N

N

Contributions au controle de I’affinité mémoire sur
architectures multicoeurs et hiérarchiques

Christiane Pousa Ribeiro

» To cite this version:

Christiane Pousa Ribeiro. Contributions au controle de I’affinité mémoire sur architectures multicoeurs
et hiérarchiques. Autre [cs.OH]. Université de Grenoble, 2011. Frangais. NNT: 2011GRENMO030 .
tel-00685111

HAL Id: tel-00685111
https://theses.hal.science/tel-00685111

Submitted on 4 Apr 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00685111
https://hal.archives-ouvertes.fr

UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE DE GRENOBLE
Spécialité : Informatique

Arrété ministérial : 7 ao(t 2006

Présentée par

Christiane Pousa Ribeiro

Thése dirigée par Jean-Francois Méhaut
et codirigée par Alexandre Carissimi

préparée au sein Laboratoire d’Informatique de Grenoble
et de Ecole Doctorale Mathématiques, Sciences et Technologies de
'Information, Informatique

Contributions on Memory Affinity
Management for Hierarchical Shared
Memory Multi-core Platforms

Thése soutenue publiquement le 29-06-2011,
devant le jury composé de :

Brésil, Philippe O. A. Navaux

Professor, University Federal of Rio Grande do Sul - Institute of Informatics,
Présidente

France, Bernard Tourancheau

Professeur, Université de Lyon 1, Rapporteur

France, Raymond Namyst

Professeur, Université de Bordeaux |, Rapporteur

France, Dimitri Komatitsch

Professeur, Université de Toulouse - IUF, Examinateur

Etats-Unis, Laxmikant V. Kale

Professeur, University of Illinois at Urbana-Champaign, Examinateur

Brésil, Alexandre da Silva Carissimi

Professeur, University Federal of Rio Grande do Sul - Institute of Informatics, Co-
Directeur de thése

France, Jean-Francois Méhaut

Professeur, University of Grenoble - INRIA, Directeur de thése

"What we anticipate seldom occurs, but
what we least expect generally happens.”

(Benjamin Disraeli)

Acknowledgments

First, I would like to thank my advisor Jean-Frangois Méhaut for having ac-
cepted me as his PhD. student. For all the discussions, ideas and for the motivation
throughout this PhD. I appreciate his patience at the beginning of my PhD. due
to my difficulties with the language. Also, the incredible opportunities I have had
during this thesis, the projects, meetings, conferences and collaborations. I would
also like to thank you for always encouraging cooperation between Brazil and France
and for giving me the opportunity to work on projects between the two countries.

I also would like to thank my co-advisor Alexandre Carissimi, for his scientific
and technical support, all the corrections and suggestions in all stages of my thesis.
Many e-mails were exchanged in those three years and a half, with ideas, reflections
and questions that helped me in doing my work. Thanks also for all the tips about
France. Thank you Carissimi, your support was fundamental in the development of
this work.

I would like to thank all members of the defense jury: Raymond Namyst, Bernard
Tourancheau, Dimitri Komatitsch, Laxmikant Kale and especially Philippe O. A.
Navaux for being the chair on my defense and having followed the whole process of
this work, since the selection for the scholarship in Brazil until the PhD. defense.

This thesis would not be possible without funding from CAPES-Brazil and the
French and Brazilian projects that made possible my travels in all meetings and
conferences which I attended.

Thanks to the professors of LIG (Laboratoire d’Informatique de Grenoble), par-
ticularly the ones from Mescal and Moais teams. For all discussions and conversa-
tions over the years of my thesis. Thanks for all the teachings. Special thanks to
Jean-Marc Vincent for the statistical insights and to Vania Marangozova-Martin for
our conversations and laughter that made my life so much easier and pleasant in
France.

I would also like to thank all my friends from LIG, BRGM, UFRGS and PUC-
Minas, for all support ;). There were many talks and chats at the 'Kafet’ of our
laboratory that helped me to achieve this thesis. Special thanks to Fabrice Dupros
for the initial motivation of my work with ’his’ application issues, to the 'Lucas and
Fabiane’, 'Daniel and Kelly’, ’Luis Fabricio and Raquel’, ’Dulcinéia and Raphael’
for the friendship and support. ... you are special!; to Rodrigue Chakode for his
patience to help me with French; to Mércio and Laércio for all work that we did
together and to all my Brazilians friends in Grenoble who have made these years in
France easier.

A special thanks to all of my family in Brazil, for the love and for cheering me up!
Thank you for supporting my decisions and understanding that this was my dream.
Thank you for the emails and skype sessions, for all the help and encouraging words
you gave me. An extra special thanks to my Mom, Rosilene, and my brother, Paulo
Janeo. This achievement is also for youl!

Finally, a big thanks to Rodrigo Ribeiro or 'Fofinho’, for all the love, comfort
and support during these years of studies. These were harsh years because of the
distance and solitude, but his words gave me the courage to move on and his love
was my main motivation to complete this dream. Thank you for leaving behind a
lifetime in Brazil and come follow me in this dream, thanks for getting me up every
time I get discouraged ... Thank you Fofinho.

Abstract:
Multi-core platforms with non-uniform memory access (NUMA) design are now a
common resource in High Performance Computing. In such platforms, the shared
memory is organized in an hierarchical memory subsystem in which the shared mem-
ory is physically distributed into several memory banks. Additionally, these plat-
forms feature several levels of cache memories. Because of such hierarchy, memory
access latencies may vary depending on the distance between cores and memories.
Furthermore, since the number of cores is considerably high in these machines, con-
current accesses to the same memory banks are performed, degrading bandwidth
usage. Therefore, a key element in improving the application performance on these
machines is dealing with memory affinity.
Memory affinity is a relationship between threads and data of application that de-
scribes how threads access data. In order to keep memory affinity a compromise
between data and thread placement is then necessary. In this context, the main
objective of this thesis is to attain scalable performances on multi-core NUMA ma-
chines by reducing latencies and increasing memory bandwidth. The first goal of
this thesis is to investigate which characteristics of the NUMA platform and the
application have an important impact on the memory affinity control and propose
mechanisms to deal with them on multi-core machines with NUMA design. We fo-
cus on High Performance Scientific Numerical workloads with regular and irregular
memory access characteristics. The study of memory affinity aims at the proposal
of an environment to manage memory affinity on Multi-core Platforms with NUMA
design. This environment provides fine grained mechanisms to manage data place-
ment for an application using the application compile time information, runtime
information and architecture characteristics.
The second goal is to provide solutions that show performance portability. We mean
by performance portability, solutions that are capable of providing similar perfor-
mances on different NUMA platforms. To do so, we propose mechanisms that are
independent of machine architecture and compiler. The portability of the proposed
environment is evaluated through the performance analysis of several benchmarks
and applications over different platforms.
Finally, the third goal of this thesis is to implement memory affinity mechanisms
that can be easily adapted and used in different parallel systems. Our approach
takes into account the different data structures used in High Performance Scientific
Numerical workloads, in order to provide solutions that can be used in different
contexts. All the ideas developed in this research work are implemented within
a Framework named Minas (Memory affInity maNAgement Software). We evalu-
ate the applicability of such mechanisms in three parallel programming systems,
OpenMP, Charm++ and OpenSkel. Additionally, we evaluated Minas performance
using several benchmarks and two real world applications from geophysics.

Résumé:

Les plates-formes multi-coeurs avec un accés mémoire non uniforme (NUMA)
sont devenu des ressources usuelles de calcul haute performance. Dans ces plates-
formes, la mémoire partagée est constituée de plusieurs bancs de mémoires physiques
organisés hiérarchiquement. Cette hiérarchie est également constituée de plusieurs
niveaux de mémoires caches et peut étre assez complexe. En raison de cette com-
plexité, les coiits d’accés mémoire peuvent varier en fonction de la distance entre
le processeur et le banc mémoire accédé. Aussi, le nombre de cceurs est trés élevé
dans telles machines entrainant des accés mémoire concurrents. Ces accés concur-
rents conduisent & des ponts chauds sur des bancs mémoire, générant des problémes
d’équilibrage de charge, de contention mémoire et d’accés distants. Par conséquent,
le principal défi sur les plates-formes NUMA est de réduire la latence des accés mé-
moire et de maximiser la bande passante.

Dans ce contexte, I’'objectif principal de cette thése est d’assurer une portabilité de
performances sur des machines NUMA multi-coeurs en controlant I'affinité mémoire.
Le premier aspect consiste a étudier les caractéristiques des plates-formes NUMA
que sont & considérer pour controler efficacement les affinités mémoire, et de pro-
poser des mécanismes pour tirer partie de telles affinités. Nous basons notre étude
sur des benchmarks et des applications de calcul scientifique ayant des accés mémoire
réguliers et irréguliers. L’étude de ’affinité mémoire nous a conduit & proposer un
environnement pour gérer le placement des données pour les différents processus des
applications. Cet environnement s’appuie sur des informations de compilation et sur
I’architecture matérielle pour fournir des mécanismes & grains fins pour contréler le
placement.

Ensuite, nous cherchons a fournir des solutions de portabilité des performances.
Nous entendons par portabilité des performances la capacité de 'environnement a
apporter des améliorations similaires sur des plates-formes NUMA différentes. Pour
ce faire, nous proposons des mécanismes qui sont indépendants de I'architecture ma-
chine et du compilateur. La portabilité de 'environnement est évaluée sur différentes
plates-formes a partir de plusieurs benchmarks et des applications numériques réelles.
Enfin, nous concevons des mécanismes d’affinité mémoire qui peuvent étre facile-
ment adaptés et utilisés dans différents systémes paralléles. Notre approche prend
en compte les différentes structures de données utilisées dans les différentes appli-
cations afin de proposer des solutions qui peuvent étre utilisées dans différents con-
textes. Toutes les propositions développées dans ce travail de recherche sont mises
en ceuvre dans une framework nommée Minas (Memory Affinity Management Soft-
ware). Nous avons évalué l'adaptabilité de ces mécanismes suivant trois modéles de
programmation paralléle a savoir OpenMP, Charm++ et mémoire transactionnelle.
En outre, nous avons évalué ses performances en utilisant plusieurs benchmarks et
deux applications réelles de géophysique.

Contents

1 Introduction 1
1.1 Objectives and Thesis Contributions 2
1.2 Scientific Context 2
1.3 Thesis Organization, 3

I State of Art: Memory Affinity on Hierarchical Multi-core

Platforms)

2 Hierarchical Shared Memory Multi-core Architectures 7
2.1 What is a Hierarchical Shared Memory Architecture? 7
2.2 Evolution of Shared Memory Multiprocessors 11

2.2.1 More Scalability with NUMA Architectures 11
2.2.2 Mono-core to Multi-core Platforms 13
2.2.3 Multi-core Platforms With NUMA Characteristics 15
2.3 Memory Subsystem Hardware for Hierarchical Architectures 17
2.3.1 Connections between Processors and Memory 17
2.3.2 Cache Coherence Protocol for NUMA Platforms 18
2.4 Conclusions 20

3 Software Issues of Memory Affinity Management on Hierarchical
Multi-core Machines 23
3.1 Parallel Programming on Shared Memory Platforms 23
3.2 False Sharing in NUMA Platforms 29
3.3 A case study: NUMA Impact on Parallel Applications Performance . 30
3.4 How to Reduce NUMA Impact on Parallel Applications? 33
3.5 Approaches to Improve Memory Affinity 37

3.5.1 Thread Placement 37
3.5.2 Data Placement 40
3.5.3 Mixing Thread and Data Placement 44
3.6 Conclusion. 45

IT Contributions: Looking Deeper to Improve Memory Affinity 47

4 Proposal of New Approaches to Enhance Memory Affinity 49
4.1 Modeling a NUMA Architecture 50

4.1.1 NUMA Core Topology 50
4.1.2 NUMA Hierarchy 51

4.2 Global Analysis of an Application 53

ii

Contents

4.2.1 What to Extract from the Application? 53
4.2.2 Getting Memory Access Information from Applications 54
4.2.3 Data Scope and Usage on Parallel Regions 56

4.3 Associating Machine and Application Characteristics to Enhance Mem-
ory Affinity 56
4.3.1 Memory Organization: Why should we change it? 57
4.3.2 Memory Policies to Place Data 60
4.4 Data Placement over NUMA Machines 64
4.4.1 Explicit Approach 64
4.4.2 Automatic Approach 64
4.5 SUMMAry 66
5 Minas: a Memory Affinity Management Framework 69
5.1 A Framework to Manage Memory Affinity 69
5.1.1 Software Architecture 69
5.1.2 Components 70
5.2 Implementation Details 72
5.2.1 Extracting Platform Information 72
5.2.2 Extracting Application Information 75
5.2.3 Allocating Memory for Applications 76
5.2.4 Placing Data over NUMA nodes 81
5.2.5 Mapping Threads to Enhance Data Locality 85
5.3 Summary e 87
6 Employing Minas Framework on Parallel Environments 89
6.1 OpenMP API 89
6.1.1 Memory Affinity: Automatic management 90
6.1.2 Design and Implementation of Memory Affinity Support . . . 91
6.1.3 Illustrating Minas Framework with an Example 92
6.2 Charm++/AMPI Parallel Programming System 94
6.2.1 Memory Policies to Enhance Memory Affinity on Charm—++ . 97
6.2.2 NUMA-Aware Load Balancer 100
6.2.3 NUMA-aware Isomalloc Memory Allocator 103
6.3 OpenSkel a Worklist Transactional Skeleton Framework 106
6.3.1 Memory Affinity through Data Allocation and Memory Policies107
6.3.2 Design and Implementation Details 108
6.4 Summary 108
IIT Performance Evaluation: Case Studies 111
7 Experimental Methodology 113
7.1 NUMA Multi-core Platforms 113
7.2 Software Stack 116

7.3 Performance Metrics 117

Contents 1ii

7.4

Measurement Methodology 118

8 Evaluation on OpenMP Benchmarks and Geophysics Applications

119

8.1 Synthetic Experiments 0oL 119
8.2 Experiments with Benchmarks 122
8.2.1 Stream Benchmark 122

8.2.2 NAS Parallel Benchmarks 125

8.3 Geophysics Applicationso L L 134
8.3.1 Ondes 3D: Simulation of Seismic Wave Propagation 134

8.3.2 ICTM: Interval Categorizer Tesselation Model 138

8.4 Conclusions 141

9 Evaluation on High Level Parallel Systems Benchmarks 143
9.1 Charm++ Benchmarks 143
9.1.1 Memory Policies 143

9.1.2 NUMA-aware Load Balancer 146

9.2 AMPI Benchmark 149
9.3 OpenSkel Version of Stamp Benchmark 150
9.4 Conclusions 153

10 Conclusions and Perspectives 155
10.1 Thesis Objectives 155
10.2 Contributions 156
10.3 Perspectiveso 157
Bibliography 159
A MAIi Interface 171
A1 MAI-array 171
A2 MAi-heap 172

B Extended Abstract in French 175
B.1 Introduction 175
B.2 Objectifs et contributions de la thése 176
B.3 Contexte scientifique oo 177
B.4 Etat de art matériel 177
B.5 Etat de l'art logiciel, 179
B.6 Minas framework 180
B.7 Intégration dans les langages paralléles 184
B.7.1 OpenMP 184

B.7.2 Charm+-+ 185

B.8 Résultats 187
B.8.1 Machines multi-coeur L. 187

B.8.2 Evaluation des applications OpenMP 188

iv Contents
B.8.3 Evaluation sur les applications Charm++ 194

B.9 Conclusion 199
B.9.1 Objectifsdelathése 199

B.9.2 Contributions 200

B.9.3 Perspectives oo 201

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
9.3
5.4

5.5

List of Figures

The UMA Architecture. 8
The NUMA Architecture. 8
The Current NUMA Platform. 9
A NUCA Multi-core Processor Architecture. 10
The DASH Architecture [Lenoski 1993]. 12
Local and Remote access inside the NUMA Platform.. 13
The Evolution: Mono-core to Multi-core Chips. 14
Multi-core NUMA Platforms: (a) Single Memory Controller (b) Mul-

tiple Memory Controller. 15
MESI State Transitions |Technion 2011]. 18
MOESI State Transitions - Extract from [AMD 2011b].. 19
MESIF State Transitions. 20
OpenMP Example. 24
HPF Example. 25
UPC Example. 26
OpenSkel Example. 27
Charm++ Hello Word Example - Extracted from Charm+-+ Examples. 28
An Application with False Sharing Problem. 29
Synthetic Application Snippet. 31
Data Initialization for the Synthetic Application. 32
Data Initialization Strategies. 33
Synthetic Application Snippet. 35
NUMA Core Topology for a NUMA Platform. 51
NUMA Hierarchy for a NUMA Platform. 52
Variables Data Allocation over NUMA Machine Memories. 55
Array Allocator Design - Static Case. 58
Memory Allocator Design - Dynamic Case. 59
Bind Memory Policies.o o 61
Cyclic Memory Policies. 62
Cyclic Memory Policies. 63
Heuristic Algorithm to Automate Data Placement. 66
Overview of Minas. 70
Overview of numArch Module. 71
Overview of MApp code transformation process. 71
Some Functions of MAi Interfaces: (a) array functions (b) general

functions. 72
Operating System File System Information used by NumArch. 73

vi

List of Figures

5.6 Some Functions of NumArch Interface. 74
5.7 (a) Input C code. (b) CUIA output. 76
5.8 MAi-array Header 78
5.9 MAi-heap Implementation View. 79
5.10 Cyclic Memory Policy Code Snipet. 82
5.11 Example of Development of a Memory Policy 84
5.12 Linux Scheduling for the MG Benchmark on NUMA Platforms. . . . 86
6.1 OpenMP Execution Model. 90
6.2 OpenMP Application and List of Variables Selected by MApp. . . . 93
6.3 Example of MApp source code transformation. 94
6.4 MAi Thread and Data placement. 95
6.5 Charm+-+ Execution Model |[PPL-Charm-++ 2011|. 96
6.6 Memory Policies for Charm++. 98
6.7 +maffinity Code Sniped.o 99
6.8 NumalB Code Sniped. 102
6.9 NUMA-aware Isomalloc. 103
6.10 Node Affinity Code Snipped. 105
6.11 OpenSkel: (a) worklist skeleton model (b) pseudocode. 106
7.1 NUMA based on AMD Opteron Processor.. 113
7.2 NUMA Platform based on Intel Xeon X7460. 114
7.3 NUMA Platform based on Intel Xeon X7560. 115
8.1 The Synthetic Benchmark Computation Kernels. 120
8.2 Stream Benchmark: (a) Original Version (b) Tuned Version with Ran-

dom Access (c) Tuned Version with Irregular Access. 123
8.3 NAS Parallel Benchmarks on AMD8x2. 128
8.4 NAS Parallel Benchmarks on Inteldx8. 129
8.5 Shared Matrix for EP (a) and MG (b) Benchmarks. 131
8.6 FEvent Counters of EP on Inteldx8. 132
8.7 Event Counters of MG on Inteldx8. 132
8.8 Event Counters on Intel4x8 for EP (a) and MG (b). 133
8.9 Ondes 3D Application. 134
8.10 Execution Time (s) for Ondes 3D Application. 136
8.11 Speedups on AMDS8x2 for Ondes 3D Application. 137
8.12 ICTM Application Input and Output. 138
8.13 ICTM Application. 139
8.14 ICTM Snippet with Minas: (a) MAi version (b) MApp version. . . . 140
8.15 Speedup for ICTM Application on AMD8x2 and Inteldx8. 141
9.1 Execution Time (us) of Kneighbor: (a) AMDS8x2 (b) Intel4x8. 144
9.2 Execution Time of Kneighbor on Inteldx24. 145

9.3 [TIteration Average Time of Molecular 2D on Inteldx24. 146

List of Figures vii

9.4 Jacobi 2D Speedups with NumaLLB Load Balancer: (a) AMD8x2 (c)

Inteldx8. 147
9.5 Jacobi 2D Speedups with Different Load Balancer: (a) AMD8x2 (c)

Inteldx8. 148
9.6 Jacobi 3D Benchmark Execution Time on AMD8x2. 149
9.7 Jacobi 3D Benchmark Execution Time on Inteldx24. 150
9.8 Speedups for Intruder Application: (a) AMD8x2 (b) Intel4x8. 152
9.9 Speedups for Kmeans Application: (a) AMD8x2 (b) Intel4x8. 152
9.10 Speedups for Vacation Application: (a) AMD8x2 (b) Inteldx8. 153
B.1 Plate-forme Multi-coeur NUMA: (a) Controleur Mémoire Unique (b)

Controleur Mémoire Multiple. 0oL 179
B.2 Schéma du Minas. 181
B.3 MApp - Processus de transformation du code. 183
B.4 Politiques mémoire pour Charm—++. 185
B.5 Application Ondes 3D. 189
B.6 Temps d’execution (s) pour Ondes 3D. 190
B.7 Entrée and sortie de 'application ICTM. 190
B.8 Application ICTM. 191
B.9 ICTM avec Minas: (a) version MAi (b) version MApp. 192
B.10 Performances d’ICTM sur AMD8x2 et Inteldx8. 193
B.11 Temps d’execution (us) Kneighbor: (a) AMD8x2 (b) Intel4x8. 194
B.12 Temps d’execution Kneighbor sur Inteldx24. 195
B.13 Temps moyen d’itération pour Molecular 2D sur Inteldx24. 196
B.14 Jacobi 2D Speedups: (a) AMDS8x2 (c) Intel4x8. 197

B.15 Jacobi 2D Speedups: (a) AMD8x2 (c) Intel4x8. 197

21

3.1
3.2
3.3
3.4
3.5

5.1
5.2
5.3

7.1

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2
9.3

B.1
B.2
B.3

List of Tables

NUMA Platforms Characteristics. 16
Speedups for the Charm+-+ Jacobi Benchmark. 30
Execution Time for the Synthetic Application (in seconds). 32
Average Latency (ns) to get data on a NUMA Machine. 34
Execution Time in seconds for the Snippet Presented Above. 35
Execution Time (us) for each Operation on Stream Benchmark. . . . 36
Time in microseconds and Virtual Memory Consumption 78
Time in microseconds to allocate Two Lists of N Integers 80
Intel and AMD Machines Topology. 87
Overview of the Multi-core Platforms. 116
Execution Time in seconds (s) for Benchmark 121
Execution Time in seconds (s) for the Synthetic Benchmark 122
Stream operations 123
Memory Bandwidth (MB/s) for Stream Triad Operation 124
Selected Applications from NPB. 126
NPB Problem Sizes in MBytes for Each Class.. 126
Execution Time (ms) of One Step of Molecular 2D 145
Execution Statistics of Load Balancers. 148
Summary of STAMP application runtime characteristics. 151
NUMA multi-coeur machines. 188
Temps d’execution (ms) - une iteration Molecular 2D 195

Statistiques d’exécution. Lo L Lo 198

CHAPTER 1

Introduction

Nowadays, a large number of numerical scientific applications in different areas of
knowledge (geophysics, meteorology, etc) demand low response times and high mem-
ory capacity. Due to these needs, those applications require powerful computational
resources to obtain high performances. Particularly, high performance computing
(HPC) platforms such as multi-core machines can provide the necessary resources
for numerical scientific applications. A multi-core machine is a multi-processed sys-
tem in which the processing units (cores) are encapsulated into processors that share
different levels of cache memories and the global main memory.

On multi-core machines the number of cores per sockets keeps increasing, leading
to poor memory scalability and performance, the memory wall problem. The efforts
to overcome this problem generally rely on the use of Non-Uniform Memory Access
design within the architecture. Due to this, multi-core machines with NUMA de-
sign are becoming very common computing resources for HPC. On such machines,
the shared memory is physically distributed over the machine and interconnected
by a special network. Although this design preserves the abstraction of a single
shared memory to the cores, it comes at the cost of load-balancing issues, memory
contention and remote accesses.

In order to guarantee high performances on these architectures, an efficient data
and thread placement strategy becomes crucial. Such placement can be achieved
by enhancing memory affinity for parallel applications. Memory affinity is the re-
lationship between threads and data of an application that describes how threads
access data to accomplish a job. Therefore, in order to respect memory affinity a
compromise between threads and data placement must be made to reduce latency
and increase bandwidth for memory accesses.

A number of mainstream manufactures, operating systems and parallel languages
concerns in providing efficient performances for multi-core NUMA machines. How-
ever, they lack in providing memory affinity solutions for the applications running on
such machines. Consequently, developers are obliged to implement data and thread
placement solutions to enhance memory affinity for applications and consequently,
performance on NUMA machines. Besides, these placement solutions are imple-
mented by developers using low level libraries and must suit their application and
the targeted machine. Therefore, different versions of the same application source
code are produced by the programmer, in order to obtain good performances on
different platforms.

2 Chapter 1. Introduction

1.1 Objectives and Thesis Contributions

Due to the problems described in the previous section, it is important to inves-
tigate and understand the impact of memory affinity on parallel applications over
current NUMA platforms. It is also important to study the affinity support that
already exists for NUMA multi-core machines. We will notice on the next chapters
that most of the available support for obtaining memory affinity is not standard.
They demand complex application source code transformations from the developers
and special operating system support that depends on platform characteristics. Fur-
thermore, such support does not provide different levels to control memory affinity
such as management of the application variables or heap.

Since parallel applications have different characteristics and needs, in order to
enhance memory affinity for these applications an efficient data and thread place-
ment strategy must be used. Therefore, it becomes necessary the proposal of a
solution that matches the machine and the application characteristics in order to
employ an efficient and portable memory affinity mechanism. We then propose an
environment to manage memory affinity on multi-core platforms with NUMA de-
sign. This environment provides the necessary support to express data affinity in
different levels (e.g. per variable, per heap or per application). During the execution
time the environment maps the application information into the hardware charac-
teristics. In this way, developers can have a NUMA-aware application that takes in
consideration its memory access patterns and the platform characteristics.

Considering the objectives described in the above paragraphs, the main con-
tributions of this thesis are: (I) a model that defines and characterizes a NUMA
platform; (II) the design and the implementation of a framework to manage mem-
ory affinity for parallel applications in an automatic and explicit way, named Minas;
(ITT) the integration of the framework mechanisms in different parallel applications
(based on OpenMP, Charm+-+, AMPI and Software Transactional Memory) and
parallel programming systems (Charm-+-+ and OpenSkel).

1.2 Scientific Context

This thesis is developed under the project ANR NUMASIS ! and Joint-Laboratory
Ilinois-INRIA-NCSA 2. NUMASIS is a cooperation between BULL, BRGM, CEA
and INRIA whereas the Joint-Laboratory is a cooperation between University of
Ilinois at Urbana-Champaign and INRIA. These organisms and enterprises have
worked together in the project to design efficient solutions for High Performance
Computing.

The scientific context of the NUMASIS project is the high performance com-
puting in the geophysics domain. In this context, the problems arise from the
optimization of parallel applications that implements seismic waves propagation

1. Adaptation et optimisation des performances applicatives sur architectures NUMA: Etude
et mise en oeuvre sur des applications en SISmologie - URL: http://numasis.gforge.inria.fr
2. Joint Laboratory for Petascale Computing - URL:http://jointlab.ncsa.illinois.edu/

1.3. Thesis Organization 3

simulation on NUMA platforms. Results obtained from this project have helped
BULL, BRGM and CEA in the design of new solutions for multi-core machines
with NUMA characteristics.

The context of the Joint-Laboratory scientific is the software challenges for petas-
cale computing. Problems that are considered by this Joint-Laboratory are related
to modeling and optimizing numerical libraries, to fault-tolerance issues and to novel
programming models. Results obtained from this initiative have helped both coun-
tries to improve software for high performance computers.

The research domain of these projects is in the context of the Laboratoire
d’Informatique de Grenoble in which the Mescal research team is. Our role in
the projects is the study the impact of memory affinity on parallel applications.
In light of these studies, to propose new software solutions for the memory affinity
management in parallel applications.

1.3 Thesis Organization

The thesis document is organized in three parts. The first part, subdivided in
two chapters, introduces the scientific context of this work. In the first chapter, we
describe Non-Uniform Memory Access (NUMA) multi-core platforms and its main
architectural characteristics. That chapter also presents the relationship between
such characteristics and the performance of the multi-core NUMA platform. In
the second chapter the software components of a NUMA platform are introduced,
focusing on the impact of such platform on the parallel systems, environments and
applications.

The second part of the document introduces and describes the main contributions
of the thesis and is subdivided in three chapters. The first of them describes the main
ideas of the contributions, presenting the proposed strategies to improve memory
affinity on hierarchical multi-core machines. It also illustrates the retrieval and
modeling of the platform and applications characteristics. The second chapter of
this part shows the design and implementation details of the proposed framework
to control memory affinity. Finally, the third chapter shows how to employ our
solutions in different high level parallel programming systems.

The third part presents a performance evaluation of the framework and its com-
ponents, subdivided in four chapters. The first chapter describes the experimental
methodology presenting the platforms and metrics used in our evaluation. In its
second chapter, we show the performance evaluation of the framework components
on OpenMP benchmarks and two real geophysics applications. The third chap-
ter depicts the performance evaluation of the framework in benchmarks developed
with some high level parallel programming systems such as Charm+-+, AMPI and
OpenSkel. Finally, the last chapter points out our conclusions and the perspectives.

Part 1

State of Art: Memory Affinity on
Hierarchical Multi-core Platforms

CHAPTER 2
Hierarchical Shared Memory
Multi-core Architectures

The current trend in high performance computing to obtain scalable perfor-
mances is to increase the number of cores available per processor on shared memory
machines. The multi-core chip design and the efforts to overcome the hardware
limitations of classical Symmetric Multiprocessors (SMP) parallel systems have led
to the emergence of the hierarchical architectures. These architectures feature a
complex topology and a hierarchical memory subsystem. In this chapter, we in-
troduce the state of the art in hierarchical shared memory multi-core architectures.
We first provide the definition of what we consider a hierarchical shared memory
architecture, discussing its main characteristics and how the hierarchy is designed
inside the machine. After that, we discuss the main evolutions of shared memory
multiprocessors, describing the multi-core architectures and the non-uniform mem-
ory access (NUMA) characteristics of current multiprocessors. We finish the chapter
with a description of the hardware characteristics of hierarchical architecture mem-
ory subsystems.

2.1 What is a Hierarchical Shared Memory Architec-
ture?

In this thesis, we consider as a hierarchical shared memory architecture any
multiprocessor platform that features: (i) processing units that share a global mem-
ory and (ii) processing units and memory components organized in some hierarchical
topology. In this context, examples of hierarchical shared memory architectures are:
UMA (Uniform Memory Access) machines, NUMA (Non-Uniform Memory Access)
machines, COMA (Cache Only Memory access machines) and NUCA (Non-Uniform
Cache Access) [Patterson 2009].

In the UMA platforms all processing units have similar access costs to the global
shared memory. This is due to the fact that the global shared memory is connected
to a single bus that is used by processing units to access memory. Additionally,
in this architecture the processing elements share the peripheral devices, which are
also connected to the single bus. The main problem of this design is that the bus
becomes a bottleneck, since all processing units must use it to access the global
memory and the peripheral devices. Therefore, such bus restricts the scalability
of the UMA architecture. We consider this architecture as a hierarchical shared

Chapter 2. Hierarchical Shared Memory Multi-core
8 Architectures

NN

1 1 1 1 1 1 1 1 1 1 1
Ce jfe jfe |[Cedfe Jfe J||[CeJfe [e J||Ce Jfe [o]
Processor 0 Processor | Processor 2 Processor 3

Figure 2.1: The UMA Architecture.

memory multiprocessor because of the current core topology designed within these
machines.

Current UMA platforms feature a complex topology, with multiple processors,
multi-core chips and cache memories. Figure 2.1 shows a multi-core platform with
UMA design. In the figure, we can observe that the machine has four processors and
each one has six cores. Considering the memory subsystem, the machine has two
levels of shared cache memory. Each pair of cores share a L2 cache memory and each
processor has a shared L3 cache memory. Main memory is shared between all cores
of the machine and accessed by all cores through a single bus. Even tough these
machines have an uniform access to the shared memory, it is important to take into
account the topology when mapping the application process/threads. Due to the
hierarchical organization of cores, processors and cache memories, communication
time between processing units may change, depending on the distance between them
[Mei 2010, Cruz 2010]. For instance, in the machine presented in the Figure 2.1,
cache hierarchy can be explored to reduce the communication time between a group
of threads. Such group can be placed within the same processor, avoiding the inter-
processor communication.

Interconnection Network

Shared Memory

=
o
3
o
<

Figure 2.2: The NUMA Architecture.

2.1. What is a Hierarchical Shared Memory Architecture? 9

A Non-Uniform Memory Access platform is a multiprocessor system in which
the processing elements are served by multiple memory banks, physically distributed
through the platform. Although the memory is physically distributed, it is seen by
the machine processing units as a single shared memory. In these machines, the
time spent to access data is conditioned by the distance between the processor and
the memory bank in which the data is physically allocated [Carissimi 1999]. NUMA
architectures are generally designed with cache memories, in order to reduce the
memory accesses penalties. Due to this, some support to ensure the cache coher-
ence for processing units are implemented in the current NUMA platforms, leading
to cache-coherent NUMA platforms (ccNUMA). One of the advantages of NUMA
architecture is that it combines a good memory scalability with an easy program-
ming characteristic. In these machines, an efficient and specialized interconnection
network provides support to the high number of processing units and very large
memories. Since memory is seen as a global shared one, programmers can use shared
memory programming models to develop parallel applications on these machines.

Figures 2.2 and 2.3 show schemata representing two NUMA machines. The
one represented in Figure 2.2 reports the classical NUMA machines of the 80’s
whereas Figure 2.3 depicts a current NUMA machine with multi-core chips. We
can observe in both figures that the NUMA machines are organized in multiple
nodes connected by an interconnection network. Each node is generally composed
of several processing units (mono-core or multi-core) and memory banks. In later
sections, we explain the architectural differences between these two examples.

Node 3 Node 2
a9 [c23 [c27] [c3q [c1g [c22) [c2¢ [cad]
v D |
[C3] [CT7] 11 [c15 [C2] [C6] 14 [ci4
[c16 [c2q [c24 [c2g [c17 [c21 [c2g [c29
vo - (S o | m
[Col [C4] [Ca] cid [C1] [C5] [C9] [c13
Node 0 Node 1
| Mi=memory bank i Ci=corei

Figure 2.3: The Current NUMA Platform.

Another shared memory architecture that has hierarchical characteristics is the
cache-only memory platforms. In this architecture the main memories are replaced
by huge cache memories. Similar to NUMA architectures, this architecture also
presents different memory access costs. However, differently from NUMA archi-

Chapter 2. Hierarchical Shared Memory Multi-core
10 Architectures

tectures, in the COMA platforms data is not associated with a node. In every
access to some memory range, this range can be replicated or migrated to satisfy
the request [Dahlgren 1999|. Due to this and to cache performance, COMA archi-
tectures generally have shorter memory latencies than NUMA machines. However,
this architecture demands more specialized and complex hardwares to manage data
coherence.

The advent of many-core machines has generated the need of more efficient cache
subsystem architectures such as the NUCA ones. Non-uniform cache architectures
were first introduced in [Kim 2002]. In these architectures the cache memory is
larger than on non-NUCA architectures and it is split in several banks [Freitas 2009].
These banks are managed by memory controllers (MC), which gives the architecture
different latencies to access the shared cache memory. NUCA architectures are
very similar to NUMA ones, presenting non-uniform access to some cache memory
level. Figure 2.4 shows a schema that depicts a NUCA processor architecture. The
processor cores share a last level cache that is implemented with the NUCA design.
Several banks composes the shared cache memory (16 banks in this example) that
is controlled by some memory controllers. Each bank has a different access latency
for each core of the processor, depending on the distance between the bank and the
core.

Core 6 Core 5

Core 4

Core 7

Core 8 Core 3

Core 1 Core 2

Figure 2.4: A NUCA Multi-core Processor Architecture.

In this thesis, we are specially interested in hierarchical shared memory architec-
tures that presents non-uniform memory access costs, the NUMA platforms. This
machines are becoming a trend in the High Performance Computing (HPC) centers.
Particularly, the multi-core machines with NUMA design are used as building blocks
of the current HPC clusters. These multi-core NUMA platforms present complex
topologies and hierarchical memory subsystem, which must be well exploited in or-
der to have scalable performances. In the next sections, we present the evolution of
multiprocessors that have led to the proposal of NUMA architectures.

2.2. Evolution of Shared Memory Multiprocessors 11

2.2 Evolution of Shared Memory Multiprocessors

As mention in the previous section, the shared memory multiprocessors with
UMA design present some drawbacks related to the interconnection network. In
this context, UMA multiprocessors are limited to a number of processing units, re-
ducing its scalability and processing power. In order to provide more scalability
to multiprocessors, by the end of the 80’s research groups proposed the first multi-
processors with NUMA design. In this section, we present a deeper description of
this architecture and its components. We also discuss the architectural evolution
concerning the shared memory multiprocessors.

2.2.1 More Scalability with NUMA Architectures

The architectural design of shared memory machines with UMA characteristics
leads to poor scalability. Because of this, some issues such as the memory wall
[McKee 2004] problem, the limitation in power processing and memory capacity
appears in these architectures [Dupros 2009]. The memory wall problem occurs
because processing units operate faster on data than memory can provide data
[Wulf 1995|. Memory is usually slower than processing units, due to its technology
and also due to the single interconnection network of UMA shared memory machines.

One possible solution for all these problems is the use of non-uniform memory
access architectures to build more scalable shared memory platforms. The non-
uniform memory access design allows shared memory machines to distribute the
access of processing units in a distributed shared memory, providing more bandwidth
for each processing unit. In this case, the use of specialized technologies for the
interconnection network and cache memory hierarchy are included in the machine
design. These technologies allow the multiprocessors to have much more memory
capacity, a shorter latency to access memory and a larger number of processing
units.

In the end of the 80’s, a number of research groups have started to work on
prototypes of multiprocessors that rely on NUMA characteristics [Lenoski 1993,
Agarwal 1995, Falsafi 1997]. The DASH (Directory Architecture for Shared mem-
ory) project was the first initiative to build a NUMA machine [Lenoski 1993]. The
project goal was to design large-scale single-address-space machines with some cache
coherence support. To do so, they have distributed the global shared memory
through different nodes to provide scalable bandwidths. In this architecture, each
processor has its own cache memory to reduce memory access costs. Due to this,
it has also included a directory protocol to guarantee cache coherence among pro-
cessors. The main contribution of this project is the implementation of a novel
architecture that adds the efficiency and scalability of Massive Parallel Processing
(MPP) to the easy programmability of Symmetric Multiprocessors (SMP).

Figure 2.5 shows a schema of this architecture with its hardware components.
The figure reports a DASH architecture with four nodes interconnected by a mesh
network. The global memory is physically distributed among the four nodes and a

Chapter 2. Hierarchical Shared Memory Multi-core
12 Architectures

o

(o

2=
2o

Figure 2.5: The DASH Architecture [Lenoski 1993].

specialized hardware provides the shared memory. Cache coherence is ensured by
the directory cluster interface hardware.Additionally, each CPU has its own private
cache memories to reduce communication costs.

The advent of the DASH architecture brought the concept of remote and local
accesses, that was before related to clusters of shared memory machines. In this
way, a local access is performed when a processing unit access the memory that
resides in the same node it belongs to. Contrary to this, the remote access occurs
when a processing unit request data that is allocated on a node which is different of
the one the processing unit belongs to. Figure 2.6 illustrates both local (red arrows)
and remote accesses (blue arrays).

After the DASH, several other NUMA architectures were proposed in the 90
decade. Some examples are the KSR1 [Singh 1993], the Cray T3D [Cray 1993],
the Reactive NUMA |Falsafi 1997] and the Alewife [Agarwal 1995]. The difference
between all these architectures are the design of main memory access (DRAM or
cache-only memory), the support or not to cache coherence and the interconnection
topology. After the first explosion of NUMA architectures, manufacturers such as
SGI and IBM have started to build large-scale multiprocessors with NUMA features.
Nowadays, SGI and IBM continue to use the concept of NUMA on the design of
machines for different fields such as web servers and high performance computing
servers.

2.2. Evolution of Shared Memory Multiprocessors 13

Node #1 Node #2
CPU CPU
cache - cache
MC MC
v vy
DRAM DRAM

1/O Controller

—» Local Access ~ - > Remote Access

Figure 2.6: Local and Remote access inside the NUMA Platform.

2.2.2 Mono-core to Multi-core Platforms

In the last decade, the main challenge for computer science researches in the
computer architecture domain has been to keep up the well-known Moore’s law
[Moore 2000]. This law states that processor power duplicates every 18 months.
However, by the end of 90’s computer architecture researchers already had problems
in confirming this law in the design of mono-core processors.

A mono-core processor is characterized by a single processing unit (core) that is
responsible for computing all the instructions, Figure 2.7 (a). This single processing
unit generally has an arithmetic logic unit and some memory components to store
data. In the mono-core processor architecture, in order to increase its frequency
new design was required. Due to the demand for more powerful processors, re-
searchers have made use of instruction-level parallelism and thread level parallelism
mechanisms to enhance processors performance [Patterson 2009|. The instruction-
level parallelism allows the execution of multiple instructions at the same time. In
order to support the instruction-level parallelism, mono-core processors implement
pipeline and multiple arithmetic units techniques. The pipeline technique splits the
execution of an instruction in multiple steps, allowing some of them to be executed
in parallel [Ramamoorthy 1977]. The multiple arithmetic units technique allows the
execution of several operations at the same time. The thread level parallelism mech-
anism supports the execution of multiple threads in the same mono-core processor
[Marr 2002]. This mechanism is possible due to the replication of some compo-
nents of the processor. However, even these mechanisms did not make possible the
necessary performance improvement for the parallel machines.

Since mono-core processors have been used to build large scale SMP machines,
researchers groups have worked to improve their power by including the multi-core

Chapter 2. Hierarchical Shared Memory Multi-core
14 Architectures

Mono-core Processor AMD Opetron 875 Processor Intel Xeon x7560 Processor

Core#1 Core#2

Core

System Request Queue

Memory
Controller Memory
Controller
Interconnection Interconnection ILIIIL Interconnection
DRAM DRAM
(a) (b) (c)

Figure 2.7: The Evolution: Mono-core to Multi-core Chips.

design inside them. A multi-core processor is composed of two or more indepen-
dent cores that share some hardware components, Figure 2.7 (b) and (c). The
main concept behind the multi-core architecture is the use of processing units with
shorter frequencies that work together to accomplish a job. In this way, multi-core
processors can do more work than mono-core processors, because of their implicit
parallelism. Additionally, the distance between the processing units and memories is
smaller in multi-core processors. Consequently, latency to perform communication
can be shorter, improving the overall performance of the processor.

The first multi-core processor was built in 2001 by IBM, the Dual Core POWER4+.
Even tough multi-core chips are more expensive than mono-core ones, several manu-
factures have started to design and build their own multi-core processors, e.g. AMD,
Intel and SUN. Figures 2.7 (b) and (c) show a schema of two different multi-core
architectures designed by AMD and Intel. We can observe that multi-core platforms
feature complex topologies with several cores in a single chip. In this architecture,
hierarchical cache memory subsystems with several levels are common resources.
Still, multi-core processors can also make use of the instruction-level parallelism
and the thread level parallelism mechanisms.

Multi-core technology is expected to solve the problem of achieving higher per-
formances on shared memory machines. Because of that, the number of cores per
processor will continue to increase, resulting in many-core architectures with hun-
dreds of cores. Therefore, the software level such as operating systems, runtime
systems and applications must be adapted to efficiently use the multi-core features.
Applications must be aware of the shared caches and how cores are assembled inside
the processor chip. For instance, managing thread and data placement efficiently
can be crucial for the application performance in multi-core machines. Chapter 3
details the software support to deal with such issues on shared memory machines

2.2. Evolution of Shared Memory Multiprocessors 15

based on multi-core processors.

2.2.3 Multi-core Platforms With NUMA Characteristics

The multi-core architecture is a trend in different areas of computer science, spe-
cially in HPC. It addresses important issues inside processors such as the instruction
level parallelism within a chip and the power wall problem [Liu 2009]. These prob-
lems are reduced by multi-core design because it provides multiple levels of cache
memories, multiples pipelines and less consuming processing units. However, other
problems arise because of the multi-core characteristics. For instance, the memory
wall problem at main memory level is an important one.

In the context of hierarchical shared memory platforms, multi-core processors
have been used as building components. Using multi-core processors, computer
architecture engineers built powerful shared memory machines with tens or even
hundreds of cores. The problem appears when all these cores request some data
that is not present in any of the cache memories. Therefore, the data request is
answered by the global shared memory, which can consume several CPU cycles
because of the single bus. During these CPU cycles cores are idle waiting for data.

In order to reduce such a penalty, processors manufactures have brought to
multi-core architectures the concept of NUMA. The non-uniform memory access is
implemented in multi-cores in a similar way as the first NUMA platforms of the
80’s and 90’s. Some hardware support is included inside the machine to handle
the physical distributed shared memory. This hardware can be implemented as a
specialized hardware that control all access to memory or as an integrated memory
controller (MC) in the processor chip. The latter one has been more adopted by

manufactures because it reduces the centralized management of all memory requests
[Awasthi 2010].

Node #1 Node #2 Node #1 Node #2
CPU CPU CPU CPU
cache cache cache || cache || cache || cache
e e [me | [me | [me | [me |

DRAM DRAM DRAM DRAM DRAM DRAM

1/0 Controller 1/0 Controller

(@ (b)

Figure 2.8: Multi-core NUMA Platforms: (a) Single Memory Controller (b) Multiple
Memory Controller.

Chapter 2. Hierarchical Shared Memory Multi-core
16 Architectures

Several multi-core architectures such as Nehalem from Intel and Opteron from
AMD feature a NUMA design. Figure 2.8 (a) shows a schema of a parallel machine
based in multi-core processors, where each processor is composed of two cores, a
shared cache memory and a memory controller. In this architecture, cores in the
same processor communicates with each other using the shared cache. This design
reduces communication costs between cores and also memory access costs to get
some data. The memory controller inside the processor is responsible for the man-
agement of all requests to get data from memory. In the architecture illustrated
in this figure, each processor has its own memory controller. However, with the
increase of the number of cores per processor, other designs are necessary.

Since memory controllers are responsible for handling all memory requests, it can
become a point of bottleneck. In order to avoid the contention on the memory con-
troller, manufactures have started to integrate multiple memory controllers per pro-
cessor. Each memory controller is responsible to answer requests from a restricted
set of cores, reducing the contention on memory controllers queues [Wentzlaff 2007].
Figure 2.8 (b) depicts a schema of an architecture where multiple memory controllers
per processor are used. This architecture also presents NUMA characteristics and
it is more hierarchical than the ones with single memory controllers per processor.
Therefore, it demands an efficient data placement and control of all requests to
memory controllers.

Similarly to the first NUMA machines, the current NUMA multi-core platforms
also have their design cache coherence protocols to ensure data consistency. The
main difference is in the algorithm that ensures the cache coherence. Other concepts
that are also present in the modern NUMA platforms are the local access and remote
access. Here, the main difference is that current NUMA platforms tend to present
smaller local and remote access costs thanks to the new interconnection network
technologies.

In order to provide an idea of the difference between current NUMA machines
and the machines proposed in the 90’s, Table 2.1 shows two memory performance
metrics for three NUMA machines. The performance metrics presented in the table
are the memory bandwidth and the ratio between remote and local latency. We can
observe that current NUMA machines (AMD 875 and Intel X7560) have a smaller
ratio between remote and local latencies than the DASH machine (extracted from
[Lenoski 1993]). Additionally, memory bandwidth of the current NUMA machines
is higher than the ones of the DASH platform.

Table 2.1: NUMA Platforms Characteristics.

Characteristic DASH AMD 875 Intel X7560
Memory bandwidth 64 MB/s 9.77 GB/s 35.54 GB/s
Ratio Remote vs Local Access 4.55 1.5 2.6

Although, the current NUMA multi-core machines have shorter latencies and
higher memory bandwidths, these characteristics do not eliminate the NUMA penal-

2.3. Memory Subsystem Hardware for Hierarchical Architectures
17

ties. For instance, in the same table we can observe that on an Intel based machine
the ratio between remote and local access on shared memory can be up to 2.6, which
means that a wrong data/thread placement generates a memory access cost of 2.6
times greater than the local access costs. Furthermore, in current NUMA machines
one of the main challenges is to deal with the complex topology and hierarchy of
the machine. In the chapter 3, these challenges are introduced and described.

2.3 Memory Subsystem Hardware for Hierarchical Ar-
chitectures

One of the main advantages of NUMA machines is that programmers can de-
velop parallel applications using the shared memory programming model. This is
possible because of the specialized hardware that provides a single address space at
the memory level. However, as discussed in previous sections, the implementation
of the shared memory with NUMA characteristics demands a interconnection net-
work and cache coherence protocols. These two components are responsible for the
NUMA penalties, since they deal with data transfers and update. In this section,
we introduce and describe some of the interconnection network and cache coherence
protocols used in the design of NUMA machines.

2.3.1 Connections between Processors and Memory

In order to build NUMA machines, it is necessary to have an interface between
the processor and the other devices (e.g. memory and peripheral devices). This
interface is the interconnection network that makes possible the exchange of data
among the platform components. Generally, each processor manufacturer imple-
ments its own interface architecture to have the best performance for its architec-
ture. In the context of NUMA platforms several interconnection network have been
designed by different manufactures [Intel 2011b, AMD 2011a, SGI 2011].

The Front-Side Bus (FSB) is an interconnection architecture developed to con-
nect processors to the memory and peripheral devices. It has been used by several
processor manufactures on its shared memory machines since the 90’s. One of
the biggest disadvantages of FSB is that each implementation is machine specific.
Therefore, each processor manufacture design its own FSB architecture. In the case
of Intel, the FSB first implementation relies on a single shared bus that connect
all processors. Over the years this architecture has been improved to provide more
bandwidth to processors. The current implementation of FSB defines a point-to-
point interconnection, which enhances the available bandwidth for each processor.

The advent of memory controllers integrated in the processor chips and the de-
mand for more bandwidth, forced the replacement of the FSB to new interconnects
such as the Quick Path Interconnect [Intel 2011a] and the HyperTransport Intercon-
nect [AMD 2011a]. Most of NUMA multi-core machines based on Intel processors
use the new interface named QuickPath Interconnect (QPI). The architecture design

Chapter 2. Hierarchical Shared Memory Multi-core
18 Architectures

for this interconnect relies on point-to-point link that allows data exchange in mul-
tiple lanes. Additionally, this interconnect splits packets to send them in parallel.
Thanks to these features the QPI has the capacity to provide better bandwidths to
the current multi-core machines. The QPI also implements cache-coherence proto-
col that guarantees that data is coherent for all levels of the memory subsystem.
For instance, QPI can be up to 50% better than FSB interconnect [Intel 2011a].

The competitor to QPI is the HyperTransport (HT) interconnect, which is an
open specification that has been adopted by AMD. The first version of HT was
introduced in 2001. After that, most of NUMA machines based on AMD processors
have been implemented with this technology. Similar to QPI, HT also performs data
transfers in parallel, allowing more bandwidth. Compared to FSB, the HT version
3.0 can be 20% better in terms of data transfer performance [AMD 2011a|. The
main difference between QPI and HT is the cache coherence protocol supported by
them. QPI uses the MESIF protocol, whereas HT uses the MOESI protocol. In the
next section, we provide more details about both of them.

2.3.2 Cache Coherence Protocol for NUMA Platforms

On a NUMA platform, the cache coherence protocol is responsible for keeping
all shared data consistent across its different processing units. The cache coherence
protocol specifies actions that must be executed when read and write operations are
performed on some data (cache line). Several protocols have been proposed in order
to efficiently implement these actions. Concerning the NUMA platforms, there
are different cache coherence protocols implementations such as MESI, MOESI,
and MESIF [Papamarcos 1984, AMD 2011b, Molka 2009]. The first letter of each
possible state in each protocol is used to name it. These protocols have been used
on current NUMA machines based on Intel and AMD processors.

write/read read

read local -
Invalid) Shared
write

write local
write local

\/
Modified
' write local

write/read local read local

Figure 2.9: MESI State Transitions |[Technion 2011].

The MESI (Modified, Exclusive, Shared and Invalid) protocol has been proposed

2.3. Memory Subsystem Hardware for Hierarchical Architectures
19

at the University of Illinois [Papamarcos 1984|. This protocol has four states and it
is generally used with the FSB interconnect. The possible states are: (i) modified,
the cache line has been modified but not yet updated in main memory; (ii) exclusive,
the cache line is updated in one cache and matches with main memory; (iii) shared,
the cache line can be used by other processor; (iv) invalid, cache line is invalidated
and can not be used. From a state, the protocol defines which states can be reach
for a cache line.

Figure 2.9 shows the state transitions for MESI protocol. Basically, what this
diagram illustrates is how read and write operations are performed. For a read
operation from a processor, messages are sent to request data if the processor does
not have data in its cache (the state invalid). If the processor has data, in the case
of any other state, it performs the read in a local way. For write operation on data,
processors have to go to the modified mode. However, if the processor does not have
the data, it has to request it to other processors. In the case of one of the processors
have a copy of the data that will be written, it has to go to the exclusive mode to
invalidate any copy and then it goes to the modified mode. Due to its design, this
protocol presents low bandwidth to communicate to other processors and it demands
that a modified cache line must be updated in main memory. Furthermore, in this
protocol on every read and write operations it has to check if data was modified.

read local read local
read >
Invalid |4 Exclusive
\ write local

read

write local
write local

Modified

write local
read/write

Figure 2.10: MOESI State Transitions - Extract from [AMD 2011b].

In order to reduce the number of messages and hops need to perform a read /write
on MESI, some modifications have been proposed to this protocol. The inclusion of
a new state to reduce the overhead of the MESI protocol has originated the MOESI
and MESIF protocol. The MOESI protocol includes the owner state (O), whereas
the MESIF includes the forward state (F). The MOESI has been used in the AMD
Opteron processors and the MESIF in the Intel Nehalem processors.

Chapter 2. Hierarchical Shared Memory Multi-core
20 Architectures

The inclusion of owner state in MOESI protocol creates a state that represents
a data that is modified and shared. When a processor asks data for read and other
processor has it in the owned state, this later can supply the request. Therefore, this
new state avoids the need to write a cache line back to main memory when it has
been recently modified by a processor. This protocol is generally more performant
than the MESI one. Figure 2.10 shows the state transitions for MOESI protocol.
We can observe in the figure that both owned and modified states obligate a cache
line invalidation in the case of a write operation.

In the case of MESIF, the inclusion of the forward state avoids multiple answers
to a read miss. In every read request from a processor, a broadcast is performed
to ask other processor for data. However, contrary to MESI protocol only one
processor will answer the request, the one that holds data in the forward state.
This strategy reduces the amount of messages necessary to maintain the coherence
between caches, enhancing the overall performance of the machine. Figure 2.11
shows the state transitions for MESIF protocol.

Read Miss

Write Miss

Read hit/

Write hit Read Miss

Read hit

Figure 2.11: MESIF State Transitions.

The main difference between these three cache coherence protocols is the number
of hops and messages needed to get some data on a read or write operation. These
two parameters impact directly on the memory performance of the NUMA machine
and consequently, on the application performance. A number of works have evalu-
ated such differences on different multi-core platforms, their analysis are presented
in [Molka 2009, Hackenberg 2009].

2.4 Conclusions
Current large-scale shared memory machines rely on multi-core processors with

non-uniform memory access (NUMA) characteristics. Due to this design, shared
memory machines are becoming more complex with a hierarchical topology and

2.4. Conclusions 21

memory subsystem. NUMA multi-core machines feature multiple cache levels, spe-
cialized interconnection networks, several cores and a distributed shared memory.
Since these parallel platforms are becoming a trend in scientific High Performance
Computing (HPC), it is important to design some support to efficiently use their re-
sources. The architectural characteristics of such machines increase the complexity
of extracting scalable performances from these machines. Therefore, the main chal-
lenge of NUMA multi-core machines is ensure efficient use of the machine resources.

In this chapter, we observed that several architectural design choices might have
an important impact on the overall performance of applications executed in the
NUMA multi-core machines. For instance, the remote latencies, the memory band-
width and the cache coherence protocol overhead can have a significant role in the
system performance. In order to reduce such NUMA penalties, it is important to ef-
ficiently manage thread and data placement on the NUMA multi-core machines. In
this context, improving memory affinity between processing units and data becomes
necessary on these platforms.

Memory affinity ensures that thread and data will be efficiently mapped over the
machine in order to optimize latency and bandwidth. Thus, on NUMA platforms,
parallel programming languages and libraries must be aware of memory affinity in
order to extract scalable performances from the hardware. In the next chapter,
we discuss the current NUMA support in the software level in hierarchical shared
memory machines.

CHAPTER 3

Software Issues of Memory
Affinity Management on
Hierarchical Multi-core Machines

It was shown in the previous chapter that the current shared memory machines
rely on a complex architecture design. This complexity is mainly attributed to the
non-uniform memory access characteristics of its memory subsystem and the core
topology present in the processors. Such characteristics can lead to poor perfor-
mances if the software level is not prepared to deal with them efficiently. In this
context, enhancing memory affinity between threads and data in the software level
for parallel applications becomes crucial. Memory affinity is enhanced when thread
and data are mapped over the machine in a such way that it reduces latency and
increases bandwidth. In this chapter, we discuss the software issues related to the
management of memory affinity on multi-core machines with NUMA design. The
chapter goes through the state of art of the software level, highlighting its draw-
backs on memory affinity support for current machines. We start by introducing
some parallel programming languages and systems used in the development of par-
allel applications for shared memory machines. We then discuss the false sharing
problem in the context of NUMA machines. Forward, we present a case study of the
penalties that the NUMA characteristics can incur on the performance of parallel
applications. We depict the approaches and software support to deal with memory
affinity management on shared memory machines. Finally, we present a conclusion
on the state of the art in software solutions for memory affinity. This discussion
leads to the motivation for the contributions of this thesis.

3.1 Parallel Programming on Shared Memory Platforms

In order to obtain scalable performances from parallel platforms in high per-
formance computing, it is mandatory to use efficient parallel programming lan-
guages and systems for the application development. Several parallel program-
ming environments have been designed over the years. Nowadays, we count on
a large set of parallel programming languages and systems to implement efficient
parallel applications for different parallel architectures. Some examples are MPI
(Message Passing Interface) [Snir 2010], PM? [Namyst 1997], Charm++ [Kalé 1993,
PPL-Charm++ 2011|, OpenMP [OpenMP 2011], HPF (High Performance Fortran)

Chapter 3. Software Issues of Memory Affinity Management on
24 Hierarchical Multi-core Machines

#define ITERS 1000
#define MAXGRID 2048

double gridl [MAXGRID| [MAXGRID]| , grid2 [MAXGRID | [MAXGRID| ;
int id;

for (iters = 1; iters <= ITERS; iters++) {
#pragma omp parallel for private(j) schedule (static){
id = omp_get thread num{();
for (i = 1; i < MAXGRID — 1; i++)
for (j = 1; j < MAXGRID —1; j++)
grid2[i][j] = (grid1[i—1][j] + gridl[i+1][j] +
gridl [i][j—1] + grid1[i][j+1]) * 0.25;

Figure 3.1: OpenMP Example.

[Richardson 1996], UPC (Unified Parallel C) [UPC 2011|, Software Transactional
Memory [Larus 2006] and CUDA [NVIDIA 2010].

The examples cited above can be classified into message passing or shared mem-
ory programming models. In the message passing programming model, the applica-
tion computation is executed in parallel by processes. Every time a process needs
to communicate with another process (to exchange data for example), they send
and receive messages from each other. Generally, the message passing model scales
better, but it demands a more complex coding effort to implement an application.
Shared memory programming model relies on the concept of a shared global mem-
ory space that is used by processes and threads to communicate. This programming
model is usually less scalable than the message passing one, but simpler and easier
to be used by parallel application developers [Grama 2003].

Considering multi-core platforms with NUMA design, the most suited program-
ming model is the shared memory one, since the machine is based on a shared
memory model. There are several popular parallel programming languages and sys-
tems that support the shared programming model. In this thesis, we will focus our
state of the art on OpenMP, HPF, UPC, OpenSkel [Goes 2010b] and Charm++. We
have focused on such languages and interfaces because they represent an effort on
HPC to reduce the complexity of programming parallel applications while attaining
scalable performance. These languages and interfaces try to hide technical details
from the developer when implementing a parallel application.

OpenMP is an API (Application Programming Interface) that supports the
shared memory programming model on multiprocessors machines [OpenMP 2011].
By the end of the 90’s decade, a consortium between companies and universities
proposed OpenMP with the objective of being a simpler and easier way to pro-
gram parallel applications. The consortium defined a specification for OpenMP
that describes a set of directives, functions, and environment variables for the API.

3.1. Parallel Programming on Shared Memory Platforms 25

PROGRAM MATRICES
integer N, I, J
real gridl (N,N)
real grid2(N,N)

%!hpf$ PROCESSORS P(4)
%!hpf$ distribute gridl(block,6 block)
%!hpf$ distribute grid2(block, block)

DO ITERS=1,MAXITERS
DO I-1,N FORALL (J=1
grid2(I,J) = (gridl
gridl (I,J-1)

:N)
(1-1,0) + gridl (1+1,0)+
+ grid1(I,J+1)) = 0.25;
END DO
END DO
END PROGRAM

Figure 3.2: HPF Example.

OpenMP has been implemented to C, C++ and different versions of Fortran, all
the while leaving implementation details and choices up to each compiler. The only
rule is that OpenMP implementations must follow the specification proposed by the
consortium [OpenMP 2011]. In this way, programmers have a portable API to de-
velop their applications on. The OpenMP constructions allow developers to control
the parallelism, the synchronization, the work-sharing and the mutual exclusion for
an application. The parallelism on OpenMP relies mostly on the parallelization of
loops, indicating which set of instructions must be executed in parallel. Figure 3.1
shows an example of an OpenMP code in C. In this example, we present some of the
OpenMP directives (pragma omp parallel for to parallelize the for loop), functions
(omp_get_thread_num() to get the OpenMP id of a thread) and clauses (private
for data sharing attribute and schedule for work distribution).

HPF is an extension to Fortran 90 with parallel programming support proposed
by the HPFF (High Performance Fortran Forum) in 1993 |Richardson 1996]. HPF
relies on the data parallel model and it has special support for data (array) distribu-
tion over the machine. Data distribution is performed considering the distribution
strategy chosen by the user at the data declaration. This feature allows HPF to be
efficiently implemented on shared and distributed memory architectures. However,
some definitions of HPF are complex to be integrated inside a compiler and vendors
have abandoned their efforts to implement HPF. Most HPF users adopted OpenMP
as a substitute for HPF. Figure 3.2 reports an example of a HPF code. In this
example, we present some of the HPF directives: PROCESSORS P(/) that defines
how many processors will be used for work distribution, distribute grid1(block,block)
that defines how the elements of the gridl matrix will be distributed for the worker
threads and FORALL that allows any order execution of its content.

UPC is an extension of ANSI C programming language with parallel program-
ming support proposed by the UPC consortium in 1999 [Carlson 1999, Coarfa 2005].

Chapter 3. Software Issues of Memory Affinity Management on
26 Hierarchical Multi-core Machines

#define ITERS 1000
#define MAXGRID 2048
#define CHUNK MAXGRID/NTHREADS

shared [CHUNK] double gridl [MAXGRID||[MAXGRID],
grid2 [MAXCRID | [MAXGRID| ;

for (iters = 1; iters <= ITERS; iters++) {
1; i < MAXCRID; i++;i) {
j < MAXGRID; j++)
] =

(grid1[i—1][j] + grid1l[i+1][j] +
gridl [i][j—1] + grid1[i][j+1]) * 0.25;

upc_forall (i =
for (j = 1;
grid2 [i][j

if (MYTHREAD — 0)

printf("\n_master_thread_doing_work");

Figure 3.3: UPC Example.

The main objective of UPC is to provide a parallel programming support based
on the partitioned global address space programming model. In this model, the
language abstracts from the programmer the notion of remote and local memory
accesses. Using special notations, developers can access data as if they are program-
ming for a shared memory machine. Nowadays, several implementations of UPC
have been released in compilers from HP, SGI, Sun and Cray. UPC introduces new
concepts for data sharing, thread affinity and work distribution. Figure 3.3 shows
an example of a UPC code. In this example, we present some of the UPC keywords:
shared [CHUNK] that defines how shared data will be distributed (round robin way
in chunks of CHUNK) for the workers, upc_ forall that allows users to parallelize a
sequence of instructions and MYTHRFEAD that allows user to get the UPC id for
a thread. Differently of the standard C for, the upc forall has a fourth parameter
that specifies the affinity between threads and data. In the example, the affinity
between threads and data is defined by 4, which defines the arrays rows. Therefore,
affinity is performed by rows in a round robin way over threads. Additionally to
these features, UPC also defines some support for data coherence (sequential and
relaxed [Carlson 1999]) and parallel /0.

OpenSkel is a transactional skeleton framework developed in the University
of Edinburgh [Goes 2010b, Goes 2010a]. It combines parallel skeletons with trans-
actional memory software leading to a transactional skeleton programming model.
This new model enjoys the benefits of both approaches, simplifying parallel pro-
gramming and improving performance. In this sense, transactional applications can
be tuned transparently and automatically by the skeleton framework. OpenSkel
relies in a C based API that allows programmers to develop parallel application in

3.1. Parallel Programming on Shared Memory Platforms 27

int main(int argc, char xxargs) {
//shared data must be allocated wusing this data type
oskel w1l shared t globalj;

global = malloc(sizeof(oskel wl shared t));
global—>data = malloc(sizeof(args[1]));

//allocate the pointer to the worklist
oskel wl t xoskelPtr=oskel wl alloc(sizeof(oskel wl t),&global);

//include a work wunit in the worklist
while (! feof (file))
oskel wl addWorkUnit (oskelPtr ,read(file));

//starts the execution — create the team of threads
oskel wl run(oskelPtr, global);

//work finished — free the wvaribles
oskel wl free(oskelPtr);

Figure 3.4: OpenSkel Example.

a simple way. The API provides data types and functions to define the application
data, work units that composes a computation and the start of computation. In
Figure 3.4, we present a worklist example of an OpenSkel application. In this ex-
ample, the global shared data is allocated and the OpenSkel pointer to the worklist
oskelPtr defined. In OpenSkel API all shared data must be encapsulated in the data
structure oskel _wl shared t. Work units are added to the OpenSkel worklist with
the routine oskel wl_addWorkUnit(oskelPtr,input) and processed using the routine
oskel wl_run(oskelPtr,global).

Charm+--+ is a C++ parallel programming system that was proposed in 1993
in the Parallel Programming Laboratory at the University of Illinois. It aims
at providing a parallel programing model that abstracts architecture character-
istics from the developer, improving programmer productivity. Charm-++ intro-
duces the idea of parallel objects to encapsulate the computation and communica-
tion for an application. Such objects are automatically mapped to processors by
Charm-++ runtime and they communicate with each other using a message driven
model [Kalé 1993, Kalé 2009a]. Figure 3.5 shows an example of a Charm-++ appli-
cation that was extract from Charm++ examples [PPL-Charm++ 2011]. In this
example, an array (arr) of nElements is created and a message is passed along the ar-
ray from the element 0 to N. The routine CProzy Hello::ckNew(nElements) creates
the array, whereas the routine SayHi(int hiNo) is used to pass the message.

The advent of multi-core NUMA machines has increased even more the need of
efficient software for high performance computing (HPC). Most of the languages and
interfaces mentioned in the previous paragraphs do not have any support for the
current NUMA multi-core machines. Furthermore, in the ones with some affinity

Chapter 3. Software Issues of Memory Affinity Management on
28 Hierarchical Multi-core Machines

#include "hello.decl.h"

/+*readonly*/ CProxy Main mainProxy ;
/+*readonly*/ int nElements;

/*maincharex/
class Main : public Chare { public:
Main (CkArgMsg+ m) {
//Process command—line arguments
if (m>arge >1)
nElements=atoi (m—>argv [1]);

//Start the computation
mainProxy = thisProxy;
//create the array of objects
CProxy Hello arr = CProxy Hello::ckNew(nElements);
//starts to tramsmit the message
//message is the number 17
arr [0].SayHi(17);
b

void done(void) {
CkPrintf("All_done\n"); CkExit(); };

}s

/xarray [1D]x/
class Hello : public CBase Hello {
public:
Hello () {
CkPrintf("Hello %d_created\n" ,thisIndex); }

Hello (CkMigrateMessage *m) {}

void SayHi(int hiNo) {
CkPrintf("Hi[%d] _from_element _%d\n" ,hiNo, thisIndex);
//continue to send messages — next object
if (thisIndex < nElements—1)
thisProxy [thisIndex +1].SayHi(hiNo+1);
else //message has arrived
mainProxy . done ();
}

}s

Figure 3.5: Charm++ Hello Word Example - Extracted from Charm++ Examples.

3.2. False Sharing in NUMA Platforms 29

support (e.g. UPC), programmers are obliged to explicitly manage all the affinity,
providing some hints in the application source code. We observed in chapter 2 that
the multi-core NUMA platforms demand from parallel applications an efficient use
of the machine topology and interconnection network, in order to reduce memory
access costs. In the next sections, we present the performance problems that NUMA
machines can bring to parallel applications. We then present the efforts that research
groups have done in order to get better performances from parallel applications in
such machines.

3.2 False Sharing in NUMA Platforms

The development of parallel applications for shared memory machines can be
simplified thanks to shared memory programming support available on some lan-
guages as presented in the previous section. However, developers must be aware of
some performance issues that can arise because of the architectural characteristics
of shared memory machines. One of these issues is the false sharing problem.

False sharing occurs when two or more processing units require different data
within the same coherence block (i.e. cache line). In this situation more coherence
operations are necessary to keep data correct for all processing units. This problem
is presented on shared memory machines that have cache memories and implement
a cache coherence protocol. This is a common factor for poor performance on such
machines, because higher latency and lower bandwidth are caused by the coherence
operations |Bolosky 1993].

An example of false sharing problem in a parallel code is presented in Figure 3.6.
In this example, we assume that there are two threads running and that they share
a cache memory. Additionally, the cache line holds one integer. Therefore, each
time that Thread 0 writes to war, it will invalidate the cache block for the other
thread. Even tough threads write to different logical positions, in the hardware
these positions are in the same cache block producing the false sharing problem.
Therefore, the average access time to get data for each thread is increased, degrading
the application performance.

//global wvariables
int var,varOdd;

//executed by all threads wvoid makelnc() {
if (myld() = 0)
var = var + 1; else
varOdd = varOdd + 1;

Figure 3.6: An Application with False Sharing Problem.

Particularly on NUMA platforms, this problem worsened because of the non-
uniform memory access cost on these machines. Memory access costs are mainly

Chapter 3. Software Issues of Memory Affinity Management on
30 Hierarchical Multi-core Machines

related to the cache coherence protocol operations and the interconnection network
between NUMA nodes.

In order to deal with this problem, developers can make use of compiler support,
automatic mechanisms and profiling/tracing tools that help them to identify and
solve the false sharing point. Some techniques such as data padding, privatization
of shared data, data allocation and thread placement can also be used by developers
to reduce false sharing impact [Jeremiassen 1995, Berger 2000, Broquedis 2009].

3.3 A case study: NUMA Impact on Parallel Applica-
tions Performance

In this section, we report how the NUMA design can impact the overall per-
formance of parallel applications on multi-core machines. To do so, we use two
synthetic applications written in C/C++ language that represent different behav-
iors of a parallel application. For this study, we chose Charm+-+ and OpenMP as
solution for code parallelization because of their simplicity of usage and difference
in the programming model. Furthermore, similarly to other parallel languages and
interfaces, none of them has any NUMA support.

We start with a simple example that shows the impact that a NUMA machine
can cause on a parallel application. In order to demonstrate that, we present the
performance difference of a benchmark written in Charm+-+ when executed in multi-
core machines with UMA and NUMA design. The benchmark performs a Jacobi
computation in a two-dimensional matrix and the complete code is presented in
[Jacobi 2011]. In this benchmark, to compute a point of the matrix, a task needs
to use the south, north, west and east points of the matrix. This means that some
communication between tasks must be performed in order to get the necessary data.

Table 3.1: Speedups for the Charm-++ Jacobi Benchmark.

Number of Threads ‘ UMA ‘ NUMA

4 2.26 2.31
8 6.12 6.15
16 7.01 6.10
24 8.77 7.01
32 - 7.02

Table 3.1 shows the speedup for the Jacobi benchmark when executed in two
multi-core machines, the first one with UMA design and the second one with NUMA
design. The UMA machine has 24 cores and all cores have similar memory access
latencies to get data. In contrast, the NUMA machine has 32 cores, grouped in 8
cores per NUMA node with different memory access latencies to get data. We can
observe in Table 3.1 that while the speedups in the UMA machine presents some

3.3. A case study: NUMA Impact on Parallel Applications
Performance 31

scalability, the ones obtained in the NUMA machine do not.

Considering the Jacobi benchmark characteristics, such NUMA impact comes
from the communication step needed to get the four neighbors points. In the case
of the NUMA machine, this communication is more expensive due to the remote
accesses that must be performed to get data on the NUMA nodes. It is important
to mention that both machines have similar processor frequencies and a shared last
level cache memory. We can then conclude that the performance penalties on the
NUMA machine comes from its non-uniform memory access design.

//to reduce cache influence — large wvector
#define N 2000000
#define NTIMES 100

double c|N],a|N];

for (k=0; k<NTIMES; k++) {
#pragma omp parallel for
for (j=0; j<N; j++)

clil = aljl;

Figure 3.7: Synthetic Application Snippet.

In our second case study, we present a simple example that demonstrates how
data initialization on NUMA machines can have an important impact on an OpenMP
application performance. Figure 3.7 depicts the snippet of a synthetic code that
copies a vector onto another one. In this code, each thread computes a chunk of
the arrays. The chunk size in this example is N /number of threads. We use for
this case study two types of data initialization, the master thread and the team
thread. In the first one, all data is initialized only by the master thread, whereas
in the second one each worker thread initializes its own data using the OpenMP
construction parallel for (Figure 3.8).

The NUMA machine used in this study runs Linux operating system. In this
operating system first-touch is the default data placement strategy to manage mem-
ory affinity on NUMA platforms. This policy places data on the memory bank of
the NUMA node that first accesses it [Joseph 2006]. Due to this, it is important
to guarantee that threads will touch their own data in order to enhance memory
affinity. Therefore, data initialization in this case must be done before the iteration
loop of our example to place data over the machine memory banks.

Figure 3.9 shows the difference between these two strategies in a NUMA machine
with four nodes. One can observe, that with the master initialization all application
data is placed in only one memory bank. Contrary to this, the team initialization
data is spread over the four memory banks of the machine because each thread
performs the first access on its chunk.

Chapter 3. Software Issues of Memory Affinity Management on

32 Hierarchical Multi-core Machines
//Master Initialization //Team Initialization
for (j=0; j<N; j++) #pragma omp parallel for
{ for (j=0; j<N; j++)
clj] 0.0; {
alj] = 1.0; clj|] = 0.0;
¥ alj] = 1.0;

}

Figure 3.8: Data Initialization for the Synthetic Application.

Table 3.2 reports the execution time for each data initialization strategies. We
compiled the code with GCC compiler and for the experiments we used four nodes
of an AMD Opteron NUMA platform (similar to the machine in Figure 3.9). We
used four threads and pinned each one to a core of the machine. As we can observe,
execution times are up to 50% different, when using the master thread and the
thread team initialization. In the latter case, data (array chunk) is placed closer
to the thread that made the first access to it. This placement is performed by the
first-touch strategy that used in Linux to place data on the physical memory of
the machine. Considering the example, the team thread initialization reduces the
number of remote access, minimizing latency costs to get data.

Table 3.2: Execution Time for the Synthetic Application (in seconds).

Data Placement Execution Time ‘
Master Thread Initialization 0.4992
Thread Team Initialization 0.2465

In this OpenMP case study, it is easy to identify and to reduce the NUMA impact
because the initialization and the computation step have the same computation/data
partition. Therefore, developers can apply the team thread initialization strategy in
their applications in order to get better performances on NUMA machines. However,
in real world applications computation/data partition generally change over the
application phases. For these situations the worker thread initialization does not
work. Thus, a mechanism to re-distribute data over the machine is necessary to take
into account such an irregular accesses. To our knowledge, there is no mechanism
with such feature in the OpenMP standard.

3.4. How to Reduce NUMA Impact on Parallel Applications?
33

Data Distribution

2] =y [2l [rz)[I

[[Tl [_] rl i [7ol [L 1

Master Thread Initialization Thread Team Initialization
Legend

H]]]]]]]]] Data
NUMA Node

I Memory Bank

TO Master Thread (] CPU with 2 cores

T1-T3 Thread Team Network

interconnection

Figure 3.9: Data Initialization Strategies.

3.4 How to Reduce NUMA Impact on Parallel Applica-
tions?

In the above section, we noticed that a NUMA unaware interface/language such
as OpenMP and Charm+-+ can have their performance reduced if developers do not
take care of how thread and data are placed over the machine. A simple strategy
already generates significant gains, as presented in the previous section with the
team thread initialization. In this section, we introduce other problems related to
the software level on NUMA machines. Additionally, we provide some hints of how
users can reduce them by enhancing memory affinity.

The team thread data initialization strategy is generally efficient only in regular
applications such as the example presented in Figure 3.7. In this case, memory
access patterns are similar through the application steps, which allow developers
to use this strategy effectively. However, in applications in which threads have a
high level of data sharing and access different data, it becomes necessary the use of
different strategies to place threads and data. To illustrate this problem, we present
three case studies, the first one using a benchmark implemented with OpenSkel and
the other ones using benchmarks in OpenMP.

An application that has a high level of data sharing between threads generally
suffer from memory contention issues. Since threads try to access the same memory
range at the same time, the available memory bandwidth for cores is generally not

Chapter 3. Software Issues of Memory Affinity Management on
34 Hierarchical Multi-core Machines

enough. To illustrate this problem, we select the OpenSkel version of the intruder
application from the STAMP benchmark [Minh 2008|, which is an irregular applica-
tion with a high level of data sharing between threads. We executed intruder with
one thread per core on a NUMA machine with 32 cores and four NUMA nodes (8
cores per node). In order to reduce contention problems, we used an uniform round-
robin data placement strategy that provides load balancing for data distribution,
increasing the memory bandwidth for cores.

Table 3.3: Average Latency (ns) to get data on a NUMA Machine.

Number of Cores ‘ Original ‘ Round-Robin

8 233 220
16 2315 2286
32 59687 5586

Table 3.3 depicts the average latencies for a thread to get data. One can observe
that by applying the round-robin data distribution, lower latencies are obtained
when compared to the original version of the application. In this case, the applica-
tion data is spread over all memory banks of the machine, increasing the memory
bandwidth available for cores to access data. Since the threads have a high level
of data sharing, the contention is reduced by providing more memory banks to be
accessed.

A single application may need different data placements depending on the com-
putation step and the memory access patterns of a variable. In Figure 3.10, we
show a snippet of an OpenMP benchmark code, which illustrates different memory
access patterns. The outermost loop (just after the #pragma omp) creates a set
of OpenMP threads, each of which accesses the application matrices. In this case,
each thread accesses a block of rows on matrix MD and all threads require access
to common elements on matrix _negX.

In order to avoid remote access on MD matrix rows, it is important to bind them
close to threads that use them. To bind rows on the correct memory bank, we can
use the team thread data initialization and let first-touch ensure that data is closer
to threads that computes it. In this case, it is also necessary to pin threads to cores,
to avoid any thread migration. The common elements on matrix negX may be a
source of contention if they are placed in a restrict set of memory banks, since all the
threads are running simultaneously. That situation will happen if we use the team
thread data initialization strategy to distribute data over the NUMA machine. To
overcome the contention, one can then spread negX in some round-robin strategy
among the machine memory banks, in order to optimize interconnection network
usage.

In Table 3.4, we present the execution time (in seconds) for the snippet shown
in Figure 3.10 when executed in the four nodes of the NUMA machine described in
the previous section. We use two strategies to place data for this code. In the first

3.4. How to Reduce NUMA Impact on Parallel Applications?
35

#define N 13300
int MD[N][N], negX[N][N];

#pragma omp parallel for private(j,radius,smallx)
for(i=0; i < _rows; i++)
for(j=0; j < _columns; j++) {
if (j — 0) MD[i][j] = 0;
else {
radius = 0; smallx = negX[i]|[] — 1];
while (radius < _gradius){
if (_negX[i][j — radius — 1] < smallx)

smallx = negX[i][j — radius — 1];
radius++;
}
if (smallx > intX[i][j])
MD[i][j] = 1;
else
MD[i][j] = 0;

Figure 3.10: Synthetic Application Snippet.

strategy, we apply only the team thread initialization whereas in the second one, we
combine this strategy with the round-robin one. The round-robin data placement
strategy has been applied to mnegX matrix by modifying the application source
code.

Table 3.4: Execution Time in seconds for the Snippet Presented Above.

Data Placement ‘ Time ‘

Team Thread Initialization 4.19s
Team Thread Initialization + Round-Robin | 3.39s

We can observe in this table that team thread data initialization performed 18%
worse in time. Since this strategy considers only the first access to distribute data,
it generates concurrent accesses to elements in the same memory bank. Contrary
to this version, the team thread initialization + round-robin strategy perform an
uniform round-robin placement for negX. Due to this, the memory pages are
spread over the machine memory banks reducing memory contention on particular
memory banks and increasing the available bandwidth. Considering the MD matrix,
both versions of the code place its memory pages closer to threads that use them.
Therefore, latency to get data is reduced by placing data on threads local memories.

Besides the memory access pattern (regular and irregular), it is also important
to consider the data access mode (i.e. read and write) when choosing the data

Chapter 3. Software Issues of Memory Affinity Management on
36 Hierarchical Multi-core Machines

placement strategy to enhance memory affinity. We have shown in chapter 2 that
the write operations on NUMA platforms are generally much more expensive than
the read ones. For each write on a shared variable, NUMA platforms have to
ensure cache coherence for all cores of the machine, which increases the overhead
for write operations. Variables accessed in read mode are generally replicated over
the machine caches without additional costs to the coherence protocol. Therefore,
data placement is also related to the mode that variables are accessed by threads.

In order to show the NUMA impact on data access mode, we performed some
experiments with a tuned version of the Stream benchmark [McCalpin 2007, which
is also implemented in OpenMP. In this tuned version, for each variable of the copy
operation we applied a different data distribution considering its read/write access
mode. In the case of read /write in the same variable, we changed the copy operation
of Stream to use the same variable in the operation. The code of such benchmark
is similar to the one presented in Figure 3.7. In this study, we have used a NUMA
platform with eight nodes and sixteen cores. Furthermore, we used eight threads
pinned to cores to better understand the NUMA impact considering latency (remote
accesses) and bandwidth (network usage).

Table 3.5 depicts the execution time for the different versions of the Stream
benchmark. We use three data placement strategies to reduce the NUMA impact:
The bind one that places data closer to threads that use it; The round-robin one; And
a third, that spreads data over the memory in a random way. We can observe that
the three data placement strategies have reported different performances depending
on the access mode. In general, the round-robin strategy is the best strategy for
read operations. Considering the write operations, placing data closer to threads
that access it is the best option for a static data distribution. These results let us to
conclude that on NUMA machines the access mode require different data placement
strategies in order to enhance memory affinity for a parallel region.

Table 3.5: Execution Time (us) for each Operation on Stream Benchmark.

Operation | Bind | Round-Robin | Random
Read 16 14 16
Write 207 269 310

Read/Write | 225 285 334

Another point that must be considered in the memory affinity management is the
work-sharing used to distribute work among the worker threads. Parallel languages
and interfaces usually do it in a static or dynamic methods. In the former, each
worker thread receives a similar amount of data to process. The work distribution
is done statically for each parallel section. In the latter method, the amount of work
is computed during the application execution considering threads availability. A
number of studies have shown the importance of how work is distributed on NUMA
machines [Bircsak 2000, Nikolopoulos 2001, Nikolopoulos 2002, Wang 2009]. These

3.5. Approaches to Improve Memory Affinity 37

studies show that different strategies may have a significant performance impact in
the application.

3.5 Approaches to Improve Memory Affinity

In the previous sections, we noticed that modifications on the applications may
be performed in order to enhance memory affinity and consequently, reduce load-
balancing issues, memory contention and remote accesses on a NUMA platform. We
also observed that in some cases, these modifications might be performed for each
variable and parallel region, since they present different memory access patterns.
Still, it is important to consider the characteristics of the NUMA platform (e.g.
latency, bandwidth) in order to select the most suited memory affinity solution for
an application. All these arguments must be considered for the design of efficient
solutions to reduce the NUMA impact on application performance.

In this section, we present the state of the art on memory affinity management
for NUMA machines. These solutions have been designed at different levels such
as APIs, libraries, user tools, runtimes, compiler support and memory allocators.
They can be grouped in: thread placement, data placement or a mix of both.

3.5.1 Thread Placement

Thread scheduling enhances memory affinity by mapping threads closer to their
data and to other threads with which they communicate. In this type of solution, the
placement can be performed statically, before the application execution or dynam-
ically, during the application execution. In the dynamic placement, the scheduler
can use runtime information regarding the platform and the application to place
threads.

3.5.1.1 Preprocessing and Compile

The advent of multi-core machines with NUMA characteristics have brought
new challenges to parallel compiler research groups such as threads scheduling. To
deal with such a challenge, the compilers have been extended with thread affinity
support. Several compilers have now some support to map threads over the machine
cores, and consequently also improve memory affinity.

Considering OpenMP, there are some compilers that support thread placement.
Examples of such compilers are Intel C Compiler (ICC) !, GNU C Compiler (GCC) 2
and Portland Group Compiler (PGI). Using this support, developers can map OpenMP
threads to the processing units of the NUMA machine. In this case, thread place-
ment is done before the execution of the OpenMP application using environment
variables or interfaces (few modifications on the source code are needed) that allow

1. ICC Thread affinity interface - http://software.intel.com/en-us/intel-compilers/
2. GCC Thread affinity interface - http://gcc.gnu.org/onlinedocs/libgomp/Environment-
Variables.html

Chapter 3. Software Issues of Memory Affinity Management on
38 Hierarchical Multi-core Machines

programmers to specify policies to distribute threads over the physical processing
units.

Similar to the compiler support for OpenMP, thread affinity is also supported in
TBB (Intel Threading Building Blocks ®). TBB interface relies on the object oriented
programming model. Due to this, the thread affinity support in this interface is
based on a class that allows programmers to manage thread placement over the
machine. The affinity for a team of threads is set by the user for a target application
and machine. To do so, the user has to instantiate the basic class of TBB that
provides the necessary mechanisms to set the affinity mask to be used for the team
of threads.

In all solutions presented in this section, the affinity strategies are related to
the machine topology and application. Therefore, the developers must be aware of
these characteristics when choosing the affinity strategy for the parallel application.
Since each machine has a different topology, it is mandatory for programmers to
design a target thread affinity strategy for each machine. Therefore, the use of such
interfaces restricts the application portability and requires from the programmers
enough information about the machine hardware.

3.5.1.2 Runtime

In order to allow dynamic thread scheduling some research groups have inte-
grated some support for thread placement into the language runtime. The authors
of [Nikolopoulos 2001] presented a strategy to enhance memory affinity on OpenMP
using the OpenMP clause schedule. In OpenMP, this clause is responsible for spec-
ifying how the work is distributed among the worker threads. The proposal is then
to extract information of such clause to construct the relationships between a team
of threads. For instance, how threads share data and how they access the shared
memory. The work does not present any formal OpenMP extensions but shows some
suggestions of how this can be done and what has to be included in the OpenMP
API. The performance evaluation of the proposal was done using tightly-coupled
NUMA machines. The results show that their proposal can scale well in the consid-
ered machines.

ForestGOMP is a runtime that proposes a dynamic thread placement for the
OpenMP standard on NUMA machines [Broquedis 2009, Broquedis 2010a]. In this
work, researchers have proposed an extension of GNU OpenMP library that re-
lies on the hwloc framework [Broquedis 2010b|, on the Marcel threading library
[Namyst 1995, Danjean 2003] and on the BubbleSched framework [Thibault 2007].
This runtime uses hwloc to extract the target machine topology and then pin kernel
threads on the machine cores. In order to provide more performance for OpenMP
applications, the Marcel library is used to create user level threads within parallel
sections and associates them to the kernel threads. Using the information provided
by the user and the OpenMP constructions, the ForessGOMP runtime can better

3. Intel Threading Building Blocks Task-to-thread affinity - http://software.intel.com/en-
us/blogs/2010/12/28 /tbb-30-and-processor-affinity /

3.5. Approaches to Improve Memory Affinity 39

schedule the marcel threads over the NUMA machine. To do so, its scheduler uses
the BubbleSched framework to provide it with the necessary structure to group
threads and place them over the machine cores.

QuickThread is a library that allows development of parallel applications for
multi-core machines using C+-+ and Fortran languages [Dempsey 2010]. It is a new
programming paradigm that has constructions similar to OpenMP. Differently from
OpenMP, QuickThread has explicit support for NUMA machines (e.g. data allo-
cation functions, data placement). The QuickThread runtime implements efficient
schedulers to ensure data locality at cache and NUMA node level. It also has an
interface that allows programmers to define the affinity for threads, avoiding schedul-
ing costs in cases where programmers have a good knowledge of the application and
platform. Comparisons with OpenMP and TBB have shown that Quickthread can
be profitable in NUMA machines *.

The Charm+-+ parallel system also provides an explicit and implicit support to
thread affinity. In the case of explicit support, a command line option allows pro-
grammers to set the thread placement for an application execution. The command
line has to be used when launching the application, specifying which cores of the
machine must be used to place the application threads. The implicit support is
provided by the use of a load balancer that schedules work over the machine cores.
The load balancer in Charm++ can be employed as a plug-in, using the load bal-
ancing Charm+-+ framework to build them. Due to the simplicity of design and
implementation, a number of load balancers have been proposed for Charm-++. For
instance, load balancers that consider constraints such as memory usage and threads
communication [Agarwal 2006, Koenig 2007, Bhatelé 2009, Dooley 2010].

The main limitation of these approaches is that they have been designed for a
target language or interface. This prohibits their usage on other parallel languages
that also fail in dealing with NUMA machines.

3.5.1.3 Machine Learning

The need for efficient and automatic mechanisms to map threads to the cores
of a multi-core machine can not be put aside. While a number of works focus on
the explicit control of the thread affinity (as presented above), only few studies
have been done on automatic mechanisms to enhance thread affinity [Wang 2009].
Although the focus may be different, thread affinity mechanisms have always the
same objective that is to improve performance by reducing the communication costs.

A machine learning approach to map threads over the machine cores is presented
in [Wang 2009]. In this work, the authors have focused their proposal on parallel
applications developed with OpenMP. Using the machine learning approach, the
proposed solution is capable of automatically predict the number of threads and
the thread placement policy for an application. The thread affinity mechanism has
several steps in order to find the best number of threads and the thread placement
policy for an application. First, the mechanism has to train the machine learning

4. http://www.quickthreadprogramming.com/

Chapter 3. Software Issues of Memory Affinity Management on
40 Hierarchical Multi-core Machines

model with some target applications. For this step, the authors uses as input some
characteristics of the application such as cache misses, loop iteration and branch miss
rate. The output of the training step is a predictor for the best number of threads
and scheduling strategy for a given application. After this step, the model is ready
to be applied on applications not seen yet, using the application characteristics as
input. The main limitation of this approach is that it can only predict correctly if
the target applications have regular behaviors. If a novel application has to use this
mechanism, it must have similar characteristics to the ones used in the training step.
Otherwise, a new training must be performed to get the best thread placement for
this application.

3.5.2 Data Placement

On NUMA machines, data placement strategies can also be used to improve
memory affinity for applications. These strategies are usually implemented as spe-
cialized memory policies and NUMA-aware memory allocators. A memory policy
defines how data is placed over the machine memory banks and the granularity
used in this placement. It aims at improving data locality for a team of threads,
but at the same time, it provides good bandwidth for data access. In contrast,
NUMA-aware memory allocators use the machine topology to perform each malloc
and free operation. This type of solution generally optimizes latency by allocating
data closer to the thread.

3.5.2.1 Preprocessing and Compile

Data distribution and data placement strategies are also supported inside com-
pilers of parallel languages and interfaces. Data distribution specifies which thread
from a team of threads will work on a selected data. In contrast, the data placement
describes how data is physically allocated on the NUMA nodes.

Both UPC and HPF have some directives that allow users to choose a data dis-
tribution for the worker threads of an application [Richardson 1996, Benkner 2002,
Coarfa 2005]. Both languages have the block and cyclic strategies implemented as
possible strategies to distribute the array elements among the team of threads. The
block strategy splits an array in similar block sizes, considering rows and columns,
and then attributes them to the worker threads. The cyclic strategy spreads the
array among the worker threads in a round-robin way. However, on both languages,
the data distribution strategies only deal with the logical elements of the arrays and
not to their physical allocation on memory.

In [Bircsak 2000] the authors have presented new OpenMP directives that pro-
vide an efficient memory distribution for OpenMP. The new directives are based in
HPF directives and they allow developers to express how data have to be allocated
in the NUMA machine. The proposed directives are restricted to Fortran program-
ming language. The authors present the ideas for the new directives and how they
can be implemented in a real compiler.

3.5. Approaches to Improve Memory Affinity 41

On these proposals, the directives must be explicitly included in the application
source code by the developer. This can be a difficult task, since the best data dis-
tribution is generally dependent on hardware characteristics. Therefore, developers
must have prior knowledge of the platform to better choose the directive. Addition-
ally, in the case of UPC and HPF, the selected data distribution is applied at the
beginning of the application, without offering the possibility to change the physical
data distribution over the application steps.

3.5.2.2 Hardware Guided

Most of current multi-core machines come with some support to extract hard-
ware counters information. On NUMA machines, these counters (e.g. number of
remote access, TLB misses) can be used to dynamically place data over the ma-
chine. Some solutions based in hardware counters have been proposed in [Tikir 2004,
Marathe 2006, Awasthi 2010].

In |Tikir 2004|, the authors introduced a profile-driven mechanism based on
hardware counters to profile the memory access behavior of an application. This
profile is then used to decide whether memory pages should be migrated. The
objective is to increase the number of local memory accesses when possible. To do
so, the proposed solution maps threads to processing units and then it profiles the
application using a library. The mechanism uses helper threads to intercept the
memory accesses in the profiling phase and then other group of helper threads are
used to migrate memory pages to the selected memory banks. The performance
evaluation using NAS Parallel Benchmarks presented a reduction of up to 18% of
their total execution time and an overhead of up to 12% to profile and migrate
application memory.

The work [Marathe 2006] presents a hardware-assisted page placement scheme
based on automated profiling. The main objective of this solution is to reduce the
execution time by placing memory pages closer to the most frequently requesting
processor. The proposal relies on an automated profiling mechanism that extracts
the application memory access patterns of both static and dynamic memory. Using
such profiling information, some memory migration is performed to increase the
number of local access. The proposed solution is implemented in the user space and
it is independent of compiler, operating system and interconnection network but
it relies on the machine providing the necessary hardware counters. This method
has been evaluated using the NAS and SPEC OpenMP benchmarks and the results
show that the mechanism can achieve performance improvements of up to 20%.

The recent integration of memory controllers inside processor chips has de-
manded a special attention when allocating data on machines based on such pro-
cessors. Since memory controllers manage all access to physical memory, they can
be a bottleneck and reduce the system performance. To deal with this problem,
researchers have proposed in [Awasthi 2010] two memory policies that can adapt
to improve data locality. The memory policies make use of the hardware informa-
tion (e.g. queueing delay of a memory controller, number of hops from a core to

Chapter 3. Software Issues of Memory Affinity Management on
42 Hierarchical Multi-core Machines

a memory controller) during the application execution to decide where to place a
memory page. They have implemented the memory policies in the Virtutech Simics
simulator [VIRTUTECH 2007| and used some benchmarks to evaluate them. Re-
sults have shown gains of up to 35% on platforms with one memory controller per N
number of processors and gains up to 5% on platforms with one memory controller
per processor.

The hardware guided solutions presented in this section are restricted to a set
of platforms, reducing the solution portability and applicability. Furthermore, some
of the solutions need some pre-execution to get information of the memory access
patterns.

3.5.2.3 Memory Allocators

It is sometimes necessary to use dynamic data structures in the application.
These data structures are usually allocated at runtime by the application using
functions such as malloc. There are several different implementations of malloc,
each one optimized considering one performance metric (e.g. allocation time and
memory usage). For instance, ptmalloc [Gloger 2011], temalloc |Ghemawat 2011]
and hoard [Berger 2000] are examples of malloc implementations.

NUMA-aware tcmalloc is a modification of the standard tcmalloc that provides
scalable performances on NUMA machines [Kaminski 2009]. It is based on the
NUMA API [Kleen 2005] and because of this, the NUMA-aware tcmalloc can only be
used on systems that supports this API. The principle of the NUMA-aware tcmalloc
is to assure that every malloc/free operation will be executed locally. This means
that when a thread requires some memory, this memory allocator will consider the
node where the thread is running to physically allocate data. In order to do so,
NUMA-aware tcmalloc uses NUMA API functions to bind some memory range to
the selected node. Experiments with synthetic malloc intensive benchmarks show
that NUMA-aware tcmalloc improves in up to 37% the benchmarks performance.
However, when it is used in real applications or more representative benchmarks
(e.g. NAS Parallel Benchmarks) that are not malloc intensive, its performance is
very similar to other memory allocators (e.g. original tcmalloc and malloc from
glibe).

MAMI is a Marcel based memory interface that allows developers to manage
memory allocation and placement for an application [Brice Goglin 2009]. MAMI
provides some functions to perform memory allocation and deallocation that are
very similar to the ones provided by any malloc implementation. All data allocation
and deallocation in MAMI is NUMA-aware, since MAMI associates the requested
memory to a NUMA node. Furthermore, it supports memory migration and memory
statistics. In this proposal, memory management must be explicitly included in the
application source code by the developer. This can be a difficult task, since the best
data distribution is generally related to hardware and application characteristics.

3.5. Approaches to Improve Memory Affinity 43

3.5.2.4 Operating System Physical Data Allocation

NUMA support is now present in many operating systems, such as Linux, Win-
dows and Solaris [Kleen 2005, Joseph 2006]. Since in this thesis we are mainly inter-
ested in NUMA machines with Linux as operating system, we focus our discussion
on it.

On the Linux operating system, a basic support to manage affinity on NUMA is
implemented as a kernel space data allocation. Physical data allocation is performed
by using some memory policies to distribute data over physical memory banks. The
standard memory policy used by Linux is first-touch but, other memory policies
such as on-next-touch are now also available.

First-touch is the default policy in Linux operating system to manage mem-
ory affinity on NUMA. This policy places data on the node that first accesses it
[Joseph 2006, Carissimi 2007|. To improve memory affinity using this policy, it is
necessary to either execute a parallel initialization of all shared application data
allocated by the master thread or allocate its data on each thread. However, this
strategy will only present performance gains if it is applied on applications that
have a regular data access pattern. In case of irregular applications, first-touch may
result in a high number of remote accesses, since threads do not access the same
data.

In the work [Lof 2005], the authors introduce a new memory policy named on-
next-touch for Solaris operating system. This policy allows data migration when
threads touch them on the next time. Thus, the threads can have their data in
the same node, allowing more local accesses. Currently, there are some propos-
als of on-next-touch memory policy for Linux operating system. For instance, in
[Terboven 2008, Brice Goglin 2009|, the authors have designed and implemented
the on-next-touch policy on such operating system. Its performance evaluation has
shown significant performance improvements only when large blocks of data are
migrated. This is due to the data migration overhead on Linux operating system.

3.5.2.5 Application Programming Interfaces

The NUMA support for the Linux operating system also provides a user space
API to deal with data allocation and placement over the physical memory. The
NUMA API is divided into two interfaces, a low-level one based on system calls and
a high-level one based in a high level interface.

The kernel system calls defines some functions (mbind(), migrate pages(),
set_mempolicy() and get _mempolicy()) that allow the programmer to set a mem-
ory policy (bind, interleave, preferred or default) for a memory range (set of virtual
memory pages). The memory policy specifies which physical memory banks will be
used to place the memory range. A physical memory bank is composed of several
frames, which are used to physically map the virtual memory pages. However, the
memory policies only deals with the memory bank selection. The decision of which
frame within a memory bank will be used to place the memory page is not made by
the memory policy. The use of such system calls is generally a complex task, since

Chapter 3. Software Issues of Memory Affinity Management on
44 Hierarchical Multi-core Machines

developers must deal with memory pages, sets of bytes and bit masks that identify
memory pages and physical memory banks of the platform.

The second part of NUMA support in Linux is a library named libnuma, which
is a wrapper layer over the kernel system calls. The set of memory policies provided
by libnuma is the same as the one provided by the system calls. In this solution,
the programmer must change the application code to apply the policies. The main
advantage of this solution is that developers can have a better control of data al-
location and distribution. However, similar to the system calls interface, libnuma
demands source code changes to be employed. Additionally, no abstraction of the
architecture is provided by the library. Developers must specify the memory banks
that must be used for data placement.

3.5.2.6 User Space Tools

Some operating systems provide user space tools to deal with thread and data
placement. Some examples are the dplace tool in Solaris, numact! in Linux and
hwloc for several operating systems.

In the SGI NUMA machines additional support in the operating system for
thread placement is available through the use of the dplace tool. This user space
tool allows user to place threads over the machine processors/cores or nodes. In
this case, dplace avoids any thread migration generally performed by the operating
system, keeping the cache affinity.

The numactl tool allows the user to set a memory policy for an application
without changing the source code. However, the selected policy will be applied over
all of the application data. It is not possible to express different access patterns or
change the policy during the application execution [Kleen 2005].

hwloc provides the user with an interface and a set of user space tools to deal
with thread and data placement in a simpler way |Broquedis 2010b]. The interface
has a set of functions that can be used to abstract the machine topology. Using this
interface, programmers can retrieve the machine characteristics to then use hwloc
tools to place threads and application data over the machine. However, this tool
does not provide any support to extract the interconnection network information
and NUMA penalties of a multi-core machine with NUMA design.

The main drawback of these tools is that they are platform-dependent. In order
to improve memory affinity with such tools, the user must provide as arguments the
list of nodes, the cores and the memory banks that will be used to place threads and
data. Additionally, they do not allow the use of different memory policies within
the same application execution.

3.5.3 Mixing Thread and Data Placement

The use of both thread and data placement mechanisms as solution for memory
affinity relies on the idea of thread and data redistribution in the case of changes
in the data access patterns. To our knowledge only one work has been proposed in

3.6. Conclusion 45

this context and it is described in [Broquedis 2010al. In this work, authors com-
bine two other solutions, ForesstGOMP and MAMI [Brice Goglin 2009] to allow the
use of thread scheduling and data placement to improve memory affinity. The ap-
proach demands that the developers provides some hints in order to correct any
data placement. Developers have to change the application source code, to inform
the runtime of ForestGOMP where the memory access patterns changes. In this
way, ForessGOMP and MAMI can dynamically re-schedule threads and data place-
ment in order to reduce latency to get data. This approach usually demands an
integration in some language/interface runtime, which restricts its use to a target
language /interface.

3.6 Conclusion

In order to ensure scalable performances on modern multi-core machines with
NUMA design, the users must make use of all available support to efficiently manage
the parallelism, thread scheduling and data placement. However, such management
demands from users a good understanding of the machine hierarchy and the appli-
cation memory access patterns.

Regarding the parallelism management, there are several mature languages and
APIs that can be used to express the application parallelism (e.g. OpenMP, Charm).
Several efforts have been done in the thread placement context. Current solutions in-
side operating systems and runtimes already present good performances (e.g. Forest-
GOMP). However, when it comes to physical data placement, we observed in this
chapter that there is still lot of work to do. The state of the art solutions only
deal with latencies issues on NUMA machines, avoiding completely the bandwidth
management. Additionally, they do not provide an abstraction of the architecture
to the application developer. As presented in the case studies, the NUMA charac-
teristics of modern multi-core machines require from users a careful management of
data placement that take into account both latency and bandwidths.

In the last two decades, a number of studies have been carried out in the context
of memory affinity for NUMA machines, resulting in some efficient solutions. Most
part of the proposed solutions have been designed for mono-core multiprocessors
(e.g. HPF and UPC), which do not present the hardware issues introduced in chap-
ter 2. Furthermore, most of these solutions rely on hardware counters and compiler
support, resulting in a memory affinity solution dependent of the architecture/lan-
guage. Therefore some questions remain:

— The multi-core machines are more complex and hierarchical than the mono-
core multiprocessors. What is necessary to change in order to improve memory
affinity for the multi-core machines?

— How can we abstract the multi-core machine with NUMA design architecture
for the developers? How can we model these parallel machines?

— What level might be considered for an efficient memory affinity management,
the application variables, parallel regions or the application heap?

Chapter 3. Software Issues of Memory Affinity Management on
46 Hierarchical Multi-core Machines

— Should we consider the different memory access patterns of a parallel applica-

tion? What are the impacts of this consideration?

— How do we match the architecture characteristics with the application char-

acteristics, keeping the hardware independence?

— Can we avoid complex application source code modifications?

These questions are the main motivation of this thesis and answers for them
are the objective of this work. Thus, we aim at providing efficient memory affinity
mechanisms for modern multi-core machines with NUMA design. Our goal is to
provide a memory affinity solution that is independent of the parallel language and
machine.

Part 11

Contributions: Looking Deeper to
Improve Memory Affinity

CHAPTER 4
Proposal of New Approaches to
Enhance Memory Affinity

In chapter 2, we have shown that modern shared memory machines are becom-
ing more hierarchical and complex at the level of processing units and memory
subsystem. This hierarchy brings new constraints to shared memory machines such
as multiple cores sharing the machine resources, novel cache coherence protocols,
complex interconnection network and hierarchical distributed shared memory. Due
to these characteristics, memory access costs on these machines may vary depend-
ing on the distance between processing elements and memory banks, and based on
the number of processing elements accessing the same memory bank. Therefore,
to explore the potential and obtain good performances from these machines, it be-
comes necessary to have some software support to efficiently manage the usage of
the memory subsystem of the machine.

High performance computing applications have different characteristics (e.g.
memory access patterns), behaviors (e.g. regular, dynamic) and needs (e.g. latency
or bandwidth). All of these characteristics must be considered when designing solu-
tions to manage memory subsystem resources of modern shared memory multi-core
platforms. In this context, enhancing memory affinity appears as a key element to
match the application characteristics with the underlying architecture to improve
the overall performance. Memory affinity is a relationship between threads and data
that describes how threads access the application data. In particular, to enhance
memory affinity it is necessary to keep data close to the threads which access it, to
reduce the memory latency and memory contention perceived by threads.

As presented in chapter 3, several solutions have been proposed in the thread
placement context for NUMA machines. However, considering physical data place-
ment solutions some drawbacks still exist. Considering the current operating sys-
tems (e.g. Linux, Windows, Solaris), they do have some memory affinity support for
NUMA machines. However, this support is general, since operating systems have to
provide satisfactory performance for different types of applications (sequential and
parallel ones). Because of this, they generally fail in providing an efficient memory
affinity support for HPC applications. Still, in the last two decades, research groups
have proposed specialized NUMA support inside languages/interfaces or machine
hardware. Consequently, this support is usually dependent of the compiler, the ma-
chine architecture or both, which restricts their applicability. Furthermore, none of
the state of art solutions contemplates the following properties: (i) different mem-
ory policies during the same application execution, not only one memory policy for

Chapter 4. Proposal of New Approaches to Enhance Memory
50 Affinity

the whole application, (ii) system and machine portability, (iii) small or no code
intrusiveness and most important (iv) different granularities for memory affinity
management such as variables (e.g arrays and vectors) and application heap.

This chapter and the following two chapters introduce and describe the main
contributions of this thesis. In this chapter, we introduce some ideas and concepts
of how to enhance memory affinity for parallel applications by taking a deep look in
the application and platform characteristics. Using these characteristics, we propose
mechanisms to allocate and place data over the NUMA machines. Since memory
affinity is a compromise between data and thread placement, we also consider thread
placement in our mechanisms. For this, we use some classical state of art thread
placement strategies such as compact and scatter to bind threads over the machine.
After that, in chapter 5, we introduce our framework to control and manage memory
affinity. Finally, in chapter 6, we show how we employ the components of this
framework in parallel environments.

4.1 Modeling a NUMA Architecture

As depicted in chapter 2, the main characteristic of the current NUMA machines
is their complex and hierarchical design. Processing elements, cache and memory
subsystems of such machines are grouped in a hierarchical way, increasing the access
latency and degrading the bandwidth usage. As a consequence to that, managing
memory affinity (thread and data placement) efficiently becomes crucial to improve
the performance of applications in such machines. Several characteristics of a NUMA
machine, such as the number of nodes, the cache memory sizes, how cache memories
are shared between cores and how the nodes are grouped, can be used as an archi-
tectural hint to enhance memory affinity. However, the choice of which architectural
characteristics should be used on memory affinity management may be a difficult
task and should not be relinquished solely to the programmers. Additionally, to at-
tain portable performances on different NUMA machines it is important to propose
memory affinity mechanisms that abstract the machine architecture.

In order to improve memory affinity on a NUMA platform with portable perfor-
mances, the first step is to create a model that can represent the NUMA machine
processing units topology and memory subsystem hierarchy. Therefore, we aim
at designing a model that is capable of representing the memory access penalties
present on NUMA platforms as well as the machine topology. In NUMA multi-core
platforms, the NUMA penalty comes from different levels and due to this, we define
two new terminologies, the NUMA core topology and the NUMA hierarchy. The
first one is related to processing units, whereas the second one is related to the
memory subsystem characteristics.

4.1.1 NUMA Core Topology

The NUMA core topology provides a view of how cores share resources and how
they are assembled in the machine hardware. This information is important because

4.1. Modeling a NUMA Architecture 51

it expresses which processing units are sibling within a NUMA node, enabling a data
and thread placement that is aware of the machine hardware. Therefore, we define as
NUMA core topology, the physical organization of the NUMA nodes, the processing
units and the cache memories inside the NUMA machine.

In the core topology a machine M is composed by a set of NUMA nodes,
N = {Ny, N1, ..., N,}. Each NUMA node N; is composed by a set of cores C' =
{co,c1,...,cn}, that are organized in subsets. These subsets represent the cache
memory sharing between the cores of the node NV;.

Node 3 Node 2 NUMA Core Topology

I I Nodes (Ni)
v [%]

e

C7
C15

Cores (Ci) and Shared caches

Node 0 Node 1

Figure 4.1: NUMA Core Topology for a NUMA Platform.

Figure 4.1 depicts our representation for the NUMA core topology of a multi-core
machine with NUMA design. In the figure, our model shows that the machine is
organized in four NUMA nodes and each one has four cores. Considering the cache
memory hierarchy, the NUMA core topology model represents it by grouping cores
that share some cache memory in the same subset. In the example, each two cores
share a cache memory and each four cores share a last level cache. Therefore, for
this example, each NUMA node has three subsets. A first one with the four cores
that share the last level cache and other two ones, where each one is composed by
the two cores that share the second level of cache. For instance, for the node Ny of
our example the three subsets are: {c0, ¢4, 8, c12}, {c0, 8} and {c4,c12}.

4.1.2 NUMA Hierarchy

In contrast, the NUMA hierarchy represents the NUMA penalties related to the
memory subsystem and the NUMA nodes physical organization. Representing the
NUMA penalties related to memory accesses can be a difficult task, since it relies
on different aspects of the machine (latency and bandwidth). In order to define a
model that can represent this, we use performance metrics that allow us to express
the asymmetry on memory accesses of NUMA machines. Furthermore, we select
metrics that can be easily computed for different NUMA platforms using memory
bound benchmarks.

Chapter 4. Proposal of New Approaches to Enhance Memory
52 Affinity

The performance metrics used to represent the NUMA hierarchy are latency,
NUMA factor and memory bandwidth. Considering the latency, we use the remote
and local latencies of the NUMA nodes. These latencies allow us to identify which
nodes are more distant, representing the machine interconnection network. Besides,
these latencies are also used in our model to compute the NUMA factor.

We define the NUMA factor as the ratio between the remote and local latencies
to get some data. The NUMA factor is a performance metric that allows users to
have an idea of how costly a memory access can be in a NUMA machine. Therefore,
the NUMA factor for the pair of nodes ¢ and j is defined by:

ReadLatency from i to j

NUMAfactor = (4.1)

ReadLatency on i

The memory bandwidth is an important performance metric in NUMA machines
because it specifies the machine memory throughput at some level. In our model, we
decided to have the memory bandwidth for the intra-node and the inter-node links.
This approach allows us to have a model that specifies the different bandwidths in
the machine hierarchy. The intra-node bandwidth provides information for local
memory bandwidth for a set of cores whereas the inter-node one represents the
memory bandwidth between nodes.

Figure 4.2 shows our representation for the NUMA hierarchy, with the NUMA
factor and bandwidth matrices. These matrices size is N by N, where N is the total
number of NUMA nodes of the machine.

NUMA Hierarchy

NI N2 N3 N4
NUMA N1 1.6 1.23 1.11 1.38
N2 1.2 1.6 1.25 1.2
factor N3 1.21 1.45 1.8 1.2
N4 1.4 1.2 1.2 1.0

N N2 N3 N4
. N1 1830.2958 1381.9368 1421.8796 1369.2322
Bandwidth |y 13787958 1861.5367 1368.393¢ 1349.6530

(MB/s) N3 1469.6149 1420.6442 1839.0378 1529.8068
N4 1399.7283 1418.4497 1490.1518 1926.0578

Figure 4.2: NUMA Hierarchy for a NUMA Platform.

Both NUMA core topology and NUMA hierarchy are retrieved by parsing in-
formation on the machine hardware characteristics and by running memory bound
benchmarks. Implementation details for these mechanisms are provided later, in
chapter 5.

4.2. Global Analysis of an Application 53

4.2 Global Analysis of an Application

In this section, we take a look at the applications characteristics that can be used
to better understand the application memory access behavior. Understanding the
memory access patterns of an application let us better manage data placement and
achieve higher performance over hierarchical multi-core machines. The investigation
of the application memory access patterns is related to the application memory usage
and not to thread placement.

4.2.1 What to Extract from the Application?

We are specially interested in studying numerical scientific multi-threaded bench-
marks and applications, which exhibit significant memory and processing power
usage, data-sharing between threads and various memory access patterns. The ap-
plications that we consider in this work follow the data parallel model with regular
and irregular memory access patterns. In this parallel model, similar computation
is performed over different data sets [Nyland 1996]. An application is regular if
its memory access patterns are stable and predictable. Contrary to this behavior,
in irregular applications, the memory access patterns are more complex and data
dependencies are only know at runtime. For instance, OpenMP [OpenMP 2011],
OpenSkel [Goes 2010a] and Charm++ [Kalé 1993] are languages extensions and in-
terfaces that support the data parallel applications. In this thesis, we considered
these languages extensions and interfaces as our case studies.

Generally, in these parallel languages, arrays are used as the main data structure
for variables (e.g. OpenMP and Charm+-+). In this case, the parallelism is employed
by splitting the array among a set of workers. Each worker then process its sub-
array, synchronizing at the end to combine their results. Differently, the OpenSkel
data parallel interface relies on dynamic data structures such as worklists. Although
the data structure is different, the parallelism is also exploited by splitting the data
structure among workers. More precisely, it assigns a set of elements (work-units)
of the worklist to workers. The difference is that in this case the workload size and
access are only know at runtime, making the application irregular. However, in all
cases, workers have their own private and some shared data.

Applications developed with OpenMP and Charm-++ usually implement several
arrays within a single application. These arrays are used in different steps of the
application computation and they are accessed in different ways. Since in each
step of the application data accesses can be performed by a different worker and in
different ways, various memory access patterns are expected for each array. Due to
this, to enhance memory affinity for languages like that, it is important to consider
each array separately in the memory affinity management. Otherwise, memory
affinity is controlled for the whole application data and only a global view of memory
accesses is considered. In the case of OpenSkel, the worklist has irregular memory
access because each worker computes a set of work-units that encapsulates different
dynamic data structures. Due to the irregular nature of dynamic structures, it

Chapter 4. Proposal of New Approaches to Enhance Memory
54 Affinity

becomes crucial to manage memory affinity at the workers data granularity (work-
units) for OpenSkel.

Our first step to enhance memory affinity is to identify the hotspot variables.
They are usually the ones that demand memory and accesses the most. Generally,
these variables are dynamically allocated, thus compilers can not do any optimiza-
tion for their access and placement. Even if they are statically allocated, they may
not fit in cache memories thus increasing the access latency to get them. These
variables might even be so memory demanding that they may need more than one
memory bank of the NUMA machine. Therefore, a careful data placement must be
performed to avoid the use of an unbalanced set of memory banks, which can in-
crease contention in the main memory interconnection network. Further, the most
accessed variables are prone to contention themselves and are consequently more
impacted by the NUMA machine design.

Although we believe that variables are the best units to deal with memory affin-
ity, we also consider different granularities like the application heap and workers
data for the memory affinity management. Such an approach allows us to better
explore the application memory access patterns and the target machine resources.

4.2.2 Getting Memory Access Information from Applications

As presented in the previous section, for some of the considered languages the
memory affinity management must be done at the application variables level. This
strategy allows a better control of memory affinity because it deals with the various
memory access patterns in a deeper way. We mean by deeper, a fine grain man-
agement of memory affinity that is applied for each variable of the application. In
order to efficiently capture the memory access patterns of variables, it is important
to define which characteristics from these variables must be considered.

We believe that the memory access characteristics that must be considered are
the ones that suffer an impact from the NUMA design. For instance, the different
costs of read and write operations on shared variables for NUMA machines due to the
cache coherence protocol. In this context and considering the data structures used
in our study cases, we select as characteristics the variable size, its access pattern
(regular vs. irregular), its access mode (read only, write only and read/write) and
its sharing mode (private vs. shared).

The variable size is taken into account because it influences the number of mem-
ory banks that are needed to allocate the application data. Additionally, this charac-
teristic must be considered in order to ensure load balancing when using the machine
memory banks and interconnection network. We also select the variable access pat-
tern because it determines if variables should be split and the granularity used in
this process. For instance, regular variables can be split in continuous chunks among
the team of threads, since their accesses are performed sequentially by threads. As
an example of that, we can cite the regular access pattern of OpenMP parallel loops
with the static work-sharing. In this case, each worker thread computes continu-
ous chucks of data to accomplish a task. Contrary to this regular pattern, irregular

4.2. Global Analysis of an Application 55

variables experience complex and unpredictable memory accesses which increase the
complexity for their distribution. In this case, smaller granularities such as memory
pages should be used to avoid NUMA penalties.

The access mode is used because it is directly impacted by the cache coherence
protocol and the interconnection network. Depending on the operation, different
latencies and number of messages are generated on the machine by the cache coher-
ence protocol. Finally, the sharing mode is also considered because it allows us to
know which variables are shared or not. In the case of private variables, the place-
ment mechanism can place them closer to the worker that owns them, since no other
worker will need them. Differently, for shared variables their placement depends on
the level of sharing among threads. In a low level of sharing, the team of threads
only share few elements of the variable. Therefore, one can spread the variable on
some memory banks, placing it closer to threads that access it more frequently. On
the flip side with a high level of sharing, we can spread it on several memory banks
to provide more bandwidth to get it, since migrating it on every different access
may be expensive.

Application Source Code Variables Allocation
//global variables
int rhs[N] [M] B Node #3 Node #2
float avg[nthreads/2][M],alpha; Memory bank
rhs[_*][M] I'hS[*][M] y
void worker function(int stride)({ avgl[id][M] ; Cache memory
I\‘/lyId. iq = getId(); //get thread id T g 3% |
int i,j,tmp; cl Ic cl Ic Cores
for(i=0;i<stride;i++){
tmp = 0.0;
for (j=0;3<M;j++){
if(id%2 != 0)
compute(rhs,avg[id]);
else compute(rhs); " rhs[*][M]
tmp += rhs[index[i]]1[j]; rhs[*1(M] avg[id][M]
¥ - — _
tmp = tmp/alpha; tmp,j tmp,j
if(id%2 != 0) update(tmp,avg[id]); Cl_IC Cl_IC
} Node #0 Node #1

Figure 4.3: Variables Data Allocation over NUMA Machine Memories.

Figure 4.3 shows an example of a parallel application with private (i,j,tmp) and
shared variables (rhs, avg and alpha). To enhance memory affinity for this code, it
is necessary to identify which variables must be considered for the data placement.
Following the characteristics described above, the variables that we have considered
to memory affinity management are in blue and green. They are considered because
of their size and sharing mode between threads. The Figure also depicts the mapping
of the variables data in the NUMA machine memory subsystem. In this example,
the NUMA machine is composed of four NUMA nodes. Each node is composed of a
processor and a memory bank (gray rectangle in the figure). The processor has two
cores (blue square) and a shared cache memory (orange rectangle). One can observe

Chapter 4. Proposal of New Approaches to Enhance Memory
56 Affinity

that small data are placed in cache memories (tmp and j) whereas larger ones reside
in main memory. Supposing that we run the application with four threads (one per
core), the avg variable is split in one row per odd thread and this row is placed in
the memory bank of the node where the thread is running. rhs is spread over all
the machine memory banks because all threads access it.

4.2.3 Data Scope and Usage on Parallel Regions

In the memory affinity management, another important concept about the vari-
able is its scope and usage within a parallel application. The variable scope defines
its visibility in the different parts of the application, consequently defining its life-
time. The variable usage defines on which parts of the application the variable is
accessed. Concerning parallel applications and NUMA machines, it is important
to analyze scope and usage because these characteristics specify where an efficient
memory affinity mechanism is necessary to in the parallel application to reduce the
NUMA penalties.

In this work, we use the scope to determine whether a variable must be con-
sidered for memory affinity control or not. All variables that have global scope
are evaluated if they should be managed. Generally in data parallel applications,
these variables are shared among a team of threads and used within parallel regions
to accomplish a job. Due to this, their influence in the application performance
is significant. However, variables that are declared, allocated and freed within a
function are not included in our memory affinity management, since their lifetime
is restricted to the function scope. The exception are variables declared within the
main function of an application. In this case, we consider these variables because
in some applications shared variables are declared in that context. Examples of
this situation can be found in data parallel applications developed with OpenMP,
Charm-++ and OpenSkel.

Particularly, the usage of a variable determines points in the parallel application
where the memory affinity management must be employed. Since variables may
have different memory access patterns in the parallel regions, it is important to
know these points to avoid costly access latencies and bandwidths with suitable
memory affinity control. Furthermore, the variable usage also allows us to identify
where threads may need their data.

4.3 Associating Machine and Application Characteris-
tics to Enhance Memory Affinity

In previous sections, we discuss what information is important to extract from
a NUMA platform and from a parallel application. Now, we must work on this in-
formation to enhance memory affinity for parallel applications on NUMA machines.
What should we do to achieve an efficient memory organization and data placement
that considers both the machine topology and the application characteristics? This

4.3. Associating Machine and Application Characteristics to Enhance
Memory Affinity 57

section introduces one of our contributions: how to express data affinity, to orga-
nize and place data on an hierarchical shared memory multi-core platform. Since
memory affinity is also related to thread placement, our contributions consider that
threads are already bound over the machine cores, using some classical thread place-
ment strategy. Therefore, any thread migration or scheduling is performed during
the application execution.

4.3.1 Memory Organization: Why should we change it?

During the execution of an application, all of its data are placed into a virtual
address space created for the process. This virtual address space is a memory
management mechanism that allows the operating system to virtualize the physical
memory for all applications running on the machine. When an application is started
it receives a virtual address space that is divided into text segment, data segment,
heap and stack. The text segment is used to store the application instructions
whereas the data segment stores all data allocated at compile time. The heap and
stack are used for dynamic memory allocation. The stack is used to store parameters
and local variables of the application functions, whereas application data allocated
with malloc are placed in the heap of the application address space. The mapping
between the virtual address space and physical memory is latter performed by the
operating system and the machine hardware using the strategy designed in the
operating system. This strategy specifies which memory banks must be used to
place a memory range.

We believe that in the case of languages with well defined data structures (e.g.
arrays), it becomes crucial to have a specialized memory allocator implementation
that organizes the application data on the heap, exploring the machine architecture.
Therefore, considering the target languages and interfaces used in this thesis and
the NUMA machine design, we propose two NUMA-aware memory allocators. The
first one is dedicated to static data structures such as arrays, whereas the second
one is designed to the dynamic data structures.

Static Data Structures: The static data structures are allocated in the data
segment in the virtual address space of an application. The data segment is effi-
ciently managed by the compiler that performs a number of memory optimizations
in order to enhance data usage and access. However, the compiler sees the memory
as a continuous space and it does not have any knowledge of the NUMA machine
topology and hierarchy. In this context, compilers generally can not enhance mem-
ory affinity for such data. Furthermore, for arrays allocated in a dynamic way, using
malloc functions for example, the compiler can not do any optimization because it
does not know the data that will be allocated. Since arrays can be declared in static
and dynamic fashion in parallel applications, it thus becomes necessary to ensure an
efficient memory allocation for these data structures. To do so, we propose a spe-
cialized memory allocator for both static and dynamic arrays. Instead of using the
data segment for static arrays, we allocate them in the heap segment that provides

Chapter 4. Proposal of New Approaches to Enhance Memory
58 Affinity

Stack
I

Vector

Matrix

o
Heap

Static data

Text

Figure 4.4: Array Allocator Design - Static Case.

a larger memory space to allocate such data. Additionally, heap segment enables
memory affinity mechanisms to take the architecture into account at runtime, since
they data of such segment is allocated during the application execution. Therefore,
in our memory affinity mechanism all static arrays are automatically transformed
in dynamic arrays. More details about this is presented in the next chapter.

Our array allocator relies on the principle that each array must have its own
space in the heap. In this way, different arrays do not share the same blocks neither
the same memory pages. This strategy reduces problems such as false sharing and
reduces costs to deal with the memory affinity management for arrays. Since each
array has its own separate space, elements of different arrays do not share the same
block or memory page in the heap. It is also simpler to design a mechanism to deal
with memory pages placement that has low overhead, since each array has its own
space in the heap. Furthermore, a specialized array allocator allows us to simplify
pointer manipulation for the programmer, reducing the burden of multidimensional
array allocation. Figure 4.4 shows a schema of how our array allocator mechanism
allocates memory for a vector and a two dimensional matrix. In this figure, the
arrays are allocated in two separate blocks in the application heap, one for the
vector and one for the matrix.

Dynamic Data Structures: Considering memory affinity management for dy-
namic memory allocation, it is interesting to deal with the application data that is
allocated in the heap. This data usually consumes memory the most, and it can
span a large lifetime, which demands a special control. Additionally, data allocated
in the stack, which is also dynamic, generally has a small lifetime. Therefore, we
consider only data allocated in the heap for memory affinity management of dynamic

4.3. Associating Machine and Application Characteristics to Enhance
Memory Affinity 59

data structures.

To allocate data in the heap, programmers have to use a memory allocator
function such as malloc to request memory pages for storing it. Generally, in a
memory allocator implementation, pages are requested from a pool of pre-allocated
memory. This pool answers the request if it has enough memory and it places
data in a heap block. However, if the pool does not have enough memory, the
memory allocator requests more memory pages to the heap. In order to avoid too
many requests to the heap and also to reduce memory consumption, the memory
allocator also spreads new allocations among different heap blocks. In this way,
different objects can reside in the same block and even in the same memory page
[Berger 2000, Ghemawat 2011, Gloger 2011].

For the dynamic data structures (e.g. trees and linked queues), we then propose
a different approach. Considering the dynamicity of these structures, the small
granularity used in their allocations and the NUMA machine characteristics, we
design a multi-level heap allocator. This memory allocator takes into account the
characteristics of dynamic data structures and the NUMA machine hierarchy to
optimize memory allocation, reducing memory consumption and time to perform
allocations. In this case, the principle is opposite to the one used for the static data
structures presented above. In this memory allocator, we let different objects share
the same heap block and eventually the same memory page. Since an object size
can vary significantly, we decided to optimize for memory consumption and memory
fragmentation. The idea then is to use the concept of linked heaps (Figure 4.5(a))
already used in memory allocator implementations and create a multiple level design
of linked heaps.

General Memory Allocator Multi-level Implementation

Implementation
Global
pobal [[u] [vt }{ vz J{ o [e

[« ~EEE [+ —~HAE

T T e g
El—- — — — Node#1 Node#4

el e——
Node#2 Node#3

(a) (b)

Figure 4.5: Memory Allocator Design - Dynamic Case.

In this context, each node of the NUMA machine in our mechanism has one
heap associated to it and one global heap per machine is used to manage all other

Chapter 4. Proposal of New Approaches to Enhance Memory
60 Affinity

heaps. The global heap is used to store information of the NUMA node heaps such
as data distribution, free space and number of pages. In contrast, the NUMA node
heap stores the application data. In this way, any memory allocation operations
are made locally in the heaps associated to the NUMA nodes, reducing the NUMA
penalties on the application.

Figure 4.5(b) depicts the schema of the multi-level memory allocator. In the
example, we can observe a NUMA machine with four nodes. Each node has one heap
associated with it that is used by all threads running in this node (represented in the
figure by H1, H2, H3 and H4). The global heap is a centralized data structure that
allow us to store and to retrieve information of all heaps of the machine (represented
in the figure by H).

4.3.2 Memory Policies to Place Data

In order to enhance memory affinity using the information from the target
NUMA machine and parallel application, it is necessary to define how applica-
tion data allocated in the heap will be physically placed over the machine memory
banks. A memory policy is used to specify how application data is distributed over
the physical memory banks of the NUMA machine. In this work, the memory pol-
icy is responsible for unifying the architecture hints provided by our model with the
selected application information to efficiently place data and, consequently, improve
memory affinity. It is important to mention that in order to apply a memory policy
to the application data, we consider that threads are already bound to the machine
cores.

Considering the diversity of the NUMA machines design and the data parallel
applications characteristics, only one memory policy might not be enough to enhance
memory affinity. As presented in previous chapters and sections, different machines
have different needs, as well as different applications have different memory access
patterns. Therefore, in this thesis we exploit the usage of several memory policies
into the same data parallel application on NUMA machines. It is important to
mention that our memory policies assume that thread placement have been already
performed using some classical strategy (e.g compact and scatter) and no thread
migration is allowed.

Since the memory affinity problem on NUMA machines generally comes from the
trade-off between latency and bandwidth issues, we propose memory policies that
can handle both issues. Furthermore, in numerical scientific parallel applications,
we cannot put aside the importance of some data structures, such as arrays, queues
and trees. Most of the applications are represented using these data structures.
Due to this, we also address in our memory policies different granularities for data
placement in data parallel applications.

We then define two groups of memory policies, named bind and cyclic. The bind
group aims at reducing access latency to get some data. It places data closer to
the process/thread that uses it. The cyclic policies aim to balance memory banks
usage and improve bandwidth to transfer data. It allows more memory banks to

4.3. Associating Machine and Application Characteristics to Enhance
Memory Affinity 61

be accessed in parallel, providing more bandwidth to cores. The bind group is
composed of bind all, bind block and next-touch memory policies whereas the cyclic
group is composed of cyclic, cyclic block, cyclic neighbors, skew mapp and prime
mapp.

memory pages m-1 memory pages

sgpicson [T T 11 ﬁs:;"““mll/l [] I/I [] I/I | 7

| g | !’ | DRAM2] | [DrRAMS] [DRA’ﬁo | | [(BRAM1] | [oRAWZ]
OO I P [|

[...L.[L..L.[L...L.L
G {Too ot} Tezfoal| {foifes: |i
Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
(a) Bind All Policy (b) Bind Block Policy

Figure 4.6: Bind Memory Policies.

Bind Memory Policies: In data parallel applications, the bind memory policies
can lead to shorter access latencies to get data as long as threads and data are placed
in the same NUMA node. Whenever a thread allocates a memory page, its corre-
sponding virtual page is placed on a physical memory bank based on information
about the NUMA topology and hierarchy.

Figure 4.6 depicts the bind all and the bind block memory policy in a NUMA
machine with four nodes. Each node of the machine has two cores and one memory
bank (DRAM). The application data is composed of m memory pages which are
divided into four contiguous groups (each color represents a group). The bind all
policy places all data in a selected set of memory bank(s). This policy will use
all available memory (physical) from the first node memory bank before using the
next one. The first node in this case is the node with more threads. In the case
of bind block, each contiguous block is assigned to a different memory bank. The
block size is defined considering the application characteristics. For instance, for an
application that uses matrices, the block can be a set of rows or columns whereas
for an application that uses dynamic data structures (e.g. trees) the block can be
a memory range that represents an element of the data structure. The bind block
policy can be profitable to data parallel applications in which each individual thread
consumes its part of the shared data.

Finally, the next-touch policy places a memory page in the node that performs
the next touch in it. In this case, the distribution is done considering threads accesses
in the memory pages. While bind all and bind block are designed for data parallel
applications based in arrays, next-touch is proposed for data parallel applications
based in dynamic data structures (e.g. tree and queue).

Chapter 4. Proposal of New Approaches to Enhance Memory
62 Affinity

memory pages m1 memory pages m-1

0 0
||\||||||||||- Appiication T T T TP [1 (NI

i[cofcr]:|i[cefcali| i[cafcs]: |i[cofer]; i[cofci]i|i[cz[cali| i[cacs]; |i[cofcr];

Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3

Application
data

(a) Cyclic Policy (b) Cyclic Block Policy

Figure 4.7: Cyclic Memory Policies.

Cyclic Memory Policies: A side-effect of the bind memory policies is that bind-
ing data to restricted memory banks may cause more memory contention when
different threads share the same memory range. In order to avoid such behavior,
the cyclic memory policies are employed. Cyclic policies spread memory pages over
a number of memory banks of the machine following a type of round-robin distribu-
tion. In both cyclic and cyclic block policies, data is placed in the memory banks in
a linear round-robin way. The first policy uses a memory page per round, a page %
is placed in the memory bank i mod M, where M is the number of memory banks
used by the application. In the second one, a block of pages b is placed in the
memory bank b mod M. Figure 4.7 shows a schema that represents the cyclic and
cyclic block memory policies in a NUMA machine with four nodes. Besides cyclic
and cyclic block policies, the cyclic memory policies group is also composed of the
cyclic netghbors memory policy. In this memory policy, the memory pages are also
distributed in a linear round-robin way, using a memory page per round. However,
differently to the cyclic and the cyclic block, this memory policy only places mem-
ory pages on the nodes that are neighbors of the node that request data placement.
Neighbors nodes are the ones that have direct connection to the node of the caller
thread. The cyclic neighbors memory policy also optimizes bandwidth, but it also
keeps data locality since data is placed nearby the caller thread.

Cyclic, cyclic block and cyclic neighbors memory policies can be used in applica-
tions with regular and irregular behavior that have a high level of sharing, since it
provides more bandwidth and better memory banks usage. However, some scientific
applications can still have contention problems with these memory policies, because
these strategies make a linear power of two distribution of memory pages on a plat-
form that also has power of 2 memory banks. Since data structure sizes used in
scientific numerical applications are also power of two, the cyclic distribution may
place memory pages that are used by different threads in the same memory bank
[Lyer 1998].

To overcome this problem authors have proposed in [Iyer 1998] two non-linear
round-robin strategies, the skew mapp and prime mapp memory policies. These
memory policies aim at reducing concurrent access on same memory banks for

4.3. Associating Machine and Application Characteristics to Enhance
Memory Affinity 63

memory pages m-1 memory pages m-1

0 0
dAgtg“ca“°“|o|1|z|3|4|5|s|7|8|9|1o|11- Qg’tl;“ca“°"|o|1|2|3|4|5|6|7|s|9|1o|11-

[3]6]9] ofz1 |1||i|1_1|. 2|58 [o]4]5[1op8 [1]6]of11] | [2]7]
i[cofct]i|i[c2]ca]i| i[ca]cs]i |i|cs[cr]i i[cofct]i|i[c2[cali| i[cafos]i |i[ce]cr]:

Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3

(a) Skew Mapp Policy (b) Prime Mapp Policy

Figure 4.8: Cyclic Memory Policies.

parallel applications, by performing non-linear page placement over the machines
memory banks. The skew mapp memory policy is a modification of round-robin
policy that has linear page skew. In this policy, a page i is allocated in the node
(i 4+ [i/M]| 4+ 1) mod M, where M is the number of memory banks. In this case,
the skew mapp memory policy is able to skew a node in every round of the data
distribution. Therefore, memory pages are distributed over the machine memory
banks in a non-uniform way. Figure 4.8 (a) shows a schema that represents the
skew mapp policy in a NUMA machine with four nodes.

The prime mapp policy uses a two-phase round-robin strategy to better dis-
tribute memory pages over the NUMA machine. In the first phase, the policy places
data using cyclic policy in (P) virtual memory banks, where P is a prime greater
than or equal to M (real number of memory banks). Then, in the second phase, the
memory pages previously placed in the virtual memory banks are re-placed into the
real memory blocks also using the cyclic policy. In this way, the real memory banks
are not used in a uniform way to place memory pages. Figure 4.8 (b) depicts a
schema that represents the prime mapp policy in a NUMA machine with four nodes
and five virtual memory banks.

All the memory policies presented in this section supports data migration. This
means that different memory policies can be applied to the same data (variable
or memory range) on different phases of the parallel application. In this case, the
selected memory policy migrates the memory pages over the machine memory banks
in order to ensure the policy strategy for the selected data.

As aforementioned in chapter 3, some languages and interfaces such as UPC,
HPF and OpenMP have already employed some of the memory policies introduced
in this section. For instance, UPC, HPF and OpenMP extensions implement bind
block and cyclic data distribution. However, in the case of UPC and HPF, they
do not perform physical data placement over the machine memory banks like our
memory policies. Both, UPC and HPF only distributes the logical elements of an
array among the worker threads. Additionally, to our knowledge none of the state
of art works on OpenMP have employed cyclic block, cyclic neighbors, skew mapp
and prime mapp memory policies to place application data on the physical memory

Chapter 4. Proposal of New Approaches to Enhance Memory
64 Affinity

banks of the NUMA machine.

Besides, these solutions only apply memory policies to arrays, while our memory
policies can be applied to arrays, to a memory range or to the application heap. A
number of memory policies support are attached to a single parallel language/in-
terface, which allows their usage in only a specific set of applications. Additionally,
they do not allow the use of different memory policies in the same set of variables
through the application steps. Once a memory policy is applied for a variable it
remains until the end of the execution of the application. Our proposal provides
the possibility to use several memory policies in the same variable (data migration),
applying different memory policies for the variable depending on the application
step. In this case, the memory policy applied to a variable is changed to a new one.

4.4 Data Placement over NUMA Machines

As described in the previous sections, in order to efficiently manage memory
affinity for data parallel applications on NUMA machines, information from both
architecture and application must be considered. Using such information, the ap-
plication source code can be explicitly or implicitly modified to enhance memory
affinity. In this work we provide a flexible memory affinity solution that supports
both explicit or implicit mechanisms.

4.4.1 Explicit Approach

Our explicit approach relies on the programmer knowledge of the application
to manage memory affinity on parallel applications. Using the proposed memory
allocators and the memory policies the programmer can manually change the appli-
cation source code to apply a strategy that is most suitable for the application and
the architecture.

In order to do these modifications, the first step is to select the appropriate
memory allocator for the application. Parallel applications based on arrays should
use our array memory allocator whereas the other ones should use our general pur-
pose memory allocator (the multi-level heap allocator). After that, for each variable
of the application, the programmer must verify its memory access pattern, access
mode and sharing mode, in order to select the variables that must be included in the
memory affinity management. For each selected variable, the programmer has to
change the application source code to include its dynamic allocation and its memory
policy or policies. The chosen memory policies must match the variable memory
access patterns with the machine characteristics. By doing this for the application
steps, the user have in the end a NUMA-aware parallel application.

4.4.2 Automatic Approach

Expert programmers who have a deep knowledge of the machine characteristics
and also of the applications needs can manage memory affinity in an explicit way,

4.4. Data Placement over NUMA Machines 65

using our memory allocators and memory policies. However, this may demand some
modifications in the application source code. Therefore, in order to provide a more
transparent memory affinity management, an automatic support may be employed
for parallel languages.

We propose an automatic solution to manage memory affinity that uses the
NUMA core topology - NUMA hierarchy defined in section 4.1, the application
characteristics depicted in section 4.2 and the memory policies described in the above
section. It aims at removing from the programmer the responsibility of managing
memory affinity in parallel applications by automatically modifying the application
source code.

However, the problem of placing data over the machine memory banks is similar
to the scheduling problem, which is known to be NP-complete |Leung 2004]. Sev-
eral parameters from the application and the NUMA machine must be considered to
place data over the machine. Therefore, it is not possible to compute a data place-
ment on memory banks that optimally enhances the memory affinity in polynomial
time (unless P = NP).

In order to cope with the complexity of the data placement, we have developed
a new heuristic that matches the NUMA architecture characteristics with the appli-
cation memory access characteristics to produce a NUMA-aware application source
code. We chose to use an heuristic algorithm because heuristics provide good ap-
proximations in a reasonable amount of time. The heuristic algorithm is based in
some empirical studies presented in [Ribeiro 2008, Ribeiro 2010a].

The heuristic selects the application variables that must be considered for the
memory affinity management using the application information described in section
4.2. TIts input arguments are the list of the variables information (named Var),
the NUMA hierarchy (named NUM Ah) and the NUMA topology of the machine
(named NU M At) presented in section 4.1. For each variable in Var, the heuristic
has the variable size, its sharing mode (private vs. shared), its access mode (read
vs. write) and its access way (regular vs. irregular). In the NUMAh input, we
represent the machine hierarchy using the NUMA factor whereas, the NUM At
provides information of the machine hardware.

Figure 4.9 shows the heuristic algorithm to choose the most effective data place-
ment for a variable considering its memory access characteristics and the underlying
NUMA characteristics. First, the heuristic loads the variables of an application to
the Var list and the machine information to NUM Ah and NUM At (lines 2-4).
Then the heuristic selects from Var only the eligible variables, which are the large
and not private ones (lines 5-9). We mean by large variables, the ones that do not
fit in the second level cache of the architecture (line 6). We do not consider small
variables because compilers generally do several optimization on them and they gen-
erally fit in cache memories. Private variables are not considered because generally
compilers create a temporary variable for each process/thread that accesses them.

A new list named Var’ is then generated. Next, the heuristic decides if the
variable has to be bound closer to the thread that access it or if it has to be spread
over the machine memory banks. In order to do so, the heuristic verifies the average

Chapter 4. Proposal of New Approaches to Enhance Memory
66 Affinity

ALGORITHM: Heuristic

1 INITIALIZATION

2 Add all variables into Var
3 NUMAh <= load NUMA_factor

4 NUMAt <= load NUMA_Topology

5 FOR ALL Var(i) IN Var

6 IF Var(i) > NUMAt.cache_size AND
7 Var(i).share _mode diff PRIVATE
8 Add Var(i) into Var'

9 END FOR

10 WHILE Var' is not empty
11 Remove Var' (i) from Var'
12 IF NUMAh < THRESHOLD

13 IF Var'(i).access_mode equal WO AND
14 var'(i).access_way equal REGULAR
15 bind(Var' (i))

16 ELSE

17 cyclic(Vvar' (1))

18 IF NUMAh >= THRESHOLD

19 IF Var'(i).access_mode equal RO AND
20 Var' (i) .access_way equal IRREGULAR
21 cyclic(Var' (1))

22 ELSE

23 bind(var' (1))

24 END WHILE

Figure 4.9: Heuristic Algorithm to Automate Data Placement.

NUMA factor of the machine (line 12) and the variable access mode (line 13) and
access pattern (line 14). High NUMA factors implies potentially longer access la-
tencies whereas low ones implies shorter access latencies. Therefore, for low NUMA
factors the variables are generally spread over the machine to enhance memory
bandwidth, except for write-only variables accessed in regular pattern. Write-only
variables generally generate longer latencies, due to the cache coherence protocol of
the machine. Therefor, even on a NUMA machine with low NUMA factor these la-
tencies can have significant impact on the application performance. For high NUMA
factors the variables are generally bound over the machine to reduce access latency,
except for read-only variables accessed in irregular pattern. Since the memory ac-
cess patterns of read-only variables accessed in an irregular way are not predictable,
spread these variables over the machines provides better bandwidths to get them.
Additionally, place these variables closer to threads demands data migration, which
in this case will happen several times.

4.5 Summary

The NUMA design inside the modern multi-core machines has been implemented
as a scalable solution to cluster their memory subsystems. Multi-core machines with

4.5. Summary 67

NUMA design keep the abstraction of a single shared memory by implementing on-
chip memory controllers and cache coherence protocols. However, this solution
generally brings costly access latency and low memory bandwidth to get data. Fur-
thermore, NUMA machines present a complex core topology and memory subsystem
hierarchy.

In order to extract scalable performance from these machines, memory affinity
thus becomes a key element. Particularly, memory affinity keeps data closer to
threads reducing the impact of the NUMA design in the parallel applications. Since
parallel architectures and applications have different characteristics and needs, it
becomes necessary to enhance memory affinity for these applications by applying
efficient and suitable data placement strategies.

We believe that an efficient memory affinity mechanism has to consider the
multi-core machine and the application characteristics. However, it must not be
dependent of the application language /interface and machine architecture hardware
characteristics such as hardware counters. The dependency restricts the use of the
mechanism on few target parallel languages and machines. Besides, extracting,
selecting and exporting such characteristics should not be relied only to program-
mers, since it can be a laborious task. Therefore, from our point of view, a memory
affinity solution for multi-core NUMA machines must be architecture and compiler
independent, support explicit and automatic mechanisms.

The main contributions of this thesis are: (i) to provide a portable way to model
the NUMA platform, to represent its topology and hierarchy; (ii) to organize and to
select the most important application memory access pattern characteristics; (iii) to
improve memory affinity with memory policies applied to the different application
data and steps; (iv) to design and to implement a framework to manage memory
affinity for parallel applications with portable performances.

In the next chapter, we introduce and describe Minas Framework, which is a
portable and efficient solution to manage memory affinity on data parallel applica-
tion over multi-core NUMA machines.

CHAPTER 5
Minas: a Memory Affinity
Management Framework

In this chapter, we introduce Minas, a memory affinity management frame-
work for cache-coherent NUMA multi-core platforms that implements the concepts
presented in chapter 4. Minas provides an explicit memory affinity management
mechanism and an automatic one that are independent of machine architecture and
compiler [Ribeiro 2010b, Ribeiro 2010d]. The explicit tuning is based on a portable
API named MAi (Memory Affinity interface) which provides simple functions that
allow programmers to manually manage data allocation and placement using an
extensive set of memory policies. An automatic tuning mechanism is provided by
the preprocessor named MApp (Memory Affinity preprocessor), which analyses the
application source code in order to automatically apply MAi functions in the source
code. Both MAi and MApp use information of the target cache-coherent NUMA
platform to better manage memory affinity. Such information is provided by a Mi-
nas component named numArch. We start the chapter presenting an overview of
the Minas framework. After that, for each Minas component, we present its design
and implementation details.

5.1 A Framework to Manage Memory Affinity

Minas is an efficient and portable framework that allows developers to manage
memory affinity on parallel applications for large scale NUMA platforms. We mean
by efficiency a fine control of memory accesses for application data and similar
performance on different NUMA platforms. As portability, we mean architecture
and compiler abstraction and none or minimal application source code modifications.

5.1.1 Software Architecture

Minas is composed of three components: MAi, MApp and numArch. MA],
which is a high level interface, is responsible for implementing the explicit NUMA-
aware application tuning mechanism whereas the MApp preprocessor implements an
automatic NUMA-aware application tuning. The last module, numArch, extracts
several information about the target platform, which is then used by the MAi and
the MApp components.

Figure 5.1 shows a schema of the Minas approaches to enhance memory affinity.
The original application source code can be modified by either using the explicit

70 Chapter 5. Minas: a Memory Affinity Management Framework

mechanism (red arrows) or the automatic one (black arrows). In the case of the
explicit mechanism the programmer has to change the application source code to
manually improve memory affinity. In contrast to this approach, in the automatic
mechanism the application source code is automatically changed by Minas. The
decision between automatic and explicit mechanisms depends on the developer’s
knowledge about the target application and platform. One possible approach is to
first use the MApp automatic tuning mechanism and to check whether the perfor-
mance improvement is considered sufficient or not. If the gain is not sufficient, the
developers can then explicitly modify (manual tuning) the application source code
using MAi. Both MAi and MApp rely on numArch to retrieve some of the machine
hardware information and its memory subsystem performance.

Symbols

Application

Source Code —» Automatic Tuning

—» Explicit Tuning

/Minas \\

Y

MA ' o | NUMA-aware
PP] " | Source Code

\ : NumArch /

Figure 5.1: Overview of Minas.

5.1.2 Components

In this section, we describe the main characteristics of each Minas component and
its importance in the framework. Their implementation details are later described
in section 5.2.

The numArch module has an important role on Minas, since it retrieves the
machine information that are necessary to place data on memory banks and to pin
threads on cores. This component extracts information about the interconnection
network (bandwidth), memory access costs (e.g. NUMA factor and latency) and
architecture characteristics (e.g. number of nodes, cpus/cores and cache subsystem).
It can also be used as a library, since it provides some high level interface that can
be used by the developer to better understand the machine topology and its memory
hierarchy characteristics [Ribeiro 2010b, Pilla 2011a]. In Figure 5.2, we present the
numArch components and the output description file for a NUMA machine.

5.1. A Framework to Manage Memory Affinity 71
NumArch #Number of Nodes
4
#LLC
Benchmark — API Shared
Parser 24 Mbytes
#Memory
— - 4 banks
Description file 64 Gbytes
#Cores
6
#NUMA factor
Operating System ‘ 1 1l.11.21.5
‘ P 9 5y 1.11 1.3 1.5
1.2 1.2 1 1.4
‘ Hardware ‘ 1.4 1.5 1.3 1

Figure 5.2: Overview of numArch Module.

MApp (Memory Affinity preprocessor) is a preprocessor that provides a trans-
parent control of memory affinity for numerical scientific parallel applications written
in C. MApp performs optimizations in the application source code considering the
application memory access patterns and platform characteristics at compile time.
Its main characteristics are its simplicity of use and its platform and compiler inde-
pendence. This preprocessor has been developed in cooperation with the University
Federal of Rio Grande do Sul [Ribeiro 2010c, Ribeiro 2010¢].

Figure 5.3 shows a schema of the MApp process to enhance memory affin-
ity for applications. The process starts with information extraction of the appli-
cation variables. In turn, the original application source code is parsed by the
MApp parser, named CUIA (Code Under examlnation to retrieve informAtion)
[Stangherlini 2010]. After that, it fetches the platform characteristics, retrieving
information from the numArch module. Then, the MApp heuristic matches this
information with NUMA hardware characteristics to choose the memory policy for
each variable. Afterwards, the MApp code transformation module modifies the

application source code.

p
MApp

Application ~ App. _ . | Code | NUMA-Aware

Source Code Parser “|_Info. pf 7 al Ve |_;Transform. J Source Code
.

Figure 5.3: Overview of MApp code transformation process.

MAi (Memory Affinity interface) is an API that provides simple mechanisms to
deal with memory affinity on NUMA platforms. It provides simple and high level
functions that can be called in the application source code to perform data allo-
cation, placement and migration [Ribeiro 2009a, Ribeiro 2010d, Goes 2011]. MAIi
functions can be divided in three groups: allocation, memory policies and system
functions.

Allocation functions are responsible for reserving space for application data on

72 Chapter 5. Minas: a Memory Affinity Management Framework

heap, similar to a standard malloc function. Memory policy functions are used to
physically distribute data among the memory banks of the machine. MAIi imple-
ments the memory policies introduced in the previous chapter that can be used
to optimize memory access on NUMA platforms (latency and bandwidth optimiza-
tion). System functions allow developers to collect and print system information
such as memory banks used by the memory policies, cpus/cores used during the
application execution and statistics about data migration.

Regarding thread placement, MAi implements some classical thread placement
mechanisms that are used in some scenarios to better manage memory affinity. Fur-
thermore, MAi can use application memory access traces to pin threads on the
machine cores. In the current version of MAi, memory affinity can be managed at
two different levels: an array based and a more general purpose one. The array
based one must be used for applications based on arrays and parallel loops whereas,
the general one is used for parallel applications that rely on dynamic data struc-
tures. The choice of which API from MAIi should be used relies on the application
developer. Figure 5.4 shows some of MAi functions for its two designs.

/*Initialize MAi*/ /*Initialize MAi*/
int mai_init(char *file); int mai_init(char *file);
/*Allocate arrays*/ /*Allocate data*/
void* mai_alloc_1D(int nx,size_t size); void* mai malloc(size t size);
void* mai_alloc_2D(int nx,int ny,size_t size); void* mai:malloc_locai(size_t size);
void* mai_alloc_3D(int nx,int ny,int nz,
size t size); /*Free data*/

mai_free(void *ptr);
/*Free arrays*/

mai_free(void *array); /*Memory policies*/
int mai_cyclic_neighbors(void *ptr);
/*Memory policies*/ int mai_next_touch(void *ptr);
int mai_cyclic_neighbors(void *array); int mai_bind_local(void *ptr);
int mai_prime mapp(void *array);
int mai_bind_rows(void *array); /*Finalize MAi*/

int mai_final();
/*Finalize MAi*/
int mai_final();

(a) (b)

Figure 5.4: Some Functions of MAi Interfaces: (a) array functions (b) general func-
tions.

5.2 Implementation Details

In the previous section of this chapter, we described the main functionalities and
components of Minas. In this section, we present some implementation details of
Minas components.

5.2.1 Extracting Platform Information

On hierarchical shared memory machines with NUMA characteristics there are
two types of information that are important to retrieve in order to have a good

5.2. Implementation Details 73

knowledge of the platform and provide architecture abstraction to Minas. The
first one is the machine topology, which describes how processing elements share
memories and how they are related to each other. The second one is how the non-
uniform memory access impacts on the platform performance.

The machine topology consists of a set of information that describes its hardware.
Considering Minas objectives and scope the following information is necessary: num-
ber of NUMA nodes, number of cpus/cores, number of sockets, number of caches,
size of cache memories, set of cores that share a cache memory, memory banks
size, free memory and relation between nodes and cpus/cores. To retrieve such
information, numArch parses the topology-related /sys/devices/ and /proc/PID/
file system of the Linux operating system. From the file system, numArch gets the
information of the hardware of the machine parsing some text files. From these
text files , numArch extracts the information of the nodes (number and physical
id), of the cores (number, physical id and siblings cores) and of the cache memory
hierarchy (number of levels, size and sharing among cores). For instance, in a Linux
operating the folder /sys/devices/system/node/ provides information of all NUMA
nodes of the machine whereas, the text file /sys/devices/system/cpu/online allows
us to know the number of cores online in the machine. Figure 5.5 shows the folders
and files that numArch uses to create the machine topology description.

The Node Object:
/sys/devices/system/node/node
-node0

_node1 Node #0 Node #1
The CPU Object: CPU CPU
/sys/devices/system/cpu Core 0 Core 1
-cpu0: Cache L2 Cache L2

/sys/devices/system/cpu/cpu0

-Size MC MC

-index1
-index2
-topology:
~core_id DRAM DRAM
0
-core_siblings
-0,2
-cpul
-cpu2
-cpu3

Figure 5.5: Operating System File System Information used by NumArch.

After parsing step, the obtained information is stored in temporary files on the
/tmp/ of the machine. In the initialization of Minas, these files on /tmp/ are
loaded to dynamic structures (e.g. queues, hash tables and matrices) that can be
later accessed using the numArch interface (Figure 5.6). For instance, nodes ids
and cores ids of the machine are organized in a hash table indexed by the node id.
For each entry of the hash table, there is one node id ¢ and some core ids, the ones
that physically belongs to the node ¢. It is important to mention that is probably
necessary to re-implement some of these functions because of the differences between

74 Chapter 5. Minas: a Memory Affinity Management Framework

operating systems and architectures.

Since Minas deals with data placement over the machine memory banks, it is
also important to obtain information of NUMA hierachy between nodes of the plat-
form. In order to do so, we use two well know benchmarks, Stream [McCalpin 2007|
and LMbench [LMbench 2010]. Stream is a synthetic benchmark application that
measures the aggregate memory bandwidth for a machine. LMbench is a set of
synthetic benchmarks that measures scalability of multiprocessor platforms and the
characteristics of the processor micro-architecture. From LMbench, we selected the
benchmark lat mem_ rd, which allow us to compute the read latency to access data
allocated in a node.

/*is it a numa machine*/
int na_is_numa();

/*get number of nodes of the machine*/
int na_get maxnodes();

/*get number of cpus/cores per node*/
int na_get_ cpusnode();

/*get the NUMA node id which a cpu/core
belongs to*/
int na_get nodeidcpu(int cpu);

/*get the amount of free memory per node*/
unsigned long na_get memnode(int nodeid);

/*Get cores that share a cache level with
core*/
int* na_get_ cacheShare cores(int core);

/*get bandwidth between two nodes*/
double na_get bandwidth(int nodei,int nodej);

/*get latency between two nodes*/
double na_get latency(int nodei,int nodej);

/*get numa factor between two nodes*/
double na_get numafactor(int nodei,
int nodej);

Figure 5.6: Some Functions of NumArch Interface.

During the installation of Minas in the machine, numArch run an application
that performs benchmarking of the machine by executing the Stream and LMbench
between each pair of nodes. After that, numArch saves the bandwidths and latencies
between nodes in temporary files. NumArch also computes the NUMA factor using
latencies obtained from LMbench for each pair of nodes, which is also stored in text
files in /tmp/ directory of the machine. These memory performance metrics can
be retrieved on any application using the functions na_ get bandwidth(int nodei,int
nodej), na_ get_latency(int nodei,int nodej) and na_ get numafactor(int nodei,int
nodej) from the numArch interface.

5.2. Implementation Details 75

5.2.2 Extracting Application Information

In the Minas framework, we have chosen to implement our preprocessor to
achieve compiler independence. MApp retrives application information using a two
level parser. The first one extracts information of variables whereas the second one
extracts information of the parallel constructions of the programming interface.

The parser responsible to extract information of variables is written with Lex/Y-
acc tools and it is called CUIA. It aims at providing variables information of the
parallel application. CUIA parses C code and returns, for each of the variables:
(i) its name and type; (ii) its lexical scope, and the name of the file where it has
been declared; (iii) its nature, which can be either “static array" (e.g. int x[10];),
“dynamic array" (e.g. int* x;), or “scalar". When the variable is a static array,
CUIA also obtains the number of dimensions of the array and the number of en-
tries in each one of the dimensions; (iv) a list of the access modes made on the
variable: Read, Write, or both, and (v) the location in the program where these ac-
cesses occur (line/column number of the for instruction in which scope the access
is performed). Regarding access modes, a variable is considered as read when it
appears as right value, and as write when it shows up on the left of a equal symbol.
No inter-procedural analysis is performed by CUIA. It restricts its analysis on each
parallel region of the application.

This information is retrieved from different parts of the code being parsed. Some
are trivial to obtain (e.g. the name and type), other require some more semantic
actions in the Yacc grammar. CUIA uses the ANSI C Yacc grammar, published in
1985 by Jeff Lee !. Only the rules that are relevant to obtain the required information
have been completed with semantic actions. A symbol table has been implemented
to manage this information, which is classically initialized when the declarations are
parsed, and afterwards complemented with the extra information, for instance the
access modes. At the end of the parsing, the content of the symbol table is dumped
in a textual format, compatible with the later phases of MApp.

The Figure 5.7 presents the output of CUIA for an entry consisting in the LU
factorization source code (Fig. 5.7(a)). For each variable, one can see in Fig. 5.7(b)
the nature, the type, the number and sizes of the dimensions of the arrays, the scope
and filename where it has been declared. For the variables that are arrays (Minv, I
and M), the list of access modes is also returned, with the information on the for
construct which uses them (line and column in the source code file).

The second level of the parser is implemented inside MApp and it retrieves
information of how data is distributed for worker threads (work sharing) and the
sharing type of a variable (i.e. shared vs private). The input for this parser is
a text file with the list of variables generated by CUIA. For each variable in the
file the parser verifies its sharing type and the work sharing for the parallel region
the variable belongs to. The sharing type and work sharing are obtained from the
parallel language/interface constructions. For instance, in the OpenMP example
presented in Figure 5.7, the standard defines that any variable used in the parallel

1. See for instance http://www.lysator.liu.se/c/ANSI-C-grammar-y.html.

http://www.lysator.liu.se/c/ANSI-C-grammar-y.html

76 Chapter 5. Minas: a Memory Affinity Management Framework

1 #define N 1024

2 int M[N][N], I[N],Minv[N][N];

3

4 void main(){ ‘rows' NOT_ARRAY 'int' 'main’ 'lu.c’ -

5 int rows,diagonal,sum,col,tmp,pivot; 'diagonal‘ NOT_ARRAY 'int' 'main' 'lu.c' -

6 . . . 'sum’ NOT_ARRAY 'int' 'main" 'lu.c’ -

7 for(pivot=0; pivot < N-1; pivot++){ 'col' NOT ARRAY ‘int' 'main’ 'lu.c' -

8 #pragma omp parallel for private(tmp,col) 'tmp' NO‘F ARRAY 'int' 'main’ ‘lu.c' -

2 for(rows=pivot+l; rows < N; rowstt){ 'pivot’ NOT_ARRAY ‘int' 'main’ 'lu.c' -

1‘1’ Mlrows]lpivot] Lprowsl (pivot)/ ‘Minv' ARRAY_DIM ‘int' 2 1024 1024 ‘global 'lu.c’
[pivot][pivot]; (W,24,3,10.¢)

12 tmp = M[rows][pivot]; TR it iy R A

13 for (col=pivot+l; col < N; col++) 'mam NOT_ARBA‘Y void glObaI II'U'C I'

14 M{rows][col] = M[rows][col] - I'ARRAY_DIM 'int' 1 1024 'global’ 'lu.c’

15 M[rows][col]*tmp;}} (R,22,3,'lu.c")

16 (RW,23,3,'lu.c’)

17 #pragma omp parallel for private(diagonal,sum,I,col) (R,28,5,'|U.C')

18 for(rows=0; rows < N; rows+t+){ 'M' ARRAY_DIM 'int' 2 1024 1024 'global' 'lu.c'

19 for (diagonal=0; diagonal < N; diagonal++) { (RW,10,6,'lu.c’)

20 sum = 0; (RW,14,9,lu.c')

21 for(col=0; col < N; col++) (R,22,3,'|U.C')

22 sum = sum + M[diagonal][col]*I[col]; (R,27,4,'lu.c’)

23 I[diagonal] = I[diagonal] — sum;} (R,28,3,1u.c’)

24 for(diagonal=N-1; diagonal >=0; diagonal--) {

25 sum = 0;

26 for(col=N-1; col >=0 ; col--)

27 sum = sum + M[diagonal][col]*M[rows][col];

28 Minv[rows][diagonal] = (I[diagonal] — sum)/

29 M[diagonal][diagonal];

30 }}

31

(a) (b)
Figure 5.7: (a) Input C code. (b) CUIA output.

loops is shared. The private ones must be explicitly declared in the private clause
of the OpenMP directive. Regarding to the work sharing, in OpenMP the default is
the static one (each thread receive similar chunks of data). A dynamic work sharing
is obtained in OpenMP using the clause dynamic. The work sharing information
is saved in a structure that is associated with the variable. This structure is later
used to decide what memory policy to use for a variable in a parallel section. The
sharing type is used to select or not the variable to be controlled by Minas. If the
type is private, the parser removes the variable from the text file (in the example
the vector I is removed). On the contrary the variable will remain in the text file
and later modified by MApp in the application source code.

5.2.3 Allocating Memory for Applications

In Minas, data allocation relies on the MAi library memory allocator implemen-
tation. As mentioned before, we have two levels of memory allocation inside MAi.
The first one that allows user to allocate arrays (MAi-array) and a second one (MAi-
heap) that supports any type of object allocation. During the desgin of MAi, we
decided to separate it into two levels because we wanted to do some optimization for
arrays structures. A number of parallel languages, libraries and applications (e.g.
Charm++ [Kalé 2009b] and OpenMP [OpenMP 2011]) are based on this type of
data structure. However, some support for generic data allocation is also needed on
High Performance Computing systems (e.g. Software Transactional Memory and
OpenSkel [Goes 2010b]).

5.2. Implementation Details 77

To implement these memory allocators, we defined two separate interfaces. How-
ever, both implementations relies on mmap() system call. This system call allows us
to reserve some allocate a separate non-contiguous of virtual memory for a process
and its threads. We decided to use this system call because it allows us to reserve
a separate area for the new memory allocation in the application heap. Addition-
ally, other functions that also reserve memory for applications such as sbrk() are
becoming obsolete, since it demands from the memory allocator more control to
index the allocated area. Since the parallel applications used in this work demand a
large amount of memory, it becomes necessary the use of such system call to reserve
memory on the application heap. Additionally, in our array based memory allocator
implementation, we want to provide separate areas for each array.

5.2.3.1 MAi-Array

In the array memory allocator, each time that a new array is requested with
one of the functions mai_ alloc_ *D(int dimensions,size_t size) one call to mmap()
is performed, allocating dimensions X size of memory. After that a pointer to the
array is returned to the application. MAi-array supports up to four dimensional
arrays, but it can easily be extended to support more dimensions. The dimensional
number of elements is a mandatory parameter of MAi-array memory allocator. Due
to this, the user must specify the number of rows, columns and plans for each array.

The memory allocation in MAi-array is always aligned with the memory page
size of the system to simplify the data distribution over the memory banks by our
memory policies. For each allocation, a header that contains information about the
array is also allocated and it is stored in MAi-array control structures (see Figure
5.8). This information is later used at runtime by MAi-array to retrieve metrics
about performed allocations and memory usage for an application.

The pointer returned by the mai_ alloc_ *D(int dimensions,size_t size) functions
can be directly used as an array, because MAi-array organizes all levels of pointers
and elements of the array. For instance, an allocation of a two dimensional array,
int **a=mai_alloc_ 2D (int nz,int ny,size_t size), provides to the user a pointer
to the array that can be accessed directly by its indexes (e.g. a|0][1]). For each
allocated array, we store its information in a hash table addressed by some bits of
the array address. The hash table provides an efficient mechanism to search arrays
information when we have to apply a new memory policy to the array or free it
(mai_ free(void *array)), for instance. Any collision in this hash table is treated
with linked lists.

In order to provide an idea of memory allocation costs considering time to al-
locate data and total memory consumption of the application, we present bellow
results for five arrays sizes with MAi-array. The synthetic benchmark used in this
experiment is single threaded and allocates two arrays with two dimensions. Time
to allocate includes time to reserve memory and to set all pointers for the two di-
mensional array. The sizes used in this experiment are the same ones used in the
applications we later use to evaluate the performance of Minas. Results are com-

78 Chapter 5. Minas: a Memory Affinity Management Framework

/*Information about variablesx/
struct var_info{
int mem policy;
int ndim;
int nnodes;
int dimensions [MAXDIM];
size _t size;
//mutex lock to guarantee exclusive access to the wvariable header
//by the threads that uses the wvariable
pthread mutex t lock var;
//nodes in which the wvariable pages are physically allocated
int xnodes;
void xphigh; //pointer to the array
void xplow; //pointer to the array elements

IE

/* MAi malloc statistics x/
struct mai_malloc {
size t used size;
size t nmmaps;
size _t block h;
int npinfo;
b

typedef struct mai_ malloc mai_ stats;

Figure 5.8: MAi-array Header

pared to the standard memory allocator of glibc in a Debian distribution of Linux
operating system (version 2.6.32-5-amd64).

Table 5.1: Time in microseconds and Virtual Memory Consumption

’ Size ‘ MAi-array ‘ Linux ‘
’ ‘ Time ‘ Memory ‘ Time ‘ Memory ‘
64 x 64 8 23156 Kbytes 3 12280 Kbytes

256x256 8 24140 Kbytes 8 13204 Kbytes
1024x1024 17 27444 kbytes 23 16376 kbytes
4096x4096 34 278 Mbytes 64 268 Mbytes

We can observe in Table 5.1 that considering time to allocate memory, MAi-
array present better performance than the glibc allocator for larger array sizes. The
design of MAi-array memory allocator leads it to simplify the memory allocation
operation, since it does not have to perform search operations for free space in the
heap. Looking at memory consumption, MAi-array memory allocator has performed
worse than the glibc implementation. Differently from glibc, MAi-array does not
try to find free spaces in the previous allocations. It always allocates a new aligned

5.2. Implementation Details 79

space in the heap for the new array. Due to this, MAi-array should not be used for
the allocation of very small arrays. However, when we increase the size for allocation
our malloc implementation memory consumption approaches that of glibc. Since
MAi-array is proposed for data parallel applications and NUMA machines without
intensive malloc allocations, this limitation is not important.

5.2.3.2 MAIi-Heap

In the MAi-heap interface, the hierarchical memory allocator mechanism (intro-
duced in chapter 4) is implemented using different levels of heaps. For a NUMA
platform, MAi-heap defines a global heap that encapsulates all the memory allo-
cation information of the machine and also one heap per NUMA node. Therefore,
in our implementation for each node a mmap() call is performed to create a pre-
allocated area in the application heap for the node. In order to associate this new
area to the node, we use the system call mbind(), which allows us to specify where
the physical memory pages of the new area must be placed. In this case, we per-
form n calls to the mbind() function, where n is the number of NUMA nodes of the
machine.

This design provides more parallelism to the MAi-heap, since threads do not
have to wait for a centralized heap to respond its memory space request. Figure
5.9 shows a schema that represents this implementation. In the figure, the global
heap has four heaps, one per NUMA node, that points to a node heap. Each node
heap has several sub-heaps that holds the application data. This sub-heaps are
created considering the application memory allocation requests. Every time that an
allocation can not be satisfied to a NUMA node a new heap is created and attached
to this NUMA node. Heaps within a node heap are connected using double linked
list to enhance performance of malloc and free operations, reducing time to search
for a memory range.

Global Heap E_>| HO || H1 || H2 || H3 |

AN

Figure 5.9: MAi-heap Implementation View.

80 Chapter 5. Minas: a Memory Affinity Management Framework

The heap associated with the node is the one that really contains data that
was allocated by threads. The global heap in the Fig. 5.9 is used only to store
information to control data allocation. For each allocation request with the func-
tion mai_malloc(size_t size), the global heap select which node heap should re-
spond. To do so, the global heap verifies where the caller thread is running (with
sched_ getaffinity() or pthread_ setaffinity()) and designates a node heap to respond
that allocation. If the node heap has enough memory to satisfy the requisition, it in-
creases its used size, updates node and global heaps and returns to the caller thread
a valid pointer. On the contrary, a new node heap is allocated and linked with the
existed ones. This new heap will respond the caller thread allocation request.

The MAi-heap is also aligned with the memory page size of the system, but at
the level of the node heap. Each time a new heap is created it is aligned and it
has a minimum number of memory pages that are requested (depends on the target
platform). This strategy reduces overhead with system calls, because it minimizes
the number of necessary calls to the mmap() function. In order to update the node
and global heap, we have a mutex lock for each heap level to reduce the granularity
of each critical section. The global heap has one mutex lock, which is only used if
any information of the node heaps must be updated. The node heap mutex is used
to avoid concurrent accesses in the heap, when several threads request data.

The performance of the MAi-heap for each memory allocation, considering costs
in terms of time to allocate is evaluated with a synthetic benchmark. In this example,
a multithreaded application allocates inside each thread two lists of IV integers. For
this experiment, we have used one thread per core on a NUMA machine with 32 cores
and four nodes. Results are compared to the standard memory allocator of glibc in
a Debian distribution of Linux operating system (kernel version 2.6.32-5-amd64).

Table 5.2: Time in microseconds to allocate Two Lists of N Integers

’ N ‘ MAi-heap ‘ Linux ‘

10 9 11
100 11 11
1000 30 50
10000 42 97

We present time to perform the memory allocation for the MAi-heap and the
Linux standard memory allocator (Table 5.2). Considering the time to perform an
allocation, we can observe that Minas has presented better performances that the
Linux standard memory allocator. Since Minas memory allocator reserves some
initial space on the heap during its initialization, the initial mallocs are very fast
because they are satisfied by this pre-allocated area.

5.2. Implementation Details 81

5.2.4 Placing Data over NUMA nodes

Data placement on Minas framework is implemented as memory policies inside
MAi-array and MAi-heap. Due to this, the object used on every data placement can
be an array or a memory range of a heap. On both cases, the granularity used by
MAI to place data over the memory banks is always a memory page. As presented in
chapter 4, there are two groups of memory policies, the ones that optimizes latency

(mai_bind_ *() and mai_ next touch()) and the ones that optimizes bandwidth

*_mapp()).

In order to implement the latency memory policies on both MAI interfaces, we

(mai_ cyclic_ *() and mai_

divide a memory range (an array or a heap) into N chunks (e.g. rows, columns,
memory pages) and place these chunks on the memory banks where threads are
running. Linux operating system provides a set of system calls that allow program-
mers to bind virtual memory pages on physical memory banks. These system calls
receives as parameters the pointer to the virtual area, the number of pages to be
placed on the memory bank and the physical id of the NUMA node that must be
considered in the bind operation. There are two types of system calls, the ones
used to bind a memory range to a memory bank (mbind()) and the ones used to
migrate a memory range already bound to a memory bank (move pages() and mi-
grate_pages()). Therefore, to place these chunks on the physical memory, we use
the system call mbind() or move_ pages().

The mbind() system call allows us to specify where a memory range should be
placed on the NUMA platform. However, if that memory range has been already
placed on any memory bank, MAi uses move_pages() system call that migrates the
memory range to the destination node. The mbind() system call also supports data
migration but, because of implementation issues, its performance is generally worse
than the one obtained with the move pages() function. Because of this, in MAi
memory policies implementation every memory range already mapped to physical
memory are always placed using move_ pages() function.

The bandwidth memory policies are also implemented using the mbind() and
move_pages() system calls. The difference here is that those memory policies use a
set of nodes for a memory range placement and not only one NUMA node. Further-
more, the memory range is generally divided in a set of memory pages (considering
cache memory hierarchy) instead of chunks. The choice of which set of nodes to
use for a memory range depends on which thread asked for the data placement
and the memory policy distribution. Considering these information and the topol-
ogy of the machine (e.g. NUMA nodes), MAi looks for nodes that can receive the
memory range. For instance, in the mai_ cyclic_neighbors() policy, MAIi retrieves
the NUMA node where the thread is running and then using the machine topology
(NUMA factor and physical NUMA node id), it extracts the neighbor nodes to place
data.

Figure 5.10 shows a code snippet of the mai_ cyclic memory policy. In the figure,
do_bind() function is responsible for calling the mbind() system call and ensure that
only one thread will perform the operation. To do so, it first acquires the lock for the

82 Chapter 5. Minas: a Memory Affinity Management Framework

void mai_cyclic(void #p)

{
void xrealptr;
unsigned long =xnode;
int i;

//retrieve the low pointer:

//p is the high level pointer to the array, but

//the memory policy meeds the address of the memory range
realptr = get realpointer(p);

//in cyclic all memory banks of the machine are used
set _all nodes(node);

//if modes have enough memory
if (free_ memory(node) > realptr—>mem size) {
//for each page of the memory range
for (i=0;i<realptr —>npages;i++)
//place a page i in the node i % number of nodes
do_bind(realptr —>padeaddr[i],node[i]%get max nodes());
}
else{
printf("\n_Node_does_not_have_free_memory.");
return (—1);

}

Figure 5.10: Cyclic Memory Policy Code Snipet.

correspondent address and then, it places the memory page in the target memory
bank. Since this policy always uses all nodes available on the machine, it does not
have to check for which thread asked for data placement.

On every data placement, MAi always checks if the destination node has enough
physical memory consulting numArch module. If the destination node has enough
memory, data is placed on the node. On the contrary, MAi searches for neighbors
nodes that can receive the memory range. In order to get the neighbors of a specified
node, MAi asks to numArch using the function na_ get neighbors(). This function
uses the NUMA factors computed at Minas installation to define which nodes are
closer to the one that does not have enough memory. Data placement is finalized
with an update to MAi data structures, in which the nodes used to place the memory
range are saved inside these structures. This information is important because MAi
has to decide between mbind() or move_ pages() to physically allocate data.

5.2.4.1 How to choose a Memory Policy?

As mentioned before, there are two possibilities to choose a memory policy for
a memory range using Minas, an explicit one and an implicit one. In the explicit
method the developer changes the application source code by himself using MAi-

5.2. Implementation Details 83

array or MAi-heap interfaces in order to provide hints to Minas of which memory
policies to use and where to apply them. To do so, programmers only have to use
the functions of MAIi interface presented in the previous sections.

In the implicit approach, Minas relies in the MApp heuristic (chapter 4) to
automatically modify the application source code. This heuristic is implemented
as a module of MApp and it uses as input the CUIA output file and the numArch
machine description file. Since CUIA provides as output a list of all variables of the
application, the heuristic has to select which variables it will manage the memory
affinity. It only control variables that present an important impact on memory
affinity of an application, i.e. variables with a long lifetime and size at compile
time.

In C, variables can be allocated in three ways: statically, automatically and
dynamically (malloc). In this work, we are mainly interested in static and dynamic
variables, since automatic ones are temporary objects stored in the stack that will
be used in a restricted scope. Static variables have the same lifetime as the binary
of the application whereas dynamic variables are alive until they are freed. Thus, on
NUMAS, these variables will be more impacted by the data distribution. A variable
is considered large if its size is equal or greater than the size of the second level
cache of the platform (extracted from numArch module). This choice was taken
because small variables are generally kept in caches. So, their impact on memory
affinity strategies are not significant. Furthermore, the MAi functions have some
costs related to data allocation and data distribution. Thus, the heuristic selects
only variables that are large enough to amortize such costs.

The MApp heuristic considers to place data closer to threads or spread them
over the machine memory banks, depending on the NUMA factor of the machine
and in the characteristics of the application. From MAi-array interface, we selected
the mai_ cyclic and the mai_bind_block (block is a set of rows or columns) mem-
ory policies for the heuristic implementation. These memory policies were selected
because they allow to place data closer to threads (mai_bind_block) or to spread
data over the machine memory banks (mai_cyclic). The choice between these two
memory policies relies in the MApp heuristic described in chapter 4. The output
generated by the heuristic is a text file with a list of variables, their information and
their memory policies. This text file is later used by MApp to transform the appli-
cation source code, in order to include the MAi memory policies for the variables.

5.2.4.2 Design a New Memory Policy

Although MAi has many memory policies, other applications and NUMA ma-
chines may have special needs. Therefore, specialized memory policies must be
designed for such situations. One of the features of MAi is the support to design
new memory policies and plug them in the array based interface. In this section
we present a simple example of how to use MAi system functions to create a novel
memory policy.

In order to design a memory policy, developers only have to write some functions

84 Chapter 5. Minas: a Memory Affinity Management Framework

that specify how data will be distributed among the NUMA machine memory banks.
These new functions must be written using MAi system functions such as architec-
ture information functions and data distribution functions. The first set of functions
allows developers to better understand the target platform and consequently better
distribute data. The second one provides different ways to divide/cut arrays into
blocks and to bind such blocks on memory banks.

int compute neighbor(int nodesrc)
{
int i,j,min=MAX;
int node=-1;
float nf; //numa factor

//Get NUMA factor between each pair of nodes
//and find the smallest one
for (i=0;i<nnodes —1;i++)

if (i != nodesrc){
nf = na_get numafactor(nodesrc,i);
if (min > nf){
min = nf;
node = i;}
}
return node;
}
J*

void xarray: pointer to data

pid_t id: id of the thread

*/

void my distribution(void xarray ,pid t id)
{

int nodes|[2];

//Get the node where the thread id is running
//and find its closest node neighbor
nodes [0] = na_get nodeidcpu(na_ get core(id));
nodes|[1] = compute neighbor(nodes[0]);

//Set nodes to be used in data placement
mai_nodes(2,nodes);

//Set array chunk to bind on the memory banks
mai_bytes(array ,mai_getsize(array)/2);

//Perform N binds, where N is the number of nodes
mai_regularbind (array);

}
}

Figure 5.11: Example of Development of a Memory Policy

5.2. Implementation Details 85

In the example (Figure 5.11), we present an implementation of a new memory
policy named my _ distribution(). This memory policy distributes data among mem-
ory banks in a regular fashion (regular chunks of data for each memory bank). Thus,
all we have to do is divide data into blocks of the same size and then distribute such
blocks on some memory banks considering the NUMA factor between then.

In function my_distribution(), the first thing to do is to compute the mem-
ory banks that will be used to place data. The functions mai_get nodeidcpu(),
na_ get_numafactor() and mai_nodes() allow developers to obtain the node id that
a core belongs to, to get the NUMA factor between two nodes and to set the mem-
ory banks that will be used in the placement. After that, developers must specify
how arrays will be divided by using mai_bytes() or mai_subarray(). These two
functions divide the array into blocks of the same size. In this example, the array
was divided into blocks of same number of bytes, considering number of nodes used
in the data distribution (two, in the example). Finally, we tell MAi that we want
to bind these blocks on the selected nodes. In order to do this, developers just have
to call the mai_ regularbind() function. This function will perform data alignment,
data placement, compute available memory on the selected memory banks and make
data migration (if necessary). In the case of the selected NUMA node does not have
enough memory the function mai_ regularbind() returns an error to the application,
indicating that there is not enough memory.

5.2.5 Mapping Threads to Enhance Data Locality

On a multi-core platform, the operating system (OS) usually distributes different
processes/threads on all available cores in a way which allows the system to work
most efficiently. The strategy used to perform such a distribution is named the
thread affinity or thread placement. There are two ways of dealing with thread
affinity in such platforms. The first way, called soft affinity, is to let the OS scheduler
control the processes/threads migration. Usually, the OS scheduler will try to keep
processes/threads on the same core as long as possible. However, in some situations
the OS scheduler may migrate processes/threads to another core, even when it is
not necessary, impacting on the overall performance of the system. The second
way, called hard affinity, is to delegate the processes/threads locality to the user or
runtime. In this case, the user/runtime may define on which core each thread must
run.

Considering Linux operating system, we have observed how it schedules threads
on a multi-core machine with NUMA characteristics for the MG benchmark from
NAS Parallel Benchmarks. The selected benchmark is composed by a sequence of
parallel iterations. For this experiment, we have traced the locality of all threads
at the beginning of each iteration. The analysis of the trace obtained during the
execution of the benchmark with one thread per core allowed us to conclude that
the scheduler has changed constantly the locality of the threads.

To demonstrate such behavior, we obtained the trace information for a thread
during the benchmark execution on two different NUMA platforms (Figure 5.12).

86 Chapter 5. Minas: a Memory Affinity Management Framework

MG on Intel X7560 MG on AMD 875
32 T T T T T T T T T T 11T 1T 1T 17T 17T 16 T T T T T 1T T T 1T T 1T 1T 1T T T1T°T
30 1
gg B Thread location] ur Thread location 1
24 R 12 | R
22 1
n 2 E N 10f E
= 18F 4 =
O 16 g [8 I]
o 14 B [e]
O 1t E O & i
10 9
8 E 4+ 4
6 - -
4+ 1 2+ 1
e 4
0) N S I I I | 11 1 11 1 0 11) N S S I I I S |
1234567 8091011121314151617181920 1234567 891011121314151617181920
MG lteration MG lIteration

(a) (b)
Figure 5.12: Linux Scheduling for the MG Benchmark on NUMA Platforms.

The Intel X7560 machine has 32 cores and four NUMA nodes. Each node is com-
posed by eight cores. The second machine is an AMD 875 with 16 cores and eight
NUMA nodes. Each node of this machine has two cores. Table 5.3 specifies the
physical core ids on each node. One can observe in Fig. 5.12 that the Linux sched-
uler has considerably varied the locality of the thread: on a different core (y axes)
on the same processor, on different processors, on different NUMA nodes of the
machines. All other threads have presented analogous behavior.

Since memory affinity is a relationship between threads and data, it is also
important to place threads over the machine cores in order to improve memory
affinity for a parallel application. Therefore, in the design of Minas framework we
also included some support for thread placement. Particularly, each time that the
OS decides to migrate a thread to a different core its data will remains on the
previous cache and memory bank. On NUMA machines this can generate several
remote memory accesses and may create contention. Thus, it is important to have
data close to threads by migrating them. However, on Linux systems this can be a
very expensive operation [Brice Goglin 2009|. In order to avoid this, in MAi, thread
placement is managed by pinning threads to machine cores when they are created.
This strategy avoids any thread migration by the operating system assuring better
cache and memory usage.

Minas MAIi runtime pins threads using the system call sched_ setaffinity(pid_t
pid, unsigned int cpusetsize, cpu_ set_t *mask) that allows MAIi to specify a core
for a thread. This system call receives as parameters the thread id (pid _t pid), the
size of a cpu mask (number of bit necessary to index the machine cores) and the
mask that specifies the core that must be used. The choice of which core to use
for a thread is based on the machine topology. Before deciding which core to use,
MAI call some numArch functions (e.g. na_get sharedCache()) to discover how
the cores share cache and main memory. After this, MAi pins threads considering
cache hierarchy between cores to enhance or not cache sharing among threads of

5.3. Summary 87

Table 5.3: Intel and AMD Machines Topology.

Node Cores

#1 0,4,8,12,16,24,28
Intel #2 1,5,9,13,17,25,29
#3 | 2,6,10,14,18,26,30
#4 | 3,7,11,15,19,27.31

21 0,1
#2 2,3
#3 45
AMD | #4 6,7
#5 8,9
#6 10,11
#7 12,13
#8 14,15

a parallel region. MAIi implements two classical thread placement strategies the
compact and the scatter ones. In the compact strategy the goal is to enhance cache
sharing among threads of a parallel region whereas, in the scatter strategy threads
are placed on the machine in such a way that cache sharing among them is reduced.
This default behavior can be changed by the user, providing a configuration file to
MAIi with the cores that must be used in the application execution.

Another possible way to change such behavior is the use of memory traces of the
application to generate the configuration file. One can use memory access metrics
such as the amount of shared memory and the access performed in the shared
memory to identify the data sharing pattern between threads. Then, this trace can
be used to group threads that work in the same data set. In the work [Cruz 2011],
we have worked with Eduardo Cruz and Marco Zata from University Federal of Rio
Grande do Sul to generate such configuration file. We have used memory traces to
find the best suited thread mapping for NUMA machines. These memory traces have
been used as input for Minas framework to pin threads to the cores of a machine.

5.3 Summary

In this chapter, we presented the Minas Framework components and its imple-
mentation details. This framework has been designed to manage memory affinity in
parallel applications. It relies on three components that provide tools for allocating
and placing data efficiently and in a portable way over NUMA machines.

The numArch extracts the NUMA machine topology and memory subsystem
information, in order to provide a general and portable representation of the target
NUMA machine. The numArch also provides a user-space functions that can be
used to better understand a NUMA machine.

88 Chapter 5. Minas: a Memory Affinity Management Framework

In order to reduce the complexity of memory affinity management and to provide
a portable memory affinity solution, Minas MApp module extracts some information
of the application in order to produce a NUMA-aware application source codes
taking into account the NUMA machine characteristics. The last component of
Minas framework has an important role, since it is responsible for all data allocation
and placement. In order to provide a flexible and efficient implementation for MA1,
we designed it with two levels. One is specific for arrays while the second is more
general for dynamic data structures such as queues and trees. This design allows
MAI to support different levels of memory affinity control (e.g. heap and variables).
Furthermore, MAi implements several memory policies to deal with both regular
applications and irregular applications.

The framework introduced in this chapter provides different supports to deal
with memory affinity on parallel applications. Its components are basic tools that
can be later used in a number of parallel programming interfaces, libraries and
languages to control thread and data placement on NUMA machines. In the next
chapter, we present how to use Minas framework to enhance memory affinity on
parallel environments that do not support NUMA machines.

CHAPTER 6
Employing Minas Framework on
Parallel Environments

Several popular parallel languages are available to program multi-core platforms
with shared memory design. However, as presented in chapter 3, most of them do
not have any memory affinity support. As a consequence, their performance may
be reduced in NUMA platforms due to the non-uniform memory accesses costs. For
instance, OpenMP [OpenMP 2011], Charm++/AMPI [Kalé 2009a] and OpenSkel
|Goes 2010b] are examples of programming environments that do not have NUMA
support. In this chapter, we present how to make use of Minas components on
parallel environments for High Performance Computing to enhance memory affin-
ity. To show the applicability of Minas memory affinity approaches and how they
can be used to improve the performance of parallel applications on NUMA plat-
forms, we select four different parallel environments, OpenMP, Charm++, AMPI
and OpenSkel. We chose these environments because they lack NUMA support,
they present different programming models and they can provide information of the
application at compile time or runtime. We first present each parallel programming
environment, describing their main characteristics. After that, we describe imple-
mentation drawbacks of each parallel environment considering NUMA machines.
In light of these issues, we show how to make use of the Minas memory affinity
approaches that address these problems.

6.1 OpenMP API

OpenMP is an API (Application Programming Interface) that provides a sim-
ple way to develop parallel applications for shared memory machines. The code
parallelization is done using directives in the sequential code to parallelize loops
or create tasks that are processed by a team of worker threads at runtime. These
directives provide the compiler with information of which regions of the application
have to be parallelized. Thus, all low level parallelization work relies on the com-
piler that uses the OpenMP macros on the code to generate the parallel application
[OpenMP 2011].

The execution model used by OpenMP to run a parallel application is the fork-
join one. In this model a master thread creates a team of worker threads when a
parallel region is reached. The team of threads and the master thread work together
in the parallel region to accomplish the work. At the end of the parallel region they
synchronize. Figure 6.1 shows the schema that represents this execution model.

Chapter 6. Employing Minas Framework on Parallel
90 Environments

Master Thread

Parallel region

Worker Thread

Synchronization

Parallel region

Figure 6.1: OpenMP Execution Model.

In this model, for every parallel region the master thread and the worker threads
share a global shared memory space, which is composed by the shared variables. In
OpenMP, variables are shared by default. Any private variable must be explicit set
as private for an parallel region. Threads use these shared memory to communicate,
hiding from the programmer the data transfer between them. Additionally, the
APT also specifies work sharing and synchronization mechanisms that can be used
by the programmer to better compose a parallel application. The work sharing in
OpenMP specifies how work is distributed among threads. For instance, the static
work sharing describes a static work distribution, whereas in the dynamic one, work
is distributed among threads at execution time. The synchronization mechanisms
in OpenMP allows users to specify barriers and critical regions for parallel regions.

Although OpenMP has been developed for shared memory machines, it does
not take into account that the target machine may have a hierarchical shared mem-
ory subsystem. The OpenMP standard does not have any memory affinity support
on its specification. In fact, memory affinity on OpenMP relies on the operating
system, which performs data and thread placement for the OpenMP parallel ap-
plication. However, the operating system affinity support lacks in providing good
performance for an OpenMP application, since it does not consider the OpenMP
execution model to control memory affinity. Therefore, OpenMP fails in attaining
scalable performance on multi-core machines with NUMA design.

6.1.1 Memory Affinity: Automatic management

We propose a transparent memory affinity support for OpenMP, which does not
require explicit changes in the application source code, neither in the OpenMP inter-
face and runtime. The automatic memory affinity support for OpenMP applications
relies on the idea of using the application information extracted by the compiler and
the architecture design to tune the application. Therefore, all components of Mi-
nas framework, the numArch, the MAi and the MApp are used to control memory

6.1. OpenMP API 91

affinity for the OpenMP applications. However, since OpenMP applications are
generally implemented using arrays, the MA1i interface used for such applications is
the MAi-array.

The numArch is actually used by MAi-array and MApp to retrieve the informa-
tion of the NUMA machine without the interference of the programmer. This means
that architecture abstraction for OpenMP applications is guaranteed by numArch.
Using the information of the architecture, MAi-array is able to place thread and
data over the NUMA nodes using any of its thread placement strategy and memory
policies presented in chapter 5.

The choice of which memory policy must be applied for an array relies on the
MApp preprocessor. The MApp scan the OpenMP application at compile time to
extract information the application such as the variables and their memory access
patterns. This preprocessor then matches the variable information with the NUMA
platform characteristics to produce automatically a NUMA-aware OpenMP code.
MApp produces this code by including functions from MAi-array interface inside the
application source code to allocate and place data. The decision of which memory
policy to use for each array of the application is made using the heuristic introduced
in chapter 4, section 4.4.1. The final source code can be compiled with any compiler
that has OpenMP support.

Although MApp considers the application and the machine characteristics to
manage memory affinity, it may sometimes not produce the best performance ap-
plication source code for a NUMA machine because it uses an heuristic. Due to this
fact, we also let the programmer use the MAi-array interface to manually change
the application source code.

6.1.2 Design and Implementation of Memory Affinity Support

The design and implementation of Minas framework for OpenMP relies on com-
pile time implementation without the need of changing the compiler. Therefore, the
Minas framework integration with OpenMP is done before the application execu-
tion in a static way. To do so, Minas includes MAi functions in the source code at
compile time.

The first issue that we address in the designing of the memory affinity support for
OpenMP is how to include Minas framework in the OpenMP compile process. To do
so, we have implemented an user space tool that receives as a parameter the OpenMP
application source code (i.e. the file that contains the main function) and then, it
calls the MApp preprocessor to start the memory affinity management process.
MApp is the only component of Minas that has been designed for a target parallel
language, C with OpenMP. Additionally, MApp was designed for applications that
are based on static arrays, no dynamic allocation in the source code is supported.
However, its ideas and concepts can be easily adapted for other parallel languages.

MApp starts by calling CUIA to extract the variable information and the OpenMP
constructions. It uses the OpenMP constructions for C language to retrieve the work
sharing (schedule clause) for a parallel loop and the sharing type for variables of an

Chapter 6. Employing Minas Framework on Parallel
92 Environments

application. For instance, from the schedule clause of a parallel for, the parser ex-
tract the iterations for each available thread. Besides the schedule clause, the parser
also uses the private and shared clauses to identify the sharing type for each appli-
cation variable. Both private and shared are used in OpenMP to set the variables
sharing type. In order to do that, the MApp parser looks for these clauses in all
parallel regions defined by pragma omp parallel of the considered application. After
the parsing, MApp uses its heuristic to decide the memory affinity strategy suited
to the application variables.

The heuristic is used on OpenMP parallel loops (i.e. pragma omp for) in the
original application source code. Consequently, the same variable may have different
memory policies applied to it on the final application source code. This depends on
the variable memory access patterns on each parallel loop. The application source
code is then changed by the Minas source code transformation module with a set
of functions from MAi-array interface. In the application execution, the Minas uses
these functions to place thread and data over the NUMA machine nodes. To bind
threads for OpenMP applications, Minas pins the threads created in a parallel region
using the system call sched setaffinity pid_t pid, size t cpusetsize, const cpu_ set_t
*cpuset), introduced in the previous chapter. Minas perform this system call within
a parallel region, in order to call it to each thread.

6.1.3 Illustrating Minas Framework with an Example

In previous sections, we have described how Minas framework can be employed
in OpenMP to improve memory affinity for parallel applications. In this section, we
present a complete example of how to use Minas to manage memory affinity on an
OpenMP application. We select a snippet of a source code presented in Figure 6.2(a)
as our target application. Additionally, we consider that the programmer does not
know the application characteristics and starts the process using the Minas MApp
to retrieve which variables are important for the application.

The list of important variables for memory affinity management is presented
in Figure 6.2(b). Based in this list, MApp decides which memory policy is more
suited for each variable using the heuristic described in the chapter 4. Then, the
MApp preprocessor calls its source code transformation module. The transformation
process is divided in three steps: include libraries, change variables declaration and
include memory policies.

The first step of the transformation process includes the necessary libraries in
the main file of the application. The included libraries are mai__array.h (for MAi
interface functions) and numa.h (for Linux NUMA system calls). In the second
step, all the static declarations of variables that are considered to be modified by
MApp are changed to dynamic. The third step modifies the application source code
in order to apply the selected memory policies for each variable.

Figure 6.3 shows the final code transformation generated by MApp. We can
observe that MApp has only applied memory policies to two arrays, M and Minv
(bold functions in Figure 6.3(b)). Differently, the array I was not considered because

6.1. OpenMP API 93

#define N 1024
int M[N][N], I[N],Minv[N][N];
int rows,diagonal,sum,col,tmp,pivot;

for(pivot=0; pivot < N-1; pivot++){
#pragma omp parallel for private(tmp)
for(rows=pivot+l; rows < N; rows++){
M[rows][pivot] = M[rows][pivot]/
M[pivot][pivot];
tmp = M[rows][pivot]; 'Minv' ARRAY_DIM
for(col=pivot+1l; col < N; col++) —

M{rows][col] = M[rows][col] - 'int' 2 1024 1024 'global’ 'lu.c’
M[rows][col]*tmp; (W,25,5,'lu.c’) static
, 'M' ARRAY_DIM
'int' 2 1024 1024 'global’ 'lu.c’

1 v H
#pragma omp parallel for private(diagonal,sum,I) (RW,9,5, |U.C) static
for(rows=0; rows < N; rows++){ (RW,12,8,'lu.c") static
for(diagonal=0; diagonal < N; diagonal++) {
sum = 0; (R,19,5,'Iu.c') static
for(col=0; col < N; col++)
sum = sum + M[diagonal][col]*I[col];
I[diagonal] = I[diagonal] — sum;}
for(diagonal=N-1; diagonal >=0; diagonal--) {
sum = 0;
for(col=N-1; col >=0 ; col--)
sum = sum + M[diagonal][col]*M[rows][col];
Minv[rows][diagonal] = (I[diagonal] — sum)/
M[diagonal][diagonal];
}
}

(@) (b)

Figure 6.2: OpenMP Application and List of Variables Selected by MApp.

it is private to the second OpenMP parallel for loop (clause private(diagonal,sum,I)
in the figure). Additionally, small variables such as rows, diagonal, column, pivot,
sum and tmp probably fit in cache. Therefore, MApp does not interfere in the
compiler decisions (allocation and placement of variables).

In this example, the target NUMA platform has a small NUMA factor among
nodes. Therefore, remote accesses do not present high latencies. In the beginning
of the application, MApp has applied mai_bind_rows memory policy for arrays
M and Minv, since they are first used in write operations. In this case, it is
important to place data close to threads that use them in order to avoid additional
remote accesses. However, in the second phase of the application, M is used as
read variable and may be a point of memory contention. Due to this, MApp has
decided to spread memory pages of M with mai_ cyclic memory policy in order to
optimize bandwidth for the second phase of the application. In this case, during the
application execution the memory pages that compose M are migrated to the new
memory banks, when the ma:_ cyclic memory policy is called.

To provide an idea of how MAI places threads and data for this application
at runtime, we present an example in Figure 6.4. We considered for this example
a NUMA machine with four nodes and sixteen cores. The Fig. 6.4 (a) depicts
the MAi thread and data placement for the first parallel loop whereas the Fig.
6.4 (b) shows the placement for the second one. The MAI function responsible
for thread placement is the mai_init(). This function creates a parallel region with

Chapter 6. Employing Minas Framework on Parallel

94

Environments

int M[N][N], I[N],Minv[N][N];
int rows,diagonal,sum,col,tmp,pivot;

for(pivot=0; pivot < N-1; pivot++){
#pragma omp parallel for private(tmp)
for (rows=pivot+l; rows < N; rows++){
M[rows][pivot] = M[rows][pivot]/
M[pivot][pivot];
tmp = M[rows][pivot];
for(col=pivot+l; col < N; col++)

int **M, I[N],**Minv;
int rows,diagonal,sum,col,tmp,pivot;

mai_init(NULL);
M = mai_alloc_2D(N,N,sizeof(int),INT);
Minv = mai_alloc_2D(N,N,sizeof(int),INT);

mai_bind_rows (Minv);
mai_bind_rows (M) ;

for(pivot=0; pivot < N-1; pivot++){
#pragma omp parallel for private(tmp)
for(rows=pivot+l; rows < N; rows++){

M[rows][col] = M[rows][col] - M[rows][pivot] = M[rows][pivot]/
M[rows][col]*tmp; M[pivot][pivot];
} tmp = M[rows][pivot];
} for (col=pivot+l; col < N; col++)

M[rows][col] = M[rows][col] —
M[rows][col]*tmp;}}

#pragma omp parallel for private(diagonal,sum,I)
for(rows=0; rows < N; rows++){
for(diagonal=0; diagonal < N; diagonal++) {

sum = 0;

for(col=0; col < N; col++)

sum = sum + M[diagonal][col]*I[col];

mai_cyclic(M);

#pragma omp parallel for private(diagonal,sum,I)
for(rows=0; rows < N; rows++){
for(diagonal=0; diagonal < N; diagonal++) {
sum = 0;
for(col=0; col < N;col++)

I[diagonal] = I[diagonal] — sum;} .
for(diagonal=N-1; diagonal >=0; diagonal--) { I[zz:q:ﬂz?? :MiﬁzigzgiiigciI;;;E;OI]7
sum = 0; for(diagonal=N-1; diagonal >=0; diagonal--){
for(col=N-1; col >=0 ; col--) sum = 0;
sum = sum + M[diagonal][col]*M[rows][col]; for(col=N-1; col >=0 ; col--)
Minv[rows][diagonal] = (I[diagonal] — sum)/ sum = sum + M[diagonal][col]*M[rows][col]
M[diagonal][diagonal]; Minv[rows][diagonal] = (I[diagonal] — sum)/

} M[diagonal][diagonal];}}

}

mai_final();

(a) (b)

Figure 6.3: Example of MApp source code transformation.

sched_ setaffinity() function in order to pin threads in the machine cores. In the Fig.
6.4 (a), one can observe that threads and their data are placed in the same NUMA
node (same colors), due to the mai_bind_rows memory policy. Additionally, M
and Minv arrays have been split by rows, each thread has a set of rows closer to it.
However, in the second parallel loop the M array has been spread over the different
memory banks. To do so, MAi has migrated the memory pages that compose M, to
ensure the mai_ cyclic policy. For thread placement, MAIi uses its default strategy
that tries to place threads of a parallel region on cores that are closer, using one
thread per core. We mean by closer, cores that share at least on cache memory
level. In this example, since we have sixteen threads all cores are used by MAI.

6.2 Charm++/AMPI Parallel Programming System

Charm-++ is a parallel programming system that has as main characteristic
portability over platforms based on shared and distributed memory. It aims to
provide a parallel programming support that abstracts architecture characteristics
from the developer. To do so, this system provides two interfaces to develop parallel
application, the Charm++ parallel C++ library and the AMPI (Adaptive Message
Passing Interface) interface. Both rely on the concept of processor virtualization

6.2. Charm-+-+/AMPI Parallel Programming System 95

Node 3

TEEE

(a) (b)

Figure 6.4: MAi Thread and Data placement.

technique. The processor virtualization provides programmers with support to write
parallel application as a set of entities that represent the application computation.
Charm-++ parallel applications are written in C++ using an interface description
language to describe its objects [Kalé 2009b] whereas AMPI parallel applications
are written using MPI functions [Huang 2007].

In Charm+-+, computation is decomposed into objects named chares. The pro-
grammer describes the computation and communication in terms of how these chares
interact and the Charm-++ runtime takes care of all messages generated from these
interactions. Chares communicate through a remote method invocation using a
message-driven model. Further, the Charm++ runtime is responsible for physi-
cal resource management on the target machine. Figure 6.5 shows a schema that
represents charm-++ execution model. We can observe that chares A and C com-
municates with each other. In the pseudo code presented in the figure, this is done
by the C.entry(m) procedure, which calls the chare C with the message created in
chare A.

In the previous versions of Charm++ (before version 6.1), communication be-
tween chares was based on the exchange of messages. This means that for every com-
munication, pack and unpack functions were used to create messages and, after that,
messages were sent. This behavior was also implemented on shared memory ma-
chines, which may have a low performance. Because of this, Charm+-+ researchers
have proposed in [Mei 2010] some optimizations for shared memory platforms.

In the current version of Charm++, all communication between chares on shared
memory machines is done on memory. In the shared memory (SMP) build of
Charm-++, communication proceeds through the exchange of pointers between the
threads. Due to this, the Charm++ runtime is able to avoid high overheads due to
messages and reduce communication time. However, in the case of NUMA machines,
this mechanism can be affected by asymmetric memory latency and bandwidth.
Charm-++ relies on the operating system memory affinity and does not explicitly
control the placement of shared data in the memory.

Chapter 6. Employing Minas Framework on Parallel
96 Environments

Chare C
Chare A

. void entryC(Msg *m)

void entryA()({ {
m = new Message();
C.entryC(m);

I = work();

. compute(); A.entryAl(I);
void entryAl(int I){ !
process(I);}

Figure 6.5: Charm++ Execution Model [PPL-Charm++ 2011].

Particularly, on some operating systems such as Linux and Windows, the default
policy to manage memory affinity on NUMA machines is first-touch. This policy
places data on the NUMA node that first accesses it [Joseph 2006, Carissimi 2007].
In the case of Charm-++ communication mechanism, once the data (e.g. a message)
is touched, this memory policy will not perform any data migration to enhance
memory affinity.

This might result in sub-optimal data placement in Charm++ applications run-
ning on NUMA platforms. For instance, we can imagine a situation where some
messages have been generated and originally allocated on core 0 of NUMA node 0.
After that, these messages are sent to core 1 of NUMA node 1 and after several hops
they end up on core N of NUMA node N. All these message sends are pointer ex-
changes of data that were originally allocated and touched in the memory of core 0.
In such a scenario, several remote accesses will be generated for each communication.

Besides shared memory platforms, Charm++ also supports distributed memory
platforms such as clusters of multi-core machines. This support is possible because
of the AMPI interface of Charm-++. AMPI is an adaptive MPI implementation
that relies in Charm-++ runtime system. In the AMPI, computation is represented
as in normal MPI applications, decomposing the work between MPI processes and
when necessary performing some communication between them. However, a MPI
process in AMPI is represented as a set of virtual process. The virtual process is
a user level threads that can migrate over the platform. In this way, AMPI can

6.2. Charm-+-+/AMPI Parallel Programming System 97

provide a dynamic MPI process migration support for MPI based parallel applica-
tions [Huang 2007, Huang 2003]. AMPI has been built on top of the Charm++
system, which provides it with migratable objects that make possible the virtual
MPI processes. These virtual processes are completely controlled by the runtime
system.

In AMPI, when process migration must be performed, the runtime decides which
objects have to be migrated to other processors. The main problem in this process
is that for each thread migration, data allocated in the stack and heap must be
also migrated with the thread. Additionally, any pointer used by the thread in
the stack and heap space must also be updated after the thread migration. The
Charm++ runtime system implements an efficient mechanism that avoid pointers
update named Isomalloc [Antoniu 1999].

Isomalloc mechanism is based on a special memory allocator that uses a global
unique virtual memory space to map data over different machines [Antoniu 1999].
The global unique memory space is implemented as a range of equal virtual address
area on all processors. When a thread migrates from processor ¢ to processor j, its
data is just copied from processor ¢ in the same virtual address in processor j. This
mechanism avoids updating any pointers for the thread memory range, because the
memory address in the new processor is the same of the old one. Since the number of
pointers for each thread may be high (e.g function pointers and pointers of dynamic
variables), Isomalloc reduces the overhead for the thread migration [Zheng 2006].

Although Isomalloc reduces the overhead for thread migration, it only deals with
virtual memory, no physical memory is considered in its implementation. Since
the current trend in high performance clusters is the use of multi-core machines
with NUMA design, it is important to provide NUMA support in Isomalloc. On
cluster of multi-core machines with NUMA design, the Isomalloc mechanism may
not guarantee the best performances because it is not aware that the shared memory
is actually physically distributed. Additionally, since the Charm++ runtime relies
on the operating system memory policy to place data, it can not ensure that during
the application execution threads will always have its own data closer to them.

In the case of Linux based NUMA multi-core machines, when Isomalloc copies
data of a thread to the destination virtual memory the mapping between virtual to
physical memory is done by Linux. In this case, Linux uses the first-touch which
binds the Isomalloc virtual memory to the physical memory bank of the node that
first asks for an address in the Isomalloc memory. In this context, it can perform
mappings of memory pages to memory banks that are not in the same NUMA node
of the thread that will compute it. Therefore, several remote memory accesses can
be performed by threads, which may reduce the overall application performance.

6.2.1 Memory Policies to Enhance Memory Affinity on Charm-++

The first NUMA support that we propose for Charm+-+ is the integration of
Minas MAI interface on its runtime system |[Ribeiro 2010d]. Minas MAi provides
Charm-++ programmers some memory policies to place data of an application on

Chapter 6. Employing Minas Framework on Parallel
98 Environments

a NUMA machine in a transparent way. This means that Charm-++ developers
do not need to modify their applications source codes. The Minas MAIi interface
in Charm-++ is implemented as a command line tool that allows users to select
the memory policy from a list of possible policies for an application execution. For
instance, this command line tool is used as an extra parameter on the Charm-+
application command line execution.

It is important to mention that for Charm++, we use Minas MAi memory
policies applied to the data of a task (Charm++ threads). The Minas MAi interface
binds the Charm++ application data on the NUMA nodes where the Charm++
threads are running, following the selected memory policy strategy. Considering
Charm-++ system characteristics, we employ three memory policies from Minas
MAI in its runtime: bind all, cyclic, cyclic neighbors. Figure 6.6 shows the main
differences between memory policies; colors are used to represent threads and their
data.

Cyclic Bind All Cyclic Neighbor

gooo Booo

ME| EM

Figure 6.6: Memory Policies for Charm++.

The memory policy bind all binds all data of a task to a physical memory bank,
in order to associate data of a task to a memory node. Such memory policy is more
suited for applications, where the Charm-++ thread allocates its own data and it
only uses it during the application execution. This memory policy works similarly
to first-touch, except that the Charm+-+ user can select which memory banks a task
should use to place its data and not only the one in which it is running. In this way,
users can for example exclude memory banks attached to nodes that performs /0,
which generally offer worse performance.

The cyclic memory policy distributes data over all NUMA nodes in a round-robin
way whereas the cyclic neighbors also spread data over a subset of NUMA nodes of
the machine. However, cyclic neighbors only use NUMA nodes that are neighbors
of the node where the Charm++ task is running. In the case of Charm++-, Minas
does not pin its threads to the machine cores. Since Charm++ already have thread
placement support, we use this Charm-++ support to pin threads of an application.

6.2. Charm-+-+/AMPI Parallel Programming System 99

6.2.1.1 Design and Implementation of Memory Policies

The first point that we must cover in the design of the memory affinity policies
support for Charm++ is how to manage the interaction between Charm++ and Mi-
nas. To do so, we have included a memory affinity module in the converse layer of
Charm-++-. Converse is a message passing layer that provides portability and mes-
sages management on Charm++ [Kalé 1996]. The memory affinity module inside
converse allow us to call Minas to extract hardware information (numArch) from a
NUMA machine and to set a memory policy (MAi) for each thread of Charm-++
(except communication threads). Basically, this module receives from Charm-+-+
runtime information about threads of an application and the memory policy selected
by the user. Using such information and hardware characteristics, the memory affin-
ity module applies the memory policy for each thread and synchronize all threads.
After that, the application will start to run following the memory policy.

void CmilnitMemAffinity (char sxargv) {
int policy = —1; char s*mempol = NULL;

//parsing the selected memory policy
CmiGetArgStringDesc(&mempol); convertPol(policy ,mempol);

//Where the caller thread is running
int myPhyRank = CpvAccess(myCPUAffToCore);

//call numArch to get the Node of the myPhyRank core
int myMemNid = na_ nodeidcpu (myPhyRank);

//call numArch to get the number of neighbor of each node
int *myNgbld = malloc(na get numNeighbor()*sizeof(int));

if (policy — CYCLIC NEIGHBOR) {
//call numArch to get the mode meighbors
na_getneighbors (myMemNid,&myNgbld) ;

//apply the memory policy, call MAi interface
if (mai_ cyclic_neighbor (myNgbld) <0)

CmiAbort ("mai_cyclic_neighbor_error _—_Nodes_Id");
free (myNgbld);

CmiNodeAllBarrier ();
}

Figure 6.7: +maffinity Code Sniped.

In order to provide an interface between Charm++ users and Minas MAi module
inside the converse core, we have implemented the command line option named
+maffinity. This command line is composed of the selected memory policy and
in the case of bind all, cyclic and cyclic neighbor memory policies, it also has the

Chapter 6. Employing Minas Framework on Parallel
100 Environments

NUMA nodes that must be used. In the beginning of the execution the command
line is parsed by Charm++ system and then, Minas MAi memory policies are called
considering the parameters selected by the user. In order to ensure good affinity for
Charm-++ applications, +maffinity must be used with 4setcpuaffinity, since it
avoids any thread scheduling by the operating system. Thus, ensuring that threads
will not lose their memory affinity during the application execution.

In Figure 6.7, we present a snippet of code from the +maffinity module of
Charm++ (cyclic neighbor memory policy). We can observe that the implementa-
tion of the memory policy also relies on some functions of Charm-+ - system (e.g.
CpvAccess(), CmiNodeAllBarrier()). These functions allow Minas MAi to extract
information of the current task to set the memory policy and to synchronize them
before starting the application exection. For instance, the CpvAccess() is used to
retrieve the core where a thread is running.

6.2.2 NUMA-Aware Load Balancer

Different approaches can be used to enhance the memory affinity on NUMA
machines. Aside from memory allocation, memory policies and thread mapping
mechanisms, load balancing mechanisms can also be used to improve memory affinity
on NUMA machines.

Charm-++ offers a load balancing database interface that is capable of providing
important information about an application execution [Brunner 2000, Zheng 2005],
such as statistics about the communication between the chares and their load. This
information can later be used to improve the load balancing and to consequently
enhance memory affinity on multi-core machines with NUMA design. However,
Charm-++ still lacks information about memory access costs and the machine topol-
ogy, which represent important aspects of the NUMA platform. Using the Charm-+-+
database interface and Minas numArch module, we propose a NUMA-aware load
balancer for Charm++ named NumaLB [Pilla 2011a, Pilla 2011b].

The NumalLB load balancer relies on matching together in a single load balancer
the characteristics of the application and of the NUMA machine to improve memory
affinity. It is a List Scheduling, greedy algorithm, that picks the heaviest (longest
execution time) unassigned chare and assigns it to the core that presents the smallest
cost. The choice of a greedy algorithm is based on the idea of fast converging to
a balanced situation by mapping the greater sources of unbalance first. Since the
objective of NumaLB is to reduce communication overhead, it only migrates a chare
to the closest processor. In order to evaluate which processor is the closest one, we
propose the heuristic defined by the following equation:

nproc
cost(k,i) = L(i) + a x (=M (k,i) + Y (M(kj) x NF(i,j))) (6.1)
jl=i
Where:
— cost(k,i) is the cost of migrating a chare k to processor i
— L(i) is the load of processor i

6.2. Charm-+-+/AMPI Parallel Programming System 101

— M(k,i) is the number of messages exchanged between chare k and chares on
processor i

— NF(i,j) is the NUMA factor from i to j

The heuristic relies on the Charm++ load balancing database interface to extract
the CPU load (L(7)) and the chares communication graph. The CPU load allow us
to have an overview of how processors are being used for the evaluated application
whereas the chares communication graph provides an overview of how chares share
data over the NUMA machine. In order to represent the NUMA machine hierarchy
and topology, we use the NUMA factor (obtained with numArch) which provides a
good estimation of the machine access latency to different nodes (NF'(i,5)). The
alpha in the heuristic equation is used to balance the different metrics used. For
instance, the load of the processor is provided by Charm-+-+ system in seconds and
the communication is provided in number of messages.

For each chare not yet assigned to a processor, the heuristic evaluates the load
of a processor and the communication between the analyzed chare and processor.
If a processor is too heavy the chare will only be migrated to this processor if
its communication with the processor is too important (—M(k,7)). Additionally,
we also consider the communication that the chare has with all other processors
(M(k,7)). This must be evaluated because when a chare migrates to a different
processor its communication costs with all other chares will change (37757 (M(k,j) x
NF(i,j))). Therefore, they can have an important impact in the overall performance
of the application. Finally, the smaller W is, greater is the possibility of k£ to migrate
to processor 7.

6.2.2.1 Design and Implementation of NumalLB

In Charm++, any load balancer is implemented using its load balancing inter-
face. Therefore, the NumaLB load balancer is implemented as load balancer class
that extends the CentrallLB class of Charm++. The CentralLB provides the inter-
face for the init() - work(LDStats *stats) methods. The init() method is responsible
for the initialization of the NUMA machine information into data structures of Nu-
malLB. The work(LDStats *stats) method is responsible for the NumalLB strategy,
which performs the load balancing strategy.

In the init() method, the machine information used by NumaLB is the archi-
tecture topology and its interconnection network. The topology comprehends the
organization of the NUMA nodes and the cores inside the machine whereas the in-
terconnection network is represented by the NUMA factor table. This table is a
square matrix composed of the NUMA factors for all pair of nodes of the machine.
In order to get the machine topology, we use the functions na_get mazcpus(),
na_ get_maznodes() and na_ get nodeidcpu(core), which provide respectively, the
number of cores, the number of nodes and the node of each core. These information
is loaded in private variables of NumalL.B to avoid any unnecessary call to the Minas
numArch library. In Figure 6.8, we can observe these private variables in the init()
function.

Chapter 6. Employing Minas Framework on Parallel
102 Environments

void NumalB:: init () {
lbname = (charx*)"NumalB"; alpha = _1b_args.alpha();

int i,j; if (CkMyPe()==0){
//if NUMA machine, load machine topology
if(na_is numa()){
max_cpus = na_get maxcpus(); max_nodes = na_get maxnodes ();

//NUMA factor square matriz
numaFactorMatrix = new float [max nodesxmax nodes]|;
for (i=0;i<max_nodes;i++) //fills NUMA factor matriz
for (j=0;j<max_nodes; j++)
numaFactorMatrix [i *max_ nodes+j| = na_ numafactor(i,j);

//get the mode for each cpu

cpusToNodes = new int [max cpus];
for (i=0;i<max_cpus;i++)
cpusToNodes[i] = na_get nodeidcpu(i);
}
}

Figure 6.8: Numal.B Code Sniped.

In the Minas numArch library, the NUMA factor is computed using some bench-
marks. This process can take some considerable time to finish, depending on the
machine size. Therefore, in order to avoid this overhead to get the NUMA factor at
execution time, we perform such computations at Charm-+-+ installation. This in-
formation is then stored in text files that are latter loaded into data structures using
the na_ numafactor(i,j) function. This is done at the load balancer initialization.

The init() function seen in Figure 6.8 has an important role in the NumaLB,
since it loads the Numal.B data structures that represents the NUMA machine
topology and memory access costs. Information such as the numaFactorMatrix
and the cpusToNodes matrices are loaded in the load balancer using the numArch
functions na_ numafactor(i,j) and na_ get nodeidcpu. Both matrices are later used
by NumaLB strategy to compute the heuristic for each chare of the application.

In the NumaLB class, the work() method is implemented using the matrices
created in the init() method and the application information provided by Charm-++
through LDStats *stats. The LDStats provides to load balancer classes a data
structure with the information of the application. Using this data structure the
load balancer can retrieve the processor load and the chares communication graph.
Basically, in the work(), NumaLB implements a for loop that goes through all chares
of the application computing the costs to migrate them over the machine core (our
heuristic). Then, the smallest cost is used to place a chare C' in a processor P. The
CentralLB also provides to load balancer classes methods to set the new processor
for a chare (setNewPe(best proc)). This is performed at the end of an iteration

6.2. Charm-+-+/AMPI Parallel Programming System 103

of the NumaLB loop. When all chares have been distributed over the processors,
the NumaLLB sends the new mapping to the Charm++ system using the method
convertDecisions(stats), which tells Charm++ that the load balancing has been
performed and that processors must start to work.

6.2.3 NUMA-aware Isomalloc Memory Allocator

Considering the AMPI system, we propose a NUMA-aware support for its Iso-
malloc Memory Allocator [Ribeiro 2010d|. The NUMA-aware Isomalloc is an opti-
mization of the standard Isomalloc memory allocator that has been used in AMPI.
Isomalloc was originally designed for clusters of shared memory machines with UMA
characteristics. Our proposal considers the hierarchy of the memory subsystem of a
NUMA machine to efficiently place data for each thread migration.

NUMA-aware Isomalloc uses the application runtime information (e.g. where
threads are running and memory usage) and architecture characteristics (e.g. num-
ber of nodes and distance betwen nodes) to dynamically decide physical data place-
ment. Its main characteristics are its transparent control of memory affinity for
NUMA machines and its dynamic mechanism that allows it to be used on different
applications and architectures.

AMPI

i 1 1

Charm++ Runtime System

Thread Migration ‘4>
Minas FrameW x

NumArch MAi-heap

Figure 6.9: NUMA-aware Isomalloc.

The main challenges to implement the NUMA-aware Isomalloc mechanism is
how to get the machine characteristics and to improve memory affinity dynamically
for an AMPI application in a NUMA machine. To do so, we integrated Minas
MAIi and numArch modules inside the Charm+-+ runtime. Using the numArch and
Minas MAi modules, the NUMA-aware [somalloc mechanism is capable of extracting
the machine topology at runtime and to apply a memory policy to the Isomalloc
area for every thread migration. Figure 6.9 shows the interaction between Minas
framework and the Charm++ /AMPI runtime system. On every thread migration,
the Isomalloc module is called by the thread migration to perform data migration for

Chapter 6. Employing Minas Framework on Parallel
104 Environments

a thread. After that, the Isomalloc calls numArch to require the machine topology
and to apply the memory affinity for the data of a thread.

Considering the current NUMA machines and AMPI applications, we propose
the integration of three memory policies from Minas MAi interface in the NUMA-
aware isomalloc: cyclic, cyclic neighbor and bind all. However, inside the AMPI
runtime they are known as node cyclic, node neighbor and node affinity. The only
difference between these memory policies and the original ones on Minas MA] is the
granularity used for the data placement. Since in the Isomalloc area each task has its
own unique memory area, this area is the granularity used on memory policies. The
choice of which memory policy to use relies on AMPI users by passing an additional
parameter to the application execution command line, the memory policy name.

It is important to mention that for the AMPI, we do not pin threads to the
machine cores. Since the idea in AMPI is to perform thread migration to reduce
the execution time for an application, Minas does not make any thread placement.
Instead, Minas relies on Charm+-+ runtime system to retrieve on which core a
Charm-++ thread is running. Using such information, Minas is able to migrate data
for the thread.

6.2.3.1 Design and Implementation of NUMA Isomalloc

The implementation of the memory policies inside Isomalloc has been done in
two distinct steps. A first one that extracts the machine information and a second
one that bind virtual memory pages to memory banks following one of the memory
policies. The first step is static and it is performed only once at Charm-++ runtime
initialization. The second step is dynamic and depends on the application execution
characteristics.

In order to distribute data over the memory banks, the NUMA-aware Isomalloc
must know the target machine characteristics such as the number of NUMA nodes,
the NUMA factor and the machine topology. At the runtime system initialization,
NUMA-aware Isomalloc extracts information about the target machine by calling
Minas numArch module. After that, information such as number of nodes, core to
node mapping and node distances are loaded into a data structure that represents
the machine topology and hierarchy (the numaTopo). This data structure is later
used by NUMA-aware Isomalloc at runtime to map memory pages into memory
banks.

When the AMPI application is running and a virtual process migration has to be
performed, the NUMA-aware Isomalloc algorithm retrieves from the data structure
numaTopo the NUMA node where the virtual process is located. After that, it calls
the Minas MAIi functions to apply the selected memory policy for the Isomalloc
memory range.

Considering the node affinity policy (Figure 6.10), Minas M A1 starts by retrieving
the memory banks where the memory range is mapped for a virtual process. This
information allow Minas MAi to decide if it has to migrate data or not. If the virtual
process memory range already respects the selected memory policy, no migration is

6.2. Charm-+-+/AMPI Parallel Programming System 105

performed. On the contrary, it performs the data migration and places the memory
range on the nodes specified by the memory policy (mai_migrate()).

void node affinity (void xaddr,int nr pages) {
int cpu,node,err ,phys node,actual node;

cpu = na_get physcore();

//get current node of the task
phys node = numaTopo[cpu]. node;
//search node of the memory range
actual node = mai_ get node(addr);

//nodes are different — we must migrate
if (phys node != actual node){
//the thread mode has enough memory
if (na_has memory (phys node))

err = mai_migrate(addr ,nr _pages,phys node);
else
//search for neighbors to migrate data
err = mai_migrate(addr,nr_pages,
na_search neighbors(phys node,nr pages));
}
else

//just bind memory to the phys_ node
err = mai_bind_all(addr,nr pages,phys node);

Figure 6.10: Node Affinity Code Snipped.

Before applying any memory policy, Minas MAi always verifies if the destina-
tion node has enough memory. If it is not possible to place all of the memory
range on the virtual process node, Minas MAi searches for the possibility to place
such range in the neighboring nodes. In order to do so, Minas MAi uses a config-
uration file that describes the NUMA nodes interconnection network, provided by
the numArch module, to find which nodes have the smallest communication costs
(na_ search_mneighbors()). The ones with the smallest NUMA factors for a node i
are considered by Minas MA1i as neighbors of node 1.

For the cyclic memory policies, Minas MAi always performs data migration to
ensure the cyclic behavior for the physical allocation of the application data. The
implementation of the cyclic memory policies are similar to the node affinity one.
The difference is on the NUMA nodes that are used to perform data placement. The
current version of the NUMA-aware Isomalloc supports only the Linux operating
system because Minas MAI relies on the system call mbind() provided by NUMA
APL

Chapter 6. Employing Minas Framework on Parallel
106 Environments

6.3 OpenSkel a Worklist Transactional Skeleton Frame-
work

Parallel patterns allow programmers to implement parallel applications in a sim-
ple way. They are usually implemented as skeleton frameworks that hide from the
user complex and frequently used communication and synchronization structures
[MacDonald 2000]. To do so, these frameworks provide high level APIs that encap-
sulates the parallelism. In this case, programmers develop the parallel application
as a sequential one. In this section, we introduce OpenSkel, a Worklist Transac-
tional Skeleton Framework and its main features [Goes 2010a, Goes 2010b|. Then,
we demonstrate how Minas framework can be used to provide a NUMA support for
OpenSkel.

OpenSkel is a worklist transactional skeleton framework that has as main pur-
pose simplify the development of parallel applications. It aims at providing an inter-
face that combines transactional memory with skeletons in order to develop parallel
applications that follow the worklist pattern. OpenSkel is composed of a runtime
system and an API to handle transactional worklists. In this framework, parallel
applications are written in C using its interface to describe shared and private data,
work-units and transactional worklists [Goes 2010a, Goes 2010b].

In order to deal with transactional worklists, OpenSkel lets existing word-based
STM (Software Transactional Memory) systems to control the transactions. In
this way, programmers only have to describe what are their work-units, add them
into a worklist and then, the OpenSkel runtime manages computation inside the
worklist. All communication, synchronization and physical resources management
(e.g. number of cores to use) are controlled by the OpenSkel runtime system. Figure
6.11 shows a schema that represents OpenSkel a worklist skeleton model and a
OpenSkel pseudocode.

Initialization int main(int argc, char **args)
while(data) {
Create(work-unit,data) oskel_w1_shared_t global = malloc(...);
Add (work-unit,worklist) global->data = malloc(...);

oskel_w1_t *oskelPtr=oskel_wl_alloc(.....);
Computation Phase

for each worker while(file)
while(lempy(worklist)) oskel_wl_addWorkUnit(oskelPtr,read(file));
Remove(work-unit,worklist)
Process(work-unit) oskel_wl_run(oskelPtr,gobal);
if(new-work-unit) oskel_wl_free(oskelPtr);
Add (new-work-unit,worklist) }

(a) (b)

Figure 6.11: OpenSkel: (a) worklist skeleton model (b) pseudocode.

One can observe in Figure 6.11(b) the OpenSkel API functions to allocate (os-

kel _wl_alloc()), run (oskel _wl_ run()) and free (oskel wl_free()) a worklist. The
APT also provides a function to add work-units in the worklist (oskel wl_add WorkUnit()).

6.3. OpenSkel a Worklist Transactional Skeleton Framework 107

The complete description of the API can be found in [Goes 2010a].

OpenSkel has been designed for shared memory platforms and in its current
version all data allocation is performed by the master thread (i.e. work-units and
worklist). Additionally, similar to Charm++ parallel system and AMPI, OpenSkel
also relies to the operating system the control of all physical data placement. This
design works well in shared memory machines with Uniform Memory Access char-
acteristics, since memory access costs are similar to any of the machine cores. How-
ever, OpenSkel can have its performance decreased on shared memory machines
with NUMA design, because data will reside in the master thread NUMA node.
In this case, several concurrent remote accesses to the master thread node will be
generated by every thread that want to access the OpenSkel worklist. Thus, poor
performances for applications developed with OpenSkel API may be expected on
NUMA machines.

6.3.1 Memory Affinity through Data Allocation and Memory Poli-
cies

In OpenSkel, a global shared worklist is split into chunks of work-units, and
these chunks are processed by each thread of the application (similar to the OpenMP
approach). However, the splitting strategy only passes pointers to threads. In the
case of NUMA machines, memory pages that compose the worklist and work-units
still remain on the master thread memory bank. In order to avoid NUMA impacts
in this centralized worklist, we propose the integration of Minas memory affinity
mechanisms in the OpenSkel runtime. For instance, a specialized memory allocation
to the worklist and some memory policies to control data placement over NUMA
machines.

The worklist on OpenSkel can be seen as an one dimensional array of work-units,
where each work unit is one element of the array. The memory allocation mechanism
must ensure that the memory zone reserved for the worklist will be used only by
it. No other data from the application should be allocated in this memory zone.
This approach ensures that the worklist will be continuous on virtual address space,
allowing us to have a better control of its memory pages placement. Additionally,
if no other data is in the same memory zone, we simplify the complexity and cost
of data placement. In this case, we do not have to search for non work-units inside
the allocated memory zone.

To enhance memory affinity in OpenSkel, the memory space that represents the
worklist must be split distributed over the machine memory banks considering the
access performed by threads on it. To split and place the worklist memory pages
we consider the properties of the applications that are developed with OpenSkel.
Such applications are based on the transactional memory model and their main
characteristic is the high/low level of contention on data accesses. In order to
support these two types of contentions, we use two memory policies: bind_ all and
cyclic_neighbor. The memory policy bind_all places memory pages of the worklist
close to the thread that computes it whereas cyclic neighbor spread them on the

Chapter 6. Employing Minas Framework on Parallel
108 Environments

nodes that are neighbor (1 hop in the network) to the node where the thread is
running. Considering applications with low contention it is important to place data
close to threads that uses it because the data sharing level is small. On the contrary,
applications in which threads dispute data access it is important to guarantee good
throughput.

The memory affinity support in OpenSkel using Minas framework also employs
Minas thread placement mechanism to avoid any thread migration by the operating
system. In this case, OpenSkel relies on Minas to retrieve the machine topology
and pin threads over the machine cores. Two strategies can be used for OpenSkel,
compact and scatter. The compact strategy enhances cache sharing between threads
of the same team whereas. On STM applications with a high level of data sharing,
this strategys thread placement reduces the communication costs between them.
Additionally, on NUMA machines it allows Minas to reduce the number of remote
accesses, since Minas can pin threads to cores of a same NUMA node. The scatter
strategy reduces cache sharing between threads of a team. In the STM applications
with a low level of data sharing between threads, this is the strategy used by Minas to
place threads on the machine cores since it provides more cache memory to threads.

6.3.2 Design and Implementation Details

The design and implementation of memory allocation and data placement inside
OpenSkel relies on the integration of Minas MAi and numArch inside its runtime sys-
tem. Any memory allocation inside the OpenSkel runtime system uses the MAi-heap
interface. Therefore, memory allocation of worklist relies on the mai_ alloc(size_t
bytes) function. Using the mai_alloc(size t bytes), MAi reserves continuous virtual
address space with page alignment for the worklist of OpenSkel, in order to have a
separate heap for the worklist.

Considering memory policies to place OpenSkel data on memory banks, we
modified the original mai bind all and mai_cyclic _neighbor memory policies of
MAI to include the information of the OpenSkel thread that is calling the mem-
ory policy. Thus, the two functions used to perform the data distribution are
mai_ bind_ local(tid id, int mycpu) and mai_ cyclic_neighbor(tid id,int mycpu). The
id is used by MAI to retrieve the thread that is calling the memory policy. The
mycpu is used by MAIi to get the node where the worker thread is running. To use
the memory policies, some functions from numArch module are also needed to get
information about the target machine and the application state (e.g. node where
a thread is running). We also use the function mai_init(void *wl, int chunk) to
provide Minas with the information about the worklist (pointer) and the chunk size
(selected by the user).

6.4 Summary

In this chapter, the main objective was to show the applicability of Minas frame-
work to manage memory affinity on parallel programming environments. We pre-

6.4. Summary 109

sented how Minas framework components can be used or integrated into runtimes
to manage data placement on parallel interfaces that are not NUMA-aware. We also
described how Minas framework is used in each of the parallel interfaces, providing
some implementation details.

Considering the OpenMP parallel interface, we have shown that users can employ
all Minas framework components in parallel applications. The structural way of
OpenMP constructions (e.g. pragmas) allow us to exploit the interface information
inside Minas components to manage memory affinity. Besides its constructions, the
OpenMP clauses provides Minas with the necessary information of how the work
will be distributed over the worker threads and how these threads will access data.

In the case of Charm-++ and AMPI, both interfaces can be used to develop
parallel applications for cluster of NUMA machines. Due to this, we have integrated
Minas MAi and numArch components in their runtime systems to deal with memory
affinity. In Charm-++, we used the Minas components to implement memory policies
and a NUMA-aware load balancer. These mechanisms allow Charm+-+ to deal with
data placement and thread placement over NUMA machines. For AMPI, Minas
components were integrated to support a NUMA-aware Isomalloc memory allocator
that extends the efficient AMPI thread migration to clusters of NUMA machines.

For the OpenSkel framework, we have integrated the Minas MAi and the nu-
mArch components inside its runtime. This integration provides the necessary sup-
port to deal with thread and data placement in NUMA platforms. Application
information is extracted by OpenSkel and passed to Minas framework in order to
efficiently manage memory affinity for parallel applications. Considering OpenSkel
characteristics, we have used the MAi-heap interface, since applications developed
with this framework generally uses dynamic data structures.

In the next chapters, we present the performance evaluation of Minas framework
using parallel benchmarks and applications developed with OpenMP, Charm-++,
AMPI and OpenSkel.

Part 111

Performance Evaluation: Case
Studies

CHAPTER 7

Experimental Methodology

In this chapter, we present the experimental methodology used in the perfor-
mance evaluation of Minas framework. We first describe the NUMA multi-core
platforms in section 7.1. After that, in section 7.2, we depict the software stack
used on each platform. In section 7.3, we introduce the selected metrics to evalu-
ate the performance of Minas. Finally, in section 7.4 we present the measurement
methodology used in our experiments.

7.1 NUMA Multi-core Platforms

In order to conduct our experiments and evaluate the performance of Minas
framework, we have selected three representative NUMA multi-core platforms. These
machines are representatives because they have different NUMA characteristics. For
instance, the cache coherence protocols, the interconnection network and the archi-
tecture organization. In this section, we introduce these three platforms describing
their main characteristics and their architectural design differences.

NUMA Platform based on AMD AMD Opetron 875 Processor
Opetron 875 processors

Node 6 Node 7

el B4 2 m

| | Core#0 Core#l
ode 4 Node 5

N
\@— @ @ Llcache | L1cache | L1cache L1 cache
|

5]
8]
5]

:

System Request Queue

Node 2 Node 3
w2t [c4] [cs] H[j
| | controtier | J8 8 JE
Node 0 Node 1
[c2] [c3 h
‘ 110 ‘ 110

‘ Ci=Corei Mi=Memory banki

Figure 7.1: NUMA based on AMD Opteron Processor.

The first platform is composed by eight Dual Core AMD Opteron Processor

114 Chapter 7. Experimental Methodology

875 (2.2 GHz). This platform is organized in eight nodes of two cores, each one
with private caches L1 and L2. It has a total of 32 GB of main memory, 4 GB
of local memory in each NUMA node. Each node has three interconnections (Hy-
perTransport) to other nodes, except for nodes zero and one that have only two.
This exception is because the third interconnection on nodes zero and one is used
for input and output devices. A schematic representation of this machine and of its
processor is given in Figure 7.1. We can observe that this platform does not have
any shared cache memory, each core has two levels of private cache memories.

The second platform relies on the Intel Xeon X7460 (2.66 GHz) processors with
six cores each. The machine is composed of sixteen processors which are organized in
four nodes, each one with four processors. Therefore, each NUMA node has twenty
four cores. There is a shared cache L3 of 16 MB per processor and shared cache L4
of 256 MB per node on this machine. It has a total of 192 GB of main memory (48
GB of local memory) that is physically distributed over the machine nodes. Each
node has three point-to point interconnections (Front-Side Bus) to other nodes. A
schematic representation of the machine is given in Figure 7.2. Every access to
the global shared memory is controlled by a memory controller. Each node of the
machine has a memory controller that is shared by four processors. Due to this,
some contention and long access times are expected in this platform.

NUMA Node view

NUMA Platform based on Intel Xeon
X7460 Processors

A

Memory

Controller Hub

I—Mil Intel Xeon x7460 Processor

——

1 § 1 1
e J[e J[2 |

‘ Pi = Processori Mi= Memory bank i ‘ I—cj EI

Figure 7.2: NUMA Platform based on Intel Xeon X7460.

Finally, the third platform used in this work is a machine composed of four Intel
Xeon X7560 (2.27 GHz) processors with eight cores each. There are four nodes in

7.1. NUMA Multi-core Platforms 115

total, being one processor per node. Each core has a private cache L1 (32Kbytes
for data and 32Kbytes for instruction) and L2 (256Kbytes). Additionally, there is
a shared cache L3 of 24 MB per processor. This cache memory hierarchy reduces
communication costs between cores of a node. The platform has a total of 64 GB
of main memory, each node has 16 GB of local memory. On each node, there are
three point-to-point QPI (Quick Path Interconnection) interconnections to other
nodes. A schematic representation of the platform and of its processor is given in
Figure 7.3. In this machine, each processor has an integrated memory controller
that manage all memory requests.

NUMA Platform based on Intel Xeon Intel Xeon x7560 Processor
X7560 Processors

Core | Core | Core | Core | Core | Core | Core | Core
#2 #3 #4 #6

iR

Memory
Controller

‘ Pi = processori Mi = Memory bank i ‘

Figure 7.3: NUMA Platform based on Intel Xeon X7560.

The main differences between the three platforms presented above are: (i) their
interconnection network, (ii) cache coherence protocol and (iii) NUMA factor. These
characteristics have an important impact on memory access costs, since they are
responsible for the number of hops, number of messages and latency for each memory
operation. In the rest of this document, the machines are named using a code
convention, composed by the processor manufacturer, the number of NUMA nodes
and the number of cores per node. The first machine is thus named AMDS8x2, the
second one Intel4x24 and the third one Intel4x8.

Table 7.1 summarizes the characteristics of each machine. Main memory band-
width (obtained from Stream Benchmark [Mccalpin 1995]) and NUMA factor (ob-
tained from BenchIT [The BenchIT Project 2010]) are also reported in this table.
The main memory bandwidth is obtained using all cores during the Stream execu-

116 Chapter 7. Experimental Methodology

tion. We can observe that the Intel4x8 machine presents the best memory bandwidth
due to its QPI network technology. The last level cache bandwidth, for each machine
is also presented in the table. To compute this performance metric, we have used
the sequential version of Stream benchmark on one node of each machine. In order
to obtain the cache memory bandwidth, the problem size used as input for Stream
is smaller than the last level cache. NUMA factors are shown in intervals, meaning
the minimum and maximum penalties to access a remote DRAM in comparison to

a local DRAM.

Table 7.1: Overview of the Multi-core Platforms.

Characteristic AMDS8x2 Intel4x24 Intel4x8
Number of cores 16 96 32
Number of processors 8 16 4
NUMA nodes 8 4 4
Main Memory bandwidth (GB/s) 9.77 4.1 35.54
Cache bandwidth (GB/s) 8.69 6.41 15.12
Cache-Coherence MOESI MESI MESIF
Interconnection HyperTransport FSB QuickPath
NUMA factor (min/max) [1.1; 1.5] [2.2; 2.6] [1.36; 3.6]

7.2 Software Stack

Considering the software stack used in our experiments, we have divided into two
groups, the basic software and the statistical/analysis softwares. The basic software
is composed by the operating system and compilers used in the machines. The
statistical /analysis software allows us to collect information during an execution to
better understand the behavior of the environment.

All machines run GNU /Linux operating system, kernel version 2.6.32 with NUMA
support, NUMA API [Kleen 2005]. As compilers we use GNU C Compiler (GCC)
and Intel C Compiler (ICC). On both AMD8x2 and Intel4x8 the compiler versions
are 4.4.4 for GCC and 11.0 for ICC. The Inteld4x24 uses the versions 4.4.5 for GCC
and 11.1 for ICC.

Since we are interested in the impact of data placement on the applications
performance, we have selected some user space tools that provide information of
the memory subsystem of NUMA machines. Considering memory management, we
select vmstat, numactl and numastat tools to observe memory behavior during the
application execution. These tools provide information of memory utilization on
the machine. Furthermore, numastat allow us to observe the NUMA hit/miss for
allocations performed in the platform.

In order to get information of performance hardware counters from such ma-
chines, we use some software support such as Performance Application Program-

7.3. Performance Metrics 117

ming Interface - PAPI [PAPI 2010], Intel Performance Analyzer Tool - vIUNE
[Intel-vtune 2010| and Intel Performance Tuning Utility - PTU [Intel-PTU 2010].
PAPI is a performance interface that extracts processor events and it supports sev-
eral processors. It provides a high level interface that simplifies the work of ex-
tracting performance hardware counters for an application. vIUNE and PTU are
performance tools developed at Intel that reports processor events. Both tools work
with the sampling method, which uses just a subset of the events observation to gen-
erate the information for users. vI'UNE is graphical tool that presents performance
graphs whereas PTU is a text based tool that generates large tables for presenting
the events. vITUNE and PTU are complementary tools for performance analysis.

Performance hardware counters provide more precise information about the sys-
tem behavior, allowing us to have a better overview of the relation between appli-
cation and processor events. Some of the information that PAPI, vITUNE and PTU
tools can provide are cache hit/miss, DRAM local /remote access, interconnection
utilization, processing units usage and number of instructions of an application.
Considering PAPI, we have used it to get the total number of processor cycles con-
sumed for an application and the total number of instructions of the considered
application. vTune and PTU have been used in the Intel machines to retrieve infor-
mation of cache memories access and DRAM accesses. These information provide
an overview of how a selected data and thread placement strategy impacts in the
overall performance of an application.

7.3 Performance Metrics

In order to evaluate the performance of Minas, it is important to use metrics
that allow a better understanding of the memory performance of applications on
the multi-core NUMA machines. Therefore, our performance evaluation is based
on metrics and hardware counters that are related with the memory sub-system.
We select as metrics: memory usage, speedup, execution time and latency to access
data. Considering the performance hardware counters, the selected ones are CPU
cycles, cache miss, local /remote cache access and local /remote DRAM access.

The memory usage metric allows us to better comprehend application memory
consumption, how application data is physically allocated and placed over the phys-
ical memory banks of the machine. Therefore, this metric is split in three other
metrics: memory consumption; allocation hit/miss and physical memory bank us-
age. To retrieve these values we use vmstat, numactl and numastat tools. Memory
consumption comprises virtual and physical memory. Data allocation hit/miss is
related with the NUMA node capacity. For instance, if any data allocation can not
be performed locally it will generate an allocation miss that is retrieved with numa-
stat tool. The physical memory banks usage allows us to verify if data placement is
balanced over the machine nodes.

For all applications and benchmarks, the execution time is the time spent to
execute the role application/benchmark. Therefore, the execution time includes the

118 Chapter 7. Experimental Methodology

time to perform memory accesses and computation. The speedup is then the ratio
between the execution time of the sequential (Tseq) and the parallel (Tpar) versions
of the considered application/benchmark. Therefore, the speedup for an application
run in n cores is defined by:

_ Tseq

S(n) (7.1)

-~ Tpar

Finally, the selected performance hardware counters used in our analysis are
obtained using PAPI, PTU and vTUNE tools. CPU cycles has been obtained with
PAPI interface. The cache miss, local /remote cache access and local /remote DRAM
access events have been retrieved using vI'UNE and PTU.

7.4 Measurement Methodology

We execute each experiment multiple times (minimum of 30 executions), ob-
taining small standard deviations (up to 4%). We use the arithmetic average to
compute the final values of each metric.

Considering the problem sizes, we work with sizes that fit and do not fit on
the last level cache of each machine. Such approach allows us to better analyze
the impact of memory affinity management on the different levels of the memory
sub-system of the NUMA platform.

CHAPTER 8

Evaluation on OpenMP
Benchmarks and Geophysics
Applications

In this chapter, we present the performance evaluation of Minas framework. Our
performance evaluation relies on experiments with synthetic and numerical scientific
benchmarks and two real geophysics applications on three NUMA platforms. We
consider benchmarks and real applications to explore the different application mem-
ory access characteristics (e.g. memory access mode, access patterns) that have an
important impact on the memory affinity management. Our aim is to analyze the
impact of different architecture characteristics such as bandwidth and NUMA factor
in the memory affinity management for parallel applications. We compare Minas re-
sults to the ones obtained with the standard memory affinity management on Linux
operating system, with the NUMA API, the numactl tool and the thread affinity
interface of GNU C Compiler/Intel C compiler. We first describe each one of the
benchmarks/applications. After that, we present their results and analysis. In this
chapter, we focus in the C implementation of all selected benchmarks/applications
with OpenMP for code parallelization.

8.1 Synthetic Experiments

In this section, we present Minas MAIi evaluation with a synthetic benchmark
to better understand its performance. We start with the performance evaluation of
MAIi because it is the core of Minas framework. Using the synthetic benchmark, we
evaluate MAi memory allocators and memory policies overall performance.

The synthetic benchmark implements a regular and an irregular computation on
two 2-dimensional matrices. The regular computation is a jacobi operation whereas
the second one uses indirect indexes to access the two-dimensional matrices. In the
jacobi operation to compute a new value for an element on the two-dimensional
matrix, it is necessary to retrieve the current values of its four neighbors (i.e. north,
south, east, west). Based on these values, an average of all four values is computed
and attributed to the element. In the case of the irregular computation, the two-
dimensional matrices are accessed in a random way, which reduces the cache usage
for the operation. These characteristics enable us to evaluate applications that
demands both shorter latency and high bandwidth for memory accesses.

Chapter 8. Evaluation on OpenMP Benchmarks and
120 Geophysics Applications

The benchmark has two steps: the data allocation/initialization and the com-
putation. In the first step, data is allocated by the master thread and initialized by
the worker threads. After that, the computation step performs the regular and the
irregular computations. Figure 8.1 shows a snipped of the benchmark code. The
first two OpenMP loops perform the regular jacobi operation, whereas the other two
perform the irregular jacobi operation.

//Regular computation — jacobi operation
for (iters = 1; iters <= numlters; iters++) {

#pragma omp parallel for private(])
for (i = 1; i < gridSize; i++)
for (j = 1; j <= gridSize; j++)
grid2[i]|[j] = (grid1[i—=1][j] + gridl[i+1][j] +
grid1 [1][j—1] + grid1[i][j+1]) * 0.25;

#pragma omp parallel for private(])
for (i = 1; i < gridSize; i++)
for (j = 1; j <= gridSize; j++)
gridl[i][j] = (grid2[i—1][j] + grid2[i+1][j] +
grid2[i][j—1] + grid2[i][j+1]) * 0.25;
}

//Irregular computation — random accesses
for (iters = 1; iters <= 2xnumlters; iters++) {
for (i = 1; i < gridSize; i++) {
#pragma omp parallel for
for (j = 1; j <= gridSize; j++)
grid1[i]|[j] = (grid2[i—1][rand n[j]] +
grid2[i+1][rand n[j]] + grid2[i][j—1] + grid2[i][j+1]);
}

for (i = 1; i < gridSize; i++) {
#pragma omp parallel for
for (j = 1; j <= gridSize; j++)
grid2[i]|[j] = (gridl[i—1][rand _n[j]] +
gridl [rand n[i]][j] + gridl[i][rand n[j]]
+ gridl[rand _n[i]]|[j+1]); }

Figure 8.1: The Synthetic Benchmark Computation Kernels.

For the experiments with this benchmark, we have used all cores of the three
machines described in section 7.1, a problem size of 8192x8192 and 100 iterations.
Since we aim at evaluating the memory performance of our solution, we selected
this size for the matrices to reduce cache influences in our memory accesses. We
compare the Minas MAIi results to the ones obtained with the default memory
affinity strategy of Linux operating system the first-touch and to the ones obtained

8.1. Synthetic Experiments 121

with the tool numactl. Considering Minas and numactl, threads have been pinned
to the cores. In the case of first-touch, we let Linux kernel schedule all threads and
perform any necessary thread migration.

Table 8.1 shows the execution time for the regular computation of the benchmark
when executed with one thread per core on the selected machines. The presented
execution time considers the time to allocate, to initialize and to perform the jacobi
operation. Since the computation is very regular (four-point stencil), we have used
the mai_bind_block() to place data on the machine memory banks. This memory
policy places data closer to the threads that work on them. Therefore, the policies
first-touch and mai_ bind_ block() present the best performances. Because of the
similarity on the behavior of these two memory policies, results obtained with MA,
first-touch and numactl do not present any significant difference on all the machines.
However, first-touch and numactl have applied the memory policy on all application
data whereas on Minas MAi, we have applied the memory policies only on the arrays
used by the jacobi computation. Therefore, we can conclude that control memory
affinity for all application data is not necessary. Memory affinity can be applied
only on data that generate more NUMA penalties for the application.

Table 8.1: Execution Time in seconds (s) for Benchmark

Machine | Minas MA1i | First-Touch ‘ Numactl

AMD8x2 26.37 26.26 27.53
Inteldx24 40.95 39.42 40.02
Intel4x8 7.13 8.52 8.54

Particularly, we can observe that Minas MAi has obtained better results for the
Intel4x8 machine. This is mainly because of the strategy that Minas MAi uses to
allocate arrays, in which it allocate arrays on separates heaps, avoiding the usage
of the same memory block by different arrays. Besides the allocation, Minas MAi
avoids thread migration, favoring cache memory usage. Additionally, this machine
has the highest NUMA factor compared to the other two machines. This means that
manage memory affinity efficiently generates better performances for the application.

In Table 8.2, we present the execution time for the irregular computation of the
benchmark when executed with one thread per core on the selected machines. Since
the benchmark has two distinct phases (initialization of the arrays and the irregular
computation), in the case of Minas MAi we used different memory policies for each
phase. We start with the mai_bind_ block() policy for the initialization phase and
then, we changed for the mai_cyclic _neighbors() to increase memory bandwidth
for threads to access data in the irregular phase. In this case, some memory pages
migration are performed by the Minas framework between the two phases to correct
data placement. However, between the two phases threads mapping in the machines
cores were not changed.

Considering first-touch and numactl, we used the same memory policy for the

Chapter 8. Evaluation on OpenMP Benchmarks and
122 Geophysics Applications

all execution, because on both cases there is no support for multiple memory poli-
cies in the same execution. For the numactl tool, we applied the interleave mem-
ory policy and we pinned each thread to a core of the machine. We use the in-
terleave memory policy because it is the closest one to the MAi memory policy
mai_ cyclic_neighbors(). We can observe that Minas MAi has obtained better per-
formances for the two Intel machines but not for the AMD8x2 one. Since remote
accesses on the AMD8x2 machine are not expensive (small NUMA factor), the costs
to perform data migration for the second phase of the benchmark are generally
higher than the cost of remote accesses. Due to this, Minas MAi has obtained
worser results than first-touch and numactl. However, in the case of the two Intel
machines, data migration has improved the overall performance of the benchmark
up to 17%.

Table 8.2: Execution Time in seconds (s) for the Synthetic Benchmark

Machine | Minas MAi ‘ First-Touch | Numactl

AMDS8x2 646.195 596.115 596.368
Inteldx24 1024.65 1134.664 1090.744
Intel4x8 212.847 237.611 257.528

8.2 Experiments with Benchmarks

In this section, we present the performance evaluation of Minas with Stream
Benchmark [Mccalpin 1995] and NAS Parallel Benchmarks [Jin 1999]. The selected
benchmarks allow us to evaluate Minas data allocation, data and thread placement
for applications with different characteristics (memory consumption and regular /ir-
regular data access) and requirements (memory bandwidth and latency).

8.2.1 Stream Benchmark

Stream is a micro benchmark which is largely used to evaluate memory band-
width performance of parallel machines [Mccalpin 1995]. It is a synthetic benchmark
application that measures the aggregated memory bandwidth for different memory
access patterns. To compute such a metric, Stream uses three vectors and four oper-
ations (copy, scale, add, triad). Additionally, in order to reduce the cache influence
on the results, the problem size is larger than the size of the last level cache.

Table 8.3 shows Stream operations and their specification. As we can observe, all
operations are performed with double vectors. The copy operation allows the user
to measure transfer rates between processing unit and memory bank. The operation
scale adds a multiplication by a scalar to the copy operation. Sum allows the users
to verify memory system performance when multiple loads/stores are performed.

8.2. Experiments with Benchmarks 123

The operation triad is a merge of all operations (copy, scale and sum). All of these
operations are computed in separated parallel loops, one for each operation.

Table 8.3: Stream operations

Operation Name ‘ Operation ‘ Data type
Copy ali] = bli] double
Scale ali] = q*bli] double
Sum ali] = cl[i]+bli] double
Triad ali] = cli]+q*bli] | double

We use three versions of Stream, the original one without modifications and
two tuned versions with random /irregular access to the vectors. In original version,
each thread computes a chunk of the vectors (regular access) that are scheduled in a
static way. This means that the chunk size is equal for all threads, except for the last
thread that can have a larger chunk size (if the number of elements of vectors are
not divisible by the number of threads). In the tuned version with random access,
the chunk for each thread is also scheduled in a static way, but random indexes to
access vectors are used. The second tuned version uses a dynamic scheduling of
work in the computation phases. Figure 8.2 shows the main difference of the two
versions of Stream Benchmark for add operation.

Regular Random Irregular
/linitialization /finitialization /linitialization
#pragma omp parallel for #pragma omp parallel for #pragma omp parallel for
for (j=0; j<N; j++) for (j=0; j<N; j++) for (=0; j<N; j++)
cfj] = afj] = 1.0; c[j] = afj] = 1.0; c[j] = afj] = 1.0;
/ladd
/ladd #pragma omp parallel for /ladd
#pragma omp parallel for for (j=0; j<N; j++) #pragma omp parallel for
for (j=0; j<N; j++) c[rand_index[j]] = schedule(dynamic)
c[i] = afi]+b[i; afrand_index[j]] + for (j=0; j<N; j++)
b[rand_index{j]]; c[il = afjl+b;

(a) (b) (c)

Figure 8.2: Stream Benchmark: (a) Original Version (b) Tuned Version with Ran-
dom Access (c) Tuned Version with Irregular Access.

Since Stream has been implemented with static arrays, we use it to evaluate the
performance of Minas MApp using the GCC and ICC compiler. For the experiments,
we have used all cores of the Intel4x8 machine described in section7.1, a problem
size of 4Gbytes and 10 iterations. We present the results only for the Intel4x8
machine because it allows us to evaluate MApp with GCC and ICC compilers.
Additionally, similar results have been obtained for the other two machines. The
chosen memory affinity mechanisms to compare with Minas MApp performances

Chapter 8. Evaluation on OpenMP Benchmarks and
124 Geophysics Applications

are the affinity interfaces of GCC! and ICC 2. These compilers support affinity by
using some environment variables (see section 3.5.1.1) to select a thread mapping
strategy.

Table 8.4 reports the memory bandwidth for Stream benchmark considering
the three versions of the code. The results shown here represent the aggregated
memory bandwidth for the triad operation with the memory affinity solution of
MApp, GCC and ICC. The other operations are not presented in the table because
they have presented similar results. Additionally, the triad operation is a merge of
all other operations. The three memory affinity solutions present similar results.
On general, the compilers memory affinity mechanisms have obtained better results
for the regular version of Stream. This happens because in the regular version of
this benchmark, threads do not share any data. Therefore, the compilers improve
memory affinity because it places memory pages closer to the threads that use
them. They use the first access to memory pages to perform data placement, which
is actually performed by the operating system. Compilers memory affinity support
only maps thread to cores to avoid any thread migration.

In contrast, for the random and irregular versions of Stream, MApp has presented
some slightly performance improvements compared to the other solutions for some
cases. In the random version, threads share data and place data closer to them
considering only the first access does not guarantee memory affinity. Due to this,
MApp select to spread data over all the machine nodes in order to enhance memory
bandwidth usage. Considering the irregular case, MApp also spread data over the
machine memory banks. However, in the GCC compiler this strategy does not
improve memory affinity. After analyzing the benchmark execution, we observe
that its work distribution for threads has been similar to the regular one. As a
consequence, MApp does not improve the benchmark performance. An opposite
behavior has been observe for ICC, which make MApp strategy be profitable for the
benchmark.

Table 8.4: Memory Bandwidth (MB/s) for Stream Triad Operation

ersion inas - nit inas - nit
Versi Mi MApp - GCC | GCC Affinity | Mi MApp - ICC | ICC Affinity

Regular 32000.6 35578.7 31733.1 35879.4
Random 3428.29 3394.54 3438.06 3516.3
Irregular 441.474 594.969 988.33 950.93

Although the compiler affinity strategies have provided some performance im-
provements for the Stream benchmark, it is important to emphasize that they are
transparent solution in the sense of no source code modifications. However, the user

1. GCC Thread affinity interface - http://gcc.gnu.org/onlinedocs/libgomp/Environment-
Variables.html
2. ICC Thread affinity interface - http://software.intel.com/en-us/intel-compilers/

8.2. Experiments with Benchmarks 125

has to explicitly control affinity choosing which nodes and cores must be used for
the application execution. Contrary to this, the MApp solution is automatic, the
user does not have to interfere in the application optimization. Additionally, it is
also important to mention that this benchmark represents an extreme case, where
there is several memory accesses and small computations. Although this bench-
mark is memory bound, its execution time is small, which reduces the benefits of
memory affinity management. In order to evaluate the performance of Minas with
more realistic applications, the next section presents results for the NAS Parallel
Benchmarks.

8.2.2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) is a benchmark derived from computa-
tional fluid dynamics (CFD) codes. It is composed by a set of applications and
kernels [Jin 1999]. NPB is a representative HPC benchmark of numerical compu-
tation and data communication. Additionally, they are examples of memory-bound
and CPU-bound programs. These characteristics allow us to better investigate the
impact of memory affinity management on multi-threaded programs over multi-
core machines with NUMA design. NPB has been implemented in a number of
languages, using different strategies and algorithms for code parallelization. In
this work, we use the OMNI compiler group C implementation of NPB version
2.3 [Omni Project 2010].

From NPB version 2.3, we selected seven kernels/applications: Fast Fourier
Transform (FFT), Multigrid (MG), Lower and Upper triangular system solution
(LU), Conjugate Gradient method (CG), Block Tridiagonal equations solution (BT),
Solution of Pentadiagonal equations (SP) and Embarrassingly Parallel (EP). These
kernels/applications were chosen due to their memory access patterns (regular and
irregular data access) and different data structures types. Additionally, they repre-
sent important classes of algorithms and computations of HPC applications. The
IS (Integer Sort) and UA (Unstructured Adaptive) applications, which are also part
of the NPB benchmark, were not used in this work. UA was not implemented in
this version whereas IS presented some problems during the execution. Table 8.5
summarizes the description and characteristics of the selected benchmarks.

For the experiments with these benchmarks, we use three classes of problem size:
A (small), B (medium) and C (large). Table 8.6 reports the memory consumption
for the three classes on the selected benchmarks. We can observe that some of the
benchmarks (e.g. EP and MG) have the same memory consumption for different
classes. In MG benchmark, the difference between classes A and B are only in the
number of iterations and not in the size of data structures. The varying problem sizes
allow us to investigate and comprehend the performance of Minas MAi mechanisms
when different amount of memory are used by the application.

Chapter 8. Evaluation on OpenMP Benchmarks and

126 Geophysics Applications
Table 8.5: Selected Applications from NPB.
Name | Description Structure, computation and
communication patterns

FFT Computes the fast Fourier Transform | 3D matrix, one dimension computed

for three dimensional systems. in parallel at a time, long-distance
communication.
Uses a V cycle MultiGrid method to | 3D dense matrix, 3D grid using 27-

MG | calculate the solution of the scalar | point stencils, short-distance commu-
Poisson equation. nication.

LU Solves a 3D seven-block-diagonal sys- | Dense matrix, work decomposition,
tem using LU triangular systems so- | both continuous and non-continuous
lution. communication.

Uses a Conjugate Gradient method | Large sparse matrix, sparse matrix-
cG to compute an approximation to the | vector multiplication, long-distance

smallest eigenvalue of a large, sparse, | communication.

unstructured matrix.

Computes a solution for multiple | Dense matrix, block tridiagonal

BT and independent systems of non- | solvers, non-contiguous communica-
diagonally dominant. tion.

EP Implements a parallel random- | No special data structure, upper
number generator. bound float-point performance, no

communication.

Sp Computes the solution for a scalar | Dense matrix, block tridiagonal
pentadiagonal systems. solvers, non-contiguous communica-

tion.
Table 8.6: NPB Problem Sizes in MBytes for Each Class.
[Class | FFT | MG | LU | CG BT | EP [sP

A 427.22 439.00 45.64 56.16 299.69 | 33.00 79.69

B 1697.06 | 439.00 | 174.51 | 400.20 | 1201.94 | 33.11 | 315.00
C 6724.08 | 3432.88 | 677.32 | 1039.65 | 4793.77 | 33.11 | 1249.13

8.2.2.1 Overall Performance

In this section we present the experimental results for the NPB with Minas MAi
and Linux first-touch policy on two of the machines presented in section 7.1, the
AMDS8x2 and the Inteldx8. We do not present results for the Inteldx24 because the
NPB does not scale with so many cores. In our analysis, we have used the execution
time as the measurement metric to evaluate the performance of Minas MAi. It is
important to mention that we have used all cores of the machines with one thread

8.2. Experiments with Benchmarks 127

per core. Additionally, we have not done any modifications to control threads and
data locality on the Linux results.

For thread placement on Minas, we have used memory traces of the benchmarks
in order to have a thread placement that take into account data sharing. The
memory traces were used to identify which threads access the same shared memory
range. Using this information, we model the data sharing between threads as a
complete graph. To do so, the vertices represent the threads and the edges the
amount of data sharing among threads. This graph is then processed by a matching
algorithm [Cruz 2010], which gives as result the groups of threads so that the amount
of data sharing is maximized. Based on this information, we computed thread
placement and provided to Minas an input configuration file with the mapping
between threads and cores. The work [Cruz 2011] presents more details of our
strategy to compute thread placement. The maximum standard deviation for the
results presented in this section is 3.5%.

Figure 8.3 shows the execution time obtained with the NPB benchmarks for the
three problem sizes on the AMD8x2 machine. One can notice significant perfor-
mance gains for CG, FFT and MG benchmarks on this machine when using Minas
MAi mechanism. Considering EP, BT and SP benchmarks, Minas had similar per-
formances compared to the Linux whereas for LU, Linux had better performances.
Particularly, this machine does not have any shared cache memory, data sharing
between threads is related only to global memories. Therefore, Minas MAi memory
policies has an important role on the improvement of memory affinity, improving
latencies and bandwidths to get data.

On the AMD8x2 machine, the performance gains with CG, FFT and MG bench-
marks relative to the Linux operating system results were 35%, 35% and 55% on
average. These benchmarks have different memory access on different shared ar-
rays. Consequently, placing data considering such differences reduces the number
of remote access to get data and increases the available memory bandwidth. Fur-
thermore, in the AMDS8x2 machine, bandwidth is an important issue. Due to this,
it is important to guarantee load balancing and less memory contention using the
global memories available on the machine. For these benchmarks, we use cyclic
memory policies (e.g.mai_ cyclic(), mai_ cyclic_neighbors()) for arrays with a high
level of sharing in order to ensure good bandwidth for threads. For arrays with
a low level of sharing and regular accesses we use the bind memory policies (e.g.
mai_ bind_ rows()).

For the BT, SP and EP benchmarks, Minas MAi has not presented any signifi-
cant improvement gains compared to the Linux mechanism. Considering BT and SP
benchmarks, we have observed that some threads do not share data. Additionally,
most of the parallel sections have the same data access as the initialization step.
This behavior is favorable to Linux, since it uses first accesses on data to place it on
the machine. Due to this, Minas MAi does not have a significant impact on their
performance.

In the case of EP, this benchmark is CPU-bound and threads perform inde-
pendent computation on their private data. Thus, any improvement gains can be

Chapter 8. Evaluation on OpenMP Benchmarks and

128 Geophysics Applications
CG FFT
_ 500 — 200
@ : @8 159.90
o 400 g 150 145.01
& £
= 300 - 100
& 200 S
3 100 472 e 3 50 28.03
(&) 19.52
R (Ll
- A B A B c
Classes Classes
MG EP
— 200 —~ 80
\UL g)’ 62.8 62.92
O 60
_“é 150 E
l_
< 100 s < 40
= 50 -'g 20 15.66 15.49
5
) 934 1946 Q 395 3.96
w A B C w A B C
Classes Classes
BT SP
@ 2000 18252 = 2500 2141 6R248.18
g 1500 g 2000
= £ 1500
- 1000
S S 1000
S 500 357.61346.51 = 500 602.4 607.54
O 68.40 66.98 Q 161.62146.61 -
2 0 - 9 o ' m—
w A B w A B C
Classes Classes
LU
@ 2000
(0] 1477.32
£ 1500
= 1000 B Vinas
2 500
=} .
8 0 23.71 13.81 83.88 73.78 - Linux
&0 A B
Classes

Figure 8.3: NAS Parallel Benchmarks on AMD8x2.

achieved for this benchmark when using our method. The LU benchmark has a high
level of heterogeneity on data accesses, regular accesses interleaved with irregular
accesses. Because of this, we have to change memory policies when using Minas
MAIi through the different steps of the application. In order to change the memory
policy associated with some data, Minas MAi performs data migration that has
generated important overheads for this benchmark. Due to these overheads, the

8.2. Experiments with Benchmarks 129
results obtained with Minas are worse than the ones obtained with Linux.
CG FFT
© 100 86.33 D 50 4458
g 80 g 40
= 60 = 30
é ;18 32.29 - é ?g
> >
3 8.23 3
2 0 0.15 0.15 2 0
Ll A B C w
Classes
MG
« 80 w 25 22.0321.48
® g 58.83 58.32 o 20
S £
= = 15
40
c S 10
8 20 = 540 5.40
3 1.20 1.66 255 3 2 138 137
2 o 036 120 100 po 2 o ——
| A B C o A B C
Classes Classes
BT SP
=« 400 365.1 365.5 w 2500 222422532
GE_) 300 o 2000
= oo = 1500
S 8 1000 767.3 7610
= 100 933 94.1 =
(3.) 19.1 19.7 8 500 2934 152.8 -
§|<) 0 — 2 0 | B
Ll A B C o8| A B C
Classes Classes
LU
@ 150 130.03
GEJ 100 i
E B Vinas
[
-% 50 34.17 B Linux
0.11
3 6.42 4.40
x 0
w A B c
Classes

Figure 8.4: NAS Parallel Benchmarks on Intel4x8.

Figure 8.4 reports the execution time obtained with the benchmarks on the In-

tel4x8 Machine.

Similar to the results obtained with the AMDS8x2 machine, we

observe some important performance improvements for CG, FFT and MG bench-
marks. For the BT, SP and EP benchmark Minas had similar performance compared

Chapter 8. Evaluation on OpenMP Benchmarks and
130 Geophysics Applications

to Linux whereas for LU, Linux had better performance.

Considering CG, FFT and MG benchmarks gains are up to 75%, 50% and 70%
(except for class C) respectively when compared to the Linux standard solution
for memory affinity. Since these benchmarks are more sensitive to memory access
and considering the characteristics of the machine, place data correctly reduces the
NUMA impact on the application performance. Additionally, in the case of Linux,
the first-touch memory policy does not garantee a balanced usage of the machine
memory banks in the data placement. Minas MAi supports different memory poli-
cies within a same application, which reduces the NUMA penalties such as load
balancing, memory contention and remote access. In the case of CG, FFT and
MG, we guarantee load balancing and less memory contention using all the DRAM
memories available on the machine whereas, the operating system has placed more
data on some restricc DRAM memories.

In the CG and MG benchmarks, the main characteristic is the indirect access
by threads on some arrays. Due to this, it is more difficult to Linux mechanism to
perform an efficient thread and data mapping for them. In the case of scheduling,
Linux does not take into account threads access to memory hierarchy. For these
experiments, we have observed that Linux generated more cache misses and remote
accesses, re-scheduling threads to different cores. Considering data placement, Linux
uses the first-touch memory policy. Thus, only the first access by threads on data are
considered for data placement on the DRAM memories. Contrary to this strategy,
Minas MAi places threads over the machine cores considering its cache memory
hierarchy. Furthermore, Minas MA1i supports data migration, allowing developers
to change data placement over the different steps of the applications.

Minas MA1i has not improved the performance for BT and SP because of their
regularity on data access on the parallel sections. In this case, both Minas MAi
and Linux use the same memory policy to enhance memory affinity. Considering
EP benchmark, in the case of Linux, we have observed that it keeps threads on the
same cores during its execution. Since this benchmark is CPU-bound, both Minas
MAIi and Linux use the same affinity strategy and consequently, they have obtained
similar results. As mention on previous paragraphs, LU has regular accesses on data
interleaved with irregular ones. Because of this, we have to change memory policies
when using Minas MAi through the different steps of the applications. In order to
change the memory policy associated with some array, Minas MAi performs data
migration that has generated significant overheads that were not amortized in the
execution time of the benchmark.

8.2.2.2 TUnderstanding Performances

In order to have an insight about the Minas memory affinity impact, we have
selected two benchmarks that have been or not impacted by Minas, i.e., EP and MG
(both using Class B). These benchmarks are very distinct: EP is CPU-bound while
MG is memory-bound. Considering these benchmarks, we can use the information
of how threads access data and how they share data to investigate the impact of the

8.2. Experiments with Benchmarks 131

Minas memory affinity management. Therefore, to better understand data sharing
of EP and MG benchmarks, we have run both benchmarks on Simics Simulator
[VIRTUTECH 2007| with a selected memory access tracing tool.

We have used the tool inside Simics proposed in [Cruz 2010] to trace the memory
accesses of the benchmarks and then generate what authors named shared matrix.
The shared matrix allow us to better understand EP and MG data sharing, since it
provides the communication pattern between threads. For this simulation, we have
used 16 threads and the simulated machine parameters are similar to the AMD8x2
platform. After that, we have used the vTune and PTU tools to obtain some perfor-
mance hardware counters while executing the benchmarks on the Intel4x8 machine.
We use AMD8x2 platform for the memory access patterns because the other two
machines have a large number of cores, which complicates the visualization of mem-
ory access patterns for all threads. The Intel4x8 machine is used for the performance
hardware counters because it is the only one with vtune and PTU softwares.

14 14
13 13
12 12
11 11
10 10
9 9
8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0

012 3 45 6 7 8 9 101112131415 01 2 3 456 7 8 9 101112 131415

(a) (b)
Figure 8.5: Shared Matrix for EP (a) and MG (b) Benchmarks.

Figure 8.5 reports the shared matrix generated by the tool proposed in [Cruz 2010].
In order to generate this matrix, the tool reads the memory traces generated by Sim-
ics and evaluates how much shared memory each thread uses and how many access
were performed by each thread in the shared data. The shared matrix represents
the number of access performed to a memory block that is shared by some threads.
In the figure 8.5, each cell (i, j) represents the data sharing between threads i and j.
When i equals j, it represents the accesses to the private data. A darker cell means
high level of data sharing between a pair of threads.

In the figure, we can observe that EP has homogeneous sharing pattern, hence
it is not impacted by thread and data placement. Contrary to this, in the MG
benchmark that the thread 0 probably does some initialization or post-checking of
the data, since it access most of the shared memory (cell(0,0) is darker than other
ones). In the Minas version of MG, we have optimized this behavior by placing
shared data among the NUMA nodes. Due to this, the improvement gains of MG
on both machines have been significant. The MG benchmark has a communication

Chapter 8. Evaluation on OpenMP Benchmarks and
132 Geophysics Applications

pattern in which the nearby threads share more data. Since Minas default thread
placement enhance cache sharing, MG communication pattern is benefited by this
placement.

CPU Cycles

Time, sec
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Last Level Cache Miss
Time, sec
0 11 12

Figure 8.6: Event Counters of EP on Intel4x8.

Figure 8.6 shows the CPU cycles, last level cache miss and remote cache re-
sponse performance event counters for EP, whereas the Figure 8.7 shows the same
event counters for MG on the Inteldx8. In this figure, the black color means few
events, green some events and read several events. Since this machine has NUMA
characteristics, it is important to investigate the ratio between remote accesses and
CPU cycles on both benchmarks, to comprehend the importance of data placement
for the application. On this machine we have used vTune to extract information
of accesses on local and remote last level caches. We can observe that the main
difference between EP and MG is the number of cache accesses during the bench-
mark execution. EP has presented almost no access to the last level cache, while
MG performs several accesses on the last level cache memory. Such results let us to
conclude that MG is much more sensitive to memory placement than EP. Due to
this, the performance improvements in MG are higher than in EP.

Figure 8.7: Event Counters of MG on Intel4x8.

8.2. Experiments with Benchmarks 133

We also investigate the impact of Minas memory affinity management for both
benchmarks using PTU. This tool provides several hardware counters that allow us
to better understand the performance presented on the previous section for EP and
MG. The selected performance hardware counters are total CPU cycles, cache L3
miss (L3_misses), local and remote caches (L_ cache and Rem_cache) and, local
and remote memory banks (DRAM) access (L_ DRAM and Rem DRAM).

) EP — Hardware Counters) MG - Hardware Counters
T T T T

E g

) LS e E & LS e B
— i~

Q Q

< <

= =

%) %)

< <

z Z

= =

0 0

CPU_Cycles L3_Miss L_Cache Rem_Cache
(a) (b)
Figure 8.8: Event Counters on Intel4x8 for EP (a) and MG (b).

CPU_Cycles L3_Miss L_DRAMRem_DRAM

Figure 8.8 shows performance events counters for EP and MG benchmarks on
Inteld4x8 Machine, compared to the original execution with Linux memory affinity
mechanisms. In Figure 8.8 (a), we can observe cache miss and access rates on the
Intel4x8 machine for EP benchmark. We noticed that there are slightly differences
between Minas MAi to the original execution. However, they do not impact on
the overall performance of EP benchmark. Execution times for the two versions
are similar, with small differences in the number of instruction executed per second.
Considering the cache L3, the Minas MAi strategy and Linux have generated similar
data misses. Such results let us to conclude that on applications with characteristics
like EP (independence between threads and no shared memory) do not suffer with
the NUMA design.

Figure 8.8 (b) shows that Minas MAi has presented similar number of cache L3
misses and accesses to DRAM to the Linux (original). However, it can be noticed
that Minas MAi strategy have expressively reduced the total number of CPU cycles.
Since it controlled data placement for each step of the application over the machine
memory banks, it increases memory bandwidth and reduces latency for all cores
to get data. In MG benchmark, computation is performed by zones with irregular
accesses in these zones. By controlling data over all available memory banks, Minas
MAIi allows much more memory pages of a zone to be accessed by threads in the
same interval time.

Chapter 8. Evaluation on OpenMP Benchmarks and
134 Geophysics Applications

8.3 Geophysics Applications

In this section, we present performance evaluation of Minas on two real ap-
plications from Geophysics. These applications allows scientists to better under-
stand the geographic characteristics and events of an region. First, we introduce
the Ondes 3D application that performs simulation of Seismic Wave Propagation
[Dupros 2008, Dupros 2009, Ribeiro 2010c|. After that, we present the Interval Cat-
egorizer Tessellation Model (ICTM) [Castro 2009b, Ribeiro 2009a| that classifies a
geographic region considering its characteristics. Ondes 3D and ICTM represent im-
portant memory-bound numerical scientific problems that demand both low latency
and high memory bandwidth for memory accesses.

8.3.1 Ondes 3D: Simulation of Seismic Wave Propagation

Ondes 3D is a application that simulates seismic wave propagation in three
dimensional geological media based on finite-difference discretization [Dupros 2008,
Dupros 2009]. It has been developed by the French Geological Survey (BRGM -
www.brgm.fr) and it is mainly used for strong motion analysis and seismic risk
assessment. The particularity of this application is to consider a finite computing
domain even though the physical domain is unbounded. Therefore, the user must
define special numerical boundary conditions in order to absorb the outgoing energy.

allocate_3Darrays();

For 1 to Nx
For 1 to Ny
For 1 to Nz
init_3Darrays();

uonezifemu
- uoneIo||Y

For 1 to Nx
For 1 to Ny
For 1 to Nz
compute_velocity();

For 1 to Nx
For 1 to Ny
For 1 to Nz
compute_stress();

dOO71 d31S JNIL

Figure 8.9: Ondes 3D Application.

Ondes 3D has three main steps: data allocation, data initialization and propaga-
tion computation (composed by two computation loops). During the first two steps,
the three dimensional arrays that represents a simulation are dynamically allocated
and initialized. These two steps are very important because data are touched and

8.3. Geophysics Applications 135

physically allocated in the memory banks of the machine. During the last step, the
two computation loops compute velocity and stress of the seismic wave propagation.
In all steps, the three dimensional arrays are accessed on write only, read only an
write/read mode. Another important characteristic of this version of Ondes 3D is
that it has only regular memory access patterns on data. By regular access, we mean
that threads always access the same elements of the arrays in the same order. More-
over, in Ondes 3D, memory bandwidth to get data is also important, since in some
of its steps threads have a high level of data sharing. Figure 8.9 presents a schema
of the application with its three steps. Ondes 3D has only short distance memory
accesses, only few neighbors of each array element are needed for computation.

We carry out experiments with problem size of 2.6 Gbytes (larger than cache
memories) and we use one thread per core of the machine. We compare Minas MAi
mechanism with some solutions for memory affinity on Linux, the first-touch, the
numactl and the libnuma. Since the original version of Ondes 3D relies on dynamic
memory allocation, we do not consider Minas MApp on the experiments with it.
Experiments with different problem sizes and other NUMA machines are presented
in [Dupros 2009, Ribeiro 2010b, Dupros 2011].

Regarding the Linux memory affinity solutions, we have changed the application
source code or their executions parameters. In order to use first-touch and libnuma,
we have changed data allocation and initialization. In the case of first-touch, we
have two versions, one named master initialization and other one named thread
initialization. In the master initialization (original version of the code), only the
master thread initializes all the arrays whereas in the thread initialization each
thread initializes its own data (our modification). Considering the libnuma API, we
have allocated data with the numa_ alloc() and numa_ alloc_ interleaved() functions.
For the numactl, we run the thread initialization version of the application with the
option physcpubind to pin threads to cores to avoid any thread scheduling by Linux.
In this way, we ensure that threads do not lose the applied memory affinity strategy.
We have also used the option interleave for the numactl, in order to provide good
bandwidth for the threads.

The Minas MAi version of the code has been implemented by applying the
most suited memory policy for each array of the application. Depending on the
array access and platform, we have chosen one of the following memory policies
(cyclic, skew map and bind block). The first two memory policies are ideal for
shared arrays that have their elements accessed by different threads in read only
and read/write mode. Since cyclic and skew map spreads data among nodes, they
improve bandwidth for data accesses. The latter memory policy is suitable for arrays
accessed in a regular way, where threads always access the same data set in write
only mode. The reason to use bind block for write only arrays is to avoid penalties
that come from the cache coherence protocol of NUMA machines. We first present
the results for Minas MAi and first-touch on the three machines and then, the results
comparing Minas MAIi, libnuma and numactl on the AMD8x2.

Figure 8.10 reports the execution time for Ondes 3D (problem size of 2.6Gbytes
and five iterations) when executed on the three multi-core NUMA machines. We

Chapter 8. Evaluation on OpenMP Benchmarks and

136 Geophysics Applications
Ondes 3D
30 ——
B Master Initialization
O Thread Initialization
Y B MinasMAI e .

Execution Time (s)

AMDB8x2 Intel4x24 Intel4x8
Number of cores

Figure 8.10: Execution Time (s) for Ondes 3D Application.

can observe that Ondes 3D application with Minas MA1i has presented some slightly
performance improvements compared to the other two memory affinity solutions on
the AMDS8x2 and Intel4x8 machines. Contrary, on the Intel4x24 machine Minas
MAI1 has been only better than master thread initialization solution.

On the AMDS8x2, the results obtained with Minas MAi and first-touch solutions
have been very similar. Since first-touch and bind block (used by MA1i) have similar
behavior, their results are expected to be equivalent to the Minas MAi. The slight
difference presented in these results comes from the usage of cyclic and skew map
memory policies on some shared arrays that are accessed in read mode. It is impor-
tant to mention that in the Minas MAi version we have worked only in the shared
arrays. The private ones, we let Linux manage memory affinity with the first-touch
policy.

An interesting result depicted in this figure is the one obtained with the thread
initialization strategy. It has presented worse results when compared to master
initialization and Minas MAi ones. Using Linux performance tools (e.g. numactl,
PAPI), we have observed that Minas MAi has exploited better the memory banks
and interconnection of the machine. In this case, we have used cyclic and skew map
memory policies, which reduce contention problems and provide better bandwidth
for data accesses. This is important for Ondes 3D on this machine (bandwidth
issues), because for some steps of its computation phase, elements of the arrays are
concurrently accessed by different threads.

Considering the Intel machines, since both machines have a high NUMA factor,
it is important to avoid remote accesses. Therefore, in the Minas MAi version,
we have used only the bind block function. Considering the parallelization of the
application, we use rows or columns as block unit. Results obtained on the Inteldx24
shows that the best strategy is to use first-touch with thread initialization of data.

8.3. Geophysics Applications 137

Ondes 3D - AMD8x2

16 F 7 T T T T T T]

14 | numactl —x— i
libnuma —&—
Minas-MAi —=—

1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16
Number of threads

Figure 8.11: Speedups on AMD8x2 for Ondes 3D Application.

In this case, Minas MAI has split arrays in regular blocks of N rows or columns. In
the initialization step, when a thread touches these blocks Minas MAi places it on
the node where the thread is running. Since such blocks are aligned with memory
pages, some threads may not have part of their blocks locally. We can observe
that on the Inteldx8, results have been very similar. This is mainly related to its
QPT (Quick Path Interconnection) network and cache memories that provides high
bandwidth and low latency for remote accesses.

In Figure 8.11, we compare the speedups obtained with Minas MAIi to libnuma
and numactl on the AMDS8x2 machine. One can notice that libnuma and numactl
have had worser performances than Minas MAi. Relative average gains of Minas
MAIi compared to numactl 2% and 15% compared to libnuma. In the case of libnuma,
its poor performance is related to the costs for its data allocation [Kleen 2005].
Considering the numactl tool, it applies the same memory policy for the whole
process data. This means that numactl can not take memory access patterns of each
array in consideration to place data whereas, Minas MAi this is possible. Results
for other machines have been very similar to the AMDS8x2 ones [Ribeiro 2009c,
Ribeiro 2009b).

It is important to emphasize that for these results the Linux solutions demand
from the user to specify which nodes and cores must be used for the application
execution. In the case of libnuma demands considerable codification efforts, since
developers must implement all data distribution algorithm and thread mapping.
Additionally, for libnuma and numactl the same solution may not work on platforms
with different architecture characteristics. Both libnuma and numact! do not pro-
vide architecture abstraction, which demands from the developers to describe the

Chapter 8. Evaluation on OpenMP Benchmarks and
138 Geophysics Applications

machine topology in the memory affinity strategy. In the case of Minas MAI, the
machine topology is automatically extracted, which provides more portability.

8.3.2 ICTM: Interval Categorizer Tesselation Model

ICTM is a multi-layered tessellation model for the categorization of geographic
regions considering several different characteristics (relief, vegetation, climate, etc.).
The model was first proposed in [de Aguiar 2004] and the OpenMP version of the
application was proposed in [Castro 2009a).

Satellite image Subdivision Categorized regions

e L Y T
£ 2
e g A

Figure 8.12: ICTM Application Input and Output.

The number of characteristics that should be studied by ICTM determines the
number of layers of the model. In each layer, a different analysis of the region is
performed. The input data is extracted from satellite images (Figure 8.12), in which
the information is given in certain points referenced by their latitude and longitude
coordinates. The extracted data is represented by a two dimensional matrix of the
total area into sufficiently small rectangular subareas. In order to categorize the
regions of each layer, ICTM executes five different phases. Each phase accesses
specific matrices that have previously been computed and generates a new two
dimensional matrix as a result of the computation. Depending on the phase, the
access pattern to other matrices can either be regular or irregular [Castro 2009b].

As shown in Figure 8.13 (a), the ICTM algorithm basically uses nested loops
with short and short/long distance memory accesses (Figure 8.13 (b)) during the
computation phases. The short distance memory accesses are performed in im-
mediate neighbors (one element) whereas the long distance memory accesses are
performed using N neighbors, where IV is defined by the model.

We carry out experiments in a problem size of 2 Gbytes and we use one thread
per core of the machine. We compare Minas mechanisms (MAi and MApp) with
the standard solution for memory affinity on Linux, the first-touch. Experiments
with different problem sizes, other NUMA machines and comparisons with some
other memory affinity mechanisms are presented in [Castro 2009b, Ribeiro 2009b,
Ribeiro 2010b).

In order to use first-touch solution and Minas MAi on ICTM, we have changed
application source code. In the case of first-touch, we included a parallel initializa-
tion of all matrices used by ICTM. Considering Minas MAi, we added some functions

8.3. Geophysics Applications 139

ICTM Access patterns

short distance

function init():

for i « 0to _rows do
for j « 0 to _colums do X E X|]
mat _interval [i][j] « read(i, j)
y y

function conpute_interval _matrices():
for i « 0 to _rows do
for j « 0 to _columms do
mat _interval[i][j] ¢ conpute(i#l, jz+1)

long distance

function conpute_status_matrices():

for i « 0 to _rows do Y Y
for j « 0 to _colums do
while r is inside radius do X X
mat _status[i][j] < conpute(i#r, jir)
Y y
(a) (b)

Figure 8.13: ICTM Application.

of MAIi for data management such as mai_alloc() and MAi memory policies. The
results with Minas MAi were obtained by applying the most suited memory policy
for each array of the application. Depending on the application phase and platform,
we have chosen one of the following memory policies, cyclic, prime mapp, skew mapp
and bind block. The first three memory policies are ideal for data shared in read
mode over NUMA platforms that have a small NUMA factor, since they allows more
throughput for data access. We have used these memory policies for the matrices
used in the interval step. The latter memory policy is suitable for regular phases
where threads always access the same data set. Bind block memory policies are also
indicated for platforms with a high NUMA factor, since in this case it is impor-
tant to avoid remote accesses. Since data initialization is very regular in ICTM, we
have used bind block policy to place date in the initialization step. Figure 8.14 (a)
presents the snippet of ICTM with MAi functions. In this snippet, all modifications
have been done manually.

Considering the Minas MApp solution, all we have done is pre-processed the
application with CUIA and then let MApp apply the modifications on the ICTM
source code. MApp included in the source code some allocation functions and
memory policies for all global shared arrays of ICTM. MApp did not consider the
private arrays and the temporary ones created within functions of ICTM. For the
global arrays and considering the platforms, MApp heuristic selected the memory
policies such as bind block and cyclic. Figure 8.14 (b) presents the snippet of ICTM
with MApp modifications. We can observe that differently of MAi version, this one
only applies memory policies at the beginning of the application. No changes are
performed between the algorithm phases.

Figure 8.15 depicts the speedups for ICTM on AMD8x2 and Intel4x8 platforms

Chapter 8. Evaluation on OpenMP Benchmarks and

140 Geophysics Applications
MAi MApp
mai_init(); mai_init();
mat_interval = mai_alloc_2D(_rows,_cols, mat_interval = mai_alloc_2D(_rows,_cols,
sizeof (float),FLOAT); sizeof(float),FLOAT);
mat_status = mai_alloc_2D(_rows, _cols, mat_status = mai_alloc_2D(_rows, _cols,
sizeof (float),FLOAT); sizeof (float),FLOAT);
mai_bind_rows(mat_interval); mai_cyclic(mat_interval);
mai_bind_rows(mat_status); mai_cyclic(mat_status);
function init(); function init();
function compute_interval matrices(); function_compute_ interval matrices();
//change memory policy for mat_status function compute_status matrices();
mai_skew mapp(mat_status);
function compute status matrices(); mai_final();
mai_final();
(@) (b)

Figure 8.14: ICTM Snippet with Minas: (a) MAi version (b) MApp version.

with the memory affinity solutions. One can notice that Minas mechanisms have
outperformed first-touch solution on AMD8x2 platform. Considering the Intel4x8
platform, we can observe that Minas MAi has obtained the best results whereas
Minas MApp has failed to scale for a high number of cores. However, on both
platforms, the Minas mechanisms have presented better results than the first-touch
solution.

Since ICTM has five different steps with different memory access patterns, it
is difficult to take advantage of first-touch policy to place data over the machine.
First-touch distributes data over the machine considering the first access on data by
threads. Due to this, a different memory access pattern on any other computation
step of the application can generate more remote access, contention or load balanc-
ing issues. Additionally, ICTM has one step that is dependent of bandwidth and
first-touch only considers latency to place data over the machine memory banks.
After a careful analysis of the results for each step of the application (presented
in [Castro 2009a, Castro 2009b]), we observed that first-touch policy has obtained
better results only on the phases that have regular memory accesses similar to the
initialization phase.

In Figure 8.15 (a), we observe that Minas MAi and Minas MApp have gener-
ated similar performances for ICTM on the AMD8x2 machine. In this case, MApp
heuristics worked well because this machine has a small NUMA factor (remote ac-
cesses are not expensive) and the cyclic memory policy (used by MApp) provides
high bandwidth for cores. Furthermore, one can notice that in this platform, the
first-touch fails to scale when the number of cores is increased. This platform has

8.4. Conclusions 141

ICTM - AMDgx2 ICTM — Intel4x8
16 T T 30 - - T
| | Mgnas M/A\l
,, E - O Minas
14 B Minas MAi 25 e] FirsthoucEp """""" ‘- bl
O Minas MApp |-~ - | q
] First_ToucE

Speedup
Speedup

2 4 8 16 8 16 24 32
Number of cores Number of cores
(a) (b)

Figure 8.15: Speedup for ICTM Application on AMDS8x2 and Intel4x8.

bandwidth problems and with a high number of cores being used, it is important
to provide cores with throughput to move data. Figure 8.15 (b) shows that Minas
MAIi mechanism has obtained good performance and scalability for all number of
cores. Minas MApp have not performed well on the Intel4x8 because its heuristic
only consider standard cyclic and bind block memory policies. It does not make use
of other cyclic memory policies such as skew mapp/cyclic neighbors (used in Minas
MAI solution).

8.4 Conclusions

In this chapter, we presented the performance evaluation of Minas framework on
OpenMP benchmarks and applications over different NUMA machines with multi-
core chips. We used a synthetic benchmark, some representative benchmarks (e.g.
Stream Benchmark and NAS Paralllel Benchmarks) and two real applications from
geophysics domain. Furthermore, we compared Minas results to standard solutions
for memory affinity on the Linux operating system.

Our experiments show that Minas improves performance of OpenMP bench-
marks and applications, compared to the Linux and GCC/ICC compiler solutions.
Gains with both Minas approaches were observed for applications over the three
NUMA platforms used in our experiments. Results presented in this chapter show
that memory affinity must be efficiently managed in NUMA machines and that this
management should be simplified for the developer. Therefore, a framework that
helps developers to do this is essential.

Another important result is the code and performance portability provided by
Minas framework. Considering code portability, Minas is capable of extract the
machine topology and use this information at runtime to place data and threads on
the machine. Considering the Linux solutions, the user have to specify which nodes
and cores should be used for the application execution. Additionally, in Linux only
the libnuma solutions provides support to different memory policies within the same
parallel application. The performance portability of Minas is due to its capacity to

Chapter 8. Evaluation on OpenMP Benchmarks and
142 Geophysics Applications

adapt to different NUMA machines and provide improvement gains for OpenMP
applications.

In the next chapter, we show the performance evaluation of Minas framework
components in two other parallel environments, the Charm+-+, AMPI and OpenSkel.
The performance evaluation is performed using some benchmarks developed with
Charm-++, AMPI and OpenSkel.

CHAPTER 9
Evaluation on High Level Parallel
Systems Benchmarks

In this chapter, we present the performance evaluation of Minas framework com-
ponents inside the three parallel systems, Charm-++, AMPI and OpenSkel. For the
performance evaluation, we use benchmarks developed with the Charm-++, AMPI
and OpenSkel parallel systems and the three NUMA platforms described in chapter
7. We consider benchmarks with different memory access characteristics to better
explore the memory affinity management of the Minas framework. Similar to the
performance evaluation on OpenMP benchmarks, our objective is to analyze the
impact of different architectures in the memory affinity management for parallel
applications. Minas results are compared to the ones obtained with the original
version of each parallel system. We first describe each one of the benchmarks used
in our performance evaluation and then, we present their results and analysis.

9.1 Charm-++ Benchmarks

In this section, we present the performance evaluation of the two memory affin-
ity mechanisms developed for Charm++ parallel system using Minas components.
In our performance evaluation we use three benchmarks from Charm++ exam-
ples, Kneighbor, Molecular 2D and the Jacobi 2D [PPL-Charm-++ 2011]. The
Kneighbor and Molecular 2D benchmarks allow us to evaluate Minas MAi data
placement (4+maffinity) for applications with different characteristics (memory con-
sumption and communication) and requirements (memory bandwidth and latency).
The jacobi 2D benchmark is used to evaluate the performance of our NUMA-aware
load balancer, since this benchmark presents load unbalance characteristics. Ad-
ditionally, jacobi 2D has important ratio of communication and computation. For
this evaluation, we use the three NUMA platforms described in chapter 7 and the
Charm-++ 6.2.0 with the multi-core installation.

9.1.1 Memory Policies

For the results presented in this section, we have used one thread per core on all
executions. We compare the results obtained with the +maffinity mechanism to
ones obtained by the use of +setcpuaffinity mechanism [Mei 2010].

Kneighbor: it is a synthetic iterative benchmark that performs mostly communi-
cation operations, no important computation is performed. In this benchmark, a

Chapter 9. Evaluation on High Level Parallel Systems
144 Benchmarks

matrix of one dimension is used to store chares. In each iteration of Kneighbor, a
chare sends messages to its k neighbors. A iteration finish, when the destination
chares receive their messages. In our experiments, we have used the number of cores
as number of chares, k is equal to 3, 100 iterations and message sizes from 16 bytes
to 4096 bytes.

Kneighbor Kneighbor
Average Time Average Time
170
- w/o maffinity -0-with maffinity 112 & w/o maffinity - with maffinity
108 110\/\\'
= —~ 108
= _=VA/———-/+>-—‘ S 106
Q
£ 164 g 104
F 162 e 1oz
100
160 98
16 64 256 1024 4096 16 64 256 1024 4096
Message size (Bytes) Message size (Bytes)
(a) (b)

Figure 9.1: Execution Time (us) of Kneighbor: (a) AMD8x2 (b) Intel4x8.

Figure 9.1 shows the average time for Kneighbor benchmark on the AMD8x2 and
Intel4x8 platforms for different sizes of messages. We can observe that for Kneighbor
benchmark the memory affinity support has obtained better results on average for
both machines with different message sizes. However, gains are more relevant in the
Inteldx8 NUMA machine (up to 8%). In this machine the NUMA factor is higher
and consequently, the impact of improving memory affinity is more significant. For
this benchmark and considering the selected NUMA machines, it is important to
reduce the latency for cores to get data. To do so, we have fixed threads using
the cpu affinity support of Charm++ and then, we have applied the +maffinity
to place data on the node where threads are running. Therefore, performance has
been improved due to the better data locality.

Figure 9.2 reports the average time for Kneighbor benchmark when executed
on the Intel4x24 platform. For these experiments we used 24 cores (one NUMA
node) and 64 cores (four NUMA nodes) and messages sizes of 1024 bytes. We can
observe that results with memory affinity support are similar to without affinity for
24 cores. In this case, the application runs in only one NUMA node (set threads
with +setcpuaffinity) and consequently, any improvement can be generated by
the use of +maffinity since data is already local to threads. However, for 64 cores
we notice an improvement gain up to 6%. Since more NUMA nodes are used to
execute the application, the +maffinity support is able to spread application data
over the memory banks of the machine in order to reduce the NUMA penalties.
Molecular 2D: it is a benchmark from Charm-++ examples that computes bio-
molecular simulations using molecular dynamics. In each step of the benchmark,
the properties of each particle (acceleration, velocity and position) and the iteration
between particles are computed. In our experiments, we have used 50 steps and
a 25 patches on the AMD8x2 and Intel4x24 and 16000 patches on the Intel4x8 to
analyze the impact of data sizes that do not fit on cache memories.

9.1. Charm-+-+ Benchmarks 145
Kneighbor
Iteration Average Time
350 -) _—
B w/o maffinity B with maffinity
300
250

Time (ms)
o
=)

24

Number of Cores

Figure 9.2: Execution Time of Kneighbor on Inteldx24.

In Table B.2, we present the execution time for a step (ms) of Molecular 2D
benchmark when executed with +setcupaffinity and with +maffinity options.
On general, +maffinity has presented some slight improvements when compared
to +setcupaffinity option (up 5% of gains). The best result has been obtained on
the Intel4x8 NUMA machine when four nodes (32 cores) of the machine have been
used. The iteration time difference is mainly related to the reduction of concurrent
remote accesses performed by threads on the same memory bank. The use of cyclic
netghbors memory affinity strategy has provided better load balancing considering
memory pages distribution on physical memory banks. Consequently, more physical
memory pages were available for the concurrent access performed by threads.

Table 9.1: Execution Time (ms) of One Step of Molecular 2D

| AMDS8x2 | Intel4x8
8 Cores | 16 Cores | 16 Cores | 32 Cores
w/o maffinity | 131.46 68.84 1083.74 698.67
maffinity 125.08 67.43 1038.80 692.06

Figure 9.3 shows the time per step for the Molecular 2D benchmark on the
Inteldx24 platform. In these experiments we used 24 cores (one NUMA node) and
64 cores (four NUMA nodes). The +maffinity results for both number of cores
have been better than the ones obtained without the memory affinity support (up
to 12% of gains). Considering the benchmark characteristics, we have applied the
cyclic neighbors memory policy to distribute its data over the machine memory

Chapter 9. Evaluation on High Level Parallel Systems
146 Benchmarks

Molecular 2D
Time per Step

70 B w/o B with
60 maffinity maffinity

50
40
30
20
10

0

Time in ms

24
Number of Cores

Figure 9.3: Iteration Average Time of Molecular 2D on Intel4x24.

banks. This memory policy adapts to the Molecular 2D default work distribution,
which is a round-robin strategy. More results with the +maffinity support are
presented in the work |Ribeiro 2010d].

9.1.2 NUMA-aware Load Balancer

In this section, we present the performance evaluation of the proposed NUMA-
aware load balancer. We compare the results obtained with NumaLB to the
ones obtained with no load balancer and with two other load balancers, the Metis
[Karypis 1995] and the Greedy [PPL-Charm+ -+ 2011].

Similar to Numal.B, the Metis load balancer also exploit the communication
costs to balance the load between the machine cores. It uses a graph partition
mechanism from the Metis library to create a schema that represents the threads
communication. Contrary to this strategy, the Greedy load balancer does not con-
sider any communication characteristics of the application to perform load balanc-
ing. Its strategy places the heaviest chare on the less loaded processor, until the
load balancing is reached. Using Jacobi 2D benchmark, we first depict the overall
performance obtained with NumalLB and compare it to the results obtained with
other load balancers. After that, we present some statistics of the NumalB that
allow us to evaluate the overhead to extract the machine topology with numArch.
Jacobi 2D: it is an unbalanced benchmark from Charm+-+ examples that performs
a 2D stencil computation. This benchmark iterates over a data set, updating ele-
ments until some condition is reached. The elements are updated with the average
of its current value and the current values of its four neighbors. In our experi-
ments, we have used 36 chares of 6x6, a chunk size of 64 elements and 10 iterations
[Jacobi 2011].

9.1. Charm-+-+ Benchmarks 147

AMD8x2 Intel4x8
2
12 -8 NulLB -¢-NumalLB -~ NullLB -¥ NumalLB
10
o 8
=1
3 6
g
o 4
2
0 0
2 4 8 16 2 4 8 16 24 32
Number of Cores Number of Cores
(a) (b)

Figure 9.4: Jacobi 2D Speedups with NumaLB Load Balancer: (a) AMDS8x2 (c)
Intel4x8.

Figure 9.4 shows the speedups for the Jacobi 2D with and without the Nu-
mal.B load balancer. Our experimental results with Jacobi 2D have shown that
the NumaLB load balancer achieve performance improvements of up to 68%, with
an average of 24%, over the no load balancer version of Jacobi 2D on two NUMA
multi-core machines. We can observe that on both machines, Jacobi 2D benchmark
has presented better scalability with the NumalLB load balancer. In the Numal.B
case, objects migrations considering the NUMA factor avoids long distance com-
munication between chares. Due to this, the impact of the NUMA design on the
application execution is reduced.

We have observed the same behavior on both machines, however improvement
gains are more significant in the Inteldx8 because it presents a higher NUMA fac-
tor. Since speedups have been computed considering the Jacobi 2D execution time,
they allow us to confirm that the overhead to extract the machine topology with
numArch does not degrade the overall performance of the benchmark. Additionally,
these results also allow us to confirm that the NumaLB strategy does not take too
many time to be computed. Therefore, the load balancing is performed without an
important impact on the overall application execution time.

Figure 9.5 reports the speedup obtained with Numal.B, MetisL.LB and GreedyLLB
for Jacobi 2D benchmark. Overall, NumaLB strategy has performed up to 16%
better than the MetisLB balancer. Despite MetisLB considers the communication
characteristics of the application to perform the load balancing, it does not take into
account the machine topology on its strategy. MetisLB can not exploit the access la-
tency costs of a NUMA platform, performing worse than Numal.B on both machines.
Opposed to the comparison with MetisLB, when compared to the GreedyLB load
balancer, Numal.B has presented similar performances. In the case of the AMD8x2
machine, this is due to the small NUMA factor of the machine. Considering the In-
teldx8 machine, it has a huge shared L3 cache memories that favors the GreedyLLB
load balancer. The shared L3 caches on the Intel4x8 machine reduces the costly
memory access to local and remote DRAMs. Even though, NumalL.B load balancer

Chapter 9. Evaluation on High Level Parallel Systems

148 Benchmarks
AMD8x2 Intel4x8
12 12
B MetisLB B GreedyLB [NumalLB B MetisLB B GreedyLB [0 NumalLB
10 10
8 8
S g
6 g 6
3 3
& 4 & 4
1 s
. N] .
2 4 8 16 2 4 16 24 32
Number of Cores Number of Cores
(a) (b)

Figure 9.5: Jacobi 2D Speedups with Different Load Balancer: (a) AMDS8x2 (c)
Intel4x8.

has not decreased the performance of Jacobi 2D and for large number of cores it has
presented better results.

Table 9.2: Execution Statistics of Load Balancers.

’ ‘ AMDS8x2 ‘ Intel4x8 ‘
‘ Init Time (s) ‘ Strategy Time (ms) ‘ Init Time (s) ‘ Strategy Time (ms) ‘
MetisLB 0.22 0.502 0.106 0.549
GreedyLB 0.17 0.055 0.101 0.063
NumaLB 0.19 0.301 0.100 0.264

The main contribution of this thesis in the design of NumaLB load balancer
is the representation of the NUMA machine hierarchy and topology provided by
Minas numArch module. Therefore, it is also important to evaluate the overhead
imposed by numArch to extract the machine information. To do so, we selected two
performance metrics the initialization time to load the load balancer information
and the time taken by the load balancer to perform its strategy. Table B.3 reports
each of these metrics for MetisLB, GreedyLLB and NumalLB. We can observe that
the time spent by NumalLB to initialize the load balancer is 13% shorter than the
MetisLB one and 10% longer than the GreedyL.B one. Considering the time taken
to computed the NumaL.B strategy, it has been better than MetisLB and worse
than GreedyLLB. As mention before GreedyLLB does not consider any communication
information from the application to perform load balancing. It only consider the
load of each processor. Therefore, its strategy is less expensive to be computed than
MetisLB and NumalL.B ones. However, this difference does not reduce the overall

performance of NumalLB.

9.2. AMPI Benchmark 149

9.2 AMPI Benchmark

In order to evaluate the performance of the NUMA-aware Isomalloc on AMPI,
we have selected as benchmark the Jacobi3D (performs 3D stencil computation)
from AMPI examples. In each iteration of Jacobi 3D, there is a AMPI migrate call
that signals the adaptive runtime system to perform virtual processes migration.
Depending on the strategy some virtual processes migration will happen. For our
experiments, we consider the Charm-+-+/AMPI 6.2.0 version with net-linux-x86_ 64
installation. The analysis of the results compares the performances obtained with
NUMA-aware isomalloc policies to the ones obtained with the original isomalloc.

Execution Time Execution Time
one virtual process 16 virtual processes
6 60
% 5 % 50
E 4 € 40
[=
-3 - 30
22 2 20
a o 4 o
1 2 4 8 1 2 4 8
Number of Cores Number of Cores
(a) (b)
B Original B Node Affinity [Node Neighbor B Node Cyclic

Figure 9.6: Jacobi 3D Benchmark Execution Time on AMD8x2.

In Figure 9.6, we present the execution time for Jacobi benchmark with Isomalloc
(original) and the NUMA-aware Isomalloc (node affinity, node neighbor and node
cyclic) for the AMD8x2 NUMA machine.

We can observe that when using only one virtual process the performance with
the different versions of isomalloc have been similar (Figure 9.6 (a)). On general,
NUMA memory policies have been used to correct any data placement mistake (node
affinity policy) or to provide more bandwidth for the application (node cyclic and
node neighbor). In some experiments, we can observe that the NUMA-aware iso-
malloc implementation has presented some improvement gains (up to 6% execution
time with 8 processes). This is due to the mapping that these memory policies have
performed when AMPI migrate() function has been called in the application. Con-
sidering this machine, node affinity memory policy has presented better results for
a small number of processes, because it allows more data locality for the processes.
Contrary to node affinity, the memory policy node cyclic has presented better re-
sults for a large number of processes. Since node cyclic spread data over the machine
memory banks, it avoids memory contention and provides better memory bandwidth
when a higher number of processes and virtual processes is used.

Figure 9.6 (b) presents the execution time for executions of Jacobi benchmark
with sixteen virtual processes. We can observe that the NUMA-aware isomalloc has

Chapter 9. Evaluation on High Level Parallel Systems

150 Benchmarks
Execution Time Execution Time
one virtual process 96 virtual processes
20 400
> @ 350
@ 15 o 300
E E 250
- 10 — 200
£ S 150
pm}
2 2 50
& g i % il
1 2 4 8 1 2 4 8
Number of Cores Number of Cores
(a) (b)
B Original B Node Affinity [Node Neighbor B Node Cyclic

Figure 9.7: Jacobi 3D Benchmark Execution Time on Intel4x24.

obtained, on average, the best results (up to 16% with node affinity policy). Due
to the high number of virtual processes, when the migration function is called on
the benchmark, more corrections on data placement are performed by NUMA-aware
isomalloc. Similar to the experiments with one virtual process, node affinity memory
policy has presented better results for small number of process and node cyclic has
been more performant for a large number of processes.

Figure 9.7 reports the the execution time for Jacobi benchmark with Isomalloc
(original) and the NUMA-aware Isomalloc for the Intel4x24 NUMA platform. Figure
9.7 (a) and (b) presents the execution time that we have obtained with the different
implementations of isomalloc.

The results obtained on the Intel4x24 machine for one virtual process do not
present any improvements gains when compared to the original isomalloc. The In-
teldx24 machine has less NUMA nodes than the AMD8x2 one. Consequently, the
NUMA impact in the migration of virtual process is smaller when only one virtual
process per core is used. However, by increasing the number of virtual processes
(Figure 9.7 (b)), we can observe that NUMA-aware isomalloc results present signif-
icant improvement gains for execution time (up to 33%). In this case, more virtual
process migrations are performed by the runtime system in order to keep load bal-
ancing among the machine cores. In such scenario, the memory policies are used to
place the virtual processes data on the new NUMA node. Particularly, the memory
policy node affinity has presented better results, since it ensures that data is placed
in the same NUMA node where the virtual process is running.

9.3 OpenSkel Version of Stamp Benchmark

In order to evaluate the performance of the NUMA support provided by the
integration of Minas MAi memory policies on OpenSkel System, we have selected
three benchmarks from STAMP [Minh 2008| (intruder, kmeans and vacation). We
use the OpenSkel version of these benchmarks, which are presented in [Goes 2010a,

9.3. OpenSkel Version of Stamp Benchmark 151

Goes 2010b|. All selected applications have been executed with the recommended
input data sets. Kmeans and Vacation have two input data sets, high and low
contention. As Intruder only has high contention input data sets, we chose the low
contention inputs for Kmeans and Vacation to cover a wider range of behaviors.
Table 9.3 summarizes the main characteristics of these applications. A detailed
description of the application computation is presented later on in this section.

Table 9.3: Summary of STAMP application runtime characteristics.
Application Scalable up to # Cores Contention on Worklist

Intruder 8 high
Kmeans 4 medium
Vacation 8 high

For this performance evaluation, we used TinySTM as Software Transactional
Memory (STM) with eager as policy for conflict detection [Felber 2008]. The con-
flict detection policy is responsible to deal with concurrent accesses on the same
data within the STM system. In STM, the eager policy tries to solve conflicts when
they happen whereas the lazy policy only solves them at the end of the transaction.
We selected the eager policy because it suffer more from the NUMA penalties, as
presented in [Goes 2011]. We now describe the selected benchmarks used in our
performance evaluation and then, results are presented for each machine/bench-
mark. The analysis compares the performance obtained with OpenSkel+Minas to
the ones obtained with the original OpenSkel implementation. In the original ver-
sion of OpenSkel the memory affinity, thread and data placement, is performed by
the operating system, whereas in the Minas version both data and thread place-
ment are performed by the OpenSkel runtime system using the numArch and MAi
components of Minas.

Intruder: it is an application that implements a signature-based network in-
trusion detection system (NIDS). It has three phases and it uses dynamic data
structures to represent data (tree). In th first phase, the application reads packets
from a queue. After that, these packets are computed by threads using a shared tree
to represent them. In the last phase, string search is performed to match signatures.

Figure 9.8 reports the speedups that have been obtained with Intruder on the
AMDS8x2 and Intel4x8 machines. Results are presented for the original version
of OpenSkel runtime and with Minas memory support on the OpenSkel runtime
system. On the AMD8x2 machine, OpenSkel4+Minas has obtained the best per-
formances due to its better data placement over the machine. OpenSkel+Minas
considers the characteristics of both machine and application in order to avoid high
latencies and to allow good bandwidth to access data. However, on the Intel4x8
machine, one can observe that OpenSkel4+Minas has presented some slight improve-
ments on speedups compared to the original version of OpenSkel. In the Intel4x8
machine remote data requests rarely leads to an access to a remote memory bank.
It comes from the fact that each node has a large shared L3 cache and they are

Chapter 9. Evaluation on High Level Parallel Systems

152 Benchmarks
Intruder - AMD8x2 Machine Intruder - Intel4x8 Machine
3 25
25 2
a 2 o
3 15 M OpenSkel = 1.5 W OpenSkel
2 - B OpenSkel + 3 1 [OpenSkel +
o 1 Minas aQ Minas
n n
0 H
2 4 8 16 0
Number of Cores ¢ N 10 %
Number of Cores
(a) (b)

Figure 9.8: Speedups for Intruder Application: (a) AMD8x2 (b) Intel4x8.

interconnected through high speed communication channels. Instead of accessing a
remote memory bank directly on a data request, a core checks if the data is available
on its local and remote caches. Due to this, the impact of memory policies in this
machine is smaller.

Kmeans: it is an iterative application that performs a clustering algorithm to
group elements with some similarity into K clusters. The clusterization is based on
the distance between elements and their centroids. The master thread is responsible
for compute the distances and centroids at the end of each iteration. In the original
version, arrays are used to save elements and threads compute chunks of the array.
In the OpenSkel version a Worklist is used to store elements.

Kmeans - AMD8x2 Machine Kmeans - Intel4x8 Machine

3
a 1 =3 25
3 0.8 B OpenSkel S 2 B OpenSkel
S B OpenSkel + 3 M OpenSkel +
a 06 Minas (% 1.5 Minas
0.2 0.5
0 il
2 4 8 16 4 8 16 32

Number of Cores Number of Cores

(@) (b)

Figure 9.9: Speedups for Kmeans Application: (a) AMD8x2 (b) Intel4x8.

In Figure 9.9, we depict the speedups that have been obtained with Kmeans
application on the AMDS8x2 and Intel4x8 machines. Results are presented for the
original version of OpenSkel runtime and with the Minas memory support on its
runtime system. On general OpenSkel4+Minas has obtained the best performances
on both platforms. This is due to Minas data placement over the machine memory
banks. In the case of Kmeans that has medium contention as main characteristic,
we have chosen to bind data closer to threads when a small number of threads
is used. Considering the speedups for a larger number of threads, the selected

9.4. Conclusions 153

memory policy to place data was cyclic neighbor. In this case even with medium
contention, it is necessary to provide good memory bandwidth for cores. One way
to this is by spreading data over different memory banks and guarantee that more
interconnection network links will be available to get some data.

Vacation: It is an application that emulates an on-line travel reservation sys-
tem. In the application each client has a number of requests that has been generated
random way. Each transaction computes one request and makes some accesses to
a database server. The main difference from the original implementation to the
OpenSkel one is that the second, authors have created a worklist and transformed
the requests into work-units.

Vacation - AMD8x2 Machine Vacation - Intel4x8 Machine
5 3.5
4 3
a, o 25
= M OpenSkel 3 2 M OpenSkel
8 2 B OpensSkel + g 15 @ OpenSkel +
Q. Minas o Minas
0.5
. Hl ;]
2 4 8 16 4 8 16 32
Number of Cores Number of Cores
(a) (b)

Figure 9.10: Speedups for Vacation Application: (a) AMD8x2 (b) Intel4x8.

Figure 9.10 shows the speedups that have been obtained with Vacation on the
AMDS8x2 and Intel4x8 machines. Results are presented for the original version of
OpenSkel and with Minas support for memory affinity. On general, for the AMD8x2
machine, Minas has provided better performances for OpenSkel whereas on the
Intel4x8 machine results with and without Minas support have been very similar.
In the case of AMD8x2 machine when using Minas support, we can observe that the
application still scaling when the number of cores is increased. This scenario is not
true on the Intel4x8 machine, where the application fails to scale with more threads.
However, Minas data placement allows some slight performance improvements for
such scenario. Considering the application characteristics, the high contention on
some data sets generates false sharing in cache lines. Since Minas does not deal with
false sharing, its improvements are limited to the global memory affinity.

9.4 Conclusions

In this chapter, we presented the performance evaluation of Minas memory affin-
ity mechanisms on different benchmarks developed with high level parallel languages
and interfaces. Additionally, we have performed a number of experiments with vari-
ous benchmarks and NUMA platforms. These experiments have allowed us to show
the performance improvements that Minas can bring to the three parallel systems

Chapter 9. Evaluation on High Level Parallel Systems
154 Benchmarks

by using its components to place data, map threads and extract the machine archi-
tecture.

Considering the Charm++ system and the selected platforms, we have observed
improvement gains of up to 12% when compared to the original version. In the
case of AMPI, where communication is important, some significant improvements
have been observed when Minas memory policies were used (up to 33%). Slight
performance improvements have been obtained for OpenSkel in the Intel4x8 machine
whereas, in the AMDS8x2 platform performance improvements have been significant.
This is mainly related to cache memory sizes that in the case of AMD8x2 machine is
very small, which makes main memory utilization and memory affinity management
much more important.

We can then conclude that on such parallel systems, the memory access costs of
NUMA platforms have a significant impact on their application performances. The
best data distribution depends on the parallel system runtime implementation, the
application characteristics and the machine architectures. We have observed that
on NUMA machines with high NUMA factor, the best memory affinity strategy is
generally to place threads and data closer. This can be reached by placing threads
and their data in the same NUMA node and by performing data migration during
the application execution. In contrast, the NUMA machines with low NUMA factor
require a better usage of the machine memory banks in order to reduce load balance
and memory contention issues. Additionally, application characteristics such as data
sharing level among threads (communication patterns) are also determinants factors
in the selection of the best memory affinity strategy. Therefore, it becomes crucial
to have a portable and flexible solution such as Minas framework that can match the
architecture and application characteristics to manage memory affinity on NUMA
machines.

Minas is easily integrated in parallel environments, since it offers high level inter-
faces to deal with memory affinity. This framework provides to parallel environments
a NUMA machine representation which allows them to abstract the machine archi-
tecture and topology. NumArch module provides a high level library that can be
used in runtime systems to get the machine information. Such information allows
parallel environments to be portable over different multi-core NUMA machines, since
the architecture abstraction is ensured. Additionally, Minas framework has an inter-
face (MAi) that supports several memory policies to perform data placement with
different granularities. These memory policies are designed in a such way that they
can easily integrated in different contexts such as Charm-++, AMPI and OpenSkel
to enhance memory affinity.

CHAPTER 10

Conclusions and Perspectives

In this last chapter, we conclude the thesis presenting its main objectives, the
contributions on the memory affinity management for NUMA machines and the
perspectives generated by this work.

10.1 Thesis Objectives

In the past few years, multi-core chips have become a trend in the processor de-
sign of shared memory machines. However, as the number of cores per chip increases,
memory access to the shared memory becomes a major bottleneck. Multiple cores
access the same shared memory resulting in memory contention and a worse than
expected performance from parallel machines. To alleviate the memory problem,
Non-Uniform Memory Access (NUMA) designs have been employed in multi-core
machines.

Modern NUMA multi-core machines are generally built with on-chip memory
controllers and an associated memory bank for each socket. The controllers are in-
terconnected by a special network, thus allowing access to physically remote memory
banks. This design reduces memory contention, if compared to a conventional shared
memory machine, while still providing the abstraction of a single shared memory
all the cores. However, this design can potentially increase the memory access la-
tency and degrade bandwidth usage if the interconnection network itself becomes
congested. Thus, the adoption of an efficient memory affinity strategy becomes cru-
cial to achieve good performance in such machines. In NUMA machines, memory
affinity mechanisms try to keep data close to the core that accesses them in order
to reduce the remote memory access costs for parallel applications.

Considering shared memory machines, there are several programming languages
that can be used to develop parallel applications. For instance, the OpenMP API
and Charm+-+ parallel language are examples of programming interfaces. However,
most parallel language compilers do not address multi-core machines with NUMA
design, lacking support to control memory affinity. That task ends up being handled
by the operating system or even worse by the programmer. The work developed
in this thesis is related to the memory affinity management for parallel languages
on multi-core machines with NUMA design. The main objective is to hide from
the programmer the complexity of controlling the memory affinity within a parallel
application source code. The NUMA platform characteristics and the application
memory access patterns are used in order to provide a fine grain of memory affinity
management.

156 Chapter 10. Conclusions and Perspectives

10.2 Contributions

To enhance memory affinity on multi-core machines with NUMA design, we pro-
posed the Minas framework (chapters 4 and 5). This framework deals with memory
affinity by controlling data and thread placement on NUMA platforms. The data
and thread placement mechanisms rely on the machine and the application char-
acteristics. The machine topology and hierarchy representation provied by Minas
enables it to address the hierarchical architecture of these machines. The Minas
preprocessor acts in the extraction of the application characteristics that must be
considered to place data. This information is coupled with a number of different
memory policies and thread mappings inside Minas to improve memory affinity.

Minas implements two types of memory policies: the bind ones, that reduce
the access latency perceived by threads to get data, and the cyclic ones that re-
duce memory contention, providing more bandwidth for threads to get data. These
memory policies can be applied in different levels of the application data such as
the heap and variables. Considering the thread mapping mechanisms inside Minas,
the framework implements static and dynamic mechanisms. The static one places
threads over the machine cores with the objective of maximizing cache sharing be-
tween them. This is achieved by Minas using the machine topology and memory
traces of the application. The dynamic thread mapping is implemented as NUMA-
aware load balancer that uses the machine NUMA topology and the application
communication characteristics to map threads at runtime.

In Minas framework, we showed that the memory affinity management can be
done explicitly, by the programmer, or in an automatic way with use of the MApp
preprocessor. Developers who know their application can manually control the mem-
ory affinity providing some hints about memory access patterns for Minas. In this
case, the programmer explicitly modifies the application source code, using MAi
interface to allocate and place data. Using these functions, at runtime Minas maps
application data over the NUMA machine nodes. Developers who do not have a pri-
ori knowledge about memory access patterns of the application can automatically
control affinity by using Minas MApp. This mechanism transforms the applica-
tion source code using characteristics from both the machine and the application,
extracted at compilation time. We also showed that both mechanisms can be com-
bined in order to enhance even more the memory affinity and consequently, the
performance of a parallel application.

We employed Minas framework components in four parallel interfaces/languages
used to develop parallel applications, applying the components at different levels.
First, at the language level, we have showed that Minas can be used at compile time
to control memory affinity for OpenMP applications. This support is compiler inde-
pendent, which enhances the applicability of Minas framework. Then we explored
Minas framework to control memory affinity for dynamic applications such as the
ones developed with the parallel system Charm++ and the AMPI. In the case of
Charm++ and AMPI, an integration of Minas components was implemented for
their runtime system, which provides users with a transparent memory affinity sup-

10.3. Perspectives 157

port. Finally, in the algorithm level, we integrated Minas to a skeleton framework,
OpenSkel, to provide it with memory affinity support. Using the information pro-
vided by the skeleton, Minas is capable of dealing with data and thread placement
for a skeleton based application.

10.3 Perspectives

The memory affinity approaches proposed in this thesis leads to a number of
perspectives.

Enhance the NUMA Machine Model: The current model of the NUMA
machines used to represent the core topology and the memory hierarchy can be
enhanced to include even more details about the architecture. For instance, the
memory hierarchy representation relies on the main memory read latency and band-
width measurements. An improvement would be the use of write operations as well,
to obtain those metrics. In this case, our memory hierarchy representation would
be capable of modeling the different type memory accesses that an application can
perform. Considering the bandwidth, our model could use multiple threads in the
benchmarking step to compute the memory bandwidth when memory contention
is present. This information would allow Minas framework to improve its heuristic
to map data taking into account the saturation of interconnection network. An-
other possible evolution is the use of latency and bandwidth for cache memories to
provide Minas with overhead associated with intra-node communication. The use
of hardware counters to retrieve the application information at runtime is also a
possible improvement for our model. The machine core topology could be enhanced
to support operating systems other then Linux. Another possibility is to have our
model integrated in user level tools such as the hwloc library.

Get More Information About the Application: Minas framework auto-
matic tuning of parallel applications could be improved to support more languages
and interfaces. In this thesis, our results with the automatic approach only con-
sidered applications written in C with OpenMP API. In the case of OpenMP, one
perspective is to extend our preprocessor to also support Fortran based applications.
Many OpenMP parallel benchmarks and applications are written in Fortran. There-
fore, a support for this language is important in the context of high performance
computing. In this case, it is necessary to extend our preprocessor with the Fortran
grammar in order to retrieve the application information. Considering the OpenMP
applications, information such as memory access on variables inside the parallel
regions should be considered. This information would allow Minas framework to
better deal with data distribution over the machine. For instance, indirect accesses
or sequential ones provides Minas with the information on how data is accessed
inside a parallel region at compile time. In this context, compile time automatic
support for other parallel programming systems such as Charm-+-+/AMPI are also a
perspective of this thesis. Additionally, Minas can also profit of runtime information
from the application to correct any data and thread placement.

158 Chapter 10. Conclusions and Perspectives

Support for Hybrids Architectures: Multi-core architectures are becoming
more and more complex. Besides the NUMA design, current multi-core machines
also feature complex cache memory hierarchies. Additionally, they can also be
equipped with GPUs (graphics processing units) to increase their processing power.
Although the GPU brings more performance for the multi-core machines, it comes
with the cost of a more complex architecture. Thus a memory affinity support for
these machines becomes necessary to reduce the communication costs between GPUs
and cores. Therefore, one possible work is to extend Minas framework to support
hybrid platforms. Minas mechanisms to deal with memory allocation, data place-
ment and thread scheduling should be aware of the different elements to enhance
memory affinity for the parallel applications. The machine model representation
need to be extended to consider such a heterogeneous machine. Our mechanisms
to deal with memory management should consider the different memory spaces (i.e.
GPU memory and machine memory) that composes the global memory and the
different representations of data structures in GPU memory and machine memory.
Additionally, in high performance computing the number of cores per processors
will increase, leading to the many-core architectures. Therefore, multiple levels of
non-uniform access in the memory hierarchy are expected. Providing support for
these architectures is another perspective work created by this thesis.

Bibliography

[Agarwal 1995| Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. John-
son, David Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie
and Donald Yeung. The MIT Alewife machine: architecture and perfor-
mance. SIGARCH Comput. Archit. News, vol. 23, no. 2, pages 2-13, 1995.
11, 12

[Agarwal 2006] Tarun Agarwal, Amit Sharma and Laxmikant A. Kalé. Topology-
aware task mapping for reducing communication contention on large parallel
machines. In 20th International Parallel and Distributed Processing Sympo-
sium — IPDPS, 2006. 39

[AMD 2011a] AMD. Advanced Micro Devices - AMD Opteron. http://www.amd.
com, 2011. 17, 18

[AMD 2011b] AMD. AMDG64 Architecture Programmer’s Manual Vol 2 System
Programming. http://support.amd.com/us/Processor_TechDocs/24593.
pdf, 2011. v, 18, 19

[Antoniu 1999] Gabriel Antoniu, Luc Bougé and Raymond Namyst. An Efficient
and Transparent Thread Migration Scheme in the PM2 Runtime System.
In Proceedings of the 11 IPPS/SPDP’99 Workshops Held in Conjunction
with the 13th International Parallel Processing Symposium and 10th Sympo-
sium on Parallel and Distributed Processing, pages 496-510. Springer-Verlag,
1999. 97

[Awasthi 2010] Manu Awasthi, David W. Nellans, Kshitij Sudan, Rajeev Balasub-
ramonian and Al Davis. Handling the problems and opportunities posed by
multiple on-chip memory controllers. In Proceedings of the 19th international

conference on Parallel architectures and compilation techniques, PACT ’10,
pages 319-330, New York, NY, USA, 2010. ACM. 15, 41, 179

[Benkner 2002] S Benkner and T Brandes. Efficient Parallel Programming on Scale
Shared Memory Systems with High Performance Fortran. Concurrency:
Practice and Experience, vol. 14, pages 789-803, 2002. 40, 180

[Berger 2000] Emery D. Berger, Kathryn S. McKinley, Robert D. and Paul R. Blu-
mofe Wilson. Hoard: a scalable memory allocator for multithreaded applica-
tions. In Proceedings of the ninth international conference on Architectural
support for programming languages and operating systems, ASPLOS-IX,
pages 117-128, New York, NY, USA, 2000. ACM. 30, 42, 59

[Bhatelé 2009] Abhinav Bhatelé, Laxmikant V. Kalé and Sameer Kumar. Dynamic
topology aware load balancing algorithms for molecular dynamics applica-

tions. In Proceedings of the 23rd international conference on Supercomput-
ing, ICS ’09, pages 110-116, New York, NY, USA, 2009. ACM. 39

http://www.amd.com
http://www.amd.com
http://support.amd.com/us/Processor_TechDocs/24593.pdf
http://support.amd.com/us/Processor_TechDocs/24593.pdf

160 Bibliography

[Bircsak 2000] John Bircsak, Peter Craig, RaeLyn Crowell, Zarka Cvetanovic,
Jonathan Harris, C. Alexander Nelson and Carl D. Offner. FEztending
OpenMP for NUMA Machines. In SC ’00: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing, Dallas, Texas, USA, 2000. 36,
40, 180

[Bolosky 1993] William J. Bolosky and Michael L. Scott. Fualse sharing and its
effect on shared memory performance. In USENIX Systems on USENIX
Experiences with Distributed and Multiprocessor Systems - Volume 4, pages
3-3, Berkeley, CA, USA, 1993. USENIX Association. 29

[Brice Goglin 2009] Brice Goglin and Nathalie Furmento. Enabling High-
Performance Memory Migration for Multithreaded Applications on Linuz.
In IEEE, editeur, MTAAP’09: Workshop on Multithreaded Architectures
and Applications, IPDPS, Rome Italie, 2009. 42, 43, 45, 86, 180

[Broquedis 2009| Frangois Broquedis, Nathalie Furmento, Brice Goglin, Raymond
Namyst and Pierre-André Wacrenier. Dynamic Task and Data Placement
over NUMA Architectures: an OpenMP Runtime Perspective. In 5th In-
ternational Workshop on OpenMP, pages 79-92, Dresden, Germany, 2009.
Springer. 30, 38

[Broquedis 2010a] Frangois Broquedis. De [’exécution d’applications scientifiques
OpenMP sur architectures hiérarchiques. PhD thesis, Université Bordeaux 1,
December 2010. 38, 45, 180

[Broquedis 2010b] Francois Broquedis, Jerome Clet-Ortega, Stephanie Moreaud,
Nathalie Furmento, Brice Goglin, Guillaume Mercier, Samuel Thibault and
Raymond Namyst. hwloc: A Generic Framework for Managing Hardware
Affinities in HPC' Applications. Parallel, Distributed, and Network-Based
Processing, Euromicro Conference on, pages 180-186, 2010. 38, 44

[Brunner 2000] Robert K. Brunner and Laxmikant V. Kalé. Handling Application-
Induced Load Imbalance using Parallel Objects. In Parallel and Distributed
Computing for Symbolic and Irregular Applications, pages 167-181. World
Scientific Publishing, 2000. 100

[Carissimi 1999] Alexandre Carissimi. Athapascan-0 : Ezploitation de la multipro-
grammation légere sur grappes de multiprocesseurs. PhD thesis, Institut Na-
tional Polytechnique de Grenoble, 1999. 9, 178

[Carissimi 2007| Alexandre Carissimi, Fabrice Dupros, Jean-Frangois Mehaut and
Rafael Vanoni Polanczyk. Aspectos de Programacao Paralela em arquiteturas
NUMA. In VIII Workshop em Sistemas Computacionais de Alto Desem-
penho, 2007. 43, 96

[Carlson 1999] William W. Carlson, Jesse M. Draper and David E. Culler. Introduc-
tion to UPC and Language Specification. Rapport technique CCS-TR-99-157,
George Mason University, 1999. 25, 26

[Castro 2009a] Marcio Castro. NUMA-ICTM: A Parallel Version of ICTM Exploit-
ing Memory Placement Strategies for NUMA Machines. Master’s thesis,

Bibliography 161

Pontificia Universidade Catoélica do Rio Grande do Sul, Porto Alegre, Brazil,
2009. 138, 140, 190, 193

[Castro 2009b| Méarcio Castro, Luiz Gustavo Fernandes, Christiane Pousa Ribeiro,
Jean-Frangois Méhaut and Marilton S. de Aguiar. NUMA-ICTM: A Par-
allel Version of ICTM Ezxploiting Memory Placement Strategies for NUMA
Machines. PDSEC ’09: Parallel and Distributed Processing Symposium,
International, pages 1-8, 2009. 134, 138, 140, 188, 191, 193

[Coarfa 2005| Cristian Coarfa, Yuri Dotsenko, John M. Crummey, Frangois Canton-
net, Tarek E. Ghazawi, Ashrujit Mohanti, Yiyi Yao and Daniel C. Miranda.
An evaluation of global address space languages: co-array fortran and unified
parallel C. In Proceedings of the tenth ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, PPoPP ’05, pages 36-47. ACM,
2005. 25, 40

[Cray 1993 Cray. CRAY T38D System Architecture QOverview Manual.
ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.
overview.html, 1993. 12

[Cruz 2010] Eduardo H.M. Cruz, Marco A.Z. Alves and Philippe O.A. Navaux.
Process Mapping Based on Memory Access Traces. Computing Systems
(WSCAD-SCC), 2010 11th Symposium on, 2010. 8, 127, 131

[Cruz 2011] Eduardo H.M. Cruz, Marco A.Z. Alves, Christiane P. Ribeiro, Alexan-
dre Carissimi, Philippe O.A. Navaux and Jean-Francgois Méhaut. Using
Memory Access Traces to Map Threads and Data on Hierarchical Multi-core
Platforms. In 13th Workshop on Advances in Parallel and Distributed Com-
putational Models. IEEE Press, 2011. 87, 127

[Dahlgren 1999] Fredrik Dahlgren and Josep Torrellas. Cache-Only Memory Archi-
tectures. Computer, vol. 32, pages 72—-79, 1999. 10

[Danjean 2003] Vincent Danjean and Raymond Namyst. Controlling Kernel
Scheduling from User Space: An Approach to Enhancing Applications Re-
activity to 1/0 Fvents. In Timothy Mark Pinkston and Viktor K. Prasanna,
editeurs, High Performance Computing — HiPC 2003, volume 2913 of Lecture
Notes in Computer Science, pages 490-499. Springer Berlin, 2003. 38

[de Aguiar 2004] Marilton S. de Aguiar, Gragaliz Pereira Dimuro, Antonio Carlos
da Rocha Costa, Rafael K. S. Silva, Fabia A. da Costa and Vladik Kreinovich.
The Multi-layered Interval Categorizer Tesselation-based Model. In VI Brazil-
ian Symposium on Geoinformatics, 22-24 November, Campos do Jordao, Sao
Paulo, Brazil, pages 437-454. INPE, 2004. 138, 190

[Dempsey 2010] Jim Dempsey. QuickThread*. http://software.intel.com/
en-us/articles/quickthread/, 2010. 39

[Dooley 2010] Isaac Dooley, Chao Mei, Jonathan Lifflander and Laxmikant Kalé. A
Study of Memory-Aware Scheduling in Message Driven Parallel Programs. In

Proceedings of 17th Annual International Conference on High Performance
Computing, 2010. 39

ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
http://software.intel.com/en-us/articles/quickthread/
http://software.intel.com/en-us/articles/quickthread/

162 Bibliography

[Dupros 2008| Fabrice Dupros, Hideo Aochi, Ariane Ducellier, Dimitri Komatitsch
and Jean Roman. Ezploiting Intensive Multithreading for the Efficient Simu-
lation of 3D Seismic Wave Propagation. In CSE ’08: Proceedings of the 11th
International Conference on Computational Science and Engineerin, pages
253-260, Sao Paulo, Brazil, 2008. 134, 188

[Dupros 2009] Fabrice Dupros, Christiane Pousa Ribeiro, Alexandre Carissimi and
Jean-Francois Méhaut. Parallel Simulations of Seismic Wave Propagation
on NUMA Architectures. In ParCo’09: International Conference on Parallel
Computing, Lyon, France, 2009. 11, 134, 135, 188, 189

[Dupros 2011| Fabrice Dupros, Christiane Pousa Ribeiro, Hideo Aochi, Jean-
Frangois Méhaut, Dimitri Komatitsch and Jean Roman. Efficient Stencil
Computation on Multicore and Hierarchical Architectures: Application to
Seismic Wave Propagation. Concurrency and Computation: Practice and
Experience (submitted), 2011. 135

[Falsafi 1997 Babak Falsafi and David A. Wood. Reactive NUMA: a design for
unifying S-COMA and CC-NUMA. In ISCA ’97: Proceedings of the 24th

annual international symposium on Computer architecture, pages 229-240,
New York, NY, USA, 1997. ACM. 11, 12

[Felber 2008] Pascal Felber, Christof Fetzer and Torvald Riegel. Dynamic perfor-
mance tuning of word-based software transactional memory. In PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and prac-
tice of parallel programming, pages 237-246, New York, NY, USA, 2008.
ACM. 151

[Freitas 2009] Henrique C. Freitas, Marco A. Z. Alvez and Philippe O. A. Navaux.
Erad 2009 - escola regional de alto desempenho multi-core, chapitre NoC e
NUCA: Conceitos e Tendéncias para Arquiteturas Many-Core, pages 5-37.
Biblioteca do Instituto de InformA]tica da UFRGS, Porto Alegre, 2009. 10

[Ghemawat 2011] Sanjay Ghemawat and Paul Menage. TCMalloc : Thread-Caching
Malloc. http://goog-perftools.sourceforge.net/doc/tcmalloc.html,
2011. 42, 59

[Gloger 2011] Wolfram Gloger. The ptmalloc. http://www.malloc.de/en/, 2011.
42, 59

[Goes 2010a] Luis Fabricio Goes, Marcelo Cintra and Murray Cole. OpenSkel:
Worklist Transactional Skeleton Framework. Research Report, University
of Edinburgh, 2010. 26, 53, 106, 107, 151

[Goes 2010b] Luis Fabricio Goes, Marcelo Cintra and Murray Cole. Transac-
tional Skeletons: Improving Performance of STM Applications using Soft-
ware Helper Threads. In Scottish Informatics and Computer Science Alliance

PhD Conference, Edinburgh, 2010. SICSA2010. 24, 26, 76, 89, 106, 151, 184

[Goes 2011] Luis Fabricio Goes, Christiane Pousa, Marcio Castro, Jean-Frangois
Méhaut, Marcelo Cintra and Murray Cole. Fxploiting Memory and Cache

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.malloc.de/en/

Bibliography 163

Affinity in Transactional Memory Applications. In International Workshop
on Languages and Compilers for Parallel Computing - LCPC (submitted),
France, 2011. Springer-Verlag. 71, 151

[Grama 2003] Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta.
Introduction to parallel computing. Addison-Wesley, 2003. 24

[Hackenberg 2009] Daniel Hackenberg, Daniel Molka and Wolfgang E. Nagel. Com-
paring cache architectures and coherency protocols on x86-64 multicore SMP
systems. In Proceedings of the 42nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 42, pages 413-422, New York, NY,
USA, 2009. ACM. 20

[Huang 2003| Chao Huang, Orion Lawlor and Laxmikant V. Kalé. Adaptive MPI. In
Proceedings of the 16th International Workshop on Languages and Compilers
for Parallel Computing (LCPC 2003), LNCS 2958, pages 306-322, College
Station, Texas, October 2003. 97

[Huang 2007|] Chao Huang, Gengbin Zheng and Laxmikant V. Kalé. Supporting
Adaptivity in MPI for Dynamic Parallel Applications. Rapport technique
07-08, Parallel Programming Laboratory, Department of Computer Science,
University of Illinois at Urbana-Champaign, 2007. 95, 97

[Intel-PTU 2010] Intel-PTU. Intel Performance-Tuning Utility. http:
//www.intel.com/technology/itj/2007/v11i4/2-parallelization/
l1-abstract.htm, 2010. 117

[Intel-vtune 2010] Intel-vtune. Intel VTune Performance Analyzer. http://
software.intel.com/en-us/intel-vtune/, 2010. 117

[Intel 2011a] Intel. An Introduction to the Intel QuickPath Interconnect. www.
intel.com/technology/quickpath/introduction.pdf, 2011. 17, 18

[Intel 2011b] Intel. Laptop, Notebook, Desktop, Server and Embedded Processor
Technology - Intel. http://wuw.intel.com, 2011. 17

[Lyer 1998] Ravi Iyer, Hu Wang and Laxmi Bhuyan. Design and Analysis of Static
Memory Management Policies for CC-NUMA Multiprocessors. Rapport
technique, College Station, TX, USA, 1998. 62

[Jacobi 2011] Charm++ Jacobi. Jacobi 2D Implemented with Charm++. http:
//charm.cs.uiuc.edu/tutorial/Basic2DJacobi.htm, 2011. 30, 146

[Jeremiassen 1995] Tor E. Jeremiassen and Susan J. Eggers. Reducing false sharing
on shared memory multiprocessors through compile time data transforma-
tions. SIGPLAN Not., vol. 30, pages 179-188, August 1995. 30

[Jin 1999] Haogiang Jin, Michael Frumkin and Jerry Yan. The OpenMP Implemen-
tation of NAS Parallel Benchmarks and Its Performance. Rapport technique
99-011/1999, NAS System Division - NASA Ames Research Center, 1999.
122, 125

[Joseph 2006] Antony Joseph, Janes Pete and Rendell Alistair. Ezxploring Thread
and Memory Placement on NUMA Architectures: Solaris and Linuz, Ul-

http://www.intel.com/technology/itj/2007/v11i4/2-parallelization/1-abstract.htm
http://www.intel.com/technology/itj/2007/v11i4/2-parallelization/1-abstract.htm
http://www.intel.com/technology/itj/2007/v11i4/2-parallelization/1-abstract.htm
http://software.intel.com/en-us/intel-vtune/
http://software.intel.com/en-us/intel-vtune/
www.intel.com/technology/quickpath/introduction.pdf
www.intel.com/technology/quickpath/introduction.pdf
http://www.intel.com
http://charm.cs.uiuc.edu/tutorial/Basic2DJacobi.htm
http://charm.cs.uiuc.edu/tutorial/Basic2DJacobi.htm

164 Bibliography

traSPARC/FirePlane and Opteron/HyperTransport. In High Performance
Computing - HiPC, pages 338-352. 2006. 31, 43, 96, 181

[Kalé 1993] Laxmikant V. Kalé and S. Krishnan. CHARM++: A Portable Con-
current Object Oriented System Based on C++. In A. Paepcke, editeur,
Proceedings of OOPSLA’93, pages 91-108. ACM Press, September 1993. 23,
27, 53

[Kalé 1996] Laxmikant V. Kalé, Milind Bhandarkar, Narain Jagathesan, Sanjeev
Krishnan and Joshua Yelon. Converse: An Interoperable Framework for

Parallel Programming. Parallel Processing Symposium, International, vol. 0,
page 212, 1996. 99

[Kalé 2009a] Laxmikant V. Kalé and Gengbin Zheng. Charm-++ and AMPI: Adap-
tive Runtime Strategies via Migratable Objects. In M. Parashar, editeur,
Advanced Computational Infrastructures for Parallel and Distributed Appli-
cations, pages 265-282. Wiley-Interscience, 2009. 27, 89, 184

[Kalé 2009b] Laxmikant V. Kalé and Gengbin Zheng. Charm++ and AMPI: Adap-
tive Runtime Strategies via Migratable Objects. In M. Parashar, editeur, In
Advanced Computational Infrastructures for Parallel and Distributed Appli-
cations, pages 265-282. Wiley-Interscience, 2009. 76, 95

[Kaminski 2009] Patryk Kaminski. NUMA aware heap memory manager.
http://developer.amd.com/Assets/NUMA_aware_heap_memory_manager\
_article_final.pdf, 2009. 42

[Karypis 1995] George Karypis and Vipin Kumar. METIS - Unstructured Graph
Partitioning and Sparse Matriz Ordering System, Version 2.0. Rapport tech-
nique, 1995. 146, 196

[Kim 2002] Changkyu Kim, Doug Burger and Stephen W. Keckler. An adap-
tive, non-uniform cache structure for wire-delay dominated on-chip caches.
SIGOPS Oper. Syst. Rev., vol. 36, pages 211-222, October 2002. 10

[Kleen 2005] Andi Kleen. A NUMA API for Linuz. Rapport technique Novell-
4621437, 2005. 42, 43, 44, 116, 137, 180, 181

|[Koenig 2007| Gregory Allen Koenig and Laxmikant V. Kalé. Optimizing Dis-
tributed Application Performance Using Dynamic Grid Topology-Aware Load
Balancing. In Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, pages 1-10, 2007. 39

[Larus 2006] James R. Larus and Ravi Rajwar. Transactional memory. Morgan &
Claypool Publishers, 2006. 24

[Lenoski 1993] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta
and J. Hennessy. The DASH Prototype: Logic Overhead and Performance.
IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 1, pages 41-61, 1993. v, 11,
12, 16

[Leung 2004| Joseph Y-T. Leung. Handbook of scheduling: algorithms, models,
and performance analysis. Chapman & Hall/CRC computer and information
science series. Chapman & Hall/CRC, 2004. 65

http://developer.amd.com/Assets/NUMA_aware_heap_memory_manager_article_final.pdf
http://developer.amd.com/Assets/NUMA_aware_heap_memory_manager_article_final.pdf

Bibliography 165

[Liu 2009] Mengxiao Liu, Weixing Ji, Zuo Wang and Xing Pu. A Memory Access
Scheduling Method for Multi-core Processor. Computer Science and Engi-
neering, International Workshop on, vol. 1, pages 367-371, 2009. 15, 178

[LMbench 2010] LMbench. LMbench benchmark. http://www.gelato.unsw.edu.
au/IA64wiki/lmbench3, 2010. 74

[Lo6f 2005 Henrik Lof and Sverker Holmgren. Affinity-on-next-touch: Increasing the
Performance of an Industrial PDE Solver on a cc-NUMA System. In ICS

'05: Proceedings of the 19th Annual International Conference on Supercom-
puting, pages 387-392, New York, NY, USA, 2005. ACM. 43

[MacDonald 2000| Steve MacDonald, Duane Szafron, Jonathan Schaeffer and
Steven Bromling. Generating Parallel Program Frameworks from Parallel
Design Patterns. In Euro-Par '00: Proceedings from the 6th International
Euro-Par Conference on Parallel Processing, pages 95-104. Springer-Verlag,

2000. 106

[Marathe 2006] Jaydeep Marathe and Frank Mueller. Hardware Profile-Guided Au-
tomatic Page Placement for ccNUMA Systems. In PPoPP ’06: Proceedings
of the eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 90-99, New York, NY, USA, 2006. ACM. 41

[Marr 2002] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A.
Koufaty, J. Alan Miller and Michael Upton. Hyper-Threading Technology
Architecture and Microarchitecture. http://www.malloc.de/en/, 2002. 13

[Mccalpin 1995] John D. Mccalpin. STREAM: Sustainable memory bandwidth in
high performance computers. http://www.cs.virginia.edu/stream/, 1995.
115, 122, 188

[McCalpin 2007] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in
High Performance Computers. Rapport technique, University of Virginia,
Charlottesville, Virginia, 1991-2007. 36, 74

[McKee 2004] Sally A. McKee. Reflections on the memory wall. In Proceedings of
the 1st conference on Computing frontiers, CF ’04, pages 162—, New York,
NY, USA, 2004. ACM. 11

[Mei 2010] Chao Mei, Gengbin Zheng, Filippo Gioachin and Laxmikant V. Kalé.
Optimizing a parallel runtime system for multicore clusters: a case study. In
TG ’10: Proceedings of the 2010 TeraGrid Conference, pages 1-8, New York,
NY, USA, 2010. ACM. 8, 95, 143, 194

[Minh 2008] Chi C. Minh, Jaewoong Chung, C. Kozyrakis and K. Olukotun.
STAMP: Stanford Transactional Applications for Multi-Processing. In
IISWC ’08: Proceedings of the IEEE International Symposium on Work-
load Characterization, pages 35-46, Seattle, WA, USA, 2008. 34, 150

[Molka 2009] Daniel Molka, Daniel Hackenberg, Robert Schone and Matthias S.
Muller. Memory Performance and Cache Coherency Effects on an Intel Ne-
halem Multiprocessor System. In 18th International Conference on Paral-

http://www.gelato.unsw.edu.au/IA64wiki/lmbench3
http://www.gelato.unsw.edu.au/IA64wiki/lmbench3
http://www.malloc.de/en/
http://www.cs.virginia.edu/stream/

166 Bibliography

lel Architectures and Compilation Techniques, pages 261-270, USA, 2009.
IEEE. 18, 20

[Moore 2000] Gordon E. Moore. Readings in computer architecture. chapitre Cram-
ming more components onto integrated circuits, pages 56-59. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2000. 13

[Namyst 1995] Raymond Namyst and Jean-Frangois Méhaut. Marcel : Une biblio-
théque de processus légers. LIFL, Univ. Sciences et Techn. Lille, 1995. 38

[Namyst 1997] Raymond Namyst. PM2: un environnement pour une conception
portable et une exécution efficace des applications paralléles irrégulieres. PhD
thesis, Université de Lille 1, 1997. 23

[Nikolopoulos 2001] Dimitrios S. Nikolopoulos, Ernest Artiaga, Eduard Ayguadé
and Jesus Labarta. Fxploiting Memory Affinity in OpenMP Through Sched-
ule Reuse. SIGARCH Computer Architecture News, vol. 29, no. 5, pages
49-55, 2001. 36, 38, 179

[Nikolopoulos 2002] Dimitrios S. Nikolopoulos, Eduard Ayguadé and Constan-
tine D. Polychronopoulos. Runtime wvs. Manual Data Distribution for
Architecture- Agnostic Shared-Memory Programming Models. Int. J. Paral-
lel Program., vol. 30, no. 4, pages 225-255, 2002. 36

NVIDIA 2010| NVIDIA. What is Cuda? htt ://Www.nvidia.com/ob 'ect/what_
p J
is_cuda_new.html, 2010. 24

[Nyland 1996] Lars S. Nyland, Jan Prins, Allen Goldberg, Peter Mills, John H. Reif
and Robert A. Wagner. A Refinement Methodology for Developing Data-
Parallel Applications. In Proceedings of the Second International Euro-Par
Conference on Parallel Processing - Volume I, Euro-Par '96, pages 145—-150,
London, UK, 1996. Springer-Verlag. 53

[Omni Project 2010] Omni Project. OpenMP wversion of the NAS Par-
allel Benchmarks. http://www.hpcs.cs.tsukuba.ac. jp/omniopenmp/
download/download-benchmarks.html, 2010. 125

[OpenMP 2011] OpenMP. The OpenMP API Specification for Parallel Program-
ming. http://www.openmp.org, 2011. 23, 24, 25, 53, 76, 89, 184

[Papamarcos 1984 Mark S. Papamarcos and Janak H. Patel. A low-overhead coher-
ence solution for multiprocessors with private cache memories. In Proceed-
ings of the 11th annual international symposium on Computer architecture,
ISCA 84, pages 348354, New York, NY, USA, 1984. ACM. 18, 19

[PAPI 2010] PAPI. Performance Application Programming Interface. http://icl.
cs.utk.edu/papi/, 2010. 117

[Patterson 2009] David A. Patterson and John L. Hennessy. Computer organization
and design (4nd ed.): the hardware/software interface. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2009. 7, 13, 177

[Pilla 2011a| Laércio Pilla, Christiane Pousa Ribeiro, Daniel Cordeiro, Philippe
O. A. Navaux and Jean-Francois Méhaut. Load Balancing for NUMA plat-

http://www.nvidia.com/object/what_is_cuda_new.html
http://www.nvidia.com/object/what_is_cuda_new.html
http://www.hpcs.cs.tsukuba.ac.jp/omniopenmp/download/download-benchmarks.html
http://www.hpcs.cs.tsukuba.ac.jp/omniopenmp/download/download-benchmarks.html
http://www.openmp.org
http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/

Bibliography 167

forms. In 9th Workshop on Charm-++ and its Applications, Urbana, USA,
2011. 70, 100, 186, 199

[Pilla 2011b| Laércio Pilla, Christiane Pousa Ribeiro, Daniel Cordeiro, Philippe
O. A. Navaux, Jean-Francois Méhaut, Abhinav Bhathele and Laxmikant V.
Kalé. Improving Parallel System Performance with a NUMA-aware Load

Balancer. In International Conference on high performance computing -
HiPC, HiPC’11 (submitted), India, 2011. IEEE. 100

[Pousa Ribeiro 2009] Christiane Pousa Ribeiro and Jean-Frangois Méhaut. Mi-
nas Project - Memory affInity maNAgement System. http://pousa.
christiane.googlepages.com/Minas, 2009. 180

[PPL-Charm++ 2011] PPL-Charm++. Charm++ Parallel Programming System.
http://charm.cs.uiuc.edu/, 2011. vi, 23, 27, 96, 143, 146, 194, 196

[Ramamoorthy 1977] C. V. Ramamoorthy and H. F. Li. Pipeline Architecture. ACM
Comput. Surv., vol. 9, pages 61-102, March 1977. 13

[Ribeiro 2008] Christiane Pousa Ribeiro, Fabrice Dupros, Alexandre Carissimi, Va-
nia Marangozova-Martin and Jean-Frangois Méhaut. Ezplorando Afinidade
de Memdria em Arquiteturas NUMA. In WSCAD’08: Proceedings of the 9th
Workshop em Sistemas Computacionais de Alto Desempenho - SBAC-PAD,
Campo Grande, Brazil, 2008. SBC. 65

[Ribeiro 2009a] Christiane Pousa Ribeiro, Marcio Castro, Luiz Gustavo Fernandes,
Alexandre Carissimi and Jean-Frangois Méhaut. Memory Affinity for Hier-
archical Shared Memory Multiprocessors. In 21st International Symposium
on Computer Architecture and High Performance Computing, Sao Paulo,
Brazil, 2009. IEEE. 71, 134, 182, 188

[Ribeiro 2009b| Christiane Pousa Ribeiro, Marcio Castro, Luiz Gustavo Fernandes,
Fabrice Dupros, Alexandre Carissimi and Jean-Frangois Méhaut. High Per-
formance Applications on Hierarchical Shared Memory Multiprocessors. In
Colloque d’Informatique: Brésil / INRIA, Coopérations, Avancées et Défis,
Brazil, 2009. SBC. 137, 138, 191

[Ribeiro 2009¢| Christiane Pousa Ribeiro and Jean-Frangois Méhaut. Minas: Mem-
ory Affinity Management Framework. Research Report RR-7051, INRIA,
2009. 137

[Ribeiro 2010a] Christiane Pousa Ribeiro, Alexandre Carissimi and Jean-Frangois
Méhaut. Memory Access Characterization of OpenMP Workloads on a Multi-
core NUMA Machine. Research Report RR-7051, INRIA, 2010. 65

[Ribeiro 2010b| Christiane Pousa Ribeiro, Alexandre Carissmi and Jean-Francois
Méhaut. Memory Affinity Management for Numerical Scientific Applications
over Multi-core Multiprocessors with Hierarchical Memory. In PhD Forum
of 24th IEEE International Parallel and Distributed Processing Symposium,
US, 2010. IEEE. 69, 70, 135, 138, 189, 191

http://pousa.christiane.googlepages.com/Minas
http://pousa.christiane.googlepages.com/Minas
http://charm.cs.uiuc.edu/

168 Bibliography

[Ribeiro 2010¢| Christiane Pousa Ribeiro, Marcio Castro, Alexandre Carissimi and
Jean-Frangois Méhaut. Improving Memory Affinity of Geophysics Applica-
tions on NUMA platforms Using Minas. In 9th International Meeting High
Performance Computing for Computational Science, VECPAR, US, 2010.
LNCS. 71, 134, 188

[Ribeiro 2010d| Christiane Pousa Ribeiro, Maxime Martinasso and Jean-Francois
Méhaut. NUMA Support for the charm++ Environment. 2010. 69, 71, 97,
103, 146, 185, 196

[Ribeiro 2010e| Christiane Pousa Ribeiro, Ismael Stangherlini, Nicolas Maillard and
Jean-Frangois Méhaut. Compiling OpenMP Applications to Enhance Memory
Affinity on Hierarchical Multi-Core Machines. In 23rd International Work-
shop on Languages and Compilers for Parallel Computing, US, 2010. LNCS.
71

[Richardson 1996| H. Richardson. High Performance Fortran: history, overview and
current developments. Rapport technique TMC-261, 1996. 24, 25, 40, 180

SGI 2011] SGI. SGI NUMAIlink Interconnect Fabric. http: //WWW .sgi. COIII/
p g
products/servers/altix/numalink .html, 2011. 17

[Singh 1993] Jaswinder Pal Singh, Truman Joe, Anoop Gupta and John L. Hen-
nessy. An Empirical Comparison of the Kendall Square Research KSR-1 and
Stanford DASH Multiprocessors. In Supercomputing ’93. Proceedings, pages
214 — 225. IEEE, 1993. 12

[Snir 2010] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker and Jack
Dongarra. MPI-The Complete Reference: The MPI Core. MIT Press Cam-
bridge, 2010. 23

[Stangherlini 2010] Ismael Stangherlini. CUIA: Uma Ferramenta para a Obtengao
de Informagoes de Varidveis em Codigos C. Master’s thesis, Universidade
Federal do Rio Grande do Sul, 2010. 71, 183

[Technion 2011] Technion. Technion - Israel Institut of Technology — Ad-
vanced Cache Topics. http://webee.technion.ac.il/courses/044800/
lectures/MESI.pdf, 2011. v, 18

|[Terboven 2008| Christian Terboven, Dieter A. Mey, Dirk Schmidl, Henry Jin and
Thomas Reichstein. Data and Thread Affinity in OpenMP Programs. In

MAW °08: Proceedings of the 2008 workshop on Memory access on future
processors, pages 377-384. ACM, 2008. 43

[The BenchIT Project 2010| The BenchIT Project. Performance Measurement for
Scientific Applications. http://www.benchit.org/, 2010. 115

[Thibault 2007] Samuel Thibault. Ordonnancement de processus légers sur architec-
tures multiprocesseurs hiérarchiques : BubbleSched, une approche exploitant
la structure du parallélisme des applications. PhD thesis, Université Bor-
deaux 1, 351 cours de la Libération — 33405 TALENCE cedex, December
2007. 128 pages. 38

http://www.sgi.com/products/servers/altix/numalink.html
http://www.sgi.com/products/servers/altix/numalink.html
http://webee.technion.ac.il/courses/044800/lectures/MESI.pdf
http://webee.technion.ac.il/courses/044800/lectures/MESI.pdf
http://www.benchit.org/

Bibliography 169

[Tikir 2004] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Using Hardware Coun-
ters to Automatically Improve Memory Performance. In Proceedings of the
2004 ACM/IEEE conference on Supercomputing, SC ’04, Washington, DC,
USA, 2004. IEEE Computer Society. 41, 180

[UPC 2011] UPC. Unified Parallel C. http://upc.gwu.edu/, 2011. 24

[VIRTUTECH 2007] VIRTUTECH. Simics 3.0 — user guide for unix. 2007.
<http://www.simics.net>. 42, 131

[Wang 2009] Zheng Wang and Michael F.P. O’Boyle. Mapping parallelism to multi-
cores: a machine learning based approach. In Proceedings of the 14th ACM

SIGPLAN symposium on Principles and practice of parallel programming,
PPoPP ’09, pages 75-84, New York, NY, USA, 2009. ACM. 36, 39, 180

[Wentzlaff 2007] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao,
Bruce Edwards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John

F. Brown III and Anant Agarwal. On-Chip Interconnection Architecture of
the Tile Processor. IEEE Micro, vol. 27, pages 15-31, 2007. 16

[Wulf 1995] Wm. A. Wulf and Sally A. Mckee. Hitting the Memory Wall: Impli-
cations of the Obvious. Computer Architecture News, vol. 23, pages 20-24,
1995. 11

[Zheng 2005] Gengbin Zheng. Achieving high performance on extremely large par-
allel machines: performance prediction and load balancing. PhD thesis, De-
partment of Computer Science, University of Illinois at Urbana-Champaign,
2005. 100, 186

[Zheng 2006] Gengbin Zheng, Orion Sky Lawlor and Laxmikant V. Kalé. Multi-
ple flows of control in migratable parallel programs. In In Proceedings of

8th Workshop on High Performance Scientific and Engineering Computing
(HPSEC-06. IEEE Press, 2006. 97

http://upc.gwu.edu/

APPENDIX A

MAI1 Interface

A.1 MAi-array

/+* Functions to initialize and finalize MAix/
void mai_init(char =*filename);
void mai_final ();

/*Alloc arrays — function prototype */

voidx mai_alloc_1D(int nx,size t size item);

voidx mai_alloc_2D(int nx,int ny,size t size item);

void* mai_alloc_ 3D (int nx,int ny,int nz,size t size item);
void* mai_alloc_4D(int nx,int ny,int nz,size t size item);

/+*Free allocated arrays*/
void mai_free array(void *p);

/*mai_alloc statisticsx*/
mai_stats mai_allocinfo ();

/+* Cyclic memory policy — function prototypesk/
void mai_ cyclic(void *p);

void mai skew mapp(void *p);

void mai prime mapp(void *p,int prime);

/* Bind memory policy — function prototypesx/
void mai_ bind all(void *p);

void mai_ bind all mynode(void x*p);

void mai bind rows(void *p);

void mai_bind columns(void xp);

void mai_ bind rows mynode(void *p);

void mai_ bind columns mynode(void #*p);

/* Next—touch — function prototypex/
void mai_next touch(void x*p);

/* Migration — function prototypesx/
void mai_ migrate(void *p,unsigned long node,int nr, int startr,

int nc, int startc);
void mai_ migrate rows(void *p,unsigned long node,int nr, int start);
void mai_ migrate columns(void *p,unsigned long node,int nc, int start);
void mai_ migrate scatter(void *p,unsigned long nodes);
void mai_ migrate gather(void #p,unsigned long node);

/+* Compute array blocks — function prototypex/

172 Appendix A. MAIi Interface

void mai subarray(void xp,int dim|[]);
void mai_ bytes(voidx p,size t bytes);

/+*data distribution — function prototype */
int mai regularbind (void x*p);
int mai_ irregularbind(void *p,size t bytes,int node);

/*nodes settings — function prototypex/

void mai_ nodes(unsigned long nnodes, int xnodes);
float mai nodebandwidth(int node);

float mai numafactor(int nodel, int node2);

float mai bandwidth(int nodel, int node2);

/*Page information — function prototypex/

void mai_ print_ pagenodes(unsigned long xpageaddrs,int size);

int mai number page migration(unsigned long xpageaddrs,int size);
double mai get time pmigration ();

/* Thread information — function prototypex/

void mai_print_ threadcpus();

int mai number thread migration(unsigned int xthreads,int size);
double mai_ get time tmigration ();

/+*Memory placement informationsx/
void mai_get log();

void mai mempol(void* ph);

void mai_ arraynodes(void* ph);

A.2 MAi-heap

/+* Functions to initialize and finalize MAix/
void mai init(int MEMPOL);
void mai_final ();

/* Functions to allocate datax/
voidx mai_ malloc(size t size);
void* mai_ malloc_local(size t size);

/*Memory Policies for a Heapx/

int mai_ bind local(mai_ heap t *h,int nid);

int mai_ bind all(mai_ heap t *h,int nid);

int mai cyclic_neighbor(mai_heap t *h,int nid);
int mai_ cyclic(mai_heap t xh);

int mai_ skew mapp(mai_ heap t xh);

int mai prime mapp(mai_heap t xh, int prime);

/*Memory Policies for a memory rangex/
int mai cyclic(void *ptr, size t size, int *nodemask, int nnodes);
int mai cyclic_block(void *ptr,size t size, int xnodemask, int nnodes);
int mai bind(void *ptr, size t size, int node);
int mai_ bind block(void xptr, size t size,int xnodemask, int nnodes);
int mai prime(void xptr, size t size, unsigned long xnodemask,

int nnodes, int prime);

A.2. MAi-heap 173

int mai prime block(void xptr, size t size, int *nodemask,

int nnodes, int prime);
int mai skew(void *ptr, size t size, int #nodemask, int nnodes);
int mai_ skew block(void *ptr, size t size, int *nodemask, int nnodes);
int mai random(void xptr, size t size, int xnodemask, int nnodes);
int mai_ random block(void *ptr, size t size, int xnodemask, int nnodes);
int mai_ next touch(void xptr,size t size);

/xstatistics of the memory allocatorx/
void mai_ HeaplInfo ();
int print mem affinity ();

APPENDIX B

Extended Abstract in French

B.1 Introduction

Aujourd’hui, de nombreuses applications de calcul provenant de différents do-
maines scientifiques (géophysique, climatologie, physique des matériaux, etc) exigent
des temps de réponse faible et de grandes capacités en mémoire. Les entreprises
et organisations développant et utilisant ces applications se doivent d’acquérir des
plates-formes de calcul & haute performance (HPC1!). Un type de plate-forme qui
rencontre un grand succés auprés des entreprises est le serveur de calcul multipro-
cesseurs a mémoire partagée (SMP?2). Avec l'avénement des technologies de pro-
cesseurs multi-cceurs, les serveurs de calcul sont devenus des machines multipro-
cesseurs et multi-cceurs. Les différents cceurs des serveurs se partagent les accés a la
mémoire globale et disposent de plusieurs niveaux de cache pour réduire la latence
mémoire.

La tendance actuelle est de voir le nombre de coeurs dans les processeurs aug-
menter. Les serveurs de calcul SMP disposent d’un nombre de cceurs de plus en plus
important. Tous ces ccoeurs sont en compétition pour 'accés aux données stockées
en mémoire. La contention mémoire constitue un des problémes & appréhender sur
ce type d’architecture. Pour faire face a ces problémes de contention mémoire, les
serveurs multiprocesseurs sont dotés d’un espace hiérarchique de mémoire de type
NUMA 3. Chaque processeur ou groupe de processeurs dispose d’un banc de mé-
moire. La mémoire du systéme est constituée de ’ensemble des bancs mémoires
associés a chaque processeur ou groupe de processeur. Un processeur peut accéder,
soit & des données stockées sur son banc local de mémoire, soit & un banc de mé-
moire distant. Une des problématiques associées & cette hiérarchie mémoire consiste
a exploiter au mieux cet espace distribué de mémoire (répartir les données sur les
bancs mémoire) et aussi & réduire les temps d’accés & ces données.

Pour obtenir de bonnes performances sur ces architectures multiprocesseurs a
mémoire hiérarchique, il est indispensable de déterminer un placement judicieux
des threads sur les processeurs et coeurs disponibles, mais également un placement
des données des applications sur les différents bancs mémoire. Il s’agit donc de
pouvoir minimiser la latence d’accés aux données et de maximiser 'utilisation de la
bande passante mémoire. Cela constitue le sujet central de cette thése.

Les constructeurs informatiques fournissent des systémes d’exploitation et des

1. High Performance Computing
2. Symetric MultiProcessing
3. Non Uniform Memory

176 Appendix B. Extended Abstract in French

environnements de programmation ne permettant d’exploiter qu'une partie du po-
tentiel de performance de leurs plates-formes. Aucune solution n’est proposée aux
développeurs pour optimiser le placement efficace des threads et des données sur la
hiérarchie mémoire. Les développeurs doivent implémenter leurs propres stratégies
de placement. Ces stratégies sont souvent fortement liées aux caractéristiques des
plates-formes. Un des objectifs est également la portabilité des performances, c’est
a dire a que les stratégies de placement puissent s’adapter aux caractéristiques des
plates-formes et de leurs hiérarchies mémoire.

B.2 Objectifs et contributions de la thése

En raison des problémes décrits précédemment, il est important de compren-
dre I'impact de 'affinité mémoire sur les applications paralléles. Ainsi, I’étude des
solutions de 'affinité mémoire de 1’état de I'art pour ces plates-formes NUMA est
important pour identifier les problémes de telles solutions. On remarquera au fil des
chapitres que la plupart des outils disponibles pour contréler I’affinité mémoire n’ont
pas été standardisés et ne sont pas disponibles sur les plates-formes actuelles. C’est
pourquoi ces solutions demandent un développement complexe en transformant le
code source pour prendre en compte des caractéristiques de la plate-forme NUMA.
En plus, les environnements de programmation ne fournissent pas les mécanismes
pour controler I'affinité mémoire.

Comme les applications paralléles ont des caractéristiques et des besoins dif-
férents, un placement efficace des données doit étre réalisé afin d’optimiser affinité
mémoire. Par conséquent, il faut impérativement adapter la solution pour qu’elle
corresponde & la machine et & ses caractéristiques, ainsi qu’aux caractéristiques
de I'application. Nous proposons un environnement de programmation pour gérer
I’affinité mémoire sur des plate-formes multi-coeur avec un espace mémoire NUMA.
Cet environnement de programmation fournit le support nécessaire pour exprimer
laffinité des données a différents niveaux (par exemple pour les variables globales
ou les variables allouées dans le tas). Lors de I'exécution de I'application, cet en-
vironnement interpole les informations sur le comportement de I'application et les
informations sur ’architecture. De cette fagon, les développeurs peuvent produire
des applications qui prennent en compte les accés mémoire et les caractéristiques
NUMA des plates-formes.

Les principales contributions de cette thése sont: (i) un modéle qui définit et car-
actérise une plate-forme NUMA; (ii) la conception et la mise en ceuvre d’un environ-
nement de programmation pour gérer ’affinité mémoire des applications nommé Mi-
nas; (iii) I'intégration des mécanismes dans différentes applications paralléles (basées
sur OpenMP, Charm++, AMPI et OpenSkel) et les systémes de programmation par-
allele (Charm++ et OpenSkel).

B.3. Contexte scientifique 177

B.3 Contexte scientifique

Cette thése a été développée dans le cadre du projet ANR NUMASIS? et dans
le contexte du Laboratoire commun INRIA Université de I'Illinois, 'INRIA et la
NCSA®. Ces organisations et entreprises ont collaboré pour concevoir des solutions
efficaces pour le calcul haute performance.

Le contexte scientifique du projet NUMASIS est le calcul haute performance
avec des applications issues du domaine de la géophysique. Considérant ce contexte,
les problémes viennent de I'optimisation d’applications qui simulent la propagation
d’ondes sismiques sur les plates-formes NUMA. Les résultats obtenus dans ce pro-
jet ont contribué & BULL, au BRGM et au CEA dans la conception de nouvelles
solutions pour les machines multi-coeur avec des caractéristiques NUMA.

Le laboratoire commun avec Urbana scientifique s’intéresse aux défis posés par
les logiciels pour le calcul petaflopique. Les problémes qui sont étudiés par cette col-
laboration sont liés & la modélisation et I'optimisation des bibliothéques numériques,
a des questions de tolérance aux pannes et des nouveaux modéles de programmation.
Les résultats obtenus par cette initiative ont permis aux deux pays d’améliorer le
logiciel pour les plates-formes de haute performance pétaflopiques.

Le domaine de recherche de cette thése se situe dans le contexte du Laboratoire
d’Informatique de Grenoble et de I’équipe de recherche Mescal. Notre role est 1ié a
I’étude de I'impact de 'affinité mémoire et & effectuer des propositions de solutions
pour la gestion de I’affinité mémoire dans les applications paralléles.

B.4 Etat de ’art matériel

La tendance actuelle dans le calcul haute performance pour optimiser les per-
formances est d’augmenter le nombre de coeurs par processeur disponibles sur les
machines & mémoire partagée. La conception des puces multi-cceur et les efforts pour
surmonter les limitations matérielles des multiprocesseurs symétriques (SMP) ont
conduit a ’émergence des architectures hiérarchiques. Ces architectures sont con-
struites autour d’une topologie complexe et d’un sous-systéme de mémoire hiérar-
chique. Dans ce chapitre, nous présentons I’état de I’art sur des architectures multi-
coeurs avec mémoire partagée hiérarchique.

Nous définissons comme architecture & mémoire partagée hiérarchique, toute
plate-forme multiprocesseur qui dispose: (i) d’unités de calcul qui partagent une
mémoire globale (ii) et d’unités de calcul et mémoire organisées de fagon hiérar-
chique. Dans ce contexte, des exemples de machines hiérarchiques sont: UMA (Uni-
form Memory Access) machines, NUMA (Non-Uniform Memory Access) machines,
COMA (Cache Only Memory access machines) et NUCA (Non-Uniform Cache Ac-
cess) [Patterson 2009].

4. Adaptation et optimisation des performances applicatives sur les architectures NUMA: Etude
et mise en ouvre sur des applications en SISmologie - URL: http://numasis.gforge.inria.fr
5. laboratoire commun pour le calcul petaflopique - URL: http://jointlab.ncsa.illinois.edu/

178 Appendix B. Extended Abstract in French

Dans cette thése, nous nous sommes particuliérement intéressés & des architec-
tures hiérarchiques avec mémoire partagée qui présentent des cotits d’accés mémoire
non uniformes: les plates-formes NUMA. Ces plates-formes présentent des topologies
complexes et sous-systémes de mémoire hiérarchique, qui doivent étre bien exploités
afin d’obtenir un maximum de performance applicative.

Le concept de processeur multi-coeur est une tendance forte dans les différents
domaines de l'informatique et des architectures, spécialement dans le calcul haute
performance (HPC). Ce concept constitue une réponse a quelques questions telles
que l'exécution paralléle d’instructions sur une puce et la question de la consom-
mation énergétique|Liu 2009]. Ces problémes sont en partie résolus par le concept
multi-cceur, car elle fournit plus des mémoires cache, les pipelines et des unités de
calcul qui réduisent aussi la consommation. Toutefois, certains problémes demeurent
et sont liés aux caractéristiques des multi-cceurs. Par exemple, le probléme des accés
a la mémoire principale est une question importante.

Dans le contexte de plates-formes hiérarchiques & mémoire partagée, les pro-
cesseurs multi-cceur ont été utilisés comme brique de base. En utilisant les pro-
cesseurs multi-cceur, les ingénieurs et chercheurs des constructeurs ont concu des
architectures puissantes & mémoire partagée avec des dizaines voire des centaines
de coeurs. Le probléme de performance pour 'accés & des données apparait lorsque
tous ces coeurs ont besoin de données qui ne sont pas présentes dans les différents
caches. Ces données sont donc stockées dans la mémoire globale partagée et I'accés
a ces données peut consommer de nombreux cycles CPU en raison de potentielles
connections & la mémoire globale. Pendant les cycles de CPU ces coeurs sont inact-
ifs et en attente de données. Ces cycles d’attente des données sont une des sources
principales d’inefficacité des applications scientifiques.

Une plate-forme NUMA est un systéme multiprocesseur dans lequel les éléments
de calcul sont connectés & plusieurs bancs de mémoire, physiquement distribués.
Bien que la mémoire soit physiquement distribuée, elle est percue par les unités
de calcul et le systéme d’exploitation comme une mémoire partagée unique. Sur
ce type d’architecture mémoire, le temps passé pour ’accés aux données est condi-
tionné par la distance entre le processeur et le banc mémoire dans lequel les données
sont physiquement stockées [Carissimi 1999|. Les processeurs utilisées dans les ar-
chitectures NUMA disposent généralement de plusieurs niveaux de cache, afin de
réduire le temps d’accés aux données. Pour cette raison, la cohérence de cache
des unités de calcul est mis en ceuvre dans les plates-formes NUMA actuelles,
conduisant & des plates-formes NUMA cache-cohérente (ccNUMA). Un des avan-
tages de I'architecture NUMA est qu’elle combine une bonne évolutivité par rap-
port a la mémoire avec un modéle de programmation facile. Dans ces machines,
un réseau d’interconnexion efficace et spécialisé permet de relier un nombre élevé
de processeurs et de cceurs. Puisque la mémoire est logiquement partagée, les pro-
grammeurs peuvent utiliser des modéles de programmation & mémoire partagée a
base de threads pour développer des applications paralléles.

Pour les machines multi-cceur avec une architecture NUMA, certains supports
matériels sont inclus dans la machine pour manipuler le mémoire partagée et physique-

B.5. Etat de I’art logiciel 179

ment distribuée. Ce matériel peut étre mis en ceuvre comme un contréleur de
mémoire intégré a la puce des processeurs. Ce principe a été adopté par plusieurs
constructeurs car il évite une gestion centralisée du traitement des demandes d’acces
en mémoire [Awasthi 2010].

Node #1 Node #2 Node #1 Node #2
CPU CPU PU PU
CaChe Cache cache cache | cache || cache
e e
'DRAM | 'DRAM | DRAM DRAM DRAM DRAM
1/0 Controller 1/0 Controller

(a) (b)

Figure B.1: Plate-forme Multi-coeur NUMA: (a) Contréleur Mémoire Unique (b)
Controleur Mémoire Multiple.

Les processeurs multi-coeurs, comme Nehalem d’Intel et Opteron d’AMD con-
stituent les briques de base des plates-formes NUMA. La figure B.1 (a) présente
une plate-forme NUMA avec un seul contréleur mémoire par noeud NUMA et (b)
présente une architecture NUMA avec plusieurs contréleurs mémoire par nceud

NUMA.

B.5 Etat de l’art logiciel

Dans ce chapitre, nous abordons les problémes logiciels liés & la gestion de
I'affinité mémoire sur des plates-formes multi-cooeur NUMA. Le chapitre se poursuit
par I’état de 'art au niveau des logiciels, soulignant les inconvénients du support
d’affinité mémoire pour les machines actuelles. Nous présentons les approches et le
support logiciel pour faire face a la gestion de I'affinité mémoire sur les machines a
mémoire partagée. Enfin, nous présentons une conclusion sur les différentes solutions
logicielles pour gérer I'affinité mémoire.

Ces solutions ont été congues a différents niveaux de la pile logicielle tels que celui
des bibliothéques, compilateurs, commande shell, support exécutif, et allocateur
mémoire. Elles peuvent étre classifiées en trois catégories: placement des téches,
placement des données ou un mixte des deux.

L’ordonnancement de taches améliore I’affinité mémoire en rapprochant les taches
de leurs données et d’autres taches avec lesquelles elles interagissent [Nikolopoulos 2001].
Avec ce type de solution, le placement peut étre réalisé de fagon statique, avant

180 Appendix B. Extended Abstract in French

I’exécution de ’application ou de facon dynamique, pendant I’exécution de I’application.
Dans le placement dynamique, 'ordonnanceur peut utiliser les informations d’exécution
de l'application sur la plate-forme pour placer les taches [Wang 2009, Broquedis 2010a].

Sur les machines NUMA, les stratégies basées sur un placement des données
peuvent également étre utilisées afin d’améliorer I'affinité mémoire. Ces stratégies
sont généralement mises en ceuvre en utilisant des politiques mémoire spécialisées
pour des machines NUMA. Une politique mémoire définit comment les données sont
placées sur les bancs mémoire de la machine et la granularité utilisée pour ce place-
ment. Elle vise & améliorer la localité des données pour une équipe de taches, et
dans le méme temps, fournit une bande passante efficace pour accéder aux données
[Richardson 1996, Benkner 2002, Bircsak 2000, Tikir 2004]. En revanche, les alloca-
teurs de mémoire utilisent la topologie machine pour effectuer chaque allocation de
données. Ce type de solution optimise la latence d’accés aux données en les allouant
dans le neede de la tache [Kleen 2005].

L’utilisation du placement des données et taches comme une solution pour I'affinité
mémoire est basée sur une redistribution de taches et de données en considérant les
modes d’accés aux données. A notre connaissance, une seule solution a été pro-
posée dans ce contexte et elle est décrite dans [Broquedis 2010a]. Dans ce travail,
les auteurs combinent deux solutions, MAMI et ForestGOMP |[Brice Goglin 2009]
pour effectuer le placement des taches et des données pour améliorer I'affinité mé-
moire. Cette approche exige des développeurs une connaissance de l'application
afin de corriger le placement des données. Les développeurs doivent modifier le code
source de l'application, afin d’informer le support executif ForestGOMP ou les ac-
cés aux données ont été effectués. De cette fagon, ForestGOMP et MAMI peuvent
dynamiquement replacer les taches et les données afin de réduire la latence. Cette
approche exige l'intégration de nouveaux mécanismes dans le support exécutif du
langage paralléle.

B.6 Minas framework

Minas [Pousa Ribeiro 2009] est un intergiciel efficace et portable qui permet aux
développeurs de gérer I'affinité mémoire de maniére explicite ou automatique sur
les grandes plates-formes de calcul NUMA. Dans ce travail, l'efficacité est liée aux
différents moyens pour controéler I’affinité mémoire et des performances similaires sur
les différentes plates-formes NUMA. Par la portabilité, nous entendons I’abstraction
de l'architecture et le compilateur et des modifications minimes ou inexistantes dans
le code source des applications.

Cet interlogiciel est composé de trois modules: Minas-MAi, Minas-MApp et
numarch. Minas-MAi est une interface de haut niveau qui est responsable de la mise
en ceuvre du mécanisme explicite. Minas-Mai permet le controle de I'affinité sur les
applications alors que le pré-processeur Minas-MApp met en ceuvre un mécanisme
automatique par une analyse du code source. Le dernier module, numarch, est quant
a lui, chargé d’extraire les informations de la plate-forme cible. Ce module peut étre

B.6. Minas framework 181

utilisé par le développeur pour consulter des informations sur I'architecture et il est
également utilisé par Minas-MAi et Minas-MApp.

Minas se distingue des environnements concurrents par le fait qu’il se focalise
sur 'optimisation de 'affinité mémoire [Joseph 2006, Kleen 2005]. Quatre aspects
sont mis en avant dans Minas. Tout d’abord, Minas offre la portabilité du code
source. Avec numarch qui fournit I’abstraction d’architecture, le développeur n’a pas
besoin de spécifier les nceuds qui seront utilisés par Minas pour placer les données.
Deuxiémement, Minas est flexible car il supporte deux mécanismes distincts pour
controler 'affinité mémoire (explicite et automatique). Troisiémement, Minas est
congu pour des applications basées sur les tableaux. Ce choix se justifie par le
fait que cette structure de données représente généralement les variables les plus
importantes dans les calculs des applications du HPC. Enfin, Minas offre plusieurs
politiques mémoire pour traiter les applications réguliéres (taches accédant toujours
au méme ensemble de données) et les applications irréguliéres (taches accédant un
ensemble non connu a la compilation de données).

Symbols
Application . .
Source Code —» Automatic Tuning
— Explicit Tuning

/Minas \\

Y

MA ' NUMA-aware

"| Source Code

°
©
y

\ : NumArch /

Figure B.2: Schéma du Minas.

La figure B.2 montre le schéma des approches de Minas pour controler I'affinité
mémoire. Le code de ’application source d’origine peut étre modifié, soit en utilisant
le mécanisme explicite (fléches rouges), soit en utilisant le mécanisme automatique
(fleches noires). Dans le cas du mécanisme explicite le programmeur doit modifier
le code source de 'application manuellement dans le but d’améliorer I'affinité mé-
moire. Dans le cas du mécanisme automatique le code source des applications est
automatiquement changé par Minas. La décision entre le mécanisme automatique
et explicite dépend des connaissances du développeur sur 'application et la plate-
forme. Une approche possible est d’utiliser le mécanisme de MApp et de vérifier si
les performances sont suffisantes. Si le gain n’est pas satisfaisant, les développeurs

182 Appendix B. Extended Abstract in French

peuvent ensuite modifier explicitement (réglage manuel) le code source des appli-
cations en utilisant MAi. Les composants MAi et MApp s’appuient sur numarch
pour récupérer une partie des informations sur la machine et ses performances du
sous-systéme mémoire.

Selon le mécanisme, numarch est utilisé pour rassembler des informations dif-
férentes de la machine. Pour le mécanisme explicite, Minas-Mai récupére de nu-
march le nombre de nceuds et de processeurs ainsi que leurs identificateurs physiques
afin d’appliquer les politiques mémoire. Dans le mécanisme automatique, MApp
regoit de numarch le facteur NUMA de la machine, la bande passante d’interconnexion,
Iinformation du sous-systéme de mémoire cache et la quantité de mémoire libre de
chaque nceud. Ces informations sont ensuite utilisées par 1’heuristique pour déter-
miner la politique mémoire appropriée pour les données. La politique mémoire
choisie sera appliquée dans 'application en utilisant les fonctions de MA:.

MAi (Memory Affinity interface) est une API (Application Programming Inter-
face) qui fournit un moyen simple de controler 'affinité mémoire [Ribeiro 2009a].
MA;i simplifie la gestion des problémes d’affinité, car elle fournit des fonctions de
niveau simple et élevé qui peuvent étre appelées dans le code source de ’application
pour placer les données sur les bancs mémoire. Toutes les fonctions de MAi sont
basées sur des structures de données comme les vecteurs ou les matrices ainsi que
structures des données dynamiques comme les listes.

Le groupe le plus important de fonctions MA7 est le groupe des politiques mé-
moire, car il est chargé d’assurer ’affinité mémoire. L’interface met en ceuvre
plusieurs politiques mémoire qui ont pour unité d’affinité les variables des appli-
cations. Les politiques mémoire peuvent étre divisées en deux groupes: bind et
cyclique. Les politiques bind vont optimiser la latence, en placant les données et
les taches aussi prés que possible. Les politiques cycliques vont optimiser la bande
passante, car elles assurent une meilleure utilisation de 'interconnexion et des bancs
mémoire.

Le groupe bind a deux politiques mémoire, bind_block et bind_all. Dans le
bind_block, les données sont divisées en blocs selon le nombre de taches qui seront
utilisées et chaque bloc est placé sur un banc mémoire de la machine. Dans bind_ all,
les données sont placées dans un ou plusieurs ensembles pour restreindre des nceuds.
Le groupe cyclique est composé de cyclic, emph skew mapp et de prime_mapp.
Dans cyclic, les données sont placées selon une distribution round-robin, en utilisant
une page de mémoire par tour. Dans leskew mapp, une page 7 est allouée sur le
neeud (i+[i/M |+1) mod M, ot M est le nombre de banc mémoire. Le prime_mapp
utilise une stratégie & deux phases. Dans la premiére phase, la politique utilise cyclic
sur (P) bancs de mémoire virtuelle, ot P est un nombre premier supérieur ou égal
a M (nombre réel de bancs de mémoire). Dans la deuxiéme phase, les pages de
mémoire mises sur les bancs de mémoire virtuelles sont réorganisées et placées sur
des bancs de mémoire réels en utilisant le politique cyclic.

MA¢ permet aussi au développeur de modifier la politique mémoire et d’appliquer
4 une variable pendant I’exécution application, permettant d’exprimer des accés
différents aux données. Enfin, tout placement mémoire incorrect peut étre optimisé

B.6. Minas framework 183

par 'utilisation des fonctions de migration de mémoire.

MApp (Memory Affinity preprocessor) est un préprocesseur qui offre un controle
transparent de ’affinité mémoire pour les applications scientifiques numériques du
HPC sur des plate-formes NUMA. MApp effectue des optimisations dans le code
source des applications en tenant compte des variables et les caractéristiques de
la plate-forme au moment de la compilation. Ses caractéristiques principales sont
sa simplicité d’utilisation (aucune modification manuelle) et s’indépendance de la
plate-forme et du compilateur.

p
MApp

Application > App. _ L | Code | NUMA-Aware

Source Code Parser “|_Info. Heuristic |_>Transform. J Source Code

Figure B.3: MApp - Processus de transformation du code.

La figure B.3 montre le schéma du processus pour améliorer 'affinité mémoire
pour les applications en utilisant MApp. Le processus commence par 'extraction
d’information des variables des programmes. Puis, le code de 'application originale
est traité par l'analyseur MApp, nommé CUIA (Code Under examlnation to re-
trieve informAtion) [Stangherlini 2010|. Ensuite, il récupére les caractéristiques de
la plate-forme & partir du module numarch. L’heuristique du module MApp utilise
ces informations pour déterminer la politique de la mémoire pour chaque variable.
Enfin, le module de transformation modifie le code source de I'application.

Le module numarch a un réle important pour Minas, car il récupére les carac-
téristiques de la machine qui sont nécessaires pour placer les données sur les bancs
mémoire. Ce module extrait les informations du réseau d’interconnexion (nombre
de liens et la bande passante), les cotlits d’accés mémoire (facteur NUMA et de la-
tence) et les caractéristiques d e architecture (nombre de noeuds, les processeurs
et sous-systéme de cache). Pour récupérer ces informations, une analyse des fichiers
du systéme d’exploitation est effectuée. Les informations récupérées sont stockées
dans des fichiers temporaires qui seront aprés utilisés par numarch.

Ce module peut également étre utilisé comme une bibliothéque, car il fournit des
fonctions de haut niveau qui peuvent étre appelées sur le code source de I'application
pour obtenir des informations sur la machine NUMA cible. La bibliothéque est
composée par un ensemble de fonctions pour récupérer des informations comme le
nombre de nceuds, la taille du cache, le total de mémoire libre sur chaque noeud, et
le nombre de coeurs par processeur. Ces informations peuvent étre utilisées par le
développeur afin d’avoir une connaissance parfaite de la topologie de la machine et
de ses caractéristiques.

184 Appendix B. Extended Abstract in French

B.7 Intégration dans les langages paralléles

Plusieurs langages paralléles sont disponibles pour programmer des plates-formes
multi-cceur & mémoire partagée. Cependant, tel que présenté dans le chapitre 3, la
plupart d’entre eux n’ont pas de support d’affinité mémoire. Pour cette raison, leur
performance peut étre limitée sur les plates-formes NUMA en raison des coiits des
accés & la mémoire. Par exemple, OpenMP [OpenMP 2011], Charm++ [Kalé 2009a]
et OpenSkel [Goes 2010b| sont des d’interfaces de programmation qui n’ont pas un
support NUMA.

Dans cette section, nous montrons comment utiliser les composants Minas sur les
interfaces paralléles pour le calcul haute performance. Pour montrer ’applicabilité
des approches de Minas et comment elles peuvent étre utilisées pour améliorer les
performances des applications paralléles sur plates-formes NUMA, nous avons sélec-
tionné deux environnements paralléle différents: OpenMP et Charm-++. Nous les
avons choisis parce que ils manquent de support NUMA, ils représentent des modéles
de programmation différents et ils peuvent fournir des informations de I’application
au moment de la compilation ou de I'’exécution. Nous présentons comment utiliser les
approches Minas pour contrdler 'affinité mémoire pour chacun des environnements
choisis.

B.7.1 OpenMP

Nous proposons un support d’affinité mémoire transparent pour OpenMP, qui
ne demande pas des changements explicites dans le code source de 'application,
ni dans linterface OpenMP et ni dans 'environnement d’exécution. Le support
automatique d’affinité mémoire pour les applications OpenMP s’appuie sur I'idée
d’utiliser les informations obtenues par le compilateur et de I'abstraction archi-
tecture pour changer le code source de ’application. Par conséquent, toutes les
composantes Minas, numarch, MAi et MApp sont utilisées pour controler I'affinité
mémoire pour les applications OpenMP. Toutefois, comme les applications OpenMP
utilisent généralement des tableaux, 'interface MAz7 utilisée pour ces applications est
le MAi-array.

numarch est utilisé par MAi-array et MApp afin de récupérer les informations de
la machine NUMA sans I'intervention du programmeur. Cela signifie que I’abstraction
de Darchitecture pour les applications OpenMP est garantie par numarch. En util-
isant les informations de ’architecture, MAi-array est capable de placer les taches
et les données sur les nceuds NUMA utilisant 'une des stratégies de placement des
taches et politiques de la mémoire présentées au chapitre 5.

Le choix de la politique mémoire que doit étre appliquée pour une variable
s’appuie sur le préprocesseur MApp. MApp analyse I'application OpenMP au mo-
ment de la compilation pour extraire des informations du code source, telles que
les variables et leurs modéles d’accés mémoire. Ce préprocesseur compare et met
en relation les informations des variables avec les caractéristiques de la plate-forme
NUMA pour produire automatiquement un code NUMA OpenMP. MApp produit

B.7. Intégration dans les langages paralléles 185

ce code en insérant des fonctions de l'interface MAi-array dans le code source de
I’application pour allouer et placer les données. Le choix de la politique mémoire
& utiliser pour chaque tableau est fait en utilisant I’heuristique introduit dans le
chapitre 4. Le code source final peut étre utilisé avec n’importe quel compilateur
qui dispose du support OpenMP.

Bien que MApp analyse I'application et les caractéristiques de la machine pour
gérer D'affinité mémoire, il peut parfois produire un code source dont les perfor-
mances sont en deca de celles attendues. MApp est basé sur une heuristique qui ne
produit pas toujours la solution optimale. De ce fait, nous permettons au program-
meur d’utiliser 'interface MAi pour modifier manuellement le code source de son
application.

B.7.2 Charm-t}-+

Le premier support que nous avons proposé pour Charm-+-+ est I'intégration
de MAi dans son support executif [Ribeiro 2010d]. MAi fournit aux programmeurs
Charm++ des politiques mémoire pour placer les données de leurs applications sur
une machine NUMA de fagon transparente. C’est & dire que les développeurs n’ont
pas besoin de modifier le code source de leurs applications. L’interface MAi pour
Charm-++ est disponible en ligne de commande, ce qui permet aux utilisateurs de
sélectionner la politique mémoire a partir d’une liste des stratégies possibles pour
une exécution de 'application.

Il est important de mentionner que pour Charm+-, nous utilisons des politiques
mémoire appliquée aux données d'une tache (Charm++ threads). L’interface MAi
place les données de une application sur les noeuds spécifiés par 'utilisateur suivant
la politique mémoire sélectionnée. Considérant les caractéristiques de Charm+-+,
nous employons trois politiques mémoire de MAi: bind all, cyclic, cyclic neighbors.
La figure B.4 montre les différences entre les politiques mémoire; les couleurs sont
utilisées pour représenter les taches et leurs données.

Cyclic Bind All Cyclic Neighbor

goono

ME

Figure B.4: Politiques mémoire pour Charm-++.

La politique mémoire bind all place les données d’une tache sur un banc de

186 Appendix B. Extended Abstract in French

mémoire physique, afin d’associer des données d’une tache au nceud ou la tache est
en train de s’exécuter. Cette politique mémoire est particuliérement adaptée pour
les applications, ot la tache alloue ses propres données et les utilise exclusivement
lors de ’exécution de 'application. Cette politique fonctionne de maniére similaire
au first-touch, la différence est que l'utilisateur peut sélectionner les bancs mémoire
qu’une tache doit utiliser pour allouer ses données et pas seulement celui du ceud
d’exécution. De cette facon, les utilisateurs peuvent par exemple exclure les bancs de
mémoire attachés a des noeuds qui effectuent des opérations d’entrées-sorties (I/0O)
qui sont relativement sollicités et moins disposés au calcul.

Le politique mémoire cyclic distribue des données sur tous les nceuds NUMA
d’une maniére cyclique alors que le cyclic neighbors répartit des données dans un
sous-ensemble de noeuds NUMA de la machine. Toutefois, cyclic neighbors va
uniquement utiliser les noeuds NUMA qui sont des voisins du noeud ou la téache
est en cours d’exécution. Dans le cas de Charm+-+, Minas ne place pas les taches
sur les processeurs de la machine. De plus, Charm+-+ dispose d’un support au
placement des taches, nous nous appuierons donc sur ce support pour placer les
taches d’une application.

Différentes approches peuvent étre utilisées pour améliorer 'affinité mémoire
sur des machines NUMA. Des allocateurs de mémoire dynamique, des politiques
de mémoire, des mécanismes pour placer des taches, un mécanisme d’équilibrage
de charge peut également étre utilisé pour améliorer I’affinité mémoire sur des ma-
chines NUMA. Le placement des taches exige une connaissance a priori des car-
actéristiques de l'application (par exemple les modéles d’accés mémoire, modéle de
communication) pour placer les taches efficacement sur la machine. Dans Charm-++
les mécanismes d’équilibrage n’ont pas une connaissance a priori des caractéristiques
de l'application. Par conséquent, nous devons utiliser des techniques de profilage.
L’utilisation d’un tel mécanisme & l'intérieur de Charm—++ exige donc une analyse
statique de 'application paralléle.

Cependant, le support exécutif du Charm++ fournit une interface d’équilibrage
de charge qui récupére des informations significatives de I’exécution d’une applica-
tion |Zheng 2005]. L’environnent d’exécution Charm++ capture les statistiques des
charges lors de I'exécution, qui peuvent étre utilisées pour améliorer ’équilibrage de
charge et, par conséquent, pour améliorer I’affinité mémoire sur les machines multi-
coeur NUMA. Cependant, il manque encore des informations sur les cotits des accés
mémoire, ce qui représente un aspect important de la plate-forme NUMA. En util-
isant 'interface de Charm+-+ et le module numarch, nous proposons un équilibrage
de charge pour les machines NUMA nommé Numal.B [Pilla 2011a].

L’équilibrage de charge Numal.B repose sur I'idée qu’il faut faire correspondre
les caractéristiques de I'application avec celles de la machine NUMA pour améliorer
I’affinité mémoire. NumalLB s’appuie sur un ordonnancement de liste du type glou-
ton, qui prend la tache plus grosse (temps d’exécution) non attribuée et 1’alloue sur
le coeur le moins chargé. Le choix de l’algorithme glouton est basé sur I’idée de
convergence rapide a une situation équilibrée en considérant d’abord les éléments
provoquant les déséquilibres. Puisque 'objectif de NumaLB est de réduire les cotits

B.8. Résultats 187

de communication, les taches seront migrées vers les processeurs proches. Afin
d’évaluer quel est le processeur le plus proche, nous proposons ’heuristique définie
par ’équation suivante:

nproc
W (k,i) = L(i) + o x (=M (k,i) + »_ (M(k,j) x NF(i,j))) (B.1)
jl=i
ou:
— W(k,i) est le poids de la chare k vers le cceur i
— L(i) est la charge du cceur i
M(k,i) est le nombre des messages envoyé entre la chare k et les chares sur le

ceeur i

— NF(i,j) est le facteur NUMA du ncede i vers le ncede j

L’heuristique repose sur I'interface d’équilibrage de charge de Charm-++ qui ex-
trait la charge de chaque cceur (L(7)) et le graphe de communication des taches. La
charge du coeur nous permet d’avoir un apercu de la fagon dont les processeurs sont
utilisés par 'application, alors que le graphe de communication donne un apercu
du placement des données sur la machine NUMA. Afin de représenter la hiérarchie
machine NUMA et sa topologie, nous utilisons le facteur NUMA (obtenu avec nu-
march) qui fournit une bonne estimation de la latence pour accéder les différents
neeuds (NF(i,7)).

L’alpha dans I’équation est utilisé pour équilibrer les différentes métriques. Pour
chaque tache, ’heuristique évalue la charge d’un coeur et la communication entre le
coeur et tache considérés. Siun ceoeur est trop lourd, les taches ne seront pas migrées
vers ce coeur si sa communication avec le coeur est trop importante (—M (k,7)). En
outre, nous considérons aussi la communication de la tache avec tous les autres coeurs
(M(k,j)). Cela est important car quand une tache migre vers un cceur différent, ses
cotits de communication avec tous les autres taches sont affectés (57 (M(k.j) x
NF(i,j))). Par conséquent, elle peut avoir un impact important dans la performance
globale de I’application. Enfin, plus W est petit, plus grane est la possibilité de k a
migrer vers le coeur .

B.8 Résultats

B.8.1 Machines multi-coeur

Afin de faire nos expériences et d’évaluer la performance de Minas, nous avons
sélectionné trois machine multi-coeur avec des caractéristiques NUMA. Dans cette
section, nous présentons ces trois machines et décrivons leurs principales caractéris-
tiques et leurs différences architecturales.

— AMDB8x2: huit dual-coeur AMD Opteron 875 processeurs. Les coeurs ont

cache privé L1 (64 KB) et L2 (1 MB) et aucune cache partagé.

— Intel4x24: seize six-coeur Intel Xeon X7460 processeurs. Chaque ccere a une

cache privée L1 (32 KB). Chaque deux coeres partagent le cache L2 (256 KB).

188 Appendix B. Extended Abstract in French

Tous les coeurs de un processeur partagent une cache L3 cache (24 MB).
— Inteldx8: quatre eight-coeur Intel Xeon X7560 processeurs. Chaque coere a
deux niveaux de cache privé, L1 (32 KB) et L2 (256 KB). Tous les ¢ ceurs de

un processeur partagent une cache L3 cache (24 MB).

Table B.1: NUMA multi-coeur machines.

Caractéristique AMDS8x2 | Intel4x24 | Intel4x8
Nombre de cceres 16 96 32
Nombre de processeurs 8 16 4
NUMA nodes 8 4 4
Clock (GHz) 2.22 2.66 2.27
Dernier niveau de cache (MB) 1 (L2) 16 (L3) 24 (L3)
DRAM (GB) 32 192 64
Bande Passante (GB/s) 9.77 4.1 35.54
facteur NUMA (Min;Max) [1.1; 1.5] [2.2;2.6] | [1.36; 3.6]

Tous les machines fonctionnent sous le systéme d’exploitation Linux (kernel 2.6.32)
avec GNU Compiler Collection et Intel C Compiler.

Le tableau B.1 résume les caractéristiques matérielles de ces machines. La bande
passante mémoire (obtenu avec du Stream - opération Triad [Mccalpin 1995]) et
Facteur NUMA sont également présentés dans ce tableau. Les facteurs NUMA sont
indiqués en utilisant des intervalles, ce qui signifie le colit minimum et maximale
aux acceés a la mémoire.

B.8.2 Evaluation des applications OpenMP

Dans cette section, nous présentons I’évaluation de performance de Minas sur
deux applications réelles de la géophysique. Ces applications permettent aux scien-
tifiques de mieux comprendre les caractéristiques d’une région géographique. Tout
d’abord, nous introduisons I'application Ondes 3D qui effectue la simulation de la
propagation des ondes sismiques [Dupros 2008, Dupros 2009, Ribeiro 2010c|. Aprés
cela, nous présentons ICTM qui permet de classifier une région géographique en
considérant ses caractéristiques |Castro 2009b, Ribeiro 2009a]. Ondes 3D et ICTM
sont des applications représentatives des besoins avec une consommation importante
de mémoire qui demande une latence faible et une forte bande passante mémoire
pour les accés mémoire.

Ondes 3D est une application paralléle qui simule la propagation des ondes
sismiques sur une région basé sur la discrétisation en différences finies [Dupros 2008,
Dupros 2009]. Elle a été développée par BRGM (www.brgm.fr) et est principalement
utilisée pour I'analyse des mouvements forts et de I’évaluation des risques sismiques.
La particularité de cette application est de considérer un domaine de calcul fini méme
si le domaine physique est sans bornes. Par conséquent, 1'utilisateur doit définir les
conditions aux limites numériques spéciales afin d’absorber 1’énergie sortante.

B.8. Résultats 189

allocate_3Darrays();

For 1 to Nx
For 1 to Ny
For 1 to Nz
init_3Darrays();

uonezifenu
- uone20||y

For 1 to Nx
For 1 to Ny
For 1 to Nz
compute_velocity();

For 1 to Nx
For 1 to Ny
For 1 to Nz
compute_stress();

dOO71 d31S JNIL

Figure B.5: Application Ondes 3D.

Ondes 3D a trois étapes principales: allocation des données, initialisation des
données et calcul de propagation (composé de deux boucles de calcul). Pendant
les deux premiéres étapes, les tableaux qui représente une simulation sont alloués
dynamiquement et initialisés. Ces deux étapes sont trés importantes parce que les
données sont physiquement touchées et placées dans les bancs mémoire de la ma-
chine. Au cours de la derniére étape, les deux boucles calculent la vitesse et le stress
de la propagation des ondes sismiques. Dans toutes les étapes, les tableaux sont
accessibles en mode écriture seule, en lecture seule et en lecture/écriture. Une autre
caractéristique importante d’Ondes 3D, est I’accés mémoire régulier aux données.
Par un accés régulier, nous voulons dire que les taches accédent toujours aux mémes
éléments des tableaux dans le méme ordre. La figure B.5 présente un schéma de la
demande avec ses trois étapes. Ondes 3D a seulement accés & la mémoire courte
distance, seulement quelques éléments du tableau sont nécessaires pour le calcul.

Nous avons réalisé des expériences avec une taille de probléme de 2,6 Go (ne
tenant pas dans les mémoires cache) et nous utilisons une téche par coeur. De plus,
nous compilons le code de I'application avec la version GCC 4.4.4. Nous comparons
le mécanisme MA: avec des solutions pour ’affinité mémoire de Linux, le first-touch,
le numactl et le libnuma. La version originale d’Ondes 3D s’appuie sur 1’allocation
dynamique de mémoire, nous ne considérons pas MApp sur ces expériences. Des
expériences avec différentes tailles du probléme et d’autres machines NUMA sont
présentées dans [Dupros 2009, Ribeiro 2010b].

En ce qui concerne les solutions Linux pour 'affinité mémoire, nous avons modifié
le code source de I'application et/ou ses paramétres exécutions. Pour utiliser first-
touch et libnuma, nous avons changé la répartition des données et l'initialisation.
Dans le cas de first-touch, nous avons deux versions, l'initialisation nommé maitre

190 Appendix B. Extended Abstract in French

Ondes 3D
30 EERTE
B Master Initialization
O Thread Initialization
s B MinassMAI | a

Execution Time ()

AMDS8x2 Intel4x24 Intel 4x8
Number of cores

Figure B.6: Temps d’execution (s) pour Ondes 3D.

et un autre nommé initialisation par les taches. Dans 'initialisation maitre (version
originale du code), seule la tache maitre initialise tous les tableaux alors que dans
I'initialisation de la tache, chaque tache initialise ses propres données (notre modifi-
cation). Pour la version avec libnuma, nous avons alloué des données avec les fonc-
tions numa_ alloc() et numa_ alloc _interleaved(). Pour le numactl, nous utilisons la
version initialisation par les taches de 'application avec 'option physcpubind pour
d’éviter tout ordonnancement des taches par Linux. De cette fagon, nous garantis-
sons une affinité mémoire parce que les taches vont toucher leurs propres données
et restent dans le nceud ou les données qu’ils ont touchée en premier. Nous avons
également utilisé 'option interleaved de numactl, afin de fournir une bonne bande
passante pour les taches.

ICTM est un modéle multi-couche pour la catégorisation des régions géographiques
qui utilise plusieurs caractéristiques de la région (relief, végétation, climat, etc.) Le
modéle a d’abord été proposé dans [de Aguiar 2004] et la version OpenMP du mod-
éle a été proposée en [Castro 2009a].

Subdivision Categorized regions

Figure B.7: Entrée and sortie de ’application ICTM.

Le nombre de caractéristiques qui devrait étre étudié par ICTM détermine le

B.8. Résultats 191

nombre de couches du modéle. Dans chaque couche, une analyse différente de la
région est effectuée. Les données d’entrée sont extraites & partir d’images satellite
(Figure B.7), dans lequel I'information est donnée sur certains points de référence
par leur latitude et longitude. Les données extraites sont représentées par une
matrice & deux dimensions de la superficie totale en petit sous-zones rectangulaires.
Afin de classer les régions de chaque couche, ICTM exécute cinq phases différentes.
Chaque phase accéde aux matrices spécifiques qui ont déja été calculées et géneére
une nouvelle matrice & deux dimensions comme résultat du calcul. Selon la phase,
les accés & d’autres matrices peuvent étre réguliers ou irréguliers |Castro 2009b.
Comme le montre la figure B.8 (a), l'algorithme utilise essentiellement des boucles
imbriquées avec des accés courtes et longues distance sur les matrices (Figure B.8
(b)) lors des phases de calcul. Les accés mémoire a courte distance sont effectuées
sur les voisins immédiats (un élément), alors que les accés mémoire & longue distance
sont effectuées en utilisant IV voisins, ot N est définie par le modéle.

ICTM Access patterns

short distance

function init():

for i « 0 to _rows do
for j « 0 to _colums do X E X |
mat _interval [i][j] « read(i, j)
y y
function conpute_interval _natrices(): Iong distance
for i « 0 to _rows do
for j « 0 to _colums do
mat _interval [i][j] « conmpute(i#l, j#1) | [P+

function conpute_status_matrices():

for i « 0 to _rows do y y
for j « 0 to _colums do
while r is inside radius do X X
mat _status[i][j] <« conpute(i#r, jzr)
4 Y
(a) (b)

Figure B.8: Application ICTM.

Nous avons effectué des expériences avec un probléme de 2 Go et nous util-
isons un tache par cceur de la machine. De plus, nous compilons le code de
Papplication avec GCC. Nous comparons les mécanismes de Minas (MAi et MApp)
avec la solution standard pour laffinité mémoire sur Linux, le first-touch. Des
expériences avec différentes tailles du probléme, d’autres machines NUMA et des
comparaisons avec d’autres mécanismes d’affinité mémoire sont présentées dans
[Castro 2009b, Ribeiro 2009b, Ribeiro 2010b].

Pour utiliser la solution first-touch et Minas MAi sur ICTM, nous avons modifié
le code source de l'application. Dans le cas du first-touch, nous avons inclus une
initialisation paralléle de toutes les matrices utilisées par ICTM. Considérant MAq,
nous avons ajouté des fonctions de l'interface pour la gestion des données telles
que mai_alloc() et politiques mémoire. Les résultats de MA¢ ont été obtenus en
appliquant la politique de la mémoire la plus adaptée pour chaque tableau. En

192 Appendix B. Extended Abstract in French

fonction de la phase d’application et la plate-forme, nous avons choisi 'une des
politiques de la mémoire, cyclic neighbors, prime mapp, skew mapp et bind block. Les
trois premiéres politiques sont idéales pour les données partagées en mode lecture
sur les plates-formes NUMA qui ont un faible facteur NUMA, car ils permettent
plus de débit pour 'accés aux données. Nous avons utilisé ces politiques pour les
matrices utilisées dans 'étape de 'intervalle. La politique mémoire bind block est
adaptée pour les phases réguliéres ol les taches accédent toujours au méme ensemble
de données. Politiques bind block sont également indiquées pour les plates-formes
avec un haut facteur NUMA, puisque dans ce cas il est important d’éviter les accés
distants. La figure B.9 (a) présente l'extrait d’ICTM avec des fonctions MAi. Dans
cet extrait, toutes les modifications ont été effectuées manuellement.

MAi MApp
mai_init(); mai_init();
mat_interval = mai_alloc_2D(_rows,_cols, mat_interval = mai_alloc_2D(_rows,_cols,
sizeof (float),FLOAT); sizeof(float),FLOAT);
mat_status = mai_alloc_2D(_rows, _cols, mat_status = mai_alloc_2D(_rows, _cols,
sizeof (float),FLOAT); sizeof(float),FLOAT);
mai_bind_rows(mat_interval); mai_cyclic(mat_interval);
mai_bind_rows(mat_status); mai_cyclic(mat_status);
function init(); function init();
function compute_interval matrices(); function_compute_ interval matrices();
//change memory policy for mat_status function compute_status matrices();
mai_skew mapp(mat_status);
function compute status matrices(); mai_final();
mai_final();
(@) (b)

Figure B.9: ICTM avec Minas: (a) version MAi (b) version MApp.

Pour la solution MApp, le code a été pré-traité avec CUIA et modifié par MApp
pour appliquer les politiques mémoire sur le code source ICTM. MApp insére dans le
code source des fonctions d’allocation et politiques mémoire pour tous les tableaux
globale partagée d’ICTM. Il ne considére pas les variables privées et les temporaires
créés au sein des fonctions d’ICTM. Pour les variables globales et compte tenu des
plates-formes, I'heuristique de MApp a sélectionné les politiques mémoire tels que
bind block et cyclic. La figure B.9 (b) présente l'extrait d’'ICTM, avec les adaptations
MApp. Nous pouvons observer que difféeremment de la version MA7, celui-ci ne
applique des politiques qu’au début de 'application. Aucune modification n’est
effectuée entre les phases de I'application.

La figure B.10 représente les accélérations pour ICTM sur les plates-formes
AMDB8x2 et Intel4x8. On peut remarquer que les mécanismes de Minas ont surclassé

B.8. Résultats 193

le first-touch solution sur la plate-forme AMDS8x2. Pour la plate-forme Intel4x8,
nous pouvons observer que MAi a obtenu les meilleurs résultats alors que MApp a
échoué pour un grand nombre de ceeurs, toutefois, sur les deux plates-formes, MApp
a présenté de meilleurs résultats que la solution first-touch.

ICTM a cing étapes différentes avec différents accés mémoire, il est donc difficile
de profiter de first-touch pour placer les données sur la machine. first-touch distribue
des données sur la machine en regardant le premier accés sur les données par des
taches. Pour cette raison, un accés mémoire différent sur n’importe quel étape de
calcul de D'application peut générer des accés les plus cotliteux ou des problémes
d’équilibrage de charge. En outre, le ICTM a une étape qui dépend de la bande
passante et first-touch ne considére que la latence pour placer les données sur les
bancs mémoire de la machine. Aprés une analyse approfondie des résultats pour
chaque étape (présenté dans [Castro 2009a, Castro 2009b]), nous avons observé que
first-touch obtient de meilleurs résultats sur les phases qui ont accés & la mémoire
réguliére de maniére similaire & la phase d’initialisation.

ICTM - AMDgx2 ICTM — Intel4x8
16 T T 30 = - T
| | Mgnas Mﬁl
,, E - O Minas
14 B Minas MAi 25 e] FirsthoucE """""" | B
| O Minas MApp |----------- ‘- B
] Firsl_ToucE

Speedup
Speedup

2 4 8 16 8 16 24 32

Number of cores Number of cores

(a) (b)

Figure B.10: Performances d’ICTM sur AMDS8x2 et Intel4x8.

Dans le graphiqueB.10 (a), nous observons que MAiet MApp ont obtenu des per-
formances similaires pour ICTM sur la machine AMD8x2. Dans ce cas, la machine
a un petit facteur NUMA (les accés a distance ne sont pas chers) et les politiques
cyclic (utilisé par MApp) fournit une bande passante beaucoup plus haut pour les
taches. On peut aussi remarquer que dans cette plate-forme, le first-touch ne passe
pas a l’échelle lorsqu’on augmente le nombre de taches. Cette plate-forme a des
problémes de bande passante et avec un grand nombre de cceurs, il est important
de fournir aux taches des bonnes performances pour accéder aux données. La fig-
ure B.10 (b) montre que le mécanisme MAi a obtenu des bonnes performances et
d’évolutivité pour tous les nombre de coeurs. MApp n’a pas obtenu de bons résultats
sur le Intel4x8 parce que son heurietique considére que les politiques standard cyclic
et bind block. 11 ne fait pas usage d’autres politiques mémoire cycliques comme skew
mapp, cyclic neighbors (utilisé dans le Minas MAi solution).

194 Appendix B. Extended Abstract in French

B.8.3 Evaluation sur les applications Charm+-+

Dans cette section, nous présentons ’évaluation des performances des deux mé-
canismes d’affinité mémoire développés pour le systéme paralléle Charm—++ en util-
isant des composants Minas. Dans notre évaluation de performance, nous utilisons
trois benchmarks de Charm++, le kneighbor, le 2D moléculaire et le jacobi 2D
[PPL-Charm++ 2011]. Le kneighbor et 2D moléculaire nous permettre d’évaluer
les placements des données de MAi (+ maffinity) pour des applications avec des
caractéristiques différentes (la consommation mémoire et la communication) et des
différentes exigences (la bande passante mémoire et la latence). Le jacobi est utilisé
pour évaluer la performance du équilibreur de charge NUMA proposé dans cette
these. Il présente des caractéristiques de déséquilibre de charge. En outre, Jacobi a
un rapport important de communication et de calcul. Pour cette évaluation, nous
utilisons les trois plates-formes NUMA décrites dans le chapitre B.8.1 et charm+-+
6.2.0 avec une installation multi-cceur.

Pour les résultats suivants, nous avons utilisé une tache par coeur sur toutes les
exécutions. Nous comparons les résultats obtenus avec le mécanisme +maffinity a
ceux obtenus par l'utilisation du mécanisme +setcpuaffinity [Mei 2010].

Kneighbor Kneighbor
170 Average Time Average Time
& w/o maffinity - with maffinity 112 & w/o maffinity --with maffinity
168 110
> —~ 108
[2]
e 166'¢.’/43'—£:>' = 106
g 164 © 104
£ E 102
= 162 [
100
160 98
16 64 256 1024 4096 16 64 256 1024 4096
Message size (Bytes) Message size (Bytes)
(a) (b)

Figure B.11: Temps d’execution (us) Kneighbor: (a) AMD8x2 (b) Intel4x8.

Dans la figure B.11, nous pouvons observer que pour le kneighbor que ’exécution
avec affinité mémoire a obtenu de meilleurs résultats en moyenne pour les deux ma-
chines avec des tailles de message différent. Toutefois, les gains sont plus expressifs
dans la machine Intel4x8 NUMA (jusqu’a 8%). Dans cette machine le facteur NUMA
est plus élevé et, par conséquent, I'impact de I’amélioration de I’affinité mémoire est
plus important. Pour ce critére et compte tenu des machine sélectionnées, il est
important de réduire la latence pour obtenir des données. Pour ces expériences,
nous avons utilisé le support d’affinité de CPU de Charm-++ et puis, nous avons
également placé des données sur le noeud ou les taches sont en cours d’exécution.
Par conséquent, la performance a été meilleure, car nous avons amélioré la localité
des données.

La figure B.12 indique la durée moyenne pour kneighbor lorsqu’il est exécuté sur
la plate-forme Inteldx24. Pour ces expériences, nous avons utilisé 24 et 64 coeurs

B.8. Résultats 195

Kneighbor
Iteration Average Time
350 - . .
B w/o maffinity B with maffinity
300
250

N
o
o

Time (ms)
o
=)

100

50

24

Number of Cores

Figure B.12: Temps d’execution Kneighbor sur Intel4x24.

et les tailles des messages de 1024 octets. Nous pouvons observer que les résultats
avec l'affinité mémoire sont similaire & sans affinité pour les 24 coeurs. Dans ce
cas, 'application s’exécute dans un seul nceud NUMA et, par conséquent, aucune
amélioration peut étre générée par l'utilisation de +maffinity. Toutefois, pour
les 64 cceurs nous constatons un amélioration jusqu’a 6%. -+maffinity définit les
neceuds et la politique qui doivent étre utilisés pour 'exécution & fin de réduire les
pénalités NUMA.

Dans le tableau B.2, nous présentons les temps d’exécution d’une étape (ms)
de moléculaire 2D lorsqu’il est exécuté avec +setcupaffinity et +maffinity. En
général, +maffinity a présenté quelques légéres améliorations par rapport a +setcu-
paffinity, jusqu’a 5% de gains. Le meilleur résultat a été obtenu sur la machine
NUMA Intel4x8 lorsque quatre nceuds de la machine ont été utilisés. La différence
de temps d’itération est principalement liée a la réduction des accés a distance ef-
fectués simultanément par les tches sur le méme banc mémoire. L’utilisation de
la politique cyclic neighbors nous a permis d’assurer un meilleur équilibrage de la
charge des pages mémoire sur les bancs mémoire. En utilisant cette politique des
pages mémoire sont plus disponibles au méme temps pour des accés simultanés.

Table B.2: Temps d’execution (ms) - une iteration Molecular 2D

| AMD8x2 \ Intel4x8
8 Coeurs | 16 Ceoeurs | 16 Coeurs | 32 Coeurs

w/o maffinity | 131.46 68.84 1083.74 698.67
maffinity 125.08 67.43 1038.80 692.06

196 Appendix B. Extended Abstract in French

Molecular 2D
Time per Step

70 B w/o B with
60 maffinity maffinity

50
40
30
20
10

Time in ms

24 64
Number of Cores

Figure B.13: Temps moyen d’itération pour Molecular 2D sur Intel4x24.

La figure B.13 montre le temps par étape pour le Moléculaire 2D sur la plate-
forme Inteldx24. Dans ces expériences, nous avons utilisé 24 et 64 cceurs. Les
résultats obtenus avec +maffinity pour les deux nombre de coeurs ont surmonté
les performances obtenues sans le support d’affinité de mémoire (jusqu'a 12% de
gains). Compte tenu des caractéristiques de I'application, nous avons appliqué le
politique cyclic neighbors qui distribue les données sur les bancs mémoire voisins.
Cette politique s’adapte bien & la répartition du travail par défaut utilisé pour cette
application qui est une stratégie de type round-robin. Plus de résultats avec le
+maffinity sont présentés dans [Ribeiro 2010d].

Nous présentons maintenant I’évaluation de ’équilibreur de charge pour les ma-
chines NUMA proposé dans cette thése. Nous comparons les résultats obtenus avec
NumalLB a ceux obtenus sans équilibrage de charge et avec deux autres 1’équilibreur
de charge, le Metis [Karypis 1995] et Greedy [PPL-Charm-++ 2011].

Similaires & Numal.B, I’équilibreur de charge Metis considére également les cotits
de communication pour équilibrer la charge entre les noyaux de la machine. Il
utilise des mécanismes de partition de graphique de la bibliothéque Metis pour
créer un schéma qui représente la communication. Contrairement a cette stratégie,
I’équilibreur de charge Greedy ne tient pas compte des caractéristiques de la commu-
nication pour effectuer ’équilibrage de charge. Sa stratégie est d’envoyer les charges
les plus lourdes sur le processeur le moins chargé, jusqu’a ce que I'équilibrage de
charge soit atteint. Nous avons d’abord décrit la performance globale obtenue avec
NumaLB et aprés nous I’avons comparée avec les résultats obtenus pour des autres
équilibreurs de charge. Aprés cela, nous présentons des statistiques de Numal.B
qui nous permettent d’évaluer les colits généraux pour extraire la topologie de la
machine.

La figure B.14 montre les accélérations pour le Jacobi 2D avec et sans 1’équilibreur

B.8. Résultats 197

AMD8x2 Intel4x8

2
12 - NullLB -¢- NumalLB ~-NullLB ¥ NumalB

Speedup

Speedup
N S (o) [e0)

2 4 8 16 2 4 8 16 24 32
Number of Cores Number of Cores
(a) (b)

Figure B.14: Jacobi 2D Speedups: (a) AMD8x2 (c) Intel4x8.

de charge Numal.B. Nos résultats ont montré que I’'équilibreur de charge NumalLB
obtient des améliorations de performances allant jusqu’a 68%, avec une moyenne de
24%, sur une version sans équilibreur de charge pour Jacobi 2D sur des machines
NUMA. Nous pouvons observer que sur les deux machines, Jacobi a présenté une
meilleure évolutivité avec I’équilibreur de charge NumalLB. Dans le cas NumaLB, les
migrations des objets en considérant le facteur NUMA évite toute communication a
longue distance entre les taches. Pour cette raison, I'impact NUMA sur I’exécution
d’application est réduit.

Nous avons observé le méme comportement sur les deux machines, mais dans
le Intel4x8 I'amélioration des gains est plus élevée parce qu’il présente un haut fac-
teur NUMA. Comme les accélérations ont été calculées en considérant les temps
d’exécution de Jacobi 2D, ils nous permettent de confirmer que les coiits généraux
pour extraire la topologie machine ne dégradent pas la performance globale de
I’application. En outre, ces résultats nous permettent également de confirmer que
la stratégie NumalLB a un temps de réponse réduit. Par conséquent, ’équilibrage
de charge est effectué sans un impact important sur la durée d’exécution globale des

applications.
1 AMD8x2 Intel4x8
B MetisLB B GreedyLB [0 NumalLB ! B MetisLB B GreedyLB [0 NumalLB
10 10
o 8 o 8
3 3 6
n 4 o 4
w W e M
. N o, Il
2 4 8 16 2 4 16 24 32
Number of Cores Number of Cores
(a) (b)

Figure B.15: Jacobi 2D Speedups: (a) AMDS8x2 (c) Intel4x8.

198 Appendix B. Extended Abstract in French

Afin de vérifier efficacité de NumaLB, nous avons également comparé ses per-
formances avec MetisL.B et GreedyLLB sur le AMD8x2 et machines Intel4x8.

La figureB.15 présente 1'accélération obtenue avec Numal.B, MetisLLB et GreedyLB
pour Jacobi 2D. Dans ’ensemble, la stratégie NumaLB a joué jusqu’a 16% de mieux
que I’équilibreur de MetisLLB. Malgré MetisLLB considére les caractéristiques de com-
munication de I'application pour effectuer I’équilibrage de charge, il ne prend pas
en compte la topologie de la machine sur sa stratégie. MetisL.LB ne peut pas prendre
en compte les cotits de la latence d’accés d’une plate-forme NUMA. Opposé a la
comparaison avec MetisLB, par rapport a 1’équilibreur de charge GreedyLB, Nu-
maLB a présenté des performances similaires. Dans le cas de la machine AMD8x2,
cela est d & un facteur NUMA petit. Dans cette machine, le temps d’accés pour
les demandes de données a distance sont faibles quand comparé avec des demandes
de données locales. La machine Intel4x8 dispose d'un grand cache L3 partagé qui
favorise I’équilibrage de charge de GreedyLB. Les grandes caches L3 partagé sur la
machine Intel4x8 réduit I'accés 4 la mémoire locaux et distants. Par contre, Nu-
mal.B n’a pas diminué les performances de Jacobi 2D et pour un grand nombre de
coeurs il a présenté de meilleurs résultats.

Table B.3: Statistiques d’exécution.

| | AMD8x2 | Inteldx8 |

‘ ‘ Temps d’Init. (s) ‘ Strategie (ms) ‘ Temps d’Init. (s) ‘ Strategie (ms) ‘
MetisLLB 0.22 0.502 0.106 0.549
GreedyLB 0.17 0.055 0.101 0.063
Numal.B 0.19 0.301 0.100 0.264

La principale contribution de cette thése dans la conception de I'équilibreur de
charge NumaL.B est la représentation de la hiérarchie et la topologie NUMA de la
machine fournie par le module numarch de Minas. Par conséquent, il est également
important d’évaluer les surcofits imposés par numarch pour extraire les informations
de la machine. Pour ce faire, nous avons choisi deux indicateurs de performance, le
temps d’initialisation pour charger les informations de la machine et le temps pris
par Numal.B pour exécuter sa stratégie.

Tableau B.3 rapporte chacun de ces paramétres pour MetisLB, GreedyLB et
NumaLB. Nous pouvons observer que le temps passé par NumalLB pour initialiser
I’équilibreur de charge est réduit de 13% par rapport au temps dont le MetisLB et
augmenté de 13% par rapport au temps de la GreedyLB. Considérant le temps néces-
saire pour calculer la stratégie NumaLB, il a donc été meilleur que MetisLB mais
moins performant que GreedyLLB. Comme mentionné avant, GreedyLLB ne considére
pas les informations de communication de I'application pour effectuer I’équilibrage
de charge: il ne considére que la charge de chaque processeur. Par conséquent, sa
stratégie est moins coiiteuse a calculer que MetisLB et NumaLB. Toutefois, cette

B.9. Conclusion 199

différence ne réduit pas les performances globales de NumaLB. Une évaluation com-
pléte de la performance Numal.B avec d’autres repéres et les comparaisons sont
présentées [Pilla 2011al.

B.9 Conclusion

Dans ce dernier chapitre, nous concluons la thése présentant ses principaux ob-
jectifs, les contributions sur la gestion d’affinité mémoire pour machines NUMA et
les perspectives générer par ce travail.

B.9.1 Objectifs de la thése

Au cours des derniéres années, les puces multi-cceur sont devenues une tendance
dans la conception de processeurs de machines a mémoire partagée. Cependant,
comme le nombre de cceurs par puce augmente, I’accés a la mémoire partagée devient
un goulot d’étranglement. Les coeurs accédent a la mémoire partagée, ce qui a pour
effet de surcharger la mémoire et de rendre machines paralléles moins performantes.
Dans ce contexte, pour atténuer le probléme de mémoire, I'architecture NUMA a
été employé dans les machines multi-coeur.

Ces machines NUMA multi-coeur sont généralement construites avec des con-
troleurs mémoire sur le puce, qui fournit l'abstraction d’une mémoire partagée
unique pour les cceurs de la machine. Bien que cette conception réduise les con-
flits de mémoire pour les machines & mémoire partagée, il peut potentiellement
augmenter la latence d’accés mémoire et dégrader la bande passante. Cela est di
au fait que sur les machines NUMA | la mémoire partagée est physiquement répartie
en plusieurs blocs de mémoire qui sont inter-connectés par un réseau. L’utilisation
de 'affinité mémoire devient donc essentielle pour assurer de bonnes performances
dans telles machines. Dans les machines NUMA, les mécanismes d’affinité mémoire,
essayent de conserver les données & proximité des coeurs afin de réduire les cotits
d’accés mémoire pour les applications paralléles.

Considérant des machines & mémoire partagée, il existe plusieurs langages de
programmation qui peuvent étre utilisés pour développer des applications paral-
leles. Par exemple, 'API OpenMP et Charm-++ sont des exemples de support a
la programmation pour les développeurs. Cependant, la plupart des langages par-
alléles ne tiennent pas compte des machines multi-cceur avec I'architecture NUMA.
Ces langages ne disposent pas d’un support pour controler 'affinité mémoire, qui
finit par étre gérée par le systéme d’exploitation ou méme par le programmeur. Les
travaux développés dans cette thése sont liés & la gestion d’affinité mémoire pour les
multi-coeurs NUMA pour des langages paralléles. L’objectif principal est de cacher
au programmeur la complexité du contréle de I'affinité mémoire dans un code source
des applications paralléles. Les caractéristiques plate-forme NUMA et les accés a
mémoire d’application sont utilisés afin de fournir une gestion de la mémoire a grain

fin.

200 Appendix B. Extended Abstract in French

B.9.2 Contributions

Afin de renforcer I’affinité mémoire sur des machines multi-coeur NUMA, nous
avons proposé dans cette thése l'environnement Minas. Il permet de controler
I’affinité mémoire par le placement de données et des taches sur les plates-formes
NUMA. Les mécanismes de placement des données et de tache prennent en compte
les caractéristiques la machine et les caractéristiques de l'application. La topolo-
gie de la machine et de la représentation hiérarchie utilisée par Minas lui permet
d’aborder ’architecture hiérarchique de ces machines. Le préprocesseur MApp aide
a extraction des caractéristiques de ’application qui doivent étre considérées avant
le placement des données et des taches. Ces informations sont couplées dans un
certain nombre de politiques mémoire et de placement des taches & 'intérieur de
Minas pour améliorer ’affinité mémoire.

Minas met en ceuvre deux types de politiques de mémoire, le bind qui réduit
la latence d’accés percue par les taches pour obtenir des données et le cyclic, qui
réduit les conflits de mémoire, fournissant plus de bande passante pour les taches
dans l'obtention des données. Ces politiques de mémoire peuvent étre appliquées
a différents niveaux des données d’application telles que le tas, la pile et vari-
ables. Considérant les mécanismes de placement des taches a l'intérieur de Minas,
I’environnement met en ceuvre les mécanismes statiques et dynamiques. Le mécan-
isme statique place les taches sur les cceurs de la machine avec ’objectif de maximiser
le partage cache. Ceci est réalisé en utilisant la topologie de la machine et des traces
de mémoire de 'application. Le placement dynamique des taches est implémenté
comme un équilibreur de charge qui utilise la topologie de la machine NUMA et les
caractéristiques de la communication de ’application lors de ’exécution.

En considérant Minas, nous avons montré que la gestion d’affinité mémoire
peut étre faite de maniére explicite ou de fagon automatique. Dans ce contexte,
les développeurs qui connaissent leurs applications peuvent controler manuellement
I’affinité en fournissant quelques indications sur les modéles d’accés & la mémoire
pour Minas. Dans ce cas, le programmeur inclut des fonctions de l'interface MAjq
dans le code source de 'application pour allouer et de placer des données. En util-
isant ces fonctions, Minas place des données d’application sur les nceuds NUMA de
la machine. Les développeurs qui n’ont pas une connaissance précise, a priori des
accés mémoire pour une application, peuvent automatiquement controler I'affinité
a l'aide de MApp. Ce mécanisme transforme le code source de 'application en util-
isant les caractéristiques de la machine et de I'application extraites au moment de la
compilation. Ainsi, nous avons montré que ces mécanismes peuvent étre combinés
afin de renforcer encore plus ’affinité mémoire et, par conséquent, la performance
des applications paralléles.

Nous avons utilisé les composants de Minas dans quatre interfaces paralléle/lan-
gages pour développer des applications paralléles. L’exploration des composants
Minas dans chaque interface paralléle/langage a été faite a différents niveaux. Con-
sidérant le niveau de langage, nous avons montré que Minas pouvait étre utilisé lors
de la compilation pour controler 'affinité mémoire pour les applications OpenMP.

B.9. Conclusion 201

Minas supporte les principaux compilateurs (Intel, GNU, PGI,...). Nous avons égale-
ment exploré Minas pour contrdler I'affinité mémoire dans des environnements dy-
namiques tels que le systéme d’exécution Charm-++ et ’environnement AMPI. Dans
le cas de Charm-++ et AMPI, une intégration des composants Minas a été appliquée
et offre aux utilisateurs un support d’affinité mémoire transparent. Enfin, au niveau
algorithmique, nous avons intégré Minas pour fournir un support d’affinité mémoire
pour un environnement & base de squelettes OpenSkel. En utilisant les informations
fournies par les squelettes, Minas est capable de traiter des données et de placer des
taches pour une application basée sur des squelettes.

B.9.3 Perspectives

Les approches pour l'affinité mémoire proposées dans cette thése conduisent a
un certain nombre de perspectives.

Améliorer le modéle de la machine NUMA: Le modéle actuel que nous
avons défini pour représenter la topologie et la hiérarchie mémoire NUMA peut étre
étendu avec plus de détails sur I'architecture mémoire. Par exemple, la représen-
tation de la hiérarchie mémoire s’appuie sur le comportement des accés mémoire
en lecture. Ici, la prise en compte des opérations d’écriture permettrait d’affiner
encore le modéle. Dans ce cas, nos représentations de la hiérarchie mémoire seraient
capables de modéliser mieux les différents accés & la mémoire d’une application.
En considérant la bande passante, notre modéle pourrait donc s’appliquer aux cas
d’applications avec plusieurs taches qui accédent de maniére concurrente a la mé-
moire générant ainsi de la contention. Ces nouvelles informations permettraient &
Minas d’améliorer le placement des données en tenant compte de la saturation du
réseau d’interconnexion. Une autre évolution possible est de modéliser les différents
niveaux de mémoire cache pour fournir & Minas les surcoiit liés & la communica-
tion intra-nceud. L’utilisation de compteurs de performance des processeurs pour
récupérer les informations des applications lors de l'exécution est également une
perspective & ce travail de thése. La topologie de la machine pourrait étre renfor-
cée pour soutenir les systémes d’exploitation autres que Linux. Néanmoins, notre
modéle pourrait étre intégré dans les outils de niveau de 'utilisateur tels que la
bibliothéque hwloc.

Obtenir plus d’information de ’application: Dans Minas, les modifica-
tions automatiques pour les applications paralléles pourraient étre étendues avec un
support pour plusieurs langages. Dans cette thése, nos proposition pour I’approche
automatique n’ont été appliquées que sur des applications écrites en C avec OpenMP.
Dans le cas d’OpenMP, nous envisageons d’étendre notre préprocesseur pour sup-
porter des applications écrites en Fortran. En effet, de nombreuses applications
scientifiques OpenMP sont écrites en Fortran. Par conséquent, un support pour ce
langage est important dans le contexte du calcul haute performance. Vu les de-
mandes OpenMP, des informations telles que l'accés mémoire sur les variables a
Iintérieur des régions paralléles doivent étre considérées. Cette information per-
mettrait Minas de mieux gérer la distribution des données sur la machine. Par

202 Appendix B. Extended Abstract in French

exemple, les accés indirects ou les séquentielles offrent & Minas les informations de
la facon dont les données sont accessibles & l'intérieur d’une région paralléle & la
compilation. Dans ce contexte, le support d’autres systémes de programmation par-
allele comme Charm++/ AMPI constitue également une perspective a cette these.
De plus, Minas pourrait aussi profiter des informations d’exécution de 'application
pour corriger le placement des données et des taches.

Support pour les architectures hybrides: Les architectures multi-coeur sont
de plus en plus complexes. Cette complexité provient principalement de la hiérarchie
mémoire et des hiérarchies de cache. De plus, les plates-formes de calcul sont égale-
ment équipées de processeurs graphiques (GPU) qui disposent d’une puissance de
calcul importante. Les processeurs graphiques (GPU) complexifient 1’architecture
et rendent délicates la programmation. Les éléments de la machine se partagent
un espace global de mémoire, mais encore une fois avec des coiits différents pour
y accéder. Les processeurs graphiques (GPU) sont aujourd’hui connectés par un
bus d’entrée-sortie. Pour cette raison, un support d’affinité mémoire est indispens-
able pour réduire les cotits de communication entre les GPU et des coeurs. Par
conséquent, une perspective a envisager est d’étendre Minas pour supporter les
plates-formes hybrides de calcul. Dans ce contexte, les mécanismes de base de
I’environnement Minas tels que I’allocation de mémoire, le placement des données
et ordonnancement des taches devraient tenir compte des différents éléments ar-
chitecturaux pour renforcer I'affinité mémoire pour les applications paralléles. Par
conséquent, notre modéle de machine devrait étre étendu afin de considérer les ma-
chines hybrides. Nos mécanismes pour controler la mémoire devraient donc prendre
en charge les espaces mémoire différents (mémoire GPU et mémoire de la machine)
qui composent la mémoire globale et les différentes représentations des structures
de données dans la mémoire GPU et mémoire de la machine. De plus, dans le cal-
cul haute performance, le nombre de cceurs par processeurs va encore augmenter,
conduisant & des architectures de multi-coeurs. Par conséquent, différents niveaux
d’accés non-uniforme & la hiérarchie mémoire sont attendus. Fournir un support
pour ces architectures est une perspective & envisager apreés cette thése.

B.9. Conclusion 203

	Introduction
	Objectives and Thesis Contributions
	Scientific Context
	Thesis Organization

	I State of Art: Memory Affinity on Hierarchical Multi-core Platforms
	Hierarchical Shared Memory Multi-core Architectures
	What is a Hierarchical Shared Memory Architecture?
	Evolution of Shared Memory Multiprocessors
	More Scalability with NUMA Architectures
	Mono-core to Multi-core Platforms
	Multi-core Platforms With NUMA Characteristics

	Memory Subsystem Hardware for Hierarchical Architectures
	Connections between Processors and Memory
	Cache Coherence Protocol for NUMA Platforms

	Conclusions

	Software Issues of Memory Affinity Management on Hierarchical Multi-core Machines
	Parallel Programming on Shared Memory Platforms
	False Sharing in NUMA Platforms
	A case study: NUMA Impact on Parallel Applications Performance
	How to Reduce NUMA Impact on Parallel Applications?
	Approaches to Improve Memory Affinity
	Thread Placement
	Data Placement
	Mixing Thread and Data Placement

	Conclusion

	II Contributions: Looking Deeper to Improve Memory Affinity
	Proposal of New Approaches to Enhance Memory Affinity
	Modeling a NUMA Architecture
	NUMA Core Topology
	NUMA Hierarchy

	Global Analysis of an Application
	What to Extract from the Application?
	Getting Memory Access Information from Applications
	Data Scope and Usage on Parallel Regions

	Associating Machine and Application Characteristics to Enhance Memory Affinity
	Memory Organization: Why should we change it?
	Memory Policies to Place Data

	Data Placement over NUMA Machines
	Explicit Approach
	Automatic Approach

	Summary

	Minas: a Memory Affinity Management Framework
	A Framework to Manage Memory Affinity
	Software Architecture
	Components

	Implementation Details
	Extracting Platform Information
	Extracting Application Information
	Allocating Memory for Applications
	Placing Data over NUMA nodes
	Mapping Threads to Enhance Data Locality

	Summary

	Employing Minas Framework on Parallel Environments
	OpenMP API
	Memory Affinity: Automatic management
	Design and Implementation of Memory Affinity Support
	Illustrating Minas Framework with an Example

	Charm++/AMPI Parallel Programming System
	Memory Policies to Enhance Memory Affinity on Charm++
	NUMA-Aware Load Balancer
	NUMA-aware Isomalloc Memory Allocator

	OpenSkel a Worklist Transactional Skeleton Framework
	Memory Affinity through Data Allocation and Memory Policies
	Design and Implementation Details

	Summary

	III Performance Evaluation: Case Studies
	Experimental Methodology
	NUMA Multi-core Platforms
	Software Stack
	Performance Metrics
	Measurement Methodology

	Evaluation on OpenMP Benchmarks and Geophysics Applications
	Synthetic Experiments
	Experiments with Benchmarks
	Stream Benchmark
	NAS Parallel Benchmarks

	Geophysics Applications
	Ondes 3D: Simulation of Seismic Wave Propagation
	ICTM: Interval Categorizer Tesselation Model

	Conclusions

	Evaluation on High Level Parallel Systems Benchmarks
	Charm++ Benchmarks
	Memory Policies
	NUMA-aware Load Balancer

	AMPI Benchmark
	OpenSkel Version of Stamp Benchmark
	Conclusions

	Conclusions and Perspectives
	Thesis Objectives
	Contributions
	Perspectives

	Bibliography
	MAi Interface
	MAi-array
	MAi-heap

	Extended Abstract in French
	Introduction
	Objectifs et contributions de la thèse
	Contexte scientifique
	État de l'art matériel
	État de l'art logiciel
	Minas framework
	Intégration dans les langages parallèles
	OpenMP
	Charm++

	Résultats
	Machines multi-cœur
	Évaluation des applications OpenMP
	Évaluation sur les applications Charm++

	Conclusion
	Objectifs de la thèse
	Contributions
	Perspectives

