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摘要

本論文包含四章以及附錄。 在第一章中, 我們從方程和幾何兩方面來探討瑞奇流的

特性, 並介紹瑞奇流的演變與基本思想。 我們試圖說明本論文的成果與瑞奇流的正

則性之關聯。 我們在第二章利用某類旋轉對稱流形來構造一個奇異點發生在無窮

遠處的解。 此外還利用佩雷曼的結果來討論遠古解的無塌陷性質。 在第三章中, 我

們證明在滿足比昂奇不等式的流形上, 瑞奇張量滿足施皖雄型態的一階微分估計。

第四章將用來討論瑞奇孤立子的性質以及它們的分類問題。 我們證明當擴張孤立

子的曲率遞減階數超過二次時, 其無窮遠切錐為歐氏空間。

關鍵詞: 瑞奇流、 施皖雄估計、 瑞奇孤立子。

i



Résumé

Cette thèse se compose de quatre chap̂ıtres et une appendice. Le premier chap̂ıtre est

consacre à des idées fondamentales de la théorié du flot de Ricci, qui montre comment nos

travaux sont reliés a l’histoire entière. Dans le deuxième chap̂ıtre, nous construisons une

solution du flot de Ricci sur une variété à symetrie de rotation de telle sorte qu’il reste

un collecteur complet a l’heure maximale. Nous dérivons également le non-effondrement

pour certaines solutions anciennes à proximité de leur temps maximal. Chacun de ces deux

resultats sont liés à la régularité des limites des solutions. Dans le troisième chap̂ıtre, nous

montrons qu’une estimation de type Shi d’ordre un est valable pour tenseur de Ricci sur des

variétés qui satisfont l’inégalité Bianchi faibles. Le dernier chap̂ıtre s’interesse aux gradient

solitons de Ricci qui sont en expansion. Nous discutons du problème de classification et

montrons que chaque cône tangent à l’infini d’un soliton expansion à ”fast-than-quadratic-

decay” courbure doit être R
n.

Mots clés: flot de Ricci, estimation de Shi, soliton de Ricci
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Abstract

This thesis consists of four chapters and an appendix. The first chapter is dedicated to the

fundamental ideas of the theory of Ricci flow, which shows how our works are connected to

the whole story. In the second chapter, we construct a solution of Ricci flow on a rotationally

symmetric manifold such that it remains a complete manifold at the maximal time. We also

derive a noncollapsing property for certain ancient solutions near their maximal times. Both

of these two results are related to the regularity of limits of solutions. In the third chapter,

we show that a first order Shi-type estimate holds for Ricci tensor on manifolds which satisfy

the weak Bianchi inequality. The last chapter is concerned with expanding gradient Ricci

solitons. There we discuss the classification problem and show that every tangent cone at

infinity of an expanding soliton with fast-than-quadratic-decay curvature must be R
n.

Key words: Ricci flow, Shi’s estimate, Ricci soliton.
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Chapter 1

Introduction

In this chapter, we give a short introduction to the theory of Ricci flow which shows how

our works, being stated in the other chapters, are related to the whole theory. Although

the Ricci flow has been well known by its great success on the geometrization problem,

we do not sketch it around this theme. Instead, we provide here a more basic description

concerning its equational and geometrical natures. This treatment reveals that there are

many basic problems still unsolved, even not discussed. We hope that fruitful results would

be discovered in the way towards these problems.

1 Ricci flow: from the analytic point of view

For a given manifold M and an initial metric g on M , the Ricci flow is an evolution of the

metric defined by the following equation:

∂

∂t
g = −2Ric(g),

where Ric(g) is the Ricci curvature tensor of g.

Under different coordinates, the Ricci tensor can be expressed in terms of g in different

forms. However, it is essentially a Laplacian of g. For example, when using the harmonic co-

ordinate, which simplifies the Laplace-Beltrami operator ∆ to be gij∂i∂j on a neighborhood,

the Ricci flow equation becomes

∂

∂t
g = −2Ric(g) = ∆g + Q(g, ∂g),

1



where Q is some quadratic function involving the determinant of g. This equation is a non-

linear parabolic equation, whose short-time existence was derived by R. S. Hamilton in [32],

D. DeTurck in [26] and W.-X. Shi in [58]. In the viewpoint of differential equation, one can

see that there exists a competition between the reaction and diffusion terms in the right

hand side. This shows that in general we can not expect the flow to exist for all time unless

the reaction term is trifling. Indeed, as Hamilton showed in [32], the reaction term in the

evolution equation of the scalar curvature

∂

∂t
R = ∆R + 2|Ric|2 ≥ ∆R +

2

n
R2

forces the flow to become singular in some finite time provided that the initial compact man-

ifold has positive scalar curvature. This argument, which depends on the classical maximum

principle, is true for the compact case and is false on non-compact manifolds whose infimum

of scalar curvature is realized in any finite region. For example, there exist several expanding

Ricci solitons, which exist for all time, with decaying positive curvature operators.

Since the Ricci flow is an evolution equation of the metric tensor, the classical maximum

principle for functions is not sufficient for many situations. In [33], Hamilton derived a max-

imum principle for tensors which is confirmed to be a crucial tool in the proof of Poincaré’s

conjecture and the differential sphere theorem. In the 90’s, by using this, Hamilton [36, 37]

proved that the least eigenvalue, if is negative and is bounded, of the Ricci tensor of a three-

manifold has smaller and smaller measure comparing to the largest one along the Ricci flow.

This phenomenon was also observed independently by T. Ivey [39] and is called Hamilton-

Ivey pinching estimate. Dozen years later, B.-L. Chen [17] generalized this pinching estimate

into a local version and got rid of the assumption of bounded curvature. When using this

generalized estimate, we prefer to cite it as Hamilton-Ivey-Chen pinching theorem. On the

other hand, using Hamilton’s maximum principle and his idea of pinching set, C. Böhm and

B. Wilking [4] proved that if the curvature operator is positive on a compact manifold M

with dimension n ≥ 4, then it converges to a constant along the normalized Ricci flow. The

powerful method they used in the proof was adapted soon by S. Brendle and R. Schoen [5, 6]

to achieve a proof of the sphere theorem. From these results, we have had a somewhat clear

picture for the change of curvatures along the flow, although it is still far away from full

understanding.
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A natural further step is to study the derivative of curvatures. In [32], Hamilton consid-

ered the Ricci flow on compact three-dimensional manifolds with Ric > 0 and proved that

for any α > 0, there exists a constant Cα such that

|∇R| ≤ αR
3
2 + Cα. (1)

For the derivatives of curvature operator, one has Shi’s estimate which was derived by W.-

X. Shi in [58]. This estimate roughly says that, along the Ricci flow, all derivatives of the

curvature operator are bounded provided that the curvature operator is bounded. The local

version of Shi’s estimate says that for any solution of Ricci flow, if |Rm| is bounded in

a parabolic region, then for any m ≥ 1 we have bounds for |∇mRm| in a slightly smaller

region. In particular, such an a priori bound does not depend on the metric directly although

it depends on the bound of |Rm|.
However, for the Ricci tensor, there is no result analogous to Hamilton’s estimate for

scalar curvature (1) or Shi’s estimate for curvature operator. The crucial difficulty is that

the evolution equation of Ricci tensor

∂

∂t
Rij = ∆Rij + 2RikjlRkl

involves the full curvature operator. In Chapter 3 of this thesis, we show that if a Hamilton-

type estimate holds for Ricci curvature, then a Shi-type estimate holds too. Indeed, we

show that there exist constants θ0 and C = Cn,α,β such that for any solution of Ricci flow, if

|Ric| ≤ K and

|∇Ric| ≤ αK

√
1

r2
+

1

t
+ K + β|∇R| (2)

in a parabolic region B0(x, r) × [0, t0] where r ≤
√

θ0

K
and t0 ≤ θ0

K
, then we have |∇Ric| ≤

CK
√

1
r2 + 1

t
+ K in B0

(
x, r√

2

)
×[0, t0]. The condition (2) is named as weak Bianchi inequal-

ity. Although it looks like Hamilton’s estimate (1) which holds for compact three-dimensional

solutions with Ric > 0, we have not yet found out any solution on which the weak Bianchi

inequality holds automatically.

The derivative of Ricci curvature is related to the curvature operator in many different

ways. First, from the second Bianchi identity, we have ∇kRijkl = ∇iRjl −∇jRil. It means

that a bound of ∇Ric is also a bound of div(Rm). Secondly, by the elliptic regularity and the

equality ∆g = −Q(g, ∂g)− 2Ric(g) which holds on a local chart of harmonic coordinates, a
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bound of ∇Ric ensures that g has a C2,δ-bound. Hence we can derive a bound for Rm which

depends on the bound of ∇Ric and the lower bound of injectivity radius. More detailed

discussions about this can be found in Section 4, Chapter 3. Thirdly, we will see in the last

chapter that radial sectional curvatures are dominated by ∇Ric on expanding solitons with

fast-decay Ricci curvature.

The second aspect is concerned with the tension between the infinite-speed propagation

and the locality. In classical p.d.e. theory, a parabolic equation tends to disperse its heat

with infinite speed and hence loses its locality. In his monumental papers [48] and [49],

however, G. Perelman proved that the Ricci flow possesses a kind of pseudo-locality. This is

not saying that there exists no infinite-speed propagation in the Ricci flow. Instead, the Ricci

flow sometimes do make the unbounded flat part to be curved instantly. We should say that

it is not expectable in general that the locality or the infinite-speed propagation dominates

the game. For example, let us imagine a non-compact ancient solution with at least one

end which looks like an Euclidean cone. By using Perelman’s noncollapsing theorem, we can

prove that there does not exist any collapsing phenomenon outside a thick Euclidean end.

(Detailed argument can be found in Chapter 2.) It can be seen that the thick end gives its

heat to the other part of the manifold. This example reveals the complexity of the problem of

pseudo-locality. (We remind the reader that Perelman has proved that this could not happen

for ancient solutions whose curvature operator is nonnegative, because they must have zero

asymptotic volume ratio. Moreover, by Hamilton-Ivey-Chen estimate, such example could

exist only when n ≥ 4.)

One may study the Ricci flow equation in the third aspect, that is, from the viewpoint

of variational method. It is well-known that the Ricci flow is related to the variation of the

integral of scalar curvature (cf. [32]). However, we have not known what significant geomet-

ric quantity is reduced along the flow except in the two-dimensional case, until Perelman

proposed his two functionals for compact manifolds:

F(g(t), f(t)) =

∫
(R + |∇f |2)e−fdvol

and

W(g(t), f(t), t) =

∫
[−t(R + |∇f |2) + f − n](4πt)−n/2e−fdvol,

where f is a potential function which satisfies a backward parabolic equation on M . He

proved that both F(g(t), f(t)) and W(g(t), f(t), t) are nondecreasing along the Ricci flow

4



and their critical points are gradient Ricci solitons. With another nondecreasing quantity

discovered by him, which is called reduced volume and not easy to be defined in one sentence,

Perelman succeeded in proving the noncollapsing property of the Ricci flow. Perelman’s

method gives a new approach to discover more possible energy functionals which depends

not only on the metric, but also on a potential function. He actually opened a mystic chapter

for differential equations on the Ricci flow.

2 Ricci flow: from the geometric point of view

As we have seen in the first section, Ricci flow is a dialectical process between the reaction

and the diffusion. These two corps contribute to the singular and regular phenomenons

occurring along the flow respectively. We may ask several questions: when does the flow

encounter singularities? how do them look like? and, how regular is a solution outside

its singular portion? The simplest singularity that one could imagine is a pinching neck,

as shown in Figure 1. This was constructed explicitly by S. Angenent and D. Knopf [2].

 

 
S 

n-1 

Figure 1: A pinching neck of the Ricci flow on Sn.

See also [59] for a construction of necks on complete non-compact manifolds by M. Simon.

The following picture shows another singularity with different blow-up rate of its curvature,

which was described by Hamilton and constructed explicitly by H.-L. Gu and X.-P. Zhu [31].

Since R. Schoen applied the blow-up method to study the Yamabe problem, mathemati-

cians have known that certain geometric structure may hide inside the singularities. After
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n-1 

Figure 2: A type-II pinch of the Ricci flow on Sn.

renormalizing the solution along a sequence of space-time points which converges to a sin-

gular point, we can discover the asymptotic shape near the singular point. For example, the

blow-up limit of a pinching neck as shown in Figure 1 is a cylinder. In order to realize this

procedure, we need to consider the convergence of pieces of solutions. For compact solu-

tions, a smooth (ancient) blow-up limit at a singularity exists provided that the curvature

is under controlled. This is due to Shi’s estimate (which controls the higher-order deriva-

tives of curvature), Hamilton’s compactness theorem (which is a local, space-time version

of the classical convergence theorem for manifolds) and Perelman’s noncollapsing theorem

(which gives the injectivity radius estimate). These blow-up limits have been divided into

three types by Hamilton [36] and each type can be modeled by certain class of solutions.

Several subclasses have been observed to contain only Ricci solitons, due to Hamilton [34],

H.-D. Cao [8], B.-L. Chen and X.-P. Zhu [18], N. Sesum [56] and A. Naber [45]. (For more

details, we suggest the reader to consult a survey paper of H.-D. Cao [9].) Therefore, the

classification of Ricci solitons are important in the singularity analysis. In Chapter 4, we will

discuss the classification problem of expanding solitons and prove that expanding solitons

with limdist(O,x)→∞ |Sect| ·dist(O, x)2 = 0 must have R
n as its tangent cone at infinity. (Here

we assume that the soliton is simply connected at infinity, has only one end and n ≥ 3.)

For compact three-dimensional case, The study of singular/regular behavior is quite com-

plete thanks to Hamilton’s study on nonsingular solutions, Perelman’s canonical neighbor-

hood theorem and the thick-thin decomposition of surgical solutions. However, for complete

6



non-compact solutions (even for the three-dimensional case), because the noncollapsing prop-

erty is not as good as in the compact case, we do not have a clear description for the singular

(or regular) part of solutions of the Ricci flow. For instance, one can imagine that one end

of a horn-like manifold pinches along the Ricci flow at some finite time. In this case, the

pinching part might be a bounded region, a half-line or a point at infinity, etc. In Chapter 2,

we demonstrate an example constructed by T. Richard and the author in [22] which shows

that the last case could happen in reality. That is, there exists a solution of the Ricci flow

which converges to a complete manifold at its maximal time of existence.

On the other hand, there are some results about the behavior of curvatures when t

approaches the maximal time of existence T . Hamilton [32] proved that in general cases

Rm must blow up when t → T . In other words, if the manifolds (M, g(t)) have uniformly

bounded curvature for all t near T , then the flow can be deformed even more, passing the

time T . N. Sesum [57] and L. Ma and L. Cheng [43] proved that if the manifold (M, g(t))

has uniformly bounded Ricci curvature for all t near T , then the curvature operator is

also uniformly bounded. In many particular cases, for examples, the Kähler-Ricci flow or

singularities of Type I, as shown by Z. Zhang [62], J. Enders, R. Müller and P. M. Topping

[27] and N. Q. Le and N. Sesum [40], the boundedness of scalar curvature is enough to

contribute a bound to the curvature operator. In the results of Sesum and Ma-Cheng, one

can see that a (local) bound of Ricci curvature gives a (local) bound of curvature operator.

However, the later bound depends on the solution itself. By using our Shi-type estimate

mentioned in the previous section, we can derive an a priori bound of curvature operator

which depends on the bound of Ricci curvature, the lower bound of injectivity radius and

the coefficients α and β in the weak Bianchi inequality. (We conjecture that the coefficients

in the weak Bianchi inequality only depend on the initial manifold.)

Now we talk about the global regularity of the Ricci flow. For a compact three-dimensional

manifold with positive Ricci curvature, Hamilton [32] proved that the derivative of Ricci cur-

vature in any order must converge to zero along the normalized Ricci flow. Later, C. Böhm

and B. Wilking [4] used Hamilton’s maximum principle for tensors to prove that both the

traceless and Weyl parts of a curvature operator would be pinched along the normalized

Ricci flow, provided that the initial compact manifold has 2-positive curvature operator.

Their results show that Ricci flow tends to homogenize a given manifold, at least for positive
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curvature cases. In view of this, the weak Bianchi inequality might hold for certain initial

manifolds because the traceless part of ∇Ric is probably controlled, or even pinched, by the

traced part of ∇Ric, i.e. ∇R. If this is the case, then our Shi-type estimate can be used to

study the regularity in a local portion.

For a complete non-compact manifold, we would like to understand the asymptotic be-

havior of it. In [36], Hamilton showed that the condition Rm → 0 is preserved along the

Ricci flow. In [44], L. Ma and X. Dai proved that a faster-than-quadratic-decay curvature

is also preserved. In Chapter 4, we proved that if a non-flat expanding soliton M satisfies

limdist(O,x)→∞ |Sect| · dist(O, x)2 = 0 and is simply connected at infinity, then each tangent

cone at infinity of M is the Euclidean space R
n. (Here we assume that the soliton has only

one end and has dimension n ≥ 3.) It is still unknown that such expanding soliton must be

flat or not.
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Chapter 2

Regularity of the limit of solution at

the maximal time

Let (M, g(t)) be an n-dimensional solution of the Ricci flow which exists up to the maximal

time T . In this chapter, we try to discover more regularity of the limit space (M, dT ).

In Section 2, we demonstrate an example constructed by T. Richard and the author in

[22], which shows that (M, dT ) could be a complete manifold. In Section 3, assuming that

(M, g(t)) is an ancient solution with an ancient positively curved thick end, we prove that

(M, dT ) is κ-noncollapsed in the limiting sense. That is, for all t near T , the manifolds

(M, g(t))’s are κ-noncollapsed for the same κ > 0.

1 An example of regular limit

Definition 1. A warped-product manifold (M, g) is a topological manifold M = R × N

equipped with a warped-product metric g ≡ gv,ϕ(x, q) ≡ v2(x)dx2 + ϕ2(x)γ(q) where (N, γ)

is an n − 1-dimensional manifold and v, ϕ : R → R are two positive functions. When (N, γ)

is an Einstein manifold which satisfies that Ric = kγ for some k > 0, we denote g ≡ gv,ϕ,k.

A warped-product manifold is called rotationally symmetric if (N, γ) is the standard

sphere S
n−1 with constant sectional curvature 1. Because of the computable property which

comes from the SO(n)-symmetry, it has been well studied for a long time. We recall here

some formulae.
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Proposition 1. Let (M, gv,ϕ,n−2 = v2dx2 + ϕ2γ = ds2 + ϕ2gSn−1) be an n-dimensional rota-

tionally symmetric manifold. Then the radial(horizontal) and the spherical(vertical) sectional

curvatures are

K0 = −ϕss

ϕ
and K1 =

1 − ϕ2
s

ϕ2
,

respectively. Moreover, the Ricci curvature and the scalar curvature are given by

Ric = (n − 1)K0ds2 + (K0 + (n − 2)K1)ϕ
2gSn−1

and

R = (n − 1)K0 + (n − 1)(K0 + (n − 2)K1).

The Ricci flow on a warped-product manifold was used by M. Simon [59] to construct a

neck-pinch singularity. The following class of manifolds, although not exactly the same, was

introduced by Simon.

Definition 2. (Simon’s class of warped-product manifolds) We say that an n-dimensional

manifold (M, g) is of Simon’s class S(N, γ) if there exist two positive functions v(x) and

ϕ(x) and an n-dimensional Einstein manifold (N, γ) such that

1. g = gv,ϕ,k(x, q) ≡ v2(x)dx2 + ϕ2(x)γ(q) and (N, γ) satisfies that Ric = kγ for some k > 0,

2. Ric( ∂
∂x

, ∂
∂x

) ≤ 0, Ric(Vq, Vq) ≥ 0 for all Vq ∈ TqN and for all q ∈ N, and

3. infR ϕ(x) > 0, infR v(x) > 0, supR v(x) < ∞ and supR

(∣∣∣ ∂j

∂xj v(x)
∣∣∣ +

∣∣∣ ∂j

∂xj log ϕ(x)
∣∣∣
)

<

∞ for all j = 1, 2, · · · .

The following lemma is one of Simon’s theorems which concerns about our usage in this

section.

Lemma 1. (M. Simon, [59]) Taking a manifold (M, gv,ϕ0,k) of Simon’s class S(N, γ) as an

initial manifold, the Ricci flow (M, g(t)) exists up to a maximal time T > 0 and the manifold

(M, g(t)) is still of Simon’s class S(N, γ) for each t ∈ [0, T ). Moreover, we have

ϕ2(x, t) ≥ ϕ2
0(x) − 2kt

on [0, T ).
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Simon considered a kind of manifolds in Simon’s class S(N, γ, a, b, x0) ⊂ S(N, γ), namely,

manifolds (M, gv,ϕ0,k) which satisfy that ϕ0(x) → ∞ as |x| → ∞ and ϕ2
0(x) ≤ a2ρ2(x) +

b2 for some constants 0 < a2 < k
n−2

and b > 0. He proved that, along the Ricci flow, such a

manifold will develop singularities inside a compact region at its maximal time.

Here we consider another kind of manifolds of Simon’s class, the cylindrical horns. We

show that each of them stops at a finite-time along the Ricci flow, but no singularity occurs

at the maximal time T , i.e. (M, g(T )) is a complete Riemannian manifold. Now we specify

what cylindrical horn signifies.

Definition 3. The standard k-cylinder is the metric product manifold R×S
n−1
k , where S

n−1
k

is the n − 1-sphere of constant sectional curvature k
n−2

. A k-cylindrical horn is a manifold

of Simon’s class S(N, γ) whose generating function ϕ(x) is strictly decreasing and ϕ(x) → 1

(but never achieves) as x → ∞.

It is well-known that, along the Ricci flow, the standard k-cylinder collapses into a

straight line when t → 1
2k

. Indeed, it is also of Simon’s class (with ϕ0 ≡ 1) and satisfies that

ϕ2(x, t) = ϕ2
0(x) − 2kt. Another known example is a capped half cylinder with nonnegative

curvature, which was studied by B.-L. Chen and X.-P. Zhu in Appendix A in [19]. They

showed that such manifold collapses to a half line at t = 1
2k

. For a k-cylindrical horn, it is

natural to guess that it develops a singularity at t = 1
2k

. However, it is not obvious whether

a cylindrical horn will collapse or not. Our aim is to show that a k-cylindrical horn will not

collapse at t = 1
2k

.

Theorem 1. (C.-W. Chen and T. Richard [22])Consider a k-cylindrical horn (M, g(0)) and

solve the Ricci flow equation on it until the maximal time T . Then T = 1
2k

and (M, g(T )) is

a complete smooth manifold.

Proof. We first prove that the flow cannot exist for a longer time than 1
2k

.

Suppose in opposite that T = 1
2k

+ 2δ for some δ > 0. Let t̄ = T − δ > 1
2k

and consider

a pointed sequence (M, g(t̄), xi) with xi → ∞. Since (M, g(t)) is still in Simon’s class,

infR ϕ > 0 implies that the curvature on (M, g(t)), t ∈ (0, t̄], is uniformly bounded and there

exists a small r0 such that the volumes of the cubes Bn−1
r0
10

(xi) × [− r0

10
, r0

10
] ⊂ Br0(xi) have a

uniform lower bound. Combine the curvature bound and the volume bound, by an estimate
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of S.-Y. Cheng, P. Li and S.-T. Yau [23] (or J. Cheeger, M. Gromov and M. Taylor [16],

Theorem 4.7), we know that the injectivity radius of xi are uniformly bounded from below.

By Hamilton’s compactness theorem, (M, g(t), xi) converges to a solution of Ricci flow

(Y, h(t), y), t ∈ (0, t̄] as i → ∞. Especially, for any fixed t, (M, g(t), xi) converges to

(Y, h(t), y) in the Gromov-Hausdorff sense.

Moreover, since (Y, h(t), y) satisfies the same curvature bound as (M, g(t)), (Y, h(t)) has

uniformly bounded curvature on (0, t̄). Therefore, we can apply Lemma 14.2 in Hamilton’s

’82 paper [32] to show that h(t) uniformly converges to a continuous metric h0 on M as

t goes to 0 . This implies that the associated distances dh(t) uniformly converge to dh0 on

every compact subset of Y , and in particular, (Y, h(t), y) converges to (Y, h0, y) as t goes to

0 in the pointed Gromov-Hausdorff sense. Similarly, (M, g(t), xi) converges to (M, g(0), xi)

as t goes to 0 in the same sense.

On the other hand, since ϕ0(x) decreases to 1 as x → ∞, it is easy to check that

(M, g(0), xi) converges to the standard k-cylinder (C, gcyl, O) as xi → ∞ (after translating

all xi onto O).

Now we are ready to show that (Y, h0, y) is isometric to (C, gcyl, O). In order to do this,

it is sufficient to prove that dGH((Bh0(y, r), h0), (Bgcyl
(x, r), gcyl)) = 0 for any fixed r > 0.

For any i ∈ N and t > 0, the triangle inequality tells that the Gromov-Hausdorff distance

between (Bh0(y, r), h0) and (Bgcyl
(x, r), gcyl) is less than or equal to

dGH((Bh0(y, r), h0), (Bh(t)(y, r), h(t))) (1)

+dGH((Bh(t)(y, r), h(t)), (Bg(t)(xi, r), g(t))) (2)

+dGH((Bg(t)(xi, r), g(t)), (Bg(0)(xi, r), g(0))) (3)

+dGH((Bg(0)(xi, r), g(0)), (Bgcyl
(x, r), gcyl)). (4)

Fix ε > 0, if i is big enough, then (2) and (4) are less than ε. Now with this particular i

fixed, we can choose t > 0 small enough in order to have that (1) and (3) are less than ε.

This shows that dGH((Bh0(y, r), h0), (Bgcyl
(x, r), gcyl)) = 0. So gcyl and h0 are isometric.

By the uniqueness theorem for non-compact Ricci flows with bounded curvature, which was

derived by B.-L. Chen and X.-P. Zhu in [20] and S.-Y. Hsu [38], h(t) is isometric to the

Ricci flow of gcyl which exists for t ∈ [0, 1
2k

). This contradicts the fact that h(t) exists for all

t ∈ [0, t̄ = 1
2k

+ δ).
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Now we show that T ≥ 1
2k

. Because r0(x) > 1 and r2(x, t) ≥ r2
0(x) − 2kt, r(x, t) has

a positive lower bound when t < 1
2k

and is positive everywhere when t = 1
2k

. Therefore,

T ≥ 1
2k

and (M, g( 1
2k

)) is a complete manifold. By using W.-X. Shi’s estimate in [58], the

smoothness follows from the uniform curvature bound on any compact domain when t is

close to T.

2 Noncollapsing property of certain ancient solutions

In this section, we use two powerful theorems of Perelman (Theorem 8.2 and Corollary

11.6(b) in [48]) to study the noncollapsing property of ancient solutions.

First of all, we have to make clear the following two terminologies.

Definition 4. Let (M, g(t)) be a solution of the Ricci flow. We denote the parabolic (metric)

ball with base point (x, t0) as

P(x, t0, r) := {(y, t)|distt(y, x) ≤ r, t ∈ [t0 − r2, t0]}.

On the other hand, the union of topological region Bt0(x, r) in backward time

⋃

t∈[t0−a,t0]

Bt0(x, r) ≡ Bt0(x, r) × [t0 − a, t0],

for some a > 0, is called a (backward) parabolic region based on Bt0(x, r).

When Perelman discussed the noncollapsing property, he used the notion parabolic re-

gion. However, in his pseudo-locality theorem, both the condition and the conclusion were

concerned with parabolic (metric) ball. In order to combine his results together, we need the

following lemma which says that a parabolic region is equivalent to a parabolic metric ball

provided that Ric is uniformly bounded. This technical lemma has been observed and used

implicitly by many people. For the reader’s convenience, we write down the exact statement

and give a proof here.

Lemma 2. For any solution of the Ricci flow, if Ric ≤ C
r2 g on a parabolic ball P(x, t0, r)

with some constants r and C > 0, then the parabolic region Bt0

(
x, e−C

2
r
)
× [t0 − r2, t0] is

contained in P(x, t0, r).
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On the other hand, if Ric ≥ −C
r2 g on a parabolic region Bt0(x, r) × [t0 − r2, t0] with some

constants r and C > 0, then the parabolic ball P(x, t0, e
−Cr) is contained in Bt0(x, r)× [t0 −

r2, t0].

Proof. Consider Bt0

(
x, e−C

2
r
)

in Bt0(x, r). We want to show that Bt0

(
x, e−C

2
r
)
× {t}

is contained in Bt(x, r) for all t ∈ [t0 − r2, t0]. Let t∗ be the first backward time that

Bt0

(
x, e−C

2
r
)
× {t} exceeds the metric ball Bt(x, r), i.e.

t∗ := sup

{
t|∃y ∈ Bt0

(
x,

e−C

2
r

)
× {t} such that distt(x, y) > r

}
.

It is sufficient to show that t∗ ≤ t0 − r2. Suppose on the contrary that t0 − t∗ < r2. Since

Ric ≤ C
r2 in Bt0(x, e−C

2
r) × {t} whenever t ≥ t∗, we have

d

dt
distt(x, y) =

∫ distt(x,y)

0

−Ric(γ′, γ′)ds ≥ −C

r2
· distt(x, y).

This inequality is valid for all y ∈ Bt0(x, r) and for all t ∈ [t∗, t0]. Integrating both sides on

the time interval [t∗, t0], we get log distt0(x, y) − log distt∗(x, y) ≥ −C
r2 (t0 − t∗), i.e.

distt∗(x, y) ≤ distt0(x, y)e
C

r2 (t0−t∗) < distt0(x, y)eC ≤ 1

2
r.

This contradicts the definition of t∗ because the distance function cannot jump from 1
2
r to r

at t∗.

On the other hand, if Ric ≥ −C
r2 g in Bt0(x, r)×[t0−r2, t0], by similar calculation as above,

we know that the backward radius decreases at most exponentially. Precisely, Bt0(x, r) ×
[t0 − r2, t0] contains Bt(x, e−Cr) for all t ∈ [t0 − r2, t0]. Hence it contains the parabolic ball

P(x, t0, e
−Cr).

From this lemma, we can say that a parabolic ball is equivalent to a parabolic region

provided that Ricci curvature is bounded from both sides. Now we introduce the definition

of noncollapsing property which was defined by Perelman [48].

Definition 5. Let κ > 0 be a constant and (M, g(t)) be a complete solution of the Ricci

flow. The metric g(t0) is said to be κ-noncollapsed on scales less then r0 at a point x ∈ M if

for any r < r0, |Rm| ≤ 1
r2 in Bt0(x, r)× [t0−r2, t0] implies V olt0(Bt0(x, r)) ≥ κrn. Moreover,
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an open subset Ω in M is said to be κ-noncollapsed on scales less then r0 if the metric is

κ-noncollapsed on scales less then r0 at every points x ∈ Ω.

In [48], Perelman proved the following pseudo-locality theorem. This theorem says that,

if both the volume ratio of Bt0(x, r0) and the curvature on P(x, t0, r0) are bounded from

below, then we have an upper bound for the curvature near (x, t0) in P(x, t0, r0).

Proposition 2. (G. Perelman, Corollary 11.6(b) in [48])For every w > 0, there exist positive

constants τ0 = τ0(w) < 1 and B = B(w, τ0) < ∞ with the following property. On a solution

of Ricci flow (M, g(t)), if Rm ≥ − 1
r2
0

in P(x, t0, r0) and V olt0(Bt0(x, r0)) ≥ wrn
0 , then

|Rm| ≤ B
r2
0

in P
(
x, t0,

√
τ0r0

4

)
.

From the conclusion of this theorem, we have a parabolic ball P
(
x, t0,

√
τ0r0

4

)
with

bounded curvature |Rm| ≤ B
r2
0
. By using the standard volume comparison with the cur-

vature lower bound, the volume ratio V olt0

(
Bt0

(
x,

√
τ0r0

4

))
/
(√

τ0r0

4

)n

has a lower bound

w′, which depends only on w. Hence we can use Lemma 2 and Perelman’s noncollapsing

theorem to prove a noncollapsing result for ancient solutions, namely, Theorem 2. We recall

Perelman’s noncollapsing theorem as follows.

Proposition 3. (G. Perelman, Theorem 8.2 in [48])For any given constant A > 0, there

exists another constant κ = κ(A) > 0 such that: if (M, g) is a solution of the Ricci flow

with bounded curvature such that |Rm| ≤ 1
r2
0

in Bt0(x, r0) × [t0 − r2
0, t0] for some r0 and

V olt0(Bt0(x, r0)) ≥ 1
A
rn
0 , then (Bt0(x, Ar0), g(t0)) is κ-noncollapsed on scales less then r0.

In order to simplify the statement of our theorem, we introduce the following definition.

Definition 6. Let E be an end of a manifold (M, g) which contains a reference point O. If

E contains a sequence of remote balls B(xk, rk), rk = 1
2
dist(O, xk) → ∞, which satisfies that

V ol(B(xk, rk)) ≥ wrn
k for all k and some w > 0, then E is called a thick end (of scale w).

Let (M, g(t)) be an ancient solution of the Ricci flow defined on t ∈ (−∞, 0] and (M, g(0))

contains a thick end E. As a subset of the topological manifold M , E(t) is well-defined for

all t ∈ (−∞, 0]. If there exists C > 0 such that Rm ≥ − C
r2
k

in each parabolic region based on

the remote balls, i.e. B0(xk, rk) × [−r2
k, 0], then we call E(t) an ancient thick end (of scale

(C, w)).
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Remark 1. For any manifold M with Ric ≥ 0, the asymptotic volume ratio is positive if and

only if there exists a thick end.

The advantage of using the notion of sequence of remote balls, instead of the asymp-

totic volume ratio, is that we can study multi-ended solutions. Indeed, a solution with

positive asymptotic volume ratio might contain some thick ends and some non-thick ends.

Our theorem below tells that an ancient thick end forces the other (non-thick) ends to be

noncollapsed.

Theorem 2. Let (M, g(t)) be an ancient solution of the Ricci flow defined on t ∈ (−∞, 0]

with bounded curvature. If it contains an ancient thick end of scale (C, w), then (M, g(0))

is κ-noncollapsed on all scales, where κ > 0 depends only on w, C and the dimension n.

Proof. Let B0(xk, rk), rk = 1
2
dist0(O, xk) → ∞, be the sequence of remote balls which satis-

fies that Rm ≥ − C
r2
k

in B0(xk, rk) × [−r2
k, 0] for all t ∈ (−∞, 0] and V ol0(B0(xk, rk)) ≥ wr2

k

for all k. By Lemma 2, the lower bound of curvature shows that each B0(xk, rk) × [−r2
k, 0]

contains a smaller parabolic metric ball P(xk, 0, e
−Crk). By Perelman’s pseudo-locality the-

orem, there exist P
(
xk, 0,

√
τ0e−Crk

4

)
⊂ P(xk, 0, e

−Crk) such that |Rm| ≤ B
( √

τ0e−Crk
4

)2 in

P
(
xk, 0,

√
τ0e−Crk

4

)
and V olt0

(
B0

(
xk,

√
τ0e−Crk

4

))
≥ w′

(√
τ0e−Crk

4

)n

, where the constants B

and w′ depend only on w, C and the dimension n. By Lemma 2 and the upper bound of cur-

vature, we can find a smaller parabolic region Bt0

(
xk,

√
τ0e−B−Crk

8

)
×
[
t0 −

(√
τ0e−B−Crk

8

)2

, t0

]

which is contained in P
(
xk, 0,

√
τ0e−Crk

4

)
. By using Perelman’s noncollapsing theorem and

taking a large A such that 1
A

≤ w′ and A
√

τ0e−B−C

8
> 3, we know that B0(x, 3rk) is κ-

noncollapsed on scales less then r0. Since rk = 1
2
dist0(O, xk) and rk → ∞, B0(x, 3rk) is an

exhaustion family of the manifold M . Therefore, M is κ-noncollapsed.

Remark 2. In [48], Perelman have proved that any non-flat ancient solution with bounded

nonnegative curvature must have zero asymptotic volume ratio. Therefore, such solution

cannot have an ancient thick end. For ancient solutions with Ric ≥ 0, we do not know that

it contains an ancient thick end or not.

The following corollary is an easy consequence of Theorem 2.

Corollary 1. Let (M, g(t)) be an ancient solution of the Ricci flow defined on t ∈ (−∞, 0]

with bounded curvature and E be a thick end, i.e. it contains a sequence of remote balls with
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bounded volume ratio. If Rm ≥ 0 on E(t) for all t ∈ (−∞, 0], then E(t) is an ancient thick

end. In particular, by Theorem 2, (M, g(0)) is κ-noncollapsed for some κ > 0.

 

 

 

Figure 1: A manifold with one thick end.

For a compact solution, Perelman proved that every singularity is not locally collapsed.

Our theorem provides a sufficient condition for attesting the noncollapsing property of com-

plete non-compact ancient solutions. Intuitively speaking, an ancient thick end spreads its

”heat” to the other part of the manifold. In this case, although the metric could become

degenerate somewhere, it cannot be collapsed in the sense of Perelman.
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Chapter 3

Derivative estimates of Ricci

curvature

1 Introduction

For every Riemannian manifold, there always holds the second Bianchi identity

∇iRjklm + ∇jRkilm + ∇kRijlm = 0.

Taking trace by gkm and gjl successively, we get

∇iRjl −∇jRil + ∇kRijlk = 0

and the so-called traced second Bianchi identity

∇iR = 2∇jRij.

In view of this, we say a manifold satisfies the strong Bianchi inequality if it satisfies

the pointwise norm estimate |∇Ric| ≤ β|∇R| for some β > 0. In this thesis, we consider a

weaker condition as follows.

Definition 7. (i) A solution of the Ricci flow (M, g(t)), t ∈ [0, T ], is said to satisfy the weak

Bianchi inequality if |Ric| ≤ K on M × [0, T ] implies that |∇Ric| ≤ αKt
−1
2 + β|∇R| on

M × [0, T ] for some constants α, β ∈ R+.

(ii) Let (M, g(t)), t ∈ [0, T ], be a solution of the Ricci flow and B0(p, r) be an open geodesic

ball of (M, g(0)). The parabolic region B0(p, r) × [0, T ] is said to satisfy the weak Bianchi
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inequality if |Ric| ≤ K on B0(p, r)× [0, T ] implies that |∇Ric| ≤ αK
√

1
r2 + 1

t
+ K + β|∇R|

on B0(p, r) × [0, T ] for some constants α, β ∈ R+.

(When t = 0, we define 1
t

= ∞.)

Remark 3. One should notice that each time slice of a parabolic region B0(p, r)× [0, T ] is a

fixed region on the topological manifold M while each time slice of a parabolic metric ball

refers to a geodesic balls whose territory varies according to the distance function at that

time, i.e. Bt(p, r) = {x ∈ M |distt(p, x) < r}.
Assuming that the weak Bianchi inequality holds, we can derive a first order Shi-type

estimate for the Ricci flow. In [58], W.-X. Shi proved that all derivatives of the Riemannian

curvature operator are bounded along the Ricci flow provided that the curvature operator

is bounded. This is an important fact which provides the regularity portion in Hamilton’s

convergence theorem and is called Shi’s estimate nowadays. If the boundedness condition of

the full curvature operator is replaced by the one of Ricci curvature, then it seems that no Shi-

type estimate can hold. However, using Hamilton’s approach towards Shi’s theorem [36], we

can show that if |Ric| ≤ K and |∇Ric| ≤ αKt
−1
2 + β|∇R| on M , then |∇Ric|2 ≤ CK2t−1.

In particular, if the derivatives of Ricci tensor are dominated by the derivatives of scalar

curvature, then both of them are uniformly bounded. This first order Shi-type estimate also

holds locally. In Section 3, we prove this local version and use it to show that if |Ric| ≤ K,

inj(p) ≥ w and |∇Ric| ≤ αK
√

1
r2 + 1

t
+ K + β|∇R| on a parabolic region B0(p, r) × [0, T ],

then |Rm| ≤ K ′ = K ′(K, w, n, α, β) in a smaller parabolic region (with uniform size). We

remind the reader that, as pointed out by Miles Simon to the author, our proof does not

work for higher order derivatives of Ric even assuming the weak Bianchi inequality holds for

all orders.

Note that the weak Bianchi inequality is quite looser than the strong one, because it

allows |∇Ric| 6= 0 whenever |∇R| = 0. It has been known that a Riemannian manifold with

∇Ric = 0 is either Einstein or reducible. In the last section, we also show that certain class

of rotationally symmetric manifolds do satisfy the weak Bianchi inequality.
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2 Global estimate

The following theorem says that a solution which satisfies the weak Bianchi inequality must

have bounded derivative of Ricci curvature. For the reader’s convenience, we write down the

detailed assumption in the statement instead of using the term ”weak Bianchi inequality”.

Theorem 3. (Global estimate) There exists a constant C > 0, depending only on β and

n such that for every n-dimensional solution (M, g(t))t∈[0,T ) of the Ricci flow, if the Ricci

curvature and its derivative satisfies that |Ric| ≤ K and |∇Ric| ≤ αKt
−1
2 + β|∇R| for all

t ∈ [0, 1
K

] ⊂ [0, T ), where K is a positive constant, then

|∇Ric|2 ≤ CK2t−1

for all t ∈ [0, 1
K

].

Remark 4. When t = 0, we define 1
t

to be ∞. Hence the aforementioned inequalities, which

are concerned, hold trivially.

Proof. Since ∂
∂t

R = ∆R + 2|Ric|2, by |Ric| ≤ K, we have

∂

∂t
R2 = 2R(∆R + 2|Ric|2) = ∆R2 − 2|∇R|2 + 4R · |Ric|2.

Moreover, using |∇Ric| ≤ αKt
−1
2 + β|∇R|, we can derive

∂

∂t
|∇R|2 = 2 < ∇R,∇(∆R + 2|Ric|2) > −2Ric(∇R,∇R)

≤ ∆|∇R|2 − 2|∇2R|2 + 4|Ric| · |∇R|2 + 8|Ric| · |∇Ric| · |∇R|

≤ ∆|∇R|2 + K(4 + 8β)|∇R|2 + 8αK2t
−1
2 · |∇R|

≤ ∆|∇R|2 + K(4 + 8β)|∇R|2 + α2K4t−1 + 16|∇R|2

= ∆|∇R|2 + (16 + K(4 + 8β))|∇R|2 + α2K4t−1.

Let F = t|∇R|2 + AR2, where A > 4β + 11 is a constant. Since t ≤ 1/K, one can derive

∂

∂t
F = |∇R|2 + t

∂

∂t
|∇R|2 + A

∂

∂t
R2

≤ ∆F + (17 + (4 + 8β)Kt − 2A)|∇R|2 + α2K3 + 4A|R| · |Ric|2

≤ ∆F + (17 + (4 + 8β) − 2A)|∇R|2 + α2K3 + 4A|R| · K2

≤ ∆F + (4An + α2)K3.
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By comparing with the o.d.e. ∂
∂t

φ = (4An + α2)K3, we have

t|∇R|2 ≤ F (·, t) ≤ F (·, 0) + (4An + α2)K3t ≤ An2K2 + (4An + α2)K2.

Hence

|∇R|2 ≤ (An2 + 4An + α2)K2t−1.

Moreover, by using the weak Bianchi inequality again, we have

|∇Ric|2 ≤ 2α2K2t−1 + 2β2(An2 + 4An + α2)K2t−1 ≤ 2(α2 + β2(An2 + 4An + α2))K2t−1.

This estimate gives the following uniqueness theorem. The proof is just combining our

estimate and the uniqueness theorem of B.-L. Chen and X.-P. Zhu [20] or S.-Y. Hsu [38].

We omit the proof because it is essentially the same to the one of Corollary 3 in Section 4

of this chapter.

Corollary 2. Let (M, g1(t)) and (M, g2(t)) be two solutions of the Ricci flow for t ∈ [0, T ]

with the same initial manifold (M, g(0)). Suppose that both of them have bounded Ricci

curvatures and satisfy the weak Bianchi inequality. If the injectivity radius are bounded from

below on (M, g1(t)) and (M, g2(t)) for all t ∈ [0, T ], then g1 ≡ g2 on M × [0, T ].

3 Local estimate

Let (M, g(t)) be an n-dimensional solution of the Ricci flow on t ∈ [0, T ). In this section,

we prove that our Shi-type estimate holds locally provided that the weak Bianchi inequality

holds. To prove this, we need a cut-off function introduced by Hamilton in [36] as follows.

One can find an explicit construction of such cut-off function in the paper of H.-D. Cao and

X.-P. Zhu [12], p. 193.

Lemma 3. (R. S. Hamilton, [36])Given a geodesic ball B0(p, r) ⊂ (M, g(0)), there exists a

cut-off function ϕ such that supp(ϕ) = B0(p, r), ϕ = r in B0

(
p, r√

2

)
, 0 ≤ ϕ ≤ r < Ar,

|∇ϕ| ≤ A and |∇2ϕ| ≤ A
nr

for some constant A > 1 depending only on n.

Remark 5. Although the cut-off function can be trivially extended to B0(p, r) × [0, t0] for

any t0 > 0, the derivatives of it will change according to the evolution of the Riemannian

connection.
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Theorem 4. (Local estimate) There exist positive constants θ0 and C depending only on α, β

and n such that for every solution (M, g(t)) of the Ricci flow, if |Ric| ≤ K and |∇Ric| ≤
αK

(
1
r2 + 1

t
+ K

) 1
2 + β|∇R| on B0(p, r) × [0, t0] for some r ≤

√
θ0/K and t0 ≤ θ0/K, then

|∇Ric|2 ≤ CK2

(
1

r2
+

1

t
+ K

)

on B0

(
p, r√

2

)
× [0, t0].

Remark 6. When t = 0, we define 1
r2 + 1

t
+K to be ∞. Hence the aforementioned inequalities,

which are concerned, hold trivially.

Proof. Recall that
∂

∂t
R2 = ∆R2 − 2|∇R|2 + 4R · |Ric|2

and
∂

∂t
|∇R|2 ≤ ∆|∇R|2 − 2|∇2R|2 + 4|Ric| · |∇R|2 + 8|Ric| · |∇Ric| · |∇R|.

Denoting u = 1
r2 + 1

t
+ K, by the assumptions and Yang’s inequality, we have

∂

∂t
|∇R|2 ≤ ∆|∇R|2 − 2|∇2R|2 + C1K|∇R|2 + C1K

3u

for some constant C1 > 0.

Let S = (BK2 +R2) · |∇R|2 where B > max{n2 +4nC−1
1 , 32n2} is a constant. We derive

∂

∂t
S =

∂

∂t
R2 · |∇R|2 + (BK2 + R2)

∂

∂t
|∇R|2

≤ (∆R2 − 2|∇R|2 + 4R · |Ric|2) · |∇R|2

+(BK2 + R2)(∆|∇R|2 − 2|∇2R|2 + C1K|∇R|2 + C1K
3u)

≤ ∆S − 2∇R2 · ∇|∇R|2 − 2|∇R|4 − 2(B + n2)K2|∇2R|2

+(C1B + C1n
2 + 4n)K3|∇R|2 + C1(B + n2)K5u

≤ ∆S − 2∇R2 · ∇|∇R|2 − 2|∇R|4 − 2BK2|∇2R|2

+2CBK3|∇R|2 + 2C1BK5u.

We want to control the bad terms 2∇R2·∇|∇R|2, whose sign is unknown, and 2C1BK3|∇R|2,
which may not be bounded. Indeed, using the following two inequalities, they can be ab-

sorbed by the other two negative terms:

∣∣2∇R2 · ∇|∇R|2
∣∣ ≤ 8nK|∇R|2 ·

∣∣∇2R
∣∣ ≤ 1

2
|∇R|4 + 32n2K2

∣∣∇2R
∣∣2
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and

2C1BK3|∇R|2 ≤ 1

2
|∇R|4 + 2C2

1B
2K6 ≤ 1

2
|∇R|4 +

2

3
C2

1B
2K5u.

Since B > 32n2, substituting these two inequalities into the evolution equation of S, we get

∂

∂t
S ≤ ∆S − |∇R|4 + C2B

2K5u ≤ ∆S − S2

4B2K4
+ C2B

2K5u,

for some constant C2. Consider F = bSK−4 with some constant 0 < b ≤ min
{

1
4B2K4 ,

1
C2B2K4

}
,

one can derive
∂

∂t
F ≤ ∆F − F 2 + u2.

Let ϕ be the cut-off function as indicated in Lemma 3. By continuity, |∇ϕ|2 ≤ 2A2 and

ϕ|∇2ϕ| ≤ 2
n
A2 holds on B0(p, r) × [0, θ1/K] up to some θ1 > 0. Moreover, we have

Lemma 4. Let H = cA2

ϕ2 + d
t

+ K for some constants c > 17 and d > 3 + 2θ1. Then

∂
∂t

H > ∆H − H2 + u2 on B0(p, r) × [0, θ1/K].

By using the maximum principle, one can show that H−F cannot vanish at any point in

B0(p, r) × [0, θ1/K]. Hence H − F > 0 on B0(p, r) × [0, θ2/K] for some θ2 > θ1. Combining

with the following lemma, we can show that θ1 has a uniform lower bound. i.e. θ1 must be

larger or equal to the uniform constant θ0 described in the following lemma.

Lemma 5. (R. S. Hamilton, [36]) There exists a constant θ0 which depends only on α, β, n

and ϕ such that if |Ric| ≤ K and F ≤ H on B0(p, r) × [0, θ/K] for some θ ≤ θ0 and

r ≤
√

θ/K, then |∇ϕ|2 ≤ 2A2 and ϕ|∇2ϕ| ≤ 2
n
A2 on B0(p, r) × [0, θ/K].

Indeed, suppose in the contrary that θ1 < θ0, then this lemma tells us that the estimates

of derivatives of ϕ hold for time beyond θ1. This contradicts the definition of θ1.

Therefore, F < H on B0(p, r) × [0, θ0/K]. We conclude that

|∇R|2 =
FK4

b(BK2 + R2)
≤ K4

bBK2

(
(12 + 4

√
n)A2

ϕ2
+

1

t
+ K

)
≤ CK2

(
1

ϕ2
+

1

t
+ K

)

and

|∇Ric|2 ≤ α2K2u + β2|∇R|2 ≤ α2K2u + CK2

(
1

ϕ2
+

1

t
+ K

)
≤ CK2

(
1

r2
+

1

t
+ K

)

for some C depending only on α, β and n.
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Now we give proofs of Lemma 4 and 5.

Proof of Lemma 4. We show that − ∂
∂t

H + ∆H + u2 < H2 by the following calculations.

Using |∇ϕ|2 ≤ 2A2, ϕ|∇2ϕ| ≤ 2
n
A2 and t ≤ θ1/K.

− ∂

∂t
H + ∆H + u2 =

d

t2
+ cA2∆

(
1

ϕ2

)
+

(
1

r2
+

1

t
+ K

)2

≤ d

t2
+

cA2

ϕ4
(6|∇ϕ|2 − 2ϕ∆ϕ) +

(
1

r2
+

1

t
+

θ1

t

)2

≤ d

t2
+

cA2

ϕ4
(12A2 + 4A2) + 2

(
1

r2

)2

+ 2

(
1 + θ1

t

)2

≤ 16cA4

ϕ4
+ 2

(
A2

ϕ2

)2

+
2(1 + θ1)

2 + d

t2

=
(16c + 2)A4

ϕ4
+

2(1 + θ1)
2 + d

t2
.

Choose c > 17 and d > 3 + 2θ1, then we have

− ∂

∂t
H + ∆H + u2 ≤ (16c + 2)A4

ϕ4
+

2(1 + θ1)
2 + d

t2
≤

(
cA2

ϕ2

)2

+

(
d

t

)2

≤ H2

Proof of Lemma 5. By definition, ∇ϕ = gijϕjei = ϕiei. Thus

∂

∂t
|∇ϕ|2 =

∂

∂t
(gijϕiϕj) = 2Rpqg

ipgjqϕiϕj ≤ 2K|∇ϕ|2

whenever |Ric| ≤ K. Therefore, |∇ϕ|2 ≤ A2e2Kt ≤ 2A2 when t ≤ θ
K

and θ ≤ log
√

2.

By using Uhlenbeck’s orthonormal frame {Ea} (cf. [33]), which satisfies ∂
∂t

Ei
a = gijRjkE

k
a ,

one can derive

∂

∂t
∇a∇bϕ =

∂

∂t
EaEbϕ − ∂

∂t
(Γc

abEcϕ)

= Rbc∇a∇cϕ + Rda∇d∇bϕ − (∇aRcb + ∇bRac −∇cRab)Ecϕ

Hence
∂

∂t
ϕ|∇2ϕ| = ϕ

∂

∂t
|∇2ϕ| ≤ Cϕ(|Ric||∇2ϕ| + |∇Ric||∇ϕ|).

By the assumption F = b(BK2 + R2)K−4|∇R|2 ≤ H = cA2

ϕ2 + d
t
+ K and the weak Bianchi

inequality, we have

|∇R|2 ≤ K4

b(BK2 + R2)

(
cA2

ϕ2
+

d

t
+ K

)
≤ K2

bB

(
cA2

ϕ2
+

d + θ1

t

)
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and

|∇Ric| ≤ αK

√
1

r2
+

1

t
+ K + β

K√
bB

√
cA2

ϕ2
+

d + θ1

t
≤ CK

(√
cA2

ϕ2
+

d + θ1

t

)
,

where C depends on α, β, b and B. (Recall that ϕ ≤ r and A > 1. Moreover, from Lemma

4 above, c > 17 and d > 3 + 2θ1.) Hence

∂

∂t
ϕ|∇2ϕ| ≤ CKϕ|∇2ϕ| + CK|∇ϕ|

√
cA2 +

(d + θ1)ϕ2

t
≤ CKϕ|∇2ϕ| + A +

r√
t
,

where C depends on c, α, β, b and B. By comparing with the o.d.e. d
dt

φ = CK
(
φ + A + r√

t

)
,

as Hamilton did in [36], one can show that

ϕ|∇2ϕ| ≤ eCKt(A2 + CK(At + 2r
√

t).

Therefore, when r ≤
√

θ
K

and t ≤ θ
K

for some very small θ = θ(A, α, β, n) ≤ θ1, we have

ϕ|∇2ϕ| ≤ 2
n
A2.

4 Backward estimate and its application

In Theorem 4, we have a forward control on the derivatives of Ricci curvature. One should

notice that B0(p, r), which indicates a topological region on M , is usually no longer a geodesic

ball when t > 0. That is to say, there is no forward-backward symmetry in this estimate,

hence we cannot simply replace B0(p, r) by Bt0(p, r) in the statement and keep the estimate

holding. Moreover, one cannot go through a similar backward argument to gain a backward

Shi-type estimate since we do not have a backward maximum principle.

The following theorem and its proof demonstrate that, by analyzing how the geodesic ball

Bt0(p, r) deforms in the time interval [t0 − ε, t0], ε ≤ θ0

K
, we can derive a Shi-type estimate

of a backward parabolic region Bt0(p, r) × [t0 − ε, t0].

Theorem 5. (Local backward estimate) There exist positive constants θ0 and Cθ0 depending

only on α, β and n such that for every solution (M, g(t))t∈[0,t0] of the Ricci flow, if |Ric| ≤ K

and |∇Ric| ≤ αK
(

1
r2 + 1

t−(t0−ε)
+ K

) 1
2
+β|∇R| on Bt0(p, r)×[t0−ε, t0] for some r ≤

√
θ0/K
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and ε ≤ θ0/K, then

|∇Ric|2 ≤ Cθ0K
2

(
1

r2
+

1

t − (t0 − ε)
+ K

)

on Bt0

(
p, e−2θ0√

2
r
)
× [t0 − ε, t0].

Remark 7. This theorem has a scaling invariant form when ε = r2.

Proof. Since Bt0(p, r) indicates an open set in M , it does not change its topology when we

trace back in time. (Only the metric on it changes.) Since Ric ≥ −Kg on Bt0(p, r)×[t0−ε, t0],

for any point q ∈ ∂Bt0(p, r), the backward derivative of distance between p and q is

∂

∂τ
distt(p, q) =

∫ distt(p,q)

0

Ric ds ≥ −K · distt(p, q),

where τ = t0 − t. Hence distt0−τ (p, q) ≥ e−Kτdistt0(p, q) for all τ ≤ ε. This shows that

Bt0−τ

(
p, e−Kεr

)
is contained in Bt0(p, r) × {t0 − τ} for all τ ≤ ε.

Now, using the weak Bianchi inequality, which holds on Bt0−τ

(
p, e−Kεr

)
× [t0 − ε, t0],

and Theorem 4 with a time shifting, we have a forward estimate based on Bt0−ε

(
p, e−θ0√

2
r
)
.

Indeed,

|∇Ric|2 ≤ CK2

(
1

(e−Kεr)2
+

1

t − (t0 − ε)
+ K

)

= CK2

(
e2Kε

r2
+

1

t − (t0 − ε)
+ K

)

≤ Cθ0K
2

(
1

r2
+

1

t − (t0 − ε)
+ K

)
,

because ε ≤ θ0/K.

Similarly, Ric ≤ Kg and ε ≤ θ0

K
implies that Bt0

(
p, e−2θ0√

2
r
)
× [t0 − ε, t0] is contained in

Bt0−ε

(
p, e−θ0√

2
r
)
× [t0 − ε, t0].

Remark 8. The same proof shows that Shi’s estimate (for the curvature operator) is valid

for both time directions, which is well-known for the experts of the Ricci flow.

As we mentioned in Chapter 1, the uniform boundedness of Ricci curvature along a Ricci

flow ensures that there exists a bound of curvature operator, by the works of N. Sesum [57],

L. Ma and L. Cheng [43]. However, the bound of curvature operator in their theorems is

not an a priori bound, i.e. it depends on the flow. By using our Shi-type estimate, we can
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derive a local estimate of curvature operator which only depends on the injectivity radius

and the coefficients in the weak Bianchi inequality, instead of the Riemannian metric itself.

Corollary 3. For any given constants K, α, β, w ≤ 1 and n ≥ 3, there exists a constant

K ′ which satisfies the following property. Let (Mn, g(t)) be a solution of the Ricci flow

and θ0 > 0 be the constant as in Theorem 4. If inj(p) ≥ wr, |Ric| ≤ K and |∇Ric| ≤
αK

(
1
r2 + 1

t−(t0−ε)
+ K

) 1
2

+ β|∇R| on Bt0(p, r) × [t0 − ε, t0] for some r ≤
√

θ0/K and ε ≤
θ0/K, then there exists a constant w′ = λw, where λ > 0 depends on K and the dimension

n, such that |Rm| ≤ K ′ on Bt0(p, min{Ar,w′r}), where A = e−2θ0√
2

.

Proof. By the weak Bianchi inequality and our backward Shi-type estimate, we have

|∇Ric|2 ≤ Cθ0K
2

(
1

r2
+

1

ε
+ K

)
≤ Cθ0K

2

(
K

θ0

+
1

ε
+ K

)

in Bt0(p, Ar), where A = e−2θ0√
2

. Therefore, for any δ < 1, Ric has a C0,δ(Bt0(p, Ar))-bound

which depends on n, α, β, ε, θ0 and K (by Sobolev embedding theorem).

On the other hand, from the lower bound of injectivity radius and Lemma 2.2 of M.

Anderson’s paper [1], we know that for any 0 < δ < 1 and C > 1, there associates a

neighborhood B(p, w′r) which admits a harmonic coordinate such that ‖g‖C1,δ ≤ C + C
w′δ ,

where w′ = λw and λ > 0 depends on δ, C, K and the dimension n. Since g ∈ C1,δ,

Ric ∈ C0,δ and ∆g = −Q(g, ∂g) − 2Ric in Bt0(p, min{Ar,w′r}), we have g ∈ C2,δ in

Bt0(p, min{Ar,w′r}). Hence, |Rm| ∈ C0,δ in Bt0(p, min{Ar,w′r}). In particular, for any

chosen δ and C, Rm is uniformly bounded by a constant K ′ which depends on n, w, α, β, ε

and K.

5 Further discussions on the Bianchi inequalities

An important issue is to prove that our Bianchi-type inequalities are preserved under the

Ricci flow with the same or smaller constants α and β. We have not yet achieved this goal,

however, we suspect that this property holds for most general cases.

In this section, we only discuss in which cases the Bianchi inequalities shall hold on a

fixed manifold. For general Riemannian manifolds, the derivative of Ricci tensor can be

decomposed as follows.
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Proposition 4. (R. S. Hamilton, the proof of Lemma 11.6 in [32])Given an n-dimensional

manifold (M, g) with n ≥ 3. Let Eijk = a(gij∇kR + gik∇jR) + bgjk∇iR where a = n−2
2n2+2n−4

and b = 1
2
− a(n + 1). Then the decomposition ∇iRjk = Eijk + Fijk satisfies that gijFijk =

gjkFijk = gkiFijk = 0 and 〈Eijk, Fijk〉 = 0. In particular, we have

|∇iRjk|2 = |Eijk|2 + |Fijk|2

and

|Eijk|2 =
[
2(n + 1)a2 + 4ab + nb2

]
|∇R|2.

Remark 9. When n = 3, a = 1
20

, b = 3
10

and |Eijk|2 = 7
20
|∇R|2; when n = 4, a = 1

18
, b = 2

9

and |Eijk|2 = 5
18
|∇R|2.

From this proposition, we know that a manifold satisfies a time-independant weak Bianchi

inequality if the trace-free part of ∇Ric is bounded, i.e. |Fijk| ≤ C.

On the other hand, we can compute explicitly on manifolds with rotationally symmetric

metrics.

Theorem 6. Let (M, g), g = ds2 + ϕ2(s)gSn−1, be a rotationally symmetric n-dimensional

manifold and n ≥ 3. Denote the radial and spherical sectional curvatures as K0 and K1,

respectively. Suppose that ∂
∂s

K0 · ∂
∂s

K1 ≥ − C2

2(n−1)2(n−2)
for some constant C. Then

|∇Ric|2 ≤ C2 +
1

2
|∇R|2

on M .

Proof. It is well-known that for rotationally symmetric manifolds we have

Ric = (n − 1)K0ds2 + (K0 + (n − 2)K1)ϕ
2gSn−1

and

R = (n − 1)K0 + (n − 1)(K0 + (n − 2)K1).
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Hence

2|∇Ric|2 = 2(∇1R11)
2 + 2(∇1Rjj)

2

= 2(n − 1)2

(
∂

∂s
K0

)2

+ 2(n − 1)

(
∂

∂s
K0 + (n − 2)

∂

∂s
K1

)2

≤ 3(n − 1)2

(
∂

∂s
K0

)2

+ (n − 1)2

(
∂

∂s
K0 + (n − 2)

∂

∂s
K1

)2

+2(n − 1)2(n − 2)

(
∂

∂s
K0

)(
∂

∂s
K1

)
+ C2

= |∇R|2 + 2C2.

Remark 10. In this theorem, we do not assume that |Ric| is bounded by some constant.

Hence, in particular, (M, g) satisfies the strong Bianchi inequality |∇Ric| ≤ 1
2
|∇R| whenever

∂
∂s

K0 · ∂
∂s

K1 is nonnegative.
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Chapter 4

Expanding gradient Ricci solitons

The Ricci solitons, which are generalizations of the Einstein manifolds, are important solu-

tions to the Ricci flow. Besides the advantage of having explicit equations, they occur in

the analysis of blow-up limits near singularities. Here we concentrate on expanding soli-

tons whose Ricci curvature is not nonnegative. We remind the reader that all the closed

expanding solitons are Einstein. So we are only interested in the complete non-compact case.

In this chapter, we introduce some basic properties of expanding solitons such as the

estimates of the growth of the potential function f . In Section 2, we describe some recent

developments on expanding solitons, including the lower bound estimate of asymptotic vol-

ume ratio derived by the author in [21]. We also study the topology of expanding solitons

with lims→∞ s2 · |Ric| = 0 or lims→∞ s2 · |Sect| = 0. For the later case, we show further that

the local volume ratio has a uniform lower bound. Therefore we derive that any tangent

cone at infinity of such soliton is a flat cone. Moreover, for n ≥ 3, this flat cone must be

the Euclidean space R
n. (Here we assume that the soliton has only one end and is simply

connected at infinity.)

1 Definition and basic properties

Let us begin by defining the expanding gradient Ricci soliton.

Definition 8. Let (M, g) be a Riemannian manifold without boundary. If there exists a

function f and a positive constant λ such that Rij +∇i∇jf = −λgij, then (M, g, f) is called

30



an expanding gradient Ricci soliton.

It was known that an expanding soliton (M, g, f) can generate a self-similar expanding

solution of the Ricci flow. That is, the evolution of the Riemannian metric is only a pull-back

coupled with a rescaling: g(t) = ρ(t)ϕ∗
t g(0) ≡ ρ(t)ϕ∗

t g, where {ϕt} is a one parameter family

of diffeomorphisms. Moreover, one can show that ρ(t) = Ct + 1 and each time slice of this

solution is an expanding soliton with λ = C
2Ct+2

. Therefore, when studying the geometry of

an expanding soliton, we can always assume that λ = 1.

Let (M, g, f) be an expanding gradient Ricci soliton, which satisfies Rij +∇i∇jf = −gij

and R be the scalar curvature of (M, g, f). The following three lemmas are well-known.

Lemma 6. (R. S. Hamilton, [36]) We have R+ |∇f |2 +2f = C1 for some constant C1 which

can be absorbed by f .

Lemma 7. (R. S. Hamilton, [35]) The time-independent Harnack quantity ∆R−〈∇R,∇f〉+
2(R + |Ric|2) vanishes on (M, g, f).

Lemma 8. (B.-L. Chen, [17]) We have R ≥ −C2 for some constant C2 > 0.

As we can see in Lemma 6, there is a normalization on the function f which is usually

used to simplify proofs in many cases. Considering the derivative of f , we have the following

a priori relation between ∇f and ∇R.

Theorem. (C.-W. Chen, [21])If ∇f(p) = 0 for some p ∈ M , then ∇R(p) = 0. On the other

hand, if ∇R(p) = 0 and R(p) < −n−1+|Ric|2
2

, then ∇f(p) = 0.

Proof. If ∇f(p) = 0, then we have dR = 2Ric(∇f, ·) = 0 at p.

On the other hand, suppose ∇R(p) = 0 and ∇f(p) 6= 0, we claim that R(p) ≥ −n−1+|Ric|2
2

.

Since |∇f | is locally Lipschitz, by Lemma 6 above, we have

−2∇f = ∇|∇f |2 = 2|∇f | · ∇|∇f |.

By using the assumption ∇f(p) 6= 0 and Kato’s inequality |∇|∇f || ≤ |Hessf |, we can divide

both sides by |∇f | and get

|g + Ric|2 = |Hessf |2 ≥ |∇|∇f ||2 =

∣∣∣∣
∇f

|∇f |

∣∣∣∣
2

= 1,
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i.e. n + 2R + |Ric|2 ≥ 1. Hence R ≥ −n−1+|Ric|2
2

at p. The statement of theorem follows by

reduction to the absurd.

Remark 11. Similar computation holds for shrinking solitons.

Given a fixed point O ∈ M , we set s = dist(O, x) and γ(s) be a unit-speed minimizing

geodesic connecting O and x, where x ∈ M is chosen arbitrarily. We use the notation ′ to

denote the differentiation with respect to s along γ(s). The following proposition, which

seems to appear first time in the literature in [64], is an easy consequence of Lemmas 6 and

8.

Proposition 5. For every expanding soliton (M, g, f), we have |f ′(x)| ≤ |∇f(x)| ≤ s+L(O),

where L(x) =
√

C1 + C2 − 2f(x) =
√

C2 + R(x) + |∇f(x)|2. Moreover, when Ric ≥ 0, we

have f ′(x) ≤ −s + f ′(O).

Proof. Since −C2 + |∇f |2 +2f ≤ R+ |∇f |2 +2f = C1, we have |∇f | ≤
√

C1 + C2 − 2f = L.

Combining with ∇L = −∇f√
C1+C2−2f

, we have |∇L| ≤ 1.

Integrating it from the point O to some point x = γ(s) along γ, we have

L(x) − L(O) =

∫ s

0

L′ ≤
∫ s

0

|∇L| ≤ s.

Hence, |f ′(x)| ≤ |∇f(x)| ≤ L(x) ≤ s + L(O).

When Ric ≥ 0, ∫ s

0

f ′′ ≤
∫ s

0

Ric(γ′, γ′) +

∫ s

0

f ′′ = −s

implies that f ′(x) ≤ −s + f ′(O).

From this proposition, it is easy to see that for every expanding gradient Ricci soliton

which has nonnegative Ricci curvature, the potential function f(x) must decrease quadrat-

ically in s. The following theorem shows that this property holds for expanding solitons

whose Ricci curvatures may be negative somewhere.

Theorem 7. (C.-W. Chen, [21]) If Ric ≥ −Cs−εg, s ≡ dist(O, x), for some constant ε < 1

and some point O ∈ M , then f grows quadratically. In particular, if |Ric| ≤ Cs−ε, then
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there exists a point p ∈ M and C3, C4 > 0 such that |Ric| ≤ C3 · dist(p, x)−ε and f satisfies

−r

(
1 +

C4

rε

)
≤ f ′(x) ≤ −r

(
1 − C4

rε

)
,

where r = dist(p, x). As a consequence, we have

−1

2
r2

(
1 +

C5

rε

)
+ f(p) ≤ f(x) ≤ −1

2
r2

(
1 − C5

rε

)
+ f(p).

Proof. We only give a proof for the second case, i.e. |Ric| ≤ Cs−ε because the first one can

be worked out by using the same calculation and Proposition 5. From

−C

∫ s

0

s−ε +

∫ s

0

f ′′ ≤
∫ s

0

Ric(γ′, γ′) +

∫ s

0

f ′′ =

∫ s

0

−1 ≤ C

∫ s

0

s−ε +

∫ s

0

f ′′,

we have

−s − C

∫ s

0

s−ε ≤
∫ s

0

f ′′ ≤ −s + C

∫ s

0

s−ε

and hence

−s

(
1 +

C4

sε

)
+ f ′(O) ≤ f ′(x) ≤ −s

(
1 − C4

sε

)
+ f ′(O).

In order to achieve the conclusion, it is enough to show that f has a critical point p (and

then repeat the calculation above.) This can be observed by considering the geodesic sphere

∂Bs(O) with s very large. Since ∇f ·∇s is negative on such sphere, ∇f must point inwards.

So ∇f = 0 at some point p inside the ball Bs(O).

Remark 12. As long as |∇f | grows linearly with leading coefficient 1, it is easy to see that∣∣∣ |∇f |−2−s−2

s−2

∣∣∣ =
∣∣∣ s2

|∇f |2 − 1
∣∣∣ → 0 as s → ∞, i.e.

∣∣∣ 1
|∇f |2 − 1

s2

∣∣∣ ∈ o(s−2).

2 Recent development of expanding solitons

2.1 Why expanding solitons are important?

Comparing to the other cases, i.e. shrinking and steady solitons, the expanding ones are

less studied. There are two obvious reasons: it is less related to the surgery of singularity

and its curvatures possess less positivity than the other two solitons. However, we still have

enough motivations to study expanding solitons. First, it is a special solution of the Ricci
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flow. By analyzing the property of expanding soliton, Hamilton found a metric Harnack

quantity which vanishes on every expanding soliton and is nonnegative on all solutions [35].

Nowadays, people still try to discover more properties in this direction, for example, E.

Cabezas-Rivas and P. Topping [7].

The second motivation is more geometric: expanding solitons can be used to smooth

out a manifold with singularities. This idea is quite natural because when tracing back an

expanding soliton along the flow, we get a singular initial space. However the results and

techniques are not easy to be seen. For the interested reader, we suggest him to consult the

results of F. Schulze and M. Simon [54], M. Feldman, T. Ilmanen and D. Knopf [28] and A.

Futaki and M.-T. Wang [29]. We remind the reader that such problem was also discussed

in the (Lagrangian) mean curvature flow, see for example the works of Y.-I. Lee and M.-T.

Wang [41, 42].

The third motivation, as mentioned in the previous section, comes from the equation

itself. Since a soliton is a generalization of an Einstein manifold, we would like to know what

topological constraint shall be imposed to the manifold by the equation. For example, an

expanding soliton (M, g, f) with Ric ≥ 0 must be diffeomorphic to R
n. Moreover, in [21], the

author proved that if Ric ≥ −C ·s−εg, then M must have finite fundamental group. We also

proved that the ends of an expanding soliton with lims→∞ s2 · |Rm| = 0 are diffeomorphic to

R×S
n−1/Γ. When the condition is released to be lims→∞ s2 · |Ric| = 0, we show in the next

section that the ends are diffeomorphic to R × Nn−1 by assuming that the strong Bianchi

inequality holds, where Nn−1 is an almost Einstein manifold with positive Ricci curvature. In

the proof, we can see that such soliton has fast decay radial sectional curvatures. Moreover,

if the injectivity grows linearly, then we can prove that lims→∞ s2 · |Rm| = 0 and hence

Nn−1 = S
n−1/Γ.

If all radial sectional curvatures of (M, g, f) are zero and the scalar curvature is constant,

then this soliton must be rigid. This was proved by P. Petersen and W. Wylie [51]. For

other results about rigidity, one can consult results of G. Catino and C. Mantegazza [13] and

S. Pigola, M. Rimoldi and A. G. Setti [53]. We will discuss the classification problem in the

next section.

34



2.2 Classification problem of expanding solitons

In the three-dimensional case, the classification of shrinking solitons under some reasonable

conditions leads to the performance of Perelman’s surgery in [48]. These conditions have

been verified to be superfluous in this decade by L. Ni and N. Wallach [47], A. Naber [45] and

H.-D. Cao, B.-L. Chen and X.-P. Zhu [10]. That is, all three-dimensional shrinking solitons

have been classified without any assumption. In the four dimensional case, A. Naber [45]

proved that a complete non-compact shrinking soliton with bounded nonnegative curvature

must be isometric to R
4 or a finite quotient of R

2×S
2 or R

1×S
3. Furthermore, for dimensions

greater or equal to 4, all locally conformally flat shrinking solitons are classified by L. Ni and

N. Wallach [47], P. Petersen and W. Wylie [52], G. Catino and C. Mantegazza [13] and Z.-H.

Zhang [63]. In the paper of Catino and Mantegazza, they also derived that every locally

conformally flat steady soliton either is flat or is the Bryant soliton.

However, the situation for expanding soliton is much more unclear. Even for a locally

conformally flat expanding soliton (Mn, g, f) with nonnegative Ricci curvature, we only know

that it is either the (flat) Gaussian soliton or a warped-product manifold of S
n−1 [13]. Indeed,

there exist several non-trivial rotationally symmetric expanding solitons. A two-dimensional

example was constructed by B. Chow, P. Lu and L. Ni [24]. For general dimensions, H.-

D. Cao [8] constructed a family of expanding Kähler-Ricci solitons whose curvature may

be either positive or negative. More recently, M. Feldman, T. Ilmanen and D. Knopf [28]

also constructed a family of rotationally symmetric expanding solitons on total spaces of

holomorphic line bundle over CP
n−1. Therefore, to achieve the classification, we need to

propose more admissible conditions.

In [18], B.-L. Chen and X.-P. Zhu proved that an expanding soliton cannot have Sect ≥ 0

and positively ǫ-pinched Ricci curvature, i.e. Ric ≥ ǫRg and R > 0, when n ≥ 3. Today it is

still unknown that whether the condition on the sectional curvature can be removed or not.

L. Ni posed this problem in [46] and proved that every expanding soliton with dimension

n ≥ 3 and positively ǫ-pinched Ricci curvature must have exponential decay Ricci curvature.

(A proof can be found in the book of Chow, Lu and Ni [24].) Such decay rate is quite

unusual for a Riemannian manifold with nonnegative Ricci curvature, because a classical

gap theorem says that there exists no manifold which possesses faster-than-quadratic-decay

curvature, nonnegative Ricci curvature and positive asymptotic volume ratio. (This theorem
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was derived by S. Bando, A. Kasue and H. Nakajima in [3]. They assumed that the manifold

is simply-connected at infinity, has only one end and dimension n ≥ 3.)

Ni’s problem motivates us to study expanding solitons with fast curvature decay. Al-

though we have not yet succeeded in solving Ni’s problem, we can understand the asymptotic

behavior of solitons with fast-decay sectional curvature by using Bando-Kasue-Nakajima’s

approach. We recall that in the proof of the classical gap theorem, Bando, Kasue and Naka-

jima first scale the manifold downward to a fix point to gain a limit metric space which

is called a tangent cone at infinity. Since the asymptotic volume ratio is positive, by the

nonnegativity of Ricci curvature and Bishop-Gromov volume comparison, one knows that all

geodesic balls have a uniform lower bound of their volume ratios. Together with the decay

rate of curvature, we know that the injectivity radius grows linearly. (cf. [23] or [16].) Now

by classical convergence theory, this tangent cone is in fact a flat manifold except the vertex

which might be singular. The last step, again using the nonnegativity of Ricci curvature and

Bishop-Gromov volume comparison, is to conclude that the original manifold is flat.

Using this strategy, we can show that if a non-flat expanding Ricci soliton M satisfies

limdist(O,x)→∞ |Sect| · dist(O, x)2 = 0 and is simply connected at infinity, then each tangent

cone at infinity of M is isometric to the Euclidean space R
n. (Here we assume that the soliton

has only one end and has dimension n ≥ 3.) The significance of our proof is that, without

the nonnegativity of Ricci curvature, we can show that a uniform local volume lower bound

holds automatically for solitons with faster-than-quadratic-decay curvature and, moreover,

the flat tangent cone at infinity is a manifold. The remaining problem is how to conclude

that the expanding soliton is isometric to the Euclidean space R
n (without assuming that

Ricci curvature is nonnegative)? Actually, we suspend that this is impossible, i.e. we believe

that there exists a non-trivial expanding soliton which has R
n as one of its tangent cone

at infinity. Such soliton, if exists, cannot be Ricci nonnegative. We remind the reader that

the examples of M. Feldman, T. Ilmanen and D. Knopf [28] are not Ricci nonnegative (as

pointed out by L. Ni [46]), since their topology are not trivial.

2.3 Asymptotic volume ratio of expanding solitons

In [21], the author proved the following theorems, which are concerned with asymptotic

volume ratio of nonsteady solitons.
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Theorem 8. (C.-W. Chen, [21]) Let (M, g, f) be a complete non-compact expanding gradient

Ricci soliton with scalar curvature R. If there exists O ∈ M such that 1
V ol(Bs)

∫
Bs

R ≥ −Cs−ε,

where ε > 0 is a constant, then lim infs→∞
V ol(Bs)

sn ≥ η. Moreover, if we have Ric ≥ −Cs−εg

and 1
V ol(Bs)

∫
Bs

R ≤ Cs−ε, then

C−1sn ≤ V ol(Bs) ≤ Csn

holds for all s ≥ A, where A is a large constant.

Proof. Taking the trace of the soliton equation Rij + ∇i∇jf = −gij and integrating it on

Bs, we have

−nV ol(Bs) =

∫

Bs

R +

∫

Bs

∆f =

∫

Bs

R +

∫

∂Bs

∇f · ∇s ≥
∫

Bs

R −
∫

∂Bs

(s + L(O))

=

∫

Bs

R − (s + L(O))Area(∂Bs) =

∫

Bs

R − (s + L(O))
d

ds
V ol(Bs).

Therefore,

d

ds
log V ol(Bs) ≥ 1

(s + L(O))V ol(Bs)

∫

Bs

R +
n

s + L(O)

=
1

(s + L(O))V ol(Bs)

∫

Bs

R +
d

ds
log(s + L(O))n

⇒ d

ds
log

V ol(Bs)

(s + L(O))n
≥ 1

(s + L(O))V ol(Bs)

∫

Bs

R ≥ −C

(s + L(O))sε
≥ −C

s1+ε

⇒ log
V ol(Bs)

(s + L(O))n
≥

∫ s

ρ

−C

s1+ε
+ log

V ol(Bρ)

(ρ + L(O))n
=

C

ε
s−ε − C

ε
ρ−ε + log

V ol(Bρ)

(ρ + L(O))n

for any positive constant ρ < s

⇒ V ol(Bs)

(s + L(O))n
≥

(
e

C
ε

s−ε−C
ε

ρ−ε
) V ol(Bρ)

(ρ + L(O))n
≥ e−

C
ε

ρ−ε · V ol(Bρ)

(ρ + L(O))n
.

Hence,

lim inf
s→∞

V ol(Bs)

sn
≥ e−

C
ε

ρ−ε · V ol(Bρ)

(ρ + L(O))n
≡ η > 0.

For the reader’s convenience, we write down the proof of the upper bound estimate

although it is almost the same to the above one.

From the lower bound of the Ricci curvature and Theorem 7, we have f ′(x) ≤ −s + C

for s large enough. Together with the lower bound of the averaged scalar curvature, we have

−nV ol(Bs) =

∫

Bs

R +

∫

∂Bs

∇f · ∇s ≤ Cs−εV ol(Bs) − (s − C)
d

ds
V ol(Bs)
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⇒ −n

s − C
≤ C

(s − C)sε
− d

ds
log V ol(Bs) ≤

C

s1+ ε
2

− d

ds
log V ol(Bs).

Hence we get a similar inequality d
ds

log V ol(Bs)
(s+C)n ≤ C

s1+ ε
2
. The rest of the proof is easy to work

out.

For shrinking gradient Ricci solitons, the same calculation gives the following theorem.

Theorem 9. (C.-W. Chen, [21])Let (M, g, f) be a complete non-compact shrinking gra-

dient Ricci soliton which satisfies Rij + ∇i∇jf = gij. If there exists O ∈ M such that

1
V ol(Bs)

∫
Bs

R ≤ Csa, where a is a nonzero constant, then its volume ratio V ol(Bs)
sn is bounded

from below by C ·e−C
a

sa

for s large enough. When 1
V ol(Bs)

∫
Bs

R ≤ δ1 < n (for s large enough),

we have V ol(Bs) ≥ C · sn−δ1 for s large enough. Similarly, 1
V ol(Bs)

∫
Bs

R ≥ δ2 > 0 implies

V ol(Bs) ≤ C · sn−δ2.

Proof. Similar calculations as in the proof of Theorem 8, we have

nV ol(Bs) =

∫

Bs

R +

∫

Bs

∆f =

∫

Bs

R +

∫

∂Bs

∇f · ∇s.

By using the fact that R > 0 for all shrinking solitons (cf. Corollary 2.5 in [17]), one can

show that |∇f | ≤ s +
√

2f(0) and hence

n =
1

V ol(Bs)

∫

Bs

R +
1

V ol(Bs)

∫

∂Bs

∇f · ∇s ≤ Csa +
1

V ol(Bs)

(
s +

√
2f(0)

) d

ds
V ol(Bs)

whenever 1
V ol(Bs)

∫
Bs

R ≤ Csa, where a is a nonzero constant. Therefore,

d

ds
log V ol(Bs) ≥

−Csa

s +
√

2f(0)
+

n

s +
√

2f(0)
≥ −Cs−1+a +

d

ds
log(s +

√
2f(0))n

implies that

V ol(Bs)

sn
≥ V ol(Bs)

(s +
√

2f(0))n
≥ e−

C
a

sa · V ol(Bρ)

(ρ +
√

2f(0))n
· e c

a
ρa

,

for any 0 < ρ < s. Thus we get V ol(Bs)
sn ≥ C · e−C

a
sa

for s large enough.

In the case that 1
V ol(Bs)

∫
Bs

R ≤ δ1, we have

n =
1

V ol(Bs)

∫

Bs

R +
1

V ol(Bs)

∫

∂Bs

∇f · ∇s ≤ δ1 +
(
s +

√
2f(0)

) d

ds
log V ol(Bs).
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Hence
d

ds
log V ol(Bs) ≥

n − δ1

s +
√

2f(0)
⇒ d

ds

V ol(Bs)

(s +
√

2f(0))n−δ1
≥ 0.

This monotonicity shows that

V ol(Bs)

sn−δ1
≥ V ol(Bs)

(s +
√

2f(0))n−δ1
≥ C ⇒ V ol(Bs) ≥ C · sn−δ1 .

An upper bound estimate holds similarly for 1
V ol(Bs)

∫
Bs

R ≥ δ2. The cruical difference is

the usage of the fact |∇f | ≥ s−C for some constant C > 0. This can be seen in Cao-Zhou’s

paper [11], in the proof of Proposition 2.1.

Some of the results in the theorem above were proved in different articles. A similar

result to the case a = 0, i.e. the case 1
V ol(Bs)

∫
Bs

R ≤ δ1 < n, was proved by Cao and Zhou in

[11]. The last statement concerning the sharp upper volume bound was proved by S. Zhang

in [61].

Moreover, we remind the reader that Cao and Zhou [11] also proved that the upper bound

V ol(Bs) ≤ C · sn always holds for all shrinking gradient Ricci solitons.

Recently, after the author posed the preprint [21] on the website ArXiv.org, B. Chow, P.

Lu and B. Yang [25] derived a criterion for a shrinking soliton to have positive asymptotic

volume ratio.

3 Topology of expanding solitons with fast curvature

decay

In [21], the author proved the following theorem.

Theorem 10. (C.-W. Chen, [21]) Let (M, g, f) be a complete non-compact expanding gra-

dient soliton with lims→∞ s2 · |Sect| = 0. Then each end of M is diffeomorphic to R×Nn−1,

where N = S
n−1/Γ is a metric quotient of the spherical space form.

This result follows from the analysis on the level sets of the potential function f . Given an

expanding soliton (M, g, f) with lims→∞ s2 · |Sect| = 0, we consider a level set Σa := {f = a}
of f . We remind the reader that in our case, f decays to −∞ at the end of M . Hence the
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unit inner normal vector of Σa shall be ∇f
|∇f | and the second fundamental form of Σa is

IIij = −
〈
∇ei

∇f

|∇f | , ej

〉
=

〈
−∇ei

∇f

|∇f | +
(ei|∇f |)∇f

|∇f |2 , ej

〉
=

Hess(−f)ij

|∇f | =
Rij + gij

|∇f | ,

for all i, j = 1, · · · , n − 1. By Gauss equation, we have

Rijij = RΣ
ijij − IIiiIIjj + II2

ij = RΣ
ijij −

1

|∇f |2 (Rii + gii)(Rjj + gjj).

Since |Sect| ∈ o(s−2), we have
∣∣∣RΣ

ijij − 1
|∇f |2

∣∣∣ ∈ o(s−2) and
∣∣∣ 1
|∇f |2 − 1

s2

∣∣∣ ∈ o(s−2) (cf. Remark

12 in section 1). That is, the level set of f has almost constant sectional curvatures when

s becomes large. By the diffeomorphic sphere theorem (or by the local volume estimate in

the next section and Cheeger’s center of mass), we have verified the theorem above.

Now we consider an expanding soliton with lims→∞ s2 · |Ric| = 0. The previous proce-

dure remains valid only if we can control the decay rate of radial sectional curvatures, i.e.〈
R

(
E, ∇f

|∇f |

)
E, ∇f

|∇f |

〉
. The following theorem shows that all radial sectional curvatures are

controlled by |∇Ric|.

Theorem 11. Let (M, g, f) be a complete non-compact expanding gradient Ricci soliton with

lims→∞ s2 · |Ric| = 0. If it satisfies the strong Bianchi inequality, i.e. |∇Ric| ≤ β|∇R| for

some β > 0, then each end of M is diffeomorphic to R × Nn−1, where Nn−1 is some almost

Einstein manifold with positive Ricci curvature. Moreover, if the injectivity radius grows

linearly, then N = S
n−1/Γ is a metric quotient of the spherical space form.

We remind the reader that even an almost Einstein manifold is simply-connected, its

topology type is still undetermined. If we assume, furthermore, that N has nonnegative

isotropic curvature, then it must be diffeomorphic to a symmetric space of compact type.

This was proved by H. Seshadri in [55].

Proof. Let x be a point in Σa := {f = a} and {xi}n−1
i=1 be the normal coordinates at x ∈ Σa

such that the second fundamental form II of Σa ⊂ M is diagonalized at x. Since ∇f 6= 0 in

a neighborhood U ⊂ M of x, the local diffeomorphisms ϕt : Σa ∩ U → Σa+t ∩ U, t ∈ (−ε, ε),

generated by ∇f
|∇f |2 are locally well-defined. Thus we can construct a local coordinate chart

{xi}n
i=1 near x such that ∂

∂xn
= ∇f

|∇f | . In particular, we have
[

∂
∂xi

, ∂
∂xj

]
= 0 for all i, j =

1, · · · , n. (These special coordinates are useful when studing submanifolds and we prefer to
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call them subnormal coordinates with respect to Σa.) One should notice that the integral

curve of ∂
∂xn

is in general not a geodesic.

Using this coordinate chart, we can derive

Γi
nn =

〈
∇n

∂

∂xn

,
∂

∂xi

〉
=

〈
∂

∂xn

,∇n
∂

∂xi

〉
=

〈
∂

∂xn

,∇i
∂

∂xn

〉
=

∂

∂xi

∣∣∣∣
∂

∂xn

∣∣∣∣ = 0.

Furthermore, we have
〈
∇i∇n∇f,

∂

∂xi

〉
=

∂

∂xi

〈
∇n∇f,

∂

∂xi

〉
−

〈
∇n∇f,∇i

∂

∂xi

〉

=
∂

∂xi

(∇n∇if) − fnnIIii

= − ∂

∂xi

(Rni + gni) − (Rnn + 1)IIii

and
〈
∇n∇i∇f,

∂

∂xi

〉
=

∂

∂xn

〈
∇i∇f,

∂

∂xi

〉
−

〈
∇i∇f,∇n

∂

∂xi

〉

=
∂

∂xn

(∇i∇if) −
〈
∇i∇f,−IIij

∂

∂xj

〉

= − ∂

∂xn

(Rii + gii) − |∇f ||IIij|2

at x. We remind the reader that |IIij|2 =
|Rij+gij |2

|∇f |2 = |Ric|2+2R+n
|∇f |2 decays as fast as 1

|∇f |2 , i.e.

|IIij|2 ∈ o(s−2).

By using these two equalities, we derive
∣∣∣∣
〈

R

(
∂

∂xi

,∇f

)
∇f,

∂

∂xi

〉∣∣∣∣

= |∇f |
∣∣∣∣
〈
∇i∇n∇f −∇n∇i∇f,

∂

∂xi

〉∣∣∣∣

= |∇f |
∣∣∣∣−

∂

∂xi

(Rni + gni) − (Rnn + 1)IIii +
∂

∂xn

(Rii + gii) + |∇f ||IIij|2
∣∣∣∣

≤ |∇f |
(
2|∇Ric| + (3n − 2)|Ric||II| + 4|II| + |Ric||II| + |II| + |∇f ||II|2

)
.

Since |∇Ric| ≤ β|∇R| ≤ 2β|Ric||∇f | ∈ o(s−1), |II| ∈ o(s−1) and |∇f | grows linearly, we
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have
∣∣∣
〈
R

(
∂

∂xi
,∇f

)
∇f, ∂

∂xi

〉∣∣∣ ∈ o(1), i.e., |Rinin| ∈ o(s−2). From Gauss equation, we have

RΣ
ii =

n−1∑

j=1

RΣ
ijij

=
n∑

j=1

Rijij − Rinin +
n−1∑

j=1

(
IIiiIIjj − II2

ij

)

= Rii − Rinin + IIii

(
R − Rnn + n − 1

|∇f | − IIii

)

= Rii − Rinin + (Rii + 1)

(
R − Rnn + n − 1 − Rii − 1

|∇f |2
)

= Rii − Rinin +
n − 2

|∇f |2 + o(s−4).

Hence ∣∣∣∣R
Σ
ii −

n − 2

|∇f |2
∣∣∣∣ ∈ o(s−2).

By Remark 12 in section 1, we know that
∣∣∣ 1
|∇f |2 − 1

s2

∣∣∣ ∈ o(s−2). After rescaling, the Ricci

curvature of level sets of f is arbitrarily close to a constant as s is large enough. By Theorem

7, f is proper and strictly convex outside a compact set of M , hence each end of M is

diffeomorphic to R × Nn−1, where Nn−1 is an almost Einstein manifold.

Moreover, suppose the injectivity radius grows linearly, we can use Schauder estimate to

prove that |Sect| ∈ o(s−2) (cf. Corollary 3 in Chapter 3). Hence the statement holds as a

corollary of Theorem 10.

4 Geometry of expanding solitons with fast curvature

decay

Theorem 12. (C.-W. Chen, [21]) If a complete non-compact expanding gradient Ricci soliton

(M, g, f) satisfies lims→∞ s2 · |Sect| = 0, then we have

V ol(Br(x)) ≥ Crn

for all x ∈ M and for all r > 0. We also have V ol(Br(x)) ≤ Crn for all r ≤ s
2

and for all

x 6= O. Moreover, if its asymptotic volume ratio exists, then we have

C−1rn ≤ V ol(Br(x)) ≤ Crn
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for all x ∈ M and for all r > 0.

Proof. Step 1. We prove first that the lower bound estimate holds for all x 6= O and

r = s
2

:= 1
2
dist(O, x). It suffices to show that, for s large enough, B s

2
(x) contains a ”cube”

whose volume is at least δ̄sn for some δ̄ independent of x. Let f(x) = a, Σa := {f = a}
and II = Hess(−f)/|∇f | be the second fundamental form of Σa. Since ‖Hess(−f)− g‖ ≤
|Ric| ∈ o(s−2) implies ‖II − g

|∇f |‖ ∈ o(s−3), by Gauss equation and the fast decay of the

curvature of M , we have |SectΣ − 1
s2 | ∈ o(s−2). Hence for s large enough, there exists an

intrinsic ball BΣ
δs(x) ⊂ Σa such that V olΣ(BΣ

δs) ≥ Csn−1.

Furthermore, by using the one parameter family of diffeomorphisms {ϕt : Σa → Σa+t}t∈(− s
10

, s
10

),

which is generated by ∇f
|∇f |2 , we know the cube Cube := {y ∈ M |y = ϕt(B

Σ
δs(x)), t ∈

(− s
10

, s
10

)} is contained in B s
2
(x) and V ol(Cube) ≥ δ̄sn for some constant δ̄ which is in-

dependent of x whenever s is large enough.

Step 2. For r ≤ s
2
, by using the Bishop-Gromov’s comparison, we have

V ol(Br(x)) ≥
(
V ol−C

s2
(Br) /V ol−C

s2

(
B s

2

))
· V ol(B s

2
(x))

≥
(
V olRn (Br) /V ol−C

s2

(
B s

2

))
· δ̄sn

≥ Crn.

The last inequality comes from

V ol−C

s2
(Bs) = C

∫ s

0

(
s√
C

sinh

(√
C

s
t

))n−1

dt ≤ Csn,

where V ol−C

s2
is the volume functional of the hyperbolic space with Ric = −C

s2 . Up to now, the

lower bound estimate holds when x lies outside a large compact set, i.e. for s large enough.

Inside the compact region, the estimate holds by the continuity of volume functional and

the smoothness of manifold. That is, we have V ol(Br(x)) ≥ Crn for all x 6= O and r ≤ s
2
.

Step 3. Furthermore, such lower bound holds for all Br(O) because each of them contains

a B r
4
(x), where dist(O, x) = r

2
. Similarly, since Br(x) contains Bs(O) whenever r > 2s, we

get the lower bound estimate for all Br(x) with r > 2s (and r ≤ s
2

as shown in Step 2).

At last, it is easy to see that this estimate holds for all r ∈ [ s
2
, 2s] because V ol(Br(x)) ≥

V ol(Bs(x)) ≥ Csn ≥ C
2n (2s)n ≥ C

2n rn. Thus we complete the proof of the lower bound

estimate for all balls in M .
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Step 4. The upper bound can be derived by Bishop-Gromov’s comparison. Since Ric ≥
−C · s−2g on Br(x) with r ≤ s

2
, as in the last inequality of Step 2, we have

V ol(Br(x)) ≤ V ol−C

r2
(Br) = C

∫ r

0

(
r√
C

sinh

(√
C

r
t

))n−1

dt ≤ Crn.

Therefore we have proved the first statement of this theorem. Now suppose that we can

control the upper bound of the volume ratio at infinity, i.e., there exist two constants C and

A such that V ol(Br(O)) ≤ Crn for all s ≥ A. It is easy to see that, for all r > s
2
, Br(x) is

contained in B3r(O) and hence has an upper bound on its volume ratio.

A tangent cone at infinity is a Cheeger-Gromov limit of a sequence of blow-down metrics

with a fixing marked point. Since we have a uniform estimate of volume lower bound from

Theorem 12, we can derive a lower bound of injectivity radius from the controlled sectional

curvature (see [23] and [16].) In this section, we prove that every tangent cone at infinity of

M is the Euclidean space R
n under some admissible conditions.

Theorem 13. (C.-W. Chen, [21]) Let (M, g, f) be a complete non-compact expanding gra-

dient soliton with lims→∞ s2 · |Sect| = 0. If M is simply connected at infinity, has only one

end and has dimension n ≥ 3, then every tangent cone at infinity of M is the Euclidean

space R
n.

Remark 13. We remind the reader that a manifold M is said to be simply connected at

infinity if for each compact subset C ⊂ M , there is a compact set D ⊂ M containing C so

that the induced map π1(M \ D) → π1(M \ C) is trivial. Geometrically speaking, any loop

far from a compact set D can be contracted outside the compact set, no matter how large

the set is.

Proof. Consider a tangent cone at infinity M∞, which is a Gromov-Hausdorff limit of a

sequence (M, O, g̃k) := (M, O, 1
λ2

k

g) with vertex O, where λk → ∞ as k → ∞. Here we use

a tilde to emphasize that the metric is rescaled. Any arbitrary point q ∈ M∞, q 6= O and

dist∞(O, q) = r0, is associated with a sequence qk → q, where distk(O, qk) = λkr0 → ∞ as

k → ∞. By using our volume estimate in the previous section and the curvature bound,

we know that there exists a subsequence of manifolds (M, gk) which converges in W 2,p
loc -

topology, for any p < ∞, to the limit space (M∞, dist∞) except at the point O. Therefore,

(M∞ \ {O}, g∞) is an incomplete Riemannian manifold.
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Noting that
∣∣∣∇̃i∇̃jfk

∣∣∣ =
∣∣∣(g̃k)ij + 1

λ2
k

(R̃ick)ij

∣∣∣, together with the estimates of the growth

of f and ∇f which are stated in Section 2, we know that fk := −f
λ2

k

converges in W 2,p
loc -

topology to a function f∞ with |∇f | = r on M∞ \ {O}. Moreover, ∇∞∇∞f∞ = g∞ and

f∞(q) = limk→∞
−f
λ2

k

(qk) = 1
2
r2
0. Since q was chosen arbitrarily, we have

f∞(x) =
1

2
r2 and g∞ = Hess

(
1

2
r2

)

where r(x) := dist∞(O, x) and x ∈ M∞ \ {O}.
In [14], J. Cheeger and T. H. Colding have proven that M∞ \ {O} with g∞ = Hess

(
r2

2

)

must be a warped product manifold and g∞ = dr2 + kr2ḡ for some k > 0, where ḡ is the

metric of N := {x ∈ M∞|r(x) = 1}. In order to prove that M∞ is isometric to R
n, we

only need to show that N is the standard sphere with sectional curvature k. (Because the

standard metric on R
n can be written as gEucl = dr2 + Cr2gSn−1(C) for any given C > 0 and

gSn−1(C) denotes the standard metric on sphere with constant sectional curvature C.)

Since |∇r| 6= 0, we can extend the normal coordinates {xi}i=2,··· ,n around p ∈ N to be a

local chart {r, xi}i=2,··· ,n in M such that

(gij) =




1 0 · · · 0

0 g22 · · · g2n

...
...

. . .
...

0 gn2 · · · gnn




=




1 0 · · · 0

0 kr2ḡ22 · · · kr2ḡ2n

...
...

. . .
...

0 kr2ḡn2 · · · kr2ḡnn




.

(One can consult the proof of Theorem 11 for a construction of these subnormal coordinates.)

Hence, for all i, j = 2, · · · , n and i 6= j, we have Γr
jj(p) = −k and Γr

ij(p) = 0. Moreover,

∂
∂xj (g( ∂

∂r
, ∂

∂xj )) = 0 implies that Γj
jr(p) = − 1

k
Γr

jj(p) = 1. When n ≥ 3, we can compute the

curvature of N at p by using

0 = Ri
ijj = R̄i

ijj + Γi
irΓ

r
jj = R̄i

ijj − k.

By the assumption that M is simply connected at infinity, we know that N must be the

standard sphere with all its sectional curvatures equal k.

Remark 14. When n is odd, by Synge’s theorem (cf. Theorem 5.9 in [15]), we need not

assume that M is simply connected at infinity.
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As we mentioned in the beginning of this chapter, our theorem does not hold for n = 2.

By using our proof, we can only show that the tangent cone at infinity has metric g =

dr2 + Cr2dθ2 for some indefinite constant C > 0.

The crucial part in the proof is to show that the vertex of the flat cone is in fact regular,

i.e. it admits a completification of Riemannian metric. When a cone is not flat, it is harder

to show that the vertex is regular. P. D. Smith and D. Yang have dealt with this problem (in

a more general setting) in [60]. They showed that if the curvature blows up not so fast in a

simply connected neighborhood Bǫ of the vertex and there exists no closed geodesic γ ⊂ Bǫ

passing the vertex, then the vertex is regular. (The dimension is assumed to be greater than

or equal to 3.)
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Appendix: A study of injectivity

radius on non-compact manifolds

In this appendix, we study the injectivity radius in a general setting. We propose a sufficient

condition to guarantee that the injectivity radius grows linearly.

1 Introduction

The injectivity radius plays an important role in the research of differential geometry. A

suitable lower bound estimate of it can prevent the manifolds, and even their rescaled subse-

quential limit, from collapses. Usually, we can derive such lower bound from the controlled

sectional curvature and the volume of geodesic balls, see [23] and [16]. However, in this ar-

ticle, we would like to derive the lower bound by analyzing the geodesic loops directly. Our

result is closely related to the famous work of D. Gromoll and W. Meyer [30] where they

derived a global lower bound estimate of injectivity radius for manifolds with positive sec-

tional curvature. Here we try to determine whether the injectivity radius grows linearly on

a manifold under additional conditions. We indeed focus on the issue that how to determine

a given complete non-compact manifold (M, g) is collapsed or not.

Because the word ”collapse” may have various meanings in different texts, we have better

to define it before going on.

Definition 9. A sequence of open geodesic balls {(Bri
(xi), gi)}∞i=1 is said to be a collapsing

sequence if |Sectgi
| ≤ C

r2
i

on Bri
(xi) for some constant C > 0 and inj(xi)

ri
→ 0 as i → ∞, where

Sectgi
denotes the sectional curvature of gi and inj(xi) denotes the injectivity radius at xi. A

manifold (M, g) is said to be collapsed if there exists a collapsing sequence {(Bri
(xi), g)}∞i=1
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on it; otherwise, it is called noncollapsed.

In this article, a closed piecewise smooth geodesic is called a geodesic loop. When it

is smooth at every point, we call it a smooth (geodesic) loop. We show that if (M, g)

contains no smooth geodesic loops and satisfies the non-accumulated property, which is stated

in Section 3, then it shall be noncollapsed. The statement here is different to our main

theorem, Theorem 16 in Section 3, which concerns more about the asymptotic behavior of

the manifold, however, the proof is the same. Indeed, we prove that the non-accumulated

property cannot hold on a collapsing sequence. The reason that we write Theorem 16 in the

present form is that we wish it could be used to study the asymptotic behavior of manifolds

with fast curvature decay.

In the following section, we find out some manifolds which contain no smooth geodesic

loop. In the last section, we use non-smooth geodesic loops to define the non-accumulated

property and prove the main theorem.

2 Non-existence of smooth geodesic loops

Given a Riemannian manifold M and a point O ∈ M , we denote s := dist(O, x) for any

arbitrary point x ∈ M and introduce the following condition.

Smooth Loop Condition. There are constants c0 and d0 such that there exists no smooth

geodesic loop passing through x with length less than c0 · s when s ≥ d0.

In the rest paragraphs of this section, we find out some Riemannian manifolds and Ricci

solitons which satisfy the smooth loop condition. First, we show that the smooth loop

condition is implied by the positivity of the sectional curvature. This theorem is essentially

due to D. Gromoll and W. Meyer, Lemma 3 in [30].

Theorem 14. Let M be a complete non-compact manifold with nonnegative sectional curva-

ture and γ be a smooth loop on M . Then the sectional curvature cannot be positive everywhere

on γ. In particular, if the sectional curvature is positive on all ends of M , then M satisfies

the smooth loop condition.
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Proof. We argue by contradiction. Suppose that there exists a smooth geodesic loop γ such

that Sect(V1, V2) > 0 for all vectors V1, V2 ∈ TqM with unit length and q ∈ γ. Since a loop is

compact, we may assume that Sect > ǫ on the tubular neighborhood {x ∈ M |dist(x, γ) < δ}
of γ, where ǫ and δ are two small positive constants. Choose a point p ∈ M \ γ and consider

the shortest geodesic σ from p to γ. By using the first variation on σ, we know that σ is

perpendicular to γ. Furthermore, since σ realizes the distance between p and γ, the second

variation of the length functional (with p fixed) must be nonnegative. Now we compute the

second variation as follows and derive a contradiction.

Let γ̃′(t) be the parallel extension of γ′ along σ(t), t ∈ [0, l]. Consider the variational

vector field V (t) := (1 − t
l
)γ̃′(t), we have

I(V, V ) =

∫ l

0

|∇σ′(t)V (t)|2 −
(

1 − t

l

)2

Sect
(
σ′(t), γ̃′(t)

)
dt

≤ 1

l
−

(
1 − δ

l

)2 ∫ δ

0

Sect
(
σ′(t), γ̃′(t)

)
dt

≤ 1

l
−

(
1 − δ

l

)2

δǫ,

where Sect
(
σ′(t), γ̃′(t)

)
is the sectional curvature on the two plane spanned by σ′(t) and

γ̃′(t). It is clear that I(V, V ) will become negative when we choose p to be far away from

γ.

The following theorem shows that the smooth loop condition holds on certain Ricci

solitons. For readers who are not familiar to the Ricci flow, we note that a Ricci soliton is a

manifold which satisfies that Rij + ∇i∇jf = λgij for some function f : M → R and λ ∈ R.

It can be seen as a time slice of a self-similar solution of the Ricci flow.

Theorem 15. Consider a gradient Ricci soliton M which satisfies Rij +∇i∇jf = λgij. Let

h : M → R be a nonnegative function such that h(x) → 0 as s → ∞. If one of the following

three conditions holds:

(i) λ = 1 and Ric ≤ h · g;
(ii) λ = 0 and Ric > 0;

(iii) λ = −1 and Ric ≥ −h · g,
then M contains no smooth geodesic loop outside a compact set K (K is empty for case (ii)).

In particular, M satisfies the smooth loop condition.
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Proof. Suppose that there is a smooth geodesic loop γ ⊂ M \Bs(O) whose length is denoted

by l. Integrating the equation of soliton on γ, we have

λl =

∫

γ

λ|γ′|2 =

∫

γ

Ric(γ′, γ′) +

∫

γ

f ′′ =

∫

γ

Ric(γ′, γ′).

This contradicts all the three conditions.

Remark 15. It is easy to see that this theorem holds for non-gradient solitons. On the other

hand, the condition Ric ≤ h · g (resp. Ric ≥ −h · g) can be replaced by Ric < λ · g (resp.

Ric > λg) on the ends of M . Note that the condition Ric < λ · g on a shrinking soliton is

equivalent to the convexity of f .

3 Non-smooth loops and injectivity radius estimate

In this section, we introduce the non-accumulated condition on non-smooth geodesic loops

and derive a lower bound estimate on the injectivity radius of certain manifolds, especially

of Ricci solitons. Before moving into further discussion, we should recall some fundamental

properties of the cut point. If y ∈ M is a cut point of x ∈ M , then either y is conjugate

to x or there exists a geodesic loop γ which passes through x and y. In the second case,

γ is composed by two minimizing geodesics from x to y. If we assume that y is a nearest

cut point of x, then the only possible singular point of γ is x (cf. Lemma 5.6 in [15]). We

say that such y realizes the injectivity radius of x via γ. Hence the smooth loop condition

means that, if the injectivity radius of a point x is small, then there exists another point y

which either is conjugate to x or realizes the injectivity radius of x via a non-smooth γ.

In order to study nonsmooth geodesic loops, we develop the following notion: geodesic

chains.

Definition 10. If a (finite) sequence of points {x(i)}m
i=0 ⊂ M satisfies that each x(i),

i = 1, . . . ,m, realizes the injectivity radius of x(i−1) via some geodesic loop γ(i), then such

points and loops together is called a geodesic chain. We denote it as G(x(0), . . . , x(m)).
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A manifold M is said to satisfy the non-accumulated property if for all D > 0, there exists

a positive integer n0 such that dist(x(0),x(n0))

inj(x(0))
> D for all x(0) ∈ M and all geodesic chains

G(x(0), . . . , x(m)) ⊂ M satisfying that G(x(0), . . . , x(m)) \ B2D·inj(x(0)) 6= φ.

 

 

 

 

 

 

 

 

 

 

Figure 1: A cylinder-like end does not satisfy the non-accumulated property.

Theorem 16. Let M be a complete Riemannian manifold satisfying |Sect| ≤ C · s−2, where

s := dist(O, x). If M satisfies the smooth loop condition and the non-accumulated property,

then there exists a constant δ > 0 such that inj(x) ≥ δ · s for all x ∈ M .

The first idea of the proof is to rescale the collapsing sequence of balls, if there exists,

and get a flat complete limiting manifold. This argument was used before by others such as

the proofs of Main Lemma 2.2 in Anderson’s paper [1] and Theorem 5.42 in Chow-Lu-Ni’s

book [24]. The second step in our proof is to derive a contradiction from the observation

of limiting closed geodesic under the non-accumulated condition. This step relies on the

product structure of a complete flat manifold. Thus we know that there exists no collapsing

sequence and the injectivity radius indeed grows linearly.

Proof. Let qk ∈ M and λk := 1
2
dist(O, qk) → ∞. For x ∈ Bλk

(qk), we want to show that

inj(x) ≥ δ · dist(x, ∂Bλk
(qk)). If this is the case, then this theorem follows by taking x = qk.

We argue by contradiction. Suppose that there exist δk ց 0 and xk ∈ Bλk
(qk) such

that inj(xk) = δk · dk, where dk := dist(x, ∂Bλk
(qk)). Furthermore, we may assume that the

function F (y) := inj(y)
dist(y,∂Bλk

(qk))
, y ∈ Bλk

(qk), achieves its minimum at xk. (Notice that F

blows up on the boundary.) Hence

inj(y) = F (y) · dist(y, ∂Bλk
(qk)) ≥ F (xk) ·

1

2
dist(xk, ∂Bλk

(qk)) =
1

2
inj(xk)
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for all y ∈ B 1
2
dk

(xk).

Let g̃k := (δkdk)
−2g be the sequence of rescaled metrics which has ĩnj(xk) ≡ 1. Consider

the sequence of rescaled pointed geodesic balls
(
B̃ 1

2δk

(xk), xk, g̃k

)
and its limit. Since |S̃ect| ≤

C ·λ−2
k δ2

kd
2
k → 0 and ĩnj ≥ 1

2
on B̃ 1

2δk

(xk), by using the harmonic coordinates, we know that

the sequence converges to a complete flat manifold (B, x∞, g∞) in C1,σ∩L2,p-topology (for all

p and σ ∈ (0, 1).) For the usage of the harmonic coordinates, one can consult, for example,

[1, 50].

Notice that the flat limit manifold B is non-compact because diam
(
B̃ 1

2δk

)
→ ∞. So it

might be R
n−1 × S

1 or R
n−k × F

k, where F
k is a Bieberbach manifold. Furthermore, since

the rescaling factor (δkdk)
−2 was chosen to make ĩnj(xk) = 1 for all k, inj(x∞) = 1 implies

that B 6= R
n. For later use, we denote D as the diameter of one slice of B, that is, S

1 or F
k.

 

 

 

 

  

xk          dk/2 

       xk
(1) 

 

δkdk 

Figure 2: Construct a geodesic chain from each x
(0)
k ≡ xk.

In the rest of the proof, we show that none of these cases can happen, hence a contra-

diction arises. Consider a point x
(1)
k which realizes the injectivity radius of x

(0)
k := xk. By

the assumption on the sectional curvature, we know that x
(1)
k cannot be conjugate to xk.

Therefore, there exists a geodesic loop γ
(1)
k passing through x

(1)
k and xk with length 2δkdk.

52



Since the loop must be smooth at x
(1)
k (cf. Lemma 5.6 [15]), by our smooth loop condition,

this loop is not smooth at xk. This implies that inj
(
x

(1)
k

)
< inj(xk).

So we can find another point x
(2)
k which realizes the injectivity radius of x

(1)
k . This process

can continue until some point x
(mk)
k has its nearest cut point x

(mk+1)
k 6∈ B 1

2
dk

(xk). (Note that

for every real number D > 0 and k large enough, there is an integer m′
k < mk such that

x
(m′

k
)

k 6∈ BDδkdk
(xk). A priori, m′

k depends on k. However, the non-accumulated condition

acclaims that there exists a number n0 such that x
(n0)
k 6∈ BDδkdk

(xk) for all k. We shall use

this in the next paragraph.)

Now, on each rescaled ball B̃ 1
2δk

(xk) we have a geodesic chain G
(
x

(0)
k ≡ xk, . . . , x

(mk)
k , . . .

)
.

Exactly, we have a finite sequence of points
{

x
(i)
k

}mk

i=0
and geodesic loops

{
γ

(i)
k

}mk

i=1
with

lengthes
∣∣∣γ(i)

k

∣∣∣ ≥ 1
2
,∀i = 1, . . . ,mk. We want to take a subsequential limit of these chains

into B (and derive a contradiction.) There are two possibilities: either there are two limit

points x
(i−1)
∞ and x

(i)
∞ lying in different slices, or all the points accumulate to the same slice

{x∞} × F
k (or {x∞} × S

1.) By the non-accumulated condition, there is a limit point x
(n0)
∞

such that dist(x
(n0)
∞ , x∞) > 2D where D is the diameter of one slice of B. Hence the second

case shall be ruled out.

The first case is also impossible. Indeed, if there exists a geodesic loop γ
(i)
∞ which is not

contained in the slice {xi−1
∞ }×F

k (or {xi−1
∞ }×S

1) of B, then we can project it to get a strictly

shorter geodesic loop which is contained in {xi−1
∞ } × F

k (or {xi−1
∞ } × S

1). This contradicts

the fact that inj(x
(i−1)
∞ ) = 1

2

∣∣∣γ(i)
∞

∣∣∣.

Combining our results in the previous section, we can prove some noncollapsing properties

on certain Ricci solitons.

Corollary 4. Let M be a gradient Ricci soliton satisfying Rij + ∇i∇jf = λgij and the

non-accumulated property. Suppose |Sect| ≤ C
r2 on Br(x) ⊂ M for some x ∈ M and r > 0.

If

(i) λ > 0 and Ric < λ · g on Br(x),

(ii) λ = 0 and Ric > 0 on Br(x) or

(iii) λ < 0 and Ric > λ · g on Br(x),

then inj(x) ≥ κr for some constant κ > 0.

Remark 16. In [45], A. Naber proved that every n-dimensional shrinking Ricci soliton with
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bounded curvature and n ≥ 2 is κ-noncollapsed (in the sense of Perelman.) In [21], it

was proved that every n-dimensional expanding Ricci soliton with limdist(O,x)→∞ dist(O, x)2 ·
|Sect| = 0 and n ≥ 3 has linearly growing injectivity radius.
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