A. D. Abid, N. Heinz, E. D. Tolmachoff, D. J. Phares, C. S. Campbell et al., On evolution of particle size distribution functions of incipient soot in premixed ethylene???oxygen???argon flames, Combustion and Flame, vol.154, issue.4, pp.775-788, 2008.
DOI : 10.1016/j.combustflame.2008.06.009

J. Anderlohr, R. Bounaceur, A. Pires-da-cruz, and F. Battin-leclerc, Modeling of autoignition and no sensibilisation for the oxidation of ic engine surrogate fuels

B. Apicella, A. Carpentieri, M. Alfe, R. Barbella, A. Tregrosi et al., The pyrolysis of methylcyclopentadiene : isomerization and formation of aromatics, Proc. Combust. Inst, 2006.

J. Appel, H. Bockhorn, and M. Frenklach, Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons, Combustion and Flame, vol.121, issue.1-2
DOI : 10.1016/S0010-2180(99)00135-2

M. Ba and J. Colosio, Qualité de l'air, une surveillance accrue des particules mais des concentrations à réduire d'ici l'an 2000. IFEN, les données de l'environnement, 2000.

A. El, J. L. Bakali, C. Delfau, and . Vovelle, Experimental study of 1 atmosphere rich premixed n-heptane and iso-octone flame, Combust. Sci. Technol, vol.140, pp.69-91, 1998.

J. Barbara, F. Pitts, and N. Pitts, Troposheric air pollution : ozone, polycyclic aromatic hydrocarbons and particles, Science, p.276, 1997.

H. Barths, C. Hasse, G. Bikas, and N. Peters, Simulation of combustion in direct injection diesel engines using a eulerian particle flamelet model, Proceedings of the Combustion Institute, vol.28, issue.1, pp.1161-1168, 2000.
DOI : 10.1016/S0082-0784(00)80326-4

D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just et al., Evaluated kinetic data for combustion modeling : Supplement ii, journal of physical and chemical reference data, J. Phys. Chem, vol.34, issue.3, pp.757-1397, 2005.

A. Bhargava and P. R. Westomeland, Measured Flame Structure and Kinetics in a Fuel-Rich Ethylene Flame 11This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or applied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights., Combustion and Flame, vol.113, issue.3, pp.333-347, 1998.
DOI : 10.1016/S0010-2180(97)00208-3

. Combust and . Inst, Title = Composition profiles and reactions mechanisms in a near soot premised benzene / oxygen / argon flame Pages =, pp.1105-1116

=. Year and J. B. Howard, Date-Added =

T. Blacha, M. D. Domenico, P. Gerlinger, and M. Aigner, Soot predictions in premixed and non-premixed laminar flames using a sectional approach for PAHs and soot, Combustion and Flame, vol.159, issue.1
DOI : 10.1016/j.combustflame.2011.07.006

G. Blanquart, P. Pepiot-desjardins, and H. Pitsch, Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors, Combustion and Flame, vol.156, issue.3
DOI : 10.1016/j.combustflame.2008.12.007

H. Bockhorn, F. Fetting, G. Wannemacher, and H. W. Wenz, Optical studies of soot particles growth in hydrocarbones oxygen flames, Proc. Combust. Inst, pp.1413-1420, 1982.

J. Bohbot, N. Gillet, and A. Benkenida, IFP-C3D: an Unstructured Parallel Solver for Reactive Compressible Gas Flow with Spray, Oil & Gas Science and Technology - Revue de l'IFP, vol.64, issue.3, pp.309-335, 2009.
DOI : 10.2516/ogst/2009016

. Boussinesq, Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes à grande sections, 1987.

C. T. Bowman, F. Buda, R. Bounaceur, V. Warth, P. A. Glaude et al., 14th symposium on combustion Progress toward a unified detailed kinetic model for the auto-ignition of alkanes from c4 to c10 between 600 and 1200 k, Proc. Combust. Inst. Combust. Flame, vol.142, pp.729-751, 2005.

B. Cantrell, H. Ge, R. Reitz, and C. Rutland, Validation of Advanced Combustion Models Applied to Two-Stage Combustion in a Heavy Duty Diesel Engine, SAE Technical Paper Series, pp.9-1045, 2009.
DOI : 10.4271/2009-01-0714

J. A. Cole, J. D. Bittner, J. P. Longwell, and J. B. Howard, Formation mechanisms of aromatic compounds in aliphatic flames, Combustion and Flame, vol.56, issue.1, pp.51-70, 1984.
DOI : 10.1016/0010-2180(84)90005-1

O. Colin and A. Benkenida, The 3-Zones Extended Coherent Flame Model (Ecfm3z) for Computing Premixed/Diffusion Combustion, Oil & Gas Science and Technology, vol.59, issue.6, pp.593-609, 2004.
DOI : 10.2516/ogst:2004043

O. Colin, A. Pires-da-cruz, and S. Jay, Detailed Chemistry-based Auto-ignition Model Including Low Temperature Phenomena

O. Colin, F. Ducros, D. Veynante, and T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Physics of Fluids, vol.12, issue.7, pp.1843-1863, 2000.
DOI : 10.1063/1.870436

O. Colin, J. B. Michel, and P. E. Vervisch, New tabulated approaches for prediction auto-ignition and pollutant emissions of non-premixed turbulent flames, 2010.

M. B. Colket, The pyrolysis of acethylene and vinylacethylene in a single pulse shock tube, Proc. Combust. Inst, pp.851-864, 1986.

M. B. Colket, A new path to benzene in flames, Proc. Combust. Inst, pp.85-90, 1990.

P. J. Crutzen, The role of no and no2 in the chemistry of the troposphere and stratosphere. Annual review of earth and planetary sciences, pp.443-472, 1979.

H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, A Comprehensive Modeling Study of n-Heptane Oxidation, Combustion and Flame, vol.114, issue.1-2, pp.149-177, 1998.
DOI : 10.1016/S0010-2180(97)00282-4

P. Dagaut and M. Cathonnet, A Comparative Study of the Kinetics of Benzene Formation from Unsaturated C2 to C4 Hydrocarbons, Combustion and Flame, vol.113, issue.4, pp.620-623, 1998.
DOI : 10.1016/S0010-2180(97)00244-7

P. Dagaut, M. Reuillon, and M. Cathonnet, High Pressure Oxidation of Liquid Fuels From Low to High Temperature. 1. n-Heptane and iso-Octane., Combustion Science and Technology, vol.47, issue.1-6, pp.233-260, 1994.
DOI : 10.1021/j100323a027

A. D. 'alessio, A. D. Anna, A. D. Orsi, P. Minutolo, R. Barbarella et al., Precursor formation and soot inception in premixed flames, Proc. Combust. Inst, pp.973-980, 1992.

A. , M. Sirignano, and J. Kent, A model of particle nucleation in premixed ethylene flames, Combust. Flame, vol.157, pp.2106-2115, 2010.

S. Delhaye, L. M. Somers, J. A. Van-oijen, and L. P. De-goey, Incorporating unsteady flow-effects beyond the extinction limit in flamelet-generated manifolds, Proceedings of the Combustion Institute, vol.32, issue.1
DOI : 10.1016/j.proci.2008.06.111

A. Favre, Equations des écoulements turbulents compressibles, Journal de mécanique, 1965.

B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, and N. Darabiha, Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation, Combustion and Flame, vol.140, issue.3, pp.147-160, 2005.
DOI : 10.1016/j.combustflame.2004.11.002

URL : https://hal.archives-ouvertes.fr/hal-00126045

V. Fraioli, C. Beatrice, and M. Larroro, Soot particle size modelling in 3D simulations of diesel engine combustion, Combustion Theory and Modelling, vol.3, issue.6, pp.863-892, 2011.
DOI : 10.1021/ef070159y

M. Franklach, On surface growth mechanism of soot particles, Proc. Combust. Inst, pp.2285-2293, 1996.
DOI : 10.1016/S0082-0784(96)80056-7

B. Franzelli, E. Riber, M. Sanjosé, and T. Poinsot, A two-step chemical scheme for kerosene???air premixed flames, Combustion and Flame, vol.157, issue.7, pp.1364-1373, 2010.
DOI : 10.1016/j.combustflame.2010.03.014

URL : https://hal.archives-ouvertes.fr/hal-01272968

M. Frencklach, Reaction mechanism of soot formation in flames, Physical Chemistry Chemical Physics, vol.4, issue.11, pp.2028-2037, 2002.
DOI : 10.1039/b110045a

M. Frenklach, D. W. Clary, W. C. Jr, S. E. Gardinier, and . Stein, Detailed kinetic modelling of soot formation in shock tube, Proc. Combust. Inst, pp.887-901, 1984.

M. Frenklach and H. Wang, Detailed mechanism and modeling of soot particle formation. Springer series in chemical physics. Soot Formation In Combustion : Mechanisms and models, 1994.

M. Frenklach and J. Warnatz, Title = Detailed modeling of PAH Profiles in a sooting low-pressure acetylene flame, Combust. Sci. and Tech, issue.51, pp.256-283, 1987.

F. Gelbard, Y. Tambour, and J. H. Seinfeld, Sectional representations for simulating aerosol dynamics, Journal of Colloid and Interface Science, vol.76, issue.2, pp.541-556, 1980.
DOI : 10.1016/0021-9797(80)90394-X

P. Glarborg, Hidden interactions???Trace species governing combustion and emissions, Proceedings of the Combustion Institute, vol.31, issue.1, pp.77-98, 2007.
DOI : 10.1016/j.proci.2006.08.119

G. Godel, P. Domigo, and L. Vervisch, Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames, Proceedings of the Combustion Institute, vol.32, issue.1, pp.1555-1561, 2009.
DOI : 10.1016/j.proci.2008.06.129

J. B. Heywood, Internal Combustion Engines Fondamentals, 1988.

B. Hu, B. Yang, and U. Koylu, Soot measurements at the axis of an ethylene/air non-premixed turbulent jet flame, Combustion and Flame, vol.134, issue.1-2, pp.93-106, 2003.
DOI : 10.1016/S0010-2180(03)00085-3

M. Ihme and H. Pitsch, Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation, Physics of Fluids, vol.20, issue.5, p.55110, 2008.
DOI : 10.1063/1.2911047

E. Ikeda, R. S. Tranter, J. H. Kieffer, R. D. Kern, H. J. Singh et al., The pyrolysis of methylcyclopentadiene: Isomerization and formation of aromatics, Proceedings of the Combustion Institute, vol.28, issue.2
DOI : 10.1016/S0082-0784(00)80573-1

M. Z. Jacobson, Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming, J. Geoysical Research, vol.1074410, issue.D19, pp.16-17

J. A. Miller and C. F. Mellius, Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels, Combustion and Flame, vol.91, issue.1, pp.21-39, 1992.
DOI : 10.1016/0010-2180(92)90124-8

S. Jay, P. Beard, A. Pires, and C. , Modeling Coupled Processes of CO and Soot Formation and Oxidation for Conventional and HCCI Diesel Combustion, SAE Technical Paper Series, pp.2007-2008, 2007.
DOI : 10.4271/2007-01-0162

S. Kamm, O. Mohler, K. Naumann, H. Saathoff, and U. Schurath, The heterogeneous reaction of ozone with soot aerosol, Atmospheric Environment, vol.33, issue.28, pp.4651-4661, 1999.
DOI : 10.1016/S1352-2310(99)00235-6

A. Karlsson, I. Magnusson, M. Balthasar, and F. Mauss, Simulation of Soot Formation Under Diesel Engine Conditions Using a Detailed Kinetic Soot Model, SAE Technical Paper Series, p.981022, 1998.
DOI : 10.4271/981022

A. Kazakov and M. Frenklach, Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames, Combustion and Flame, vol.114, issue.3-4, pp.484-501, 1998.
DOI : 10.1016/S0010-2180(97)00322-2

R. J. Kee, J. F. Grcar, M. D. Smokke, and J. A. Miller, A fortran program for modeling steady laminar one-dimensional premixed flame, 1985.

R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin-ii : a fortran chemical kinetics package for the analysis of gas phase chemical kinetics, 1989.

A. Y. Klimenko and R. W. Bilger, Conditional moment closure for turbulent combustion, Progress in Energy and Combustion Science, vol.25, issue.6, pp.595-687, 1999.
DOI : 10.1016/S0360-1285(99)00006-4

V. Knop, H. Kircher, S. Jay, . Ph, A. Beard et al., Quantitative Pollutant Modelling: an Essential Prerequisite for Diesel HCCI and LTC Engine Design, Oil & Gas Science and Technology - Revue de l'IFP, vol.63, issue.4, pp.495-515, 2008.
DOI : 10.2516/ogst:2008022

V. Knop, A. Nicolle, and O. Colin, Modélisation des oxydes d'azotes -extension du modèle nora aux voies autres que thermique

N. Lamoureux, A. El-bakali, L. Gasnot, J. Pauwels, and P. Desgroux, Prompt-NO formation in methane/oxygen/nitrogen flames seeded with oxygenated volatile organic compounds: Methyl ethyl ketone or ethyl acetate, Combustion and Flame, vol.153, issue.1-2, pp.186-201, 2008.
DOI : 10.1016/j.combustflame.2007.07.011

H. Lehtiniemi, F. Mauss, M. Balthasar, and I. Magnusson, MODELING DIESEL SPRAY IGNITION USING DETAILED CHEMISTRY WITH A PROGRESS VARIABLE APPROACH, Combustion Science and Technology, vol.26, issue.10-11, pp.10-111977, 2006.
DOI : 10.1080/00102209508907751

K. M. Leung, R. P. Lindstedt, and W. P. Jones, A simplified reaction mechanism for soot formation in nonpremixed flames, Combustion and Flame, vol.87, issue.3-4, pp.289-305, 1991.
DOI : 10.1016/0010-2180(91)90114-Q

T. Lu and C. K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Progress in Energy and Combustion Science, vol.35, issue.2, pp.192-215, 2009.
DOI : 10.1016/j.pecs.2008.10.002

A. E. Lutz, R. J. Kee, and J. A. Miller, Senkin : a fortran program for predicting homogenous gas phase chemical kinetics with sensitivity analysis, 1988.

A. Lutz, F. Rupley, R. Kee, and W. Reynolds, Equil ; a chemkin implementation of stanjan for computing chemical equilibria, 1998.

U. Maas and S. B. Pope, Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds, Symposium (International) on Combustion, vol.24, issue.1, pp.103-112, 1992.
DOI : 10.1016/S0082-0784(06)80017-2

B. F. Magnussen, On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow, 19th Aerospace Sciences Meeting, 1981.
DOI : 10.2514/6.1981-42

P. C. Malte and D. T. Pratt, Formation: Fuel-Lean, Jet-Stirred CO-Air Combustion, Combustion Science and Technology, vol.21, issue.5-6, pp.221-231, 1974.
DOI : 10.1080/00102207408960360

N. M. Marinov, C. K. Pitz, M. J. Westbrook, M. Castaldi, and . Senkan, Modeling of aromatique and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flame, Combust. Science. Tech, pp.116-117211, 1996.

O. Mathieu, Etude cinétique de la formation des particules de suies dans les conditions de fonctionnement automobile, 2006.

F. Mauss, Entwicklung eines kinetischen Modells der Russbildung mit schneller Polymerisation, 1998.

F. Mauss, B. Trilken, H. Breitbach, and N. Peters, Inception and Growth of Soot particles in dependence on the surrounding gas phase, volume 59 of Springer series in chemical physics. Soot Formation In Combustion, 1994.

P. S. Mehlta and S. Das, A correlation for soot concentration in diesel exhaust based on fuel-air mixing parameters, Fuel, vol.71, issue.6, pp.689-692, 1992.
DOI : 10.1016/0016-2361(92)90173-L

C. F. Mellius, M. E. Colvin, N. M. Marinoc, W. J. Pitz, and S. M. Senkan, Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety, Symposium (International) on Combustion, vol.26, issue.1, pp.685-692, 1996.
DOI : 10.1016/S0082-0784(96)80276-1

J. Michel, Modélisation de la combustion turbulente d'un mélange hétérogène en auto inflammation en vue de l'application à la simulation des moteurs Diesel, 2008.

J. Michel, O. Colin, and D. Veynante, Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry, Combustion and Flame, vol.152, issue.1-2, pp.80-99, 2008.
DOI : 10.1016/j.combustflame.2007.09.001

URL : https://hal.archives-ouvertes.fr/hal-00271673

J. Michou, La 2cv : une voiture d'avenir, une voiture qui poke, Le journal de Mickey, pp.1397-1405, 2005.

J. Moss, C. D. Stewart, and K. J. Young, Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions, Combustion and Flame, vol.101, issue.4, pp.491-500, 1995.
DOI : 10.1016/0010-2180(94)00233-I

J. Nafe and U. Maas, Modeling of NO formation based on ILDM reduced chemistry, Proceedings of the Combustion Institute, vol.29, issue.1
DOI : 10.1016/S1540-7489(02)80169-9

G. Nakov, F. Mauss, P. Wenzel, R. Steiner, C. Krã¼ger et al., Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach, SAE International Journal of Engines, vol.2, issue.2, 2009.
DOI : 10.4271/2009-01-2679

T. Nicolai, Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children, European Respiratory Journal, vol.21, issue.6, pp.956-963, 2003.
DOI : 10.1183/09031936.03.00041103a

M. Nishioka, S. Nakagawa, Y. Ishikawa, and T. Takeno, NO emission characteristics of methane-air double flame, Combustion and Flame, vol.98, issue.1-2, pp.127-138, 1994.
DOI : 10.1016/0010-2180(94)90203-8

S. Orsino, R. Weber, and B. , NUMERICAL SIMULATION OF COMBUSTION OF NATURAL GAS WITH HIGH-TEMPERATURE AIR, Combustion Science and Technology, vol.10, issue.1, pp.1-34, 2001.
DOI : 10.1016/S0360-1285(97)00006-3

N. Peters, Turbulent combustion, 2000.
DOI : 10.1017/cbo9780511612701

L. Pillier, A. Bakali, X. Mercier, A. Rida, J. Pauwels et al., Influence of C2 and C3 compounds of natural gas on NO formation: an experimental study based on LIF/CRDS coupling, Proceedings of the Combustion Institute, vol.30, issue.1, pp.1183-1191, 2005.
DOI : 10.1016/j.proci.2004.08.057

T. Poinsot and D. Veynante, Theoretical and numerical combustion, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00270731

C. J. Pope and J. B. Howard, Simultaneous Particle and Molecule Modeling (SPAMM): An Approach for Combining Sectional Aerosol Equations and Elementary Gas-Phase Reactions, Aerosol Science and Technology, vol.87, issue.1, pp.73-94, 1997.
DOI : 10.1016/0021-9797(88)90255-X

S. E. Pratsinis, Simultaneous nucleation, condensation, and coagulation in aerosol reactors, Journal of Colloid and Interface Science, vol.124, issue.2, pp.416-427, 1988.
DOI : 10.1016/0021-9797(88)90180-4

Y. Ra and D. Reitz, A combustion model for IC engine combustion simulations with multi-component fuels, Combustion and Flame, vol.158, issue.1, pp.69-90, 2011.
DOI : 10.1016/j.combustflame.2010.07.019

R. A. Dobbins, R. A. Fletcher, and H. Chang, The evolution of soot precursor particles in a diffusion flame, Combustion and Flame, vol.115, issue.3, pp.285-298, 1998.
DOI : 10.1016/S0010-2180(98)00010-8

H. Richter, S. Granata, W. H. Green, and J. B. Howard, Detailed modeling of pah and soot formation in laminar premixed benzene

H. Richter and J. B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot, Progress in Energy and Combustion science, pp.265-608, 2000.

R. Said, A. Garo, and R. Borgui, Soot formation modeling for turbulent flames, Combustion and Flame, vol.108, issue.1-2, pp.71-86, 1997.
DOI : 10.1016/S0010-2180(96)00068-5

R. Seiser, H. Pitsch, K. Seshadri, W. J. Pitz, and H. J. Gurran, Extinction and autoignition of n-heptane in counterflow configuration, Proceedings of the Combustion Institute, vol.28, issue.2, pp.2029-2037, 2000.
DOI : 10.1016/S0082-0784(00)80610-4

H. K. Seung, Y. H. Kang, and D. Bassam, Conditional moment closure modeling of turbulent non premixed combustion in diluted hot coflow, Proc. Combust. Inst, vol.30, pp.751-757, 2005.

R. Simo, J. O. Grimalt, and J. Albaiges, Loss of Unburned-Fuel Hydrocarbons from Combustion Aerosols during Atmospheric Transport, Environmental Science & Technology, vol.31, issue.9, pp.312697-2700
DOI : 10.1021/es960994m

J. Singh, R. Patterson, M. Kraft, and H. Wang, Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames, Combustion and Flame, vol.145, issue.1-2, pp.117-127, 1988.
DOI : 10.1016/j.combustflame.2005.11.003

T. K. Skopek, Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children, J. Nat. Cancer Inst, vol.63, pp.309-312, 1979.

M. V. Smoluchewski, Versuch einer matematischen theorie der koagulationskinetik kollider lodungen, Z. Phys. Chem, vol.92, pp.129-168, 1917.

G. and D. Soete, Overall reaction rates of NO and N2 formation from fuel nitrogen, 15th Symp. (Int.) on Comb, pp.1093-110, 1974.
DOI : 10.1016/S0082-0784(75)80374-2

G. and D. Soete, Aspects physiques et chimique de la combustion, 1976.

M. Thirouard and P. Pacaud, Increasing Power Density in HSDI Engines as an Approach for Engine Downsizing, SAE International Journal of Engines, vol.3, issue.2, pp.10-0263, 2010.
DOI : 10.4271/2010-01-1472

J. Tomeczek and B. Gradon, The role of N2O and NNH in the formation of NO via HCN in hydrocarbon flames, Combustion and Flame, vol.133, issue.3, pp.311-322, 2003.
DOI : 10.1016/S0010-2180(03)00013-0

J. A. Van-oijen, F. A. Lammers, and L. P. De-goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combustion and Flame, vol.127, issue.3, pp.2124-2134, 2001.
DOI : 10.1016/S0010-2180(01)00316-9

L. Vervisch, R. Hauguel, P. Domigo, and M. Rullaud, Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame, Journal of Turbulence, vol.5, issue.4, pp.1-36, 2004.
DOI : 10.1088/1468-5248/5/1/004

P. E. Vervisch, J. Michel, O. Colin, and N. Darabiha, NO Relaxation Approach (NORA) to predict thermal NO in combustion chambers, Combustion and Flame, vol.158, issue.8, pp.80-99, 2011.
DOI : 10.1016/j.combustflame.2010.12.014

B. L. Wesborg, J. B. Howard, and G. C. Williams, Physical mechanisms in carbon formation in flames, Proc. Combust. Inst, pp.929-940, 1972.

U. Wieschnowsky, H. Bockhorn, and F. Fetting, Some new observations concerning the mass growth of soot in premixed hydrocarbon-oxygen flames, Symposium (International) on Combustion, vol.22, issue.1, pp.343-352, 1998.
DOI : 10.1016/S0082-0784(89)80040-2

M. Wright, G. De-paola, K. Boulouchos, and E. Mastorakos, Simulations of spray autoignition and flame establishment with two-dimensional CMC, Combustion and Flame, vol.143, issue.4, pp.402-419, 2005.
DOI : 10.1016/j.combustflame.2005.08.022

C. Xu and F. Mauss, Detailed kinetic modeling of size distributions of nascent soot particles formed in laminar premixed flames. ECM congress, 2011.

B. Zhao, Z. Yang, M. Johnston, H. Wang, A. Wexler et al., Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame, Combustion and Flame, vol.133, issue.1-2, pp.173-188, 2003.
DOI : 10.1016/S0010-2180(02)00574-6

N. Le-modèle, hypothèse que la réactivité des oxydes d'azote a lieu principalement dans les gaz brûlés. Par conséquent, le modèle est construit en identifiant la réactivité des N Ox dans les gaz brûlés à l'équilibre. Cette hypothèse, valable pour le N O thermique, est plus discutable pour la voie de Fenimore puisque celle-ci a lieu principalement dans le front de flamme. Malgré cela