α〉 +

∑

α∈B′

aαt
〈λ|α〉

for t ≥ 1. We see that
∑

α∈B\B′

aαt
〈λ|α〉

is bounded for t ≥ 1, because 〈λ|α〉 < 0 for α ∈ B \ B′ ⊂ C′. On the other hand in the

second term
∑

α∈B′

aαt
〈λ|α〉
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5.3. Monomial bases of algebras of bounded polynomials

the powers of t do not cancel out, because of (5.2). Hence it is unbounded for t ≥ 1,

because 〈λ|α〉 > 0 for α ∈ B′. Therefore f ◦γ is not bounded on [1,∞), unless suppf ⊂ C.

This gives us that A(S) ⊂ R[Xα | α ∈ C ∩ Nn
0 ] and ends the proof. �

Note that an intersection of two algebras generated by monomials is generated by

monomials. Hence, if on each tentacle of a given set the algebra of bounded polynomials

is generated by monomials, then it is easy to determine the algebra of polynomials on this

given set. It is important here to remark that usually algebras of bounded polynomials

are not generated by monomials. The semigroup A(M)∩M(M) may be trivial i.e. equal

to {1}, even if A(M) is not. Let’s look at an example

Example 5.10. Take the set S = {(x, y ∈ R2 | 0 ≤ x−y ≤ 1)}. We have A(S) = R[X−Y ]

and of course M(S) = {1}. Hence A(M) is not generated by monomials. (Nevertheless,

in this case A(S) is isomorphic to an algebra R[X] generated by monomials.)

Even worse, there are algebras of bounded polynomials that are not isomorphic to any

algebra generated by monomials. Take for example the algebra of bounded polynomials

on the set M from Example 2.18, where R[XY,X2Y,X2Y + Y ] ⊂ A(M) and Y /∈ A(M).

Nevertheless, let us now consider some explicit examples of algebras of bounded

polynomials generated by monomials, which have appeared earlier in this thesis.

Let us look at sets from Section 2.1. Take an unbounded semialgebraic set

M = {(x, y) ∈ R2 | β1(y) ≤ x ≤ β2(y), y ≥ R}, (5.3)

for some R > 0 and β1, β2 Puiseux parametrizations of continuous semialgebraic curves

with ord∞β1 6= ord∞β2. Denote min{ord∞β1, ord∞β2} = p
q for some p ∈ Z, q ∈ N with

no common divisors. For the moment we assume that min{ord∞β1, ord∞β2} 6= ∞. From

Theorem 2.4 it follows that

A(M) = R

[

XiY d

∣

∣

∣

∣

d ≤ i · p
q

]

. (5.4)

Note that if p
q < 0 then A(M) = R and the basis of A(M) is the empty set. If p

q = 0 then

A(M) = R[X]. In this case we get that the set {X} is a basis. Therefore, we suppose

that p, q ∈ N.

From equality (5.4) it follows

Corollary 5.11. For a set M of the form (5.3) with ord∞β1 6= ord∞β2 and

min{ord∞β1, ord∞β2} 6= ∞ the basis of the semigroup M(M) of monomials bounded on

M is the basis of the algebra A(M) of polynomials bounded on M . In particular, A(M) is

finitely generated.

Denote by [ · ] the integer part of a real number i.e. for any real number α the value

of [α] is the biggest integer smaller or equal to α. Then
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Remark 5.12. One can compute that the number of elements of the basis of the algebra

A(M) is equal to

1 +

[

p

q

]

+

q
∑

k=2

r(k,
p

q
),

where

r(k, α) = [kα] − max
j=1,...,k−1

[

k

j
[jα]

]

for α > 0 and k ≥ 2.

Indeed, consider monomials XiY d, i, d ∈ N0. Theorem 2.4 gives us that

M(M) =

{

XiY d

∣

∣

∣

∣

d ≤ i · p
q

}

.

Hence the monomial XiY d is bounded on M if and only if d ∈ {0, . . . , [ipq ]}.

Figure 8. A procedure of choosing elements of the basis of A(M).

Let us consider a triangle

∆ = conv((0, 0), (q, 0), (q, p)) ∩ N2
0.
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5.3. Monomial bases of algebras of bounded polynomials

From Properties 5.3 and 5.4 we get

M(M) = Cconv∆ ∩ Nn
0 .

Let us consider

∆(i) = conv

(

(0, 0), (i, 0),

(

i,

[

i
p

q

]))

∩ N2
0

for i ∈ N. Each ∆(i) is either a segment or a triangle contained in ∆. The function r

in Remark 5.12 counts how many points more there are in subsequent triangles i.e. for

a fixed slope p/q the value r(k, p/q) is the quantity of points with integer coefficients

which lie in ∆(k), but do not lie in any cone generated by ∆(j) for j < k (the component

maxj=1,...,k−1

[

k
j [jα]

]

of function r corresponds to this condition).

We will only outline the computation by describing the steps (see also Figure 8).

STEP 1: Take 1 + [p/q] points of the form (1, d) from ∆(1) i.e. d = 0, . . . , [p/q]. Put

Z := {(1, d)| d = 0, . . . , [p/q]}.

STEP k: If r(k, p/q) > 0, take r(k, p/q) points (k, d) ∈ ∆(k) such that d = [kp/q] −
r(k, p/q) + 1, . . . , [kp/q]. Set

Z := Z ∪ {(k, d)| d = [kp/q] − r(k, p/q) + 1, . . . , [kp/q]}.

Procedure stops when k gets bigger then q.

The outcome of this procedure is the set Z such that {XiY d| (i, d) ∈ Z} is the basis of

M(M). From the construction it follows that the set Z contains 1+[p/q]+
∑q

k=2 r(k, p/q)

points.

Now let us take a set S ⊂ Rn such that A(S) is generated by monomials and a set

M̃ = {(β(y) · x, y) ∈ Rn+1| x ∈ S, y ≥ R} (5.5)

where R > 0 and β = (β1, · · · , βn) : [R,∞) → Rn is a Puiseux parametrization of a

semialgebraic curve at infinity such that βi 6= 0. From Theorem 4.4 we get that

A(M̃) = A(S)[Y ] ∩ R[XαY d| 〈α|λ〉 ≥ d, α ∈ Nn
0 , d ∈ N0].

Remark 5.13. It is easy to see that A(M̃) is generated by monomials and if A(S) is

finitely generated, then so is A(M̃).

To end this section we would like to note that the methods presented here work also

in the case when coordinates X1, . . . , Xn are replaced by coordinates of a polynomial

automorphism (this follows from the fact that polynomial automorphisms induce iso-

morphisms of algebras of polynomials bounded on appropriate sets cf. Property 1.16).

Moreover, we can apply the methods given here to algebras from Section 2.2 of the form

R[ 1
Y 1/q , (X − β)iY d | d ≤ iη], which can be treated as generated by ”monomials” with

Puiseux coefficients and rational exponents (for which we can fix the denominator).
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6. Some applications of the results

Here we give some consequences of the results presented in this thesis. First, we

will show that for a semialgebraic set in R2 there exists a finite number of families

which ”test” boundedness of polynomials on the set (see Corollary 6.5). More precisely,

each polynomial is bounded on the given set if and only if he is bounded on a

finite number of members of these families. In the second part we will turn to a

version of Schmüdgen’s Positivstellensatz for unbounded sets. This version deals with

representations of bounded polynomials as elements of a preordering on a given set. Since

for a wide class of sets we are able to check which polynomials are bounded, we feel

that this gives some constructivity to checking the assumptions of Theorems 6.10 and 6.13.

6.1. Testing curves for bounded polynomials

In this section we show that for a semialgebraic set S we can choose a finite number

of families of curves such that for any polynomial f it is bounded on S if and only if it

is bounded on a finite number of generic members of these families. These curves can be

computed explicitly (using constructive Puiseux theorem and tools developed in Section

2, most notably Theorem 2.16).

To give a background we start with a general fact.

Proposition 6.1. Take any closed semialgebraic set S ⊂ Rn and a polynomial f ∈ R[X].

The polynomial f is bounded on S if and only if it is bounded on any continuous semial-

gebraic curve included in S.

Proof: The necessity is obvious. Hence to show sufficiency we will prove that if a poly-

nomial f is not bounded on S, then there exists a continuous semialgebraic curve β ⊂ S

such that f is not bounded on β.

Take any polynomial f which is not bounded on S. Without loss of generality we will

assume that S is an unbounded set and f is unbounded on S from above. The set

Z =
⋃

R>0

{x ∈ S| f(x) = max
S(0,R)∩S

f}

is an unbounded and semialgebraic subset of S. Hence from the Curve Selection Lemma

there exists a continuous unbounded semialgebraic curve β ⊂ Z. Moreover, it is obvious
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from the definition of Z that f is not bounded on β. �

We will say that a condition Φ holds for generic c ∈ Rn, if there exists a proper

algebraic set V ⊂ Rn such that the condition Φ holds for any c /∈ V . Note that, in the

case n = 1, every proper algebraic set is finite.

From Theorem 2.16 we can derive an interesting consequence on deciding the bound-

edness of polynomials on subsets of the real plane. Let

M = {(x, y) ∈ R2| β1(y) ≤ x ≤ β2(y), y ≥ R}, (6.1)

where β1 6= β2 parametrise semialgebraic curves, R > 0 and the set M is unbounded. Put

p ∈ Z, q ∈ Nsuch that p
q = ord∞(β1 − β2). Although it does not influence the proof, we

will suppose for simplicity that p and q are coprime. Take βM as in Propositions 2.15

and 2.17 i.e.

βM =







p−1
∑

i=m
b
(1)
i ( 1

Y )i/q, ord∞β1 = ord∞β2 = m
q ,

0, ord∞β1 6= ord∞β2,

where b
(1)
i ∈ R are the first p −m + 1 coefficients of β1. Let us remind that we suppose

that summing up over an empty set gives zero.

Under the above conditions and conventions we have

Theorem 6.2. Let f ∈ R[X,Y ]. For a tentacle M of the form (6.1) with β1 6= β2 take

the Puiseux polynomial βM . Then for generic c ∈ R we have that f is bounded on M if

and only if it is bounded on the curve

Γc = {(x, y) ∈ R2| c = (x− βM (y))qyp, y ≥ 1}.

In other words, there exists a finite set G = G(f) such that f is bounded on M if and only

if f is bounded on some curve Γc, c /∈ G.

Before proving the theorem let us make a remark.

Remark 6.3. Note that Γc need not lie in M (see Example 6.4). Moreover, for c < 0 we

have that if q is even, we get Γc = ∅. Whereas if q is odd, c1/q is well-defined.

Proof of Theorem 6.2: We will write for brevity β instead of βM . First we will expand

f in a convenient form. By Proposition 2.13 the polynomial f can be represented uniquely

(up to zero coefficients) as
∑

k∈A

∑d
j=0 aj,k(X−β)jY

k
q , where A ⊂ Z is finite and aj,k ∈ R

for all k ∈ A, j = 0, . . . , d. Therefore

f =
∑

k≤jp

aj,k(X − β)jY k/q +
∑

k>jp

aj,k(X − β)jY k/q.

Due to Theorem 2.16 on characterisation of algebras of bounded polynomials on tentacles

and its slight refinement in Proposition 2.17 we have that f is bounded on M if and only if

the second sum is equal zero. Denote by fb =
∑

k≤jp aj,k(X − β)jY k/q the bounded part.
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Let us look at f on the curve Γc for any c ∈ R. We have

f|Γc
=

∑

k≤jp

aj,kc
j
q Y

k−pj
q +

∑

k>jp

aj,kc
j
q Y

k−pj
q ,

so the bounded part fb is bounded on Γc.

Hence we see that if f is bounded on M we can write f = fb, so f is bounded on Γc

for any c ∈ R. On the other hand, if f is not bounded on M then

∣

∣f|Γc

∣

∣ ≥

∣

∣

∣

∣

∣

∣

∑

k>jp

aj,kc
j
q Y

k−pj
q

∣

∣

∣

∣

∣

∣

−
∣

∣fb|Γc

∣

∣ ≥

∣

∣

∣

∣

∣

∣

∑

k>jp

aj,kc
j
q Y

k−pj
q

∣

∣

∣

∣

∣

∣

− C,

for some C ≥ 0 and any c ∈ R. Therefore to show that f is unbounded on Γc we have

to make sure that the unbounded part of f does not vanish on Γc. Let us look at the

coefficients of any Y l/q. So the unbounded part vanishes only for c from an algebraic set

given by finitely many equalities of the form

G =

{

c ∈ R :
∑

k = jp + l

j = 0, . . . , d

aj,kc
j/q = 0, l ∈ D

}

,

where D ⊂ {k − jp | k ∈ A, j = 0, . . . , d} is finite. If the set G had a nonempty interior,

then the coefficients aj,k for k > jp would be zeroes, so f = fb, which contradicts the

assumption that f is not bounded on M . Therefore for generic c, if the polynomial f is

unbounded on M , then it is unbounded on the curve Γc. This ends the proof. �

Example 6.4. Take

M = {(x, y) ∈ R2 | 1

y
≤ xy5 + y2 ≤ 1, y ≥ 1} =

= {(x, y) ∈ R2 | − 1

y3
+

1

y6
≤ x ≤ 1

y5
− 1

y3
, y ≥ 1}

and a polynomial f = X2Y 4 + 2XY + 1.

We have that βM = −1/Y 3. It is easy to compute that G is empty, hence we can take

any real c. In particular, take c = 0 and the curve

Γ0 = {(x, y) ∈ R2| 0 = (x +
1

y3
)y5, y ≥ 1}.

Note that Γ0 ∩M = ∅ (in fact Γc \M is unbounded for every c ∈ R). For y ≥ 1 we have

− 1
y = xy2 and − 1

y2
= xy, so f|Γ0

= (− 1
y )2 − 2 1

y2
+ 1 = 1 − 1

y2
. Hence ‖f|Γ0

‖ ≤ 1. From

Proposition 6.2 it follows that f ∈ A(M).

From Theorem 6.2 it will follow that for any semialgebraic set there exist corresponding

families of Puiseux polynomials which ”test” boundedness. Take any semialgebraic set

S ⊂ R2. Take all polynomials g1, . . . , gw used to describe it and set g = g1 · · · gw. After a
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6.1. Testing curves for bounded polynomials

linear change of coordinates, up to the sign, g is of the form g = Xd +
∑d

i=1 ai(Y )Xd−i,

where deg ai ≤ i. Since FrS ⊂ g−1(0), we can easily decompose S as in Theorem 1.19

into l tentacles Mi. Note that the number l of tentacles cannot be greater than
∑k

i=1 ri,

where k is the number of polynomials gi describing S and ri is the number of distinct

Puiseux parametrizations at infinity of V (gi). After a permutation of indices S has

tentacles M1, . . . ,Mr with nonempty interior and Mr+1, . . . ,Ml which Zariski closures are

proper subsets in R2. In the following corollary we will deal also with them. Note that if

we want to treat all tentacles at once, we have to also distinguish tentacles which borders

are parametrised with positive and negative y.

As a consequence of Theorem 6.2 we get

Corollary 6.5. For an unbounded semialgebraic set S ⊂ R2 and any f ∈ R[X,Y ], after

some linear change of coordinates, there exists a generic c ∈ R, a finite number of Puiseux

polynomials β1, . . . , βr, γr+1, . . . , γl and integers p1, . . . , pr such that f is bounded on S if

and only if f is bounded on curves

{(x, y) ∈ R2 | c = (x− βi(y))qypi , y ≥ 1} (6.2)

for i = 1, . . . , k,

{(x,−y) ∈ R2 | c = (x− βi(y))qypi , y ≥ 1} (6.3)

for i = k + 1, . . . , r,

{(x, y) ∈ R2 | 0 = x− γi(y), y ≥ 1}
for i = r + 1, . . . , s and

{(x,−y) ∈ R2 | 0 = x− γi(y), y ≥ 1}

for i = s + 1, . . . , l.

Proof: If S after a linear change of coordinates and the decomposition as in Theorem

1.19 has an ample tentacle of the form (1.8), then A(S) = R and it suffices to take 2(d+1)

curves γi = Y + i and γd+1+i = −Y + i for i = 0, . . . , d. Since X + Y,X − Y is a

system of coordinates, we see that f is bounded on each γi for i = 0, . . . , d if and only if

degX+Y f = 0 (compare with Property 4.3). By analogy degX−Y f = 0, so f is bounded

on curves γi for i = 0, . . . , 2d + 1 if and only if deg f = 0. Hence f is bounded on curves

γi for i = 0, . . . , 2d + 1 if and only f is constant.

Let us suppose that S does not have ample tentacles of the form (1.8). Enumerate

tentacles of the set S such that M1, . . . ,Mr have nonempty interior (outside any compact

set) and Mr+1, . . . ,Ml have Zariski closures which are proper subsets of R2. Moreover, let

M1, . . . ,Mk and Mr+1, . . . ,Ms be the tentacles contained in R× [0,∞) and Mk+1, . . . ,Mr

and Ms+1, . . . ,Ml be the tentacles contained in R× (−∞, 0].

For each tentacle Mi with nonempty interior and borders parametrised by positive y,

i = 1, . . . , k, take βi = βMi and a family of curves {(x, y) ∈ R2 | c = (x− βi(y))qiyp̃i , y ≥
1} as in Theorem 6.2. Analogously, for each tentacle Mi with nonempty interior and

borders parametrised by negative y, i = k + 1, . . . , r, consider φ(Mi), where φ = (X,−Y ).
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Take βi = βφ(Mi). It is easy to see that the family of curves {(x,−y) ∈ R2 | c = (x −
βi(y))qiyp̃i , y ≥ 1} tests boundedness on Mi. We can take q as the least common multiple

of the q1, . . . , ql and pi such that pi/q = p̃i/qi. From the fact that c is generic we conclude

that f is bounded on
⋃r

i=1Mi if and only if for a generic c it is bounded on the curves of

the form (6.2) and (6.3).

For the tentacles Mr+1, . . . ,Ml with proper Zariski closures it suffices to notice that

each Mi is of the form

{(x, y) ∈ R2 | 0 = x− γ̃i(y), y ≥ R} or {(x,−y) ∈ R2 | 0 = x− γ̃i(y), y ≥ R}

for some Puiseux series at infinity γ̃i =
∑∞

j=mi
bij(1/Y )j/si .

After simple calculations (see [RS]) we see that there exists Di, which depends only on

the degree of f and ord∞γ̃i, such that f is bounded on Mi for i = r + 1, . . . , l if and only

if it is bounded on a curve appropriately of the form

{(x, y) ∈ R2 | 0 = x− γi(y), y ≥ 1} or {(x,−y) ∈ R2 | 0 = x− γi(y), y ≥ 1},

where γi =
∑Di

j=mi
bj(1/Y )j/si is a Puiseux polynomial. So we have the Puiseux

polynomials γi that test the boundedness of the polynomial f on the tentacles with empty

interior. Since A(S) =
⋂l

i=1A(Mi), we end the proof. �

We can see that the above corollary gives an effective method of deciding boundedness

of a polynomial on a subset of R2. The only ingredient lacking is the ability to a priori

determine what are the tentacles of the set. More precisely, if S is described by polynomials

g1, . . . , gw, then between which roots at infinity of g = g1 · · · gw do the tentacles of the set

S lie. The question of efficient bound on a radius of a ball whose complement separates

the tentacles (more precisely, a ball B such that the connected components of S \ B are

tentacles of S) is closely related to results recently settled for example in [BaK] and [BaR].

6.2. Schmüdgen’s Positivstellensatz for bounded polynomials

on unbounded sets

The purpose of this section is to present some versions of celebrated Schmüdgen’s

Positivstellensatz in the case when the set S is unbounded (Theorems 6.10 and 6.13). To

this aim we will use mappings with generators of the algebra A(S) as their coordinates.

First, we will present elementary facts concerning preorderings and Schmüdgen’s

Positivstellensatz. Afterwards, we will introduce some helpful notions used in proofs of

Theorems 6.10 and 6.13. Throughout this section we will meet the assumption that some

functions are bounded. The previous sections give effective methods of verifying these

condition in some cases.

Throughout this section let

S = {x ∈ Rn| g1(x) ≥ 0, . . . , gw(x) ≥ 0},

where g1, . . . , gw ∈ R[X]. We assume that among the polynomials describing S there are

only nonzero polynomials. We will write X for (X1, . . . , Xn) unless stated otherwise.
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6.2. Positivstellensätze for unbounded sets

For any ring A denote by
∑

A2 the set of all finite sums of squares of elements of A.

We say that a set T is a preordering in a ring A if T ⊂ A and

T + T ⊂ T, T · T ⊂ T and
∑

A2 ⊂ T,

where T + T = {t + s| t, s ∈ T} and T · T = {t · s| t, s ∈ T}. So in other words, T is a

preordering in the ring A if it contains
∑

A2 and is closed with respect to multiplication

and addition. Note that
∑

A2 is the smallest preordering in the ring of polynomials.

Set

T =







∑

σ∈{0,1}w

sσg
σ| sσ ∈

∑

R[X]2







. (6.4)

Such a set is a preordering in the ring of polynomials. It corresponds to the description

of the set S. Note that for two different descriptions of the same basic semialgebraic set

S there two corresponding preorderings may be different.

The following theorem was a milestone in the study of polynomial representations and

alternative solutions of Hilbert’s XVII problem. It was proved by Schmüdgen in [Sm]

as a corollary to a result on the so called K-moment problem which lies in the scope of

functional analysis and operator theory.

Theorem 6.6. (Schmüdgen’s Positivstellensatz) Let the set S be compact and f a

polynomial in n variables. If f > 0 on S, then f ∈ T .

Schmüdgen used methods from the field of functional analysis but the pivot of

the proof was the Positivstellensatz of Krivine and Stengle (see [Kri], [St]) which is

a classical result in real algebraic geometry. There have been successful attempts to

prove this Theorem using only real algebraic tools (for example see [PD, Chapter 4.2], [M]).

Now let us prepare to prove some corollaries (Theorems 6.10 and 6.13) of Schmd̈gen’s

Positivstellensatz in the case of unbounded sets. Suppose that a set Z generates the

algebra A(S) (or A for short). For any finite number ζ1, . . . , ζm of elements of Z take a

mapping ζ = (ζ1, . . . , ζm) : Rn → Rm. For any unbounded set S ⊂ Rn such that A(S) = R
put ζ = 1. Of course the mapping ζ is polynomial. Now we can state a following property

Proposition 6.7. The following conditions are equivalent

(1) The set S is not bounded.

(2) Some mapping ζ is not proper on S.

(3) Every mapping ζ is not proper on S.

By ”some mapping ζ is not proper” we mean that for some choice of elements ζi of Z the

corresponding mapping is nonproper, ”every mapping ζ” alike.

Proof: The implication (3) ⇒ (2) is obvious. To show (2) ⇒ (1) it suffices to restate the

implication equivalently: if S is bounded then every ζ is proper on S. This is evidently

true since S is closed.
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That leaves us the implication (1) ⇒ (3). Choose any elements ζ1, . . . , ζm ∈ Z. Let us

suppose that S is not bounded. Then there exists a sequence (an) of elements of S such

that limn→∞ ‖an‖ = ∞. The set {ζ(an) | n ∈ N} is bounded since Z ⊂ A(S). Hence

ζ = (ζ1, . . . , ζm) is not proper. �

Take any polynomial f bounded on S. Hence f =
∑

ϕαζ
α for some ϕα ∈ R and

ζ1, . . . , ζj , . . . , ζm ∈ Z. Denote by fζ the polynomial
∑

ϕαY
α in m variables i.e. fζ is a

polynomial such that

f = fζ ◦ ζ.
Let us remind that the representations of polynomials using generators are not unique.

We have for example X2Y 2 = X · XY 2 = (XY )2 in the algebra R[X,XY,XY 2] (see

Example 6.16). Hence we have to specify each time which representation of f we are

using, since fζ depends on such a choice.

Let us assume that gi ∈ A for i = 1, . . . , w. There exists j ∈ N such that for each i we

have

gi =
∑

α∈{0,...,j}l

aiαζ
α (6.5)

for some basis ζ1, . . . , ζl contained in A such that R[ζ1, . . . , ζl] ⊃ R[g1, . . . , gw]. This need

not be a basis of A. In this paragraph we will use the representation gi,ζ =
∑

aiαY
α of

polynomials gi i.e. gi = gi,ζ ◦ ζ.

For a set Z of generators of A such that ζ1, . . . , ζl ∈ Z, denote by ζ = (ζ1, . . . , ζl, . . . , ζm)

a mapping from Rn to Rm with arbitrary coordinates ζl+1, . . . , ζm ∈ Z. We want all

elements ζ1, . . . , ζl which generate polynomials g1, . . . , gw to be always coordinates of ζ

(not necessarily all of them).

We get

S = {x ∈ Rn|
∑

a1αζ
α(x) ≥ 0, . . . ,

∑

awαζ
α(x) ≥ 0}.

Moreover

ζ(S) = {y ∈ Rm| ∃x∈S y = ζ(x),
∑

a1αy
α ≥ 0, . . . ,

∑

awαy
α ≥ 0} =

= {y ∈ Rm|
∑

a1αy
α ≥ 0, . . . ,

∑

awαy
α ≥ 0} ∩ ζ(S).

Define

Sζ = {y ∈ Rm|
∑

a1αy
α ≥ 0, . . . ,

∑

awαy
α ≥ 0}.

Under the introduced notation we have ζ(S) = Sζ ∩ ζ(S) for any representations

g1,ζ , . . . , gw,ζ of the polynomials describing S.

Property 6.8. The following properties hold

(1) Sζ ∩ ζ(S) = Sζ ∩ ζ(Rn)

(2) Sζ ⊂ ζ(S) ⇐⇒ Sζ ⊂ ζ(Rn)

(3) Sζ \ ζ(S) = Sζ \ ζ(Rn)
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Proof: We will show only property (1), since (2) and (3) only paraphraze it. The

inclusion Sζ ∩ ζ(S) ⊂ Sζ ∩ ζ(Rn) is obvious. To show the opposite inclusion take

y ∈ Sζ ∩ ζ(Rn) and suppose y /∈ Sζ ∩ ζ(S). For this choice of y there exists x ∈ Rn \ S

such that y = ζ(x). Therefore for some i we have
∑

aiαζ
α(x) < 0. Hence

∑

aαi y
α < 0, so

y /∈ Sζ . This gives us a contradiction. �

For simplicity of notation we will write R[ζ] instead of R[ζ1, . . . , ζm] for the tuple

ζ = (ζ1, . . . , ζm). For the preordering T given by (6.4) put

Tζ =







∑

σ∈{0,1}w

sσg
σ

∣

∣

∣

∣

∣

∣

sσ ∈
∑

R[ζ]2







.

Hence Tζ ⊂ T . Usually Tζ is not a preordering in R[X] since all of its elements are

bounded on the set S. Hence if S is unbounded, then ‖X‖2 /∈ Tζ . On the other hand, for

a bounded set S if g1, . . . , gw do not generate R[X] then it is possible to choose a basis

Z such that Tζ does not contain all elements of
∑

R[X]2. In this case again, Tζ is not a

preordering in R[X]. Nevertheless, Tζ is a preordering in the ring R[ζ] ⊂ R[X].

First we will consider a less common situation and assume that Sζ = ζ(S).

Property 6.9. Under the above assumptions i.e. the polynomials describing S are

bounded on S and Sζ ⊂ ζ(S), the set Sζ is bounded.

The above property allows us to state the following

Theorem 6.10. Take f ∈ A. Assume that g1, . . . , gw ∈ A and choose ζ1, . . . , ζm ∈ A
such that they generate g1, . . . , gw and f . Suppose that Sζ = ζ(S). If f > 0 on S, then

f ∈ Tζ .

Proof: We have that f =
∑

ϕαζ
α(x) > 0 for x ∈ S. Denote fζ =

∑

ϕαy
α. Then fζ > 0

on Sζ = ζ(S).

If for the representations (6.5) we set gσζ = gσ1
1,ζ · · · gσw

w,ζ and

ζ∗(T ) =







∑

σ∈{0,1}w

sσg
σ
ζ | sσ ∈

∑

R[Y1, . . . , Ym]2







,

then ζ∗(T ) is a preordering which corresponds to the description of the set Sζ . From

Schmüdgen’s Positivstellensatz we get that fζ ∈ ζ∗(T ). Hence

fζ(y) =
∑

σ∈{0,1}w

sσ(y)
(

∑

aαy
α
)σ

,

where sσ are sums of squares of polynomials in m variables. Substitute y = ζ(x). We get

f(x) =
∑

σ∈{0,1}w

sσ(ζ(x))
(

∑

aαζ(x)α
)σ
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for x ∈ Rn. Terms sσ(ζ(X)) are sums of squares of polynomials in n variables, whereas
∑

aiαζ(X)α = gi. Hence f is an element of Tζ . �

In particular, since Tζ ⊂ T , under the assumption of the above theorem we get f ∈ T .

Note that if the set S is bounded then A = R[X]. Hence we can take the monomial

basis X1, . . . , Xn of A and get Sζ = S. Of course, the functions describing a compact set

belong to A. Hence the above theorem in the case when S is compact and we choose the

basis X1, . . . , Xn is simply a restating of Schmüdgen’s Positivstellensatz.

On the other hand, even in the case of S bounded, we can obtain representations with

special features.

Example 6.11. If we take a bounded set

S = {(x, y) ∈ R2| x2y4 − (x2y2 + y4)2 ≥ 0, 1 − y2 ≥ 0, x2y2 − 1

16
≥ 0},

then A(S) = R[X,Y ]. In particular Y and XY are bounded on it. Take ζ = (Y,XY ). We

get a bounded set

SY,XY = {(a, b) ∈ R2| b2a2 ≥ (b2 + a2)2, 1 ≥ a2, b2 ≥ 1

16
}.

Moreover, one can show that ζ(S) = Sζ . Hence as a straightforeward conclusion we get

that any polynomial from the ring R[Y,XY ] which is positive on S has a representation

in terms of sums of squares of polynomials from this very ring.

If for the set S the equality Sζ = ζ(S) holds for Sζ given by some representation of

polynomials g1, . . . , gw, Theorem 6.10 settles the problem of belonging to the preordering

T , or more specifically to Tζ , for all polynomials positive and bounded on S. Let us give

an example of an unbounded set for which Theorem 6.10 works.

Example 6.12. Consider a set

S = {(x, y, z) ∈ R3| x ≥ x2 + y2 + x2z2}.

Does f = X3Z2 −XY −X + 2Y + 2 have a representation in T?

From the description of S we get immediately that R[X,Y,XZ] ⊂ A. Put ζ1 = X, ζ2 =

Y, ζ3 = XZ and

SX,Y,XZ = {(a, b, c) ∈ R3| (a− 1/2)2 + b2 + c2 ≤ (1/2)2}.

Since ζ(R2) = (R3\V (a))∪V (a2+c2), we get ζ(S) = Sζ . Therefore we can apply Theorem

6.10 for any polynomial from the ring R[X,Y,XZ] which is positive on S. This is the case

for f . Indeed, after regrouping the terms f = (X3Z2 + 1) + (Y + 1)(2−X). Since for any

(x, y, z) ∈ S we have |y| ≤ 1
2 and 0 ≤ x ≤ 1, then Y + 1, 2 −X and X3Z2 + 1 are positive

on S. It follows that f ∈ TX,Y,XZ .

Note that A ) R[X,Y,XZ]. It is easy to see that Y 2 ≤ 1
4(1+Z2)

on S. This gives us

that Y Z is bounded on S. Hence if we put ζ̃ a mapping with all elements of the monomial

basis of A(S) as its coordinates, we get ζ̃(S) 6= Sζ̃ .
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Figure 9. Sets S = {(x, y, z) ∈ R3 | x ≥ x2 + y2 + x2z2} and SX,Y,XZ

with R3 \ ζ(R3) denoted by red.

Unfortunately, as we can see in the above example Theorem 6.10 works only when one

studies a system of polynomials g1, . . . , gw, f generated in total by at most n generators.

In general Sζ has a nonempty interior if S has a nonempty interior whereas the set ζ(S)

is at most n-dimensional. Thus if m > n, we get Sζ 6= ζ(S). Hence we must try to settle

also the case when ζ : Rn → Rm with m > n.

Using the notation of Theorem 6.10 we get

Theorem 6.13. Take f ∈ A. Assume that g1, . . . , gw ∈ A and choose ζ1, . . . , ζm ∈ A
such that they generate g1, . . . , gw and f . Suppose that Sζ ∩ ζ(S)

Zar
= ζ(S). If f > 0 on

S and all asymptotic values of f are positive with respect to S, then f ∈ Tζ .

Proof: Denote ζ(S)
Zar

= V (u) for some polynomial u. Note that Sζ ∩ V (u) is a basic

closed semialgebraic set. Since f ∈ A, we have that f =
∑

aαζ
α.

We have that fζ > 0 on ζ(S) since f is supposed to have positive asymptotic values with

respect to S. Indeed, for any y ∈ ζ(S) there exists a sequence ζ(xn) ∈ ζ(S) converging to

y. For any subsequence (xnk
) which has a limit we get f(xnk

) = fζ(ζ(xnk
)) → fζ(y) since

fζ is continuous as a polynomial. Either xnk
→ x ∈ S and 0 < f(x) = fζ(y) or xnk

→ ∞
and fζ(y) is an asymptotic value of f on S. Thus from Schmüdgen’s Positivstellensatz

and representation (6.5) of gi we get

fζ =
∑

σ∈I

sσg
σ
ζ + su

for some sums of squares s, sσ ∈ ∑

R[Y1, . . . , Ym]2 and a finite subset I of Nw
0 .
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Replace y = ζ(x) for any x ∈ S. We get

f(x) =
∑

σ∈I

sσ(ζ(x))gσζ (ζ(x)) + s(ζ(x))u(ζ(x)) =

=
∑

σ∈I

sσ(ζ(x))gσ(x) + 0 ∈ T.

This ends the proof. �

An example of application of Theorem 6.13.

Example 6.14. Let g = −X2 − (Z2 + 1)Y 2 + 1 and

S = {(x, y, z) ∈ R3 | g(x, y, z) ≥ 0}.

Does Y + 2 have a representation in T?

Figure 10. The set {(x, y, z) ∈ R3| g(x, y, z) = −x2 − (z2 + 1)y2 + 1 ≥ 0}.

The set S is a basic closed semialgebraic set which is not compact. Up to a bounded

set, S is equal to
{

(x,
1√

z2 + 1
y, z) | x2 + y2 ≤ 1, |z| ≥ 1

}

.

Hence, from Theorem 4.4 we have that A(S) = R[X,Y, Y Z]. Put (ζ1, ζ2, ζ3) = (X,Y, Y Z).

Of course, g ∈ A since g = −ζ21 − ζ22 − ζ23 + 1. Moreover

Sζ = {(a, b, c) ∈ R3| a2 + b2 + c2 ≤ 1}.

One can easily see that ζ(R3) = (R3 \ V (Y )) ∪ {(0, 0, 0)}. Hence ζ(S) 6= Sζ . Never-

theless, the equality ζ(S)
Zar ∩ Sζ = ζ(S) holds. Thus from Corollary 6.15 we conclude
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that any polynomial which is bounded on S from above and below by some positive

constants is of the form s1 + s2g for some sums of squares s1, s2 which are bounded on

S. In particular there exist sums of squares of polynomials in R[X,Y, Y Z] such that

Y + 2 = s1 + s2(1 −X2 − Y 2(Z2 + 1)).

It is obvious that if ζ1, . . . , ζm generate A then one does not have to check in Theorems

6.10 and 6.13 whether f ∈ A is generated by ζ1, . . . , ζm. Hence we get the following

corollary as a straightforward conclusion.

Corollary 6.15. Suppose that A has a finite basis ζ1, . . . , ζm and put ζ = (ζ1, . . . , ζm).

Assume that g1, . . . , gw ∈ A. The following hold

(1) Assume that ζ(S) = Sζ . If f is positive and bounded on S, then f ∈ Tζ .

(2) Assume that Sζ ∩ ζ(S)
Zar

= ζ(S). If f is bounded, positive and has only positive

asymptotic values on S, then f ∈ Tζ .

Therefore, if A is finitely generated, then any polynomial bounded on S from below

and above by positive constants has a representation in terms of the polynomials from

R[Z]. Thus, as Theorem 6.13 shows more explicitly, finding the degree bounds for

representations of bounded polynomials on sets described by polynomials bounded on

them is similar to finding degree bounds of such representations in the case of compact

sets (perhaps augmented by the degrees of generators of the algebra A). Hence they

depend solely on the degree and infimuum of the polynomial and the description of the

set S (for effective Positivstellensätze and degree bounds see [PD], [Sw2] or [PR]).

When the algebra of bounded polynomials has a finite basis, it seems natural to take for

ζ a mapping which has all the elements of this basis as coordinates. A following example

shows that it makes a great difference if we take two different subsets of a basis.

Example 6.16. Take

S = {(x, y) ∈ R2| x2 − x4(1 + y2)2 ≥ 0}.

We have that S = K ∪M where K is bounded and

M =

{

(x, y) ∈ R2|
∞
∑

k=1

(−1)k+1 1

y2k
≤ x ≤

∞
∑

k=1

(−1)k
1

y2k
, y2 ≥ 4

}

.

Hence from Theorem 2.7 it follows that for both connected components of M the alge-

bra of bounded polynomials is R[X,XY,XY 2]. Since K was bounded, we get A(S) =

R[X,XY,XY 2]. In particular the unbounded set S is described by a polynomial which is

bounded on S.

Take mappings ζ = (X,XY ) and ζ̃ = (X,XY 2). Consider the sets

SX,XY = {(a, b) ∈ R2| (a2 + b2)2 − a2 ≤ 0}

and

SX,XY 2 = {(a, c) ∈ R2| (a2 + ac)2 − a2 ≤ 0}.
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Figure 11. The sets SX,XY and SX,XY 2 from Example 6.16. The set R3 \ ζ(R3) is denoted by red.

Take note that ac = b2. Hence if we treat the sets SX,XY and SX,XY 2 as subsets of R3,

the image of S will be the intersection of either of them with the cone ac = b2.

After some easy calculation we get ζ(S) = SX,XY . Therefore we can apply Theorem 6.10

to the set SX,XY .

But concerning the second set we have ζ̃(S) ( SX,XY 2 . Furthermore, V (X) ⊂ SX,XY 2

and ζ̃(S)
Zar

= R2 while (0, 10) /∈ ζ̃(S). Hence ζ̃(S)
Zar

∩ SX,XY 2 6= ζ̃(S) and we cannot

apply neither Theorem 6.10 nor Theorem 6.13. (Note that if we take a different description

of S, eg. given by the inequality 1−x2(1+y2)2 ≥ 0, then the equation ζ̃(S)
Zar

∩SX,XY 2 =

ζ̃(S) holds.)
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Streszczenie

Niniejsza rozprawa doktorska poświe֒cona jest badaniu i wyznaczaniu algebr wielomia-

nów ograniczonych na nieograniczonych zbiorach semialgebraicznych. W szczególności

określeniu kiedy wielomian jest ograniczony na danym nieograniczonym zbiorze.

U źród la tej rozprawy leży próba uogólnienia do przypadku zbiorów nieograniczonych

s lynnego twierdzenia Schmüdgena [Sm, 1991]. Mówi ono, że każdy wielomian dodatni

na zwartym bazowym zbiorze semialgebraicznym wyraża sie֒ za pomoca֒ sum kwadra-

tów wielomianów pomnożonych przez kombinacje wielomianów opisuja֒cych dany zbiór.

W dowodzie Schmüdgena za lożenie zwartości odgrywa istotna֒ role֒. Wynik ten uzyska l

rozwia֒zuja֒c problem K-momentów dla zwartych zbiorów semialgebraicznych a dowód w

istotny sposób używa metod analizy funkcjonalnej (miary spektralne). Positivstellensatz

Schmüdgena daje możliwość skonstruowania algorytmu do obliczania kresu dolnego wie-

lomianu na danym zwartym zbiorze semialgebraicznym. Warunek by wielomian f należa l

do preporza֒dku jest używany w programowaniu. Skoro uzyskalísmy wersje֒ tego twier-

dzenia dla wielomianów ograniczonych na nieograniczonym zbiorze semialgebraicznym S,

uznalísmy, że z punktu widzenia zastosowań istotne jest efektywne decydowanie czy f jest

ograniczony na S.

Optymizacja wielomianów (tj. znajdowanie kresu dolnego i górnego) na zbiorach se-

mialgebraicznych jest ważnym i wyzywaja֒cym zadaniem, zarówno w praktyce jak i w teorii.

Obecnie prowadzone sa֒ intensywne prace w tym kierunku, oparte g lównie na przedstawie-

niach za pomoca֒ sum kwadratów i, bardziej ogólnie, metodach Algebry Rzeczywistej.

Istnieje wiele ksia֒żek oraz opracowań dedykowanych różnym zagadnieniom tego tematu,

na przyk lad [L], [Lt] oraz [PaS].

Aby rozszerzyć metode֒ Schmüdgena do przypadku nieograniczonych zbiorów semial-

gebraicznych, można rozważać algebry wielomianów ograniczonych na tych zbiorach.

W rzeczy samej, pozytywne rezultaty w pewnych przypadkach zosta ly przedstawione w

ostatnim rozdziale rozprawy, maja֒c za inspiracje֒ interesuja֒ca֒ prace֒ Schweighofera [Sw].

Aby je uzyskać, potrzeba by lo zrozumieć strukture֒ algebry wielomianów ograniczonych

na danym zbiorze semialgebraicznym. Zaskakuja֒cym sie֒ wydaje, że ten problem zacza֒ l

być badany dopiero niedawno. W rozprawie doktorskiej D. Plaumanna (Konstanz,

2008), której promotorem by l C. Scheiderer, pośród innych rezultatów, udowodnione

zosta lo, że dla zbiorów regularnych w R2 (tj. be֒da֒cych domknie֒ciem swojego wne֒trza)

algebry te sa֒ skończenie generowane. Niedawno S. Krug w [Krug] skonstruowa l przyk lad
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semialgebraicznego zbioru regularnego w R3, którego algebra wielomianów ograniczonych

nie jest skończenie generowana. Jednakże zbiór ten nie jest zbiorem bazowym, wie֒c

pytanie o skończona֒ generowalność pozostaje otwarte dla takiego typu zbiorów.

Niech S be֒dzie podzbiorem Rn. Oznaczmy przez

A(S) = {f ∈ R[X1, . . . , Xn] | f jest ograniczony na S}

algebre֒ wielomianów ograniczonych na S. Zbiór A(S) jest podpierścieniem pierścienia

wielomianów oraz algebra֒ nad R. Zauważmy, że jeśli S jest ograniczony, to A(S) = R[X].

W przeciwnym wypadku A(S) jest podzbiorem w laściwym pierścienia wielomianów.

W niniejszej rozprawie rozpatrujemy kilka problemów dotycza֒cych algebr wielomia-

nów ograniczonych. Po pierwsze, zajmujemy sie֒ problemem decydowania o ograni-

czoności wielomianu na zbiorze. Rozwia֒zujemy go w Rozdziale 6.1 dla wielomianów

dwóch zmiennych na dowolnym zbiorze semialgebraicznym, używaja֒c metod rozwinie֒-

tych w Rozdziale 2. W tymże rozdziale podajemy również metode֒ znajdowania gene-

ratorów algebry wielomianów ograniczonych dla szerokiej klasy podzbiorów semialgebra-

icznych p laszczyzny. W Rozdziale 3 pokazujemy zaskakuja֒ca֒ zależność mie֒dzy zespolo-

nymi wartościami bifurkacyjnymi wielomianu f a stabilnościa֒ rodziny algebr A(Sc), gdzie

Sc = {(x, y) ∈ R2 | f(x, y) ≤ c}.

W rozprawie zamiast metod Algebry Rzeczywistej wolelísmy używać raczej argu-

mentów geometrycznych, unikalísmy zatem używania standardowego je֒zyka Algebry

Rzeczywistej. Skoro problemy, które badamy, moga֒ być wyrażone prosto, staralísmy sie֒

również używać możliwie najprostszych metod i mamy nadzieje֒, że to sie֒ nam uda lo.

Aby uprościć badanie algebr wielomianów ograniczonych na zbiorze semialgebraicz-

nym S, be֒dziemy rozważali pewne podzbiory danego zbioru zwane mackami. Zbiór M

nazywamy macka֒ S, jeśli zbiór M \B(0, R) jest spójny dla dowolnego R > 0 oraz M jest

jednym z nieograniczonych zbiorów w rozk ladzie

S = K ∪M1 ∪ . . . ∪Ml,

gdzie zbiór K jest zwarty, l ∈ N0 można wyznaczyć jednoznacznie i zbiory M1, . . . ,Ml sa֒

domknie֒tymi w S, parami roz la֒cznymi mackami (zob. Twierdzenie 1.19). Co wie֒cej, jeśli

l = 0, to A(S) = R[X]. W przeciwnym wypadku mamy

A(S) =
l
⋂

i=1

A(Mi).

Wyj́sciem do wyników Sekcji 2 jest obserwacja, że jeśli rozważamy podzbiory semial-

gebraiczne w R2, to możemy za lożyć, że macka M jest postaci

{(x, y) ∈ R2| β1(y) ≤ x ≤ β2(y), y ≥ R},

gdzie R jest dodatnia֒ liczba֒ rzeczywista֒ oraz β1(1/Y ), β2(1/Y ) sa֒ szeregami Puiseux,

które parametryzuja֒ krzywe semialgebraiczne. Jeśli macka M zbioru S nie jest powyższej
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postaci (z dok ladnościa֒ do liniowej zamiany zmiennych), to A(M) = R, co pocia֒ga za

soba֒ również trywialność algebry A(S). Zatem w Rozdziale 2 zajmiemy sie֒ zbiorami M

powyższej postaci.

W Twierdzeniu 2.4 dowodzimy, że jeśli ord∞β1 6= ord∞β2, to

A(M) = R[XiY d| d ≤ iα],

gdzie ord∞β = ord (β(1/Y )) oraz α = min{ord∞β1, ord∞β2}. Zatem algebra wielomia-

nów ograniczonych jest generowana przez jednomiany. G lównym punktem dowodu jest

porównanie sumpremuum wielomianu z jego, odpowiednio wyrażonymi, wspó lczynnikami.

Udaje sie֒ to zrobić, gdy odleg lość zbioru od osi jest nie wie֒ksza niż jego szerokość.

W drugiej cze֒ści Rozdzia lu 2 rozważamy przypadek, gdy ord∞β1 = ord∞β2 oraz β1 6=
β2. Wprowadzamy szereg Puiseux o skończonym rozwinie֒ciu β, który można wyznaczyć

w skończenie wielu krokach z β1 i β2 (por. Stwierdzenie 2.15). Poprzez identyfikacje֒ β z

osia֒ y udawadniamy Twierdzenie 2.16, z którego wynika, że

A(M) = R[X,Y ] ∩ R

[

1

Y 1/q
, (X − β)iY d | d ≤ iη

]

,

gdzie η = min{ord∞(β1 − β), ord∞(β2 − β)}. Pragniemy podkreślić, że daje to prosty

sposób na sprawdzenie czy wielomian f jest ograniczony na M . Istotnie, nietrudno jest

przestawić jakikolwiek wielomian w terminach powyższego pierścienia wielomianów z

wielomianami Puiseux jako wspó lczynnikami (zob. Stwierdzenie 2.13), potem wystarcza

sprawdzić w jakich pote֒gach wyste֒puje Y . Zauważmy, że algebra A(S) nie musi być

generowana przez jednomiany (ani też izomorficzna z żadna֒ algebra֒ generowana֒ przez

jednomiany). Dodajmy też, że wprowadzenie wielomianów o wspó lczynnikach Puiseux

pozwala nam traktować wszystkie algebry wielomianów ograniczonych na mackach jakby

by ly generowane przez jednomiany, co u latwia ich badanie (por. Rozdzia l 5). Co wie֒cej,

zwykle trudno jest określić czy wielomian należy do podpierścienia danego przez ustalone

wielomiany, podczas gdy w przypadku tego rozszerzonego pierścienia przedstawienie f

można uzyskać przez proste symboliczne przekszta lcenia (zauważmy, że β ma skończone

rozwinie֒cie).

W Sekcji 3 rozważamy zbiory semialgebraiczne postaci

Sc = {(x, y) ∈ R2| f(x, y) ≤ c},

gdzie f jest wielomianem, zaś c jest liczba֒ rzeczywista֒. G lównym wynikiem rozdzia lu

jest Twierdzenie 3.5 o stabilności algebr A(Sc). Mianowicie dowodzimy, że algebry wie-

lomianów ograniczonych na Sc sa֒, do pewnego stopnia, nieczu le na zmiane֒ parametru c.

Ujmuja֒c to bardziej precyzyjnie, dla dowolnych c < c̃ mamy

A(Sc) = A(Sc̃)

o ile [c, c̃] ∩ BC(f) = ∅. Zbiór BC(f) wartości bifurkacyjnych jest zdefiniowany na

stronie 44. Należy podkreślić, że zbiór ten jest skończony i może być efektywnie
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wyznaczony dla dowolnego wielomianu f dwóch zmiennych. G lównym narze֒dziem w

dowodzie twierdzenia jest parametryczna wersja twierdzenia Puiseux oraz rezultaty

Rozdzia lu 2. Mamy nadzieje֒, że to podej́scie ilustruje zwia֒zek pomie֒dzy wielomianami

ograniczonymi a geometria֒ w lókien f oraz że może rzucić nowe świat lo na w lasności

wartości bifurkacyjnych jak również na w laściwość odwzorowań wielomianowych. Równie

interesuja֒ce w R2 by loby zbadanie stabilności zbiorów opisanych wie֒cej niż jedna֒

nierównościa֒ wielomianowa֒. To wcia֒ż pozostawi loby przypadek wyższych wymiarów jako

otwarty problem. Mimo że w prostych przypadkach (na przyk lad dla zbiorów opisanych

nierównościami jednomianowymi jak w Twierdzeniu 5.9)  latwo widać, że zbiory sa֒

nieczu le na zmiane֒ parametrów, ogólnie problem nie wydaje sie֒  latwy do rozwia֒zania.

Rozdzia l 4 poświe֒cony jest badaniu algebr wielomianów ograniczonych na zbiorach w

Rn, gdzie n jest dowolne. Pierwsza cze֒ść poświe֒cona jest specjalnemu typowi zbiorów,

które nazywamy mackami z wagami i które można uznać za ”jednostajne zniekszta lcenie”

zbioru niższego wymiaru wzd luż osi ostatniej wspó lrze֒dnej. Dok ladniej, za lóżmy, że S ⊂
Rn ma niepuste wne֒trze. Rozważmy zbiór

M = {(β1(y)x1, . . . , βn(y)xn, y) ∈ Rn+1| x ∈ S, y ≥ R}

gdzie R > 0 oraz β1(1/Y ), . . . , βn(1/Y ) sa֒ szeregami Puiseux takimi, że βi(y) sa֒ zbieżne

oraz maja֒ sta ly dodatni lub ujemny znak dla y ∈ [R,∞).

W myśl Twierdzenia 4.4, jeśli algebra A(S) jest generowana przez jednomiany, to

A(M) = A(S)[Y ] ∩ R

[

XαY d|
n
∑

i=1

αiβi ≥ d

]

,

gdzie λ ∈ Qn jest cia֒giem wag zbioru M oraz dla skrótu piszemy Xα = Xα1
1 · · ·Xαn

n .

Zauważmy, że dowolny zbiór semialgebraiczny na prostej ba֒dź ma algebre֒ wielomianów

ograniczonych równa֒ R[X] (wie֒c generowana֒ przez jednomian X), ba֒dź jest ona trywialna.

Zatem powyższe twierdzenie uogólnia Twierdzenie 2.1 z Rozdzia lu 2. Co wie֒cej, w pewnych

przypadkach wyższych wymiarów daje nam to praktyczna֒ możliwość wyznaczania gene-

ratorów algebry wielomianów ograniczonych (por. przyk lady z Rozdzia lu 6). Twierdzenie

powyższe uogólnia i rozszerza wyniki T. Netzera z [Net], który rozważa jedynie projekcje

takich zbiorów na pierwsze n wspó lrze֒dnych i uzyskane zosta ly zupe lnie odmiennymi me-

todami. Zatem w [Net] wymiary zbioru S oraz macki sa֒ takie same, co wie֒cej S ma być

zwarty, które to za lożenia sa֒ istotnie wykorzystywane.

W ostatniej cze֒ści Rozdzia lu 4 podajemy alternatywny dowód (oparty na zbiorze

niew laściwości Jelonka) faktu pokazanego już wcześniej przez D. Plaumanna i C. Sche-

iderera w [PlSd]. Mianowicie, jeśli S jest nieograniczonym podzbiorem w laściwego zbioru

algebraicznego w Rn, to algebra A(S) nie może być skończenie generowana. Również

w tym rozdziale pojawia sie֒ przyk lad (Przyk lad 4.2 zbioru semi-analitycznego w R2

o niepustym wne֒trzu, którego algebra wielomianów ograniczonych jest nieskończenie

generowana), który jest ciekawy ze wzgle֒du na wyniki Plaumanna i Scheiderera o

skończonej generowalności dla regularnych zbiorów semialgebraicznych w R2.
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W zwia֒zku z tym, że algebry generowane przez jednomiany pojawiaja֒ sie֒ w pracy

w sposób naturalny, omawiamy ich w lasności w Rozdziale 5. Używaja֒c klasycznych

metod geometrii wypuk lej ustalamy relacje֒ pomie֒dzy wypuk lymi stożkami wyk ladników

jednomianów a zbiorami opisanymi przez odpowiednie nierówności jednomianowe (Twier-

dzenie 5.9). W szczególności chcielibyśmy zwrócić uwage֒, że algebry z Twierdzeń 2.4 i 4.4

sa֒ generowane przez jednomiany. Na sam koniec obliczamy najmniejsza֒ ilość generatorów

jednomianowych dla algebry wielomianów ograniczonych na macce na p laszczyźnie.

Na tym tle widać jasno, że obliczanie ilości elementów bazy dla przecie֒cia jak i sumy

skończonej ilości algebr generowanych przez jednomiany również jest zadaniem czysto

kombinatorycznym.

Za lóżmy ponownie, że S jest semialgebraicznym podzbiorem p laszczyzny. Z Twier-

dzenia 2.16 o krzywych testuja֒cych wynika, że wielomian f jest ograniczony na S wtedy

i tylko wtedy gdy jest ograniczony na skończonej ilości krzywych generycznie wybranych

z rodziny krzywych, która zależy jedynie od zbioru S. Dowód, opieraja֒cy sie֒ na wynikach

przedstawionych w Rozdziale 2, jest zawarty w cze֒ści pierwszej Rozdzia lu 6.

W Sekcji 6.2 przedstawiamy wersje Positivstellensatz Schmüdgena dla wielomianów

ograniczonych. Weźmy bazowy semialgebraiczny zbiór domknie֒ty

S = {x ∈ Rn| g1(x) ≥ 0, . . . , gw(x) ≥ 0}

gdzie g1, . . . , gw sa֒ wielomianami. Preporza֒dkiem zwia֒zanym z S jest zbiór

T =







∑

σ∈{0,1}w

sσg
σ| sσ ∈

∑

R[X]2







.

Weźmy wielomian f . Za lóżmy, że wielomiany gi opisuja֒ce zbiór S sa֒ ograniczone na S.

Co wie֒cej, za lóżmy, że Sζ ∩ ζ(S)
Zar

= ζ(S) (definicje tych zbiorów znajduja֒ sie֒ na stronie

83). Twierdzenie 6.13 mówi, że jeśli f na S jest ograniczony oraz wie֒kszy od pewnej

dodatniej sta lej, to f ∈ T . W rzadszym przypadku, gdy Sζ = ζ(S), wystarcza, by f

by l na S ograniczony i dodatni (por. Twierdzenie 6.10). W dowodach obu twierdzeń

użylísmy prostej obserwacji, że odwzorowanie maja֒ce za swoje wspó lrze֒dne generatory

(lub baze֒) algebry wielomianów ograniczonych jest, w pewnym sensie, ”kanonicznym”

odwzorowaniem ograniczonym. Zatem w Positivstellensatz Schmüdgena można spróbować

zasta֒pić zwartość zbioru przez za lożenie o ograniczoności wielomianów. Jednakże zwróćmy

uwage֒, że nawet w przypadku zwartym Twierdzenia 6.10 i 6.13 pokazuja֒, że jeśli dany

wielomian f oraz wielomiany gi opisuja֒ce zbiór S należa֒ do pewnej podalgebry R[X], to

f można wyrazić za pomoca֒ sum kwadratów z tej w laśnie podalgebry (por. Przyk lad 6.11).
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Résumé

Dans cette thèse nous étudions les algèbres de polynômes qui sont bornés sur un en-

semble semi-algébrique non borné. En particulier nous déterminons si un polynôme est

borné sur un ensemble semi-algébrique borné.

La motivation initiale de cette thèse est une généralisation au cas des ensembles non

bornés d’un théorème célèbre de Schmüdgen [Sm, 1991] qui affirme qu’un polynôme positif

sur un ensemble semi-algébrique basique et compact est une somme de carrés de polynômes

multipliés par les polynômes définissant l’ensemble semi-algébrique. Dans la preuve de

Schmüdgen l’hypothèse de compacité est essentielle. Le résultat est obtenu en résolvant

le problème du K-moment pour les semi-algébriques compacts et la preuve utilise des

méthodes d’analyse fonctionnelle (mesures spectrales). Le théorème de Schmüdgen permet

de construire un algorithme donnant la borne inférieure d’un polynôme sur un ensemble

semi-algèbrique compact. Comme la condition que f appartient à un préordre est utilisée

dans le programme et comme nous obtenons une version du théorème pour les polynômes

bornés, il nous a paru naturel de pouvoir décider effectivement quand f est borné sur S.

L’optimisation des polynômes (i.e. la détermination des bornes de ceux-ci) sur des

ensembles semi-algébriques est un problème important et délicat, du point de vue théorique

et pratique. Aujourd’hui il y a une grande activité dans ce domaine, essentiellement basée

sur la représentation en sommes de carrés et plus généralement sur des méthodes d’algèbre

réelle. On trouve un grand nombre de livres et d’articles d’introduction aux différents

aspects du sujet, par exemple [L], [Lt] et [PaS].

Afin d’étendre la méthode de Schmüdgen au cas des ensembles semi-algébriques

non bornés on peut considérer l’algèbre des polynômes bornés sur de tels ensembles.

C’est ce qui est fait dans certains cas particuliers dans le dernier chapitre de la thèse,

sous l’inspiration du bel article [Sw] de Schweighofer. Dans cette perspective il est

important de comprendre la structure de l’algèbre des polynômes bornés sur un ensemble

semi-algébrique non borné donné. De façon surprenante ce problème n’a été étudié

que récemment. En effet dans la thèse de D. Plaumann (Konstanz, 2008), dirigée par

C. Scheiderer, il est prouvé que pour les ensembles réguliers de R2 (i.e. les ensembles

qui sont l’adhérence de leur intérieur) ces algèbres sont finiment engendrées. Récemment

Krug [Krug] a construit un exemple d’un ensemble régulier non borné de R3 pour lequel

l’algèbre des polynômes non bornés n’est pas finiment engendrée. Cependant cet ensemble

n’est pas un ensemble fermé basique de sorte que la question reste ouverte pour de tels
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ensembles.

Soit S un sous-ensemble de Rn. Notons

A(S) = {f ∈ R[X] | f est borne sur S}

l’algèbre des polynômes bornés sur S. L’ensemble A(S) est un sous-anneau de R[X] et

une algèbre sur R. Remarquons que si S est borné, A(S) = R[X]. Dans le cas contraire,

l’algèbre A(S) est un sous anneau propre de l’anneau des polynômes.

Dans cette thèse nous traitons différents problèmes concernant les algèbres des po-

lynômes bornés. Tout d’abord nous abordons le problème consistant à déterminer si un

polynôme est borné sur un ensemble. Nous résolvons ce problème dans la Section 6.1 pour

les polynômes à deux variables définis sur des ensembles semi-algébriques quelconques, en

utilisant les méthodes de la Section 2. Dans la section suivante nous donnons une méthode

pour déterminer des générateurs de A(S) et ce pour une large classe de semi-algébriques

de R2. Dans la Section 3 nous établissons une relation surprenante entre les valeurs de

bifurcation complexes d’un polynôme et la stabilité de la famille d’algèbres A(Sc), où

Sc = {(x, y) ∈ R2| f(x, y) ≤ c}.

Tout au long de la thèse, plutôt que des méthodes d’algèbre réelle, nous préférons

utiliser des arguments géométriques, ainsi nous avons évité d’employer le langage de

l’algèbre réelle. Comme les problèmes que nous attaquons sont simplement formulés, nous

avons tenté d’utiliser les méthodes les plus simples et directes et nous espérons y être

parvenu.

Pour simplifier l’étude des algèbres de polynômes bornés sur un ensemble S, nous

considérons des sous-ensembles de S que nous appelons des tentacules. Un ensemble M

est une tentacule de S si M \ B(0, R) est connexe pour tout R > 0 et M est un des

ensembles dans la décomposition

S = K ∪M1 ∪ . . . ∪Ml,

avec K compact, l ∈ N0 et M1, . . . ,Ml sont des fermés de S et des tentacules deux à deux

distinctes (voir le Théorème 1.19). De plus si l = 0, alors A(S) = R[X], sinon

A(S) =
l
⋂

i=1

A(Mi).

Un point de départ pour les résultats de la Section 2 est l’observation selon laquelle

pour un sous-ensemble semi-algébrique de R2, nous pouvons supposer que Mi est de la

forme

{(x, y) ∈ R2| β1(y) ≤ x ≤ β2(y), y ≥ R},
où R est un réel positif et β1(1/Y ), β2(1/Y ) des séries de Puiseux qui paramt́rent courbes

semi-algébriques. Si une tentacule M de l’ensemble S n’est pas de la forme ci-dessus (à un
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changement linéaire de coordonnées près), alors A(M) = R, ce qui implique que l’algèbre

A(S) est triviale. Dans toute la Section 2 nous considérons un semi-algébrique M de la

forme ci-dessus.

Dans le Théorème 2.4 nous prouvons que ord∞β1 6= ord∞β2, alors

A(M) = R[XiY d| d ≤ iα],

où α = min{ord∞β1, ord∞β2} et ord∞β = ordβ(1/Y ). Ainsi l’lagèbre des polynômes

bornés est engendrée par des monômes. Le point le plus important est la comparaison du

supremum d’un polynôme avec ses coefficients. Cela peut être effectué chaque fois que la

distance entre la tenntacule et l’axe est plus petit que sa largeur.

Dans la deuxième partie de la Section 2 on considère le cas où ord∞β1 = ord∞β2 et

β1 6= β2. Nous introduisons une série de Puiseux β ayant un développement fini, qui peut

être calculée en un nombre fini d’étapes à partir de β1 et β2 (voir Proposition 2.15). Par

identification de β à l’axe des ordonnées nous montrons le Théorème 2.16, nous avons alors

A(M) = R[X,Y ] ∩ R

[

1

Y 1/q
, (X − β)iY d | d ≤ iη

]

,

où η = min{ord∞(β1 − β), ord∞(β2 − β)}. Nous insistons sur le fait que cela fournit

une méthode directe pour déterminer si un polynôme est borné sur M . En effet, il est

aisé d’écrire un polynôme grâce aux polynômes de notre anneau de polynômes bornés à

coefficients de Puiseux (voir Proposition 2.13). Il suffit ensuite d’examiner les exposants

de Y dans une telle présentation. Remarquons qu’il n’est pas nécessaire que l’algèbre A(S)

soit engendrée par des monômes (ou soit isomorphe à une telle algèbre). Ajoutons enfin

que l’introduction de polynômes avec des coefficients de Puiseux permet de traiter toutes

les algèbres de polynômes bornés sur des tentacules comme si elles étaient engendrées par

des monômes, ce qui facilite leur étude (voir Section 5). De plus, il est en général difficile

de déterminer si un polynôme appartient à un sous-anneau engendré par des polynômes

donnés, tandis que dans le cas de cette extension d’anneau, les représentations de f sont

obtenues par des calculs formels simples (β possédant un développement fini).

Dans la Section 3 nous considérons des ensembles semi-algébriques de la forme

Sc = {(x, y) ∈ R2| f(x, y) ≤ c},

où f est un polynôme et c un nombre réel. Le résultat principal de cette section est le Théo-

rème 3.5 de stabilité des algèbres A(Sc). Précisément, nous obtenons que les algèbres de

polynômes bornés sur Sc sont, à un nombre fini de points près, insensibles au changement

de paramètres c : pour tout c < c̃ nous avons

A(Sc) = A(Sc̃)

tant que [c, c̃] ∩ BC(f) = ∅. L’ensemble des valeurs de bifurcation BC(f) est défini page

44. Sa principale propriété est qu’il est fini et peut être calculé pour tout polynôme f de

deux variables. L’outil principal est une version à paramètres du théorème de Puiseux
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et les résultats de la section précédente. Nous espérons que cette approche illustre la

relation entre les polynômes bornés et la géométrie des fibres de f , et pourra éclairer de

façon nouvelle les propriétés des valeurs de bifurcation aussi bien que de propreté des

polynômes. Dans R2 il serait intéressant d’étudier la stabilité des ensembles décrits par

plus d’une inégalité polynomiale. Le cas des dimensions supérieures demeurant ouvert.

Bien que dans des cas simples (par exemple pour les ensembles décrits par des inégalités

monomiales comme dans le Théorème 5.9) il est facile de constater leur stabilité, en

général le probème ne semble pas évident du tout.

La Section 4 est consacrée à l’étude des algèbres de polynômes bornés sur des

sous-ensembles de Rn pour n arbitraire. La première partie s’attache à un type particulier

de tels ensembles, que nous appelons tentacules pondérées et qui peuvent être vus comme

une “déformation uniforme” d’un ensemble de plus petite dimension le long de l’axe y.

Supposons que l’ensemble S ⊂ Rn ait un intérieur non vide. Considérons l’ensemble

M = {(β1(y)x1, . . . , βn(y)xn, y) ∈ Rn+1| x ∈ S, y ≥ R}

où R > 0 et β1(1/Y ), . . . , βn(1/Y ) sont des séries de Puiseux telles que les βi(y) sont

convergents et ont un signe constant, positif ou négatif, pour y ∈ [R,∞).

Le Théorème 4.4 affirme que si nous supposons que A(S) est engendré par des monômes

alors

A(M) = A(S)[Y ] ∩ R[XαY d|
n
∑

i=1

αiλi ≥ d],

où λ ∈ Qn est le tuplet des poids sur l’ensemble M et Xα = Xα1
1 · · ·Xαn

n . Notons que

tout semi-algébrique de la droite réelle a soit une algèbre triviale, soit une algèbre qui est

égale à R[X] (et donc est engendrée par le monôme X). Par conséquent l’énoncé ci-dessus

généralise le Théorème 2.1 de la Section 2. De plus, dans certains cas en dimensions supé-

rieures, il donne un procédé pratique de calcul des générateurs de l’algèbre des polynômes

bornés (comme dans le cas de certains exemples de la Section 6). La méthode de preuve est

essentiellement la même que dans la Section 2.1 i.e. utilise une équivalence de normes dans

un espace de dimension finie. Le Théorème 4.4 généralise et étend les résultats de T. Netzer

dans [Net] qui utilisent seulement des projections de tels ensembles sur les n premières

coordonnées et des arguments radicalements différents. Ainsi dans [Net] la dimension de S

et de la tentacule est la même, et de plus S est supposé compact, ce qui est une hypothèse

essentielle pour Netzer.

Dans la dernière partie de la Section 4 nous donnons une autre preuve (basée

sur l’ensemble de non-propreté de Jelonek) du fait déjà obtenu par D. Plaumann et

C. Scheiderer dans [PlSd], que si S est un sous-ensemble non borné d’un semi-algébrique

propre, alors l’algèbre A(S) ne peut pas être finiment engendrée. Pour l’achever, on

montre le Lemme 2 qui établit une correspondance entre une propriété algébrique d’un

idéal et une propriété géométrique d’une application. Dans la même Section 4 nous

produisons un exemple (Example 4.2 d’un ensemble semi-analytique de R2 d’intérieur non

vide qui a une algèbre de polynômes bornés non finiment engendrée) qui est intéressant

du point de vue des resultats de Plaumann et Scheiderer que les algèbres des polynômes
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bornés sur un semi-algébrique régulier de R2 sont finissement engendrés.

Du fait que les algèbres engendrées par des monômes apparaissent naturellement dans

notre étude, nous étudions leurs propriétés dans la Section 5. En utilisant des méthodes

classiques de géométrie convexe nous montrons la dualité entre les cônes convexes des

exposants des monômes et les algèbres de polynômes bornés sur les ensembles donnés

par l’intersection des ensembles obtenus par des inegalités sur monômes appropriés

(Theorem 5.9). Dans la dernière partie de cette section nous montrons aussi que les

algèbres des Théorèmes 2.4 et 4.4 sont engendrées par des monômes et nous calculons

le nombre minimal de monômes générateurs pour les tentacules dans le plan réel. Dans

ce contexte on voit que le calcul du nombre des éléments d’une base de l’intersection ou

bien d’une union du nombre fini des algèbres engendrées par monômes n’est qu’une tâche

combinatoire.

Supposons à nouveau que S ⊂ R2. D’après le Théorème 2.16 sur les “testing” courbes le

polynôme f est borné sur S si et seulement s’il est borné sur un nombre fini de représentants

génériques d’une famille de courbes qui ne dépend que de l’ensemble S. La preuve basée

sur les résultats de la Section 2 de cette observation constitue la première partie de la

Section 6.

Dans la Section 6.2 nous présentons une version du Positivstellensatz de Schmüdgen

pour les polynômes bornés. Prenons un semi-algébrique basique et non borné

S = {x ∈ Rn| g1(x) ≥ 0, . . . , gw(x) ≥ 0}

où g1, . . . , gw sont des polynômes. Un préordre associé à S est l’ensemble

T =







∑

σ∈{0,1}w

sσg
σ| sσ ∈

∑

R[X]2







.

Considérons un polynôme f et supposons que les polynômes gi qui définissent S sont

bornés sur S. Supposons de plus que Sζ ∩ ζ(S)
Zar

= ζ(S) (la définition de ces ensembles

peut être trouvée page 83). D’après le Théorème 6.13, si f est borné et plus grand qu’une

constante positive sur S, alors f ∈ T . Dans le cas moins probable où Sζ = ζ(S), il

suffit que f soit borné et positif sur S (voir Théorème 6.10). Dans les preuves des deux

théorèmes nous utilisons l’observation simple qu’une application avec générateurs (ou

la base) d’une algèbre de polynômes bornés est , en tant que coordonnées, l’application

bornée canonique. Ainsi dans le Postivstellensatz de Schmüdgen nous pouvons essayer

de remplacer la compacité de l’ensemble par l’hypothèse que les polynômes sont bornés.

Cependant, remarquons que même dans le cas compact, les théorèmes 6.10 et 6.13

introduisent une propriété que si un polynôme f et des polynômes gi qui décrivent

l’ensemble S sont dans une certaine sous-algèbre de R[X], alors la représentation de f

peut être exprimée par des sommes de carrés dans cette algèbre (voir 6.11).
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A(S), algebra of polynomials bounded on

a set S, 21

A(a ≤ f ≤ b), the same as

A({(x, y) ∈ R2| a ≤ f ≤ b}), 27

|α|, α1 + . . . + αn for any multi-index α, 55

[α], integer part of the real number α, 74

〈α|λ〉, standard scalar product for tuples α

and λ, 55

B(x, r), an open ball with centre x and ra-

dius r, 13

β(y)•, mapping x → β(y) · x, 56

β · x, (β1x1, . . . , βnxn) for tuples β and x, 55

BK(f), bifurcation values of a function

f : Kn → K, 44

Bq(S), algebra of polynomials with Puiseux

coefficients bounded on a set S, 36

CA, cone spanned by a set A, 70

C◦, polar cone of C, 72

conv(A), convex hull of a set A, 69

deg
∞

β, degree at infinity of β, 35

∆, an auxiliary set in Section 5, 75

dist(x, S), distance between x and set S, 13

∇f , gradient of a function f , 14

fζ , 83

I(V ), ideal of a set V , 14

KK(f), generalized critical values of f , 44

Kv,β , an auxiliary set in Section 2.1, 29

L∗, mapping f → f ◦ L, 36

M, a multiplicative semigroup of monomials,

68

M(S), semigroup of monomials bounded on

a set S, 69

N0, N ∪ {0}, 13

ordβ, order of a Puiseux series β, 15

ord∞β, order at infinity of a Puiseux series

at infinity β, 15

π, a projection, 60

R[Z], an algebra generated by a set Z, 18

R[ζ1, . . . , ζk, ζ| φ(ζ)], an algebra generated by

a set {ζ1, . . . , ζk}∪{ζ}, where ζ sat-

isfy the condition φ, 18

r(k, α), an auxiliary function in Section 5, 75

Rq[Y ], ring R[Y 1/q, 1
Y 1/q ] of Laurent polyno-

mials in Y 1/q, 34

S, closure of a set S, 13

S
Zar

, Zariski closure of a set S, 13

IntS, interior of a set S, 13

S(x, r), a sphere with centre x and radius r,

13

supp(β), support of a series β, 15

suppA, support of a set of monomials A, 68

S2, 53

S∩, 53

Sζ , an auxiliary set in Section 6.2, 83

T , a preordering, 82

Tζ , 84

V (I), locus of an ideal I, 13
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Résumé de la thèse

Dans cette thèse nous étudions les algèbres des polynômes qui sont bornés sur un

ensemble semi-algébrique non borné. Tout d’abord nous abordons le problème consistant

á déterminer si un polynôme est borné sur un ensemble. Nous résolvons ce problème pour

les polynômes á deux variables définis sur des ensembles semi-algébriques quelconques.

Dans la section suivante nous donnons une méthode pour déterminer des générateurs

de l’algèbre des polynômes bornés et ce pour une large classe de semi-algébriques du

plan réel. Dans la section 3 nous établissons une relation entre les valeurs de bifurcation

du complexifié d’un polynôme f á deux variables et la stabilité de la famille d’algèbres

des polynômes bornés sur les ensembles f ≤ c. Dans la section 4 nous décrivons la

structure de l’algèbre des polynômes bornés sur un certain type de sous-ensembles de

Rn avec n arbitraire, que nous appelons tentacules pondérées. Nous donnons aussi une

preuve géométrique du fait que l’algèbre d’un sous-ensemble non borné d’un ensemble

algébrique propre n’est pas de type fini. Dans la section suivante nous établissons

une correspondance entre les cônes convexes et les algèbres des ensembles obtenus

par des inégalités sur des monômes appropriés. Enfin, nous démontrons une version du

Positivstellensatz de Schmudgen pour les polynômes bornés sur un ensemble non compact.

The main topic of the thesis is a study of algebras of polynomials which are bounded

on a given unbounded semialgebraic set. First we tackle the problem of deciding the

boundedness of a polynomial on a set. We achieve it for polynomials in two variables

for any semialgebraic set. We give also a method of finding generators of the algebra

of bounded polynomials for a large class of semialgebraic subsets of the real plane. In

Section 3 we have established a relation between bifurcation values of a complexification

of polynomial f in two variables and the family of algebras of bounded polynomials on the

sets f ≤ c. In section 4 we describe the algebras of bounded polynomials for subsets of Rn,

where n is arbitrary, which we call weighted tentacles. We also provide a geometric proof

of the fact that for a unbounded subset of a proper algebraic set its algebra cannot be

finitely generated. In the next section we establish a correspondence between convex cones

and algebras of bounded polynomials on the sets described by monomial inequalities. At

the end of this thesis we prove a version of Schmudgen’s Positivstellensatz for bounded

polynomials.


