N

N

Algebres de polyndémes bornés sur ensembles
semi-algébriques non bornés
Maria Michalska,

» To cite this version:

Maria Michalska. Algebres de polyndémes bornés sur ensembles semi-algébriques non bornés. Math-
ématiques générales [math.GM]. Université de Grenoble; Uniwersytet 16dzki, 2011. Francais. NNT:
2011GRENMO074 . tel-00684253

HAL Id: tel-00684253
https://theses.hal.science/tel-00684253

Submitted on 28 Nov 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00684253
https://hal.archives-ouvertes.fr

UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE DE GRENOBLE
Spécialité : Mathématiques

Arrété ministérial : 7 ao(t 2006

Présentée par

Maria Michalska

These dirigée par Krzysztof Kurdyka
et codirigée par Stanistaw Spodzieja

préparée au sein Laboratoire de Mathématiques et

Katedra Rownan Rézniczkowych i Funkcji Analitycznych

et de ’Ecole Doctorale Mathématiques, Sciences et Technologies de
I'Information, Informatique

Algebras of bounded polynomials
on unbounded semialgebraic sets

Thése soutenue publiquement le 30 novembre 2011,
devant le jury composé de :

Ryszard Pawlak

Université de £6dz, Président

Zbigniew Jelonek

Académie polonaise des sciences, Rapporteur
Wojciech Kucharz

Université jagellonne de Cracovie, Rapporteur
Claus Scheiderer

Université de Konstanz, Rapporteur
Georges Comte

Université de Savoie, Examinateur

Andrzej Nowicki

Université Nicolas-Copernic de Torun, Examinateur
Krzysztof Kurdyka

Université de Savoie, Directeur de thése
Stanistaw Spodzieja

Université de £6dz, Co-Directeur de thése




Rozprawa doktorska

dla uzyskania stopnia doktora
na Uniwersytecie Grenoble

i Uniwersytecie Lédzkim

MARIA MICHALSKA

Algebras of bounded polynomials
on unbounded semialgebraic sets

Promotorami rozprawy sa KRzZYSZTOF KURDYKA oraz STANISEAW SPODZIEJA

LE BOURGET DU Lac / LODZ
2011






Dla babci Ireny i babei Jank:

ale przede wszystkim dla Macka






Contents

Introduction . . . . . . .. L 7
1. Preliminaries . . . . . . . . .. 13
Notations . . . . . . . . e e 13
1.1. Semialgebraic sets . . . . . . . . L 14
1.2. Puiseux parametrizations . . . . . . . . .. . L Lo 15
1.3.  Generators of an algebra . . . . . ... L oL L 18
1.4. Nonproper mappings . . . . . . . .« v v v vttt e e e e e 19
1.5. Properties of polynomials bounded on aset . . . . .. .. ... ... ... ... .. 21
1.6. Tentacle sets . . . . . . . . e 23
2. Polynomials bounded on subsets of the plane . . . ... ... ... .. ..., .. 27
2.1.  Characterisation of polynomials bounded on tentacles with different orders of the
parametrizations of their borders . . . . . . . ... oo 27
2.2.  Characterisation of polynomials with Puiseux coefficients bounded on tentacles
with nonempty interior . . . . . . . . .. L 34
3. Stability of algebras of bounded polynomials in two variables . . . ... .. .. 43
3.1. Bifurcation values . . . . . ... Lo 43
3.2. Fibres and bifurcation values of polynomials in two variables . . . . ... ... .. 45
3.3. Stability . . . ... 47
4. Algebras of polynomials bounded on subsets of R® . . . .. ... ... ... .. 53
4.1. Preliminary remarks . . . . . . . ... 53
4.2. Weighted tentacles . . . . . . . . . .. L L 55
4.3. Subsets of algebraicsets . . . . . . ... Lo 62
5. Monomial generators . . . . . . . .. .. L 67
5.1.  Generators of semigroups . . . . . . . ... Lo 67
5.2.  Semigroups of monomials bounded onaset . . . . ... ... Lo 69
5.3. Monomial bases of algebras of bounded polynomials . . . . . . ... ... ... .. 72
6. Some applications of theresults . . . . . .. ... .. ... ... 0. 7
6.1. Testing curves for bounded polynomials . . . . . . . ... ... ... ... ... .. 7
6.2. Schmiidgen’s Positivstellensatz for bounded polynomials on unbounded sets . . . . 81
Streszczenie . . . . . . . . L 91
Résumé . . . . . . e 97
Index . . . . . . e 103
References . . . . . . . . . . e 105






INTRODUCTION

Introduction

The main topic of the thesis is a study of algebras of polynomials which are bounded
on a given unbounded semialgebraic set. In particular to determine when a polynomial is
bounded on an unbounded semi-algebraic set.

At the origin of this thesis the motivation was to attempt a generalisation to the
case of unbounded sets of a celebrated theorem of Schmiidgen [Sm, 1991]. It states that
every positive polynomial on a compact basic semialgebraic set can be written as a sum
squares of polynomials multiplied by products of polynomials defining the semialgebraic
set. In the proof of Schmiidgen the assumption of compactness is essential. He obtained
this result when solving K-moment problem for compact semialgebraic sets and the proof
makes essential use of functional analysis methods (spectral measures). Schmiidgen’s
Positivstellensatz gives a possibility to construct an algorithm to compute lower bound
of a polynomial on a compact semialgebraic set. The condition that f belongs to an
appropriate preordering is used in programming. Since we obtained a version of the
theorem for bounded polynomials on an unbounded semialgebraic set .S, we felt that from
the point of view of applications it was vital to decide efficiently whether f is bounded
on S.

Optimization of polynomials (i.e. finding lower or upper bounds) on semialgebraic sets
is an important and challenging problem, both theoretically and practically. Nowadays
there is a a very intensive activity in this direction, based mostly on sums of squares repre-
sentations and more generally on Real Algebra methods. There is a number of books and
survey articles devoted to various aspects of this subject, for instance [L], [Lt] and [PaS].

In order to extend the method of Schmiidgen to the case of unbounded semialgebraic
sets one can consider the algebra of bounded polynomials on such sets. Actually this is
partially achieved in the last chapter of this thesis, having Schweighofer’s beautiful paper
[Sw] as one of the inspirations for the undertaken study. To this aim it is important
to understand the structure of algebras of polynomials which are bounded on a given
unbounded semialgebraic set. Surprisingly this problem has been studied only recently.
Actually in the PhD thesis of D. Plaumann (Konstanz 2008), supervised by Professor
C. Scheiderer, among other results it was proved that for regular subsets of R? (i.e. sets
equal to the closure of their interior) those algebras are finitely generated. Recently
Krug in [Krug] has constructed an example of a semialgebraic regular subset of R on
which the algebra of bounded polynomials is not finitely generated. However, this set
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is not basic closed, so the question of the finite generation remains open for this type of sets.

Let S be a subset of R™. Denote by
A(S) ={f e R[X] | f is bounded on S}

the algebra of bounded polynomials on S. The set A(S) is a subring of R[X]| and an
algebra over R. Note that if S is bounded, then A(S) = R[X]. Otherwise, the algebra
A(S) is a proper subring of the ring of polynomials.

In this thesis we address several problems concerning algebras of bounded polynomials.
First of all we tackle the problem of deciding the boundedness of a polynomial on a set.
We achieve it for polynomials in two variables for any semialgebraic set in Section 6.1,
using methods developed in Section 2. Also in the latter section we give a method of
finding generators of A(S) for a large class of semialgebraic subsets of R?. In Section 3 we
have established a surprising relation between complex bifurcation values of a polynomial
f and the stability of the family of algebras A(S.), where S. = {(z,y) € R?| f(z,y) < c}.

Throughout the thesis instead of Real Algebra methods we preferred to use more
geometric arguments, so we have avoided using standard language of Real Algebra. Since
the problems we are dealing with can be stated quite plainly, we tried to use as simple
and straightforward methods as possible and we hope that we have succeeded.

To simplify the study of algebras of bounded polynomials on a semialgebraic set .S, we
will consider some subsets of .S which we will call tentacles. A set M is a tentacle of the
set S if M \ B(0, R) is connected for any R > 0 and M is one of the unbounded sets in
the decomposition

S=KUMU...UM,,

where K is compact, [ € Ng and My, ..., M; are closed in S and pairwise disjoint tentacle
sets (see Theorem 1.19). Moreover, if [ = 0, then A(S) = R[X]. Otherwise, we have

A starting point for the results in Section 2 is the observation that if we consider
semialgebraic subsets of R?, we can assume that a tentacle M is of the form

{(z,y) €R?| Bi(y) <z < Baly), y > R},

where R is a positive real number and [;(1/Y),52(1/Y) are Puiseux series which
parametrise semialgebraic curves. If a tentacle M of the set S is not of the above form
(up to a linear change of coordinates), then A(M) = R, which implies that the algebra
A(S) is trivial. Thus throughout Section 2 we consider a semialgebraic set M of the above
form.
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In Theorem 2.4 we prove that if ord.. /31 # orde,f2, then
AM) =R[X'YY| d < ial,

where we put ords 8 = ordf3(1/Y) and o = min{ords. 31, ordof2}. Hence the algebra of
bounded polynomials in this instance is generated by monomials. The main point of the
proof is the comparison of the supremum of a polynomial with its appropriate coefficients.
This works whenever the width of the tentacle is essentially more than its distance from
the axis.

In the second part of Section 2 we consider the case when ords./31 = orde32 and
B1 # B2. We introduce a Puiseux series 5 with a finite expansion, which can be computed
in a finite number of steps from 5 and P2 (see Proposition 2.15). By identification of g
with the y axis we prove Theorem 2.16 whence it follows that

AM) =R[X,Y]NR ﬁ (X =By | d<in|,

where 7 = min{orde (81 — ),0rdeo(f2 — 5)}. We would like to note that it gives a
straightforward way of checking whether a polynomial f is bounded on M. Indeed,
it is a simple task to write any polynomial in terms of the above ring of bounded
polynomials with Puiseux coefficients (see Proposition 2.13), afterwards it suffices to
check the exponents of Y in such a representation. Note that the algebra A(S) need not
be generated by monomials (or isomorphic to such an algebra). We would like to add
that the introduction of polynomials with Puiseux coeflicients lets us treat all algebras
of bounded polynomials on tentacle sets as if they were generated by monomials, which
facilitates their study (compare Section 5). Moreover, usually it is quite difficult to
determine whether a polynomial belongs to a subring given by fixed polynomials, whereas
in the case of this extended ring the representations of f are obtained after simple
symbolic computation (note that 5 has a finite expansion).

In Section 3 we consider semialgebraic sets of the form

Se = {(z,y) € R?| f(z,y) < c},

where f is a polynomial and ¢ is a real number. The main result of this section is The-
orem 3.5 on stability of algebras A(S.). Namely, we prove that the algebras of bounded
polynomials on S, are, up to some point, insensitive to the change of the parameter c.
More precisely, for any ¢ < ¢ we have

A(Se) = A(Se)

as long as [¢,¢] N Be(f) = 0. The set of bifurcation values Be(f) is defined on page 44.
Its most notable feature is that it is finite and can be computed for any polynomial f in
two variables. The main tool in the proof of theorem on stability is a parametric version
of Puiseux theorem and results of Section 2. We hope that this approach illustrates
the connection between the bounded polynomials and the geometry of the fibres of f,
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and might shed a new light on properties of bifurcation values as well as properness
of polynomial mappings. In R? it would be also interesting to study the stability of
sets described by more than one polynomial inequality. This still leaves the case of
higher dimensions as an open problem. Although in simple cases (for example for sets
described by monomial inequalities as in Theorem 5.9) it is easy to see that they are
insensitive to the change of parameters, in general the problem does not seem easy to solve.

Section 4 is devoted to the study of algebras of polynomials bounded on sets in R™
for arbitrary n. The first part deals with a special type of sets, which we call weighted
tentacles and can be viewed as a "uniform deformation” of a lower-dimensional set along
the y axis. Namely, suppose the set S C R™ has a nonempty interior. Consider a set

M = {(5l(y)$17 see 75n(y)$n7y) € Rn+1‘ T E S7 Yy > R}

where R > 0 and $1(1/Y),...,5,(1/Y) are Puiseux series such that (;(y) are convergent
and have constant positive or negative sign for y € [R, 00).
Theorem 4.4 states that if we assume that A(S) is generated by monomials, then

n
AM) = AS)Y]NRIXYY S aphi = d],

i=1
where A € Q" is the tuple of weighs of the set M and we write for short X* = X" ... X,
Let us note that any semialgebraic subset of the real line has either a trivial algebra or
the algebra is equal to R[X] (hence generated by the monomial X). Therefore the above
statement generalizes Theorem 2.1 from Section 2. Moreover, in some instances in higher
dimensions it gives us a practical possibility of deciding the generators of the algebra of
bounded polynomials (as is the case with some examples in Section 6). The method of
proof is essentially the same as in Section 2.1 i.e. uses equivalence of norms in finite
dimensional spaces. Theorem 4.4 generalises and extends results of T. Netzer in [Net] who
deals only with projections of such sets on the first n coordinates and have been attained
using completely different arguments. Hence in [Net] the dimension of S and and the
tentacle is the same, moreover S is assumed compact, of which assumptions he makes
essential use.

In the last part of Section 4 we give an alternative proof (based on the nonproperness
set of Jelonek) of a fact already shown by D. Plaumann and C. Scheiderer in [P1Sd] that if S
is an unbounded subset of a proper semialgebraic set in R™, then the algebra A(S) cannot
be finitely generated. An important ingredient of the proof is Lemma 4.20 which gives
a nice correlation between an algebraic property of an ideal and the geometric property
of a mapping. Also in Section 4 we give an example (Example 4.2 of a semi-analytic
set in R? with a nonempty interior which has an infinitely generated algebra of bounded
polynomials), which is interesting from the point of view of the results of Plaumann and
Scheiderer on the finite generation of A(S) for regular semialgebraic sets in R2.

Because of the fact that algebras generated by monomials arise naturally in our study,
we turn to their properties in Section 5. Using classical methods of convex geometry we

10
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show the duality between convex cones of exponents of monomials and the algebras of
bounded polynomials on intersections of sets given by appropriate monomial inequalities
(Theorem 5.9). In particular, we would like to remark that algebras from Theorems 2.4
and 4.4 are generated by monomials. At the end of the section we compute the minimal
number of monomial generators for tentacle sets on the real plane. In this context one
easily sees that computation of the number of elements of the basis for an intersection
and a union of a finite collection of algebras generated by monomials is also only a
combinatorial task.

Suppose again that S C R2. From Theorem 6.2 on testing curves we get as a corollary
that a polynomial f is bounded on S if and only if it is bounded on a finite number of
generic representatives of a family of curves which depends only on the set S. The proof
of this fact based on the results from Section 2 constitutes the first part of Section 6.

In Section 6.2 we present a version of Schmiidgen’s Positivstellensatz for bounded
polynomials. Take a basic closed semialgebraic unbounded set

S={zeR" g1(x) 20, ..., gu(z) =0}
where g1, ..., gy are polynomials. A preordering associated with S is the set
T=¢ > s59°| so€> RXP
ce{0,1}w

Take a polynomial f. Suppose that the polynomials g; which describe S are bounded on
S. Moreover, suppose that S¢ N ¢ (S)Zar = ((S) (the definition of these sets can be found
on page 83). Theorem 6.13 states in particular that if f is bounded and greater than some
positive constant on S, then f € T". In the less likely case when S¢ = ((95), it suffices that
f is bounded and positive on S (see Theorem 6.10). In the proofs of both theorems we
used a simple observation that a mapping with generators (or the basis) of an algebra of

bounded polynomials as coordinates is, in some way, the “canonical” bounded mapping.
Hence in Schmiidgen’s Postivstellensatz we can try to substitute compactness of the set
by the assumption of boundedness of the polynomials. Nevertheless, note that even in the
compact case Theorems 6.10 and 6.13 introduce a property that if a given polynomial f
and polynomials g; which describe the set S lie in a certain subalgebra of R[X], then the
representation of f can be expressed with sums of squares from this subalgebra (compare
Example 6.11).

The author would like to thank first of all her advisors professor Krzysztof Kurdyka
and professor Stanistaw Spodzieja for their help and inspiration. My gratitude is infinitely
generated. Among other people who have helped the author to understand and manage
the undertaken study we would like to name in random order: Tomek Rodak for his helpful
comments, Daniel Plaumann and Claus Scheiderer for sharing their insights into the study
of the topic, Zbigniew Jelonek for fruitful discussions, Georges Comte for his prompt help
in the final stages and Adam Grzesinski for continuous spiritual support. Thank you.
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1. PRELIMINARIES

1. Preliminaries

In Preliminaries we will present some basic notions which will be used throughout the
thesis. As the main theme of this work lies in the scope of semialgebraic geometry, we will
start with some facts about semialgebraic sets and Puiseux series with a special emphasis
on those which parametrise semialgebraic curves. Afterwards we introduce the notion of
generators of an algebra, which will be essential in the study of bounded polynomials on
a set. Since a bounded polynomial on an unbounded set is necessarily nonproper, we will
make some remarks in Section 1.4 on the properties of nonproper mappings. At the end of
the Preliminaries we turn to crucial ideas of this thesis: algebras of bounded polynomials
and tentacle sets.

Notations

By R we denote the field of real numbers, by C the field of complex numbers, by N
the set of natural numbers (not including zero) and by Ny the set N U {0}. The set of
real polynomials in variables X7, ..., X,, we denote by R[X7,..., X,]. For brevity we will
often write X for the system of variables Xi,...,X,, and R[X] for R[Xq,...,X,]. By
convention, we will write uppercase X for variables and lowercase x for points. Every
polynomial of the form X{'--- X2 for aq,...,a, € Ny will be called a monomial.

For any set S and i € N by S* we mean the Cartesian product S x --- x S of i terms,
whereas we put S° = (). Furthermore, if S is a subset of a topological space denote by
IntS the interior of the set S, by S its closure and by FrS its boundary. For any set

S C R™ there exists a smallest algebraic set (with respect to the relation of inclusion)

which contains S. We will call it the Zariski closure of S and we will denote it by i

We will consider R™ equipped with the standard euclidean norm ||z|| = /> | 2? for
x = (r1,...,2,) € R For a set S C R" and a point z € R" we will write dist(x,S) =
infycs ||z — y||. Let us denote by S(z,r) and B(x,r) a sphere and an open ball in R",
respectively, with a centre in € R™ and radius r > 0. By [a, b], where a,b € R, we denote
the closed segment {t € R| a <t < b} if a < b, the set {a} if a = b and the empty set if
a>b.

Let Z be an ideal in R[X]. We will denote by V(Z) the set {z € R"| Vcz f(z) = 0}.
IfZ = (f1,..., fr) then we will write V'(f1,..., fi) instead of V(Z). For any set V C R"

13



1.1. Semialgebraic sets

we will also denote by Z(V) the ideal {f € R[X] | Voev f(x) = 0}. We will write
(fi,--., fr)R[X] when we want to make clear that (f1,..., fx) is an ideal in R[X].

Last but not least, we say that f has constant sign on U if it is positive, negative or
constantly equal zero on U. When we write f # 0, we mean that the function is not
constantly equal zero. If for f : U — R, where U C R", the partial derivatives gg{i for
i =1,...,n are well-defined on U, then we write Vf = (%, cee %) : U — R™ and call
it the gradient of the function f.

1.1. Semialgebraic sets

We will recall here some basic notions and properties concerning semialgebraic sets.
More details and further information can be found for example in [BCR], [BR] or [PD].

We call a set S C R" semialgebraic, if it is a finite union of intersections a finite number
of sets of the forms

{z e R"| g(x) =0} or {z € R"| h(x) > 0},

where g and h are arbitrary real polynomials in n variables. The class of semialgebraic
sets is the smallest class of sets containing the class of algebraic sets which is closed under
union, intersection, complement and projection.

We have the following well-known basic property of semialgebraic sets.

Property 1.1. If S is semialgebraic, then IntS, S, FrS and all connected components
of S are semialgebraic.

Note that for a semialgebraic set S we have IntS is empty if and only if 57 s
a proper algebraic subset.

We will say that a nonempty semialgebraic set S is of dimension n if n is the maximal
natural number such that there exists a homeomorphism ¢ : R" > B(0,1) — U, where

U C Sisopenin S.

A set S is called basic semialgebraic closed if it is of the form

for some g1,...,gr € RIX].

A mapping F : R" — R* is called semialgebraic if its graph is a semialgebraic set. If
k = 1 then the semialgebraic mapping will be called a semialgebraic function.

We give below a formulation of a well-known statement that we will often use (see
[BCR, Theorem 2.5.5] and [KOS]).

14
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Theorem 1.2. (Curve Selection Lemma) Let S C R"™ be a semialgebraic set and x €
R™ such that there exists a sequence in S converging to x. There exists a continuous
semialgebraic mapping v : [0,1) — R™ such that v([0,1)) C S and lim;_,;- y(t) = =x.
Moreover, if S is unbounded, then there exists a continuous semialgebraic mapping v :
[0,1) = R™ such that v([0,1)) C S and lim;_,;- ||y(t)| = oc.

Semialgebraic functions in one variable have a finite number of points where they are
not continuous and a finite number of intervals where they are monotone. Let us turn
now to semialgebraic curves i.e. sets which are images of some continuous semialgebraic
mapping in one variable. As a consequence

Property 1.3. An intersection of two semialgebraic curves is a finite union of points and
images of intervals by continuous semialgebraic mappings.
1.2. Puiseux parametrizations

Let us introduce a symbol T4 by following relations

kp

—T, (Tw)=Ti, (Ti)=T%.

==

T

By a Puiseux series we mean a formal series 8 of the form
> j
B=> bTu (1.1)
j=m

where m € Z, ¢ € N, b; € R for j > m. If § # 0, we can assume that b,, # 0. Then we
put ord8 = m/q and call the order of 8. Additionally we put ord0 = +00. Sometimes the
above series are called Puiseux-Laurent series, since we allow m < 0.

Definition 1.4. By a Puiseux series at infinity we will mean a Puiseuz series in variable

1/Y i.e. a series of the form
e 1
1\«
= b | = 1.2
5= (y) (12

where m € Z, ¢ € N, b; € R for j > m.

The numbers b; will be called the coefficients of 3. If 8 # 0 is a Puiseux series at infinity
of the form (1.2), we can assume that b,, # 0. By analogy we put ord.. = m/q and
call it the order at infinity of 5. Additionally we put ord,,0 = +oo. We will denote by
supp(3) the set {i/q € Q| b; # 0}.

By a complex Puiseuz series and a complex Puiseuz series at infinity we will mean
the series of the forms (1.1) and (1.2) respectively with complex coefficients.

The set of all Puiseux series considered with addition and multiplication forms a field.
The same is true for the set of all Puiseux series at infinity, complex Puiseux series as

15



1.2. Puiseux parametrizations

well as complex Puiseux series at infinity. By the standard properties of order (cf. [W,
Chapter 4]) we get

Property 1.5. Let 35,7 be Puiseuz series at infinity. Then
(1) ordeo3y = ordaS + ordeo?y.
(2) ordeo (S + ) > min{ords 3, ordecy}-

We have the standard Puiseux theorem (see [W, Theorem 3.2, Chapter 4]).

Theorem 1.6. (Puiseux Theorem) For any polynomial
f=ao(Y)+...+aq(Y)X?% € C[X,Y]
such that aqg # O there exist Puiseux series (B, ..., Bq with complex coefficients such that
= aa(Y)IL (X = Bi(Y)).

Note that the above equality is a formal equality in the ring of complex Puiseux series.
From Puiseux Theorem (cf. [W, Theorem 4.1, Chapter 4]) it follows that any algebraic
set in C? can be parametrised locally by Puisuex series. In a suitable coordinate system
one can always choose the parametrization (see [W, Theorem 2.2, Chapter 4]) to be of the
special form = = B(t?), y = t4, where ¢ € N, t € U, U is a neighbourhood of the origin
and f is a complex Puiseux series such that 3(t?) converges for every t € U.

Consider the projective closure in P?(C) of a nonempty algebraic set f~1(0) € C2. After

a choice of appropriate affine coordinates we conclude that the set f~1(0)\ (C x B(0, R))
for a sufficiently big real number R is parametrised at infinity by

v = B(t7)
y=1 (1.3)

where ¢ € N, [t/ > R and f is a complex Puiseux series at infinity such that [(t9)
converges for every |t|9 > R.

If for a Puiseux series at infinity /3 there exists a closed half-line I C R such that 3(y)
is convergent for y € I we will say that 8 is a convergent Puiseux series at infinity. If this
be the case, we will write 5 : I — R and treat 3 both as a Puiseux series and a real function.

Take an unbounded semialgebraic curve I' € R""!. We will say that the tuple of
convergent Puiseux series at infinity 5 = (51,..., ) is a special Puiseuz parametrization
of the semialgebraic curve at infinity if there exists a closed half-line H C R and a compact
set K C R™*! such that

L={(B1(y).---,Buly),y) e R y e H}

outside IntK. Since we will use only the above parametrizations, we will call such a tuple
simply a Puiseur parametrization.

16
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Note that if f € R[Y][X] for y € U, where the set U C R is connected, has a constant
number of distinct complex and real roots, then it has a constant number of real roots
(see for example [BR, Corollary 1.5.10]). Moreover, possibly after a change of coordinates,
there exists a real R sufficiently big such that every connected component of the set
f710)\ B(0,R) C C? is parametrised by distinct parametrizations of the form (1.3).

Thus if 8 is a Puiseux series at infinity such that f(8(y?),y?) = 0 and B(yg) € R for
some real number y¢ > R, then 3(y?) € R for every real y? > R, provided R is sufficiently
big. Therefore, 8 is a Puiseux series at infinity with real coefficients. In particular we get
that any unbounded semialgebraic curve in R? has a special Puiseux parametrization at

infinity. This observation enables us to show that

Proposition 1.7. Every unbounded semialgebraic curve in R™ ' after some change of
coordinates has a special Puiseur parametrization at infinity.

Proof: Indeed, take an unbounded semialgebraic curve I'. There exists a permutation
of coordinates such that the last coordinate of the curve is unbounded. Consider the
projection ;41 : R™ — R2 onto the ith and (n + 1)st coordinate. From previous
considerations the curve m; ,41(I') C R? has a special Puiseux parametrization at infinity
Bi. It is easy to see that the tuple (f1,...,03,) is a special Puiseux parametrization at
infinity of I'. |

From simple properties of analytic functions combined with properties of order and
semialgebraic curves (Properties 1.5 and 1.3) we get

Property 1.8. Take a closed half-line I C R and Puiseux parametrizations of semialge-
braic curves at infinity B,y : I — R. The following hold:
(1) there exists a half-line H C I such that (B—~)(y) has a constant sign for ally € H;
(2) either B =y or the intersection of their graphs consists of at most finite number of
points;
(3) ordeo3 > 0 if and only if 8 is bounded on some half-line H C I;
(4) ordeo8 > 0 if and only if 5 converges to 0 at infinity;
(5) if ordeo 8 > ordeoy then there exists a half-line H C I such that |5(y)| < |y(y)| for
y € H and on the other hand, if there exists a half-line H C I such that |B(y)| < |v(y)]
fory € H then ordeoS > ordsoy.

Proof: Indeed, (1) and (2) follow from properties of analytic functions and semialgebraic
curves. To prove (3)-(5) without loss of generality we can assume that 3,~ # 0.

Property (3) follows from properties of analytic functions. Indeed, for some ¢ € N we
can write 3(Y9) = h(1/Y), where h = 3772 ;ZP. If ordeo 8 > 0, then p > 0 and in some
neighbourhood of 0 function h is analytic, hence it is bounded on some (possibly smaller)
neighbourhood of 0. In consequence 3 is bounded on some unbounded set in R. On the
other hand, if 8 is bounded on a half-line H, then h is bounded on a set either of the form
(0,€) or (—¢,0) for some € > 0. Since h is the sum of a power series, it is also bounded on
a neighbourood of 0. Hence p > 0 and ordo8 = p/q > 0. Analogously we prove (4).
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1.3.  Generators of an algebra

To prove (5) observe that from (2) there exists a half-line H C I such that for y € H

we have . -
(L) (b + Bw))

(1 (co +3())

where by, co # 0, r = ordeo 3, s = ords7y and B ,7 are Puiseux parametrizations such that

orduo 3, 0rdsgy > 0. Hence if r — s > 0, then by (4) we have |g(y)\ < 1 for y belonging to
some half-line. The second implication in (5) follows immediately from the first one. W

r—S

bo + B(y)
co+7(y)

Y

)

‘/B(y)' _
7(y)

‘ 1
Y

1.3. Generators of an algebra

Let A be a commutative algebra with a unit over R i.e. a linear space over R with a
bilinear mapping - : A x A — A such that (A, +,-) is a commutative ring with a unit 14
(see [Lang]). Throughout this paper we will call such A an algebra.

Let ¢ € A. We put ¢(* = 14 and ("' = (- (" for n € Ny. For ¢ = ((1,...,¢) € A”
and a = (a1,...,q;) € N where k € N, we will write (¢ = ¢! ok

Note that for any Z C A, Z # () the set

{g(<17>Ck)| keN, gER[Xl,...,Xk], C1yevey Cio GZ}
is a subalgebra of A. We will denote it by R[Z].

Definition 1.9. We say that an algebra A is generated by a set Z C A if A =R[Z]. By
convention R[)] = R.

In other words, an algebra A is generated by a set Z C A if for any f € A there exist

some k € N, a finite set A C N’g, elements (1,...,(x € Z and real numbers a, for a« € A
such that
[ = Z aa(”,
acA

where ¢ = (C1,...,C). Note that by convention (* = 14. If Z generates A, then we will
talk about the elements of Z as generators of A. If a set is defined by a formula ¢, i.e. it
is of the form {¢| ¢(¢)}, and the union {(i,..., (s} U{(] ¢(¢)} generates an algebra A we
will write simply A = R[(1, ..., (, ¢| ¢(0)].

Definition 1.10. We will say that Z is a basis of A if it generates A and

Yeez CER[ZN\{C}].

For brevity we will often say that Z is a basis if it is a basis of R[Z], meaning that
no element of Z can be expressed by a polynomial in other elements of Z. A linear space
spanned over R by some set Z of polynomials usually is not an algebra. For instance
X2 ¢ lin{1,X,Y}. Even if a linear space happens to be an algebra its linear basis need
not be its basis as an algebra. For example lin{X?| i € Ny} is an algebra generated only
by X but the set {X?| i € Np} is linearly independent over R.

18
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Property 1.11. The following properties hold.
(1) If ZcC Z', then R[Z] C R[Z'].
(2) If¢ € R[Z], then RIZU{(}] = R[Z].
(3) If an algebra A is generated by a finite number of elements, then it has a basis.

Proof: The first and second statements are obvious.

Let A = R[Z], where Z is a finite set. We will prove property (3) by induction with
respect to the number of elements of Z. If Z = () then A = R and () a basis of A.
Assume that any algebra generated by k& — 1 elements has a basis. Take Z = {(1,...(;}
If & ¢ RIZ\ {¢}] for i = 1,...,k, then Z is a basis of A. If (;, € R[Z \ {¢,}] for
some ig = 1,...,k, then by property (2) we get A = R[Z \ {(;,}] and by the induction
hypothesis R[Z \ {(;,}] has a basis. This ends the proof. |

We should note that if R[Z] C R[Z’], then we cannot say anything about the relation
between Z and Z’. For instance R[X —Y, X +Y| = R[X, Y], but the sets {X - Y, X +Y}
and {X,Y} are disjoint. This shows us also that a basis need not be unique. Moreover,
an algebra can have two distinct bases which need not have the same number of elements.
Take for example A = R[X?+ X, X?]. Since X = (X? + X) — X? then A = R[X], so {X}
is a basis of A. Observe that {X? + X, X2} forms a basis of A. Indeed, X2 + X ¢ R[X?]
because ordX? + X = 1 and ordf(X?) # 1 for any polynomial f € R[X]. On the other
hand X? ¢ R[X? + X] because if X? = f(X? + X) for some polynomial f € R[X], then
(—=1)2 = f((—1)2—1) = £(0) = 0. Note that elements of a basis need not be algebraically
independent, since in this example [(X? + X) — X?]?2 — X2 = 0.

From now on we will consider only subalgebras of the algebra of polynomials in n vari-
ables with real coefficients. We will identify 14 with 1 i.e. with the constant polynomial.
Note that a subalgebra of the ring of polynomials which is generated by a finite number
of elements can be viewed as a subsemigroup of monomials (cf. Section 5.1).

1.4. Nonproper mappings

Take a set S C R™. We say that a mapping F' : S — R™ is not proper at y € R™ if
there is no neighbourhood U of y such that F~!(U) is compact. Put

Jp ={y € R™ | F is not proper at y}.
We will call Jg the set of nonproperness of F or Jelonek set of F. We will say that
F:S — R™ is proper on S if the set Jr is empty. If F'is proper on S = R", then we will
simply say that F' is proper. Obviously, if a mapping F' : R" — R™ restricted to a set

S C R™ is nonproper on S, then it is nonproper.

Jelonek in [J] has shown that
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1.5.  Properties of A(S)

Theorem 1.12. Let n > 2 and F : R — R™ be a non-constant polynomial mapping.
The Jelonek set Jp is closed, semialgebraic and for every nonempty connected component
U of Jp we have

1<dimU <n-—1.

Moreover, U is unbounded.

In fact, for every point x € Jp there exists an image of the real line by a polynomial
mapping contained in Jr and passing through x.

In the case when .S is unbounded and closed we have that I’ is proper on S if and only
if for every sequence (a,)nen of elements of S we have

if  lim flan|| = oo, then  lim ||F(an)| = oo.

Let f : R™ — R be a function. We say that c is an asymptotic value of f on the set
S C K™ if there exists a sequence (a,) C S such that
lim ||a,|| =00, and lim | f(a,)| =c.
n— 00 n—o0
We can see that f has asymptotic values on a closed unbounded set S if and only if it is
not proper on S. It is easy to see that in this case

Jr ={y € R| y is an asymptotic value of f}.

We will call asymptotic values of f on R” simply asymptotic values of f.

Now we will show a proposition used further in the thesis that if a polynomial has
compact fibres then it is proper. Indeed,

Proposition 1.13. For any polynomial f € R[X] if a fibre f~'(a) is compact, then either
f~(la, b)) is compact for any b > a or f~1([b,a]) is compact for any a > b.

Proof: For polynomials in one variable the claim is obvious, whereas constant polynomials
do not meet the assumptions. Let us suppose that f is a nonconstant polynomial in
n > 1 variables. From the assumption, the set R \ f~!(a) has exactly one unbounded
connected component U. We have that either f(U) = (a,00) or f(U) = (—0o0,a), because
otherwise f would be bounded on R"™. Without loss of generality assume the first case.
Hence for every b < a we have f~!([b,a]) is closed and bounded, since f~'([b,a]) N U = 0.
Therefore, we get the claim. |

In particular Proposition 1.13 implies that a polynomial is proper if and only if all
its fibres are compact. Indeed, if f € R[X] is proper then all fibres of f are compact.
Assume that all fibres are compact. Take any ¢ € R and apply Proposition 1.13 to the
polynomial (f — ¢)?. We get that the set ((f — ¢)?)71([0,1]) is compact. Hence ¢ cannot
be an asymptotic value of f and so f is proper.
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1. PRELIMINARIES

1.5. Properties of polynomials bounded on a set

In the two following subsections we will give a motivation of studying algebras of
bounded polynomials from the viewpoint of tentacle sets (see Definition 1.18). First
we give properties of polynomials bounded on a given set. Afterwards, we will focus
on decomposition of any semialgebraic set and the relations of algebras of bounded
polynomials on this set.

Let S C R™ be a given set. By A(S) (or by A if it does not lead to confusion) we
denote the set of all polynomials bounded on the set S. It forms an algebra since any
linear combination as well as multiplication of a finite number of polynomials bounded on
S is a polynomial bounded on S.

For convenience, throughout this work we will set A(f)) = R[X] and treat the empty
set as if it were compact. We will also quite often say that A is trivial if A = R.

Let us give some basic properties of algebras of bounded polynomials

Property 1.14. Let S, M C R"™. The following hold
(1) if SC M then A(M) C A(S);
2) S is bounded if and only if A(S) =R[X];
) A(S) = A(9);
4) ASUM)=A(S)NAM);
5) if (S\M)U(M\S) is bounded then A(S) = A(M).

w

(
(
(
(

Proof: Properties (1) and (4) are obvious.

To prove (2) it suffices to take under consideration the square of the euclidean norm
| X ||? which is polynomial. If S is bounded then || X||? is bounded on S, by definition. Since
x? < ||z||? for any z € R™ and i = 1,...,n, we obtain that X; € A(S) fori =1,...,n.
Hence R[X] C A(S). On the other hand, if R[X] = A(S), then ||X]|? is bounded on S.
Therefore S is bounded.

Let us note that any polynomial g is continuous and well defined on R"™. Hence if g is
bounded on S then it is bounded on S. This gives us (3).

Since S\ M and M \ S are bounded sets, by (2) and (4) we get A(S) =
AMNS)NAMN\S) = AMnNS) and AM) = A(M N S) by analogy. This gives us
property (4). [

The opposite implication in point (5) of Property 1.14 is not true. For example take
sets S = {2?y? <1} and M = {2?y? < 4}. It is easy to show that A(S) = R[XY] = A(M)
(cf. Theorem 2.1 in Section 2.1). But S\ M is empty and M \ S is not bounded.

Note that A(SN M) D R[A(S)U.A(M)] but equality need not hold. Take for instance
S ={(zy?*)? <1} and M = {(2?y)? < 1}. We get that XY € A(SNM)\R[A(S)UA(M)],
though (XY)? does belong to both. Of course, we cannot also demand an equality in the
relation R[A(S) U A(M)] D A(S) UA(M).
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1.6. Tentacle sets

We will state a trivial but useful remark which we will cite quite often. Let X, ), Z
be some normed spaces.

Remark 1.15. A function f: X — Y is bounded on M C X if and only if there exists a
mapping ¢ : Z — X such that ¢(Z) D M and f o ¢ is bounded on ¢~(M). Moreover, f

is bounded on M C X if and only if for any mapping ¢ : Z — X the superposition f o ¢
is bounded on ¢~ (M).

Indeed, to show the necessity of the condition in the first part of the remark it is sufficient
to take ¢ = idy. The sufficiency can be shown by noticing that if one takes a ¢ such that
#(Z) D M then for any x € M there exists z € ¢~1(M). Hence for some constant R and
any © € M we have |[f(z)|| = [|f(¢(2))]] < R. The second part follows from a similar
argument.

We say that a mapping ¢ : R — R"” is an automorphism of some type (eg. polynomial,
rational) if the mapping itself, as well as its inverse are of the given type. We have

Property 1.16. Let ¢ be a polynomial automorphism of R™ and S some subset of R™.
Then

A(S) =R[Z] = A(¢(9)) =R[p; " 2], (1.4)

where ;1 Z = {Cop~ | ¢ € Z}. In other words, ¢ induces an isomorphism of the algebras
A(S) and A(¢(S)).

Proof: If we put ¢;!(f) = fo ¢! and ¢.(f) = fo ¢ for any f € R[X], then we see
that ¢, and ¢, ! are homomorphisms. Moreover, ¢, is the inverse of ¢ . Hence ¢, is
an isomorphism of R[X]. From Remark 1.15 we get that ¢, ! restricted to A(S) is an
isomorphism of A(S) and A(¢4(S5)). [ ]

In particular, a linear change of coordinates induces an isomorphism of corresponding
algebras. We would like to also note that to study if a polynomial is bounded on a set it
does not suffice to study its leading term. Indeed, look at the example below.

Example 1.17. Take a set S; = {(z,y) € R? | 0 < 23 +y < 1}. The polynomial
fi = X3 +Y is obviously bounded on S;. But its leading term X? is not bounded on S;.
Take a set So = {(x,y) € R? | 0 < 2y < 1} and a polynomial fo = XY + Y. Its leading
term is bounded on Ss, but the polynomial itself is not.

To finish this section let us remark that we can assume that the set of generators of
any algebra A C R[X] is at most countable. Indeed, A as a linear subspace of R[X] has
an at most countable linear basis. In particular, the linear basis is a set of generators
of the algebra A. Therefore, without loss of generality we will only consider at most
countable sets of generators of any given algebra A C R[X].
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1.6. Tentacle sets

We will start with a notion frequently used throughout this thesis. Right afterwards
we will give its motivation in Theorem 1.19.

Definition 1.18. A nonempty unbounded semialgebraic set M C R™ is called a tentacle
set if for any r > 0 the set M \ B(0,r) is connected.

Due to the classical properties of semialgebraic sets we have the following

Theorem 1.19. Let S C R" be a semialgebraic set. Then there exists | € Ny such that
S=KUM;U...UM, (1.5)

where K is a bounded semialgebraic set and M; are pairwise disjoint tentacle sets which
are closed in S, i.e. M; NS = M;. Moreover, if S is basic closed, then K is basic closed.

Proof: If S is bounded then put K = S and [ = 0. Assume that .S is unbounded.
Consider a rational automorphism of R" \ {0} given by

X

o(x) = R

for z € R™\ {0}. We have that ¢(R™ \ B(0,R)) = B(0, %) \ {0} for any R > 0. Since ¢
is semialgebraic, then ¢(S) C R™ is semialgebraic. The origin lies in ¢(S) \ ¢(S). Hence,
by the local conic structure of semialgebraic sets ([BCR, Theorem 9.3.6]), we get that the
number of connected components of ¢(.5) is equal to the number of connected components
of $(S)NS(0, ) for a sufficiently small fixed real number +. Hence there exists R > 0 such
that the number of connected components of ¢(S) N B(0, 1) for every L < % is constant.
This gives us precisely that the number of connected components of S\ B(0,r) for r > R
is equal to some [ € Ny.

Take K = SN B(0,R) and for ¢ = 1,...,l denote by M; the connected components of
S\ B(0, R). It is easy to see that if S is a basic closed semialgeraic subset then K is also
basic. |

The above proof follows also for example from adapted cell decomposition (see [BCR,
Theorem 2.3.1]) and is in fact its special restatement, but we feel that this approach gives
a shorter and less technical proof. Note that in the above theorem we rule out tentacles
which sum up to a tentacle.

Remark 1.20. Tentacles M; in Theorem 1.19 are unique in the following sense. If S =
K'UM{U...UMj,, where the conditions of Theorem 1.19 hold for M|, i <U, then I =1
and there exists R > 0 such that, possibly after some permutation of indices,

M; \ B(0,R) = M\ B(0, R).

In the decomposition (1.5) we can imagine that S is an octopus with K as its trunk
and M; as its tentacles. Hence we will say that M; are the tentacles of the set S. The
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1.6. Tentacle sets

author was inspired to call unbounded "parts” of sets in such a way by the paper [Sw].

Let us remark that using notation from Theorem 1.19 we have

l
A(S) = () ADML). (1.6)
=1

The equality follows immediately from Theorem 1.19 and Property 1.14. Hence we see
that to study the algebra of bounded polynomials on a semialgebraic set it suffices to
consider the algebras of bounded polynomials on its tentacles. Moreover, since A(S) =
A(S), it suffices to study closed sets. And this is exactly what we are going to do in the
Sections 2 and 5.

Example 1.21. Take
S ={(z,y) eR?| |z| <1} U{(z,y) € R?| [y < 1}.
Then S = K U M; U My U M3 U My, where K = {(z,y) € R?| |z| <1, |y| <1} and

My ={(z,y) eR?| |z[ <1, y < =1}, Mo ={(z,y) €R?| [z <1, y > 1},
M; = {(l‘,y) € R2| r < —1, ‘y| < 1}7 M, = {(xvy) € IR2| x> 1’ |y’ < 1}

It is easy to see that A(M;) = A(My) = R[X] and A(M3) = A(M4) = R[Y]. Hence
A(S) = A(S) = R[X]NR[Y] = R. Note that the algebras of bounded polynomials on the
tentacles are nontrivial whence the algebra A(S) is.

Let us turn to the case of subsets of the real plane R2. Now we can state a remark
that explains the notation that will be used throughout Section 2.

Proposition 1.22. Take a semialgebraic set S C R%. There exists R > 0 such that
after a linear change of coordinates the closure S has a decomposition (1.5) such that for
i=1,...,0if

A(M;) #R

then M; is of one of the forms

{(z,y) € R*|B1(y) < = < Pa(y),y = R} or {(z,~y) € R*|Bi(y) < @ < Ba(y),y > R},
(1.7)
where B1, Py are Puiseur parametrizations at infinity of continuous semialgebraic curves
well-defined on the half-line [R,0).

Proof: Indeed, assume that S is unbounded. If F'rS is bounded, then for a sufficiently
big R > 0 we have S\ B(0, R) = R?\ B(0, R). Obviously, A(S\ B(0, R)) = R.

Assume that FrS is unbounded. We can write that FrS C f71(0) for some noncon-
stant polynomial f : R? — R. Change the coordinates so that up to the sign f is of the
form

d
F=X"4> a(y)x,
i=1
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where dega; < i. In such case, all tentacles of f~1(0) have special Puiseux parametriza-
tions up to a sign change. Hence a tentacle of S that is not of the form (1.7) must for
some r, R > 0 and Puiseux parametrizations /31, 82 : [R,00) — R contain a set

{(,y) R}z >r, [y <RIU{(z,y) ER’|z>r, y> R, 2> Pi(y)} U
U{(z,—y) eR} z>r y >R, x> Baly)} (1.8)

or a mirror image of this set by symmetry with respect to the y axis. Denote the
above tentacle by M. Take g € A(M). We have A(M) C R[Y], because for each yo
the set {(x,y0)| * € R} N M is a half-line, hence the polynomial g(-,y0) is bounded if
and only if g does not depend on X. Therefore we have that g(X,Y) = ¢(1,Y). In
particular, g is bounded on the border of M. We have that there exists C' > 0 such that
lg(B1(y),y)| = |g(1,y)] < C for y > R. Hence g cannot depend on Y, otherwise it would
not be bounded. Therefore, the polynomial g is constant. |

Note that if M; is of the form (1.7), then it still may happen that A(M;) = R (for
example see Corollary 2.9 in Section 2.1).

Under the notation of the above proposition due to Property 1.8 we can demand that
b1 — B2 has a constant sign on the appropriate half-line. In this case we will call 51 and S5
the parametrizations of the borders of a tentacle set. Hence if Int(M) # () for a tentacle
M, then we get 51 < (2 on the appropriate half-line. We have that Int(M) = ) if and

only if 51 = fBs.
Any tentacle of the form (1.7) after a change of coordinates is simply of the form

{(z,y) €R?| Bi(y) <z < Baly), y > R}

where R € R and [, 82 are Puiseux parametrizations at infinity of continuous semi-
algebraic curves. Therefore on the real plane it suffices to study algebras of bounded
polynomials on nonempty sets of the above form with 51 — B2 of constant sign. For
simplicity of notation we will demand that all tentacle sets in R? are such sets.
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

2. Polynomials bounded
on subsets of the plane

In this section we will give a characterisation of algebras of polynomials bounded on
tentacle sets in the real plane. In the first section we will consider the easier case of
tentacles with parametrizations of their borders having different orders at infinity. For
such tentacles the algebras of bounded polynomials are easily characterised (see Theorems
2.4 and Section 5).

In the second section we will tackle the case of equal orders. We give an efficient method
of checking if a polynomial is bounded on such a tentacle (Proposition 2.13 combined with
Theorem 2.16) by giving a characterisation of an algebra of polynomials with Puiseux
coefficients. We leave out the case of tentacles with empty interior until its study in any
dimension undertaken in Section 4.3.

As to notation, in the cases when we feel that it does not lead to confusion in
expressions of the form A({(z,y) € R?| a < f < b}) or B,({(z,y) € R?| a < f < b}) we
will often leave out the brackets and write simply A(a < f <b) and By(a < f < b).

2.1. Characterisation of polynomials bounded on tentacles
with different orders of the parametrizations of their borders

Throughout this section we will consider a tentacle in R? of the form

M ={(z,y) € R?| Bi(y) <z < Ba(y), y > R}, (2.1)

where R > 0 and (1, f2 are Puiseux parametrizations at infinity of two semialgebraic
curves such that the sign of 5 — f2 is constant on [R,00). It is crucial to note that
throughout this paper such sets are meant to be unbounded, that is 51(y) < fa(y) for
every y big enough. For the purposes of this thesis we assume 0 - oo = 0.

Put o« = min{ordf1, ordecB2}.

In this section we will give an elementary characterisation of the algebra of bounded

polynomials on the above type of set with orde/31 # ordecf2 (Theorem 2.4). We will
also, due to Theorem 2.7, attribute the same characterisation to sets M with "trivial”

27



2.1. Polynomials bounded on tentacles with borders of different orders

asymptotics, that is the sets containing a half-line. The key to prove these results is
Theorem 2.1.

We start with some remarks needed to prove the crucial Theorem 2.1. Denote

[Flluw = sup [F(z)|

z€[u,v]

for u,v € R, F' € R[X]. For u < v it is a norm in R[X].
The mapping

d
, d
=0
denoted as || - ||max 18 also a standard norm in R[X].
For a function f = Z a;(Y)X? defined on R x I C R? and polynomial with respect

to X we will write deg e f d if aq is not constant zero function and degy 0 = —oo. For
the above f, a given y € I and any A € R we have

d d
f(Az,y) = Zai(y)(/\iﬁ)i = Zai(y))\ixi.
i=0 =0

Given A > 0 and v < 1 we see that X € [vA,\] if and only if 2 € [v,1]. Therefore,

sup |F(z\)| = sup |F(z\)] = sup |F(z)| for any function F' : R — R. Hence for
z€(v,1] TAE[VAA] LIS
any fixed y we have |[f(X, y)[loxx = [f(AX,y)l[o,1 and

1 fOAX, ) |l max = zi%axd ’)‘iai(y»

Moreover, the space of polynomials in one variable of degree not bigger than d is of a finite
dimension. Hence all norms on this space are equivalent. In particular, for v < 1 there
exist positive constants w(d,v) = w, Q(d,v) = Q, depending on d and v only, such that

[Ellor 2 @[ Fllmax — and  QFllo1 < [[Fllmax

for any real polynomial F' of degree not greater than d.
d .
For a function f = ) a;(Y)X" polynomial with respect to X, some v < 1 and any
i=0
positive convergent Puiseux series at infinity 5 we have

Hf(X y)Hvﬁ(y - Hf(ﬁ(y)Xv y)”v,l >
Z W[ f(BY)X, Y)lmax = wmaxizo,...a B (y)ai(y)] (2:2)

and
1= QX )lsw),80) (23)

_max |8 (y)ai(y)] > AUl (B(y)X,y)

Ve

for any y > 0 such that S(y) converges to a positive value and f is well defined.
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

Moreover, if 8 = bq(5)*+terms of higher degree in 1/Y and a = Ag+A1Y +..+ Ay Y'*
then .
a-pi= Akba(?)m_k + terms of higher degree in 1/Y

In other words
a-f'= AkbaYk_“’ + terms of lower degree in Y

for any ¢« € Ny. Hence
ordeg(a - BY) = —dega + i - ords 3. (2.4)

Now we are prepared to prove a theorem.

Theorem 2.1. Let v < 1 and 8 be a convergent Puiseux series at infinity with 5 > 0 on
[R,00), where R > 0. Set

Kyp={(z,y) € R?| vf(y) <z < B(y), y > R}.
d .
Take f =Y a;(Y)X" € R[X,Y]. Then the polynomial f is bounded on K, g if and only if
=0

1-a>dega;

fori=0,...,d, where « = min{orde, 3, ordocv3}.

Proof: In this context a@ = ords3, because we have ord,,v3 = ords3 for v # 0 and
ordeovf = 0o for v = 0. We may assume that degy f = d.

Let us remark that since K, 5 N {(z,y) € R*| y = yo} = [vB(v0), Byo)] x {yo} for any
Yo > R, the polynomial f is bounded on K, g if and only if there exists a constant C' € R
such that for any yg > R

C> sup |f (2, y0)l = lF (X, 90) lByo),B80v0) (2.5)
zeMN{(z,y)| y=yo}

Let us assume that f € A(K,g). Taking into account equation (2.5) we get that there
exists a constant C' such that for any y > R

1 (X, llopw),p) < C.

Therefore, from inequality (2.2) it follows that for any y > R and any i = 0, ..., d we have

C > (X9 lopew)p) = wii%axdlﬁi(y)ai(y)l > w|B'(y)ai(y)]

geeey

for the constant w = w(d,v) depending only on degy f and v.
Since the expressions (Y )a;(Y) for each i = 0,...,d are bounded on the half-line
{y € R| y > R} and their order at infinity is well defined, we get

0 < ordeo|B'(V)a; (V)| = —dega;(Y) +i -

by (2.4).
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2.1. Polynomials bounded on tentacles with borders of different orders

Now let us assume that i > dega; for all i = 0,...,d. In such a case, from (2.4)
and Property 1.8 it follows that all functions $‘a; are bounded outside some nonempty
neighbourhood of 0. Therefore, combining it with inequality (2.3), we have that there
exists a constant 2 = (d, v) depending only on degy f and v. Furthermore, there exists
a constant C' > 0 such that for each y > R we have

C> max 5 (gaily)| = X s o0

Uy

Therefore we proved our claim. |

Let us turn to a kind of symmetry in the behaviour of bounded polynomials in a
corollary that will be often more convenient to use then Theorem 2.1. Let v < 1 and g be
a convergent Puiseux series at infinity with § > 0 on [R, 00), where R > 0. Set

Kyp={(z,y) eR*| vB(y) <z < B(y), y > R},

Ss={(z,y) €R*| —B(y) <z < B(y), y > R},
Lg={(z,y) eR* 0 <z < S(y), y > R}.

Figure 1. Sets K, 3, Sg and Lg.
The set Sg is the union of Lg and its reflection with respect to the y axis,
whereas K, 3 need not contain a half-line.

Corollary 2.2. Take [ = Zd: a;(Y)X? € R[X,Y]. The following conditions are equivalent
(1) the polynomial f is Zboounded on Ky g
(2) the polynomial f is bounded on Sg,
(3) the polynomial f is bounded on Lg,
(4) i-a>dega; fori=0,...,d.
In other words

A(K,5) = A(Sp) = A(Lg) = RIXYV| d <i-ordef, d,i€ Ny
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

Proof: The equivalence of (1) and (4) is the essence of Theorem 2.1. For equivalence of
(2) and (4) we put v = —1. Analogously, for equivalence of (3) and (4) we put v =0. W

Since the reflection with respect to the y axis is a linear change of coordinates it is
easy to conclude from Theorem 2.1 and Property 1.16 that the assertion of Theorem 2.1
holds also if § has constant negative sign and v > —1. Hence we conclude that

Remark 2.3. The algebra of polynomials bounded on the tentacle
{(z,y) €eR?*[ ap(y) <z <bB(y), y > R},
where a®> +b?> > 0 and B # 0 is a Puiseux parametrization, is of the form
R[XYY d <i-ordsf, d,ie Ny

Now we will give the characterisation of algebras of bounded polynomials on a tentacle.
Recall that we consider the tentacle M = {(z,y) € R?| B1(y) < x < B2(y), y > R} where
B1, P2 are Puiseux parametrizations and o = min{ordsc 1, 0ordeo 32}

Theorem 2.4. If ords 51 # ords2 then
A(M) = RIXYY d <ida],

where a = min{orde, 31, 0rdec B2}

BRFBR BIRT ~ ~

Figure 2. The set K, g, is contained in M for R” big enough.

Proof: Without loss of generality we can assume that orde,.f1 > orde(B2. Obviously
B1 # B2 and we have that (1, fo parametrise semialgebraic curves.We have

M {(z,y) € R*| y = R} = [B1(R), f2(R)].
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2.1. Polynomials bounded on tentacles with borders of different orders

Hence 81 (R) = vf2(R) for some v < 1. By Property 1.8 of the orders at infinity of Puiseux
parametrizations, we can demand R to be great enough so that |51(y)| < |vB2(y)| for all
y > R. Take K, g, and Sg, as on page 30. Then

Sg, DM D Ky p,.

From Corollary 2.2 we get A(M) = R[X'Y?| d < ial. [ |

Let us illustrate the result with an easy example.

Example 2.5. Tentacle sets given by the following inequalities have the same algebra of
bounded polynomials

1

<z <
y2

<z <

)

< |
< | =
<o

00 e’}

1 2 1 -2
, g —.gxgg — and —gxgyi
' yz ' yz 2

=2 =1

where y > 3. The algebra of bounded polynomials in each case is precisely R[X, XY] by
Theorems 2.1 and 2.4.

Now let us drop the assumption that ord..31 # ord..f2 and assume instead that the
set M contains a half-line of the y axis. First, we show

Proposition 2.6. If M = {0} x [R,00) for some R € R then

AM) =R[XY*| k € Ng|.
d
Proof: Let f = > a;(Y)X"* € A(M). Then
i=0

f(0,y) = const

for y > r. Therefore ag = const and we obtain f € R[XY*| k € Ng]. On the other hand,
if f € R[XY¥| k€ Ny then obviously f € A(M). u

Since we find it useful, we will draw this general conclusion for sets containing a
half-line on the OY axis. Note that M = {0} x [R,00) for some R > 0 if and only if
ordf; = ordfs = oo and recall that 0 - oo = 0. Hence we can state that

Theorem 2.7. Suppose that {0} x [R,00) C M for some R € R. A polynomial f =
Zfzo a;(Y) X" is bounded on M if and only if dega; < a-i for every i =0, ...,d.

Proof: First, in the case when 51 = 2 we see that a = 0o, because necessarily 1 = B2 =
0. From Proposition 2.6 if f is bounded on M, then f € R[XY*| k € Ngy]. That takes
place if and only if degag < 0. If we put by our convention 0 - co = 0 then f is bounded
on M if and only if dega; < a -4 for every i =0, ..., d.

Let 81 # (2. By Remark 2.3 without loss of generality we can assume that |52 > |31]
and B2 > 0. Then by Property 1.8 of orders at infinity we have ord,,f2 < ordeof1. Fixing
a greater R if necessary, we get

{(z,y) eR*| 0 <z < Ba(y), y > R} C M C {(x,y) € R?| —Ba(y) <z < Paly), y > R}
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

Thus, using the notation from Corollary 2.2, we obtain
A(Lg,) > A(M) > A(Sg,),
which by that corollary gives us the equality
A(Lg,) = A(Sg,)-

This in turn gives that f is bounded on M if and only if it is bounded on Sg,. By
Corollary 2.2 we conclude that f is bounded on M if and only if dega; < i - « for every
i=0,..,d. ]

Example 2.8. Let
M ={(z,y) e R’ =1y < <1/y+1/y° y=>1}.

We have ordy (—1/Y) = 1 = ordoo(1/Y +1/Y?) and {0} x[R, c0) C M. From Theorem 2.7
it follows that A(M) = R[X, XY].

Recall that o = min(ordsf1, ords/32). As an easy consequence of the characterisation
of algebras A given in Theorems 2.4 and 2.7 we get

Corollary 2.9. Suppose that orde. 51 # ordecf2 or M contains a half-line on the y axis.
Then

(1) A(M) =R if and only if o < 0,

(2) A(M) =R[X] if and only if « =0,

(3) A(M) 2 R[X] if and only if a« > 0.

The essence of this corollary is that if sets get essentially more ample than a strip,
they cease to admit any bounded polynomials. In particular, if a set contains a cone, then
it does not admit bounded polynomials. Note that, as in the case of the set Ms from
Example 2.10 below, a set need not contain a cone to have a trivial algebra of bounded
polynomials (compare [KM]). The sets which admit a nontrivial algebra of bounded
polynomials can be interpreted as having their distance from the y axis essentially smaller
than their width.

Example 2.10. Let
1

Ml:{fgxggﬂ, yZl} and MQZ{y2§$§y3> yZl}
Y

By the above corollary, the only bounded polynomials on these sets are constant.

Note that all of the results in this paragraph are insensitive to x axis and y axis
symmetry as well as an interchange between x and y since they are special cases of linear
change of coordinates. Therefore the assertion of Theorems 2.4 and 2.7 hold for all tentacle
sets of the form (1.7) as well as those with borders parameterized by x instead of y with
the exponents in the characterisations appropriately interchanged. From these remarks
and Theorem 2.4 it follows
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2.2.  Polynomials bounded on tentacles with nonempty interior

Figure 3. Typical examples of sets for which A =R

Remark 2.11. FEvery algebra of bounded polynomials in the case of tentacle sets of the
form (1.7) with ordsf1 # ordeo B2 is an algebra of a set of the form

{(z,y) eR* 0 <z <y y>1} (2.6)
for a = 111%% ordo3; € Q.

Let us emphasise that this remark implies that any two tentacle sets of the form
(1.7) with parametrizations of their borders of different orders have the same algebras
of bounded polynomials as long as the minimum of orders is the same. At this
point the question of characterisation of bounded polynomials on tentacle sets with
ordeo 31 = ords f2 is resolved fully only for sets containing a half-line. In the next sections
we will turn to that problem.

2.2. Characterisation of polynomials with Puiseux coefficients
bounded on tentacles with nonempty interior

In this section we turn to the problem of deciding whether a polynomial is
bounded on tentacle sets which borders have parametrizations of the same order. We
will achieve this through the study of polynomials with Puiseux coefficients (Definition
2.12 and Proposition 2.13) and giving a characterisation of their algebras in Theorem 2.16.

Denote by R,[Y] the ring R[Y'1/4, Yll/q] of Laurent polynomials in Y1/9, where ¢ € N.

Of course, every 5 € Ry[Y] is a convergent Puiseux series at infinity (cf. Section 1.2). If
q = 1 these are just Laurent polynomials. By analogy

Definition 2.12. For 8 € quN RyY] we will say that § is a Puiseuz polynomial.
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

If 6 = Z;’;p a; (%)z/q, where a,, # 0, then by the degree of 8 at infinity we mean the
rational number m/q and we write deg,, 8 = m/q. We put deg,,0 = —oo. Note that
since Y = (1/Y)~!, the order at infinity (the degree at infinity resp.) of 3 is the same as
its degree (or order resp.) with the sign changed.

Note that [(y) is convergent for every y from the positive half-line if the denominator
q is even and on R\ {0} otherwise. Hence 5 can be viewed as a semialgebraic function on
its domain of convergence. If 5 € R,[Y] then for any [ € N we have § € Ry[Y]. Therefore
for every two Puiseux polynomials there exists a natural number ¢ such that they both
belong to Ry[Y].

By R4[Y][X] we will denote the ring of polynomials in X with coefficients from
R,[Y] and we will say that its elements are polynomials with Puiseuz coefficients. Note
that f € R,[Y][X] usually is not well defined on {(z,y) € R?| y = 0}. Of course,
RIX, YT C g2y Ry[YTIX].

Proposition 2.13. Any f € R,[Y]|[X] has unique coefficients e; ;, € R such that

f= > ein(X — B)vHa, (2.7)
i=0,...,d
ke D

where D C 7 is finite and d = degy f.
Proof: Let f € R,[Y][X] be of the form f = Z?:o a;X7. Then

d
F=>aj((X=p)+p)
j=0

J
o ()i
0 =0
d d '
=3 Sa()r) -
=0 \ j=t
Denote ¢; = Z;l:i a; (g)ﬁj_i. Note that ¢4 = ag4. Since for every i = 0,...,d we have
¢ € Rqy[Y], we can write
ci= Y €Y,
keD;

where ¢; ;, € R and a finite set D; C Z. Put D = Ug:o D;.
The uniqueness (up to coefficients equal zero) follows immediately from the observation
that f(X,Y?) is a polynomial in X with Laurent polynomial coefficients. |

Note that even if f € R [Y|[X] and § € R4[Y] for s # ¢, then we can consider

q = ts and obtain coefficients of f in the fashion of the above theorem. We want to
underline that one can apply the above proposition to polynomials. In this case the
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2.2.  Polynomials bounded on tentacles with nonempty interior

leading coefficient of f with respect to X — 3 is a polynomial in Y.

Let us consider a mapping

L(z,y) = (z — B(v),9),

for (z,y) for which 3 is well defined, where 8 € R,[Y].

The mapping L is a homeomorphism of R x [R, c0) onto itself for any R > 0. Indeed,
it is well defined for any positive R, continuous, surjective and has a continuous inverse
L7 (z,y) = (z + B(y),y) for (z,y) € R x [R, 00).

Denote by Ly : Ry[Y][X] = R,[Y][X] the mapping f — f o L. We have that L, is an
automorphism. Indeed, it is a homomorphism and L;! defined as L '(f) = f o L~! for
[ € Ry[Y][X] is its inverse.

Throughout this section 8, L and L, will be as above.

Let us consider a tentacle set

M = {(z,y) € R?| Bi(y) < = < fa(y),y > R},

where (31, By are Puiseux parametrizations and R > 0. Put a = min{ord../1, ordsf2}.
Let us now focus on the case not yet solved for polynomials, meaning the case of

ordeg 1 = ordegfs.

We will denote by B, (M) the subring of R,[Y][X] of polynomials with Puiseux coeffi-
cients which are bounded on M. Obviously,

A(M) = By(M) N R[X, Y]

for any ¢ € N. Note that all the properties analogous to Property 1.14 for sets
S,M C R x [R,00) where R > 0 hold for algebras of bounded polynomials with Puiseux
coefficients. The correspondence between B, (M) and A(M) will be studied closer later
(see Section 5 and Remark 2.19). We would like to point out that (1) is bounded for

y
y > R > 0. Hence R[ﬁ] C By(M) for ¢ € N.

Denote v1 = 1 — 8, v2 = B2 — 8. Then
M ={(z,y) € R’ (y) <z — B < 72(y),y > R}.
Due to the fact that L is a homeomorphism, we have

L(M) = {(w,2) eR*|w=2~B(y), y= 2 nly) <z —-By) <
={(w,2) €R*| m1(2) S w

These observations allow us to make the following observation which is needed to prove
the form of algebras of bounded polynomials with Puiseux coefficients, namely
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

Proposition 2.14. We have

for any s € q - N. In particular
Bs(L(M)) =R[Z] <= Bs(M)=R[L.Z]

where L.Z = {L.(| ¢ € Z}.

Proof: From Remark 1.15 we get as a straightforward conclusion that a function f: D —
R with D D M is bounded on M if and only if fo L~! is bounded on L(M) as well as the
inverse. Since L, is an isomorphism, we get the claim. In particular, for f € B, (M) we

M \
f
L(M)
feL'
IR

Figure 4. A function f is bounded on a set M if and only if f o L~! is bounded on L(M)

get that
L =LY () aal®) =) aa(Li10)"
acA
for some finite collection of (i,...,(n € Z, a finite set A C Ni* and a, € R for o € A.
For g € B,(L(M)) it is also obvious that L,g is generated by elements of Z. [

Now we will prove a proposition which gives us effectively (through a finite search of
coefficients in Puiseux series) a Puiseux polynomial that will be used in the subsequent
theorem.

Proposition 2.15. Let us suppose that 81 # [o while ords31 = ordefB2. Then there
exists a Puiseux polynomial B such that all of the following conditions hold

(1) degooff < min;—1 2 ordeo (8 — )

(2) ordeofS = orde 1

(3) ordeo(81 — B) # ordeo (B2 — ).

The choice of g is illustrated on Figure 5.
Proof: We can always rewrite two Puiseux series as having the same denominator ¢,
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2.2.  Polynomials bounded on tentacles with nonempty interior

so we can write f1 = 22 bg )( )/ and By = dois, bg )(%)i/q with bgl) = bl@) for i =
Dy...,m—1, bﬁ,? #* bq(fl for some m > p (if m = p then the leading coefficients of 31, 32

are not equal). Without loss of generality we can suppose that bq(%) # 0. Then it suffices

B, e

Pe

y/4

oi=
5]
Q=

orde1= ord (B,-B)= ordm(‘l'az-P) ord_B,= dem(Pf'P) U’dm(ﬁz'P)

ordm Pz = deng Drdc: Fz

Figure 5. On this figure on the horizontal axis we mark the points of supp(51) U supp(S2)
whereas on the vertical axis we mark the corresponding coefficients of 5; and [s.
An exemplary Puiseux polynomial 3 from Proposition 2.15 is marked black.

We can see that in the case on the left, when bm ,b(2 # 0 we have deg_ 5 = ord (1 — f),
whereas in the case on the right we have bgn) =0 and deg, 5 < min(orde (81 — ), 0ordes (2 — 5)).
Moreover, in such a case (8 satisfying conditions of Proposition 2.15 is unique. In particular, one

cannot choose 3 such that there is an equality in the first condition of Proposition 2.15.

to take
B = Z b(l l/q

We have that ordsf82 — 8 = m/q and ordooﬂl — B8 > m/q. Since deg. 8 < m/q, the
conditions (1), (2) and (3) are satisfied. [ |

Note that we do not need to know the whole formula on 31, 8s. It suffices to indicate
a finite number of initiating coefficients of 81, B2. So in particular S might belong to a
R4[Y] where g is not divisible by any of the denominators in full representations of 1, fa.
We can view [ as a Puiseux polynomial deformation from a set asymptotically close to
the y axis which were studied in Section 2.1.

Theorem 2.16. If 31 # (2, then there exists a Puiseuz polynomial 5 € R,y[Y] such that

B.(M) = R Y}/S (X =YY | d < i iy orduc(B: — §),7 € Noyd € 1/5-No

for any s € ¢ - N.

Proof: First, assume that ords/81 # ordsf2. Take f € R,[Y][X]. In particular, f is
polynomial with respect to X and the degrees and orders of their coefficients are well
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

defined. By (2.2), (2.3) and (2.4) we conclude that in the proof of Theorem 2.1 one can
substitute a polynomial from R[X,Y] by a polynomial in X with Puiseux polynomial
coefficients. We obtain

1

BQ(M) = R Yl/q’

Xy | d<ia,ieNgdel/q Ny

for any ¢ € N, where o« = min(ord.,f1, ord32). Hence here it suffices to take 5 = 0.
Assume now that orde.(87 = ordec2. Take [ as in Proposition 2.15. We have that
f € Ry[Y] for some natural number q. Take L : R x [R,00) — R x [R,00), where

L(z,y) = (x — B(y),y). After putting v1 = 1 — B, 72 = B2 — [ we get
L(M) = {(w, 2) € R?| y1(2) <w < (2), 2 > R},

where ordy; # ord~ys by Proposition 2.15.
Put 7 = min;—; 2(ord«";). Therefore by the first part of this proof we have

1 )
Bs(L(M)) = R[ﬁ, Wiz | d <in,i € Nog,d € 1/s-Ny|.

By Proposition 2.14 we have Bs(M) = R[L. 17, L (W Z?) | d < in]. Since

1 1

L izdy _ (v _ B)iyd
Liirs = yge Le(W'29) = (X = )Y,

we get our claim. |

We give a slight refinement of the above theorem.

Proposition 2.17. If 51 # (2 and ords 51 = ordeo B2, then the Puiseux polynomial 5 in
Theorem 2.16 can be chosen such that it meets the assumptions of Proposition 2.15 and

degooff < min ordeo (Bi — B).

Proof: Indeed, take 8 from Theorem 2.16. If deg., 8 = min;—; 2 ord(5; — 5) = 1, then
B = Zﬁp bi(%)i/ ¢ with b, # 0. Without loss of generality we can suppose that b, > 0.
Put v = 8 —by(1/y)". Hence from Theorem 2.4 and Proposition 2.14 we get
Bs(M)=Bs(p1 —<x—B<B—fB, y>R)=
= Bs(—by(1/y)" <2 - B <0, y>1) =
=Bs(0 <z -y <by(1/y)", y>1)

for any s € g - N. Therefore by Theorem 2.16 we have

1 )
By(M) =R m,(X—de |d<i-n,icNy,del/s-Ny

and degy, 7 < 7 < minj_12ordec(B; — 7). Moreover, ordu(B1 — 7) = orduc(f2 — 7) =
min;—; o ordes (B; — B3), because v = 5 — by(1/y)" and by, is the first coefficient where 3,
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2.2.  Polynomials bounded on tentacles with nonempty interior

and (o differ. Note that v equals zero if and only if 8, and B2 do not have common
leading coefficients. |

We see that if 8 meets all the assertions of the above proposition, then it is unique,
because it must be equal to all initiating terms in 51 and s which coincide. Nevertheless
in general, one can easily find different Puiseux polynomials which give the same algebra
B,(M) eg. in Example 2.8 we have B (M) = R[+, X, XY] =R[+, X — +, (X — $)Y].

From presented results it follows that to know how the set of bounded Puiseux polyno-
mials looks like, we have to study the common asymptotics of the borders of the tentacle.
If the parametrizations of the borders have different orders or different leading coefficients,
then by Theorem 2.16 and Proposition 2.17 the algebras B,(M) are generated by mono-
mials and the element 1/ Y1/4. Hence the algebras of bounded polynomials are generated
by monomials. But if they have common leading coefficients then we cannot tell as easily
the generators of the intersections B, NR[X, Y.

Example 2.18. Take

1 1 1
Mlz{Ogygﬁ,xZI} and Mg:{0<x+§§?,y21}
We have A(M;) = R[Y, XY, X?Y] and
Bo(My) = Rl——, (X + =)V d < 2i] = Rl X + —— XV + 1, XY2 1+ Y
o(Ma2) = [m7( +?) | d<2i] = [ma +ma + 1, +Y]
for any ¢ € N. From Proposition 2.13 we have
xv = Ly vaoes by L
Y Y Y’

This gives us in particular that the set of bounded polynomials on the union of tentacles
Mj U My is nonempty, because X2Y € A(M;) N A(Ms). Knowing this one can easily
see that R[XY, X?Y, X2Y + Y] C A(M; U Ms). The author does not know whether an
equality holds.

As an easy consequence of equivalence (1.4) combined with Theorem 2.4 or Theorem
2.16 in a special case when f is polynomial we get

Remark 2.19. Under notation and assumptions of the previous theorem if § € R[Y],
then
AM) =R [(X —B)Y? |d<in, i,deNy|.

This remark gives us that if M is an image by a polynomial automorphism L = (X —f,Y)
of some set with an algebra generated by monomials X“Y% ... X*Y% for some k € N,
then A(M) =R[(X — B)1Y % ... (X — B)*Y %]

To end this paragraph note that the above theorems are insensitive to symmetry with
respect to x axis and y axis as well as an interchange between x and y, since they are
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2. POLYNOMIALS BOUNDED ON SUBSETS OF THE PLANE

linear change of coordinates (see Proposition 1.16). Therefore, similarly as in the previous
section, the results of Theorem 2.16 and its consequences hold for tentacle sets of the
form (1.7) as well as those with borders parameterized by z instead of y with the exponents
in the characterisations appropriately interchanged.

Remark 2.20. FEvery algebra of bounded polynomials in the case of tentacle sets of the
form (1.7) with ord 1 = ordec B2 and 1 # B2 is an algebra of a set of the form

{(z,y) eR*|0<z—B<y", y>1} (2.8)

for n =min;—; 2 ordeo (B; — B) and a Puiseux polynomial B satisfying conditions of Propo-
sition 2.15 with deg., B < n < min;—j s orde(3; — B).

Note that this representation is not unique (for example in the case of trivial algebras).
The equality of algebras follows directly from Theorem 2.16.

To end this section let us note that we do not tackle in this thesis the prob-
lem of how the intersections of bounded polynomials with Puiseux coefficients with
R[X,Y] look like. As long as we stay in the scope of algebras generated by monomi-
als, everything is easy (as we will see in Section 5). However, in general, algebras of
bounded polynomials are not generated by monomials (or compositions of monomials
with coordinates of polynomial automorphisms) as we can see in Example 2.18, where
RIX, XY, XY?+Y] CR[1/Y,X+1/Y, XY +1,XY?+Y]NR[X, Y] and Y is not bounded.
Nevertheless, finding a representation of a polynomial in terms of other polynomials tends
to be difficult, whereas symbolic division of f in the wider ring of polynomials with Puiseux
(polynomial) coefficients (as in Proposition 2.13) is always easy to execute. Therefore, we
content ourselves with giving an efficient method of verifying whether a polynomial is
bounded on a set (as will be explained more explicitly in Section 6.1).
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3. STABILITY OF ALGEBRAS OF BOUNDED POLYNOMIALS

3. Stability of algebras
of bounded polynomials
in two variables

The main goal of this section will be to prove in Theorem 3.5 that if we have a family
of sets in R? defined by a given polynomial inequality where we let the constant terms
vary, then we get only a finite collection of algebras of bounded polynomials i.e. for any
f € R[X, Y] there exists a finite collection of algebras Ay, ..., Ay such that A(f < c¢) = A;
for some ¢ =1,...,k and every c € R.

Before we prove the theorem we will prepare the tools in Sections 3.1 and 3.2. As to
notation, recall that in expressions of the form A({(z,y) € R"| a < f(z,y) < b}) we often
leave out the brackets and write simply A(a < f < b) for a polynomial f: R" — R.

3.1. Bifurcation values

Throughout this section let K be the field of either real or complex numbers. Moreover,
we will assume that the empty set is compact and in consequence that A(() is equal to
the ring of polynomials.

We say that a function f : K" — K is a trivial C*°-fibration over an open set U C K
if for any ¢ € U there exists a C*°-diffeomorphism

¢: fTHU) = U x fl(e)
such that

To¢=f,

where 7 is the projection on the first coordinate.

In particular, if f is a trivial C*°-fibration over U, then for any ¢y € U we get that
f~Y(co) is diffeomorphic to f~1(c) for ¢ € U. Hence the fibre f~1(cg) is compact if and
only if for every ¢ € U the fibre f~!(c) is compact as well.

We say that a number ¢ € K is a typical value of f : K* — K if there exists a
neighbourhood U of ¢ such that f is a trivial C*°-fibration over U. If ¢ is not typical
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3.1. Bifurcation values

then we will say that it is a bifurcation value of f. By Bk(f) we will denote the set of
bifurcation values of f.

From the definition it is easy to see that

Property 3.1. Let f € K[X]. We have

Br(f+¢) ={A+cl Ae Be(f)}

and

Bx(cf) = {cAl A € Bx(f)}
for any c € K\ {0}.

We will make use of the above property in the next section. Now let us turn to critical
and asymptotic critical values, which are of practical use.

Let f: K™ — K. We say that ¢ € K is a critical value of f if there exists a € R™ such
that

fla)=c¢ and Vf(a)=0.

We say that ¢ € K is an asymptotic critical value of f if there exists a sequence
(ar) C R™ which tends to infinity such that

flag) = ¢ and |agl| |V f(ar)] — 0

as ar — 0o. We say that ¢ € K is a generalized critical value of f if it is a critical value
or an asymptotic critical value. We will denote the set of generalized critical values of
f K" — K as Kg(f).

Every bifurcation value which is not a critical value is necessarily an asymptotic
critical value. If f : K" — K is a polynomial then Bg(f) C Kk (f) and Kk(f) is finite (see
[Hal], [KOS], [JK]). Moreover, the set Kx(f) has at most (2deg f +1)(4 deg f — 3)"™ points
more then the set of critical values. Note that if we consider a real polynomial f as a
complex polynomial we have Br(f) C Bc(f) NR. For further information on bifurcation
values and generalised critical values see for example [Rab], [KOS], [Par], [JK], [KS] and
[NZ]. We would like also to underline that there exist explicit algorithms to compute the
set of generalized critical values (eg. using Grébner basis, see [JK]).

Example 3.2. Consider Motzkin’s polynomial
m=1+X2Y2(v2+ X2 -23).

We have
Vm(z,y) = 2zy (y(y* + 22° — 3), 2(2* + 2y° — 3))
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3. STABILITY OF ALGEBRAS OF BOUNDED POLYNOMIALS

for ,y € K. Hence after some computation we easily get that the generalized critical
values are

Kc(m) = {0, 1} = KR(m),

whereas the sets of critical values and asymptotic critical values are equal. It is known
that the set of complex bifurcation values, real bifurcation values and generalized critical
values of m are equal.

In the case of K = R, i.e. m: R? — R, it is easy to see that m(z,y) # —3 for z,y € R.
Since m is a trivial fibration over (—o0,0), we get that m~!(c) = m~!(—3) = ) for every
¢ < 0. We have that m~!(1) is diffeomorphic to four disjoint ovals. Hence m~'(c) is
bounded for every ¢ € (0,1), because m is a trivial fibration over (0,1). Analogously we
get that m~!(c) is unbounded for every ¢ > 1. As to the special fibres, we have that
m~1(0) consists of four points and m~!(1) is the union of a sphere S(0,/3), the z and y

axis.

3.2. Fibres and bifurcation values of polynomials in two variables

In this section we will focus on polynomials in two variables and the set of complex
bifurcation values.

Let f € C[X,Y] be nonconstant. There exists a linear change of coordinates such that
it is of the form .
F=X"4> ai(V)x, (3.1)
i=1
where dega; < i. Note that if f is a polynomial with real coefficients there exists a linear
change of coordinates L such that L(R?) = R? and f is of the form (3.1) up to the sign.

We will start with a characterisation of the set of bifurcation values by generalized
critical values. Namely, in the case of two variables we have

Be(f) = Ke(f)

for a polynomial f : C2 — C (see [Ha], [Par]) and the number of bifurcation values of f is
less or equal deg f(deg f — 1). One can see that it is much easier to compute generalized
critical values than decide what are the bifurcation values.

We will recall another characterisation of the set of bifurcation values of a polynomial
f in the case of two variables due to Krasinski [Kr|. Assume that f is of the form (3.1)
and let
D(e,Y) = dg(c)Y* + ... 4 6(c)

be the discriminant of the polynomial C* > (c,z,y) — f(z,y) — ¢ € C with respect
to X with 9 # 0 (see [Kr, Chapter 1]). The set of bifurcation values of f is exactly
the union of the set of critical values of f and the set of roots of dy (see [Kr, Theorem 18.1]).
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The following theorem is due to Krasinski [Kr2, Lemma 2] and we will sometimes refer
to it as the Parametric Puiseux Theorem (at infinity). The version given below is a slight
reformulation in order to fit it in our setting.

Theorem 3.3. (T. Krasinski, 1991) Let f € C[X,Y] be of the form (3.1). Take co ¢
Be(f). There exist r, R > 0 and holomorphic mappings

©;: Blco,7) x {y € C| |yl > RV} = C2, i=1,...,m,

of the form

Oi(c,y) = (0i(c,y), y?),
where each 6; is holomorphic with respect to ¢ and 6;(c, Yl/q) 18 a complexr Puiseux series
at infinity for every c. Moreover,

f(©i(e,)) = ¢

for every ¢ € B(co,r). Furthermore, for any ¢ € B(co,r) the set f~(c)\ (C x B(0, R1/9))
has exactly m connected components and
m
171N (€ x BO, B77) = | 0:({(e,9) € 2 [y] > RV},
i=1
Hence if we choose a complex Puiseux series at infinity v such that f(y(y?),y?) = co
for |y|? > R, then there exists exactly one iy such that

{(v(y").9%) € C?| [yl > R} = {(6i(co,),y) € C*| |y|” > R}.

Let us remind the fact that for a real polynomial f € R[X,Y] if for y € U the polyno-
mial f(X,y) has a constant number of distinct complex roots, then f(X,y) has a constant
number of real roots for y € U, provided U C R is connected. Suppose that f is of
the form (3.1). Then from Parametric Puiseux Theorem it follows that on any half-line
I C (—00,—R) U (R, 0) the polynomial f(X,-) has a constant number of complex roots.
Take one of the m families of Puiseux parametrizations at infinity {6(c, ") }cep(co,r) of fibres
of the real polynomial f as in the Parametric Puiseux Theorem. From the above consid-
erations we get that if the set graph(f(co,-)) N R? is unbounded, then graph(f(c, -)) N R?
is unbounded for all ¢ € B(cp,r) N R. Moreover, 6(c,-) : I — R is a convergent Puiseux
series at infinity with real coefficients for every ¢ € (¢o — r,¢o + ) on a half-line I C R.
Hence

Property 3.4. Let f : R2 — R be of the form (5.1). Under the notation of Theorem 3.3
if [e,&) C B(co,r) NR, then every tentacle M of the set f~1([c,&]) is either of the form

{(z,y) € R?| 0;(c1,y") < & < 0;(c1,yM9), y > R}

or

{(.f, _y) € RQ’ ej(027y1/q) S xr S 0j(£27y1/q)7 Yy 2 R}
wherei,j € {1,...,m}, R > R is sufficiently big, 0;(co, Y''/9) is a Puiseuz parametrization
at infinity and c1 # ¢1,¢c9 # G2, ¢1,¢1,¢2,C2 € {c, ¢} are chosen so that the sets above are
nonempty.
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3. STABILITY OF ALGEBRAS OF BOUNDED POLYNOMIALS

Therefore we have that under the above assumptions the tentacles of f~!([c, &) are of
the form (1.7) from Section 1.6 on tentacle sets.

3.3. Stability

The goal of this section is to prove the following

Theorem 3.5. (Stability of algebras of bounded polynomials) Given any polyno-
mial f € R[X,Y] and numbers 0 < ¢ < ¢ € R such that

[e,d] N Be(f) =0

we have

A< f<e)=A0< f<eé).
The proof of this theorem follows easily from the following lemma.

Lemma 3.6. (Local stability) Let f € R[X,Y] be such that 0 ¢ Bc(f). There exists
an r > 0 such that for every e, € (0,7) we have

Proof: First, consider the case when the fibre f~1(0) is compact. Then from the fact that
0 is a typical value it follows that for all ¢ from some neighbourhood of 0, in particular
of the form (—r,r) for some r > 0, the fibres f~!(c) are also compact. From Proposition
1.13 it follows that f~!([—¢,¢]) and f~1([0,6]) are compact. Hence

A(—e< f<e) =RX,Y]=A0 < f<9)

for any 0 < ¢, <.

From now on we will assume that f~!(0) is not compact. If f is constant, then
necessarily f = 0 and 0 € Be(f). That contradicts the assumption. Hence we will assume
that f is nonconstant. We can change the coordinates with a real linear automorphism
such that f is up to the sign a monic polynomial of the form (3.1). Without loss of
generality we can assume that f is exactly of the form (3.1).

Assume that the fibre f~!(0) has exactly [ tentacles. From the Parametric Puiseux
Theorem and Property 3.4 it follows that there exists an r > 0 such that f~!((—r,7)) has
exactly [ tentacles. Moreover, each tentacle of the fibre f~!(0) has an unbounded intersec-
tion with exactly one tentacle of f~!((—r,r)) i.e. they are in a one-to-one correspondence.

Choose a Puiseux parametrization at infinity v € R4[Y] of a tentacle of the fibre
£71(0) and a tentacle M of the set f~'((—r,7)) such that {(v(y),y) € R?| y > RY9} N M
is unbounded.

Let us consider f as a complex polynomial and choose a family {0(c,-)}.c B(0,r) from
Parametric Puiseux Theorem such that graph(0(0,Y)) D graph(y(Y?)). We can write
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3.3. Stability

0(c,Y) = Zbi(c)l/Yi,

where b; : (—r,7) — R due to Theorem 3.3 are analytic for ¢ > p and b, # 0.
We will now show that the claim of the lemma holds for the tentacle M. In order to
do this consider analytic functions

b (0) — br(e)

defined on (—r,r) for & > p. There exists an m > p such that b;(0) — bi(-) = 0 for
p <k <m and b, (0) — by, (-) # 0. Take a set

A={e € (0.1)] (bn(0) = bu(€)) (b (0) — b(—€)) = 0}

From the choice of m the set A is a proper analytic subset of (0,7). For every e € (0,r)\ A
we have

m = orde(A(6,Y) —0(0,Y)) = ord(6(—¢,Y) — 6(0,Y)). (3.2)
Hence for every e € (0,r) \ A the series 6(0,Y), 0(—¢,Y) and 0(¢,Y’) have m — p common

initiating terms.
Take the Puiseux polynomial

as in Proposition 2.15.
For every e € (0,7) \ A we have

ordoo (B — 0(0,Y 1)) > ordec (B — 0(—€, Y 1)) = orda (8 — 8(e, Y 1)) = %

Hence from Property 3.4, Proposition 2.15 and Theorem 2.16 it follows that for any e €
(0,7) \ A the following holds

1 ; m
-1 _ - iy d <. =
AMAOS7(0,e]) =RXYINR | 70, (X = B) YT [d < .
=AM 0 f7H([=€,0))). (3.3)
The above algebra depends on the choice of the tentacle M, but does not depend on the
choice of € as long as ¢ ¢ A. For the purposes of the proof for the tentacle M denote

the above algebra as Ap;. From the fact that 0 is a typical value of f and the above
observation for d,e € (0,7) \ A we have

AM N ([=e€))) = AM N fH (=€, 0)) N AM N ([0, €])) =
= Ay N Ay = Ay = AM 0 F7Y((0,0])). (3.4)
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3. STABILITY OF ALGEBRAS OF BOUNDED POLYNOMIALS

Now we will show that Aj,; does not depend on the choice of € even if e € A. Take
any € € (0,r). Since A is proper analytic there exist d,p € (0,7) \ A such that 6 < e < p.
Hence

FHoe)nM o d)yn M fH([0,p)) N ML

From (3.4) it follows that A(f~1([0,¢€])) = Ap. By analogy we get A(f~([—¢,€])) = A
Hence the claim of the lemma holds for the tentacle M.

Denote by My, ..., M; all tentacles of the set f~((—r,7)) and by Az, ..., Ay, the
algebras from equality (3.3). Hence for €,6 € (0,r) we have

l n
A(f M =6 ) = (VAM: N f (e d) = () A,
i=1 1=1
and .
A(f7H([0,0]) = () A,
i=1
where Ay, are independent on the choice of € or §. This ends the proof. [ |

Note that we cannot jump to conclusions regarding the algebra of bounded polynomials
on the set f~([-r,r]) , where r is as in the Parametric Puiseux Theorem. Indeed,
take the Motzkin polynomial m : R?> — R from Example 3.2. The closure of the set
m~((—1,1)) € R? is compact, but the algebra of bounded polynomials on m~!([—1,1])
is not R[X, Y] (see Example 3.9).

Remark 3.7. Under the assumptions of Lemma 3.6 for every €,0,p € (0,7) we have
Ale< f<p)=A(=6 < <0).

Indeed, from the above lemma and Proposition 3.1 it follows immediately that the above
claim is equivalent to the claim of the lemma.

Now we are ready to prove the Stability Theorem.

Proof of Theorem 3.5: Take 0 < ¢ < ¢ as in the assumptions of the theorem. Since
f7X0,¢))  £71([0,¢]), we need only prove that A0 < f < ¢) C A0 < f < &).
Suppose to the contrary. Then there exists a polynomial ¢ € R[X,Y] and a certain
number ¢ € (¢, ¢ such that g € A0 < f <¢p—¢€)and g ¢ A0 < f < ¢o+ €) for every
positive number ¢ (see Figure 6). Take § > 2¢ > 0 such that both € and ¢ are sufficiently
small. Hence from the lemma on local stability if we put p = § — 2¢, we get

Alcg =< f<co—e)=A(-d+e< f—(co+€) <0)=
(-Gt €< f—(cote)<b—e) = (3.5)
=Aco =0 < f <co+p).
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/'\g

C

u <

Vv

Figure 6. On this figure we have the values of a mapping with f and g for coordinates. In the proof
of Theorem 3.5 there are in fact two cases. But if ¢g is a typical value of f, both are impossible.
In the first case, on the left, g is bounded on {f < ¢g}. Since c¢q is typical, we
have {f < ¢} = {f < ¢}. We see from the picture that it is impossible, because g is continuous.
In the second case, g attains a maximum on each fibre of f, but it is impossible that its maximum
tends to infinity due to Lemma 3.6.

Hence if g is bounded on f~1([0, co — €]) by assumption, then by the equality (3.5) and
properties of typical values we get

g€ A0S f<cp—0)NA(co—d<f<cy—¢) =
=A< f<co—-0)NAlg—d0=<f<co+p = A0 f<co+p)

This gives a contradiction and ends the proof. [ |

Remark 3.8. Note that from the proof of Theorem 3.5 and Lemma 3.6 it follows that the
algebra of bounded polynomials is stable in particular on each of the tentacles of the set

{(z,y) eR* 0 < f(a,y) < c}.

The essence of the proof of the Theorem 3.5 lies in Lemma 3.6 on local stability. We
chose to show it using the graph of a mapping. This method of proof also indicates possible
applications in the study of properness of polynomial mappings.

Example 3.9. Take the Motzkin polynomial m (see Example 3.2). We have that
A0 <m <c¢) =R[X,Y]
for ¢ € (0, 1), because of Proposition 1.13. Moreover,

A0 <m<1)=R[X*Y| k€ Ng| NR[XY*| k € Ng] = R[X'Y| i,j € N|
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3. STABILITY OF ALGEBRAS OF BOUNDED POLYNOMIALS

due to Proposition 2.6 and properties of algebras of bounded polynomials. It is easy to
see that this algebra is infinitely generated (compare Sections 4.3 and 5).

Whereas the set m~1([0, c]) for ¢ > 1 has four tentacles My, Mo, M3 and My such that
A(My) = A(Ms) = R[X, XY, XY?] and A(M3) = A(M,) = R[Y, XY, X?Y]. Hence

A0 <m <) =R[XY, X?Y, XY?
for ¢ > 1.
As an easy consequence of the Stability Theorem we get
Corollary 3.10. Let f € R[X,Y]. If ¢ # ¢ and [¢,¢] N Be(f) = 0, then
A(f <o) = A(f <o),

Proof: Indeed, it suffices to observe that for C' = |c| + |¢| + 1 we have ¢ + C > 0 and
¢+ C > 0. Hence from Property 3.1 and Theorem 3.5 we get

Af <) =A(f+C<c+O)=A(f+C <0)NAOL f+C <c+C) =
—A(f+C<0)NA0< f+C<i+C)=A(f <0

This ends the proof. |

Another easy consequence is

Corollary 3.11. Take b < ¢ and b < ¢ such that
[0,0] N Be(f) =0 and [c,d N Be(f) = 0.

We have that
Ab< f<e)=Ab<f<?)

aslongasb<ccmdl~)<é.

Proof: We can suppose that ¢ < é. By Property 3.1 we have that [c—b,¢—b]|NBc(f —b) =
) =[b—¢b—cNBe(f—¢). Hence by Theorem 3.5 we get

Ab<f<o)=Ab<f<e)=Ab< f<a).

This ends the proof. [ |

Hence for the Motzkin polynomial m : R? — R by Examples 3.2 and 3.9 we have

R[X,Y] b<c<l,

< < =
Absm<c) { R[XY, X2Y,XY? b<c 1<c

and the special cases are A(b <m < 1) and A(c < m < ¢) where b < 1 < ¢, which do not
admit a finite set of generators.

In [PISd] it is proved that if S C R? admits only tentacles with nonempty interior,
then A(S) is finitely generated. As a consequence we get
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3.3. Stability

Proposition 3.12. Let f € R[X,Y]|. The algebra A(f < c) is finitely generated for
c € R\ Br(f).

Proof: Take ¢ € R\ Bg(f). From the properties of typical values and fibrations we
get that either f~!((—o0,c]) is compact or each tentacle of the set f~!((—oo,c]) has a
nonempty interior. This, combined with the result from [P1Sd], gives the claim. |

Note that in the above proposition it suffices to take ¢ ¢ Br(f) and the set Bg(f) may
be smaller then Be(f) NR. It is not clear for the author whether Theroem 3.5 holds also
if we substitute Bc(f) by Br(f). Consider the following example given in [KS].

Example 3.13. Consider the polynomial
fX,Y)=Y*+Y2

We have Br(f) = {0} and Bc(f) = {—%,0}. We see that Br(f) C Bc(f). Moreover,

R[X,Y] c <0,
A(f <c¢)=1¢ RX"Y|neNy c¢=0,
R[Y] c>0.

1

There is no change in the algebras at the complex bifurcation value —7.

To end this section let us remark that under the assumptions of Theorem 3.5 considered
sets have only tentacles with nonempty interior. This assumption is vital as it will be later
shown in Proposition 4.14 in Section 4.3.
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4. Algebras of polynomials bounded
on subsets of R"

In this section we will study algebras of bounded polynomials on special kinds of sets
of arbitrary dimension n. In the first section we introduce some helpful sets given by
inequalities on generators of the algebra of bounded polynomials (sets of the form (4.1)
and (4.2) below) and study their properties. In the second section we turn to algebras of
bounded polynomials on a special kind of tentacle sets of the form (4.6), which we will
call weighted tentacles relative to a given set. Similar sets have been studied by Netzer
in [Net] and their description presented in this work was inspired by his paper. The
essence of these sets is their structure as "weighted deformation” of a set whose algebra
of bounded polynomials is already known. In the third section we consider subsets of
algebraic sets and show that their algebras are never finitely generated. This was already
shown by Plaumann and Scheiderer in [P1Sd], but we present a different proof based more
on geometrical properties and using the set of nonproper values of a mapping.

4.1. Preliminary remarks

For the rest of this section let S C R™ and assume that A(S) is generated by a set
{Gitier = 2 C R[X], where I C N. Note that we do not assume that S is semialgebraic.
If Z # 0, put

C; =sup|¢| and C:ZCE,
S

icl
where we let C € RU {oo}. Set
Sn(2) = ({z e R [Gi(x)| < G} (4.1)
el
and
$2(2) = {z e R Y (z) < C}. (42)

el
In the case Z = () put S~(0) = S%(0) = R"™. Note that sets Sn(Z) and S?(Z) do depend
on the choice of generators. In cases when the set of generators is given or it does not lead
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to misunderstanding, we will simply write S and S2. It is easy to observe that
S c Snc S (4.3)

Of course, this implies that

A(S) D A(Sh) D A(S?). (4.4)

Note that if Z is infinite, the number C' may be infinite. Then we have S? = R" and
A(S?) = R. Nevertheless,

Property 4.1. For the set Z of generators of A(S) we have
A(S) = A(Sn(2)).

If the set Z is finite, then
A(S) = A(S*(2)).

If the set Z is infinite, then there exists a function o : Z — A(S) such that the set o(Z)
generates A(S) and

A(S) = A(S%(0(2))).

Proof: By (4.4) we need to show only the inclusions A(S) C A(SH) and A(S) C A(S?).
To prove the first two statements of the property we need to note that obviously Z C A(Sn)
and if Z is finite also Z C A(S?). Since A(S) = R[Z], from easy properties of generators
(see Property 1.11) we get the first two equalities.

In the case when Z is infinite we can assume that I = N. To choose a set of generators
so that A(S) = A(S?), it suffices to rescale elements of Z conveniently. For i € N put

S i ;40
o—(gi):{ 272G i oo (4.5)
2i/2 1 — Y-

Then sup |o({;)] = 21.1/2 and 0(2) = {0(¢) }ien is still a set of generators of A(S). We have
S

$*(0(2)) ={z €R" Y (0(G:)(2)* < 1}
i=1

and o(2) C A(S%*(0(Z)). Hence A(S) = A(S?(c(Z))) for this choice of generators. [

If A(S) is finitely generated, then S and S? are semialgebraic. However, if A(S) is
not finitely generated, this need not be the case. Indeed, we have

Example 4.2. Take S = {(z,y) € R?| y = 0}. Then from Proposition 2.6 we have
A(S) = R[X*Y| k € Ny|. After some scaling of this basis similar to (4.5), we have also
XFy +1

; ‘kENo.

AS) =R | =
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For this choice of generators we get

— (X*Y +1)?
52 = {(a:,y) c R?| Z(kz'—k) < e} = {(x,y) cR}) 0>y > —26:6712}.
k=0 '

And A(S) = A(S?), but S? is not semialgebraic. (Moreover, S? is not semi-analytic at
infinity.)

4.2. Weighted tentacles

In this section we will turn to sets of a special form and characterisations of their
algebras. There exists a natural class of sets in R™ to which one can easily apply methods
used in our proofs of characterisations of algebras of tentacle sets in R? in Section 2. The
neat description (4.6) of their special cases studied in this section was inspired by the one
given by Netzer in [Net] and Theorem 4.4 gives a generalisation of one of his results on
algebras of bounded polynomials. We have adapted the form (4.6) of weighted tentacles
since we feel that it is consequent to the form of tentacles we have studied in Section 2.

We will work in the ring R[X, Y], where X = (X3,...,X,) and X1,...,X,,,Y aren+1
independent variables. Put |a| = a1 +...+ay,. Fort = (t1,...,t,),x = (x1,...,2,) € R?
let t-z = (t121,...,thzy). We will denote by (:|-) the standard scalar product

(tle) = ((t1, ..., to)|(@1, .. ) = D, iy

For the rest of this section assume that S C R™ has a nonempty interior. Let us fix
a Puiseux parametrization f = (81,---,0n) : [R,00) — R"™ of a semialgebraic curve at
infinity such that 3; have constant signs on [R,00), R > 0. Throughout this section set

A= (A1, An) = (ordeoB1, - - - 0rdooBn) € (Qo U {o0})™.

Consider a set
M={(B(y) z,y) eR" zeS, y>R} (4.6)

We will call such a set a weighted tentacle relative to S with the weigh .

If S is semialgebraic, then M is also semialgebraic. If S has s connected components,
then M has at most s tentacles. Hence if S is semialgebraic and connected, then M has
exactly one tentacle. Note that A(M) = A(M) and M is closed if S is closed.

For any y > R put
M, ={(B(y) - x,y) e R""| z € S}.

Needless to say that M, is semialgebraic if S is semialgebraic. If for some ¢ = 1,...,n we
have 3; = 0, then M is a subset of the hyperplane {x € R"*!| z; = 0}.
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4.2.  Weighted tentacles

Suppose that § : [R,00) — R” from formula (4.6) is a Puiseux parametrization such
that 3; # 0 for i = 1,...,n. In this case M, is homeomorphic to S for every y > R. Hence

Int(M) # () and so MY =R". Put

B (z,y) = B(y) -z

for y > R and x € R. It is a semialgebraic mapping. For a given y > R we will denote by
B(y)® the linear mapping R™ 5 = — [B(y) - x. Note that this gives us

By)*(S) x {y} = M,.
For every y > R the mapping ((y)® is a linear automorphism of R™ with the inverse

1 1
R"™ _— e, ———Tp, R™.
s (/ﬁ(.y)“’ )" ) ©

Hence we will denote the inverse as (1/3(y))® instead of (8(y)®)~!. Similarly as in Section
2.2 we denote 3(y)$ the automorhism of R[X] given by g — go(y)®. Hence from Property
1.16 we get

A) =Riz) = AB*) R (5) 2] (17)

for y > R. In the particular case when Z is a set of monomials we have

1 \*
w1zl =& | (577). 7]
Hence if A(S) admits a monomial basis, we have A(S) = A((1/5(y))*(S))-

To show how the algebra of bounded polynomials looks like on a weighted tentacle M
relative to S we will show first that for a polynomial f in n + 1 variables there exists a
finite collection of values of the parameter y which check if f as a polynomial in R[X]|[Y]
has bounded coefficients on the set S. Put

f=)Y aa(Y)X* € R[X,Y], (4.8)
acA

where A is a finite subset of Njj and a, # 0 are polynomials in variable Y for o € A. Set
degaq = dy. Let us remind that degy f = max,ec4 |a| and degy f = maxyea do.

Property 4.3. Put d = degy f. A polynomial f is an element of A(S)[Y] if and only if
there exist d + 1 distinct real numbers vy, . .., yq such that

f(X,4i) € A(S)

fori=0,...,d.
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4. ALGEBRAS OF POLYNOMIALS BOUNDED ON SUBSETS OF R"

Proof: If d = 0, then the claim is obvious. Assume that d > 0. The necessity is evident.
We will show the sufficiency. We can write [ = Zfzo b;(X)Y?, where by # 0. Let 5o, . .., %4
be d + 1 distinct points. Take the determinant v of the Vandermonde matrix

Loy - g

1 yg - yg
We have that v € R\ {0}. For i = 0,...,d denote by v; the determinant of the above
matrix with the ith column replaced by the vertical vector, which is the transposition of

[f(X7y0)7"'7f(X7yd)]'

Then we have that o
b = — € R[X].
v
Since by assumption f(X,y;) € A(S), we get that v; € A(S) for every i = 0,...,d. Hence

b € A(S) and f € A(S)[Y]. m

From the above and formula (4.7) it easily follows that if there exists a countable
collection of points {y;}ieny such that A(S) = A(B(y:)*(S)), then to decide whether
g € A(S)[Y] it suffices to check if g(X,y;) € A(S) for i € N.

Similarly as in Section 2.1 take the nonnegative functions
MMBEZ%X“H@%MMER

and
R[X] > g — sup|g(z)| € RU{o0}.
zeS

The first function is a norm on R[X]. The second one is a norm, when restricted to the
set A(S). From the assumption that S has a nonempty interior, it follows that in fact
the set A(S) is the biggest subset of R[X], with respect to inclusion, such that the second
function restricted to this set is a norm.

Suppose that A(S) has a monomial basis {(;};c;. Then the set {(;| deg(; < degx f}
is finite. Assume it is equal to {(;}i=1,.. k. Then the set

{¢ - %] @i € No, ((deg (s ... deg C)l(at, ..., ox)) < degx f}

is linearly independent and finite. Moreover, it is a linear basis of the vector space of
polynomials bounded on S and of degree less or equal to degy f. Hence all norms are
equivalent when restricted to the linear space {g € A(S)| degg < degy f}. In particular,
there exist positive constants w, 2 which depend only on the set S and degy f such that
for all polynomials g = > b, X% € A(S) of degree less or equal degy f we have

sup |g(z)| > wmax |b,| (4.9)
z€S @
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4.2.  Weighted tentacles

and
max |by| > Qsup [g(x)]. (4.10)
@ z€S
Hence we are ready to prove

Theorem 4.4. Suppose that A(S) is generated by monomials. If M is a weighted tentacle
of the form (4.6) relative to the set S with the weigh A € Q™ and 5; #0 fori=1,...,n,
then we have

AM) = A9)[Y] N RXY? | (a|]A) > d, a e N2, d e Ny).

Compare the following proof with the proof of Theorem 2.1.
Proof: Take a polynomial f of the form (4.8). Note that f is bounded on M if and only
if there exists C' > 0 such that for all y > R we have

sup | f(z,y)| < C.
(w,y)GMy

Suppose that f is bounded on M. Hence there exists a constant C' > 0 such that for
all y > R we have

C> sup |f(z,y)l= sup |f(z,y)|=sup|f(By)- z,y)l.
(z,y)eMy zeB(y)(S) zesS

It implies that f(X,y) is bounded on B(y)*(S) for every y > R. From Property 4.3 it
follows that f € A(S)[Y]. Moreover, from inequality (4.9) take the constant w that does
not depend on y and combine it with the above inequality. For y > R we get that

C >sup|f (B(y) - =,y)| > wmax |8%(y)aa(y)] -
z€S acA

Therefore for every a € A the functions y — (3%(y)an(y) are bounded on the half-line
[R,00). This by Property 1.8 gives us that

0 < ordeo(8%q) = ordecg + ordec % = —do, + Z i

Suppose that for every @ € A we have d, < (A|a) and f is an element of A(S)[Y].
Then we can find a constant C' > 0 such that for all ¥ > R and every @ € A we have

C > [8%(y)aa(y)].

Hence from Property 1.8 for y > R we have
C = max |[5%(y)aa(y)| = Qsup [f (B(y) - z,y)| =
acA xeS

=Q sup |f(z,y)[=Q sup |f(z,y)],
=€B(y)* (S) (zy)eMy

where  is the constant from inequality (4.10) for polynomials bounded on S and does
not depend on y. Therefore f is bounded on M. [ |
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4. ALGEBRAS OF POLYNOMIALS BOUNDED ON SUBSETS OF R"

Let us look at an easy example below.
Example 4.5. Consider a set
M = {(z,y,2) € R®| (zy(1+ 22))? < 22, 22y (1 + )1 <22, 2> 1}
We have that

_ Y 3
M-{(zx,w,z) € R’ (z,y) € S, z>1},

where
S ={(z,y) e R?| (vy)* <1, (zy?)* <1}

is an unbounded semialgebraic set. From the decomposition of S into tentacles and The-
orem 2.4 we get A(S) = R[X, XY, XY?|NR[Y, XY] = R[XY, XY?]. Moreover, we have
ordscZ = —1 and ordooﬁ = 2. Hence by Theorem 4.4 we get

AM) =R[XY, XY?|[Z]NR[X'YIZ4 d < —i +2j] =
=R[XY,XY% XYZ XY?Z, XY?*Z% XY?73).

In particular, A(M) has a six-element basis.

Observe that if A(S) = R, then A(M) = R. Indeed, from Theorem 4.4 it follows that
AM) =R[Y]NR[X©0y9 0 = ((0,...,0)|A) > d, d € No] =R.

Let us remind that we put R[})] = R. As a corollary to Theorem 4.4 we get

Corollary 4.6. Take a weighted tentacle M of the form (4.6) relative to the set S with
the weigh A € Q™ and B; # 0 fori =1,...,n. Suppose that A(S) # R is generated by a
set of monomials Z = {X“|a € H}, where H C Nij. Then

A(M) =R

if and only if
(Aa) <0

for every a € H.

Proof: Take the set D = {a € Nj| X* € A(S)} of all powers of monomials bounded on
S. Tt is easy to see that

D={mio1+ ...+ mpag| k€N, my,....mp €N, aq,...,ap € H}.
First, note that

k
(X fmyion + ..+ mpog) =Y mi(Noy).
=1

Therefore, we get (Aa) < 0 for every o € H if and only if (A«a) < 0 for every a € D.
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4.2.  Weighted tentacles

We have R[Y, X“| aw € H] = A(S)[Y] and
AS)[YTNR[XYY (a|\) > d, a € NI, d € Ng] = RIX®Y?| (a|)\) > d, a € D,d € Ny|.
Hence from Theorem 4.4 it follows that A(M) = R if and only if
R =R[X*YY| (a|]\) > d, a € D,d e Ny|.

Suppose that A(M) = R. Hence the set {(a,d) € D x Ng| (AMa) > d} is empty.
Therefore, for every av € D we must have (M) < 0. On the other hand, if (A|a) < 0 for
every a € H, then RIX“Y?| (a|\) > d, a € D,d € Ny] = R[f)] = R. This ends the proof. B

If we suppose that S is compact, then A(S) = R[X] and as an easy consequence of
Theorem 4.4 we get

Corollary 4.7. For the set M of the form (4.6) where S is compact and B; # 0 for
i=1,...,n we have

AM) =R[XYY| (a|]\) > d, a e NB,d e Ny|
where \; = ordso; fori=1,...,n.

Corollary 4.8. Suppose that M is a tentacle set of the form (4.6) with S compact. Then
(1) A(M) =R if and only if orde8; < 0 for every i =1,...,n,
(2) A(M) =R[X] if and only if ordec5; =0 for everyi=1,...,n,
(3) A(M) 2 R[X] if and only if there exists i € {1,...,n} such that ordsS; > 0.

Proof: Using Corollary 4.7 we easily deduce that A(M) = R if and only if > A\ja; < 0 for
every a € N{j. It follows that o; <0 for i = 1,...,n. Since « are arbitrary, we conclude
that \; <O fori=1,...,n.

To prove the second point assume that A(M) = R[X]. Hence if X°Y9 ¢ A(M),
then d = 0. Therefore ), \joy; = 0 for any o € Njj. In particular we can take a =
(0,...,0,1,0...,0). Hence we get that necessarily A\; = 0 for i = 1,...,n. The sufficiency
is obvious.

Property (3) follows immediately from (2) and (1). |

From the above it follows easily

Example 4.9. In R" one can define a cone as a union of half-lines C = {t(x1,...,x,)| = €
S,t > 0}, where S is connected and bounded. Of course, as in this whole section, S has
nonempty interior. Then we can see that from the above corollary it follows that A(C) = R.

Now we will consider the algebras of bounded polynomials on projections of weighted
tentacles. Let 7, : R*"™™ — R" where m > 1, be a projection on the first n coordinates
and denote by 7 : R"*! — R™ the projection that leaves out only the last coordinate. We
easily get

Property 4.10. Let K C R"™™ be a set. Then for the projection m, we have
Alma(K)) = A(K) NRIX 1, .., X,
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Note that from the above property it follows that if A(S) C R[Xy,..., Xk], then
A(S) = A(m,(S)). In such a case for a set M of the form (4.6) we have

AM) = A ((Bi(y), - Be@) - (@1, @), y) | (21, k) € T(S), y > RY).

For a weighted tentacle M of the form (4.6) we have
(M) ={B(y)-z[ x €S, y > R}.

Let us remind that IntS # (. If S is bounded and ordy,S; > 0,...,0rds3, > 0, then
(M) is bounded. It is unbounded otherwise. Hence of course, if S is semialgebraic, 7 (M)
has a decomposition (1.19) into tentacle sets. But for S semialgebraic and connected
7(M) need not be a tentacle set as can be easily seen for the set {(z7 'z, zy) € R?| (z,y) €
B(0,1)} which has two tentacles.

Proposition 4.11. Suppose that A(S) is generated by monomials. For a set K of the
form

{6(y) -zl x €S, y= R},

where (3 is a Puiseux parametrization such that 8; # 0 for each i =1,...,n, we have
AK) = A(S)NR[X?| (Ma) >0, a € Nj].
Proof: The proof follows from Theorem 4.4 and Property 4.10. Indeed, K = w(M) and

A(K) = A(r(M)) = A(M) NRIX] = A(S)[Y] N RIXYY) d < (No)] N RIX] =
A(S) NRIX®| Zger, d < (Aa)] = A(S) NRIX] 0 < (Ao

This ends the proof. |

This proposition can be proved alternatively by an argument similar to the one
presented in the proof of Theorem 4.4. Observe that if every ord..B; > 0, then
R[X?% (Aa) > 0] = R[X].

In [Net] it is shown that projections of sets of the form (4.6) (necessarily subsets if S
is not compact) have stable preorderings if there holds a condition equivalent to saying
that the algebra of bounded polynomials admits only constant polynomials (compare
[Net, Theorem 5.4] with Proposition 4.10 and Corollary 4.8). The study of stability of
preorderings (as the existence of bounds of degrees of polynomials in these representations)
is also an interesting field from the viewpoint of applications, tightly connected with the
K-moment problem and presently discussed in the context of unbounded set (see for
instance [Sm2], [PS] or [KM]).

We will end this section with remarks on "model” sets which have the same algebra as
any given set of the form (4.6).

Take a multi-index A € Q" and a set Z = {¢;| ¢ € I} C R[X] of monomials that forms
a basis of A(S) i.e. the condition 1.10 from Preliminaries holds. For this basis (possibly
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after rescaling, see Property 4.1 and formula (4.5)) take the set S? of the form (4.2) such
that A(S) = A(S?). Set

Bz = {((1/)" 21, (1/y) " wary) R e 8% y> 1.
Note that By z need not be semialgebraic, since S? needs not be. Directly from the

characterisation of the algebras in Theorem 4.4 and Property 4.1 we get

Remark 4.12. Suppose A(S) has a monomial basis Z. For a weighted tentacle M relative
to a set S with weigh A € Q™ and 5; #0 fori=1,...,n we have

A(M) = A(Bj z),

where \; = ordeo5; fori=1,...,n.

The choice is not unique, because there may exist A # X such that A(B) z) = A(B5 z),

)

for example in the case when the algebra admits only constants.

In the case when S is compact we can simplify B) z. Put

By={((/p*ar....(1/y)" 2a,y) € R 2 € BOT), y= 1}
for any A € Q™. Hence from Remark 4.12 follows

Remark 4.13. If S is compact and 5; #£ 0 fori=1,...,n, then
A(M) = A(B),

where \; = ordeoB; fori=1,...,n.

To end the section let us take a look at the two-dimensional case. The sets of the type
(2.6) considered throughout Section 2.1 can be rewritten as either of the form

(%, ty)| (z,y) € [0, 1] x {1}, > 1} or {(y"z,y)| x € [0,1],y > 1},

Whereas sets of the type (2.8) can be rewritten as {(y*(x — f),y)| z — 5 € [0,1],y > 1}
where [ is a Puiseux polynomial. Hence they are exactly of the type considered above. As
the sets [0,1] x {1} and [0, 1] are compact, these forms can be interpreted as a kind of an
“uniform deformation” of a compact set. Though every algebra of bounded polynomials
is an algebra on this type of sets, tentacles of the form (1.7) are usually not equal to a set
of this type.

4.3. Subsets of algebraic sets

We will begin with an observation on stability (in the sense of Theorem 3.5 in Section
3) of the algebras of bounded polynomials on subsets of algebraic sets. Afterwards we
will show that these algebras do not admit finite bases. Let us note that we will use a
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shortened notation A(f = ¢) to denote A({(z,y € R?| f(z,y) = c)}).

Let us make a remark that the Stability Theorem from Section 3.3 does not hold if we
substitute the sets f~!([c, &]) with simply the fibres f~!(c), unless they are bounded. To
be more precise, we have the following

Proposition 4.14. Take a nonconstant polynomial f : R — R and ¢ # ¢ € R. If f~'(c)
or f=1(¢) is unbounded, then

A(f =c) # A(f = ©).
Proof: Without loss of generality suppose that f~!(¢) is unbounded. We have that
| X||?- (f — ¢) is bounded on f~!(c). But
IX)? (f = &)jp-10 = IXIIP - (=€) p-10)-
Since ¢ — ¢ # 0 and f~!(¢) is unbounded we have that || X||?- (f —¢) ¢ A(f = ¢). [ |
To find the generators of A(S) for an unbounded S C f~1(0) it is not sufficient to

consider polynomials neither divisible by f nor generated by f i.e. A(S) € (f)R[X]JUR[f].
Look at the example below

Example 4.15. Take f = (1+ X?)Y — 1 and

1
S=f10) = R? y = :
7o ={@n e®ly= 15}
The polynomial f is irreducible. If one takes g = f + vy, one gets that g is bounded on S,
but not constant. Hence g ¢ R[f] and g ¢ (f).

Now we will give an alternative proof that an algebra of polynomials bounded on an
unbounded subset of a proper algebraic set does not admit a finite basis. This fact has
been already shown by Plaumann and Scheiderer in [P1Sd] for a more general class of sets
i.e. subsets of proper algebraic subsets of any affine R-variety, but we feel that the proof
below fits better in our setting by making an interesting use of properties of nonproper
mappings and sets of the forms (4.1) and (4.2).

Theorem 4.16. If S C R" is an unbounded semialgebraic subset of a proper algebraic
set, then A(S) does not admit a finite set of generators.

The case n = 1 being trivial we will suppose that n > 2. Let us outline the proof of the
above theorem. We will suppose that A(S) is finitely generated. From Lemmas 4.17 and
4.19 we will conclude that S C S? = V((1,..., (). Hence ((i, - .., G)R[X] C R[Cs-- G
and we will use Lemma 4.20 to show that S is bounded. This will give a contradiction.

First, note that for every S C R”™ the zero ideal is always contained in A(S) and

R™ = {z € R"| 0 = 0}. Moreover, for any bounded set K we have A(S) = A(S\ K)N
A(K) = A(S\ K).
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Lemma 4.17. Let S C R" be an unbounded semialgebraic set. For any nonzero ideal
Z C R[X] there exists a compact set K such that

S\K CV(Z) < T c A(S).

Proof: Indeed, if S\ K C V(Z) for some nonzero ideal Z C R[X| and a compact set K then
obviously f =0 on S\ K for any polynomial f € Z. Hence f € A(S\ K) = A(S). Now
we will show the sufficiency. Suppose Z C A(S) for some nonzero ideal Z = (fi,..., fi).
Set K = S\ V(Z). If K = ), the claim holds. Assume that K # (). Suppose first that
K is unbounded. Take f = fZ+ ...+ ff € Z. Of course, f(x) # 0 for x ¢ V(f1,..., fr).
From Curve Selection Lemma and properties of semialgebraic curves there exists a tuple
of Puiseux series at infinity 3 : [R,o00) — K such that fo 3 # 0 and we have ||3(t)||? > t*
for ¢ > R and some rational p > 0. Hence (f o 8)(t) = aoﬁ + alw%/q + ... for some
r € Ng, ¢ € Z and a; € R such that ag # 0. Therefore there exists a natural number N
such that s = pN — r/q > 0. Hence for some positive constant C' we have

(XY - [£(X)]) 0 B(t) > CPN - ti/ — et oo

as t — oco. Therefore, || X||?V f is not bounded on S. But || X|?Nf € T c A(S). This
gives a contradiction. Hence K = S\ V(Z) is bounded. We get S\ K C V(Z). [

Let us illustrate the lemma above.

Example 4.18. Take the Motzkin polynomial m from FEzxample 3.2 and the set
S = {(z,y) € R?| m(x,y) < 1}, which is the union of the closure of the ball B(0,+/3) and
the locus of XY . By Example 3.9 we see that (XY') C A(S), but S — R2, Nevertheless,

it suffices to take any compact set K O B(0,v/3), so that we get S\ KX = V(XY).

Note that if S is unbounded, then there exists a compact set K such that

Zar Zar
Vior, S\Ko " =S\E . (4.11)

Indeed, if the above were not true, then there would have existed an infinite strictly as-
cending sequence of ideals in R[X]. This is impossible, because the ring R[X] is noetherian.
It follows that

Lemma 4.19. Let S be an unbounded semialgebraic subset of R™ such that the set Z of
generators of A(S) is finite. There exists a compact set K such that

WZ(W _ Sﬂ \ KZar _ SZ \ KZQT.

Proof: Let us first prove the existence of a compact set K such that the Zariski closures

of S\ K and S?\ K are the same. If i R™, then 527" — R™ due to the inclusion

S C S2. Let us suppose that i # R"™. For any compact set K we have

S\KZ(ZT‘ c 52 \ KZar.
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Take K which satisfies the condition (4.11). Since the Zariski closure of the set S\ Ky
is equal to V(Z) for some nonzero ideal Z C R[X], from Lemma 4.17 we get Z C A(S).
Moreover, since Z is finite from Property 4.1 we have A(S) = A(S?) = A(S? \ Kjy) and
again from Lemma 4.17 it follows that there exists a compact set Z such that (S?\ Ky)\Z C
V(Z). Hence from the choice of K if we put K = Ko U Z, we get

752 \ KZar _ —SQ \ (KO U Z)Zar c 7S\K0Zar _ 75 \ KZG’V‘.
This gives the first equality. We prove the second equality analogously. |

Note that we will prove in Theorem 4.16, that with these assumptions, the above

7
lemma is trivial, since then for any compact set we will have S\ K “". It will follow also

7 ——7
that if there exists a compact set K such that S\ K = S\ K o % R", then every

bounded polynomial on S is constant. This is not generally true (see page 63).

Now we will prove the crucial lemma suggested by Z. Jelonek.

Lemma 4.20. Let (1,...,( € R[Xq,...,X,], n>2. If

(Crs-o o G)RIX] CRICL, -5 Gl (4.12)

then the mapping (C1,...,C) : R — R¥ is proper.

Proof: Let us abbreviate ( = ((1,...,(x). From the assumption (4.12) there follows
existence of polynomials f;; € R[Y7,...,Y}] such that

XiGi(X) = fi;(C(X)) (4.13)

fori=1,...,nand j=1,..., k. We get X; = f;;(¢)/(;. Consequently it follows that the
fields of fractions R((y, ..., k) = R(X1,...,X,) are equal. Hence k > n > 2.

We will show that the mapping ¢ is proper on the set R™\ (~!(0). Take a compact set
K C RF such that 0 ¢ K. There exists a constant C such that supy | fij| < C for every i, j.
Since K and {0} are compact and disjoint, there exists € > 0 such that dist(K,0) = e.
Hence dist(¢(¢"1(K)),0) > e. For every z € (~}(K) from [|((z)||* > €? it follows that
there exists j = j(x) € {1,...,k} such that Cjz(:n) > ¢2/k. Hence from the above and
(4.13) it follows that for the point 2 and every i = 1,...,n we have

) = W@l OVE
G = e

Therefore (~!(K) is contained in the closed ball B(0,Cv/nk/e). Hence the mapping
¢ :R"\ ¢71(0) — R¥\ {0} is proper. Therefore the set of nonproperness .J; C {0} for the
mapping ¢ : R” — R¥. However, by Theorem 1.12 of Jelonek, the set J¢, if nonempty, is

semialgebraic of dimension at least 1. Hence 0 cannot be an asymptotic value of { and ¢
is proper on R". [ |
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In fact, using the set of nonproperness for complex mappings (see [J2]) one could prove
that the set of zeroes of the mapping ¢ satisfying assumptions of the above theorem is finite.

Proof of Theorem 4.16: Let us assume that A(S) is finitely generated. If (1,...,(; are

generators of A(S), then (;+c¢1, ..., +ci for any constants ¢y, ..., ¢, € R are generators
of A(S) as well. Hence we can assume that the generators (, ..., (; are such that for some
unbounded curve v : [R,00) — S we have (;(y(t)) — 0 as t — oo for every i = 1,..., k.

Since from assumptions i V(Z) # R™ for some ideal Z C R[X] we get Z C
A(S) # R[X] from Lemma 4.17. Hence from Lemma 4.19 there exists a compact set K
such that

r

{zeRr| > (x) < CH\ K- SANE " = V().

This gives us Y. ¢? > C on R™\ K. Should it be otherwise, then the open set
Z={zeR" Y ) <CI\K
would be nonempty. Therefore
Rr — 720 - mZar LR

which gives us a contradiction. Hence Y, (? = C on S\ K.

On the other hand, from the choice of ¢; it follows that C' = 3" (?(y(t)) — 0 as t tends
to infinity. Hence C' = 0. From the definition of C' we get (; = 0 on S\ K for every i.
Hence

S\K C5*=V(C,.--\G)

Since the ideal ((1,...,Cx) in R[X] is contained in A(S?) = R[(1,. .., k], we can use
Lemma 4.20 and get that V((1,...,(x) is compact. This gives a contradiction. |

Due to Plaumann and Scheiderer (see [P1Sd]) we know that the only semialgebraic sets
in R? which do not admit a finite basis of the algebra of bounded polynomials are the ones
whose every tentacle is a subset of a proper algebraic set i.e. sets S such that there exists a
compact K such that the Zariski closure of S\ K is proper. Nevertheless, starting from R?,
unbounded subsets of algebraic sets are not the only ones that do not admit a finite basis.
Recently, an example was given by S. Krug in [Krug] of a semialgebraic set in R® whose
tentacles have a nonempty interior at infinity (i.e. outside any compact set) such that its
algebra cannot be finitely generated. It can be viewed as a geometric interpretation of a
recent result of S. Kuroda in [Ku] on the existence of counterexamples to Hilbert’s XIVth
Problem in low dimension and transcendence degree. More precisely, in [Ku] it is shown
that there exist infinitely generated subalgebras of the ring of polynomials in four variables
arising from intersections of this ring with a subfield L of the ring of fractions R(X) of
transcendence degree three. Nevertheless, the example of Krug is a semialgebraic set
which is not basic and we feel that in context of Schmiidgen’s Positivstellensatz (compare
Section 6.2) it is an interesting question to ask whether there exist basic sets that do admit
an infinitely generated algebra of bounded polynomials.
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5. MONOMIAL GENERATORS

5. Monomial generators

In this section we will focus on algebras of polynomials generated by monomials. First
we will start with the notion of semigroup and some of its basic properties. Afterwards,
we will study the geometric properties of cones of monomials bounded on a given set. As
an example, we will point out the generators of the algebras of polynomials bounded on
tentacle sets with borders of different orders (see Section 2.1). In Theorem 5.9 we show
that any closed convex cone spanned by a finite set of points with rational coefficients is
in fact a convex cone spanned by the generators of an algebra of bounded polynomials on
a suitable unbounded basic semialgebraic set. Hence there is a duality between convex
cones in R™ and sets given by monomial inequalities.

5.1. Generators of semigroups

A semigroup is a set M with a binary operation - : M x M — M such that ({-n)-0 =
¢-(n-0) for every (,n,0 € M. A semigroup with a neutral element 1,4 is called a monoid
(see [Kin]). Any nonempty subset S of M which is closed under the operation - is called
a subsemigroup, any subsemigroup containing the neutral element is called a submonoid.
A monoid where all elements have their inverse is a group.

Example 5.1. Take the set N[, where m € N, with the operation + of addition on
coordinates

(nl,...,nm)Jr(k:l,...,km):(n1+k‘1,...,nm+k:m).

Hence it is easily seen that N{j* with the above operation is a semigroup with the neutral
element (0,...,0). The set Z™ with the above operation forms a group for any m € N.

We will say that an element ¢ of a semigroup M is generated by a set Z if there exist
G € Z, v € Ny such that ¢ = ¢J" -+ ¢/*. A submonoid A C M is said to be generated by
a set Z if Z C A and each element of A is generated by Z. A set Z is called a basis of A
if it generates A and every ¢ € Z is not generated by the set {1} U(Z\ {¢}). For example
X1,...,X, form a basis of the monoid of all monomials in n variables and the basis of the
one-element monoid {1} is empty.

Note that the above notion of generating a semigroup has a counterpart in generators
of algebras (as in Section 1.3). And we will see in Section 5.3 that sometimes they coincide.

67



5.1.  Generators of semigroups

From now on M will stand for the multiplicative semigroup of monomials in n variables.
We will write X< for X{'' ... X%, where a = (a1 ...,0,) € Ng and X? = 1. Monomials
together with multiplication form a monoid. For a set A C M we put

suppA = {a e Nj | X € A}

and we will call it the support of A. The natural identification 2 : M 3 X* — a € Nj
is an isomorphism of the monoid (M, -) and the monoid Nj regarded with addition on
coordinates (as in Example 5.1). Indeed, 2(1) = 2(X) ... X?) = (0,...,0) and 2(X*- X7) =
(X)) = a+y = 1(X*)+2(X7). Foraset A C M we have 1(A) = suppA. This approach
will be useful when talking about points in N{} corresponding to monomials in n variables.

/

T powersof Y

powers of X

Figure 7. Multiplication of monomials X?Y'? . X*Y™ represented as points in N2.

If A is a subsemigroup of M, then either A = {1} or A is infinite. Indeed, if 1 # { € A,
then ¢? € A for all i € N. Moreover, it is crucial to note that a monomial can be generated
only by monomials of lower degrees. Indeed, for any ¢ € M if ¢ = ¢ ...¢* for k > 1,
a; € Nand (; # 1 for all 4 then deg (; < deg(.

Let us establish in M the deglex ordering (as in e.g. [DW]), that is for every ¢, € M
we put
(< ¢ <= deg( <deg( or (deg(=deg( and ¢ <iex C),
where X" - X% <., X{' - X" if and only if either X --- X = X' ... X" or
for the first [, for which «o; # ~v;, we have a; < 7. This ordering is a well-ordering in M.
That means it is linear and each subset of M has the first element. Hence every infinite
subset of M can be written as a string numbered by natural numbers.

Proposition 5.2. Every semigroup A C M has a unique basis.

Proof: Let us show that a basis of A always exists. We give a procedure of finding it. If
A = {1} then the basis is the empty set. Let us suppose that A is infinite. Write A\ {1}
as a sequence ((;);en such that ¢; < ¢ for ¢ < j.
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5. MONOMIAL GENERATORS

Put Z; = {¢1}. It is a basis of the monoid generated by ;. Suppose we have sets Z;
for all # < n, where n > 0. And that each Z; is the basis of a monoid generated by its
elements. Take (,+1. Put

z _ Z, U {Cn—l-l} if Gy ¢ R[Zn]v
el Zn otherwise.

Hence the set Z,, 11 is a basis of a monoid generated by its elements. Take Z = (77 Z,,.
It is easy to show that Z is a basis of A.

The basis of A is unique. Indeed, take two bases Z = {(1,...,(,...} and
Z = {51,...,C~k,...} of A ordered by deglex. Choose the first k such that ¢, # (k.
Without loss of generality we can assume that ( < Q:k Since Z is a basis of A, we
get (p = <~1a1 . --5lal for some | < k, where (1,...,{ are of lower degree than (. But
from the choice of (i, we get that it is generated by elements of Z. This contradicts the
assumption that Z is a basis. [ |

5.2. Semigroups of monomials bounded on a set

Take the coordinate system of Nf. Recall that a point o = (ay,...,0p) € Nj
corresponds naturally to a monomial X = X7 --- X%, Two monomials have the same
degree d if the corresponding points in Nj lie on the same hyperplane {z € R™ | >, ; = d}.
Multiplication of two monomials X® - X# = X8 in this coordinate system can be
interpreted as translation of the point o by the vector [§]. This is exactly a geometrical
interpretation of the isomorphism between the monoid of monomials with multiplication
and Nj with addition on coordinates. Moreover, since Nj is a monoid, we can speak
about points generating other points (according to the definition of generating in any
monoid).

Take a semialgebraic set S. Denote by M(.S) the set of all monomials bounded on the
set S. Since a product of two polynomials bounded on S remains bounded on S, the set
M(S) with multiplication is a semigroup with the constant monomial 1 of degree 0 as the
unit. It is easy to see that

A(S) 2 RIM(S)]

and M(SUM) = M(S)NM(M) for sets S, M C R™.

For any set A C R™ we will denote by conv(A) the smallest convex subset of R"
containing A. In other words

N N
conv(A) = {Ztia(i) eR"| N eN, Zti =1, a9 eA, t;> 0}-

i=1 =1
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5.2.  Semigroups of monomials bounded on a set

We will say that a cone
Ca={ta|t>0, ac A}

is spanned by a set A. Note that if A is convex, then {X® | a € C4 NNj} is a semigroup
of monomials, because o + 3 = 2(%(1 + %ﬂ) € Cx for any a, 8 € Cya.

We will now give some properties of the semigroup M(S). First, note that when taking
rational exponents of coordinates X; and treating them as functions we have to use the
absolute value to make sure that appropriate powers are well-defined. Since a function
is bounded on a set if and only if its absolute value is bounded, we can use the absolute
value instead without loss of generality.

Property 5.3. If the monomials (; = Xa(l), vy G = X are bounded on a set S, then
every element of the semigroup

C=Npn{ta|t>0, acconv(aV, . . . o®)
corresponds to a monomial bounded on S.

Indeed, take B8 € C. Then [Xi|% .- |X,|% = (|¢1]*---|Cx|*)! for some rational
t,t1,...,t, > 0 and S t; = 1. Since tt; > 0, we get that the function |X1|%---|X,|?" is
bounded on S. In particular, any monomial X# is bounded on S if 3 € C.

From the above property it follows that the semigroup supp(M(S)) of all expo-
nents of monomials bounded on a given set S always induces a convex cone in R" i.e.
conv(supp M (S)) is a convex cone. Note that if A = {a(M),... a®}, then

k
Coonv(A) = {Zt@-a(i) |4, >0, i= 1k}
i=1

is a so-called conical hull of points of A.

Property 5.4. If oM ... o) e Ng, then the semigroup
C=NZn{ta|t>0, aeconv(al,... a®)}

is finitely generated (as a subsemigroup of Nij ).

Proof: Indeed, C is generated by the finite set
NZN{ta|1>t>0, acconviaM, ... a®)}.

Since the above set is equal to the set NfN{ta |t € Q, 1 >t >0, o € conv(a®, ... a®)},
we get that for any ¢ = p/q > 1, where p, ¢ are coprime natural numbers,

1
g(tla(l) .+t e N = g(tla(l) + .. +tpa®)y e Ng

for any rationals ¢1,...,t; > 0 such that Y ¢; = 1. |

Hence {X®| a € C} in the above case is also a finitely generated semigroup.
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5. MONOMIAL GENERATORS

Denote R> = {x € R |z > 0} and Q> = QNR>. Note that any set H in RZ given as an
intersection of a finite number of half-spaces (given by hyperplanes passing through zero) is
a cone Ceony(a) in R™ for some finite set A. Indeed, it suffices to consider the intersection of
H with the hyperplane given by the equation ), x; = 1. It will be a convex polytope. Take
its vertexes ly,...,l;, which correspond to half-lines in RZ and choose a® o) %0
such that oV € {tl; | t > 0}. We get H = Ceonv(a) for A = {a® ... a®} Of course,
if N* N {tl; | t > 0} # 0, we can demand that oY) have natural numbers as coordinates.
Hence if H C Q> is an intersection of a finite number of half-spaces, then convH C R" is
a cone Ceony(4) spanned by a finite set A C N{.

Remark 5.5. Let A C RY. The cone Cy4 is closed if and only if there exists a compact
set B such that
Ca=Cp.

Indeed, if such a compact set exists, then the cone is closed. If the cone is closed, then its
intersection with a hyperplane given by the equality ) z; = 1 is compact.

Hence as a consequence of Property 5.4 and the above remark we get

Theorem 5.6. Let S C R™. The semigroup M(S) of monomials bounded on the set S is
finitely generated if and only if there exists a finite set A C N such that it spans the cone
conv(supp(M(S))).

Proof: If M(S) is generated by a set Z, then from Property 5.3 and properties of bounded
polynomials we get
COIlV(SuppM(S)) = Cconv(suppZ)'
Hence we put A = suppZ. Moreover, by Property 5.4 the above cone is closed if Z is
finite.
On the other hand, assume that conv(suppM (S)) is spanned by a finite set A C N .
Hence the cone is closed. Take the polytope

conv(supp(M(S))) N {z € R"| le =1}

Take its vertices 71,...,7. Then take ¢; € R such that ¢; - v € Njj. Hence M(S) is
generated by monomials X% where o are elements of the finite set

Ny N{ta |t € Q,1>t>0, o € conv(qivi,--.,qV)}-

This ends the proof. |

Let us note that from the above it follows that if M(S) is finitely generated, then the
intersection of conv(supp(M(S))) with the hyperplane given by the equality >, z; = 1 is
a polytope.

Example 5.7. Take the set S = {(x,y) € R? | # = 0}. Then M(S) = {XY" | n € Ny}
and the cone conv(suppM(.S)) is not closed, because it is equal to the first quarter of the
plane without the y axis.
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We would like to underline also the constructive aspect of the above considerations in
the following remark.

Remark 5.8. Given the cone conv(suppM(S)) there exists a procedure of finding elements
of the basis. If the cone is finitely generated, then this procedure stops after a finite number
of steps.

Indeed, in the case of a cone infinitely generated one of the possible methods is presented
in the proof of Proposition 5.2. In the case of finite generation it suffices to find a finite
set A such that conv(suppM(S)) = Ceonv(a)- To do that follow the proof of Theorem 5.6.
Having a finite set of generators it suffices to combinatorially exclude the ones that are
not elements of the basis.

5.3. Monomial bases of algebras of bounded polynomials

In this section we will show in Theorem 5.9 the duality between the points with natural
coordinates from closed convex cones and semialgebraic sets described by appropriate
monomial inequalities. Afterwards, we consider the algebras we have already studied in
Sections 2.1 and 4.2.

Given a convex cone C C R™ we can define C° a polar cone of C by
C°={neR"| (na) <0 for all o € C}.

We have that (C°)° = C (see [HUL]).

We say that a point @ € C, where C is a convex set, is an extreme point of C if there

do not exist two distinct points oy, as € C such that a = (a1 + ag)/2. If a® .. aW are
extreme points of conv(aM, ... a(), then for any i we have
conv (a(l), . ,a(l)) # conv ({a(l), a3 {a(i)}> . (5.1)

For other properties of polar cones and extreme points see [HUL].

Theorem 5.9. Take any closed convexr cone
C={taeR"|t>0, a€conv(A)},
where A C Nij. Then there exists a semialgebraic set S C R™ such that
A(S) =R[X* | « € CNNG].

Proof: By Theorem 5.6 we can take a finite set Z of generators of the semigroup C N Ng.
Put

S=[V{z eR" | [a* < 1}.

acZ
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5. MONOMIAL GENERATORS

Of course, S is an unbounded semialgebraic set. Moreover, the inclusion C N Ny C
suppM (S) is obvious from the form of the set S. Hence we need to show the inverse
inclusion.

Take any polynomial f = Y _paqX®, where B = suppf C Nj is finite and a, # 0
for a € B. We will show that if suppf ¢ C, then f is not bounded on S.

Take the affine hyperplane H given by the equality ) ,a; = 1. We can consider
intersections of cones in RY with the hyperplane H as images by a mapping 7 : RZ\ {0} —
H such that 7(z) is the intersection point of the line {tx € R" | t € R} with H.

We have that the intersection of H with the cone spanned by the set conv(C U B) is a
compact convex set. From Property 5.4 and the fact that the cone spanned by conv(CU B)
is closed it follows that it is finitely generated as a semigroup. Therefore the intersection
with H must be a polytope. Hence the above intersection has extreme points 77(1), R n(l)
such that
Do

Cconv(CUB) NH= CODV(U( (l))

It is easy to see that n) € 7(Z U B) for i = 1,...,1. Moreover, if n) € 7(Z) for every
i, then suppf C C, which is impossible by assumption. Hence there exists m such that
n™) € w(B\ C). Denote by B’ the nonempty finite set 7—!(n(™) N B. Take the closed
convex cone

C' = {ta | a e conv({n™,....n"}\ {n"™}) }.
Of course, C € ', B\ B' ¢ €' and B'NC" = () from (5.1). Since ™ ¢ ¢’ = C’ and
(C’°)° = C, there exists A = (A1,...,\n) € (C')° such that (n(™|)\) > 0. Since 7~ 1(n("™)
is a half-line and the scalar product is linear, we have (n|A\) > 0 for every n € B’. Note
that for n,n’ € B if n # 7/, then

(nIA) # (') (5:2)
Indeed, (n|\) = (n’|)\) if and only if n — 1’ is orthogonal to A. But there exists ¢ # 1 such
that tn =1/, so (n—n'|A) = (1 =)(n[A) # 0.
Take a curve y(t) = (tM,...,t*) for t > 1. We have for « € C N N% that
X% on(t)] = W] <1

for t > 1, because (a|\) < 0. In particular the above is true for a € Z. Hence ~([1,00)) C

S. We have
(fon®) = > aatM 4+ 3" el
a€B\B’ a€EB’
for t > 1. We see that
Z agtMe)
aceB\B’

is bounded for ¢ > 1, because (Ma) < 0 for « € B\ B’ C C’. On the other hand in the

second term
Z aat</\\a>

aeB’
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5.3.  Monomial bases of algebras of bounded polynomials

the powers of ¢ do not cancel out, because of (5.2). Hence it is unbounded for ¢ > 1,
because (A|a) > 0 for « € B’. Therefore f o+ is not bounded on [1, 00), unless suppf C C.
This gives us that A(S) C R[X* | a € CNN{] and ends the proof. [ |

Note that an intersection of two algebras generated by monomials is generated by
monomials. Hence, if on each tentacle of a given set the algebra of bounded polynomials
is generated by monomials, then it is easy to determine the algebra of polynomials on this
given set. It is important here to remark that usually algebras of bounded polynomials
are not generated by monomials. The semigroup A(M) N M (M) may be trivial i.e. equal
to {1}, even if A(M) is not. Let’s look at an example

Example 5.10. Take theset S = {(z,y € R? |0 < z—y < 1)}. We have A(S) = R[X Y]
and of course M(S) = {1}. Hence A(M) is not generated by monomials. (Nevertheless,
in this case A(S) is isomorphic to an algebra R[X] generated by monomials.)

Even worse, there are algebras of bounded polynomials that are not isomorphic to any

algebra generated by monomials. Take for example the algebra of bounded polynomials
on the set M from Example 2.18, where R[XY, X%Y, X?Y + Y] C A(M) and Y ¢ A(M).

Nevertheless, let us now consider some explicit examples of algebras of bounded
polynomials generated by monomials, which have appeared earlier in this thesis.

Let us look at sets from Section 2.1. Take an unbounded semialgebraic set

M = {(xvy) S Rz ‘ Bl(y) <z < ﬁ2(y)7 Y > R}7 (53)

for some R > 0 and (1, 82 Puiseux parametrizations of continuous semialgebraic curves
with orde 81 # ordecfB2. Denote min{orde,/31,0ordo 2} = g for some p € Z, ¢ € N with
no common divisors. For the moment we assume that min{orde, 51, ordsf2} # 0o. From
Theorem 2.4 it follows that

AM) =R [X’Yd .

dgi-p]. (5.4)

Note that if 2 < 0 then A(M) = R and the basis of A(M) is the empty set. If £ = 0 then
A(M) = R[X]. In this case we get that the set {X} is a basis. Therefore, we suppose
that p,q € N.

From equality (5.4) it follows

Corollary 5.11. For a set M of the form (5.3) with ordef1 # ordefB2 and
min{ordsf1,0rds B2} # 00 the basis of the semigroup M(M) of monomials bounded on
M is the basis of the algebra A(M) of polynomials bounded on M. In particular, A(M) is
finitely generated.

Denote by [ - | the integer part of a real number i.e. for any real number « the value
of [a] is the biggest integer smaller or equal to . Then
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5. MONOMIAL GENERATORS

Remark 5.12. One can compute that the number of elements of the basis of the algebra
A(M) is equal to

where

fora>0 and k > 2.
Indeed, consider monomials X*Y?, i ,d € Ny. Theorem 2.4 gives us that

d§i~p}.

M(M) = {X’Yd p

Hence the monomial XY is bounded on M if and only if d € {0, ..., [zg]}

STEP 1

M
w
-
m
-
=

compute
r(k,p/q)

Figure 8. A procedure of choosing elements of the basis of A(M).

Let us consider a triangle

A = conv((0,0), (¢,0), (¢,p)) N NG.
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5.3.  Monomial bases of algebras of bounded polynomials

From Properties 5.3 and 5.4 we get
M(M) = Ceonva NN .

A® = cony ((0, 0), (4,0), <z [ZZD) N N2

for i € N. Each A® is either a segment or a triangle contained in A. The function r
in Remark 5.12 counts how many points more there are in subsequent triangles i.e. for

Let us consider

a fixed slope p/q the value r(k,p/q) is the quantity of points with integer coefficients
which lie in A®), but do not lie in any cone generated by AW for j < k (the component

MaxXj—1, . k-1 [%[ja]} of function r corresponds to this condition).

We will only outline the computation by describing the steps (see also Figure 8).

STEP 1: Take 1 + [p/q] points of the form (1,d) from A®M ie. d =0,...,[p/q]. Put

Z:={(1,d)|d=0,...,[p/q|}.
STEP k: If r(k,p/q) > 0, take r(k,p/q) points (k,d) € A® such that d = [kp/q] —
r(k,p/q) +1,...,[kp/q]. Set
Z:=ZU{(k,d)| d = [kp/q| = r(k,p/q) +1,.... [kp/ql}.

Procedure stops when k gets bigger then q.

The outcome of this procedure is the set Z such that {X?Y?| (i,d) € Z} is the basis of
M(M). From the construction it follows that the set Z contains 1+ [p/q]+ > 7_, r(k,p/q)
points.

Now let us take a set S C R" such that A(S) is generated by monomials and a set
M={(B(y) =.y) ER"|z €S, y>R} (5:5)

where R > 0 and 8 = (51,--+,0n) : [R,00) — R" is a Puiseux parametrization of a
semialgebraic curve at infinity such that ; # 0. From Theorem 4.4 we get that

AM) = AS[Y]NR[XYY (a|\) > d, a e N2, d e Nyl

Remark 5.13. It is easy to see that A(M) is generated by monomials and if A(S) is
finitely generated, then so is A(M).

To end this section we would like to note that the methods presented here work also
in the case when coordinates Xi,...,X,, are replaced by coordinates of a polynomial
automorphism (this follows from the fact that polynomial automorphisms induce iso-
morphisms of algebras of polynomials bounded on appropriate sets cf. Property 1.16).
Moreover, we can apply the methods given here to algebras from Section 2.2 of the form
R[ﬁ, (X — B)'Y? | d < in], which can be treated as generated by "monomials” with
Puiseux coefficients and rational exponents (for which we can fix the denominator).
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6. Some applications of the results

Here we give some consequences of the results presented in this thesis. First, we
will show that for a semialgebraic set in R? there exists a finite number of families
which "test” boundedness of polynomials on the set (see Corollary 6.5). More precisely,
each polynomial is bounded on the given set if and only if he is bounded on a
finite number of members of these families. In the second part we will turn to a
version of Schmiidgen’s Positivstellensatz for unbounded sets. This version deals with
representations of bounded polynomials as elements of a preordering on a given set. Since
for a wide class of sets we are able to check which polynomials are bounded, we feel
that this gives some constructivity to checking the assumptions of Theorems 6.10 and 6.13.

6.1. Testing curves for bounded polynomials

In this section we show that for a semialgebraic set S we can choose a finite number
of families of curves such that for any polynomial f it is bounded on S if and only if it
is bounded on a finite number of generic members of these families. These curves can be
computed explicitly (using constructive Puiseux theorem and tools developed in Section
2, most notably Theorem 2.16).

To give a background we start with a general fact.

Proposition 6.1. Take any closed semialgebraic set S C R™ and a polynomial f € R[X].
The polynomial f is bounded on S if and only if it is bounded on any continuous semial-
gebraic curve included in S.

Proof: The necessity is obvious. Hence to show sufficiency we will prove that if a poly-
nomial f is not bounded on S, then there exists a continuous semialgebraic curve g C S
such that f is not bounded on .

Take any polynomial f which is not bounded on S. Without loss of generality we will
assume that S is an unbounded set and f is unbounded on S from above. The set

7z = RL>J0{56 €S| f(@) =  max f}

is an unbounded and semialgebraic subset of S. Hence from the Curve Selection Lemma
there exists a continuous unbounded semialgebraic curve § C Z. Moreover, it is obvious
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from the definition of Z that f is not bounded on g. |

We will say that a condition ® holds for generic ¢ € R", if there exists a proper
algebraic set V' C R™ such that the condition ® holds for any ¢ ¢ V. Note that, in the
case n = 1, every proper algebraic set is finite.

From Theorem 2.16 we can derive an interesting consequence on deciding the bound-
edness of polynomials on subsets of the real plane. Let

M= {(IB,y) € Rz‘ 51(:9) S r < BQ(y)uy Z R}? (61>

where 1 # (B2 parametrise semialgebraic curves, R > 0 and the set M is unbounded. Put
p € Z, q € Nsuch that % = ordeo(f1 — P2). Although it does not influence the proof, we
will suppose for simplicity that p and ¢ are coprime. Take (s as in Propositions 2.15
and 2.17 i.e.

S (M) 1yi/ m
Z bi (7)2 7, ordeof1 = orde B2 = R
07 Ordooﬁl 7é Ord00527

€ R are the first p — m + 1 coefficients of 8. Let us remind that we suppose

By =

)
7
that summing up over an empty set gives zero.

where b

Under the above conditions and conventions we have

Theorem 6.2. Let f € R[X,Y]. For a tentacle M of the form (6.1) with [ # [ take
the Puiseux polynomial Byr. Then for generic ¢ € R we have that f is bounded on M if
and only if it is bounded on the curve

Te={(z,y) €R?| c= (z— Bu(y))%y", y>1}.

In other words, there exists a finite set G = G(f) such that f is bounded on M if and only
if f is bounded on some curve L', ¢ ¢ G.

Before proving the theorem let us make a remark.

Remark 6.3. Note that T'. need not lie in M (see Example 6.4). Moreover, for ¢ <0 we
have that if q is even, we get Ty = 0. Whereas if q is odd, ¢*/? is well-defined.

Proof of Theorem 6.2: We will write for brevity [ instead of 8. First we will expand

f in a convenient form. By Proposition 2.13 the polynomial f can be represented uniquely
. k

(up to zero coefficients) as D, . 4 Z?:o a; (X —=B)Y ¢, where A C Z is finite and a;;, € R

forall k € A, 7 =0,...,d. Therefore

F= ajn(X =BYYH14 3" a;n(X — BTV
k<jp k>jp

Due to Theorem 2.16 on characterisation of algebras of bounded polynomials on tentacles
and its slight refinement in Proposition 2.17 we have that f is bounded on M if and only if
the second sum is equal zero. Denote by f, = Zkgjp aj (X — ﬁ)jyk/q the bounded part.
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6. SOME APPLICATIONS OF THE RESULTS

Let us look at f on the curve I'. for any ¢ € R. We have
j_ k=pj J_ k=pj
fir. = Z ajrctY 1+ Z ajrciY
kE<jp k>jp

so the bounded part f; is bounded on I'..
Hence we see that if f is bounded on M we can write f = f3, so f is bounded on I'.
for any ¢ € R. On the other hand, if f is not bounded on M then

j_ _k—pj J_ _k—pj
> E a;rctY _‘fb|1‘c|2 E ajrciY 1 | —C,

k>jp k>jp

| fir.

for some C' > 0 and any ¢ € R. Therefore to show that f is unbounded on I'. we have
to make sure that the unbounded part of f does not vanish on I'.. Let us look at the
coefficients of any Y%, So the unbounded part vanishes only for ¢ from an algebraic set
given by finitely many equalities of the form

G—{CGR: > aj,kcj/q_o,ZGD},
k

=Jip+1
j=0,...,d

where D C {k—jp | ke A,j =0,...,d} is finite. If the set G had a nonempty interior,
then the coefficients a; for k& > jp would be zeroes, so f = f;, which contradicts the
assumption that f is not bounded on M. Therefore for generic ¢, if the polynomial f is
unbounded on M, then it is unbounded on the curve I'.. This ends the proof. [ |

Example 6.4. Take
1
M={(z,y) eR?| - <ay’+y* <1y>1}=
Yy

1 1 1 1
={z,y) R | - 5+ g <e< = -~ y>1
t y oyl vy J
and a polynomial f = X2Y* +2XY + 1.
We have that 3y = —1/Y3. It is easy to compute that G is empty, hence we can take
any real c. In particular, take ¢ = 0 and the curve

1
I‘0 = {(l’,y) S R2| 0= (:E—i_ E)yf)) ) > 1}

Note that I'o N M = (in fact I'. \ M is unbounded for every ¢ € R). For y > 1 we have
—% = xy? and —y% =y, 50 fir, = (—%)2 - Qy% +1=1- y% Hence || fir,|| < 1. From
Proposition 6.2 it follows that f € A(M).

From Theorem 6.2 it will follow that for any semialgebraic set there exist corresponding
families of Puiseux polynomials which "test” boundedness. Take any semialgebraic set

S C R?. Take all polynomials g1, ..., g, used to describe it and set g = g1 - - - gu,. After a
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6.1. Testing curves for bounded polynomials

linear change of coordinates, up to the sign, g is of the form g = X% + Z?Zl a; (V)X
where dega; < i. Since FrS C ¢g~1(0), we can easily decompose S as in Theorem 1.19
into [ tentacles M;. Note that the number [ of tentacles cannot be greater than Zle T4,
where k is the number of polynomials g; describing S and 7; is the number of distinct
Puiseux parametrizations at infinity of V(g;). After a permutation of indices S has
tentacles My, ..., M, with nonempty interior and M, 1, ..., M; which Zariski closures are
proper subsets in R?. In the following corollary we will deal also with them. Note that if
we want to treat all tentacles at once, we have to also distinguish tentacles which borders
are parametrised with positive and negative y.

As a consequence of Theorem 6.2 we get

Corollary 6.5. For an unbounded semialgebraic set S C R? and any f € R[X,Y], after
some linear change of coordinates, there exists a generic ¢ € R, a finite number of Puiseux
polynomials B1,...,BryYr+1,---,7 and integers pi,...,p, such that f is bounded on S if
and only if f is bounded on curves

{(z,y) €R? | c = (z — Bily))y™, y > 1} (6.2)

fori=1,... k,
{(z,—y) e R? | ¢ = (z = Bi(y)) "™, y > 1} (6.3)
fori=k+1,...,r,
{(z,y) eR* [ 0=z —i(y), y > 1}

fori=r+4+1,...,s and

{(z,~y) eR* [ 0=2—(y), y > 1}
fori=s4+1,...,1.

Proof: If S after a linear change of coordinates and the decomposition as in Theorem
1.19 has an ample tentacle of the form (1.8), then A(S) = R and it suffices to take 2(d+1)
curves v; = Y 4+ 4 and Y4y14s = =Y + i fori = 0,...,d. Since X +Y, X —Y is a
system of coordinates, we see that f is bounded on each ; for i = 0,...,d if and only if
degx .y f = 0 (compare with Property 4.3). By analogy degy_y f = 0, so f is bounded
on curves v; for i = 0,...,2d + 1 if and only if deg f = 0. Hence f is bounded on curves
~v; for i =0,...,2d 4+ 1 if and only f is constant.

Let us suppose that S does not have ample tentacles of the form (1.8). Enumerate
tentacles of the set S such that M, ..., M, have nonempty interior (outside any compact
set) and M, 1, ..., M; have Zariski closures which are proper subsets of R%. Moreover, let
My, ..., My and M,1,..., M be the tentacles contained in R x [0, 00) and Myy1,..., M,
and Mgy1,..., M; be the tentacles contained in R x (—o0, 0].

For each tentacle M; with nonempty interior and borders parametrised by positive y,
i=1,...,k, take 8; = B, and a family of curves {(x,y) € R? | ¢ = (z — Bi(y))%yP:, y >
1} as in Theorem 6.2. Analogously, for each tentacle M; with nonempty interior and
borders parametrised by negative y, i = k+1,...,r, consider ¢(M;), where ¢ = (X, -Y).
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6. SOME APPLICATIONS OF THE RESULTS

Take B; = By(a,)- It is easy to see that the family of curves {(z,—y) € R? | c= (z—
Bi(y))%yPi, y > 1} tests boundedness on M;. We can take ¢ as the least common multiple
of the ¢i,...,q and p; such that p;/q = p;/q;. From the fact that c is generic we conclude
that f is bounded on (J;_, M; if and only if for a generic ¢ it is bounded on the curves of
the form (6.2) and (6.3).

For the tentacles M,1,..., M; with proper Zariski closures it suffices to notice that
each M; is of the form

{(z,y) eR* | 0=z —F(y), y= R} or {(z,—y) €eR*|0=2—7(y), y > R}

for some Puiseux series at infinity 3, = > bé»(l JY)ilsi,

After simple calculations (see [RS]) we see that there exists D;, which depends only on
the degree of f and ord..7;, such that f is bounded on M; for i =r +1,...,[ if and only
if it is bounded on a curve appropriately of the form

{(z,y) eR* | 0=z —%(y), y=1} or {(z,—y) eR*|0=2—(y), y > 1},

where 7, = Z]D:lml b;(1/Y)//% is a Puiseux polynomial. So we have the Puiseux
polynomials ; that test the boundedness of the polynomial f on the tentacles with empty
interior. Since A(S) = ﬂézl A(M;), we end the proof. [ |

We can see that the above corollary gives an effective method of deciding boundedness
of a polynomial on a subset of R%. The only ingredient lacking is the ability to a priori
determine what are the tentacles of the set. More precisely, if S is described by polynomials
g1, - - -, Guw, then between which roots at infinity of g = g1 - - - g, do the tentacles of the set
S lie. The question of efficient bound on a radius of a ball whose complement separates
the tentacles (more precisely, a ball B such that the connected components of S\ B are
tentacles of §) is closely related to results recently settled for example in [BaK] and [BaR].

6.2. Schmiidgen’s Positivstellensatz for bounded polynomials
on unbounded sets

The purpose of this section is to present some versions of celebrated Schmiidgen’s
Positivstellensatz in the case when the set S is unbounded (Theorems 6.10 and 6.13). To
this aim we will use mappings with generators of the algebra A(S) as their coordinates.

First, we will present elementary facts concerning preorderings and Schmiidgen’s
Positivstellensatz. Afterwards, we will introduce some helpful notions used in proofs of
Theorems 6.10 and 6.13. Throughout this section we will meet the assumption that some
functions are bounded. The previous sections give effective methods of verifying these
condition in some cases.

Throughout this section let
§={w R gi(w) 2 0,..., gu(x) = 0},

where ¢1,..., g, € R[X]. We assume that among the polynomials describing S there are
only nonzero polynomials. We will write X for (X1,..., X)) unless stated otherwise.
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6.2. Positivstellensétze for unbounded sets

For any ring A denote by > A? the set of all finite sums of squares of elements of A.
We say that a set 1" is a preordering in a ring A if T'C A and

T+TCT, T-TCT and » A’CT,

where T+ T = {t+s|t,se€T}and T-T = {t-s| t,s € T}. So in other words, T is a
preordering in the ring A if it contains > A% and is closed with respect to multiplication
and addition. Note that > A? is the smallest preordering in the ring of polynomials.

Set

T={ > 5097 sc€) RIX]*?. (6.4)
ce{0,1}w
Such a set is a preordering in the ring of polynomials. It corresponds to the description
of the set S. Note that for two different descriptions of the same basic semialgebraic set
S there two corresponding preorderings may be different.

The following theorem was a milestone in the study of polynomial representations and
alternative solutions of Hilbert’s XVII problem. It was proved by Schmiidgen in [Sm]
as a corollary to a result on the so called K-moment problem which lies in the scope of
functional analysis and operator theory.

Theorem 6.6. (Schmiidgen’s Positivstellensatz) Let the set S be compact and [ a
polynomial in n variables. If f >0 on S, then f € T.

Schmiidgen used methods from the field of functional analysis but the pivot of
the proof was the Positivstellensatz of Krivine and Stengle (see [Kri|, [St]) which is
a classical result in real algebraic geometry. There have been successful attempts to
prove this Theorem using only real algebraic tools (for example see [PD, Chapter 4.2], [M]).

Now let us prepare to prove some corollaries (Theorems 6.10 and 6.13) of Schmagen’s
Positivstellensatz in the case of unbounded sets. Suppose that a set Z generates the
algebra A(S) (or A for short). For any finite number (i, ..., (, of elements of Z take a
mapping ¢ = ({1, ...,n) : R™ — R™. For any unbounded set S C R™ such that A(S) =R
put ¢ = 1. Of course the mapping ( is polynomial. Now we can state a following property

Proposition 6.7. The following conditions are equivalent
(1) The set S is not bounded.
(2) Some mapping ¢ is not proper on S.
(3) Ewvery mapping ¢ is not proper on S.

By ”some mapping ( is not proper” we mean that for some choice of elements (; of Z the
corresponding mapping is nonproper, “every mapping ¢ alike.

Proof: The implication (3) = (2) is obvious. To show (2) = (1) it suffices to restate the
implication equivalently: if S is bounded then every ( is proper on S. This is evidently
true since S is closed.
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6. SOME APPLICATIONS OF THE RESULTS

That leaves us the implication (1) = (3). Choose any elements (1, ...,y € Z. Let us
suppose that S is not bounded. Then there exists a sequence (a,) of elements of S such
that lim, o ||an|| = co. The set {((ay) | n € N} is bounded since Z C A(S). Hence

= ((1,...,(m) is not proper. |
¢=(¢ Gm)

Take any polynomial f bounded on S. Hence f = > p,(* for some ¢, € R and
Ciyoo-sGjs---Gn € Z. Denote by f¢ the polynomial ) p,Y® in m variables i.e. f¢is a
polynomial such that

f=1JcoC
Let us remind that the representations of polynomials using generators are not unique.
We have for example X?Y?2 = X - XY? = (XY)? in the algebra R[X, XY, XY?] (see
Example 6.16). Hence we have to specify each time which representation of f we are
using, since f: depends on such a choice.

Let us assume that g; € A for i = 1,...,w. There exists j € N such that for each i we
have
gi= Y ai” (6.5)
ae{0,...,j}
for some basis (i, ..., contained in A such that R[(1,...,{] D Rlg1,...,gw]. This need
not be a basis of A. In this paragraph we will use the representation g; ¢ = > al Y of
polynomials g; i.e. g; = g; ¢ o (.

For a set Z of generators of A such that (1,...,{ € Z,denote by ¢ = (C1, ...,y -+, Gm)
a mapping from R" to R™ with arbitrary coordinates (j4+1,...,(m € Z. We want all

elements (1,...,(; which generate polynomials gi,..., g, to be always coordinates of (
(not necessarily all of them).
We get
S={zeR" Y a)(*(x)>0,....> a¥(*(z)>0}.
Moreover
C(S)={y eR™"| Fpesy= C(m),Zaiyo‘ >0,.. .,Zafﬁya >0} =
={y e R"| aéyo‘zo,...,ZangZO} N ¢(9).
Define

Se={yeR™ > aly*>0,....,> a¥y* >0}

Under the introduced notation we have ((S) = S¢ N ((S) for any representations
91,¢s -+ s Guw,¢ of the polynomials describing S.

Property 6.8. The following properties hold
(1) ScN¢(S) = 5cNEERY
(2) ScCC(S) < S C (R
(3) Sc\¢(S) =S¢\ ¢(R™)
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6.2. Positivstellensétze for unbounded sets

Proof: We will show only property (1), since (2) and (3) only paraphraze it. The
inclusion S N ((S) C S N ((R™) is obvious. To show the opposite inclusion take
y € S¢ N ¢(R™) and suppose y ¢ S N ((S). For this choice of y there exists x € R™ \ §
such that y = ((z). Therefore for some i we have 3 a’ (%(z) < 0. Hence Y afy® < 0, so
y ¢ S¢c. This gives us a contradiction. |

For simplicity of notation we will write R[(] instead of R[(1,..., (] for the tuple
¢ =(C1,-..,¢n). For the preordering T' given by (6.4) put

T; = Z se9°| So € ZR[C]Q

oe{0,1}w

Hence Ty C T. Usually T¢ is not a preordering in R[X] since all of its elements are
bounded on the set S. Hence if S is unbounded, then || X||* ¢ T¢. On the other hand, for
a bounded set S if g1,..., gy, do not generate R[X] then it is possible to choose a basis
Z such that T; does not contain all elements of > R[X]?. In this case again, T, is not a
preordering in R[X]. Nevertheless, T¢ is a preordering in the ring R[(] C R[X].

First we will consider a less common situation and assume that S = ¢(S).

Property 6.9. Under the above assumptions i.e. the polynomials describing S are
bounded on S and S¢ C ((S), the set S¢ is bounded.

The above property allows us to state the following

Theorem 6.10. Take f € A. Assume that g1,...,9, € A and choose (1,...,(n € A
such that they generate gy,...,gw and f. Suppose that S = ¢(S). If f > 0 on S, then
fe Tc.

Proof: We have that f = po,(*(xz) > 0 for z € S. Denote fe = > pay®. Then fr >0
on SC = C(S)
If for the representations (6.5) we set 9 = g‘flC . -g;’fc and

GT) =9 Y segl| se€Y RM,.... V%0,

oe{0,1}w

then (,(7T') is a preordering which corresponds to the description of the set S¢. From
Schmiidgen’s Positivstellensatz we get that f- € (,(T). Hence

fe = > sl (Y aar®)”,

0e{0,1}w

where s, are sums of squares of polynomials in m variables. Substitute y = ((z). We get

f@) = Y selc@) (3 @)

oe{0,1}w
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for z € R". Terms s,(((X)) are sums of squares of polynomials in n variables, whereas
> al{(X)* = g;. Hence f is an element of T¢. |

In particular, since T C T', under the assumption of the above theorem we get f € T

Note that if the set S is bounded then A = R[X]. Hence we can take the monomial
basis X1,..., X, of A and get S; = S. Of course, the functions describing a compact set
belong to A. Hence the above theorem in the case when S is compact and we choose the
basis X7, ..., X, is simply a restating of Schmiidgen’s Positivstellensatz.

On the other hand, even in the case of S bounded, we can obtain representations with
special features.

Example 6.11. If we take a bounded set
1
S={(y) eR* 2%y’ = (@' +¢") 20, 1-y* >0, 2%y - 7> 0},
then A(S) = R[X,Y]. In particular Y and XY are bounded on it. Take ( = (Y, XY'). We
get a bounded set

1
Sy xy = {(a,b) € R?| b*a® > (b* +a?)%,1 > d?, b > 17),}.
Moreover, one can show that ((S) = S¢. Hence as a straightforeward conclusion we get
that any polynomial from the ring R[Y, XY which is positive on S has a representation

in terms of sums of squares of polynomials from this very ring.

If for the set S the equality S¢ = ((S) holds for S¢ given by some representation of
polynomials g1, ..., gw, Theorem 6.10 settles the problem of belonging to the preordering
T, or more specifically to T¢, for all polynomials positive and bounded on S. Let us give
an example of an unbounded set for which Theorem 6.10 works.

Example 6.12. Consider a set
S ={(z,y,2) ER® x> +y*+ 222}

Does f = X372 — XY — X 4+ 2Y + 2 have a representation in 177
From the description of S we get immediately that R(X,Y, XZ] C A. Put (; = X, (s =
Y, (s = XZ and

Sxyxz = {(a,b,c) € R3| (a— 1/2)2 +02+ 2 < (1/2)2}.

Since ¢(R?) = (R3\V(a))UV (a*+c?), we get ((S) = S¢. Therefore we can apply Theorem
6.10 for any polynomial from the ring R[X, Y, X Z] which is positive on S. This is the case
for f. Indeed, after regrouping the terms f = (X322 +1) + (Y +1)(2 — X). Since for any
(x,y,2) € S we have |y| < % and 0 <z <1, thenY +1,2— X and X322 + 1 are positive
on S. It follows that f € Txy xz.

Note that A 2 R[X,Y, XZ]. It is easy to see that Y2 < m
that Y Z is bounded on S. Hence if we put C~ a mapping with all elements of the monomial
basis of A(S) as its coordinates, we get ((S) # Se.

on S. This gives us
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6.2. Positivstellensétze for unbounded sets

Figure 9. Sets S = {(z,y,2) € R® | # > 2? + y? + 2%2%} and Sx vy x7z
with R3 \ ¢((R?) denoted by red.

Unfortunately, as we can see in the above example Theorem 6.10 works only when one
studies a system of polynomials g1, ..., gy, f generated in total by at most n generators.
In general S¢ has a nonempty interior if S has a nonempty interior whereas the set ((.5)
is at most n-dimensional. Thus if m > n, we get S # ((5). Hence we must try to settle
also the case when ¢ : R — R™ with m > n.

Using the notation of Theorem 6.10 we get

Theorem 6.13. Take f € A. Assume that gi1,...,9, € A and choose (1,...,(m € A

such that they generate g1,..., gy and f. Suppose that S N C(S)Zar =((S). If f >0 on

S and all asymptotic values of f are positive with respect to S, then f € T¢.

Proof: Denote @ZW = V(u) for some polynomial u. Note that S¢c NV (u) is a basic
closed semialgebraic set. Since f € A, we have that f = > an(?.

We have that f- > 0 on @ since f is supposed to have positive asymptotic values with
respect to S. Indeed, for any y € ((S) there exists a sequence ((z,,) € ((S) converging to
y. For any subsequence (x,,) which has a limit we get f(xy,) = fc({(2n,)) = fc(y) since
fc¢ is continuous as a polynomial. Either x,, — 2 € S and 0 < f(z) = f¢(y) or x,, — o0
and f¢(y) is an asymptotic value of f on S. Thus from Schmiidgen’s Positivstellensatz
and representation (6.5) of g; we get

fe= nggg + su

oel

for some sums of squares s, s, € > R[Y,...,Y;,]? and a finite subset I of NY.
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Replace y = ((z) for any x € S. We get

F@) = 50(¢())g2 (¢(x)) + s(¢(@)u(((x)) =

oel

This ends the proof. [ |
An example of application of Theorem 6.13.
Example 6.14. Let g = —X? — (Z2+1)Y2+ 1 and

S ={(z,y,2) R’ | g(x,y,2) > 0}.

Does Y + 2 have a representation in 77

Figure 10. The set {(z,y,2) € R3| g(z,y,2) = —2% — (22 + 1)y? +1 > 0}.

The set S is a basic closed semialgebraic set which is not compact. Up to a bounded
set, S is equal to

1
{0 mmna | P41 21,

Hence, from Theorem 4.4 we have that A(S) = R[X,Y,Y Z]. Put ((1,(2,(3) = (X,Y,Y Z).
Of course, g € A since g = —(? — (3 — (3 + 1. Moreover

Se = {(a,b,c) € R*| a*+b*+c* <1}

One can easily see that ((R%) = (R*\ V(Y)) U {(0,0,0)}. Hence ¢(S) # S¢. Never-
zar S¢ = ¢(S) holds. Thus from Corollary 6.15 we conclude

theless, the equality ((S5)

87



6.2. Positivstellensétze for unbounded sets

that any polynomial which is bounded on S from above and below by some positive
constants is of the form s; 4+ sog for some sums of squares s1, so which are bounded on
S. In particular there exist sums of squares of polynomials in R[X,Y,Y Z] such that
Y +2=s+s3(1 — X2 -Y2(Z% +1)).

It is obvious that if (1, ..., (;n generate A then one does not have to check in Theorems
6.10 and 6.13 whether f € A is generated by (i,...,(n. Hence we get the following
corollary as a straightforward conclusion.

Corollary 6.15. Suppose that A has a finite basis C1,...,(m and put ¢ = (C1y- -+, Gn)-
Assume that g1, ..., 9w € A. The following hold
(1) Assume that ((S) = S¢. If f is positive and bounded on S, then f € T¢.
(2) Assume that S N C(S’)ZM = ((S). If f is bounded, positive and has only positive
asymptotic values on S, then f € T¢.

Therefore, if A is finitely generated, then any polynomial bounded on S from below
and above by positive constants has a representation in terms of the polynomials from
R[Z]. Thus, as Theorem 6.13 shows more explicitly, finding the degree bounds for
representations of bounded polynomials on sets described by polynomials bounded on
them is similar to finding degree bounds of such representations in the case of compact
sets (perhaps augmented by the degrees of generators of the algebra A). Hence they
depend solely on the degree and infimuum of the polynomial and the description of the
set S (for effective Positivstellensiitze and degree bounds see [PD], [Sw2] or [PR]).

When the algebra of bounded polynomials has a finite basis, it seems natural to take for
¢ a mapping which has all the elements of this basis as coordinates. A following example
shows that it makes a great difference if we take two different subsets of a basis.

Example 6.16. Take
S={(z,y) eR’| 2?—2'(1+¢)* >0}

We have that S = K UM where K is bounded and

o0 oo
1 1
M = {(3?72/) R ) (‘Ukﬂﬁ <z<) (—1)ky77 y* > 4}-
k=1 k=1

Hence from Theorem 2.7 it follows that for both connected components of M the alge-
bra of bounded polynomials is R[X, XY, XY?]. Since K was bounded, we get A(S) =
R[X, XY, XY?]. In particular the unbounded set S is described by a polynomial which is
bounded on S.

Take mappings ¢ = (X, XY) and ¢ = (X, XY?). Consider the sets

Sx.xv = {(a,b) e R?| (a® +?)* —a® <0}

and
Sx,xy2 ={(a,¢) e R?| (a®+ac)® —a® <0},
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X, XY?2

Figure 11. The sets Sx xy and Sy xy2 from Example 6.16. The set R?\ ((R?) is denoted by red.
Take note that ac = b*. Hence if we treat the sets Sx xy and S x,xy?2 as subsets of R3,
the image of S will be the intersection of either of them with the cone ac = b2.

After some easy calculation we get ((S) = Sx xy. Therefore we can apply Theorem 6.10
to the set Sx xv.

But concerning the second set we have ¢(S) C S x,xy2. Furthermore, V(X) C Sx xy2
and ¢(S) " — R? while (0,10) ¢ ¢(S). Hence ¢(S5) “n Sx xy2 # ¢(5) and we cannot

apply neither Theorem 6.10 nor Theorem 6.13. (Note that if we take a different description

= Zar
of S, eg. given by the inequality 1 —z?(1+y?)? > 0, then the equation {(S) NSy xy2 =

¢(S) holds.)
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STRESZCZENIE

Streszczenie

Niniejsza rozprawa doktorska poswiecona jest badaniu i wyznaczaniu algebr wielomia-
now ograniczonych na nieograniczonych zbiorach semialgebraicznych. W szczegdlnosci
okresleniu kiedy wielomian jest ograniczony na danym nieograniczonym zbiorze.

U zrédia tej rozprawy lezy proba uogdlnienia do przypadku zbioréw nieograniczonych
stynnego twierdzenia Schmiidgena [Sm, 1991]. Mo6wi ono, ze kazdy wielomian dodatni
na zwartym bazowym zbiorze semialgebraicznym wyraza sie za pomoca sum kwadra-
téw wielomianéw pomnozonych przez kombinacje wielomianéw opisujacych dany zbidr.
W dowodzie Schmiidgena zalozenie zwartosci odgrywa istotna role. Wynik ten uzyskat
rozwiazujac problem K-momentéw dla zwartych zbioréw semialgebraicznych a dowdd w
istotny sposéb uzywa metod analizy funkcjonalnej (miary spektralne). Positivstellensatz
Schmiidgena daje mozliwo$¢ skonstruowania algorytmu do obliczania kresu dolnego wie-
lomianu na danym zwartym zbiorze semialgebraicznym. Warunek by wielomian f nalezal
do preporzadku jest uzywany w programowaniu. Skoro uzyskaliSmy wersje tego twier-
dzenia dla wielomiandéw ograniczonych na nieograniczonym zbiorze semialgebraicznym S,
uznalismy, ze z punktu widzenia zastosowan istotne jest efektywne decydowanie czy f jest
ograniczony na S.

Optymizacja wielomianéw (tj. znajdowanie kresu dolnego i gérnego) na zbiorach se-
mialgebraicznych jest waznym i wyzywajacym zadaniem, zaré6wno w praktyce jak i w teorii.
Obecnie prowadzone sg intensywne prace w tym kierunku, oparte gtownie na przedstawie-
niach za pomoca sum kwadratéw i, bardziej ogdlnie, metodach Algebry Rzeczywiste;j.
Istnieje wiele ksiazek oraz opracowan dedykowanych réznym zagadnieniom tego tematu,
na przyklad [L], [Lt] oraz [PaS].

Aby rozszerzyé¢ metode Schmiidgena do przypadku nieograniczonych zbioréw semial-
gebraicznych, mozna rozwazaé¢ algebry wielomianéw ograniczonych na tych zbiorach.
W rzeczy samej, pozytywne rezultaty w pewnych przypadkach zostaly przedstawione w
ostatnim rozdziale rozprawy, majac za inspiracje interesujaca prace Schweighofera [Sw].
Aby je uzyskaé, potrzeba bylo zrozumieé¢ strukture algebry wielomianéw ograniczonych
na danym zbiorze semialgebraicznym. Zaskakujacym sie wydaje, ze ten problem zaczat
by¢ badany dopiero niedawno. W rozprawie doktorskiej D. Plaumanna (Konstanz,
2008), ktérej promotorem byl C. Scheiderer, posréd innych rezultatéw, udowodnione
zostato, ze dla zbioréw regularnych w R? (tj. bedacych domknieciem swojego wnetrza)
algebry te sa skoriczenie generowane. Niedawno S. Krug w [Krug| skonstruowal przyklad
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semialgebraicznego zbioru regularnego w R3, ktérego algebra wielomianéw ograniczonych
nie jest skonczenie generowana. Jednakze zbior ten nie jest zbiorem bazowym, wiec
pytanie o skoriczona generowalnosé pozostaje otwarte dla takiego typu zbioréw.

Niech S bedzie podzbiorem R™. Oznaczmy przez
A(S) ={f e R[Xy,...,X,] | [ jest ograniczony na S}

algebre wielomianéw ograniczonych na S. Zbiér A(S) jest podpierécieniem pierscienia
wielomianéw oraz algebra nad R. Zauwazmy, ze jesli S jest ograniczony, to A(S) = R[X].
W przeciwnym wypadku A(S) jest podzbiorem wlasciwym pierscienia wielomiandw.

W niniejszej rozprawie rozpatrujemy kilka probleméw dotyczacych algebr wielomia-
now ograniczonych. Po pierwsze, zajmujemy sie problemem decydowania o ograni-
czonosci wielomianu na zbiorze. Rozwiazujemy go w Rozdziale 6.1 dla wielomiandéw
dwéch zmiennych na dowolnym zbiorze semialgebraicznym, uzywajac metod rozwinie-
tych w Rozdziale 2. W tymze rozdziale podajemy réwniez metode znajdowania gene-
ratoréw algebry wielomianéw ograniczonych dla szerokiej klasy podzbioréw semialgebra-
icznych ptlaszczyzny. W Rozdziale 3 pokazujemy zaskakujaca zalezno$¢ miedzy zespolo-
nymi wartosciami bifurkacyjnymi wielomianu f a stabilnoscia rodziny algebr A(S.), gdzie
Se=A{(z,y) eR? | f(z,y) < c}.

W rozprawie zamiast metod Algebry Rzeczywistej woleliSmy uzywaé raczej argu-
mentéw geometrycznych, unikaliSmy zatem uzywania standardowego jezyka Algebry
Rzeczywistej. Skoro problemy, ktére badamy, moga by¢ wyrazone prosto, staraliSmy sie
roéwniez uzywa¢ mozliwie najprostszych metod i mamy nadzieje, ze to sie nam udalo.

Aby upro$ci¢ badanie algebr wielomianéw ograniczonych na zbiorze semialgebraicz-
nym S, bedziemy rozwazali pewne podzbiory danego zbioru zwane mackami. Zbiér M
nazywamy macka S, jesli zbiér M \ B(0, R) jest sp6jny dla dowolnego R > 0 oraz M jest
jednym z nieograniczonych zbioréw w rozkladzie

S=KUMU...UM,

gdzie zbior K jest zwarty, | € Ny mozna wyznaczy¢ jednoznacznie i zbiory My, ..., M; sa
domknietymi w S, parami roztacznymi mackami (zob. Twierdzenie 1.19). Co wiecej, jesli
=0, to A(S) = R[X]. W przeciwnym wypadku mamy

Wyjsciem do wynikow Sekcji 2 jest obserwacja, ze jesli rozwazamy podzbiory semial-
gebraiczne w R?, to mozemy zalozy¢, ze macka M jest postaci

{(z,y) €R? Bi(y) <z < Paly), y > R},

gdzie R jest dodatnia liczba rzeczywista oraz B1(1/Y), B2(1/Y) sa szeregami Puiseux,
ktore parametryzuja krzywe semialgebraiczne. Jesli macka M zbioru S nie jest powyzszej

92



STRESZCZENIE

postaci (z dokladnoscia do liniowej zamiany zmiennych), to A(M) = R, co pociaga za
soba réwniez trywialno$é algebry A(S). Zatem w Rozdziale 2 zajmiemy sie zbiorami M
powyzszej postaci.

W Twierdzeniu 2.4 dowodzimy, ze jesli orde. 51 # ordes 2, to

A(M) =R[X'YY| d < ia],

gdzie ords. 5 = ord (5(1/Y)) oraz a = min{ordsf1,0rdsfB2}. Zatem algebra wielomia-
noéw ograniczonych jest generowana przez jednomiany. Gléwnym punktem dowodu jest
poréwnanie sumpremuum wielomianu z jego, odpowiednio wyrazonymi, wspétczynnikami.
Udaje sie to zrobi¢, gdy odlegtosé zbioru od osi jest nie wieksza niz jego szerokosé.

W drugiej czesci Rozdziatu 2 rozwazamy przypadek, gdy ords. 51 = ords /32 oraz 51 #
B2. Wprowadzamy szereg Puiseux o skonczonym rozwinieciu 3, ktory mozna wyznaczy¢
w skoriczenie wielu krokach z (31 i B2 (por. Stwierdzenie 2.15). Poprzez identyfikacje 5 z
osia y udawadniamy Twierdzenie 2.16, z ktérego wynika, ze

AM) = R[X,Y]NR ﬁ (X = B)Y? | d<in|,

gdzie n = min{ordy (81 — B),0rdso(B2 — 5)}. Pragniemy podkresli¢, ze daje to prosty
sposob na sprawdzenie czy wielomian f jest ograniczony na M. Istotnie, nietrudno jest
przestawié¢ jakikolwiek wielomian w terminach powyzszego pierscienia wielomianéw z
wielomianami Puiseux jako wspélezynnikami (zob. Stwierdzenie 2.13), potem wystarcza
sprawdzi¢ w jakich potegach wystepuje Y. Zauwazmy, ze algebra A(S) nie musi by¢
generowana przez jednomiany (ani tez izomorficzna z zadna algebra generowana przez
jednomiany). Dodajmy tez, ze wprowadzenie wielomianéw o wspétczynnikach Puiseux
pozwala nam traktowaé¢ wszystkie algebry wielomianéw ograniczonych na mackach jakby
byly generowane przez jednomiany, co ulatwia ich badanie (por. Rozdzial 5). Co wiecej,
zwykle trudno jest okresli¢ czy wielomian nalezy do podpierscienia danego przez ustalone
wielomiany, podczas gdy w przypadku tego rozszerzonego pierscienia przedstawienie f
mozna uzyska¢ przez proste symboliczne przeksztalcenia (zauwazmy, ze § ma skonczone
rozwiniecie).

W Sekcji 3 rozwazamy zbiory semialgebraiczne postaci

Se = {(-f,:l/) € IR2| f(xvy) < C}v

gdzie f jest wielomianem, zas c¢ jest liczba rzeczywista. Glownym wynikiem rozdziatu
jest Twierdzenie 3.5 o stabilnosci algebr A(S.). Mianowicie dowodzimy, ze algebry wie-
lomianéw ograniczonych na S, sa, do pewnego stopnia, nieczule na zmiane parametru c.
Ujmujac to bardziej precyzyjnie, dla dowolnych ¢ < ¢ mamy

o ile [¢,é] N Be(f) = 0. Zbiér Be(f) wartodei bifurkacyjnych jest zdefiniowany na
stronie 44. Nalezy podkresli¢, ze zbiér ten jest skonczony i moze by¢ efektywnie
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wyznaczony dla dowolnego wielomianu f dwoch zmiennych. Gléwnym narzedziem w
dowodzie twierdzenia jest parametryczna wersja twierdzenia Puiseux oraz rezultaty
Rozdziatu 2. Mamy nadzieje, ze to podejscie ilustruje zwiazek pomiedzy wielomianami
ograniczonymi a geometria widkien f oraz ze moze rzuci¢ nowe $wiatlo na wlasnosci
wartosci bifurkacyjnych jak rowniez na wiasciwo$¢ odwzorowan wielomianowych. Réwnie
interesujace w R? byloby zbadanie stabilnosci zbioréw opisanych wiecej niz jedna
nieréwnoscia wielomianowa. To wciaz pozostawiloby przypadek wyzszych wymiaréw jako
otwarty problem. Mimo ze w prostych przypadkach (na przyklad dla zbioréw opisanych
nieréwnosciami jednomianowymi jak w Twierdzeniu 5.9) latwo widaé, ze zbiory sa
nieczule na zmiane parametréw, ogdlnie problem nie wydaje sie latwy do rozwiazania.

Rozdzial 4 poswiecony jest badaniu algebr wielomianéw ograniczonych na zbiorach w
R"™, gdzie n jest dowolne. Pierwsza czes¢ poswigcona jest specjalnemu typowi zbiorow,
ktore nazywamy mackami z wagami i ktére mozna uznaé¢ za “jednostajne znieksztalcenie”
zbioru nizszego wymiaru wzdluz osi ostatniej wspotrzednej. Doktadniej, zatézmy, ze S C
R™ ma niepuste wnetrze. Rozwazmy zbiér

M ={(B1(v)z1, -, Bu(y)n,y) ER™ 2 €S, y> R}

gdzie R > 0 oraz $1(1/Y),...,5,(1/Y) sa szeregami Puiseux takimi, ze f3;(y) sa zbiezne
oraz maja staly dodatni lub ujemny znak dla y € [R, 00).
W mysl Twierdzenia 4.4, jesli algebra A(S) jest generowana przez jednomiany, to

n
A = AS)YINR| XY Y0 .

i=1
gdzie A € Q" jest ciagiem wag zbioru M oraz dla skrétu piszemy X = X ... X,
Zauwazmy, ze dowolny zbiér semialgebraiczny na prostej badz ma algebre wielomiandéw
ograniczonych réwna R[X] (wiec generowana przez jednomian X ), badz jest ona trywialna.
Zatem powyzsze twierdzenie uogdlnia Twierdzenie 2.1 z Rozdziatu 2. Co wiecej, w pewnych
przypadkach wyzszych wymiaréw daje nam to praktyczna mozliwo$¢ wyznaczania gene-
ratoréw algebry wielomianéw ograniczonych (por. przyklady z Rozdzialu 6). Twierdzenie
powyzsze uogélnia i rozszerza wyniki T. Netzera z [Net], ktéry rozwaza jedynie projekcje
takich zbioréw na pierwsze n wspotrzednych i uzyskane zostaly zupelie odmiennymi me-
todami. Zatem w [Net] wymiary zbioru S oraz macki sa takie same, co wiecej S ma by¢
zwarty, ktére to zalozenia sg istotnie wykorzystywane.

W ostatniej czesci Rozdzialu 4 podajemy alternatywny dowéd (oparty na zbiorze
niewlasciwosci Jelonka) faktu pokazanego juz wczesniej przez D. Plaumanna i C. Sche-
iderera w [P1Sd]. Mianowicie, jesli S jest nieograniczonym podzbiorem wlasciwego zbioru
algebraicznego w R", to algebra A(S) nie moze by¢ skonczenie generowana. Réwniez
w tym rozdziale pojawia sie przykiad (Przyklad 4.2 zbioru semi-analitycznego w R?
o niepustym wnetrzu, ktorego algebra wielomianéw ograniczonych jest nieskoriczenie
generowana), ktory jest ciekawy ze wzgledu na wyniki Plaumanna i Scheiderera o
skonczonej generowalnosci dla regularnych zbioréw semialgebraicznych w R2.
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W zwiazku z tym, ze algebry generowane przez jednomiany pojawiaja sie¢ w pracy
w sposob naturalny, omawiamy ich wlasnosci w Rozdziale 5. Uzywajac klasycznych
metod geometrii wypuklej ustalamy relacje pomiedzy wypuklymi stozkami wyktadnikéw
jednomianéw a zbiorami opisanymi przez odpowiednie nieréwnosci jednomianowe (Twier-
dzenie 5.9). W szczegdlnosci chcieliby$my zwrécié uwage, ze algebry z Twierdzen 2.4 1 4.4
sa generowane przez jednomiany. Na sam koniec obliczamy najmniejsza ilo$¢ generatoréw
jednomianowych dla algebry wielomianéw ograniczonych na macce na plaszczyznie.
Na tym tle wida¢ jasno, ze obliczanie ilosci elementéw bazy dla przeciecia jak i sumy
skoriczonej ilosci algebr generowanych przez jednomiany réwniez jest zadaniem czysto
kombinatorycznym.

Zalézmy ponownie, ze S jest semialgebraicznym podzbiorem plaszczyzny. 7 Twier-
dzenia 2.16 o krzywych testujacych wynika, ze wielomian f jest ograniczony na S wtedy
i tylko wtedy gdy jest ograniczony na skoniczonej ilosci krzywych generycznie wybranych
z rodziny krzywych, ktora zalezy jedynie od zbioru S. Dowdd, opierajacy sie na wynikach
przedstawionych w Rozdziale 2, jest zawarty w czesci pierwszej Rozdziatu 6.

W Sekcji 6.2 przedstawiamy wersje Positivstellensatz Schmiidgena dla wielomianow
ograniczonych. Wezmy bazowy semialgebraiczny zbiér domkniety

S={xeR" gi(x) >0, ..., gu(x) >0}

gdzie g1, ..., gy sa wielomianami. Preporzadkiem zwiazanym z S jest zbior

T = Z 5697 SUGZR[X]Q

oe{0,1}»

Wezmy wielomian f. Zalézmy, ze wielomiany g; opisujace zbiér S sa ograniczone na S.
Co wiecej, zalézmy, ze S N (S )ZW = ((5) (definicje tych zbioréw znajduja sie na stronie
83). Twierdzenie 6.13 méwi, ze jesli f na S jest ograniczony oraz wiekszy od pewnej
dodatniej stalej, to f € T. W rzadszym przypadku, gdy S¢ = ((S), wystarcza, by f
byl na S ograniczony i dodatni (por. Twierdzenie 6.10). W dowodach obu twierdzen

uzyliSmy prostej obserwacji, ze odwzorowanie majace za swoje wspotrzedne generatory

(lub baze) algebry wielomianéw ograniczonych jest, w pewnym sensie, "kanonicznym”
odwzorowaniem ograniczonym. Zatem w Positivstellensatz Schmiidgena mozna sprobowaé
zastapi¢ zwartosé zbioru przez zatozenie o ograniczonosci wielomianow. Jednakze zwroémy
uwage, ze nawet w przypadku zwartym Twierdzenia 6.10 i 6.13 pokazuja, ze jesli dany
wielomian f oraz wielomiany g; opisujace zbiér S naleza do pewnej podalgebry R[X], to
f mozna wyrazi¢ za pomoca sum kwadratéw z tej wlasnie podalgebry (por. Przyktad 6.11).
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Résumé

Dans cette these nous étudions les algebres de polynomes qui sont bornés sur un en-
semble semi-algébrique non borné. En particulier nous déterminons si un polynome est
borné sur un ensemble semi-algébrique borné.

La motivation initiale de cette thése est une généralisation au cas des ensembles non
bornés d’un théoreme célebre de Schmiidgen [Sm, 1991] qui affirme qu’un polynéme positif
sur un ensemble semi-algébrique basique et compact est une somme de carrés de polynomes
multipliés par les polynomes définissant ’ensemble semi-algébrique. Dans la preuve de
Schmiidgen I'’hypothese de compacité est essentielle. Le résultat est obtenu en résolvant
le probleme du K-moment pour les semi-algébriques compacts et la preuve utilise des
méthodes d’analyse fonctionnelle (mesures spectrales). Le théoréeme de Schmiidgen permet
de construire un algorithme donnant la borne inférieure d’un polynéme sur un ensemble
semi-algebrique compact. Comme la condition que f appartient a un préordre est utilisée
dans le programme et comme nous obtenons une version du théoreme pour les polynémes
bornés, il nous a paru naturel de pouvoir décider effectivement quand f est borné sur S.

L’optimisation des polynomes (i.e. la détermination des bornes de ceux-ci) sur des
ensembles semi-algébriques est un probleme important et délicat, du point de vue théorique
et pratique. Aujourd’hui il y a une grande activité dans ce domaine, essentiellement basée
sur la représentation en sommes de carrés et plus généralement sur des méthodes d’algebre
réelle. On trouve un grand nombre de livres et d’articles d’introduction aux différents
aspects du sujet, par exemple [L], [Lt] et [PaS].

Afin d’étendre la méthode de Schmiidgen au cas des ensembles semi-algébriques
non bornés on peut considérer l’algebre des polynémes bornés sur de tels ensembles.
C’est ce qui est fait dans certains cas particuliers dans le dernier chapitre de la these,
sous linspiration du bel article [Sw| de Schweighofer. Dans cette perspective il est
important de comprendre la structure de 'algebre des polyndémes bornés sur un ensemble
semi-algébrique non borné donné. De facon surprenante ce probleme n’a été étudié
que récemment. En effet dans la these de D. Plaumann (Konstanz, 2008), dirigée par
C. Scheiderer, il est prouvé que pour les ensembles réguliers de R? (i.e. les ensembles
qui sont ’adhérence de leur intérieur) ces algebres sont finiment engendrées. Récemment
Krug [Krug] a construit un exemple d'un ensemble régulier non borné de R? pour lequel
I’algebre des polynomes non bornés n’est pas finiment engendrée. Cependant cet ensemble
n’est pas un ensemble fermé basique de sorte que la question reste ouverte pour de tels
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ensembles.

Soit S un sous-ensemble de R™. Notons
A(S) ={f e R[X] | f est borne sur S}

l'algebre des polynomes bornés sur S. L’ensemble A(S) est un sous-anneau de R[X] et
une algebre sur R. Remarquons que si S est borné, A(S) = R[X]. Dans le cas contraire,
I'algebre A(S) est un sous anneau propre de ’anneau des polynomes.

Dans cette these nous traitons différents problemes concernant les algebres des po-
lynémes bornés. Tout d’abord nous abordons le probleme consistant a déterminer si un
polynéme est borné sur un ensemble. Nous résolvons ce probleme dans la Section 6.1 pour
les polynomes a deux variables définis sur des ensembles semi-algébriques quelconques, en
utilisant les méthodes de la Section 2. Dans la section suivante nous donnons une méthode
pour déterminer des générateurs de A(S) et ce pour une large classe de semi-algébriques
de R?. Dans la Section 3 nous établissons une relation surprenante entre les valeurs de
bifurcation complexes d’'un polynéme et la stabilité de la famille d’algebres A(S.), ou
SC = {(.T,y) € R2‘ f(x,y) S C}'

Tout au long de la these, plutét que des méthodes d’algebre réelle, nous préférons
utiliser des arguments géométriques, ainsi nous avons évité d’employer le langage de
I’algebre réelle. Comme les problemes que nous attaquons sont simplement formulés, nous
avons tenté d’utiliser les méthodes les plus simples et directes et nous espérons y étre
parvenu.

Pour simplifier I’étude des algebres de polynémes bornés sur un ensemble S, nous
considérons des sous-ensembles de S que nous appelons des tentacules. Un ensemble M
est une tentacule de S si M \ B(0,R) est connexe pour tout R > 0 et M est un des
ensembles dans la décomposition

S=KUMU...UM,

avec K compact, [ € Ny et My, ..., M; sont des fermés de S et des tentacules deux a deux
distinctes (voir le Théoreme 1.19). De plus si [ = 0, alors A(S) = R[X], sinon

Un point de départ pour les résultats de la Section 2 est I'observation selon laquelle
pour un sous-ensemble semi-algébrique de R?, nous pouvons supposer que M; est de la
forme

{(z,y) €R? Bi(y) <z < Baly), y > R},

ott R est un réel positif et B1(1/Y), B2(1/Y) des séries de Puiseux qui paramfrent courbes
semi-algébriques. Si une tentacule M de I’ensemble S n’est pas de la forme ci-dessus (& un
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changement linéaire de coordonnées pres), alors A(M) = R, ce qui implique que 'algebre
A(S) est triviale. Dans toute la Section 2 nous considérons un semi-algébrique M de la
forme ci-dessus.

Dans le Théoréeme 2.4 nous prouvons que orde. 31 # ords 32, alors

A(M) = R[X'YY| d < ial,

ou a = min{ordef1,0rdsf2} et ordeS = ordB(1/Y). Ainsi I'lagebre des polynomes
bornés est engendrée par des monémes. Le point le plus important est la comparaison du
supremum d’un polyndéme avec ses coeflicients. Cela peut étre effectué chaque fois que la
distance entre la tenntacule et ’axe est plus petit que sa largeur.

Dans la deuxieme partie de la Section 2 on considere le cas ol ordeo31 = ordeo 32 et
B1 # B2. Nous introduisons une série de Puiseux § ayant un développement fini, qui peut
étre calculée en un nombre fini d’étapes a partir de 81 et B2 (voir Proposition 2.15). Par
identification de 8 a ’axe des ordonnées nous montrons le Théoreme 2.16, nous avons alors

AM)=R[X,Y]NR ﬁ (X -B)v?|d<inl|,

ou n = min{orde (81 — B),0rdec(B2 — B)}. Nous insistons sur le fait que cela fournit
une méthode directe pour déterminer si un polynéme est borné sur M. En effet, il est
aisé d’écrire un polynoéme grace aux polynoémes de notre anneau de polyndémes bornés a
coefficients de Puiseux (voir Proposition 2.13). 11 suffit ensuite d’examiner les exposants
de Y dans une telle présentation. Remarquons qu’il n’est pas nécessaire que 1'algebre A(S)
soit engendrée par des mondmes (ou soit isomorphe a une telle algebre). Ajoutons enfin
que l'introduction de polynomes avec des coefficients de Puiseux permet de traiter toutes
les algebres de polynomes bornés sur des tentacules comme si elles étaient engendrées par
des monomes, ce qui facilite leur étude (voir Section 5). De plus, il est en général difficile
de déterminer si un polynome appartient & un sous-anneau engendré par des polynomes
donnés, tandis que dans le cas de cette extension d’anneau, les représentations de f sont
obtenues par des calculs formels simples (8 possédant un développement fini).

Dans la Section 3 nous considérons des ensembles semi-algébriques de la forme

Se ={(z,y) € R?| f(z,y) < c},

ou f est un polynome et ¢ un nombre réel. Le résultat principal de cette section est le Théo-
reme 3.5 de stabilité des algebres A(S.). Précisément, nous obtenons que les algebres de
polynomes bornés sur S, sont, & un nombre fini de points pres, insensibles au changement
de parametres ¢ : pour tout ¢ < ¢ nous avons

A(Se) = A(Se)

tant que [c,¢] N Be(f) = (0. L’ensemble des valeurs de bifurcation Be(f) est défini page
44. Sa principale propriété est qu’il est fini et peut étre calculé pour tout polynéme f de
deux variables. L’outil principal est une version a parametres du théoreme de Puiseux
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et les résultats de la section précédente. Nous espérons que cette approche illustre la
relation entre les polynomes bornés et la géométrie des fibres de f, et pourra éclairer de
facon nouvelle les propriétés des valeurs de bifurcation aussi bien que de propreté des
polynomes. Dans R? il serait intéressant d’étudier la stabilité des ensembles décrits par
plus d’une inégalité polynomiale. Le cas des dimensions supérieures demeurant ouvert.
Bien que dans des cas simples (par exemple pour les ensembles décrits par des inégalités
monomiales comme dans le Théoreme 5.9) il est facile de constater leur stabilité, en
général le probeme ne semble pas évident du tout.

La Section 4 est consacrée a l’étude des algebres de polynomes bornés sur des
sous-ensembles de R™ pour n arbitraire. La premiere partie s’attache a un type particulier
de tels ensembles, que nous appelons tentacules pondérées et qui peuvent étre vus comme
une “déformation uniforme” d’'un ensemble de plus petite dimension le long de l'axe y.
Supposons que ’ensemble S C R™ ait un intérieur non vide. Considérons ’ensemble

M = {(51(3/)1’177511(9)51311734) € Rn+1‘ T e S? Yy > R}

ou R > 0et B1(1/Y),...,5,(1/Y) sont des séries de Puiseux telles que les f;(y) sont
convergents et ont un signe constant, positif ou négatif, pour y € [R, c0).

Le Théoreme 4.4 affirme que si nous supposons que A(S) est engendré par des monémes
alors

n
AM) = AS)YTARXYY > i > d],
i=1
ou A € Q" est le tuplet des poids sur I'ensemble M et X¢ = X" ... X, Notons que
tout semi-algébrique de la droite réelle a soit une algebre triviale, soit une algebre qui est
égale & R[X] (et donc est engendrée par le monéme X). Par conséquent ’énoncé ci-dessus
généralise le Théoreme 2.1 de la Section 2. De plus, dans certains cas en dimensions supé-
rieures, il donne un procédé pratique de calcul des générateurs de I'algebre des polynomes
bornés (comme dans le cas de certains exemples de la Section 6). La méthode de preuve est
essentiellement la méme que dans la Section 2.1 i.e. utilise une équivalence de normes dans
un espace de dimension finie. Le Théoreme 4.4 généralise et étend les résultats de T. Netzer
dans [Net] qui utilisent seulement des projections de tels ensembles sur les n premieéres
coordonnées et des arguments radicalements différents. Ainsi dans [Net] la dimension de S
et de la tentacule est la méme, et de plus S est supposé compact, ce qui est une hypothese
essentielle pour Netzer.

Dans la derniére partie de la Section 4 nous donnons une autre preuve (basée
sur I'ensemble de non-propreté de Jelonek) du fait déja obtenu par D. Plaumann et
C. Scheiderer dans [P1Sd], que si S est un sous-ensemble non borné d’un semi-algébrique
propre, alors 'algebre A(S) ne peut pas étre finiment engendrée. Pour ’achever, on
montre le Lemme 2 qui établit une correspondance entre une propriété algébrique d’un
idéal et une propriété géométrique d’une application. Dans la méme Section 4 nous
produisons un exemple (Example 4.2 d’un ensemble semi-analytique de R? d’intérieur non
vide qui a une algebre de polynémes bornés non finiment engendrée) qui est intéressant
du point de vue des resultats de Plaumann et Scheiderer que les algebres des polynomes
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bornés sur un semi-algébrique régulier de R? sont finissement engendrés.

Du fait que les algebres engendrées par des monoémes apparaissent naturellement dans
notre étude, nous étudions leurs propriétés dans la Section 5. En utilisant des méthodes
classiques de géométrie convexe nous montrons la dualité entre les cones convexes des
exposants des monomes et les algebres de polynomes bornés sur les ensembles donnés
par lintersection des ensembles obtenus par des inegalités sur monomes appropriés
(Theorem 5.9). Dans la derniére partie de cette section nous montrons aussi que les
algebres des Théoremes 2.4 et 4.4 sont engendrées par des monomes et nous calculons
le nombre minimal de mondémes générateurs pour les tentacules dans le plan réel. Dans
ce contexte on voit que le calcul du nombre des éléments d’une base de l'intersection ou
bien d’une union du nombre fini des algébres engendrées par mondmes n’est qu'une tache
combinatoire.

Supposons & nouveau que S C R?. D’aprés le Théoreme 2.16 sur les “testing” courbes le
polynome f est borné sur S si et seulement s’il est borné sur un nombre fini de représentants
génériques d’une famille de courbes qui ne dépend que de I’ensemble S. La preuve basée
sur les résultats de la Section 2 de cette observation constitue la premiere partie de la
Section 6.

Dans la Section 6.2 nous présentons une version du Positivstellensatz de Schmiidgen
pour les polyndémes bornés. Prenons un semi-algébrique basique et non borné

S={xeR" gi(x) >0, ..., gu(x) >0}
ol g1, ..., gy sont des polynémes. Un préordre associé a S est I’ensemble
T={ > 5097 sc€) RXJ?
oe{0,1}v

Considérons un polynome f et supposons que les polynomes g; qui définissent S sont

bornés sur S. Supposons de plus que S¢ N ¢(S) “ = ¢(S) (la définition de ces ensembles
peut étre trouvée page 83). D’apres le Théoreme 6.13, si f est borné et plus grand qu’une
constante positive sur S, alors f € T. Dans le cas moins probable ou S, = ((95), il
suffit que f soit borné et positif sur S (voir Théoreme 6.10). Dans les preuves des deux
théoremes nous utilisons 'observation simple qu’une application avec générateurs (ou
la base) d’une algebre de polynéomes bornés est , en tant que coordonnées, I’application
bornée canonique. Ainsi dans le Postivstellensatz de Schmiidgen nous pouvons essayer
de remplacer la compacité de I’ensemble par 'hypothese que les polynomes sont bornés.
Cependant, remarquons que méme dans le cas compact, les théoremes 6.10 et 6.13
introduisent une propriété que si un polynome f et des polynomes g; qui décrivent
I'ensemble S sont dans une certaine sous-algebre de R[X], alors la représentation de f
peut étre exprimée par des sommes de carrés dans cette algebre (voir 6.11).
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A(S), algebra of polynomials bounded on
a set S, 21
A(a < f <)), the same as
A({(z,y) e R?| a < f < b}), 27
laf, @1 + ... 4+ a, for any multi-index «, 55
[a], integer part of the real number «, 74
(a]\), standard scalar product for tuples «
and A, 55

B(x,r), an open ball with centre z and ra-
dius r, 13

B(y)*, mapping z — B(y) - , 56

Bz, (Biz1,...,Bury) for tuples B and z, 55

Bk (f), bifurcation values of a function
f: K" =K, 44

B,4(S), algebra of polynomials with Puiseux
coefficients bounded on a set S, 36

Ca, cone spanned by a set A, 70
C°, polar cone of C, 72
conv(A), convex hull of a set A, 69

deg., B, degree at infinity of 3, 35
A, an auxiliary set in Section 5, 75
dist(z,S), distance between = and set S, 13

V f, gradient of a function f, 14
fe, 83

Z(V), ideal of a set V, 14

Kx(f), generalized critical values of f, 44
K, g, an auxiliary set in Section 2.1, 29

L, mapping f — fo L, 36

M, a multiplicative semigroup of monomials,

68

M(S), semigroup of monomials bounded on
a set S, 69

No, NU {0}, 13

ordf, order of a Puiseux series (3, 15

ordo. (3, order at infinity of a Puiseux series
at infinity 3, 15

7, a projection, 60

R[Z], an algebra generated by a set Z, 18

R[¢1, - -+, Cky €] ¢(Q)], an algebra generated by
aset {¢1,...,CU{C}, where ¢ sat-
isfy the condition ¢, 18

r(k, ), an auxiliary function in Section 5, 75

Rq[Y], ring R[Y'Y/4, -] of Laurent polyno-
mials in Y1/9, 34

S, closure of a set S, 13

?ZM, Zariski closure of a set S, 13

IntS, interior of a set S, 13

S(x,r), a sphere with centre x and radius r,
13

supp(B), support of a series 3, 15

suppA, support of a set of monomials A, 68

S2, 53

Sn, 53

S¢, an auxiliary set in Section 6.2, 83

T, a preordering, 82
Te, 84

V(Z), locus of an ideal Z, 13
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RESUME DE LA THESE

Dans cette these nous étudions les algebres des polyndomes qui sont bornés sur un
ensemble semi-algébrique non borné. Tout d’abord nous abordons le probléme consistant
& déterminer si un polynome est borné sur un ensemble. Nous résolvons ce probleme pour
les polynomes & deux variables définis sur des ensembles semi-algébriques quelconques.
Dans la section suivante nous donnons une méthode pour déterminer des générateurs
de Tl'algebre des polyndémes bornés et ce pour une large classe de semi-algébriques du
plan réel. Dans la section 3 nous établissons une relation entre les valeurs de bifurcation
du complexifié d’'un polynoéme f & deux variables et la stabilité de la famille d’algebres
des polynomes bornés sur les ensembles f < c¢. Dans la section 4 nous décrivons la
structure de l'algebre des polynomes bornés sur un certain type de sous-ensembles de
R"™ avec n arbitraire, que nous appelons tentacules pondérées. Nous donnons aussi une
preuve géométrique du fait que l'algebre d’un sous-ensemble non borné d’un ensemble
algébrique propre n’est pas de type fini. Dans la section suivante nous établissons
une correspondance entre les cones convexes et les algebres des ensembles obtenus
par des inégalités sur des monomes appropriés. Enfin, nous démontrons une version du
Positivstellensatz de Schmudgen pour les polynémes bornés sur un ensemble non compact.

The main topic of the thesis is a study of algebras of polynomials which are bounded
on a given unbounded semialgebraic set. First we tackle the problem of deciding the
boundedness of a polynomial on a set. We achieve it for polynomials in two variables
for any semialgebraic set. We give also a method of finding generators of the algebra
of bounded polynomials for a large class of semialgebraic subsets of the real plane. In
Section 3 we have established a relation between bifurcation values of a complexification
of polynomial f in two variables and the family of algebras of bounded polynomials on the
sets f < c. In section 4 we describe the algebras of bounded polynomials for subsets of R,
where n is arbitrary, which we call weighted tentacles. We also provide a geometric proof
of the fact that for a unbounded subset of a proper algebraic set its algebra cannot be
finitely generated. In the next section we establish a correspondence between convex cones
and algebras of bounded polynomials on the sets described by monomial inequalities. At
the end of this thesis we prove a version of Schmudgen’s Positivstellensatz for bounded
polynomials.



