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Introduction

Anatomie commune et variations anatomiques

L’idée d’exprimer l’ensemble des représentants d’une population donnée (espéce ou
sous-groupe d’'une espéce) comme la combinaison d’une anatomie commune et de varia-
tions autour de celle-ci est la clef de votte de nombreux travaux méthodologiques, dont
cette thése fait partie, visant a ’élaboration de modéles statistiques de I’anatomie. Cette
idée n’est pas nouvelle et trouve son origine dans certains développements théoriques
de la définition des espéces et de leur histoire, dont voici quelques illustrations.

Au XVIIléme siécle, les naturalistes Carl von Linné et Georges-Louis Leclerc de
Buffon définissent les espéces comme des groupes d’individus partageant des caractéris-
tiques morphologiques communes et pouvant se reproduire. Le critére d’interfécondité
ne peut pas toujours étre vérifié : c’est le cas pour les fossiles, les organismes asexués
ou pour des espéces difficiles & observer. L’étude de la variabilité morphologique d’une
espéce devient alors un exercice primordial pour la définition des espéces et ['affectation
d’un individu & une espéce.

Au XIXeéme siécle, la théorie de ’évolution développée par Charles Darwin et Alfred
Wallace donne une interprétation et une perspective nouvelles & cette vision : I’anatomie
commune dérive de celle d’'un ancétre commun et la variabilité résulte de la transmission
d’innovations de génération en génération. De surcroit, ces innovations sont soumises a
une sélection dite naturelle : les traits qui favorisent la survie et la reproduction voient
leurs fréquences s’accroitre d’'une génération & l'autre.

Cependant, pour Darwin, I’hérédité se fait sur la base des caractéres acquis et il faut
attendre la fin du XIXéme siécle pour que le darwinisme adopte le postulat du muta-
tionnisme, d’aprés lequel les mutations génétiques (variations brusques et héréditaires)
sont les matériaux de I’évolution sur lesquels s’exerce la sélection naturelle.

A cette idée de sélection de caractéres survenant aléatoirement, s’est ajoutée celle in-
troduite par D’Arcy Thompson selon laquelle les innovations possibles étaient contraintes
par la structure des tissus biologiques et des forces auxquelles ils sont soumis. Ainsi, la
palette des innovations possibles au sein d’une structure ne serait pas aussi large que
celle que générerait un pur processus aléatoire, mais serait contenue par des contraintes
physiques et biologiques.

Quels que soient les enjeux théoriques, 'idée suggérée est de considérer I’ensemble
des anatomies définissant une espéce, ou un sous groupe de celle-ci, comme un ensemble
de variations “controlées” autour d’une base commune.
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1. Genspiza rmagnirostris 2. Geospiza foris
3, Geospiza parvula 4, Certhidea olivacea

Finches from Galapagos archipelago

Fic. 1 — A gauche : Classification des formes de feuilles tirés de “Hortus Clif-
fortianus” de Carl Von Linné. A droite : Les pinsons de Darwin L’isolation des
Pinson dans les iles Galdpagos produit environ une douzaine de nouvelles espéces. Les
différences anatomiques les plus importantes entre ces espéces se trouvent dans la taille
et la forme de leurs becs. Ces variations s’expliquent par les différences de nourriture
de chaque espéce. Leurs comportements tout comme leurs chants sont différents.

La symétrie comme caractéristique anatomique d’intérét

Les propriétés de symétrie associées a un organisme constituent une caractéristique
anatomique particuliérement étudiée et une grande partie de cette thése trouve son
application dans ’étude des asymétries bilatérales de structures anatomiques.

La symétrie des organismes

La majeure partie des étres vivants posséde I’étonnante caractéristique d’étre anato-
miquement organisée autour d’une symétrie globale. En fait, les organisations selon des
symétries radiales (i.e. par rapport & un axe) et bilatérales (i.e. par rapport a un plan)
apparaissent comme des stratégies adoptées par les organismes pour optimiser leur re-
lation & 'environnement. Les organisations selon une symétrie radiale concernent, par
exemple, les organismes marins (comme le plancton) pour lesquels la possibilité de mou-
vement est limitée. Dans ce cas, afin d’optimiser leurs contacts avec I’environnement, les
fonctions sensorielles voire métaboliques sont réparties réguliérement autour d’un axe
de symétrie (la perte de la symétrie haut-bas étant due a la pesanteur). L’organisation
du corps selon une symeétrie bilatérale nous est plus familiére et coincide avec la fa-
culté de se mouvoir. Cette symétrie est alors interprétée comme la perte de la symétrie
antéro-postérieure présente chez les organismes a symétrie radiale due a la nécessité
de concentrer les fonctions motrices & 'arriére et les fonctions sensorielles a ’avant du
corps.
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Fia. 2 — Quelques exemples des symétries du monde vivant

Fluctuation autour de la symétrie parfaite : les asymétries fluctuantes

Cependant cette symétrie n’est jamais parfaite et s’observe le plus souvent sous une
forme approximative. On nomme asymétries fluctuantes les écarts & une symétrie idéa-
lement parfaite. Celles-ci sont généralement interprétées comme des imperfections du
développement de 'organisme. En particulier, la quantification de 'agsymétrie fluctuante
au sein d’une population est une mesure pertinente de la stabilité des individus dans des
conditions données : en situation de stress environnementaux (malnutrition, parasites,
etc) ou génétiques (mutations, consanguinité, etc), ’asymétrie fluctuante augmente. La
symeétrie serait aussi un critére de choix lors de la sélection sexuelle : les méles les plus
symétriques sont préférés par les femelles pour ’accouplement. Ainsi, ces derniéres four-
nissent & leur descendance les traits d’un individu a priori plus apte a se développer
normalement dans son environnement.

Asymeétries intentionnelles : les asymétries directionnelles et les anti-
symétries

Les asymétries précédentes évoquaient un écart & une symétrie supposée parfaite
dans le cas idéal. Cependant, il est relativement commun d’observer des asymétries
que 'on pourrait qualifier d’intentionnelles : dans le cas idéal, le trait est asymétrique.
Ainsi, les asymétries directionnelles désignent des traits bilatéraux qui se développent
de maniére plus importante d’'un c6té que de 'autre. Dans la plupart des cas, ce type
d’asymétrie est prédéterminé par le génotype de l'individu. Cette asymétrie concerne
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un grand nombre de nos organes : le poumon droit a 3 lobes alors que le gauche en a
2, le rein gauche est plus élevé que le droit ou encore, comme nous allons le voir par la
suite, les deux hémisphéres du cerveau humain ne sont pas identiques.

L’antisymétrie concerne quant i elle les traits bilatéraux qui se développent de fagon
prédominante d’un coté de I'organisme et ce, aussi souvent & droite qu’a gauche. En
général, aucun coté n’est favorisé a priori et 'action de ’environnement est déterminante
(c’est le cas de la spécialisation des pinces chez le homard).

Pour résumer, on peut représenter les trois types de symétrie & 1’échelle d’une po-
pulation par des courbes ot :

— 'asymeétrie fluctuante est une cloche centrée en 0,
— ’asymétrie directionnelle est une cloche centrée en une valeur non nulle,
— l'antisymeétrie est la somme de deux cloches centrées de part et d’autre de 0.

— Asymetre Nuciants
Asymetns directiornele
— Artlsvmete

|:| 1

1]
Fia. 3 — Représentation graphique des trois types de symétrie a4 1’échelle
d’une population
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Des asymétries intrigantes : le cerveau humain

Avec ses 2 hémisphéres dans lesquels chaque structure (lobes, ventricules, etc.) pos-
séde un homologue dans I’hémisphére opposé, le cerveau apparait comme globalement
anatomiquement symétrique (Figure 4). Cependant, il posséde de nombreuses asymé-
tries.

Asymeétries fonctionnelles

Tout d’abord, d’un point de vue fonctionnel, les différentes aires de part et d’autre
de la fissure interhémisphérique sont associées a des fonctions différentes [LeM99]. L’aire
de Broca constitue un exemple intéressant d’asymétrie fonctionnelle : cette aire liée & la
production du langage articulé est dans la plupart des cas présente dans ’hémisphére
gauche du cerveau. Plus généralement, on associe & I’hémisphére gauche des taches
analytiques (parole, lecture, écriture) et & I’hémispheére droit des taches plus pratiques
comme 'appréhension de l'espace et des formes (méme si la réalisation d’une tache
nécessite souvent 'usage des 2 hémisphéres). Cette prépondérance du role de 'un ou
I'autre des hémispheéres cérébraux pour une tache donnée est connue sous le nom de do-
minance cérébrale et on désigne parfois I’hémisphére 1ié au langage comme I’hémisphére
dominant.

Il est aussi intéressant de noter la troublante asymeétrie qui lie préférence manuelle et
latéralité des zones du langage : chez 99% des droitiers (environ 89% de la population),
la fonction du langage se situe dans ’hémisphére gauche. Cependant, chez les gauchers
et les ambidextres, la situation est plus ambigué puisque chez 56% d’entre eux, les aires
associées au langage sont situées a gauche et chez les 44% restants, elles se situent dans
I’hémisphére droit ou sont réparties entre les 2 hémisphéres. Ainsi, dominance céré-
brale et préférence manuelle seraient lices. A ceci, le genre vient ajouter son influence :
il a été noté que les femmes victimes de lésions cérébrales dans I’hémisphére gauche
comme dans ’hémispheére droit du cerveau étaient moins sujettes a I'aphasie (trouble
du langage affectant I'expression ou la compréhension du langage parlé ou écrit) que les
hommes [McG80]|. Cette observation suggére ainsi une latéralisation plus importante du
cerveau des hommes que de celui des femmes.

Asymétries anatomiques

En plus de ces asymétries des répartitions fonctionnelles, le cerveau posséde plu-
sieurs asymeétries anatomiques notables. Ces asymeétries sont observées depuis plus de
150 ans, tout d’abord via des études post-mortem puis via la neuroimagerie. Les asymé-
tries cérébrales les plus décrites dans la littérature sont probablement celles du planum
temporale |[GL68|, qui est généralement plus large & gauche qu’a droite, ou encore de
la scissure de Sylvius [RMHT76|, qui est plus longue a gauche qu’a droite et dont la
terminaison suggére un tracé plus vertical & droite qu’a gauche chez la plupart des gens.
En plus de ces asymétries locales, le cerveau humain a été décrit comme étant sujet a
une torsion globale, dans le sens anti-horaire et selon un axe vertical (c’est-a-dire pa-
rallele au corps humain) [WLMW82|. La magnitude de cette torsion a été quantifiée et
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interprétée de plusieurs fagons : i) comme une différence de taille ou de volume des 2 hé-
misphéres [BWB™94] ou ii) comme une avancée antéro postérieure du lobe frontal droit
par rapport au gauche et du lobe occipital gauche par rapport au droit [VB62], ou encore
iii) comme une déviation vers la gauche (resp. droite) de la fissure interhémisphérique
au niveau des lobes frontaux (resp. occipitaux).

Lelt Hemisphere Right-Hemisphere

Sylvian fissure Sylvian fissure

Temporal lobe Temporal lube

Fia. 4 — Illustration de 'asymétrie de la fissure de Sylvius et de la torsion
globale du cerveau
Tiré de http ://www.benbest.com/science/anatmind /anatmd6.html

Des questions sans réponses

A Dheure actuelle, on ne sait pas quelle est la prévalence de Ueffet de torsion du
cerveau dans une population donné. Cependant, il est la clé de votite de plusieurs théo-
ries. En effet, pour certains, il est considéré comme le substrat de la dominance du
langage chez les humains. Il a été de surcroit observé comme absent chez les patients
schizophrénes (chez lesquels il a été suggéré que la dominance cérébrale n’est pas déve-
loppée) [BWB194, Cro04b] et chez les grands singes [Cro04a]. Cependant, chacune de
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ces considérations est trés controversée [BMPT05, MBR™03, GHBB9S8, CHO1| et pour
I’heure, il n’existe pas de consensus.

Toutes ces observations étrangement liées, parfois contradictoires, font des asymé-
tries cérébrales un sujet d’étude important.

Quantifier les variations : un challenge aux enjeux multiples

Qu’il s’agisse de 'anatomie globale ou d’une de ses caractéristiques comme ’asymé-
trie, 'existence d’une base commune et de “lois” régissant les variations d’une population
autour de cette base évoque immanquablement la question de l'identification de chacun
de ces acteurs.

Modéles descriptifs déterministes et modéles génératifs stochastiques

Quand les causes physiques et biologiques de la variabilité observée sont bien com-
prises, il est parfois possible de construire un modeéle de type génératif (et déterministe).
Ainsi, la somme des variabilités est expliquée par des paramétres physiques et biolo-
giques régissant les interactions entre les acteurs. Cependant ces interactions sont sou-
vent compliquées, nombreuses, s’effectuent sur des échelles (de temps et d’espace) trés
différentes et sont parfois mal comprises. Ainsi, dans de nombreux cas et & partir des
connaissances dont on dispose actuellement, un tel modéle ne peut pas étre construit.

Si on ne peut expliquer, on peut observer et reproduire : I'approche alternative
consiste alors a construire un modeéle génératif (et aléatoire). Pour cela, on considére une
population d’observations comme un ensemble de réalisations d’un processus aléatoire
dont on va chercher & estimer les lois. A partir de ces lois, on peut alors identifier la
base commune et les lois de variations autour de celle-ci. Dans cette thése, nous nous
intéressons & la construction de tels modéles.

Enjeux des modéles génératifs

Les applications liées & la construction de modéles génératifs sont nombreuses. Tout
d’abord, ils permettent de caractériser de maniére compacte, voire interprétable, les
variations observées au sein d’une population de structures anatomiques. Ensuite, les
comparaisons de modéles de populations différentes peuvent mener a l'identification de
caractéristiques discriminantes entre ces populations. Ainsi, on peut comparer ’ana-
tomie de populations de patients & celle de populations de sujets sains afin de mieux
comprendre le développement des pathologies, ou encore proposer une aide au diagnos-
tic en cherchant & savoir a quelle population un individu donné semble appartenir. Ce
type d’application est enfin trés utile en paléoanthropologie ot I'une des questions récur-
rentes consiste 4 déterminer a quelle espéce appartient tout nouveau fossile découvert,
voire & définir une nouvelle espéce.
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Construction de modéles génératifs : amers et morphométrie

La conception de modéles génératifs a tout d’abord été traitée comme un probléme
de statistiques multivariées sur un ensemble finie mesures faites sur les données (dis-
tances, angles, age, efc). Une premiére révolution a été opérée par le développement
de statistiques dans l'espace des formes (méthode de superposition procrustéenne) par
Kendall [DM98] et de I’analyse a base de modeéles de plaques minces (analyse des efforts
mis en jeu pour passer d'une forme a une autre) par Bookstein [Boo89|. Ces méthodes,
encore largement utilisées, permettent d’analyser directement la forme des structures,
représentées par des ensembles d’amers anatomiques identifiés de maniére unique sur
chaque sujet. Au-dela des enjeux méthodologiques présentés par de telles approches,
celles-ci souffrent de limitations liées a la nature méme des données traitées. En effet,
les structures étudiées ne possédent en général qu'un nombre trés limité d’amers anato-
miques. L’ensemble de ces amers ne permet alors qu’une représentation trés schématique
des structures étudiées et leur analyse n’offre qu’une vision limitée des variations en jeu.
De surcroit, la capture d’amers est une opération laborieuse.

Plus récemment, le développement des méthodes de vision par ordinateur et la
démocratisation des systémes d’acquisition numeérique ont stimulé le développement de
méthodes basées non plus sur un ensemble d’amers mais sur une description compléte de
la structure étudiée. Dans la plupart des cas, cette description est donnée par I'intermé-
diaire d’une image 3D provenant d’acquisitions CT ou IRM. De nombreuses méthodes
permettent d’établir des modéles de formes & partir de ces données expérimentales.
Cependant, les données brutes offrent une description de ’ensemble des structures preé-
sentes dans le champ d’acquisition et ne permettent pas de se concentrer sur une une
structure donnée. De plus, elles sont soumises a plusieurs types d’artefacts (bruit, inho-
mogénéité) susceptibles de géner les méthodes d’estimation de modeéles. Une technique
alternative consiste & segmenter la structure d’intérét puis & considérer uniquement la
surface délimitant son contour. Plusieurs méthodes ont été proposées dans la littérature
pour le traitement de telles données et nous proposons dans cette thése de poursuivre
cette approche. Cependant, il est important de noter que ces opérations d’extraction,
qu’elles soient faites automatiquement ou manuellement, impliquent une perte vis-a-vis
des données expérimentales. De plus, certains algorithmes de segmentation utilisent des
a priori de forme et les données extraites par de telles méthodes sont susceptibles de
biaiser la construction d’un modéle statistique.

Positionnement et organisation du document

L’objectif premier de cette thése est de proposer un ensemble d’outils permettant de
quantifier et de comparer statistiquement ’asymétrie globale au sein d’une population
et entre deux populations de structures représentées par des nuages de points. Plusieurs
outils ont été proposés dans la littérature [OLDT07, CDD07, CKDD08, LKADT09]
pour la réalisation d’une telle tache et on peut distinguer 2 approches principales : les
approches basées sur le calcul et ’analyse des déformations liant la structure d’intérét a
son image symétrique et les approches basées sur I’extraction et I’analyse de caractéris-
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tiques de plus haut niveau (forme globale, épaisseur corticale, etc). Ces deux approches
adoptent des points de vue différents et sont complémentaires.

Cependant, tous ces travaux reposent sur l'intégration d’outils de recalage dans
une chaine de traitement pour la quantification des asymeétries. Ainsi, la continuité
méthodologique n’est pas assurée et il est parfois difficile d’interpréter les résultats de ces
méthodes. Dans ce sens, il est intéressant de noter que le plan de symétrie n’est jamais
estimé par ces méthodes mais est calculé a partir de recalage rigide ou d’alignement
manuel. De plus, certaines d’entre elles [CDD07, CKDD08, LKAD"09] ont de forts a
priori sur les données (topologie, échantillonnage, etc) et sont dédiées a des structures
particuliéres.

Nous proposons ici un ensemble d’outils alternatifs permettant la quantification et
la comparaison des asymétries au sein et entre populations de maniére rapide, robuste et
sans a priore sur les données. En particulier, ces outils permettent le calcul de cartes sta-
tistiques d’asymeétries directionnelles locales et 'analyse de la déviation d’une “surface”
de symétrie par rapport & une symétrie parfaite.

Plus précisement, nos choix nous ont amenés au développement de méthodes (au
sein d'un méme cadre probabiliste) pour i) 'estimation robuste d’un plan de symétrie,
ii) la définition de surfaces permettant d’étendre la notion de symétrie par rapport
4 un plan et d’offrir une nouvelle approche pour quantifier I’écart d’un objet a une
symétrie parfaite, iii) le recalage non-linéaire et iv) la création de modéles statistiques de
formes. Pour chacun de ces points, nous nous sommes efforcés de proposer des méthodes
robustes ne supposant pas d’a priori sur les données (échantillonnage, topologie, etc.)
et permettant de gérer des données de tailles importantes en un temps raisonnable. La
suite de cette thése est décomposée de la maniére suivante :

Partie 1 : Estimation de symétrie bilatérale dans des nuages de points 3D

Chapitre 1 : Dans ce chapitre, nous présentons briévement les enjeux méthodo-
logiques et applicatifs liés & D’estimation de la symétrie bilatérale dans des nuages de
points 3D.

Chapitre 2 : Dans ce chapitre, nous proposons une taxonomie des méthodes exis-
tantes d’estimation de symétrie bilatérale. Nous proposons 3 grandes approches et mon-
trons comment une grande partie des méthodes de la littérature s’insére dans ces ap-
proches.

Chapitre 3 : Forts de cette taxonomie, nous développons dans le 3eme chapitre
une méthode pour 'estimation de toutes les symétries bilatérales dans un objet repré-
senté par un nuage de points 3D. Cette méthode est composée de 2 sous-méthodes. La
premiére, basée sur des outils de clustering, permet d’estimer de maniére grossiére tous
les plans de symétrie d'un objet. La seconde permet d’estimer de maniére précise et
robuste chacun de ces plans de symétrie étant donné une initialisation. Elle est basée
sur un estimateur robuste de type maximum de vraisemblance qui est estimé par un
algorithme de type Expectation-Maximisation. Les résultats obtenus par chacun de ces
deux algorithmes sont illustrés sur des données synthétiques et réelles. Nous montrons
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en particulier que nos outils permettent d’estimer le plan de symétrie d’'un objet de
maniére trés précise méme quand la part d’asymétrie est importante.

Chapitre 4 : Dans ce chapitre, nous montrons comment étendre la notion de sy-
métrie par rapport a un plan a celle de symétrie par rapport & une surface, et comment
estimer de telles surfaces sur des objets 3D. Nous proposons quelques applications pos-
sibles de cette surface de symétrie.

Chapitre 5 : Dans ce chapitre, nous analysons les performances de nos méthodes
et la pertinence de nos choix et proposons quelques pistes pour de travaux futurs.

Partie 2 : Recalage non-linéaire de nuages de points 3D

Chapitre 6 : Dans ce chapitre, nous présentons briévement les enjeux méthodolo-
giques et applicatifs liés au calcul des déformations superposant 2 nuages de points

Chapitre 7 : Le chapitre 7 est dédié a un état de 'art des méthodes de reca-
lage non-linéaire de nuages de points et de surfaces. De méme qu’au chapitre 2, nous
nous efforcons de mettre en évidence les hypothéses de base souvent cachées sur les-
quelles reposent nombre d’algorithmes de la littérature, permettant une appréhension
plus objective de leurs différences et de leurs points communs. Nous montrons en par-
ticulier qu'une technique particuliérement fructueuse consiste a considérer le probleme
du recalage comme un probléme de minimisation d’une distance entre deux densité de
probabilité par rapport & une fonction paramétrisant une des densités. Ainsi, les nuages
de points sont représentés sous formes de mélanges de densités de probabilités et 'on va
chercher la transformation déformant “au mieux” un mélange vers ’autre. Nous mon-
trons que l'algorithme EM-ICP appartient a cette classe de méthodes et méne & des
solutions efficaces dans le cas du recalage rigide.

Chapitre 8 : Malgré ses capacités a traiter le probléme du recalage rigide de maniére
efficace, nous observons que 'EM-ICP est asymétrique et qu'une extension au cas non
rigide peut s’avérer trés consommatrice en temps machine et est susceptible de converger
vers une solution inappropriée si une bonne initialisation n’est pas fournie. Dans le
chapitre 8, nous proposons des solutions pour chacune de ces limites. Pour cela, nous
enrichissons le critére original et proposons des solutions algorithmiques efficaces pour
chacune de ces modifications. En particulier, nous proposons :

— de symétriser le critére,

— d’introduire des probabilités a priori sur les mises en correspondance entre les

points des deux nuages,

— d’utiliser deux nouveaux opérateurs de régularisation de champs de déformations
trés efficaces. Le premier est basé sur 1’affectation locale de modéles de trans-
formations simples (affine ou translation) qui sont ensuite régularisés a travers
I’espace, le second est basé sur I'analyse fréquentielle du champ de déformations
et la théorie des noyaux reproduisants.

A la fin de ce chapitre, nous sommes en mesure de proposer un algorithme permet-

tant le recalage de nuages de points de tailles importantes (10000 points) de maniére
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efficace (3 minutes sur un PC standard).

Chapitre 9 : Dans ce chapitre, nous évaluons et illustrons les performances de
notre algorithme et les avantages relatifs des différentes améliorations proposées sur des
données synthétiques et réelles.

Chapitre 10 : Dans ce chapitre, nous analysons les performances de nos méthodes
et la pertinence de nos choix et proposons quelques pistes pour des travaux futurs.

Partie 3 : Outils pour ’analyse de groupe & Applications

Chapitre 11 : L’objectif premier de cette thése est de proposer un ensemble d’outils
permettant de caractériser et de comparer les asymétries présentes au sein et entre des
populations de structures anatomiques. Dans le chapitre 11, nous montrons comment
nos choix méthodologiques meénent a des solutions a la fois simples et pertinentes pour
la construction de modéles statistiques de formes et ’analyse de groupe. En particu-
lier, nous montrons comment calculer des cartes d’asymétries individuelles et comment
construire une forme moyenne et projeter I’ensemble des cartes d’asymeétries indivi-
duelles sur celle-ci.

Chapitre 12 : Dans ce chapitre, nous illustrons nos outils par une étude comparant
les asymétries corticales de 2 sujets Situs Inversus (condition congénitale dans laquelle
les principaux viscéres et organes sont inversés dans une position en miroir par rapport &
leur situation normale) et celles d'une population controle. Cette étude utilise I’ensemble
des outils développés dans cette thése (recalage non linéaire, estimation de plan et de
surface de symétrie et estimation de forme moyenne)

Chapitre 13 : Dans ce chapitre, nous discutons la pertinence de notre approche

pour la quantification d’asymétries.

Chapitre 14 : Dans ce chapitre, nous concluons ce document et illustrons 'apport
de notre travail par la description de plusieurs études en cours impliquant de nombreux
collaborateurs venus de disciplines différentes.

Chaque partie peut étre lue de maniére indépendante.
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Chapitre 1

Introduction

1.1 Introduction

Most natural or manufactured objects exhibit some form of symmetry. In mathe-
matical terms, it means that they remain invariant or almost invariant under certain
transformations, typically : rotations (with respect to a point or a line) or reflections
(with respect to a point, a line or a plane). More specifically, the set of symmetries of
a 3D object forms a group in which each element can either be a rotation, a reflection
or a composition of them.

In this work, we focus our interest on reflection (i.e. bilateral) symmetry in 3D point
sets. In computer vision, it is often crucial to use these symmetry features for common
image processing tasks such as recognition, denoising, registration, segmentation, etc.
Most initial works considered the estimation of reflections in 3D point sets in an ideal
case where objects under study exhibit single or multiple perfect symmetries |Ata85,
WWV85|. These algorithms convert the estimation of reflections in 3D point sets into a
1D pattern matching problem for which efficient solutions are known [Knu98]. However,
in practice most real objects exhibit approximate (as opposed to perfect) and even
partial (i.e. that concern only a small subpart of the object) symmetries. Moreover,
an object can exhibit several approximate global and partial symmetries. For about
20 years, the computer vision community has proposed several methods to estimate
multiple global/partial approximate symmetries in 3D point sets.

In the following, we first propose a taxonomy including a major part of existing
methods for the estimation of reflections in 3D point sets (Chapter 2). This taxonomy
elucidates some links between the different methods of the literature and allows an
analysis of the relative advantages and drawbacks of the different strategies. Based on
this taxonomy, we propose a method to coarsely estimate all the “meaningful” reflections
of a 3D point set (Section 3.1). Then, we propose a method that, given an initialisation,
estimates a reflection in a 3D point set in a robust and accurate way (Section 3.2).
More precisely, we consider that at least a small subset of the object is not affected
by asymmetries and we define the approximate symmetry plane of the object as the
one minimising the average sum of squared distances between the points belonging to

21
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this highly symmetrical part. The combination of both approaches allows an automatic,
accurate and robust estimation of all the meaningful reflections in 3D point sets. Then
we extrapolate the notion of symmetry about a plane to that of symmetry about a
differentiable 3D surface C' (Section 4.1) and propose an algorithm to estimate such a
surface in 3D point sets.

1.2 Notations & basic formulas

e We note X = {z1,...,an} a 3D point set and z¢ = > e.ex Ti its centroid.

e We consider P as a 3D plane and Sp : IR> — IR® as the reflection with respect
to P. Each plane P can be uniquely parametrised as P = (a, 3,d) where a € [—m, 7],
B € [—7n/2,m/2] and d € IRT represent respectively the azimuth angle, the latitude angle
and the distance from P to the origin (Fig. 1.1). An equivalent but more convenient
parametrisation for calculus is P = (n, d) where n is a unit vector orthogonal to P (Fig.
1.1). The normal n is linked to o and 3 by the following relationship :

n = (ng,ny,n;) = (cos(F) cos(a), sin(B) cos(a), sin(a))

-
n 0 if ng =ny =0
a= arcsin(ﬁ) , b= arctan(y;*) if ny and ny, >0
180 + arctan(%) else

e The distance from a point z to a plane P = (n,d) is given by :
d(xz,P) = |nTz —d|. (1.1)
e The image of point = through reflection with respect to P = (n,d) is given by :
Sp(z) = (I3 — 2nnT)x + 2dn, (1.2)

where I3 is the 3 x 3 identity matrix.



Notations & basic formulas

FiGg. 1.1 — Parametrisation of a plane in 3D.
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Chapitre 2
Bibliography

In this chapter, we aim at designing a taxonomy of existing methods for the estima-
tion of (multiple/partial) approximate bilateral symmetries of 3D points. We identify 3
main approaches :

— approaches based on points distribution (Section 2.1),

— approaches based on points superimposition (Section 2.2),

— approaches based on planes clustering (Section 2.3),
and discuss their characteristics. In practice, almost all methods proposed in the lite-
rature are a combination of these 3 approaches. We briefly list other methods that do
not fit in this taxonomy in Section 2.4.

2.1 Approaches based on points distribution

2.1.1 Basics

The general view of this approach is to define the optimal plane P as “the plane
that best passes through the point set X”. Thus, P can be simply considered as
the plane minimising & :

E(P) =) d(z;,P) ° °
J]iGX ° o
o o
S " d x
= Z intz; — d?. A o
i, €X o .
P

FiG. 2.1 - 2D illustration of “the plane P that best passes through the point set X”
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Note that when working with meshes, a simple improvement of this approach consists
in working with sums of integrals over triangles instead of sums over vertices. This way,
the approach is less dependent on the sampling of X [VSRO1].

The partial derivatives of & with respect to d and n must vanish at the minimum.
The first condition implies that d must be equal to n”zg. Thus, given that ||n|| =1, n
must minimise :

Yo I @i—ze)P = i —acl = Y [Inx (z; —z6)ll%, (2.1)

r,€X r;€X r;€X

x being the cross-product. The first term at right of the equal sign is a constant with
respect to m. By an analogy with mechanics, considering that each point of X has
a mass equal to one, the second term is simply the second-order moment of X with
respect to the axis aligned with n and passing through zg. In other words, the plane
minimising & is orthogonal to the principal axis of X having the highest moment of
inertia (sometimes called the “figure axis”). The intuitive definition of & is thus very
satisfying as it can be shown that any perfect symmetry plane of an object is orthogonal
to one of its principal axes, which suggests that all the (local) optima of & can define
a relevant approximate symmetry plane of X. This suggests a simple algorithm to find
all the approximate reflections of X :

— compute the 3 eigenvalues and related eigenvectors of the scatter matrix of X
(related to the inertia matrix in a straightforward way).

— check the 3 planes orthogonal to these eigenvectors and passing through zg for
symmetry (computing a distance - to be defined - between X and its mirrored
version).

One can see that this algorithm implicitly assumes that X has less than 3 distinct
symmetry planes. If this is not the case, then at least 2 of the eigenvalues of the scatter
matrix are equal. This causes & to exhibit an infinity of optima (any n belonging to the
eigenspace associated to these equal eigenvalues), that do not necessarily correspond to
valid symmetry planes of X. As an example, a cuboid (resp. a cube) has only 2 (resp.
1) distinct eigenvalues, but 5 (resp. 9) symmetry planes. Even worse, a cylinder (resp.
a sphere) has only 2 (resp. 1) distinct eigenvalues, but an infinite number of symmetry
planes.

2.1.2 Generalisation

To deal with this problem when two of the eigenvalues are equal, Minovic et al.
[MIK93] proposed a solution based on the use of complex moments to study the 2D
section of X passing through z¢ and orthogonal to the marked axis (i.e. the one asso-
ciated to the single eigenvalue). Unfortunately, this solution does not work when the 3
eigenvalues are equal.

More recently, Martinet et al. [MSHS06]| proposed to cope with this problem by
generalising the notion of moments with respect to an axis to higher orders. These
generalised moment functions write :
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51(2p)(P) _ Z d(xi,n)Qp _ Z [|n x (z; — ZEG)||2P. (2.2)

r,€X z,€X

They show that any perfect symmetry plane of X is an optimum of Sl(zp ) Vp € IN,
which extends the previously stated relationship between symmetry planes and principal
axes. Looking for planes (n,n”zg) that optimise all the even order moments allows to
be much more selective compared to just considering the second order moment : lots

of planes optimising & = 51(2) do not optimise 51(21)) (p > 1) and thus can be easily

discarded. In practice, Martinet et al. optimise 51(2;7 ) for a small number of values P

(typically 1,2,3). In absence of a closed-form solution for p > 1, this is done by i) finding
P where VS{QP ) is close to 0 by an exhaustive search on a discrete adaptive sampling

of the directions n and ii) performing a steepest descent algorithm on ||V51(2p )H for
each candidate find in i). The whole process is implemented efficiently using spherical

harmonics. Normals n that simultaneously reduce HVEl(zp )H to zero for the selected
orders 2p are considered as interesting directions for reflection. Then for each such
extracted direction n, the corresponding plane P is checked by computing a distance
between Sp(X) and X. Interestingly, this approach allows to identify all the symmetries
of X (i.e. simple, rotational or spherical symmetries and their improper forms, including
reflections).

2.1.3 Advantages and limitations

The key property of this approach is to avoid the search of bilateral correspondences
between points of X by just considering the distribution of the point locations with
respect to the plane. This results in simple and effective methods that exhibit good
results in presence of an almost symmetrical object. It explains why it has been used
in several works to detect and identify different types of approximate [MIK93, CV08]
and partial [PeST06] symmetries of 3D objects. However it performs very badly in case
of large deviation from perfect symmetry. Furthermore, making this approach robust
is a difficult issue as large residuals of & or higher order moments do not necessary
correspond to outliers but must often to points far from the plane. However, some
proposition consisting in simply robustifying & either with M-estimators [PeST06] or
least median of squares estimators [LR09| have exhibited good results.

2.2 Approaches based on points superimposition

2.2.1 Basics

Zabrodsky et al. |[ZPA92, ZPA95]| defined what they call the symmetry distance as
“a quantifier of the minimum effort required to turn a shape X into a mirror
symmetric shape”. The symmetry plane of this perfectly symmetrical shape X* can
then be considered as the approximate symmetry plane of X. Typically, this “effort”
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is quantified as the sum of squared displacements from X to X*. The approximate
symmetry plane is then designed as a minimiser of :

v o4
o)
&E(P) = min Z ||331—sz2
@elR’® ok " =
OX *
with Va; € X*, 3 27 € X* such that z; = Sp(a:;‘-) > -
d
o o)
P

Fia. 2.2 — 2D illustration of “the plane P for which the minimum effort is required to
turn X into a mirror symmetric point set with respect to plane P”. The circles represent
(x;), the crosses represent (z}).

One can first derive the optimal displaced points (z}). The constraint of symmetry
for X* imposes that for all z; € X, there exists a unique point z.(;) in X such that
Sp(x}) = (]) (r:[1,...,N] — [1,...,N]). Thus, solving for the optimal (x}) impli-

citly 1nduces a pairing between points of X. As a result, for all j such that =(j) # j,
one can write :

> M = 2f 1P = ||z — @511 + llewgy — Se(a))I]® +C, (2.3)
r,€X

where C' does not depend on z7. Differentiating this expression with respect to xj gives :

ZTr(i) + Sp(z)
7= (J)zp(ﬂ). (2.4)
When considering the case where 7(j) = j, we find the same expression for the optimal
7. In this case, it implies that 27 € P. Using the optimal values (Z7), £ (P) can then
be simply reformulated as :

= min > zaa — Se(a)l1/4, (2.5)

zr,€X

where Vi, j, (i) = j < 7(j) = i (i-e. the pairing permutation function 7 is both
bijective and involutive).

In other words, the plane P minimising £ (P) can be viewed as “the plane that
minimises the left-right differences of X” and & (P) can be reinterpreted as :
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o o
E2(P) = min Y ||Sp(wi) — z|[*/4 ° °
xieXwZEX ° o
) ) N Selw) | o
.. d
where Vi, j, v, = x; & x; = ;. ° °
o o
P

F1G. 2.3 — 2D illustration of “the plane P that minimises the left-right differences of X”.

With this formulation, minimising £ appears as an interleaved problem that consists
in finding both i) the optimal left-right matchings (z;, ;) (with Vi, j, 7; = x; < x; = ;)
and ii) the optimal symmetry Sp best superposing (x;) on ().

In the following, we first discuss closed-form solutions for the problem of computing
the optimal approximate symmetry plane when the left-right matchings are known.
Then we describe the three main strategies that have been proposed in the literature
to minimise & (P).

2.2.2 Optimal P with known correspondents (7))

If one assumes that the optimal set of correspondents :Z'; € X is known, two main
approaches have been proposed to find the optimal plane P that best superposes (:Z*;)
on (x;).

e Estimation using an intermediate rigid-body transformation :

A first, intuitive approach consists in choosing an arbitrary plane K and rewriting
this minimisation problem as :

P = argmin Z Hi‘; — Sp o Sk o Sk(z)|?
Sp r,€X

Then one can note that :

-if K || P then Sp o Sk is a translation

-if K }f P then Sp o Sk is a rotation
In other words, for any plane K, T' = Sp o Sk is a rigid-body transformation. Thus,
an intuitive approach to compute P is to fix a plane K and to find the rigid-body
transformation 7" best superposing X and S (X) :

P = argmin Y |~ To S
xr;€X

Different closed-form solutions exist for this last problem using, for instance, the
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unit quaternions [Hor87, FH86]| or the singular value decomposition [AHB87, HHNSS,
Ume91].

Unfortunately, this approach suffers from a major flaw : the optimal transformation
T, composed with Sk, does not necessarily define a proper reflection, and thus the
optimal plane P cannot be computed directly using Sp = = T o Sk. For instance, if T
is a pure translation that is not perpendicular to K, then T o Sk is not a reflection.
Several heuristic approaches have been proposed in the literature to estimate P from T
[WPWO03, ZRF 06, MCP 06, ZPA95] but to our knowledge, none of these is guaranteed
to yield a plane P really minimising E(P) (when correspondents (7;) are fixed).

e Direct estimation of a reflection :

Recently and independently, we and several other authors [CHW'08a, MGP07,
FEdIF 08, MBMO00| have proposed a closed-form solution for the former minimisation
problem without resorting to an intermediate couple (K, T) It gives, in a general form
(the proof is provided in Appendix A) :

For a given square matrix A of size N x N (independent of P), the plane P = (d,n)
that minimises

‘J}j — Sp(.%'l)Hz with Vi,j AZ’J Z 0 (2.6)

D> Ay

zi€X z;€X

is characterised by :
e n colinear with the eigenvector corresponding to the smallest eigenvalue of the 3
X 3 matrix B, where

B = Z Aijl(zi — g1 + x5 — g2) (i — g1 + x5 — go)T
(x4,25)EX?

— (2 — @) (2 — x;)"]

and g1 = m Z(%‘@j)GXZ Amxl .
92 = Sy A D (eray)ex? AigT

od=3(g1+g2)"n.

Notice that this formula is linked to that obtained by Horn [Hor87| and Faugeras and
Hebert [FHS86| for rigid-body registration of point clouds. There is an analogy between
the parameters (n,d) (unit normal vector, distance to the origin) and their parameters
(g,t) (unit quaternion, translation component).

2.2.3 Minimisation strategies

In practice, both optimal correspondents (:%;) and optimal plane P are unknown and
one has to estimate both parameters. In the literature three main strategies have been
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proposed to achieve this estimation.
. . . . . /
Brute force minimisation : search over matchings (z;,z;)

The set of admissible solutions for the matchings (z;, :L';) is the set of involutive per-

mutations of (z;). It contains Z}Eﬁéﬁ (N+)"2kk' elements [Knu98|. Zabrodsky [ZPA95]
simply proposed to tackle the problem using an exhaustive search within this set. For
each set of generated matchings (xi,x;), one can compute the corresponding optimal
plane (Section 2.2.2) and the one providing the lowest criterion will be the optimum.

Unfortunately, the combinatorial explosion limits this approach to small point sets.
Brute force minimisation : search over planes P

Podolak and colleagues [PSGT06] proposed to minimise £ (more precisely a norma-
lised version of &) by sampling the space of IR? planes in order to test a finite number
of them. For that, they proposed to represent the point set X by its Gaussian distance
transform in order to avoid the matching process when having to compute £ with a
known plane. In practice, the computation of E(P) for each of the tested planes is
approximated via an importance sampling strategy.

This minimisation strategy relies on the conversion from surface to volume data
which can be problematic in terms of memory/time requirements. Moreover, due to the
sampling scheme this strategy is only able to give a coarse estimate of local minima of
&9 and needs a refinement of the solutions.

Alternated minimisation

Another strategy, if one has a prior knowledge of the plane P, is to perform the
left-right matchings based on this plane, recompute the optimal plane based on these
matchings, and iterate. This yields to the following algorithm :

Step i) (7)) = argmin,, 3, |l2; — Sp (i)l
with Vi, x; =1 & x; = x;.
Step ii) P = argminp >, ||#; — Sp(x:)||?

This algorithm monotonically converges to a local minimum of &. Obviously, as
this method exhibits a local convergence, it assumes that a good initialisation of P is
available.

Step ii) is the problem described in Section 2.2.2. To our knowledge, there is no
efficient solution for Step i) and an exhaustive search is needed. In practice, this step
can be solved removing the constraint that Vi, j, x; =x; & :1:; = x;. In this condition,

each i; can be computed independently :
Vi, #; = argmin ||z; — Sp(z;)]|? (2.7)

mQGX

Step i) then consists in solving N closest point problems that can be efficiently dealt
with using (for instance) a kd-tree [Ben75]. Removing the constraint is interesting for
two reasons. First it allows an efficient optimisation of the modified criterion &. Second,
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in many cases, the constraint is irrelevant as it implicitly assumes that there are as many
points on each side of the plane and that the sampling of X is homogeneous. As these
conditions are generally not met, this constraint can lead to inappropriate results.

Note that, when removing the constraint, the proposed algorithm is nothing else but
the well-known iterative closest point algorithm [BM92| where the unknown transfor-
mation is a reflection instead of a rigid-body transformation. This ICP strategy can be
viewed as a method to minimise a constraint-free version of the original criterion & pro-
posed by Zabrodsky et al. This strategy has been used intensively in the context of sym-
metry plane estimation [CHWT08a, MGP07, FEAIF 08, WPW03, ZRF*06, MCP*06,
PSGT06].

2.2.4 Generalisation

A more general formulation

In the previous subsections, we proposed a comprehensive view for the original cri-
terion proposed by Zabrodsky et al. In this section, we consider a more generic solution
that consists in considering a space F representing the set of the 3D shapes. If one
considers the shape under study as f € F, following the approach of Zabrodsky, one
can propose the following criterion :

&(P)= min — |7,
J(P) = min |If = £l
where Sym(P) = {f € F|Sp(f) = f} and ||.||7 is a norm on F. This last criterion can
be simply rewritten as :

E(P) = ||f — Waymr) ()|, (2.8)
where Ilgy,,p)(f) is the projection of f onto the subspace Sym(P). Then, following
Kazhdan and colleagues [BCD1 03|, one can show that :

E(P)=If = (f +Sp(N))/21% = |If — Sp(f)|[%/4. (2.9)

This again shows the equivalency between finding the minimum effort to turn a shape
into a perfectly symmetrical shape (Eq. 2.8) and minimising the residual distance bet-
ween f and Sp(f) (Eq. 2.9).

Choice of f

One has to propose an efficient representation f for the point set under study. The
method of Podolak and colleagues [PSG106] described previously simply consists in
designing f as the Gaussian Euclidean distance transform of X (which is a continuous
function from IR® to IRT). It could be interesting to try other models such as mixture
models.

Choice of ||.||#

In the previous sections, the norm ||.|| # was chosen to be a classical 2-norm. However,
the choice of this norm is crucial as it defines the notion of approximate reflection.
Different norms leads to different interpretations and thus to different results.
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e A first alternative to the 2-norm is to consider a robust cost function. This is par-
ticularly relevant if one considers the sum of point-to-point squared distances proposed
by Zabrodsky. Indeed in this case, one can simply introduce a robust function p instead
of the classical 2-norm, leading to a M-estimator of the form :

& (P —mmz (1Sp(@i) —2il)/4,

;€ xEX

In this case, the estimation of P will be performed by focusing on points belonging to
highly symmetrical parts of X. This solution is pragmatic and convenient as, by choo-
sing an adequate function p (e.g. a Leclerc function), efficient and simple algorithmic
solutions are provided [CHW™T08b]. Note that > p(||.||) does not define a norm and thus
we cannot necessarily be interpreted as a symmetry distance as defined by Zabrodsky
et al.

e Another choice is to design a norm that consists of a measure of stretch and bend
between the object and its symmetrical image. Samir and colleagues [SSDK09| proposed
to implement this idea rewriting Pb 2.9 by using an arbitrary plane K and optimising
an intermediate rigid-body transformation R (similarly to what is done in Sec. 2.2.2) :

"

& (R) =argénian—ROsK(f)Hf (2.10)

Then one has to describe F' and ||. — .|| and to provide minimisation strategies for
Criterion 2.10. In practice, there exists no convenient framework allowing to directly
design F as the set of 3D point sets or of 3D surfaces. However, if one considers F
as the set of 3D close curves, the framework of elastic deformations [Jos07]| provides
efficient solutions to compute ||. —.||7 and R (and thus an optimal symmetry plane P).
Then, Samir et al. proposed to deal with surfaces by representing them as an indexed
collection of concentric curves. The minimisation over R is performed other each of
the generated curves independently and the resulting transformations are averaged to
compute a global rigid-body transformation R.

Although this view provides an interesting alternative to the classical 2-norm, the
approach is limited and is likely to be inadequate for many applications. First, in essence
this method is not robust to outliers. Moreover, the representation proposed for 3D
surfaces is not straightforward and is debatable as the use of the set of indexed curves
imposes i) a constraint on the correspondences (i.e. the lines having the same index
are necessarily matched with each other) and ii) to build a set of concentric closed
curves on the mesh, which clearly limits the method to a certain class of concentric and
well-balanced structures.

2.2.5 Advantages and limitations

Superimposition based methods rely on a pragmatic formulation of the expected
reflections. More specifically, these methods depend on the expression of the departure
from a point (or the complete object representation) to its symmetrical correspondent.
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As many expressions (e.g. based on M-estimators or elastic deformations) can be pro-
posed, the framework is very adaptable. The brute force optimisation of the underlying
criterion is of high complexity (mainly because of the underlying pairing process). Ho-
wever, two efficient optimisation strategies have been proposed. The first one is based
on a discretisation of the space of the planes and on an importance sampling strategy.
It is not initialisation dependent but suffers from problems due to memory usage and
of inaccuracy. The second one, based on the ICP algorithm, is more accurate and com-
putationally attractive but is initialisation dependent. In practice, these two methods
can be used successively to obtain fine estimates of all the significant reflections of a 3D
object.

2.3 Approaches based on planes clustering

2.3.1 Basics

The general view of this approach is to define the optimal plane P as “the plane
with respect to which the most points are mirror-symmetrical”. This simply
writes as :

o o
o \\‘H\\\\% o
&3(P) = card(z; € X such that Sp(x;) € X) ° \\“H\\\O
077“"%“”"‘7[”*——»4\\—7- Tl
Slasee
o//"’\“*””xéw
o o

Fic. 2.4 — 2D illustration of "the plane with respect to which the most points are
mirror-symmetrical".

For each pair of points (z;,x;) of X2 (i # j), there is a unique plane P ; such that
x; = Sp, ;(7;) (and reciprocally). The method consists in accumulating local evidences
of reflection by generating all such planes P; ; considering all possible pairs of points in X
(there are (card(X)? —card(X))/2 of them). Then reflections with the most occurrences
are considered as significant reflections of X.

In practice, when a surface is only approximately symmetrical, it is likely that each
plane P; ; will occur only once. In this case, however, potential approximate symmetry
planes will tend to form clusters in the space of IR planes. The approach thus consists
in finding significant clusters in this space and estimating a representative for each of
these clusters.

2.3.2 Clustering

The key idea under this clustering process is to i) model the distributions followed
by the P; ;s and ii) extract significant local maxima of this distribution. In practice, two
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major (and related [Dah09]) methods can be used.

e The first method, based on the Hough transform, [Lea93] performs the estimation
of the optimal planes P by considering a discrete 3-dimensional histogram defined on
the space of variables defining the planes. For each one of the P, js, this histogram is
incremented. Then its local maxima allow to estimate the parameters of the planes.
Several ways to increment the discrete 3-dimensional histogram have been proposed in
the literature. Given a sample P; ;, the simplest one consists in incrementing by one the
value of the bin representing P; ;. This method is computationally very efficient but of
limited accuracy. Indeed, the discretisation steps have to be large enough to group close
planes but small enough to allow accuracy.

e The second method is based on the kernel density estimation method. It consists
in approximating a continuous density function (i.e. Parzen window estimate) from the
discrete sample (P; ;) using a kernel function. Using an exponential kernel, it writes :

F(PIPij) o< Y > exp(D(P,;, P)*/(2h7)),

Ti T

where D is a distance function in the space of the planes of IR?. Then significant local
maxima (4.e. modes) of f are considered as plausible symmetry planes of X . In practice,
the Mean Shift algorithm [CMO02] allows to find all the modes of f. The parameter h?
can be viewed as the expected variance of locations in the sample belonging to a same
mode. By building a continuous function f from the P ;s, the problem due to the
discretisation process of the Hough-based approach is avoided. However, the value of h
can have a critical impact on the results and its choice is decisive [CM02]. Finally, note
that this method is computationally more demanding than the Hough transform.

For each of these two clustering methods, some of the extracted reflections are likely
to have no physical meaning. As a consequence, each one of them are tested with respect
to the complete dataset X.

2.3.3 Improvements

In practice, two strategies have been implemented to limit the search space and

improve the estimation of P :

— the first strategy consists in working only on a small subset of points instead of
the complete set X. The considered subset of points is chosen to describe the
object sufficiently well.

— the second consists in testing the compatibility between each pair of points (x;, x;)
using differential properties of the surface around them. If the test fails, F; ; is
considered as not plausible and is removed from the estimation. Note that in order
to perform this comparison efficiently, the subsampling strategy described above
must select points having non ambiguous differential properties.

In practice, Mitra and colleagues [MGPO07] implement these ideas by i) discarding

points having almost equal maximal and minimal curvatures and ii) considering P; ; as
not plausible if curvatures of points z; and z; are too different from each other.
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2.3.4 Advantages and limitations

In essence, the methods based on plane clustering are designed to find all the signi-
ficant reflections of an object. The use of efficient subsampling and testing strategies
allows efficient estimations but also implies a lack of accuracy. Moreover, the under-
lying clustering methods are parameters sensitive (especially the variance h? of the
Mean shift approach)and thus are not well-suited to design a robust definition of the
bilateral symmetries of a 3D object.

2.4 Other methods

24.1 EGI

This method is based on the computation of an orientation histogram built using
the normals generated from the data, called the extended Gaussian image (EGI). This
histogram is considered as a discrete sphere in which each facet contains the number of
occurrences of a given orientation on the surface of interest [SS97|. More recently, Pan
et al. [PWQWO06] have proposed to weigh each facet with the inverse of the Gaussian
curvature of the point, allowing to give less importance to areas where there is an
important variation of the normal. This EGI has the advantage of being an adequate
representation of the feature under study. Indeed, considering that the histogram is the
discrete representation of a continuous domain, it can be properly smoothed, allowing to
provide a certain robustness to noise. If an object is symmetric, then so is its EGI. Thus,
the optimal plane is searched around principal axes one by maximising a correlation
measure between the EGI and its reflection with respect to this plane (using exhaustive
search).

Limitations :

This method is quite simple as it allows to turn the problem of estimating the
symmetry plane of any 3D point set to that of finding the symmetry plane of an EGI.
However, this method is quite restrictive. Indeed, first of all it is restricted to convex
structures in which the notion of neighbourhood (needed to compute the normal or
the curvature) is clearly defined. Moreover, it is tessellation-dependent. Normals and
curvatures are quantities quite much more sensitive to noise than the point locations.
Finally, this approach implicitly assumes that the object under study has only weak
asymmetries : any strong deviation from perfect symmetry (either normal, pathological,
or caused by image artifacts such as occlusions) is likely to bias the estimation. Moreover,
some implementation choices are debatable : in the refinement process, the estimation of
n is uncorrelated with the estimation of d which is clearly inappropriate. The technique
of minimisation used is an exhaustive search within a discrete set of planes that is
inevitably made on discrete domain, which clearly implies a loss of accuracy.
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2.5 Conclusions

This taxonomy allowed to elucidate the nature of the different symmetry plane
estimators. In particular, we showed that the principal axes analysis is a special case of
the generalised moment analysis recently designed by Martinet et al. and that a variant
of the well-known ICP algorithm minimises a "relaxed" version of the symmetry distance
designed by Zabrodsky et al. Moreover, one notices that each of the 3 approaches we
identified has proper characteristics :

— Distribution based methods are quite simple, do not require initialisation and are
computationally efficient but likely to fail when dealing with large deviation from
(multiple) perfect global symmetries.

— Superimposition based methods are particularly flexible and adaptive. Moreover
they can be associated to efficient and accurate algorithmic solutions when one
has a prior knowledge on the solution.

— Clustering based methods do not require initialisation and are particularly suited
to the estimation of all the significant reflections of an object but are subject to
inaccuracy and to a strong dependency on the minimisation parameters.
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Chapitre 3

Symmetry plane estimation

Based on the previous taxonomy, we develop a method to estimate all the partial
and approximate reflections of a 3D point set X in a robust and accurate way. More
specifically, this method is composed of two sub-methods. The first one (Section 3.1)
is based on a new method of planes clustering and allows to estimate coarsely all ap-
proximate and partial symmetries of X without any prior on the solution. Using these
planes as initialisation, the second one (Section 3.2) is based on a new superimposition
method and relies on a robust ML estimator for the optimal symmetry planes. This
estimator is computed using the EM algorithm initialised with each of the previously
identified meaningful symmetries and leads to an accurate and robust estimate of P.
In this context, the local convergence of the EM is beneficial as it allows to estimate
several potential symmetries from different initialisations.

3.1 Coarse detection of plausible reflections

3.1.1 Subsampling using keypoints

Based on the curvature information, we devise a keypoint detector, which allows
to focus on meaningful subsets of points while drastically reducing the computation
time of the overall algorithm. The principal curvatures [DC76| (called k1 and kg) are
invariant to isometries (and thus to reflections), and thus they have the potential to
be used to design such a detector, that must be i) distinctive, i.e. detecting points
very different from their neighbourhood and ii) relatively insensitive to noise and small
distorsions of the point set (e.g. due to natural deviation from perfect symmetry or
imperfect digitisation). Both characteristics are achieved as follows :

> First, we discard umbilic points (points for which |k1| = |k2|) from the compu-
tation. For these points (and more generally for points with |k;| & |k2|), directions of
maximal and minimal curvature are ambiguous and not well defined. Thus, we only
keep points such that the ratio |x1/k2| is higher than a threshold x,,. In particular, flat
parts of the surface are not very informative and contain many such umbilic points.

> Second, we keep points with high maximal curvature that mainly correspond to
salient features of the surface. In practice we select points whose |x1| is higher than
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a threshold xjs. To account for the fact that some regions of the surface are likely
to exhibit many less keypoints than others, and then could be unfairly excluded for
the overall symmetry detection process, we adapt the previous selection procedure by
i) cutting the surface into contiguous patches of similar size (we use a size of 40) ii)
setting a local threshold kjs for each patch. The figure 3.3 shows the location of the
keypoints on various objects.

To achieve robustness to noise and to small distorsions, the curvature properties of
a given point z are computed from a quadratric surface that is approximated in the
neighbourhood of = [GI04].

Fic. 3.1 — Location of keypoints on various objects.

3.1.2 Matching keypoints and weighing pairs

We recall that for two different keypoints z; and x; there exists a single reflection
Sp, ; such that :

r; = Sp, ;(7;) (and reciprocally x; = Sp, ;(7;))

The plane P;; can be simply tested for the hypothesis that z; and z; are mirror
images of each other. The principal curvatures at points z; and xz; are invariant to
isometries, and the Darboux frame is not, but both can be used to weigh P;; as a
potential symmetry plane of the surface. This is done by checking the compatibility
between the augmented Darboux frame at x; and the flipped augmented Darboux frame
at ;. In practice, to cope with the ambiguities on the orientation of the Darboux frames,
the weight ¢; ; can be computed as (normals n and principal directions e; and ey are
considered to be unit vectors, and A is the cross-product) :
where 0 > 3 > 1 weighs the relative influence of the compatibility of the augmented
Darboux frame over the compatibility of the curvatures for the computation of ¢; ;.

Note that ¢; ; = ¢;;. In addition, ¢;; is set to an arbitrary value c,, to take into
account that the point x; can be a midline structure (and thus has no bilateral coun-
terpart).
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cig = (1= 0) (II67°] = sy’ [l + [1m5°] = |37 []) P,
+0 (arcsin [n™ A Sp, ;(n")]

+ arcsin |e]" A Sp, (e1)]

+arcsin [e5 A Sp, , (€57)]

Fi1G. 3.2 — 2D illustration of the computation of ¢; ;.

3.1.3 Building, modifying and pruning the affinity matrix

The previous cost values ¢; ; are turned into affinity measures by setting Cj; o
exp( _2(;5]' ) where o2 represents the expected variance of the noise on cij © in essence, the
higher o, the flatter C; . The matrix (C; ;) encodes the probabilities that two keypoints

are mirror images of each other. In the following, we call N the size of the matrix C.

3.1.3.1 Enforcing global constraint on C

In the previous section, we built a matrix ¢ (and C) considering each pair of points
independently. However, in some applications, we have a knowledge about the global
behaviour of the matches and thus on the structure of the matrix. Adding constraints
on the structure of the matrix can be considered as the following problem : build a
matrix as closed (in a sense to be defined) as possible from the symmetric matrix C
and respecting some properties encoding the global constraint.

Consider the case when we are looking for a single symmetry plane (like in face
recognition /medical imaging analysis) ; it can be interesting to specify that each point
has a single counterpart (one-to-one matching) and consequently to impose the matrix
C' to be doubly stochastic. This way, the matrix will be different from the one proposed
and will take into account potential incoherency between lines and columns probability.
Several methods [GHR98, BCT07, Sin64| can be used for such a task and their respective
merits have to be evaluated.

3.1.3.2 Pruning C

In terms of computational time, it can be very constraining to consider the N x N
matchings whereas some of them have a very low C; ; value. Thus, we choose to cancel
some coefficients of the matrix via :

— either a best one rule :

Vi,j Ci,j =1 lfj = argmaxy Ci,k
Cij = 0 else
— or a threshold rule :
Vi, j Cij =1t C;; >0
C;; =0 else
Note that after this step, C; ; is a binary matrix.
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3.1.4 Clustering mirror symmetries

In order to find clusters of P; s, we first build a Parzen window estimate from
the discrete samples P;; using a kernel function and then compute its modes. When
choosing an exponential kernel function, the Parzen window estimate of the probability
density function of the (P; ;) is given by :

p(P|C) x ZZCZJ exp(—D(P, .5 )2/(2h2>)7 (3.1)

Ti Zj

where h? can be viewed as the expected variance of locations in the sample belonging to
a same mode. The first issue consists in properly designing the distance D(P; ;, P). The
second issue comnsists in finding local maxima of the resulting pdf p. In fact, both issues
are related as the optimisation method used to find local maxima of p results from the
expression of D. In the following, we investigate several propositions for D and for the
subsequent optimisation strategy. None of these solutions is completely satisfying.

3.1.4.1 Solution 1 : Euclidean distance on parameters

In previous works, Mitra, et al. [MGPO07] proposed to consider the set of planes € IR
as a 3-dimensional Euclidean space for which each dimension represents one of the three
parameters «, 3 and d. By considering a different kernel for each dimension, the formula
3.1 can be rewritten as :

p(P = (a,,d)|C) o< YY" Cijoexp(—laij — o/ (2h1)). (3.2)

Ti T

exp(—|Bi; — BI7/(2h3)). exp(~|d;,; — d|? /(2h3)).

The bandwidth parameters hi, ho and hz can be distinct and one can find all modes
of the pdf p using the classical mean-shift procedure [FH75|. We call the corresponding
algorithm MeanShift1.

This solution seems natural and simple. However the considered distance between
parameters does not provide a suitable distance between planes. This is particularly
enlightening to consider the singular case where § — 0 : the normal n tends to point
to the north pole of the unit sphere. In this case, all the planes (a, 5 — 0,d) (Va, and
for a fixed d) will be very close to each other whereas D will change quadratically with
a. More generally, this distance depends on the coordinate system frame in which X is
expressed.

3.1.4.2 Solution 2 : Riemannian distance on angular components

In fact, the set of planes of IR® can be seen as the Cartesian product of the unit
3-dimensional sphere (called S3) and of a 1-dimensional Euclidean space : P € S3 x IR.
Each P, ; is represented in the joint space by the pair (n; ;,d; ;) € 52 x IR. Note that, as
we consider d € IR and no longer in IR™, two different parameter sets represent a single
plane. This choice is needed for theoretical purpose and in practice, we will ensure a
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single parametrisation of the planes by systematically imposing d > 0. An appropriate
distance for each of these two spaces is :

D(n1,n2) = acos(nl ny) and D(dy, dy) = |di — da|.

The two resulting spaces are Riemannian manifolds (more precisely, a Lie group and an
Euclidean space) for which exponential and logarithmic maps can be computed. The
former are straightforward for the Euclidean part IR. For S3 they are given by [BF98] :

log,,, (n1) = acos(ni na).(n1 — na.(ni n2))/||(n1 — na.(nin2))|l,

expy, (n1) = nz cos(||nal]) + nysin([[na])/||nal[-

By considering two different kernels for the angular (n) and linear (d) components
of the joint domain, the Equation 3.1 can be rewritten as :

p(P = (n,d)|C) x ZZC” exp(— acos(n’n; j)?/(2h3)). exp(—|d — d; ;|*/(2h3)).

(3.3)
The bandwidth parameters hy and hs are distinct for the angular (n) and linear (d)
components of the joint domain. The clustering procedure consists in estimating local
maxima of p using the non-linear mean-shift procedure [SM09] that entirely relies on
the operators D, log and exp described above.

Algo MeanShift2: Riemannian mean-shift

V i, j let n; ;j be the normal associated to plane P, j,
let d; ; be the distance to origin associated to plane P; ;
for all Cp; ==1

let n = Nkl
let d = ko
do
Mtemp = EZJ C;,; exp(— acos(nT'n; 7)T/}ﬂ) e)q;( |d—d;, ;|2 /h3). logzn(n”)
22,5 Cij exp(—acos(nTn; j)? /h1). exp(—|d—d ;|*/h3)
d >4, Ci,j exp(—acos(n”n; ;)?/hT). exp(=|d—d ;| /h3).di,;
temp — > ; Ci,jexp(—acos(nTn; ;)2 /hT). exp(—|d—d; ;|?/h3)

n = exp(Ntemp)
d= dtemp
while convergence is not achieved
retain (n,d) as a local mode
append close modes

Notice that as D is not an Euclidean distance, p does not define a true kernel density
[SMO09].
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3.1.4.3 Solution 3 : Point-to-plane distance and distance between angles

The Euclidean distance between the distance to origin d is problematic. First contrary
to the distance between the normals, one can easily see that such a distance depends on
the frame in which we express the studied planes, which is clearly inappropriate. Second,
it has no significance when trying to compute a distance between secant planes. Indeed,
as an illustration, the planes PQ/ and P2” (and each plane parallel to them) have no reason
to be at a different distance from P; but it is easy to see that |dP2” —dp| < |dP2/ —dp,|

(Fig. 3.3).

FiG. 3.3 — 2D illustration of the two problems related to the use of the parameter d for
clustering.

However it is necessary to be able to distinguish planes having a small angular
distance (i.e planes that are almost parallel) but being distinct (i.e. not superposed)
from each other. For that, we consider that an optimal plane P has to be close to
the midpoints a:erij corresponding to the planes F; ; converging to the mode P. Thus,
following the approach recently proposed by Dahyot [Dah09]|, one can express the pdf

as !

T+,
p(P = (n,d)|C) x ZZoJexp a 2h2p)) (3.4)

p(P = (n,d)|C) ZZCZ] exp(— 2h§ ) (3.5)

Moreover, we incorporate a measure of smrularlty between the normals of the planes :

Titd; YI'n)? acos(nT n)?

p(P = (n,d)|C) x ZZC”eXp (d_(zi% ) exp(— thﬂ ) (3.6)

However, due the non linear nature of the last term, the resulting optimisation would
be difficult. Thus, we choose to replace the term by | acos(n n)\2 by the quadratic cost

(1- nf]n)z, leading to :

_(ZETINT )2 1 —nTn)?
P = (1. 0)C) x 33 Cisespl- D ep - )
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The two underlying distances do not depend on the frame in which we express the
planes. Then one can compute the derivatives of p with respect to d and n. This results
in the following mean-shift algorithm :

Algo MeanShift3: Point to plane distance and angles between normals

V 1,7 let n; ; be the normal associated to plane P ; ,

let m; ; be the midpoint associated to plane F; ;,

let d; ; be the distance to origin associated to plane F; ;.
for all Cp; ==1

let n = ny

let d = ko

let m = mg.
do

(dfmZTjn)Q)

Vi,j R;ij(d,n) = exp(— o

T
my .n
k2%

Zz:,j Cij 7,@ R; j(d,n)
T 2, CigRii(dm)
, . kol mk ol
build the 3 x 3 matrix A such that Ay = Eij Cij < sl ”) R; j(d,n)
? 1

h3
build the 3D vector b such that b=}, ; Ci ;5 Ri j(d,n)
> 1
n=A"1b
while convergence is not achieved
retain (n,d) as a local mode
append close modes

1 .
exp(—w

Note that, to the best of our knowledge, it is not possible to combine both the
Riemannian approach of subsection 3.1.4.2 for n and the point to plane distance of the
present subsection.

3.1.5 Checking the mirror symmetries

Significant modes are now considered as plausible reflections. However, some of these
can have no physical meaning and it is important to test each plausible model with
respect to the complete dataset X. For this purpose, we consider all pairs of keypoints
x;, v associated to a local maxima P during the mean-shift procedure. For each of these
pairs, we test (recursively) if points neighbouring x; are superposed with the symmetrical
image with respect to the plane P of points neighbouring x;. We compute an inlier rate
from this test. If this rate is greater than a threshold nbmin, P is considered as a
symmetry plane of X. This writes more formally as :
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for all pairs of points (x;,x;) associated to cluster P
i) let Ny,;, Ny, be respectively the set of points neighbouring z; and z;
ii) for all points xj of N,

if 32, € Ny, such that [|Sp(xy) — 2;]| < § increment nbln
and add N, to N, and Ny, to ij

else increment nbOut
if nbln
nbQut

> nbmin, P is a symmetry plane of X

3.1.6 Results and evaluation
3.1.6.1 Parameters

The different parameters used in the previous sections are empirically set to :
- km = 0.9,

— Ky = 0.9 times the maximal curvature within the patch,

— 0 = 0.1 times the extent of X,

- ¢y = 0.1,

— 6 = 0.05 times the extent of X,

— nbmin = 0.8.

3.1.6.2 Some observations

Mean$Shift1 (Section 3.1.4.1) and MeanShift2 (Section 3.1.4.2) provide frame-dependent
results. This is an undesirable property and makes these algorithms very difficult to eva-
luate, as the obtained results can be very different from each other by simply moving
rigidly the object under study. By contrast, MeanShift3 does not depend on the frame
in which we express the object under study and provides stable results. In the following,
we use MeanShift3. In practice, it always provides quite good estimate of the different
symmetries of the object under study. As previously mentioned, the bandwidth para-
meter has a strong influence on the results. In practice, we did not manage to set this
parameter to a single value for all the object under study. In practice, we manually
choose the parameter for a given structure and keep this choice for point sets corres-
ponding to the same class objects (brain, ventricle, chair, etc). For a more automated
approach, bandwidth selection methods could be investigated [CRMO1].

As we design this algorithm to provide a coarse estimation of all the bilateral sym-
metries of an object, we do not investigate its accuracy.

3.1.6.3 Some results

We illustrate MeanShift3 by displaying some results obtained in Figure 3.4.
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Fia. 3.4 — Some results obtained on real data for coarse estimation of the plausible
meaningful reflections of an object
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3.2 Accurate & robust estimation of a reflection

The previous algorithm (Section 3.1) allows to detect all the meaningful reflections
of a 3D object in an efficient way. However in many cases, symmetry has to be es-
timated very precisely and in a robust way (e.g. for face recognition or preoperative
facial surgery). In these conditions, we have to define properly what is the approximate
symmetry plane of an object or of a part of it and to provide a good way to find this
approximate symmetry plane in an accurate way. If we assume that we have a first
estimate of the expected plane (for example provided by the clustering-based method
we devised in the previous section), a good strategy for this purpose is the widely-used
ICP-formalism (Section 2.2.3). We propose to extend and improve this formalism below
to make it more accurate and more robust.

3.2.1 A fast, robust and accurate algorithm

As shown in Section 2.2.1, one can define the approximate symmetry planes of an
object X as the significant local minima of :

Ex(P) = min Y [|Sp(x:) — a3 (3.8)

z,€X z,€X

If one has a prior knowledge of the plane P, the considered local minima can be reached
efficiently using an ICP-like algorithm. However, as the classical ICP algorithm, which
is essentially a least squares minimisation, this ICP-like algorithm is not robust to out-
liers. Classical techniques used in the case of rigid registration can be adapted to deal
with this issue [CSK05, KKMO03|. However, another critical problem is that as for the
classical ICP algorithm, & is based on discrete, one-to-one matches between the two
sides of the object under study, relying on the closest point principle. In practice, this
causes the criterion & to exhibit lots of undesirable local minima close to more relevant
minima, which are prone to make the ICP-like algorithm (which has a monotonic, local
convergence) fail. To deal with this limitation, in the context of rigid-body registration
of point clouds, Rangarajan and colleagues proposed to define a new criterion using
multiple, weighted matches [RMP196]. They showed this criterion to be well-behaved
and smoother, with a reduced number of local minima, than £. A simple way to im-
plement this idea, and to introduce such fuzzy matches between points, is to cast the
minimisation problem in a probabilistic framework, and then to use classical techniques
of statistical inference to estimate the unknown transformation.

Following Chui & Rangarajan [CR03] and Granger & Pennec [GP02], who introdu-
ced these techniques in the context of rigid-body registration of point clouds, we propose
an adaptation of the criterion &£, based on mixture models, to compute an approximate
symmetry plane of an object given an initialisation.

3.2.1.1 Algorithm

We define the approzimate symmetry plane P of a point set X as the one best
superposing X and its reflection Sp(X) about P. For that, we consider X as a noised
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version of Sp(X). This allows to consider each point x; of X as the realisation of a
random variable whose distribution is a mixture model composed of card(X) Gaussian
laws (N(Sp(zk),021))z,ex. This leads to the following likelihood function :

LPy= [ >_ mipii;P)

z,€X T eX

where ; ; are prior probabilities (Vi, > . ; = 1) conveying the probability that the
point z; comes from the distribution p;(.; P) = N(Sp(x;),0I) without knowing any-
thing else.

The Expectation-Maximisation algorithm [DLR77a] (EM) can be used to maximise
the likelihood function L and yields the very simple following iterative scheme (see
Appendix B for more details about the derivation) :

Step O : Initialise P

g a A migexp(=lle—Sp(i)|*/(20%))
E-step : Vi, jAij = 5 cexn(- Tl 55 @)/ 207)
M—Step : P~: argminp Z(wi,xj)6X2 Ai,j”xj — SP(CL‘Z)
Step 3 : if P has changed go to E-step else finish

1°

This scheme can be seen as the successive estimation of a match matriz A describing
the fuzzy point-to-point correspondences between X and Sp(X) (E-step), and of the
unknown reflection plane P (M-step). The noise variance o2 is not estimated and can be
seen as a scale parameter, which controls the fuzziness of the match matrix A. Typically,
it can be given a high initial value and then decreased in a multiscale framework for
optimal performances.

The M-step can be solved efficiently using the general theorem we stated in Sec-
tion 2.2.2. The ICP-like algorithm we presented in Section 2.2.3 can actually be seen as
a simplified version of this EM algorithm. The point z; with the highest value A; ; is
the closest point of Sp(x;) in X, so the E-step is very similar to Step i). If the matrix
A is made binary, by keeping only this closest point into account, then the M-step is
identical to Step ii).

3.2.1.2 Rejection of outliers

The E-step involves the computation of the distance between each point Sz (z;),x; €
X and all the points z; of X. Actually, when the point Sp(z;) is far away from X (which
can happen for instance when x; has no satisfying counterpart on the other side of the
object), the values A; can be not negligible because of the normalisation term (see E-
step) and thus influence negatively the criterion to maximise. A simple way to tackle this
problem is to reject the points x; in X that are farther from Spz(x;) than a predefined
cut-off distance, which amounts to give them a null weight flm. This last process is
equivalent to consider p; as a truncated Gaussian density function instead of a classical
Gaussian law. With this slight modification one can easily show that the algorithm
still converges to a local maximum of the modified likelihood function. In practice, the
threshold must depend on ¢ : there is a high uncertainty on the matches when o is
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large, while there is increased confidence on these matches when o decreases. Thus we
choose to set this threshold at the value lo. The E-step then becomes :

i) Initialise A as the null matrix

ii) Va; in X
L; = {x; € X such that ||z; — Sz(x;)|| < o}
Vx; € Ly, Am = exp(—||lz; — Sp(xi)]|?/20?)
Normalise the it} line of A

The set L; is built by a search in a kd-tree space-partitioning built at the beginning of
the algorithm. Note that this modification allows A to be sparse and reduces drastically
both the computational and memory usage burden.

Notice that the subsequent algorithm can be seen as the iterative minimisation over
A and P of the following criterion :

> Aijoio([lzj = Sp(@i)|[*) +20° Y Aijlog(As)
ij 0]

with Vi, >, A;; =1 and where ps : v — 7 if 7 < § and § else (with § > 0).

In other words, it amounts to define the approximate symmetry plane as the one
minimising the average sum of squared distances between the points on one side of the
object and their reflection about the plane, but only among the pairs of points for which
these distances are lower than a predefined threshold lo.

3.2.1.3 Multiscale scheme & estimation of o

The convergence of this new algorithm is very dependent on the parameter o. A small
o allows to be very selective on the pairs of points to be significantly taken into account
for the estimation of P. Thus, if the algorithm is given a good initial plane, a small o
allows good accuracy. If this is not the case, there is little chance that two mismatched
points will ever be matched properly during the iterations. On the contrary, a large
value of o allows these symmetrical, but initially mismatched points, to have growing
influence during the iterations. Based on this, to allow both accuracy and robustness,
we follow a multiscale approach, by running successive EM algorithms with decreasing
o values. In this scheme, o acts as a scale parameters, and allows to progressively refine
the plane estimation. In practice, the initial scale factor oy is successively divided by a
constant value f > 1 until it is equal to, or lower than a predefined final value o.

The initial oo can be initialised thanks to the output of the plane clustering method.
For that we consider o as the Hausdorff distance between the two sets N,, and S p(ij)
computed in Section 3.1.5.

Note that this approach is slightly different from that of Granger & Pennec, who
update the scale factor at each iteration of the EM algorithm. Experimentally, we obser-
ved that letting the EM algorithms converge and choosing a higher f value led to better
results in our case, in terms of both robustness and accuracy, without significantly in-
creasing the computational time. This multiscale scheme can be seen as a deterministic
annealing procedure where ¢ is analogous to the temperature parameter.
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3.2.1.4 Coarse-to-fine approach

At the beginning of this multiscale scheme, large values of ¢ only lead to a gross
estimation of the unknown plane. Consequently, it is useless to take the entire point
set X into account at these stages. As a result, we propose a coarse-to-fine approach,
where X is decimated at large o values, and then refined progressively when o decreases.
We use the same technique as Granger & Pennec to compute the successive decimated
clouds, named X', in which the points z; are chosen. At a given o value, we iteratively
merge each point of X included in spheres of radius ko (where k is a constant to define).
Each of these spheres finally contains N, points (with ) =N, = N = card(X)), which
are then replaced by their centroids. The set of centroids, each one being given a weight
Ny, (later used in the estimation of P), constitutes the decimated cloud used at scale
0. Note that the original set X is entirely taken into account when ko is lower than or
equal to the minimal resolution of X.

Note that Granger & Pennec |[GP02| have experimentally shown (in case of rigid-
body registration) that the transformation yielding the global maximum likelihood is
different from that globally minimising the ICP criterion. Tsin & Kanade [TK04] have
actually shown that in case of two identical, aligned point clouds, the identity trans-
formation is usually not a stationary point of the likelihood function. The same can be
said about our problem, where we look for a reflection best superposing the cloud with
itself. However, the bias between the correct solution and the ML estimate is virtually
null when o is very small, as at the end of the multiscale scheme.

3.2.1.5 Algorithm

Finally, we have the algorithm :

Algo Syml: multiscale robust EM

Initialise P and o
Repeat
Decimation : X' = decimation of X with a radius ko
Repeat
E-step : see Section 3.2.1.2
M-step : P = arg minp Z:mEX/ Zx]EX N;A; j
Until P does not change
Decrease scale factor o = max(o/f,0y)
Until P does not change and o < of

12

|zj — Sp(z:)

3.2.2 Symmetrisation of A

As previously mentioned, A;; can be seen as a measure of whether the point z; is
the bilateral counterpart of x; or not. Following this observation, it would be natural
to impose that A; ; = A;;, V(i,7). However, there is no simple way to impose such a
constraint on our large sparse matrix A efficiently.
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However, one can use the fact that the EM algorithm described in Section 3.2.1.2
can be seen as the iterative minimisation over A and P of the following criterion :

> Aiipio(||zs — Sp(xi)|?) + 202 A; jlog(A; ;)
,J

i?j

with foralli, Zj A; ; = 1. We propose to restate the symmetry plane estimation
as :

P = argminZAmplg(ij - SP($1)|‘2) + 20’2 ZAi’j IOg(Ai,j)

’ i,] 12
+_ Bigpo(llzj — Sp(ai)l[*) + 20 Y Bijlog(Biy),
2% 2
with Vi, Zj A;j=1and Vj, Y . B;; = 1. This criterion is equal to :

> (Aij + Bijpis(|lz; — Sp(xi)l])? + 207> A jlog(Ais) +20% > Bijlog(Biy),

1,J 1] )

with Vi, Zj A;;=1and Vyj, >, B;j = 1. One can easily show that the matrix (A4;; +
B; ;) is symmetric.
This new criterion can be minimised by the following algorithm :

Algo Sym2: symmetric multiscale robust EM

Initialise P and o
Repeat
Repeat
E-step : compute A;; and B; ;
M-step : P = argminp ZIiGX,IjEX(Ai’j + Bm’)”l’j - Sp(xz)
Until P does not change
Decrease scale factor o = max(c/f,0y)
Until P does not change and o < oy

12

This last algorithm implies that A and B are squared matrices. In particular, it
suggests that we no longer use decimate versions of X. Thus to limit the computational
burden, we apply this symmetric constraint only when o (and thus the cut-off distance
[ X o) becomes small.

3.2.3 Results and evaluation

3.2.3.1 Parameters & algorithm

The different parameters for both Sym1 and Sym2 presented in the previous sections
are empirically set to :
— 0 estimated from the clustering based method,
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— threshold for outliers rejection [ = 3,

— sphere radius for subsampling k£ = 1.

We compare the proposed methods (Sym1 and Sym2) with two methods based on a
robustified ICP-like algorithm that we do not present in this document (see [CHWT08b]
for more details). These two methods rely on replacing the classical least squares esti-
mator either with a Leclerc estimator (leading to what we call a mICP) or a trimmed
estimator (leading to what we call a trICP).

3.2.3.2 Evaluation on symmetrical data

In this section, we investigate the accuracy and capture range of Syml and Sym2
on perfectly symmetrical data that we generate by i) positioning a symmetry plane
manually, ii) replacing all the points located on the right side of the plane by the mirror
image of the points located on the left side. We work on a face (100k points, bounding
box of about 200mm x 200mm x 200mm), a ventricle (10k points, bounding box of
about 80mm x 35mm x 50mm) and a virtual endocast (100k points, bounding box of
about 95mm x 115mm x 85mm). To apply the same process on all data, we rescale
them to the size of the face data. We then apply angular offsets between 0 and 40
degrees and linear offsets between 0 and 60 mm to the ground truth symmetry plane
and use it to initialise our algorithm. After convergence, we compute the angular and
linear errors (called respectively 6 and 7) of the estimated plane compared to the ground
truth solution. For large linear offsets (below 60 mm) and large angular offsets (below
31 degrees), both Syml and Sym2 always converge to a plane for which 6 and 7 are
lower than 107!, In practice, we did not observe differences of performance between
Syml and Sym2.

3.2.3.3 Evaluation on asymmetrical data

In this section, we evaluate the robustness and accuracy of Syml and Sym2 on
asymimetrical data. For this purpose, we add artefacts to the perfectly symmetrical
face, ventricle and endocast point sets of the previous section whose symmetry plane is
still considered as the ground truth. We generate artefacts as follows :

> Noise is modeled as isotropic Gaussian white, with variance 62 and is added to
each point.

> Occlusions are generated by removing a given quantity of adjacent points. We
generate between 1 and 4 areas of occlusion this way on each data.

> Asymmetries are generated by randomly choosing a point xzp close to the surface
and deforming each point x of the cloud to a new position z according to :

_
’ r — T
>pr =x+ K X Gv(x—:rD)jD
||z — zpl|
where G, is a 3D non-normalised Gaussian function of variance v? and K is the
deformation strength. We generate on a given data between 3 and 8 randomly located

asymmetric areas this way.
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mlICP trICP Sym1 Sym?2

max T 0.61 5.14 0.12 0.11

max 6 1.2 2.82 0.15 0.13
mean (0,7) | (0.12,0.65) | (0.76,1.14) | (0.06,0.04) | (0.06,0.04)
var (0,7) | (0.02,0.01) | (0.75,0.16) | (1073,0.01) | (1073,0.01)

TAB. 3.1 — Statistics on (6, 7) for mICP, tICP [CHWT08b|, Sym1 initialised with tICP
and Sym?2 initialised with tICP.

By randomly combining these artefacts, we generate a set of 150 surfaces with va-
rying levels of artefacts (for the face, the rescaled ventricle and the rescaled endocast).
The parameters are chosen such that : (K,v?) € [0,20] x [0,25], 0 to 20% of outliers
and a noise of variance 62 = 0.3. Examples of data built this way with the resulting
estimated planes are shown on Fig 3.5.

Fia. 3.5 — Estimation of the symmetry plane on ground truth, asymmetrical
data. Estimation of the plane by Sym2 on simulated data.

Tab. 3.1 and 3.2 show statistics over the 3 x 150 experiments for mICP, trICP,
Syml and Sym2. We observe that over the 150 experiments, Sym1l and Sym2 have a
very low mean and maximum errors for both # and 7, with very low variance. These
values are higher for trICP and mICP, but we also demonstrate the relevance of using
trICP to initialise Sym1 in terms of computational time.

To assess the breakdown point of Sym1 and Sym2, we increase drastically the size,
number of the deformations and of the occlusions and we observe that our estimator
always leads to a good estimate for P (with an error less than 0.5 mm and 0.5 degrees)
when the number of inliers ! is higher than 30%. Beyond this breakdown point, the
error begins to increase until it reaches errors of 10 degrees and 8 mm. Figure 3.6 shows
the average errors (obtained from a set of 200 experiments performed on the endocast
data) with percentage of outliers going from 0 to 95 %. Note that Syml gives similar
results.

'We consider a point x as an inlier if there exists a point x;of X such that ||Sp(2;)—2:||> < IX0final,
where P is the ground truth plane.
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FiG. 3.6 — Mean angular and linear errors with respect to the percentage of
outlying points in the data.

mlICP | tICP | Sym2 | tICP 4 Sym2
mean ¢ (100k points) | 80s 30s | 600s 160s
max ¢ (100k points) 120s 80s | 1360s 380s
mean ¢ (10k points) 18s 6s 40s 12s
max ¢ (10k points) 36s 12s 88s 35s

TaB. 3.2 — Statistics on run time t for mICP, tICP, Sym2 and Sym?2 initialised with
tICP performed on a standard PC with an Intel Core Duo T7700 at 2.4GHz with 2GB
Ram.

3.2.3.4 Results on real data

In Fig. 3.7, we display the symmetry plane obtained with Sym2 for a woman’s face
with a large area of missing points on the left cheek, the Stanford bunny, a chair with a
missing leg, a chimpanzee endocast, a human brain cortex and a human brain ventricle.
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Fi1¢. 3.7 — Estimation of the symmetry plane using Sym2 on different structures.
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Symmetry surface estimation

In this section, we extrapolate the notion of symmetry about a plane to that of
symmetry about a differentiable 3D surface C'. Such a symmetry provides an alternative
suitable description of the departure from a perfect symmetry and can be used for
example to quantify asymmetries or to retrodeform a bilateral object subject to a global
deformation (such as a human fossil skull with taphonomic deformations).

4.1 Extension to symmetry surface

4.1.1 Formulation

To extrapolate the notion of symmetry about a plane to that of symmetry about a
differentiable 3D surface C', we define the reflection of a point z; about a surface C as
the reflection of this point about its projection on this surface (Fig. 4.1). Following from
the projection theorem!, it can be readily demonstrated that the plane i) orthogonal to
the line linking x; and its projection and ii) passing through this projection is tangent
to the surface C. This observation allows to generalise the notion of symmetry with
respect to a plane by considering locally the symmetry about a surface C' as a classical
symmetry about a plane (see Figure 4.1).

This symmetry surface is modeled as a smooth parametric function (we simply
choose a low-order bivariate polynomial function 2% = C(x*, V), noting %, z¥, 2% the
three spatial coordinates of point z). Then, following the minimisation sketch proposed
in the previous section, the problem of finding the best "symmetry surface” C' of X can
be written as :

C=argmin >  Aijpo(|lz; — So(i)]]?) +20% > A; jlog(Ai;)
C,A ;1w €X3 ij

with Vi

!Let H be a Hilbert space and M a closed subspace of H. Corresponding to any vector = in H, there
is a unique vector mg in M such that |z —mo| < |z — m| for all m € M. Furthermore, a necessary and
sufficient condition that mo € M is the unique minimising vector is that x — mg is orthogonal to M.

57
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Fic. 41 — A curved symmetry surface : 2D illustration of the curved symmetry
surface.

,Zj A;j=1and Vi,j A;; > OwhereSc(x;) defines the local symmetry transformation
for x; in X. We propose to minimise the previous criterion using a strategy similar to
that proposed in the previous section :

Initialise C and o
Repeat
Decimation : X' = decimation of X with a radius ko
Repeat
E-step : A =argming ), ijeX NiA; jl|lzj — Sa(@i)||* + 202 >ij Aijlog(4i )
M-step : C' = argming 35, o' >, ex Nidijllz; — Sc(z)||?
Until C does not change
Decrease scale factor o = max(c/f,0y)
Until C does not change and o < oy

For the E-step, we propose an optimal solution :

E-step :
Initialise A as the null matrix
V.%‘Z' in X/
Project z; on C at pe(wi).
Compute Sc(laci) = pa(xi) + (pa(ws) — x4)
L; = {z; € X such that ||z; — Sa(x;)|| < lo}
Vaj € Li, Ai j = exp(—|lz; — Sa(w)][*/20?)
Normalise the it! line of A

To the best of our knowledge, the M-Step has no simple solution. We choose to
approximate it by the following procedure :

M-step : C is the surface best fitting the mid-points A; j(x; + x;)/2 :
C = argming 3, Ay ||C (2 + 2%)/2, (a + 27)/2) — (=} + =) /2|
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Fic. 4.2 - A curved symmetry surface : 2D illustration of the approximate solution
proposed for the M-step. C' is the surface best fitting the mid-points computed from the
correspondences (z;, y;).

This choice is illustrated in Figure 4.2. This algorithm does not ensure to converge
to a solution of the problem. However, in order to ensure its good behaviour : i) we
first model C' with a second degree polynomial and then increase its order through the
iterations and ii) we propose to add landmark points belonging to the midline structure
to the criterion to constrain the solution appropriately.

Note on large bending : Notice that our polynomial model has two strong limi-
tations that in practice are only problematic when the object under study exhibits a
symmetry with respect to a surface C with a large global bending.

First, C is modelled as a polynomial. This imposes that for each value (z*, zV) there
exists a unique x%. In practice, this limits C' to the modeling of surfaces subject to a
relatively small global bending.

Secondly, we designed the reflection of z; with respect to C' by considering the
symmetry with respect to the plane orthogonal to the line linking x; and its projection
pco(x;)on C. However, in practice this choice can be seen as quite arbitrary as there are
potentially several points ¢ of C' such that their tangent is orthogonal to the line linking
¢ and x;. In particular, this aspect implies that our transformation is not ensured to
respect the equality Sc(Sc(z)) = =.

In practice, it is easy to observe that for a small deviation of the surface from a
perfect plane, the reflection we have defined is the most appropriate and that, as a
result, our choice is justified.

4.1.2 Initialisation

In practice, this algorithm is quite sensitive to the provided initial value for C. We
propose the following method to provide a relevant initial function C :

— First, we compute the approximate symmetry plane P of the point set X (using
Sym1).
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— we parcellate the object into E pairs of patches (X1',...,X¢ ..., XF) that are
face-to-face with respect to the previously estimated plane.

— Then, for each of these subsets X¢, we estimate an approximate symmetry plane
Pe¢ (using Sym2).

— Finally, we approximate a surface C from the set of the computed planes in a
robust manner (parametrising P as P(z,y) = z) :

cnit— NS p(IC ) — Pyl

CGI,‘..,C (:Ci,yi)epc

where p is a Leclerc function allowing a robust fitting of the surface C.

4.1.3 Measuring the curvature of C

Once C is estimated, studying its curvature can be of interest. The different direc-
tional curvatures of C' are simply given by its Hessian matrix.

oo

Fia. 4.3 — Two applications of the symmetry surface estimation : From left
to right : i) a cortical surface, ii) the symmetry surface estimated on the cortex (for a
better visualisation of the results, we display each hemisphere with a different colour),
iii) colour representation of the absolute maximal curvature values along the antero-
posterior axis (hot colours indicates high curvatures), iv) symmetry surface estimated
on the Tautavel skull and v) we straighten the Tautavel skull according to the estimated
symmetry surface [Ege86]

4.1.4 Some results




Chapitre 5

Conclusion

5.1 Contributions

In Chapter 3, we proposed a comprehensive overview of the methods for the estima-
tion of symmetry planes in 3D point sets. Then, in Chapter 4, we designed two original
methods allowing respectively the coarse estimation of all significant reflections in a 3D
point set and the robust and accurate estimation of a symmetry plane given an initia-
lisation. We showed that the resulting estimates of the symmetry plane are accurate
even when the number of outliers is large. Then, we proposed to define the symmetry
with respect to a smooth surface and proposed an algorithm to compute this surface of
symmetry on 3D point sets.

5.2 Limits & Perspectives

5.2.1 Coarse estimation

Although the method we investigated (MeanShift3) for the coarse estimation of all
the symmetry planes of a 3D point sets gives good results, this study is still quite
preliminary and further evaluations are needed to investigate the properties of the dif-
ferent proposed algorithms. Moreover, we think that the use of methods to select the
bandwidth parameters are needed to propose a more automated tool.

5.2.2 Accurate and robust estimation

In our framework, we indirectly define the approximate symmetry plane as the one
minimising the average sum of squared distances between the points on one side of the
object and their reflection about the plane, but only among the pairs of points for which
these distances are lower than a predefined threshold lo. In practice, the parameter o
decreases throughout the iterations until it reaches a small predefined value o;. We
think that the estimation of the parameter o on the basis of a trade-off between a
maximal size for the symmetrical parts and a minimal value for the criterion will be an
interesting improvement.
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An important limitation of our approach is that it assumes that at least a small
fraction of the data has not been contaminated significantly by asymmetries. As a
result, this approach is likely to fail when dealing, for example, with symmetrical objects
to which a global large scale deformation has been applied. For these objects, there
does not remain any syminetrical part from the original symmetry. In this case, an
appropriate approach would be to define, as proposed by Samir and colleagues, the
optimal symmetry plane P as the one minimising the deformation between X and
Sp(X). We discuss such a possibility in Chapter 13.1.

5.2.3 Symmetry surface

Although in general, the algorithm we proposed for the estimation of a symmetry
surface C' provides good results, it is likely to provide surfaces C exhibiting local os-
cillations. To avoid such a behaviour, we can add a prior P(C) on the ML problem to
enforce C' to be smooth. We performed preliminary studies designing C' as a Fourier
polynomial and P(C) = exp(—Y_,;(b/i!)||C?||?) (where C* is the ith derivatives of C
with respect to the spatial coordinates and where b is a parameter weighing the relative
penalisation of the derivatives of C) [dFFG93|. Secondly, more appropriate solutions for
the M-step have to be investigated. One could for example try to investigate solutions
based on gradient-based minimisation of the original M-step.



Deuxiéme partie

Non linear registration of point sets
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Chapitre 6

Introduction

Registration generally refers to the process of computing and applying a geometrical
transformation to a first dataset to superpose it to a second data set, so as to make
the homologous structures in both sets coincide. The need for automated registration
methods is common to many fields such as computer vision, medical imaging, biometrics,
quality control, etc. In practice, a registration method implicitly assumes the choice
of 1) a basis information to represent the structures to register (e.g images, point sets,
combination of both), ii) a model to explicit the nature of the expected transformations,
movements and iii) a metric to specify what alignment means. The literature abounds
with methods that are specific instances of this general view and many specificities such
as inverse consistent registration (the deformation computed from a structure A to a
structure B is the inverse of that computed from B to A) or group-wise registration
(one wants to align together structures without specifying an a priori template that
would bias the alignment) have emerged.

In this work, we assume that the data under study are represented as sets of 3D
points representing the outline surfaces of the structures to register. Chapter 7 is a
comprehensive review of non-linear registration methods involving such data. In this
chapter, it appears that probabilistic methods based on the alignment of mixture mo-
dels representing the point sets instead of the point sets themselves is a particularly
fruitful approach. In particular, this view allows to consider the registration problem as
a problem of estimation of unknown parameters linking two mixture models corrupted
by noise and outliers. Interestingly, one can show that the EM-ICP algorithm [GP02]
belongs to this wide class of approaches and leads to a simple and powerful formulation
when dealing with rigid-body deformations. Moreover, as we will see in Part III, this
view allows to introduce probabilities of correspondences between the points belonging
to the two sets to register and leads to interesting properties to lead group-wise studies
(e.g. template building). However, to the best of our knowledge, only little effort has
been made to improve this framework and to adapt it to handle non-linear deformations
efficiently. In particular, one observes that such a framework is inherently asymmetric,
time consuming and of limited capture range. In Chapter 8, we tackle each of these
flaws by modifying the original EM-ICP criterion and by designing subsequent efficient
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algorithmic solutions to optimise it. This results in an algorithm allowing to register
large data sets efficiently whereas most state-of-the-art methods are devised to deal with
small data sets (a few hundreds). Finally, in Chapter 9 we evaluate our contributions
and compare them with state-of-the-art methods.



Chapitre 7

Bibliography

7.1 Introduction

In this chapter, we present an overview of methods allowing the non-linear re-
gistration of 3D point sets structured as a mesh or not. More specifically, we focus
on methods having no strong priors on the structures to register (e.g. topological
constraints [YSVT10, SHMS07, ZHMO07, Rob04], tessellation constraints [Rob04]) or
on the expected deformations (e.g. articulated motion [MHK™08], isometric deforma-
tions [HAWGO8]). Moreover, considering the huge number of methods for point set
registration, we focus on the methods that we think are the most representative. We
subdivide these methods into 4 main classes : methods based on mixture models repre-
sentations of point sets, methods based on modal matrix representations of point sets,
methods based on level set representations of point sets and methods based on Schwartz
distribution representations of point sets. As we will see in the following, the methods
based on mixtures modelling make up the major part of the algorithms proposed in the
literature and will be studied with more details than others.

In Section 7.2, we study methods based on the modelling of point sets as mixture
models. An important number of registration algorithms can be seen as specific instances
of this wide class of methods and we aim to provide a comprehensive view where we
explicit the sometimes hidden i) mixture models, ii) similarity measure, iii) expression of
a transformation model T' (generally relying on a regulariser L(7")) allowing to "deform"
a mixture and iv) subsequent minimisation.

In Section 7.3.1, we describe registration methods based on the analysis of modal
matrices of the point sets to register. In Section 7.3.2, we describe registration methods
based on the registration of level set representations of the point sets instead of the
surfaces themselves. In Section 7.3.3, we describe registration methods based on the
matching of Schwartz distributions.
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7.2 Mixture models and point set registration

Considering the point set registration as a problem of parameters estimation where
the point sets are subject to noise and outliers, it seems natural to use probability
density functions (pdf) to model each point set. More pragmatically, such a modelling
allows to alleviate the complicated problems of defining correspondences in point sets
(as one-to-one matching does not always exist) by indirectly introducing probabilities
of matching leading to a more appropriate/pragmatic definition of the superimposi-
tion of two point sets. Moreover it allows to benefit from the numerous well-grounded
estimators/minimisation schemes developed in the information theory literature.
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Fia. 7.1 — Point sets as Gaussian Mixture Models (GMMs) : Mid-sagittal
outlines of corpus callosa shapes represented as probability density functions, from
[WVRO06]

Let X = {x1,...,zy} and Y = {y1,...,ym} be two point sets. Let T" be a trans-
formation. Let fr and g be the mixture models having the points of 7'(X) and Y as
centroids :

fr(z) =1/N pr(T(xz‘) —z)

and

9(2) = 1/M " py(y; — 2)
J

py and py being two pdfs. In the following these pdf will be either considered as isotropic
Gaussian (called v(.; u, 0%I)) or Dirac (called §(.)).

In this section, we consider the registration problem as a problem of minimisation
of divergence between fr and g with respect to T. Different divergences, modelling
for ps/py (Section 7.2.1) and for the transformation 7" have been investigated in the
literature (Section 7.2.2) and are summed up in the following.
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7.2.1 Data attachment term & Minimisation

7.2.1.1 KL-BASED METHODS : Kullback-Leibler divergence between a
mixture of Gaussians and a mixture of Diracs : the ML approach

The Kullback-Leibler (KL) divergence between two pdf writes :

= z)lo & z
KLlgllin) = [ at1ox (22 ) d )

The KL divergence can be interpreted as the “coding penalty” associated with selecting
a distribution fr to approximate a true distribution g [Cov06]. It is not symmetric and
does not respect the triangle inequality (thus it is not a distance strictly speaking).

One can show that minimising the KL divergence between a mixture of N Gaussians
fr and a mixture of M Diracs g(2) = & >.;0(y; — 2) is equivalent to solving the ML
problem where the points of Y are considered as draws of a mixture of N Gaussians
with centroids T'(X).

Derivation :
KL(gl|fr) = / 9(2) log(g(2))dz — / 9(2) log(fr(2))dz. (72)

the first term being a constant with respect to T', one can write (speciying the nature
of fr and g)

argmin K L(g||fr) = —argmin/g(z) log(fr(2))dz, (7.3)
T T
= arg;nax/zj:é(yj — z)log(fr(z))dz, (7.4)

— arg;naleog(fT(yj)), (7.5)

J

= argqxanZlog <Z @ZJ(yj;T(a;i),JQI)> , (7.6)
] (7.7)

which corresponds to a maximum likelihood estimator of T (see Section 8.1 for an
extended analysis of the ML formulation).

In this formulation, the mixtures fr and g are not modelled the same way. This
aspect has a strong interpretation in the clustering context (see Section 8.1 for more
details). This asymmetric formulation can be undesirable in the context of atlas learning
or unbiased registration.
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Optimisation : The Expectation Maximisation (EM) algorithm [DLR77b] can be
used to solve this ML problem (see Section 8.1 for more details). Contrary to gradient-
based optimisation algorithms (such as the quasi-Newton algorithm), the EM algorithm
does not need additional parameters specific to the optimisation process and achieves a
monotonic convergence. However, this convergence is linear and the algorithm is likely
to need many iterations to converge.

Robustification :  The estimator obtained by the minimisation of the KL divergence
is known not to be robust [BHHJ98, Sco99]. By extension the last ML estimator has the
same flaw. To alleviate this problem, one can consider the M-estimation that has been
designed as an extension of ML estimation (M-estimation stands for maximum likeli-
hood like estimation). Indeed, the previous ML problem writes arg maxy >, log(fr(y;))
(Eq. 7.5) ; extending this approach the M-estimation proposes to consider the following
problem : arg maxp » y p(yj;T) where p is an arbitrary function. In essence, the M-
estimation consists in proposing suitable functions p. Equivalently, with a probabilistic
viewpoint, it consists in designing a new density function fr.

2 T T T T 2
/

0

0 05 1 15 2 25 3

F1G. 7.2 — Some classical functions p used in M-estimation Tukey(x,b) = min(1 — (1 —
22/b)3),1.0), Leclerc(x,b) = 1 — exp(—x2/b) and McClure(z,b) = x2/(b + z?).

For a certain class of functions p, the literature provides i) approaches to tune their
robustness and ii) generic algorithmic solutions (the iteratively reweighted least squares
[GR92]). The design of the function p generally implies the choice of i) a global shape
generally indicating the way that p(z) increases with x and ii) a scale parameter allowing
to adapt p (that is generally not a linear function) to the parameters (y;,7T"). This scale
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parameter must (named b on Figure 7.2) be carefully chosen as it can have a critical
impact on the results.
Figure 7.2 references some commonly used functions p.

Applications :  The effectiveness of the couple ML /EM has motivated the develop-
ment of several specialisations of the framework. The method has been first derived to
deal with rigid transformations [RCMT97] [Wel97], and then in a robust and efficient
way |[GP02|. More recently, different authors [CR00b, CP09, MS09, HFY 10| have ex-
tended the framework to non-linear transformations using different deformation models.
The addition of priors on matchings has been investigated in [CP09] and some works
have proposed methods to estimate (locally) the variance parameters of the Gaussian
involved in fr [HFY 10, MS09].

While these methods share a common viewpoint, their implementation choices lead
to different characteristics mainly in terms of robustness and of computational and
memory burden.

The Iterative Closest Point (ICP) algorithm : the Classification Maximum
Likelihood (CML) approach : The well-known Iterative Closest Point algorithm
[BM92] can be seen as an algorithm maximising a classification ML (CML) criterion
(see Section 8.1 for more details). The iterative closest point algorithm has been in-
tensively used to register point sets and the works using and extending the ICP are
numerous. Particularly interesting works include that of Fitzgibbon [Fit03] (showing
that the performance of the ICP is comparable to that of a Levenberg-Marquardt al-
gorithm on the ICP criterion) and Pottman [PHYHO06| (elucidating links between ICP
and gradient descent minimisation). Moreover, the key extensions of the ICP can be
summed up by the paper of Chui and colleagues [CR0O0b] (softassign, non linear trans-
formation model and Sinkhorn normalisation) and that of Rusinkiewicz and colleagues
[RLO7] (robustification, weighting and subsampling strategies).

7.2.1.2 KL-BASED METHODS : Jensen-Shannon divergence between GMMs

As previously mentioned, the KL divergence is not symmetric. This asymmetry is
likely to introduce an undesirable bias in the registration process. To cope with this limi-
tation, Wang and colleagues [WVREOQ8| have proposed to use the Jensen-Shannon (JS)
divergence (also termed total divergence to the average) that appears as a symmetrised
KL divergence. It writes :

TS (frllg) = 3K L(frllmr) + 5K L(gllma) (78)
where mp = %(fT + g). It can equivalently be written as :
JS(frllg) = H(fr +g) — (H(fr) + H(g)). (7.9)

where H is the Shannon entropy. It shares many of the properties of the KL divergence
(in particular, its subsequent estimator is not robust). However, it is theoretically more
relevant than the KL divergence as its square root defines a proper distance.
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Derivation : In the case where one considers two GMMs, no closed-form solution
allows to easily express neither H(fr) or JS(fr||lg) and one needs to approximate it
by generating a finite number @ of samples s{; (g €[1,...,Q)]) from fpr. Then using a
Monte Carlo approximation (see [Rob06], p. 315), one can write :

H(fr) = / fr(2)log(fr(z ——Zlog fr(sh) (7.10)

Q
= —22 > log (;, Z¢(8§;T(wi),021)> - (7.11)
q=1 i

In the same way :

H(g) = -~ log % S blsgiug0®D) | (7.12)

Then, one can simply write the JS divergence between fr and g as :

Q
S(frllg) = ZM%&XM@JWMWO+$ZM;L2M%WJM
i q=1 J

(7.13)

Q
1 1
_a§:1og N§ P(sh; T(x;), 0% +—§ (95 y5,0°1) (7.14)
q=1 %

Optimisation : The derivatives of the cost function with respect to T" can be analyti-
cally computed and the gradient descent algorithm (redrawing the 35 s and sy throughout
the iterations) can be used to minimise JS(fr||g).

Applications : The Jensen-Shannon divergence can be extended to compare an
arbitrary number of distributions and has been proposed to properly define group-wise
registration [WVR06] :

Ul W) = D H(f) = H(Y_ fi) (7.15)

Extension : the CDF JS divergence Wang et al. [WVRO06] proposed to investigate
solutions based on the cumulative distribution function of the spatial point distribution
instead of their pdf. More precisely, they study the cumulative residual entropy (that
has been developed first for grey level image registration). Let F; be the cumulative
distribution associated to the pdf f;, the cumulative residual entropy (CRE) is defined
as :

CRE(f) == [ (1= F{(A) log(1 ~ Fi(1)dx
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Relying on integral form (cumulative distribution function) unlike pdf (a derivative
form), it defines a regular measure that is quite immune to noise and outliers. Then,
following the JS divergence (Eq. 7.15), the CDF JS divergence is defined as :

ISear(ll--- ) = ORE(Fy, 5) = 3 ORB(E

where Fy~ g, 18 the cumulative distribution function associated to the pdf % > fi- Then
designing f; as a pdf depending from the parameter T;, the function JS.4 and its
derivatives with respect to each transformation T; can be estimated using a Parzen
window estimate of CRE(X) and the overall criterion can be minimised with respect
to T; using the conjugate gradient method.

Note that, Wang and colleagues recently extended their work to another divergence
based on the Havrda-Charvat entropy [WMH10]. This work shares many properties
with the CDF JS divergence.

7.2.1.3 Lo-BASED METHODS : L, distance between 2 GMMs

The natural unability of the KL based estimator to cope with outliers have stimu-
lated the use of divergence leading to more robust estimators for 7'. In particular, Jian
and colleagues proposed to use the Lo distance between two pdf [BHHJ98] :

LoE(fl]g) = /_733 (fr(2) — 9(2))* dz. (7.16)

The estimator obtained the minimisation of this distance is known to be robust and
it can be shown that it belongs to the class of M-estimators [BHHJ98|. On the other
hand it is asymptotically less efficient than KL divergence i.e. when the number of
samples tends to infinity the variance of its estimator is larger than the one of KL.
Its robustness properties are convenient as the scale and the shape parameter of the
estimator are implicitly (as opposed to classical M-estimators). On the other hand, it
implies that one has no control on its behaviour (as opposed to classical M-estimators).

Derivation :

argmin LoE(fr||lg) = argmin/fT(z)de—Q/g dz—i—/g( )2dz,
T T

= arg;nin/fT(z)de—Q/g (7.17)
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In case of two GMMs, it gives :
2
arg;ninLgE(fTHg) = arg;nin/ [ZZ: w(z;T(xi),UZ)] dz
=2 [ vl o) wla Tlai), o))
j i
= arg;nin/;w(z;T(xi),az)de

42 [ 3 0T (), 0N ). o)
i17in

2 [( (a5, v T 0M)ds (115)

Using the fact that [(z;u1,02)¢(2; u2,03)dz = ¥(0; 4y — po, 03 + 03), one can
finally write :

arg min Ly B(frllg) =2 > (0 (i) = Tai,), 20%) (7.19)
11 #£02

=233 00y~ Twi).20%). (7.20)

Optimisation : The derivatives of the cost function with respect to T' can be expli-
citly computed and a quasi-Newton method can be used to minimise LaE(fr]|g).

Links between KL and L, : The density power divergence has been defined by
Basu and colleagues [BHHJ98| as :

i) = [ [2re@ - (14 L@ @) + o] e a2

where a > 0 can be seen as a parameter characterising the trade-off between robustness
and asymptotic efficiency [BHHJ98|. Ly corresponds to aw =1 and K L is considered as
the asymptotic case where a = 0. These two cases are widely used as they are the only
ones to exhibit closed-form expressions when dealing with mixture of Diracs/Gaussians.

Applications :  To the best of our knowledge, Jian and colleagues [JV05| were the
first to use the Lo distance between GMMs in the context of rigid and non-rigid (thin
plate spline local warps) point sets registration. Their results illustrate the natural
robustness of LoFE.

More recently work of Roy and colleagues [RGRO7] proposed to use the Lo distance
in a similar context. The main difference with the work of Jian and colleagues is that the



Mixture models and point set registration 75

registration is not performed directly on the point sets but on intermediate Gaussian
mixtures that are first fitted to the data X and Y (using an EM algorithm). Moreo-
ver, the authors proposed to estimate the variance of the noise 02 characterising the
mismatch between the GMMs.

Generalized Ly distance :  Recently, the Ly distance between two pdf has been
extended to define a measure between an arbitrary number of pdf [WVS09] :

n
1
LoE(fil| -\ fa) = D LaE(fi Y 1)
i=1 j
When considering GMM, this distance still leads to a closed-form expression.

7.2.1.4 Lo-BASED METHODS : Correlation between GMMSs :

The correlation between two GMMs is defined as

Cltr.o) = [, Il (7.22)

Derivation 1 :  One can show that when dealing with isometric transformations, it
is equivalent to maximise C'(fr,g) and to minimise the LoE(fr, g) with respect to T
Indeed, as previously mentioned :

arg;nin LoE(frllg) = arg;nin/fT(z)zdz — Q/g(z)fT(z)dz. (7.23)
if one assumes that T is an isometric transformation then the first term vanishes
arg;nin Lo E(frllg) = arg;nin - /g(z)fT(z)dz
= arg;naxC’(fT,g).

As a result, one can extrapolate the properties (efficiency, robustness, minimisation
strategies) of Lo to correlation C. This result is only true when dealing with isometric
transformations. To our knowledge this point sets kernel correlation framework has
never been used to perform non-rigid registration.

Without explicitly formulating the problem in terms of mixture models, Tsin and
Kanade [TKO04]| were the first to propose to align two point sets by maximising the
(kernel) correlation between them.

Derivation 2 :  More recently, Sandhu and colleagues [SDT09]| proposed to assume
that the modes of each of the densities composing the mixtures are far apart from each
other. Under this assumption, one can consider only a component of a mixture x; for
each y; when computing the correlation [SDT09] :

T = arg;naxzm?X/w(z;yj)l/J(z;T(xi))dz, (7.24)
J
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this interestingly leads to (with the assumption that 7" is an isometric transformation) :

1 2
T= arg%naxz max exp(—7ly; — T(@:)[[)- (7.25)
J

This last criterion can interestingly be viewed as a robust version of the criterion mini-
mised by the ICP algorithm (in fact it is exactly an ICP criterion where the classical
square function is replaced by a Leclerc function [Hub81]). The main contribution of this
work consists in showing how to use particle filtering methods to optimise this criterion.
Their algorithm leads to particularly efficient solutions in case of partial matchings.

7.2.2 Regularisation

In the previous section, we focused on the divergences/distances that can be used
as data attachment term in the registration context without specifying 7. In practice,
T can be either a parametric transformation (such as a rigid-body or a polynomial
transformation) possibly penalised or can define a dense field T'(z) = Az + t(z) where
A is a global linear deformation and ¢ is regularised by an operator L :

mjin d(T(X),Y)+ aL(T) (7.26)

where a > 0 weighs the influence of the regularisation L over the data-attachment d.
In the following, we present transformation 7' of this form.

Moreover, we focus on the solution of the following problem (known as approxima-
tion problem) :

mTinZwiC(Hci — T(v)|]) + aL(t) (7.27)

where w; € RT, ¢; and v; € IR? and C : Rt — IR is a cost function. One can see this
problem as a general form of registration where the correspondences (¢;,v;) are known.

7.2.2.1 The thin plate splines

The thin plate spline (TPS) deformations model the physical bending of a thin sheet
of metal. This model has been first introduced in the registration community by Book-
stein [Boo89| and has been used intensively to interpolate/approximate deformations
from manually labeled point sets.

Noting T'(z) = (Tu(x), Ty(x), Ty (x)), this regulariser writes :

L(T) = L(Tu) + L(Tv) + L(Tw) (7.28)
where
0T, o*T, 9*T, d*T, O*T, d*T,
LT = /133 Ou? () + Ov? (z) + 0w (z) + 28u8v (z) + 28v8w(x) * 28u8w (z)dw
(7.29)

and similarly for L(T,) and L(Ty).
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The advantage of this model is clearly to offer physical justification. Notice that
Cachier and Ayache have studied vectorial TPS deformations ¢.e. the components f,,
fv and f, are not penalized independently but depend from each other [CA04]. An
illustration of the interest of such a deformation is given in Figure 7.3.

F1G. 7.3 — Scalar versus vectorial TPS deformations One of four points initially
forming a square is forced to move downwards. With scalar TPS (left), vertical lines
remain vertical and straight. With vectorial TPS (right), the displacement field involves
both vertical and horizontal components. From [CA04]

Optimisation The solution of the corresponding approximation problem has the
form :

T(x)=Az+t+ Y  wikrps(|lz— i) (7.30)
i=0,...,N

where :

— A is a 3 x 3 matrix representing the affine component of 7.
t is a 3D translation vector.
(w;) with w; € IR characterises the local warps of T.

— krps(z) = 23 is the radial basis function characterising TPS.

The value of L(T') for given parameters (w;) is called the bending energy and is
given by >, ; wlwikrps(||zi — x4]).

When C is classical square function (C : z ~ 2?), the approximation problem (Eq.
7.27) has a closed-form solution consisting in a QR decomposition and the solving of
linear systems.

Applications :  For the last 10 years, the TPS model has been used extensively in
the non-linear registration literature (e.g. [CR00a, TC07, WMH10, WVS09, RGRO7,
JV05]).

7.2.2.2 The coherent point drift (CPD)

This model comes from the motion coherence theory (MCT) developed by Yuille
and Grzywacz [YG89|. The regulariser corresponding to the CPD writes :

L(T) = L(T,) + L(T,) + L(T,,), (7.31)
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where

oo 2n
L(Tw) =) (5‘)2” (D™(T))?, (7.32)
n=0

where D?"T,, = A?"T, and D?"*'T, = VA?"T, (where A is the Laplacian operator
and V the gradient operator). L(T,) and L(T,,) have similar expressions. 5 > 0 is a

2n
parameter allowing to weigh the increasing of penalisation (5,)2” when the order of the
derivatives D" increases. .

Optimisation The solution of the corresponding approximation problem (Eq. 7.27)
has the form :

T(zx)= Y wikepp(||r— i) (7.33)
i=0,...,N

where kopp(x) = exp(—22/(283)). The value of L(T) for given parameters (w;) is given
by > wlwikcpp(||z;—x;]|). When C is a classical square function, the approximation
problem (Eq. 7.27) is a linear system consisting in the solving of a linear system.

The advantages of this model are i) to introduce the parameter § allowing to tune
the regularisation and thus to have a better control on the solution, ii) to offer theoretical
justifications [YG89].

Relationship between TPS and CPD : It appears that both TPS and CPD re-
gularisers lead to analogous expressions for T'. In fact, this kind of approaches can be
generalised using the Reproducing Kernel Hilbert Space (RKHS) theory. More results
about this generalisation will be given in Section 8.5.

Applications : To the best of our knowledge, there are only a few works using
operators coming from the motion coherence theory in context of the point set regis-
tration [MS09].

7.2.2.3 Diffeomorphisms

A diffeomorphism T is defined as a C° function, for which T~ exists and is C°.
Such a property is of great interest. In particular, it ensures that the deformation will
be one-to-one, and that overlaps are not possible.

There are several ways to generate diffeomorphic transformations. A particularly
powerful one consists in considering a time dependent transformation T'(x,t) that is ge-
nerated as the solution of a flow transport equation involving a time dependent velocity
v(z,t) that is subject to a smoothness cost. The final transformation 7' is given by the
integration of the velocity over the time ¢ :

1
T(x)=T(z,1) =2z —|—/0 o(T(z,t),t)dt (7.34)
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The transformations described in the previous sections do not allow to ensure that T is
a diffeomorphic transformation. One of the main practical differences between the clas-
sical formalism and the diffeomorphic formalism is that the “classical” transformation
generate deformations parametrised as T'(z) = x + t(z) (where ¢ is a 3D vector). This
can be seen as a limit case of Eq. 7.34 where the integrated trajectory fol v(T(x,t),t)dt
is a straight line (i.e. a simple 3D vector). When deformations are small this assumption
can be considered as correct (this is the so-called “small deformation paradigm”). When
the deformations become larger, it is more realistic to consider the deformation as a
time dependent velocity describing 3D curves (this is the so-called “large deformation
paradigm”).

Optimisation Thus, one considers T as a time dependent function T'(x,t) (with ¢ €
[0,1]) that is generated as the solution of the transport equation [JM00, CY01] :

OT@. 1) _ (1), 1) (7.35)
ot
with T(z,0) = x and v(.,t) subject to a smoothness cost ||[Lv(.,t)||*> (where L is a
regulariser). This is an intricate problem linking v/T by Equations 7.34 and 7.35, we
note T" as TV to recall (when necessary) this dependency. Following this notation, the
approximation problem 7.26 takes the form :

(T,v) = argmind(T"(X),Y) + /1 Lo(.,t)dt. (7.36)
T 0

When C is a classical square function, the solution exhibits a general form for v that
can be introduced into the last equation that then depends only on T'(.,t) evaluated at
points x; € X (and on its first order derivatives). Then, in order to be able to minimise
it, one discretises the time interval [0, 1] as Ug[tg, tg11] and for each interval [ty, txy1],
the velocity is assumed to be constant (thus the derivatives of T'(.,t) can be computed
very easily) and the approximation problem 7.36 becomes :

T(zi, t)vip = argmin (05, t4) — T (v, 11 )T (737
( ) T(x;,t,)Vik tk —tk 1 ZZ ( )) ( )

(/tk (KT,t)ldt> (T (vi, tg,) — T (vs, tp—1) +Z — T (v, 1)) (7.38)

k—1

where K7 is a 3 card(X) x 3 card(X) matrix defined by a kernel that characterises the
operator L. The derivatives with respect to T'(., ) of the underlying criterion can be
explicitly computed and the optimal T(., tr) can be estimated using a gradient descent
algorithm on each point x; and at each time step .
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Applications

To the best of our knowledge, Guo and colleagues [GR09| are the only authors to
propose to use such transformations in the GMM based point set registration context.
Indeed, although the model exhibits desirable properties, it is very time/memory consu-
ming and thus likely to be limited to the registration of structures that can be repre-
sented by only a small number of points.

7.2.3 Some additions
7.2.3.1 Landmarks

Imposing the transformation T to superpose pairs of landmarks (that have been
manually identified) in addition to the classical data attachment term allows to intro-
duce a priori knowledge into the automatic registration process. As a result, it provides
a way to constrain the transformation and to lead to a realistic/desirable solution. In
practice, this just consists in adding the following term to the criterion :

di(T)=wy > =TGP (7.39)
(X I)eL

where wr, > 0 weighs the influence of the landmark term over the divergence term and
L = ((X,1))) is the set of matched landmarks. In essence, this term is simple and close
to classical form for d(T'(X,Y’)) (with the main difference that the correspondences are
known) and thus classical optimisation schemes (such as EM or gradient descent) can
easily be extended to support this new term [ARV07, CP09].

7.2.3.2 Adding higher order information

Most methods just consider superimposition of point locations to build a data at-
tachment term. When the point sets are tessellated, higher order information such as
normals and curvatures can be derived and used in the data attachment term. The
main interest of such an adding is to increase the capture range of the algorithm and
to provide more realistic solutions.

Such approches assume that one can compute how the normals evolve when the
surface is deformed. Two mains methods related with the GMM framework (in an ICP-
like approach) have been proposed to deal with this problem.

Feldmar and Ayache [FA96] showed how to include the normals and curvatures by
considering how these quantities are modified in the special case of locally affine defor-
mations. They devised a criterion combining point coordinates, normals and curvatures
and locally affine regularisation and showed how to minimise it in an iterative manner
similarly to the original ICP algorithm. However, solving for the optimal transformation
given correspondences in this framework is a nonlinear problem which makes the overall
scheme computationally expensive and difficult to implement in case of large surfaces.

More recently Munch et al. [MCP10] integrated the work of Kambametthu et al. into
a [CP-like process. Kambametthu and colleagues proposed a simple formula showing
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how the unit normal changes when a surface undergoes a small deformation [KGH93,
KGHL03, LK03|. This formula is quite specific as it involves a differentiable orthogonal
parametrization of the surfaces and of the deformation field. However, under these strong
conditions, it results in the addition of a linear terms that can be efficiently integrated
in classical minimisation scheme. The main drawback of this solution is the need to
compute explicitly, at each step of the minimisation scheme, a differentiable orthogonal
parametrization for both X and T which can be very time consuming.

7.2.4 A fundamental minimisation tool for GMMs : the fast kernel
computation

7.2.4.1 Fast Gauss transform

The discrete Gauss Transform (GT) is defined as :

Gly;) = Y wiexp(=ly; — xil|*/207), (7.40)
z,€X

where w; € IRT, 02 € IRT and y; and x; € R?

The computation of cost functions involving Gaussian mixture models or of their
gradient generally leads to a large number of evaluations of the GT at different point
y;j (generally derived from a matrix-vector product). Its direct computation at card(Y’)
points y; needs O(card(X) x card(Y’)) operations.

The fast Gauss transform |GS91| allows to approximate the card(Y’) computations
in O(card(X) + card(Y')) operations (with a constant factor depending on the desired
precision). This method relies on the replacing of the complete sums on x; € X with
smaller sums, computed from series expansion of the exponential function.

7.2.4.2 Kd-tree subdivision of the space

When using a truncated Gaussian function the discrete Gauss Transform becomes :

Gly;) = Y wips(|lyy — zl[?) exp(—|ly; — il /207, (7.41)
r; €X

where ps : x — 1 if x < and 0 else.

When ¢ is small each G(y;) can be computed very efficiently using a kd-tree [Ben75].
On the other hand, when § becomes very large, kd-tree performs very poorly whereas
the FGT performs very efficiently. The main advantage of the kd-tree is its ability to
support non linear metrics efficiently. As an example, suppose that we design a function
¢ between points of Y and X such that ¢(z;,y;) = 0 if the normals of z; and y; are
close to each other and c(z;,y;) = oo else :

Gly)) = wa&(HZ/j — il + e(wi y;) exp(=(lly; — aill* + clwi, 7)) /20%)  (7.42)

In this condition, G(y;) can be computed efficiently by limiting the evaluation of ¢(.,.)
to a small subset of X :
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compute S = {x; € X such that ||z; — y;||* < §} (using a kd-tree)
G(y;) =0
forall z; € S

if([[y; — @ill® + e(xi, y5) < 0)

then G(y;) = G(y;) + exp(=(lly; — =ill* + (=i, y;))/(20?))

On the contrary, the FGT does not provide any solution for this problem without
evaluating c(z;,y;) for all z; € X.

7.3 Other approaches :

7.3.1 Spectral based correspondences (and extensions)

The spectral method initially proposed by Shapiro and Brady [SB92| consists in
building a modal matrix for each point set. The modal matrix for a point set X = (z;)
is computed by i) building a card(X) x card(X) symmetric proximity matrix G;; =
exp(—||zi — x;]|/(20%)), ii) performing a SVD decomposition of G = VDVT where D
contains the (positive) eigenvalues of G in a decreasing order. The matrix V' is the modal
matrix. Note that G (thus V') is invariant under rigid-body transformation. Each row
of V represents one of the original points of X whereas each column entry measures
how the original points are distributed among the different eigen-modes of G. Once,
one has computed the modal matrices Vx and Vy of X and Y, the strategy consists in
considering these measures as a shape descriptor almost invariant with respect to the
expected transformation. As a result, the point-to-point matching is done by comparing
rows of both modal matrices. This can be done either by a best one rule [SB92] or by
building correspondence probabilities [CHO0] (when both point sets have not the same
number of points the larger modal matrix is truncated).

This technique can be embedded in an iterative scheme involving the optimisation
of a transformation (such as an affine [CH00| or a TPS [TCO07| transformation) with
known correspondences and the spectral correspondences between points (with updated
positions of the point set).

Note that other strategies sharing a common view with the one we present in this
section have been proposed in the literature (e.g. [LHO05, SLH91]).

Advantages and drawbacks :  This kind of strategies has the advantage to be quite
simple, fast and efficient in case of small structures subject to transformation relatively
closed to an affine transformation.

7.3.2 Surface as a level set function

In this subsection, X and Y are considered to be structured as surfaces (or as
meshes). Instead of registering directly the two surfaces of interest X and Y, Albrecht
and colleagues [LAV07, DLAV07| proposed to represent them as the zero level of a
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signed distance 3D function I :

dist(z, X) if z € outside(X)
I(x) = 0 ifreX (7.43)
—dist(z, X) if x € inside(X)

These 3D functions are represented on 3D grids and their registration consists in
registering both 3D grids together. In other words, the original problem can be treated
as a 3D image registration problem.

In essence, any registration algorithm can be used in this context. Albrecht and
colleagues propose to use the Thirion’s demons algorithm and modifies its cost function
in order to consider the mean curvature of I as a supplemental source of information
leading the registration process.

Advantages and drawbacks : This method is quite convenient as it enjoys the
numerous algorithmic solutions proposed in the 3D image registration literature. The
drawback of such a strategy is clearly to need the conversion of the surfaces to 3D
volumes. Indeed, for identical data resolution, the memory usage (and possibly the
computational requirement) needed for registration much larger for 3D images than for
meshes.

7.3.3 Diffeomorphic matching of distributions
7.3.3.1 Matching of Dirac distributions

The framework of diffeomorphic matching of distributions has been recently deve-
loped by Glaunés and colleagues in a series of papers [GTY04, VGO05].

Regularisation Following the approach of Section 7.2.2.3, one generates diffeomor-
phisms as the solution of the flow equation :

AT (x, 1)

5 = o(T(z,t),t), (7.44)

with T'(z,0) = z and ¢ € [0, 1].

One builds a Hilbert space V containing the elements v(.,t) and that is equiped with
a norm |.|y. One then defines a group Gy = {T%(.,1) such that |v(z,.)|y € L1} and
one equips it with a right-invariant geodesic distance
d(Th,T) = inf(fo1 llo(.,t)||ydt such that TY(.,1) o T1(.,1) = T5(.,1). The group Gy
contains only diffeomorphisms and will be the space in which one searches our trans-
formation T'. d(T1, I4) is used as a regulariser (I; being the identity transformation).

Data attachment term The authors show that if one considers the case of a weighted
sum of Diracs (which is a discrete Schwartz distribution) localised at the points of X :
v=>,a;0(z;) then T"v =", a;0(T"(x;)).
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In order to compare two such distributions, the authors notice that all differences of
distributions are contained in the dual of an Hilbert space containing continous bounded
functions on IR®. One notes Z such a space and Z* its dual. Thus one can consider
|lv — pl||z+ as a data attachement term. (where ||v||z» = sup([ fdv, f € I,|f|; = 1)
defines a norm for 7*). Under few assumptions on Z and |.|z and by noting T%u =
> @idro(zy), V= > ;bjdy; and TP — v = 37, ¢;0zv, the authors show that one can
write |[TVu —v|z« = 2 ijciciki(27,25) (2] depends on v/T') where k7 is a simple kernel
function (characterising the space 7).

Global functional This leads to the following problem :

v = argmind(T 1)+ 1/0?|T"u — v|r- (7.45)

v

1
= argmin/ /Hv(m,t)H%dt—#—l/UQHT”,u (7.46)
v 0 Jz

Moreover, one can show that the optimal v has the following form (when trajec-
tories x;(t) = TV(x;,t) are fixed) : v(z,t) = > ky(zi(t), x)a;(t). where ky is a kernel
characterising the space V. In other words, the problem 7.46 writes :

0 = arg mln/ Za] Thy (zi(t), o (t)) oy (t)dt + 1/0’2ZCZ'C]']€[(ZZ ,27). (TA47T)

a;(t),zi(t) i

The derivatives of the underlying cost function with respect to «;(¢) can then be
explicitly computed and the functional can be minimised with respect to «;(t) and x;(t)
using a gradient descent algorithm.

7.3.3.2 Currents

The previous was dedicated to the modeling of set of points. More recent works have
shown how to embed more distributions of more elaborated structures called m-vectors :
1-vectors are segments and 2-vectors are 3D frames. In particular, a 3D mesh can be
seen as a distribution of 2-vectors (also called 2d-currents) and Vaillant and Glaunes
[VGO5] show how to consider current instead of classical discrete Schwartz distributions
in the previous formalism. In essence, the problem has the same form than previously
but p and v now represent distributions of 2-vectors of IR?. Then, the problem consists
in modeling efficiently u, v and the action of TV i.e. characterising the space Z*.

Advantages and drawbacks : These well grounded methods are very interesting
as they allow to model the complete surface representation i.e. points and normals and
guarantee the transformation to be diffeomorphic. On the other hand, their compu-
tational burden can limit their applications. However, recent works of Durrleman and
colleagues [DPTAQ8] proposed very efficient minimisation schemes. Another limitation,
concerns the fact the space of currents contains shapes but also other elements that are
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not shape. This can be quite problematic when for example trying to compute the mean
shape of a population.
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Chapitre 8

Methods

In this chapter, we propose an efficient and robust algorithm for the non-linear
registration of point sets.

First, in Section 8.1 we present the EM-ICP framework by showing that a simple
probabilistic modelling of the registration problem allows to solve it by using standard
clustering techniques. In particular, the unknown non-linear transformation best super-
posing the two point sets can then be estimated according to the maximum a posteriors
principle (MAP) and using (typically) the EM algorithm. This optimisation then boils
down to a simple iterative estimation of fuzzy point-to-point correspondences (E-step)
(encoded in what is often termed the match matriz) and of the non-linear transformation
(M-step) in turn.

Then we progressively improve this initial algorithm :

— In Section 8.2, we propose to tackle problems due to the asymmetric nature of the
MAP principle. For this purpose, we notice that the derived EM algorithm can
be seen as an iterative alternated minimisation (over the match matrix and the
unknown transformation) of an (energetic) criterion and we propose to modify it.
In particular, we explicitly add a second match matrix that is column stochastic
in addition to the first match matrix that is row stochastic. This modification
only changes the E-step and improves the matching process.

— In Section 8.3, we show how to specify priors on the match matrices with only
minor changes to the optimisation algorithm. These priors based on local and
global shape descriptors are likely to significantly improve the capture range and
the convergence speed of the algorithm.

— In Section 8.4, we propose to symmetrise the estimation of transformation by
jointly computing the forward and the backward deformation fields linking the
two point sets and enforcing them to be compatible with each other.

— In Section 8.5, we devise two alternative efficient solutions to regularise the de-
formation field. The first one is based on the regularisation of simple local models
(translation or affine) attributed to each point of the set and regularised over the
space. The second one stands on the Reproducing Kernel Hilbert Space (RKHS)
theory and on the Fourier analysis and consists in building efficient regularisers
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leading to closed-form solutions based on sparse linear algebra. Both of these
two regularisers are much less computational and memory demanding than the
classical Thin Plate Spline regulariser.

8.1 Non linear registration as a clustering problem

8.1.1 General formulation

The problem of interest in this chapter is to find the transformation T best su-
perposing two free-form surfaces X and Y (represented by point clouds or meshes). A
convenient probabilistic viewpoint on this classical problem is to consider the surface Y
as a noised version of T'(X). Hypothesizing an isotropic Gaussian noise on data X and
Y, a simple way to formulate this viewpoint is to assume that each sample y; has been
drawn independently from any one of card(X) possible 3-variate normal distributions
with means T'(z}) and covariance matrices 021 (with o unknown).

This way, the registration problem becomes a clustering problem, whose challenge
is 1) to find the label of each point y;, i.e. the one out of card(X) possible distributions
from which y; has been drawn, and ii) to estimate the parameters of these card(X)
distributions. The connection between registration and clustering becomes clear when
one realises that i) actually amounts to match each point y; in Y with a point zj in X,
while ii) simply consists in computing 7" given these matches. This viewpoint is extre-
mely fruitful, as it allows one to refer to classical clustering techniques and especially
the maximum likelihood principle to solve the registration problem. Three different pa-
radigms have been especially followed in this context [Mar75]. Let us introduce some
notations first :

Vk € 1...card(X), Yp(;T) = N (T (), 01)

Vj e l...card(Y), Vk € 1...card(X), zj;, = 1 iff y; comes from ¢ (.;T)

In the Classification Maximum Likelihood (CML) approach, T is considered
as a fixed unknown parameter and one tries to find the indicator variables z;; and the
transformation 7" so as to maximise the criterion C'L [SS71] :

cr= 1 I Welys )" (8.1)

Yj €Y zpeX

The problem is typically solved by the Classification EM (CEM) algorithm [Gil92],
which can be shown to find an at least local maximum of the criterion CL and proceeds
as follows, in an iterative way, starting from an initial value T :

EC-step : Vj, Zj, = 1 iff k maximises ¢y (y;; T)
M-step : T' = argming >, Zj||y; — T(x)||?

In other words, the Expectation-Classification (EC) step consists in matching each
point y; of Y with the closest point in 7'(X'), while the Maximisation (M) step consists
in computing the transformation best superposing these pairs of matched points. When
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T describes a rigid-body transformation, this algorithm is nothing else than the popular
Iterated Closest Point algorithm [BM92].

In the Maximisation Likelihood (ML) approach, the indicator values z;, are no
longer considered as unknown quantities to estimate, but rather as hidden/unobservable
variables of the problem. This is actually a drastic and fundamental change of viewpoint,
as the focus is no longer on assigning each y; to one of the distributions 3, but rather
on estimating the parameters of the Gaussian mixture made of these distributions. If we
involve priors 7, on the indicator variables (Vj,k, 0 < m;, < 1, and Vj, >, mj = 1),
the likelihood then simply writes [Day69] :

L= 11 > mtnlysT) (82)

y; €Y xpeX

In essence, the prior 7, conveys the probability that the point y; comes from the
distribution vy, without knowing anything else. The criterion L can be maximised by
using the popular EM algorithm, which converges to an at least local maximum of
the likelihood [DLR77b]. If we consider the priors 7, as known beforehand and if we
introduce the notation A, as the posterior probability of the hidden indicator variable
zji to be equal to 1, the EM algorithm writes (see appendix B for a derivation of the
algorithm) :

Tjk eXp[—lij—T(g:k)HQ/(ZUQ)}
: > mji exp|—|ly; =T (2:)|[2/(202)]
M-step : T = argming 34 Ajully; — T(xn)

E-step : fljk =
12

The parameter o, which is not estimated in this framework, acts as a scale parame-
ter. The problem of estimating o (or even a different oy, for each of the model v) is not
investigated in this work. It can be given an initial value and decreased throughout the
iterations for improved performances. When T describes a rigid-body transformation
and priors 75, are chosen to be uniform, this algorithm is nothing else than the EM-ICP
algorithm [GP02].

In the Maximum A Posteriori (M AP) approach, instead of simply considering
T as a fixed unknown parameter of the pdf, one can consider it as a random variable
on which priors (acting as regularisers on T') can be easily specified. Then, the ML
estimation can be easily turned into a maximum a posteriori (MAP) problem with only
slight modifications to the optimisation scheme, as shown by Green [Gre90|. Different
choices can be proposed for T and associated priors in this context can be proposed. If
p(T) is a prior of the form p(T") x exp(—aL(T)) then the optimal transformation can
be found using the MAP principle (also termed penalised ML) :

L= 1] Y mtbn(y;; T)p(T) (83)

y; €Y zpeX

The EM algorithm then writes :
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i C A meexp[=lly =T (@y)|?/(202)]
E-step : Aj’“ TS meexp[—lly;—T(@:)|12/(202)]

M-step : T = argming >, Ajilly; — T(z)|]> + oL(T)

Note that one can consider a similar adaptation for the CML approach.
Interpretation & Extensions :

Intuitively, the ML approach is a fuzzy version of the CML. It appears clearly from
the iterative formulas of both algorithms that the classification likelihood is an “all-
or-nothing” version of the likelihood, leading to a “bumpier” and harder-to-maximise
criterion, something that is well known by those who are familiar with the ICP algo-
rithm. Note that the ML formulation followed by the EM algorithm leads to the same
iterative formulas that would have resulted from the addition of a barrier function on
the indicator variables in the ICP criterion [CR00a].

8.1.2 Robustifying the estimator and reducing the computational bur-
den

In practice, this algorithm suffers from outliers 4.e. points of X having no homologous
in Y. To alleviate this problem, one can consider ¢y (.;7) as a truncated Gaussian
probability density function (pdf) with cut-off distance § > 0. This modification has
beneficial effects on the properties of the algorithm. Indeed, it allows : i) to reduce
drastically the computational burden of the E-step (by the use of a kd-tree [Ben75]), ii)
to reduce the impact of points of Y having no correct homologous in X in the estimation
of the optimal T' i.e. to improve the robustness of the criterion iii) to increase the
convergence speed of the overall algorithm. The following algorithm can be shown to
converge to an at least local maximum of the new (truncated) criterion :

Algo Regl: Robust EM-ICP

E-step : initialise A = (A;;) as the null matrix

Ve € X;
S = {y; € Y such that ||y; — T(z1)||> < 6} (using a kd-tree)
Vs € S; Agy = exp(—(|ly; — T(w)|[2/(20%)
Vy; ¢ S5 Ajj is left equal to 0.

Vyj & Y;
if> . Aj #0
pj=1 .
Vo € X, Aji, = Aji/ Y, Aji (normalisation)
else

p; =0

M-step : T = argming 3=, 5 Ajilly; — Twp)||* + o L(T)

This introduces a set (p;) of binary variables such that Vj, p; is null if point y; is
considered as an outlier (thus has no correspondent) and is equal to one else.
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8.1.3 Energetic interpretation

It can be shown that the former algorithm is an iterative alternated minimisation
(over A and T') of the following criterion :

ELX.TO), 4) = 3 Aupslly; — T(a)l?) + 20> Ajilog(Aze) + 20%aL(T) (8.4)
Jik Jsk

with Vj, >, Aj = 1 and where ps : 7 — rif r < § and 0 else (§ corresponds to
the cut-off distance of the truncated pdf of Section 8.1.2). To simplify the notation,
we introduce o' = 202a. Note that the p function could be advantageously replaced
by a smoother function (leading to a more classical M-estimation scheme). However,
our function has the advantage to remain interpretable in terms of pdf (a truncated
Gaussian function) and thus allows to conserve the probabilistic interpretation of the
different parameters (and particularly of the match matrix A).
It can be given an energetic interpretation of this criterion whose 3 terms respectively
represent :
— a data-attachment term (where the classical quadratic cost function is replaced
by a more robust cost function),
— a barrier function allowing to control the fuzziness of A (the higher o2, the greater
the fuzziness) ; in practice, this term convexifies the criterion,
— a regularisation term.
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8.2 Symmetrising the matching process

A particularly undesirable property of the last formulation is the asymmetric constraint

> oAk =1, Vj (i.e. Ais row stochastic). In practice, on the basis of the maximum a
posteriori probability principle, for a given match matrix A, the correspondent in X of
a point y; is given by x. where ¢ = arg max, Aj.. This leads to many-to-one matchings
between points of X and Y. In particular, there is no direct constraint to enforce a point
of X to have a correspondent in Y. This makes the algorithm unable to achieve good
matchings in some specific configurations. It is particularly enlightening to consider the
case when surfaces are far from each other (example on Fig 8.1).

yo1 n hn

x °
Y3 : Y3 . i ‘ Y3
v, : oy v o, L
S o , Au, Yk
s S o
Y4 N ¥ Y4 e ¥ Y4 Sy s
o o oa - T : R ) o K . o
RS om
2 ’3 2 3 ¥ 2 3 ¥
+ + + +

Fia. 8.1 — Effect of the asymmetric normalisation constraint on A. The "correct”
matchings are (z;,v;)i=1..5. One considers T as the identity. From left to right : i) two
point sets X and Y, ii) distances involved in the computation of A, when registering
Y on X. iii) distances involved in the computation of A1; when registering X on Y. As
an example, if one considers o = 1, then in case ii) A;; = 0.01 and points z; and y;
have only little chance to be matched at the end of the overall process whereas in case
iii) Ay = 0.45.

To alleviate this problem, Rangarajan and colleagues [RCM197] have proposed to
impose the matrix A to be doubly stochastic (i.e. VEk, Zj Ajp=1land Vj, >, Aj, = 1)
instead of simply stochastic. With this new constraint on A, the E-step has no longer a
simple solution. As a result, they approximate the optimal solution for A by performing
a Sinkhorn normalisation [Sin64] on the original (i.e. non-normalised) matrix A at the
end of the E-step. However, this method is not applicable to matrices having null entries
and thus cannot be applied when using a truncated Gaussian pdf. In practice, this limits
its application to small data sets.

As an alternative, we propose to modifiy the energetic criterion £1 minimised by
the EM algorithm (Eq. 8.4) and to introduce a new match matrix B in this criterion
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that we impose to be column stochastic :
E2AX,T(Y),A,B) = Y Aups(lly; = T(a)l]?) +20° Y Ajilog(Ajr)  (8.5)
Jk Jk
+ > Biwos(lly; = Tan)l|*) +20° Y Bjxlog(Bjx)
Jk 7k
+ o L(T),
with Vj, Zk: Ajk: =1 and Vk’, Ej Bjk =1.

Notice that if we consider the matrix C' = (
Cij > 0 and Zj,k CjV}g =1.

(Ajr+Bji)

W), one can state that VJ, k

8.2.1 Minimisation with respect to T

While the minimisation of £2(X,T(Y), A, B) with respect to A and B when T is
fixed (E-Step) is straightforward and of low complexity (using the improvement pro-
posed in Section 8.1.2), its minimisation with respect to 7' (M-Step) generally consists
in solving a numerical system of size proportional to card(Y) x card(X). When dea-
ling with large point sets X and Y, this can have severe effects on the computational
and memory requirements. In this section, we propose to reduce the complexity of this
minimisation from card(Y") x card(X) to card(X).

For this purpose, we now consider that T is represented as the initial position plus
a displacement field : T'(xy) = x, + t(zx) and L is a regulariser on ¢. First, the M-Step
consists of :

M-step : t = argmin, > ., (5 Ak + @B lly; — zx — t(xn)||* + o L(t)

where, analogously to (p;), (g) are the binary variables associated to the matrix B.
The derivative of Ear = 3, 1 (P Ajk + @k Bii)|[y; — zk — t (k)| 2+’ L(t) with respect
to t(xy) is :

o€ - S
Moo= > by + > @k Biry;
at(xk) ; ;

o .  OL((zs))
2 A B, t 9ANTE))
+ (;pg gk+;% k) (s + t(zy)) | +a Dt(an)
Calling B, = g Zj Bjk and A, = Zj ﬁj;ljk, this gives :
0Em o ~ 't > ’aL(t(xk»
Dt(an) —2 Z(PjAjk + gk Bik)y; + 2(Ak + By)(zp + t(zr)) + “ot(er)

J

which is the derivative with respect to t(xy) of :
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2
+a'L(t) (8.6)

= =~ —x — t(x
AL+ By F (k>

‘Zj(ﬁj;ljk + @ Bjr)y;

Thus, it is equivalent to minimise criteria 10.1 and 8.6 with respect to t. However,
the first problem consists of solving a system of size O(card(X) x card(Y")) whereas the
second consists of solving a system of size O(card(X)). Then the overall algorithm to
minimise Eq.10.1 can be expressed as :

Algo Reg2: Symmetric robust EM-ICP

E-step :
compute A;B;(p;) ;(qr)
for all k,

compute A + By,

compute §r = > (P Ajk + @ Bjr)y;j/(Ak + Bk)
M-step : solve the approximation problem :
argming >, (A + Bi)||Jk — 2 — t(zp)||*> + o L(t)
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8.3 Adding priors

8.3.1 General idea

The computation of matrices A and B is essentially based on the spatial proximity
between the points T'(xj) and y;. This is unsatisfactory, for two reasons. First, this
distance is highly conditioned by the previous estimation of 7', which in turn depends
on the previous estimation of A;; + Bj; and so on. This chicken-and-egg problem limits
the capture range of the algorithm, which is likely to converge to a bad solution if no
good initial T" is given. Second, in many applications it is difficult to design a physical
model T capturing the expected deformation between two structures. Thus, the global
maximiser of the ML criterion is likely not to be realistic.

Some efforts have been made to include richer information in the matching process in
addition to the classical spatial proximity between points, e.g. based on the similarity
of the normals at points x; and y;. Such approaches assume that one can compute
how the normals evolve when the surface is deformed. This generally results in adding
nonlinear terms into the initial criterion and leads to an intractable M-Step.

On the other hand, a more generic and simple method consists in specifying a
prior probability mj; between the points x, and y; to be matched, that we suppose
to be independent of 1) the spatial proximity between the points of the two surfaces
and 2) the unknown transformation T'. By specifying relevant priors mj, we introduce
additional information on matches independent of the transformation that thus allows
to compute reliable posteriors even for a bad initial estimate of T

8.3.2 Designing 7

In practice, we choose to design m = (7;) such that 7 oc exp(—pBc(y;, xx)) where
c: X xY — IR conveys the cost of matching points y; and xy, independently of T'.
The parameter § > 0 weighs the influence of ;) over ||y; — T'(xy)|| during the E-step.
The equivalent energetic criterion is :

E3(X,T(Y), A, B) = (Aji+ Bi)ps(lly; — T(xn)|” + Be(y ar))  (8.7)
j,k

+20% Y " Ajilog(Ajk) + 207 ) " By log(Bji) + o L(T) (8.8)
Jk 3.k
Depending on the information to encode (continuous value or label), we propose two
approaches to build c.

8.3.2.1 Designing 7 using labels

The cost function ¢ can be computed via the comparison between labels on points
(cortical sulci/gyri). We define : ¢(y;, ) = 0 if points j and k have compatible labels
and ¢(yj, x) = penalty > 0 else. In particular, this view allows to use pair of landmarks
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in the registration process (c(yj,xr) = 0 if points j and k correspond to the same
landmark and c(y;, z) = penalty > 0 else). One can also extract the crest lines from
both meshes [GWMO1] as they constitute salient features. Each point is given a label
depending on whether it belongs to a crest line or not. Then, we define ccrest(yj, x) =0
if y; and xj, have the same label and c(y;, z) = penalty else.

8.3.2.2 Designing 7 using descriptors

¢ can be computed via the comparison between continuous values (or vectors) d(x)
describing the surface around the considered points. To account for potential inaccu-
racies on d(.), we define the measure as : ¢?(y;,xx) = 0 if ||d(y;) — d(z1)|| < 7 and
c(y;, ) = penalty > 0 else.

Then we choose d(.) among the local/global shape descriptions designed in the
literature. In our case, we are interested into descriptors :

— invariant to a certain class of transformations
— robust to noise
— robust to small distortions

Among them, we choose to use :

— the shape index d(x) = sh(z) [KvD92| that describes the local shape irrespective
of the scale and that is invariant to similarities. To achieve robustness to noise and
small distortions, we compute it by fitting a quadratic surface in the neighborhood
of the considered point. The fitting is performed by i) approximating a unit normal
at point x, ii) defining a local coordinate system (where x is at (0; 0; 0) and the
unit normal lies along the positive z-axis) and iii) fitting a quadratic surface of
the type f(u;v) = au® + buv + cv? in the least-squares sense using the neighbors
of z. The shape index can then be expressed as a function of a, b and ¢ : sh(z) =

—2/m arctan (2(“(§|)(;r(§()9”_)iz;2)l‘7(x)2 ) .

— the curvedness d(z) = cu(x) [KvD92] that specifies the amount of curvature and
that is invariant to rigid-body transformations. We compute it using the same
techniques that we used for shape index :
cu(z) = \ﬂ(a(fv)+b(w)+\a(ﬂﬁ)—b(fv)|+C(w))242r(a(ff»‘)+b(w)—\a(ﬂﬁ)—b(x)\+C(w))2).

— the (normalised) total geodesic distance d(z) = tgd(z) [AFKO07] that is invariant to
isometries in the shape space (including non-elastic deformations). This distance is

defined as tgd(z) = 3_; e (izaigzl’zj(')wj’wk), where dg(z;, x1) is the geodesic distance

between x; and xj. It is computed efficiently using a graph representation of the
(tessellated) point set and the Dijkstra’s algorithm.

8.3.3 Implementation

In practice, adding non uniform priors 7 only changes the way the matrices A and B
are computed (E-step). We propose the following efficient algorithm for this purpose :
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000 | 0250 0500 0750

FiG. 8.2 — Mapping of descriptor values : From left to right : curvedness, shape index
and total geodesic distance on two lateral ventricles. Homologous anatomical landmarks
yield qualitatively the same descriptor values.

Algo Reg3: Symmetric robust EM-ICP with priors

E-step :

initialise A and B to the null matrix

Vo, € X;
S = {y; € Y such that ||y; — T(z1)||> < 6} (using a kd-tree)
Vyj es;

if Jlyy — T [12/(20%) + Belys, i) < 6
Ay = exp(—(1[; — Tz |[2/(20%) + Bely;. 21)))
Vy; ¢ S; Ajy is left equal to 0.
B=A
normalise A in rows and B in columns and compute (p;) and (Gx) (see Section 8.1)
for all zx, compute A, + By and (see Section 8.2.1)
compute gx = > ;(PjAjk + @ Bjk)y;/(Ak + Br)
M-step : solve the approximation problem :
arg min, 3, (A + Bl s — 2 — a2 + ' L)

8.3.4 Initialising 7" using 7 only

By considering 8 — 0o, we assume that the spatial proximity term |ly; — T'(z)||?
is not reliable. In this asymptotic case, the algorithm allowing to minimise the criterion

&3 can be written as :
E-Step :
compute the matrix A + B without considering the proximity term ||y; — T'(zx)||?
M-Step :
compute T = argmin -, (A, + Bjr)ps(|ly; — T(xp)l|*) + o L(T)

Note that this algorithm is not iterative as the E-Step does not depend on T'. Mo-
reover, it does not depend on an initial value for T" or A and is invariant to the relative
position of X and Y and thus, assuming that no correct initialisation is provided for T,
this algorithm is a good candidate to estimate an initial transformation 7. Typically, we
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want to estimate an initial rigid-body transformation, similarity or affine transforma-
tion between X and Y. In practice, if reliable priors were provided, this last algorithm
would be able to compute a good estimate for such a transformation model. However,
the function c is not discriminative enough to be able to compute reliable matrices A
and B. As a result during the M-step, the estimation is “contaminated” by a very large
number of outliers. Whereas the p function provides sufficient robustness properties
when the number of outliers is small with respect to the number of inliers, it is not able
to provide correct results in this context.

To tackle this lack of robustness, we restate our problem minimisation of residuals
into a problem of mode seeking in the residuals space that has been demonstrated
to tolerate more than 50% of outliers and that exhibits very efficient minimisation
strategies [WMH10] :

Erin(X, T(Y)) = =Y Us(elar, y;))Ue(lly; — T(a)|[*) + o' L(T) (8.9)
gk

where Us : x — 1 if x < 6 and O else is a uniform kernel and ¢ > 0. The value of
this criterion can be interpreted as the number of pairs (y;,T(z;)) among the pairs
satisfying c(z;,y;) < & such that ||y; — T'(zx)||* < e

One can minimise the criterion £, using the following algorithm :

Algo Reg4: Initialisation T with priors

Step i) compute the set S = {(xy,y;) € X x Y such that c(zy,y;) <}
Step ii) compute T' = argminn (7T, S) + o L(T)

where n(T,S) is the number of matchings (xj,y;) € S within an error tolerance (i.e.
lly; — Tl < o).

Roughly speaking Step ii) is nothing else but a RANSAC procedure [FB81]. In other
words, we use all matchings having a prior lesser than ¢ (Step i)) and we perform a
RANSAC procedure to estimate 7' on this set of matchings (Step ii)). Moreover, to
avoid degenerate solutions and to improve our estimator, we add the supplementary
constraint that the matchings are one-to-one i.e. each point x; and each point y; can
be matched at most one time when computing n(7,S). Note that other kernels than
the uniform kernel U can be used [WMH10| and are able to achieve better robustness.
In practice the uniform kernel is sufficient for our applications (and allows a simpler
and more efficient minimisation than other kernels).
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FiGg. 8.3 — Example of initialisation on two ventricles. Left : Initialisation with
center of mass and principal axes superimposition. Right : Affine transformation esti-
mation with our method
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8.4 Symmetrising the estimation of 7' : A framework for a
consistent & symmetric EM-ICP

Whereas we tried to reduce the inherent asymmetry of the EM-ICP framework in
Section 8.2, it seems difficult to obtain inverse consistent registration (i.e. the registra-
tion of one set to the other provides the inverse transformation of that obtained when
switching the two sets) in this EM-ICP framework. Such a property is very desirable,
especially when building an atlas from a set of anatomical structures. First trials focused
on the estimation of the transformation : Joshi & Miller [JMO00| showed how to build a
diffeomorphism between two sets of matched points, but without guaranteeing inverse
consistency. In parallel, Johnson & Christensen proposed a method towards this goal,
but using thin-plate splines where invertibility is not ensured [JC02|. These solutions
are theoretically attractive but computationally redhibitory in case of large point sets,
which limits their use to simple anatomical structures.

In this section, we propose a symmetric formulation of the registration problem
extending the criteria developed in previous section, that allows to jointly compute the
forward and the backward deformation fields linking the two point sets.

8.4.1 Cost function

Let TX and TY be respectively the backward and forward unknown transforma-
tions superposing X and Y. Let AX (resp. AY) be the match matrix describing the
correspondences between 7% (X) and Y (resp. T (Y) and X). Following the EM-ICP
framework in its energetic formulation, we consider the matrices AX and AY as hidden
variables of the problem and we design our cost function as :

EATX, TV, AX AV = 1YV, TX(X),AX) + E1(X, TV (V), AY)
F9E(TX o TY  I) + 7E(TY o TX, 1)
(8.10)

where :

— &1 is the criterion corresponding to the EM-ICP described in the previous sections.
It can be equivalently replaced by criteria £2 or £3.

— &(TY oTX,I) is a consistency term that measures the discrepancy between trans-
formations 7% and TY. Without this term, estimations of 7% and T would be
completely independent. This new term couples them and forces them to be com-
patible with each other. We design it as :

E(TY oTX, 1) = Y ||ITY o T¥ () — ]|
IjGX

It is easy to observe that £(TX o TV, I) is null for TX = (TY)~!. However, for any
minimum of criterion (8.10), there is no insurance that 7% and T are invertible
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and that £(TX o TY,I) is null. Similarly, we design
E(TY 0TV, 1) Y ([T o TV () — yylI*.
y]-EY

— v > 0 is a parameter weighting the influence of &..

8.4.2 Minimisation

The criterion £4 can be optimised by an iterative two-step algorithm that consists
in minimisation over AX; AY and 7%;7TY in turn :

Algo Regh: Symmetric consistent EM-ICP

Init 7% and TY as the identity function
E-step : A% ; AY = argminx_4v E4(TX, TV A, AY)
M-step 7% ; TV = arg mingx v EA(TX, TV, AX AY)

The E-step can be solved by computing independantly AX and AY similarly to what
is done in Section 8.1.2. For the M-step, we propose to optimise iteratively the criterion
with respect to each one of the two unknowns 7% and TV :

M-step.init estimate the optimal 7% and TV dropping the consistency term &,
M-step.a) 7% =TX and TV =T

M-step.b) TX = argmingx E4(TX, TV, AX AY)

M-step.c) TV = argmingy E4(TX, TV, AX, AY)

If one notices that £1(Y, T (X), AX) is composed of a data attachment term (Y, T (X), AX)
and a regularisation term &.(T%X), this algorithm intuitively consists in alternatively
estimating 7% as a compromise between data attachment (£;(Y, TX(X), AX)), regula-
risation (&.(T%)) and consistency with TV (£.(TY o TX, 1)) and TY as a compromise
between the three other symmetric terms. By specifying the form of the transformation
T as the initial position plus a displacement field : 7% (z;) = z; + t¥X(z;) and R is a
regulariser on ¢* (similarly for 7% and ¢¥). Then M-step can be written as :

init estimate the optimal 7% and TV dropping the consistency term &,
M-step.a) 7% =T% and TV =T

M-step.b) X = arg min,x D AlXijz —xj — tX(x;)|? + o' LX)+

v 205 I8 (g + 6% () + % ()P + o 22, 11 (i + 8 (a) + 2 ()P
M-step.c) 1Y = arg min,y doij A%sz —y; — Y (y;)| > + o L(#Y)+

v 20 N Cys + 87 () + ¢ () 11?4+ 30 118 (i + 1% (@) + 5 () |2

Figure 8.4 illustrates the principle of the chosen compatibility term with the previous
parametrisation.

Due to the terms ), 1Y (25 + tX(25)) + X (2;)]|* in M-Step.a) and >, [|[#¥ (y; +
Y (y;)) +t¥ (y:)||? in M-Step.b), which are somewhat redundant with their symmetric
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for X and compatibil-
ity with ¥

Fig. 8.4 — Ilustration of the interest of the compatibility term : From left
to right i) Point x is deformed towards Y by the deformation ¢(x)X ; ii) Point y is
deformed towards X by the deformation # () ; iii) the compatibility term imposes that
tX(y + t¥ (y)) should be equal to —t¥ (y) ; iv) The resulting deformation field ¥ tends
to be a compromise (in the sense of the regularisation) between data attachment and
compatibility.

counterparts, the two problems are very intricate and thus difficult to solve. Thus,
similarly to what is done by Chui et al. [CRZL04] in a related context, we drop them,
which allows to reformulate M-step.b) and M-step.c) as two independent approximation
problems :

M-step.b) X = arg min,x D AZX]H% —x; — 5 (x5)])?
+o L) + 9 30, 15 (e + 7 (92) + 2 (90) I

M-step.c) {¥ = arg min,y Z” A}f]HJJZ —yj — ¥ (y;)|]?
+a L) + 7 30, (18 () + T (2))) + T ()|

In practice, only a few iterations are necessary to significantly decrease the criterion.
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8.5 [Efficient approximation techniques

Solving the M-step is highly conditioned by the choice of the regulariser L. Several
choices have been proposed in the literature and the most commonly used is probably the
Thin Plate Spline (TPS) regulariser. It has the main advantages to exhibit a closed-form
solution for the approximation problem and to be justified by a physical interpretation.
However, this choice also implies computational and memory usage requirements that
limit its application to data of small size. In this section, we focus on building a tractable
(in terms of minimisation strategy) and powerful (in terms of reliability of the model)
regulariser L.

The requirements of the M-step are different for the algorithms Regl, Reg2, Reg3
and Reg4 developed in the previous sections. More specifically :

— Regl has no particular specification on L and T,

— Reg2 and Reg3 imply that the transformation is represented as the initial position

plus a displacement field : T'(xy) = xp + tr,

— Reg4 implies that the transformation is represented as the initial position plus

a displacement field : T'(xzp) = xx + tx and that this displacement field can be
approximated and computed at points that do not belong to the point set.

We propose different regularisers, some of them cannot be applied in all of the
previously developed algorithms. To alleviate complicated notations, we restate our
problem in the following general form (that we call approximation problem) :

f = argmin _pjlle; = f(op)|* + o L) (8.11)

J

with Vj, p; € R, ¢; € R*, v; € IR* and f : R® — IR®.

8.5.1 Local models

In this section, we devise regularisers based on the decomposition of f into several
local transformations. For that purpose, we assign a given transformation model at each
point of the point set and we regularise the transformations over the space. This solution
implies that the points v;s are structured as a mesh. In practice, such models provide
very efficient optimisation strategies.

8.5.1.1 Locally affine

This way, one can assign an affine transformation that we call T} to each point v; of
the mesh and spatial coherency is ensured by a regularisation on the 7} over the space
(M; and t; being the linear and translation components of Tj) :

L(f = (Tj) j=1,....cara(v)) = Z wia k2 (1= 0)|[Mygr — Mz |3 + nllter — tro|[*)
(k1,k2)eC2

where ||.||F is the Frobenius norm, Cs the set containing the indices of points of V'
that are neighbours, 0 < < 1 weighs the influence of the terms and wyi z2 > 0 are
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coefficients weighting the relative influence on the regularisation between the different
neighbour points to a same point (typically wy; x2 will increase with the spatial distance
between vy and vgs).

Then solving the corresponding approximation problem (Pb 8.13) is performed using
the Iterated Coordinate Descent (ICD) algorithm, which consists in considering sequen-
tially each T; € T" and maximising the criterion 8.13 for 7T} while keeping the other trans-
formations fixed. This algorithm converges monotonically to a (at least local) maximum
of the criterion, and boils down to :

Algo Approxl: M-step with locally affine deformation model

M-step :
Step 0 : Initialise the T}
Step 1 :Vj T; = argming, , pj|lc; — Mjv; — t;][?
0" Siev, weg (1= mIIM; = Myl3 + llt; — Tl
Step 2 : If the T}s have changed go to Step 1 else finish

where V; contains the indices of neighbours of point ¢; in X. It can be shown that
Step 1 has a unique solution that is given by the following closed form solution :

T — % . . T\ T "1 — M
M‘] - |:pj+a/'r] Z]k: W, j (U] Zk wkv] ZkEV] wk:]tk)vj + « (1 77) ZkGVJ wk,]Mk:|

p -1
o MP; Dk Whj T !
— =k g +a (1 — AL
{pﬁra/nkak,j 77 (1=m) 2wk 3]

N S NPV v ’ '~
tj = Pt N> Wi (pJ(C] Mjvj) + TIZkevj wk,ﬂk)

8.5.1.2 Local translations

A similar approach consists in decomposing ¢ in a set of linear displacements and to
design L as :

L(f = (tj)j=t1.cardv)) = D, Wikalltkn — thol”
(k1,k2)eC>

leading to

Algo Approx2: M-step with local translation deformation model

M-step :

Step 0 : Initialise th

Step 1:Vj ¢ = argmin, pjllc; — vj — 12+« > kev; Wk
Step 2 : If the ¢; have changed go to Step 1 else finish

|t; — tx]|?
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where V; contains the indices of neighbours of point v; in V. It can be shown that
Step 1 has a unique solution that is given by the following closed form solution :

. 1
T pi A Y why

pilc; —vj) +an Y wybk
k‘EV]‘

8.5.1.3 Discussion

In practice, these two models provide very efficient optimisation strategies. However,
each of these models suffers from a lack of theoretical justifications.

e The locally affine model can lead to degenerate solutions as the distance between
matrices (based on the Frobenius norm) does not necessarily provide a suitable distance
between transformations. A better formulation would directly rely on comprehensive
parameters describing the transformation (i.e rotation angles, stretch and scale factors).
However such a formulation would result in intractable optimisation strategies.

e The local translation model is more difficult to interpret. However, an interesting
comparison with the first order regularisation (e.g. [TC07, M02]) can be done. The
first order regulariser L is defined as :

L(f=(f" A A7) = / IV f1(0)]? + |V f2(0)]? + |V f3(0) [Pdv (8.12)

where f(v) = (f1(v), f2(v), f3(v))T and V is the gradient operator. In the image grid,
such a regulariser can be discretised as :

L(f = (tj)jzl,...,card(V)) = Z Htkl - tk2||2
(k1,k2)eC2

where C represents the set of cliques of order 2 of the image/volume data. This form ap-
pears identical to the one we provided in the previous section. Interestingly, performing
Euler Lagrange optimality condition on L(f) gives :

Afi=0;Af=0;Af3=0

that can be stated as the convergence at an infinite time of the following system of

equations :

O — (Vi) T = an(vp): G =iy gy,
that corresponds to a heat diffusion process on f and shows a relationship between the
first order regulariser and an isotropic Gaussian smoothing.

This analogy helps understanding our regularisation that in practice provides good
results. However, it is limited by the fact that the cliques defined in the voxel domain
correspond to a well-designed finite model of the first order derivatives whereas this is
not the case for the vertices (in the general case).

In the context of medical image registration, we find that the locally translational
model provides the more realistic results. However, in the case of articulated motion,

the locally affine model provides more adapted results.



106 Methods

8.5.2 Efficient global models

In this section, we devise a new solution for the M-step based on the Reproducing
Kernel Hilbert Space (RKHS) theory and the Fourier analysis. The advantage of this
solution over the local models is to offer a well designed theoretical framework in which
the regulariser is defined as a function of the frequencies of f (allowing to tune efficiently
the regulariser) and produces a solution f defined all over the space (allowing to inter-
polate efficiently the transformation). This framework leads to a closed-form solution
for the M-step that can be tackled very efficiently using sparse linear algebra. Moreover,
the regulariser L depends on the choice of a kernel that can be easily modified to fit the
applications. As we will see in the evaluation section, the regularisers proposed in this
section lead to more realistic solutions but are less efficient (in terms of computational
time and memory usage) than local models.

8.5.2.1 Formulation

In this framework, we consider that the transformation is represented as the initial
position plus a displacement field and thus recast our problem as :

f= arg}{ninzpﬂ!cy‘ — (v + F)IP + o' L(f), (8.13)
j

with Vj, ¢; € RT, v; € IR? and f: IR® — IR3.

We consider our problem in a space of admissible solutions H that we span using
a positive definite kernel (pdk) k' : H = {f|f() = 220 k(q, Jwi,w; € R, q; €
Q; |11 < 00}¢ where S¢ denotes the completion of the set S and where Q C IR3. This
space is endowed with the inner product : < f,h >y= Z;‘)j‘:o w] k(gi, gj)w;. The space
H is a Hilbert space with reproducing kernel k (or more compactly a RKHS) [Wen05].
Then we assume that f € H and define our regulariser L(f) as || f]|x :

f=argminy_ pjlle; — (v + f(0)|* + Bl f I (8.14)
fen 5

J

One of the key advantage of RKHS is that one can show [SHSO1| that the values
taken by the solution f at the points vy,...,v;,...,vp can be expressed as f(vj) =
Zf\i 1 k(vi, vj)w; and then formulate the last minimisation problem as :

(@) =argmin Y pille; — (v + D kwpow)|P+8 Y wl kv, vi)w;
(W) jm i=1.M ij=1.M

Vanishing the derivatives gives a linear system whose solution can be expressed in a

closed-form as :
W = (D(P)K + BI)"'D(P)[C — V],

!'More generally, we could use a vectorial positive definite kernel k (in our case, k(.,.) would be a
3x3 matrix). By simply considering a scalar pdk, we indirectly restrict our study to vectorial pdk k of
the form k(.,.) = k(.,.)I. However, note that all the results of this section can be extended to vectorial
pdks.
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where V = [v1, ..., upm]T, C = [e1, ey ep]T, W = [w1, oywpm]T, K = (k(vi,v5)i5) is
the M by M matrix associated to kernel k& and D(P) is the diagonal matrix formed by
the p; values.
Now, the challenge is to choose a kernel corresponding to a relevant regulariser.

8.5.2.2 Choosing a kernel

In order to design a suitable k, one can use an interesting relationship with Fourier-
based stabilisers. Let Vf integrable,

L(f) = L(f1) + L(f2) + L(f3)

where for 1 = 1,2, 3,

o0
L(fi) = 13/ £ @) P (l|wll/0) ™ duw,
(2m)3 J oo

where * is the Fourier transform operator, ¢ : IR — IR is an integrable function and b
is a real positive rescaling factor. Let F = {f : IR® — IR3|L(f) < oo}. Interestingly, one
can state that if the function (¢;,¢;) — ¢(||¢; — g;]|) is a pdk then F is a RKHS whose
reproducing kernel is given by k(g;,q;) = b x ¢(b x ||g; — ¢;||) and such that Vf € F,
| fl7 = L(f) [Wen05, Sid04|. This dual view is convenient as it allows to design a wide
variety of efficient regularisers directly into the Fourier domain.

In order to design an efficient regulariser, we have to choose ¢*~! as a high-pass
filter. This way, high frequencies of the deformation will be drastically penalised whe-
reas low frequencies will only be penalised a little. Generally, ¢f0’oo is a monotonically
decreasing function and the most important element that characterises its influence on
the regularisation is the way it decreases that indicates the amount of penalisation with
respect to frequencies. Particularly, the frequencies for which ¢*(||w||/b) is null are for-
bidden. The two parameters S and b allow to handle the regularisation properties : 3
is a quantitative parameter (it indicates the amount of smoothness) whereas b is more
qualitative (in a way, it defines what the term "smoothness" means). More precisely,
b can be seen as a parameter contracting (resp. dilating) the kernel function ¢*(.) and
thus decreasing (resp. increasing) the range of admissible frequencies. Figure 8.5 illus-
trates results of approximation of 2D noise deformation fields with different parameters
(B and b for a given kernel.

Original field Wu function with beta=5, b=10 Wu function with beta=5, b=40 Wu function with beta=100, b=40

7 ‘/'//7:/:

1

o ,////////;
st PP

e

Fia. 8.5 — Effect of parameters 3 and b on the approximation of a noisy field.
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Finally, note that an undesirable effect of this approach is to penalise the null fre-
quency i.e. the average of the field (as 1/¢*(0) is not null). One removes this penalisation
by simply ensuring that the deformation field has the same norm before and after regu-
larisation. Figure 8.5 shows the influence of b and § when approximating a noisy field
when choosing ¢ as the Wu kernel |Wen05].

Why using frequencies? Designing L as a function penalising T' in terms of its
spatial frequencies can be of great interest. Roughly speaking, high frequencies of T
concern details and local changes of the deformation field whereas its low frequencies
concern the global aspects of the deformation. Thus, tuning the parameter b allows to
introduce a multiscale approach by first trying to capture a global deformation and
then, if needed, local deviations from this global deformation. This view allows to adapt
our algorithm to different applications needing either a fine registration (e.g. automatic
labeling of substructures) or a more global registration (e.g. statistical shape analysis)
of two structures. Figure 8.6 illustrates the influence of different kernels and different
scale parameters b on the regularisers. Figure 8.7 illustrates that modifying 8 allows to
characterise different scales of deformations linking two structures.

Kernel functions psi*(w])

kernel —— Wu kernel ——
exponential kernel exponential kernel
Wendland kernel -+ Wendland kernel -

Wu kernels varying b 1Upsi*(w]) varying b

Iy Y N
oo

dlooo
Se Ty
TN YN

)

Fig. 8.6 — Different positive definite kernels ¢ and their associated value
®*(||w]|/b) L. From left to right and top to bottom : i) 2D plot of three kernels (b=1),
ii) 2D plot of the value of ¢*(||.||)~! for the three above-mentioned kernels, iii) 2D plot
of ¢(. x b) for the Wu kernel with different b , iv) 2D plot of ¢*(||w]||/b)~* for the Wu
kernel with different b.
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Source b=1/40 b=1/25
(a) (b) (c)

Fic. 8.7 — Influence of b on the registration. First line : We register the source
ventricle (a) on the target ventricle (e) by increasing b throughout the iterations (
without modifying the other parameters). Intermediate registration results for a given
b are represented between the source and the target (b), (¢) and (d). For a small b,
the source is only globally transformed towards the target and small patterns are left
unchanged (dark blue circles). When b increases, small patterns tend to fit the target
(green circles). Light blue circles indicate intermediate configurations of the patterns.
Second line : Same description that for the first line but with caudate nuclei.

8.5.2.3 Efficient choices

Although we propose a closed-form solution for the approximation problem, it
consists in solving a M x M system. This is can be problematic when M increases
(in terms of memory usage and of computational time). Suppose that we choose a
compactly supported pdk (i.e. for Vz, Vy such that ||y|| > r; k(z,y) = 0), then i)
D(P)K + (1 is a sparse matrix that can be computed using a kd-tree and ii) computing
W cousists in solving a sparse system. Some interesting compactly supported pdk cor-
responding to low-pass filters have been proposed in the literature (such as Wendland,
Wu or Buhmann functions). Moreover, techniques to generate a wide variety of them
have been proposed [Wen05]|. Alternatively one can use a highly decreasing function
and approximate it by zeroying all its values over a given threshold. We experimentally
find the compact support kernel of Wu (¢2,3) as the one providing the best results and
we will use it in the following. Note that the top-right plot in Figure 8.7 shows that the
Wu kernel penalises faster high frequencies than the exponential or Wendland kernels
(for a given b). More experiments will be of interest to evaluate the respective added
value of the different possible kernels.

8.5.2.4 M-step in a nutshell
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Algo Approx3: M-step with RKHS

M-step :
for each v; € V
Si = {vg € V such that ||vy, — v;||*> < b} (using a kd-tree)
for each v in S;
K(i k) =bx d)(b,x llok — vil]) X pi
K(i,i) = K(i,i) + «
preconditioning on K (using sparse algebra)
solve KWt = D(P)[V! — C!] (using sparse algebra)
solve KW? = D(P)[V? — C?] (using sparse algebra)
solve KW?3 = D(P)[V?3 — C3] (using sparse algebra)

where V1, V2 and V3 are respectively the vectors extracted from the first, second
and third columns of matrix V' (the same for C' and W).

8.5.2.5 Note on vectorial kernels

By building a scalar kernel k we consider each component of the deformation field
independently (L(f) = L(f1) + L(f2) + L(f3)). In fact, all the previous theorems stay
true when designing vectorial positive definite kernels. In our case, the evaluation k(.,.)
will take it values in the set of the 3 by 3 matrix, the generated space will be such that
H = {fIf() = 2 kg, Jwi,w; € R q; € R%||f|ln < o0} and the dot product
writes < f,h >y= Z?Z‘:o w?k(qi,qj)wj. This way, the corresponding Fourier-based
stabiliser writes :

L) = s [ £ @) @)

With this formulation the cross frequencies (and indirectly cross derivatives) can be
penalised . In our work, we restrict our study to scalar kernels.
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Evaluation

9.1 Descriptions

9.1.1 Descriptions of the algorithms and of the parameters

We use the following notations : Algo-Approx.

With Algo € {Algol (simple EM-ICP), Algo2 (symmetric EM-ICP), Algo3 (sym-
metric EM-ICP + priors), Algo4 (symmetric EM-ICP + priors + consistency)} and
Approx € {Approxl (Local translation), Approx2 (RKHS)}.

We also investigate the performances of a state-of-the-art method the TPS-L2[JV05|
using the code provided by the authors on the web. Note that we try to evaluate both
the TPS-RPM [CR00a| and CPD [MSCP07] algorithms on our data but none of them
has provided results after 3 hours (even for the smallest data).

9.1.2 Description of the data
9.1.2.1 Thalamus

We use 13 right thalamus seg-
mented with an in-house soft-
ware from 3T T1-weighted MRI
of healthy subjects. The data
contain about 1.000 points.

9.1.2.2 Caudate nuclei

We use 22 Caudate nuclei
segmented with an in-house soft-

ware from 3T T1-weighted MRI
of healthy subjects. The data
contain about 2.000 points.

9.1.2.3 Ventricles

111
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We use 3 ventricles segmen-
ted with itksnap (itksnap.org)
from 3T Tl-weighted MRI of
healthy subjects. The data contain
about 10.000 points.

9.1.2.4 Osseous labyrinths

We use 10 Osseous laby-
rinths (5 right and 5 left sym-
metrised) segmented with Amira
(amira.com) from CT of mo-
dern Homo sapiens. The data
and contain about 20.000 points.

9.1.2.5 Endocasts

We use 19 brain endocasts
segmented with itksnap (itks-
nap.org) from CT of great apes.
The data contain about 20.000
points.

9.1.3 Description of the
experiments

9.1.3.1 Experiment 1 : MSE on simulated data

In Experiment 1, we evaluate the ability of our different algorithms to recover global
and local smooth deformations. This allows to evaluate both the effectiveness of our
different minimisation strategies and the ability of our two deformation models to fit
other deformation models widely used in the medical imaging context. For this purpose,
we choose one surface in each of the 6 previously described datasets and deform these
surfaces 100 times using :

— randomly generated non-linear transformations using the widely used TPS or

CPD deformations (see Section 7.2.2 for more details),

— randomly generated local smooth deformations of the form : t(z) = = + K x
Gy(x — z¢)ng, where x. is the centre of the deformations (randomly chosen on the
surfaces), n, is the normal vector at point z, G, is a 3D non-normalised Gaussian
function of variance v? and K is the deformation strength.

Then we register the original and deformed surfaces and compute the overall residual

distance between the known corresponding points between the surfaces and the overall
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Barron error between the transformation field'. These two error measures are then
averaged over the 100 simulations for each of the surfaces.

@ qa

00 250 375 5.00 125 2.5

0. 1.25 0.00 0 375 5.00
N i | -

FiG. 9.1 — INlustration of the generation of the ground truth data. From left
to right : i) original data, ii) we generate a random local deformation (the resulting
distance between the corresponding points is mapped), iii) we generate a random global
deformation (TPS) (the resulting distance between the corresponding points is mapped)
and iv) superimposition of both the original (red) and deformed (green) data.

ol

Fic. 9.2 — Examples of pairs of ground truth data : From left to right, thalamus,
ventricles, osseous labyrinths and endocasts

"

P\

9.1.3.2 Experiment 2 : Landmark-to-landmark distance on real data

In Experiment 2, we investigate the ability of our algorithm to register real data.
For this purpose, we manually select landmarks on each of 2 datasets (ventricles and
osseous labyrinths). Then we choose one of the surfaces in each of the two datasets to
be the template, and register all other surfaces to this template. We evaluate the mean
residual errors on the landmarks and we average these errors over all subjects for each
of the two datasets.
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Fi1G. 9.3 — Position of landmarks on two of our data

algol-regl | algo2-regl | algo3-regl | algol-reg2 | algo2-reg2 | algo3-reg2 | algod-reg2 | TPS-L2
thalamus | 1.02/1.96 | 0.21/1.02 | 0.23/0.76 | 0.82/1.45 | 0.12/0.67 | 0.16/0.57 | 0.17/0.65 | 0.14/0.57
caudate | 1.82/2.72 | 0.63/1.89 | 0.70/1.21 | 1.34/1.78 | 0.31/1.21 | 0.35/0.97 | 0.32/1.19 | 0.33/1.05
ventricle | 1.94/3.94 | 0.79/1.91 | 0.87/1.13 | 1.43/2.99 | 0.64/1.66 | 0.65/1.56 | 0.66/1.53 -
osseous | 0.29/0.87 | 0.17/0.63 | 0.21/0.44 | 0.24/0.86 | 0.11/0.52 | 0.09/0.45 | 0.14/0.49 -
endocast | 3.23/6.76 | 2.78/4.77 | 3.09/4.63 | 2.99/6.11 | 2.01/3.61 | 2.11/2.92 | 2.12/3.01 -

TAB. 9.1 — Statistics (mean/max) on the end point error

9.2 Results

9.2.1 Experiment 1

The Barron error on deformation field gives similar results expect that the difference
of accuracy between regl and reg2 is more accentuated (reg2 decreases the error from
about 44% with respect to regl with the same algo and on a given data). The conclusions
on these results are given in Section 9.3.

9.2.2 Experiment 2

algol-regl | algo2-regl | algo3-regl | algol-reg2 | algo2-reg2 | algo3-reg2 | algo4-reg2 | TPS-L2
ventricle | 2.41/3.01 | 1.43/2.03 | 1.37/1.98 | 1.24/2.43 | 1.05/1.53 | 1.06/1.22 | 1.05/1.34 -
osseous | 0.91/1.87 | 0.61/1.21 | 0.59/1.01 | 0.64/1.64 | 0.35/0.56 | 0.34/0.57 | 0.34/0.56 -

TAB. 9.2 — Statistics (mmean/max) on landmark-to-landmark distance

The conclusions on these results are given in Section 9.3.

9.2.3 Additional measurements

Run-time

T
. t
'the Barron error between two vectors t; and to is defined as arccos( Tl HZH)
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algol-regl | algo2-regl | algo3-regl | algol-reg2 | algo2-reg2 | algo3-reg2 | algod-reg2 | TPS-L2
thalamus 0m06s Om16s Om19s Om14s Om19s Om21s 0m37s 5m12s
caudate Om13s 0m22s 0m24s 0m32s 0m40s 1mO00s 2m20s 5m37s
ventricle 0m45s 1m02s 1m12s 4m04s 4mb0s 5m24s 10m10s fail
endocast 1mO05s 1m23s 1m29s 8m12s 9Im04s 12m17s 23m01s fail
TaB. 9.3 - Mean execution-time on a standard personal computer needed by

the different algorithms for the different structures

Each program is compiled using the same compiler and the same compilation op-

tions.

Table 9.3 indicates mean run-time of the different algorithms for the different

structures.
The conclusions on these results are given in Section 9.3.

9.3

Summary

We summarise our results as follows :

All our algorithms allow to register our data whereas none of the 3 state-of-the-art
methods we investigated was able to register point sets larger than 5000 points.
Algo3-reg2, Algo3-reg2 and Algod-reg2 provide results comparable to the state of
the art TPS-L2 (on the small data set).

Fourier-stabiliser based regularisation leads to lower errors (especially for the Bar-
ron error) than local models. However, local models are computationally more
attractive than Fourier-stabiliser.

For any regulariser, Algo-2 (symmetric EM-ICP) importantly improves the results.
Adding priors on the match matrix (Algo-3) does not improve the mean results
(except for the osseous labyrinth, that are complicated and curved structures) but
it decreases the value maximum error over the experiments.

Algo-4 (Symmetric EM-ICP + consistency) is significantly computationally more
demanding than all other algorithms and does not improve the registration in
average.

Further evaluation is needed and will be of great interest. In particular, we are
currently working on evaluating the influence of b for different applications.
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Chapitre 10

Conclusion

10.1 Contributions

In this part, we first proposed a review of registration methods based on the model-
ling of point sets as mixture models, aiming to provide a comprehensive view where we
explicited the sometimes hidden i) mixture models, ii) similarity measure, iii) expres-
sion of a transformation model T (generally relying on a regulariser L(T')) allowing to
"deform" a mixture and iv) subsequent minimisation.

Then, we showed that a simple probabilistic modelling of the registration problem
allows to solve it by using standard clustering techniques. In particular, the unknown
non-linear transformation best superposing the two point sets can then be estimated
according to the maximum a posteriori principle (MAP) and using (typically) the EM
algorithm. This optimisation then boils down to a simple iterative estimation of fuzzy
point-to-point correspondences (E-step) (encoded in what is often termed the match
matriz) and of the non-linear transformation (M-step) in turn. The resulting strategy is
limited by three main aspects. Firstly, the derivation of the MAP principle leads to an
asymmetric formulation. In particular, in this framework, the match matrix arises as a
row stochastic matrix (leading to many-to-one matchings). This asymmetric formulation
makes the algorithm unable to achieve a good matching in specific cases. Secondly, both
the E-step and the M-step are very time and memory consuming when dealing with large
data. Finally, the overall iterative scheme exhibits a monotonic convergence that leads
to a local maximum of the likelihood function and thus can provide a bad estimate of
the transformation when a bad initialisation is used. We proposed efficient solutions for
each of these problems.

In Section 8.2, we proposed to tackle problems due to the asymmetric nature of the
MAP principle. For this purpose, we noticed that the derived EM algorithm can be
seen as an iterative alternated minimisation (over the match matrix and the unknown
transformation) of an (energetic) criterion and proposed to modify it. In particular, we
explicitly added a second match matrix that is column stochastic. This modification only
changes the E-step and improves the matching process. The modification of the energetic
framework alters the interpretation of the probabilistic framework and we do not know
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whether it is still possible to interpret the criterion in the probabilistic framework. In
practice, we observed that this new constraint can be seen as an optimisation tool.
Indeed, the final value of the original EM-ICP criterion :

E2X,T(Y), A, B) = 3 Ajups(|lyj = T(xn)|?) +20° Y Ajilog(Ajp) + o L(T),

ik J:k
is generally higher when using the classical EM-ICP algorithm than when using the
algorithm minimising the new criterion. Thus, we adopt the following arrangement : we
first register the point sets using the column and line normalisation constraint and, at
the end of the convergence we make a few iterations removing the column constraint. It
allows us to benefit the minimisation ability of the symmetrised constraint and to keep
a probabilistic interpretation for A (a posteriori probability of correspondences between
points).

In Section 8.3, we showed how to specify priors on the match matrix with only minor
changes to the optimisation algorithm. These priors based on local and global shape
descriptors allow to significantly improve the capture range and the convergence speed
of the algorithm.

In Section 8.4, we proposed a symietric consistent formulation of the registration
problem that allows to jointly compute the forward and the backward deformation fields
linking the two point sets which are enforced to be compatible with each other.

In Section 8.5, we devised two alternative efficient solutions for the M-step. The
first one is based on the regularisation of simple local models (translation or affine)
attributed to each point of the set and regularised over the space. The second one stands
on the Reproducing Kernel Hilbert Space (RKHS) theory and on the Fourier analysis
and consists in building efficient regularisers leading to closed-form solutions based on
sparse linear algebra. Both of these methods lead to accurate results when dealing with
deformation generated from classical models. The local models are particularly relevant
to deal with large data in a short time. The RKHS-based model seems to lead to more
accurate solutions but is more time and memory demanding which can be limiting in
presence of very large data sets.

As shown in Section 9, the combination of these improvements leads for the first
time to an efficient EM-based algorithm for the non-linear registration of large point
sets (with the exception of the recent work of Myronenko and colleagues [MS09] that
we did not yet investigate).

Finally, note that as we will see in Part III, our probabilistic modelling leads to
efficient and simple solutions to deal with group-wise study : this fact is important to
judge our methodological choices.

10.2 Perspectives

We think that more evaluations and comparisons are needed. First, one can go
closer to real situations when generating ground truth data by for example modifying
the sampling of the point sets. Moreover our database of real data was quite small and
limits our evaluations on real data.
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In the following we address some possible improvements that could be investigated
in further works.

Fitting the data : Our methodology relies on modelling point sets as mixture of
pdf. An interesting work would consist in trying to fit mixture models directly on the
point sets (or on the surface) by estimating both mean and variance of a set of Gaussian
laws. Then the registration could be done on the fitted models. We think that such an
approach will provide less sampling dependent results.

Data-attachment : In other works (not presented in this thesis) [MCP10], we
investigated solutions to use normal in the classical data-attachment term. This fra-
mework is still computationally intractable because of the need of computing, at each
iteration of the algorithm, an orthogonal parametrisation of the transformed surface.
However, by designing efficient numerical tools for such a computation, this approach
could improve the performance of our algorithm by increasing its capture range.

Deformation : As previously shown, Fourier-based regularisers offer a simple and
suitable way to compute the deformations linking the point sets at different scales. The
design of an elaborated and well-grounded strategy to compute/analyse these different
deformations will be of great interest.

Moreover, the design of efficient diffeomorphic splines approximation would be help-
ful to make possible the computation of diffeomorphic transformations in our formalism.

Robustness : We proposed to use a very simple robust estimator (truncated square
function) whereas the literature abounds with robust estimators. Replacing our estima-
tor with a more elaborated M-estimator would be benefic. However, we chose a truncated
square function as it corresponds to a truncated Gaussian law in the clustering frame-
work and thus allows to preserve a probabilistic interpretation of the variables (which
will be of great interest in the following).

Optimisation : It would be quite interesting to maximise the likelihood function
directly using a gradient-based method instead of an EM algorithm and to investigate
the superiority (or the complementarity) of one of the methods.
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Chapitre 11

Tools for group studies &
Application

Registration methods have a huge number of applications in medical imaging e.g
neuro-navigation, segmentation, building of statistical atlases, etc. Among them, statis-
tical shape analysis is of great interest to characterise and compare anatomical structures
over and between populations in an automatic and comprehensive way. In this chap-
ter, we develop pipelines for statistical shape analysis (Section 11.1) and quantification
of asymmetries over and between populations of anatomical structures represented by
point sets optionally structured as a mesh (Section 11.2). These pipelines rely on the
tools we proposed in the previous parts of this thesis.

11.1 Statistical Shape Analysis

11.1.1 Introduction & Brief state-of-the-art

B * N X ® ]

Mean shape -2/, v, Mean shape  Mean shape+2\/ P Mean shape -2/, v, Mean shape ~ Mean shape+2~/\,v;

Fic. 11.1 — Mean shape and first mode of variation (£ 2 y/A;) on 40 human hands
(described by labelled landmarks) computed with a classical Procrustes analysis (From
[SG02]) and on 10 osseous labyrinths (described by free-form surfaces) computed with
an automatic method described in this chapter (Section 11.1.2.4).

The challenge underlying statistical shape analysis consists in building a statistical
model describing the behaviour of the observed structures in terms of probability distri-
butions. More specifically, this analysis generally consists in i) defining and computing
a mean shape M from the observations (the shape that is the closest, in a sense to be
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defined, to all shapes of the population) and ii) characterising the main variations of
the shapes around M. When each shape is represented by a set of labelled landmarks,
a standard statistical model is the point distribution model [CTCG95| classically based
on the Procrustean framework [DM98] and a principal component analysis. When it is
not the case, i.e. when the shapes are represented by implicit surfaces, meshes or simple
point sets, alternative strategies have been proposed. Among them one can quote :

— Methods based on the modelling of shapes by currents. The space of currents is
linear and performing statistics over it is straightforward [DPTAO09].

— Methods based on the minimum description length (MDL) theory [HWWpMO05].
The key principle of these methods is to consider that the simplest explains better :
one looks for the most compact model (i.e. involving as few parameters as possible)
that best explains the population. The correspondences between the shapes and
the model are computed as a trade-off between a maximum compactness of the
model and a minimum error between the data generated by the model and the
data under study.

— Methods based on the definition of the mean shape as the minimiser of a registration-
like criterion involving Gaussian mixtures modeling of the surfaces [CRZLO04,
HPE*08b, HEPT09, WVRE0S].

Among this last class of methods, the Mean Shape EM-ICP (MS-EM-ICP) recently
developed by Hufnagel and colleagues [HPE108b] is based on the original EM-ICP
developed by Granger and Pennec |[GP02]. As a result, it shares many properties with
the registration method we presented in part 2. In the following, we first present the
original mean shape EM-ICP algorithm and study its limitations (Section 11.1.2.2).
Then, we propose two extensions of the MS-EM-ICP aiming at tackling these limitations
(Section 11.1.2.3 and Section 11.1.2.4).

11.1.2 Mean shape EM-ICP and extensions
11.1.2.1 Notations

Let :

- X¢={af,...,z5.} be a point set representing a shape under study, where z{ €
IR? is a 3D point. Note that each point set does not necessarily contain the same
number of points.

- X = {X%,...,X°..., X%} be the set of C shapes defining a population under
study.

- M = {mq,...,my} be the mean shape corresponding to the population X. We
consider the number of points N (arbitrary) fixed.

11.1.2.2 The mean shape EM-ICP

Following the work of Hufnagel et al. [HPE*08b], we propose to define the mean
shape M as the one that maximises a likelihood function modelling M as noised versions
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of T¢(X®) (Vc) . This likelihood function, very close to the one presented for the
registration problem in Section 8.1, can be maximised using an EM algorithm which
can be seen as an alternated minimisation of a criterion involving 3 main unknown
interdependent parameters 7°/A¢/M. This criterion writes :

—argmmz[z > AT () — myl P+ 207 > A;jlog(Af,j)},

MASTE (27 " geeXxe myeM wseXem;eM

with Ve, Vi, ZA;]. =1,
7

where :
— for all ¢, A® = (AZC]) is the match matrix encoding the a posteriori probabilities
of correspondence between points of X and of M,

— T°¢ is either a rigid-body or an affine transformation superposing X on M.

In this framework, one can interpret the mean shape as the one for which the “fuzzy
residuals” inexc EmjeM AfJHTC(xf) — 1m;||? subject to optimal transformations 7°
and optimal match matrices A€ is minimal. This criterion is minimised until local conver-
gence by the following 3-step iterative algorithm (that is an EM algorithm) :

Init : M is one of the shape from X. V¢, T¢ = Id
Step 1 : update A°¢

exp(—||T°(x5)—n;|1*/(20))
>k exp(=||Te(z)—my;1?/(202))

for each c, for all 1, j, flf] =
Step 2 : update T°

for each ¢, T = arg ming. » Z A HTC( ) — mjl|?
Step 3 : update M

for all j, 1ij = < Z I S AL Te(af) = & 3.2 AG T ()

Although this method seems simple and natural, it exhibits some limitations. In
particular, the transformations 7 are modeled as linear, similarity or rigid-body trans-
formations. As a result, the criterion is likely to provide a poor estimate of the cor-
respondences between point sets and may fail to characterise complicated structures.
An illustration of this flaw is given in the first row of Figure 11.2. In the following,
we propose to improve the previous definition of the mean shape by considering the
transformations 7 (c € [1,...,C]) as non-linear transformations subject to regularisa-
tions L(7T). Interestingly, depending on the way we interpret the original MS-EM-ICP
criterion, this improvement can lead to two different paradigms. These two paradigms
are equivalent in the case described by Hufnagel and colleagues (when T° is a simple

'In fact, Hufnagel and colleagues define T°(M) as a noised version of X¢, Vc : this is the forward
scheme. Theoretically speaking, the forward scheme is better than the backward scheme (that we
propose to use). In practice, we chose to adopt the backward scheme because it simplifies considerably
the notations and the interpretation but it is possible to adapt all the statements of this part to fit the
forward view.
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linear transformation) but quite different when dealing with non-linear deformations.
In the two ~follovvimg paragraphs, we discuss these two paradigms that lead respectively
to design M as a Fréchet-like mean or as a Procrustean-like mean.

11.1.2.3 First interpretation : the Fréchet-like mean

A first view simply consists in rewriting the last criterion as :

M = arg min d(M, X
g Z o)’

where :

2 2

d(M, X.)* = = min S AT () — myl? + 20 ZA log(Af ).
zi€XemieM i,

If d(.,.) defined a proper distance, this would be the definition of the Fréchet mean

of X for d. Then the natural solution to handle non-linear transformations consists in

replacing the linear transformations by a non-linear transformations subjects to regu-

larisations L :

d(M, X.)? = in, D> AT () — mylP + 207 ) | AS jlog(AS ) + o L(T).
ri€Xcm;eM i,

where o weighs the importance of the regularisation over the data attachment term.
Roughly speaking, this criterion defines the mean shape M as the shape that minimises
both the “mismatches” > . ijEM A7 |Te(5) — m;||? and the deformation ener-

gies a/L(TC) between each X¢ and M. The choice of the parameter o’ and of L is crucial
as it has a strong impact on the definition of the mean shape and thus on the interpre-
tation of the subsequent statistical model. A large o tends to favour regularisation over
mismatching whereas a small o' penalises it. However, note that o' L(T) has to increase
sufficiently when T moves away from non-linear solutions. As an illustration, if & — 0
then for all M, there exists T such that > e > AL |1 Te(xf) — mj||?> = 0 and

O/L(TC) — 0. As a result, the optimal mean shape M can take an arbitrary value, which
is clearly inappropriate.

Moreover in some applications, it is meaningless to capture in the model simple
differences of global orientations of the shape X ¢ (as they are most of the time completely
arbitrary). Then, the regulariser L has not to penalise such differences and thus has to
be invariant to the rigid-body (or rigid-body plus scale) component of the deformations.

Similarly to the original MS-EM-ICP, this criterion can then be minimised by the
following algorithm :

Step 1 : update A°

m;eM

exp(=||T°(x§)—n;|1*/(20))
>k exp(=|Te(zf) =y |2/ (202))

for each ¢, for all i, 7, flfj =
Step 2 : update T° :

for each ¢, 1:”3 =>_;>_;argminge AfJHTC(:Uf) —y])? + o' L(T®)
Step 3 : update M :

for all j, m; = % Yo flf’]j“c(xf)
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Notice that, by using our contributions, one can improve this method by symmetri-
sing the matching process (Section 8.2), imposing symmetric consistency of the trans-
formation (Section 8.4), adding landmarks/descriptors/labels (Section 8.3).

11.1.2.4 Second interpretation : Procrustean mean shape on unlabelled
point sets

Vi ’ Uj +m.7)/2
Tinw
Nz Zz Ai?j Tinv (Iz)

Tinv,
Zi‘@i&j/ Tinv (Il)

X (in dot line)
and M (in solid line)

vj =30, Al Tino (1)
T(X) and M Tipo(X) and M

FiG. 11.2 - First row : Illustration of the classical MS-EM-ICP. From left to
right : i) the point set X and M, ii) T;py(X) and M (T, is a rigid-body transforma-
tion) and the resulting matching >, A; ;Tiny(x;) and iii) the resulting correspondences
vj = Y . AijTino(x;) and mean (v; + m;)/2, Second row : Illustration of the im-
proved MS-EM-ICP. From left to right : i) 7'(X) on M (7T is a non-linear smooth
transformation) and the resulting matching . A; ;7(x;) and ii) the resulting corres-
pondences v; =Y. A jTiny(x;) and mean (v; +m;)/2.

Procrustean mean is a Fréchet mean for the space of labelled point sets. More
specifically, it is defined on a shape space & [DM98|. In this framework, the shape of
an object is defined as the geometrical information that remains when we filter out
translation, rotation (and optionally scale). Then S is defined as the set of all possible
shape of an object. More formally, S is defined as the orbit space of the non-coincident
point set configurations under the action of the rigid-body (or similarity) transformation.
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It is quite different from the previously developed mean as the departure from a
shape to another is then considered as the sum of the squared distances between each
correspondent point (which are assumed to be known) after an optimal rigid alignment
of the shapes (assuming that M and V are set of labelled points) :

d(M,V)? = argmin Y _ ||R(v;) — ml|*. (11.1)
R i

In other words, the shape is what remains after registration (i.e. the residuals in the
shape space) and the departures from the mean are computed only point-to-point dis-
tances (whereas the value of bending energy L(7T°) is taken into account in the design
of the departure to the mean in the Fréchet-like mean). By identification, in the original
MS-EM-ICP, the transformation underlying this registration is modeled by T and the
residuals 3, A; ;||T¢(x$) — m;||? defines the departure from X¢ to M.

Following this view, the original MS-EM-ICP can be interpreted as a two-step al-
gorithm that consists in : i) finding correspondences in X¢ of the points m; : 05 =
S A Te(xf) (after an optimal rigid alignment T°) and ii) computing the subsequent

N | ~e ceey s . .
mean : m; = 5 >_. 05, and iii) iterating :

Step 1 : update correspondences (0F) (after an optimal rigid alignment T°)
compute T°¢ and A€
5; =2 Azgfc(xf)

Step 2 : update M :
for each j, m; = % Zcﬁjc»

This simple algorithm describes an automatic way to compute a classical Procrus-
tean mean shape. For a better understanding of this process, one can regard it as :

M = argmin Y _d(M,V(X,M))?, (11.2)
M C

where M and V¢(.,.) are labelled point sets and d(,.) is the Procrustean distance des-
cribed in Eq. 11.1. Each labelled point set V¢(X, M) (c € [1,..., N]) is the result of a
registration process of X¢ on M. Then the previous algorithm can be described as i)
the estimation of V¢ knowing the population X¢ and M and ii) the estimation of M
knowing V*°.

As previously claimed, the previous algorithm is likely to fail to characterise com-
plicated structures. Thus, we propose to improve the estimation of the correspondences
vj by introducing a non-linear deformation linking M and X°€ into the criterion. This
new term will improve the estimation of the matrices A° and thus the subsequent esti-
mation of the correspondences (UJC) However, to preserve the spirit of the Procrustean
mean, the non-linear deformation has to affect only the estimation of the matrices A€
and not to change the nature of the shape space (that is defined as an orbit space un-
der the action of a simple similarity transformation). This view results in the following
algorithm :
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Step 1 : update correspondences (0) (after an optimal rigid alignment 7°¢) :

Ve, compute T¢ and A° (using a non-linear registration)
Ve, Vg, compute v§ = > Af]ﬂ%v(xf)

Step 2 : update M :
for each j, m; = % PR

where T, is the rigid component of T°. An illustration of this strategy is given in the

second row of Figure 11.2.
This algorithm is designed as an extension of the MS-EM-ICP and we did not find
any proper criterion it minimises. However, we observe that the value > d(M, V¢(X, M))?

decreases throughout the iterations and that the obtained mean shape fits well the data
X.

Conclusion :

When modeling T" as a linear transformation (without penalisation), the two deve-
loped algorithms (Fréchet-like mean and automatic Procrustean mean) coincide and
are equivalent with the algorithm proposed by Hufnagel and colleagues. When using
non-linear transformations, the two algorithms describe two different points of view.
As for now, we have not investigated the respective added values of both frameworks
to the estimation of a statistical model but we plan to investigate their generalisation
abilities (indicating how closely the shape model matches an unknown observation) and
specificity (indicating how the obtained shape model describe shapes similar to the ones
in the training set X).

In the following, we choose to use the automatic Procrustean mean to perform
mean shape estimation and statistical shape analysis because of i) its simplicity of
interpretation as opposed to the Frechet-like mean (largely depending on L/a/) and ii)
the easiness of the underlying statistical analysis.

11.1.3 Virtual correspondence & projection

As previously mentioned, the match matrix allows to compute the “virtual” corres-
pondent of each point of the mean shape in each shape of the population under study
using the a posteriori probability of matchings encoded in A7 ; (Ve) : v§ = >, A7 Tin, 5.
In the following, we assume that the shapes X¢ are initially rigidly registered together
and thus that Tiy, = Id and v§ = > A 5.

Another interesting use of this a posteriori probability concerns the projection of
pointwise individual mapping on the mean shape M. Consider that each point z{ of
X¢ contains a scalar information (e.g. cortical thickness, local asymmetry, curvature,
...) that we call sX°. Then, the projection of SX° = (sX°) on M is given by s;XCHM =
> Afvjsfc. As ¥y, >, Af; = 1, the “interpolated” value at m; is a weighted mean of
the values at different points X. This last property will be useful for the projection of
individual asymmetry maps on a reference template.
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11.1.4 Comparison of populations

Once a mean shape M and the non-linear transformation best superposing M on
each X¢ are computed, several techniques allow the comparison between populations
of shapes using either the different bending energies [LMS*08] or displacement fields
[PLNS04], and t-tests or permutation tests.
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11.2 Quantification of asymmetries over/between popula-
tions

In this section, based on the previously described tools, we develop a pipeline for
the quantification of asymmetries over or between populations. We consider that all the
structures can be and are oriented in a common orthogonal frame consisting of three
axes that we call anterior-posterior, left-right and head-foot.

11.2.1 Computation of individual asymmetry maps

Let X¢ € X be a point set representing an anatomical structure under study. Its
individual asymmetry maps are computed as follows :

1. computation of the approzimate symmetry plane P of X¢ using the algorithms
described in Part 1.

2. computation of the asymmetry field as the deformation field best superposing X¢
and Sp(X€) using the algorithms described in Part 2.

3. computation of the 3 individual asymmetry maps by projecting each pointwise
vector of the asymmetry field on the 3 coordinate axes. This allows to differentiate
the anterior-posterior, left-right and head-foot components of the asymmetry field.
This leads to 3 different scalar asymmetry maps for each point set X¢. We call
these asymmetry maps SX°AF §X%LR and §XSHE,

11.2.2 Computation of a mean cortical shape & projection of the
asymmetry mappings

We consider C' point sets X', ..., X% representing the C structures under study.
Their individual asymmetry maps SX°AF §X%LE apnd SXSHE have to be put in a
common geometry to be compared. For this purpose, we use the method described
above to iteratively compute :

— the point set M representing the mean shape,

— the match matrices {A',..., A} (describing the fuzzy point-to-point correspon-
dences between the point sets X¢ and M),

— the transformations T° (best superposing the point sets X¢ and M).

Once the mean point set M and the fuzzy match matrices A are computed, we
project each individual (scalar) asymmetry maps SX“AF §XLE and §XHE on M
which provides the normalised individual asymmetry maps SXi—AP  §Xi=M.LE an4
SXi=M.HFE - Ag pointed out in Section 11.1.3, the mapping at point m; € M was defined
as sj(c_’M’AP => Afjs;.xc’AP (and similarly for sX“=MLR and sX“=MHF) The whole
process of computing 3 asymmetry maps for one simplified cortex and projecting these
maps on the mean shape is described in Fig. 11.3.
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Fia. 11.3 — Mapping asymmetries on one subject : All the rows are described
from left to right. First row : simplified point set X - superposition of Sp(X) on X
- superposition of T'o Sp(X) on X (the patchy appearance shows the residual errors
after nonlinear registration of X and Sp(X)). Second row : left-right (width), head-foot
and posterior-anterior (protrusion) components of the asymmetry field. Third row :
projection of the 3 asymmetry maps of X (second row) on the mean point set M.

11.2.3 Computation of the symmetry surface

When dealing with cortical surfaces, we can analyse the deviations of the inter-
hemispheric fissure by estimating the symmetry surfaces of the point sets (using the
method developed in Section 4.1). As opposed to the mid-sagittal plane, which is only
used as an intermediate result to compute the asymmetry field, this surface offers an
insight into the configuration of the inter-hemispheric fissure, and can be analysed as
such.



Chapitre 12

Asymmetries

In this chapter, we propose to illustrate our previously developed pipeline for the
quantification of asymmetries over and between populations by performing a study
comparing cortical asymmetries of Situs Inversus subjects with control subjects.

12.1 Note on asymmetry maps :
The interpretation of the directional asymmetry maps we defined in the previous

chapter can be quite misleading. To alleviate some bad interpretations of the results
proposed in this chapter let us first consider the two following points.

AT

N

FiG. 12.1 - How to read asymmetry maps.

Ambiguous colour maps : Figures 12.1.a and 12.1.b show how to read asymmetry
maps. Let X be an object in black, its approximate symmetry plane P and its sym-
metrical image Sp(X) (in red), we compute the deformation superposing X on Sp(X)
(black arrows). The left-right component of the deformation field (Fig 12.1.a) points
towards the same direction in the left and in the right side of the object. Consequently,
the color map (indicating the left-right component of the asymmetry field) on the two
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sides of the object will be roughly symmetrical. However, the deformation indicates that
the left side extends more laterally than the right side.

For the components of the deformation field that are not orthogonal to P (i.e. antero-
posterior Fig 12.1.b and head foot), the deformation field corresponding to analogous
structures points towards opposite directions. In our example(Fig 12.1.b) , the top-left
(where the deformation points towards the positive direction) and bottom-left (where
the deformation points towards the negative direction) area both protrude more than
their counterpart.

To sum up, one has to look carefully at the direction of the axis to interpret the
results : hot (resp. cold) colors do not necessarily imply expansion (resp. shrinking).

Asymmetric maps : Figure 12.1.c¢ illustrates why asymmetry maps are likely to
look asymmetric. Let be an object X (in black) and its symmetrical image Sp(X) (in
red), registering X on Sp(X) and registering Sp(X) and X is similar and theoreti-
cally should lead to equivalent results. However, the origin of the vectors composing
the displacement field are different as the object is not symmetrical and thus the resul-
ting asymmetry maps have no reason to be symmetric. In other words, the computed
information (i.e. the deformation field) is symmetric but its representation is not.

12.2 Illustrating our pipeline : study on Situs inversus

This work is the result of a collaboration with Neil Roberts and David N. Kennedy.

Subjects with situs inversus (SI) have the potential to provide unique clues into the
developmental mechanisms underlying the torque and its relationship with hemisphe-
ric dominance for language. Situs inversus is a very rare condition (i.e. affecting 1 in
10,000 live births) where all the visceral organs are on the opposite side of the body
to where they would be expected and as if they were reflected in a mirror. General
health, however, is not generally affected and thus clinical imaging studies are very
scarce [Woo86, CGHT93, KOT*99, IHF10].

In short, Kennedy and colleagues and Thara and colleagues [KOT 99, IHFT10] each
studied a different three subjects with situs inversus (3 very strong right-handers for
Kennedy data and 1 very weak right-handedness, 1 very weak left-hander and 1 very
strong right-hander for Thara data). Both groups report that brain torque is reversed in
all three subjects with situs inversus and both groups suggest that leftward anatomical
asymmetry of language structures i.e. planum temporale (2 out of 3 in [KOTT99| and
3 out of 3 in [THF*10]) and IFG (3 out of 3 in [THFT10]) is present in situs inversus,
but differ in that Kennedy suggests left hemisphere functional dominance for language
using MRI [KOT*99] in all 3 subjects and Thara suggests right hemisphere functional
dominance for language in 2 out of 3 subjects using MEG [[HF"10|. Therefore, struc-
turally there seems to be preserved local asymmetries of language-related structures in
situs inversus but reversed torque and maybe also reversed functional dominance for
language.

To our knowledge, the relationship between the brain torque (measured in terms
of the protrusion and/or lateral extension of the frontal and occipital lobes) and de-
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viations in the inter-hemispheric plane has not been previously studied. Our goal was
to perform such a study using our tools on two right-handed male subjects with situs
inversus in comparison with a group of eleven age-matched right-handed male control
subjects. The two subjects with situs inversus have already been studied by Kennedy
and colleagues [KOT199] and we aim to replicate and extend their observations, by
using a more homogeneous control population in terms of age, handedness and sex.

12.2.1 Subjects and image acquisition

Data were available for two right-handed male subjects with situs inversus [KOT99].
These two subjects are denoted as subject 1170 and 1175 in the following. Both were
aged 33 years. The control subjects are eleven right-handed male volunteers, ranging in
age from 24 to 42 years (mean 28 £ 4.8). A 256 x 256 x 182 3D T1-weighted image of
1mm isotropic resolution was acquired for each control subject on a Philips Achieva 3T
System (Philips Medical Systems, Best, The Netherlands). The series of images covered
the whole brain and were acquired without any gap in the axial plane parallel to the
anterior-posterior commissure line.

12.2.2 Preprocessing

For each subject’s MRI, the following pipeline was applied. We first segmented grey
matter and separated each hemisphere (surfer.nmr.mgh.harvard.edu). The mesh was
smoothed to remove inter-subject variability arising from the gyri and sulci. For this
purpose, we applied the following process on each mask (each hemisphere separately).
We applied a closing ( i.e. a dilation followed by an erosion) of the corresponding binary
mask and repeated this process k times. In practice, the larger k, the “smoother” the
cortex. Then for each such produced mask, we extracted a mesh using marching cubes
(vtk.org). Using k = 10, we obtained visually satisfying results, giving meshes of about
150k points (Fig. 11.3, first row).

12.2.3 Mean, standard deviation and significant asymmetries in controls

We had a collection of n (x 3) scalar normalised individual asymmetry maps SX1—M

projected on a common mean mesh M. For each point of M and each of the 3 compo-
nents of the asymmetry, we computed the mean asymmetry and its standard deviation
over the 11 subjects and we performed a pointwise t-test with the null hypothesis Hy :
“There is a perfect symmetry”. We corrected the obtained p-values for multiple compa-
risons by i) fixing a suprathreshold o = 0.05, ii) building the permutation distribution
of the maximal suprathreshold cluster size (by shuffling the p-values over the mesh
and computing the size of the largest cluster of points with a p-value greater than «,
using 20,000 permutations) iii) setting the critical suprathreshold cluster size as the
[ x 20, 000]+1*" largest value over the sampling distribution and iv) removing the clus-
ters having a size smaller than the critical suprathreshold cluster size from the statistical
map [NH02|. The results are displayed on Figures 12.2 and 12.3.

X, M
5%
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FiG. 12.2 — Mean for each of the 3 components of the asymmetry field (11
subjects). Each row shows one of the components (from top to bottom : left-right,
head-foot, posterior-anterior) with different views.
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FiG. 12.3 — p-value maps for each of the 3 components of the asymmetry field
(11 subjects). Each row shows one of the components (from top to bottom : left-right,
head-foot, posterior-anterior) with different views. The null hypothesis is that there is
no asymmetry (t-test, corrected for multiple comparisons using suprathreshold cluster
size tests [NHO02J).
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12.2.4 Computation of regional asymmetries

For an easier interpretation of the results, we integrated the pointwise asymmetry
values over the frontal and occipital lobes of each of the subjects. Both lobes were
extracted following affine registration of the LONI LPBS40/SPM5 atlas [SMAT08] to
each subject of each of the subjects. Then for each subject, we computed the average
left-right ("width") and the posterior-anterior ("protrusion") components for both the
frontal (F') and occipital (O) lobes. To be even more synthetic, for each subject we noted
the lobe (L or R, i.e. left or right) that appears wider and that protrudes more than its
counterpart. When the difference in width or protrusion between the hemispheres was
low (< 107! mm), we noted 0 instead of L or R. For both the width (L-R), protrusion
(P-A) components of the asymmetry field over the frontal and occipital lobes), we
performed a t-test with the null hypothesis Hy : “There is a perfect symmetry”. This
integrated analysis was performed both on controls and SI subjects. In the same way,
we averaged the mean curvature ("deviation") of the symmetry surface for both lobes.
L (resp. R) indicates that the left (resp. right) hemisphere deviates towards the right
(resp. left). For both lobes, we performed a t-test with the null hypothesis Hy : “There
is no deviation of the inter-hemispheric fissure”. This integrated analysis was performed
both on controls and SI subjects. The results are displayed on Tab. 12.1.

1123456789 ]10]11 p
O protrusion | L |L |L|L|R|L|L|L|L|L | 0| p<0.05
O width LIL|]O|L|R|L|L|L|L|]L]| LI p<0.05
Ocurvature | L |L | O |L|R|L|L|L|L| L | L | p<0.05
F protrusion | R | R|R|R|L|R|L|R|L|L | 0| p>0.05
F width R|{LIOJR|R|O|L|O|L|R]|L/| p>0.05
Fcurvature | R/ R|R|O0O|R|O0O|O0O|R|R| R | 0 [ p>0.05

TaB. 12.1 — Protrusion/width interhemispheric differences and curvature of
the symmetry surface. We display these differences for the 11 subjects for occipital
(O) and frontal (F') lobe. More details in the core of the text.

12.2.5 Individual asymmetry on SI subjects

The asymmetry maps are shown in Figure 12.4 and Figure 12.5 and the integrated
values in Table 12.3.2.
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FiG. 12.4 — Asymmetry map for each of the 3 components of 1170.
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FiGg. 12.5 - Asymmetry map for each of the 3 components of 1175.
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- 1170 | 117 p
O protrusion R R | p<0.05
O width L R | p>0.05
O curvature L R p>0.05
F protrusion L L p<0.05
F width L L p<0.05
F curvature L L p<0.05
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TAB. 12.2 — Integrated values for the two SI subjects and p-value (t-test) with
Hy : SI subjects belong to the control population.
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12.2.6 Significant differences of asymmetry between controls and SI
subjects

We performed two tests to compare the control and the SI populations. First, we
simply proposed to compute a pointwise p-value using a t-test comparing independently
each SI subject with the control population (Hp : “The given SI subject belongs to
the control population”). The p-values were then corrected for multiple comparisons
using the same technique as in Section 12.2.3. The computed p-values are displayed in
Figures 12.6 and 12.7.

Then we performed a pointwise permutation test (Hy : both ST subjects belong to
the control population) using the mean difference as a statistic. The p-value at each
point is simply the proportion of the permutation distribution of the statistic greater
than or equal to the observed statistic [Goo00|. The p-values were then corrected for
multiple comparisons using the same technique as in 12.2.3. The computed p-values are
displayed in Figures 12.8.

0.0125 0.0250 0.0375 0.0500

F1G. 12.6 — p-value of (corrected) t-test with Hp : 1170 belongs to the control
population.
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0.0125 0.0250 0.0375 0.0500

F1G. 12.7 - p-value of (corrected) t-test with Hy : 1175 belongs to the control
population.

0.00 0.0125 0.0250 0.0375 0.0500

FiGg. 12.8 — p-value of permutation test with Hy : SI population and control
population are identical.
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12.3 Results

12.3.1 Controls

Occipital lobes on controls : At the population level, and at the chosen significance
level (p=0.05, corrected for multiple comparisons) the left occipital lobe appears to be
wider (or bending towards the other side) and protrudes more posteriously than the
right occipital lobe (Fig. 12.2, first and third rows). These results are corroborated by
the averaging of the asymmetry values (width, protrusion, bending) over the occipital
lobes, where only one of the subjects does not seem to fit the general pattern (Table
12.1).

Frontal lobes on controls :  The tip of the frontal lobes do not appear as signi-
ficantly asymmetrical at the chosen level (p=0.05) for any of the 3 components. This
could be due to the high variability in frontal lobes, which yields low t statistics and
thus high p-values. However, when we average the 3 asymmetry components in the
frontal lobes and look at the results at an individual level (Table 12.1), we see that the
right frontal lobe is wider than the left in only 4 out 11 subjects and protrudes more
anteriorly in only 6 out of 11 subjects, which corroborates the results of the statistical
maps. However, the fissure seems to bend towards the right in 7 out of 11 subjects, and
never seems to bend towards the left.

Parietal lobes on controls : At last and interestingly, we also find an area in the
parietal lobe with a small significant "vertical" (head-foot) asymmetry : the right side
seems to be "higher" compared to its counterpart (Fig. 12.2, second row).

Summary : Overall, these results do not support the existence of a counterclockwise
torque at the population level, although the left occipital lobe seems to be significantly
wider than the opposite side, while bending towards it and protruding more posteriously.
Intriguingly, we recover a significant left-right asymmetry on top of the frontal lobes
(Fig. 12.2, first row), in the same direction as in the occipital lobes, that is, it seems
bigger on the left side. This area is located close to the Broca’s area.

12.3.2 Situs inversus

Right occipital lobes protrude more anteriorly than the left in the two subjects, while
it is the opposite in the frontal lobes. The left frontal lobes are also wider than the right
counterpart and bend towards it. On the contrary, width and curvature measurements
are different between the two subjects in the occipital lobes (Table ). This is corroborated
by Fig. 12.4 and 12.5, where one can also see that the head-foot components are opposite
in the occipital lobes between the two subjects (Table , Figures 12.4 and 12.5).

Comparison : The two SI subjects appear significantly different from the control
subjects in the frontal lobes for the left-right component and in the occipital lobes
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for the antero-posterior component (Fig 12.8). Interestingly, both SI and controls show
significant, but opposite, protrusion asymmetries in the occipital lobes. This observation
is our most striking finding and the occipital protrusion appears to be a significant
discriminative pattern between the two populations. This results are preliminary and
more interpretations are needed to have a real understanding of our findings. More
subjects are to be included too.
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Chapitre 13

Conclusion

13.1 Contributions

The design of tools for the quantification of asymmetries over and between popula-
tions of anatomical structures represented by point sets was an important goal of this
PhD work and in this sense, our methodological choices find new justifications. Indeed,
they lead to particularly simple and powerful solutions for group-wise studies. In parti-
cular, the initial probabilistic consideration allows to define the mean shape of a given
population and the projection of individual point-wise information on the mean shape
in a simple way. This application is particularly related to our probabilistic framework.
Moreover, one shows that the method to compute a symmetry surface that we design
in Part I provides an alternative suitable description of the departure from a perfect
symmetry. We also illustrated our methodology on a real application.

13.2 Discussions

In Section 13.2.1 we address some questions and remarks concerning the propo-
sed MS-EM-ICP algorithms and in Section 13.2.2 we address questions and remarks
concerning our asymmetry analysis pipeline.

13.2.1 Mean shape EM-ICP strategies

It is clear that a deeper analysis and evaluation of the two proposed methods
(Fréchet-like mean and Procrustean-like mean) has to be performed. However, the first
results are very encouraging. Moreover, notice that the results obtained by the original
MS-EM-ICP has been validated in a series of papers [HPET08b, HPE*08a, HPET07|.

At that time, it is difficult to assess the relative added value of each one of the
improvements we proposed and to determine which one will be better suited for a
given application. However, one can notice that the mean (and thus the underlying
statistical model) computed from the Fréchet-like mean algorithm strongly depends on
the design of the regulariser L. Generally speaking, there exists no model to characterise
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the deformation of a given organ and the design of L can be very problematic. By
contrast, the Procrustean-like mean does not depend directly on L but on the quality of
the correspondences obtained during the registration process that we think to be more
independent of the design of L. For this reason, this last method is less dependent on
ad hoc, and sometimes quite arbitrary, choices.

13.2.2 Pipeline for asymmetry quantification
13.2.2.1 Alternative solutions

We chose to adopt a quite natural strategy for the mapping of asymmetries on
population of shapes. This choice is debatable and several other choices are conceivable.
In the following, we list existing or possible alternative approaches and discuss them.

a) Joint symmetry plane and asymmetry field computation :

In our pipeline, we considered the estimation of the approximate symmetry plane
and the estimation of asymmetry maps as 2 successive independent problems. However,
this view can lead to contradiction. As an example, nothing can avoid that some points
considered as corresponding to a highly symmetrical part of the shape under study
during the estimation of the approximate symmetry plane are then considered as highly
asymmetric (i.e. the points are associated to large displacement vectors) during the
estimation of the asymmetry field. We propose to tackle this flaw using a criterion of
the form :

P =argmin Y A;j||z; — T(Sp(x;))||> + & L(T) + 207> A; jlog(Ay ),

T - -
’ /L)] 27]

with this solution, one estimates both the asymmetry field and the symmetry plane
in a single task. Moreover, if one considers o small (in this case, the residuals will tend
to be null), one can interpret P as the plane that minimises the deformation between
X and its symmetrical image. This provides an alternative definition of the symmetry
plane. We tried to design such a solution but the minimisation leads to poor estimate
of both the symmetry plane and the asymmetry field.

b) Asymmetry quantification as a registration problem :

Recently, Olafsdottir et al. [OLD*07| proposed to quantify asymmetries of 3D sur-
faces by registering a template, perfectly symmetrical surface, to the surface of interest
in a non-linear way. The difference between the two displacement vectors needed to map
bilateral points of the template with points of the surface is used to quantify the local
asymmetry at these points. This approach is quite nice as it allows to compute in a
single task both the asymmetry field and its projection to a template. However, such an
approach can lead to substantial errors as small errors during the registration process
are likely to importantly bias the asymmetry quantification. Moreover, this technique is
not based on a well grounded definition of the asymmetry and appears as quite tricky.
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As a result, the obtained asymmetry maps might be quite difficult to interpret. An
illustration of this flaw is given in Figure 13.1.

Asymmetry (in mm)
0.00 1.00 2.00 3.00 4.00

Fic. 13.1 — From left to right : a deformation field is applied to a perfectly symmetrical
face ; estimated asymmetry map by our strategy; normalised asymmetry map on the
template ; template-based asymmetry map as estimated by the method of Olafsdéttir
[OLD*07]. Both strategies are implemented using the same registration algorithm.

c¢) Asymmetry quantification as a classical shape analysis problem :

Asymmetry analysis is a shape analysis problem and could be tackled as such. If
most of the subjects of a population exhibit a significant common asymmetry pattern,
then it is likely that the mean shape will also exhibit it and that their asymmetries
can be visualised via a classical analysis (e.g. modes of variations). However to our
opinion, two main flaws limit this approach. First, the statistical shape modelling is
a more difficult problem that the one consisting in quantifying asymmetries over a
population. This is mainly due to the fact that it is generally more difficult to explain
the variability between two different structures than the variability between a structure
and its symmetrical image. Secondly, shape analysis does not focus on asymmetry and it
is likely that the visualisation and the interpretation of the asymmetry would be hidden
by the numerous variations among the population.
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Chapitre 14

(General conclusion

In this work, we presented a pipeline allowing the quantification of asymmetries bet-
ween and within populations of anatomical structures. It is composed of a deformation-
based approach and of the computation and the study of symmetry surfaces. An appli-
cation of this pipeline is illustrated in the study comparing situs inversus and control
subjects (Chapter 12). This pipeline relies on a set of methods that have been exposed
independently in this work. However, all these methods have been developed in a uni-
fied framework relying on a MAP definition of the problem (optionally modified and
improved) :

Let F : IR®> — IR? be a transformation best superposing (in a very general sense)
two point sets X and Y. If we consider the points of X as the means of a Gaussian
mixture model (GMM), the points in Y as independent samples of this GMM, and
exp(—FL(F)) a prior on F, then the MAP estimate of F is :

F = arg max H Z Tikpk(yj; F) | exp(—BL(F))
F
y; €Y X

where the py(;T) = N (F(zy),0%I) are Gaussian pdfs and the ms (Vj, k,0 < mj; < 1
and Vj, ), mjr, = 1) are the mixture proportions. In essence, 7, conveys the probability
that the point y; in Y is matched with the point z; in X without knowing anything
else.

The methodological contributions and perspectives of this PhD were mentioned in
the conclusion chapters finishing each part of this document. To our opinion, our main
contributions have consisted in providing pragmatic and robust tools for the non-linear
registration of large point sets and the accurate quantification and comparison of asym-
metries over and between populations. These needs does not consist of an arbitrary
choice but corresponded to a real demand met since the beginning of my PhD. The
several ongoing studies (that are listed below) with various scientists going from pa-
leoanthroplogists to psychiatrists illustrate this aspect.
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14.1 Ongoing studies on brain asymmetry

SI vs control cortical asymmetries (in collaboration with Neil Roberts and
David N. Kennedy) :

Subjects with situs inversus (SI) have the potential to provide unique clues into the
developmental mechanisms underlying the torque and its relationship with hemispheric
dominance for language. We presented first results concerning this study in Chapter 12.

Bonobo vs Humans cortical asymmetries (in collaboration with Neil Roberts) :

Typical patterns of anatomical/functional asymmetries have long been thought to
be typical of human beings (Homo sapiens). There has been much debate recently
on this puzzling question, and some have claimed that these asymmetry patterns are
actually shared by other great apes. Answering this key question could have important
implications in the understanding of language origins and in what makes the humans
unique. In this study, we quantify and compare the global asymmetry of 10 humans and
10 chimpanzees (acquired on the same MR system).

Brain-endocasts comparison (in collaboration with Marc Fournier, Neil Roberts
and José Braga) :

Endocranial casts are commonly used to infer the shape, size, asymmetry or ove-
rall organization of the brain of fossil species. However, the inner surface of the skull
is separated from the brain by the meninges, and thus endocasts are only an indirect
representation of the brain. Few studies seek to assess the faithfulness of this represen-
tation, upon which is based much of our knowledge on the evolution of the brain of
hominids. The aim of this work is to automatically map in 3D the distance between the
brain and the inner surface of the skull in humans and chimpanzees to see how some
morphological characteristics of the endocast (and in particular its asymmetries) relate
to those of the brain in these two populations. MR images of humans and chimpanzees
are used to automatically extract their brain and virtual endocast. Then point-to-point
distances are evaluated between the two surfaces. An automatic computation of a mean
endocranial shape within each population provides an average distance map whose spa-
tial variation is investigated. Finally bilateral asymmetries of the brain and endocast
are also computed, mapped and averaged on the mean endocranial shape of each popu-
lation. Results show that the local distance between the brain and the virtual endocast
strongly varies between anatomical regions, but symmetrically with respect to the mid-
sagittal plane. It follows that global asymmetries of the brain and of the endocast are
very similar in these two populations. First results are given in Figure 14.1.

Chimpanzees Vs Bonobos Vs ancestors endocranial asymmetries (in colla-
boration with Francis Thackeray, José Braga, Antoine Balzeau and Emmanuel Gillis-
sen) :

The study of endocranial asymmetries of hominids is a central topic in paleoneuro-
logy. However, our knowledge about the emergence of these asymmetries during human
evolution is still limited. This is partly due to the fact that, so far, the 3D asymme-
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6.7 (mm)

FiG. 14.1 — Distance color map pattern between the endocast and brain hull shown on
the average endocast mesh. (a) Top view. (b) Bottom view. (c) Front view. (d) Right
side view. (e) Rear view. (f) Left side view. The linear color map scale is in millimeters
and the distance values are shown on the color bar.

tries have been mostly analysed using landmarks and semi-landmarks based methods.
Such methods are limited as they only provide a partial description of the anatomy and
thus of the possible asymmetries. One key problem before assessing the evolution of
patterns of asymmetry in hominids is the identification of confounding factors such as
intra-specific variability as well as age and sex influences. We study virtual endocasts
of 60 Pan paniscus and 59 Pan troglodytes of different dental age and sex. 3D statisti-
cal analyzes are led to assess significantly asymmetrical areas on the endocasts within
each population, and a comparison is made between the two populations. Several fossil
hominin endocasts (such as Australopithecine species and fossil Homo species) will be
then reexamined in light of the previously estimated variability with these two extant
Pan species.

We display here some preliminary results on famous fossiles :

e Cro-Magnon 1' endocranial surface was segmented using AtreCore from a CT scan
and contains about 650k points (Fig.14.2).

e Mrs Ples? endocranial surface was segmented from a CT scan 515 x 512 x 998 of
resolution 0.348 x 0.348 x 0.2 mm using Amira and contains about 159k (Fig.14.3).

14.2 Other ongoing applications

Osseous labyrinths (in collaboration with José Braga and Didier Descouens) :

The bony labyrinth consists of three parts (the two vestibular sacs, the three se-
micircular canals and the cochlea) and houses two functional systems. The vestibular
system provides one way of motion detection in a three-dimensional space. The cochlea
is specialised for sound detection. These two functional systems represent relatively au-
tonomous modules. The close anatomical relationship between the bony labyrinth and
the corresponding receptor endorgans provides an opportunity to study osteological spe-

! Homo sapiens dated from about 30 thousands of years discovered at Les Eyzies (France) in 1868
by Louis Lartet

% Australopithecus africanus dated from 2.6 - 2.8 million of years and discovered at Sterkfontein
(South Africa) in 1947 by Robert Broom and John T. Robinson
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Asymmetry (in mm)
0.00

Asymmetry (in mm)
-1.50 0.00

Fia. 14.3 — Asymmetry map on Mrs Ples. Areas 17-18-19-39-40, the left side pro-
tudes more than the right. Areas 41 to 45, the right side protudes more than the left

cimens (including fossils). So far, this has been done mainly by using linear, surface and
volume measurements separately for the semicircular canals and the cochlea. This study
is motivated by the fact that the investigation of the three-dimensional (3D) anatomical
variation of the bony labyrinth in extant species represents a prerequisite for the inter-
pretation of their fossil closest relatives. This prerequisite has not been fulfilled yet due
to (i) the complexity of the labyrinth 3D geometry ; (ii) the lack of high resolution data;
(iii) the lack of appropriate and expert-independent comparative methods. We propose
to use 3D geometrical models of 40 bony labyrinths reconstructed from micro-CT scans
of extant humans, chimpanzees (both common and pygmy) and baboons to investigate
some new morphological features which could be used to assess some motion or hearing



List of publications 153

parameters of fossil taxa. Even if these assessments remain speculative, they allow us
to investigate the co-evolution of the two functional systems of the inner ear in extant
or extinct higher primates. First results are given in Figure 14.4.

Mean shape -2~/ ,v; Mean shape Mean shape+2+/X,0;

Fia. 14.4 — Mean shape and first mode of variation (+ 2 /A1) and on 10 osseous
labyrinths : the first mode can be interpreted as a size change of the canals.

Neuronavigation (in collaboration with Pierre Hellier and Charles Garraud) :

An engineer is currently integrating our non linear-registration methods into a neu-
ronavigation system. As possible patents are considered, we cannot give more details
about this work.

14.3 List of publications

14.3.1 International conferences

1. Benoit Combés, Sylvain Prima. An efficient EM-ICP algorithm for symmetric
consistent non-linear registration of point sets. In 13th International Conference on
Medical Image Computing and Computer-Assisted Intervention, MICCAI’2010, Tianzi
Jiang, A. Colchester, J. Duncan (eds.), Lecture Notes in Computer Science, Pékin,
Chine, Septembre 2010.

2. Benoit Combés, José Braga, Francis Thackeray, Sylvain Prima. 3D automated
quantification of asymmetries on fossil endocasts. In 79th Annual Meeting of the Ame-
rican Association of Physical Anthropologists (AAPA), Albuquerque, Etat-Unis, Avril
2010.

3. Daniel Miinch, Benoit Combeés, Sylvain Prima. A modified ICP algorithm for
normal-guided surface registration. In Proceedings of SPIE Medical Imaging 2010 :
Image Processing, Benoit M. Dawant, David R. Haynor (eds.), San Diego, Etat-Unis,
Février 2010.
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Annexe A

Closed-form solution for symmetry
plane estimation

A.0.3 Principal axes
A.0.3.1 Fitting a plane in point set

2

E(P) =) d(xi, P)=>)_|n"z; —d|

o T
%——22(71 x —d)

o€ T
%—0:>Zn x = card(X)d
o0& T
%—0:>d—n Hirel

Setting this new expression for d we have at the optimum :

E(P) =) (nTzi—d)? =) (n"zi—n"T2g)? = (0" (zi—2q))* =n" Z((zi—azg)(ﬂsi—xg)T)n

% % %
As a result optimal n are among the eigenvectors of matrix >_.((z; — z4)(z; — 2¢)T)
(called the scatter matrix).

A.0.3.2 Scatter matrix and inertia matrix

The scatter matrix S is linked with the inertia matrix J by the expression :
S=J-Q xi+ui +2) I,
i
Let ¢ and X be respectively an eigenvector and an eigenvalue of J. Then

(J= O ai+yl+2) 0o =Jo— () _af +y} +27)b
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= A+ (aF + 97+ ).

As a result, ¥ is an eigenvector of 3, ((z; — ) (x; — x4)7) with eigenvalue A + 3, (x? +
2, .2
v +27).

A.0.4 Optimal solution for symmetry plane estimation with known
matchings

Considering (1), the minimisation of (2) with respect to P can be written :

= (d,n) = arg mmzzwZ Hyl (Is — 2nnT) T — an’ ‘2 with the constraint ||n|| =1
dn) 75

The Lagrangian £(d, n, \) associated to the previous constrained minimisation problem

is :

For the optimal d one necessarily has 2 8 7 = 0, which writes :

% =0 & Zwl —(13—2TL’I’LT)$Z‘—2dTL)] =0

& Zwl yz+x1)—2d]—0

& d= > " wilwi +i)"
2Ziwi i wz(xz“‘yz) n
1

& d:§(xg+yg)Tn

noting

Tg =

1
ZZ- i ;wzxz and yg = Z
Substituting this expression of d in the Lagrangian, we obtain :
L(d,n,\) = [Z wi|| (I3 — anT) zi +nt (xg +yg)n —uil?| = A(||n|* — 1)
i
= [Z wil|(I3 — nn®)x; — nnTx; + oz, + nnTy, — nnTy; +nnTy; — yil)?

=A(lnll* = 1)



159

because V(u,v) € IR? x IR, vTuv = vvTu; then we can rewrite :

L{d,n, ) = [Zwil\ (I3 — nn®) (z; —yi) — nn' (x; —xg + yi — yy) ||2] = MlInff* = 1)

By developing the sum, we get :

L(d,n,\) [sz!\ Iy —nn®) (zi —yi) || +

szHnn xg"‘yi_yg)’Q]

IQZwZ 7 T (Is — nn")ynn" (x; —xg+yi—yg)] = A(l|n|* = 1)

Considering that (I3 — nnT) nn®T =0, we get :

+0

L(d,n, ) = [Zwil\(fs—nnT)( yi) I | + szllnn — 2 +yi — yg) I

=A(l[nl[* = 1)

By developing the two sums, we get :

L(d,n,\) =

Z wz T z IS - nnT) (I3 - nnT) (CE, - yz)]

g ZU’Z(»TZ — T+ yi — Yg)(Ti — 29+ yi — yg)T] n-— >\(|\n||2 -1)
considering that (I3 — nn®)(I3 — nnT) = I3 — nn™, that leads to :

dTL)\ sz Ly z - sz £y Z z_yi)T]n

TN wias = wg + yi — o) (w5 — g + 4 — yg>T] n—An"n—1)

Finally, we get :

L(d,n,\) sz zi —yi)> —nT (A= N)n + A
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with

A=) w; [(-Ti — 2y 4+ yi — Yg) (i — 2y +yi —yg)" — (i — i) (@i — yi)T}
i
Consequently, the optimal n is such that :

oL

5.=0 & (A= Mzn=0

That is to say that n is an eigenvector of the symmetric matrix A. This yields :
L(d,n,\) = Zwi (zi — yi)* + A at the optimum (A.1)
i
The first term of this expression does not depend on n and the second term is

minimal when X is minimal. In other words, the optimal n is a unit eigenvector of A
corresponding to the smallest eigenvalue A of A.



Annexe B

The EM algorithm

B.1 Formulation générale

On se place dans le cadre d’'un probléme “aux données incomplétes” : on observe
une v.a Y qui est en relation avec une v.a X non observée mais qui ne la détermine
pas complétement !. La distribution suivie par la v.a X est fonction d’un paramétre 6
inconnu et est modélisée par p(X|0).

L’objectif de ’algorithme EM est de calculer le paramétre 6 expliquant au mieux la
distribution observée de Y, au sens du maximum de vraisemblance :

6 = arg max L(6) = arg max log(p(Y'|6))
[4 0

Comme la vraisemblance log(p(Y']|0)) n’est pas directement accessible, on ’exprime
par marginalisation des états cachés (en considérant que X prend sa valeur parmi un
nombre fini d’états) :

0 = argmax L(0) = arg maleog(P(X,Y]H))
0 0 ~

L’idée de I'algorithme EM consiste & construire une borne inférieure de choix pour
L. Dans ce but, on réécrit
q(X)P( X Y'|0)
o (S )

ou ¢(X) est une distribution arbitraire des données cachées X. Puis, on remarque
(en utilisant 'inégalité de Jensen) que quelque soit ¢ :

- () 52 5 () gt

'Y est donc la forme incompléte de 'observation X
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Ainsi, pour une valeur de ¢ donnée, la vraisemblance est minorée par la fonction G
quelque soit g. Cependant, on ne cherche pas simplement & borner L mais & la borner
“au plus pres”, c’est a dire que 'on va chercher la distribution ¢ qui maximise G(6, q)
(pour un 6 donné); la recherche de cette distribution est l'étape E. Cette étape ne
modifie pas du tout la valeur de la vraisemblance (simplement car celle-ci ne dépend
pas de ¢). Une fois la distribution ¢ optimisée, la recherche du parameétre § maximisant
G(0,q) constitue I’étape M. La succession de ces étapes compose 1’algorithme EM :

tant que 0 n’est pas stable
Etape E : ¢ = argmax, G(0,q(W))
Etape M : 0 = argmax, G(0,4(X))

Plus précisément, on peut montrer que

- G(0,q(X)) = —KL(q(X)||p(X]Y,0)) + L(8) ; ainsi I’étape E est optimale quand
KL(qg(X)||p(X]Y,0)) =0, c’est a dire quand ¢(X) = p(X|Y, ). On remarque que
dans cette condition G(0,¢(X)) = L(6).

- G0,¢(X)) = > v a(X)logp(Y,X|0)) — > x q(X)log(X); ainsi I'étape M est
optimale quand § = arg max, >y G(X) log(p(Y; X|6)).

Par suite, on peut réécrire ’algorithme précédent :

tant que 6 n’est pas stable
Etape E : ¢ = p(X|Y,0)
Etape M : § = argmaxy y_ ¢(X) log(p(Y, X10))

Cette séquence de minimisation posséde 3 caractéristiques qui en font un algorithme
de choix pour la maximisation de la vraisemblance :
— elle augmente de maniére monotone (et méme linéaire) la valeur de L(0),
— elle ne nécessite aucun parameétre spécifique a la procédure d’optimisation (contrai-
rement a la plupart des algorithmes basés gradient),
— pour un grand nombre de problémes classiques, les étapes E et M ont des solutions
simples, voir analytiques.

B.2 L’EM et les GMMs

On suppose que notre pdf p(y|f) est construite selon un mélange de K pdf :

K

p(ylf) = p(ylk, 0) P(k|0),
k=1

ou p(ylk,0) ~ N(fo(ur), fo(Xk)) représente la pdf de la kéme Gaussienne dont les
moyennes et les variances dépendent d’une fonction de 6 et ou P(k|f) représente la
probabilité qu'une donnée choisie au hasard ait été générée par la kéme composante
du mélange. L’état caché x; caractérise 'appartenance de 1’échantillon y; & la kéme
Gaussienne; on note p(z; = kl|y;,0) la probabilité que l’échantillon z; provienne de la
kéme Gaussienne sachant la valeur du paramétre 6 et 'observation y;.
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Il reste alors & suivre le schéma proposé dans la section précédente :
o [’¢tape E s’écrit simplement :

p(yilzi =k, 0)p(x; = k|6) p(yilzi =k, 0)p(x; = k|6)
p(i = klys, 0) = _
(i = Ky, 0) P(@:]0) S (il = . O)p(as = F)

_exp((yi — Fo()T fo(Sk) (i — fo(ur)))p(zi = k|0)
>orexp((yi — fo(ur)T fo(Z) " (yi — folpr))p(zi = K|0)

e L’étape M s’écrit :

arg max > > alwi)log(p(yilei = k,0)p(ys = k10))

™
I

i k
= argénaxz > alwi) log(p(yilzs = k. 0)) + Y Y~ alwi) log(p(yi = k[0))
% k % k

= arg;naxz > (@) (i = folu)) " Fo(S) ™ (i — folme))) + Y Y ali) log(p(yi = k[0))
% k % k

Considérant cette forme générale, les spécialisations décrites aux chapitres 3 et 8 ne
posent aucune difficulté.

B.3 Discussion

Au-dela du point de vue purement théorique, I’algorithme EM se révéle en pratique
rapide et converge vers un maximum proche du maximum global [Ran98|. Toutefois,
malgré ces bonnes dispositions, dans certains cas cet algorithme s’avére plus lent et
moins efficace que des méthodes de minimisation directe (telles que le gradient conjugué)
de la fonction de vraisemblance [Ran98|. En pratique, il est difficile de statuer a I’avance
sur les performances relatives des différentes méthodes de maximisation mais il est &
noter que la convergence de 'EM va dépendre de 'allure de la fonction G(6,q), alors
que celle des méthodes basées gradient dépendra de ’allure de la vraisemblance L.

Pour finir, notons que comme la convergence de 'EM dépend grandement de la
valeur initiale de 8 qui lui est fournie, celle-ci devra étre choisie avec soin.
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Résumé

Dans cette thése, nous proposons un ensemble d’outils permettant de quantifier et
de comparer statistiquement l’asymeétrie au sein d’une population ou entre deux popula-
tions de structures représentées par des nuages de points 3D. Ces outils sont définis dans
un cadre cohérent qui repose sur une modélisation des nuages de points sous forme de
mélanges de densités de probabilité. Ces densités dépendent de parameétres décrivant par
exemple une réflexion ou encore une déformation tridimensionnelle. L’estimation des pa-
rametres superposant au mieux les mélanges est effectuée par des variantes d’algorithmes
de type Espérance-Maximisation. En particulier, nous proposons des algorithmes pour
i) 'estimation d’un plan de symétrie d’un nuage de points, ii) I’estimation d'une surface
de symétrie d’un nuage de points, iii) estimation d’une déformation non-linéaire super-
posant au mieux 2 nuages de points et iv) la création de modeles statistiques de formes
& partir d’'un ensemble de nuages de points. Nous montrons ensuite comment combiner
ces méthodes pour générer des cartes statistiques d’asymétrie locale (moyenne, variance,
asymétries significatives, différences significatives, etc) ainsi que des mesures globales
caractérisant ’asymétrie des populations étudiées. Enfin, nous appliquons nos outils
pour comparer les asymétries corticales de 2 sujets Situs Inversus (maladie congénitale
dans laquelle les principaux organes viscéraux sont situés en miroir par rapport a leur
situation normale) avec celles d’une population controle.

Abstract

In this thesis, we propose a set of tools for the statistical quantification and com-
parison of asymmetry within a population or between two populations of structures
represented by 3D point sets. These tools are designed in a coherent framework relying
on a modeling of the point sets as mixtures of probability density functions depending
on parameters describing for example a reflection or a 3D deformation. The estima-
tion of the parameters best superposing the mixtures is performed with variants of the
Expectation-Maximisation algorithm. Particularly, we propose algorithms allowing i)
the estimation of a symmetry plane of a point set, ii) the estimation of a symmetry
surface of a point set, iii) the estimation of a non-linear deformation best superposing 2
point sets and iv) the building of statistical shape models from a set of point sets. Then,
we show how to combine these methods to build statistical asymmetry maps (mean,
standard deviation, significant asymmetries, significant differences, etc) and global mea-
surements characterising the asymmetry of the populations under study. Finally, we use
our tools to compare the cortical asymmetries of 2 Situs Inversus subjects (congenital
condition in which the major visceral organs are mirrored from their normal positions)
with those of a control population.



