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Introduction (version francaise)

Cette thése est consacrée aux actions des groupes de transformations algébriques
sur les variétés affines algébriques. Dans la premiére partie, on étudie la normalité
des adhérences des orbites de tore maximal dans un module rationnel de groupe
algébrique simple. La seconde partie porte sur les actions du groupe d’automor-
phismes d’une variété affine. Nous nous intéressons aux propriétés de transitivité
et de transitivité infinie de ces actions sur le lieu lisse de la variété.

Partie I

Normalité pour des adhérences d’orbites

Nous commencons par une bréve synthése. Soit k un corps algébriquement clos
de caractéristique nulle et G un groupe affine algébrique de corps de base k. Par
exemple, on peut considérer le groupe spécial linéaire SL(n). Rappelons qu'une
variété algébrique affine irréductible X est dite normale si son algébre des fonctions
régulieres k[X] est intégralement close dans son corps de fractions. L’étude de la
normalité des adhérences d’orbites a une longue histoire. Un des premiers résultats
importants est celui de B. Kostant [37] qui a démontré dans les années 1960 que
le complété du cone nilpotent dans le module adjoint est normal. H. Kraft et
C. Procesi [39] ont démontré que dans le module adjoint sl(n), les adhérences
de toutes les SL(n)-orbites sont normales. Autrement dit, 'adhérence, dans la
topologie de Zariski, de toute classe de conjugaison de matrices est normale. Pour
un corps k de caractéristique positive, le méme résultat pour SL(n) a été établi
par S. Donkin [19]. Plus tard, H. Kraft et C. Procesi [40] ont étudié¢ la méme
question pour les modules adjoints des autres groupes classiques. Ils ont indiqué
certaines orbites dont 'adhérence n’est pas normale en terme de diagrammes de
Young. E. Sommers [64] a résolu le cas restant pour D,,, plus précisément, le cas de
classe de conjugaison trés paire. La normalité pour I’adhérence d'une orbite dans
le module adjoint est équivalente & la normalité pour l’adhérence d’une certaine
orbite nilpotente dans le méme module. Dans tous les articles précédemment cités,
la plupart des raisonnements sont effectués sur des orbites nilpotentes. Les cas
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des groupes Fy, G, Fg ont été résolus par A. Broer, H. Kraft et E. Sommers,
respectivement dans [12], [38] et [63]. Il n’y a pas encore de réponse compléte pour
E; et Eg.

Passons maintenant aux actions de tore algébrique T', c’est-a-dire de groupe
algébrique affine isomorphe a k* x ... x k*, on k* = k \ {0}. Une variéte X
algébrique irréductible est dite torique si X est normale et si T" agit sur X avec
une orbite ouverte. Les variétés toriques jouent un role important dans la géométrie
algébrique, la topologie et la combinatoire, grace a leur description remarquable
en termes de géométrie convexe (voir [24]). Si un tore algébrique T agit sur une
variété Y, adhérence de I'orbite X = Ty d’un point y € Y est un candidat naturel
pour une variété torique. Pour démontrer que X est torique, il faut vérifier que X
est normale. Donc la propriété de normalité est trés intéressante.

Il y a un lien entre normalité des adhérences d’orbites de tore et normalité
des adhérences de G-orbites. Effectivement, I’étude des orbites de G-action dans le
produit Cartésien g g du module adjoint peut étre réduite a ’étude des T-orbites
dans le module adjoint g lui-méme, a I'aide du Théoréme des slices étales de Luna.

Dans ce paragraphe, on se restreint au cas de T-actions et on introduit une
terminologie et une description combinatoire. Soit V' un T-module rationnel. On
note A = A(T) le réseau des caractéres de T'. Par rapport a 'action de T, le module
V' peut étre diagonalisé :

V:@VH, ou V,={veV|tv=pu(t VteT}.

HEA

On note M(V') = {p € A|V, # 0} 'ensemble des poids de V, qui est un ensemble
fini. Chaque vecteur non nul v dans V' se décompose de la maniére suivante : v =
Vpy U, Uy € Viy, vy, # 0. Soit M (v) Pensemble {y1, ..., ps}. Cet ensemble
engendre un semi-groupe Zso(p1, - - ., tts). On peut aussi engendrer un sous-réseau
Z(p1, - - ., fbs) €t un cone rationnel polyédral Qso(p, ..., us) dans 'espace Ag :=
A X7z Q

Définition. L’ensemble des points {p1, ..., us} C Q" est dit saturé si

Lso(o1y - -y fts) = Z(pta, - - s pos) N Qo (o1, - - -5 s)-

L’ensemble des points {p1,...,us} C Q" est dit héréditairement normal si tout
sous-ensemble en est saturé.

Dans [32, I, §1, Lemma 1], il est démontré que I'adhérence Tv de la T-orbite
d’un vecteur v est normale si et seulement si ’ensemble des caractéres {1, ..., is}
est saturé. Ce critére combinatoire joue un role clé dans la premiére partie de ma
these.
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Dans la littérature, il y a aussi des résultats concernant la propriété de normalité
des adhérences des orbites pour les T-actions projectives. Soit X (v) I’adhérence
d’une T-orbite T'[v] d'un point [v] € P(V') dans la projectivisation d’un T-module
rationnel V. Considérons l'enveloppe convexe P(v) de M (v) dans Ag; alors X (v)
est normale si et seulement si U'ensemble {p — o | p € M(v)} est saturé pour tout
sommet gy du polytope P(v). Ce critére a été énoncé et developpé par J.B. Carrell
et A. Kurth [13].

Considérons un cadre plus général. Soit G un groupe algébrique affine semi-
simple simplement connexe, 7" C GG un tore maximal et B C GG un sous-groupe de
Borel. A.A. Klyachko [34] a démontré que adhérence d’une T-orbite générique sur
la variété des drapeaux G/B est normale. Plus tard, R. Dabrowski [16] a prouvé
que I'adhérence d’une T-orbite générique dans G /P, ou P C G est un sous-groupe
parabolique, est aussi normale. On peut trouver des exemples d’adhérences non
normales d’orbites toriques non génériques dans [13].

Il est bien connu que 'adhérence de toute T-orbite sur une variété torique est
normale. En utilisant la méthode des U-invariants, on peut prouver la normalité
de T'adhérence de toute G-orbite sur une variété sphérique pour tout groupe G
connexe réductif. Dans le cas de complexité 1, .V. Arzhantsev [1] a démontré que
pour une action d’'un groupe G connexe réductif sur une variété X normale avec
une famille & un parameétre des G-orbites sphériques générales et possédant un bon
quotient 7: X — X//G, ou X//G est une courbe, 'adhérence de toute G-orbite
est normale.

La propriété de saturation est importante dans plusieurs problémes algébriques
et géométriques. N. White [68] a démontré que I'ensemble des vecteurs d’incidence
de la base d’'un matroide réalisable est saturé. Cette propriété a pour conséquence
le fait suivant : pour tout point y dans le cone affine au-dessus de la Grassmanienne
classique Gr(k,n), 'adhérence Ty est normale.

Soit I' un graphe fini avec n sommets, on peut lui associer la collection finie
M(T') de vecteurs dans le réseau Z" suivante :

M(T') ={eg; +¢j : (ij) est une aréte de I'},

ou (€1, €9,...,&,) est la base standard de Z". La propriété de saturation pour cet
ensemble est équivalente au fait suivant : soient C' et €’ deux cycles minimaux,
impairs dans I', alors soit C' et C’ ont un sommet commun, soit il existe une
aréte de I' qui relie un sommet de C' & un sommet de C’. Ceci a été montré par
H. Ohsugi et T. Hibi [52], A. Simis, W. Vasconcelos, et R. Villarreal [62]. Soit
A(T) = k[z;z; : (1)) est une aréte de I']. Algébriquement, la propriété de satura-
tion de M (I") est équivalente au fait que la sous-algebre A(I") de 'algébre polyno-
miale k[xq, 29, ..., x,] soit intégralement close dans son corps de fractions QA(T).

C. Chindris [14] a obtenu certains résultats généraux concernant les carquois
et la propriété de saturation. Il a démontré qu’un carquois ) fini et connexe sans
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cycles orientés est un carquois de Dynkin ou euclidien si et seulement si tous les
semi-groupes orbitaux des représentations de () sont saturés.

La propriété de saturation dans une situation légérement différente se révéle
étre importante aussi dans d’autres problémes de la théorie des représentations.
Dans les articles de N. Ressayre [60] et P.-L. Montagard, B. Pasquier, N. Res-
sayre [50], les auteurs parlent du calcul de certains semi-groupes dans le réseau des
poids. S’il est connu a priori qu'un semi-groupe M est finiment engendré, alors on
peut obtenir M en deux étapes. Premiérement, on trouve des inégalités qui défi-
nissent le cone cone(M), engendré par le semi-groupe M. Deuxiémement, on est
obligé de vérifier quels points entiers de cone(M) appartiennent effectivement au
semi-groupe M. Dans la plupart des cas intéressants, M coincide avec ’ensemble
des points entiers dans cone(M) (c’est le probléme de saturation).

Pour 'action adjointe SL(n): sl(n), le résultat de B. Sturmfels [65, Ex. 3.7],
[66] dit que adhérence de toute T-orbite est normale. G. Bobinski et G. Zwara [7|
ont interprété ce résultat combinatoire en termes de représentations des carquois.
J. Morand [51] a classifié tous les groupes affines algébriques semi-simples tels que
I’adhérences de toute T-orbite dans le module adjoint est normale.

Nos méthodes ont beaucoup d’éléments en commun avec la technique utilisée
dans ces articles.

Soient GG un groupe algébrique semi-simple connexe simplement connexe et T’
un tore maximal dans G. Formulons la tache générale qui est résolue dans la
Partie L.

Trouver tous les G-modules V' simples rationnels tels que, pour tout vecteur
v €V, ladhérence de sa T-orbite soit une variété affine normale.

Rappelons la description d’ensemble de T-poids d’'un G-module rationnel V()
de plus haut poids A. Soient ¢ le systéme des racines qui correspond a G, = le
réseau des racines et W le groupe de Weyl de ®. Le polytope des poids P(\) du

module V() est I'enveloppe convexe conv{wA|w € W} de la W-orbite du point
A dans Ag. Alors

M) =(A+Z)NP(N)

(voir [25, Theorem 14.18] et [11, Exercices to Ch. VIII §7]). Donc, toutes les adhé-
rences de T-orbites dans V' = V/(\) sont normales si et seulement si M(\) est
héréditairement normal.

Résultats de la Partie 1

En rassemblant les résultats de [8, 42, 43|, on obtient le théoréme suivant.

Théoréme A. Pour les types suivants de groupes algébriques simples et les mo-
dules correspondants, ainsi que leurs duauz, [’adhérence de toute orbite de tore
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mazximal est normale. Dans tous les autres cas, le module correspondant contient
une orbite de tore maximal dont [’adhérence est non normale.

Systéme de racines | Plus haut poids Traité dans
A,,n>1 m Cas 2.1
A,,n>1 T+ Ty [51, 65, 66/, Cas 2.2

Ay 3 Cas 2.3
Ay 47y Cas 2.4
A, 27y Cas 2.5
As o Cas 2.7
Ay Ty Cas 2.7
As o Cas 2.7
As 3 Cas 2.6
B,,n>2 m Cas 3.1
Bs o Cas 3.3
B 27y Cas 3.2
B3 3 Cas 3.3
B, my Cas 3.3
Cp,n>3 T Cas 3.4
Cg U Cas 3.5
04 Up) Cas 3.5
D,,n=>4 m Cas 3.6
D, Ty Cas 3.7
D, 3 Cas 3.8
D, my Cas 3.8
Ds my Cas 3.9
Dsg s Cas 3.10
Dsg g Cas 3.10
Fy m Cas 4.1
Gy T Cas 4.2

La premiére partie de cette thése est constituée de quatre chapitres. Présentons
ici le contenu de chacun de ces chapitres.

Dans le Chapitre 1, on reformule les problémes évoqués ci-dessus dans un
langage combinatoire. On introduit les méthodes utilisées dans toute la Partie .
Si M (X) est inclus dans M (p) et si un sous-ensemble non saturé est trouvé pour A,
alors il peut étre utilisé comme sous-ensemble non saturé pour u. C’est pour cela
que dans beaucoup de cas, il suffit de construire un sous-ensemble non saturé pour
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répondre par la négative a la question de normalité simultanée des adhérences
de toutes les T-orbites. Ainsi, les sous-ensembles non saturés vont apparaitre trés
souvent. On note NSS un sous-ensemble non saturé. Le sous-ensemble non saturé
élargi est un sous-ensemble non saturé {vy,...,v,} et qui admet un vecteur v, tel
que

1. Vo € (Z(Ul,’UQ, c. ,Ur) N Q>0(v1,v2, c. 7Ur>> \Z>0<U1,’02, c. 7Ur>7
ii. il existe une Qx-représentation
Vo = Q10 + . GV, Vi € {U1, 02, ., U}

telle que les vecteurs v;,, ..., v;, sont linéairement indépendants et les coeffi-
cients ¢; appartiennent a [0, 1].

De tels sous-ensembles sont appelés ENSS; on les note {vg;v1,...,v,.}. Il est
aisé¢ de démontrer que si I'ensemble M = {vy,...,v,} n’est pas saturé, alors il
existe un vecteur vy tel que {vg; vy, ..., v} est un ENSS.

A partir d’un ensemble fini de points, on peut facilement construire un ENSS.
Par contre, la vérification effective du fait que ce que 'on vient de construire est
bien un ENSS, est moins évidente. L’'une de nos méthodes est la suivante. Soient
Vo, U1, - . ., U, des vecteurs dans un espace vectoriel rationnel Q" et soit f une fonc-
tion linéaire sur Q™. Nous disons que f est une fonction linéaire séparante pour
la collection {vg;vy,...,v,} lorsque la valeur f(vy) ne peut pas étre représentée
comme une combinaison linéaire des valeurs f(v1),..., f(v,) avec des coefficients
entiers positifs ou nuls. Supposons que vy € Z(vy, vg, ..., v:) N Qso(v1,ve, ..., 0;)
et que vy peut étre représenté comme une Q-(-combinaison de vecteurs linéai-
rement indépendants vy, ..., v, avec des coefficients dans Uintervalle [0, 1[. Alors,
I'existence d’'une fonction séparante garantit que {vo; vy, ..., v} est un ENSS.

A présent, décrivons les méthodes qui servent pour établir qu'un ensemble M de
points est héréditairement normal. Choisissons une base telle que pour tout v € M,
les coordonnées de v dans cette base soient entiéres. Représentons chaque point
comme un vecteur-colonne de ces coordonnées dans cette base. Soit K = K (M)
une matrice entiére n x r formée par tous ces vecteurs-colonnes. L’algorithme
suivant concerne les algébres monomiales.

Définition. A chaque colonne K; = (kii, ..., k)T, on associe un monéme de
Laurent t% = tlf“ ... thni 14déal torique I associé & K est le noyau de 1’homo-
morphisme de k-algébres

k[z1, 0, ..., 2] = K[t .. ta, ty Yty Y], e
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Définition. Supposons que uy et u_ sont deux vecteurs dans Z! a supports
disjoints. Soit f = 2"+ — 2"~ € Ik. On dit que f est un circuit dans [k si les deux
conditions suivantes sont satisfaites :

e toutes les coordonnées de uy et u_ n’ont pas de diviseur commun supérieur
al;

e 'ensemble des variables qui apparaissent effectivement dans f est minimal
par rapport a l'inclusion entre tous les binémes de .

Les deux critéres suivants sont énoncés par B. Sturmfels.

Théoréme B (|65, Theorem 3.8]). Un ensemble M de points est héréditairement
normal si et seulement si tout circuit dans Iy posséde au moins un mondme
sans facteur carré.

Supposons que 'ensemble de vecteurs M C Q" est de rang d, d < n. Soit L =
(v|v € M) V'espace vectoriel engendré par les vecteurs de M. L’ensemble M est
dit unimodulaire si pour tous vecteurs linéairement indépendants vy, ...,vq € M,
le volume d-dimensionnel voly(vy, v, ..., v4) est constant en valeur absolue. Dans
une base fixée de L, cette condition signifie que les valeurs absolues de tous les
déterminants non nuls |det(vy, ve, ..., v4)|, v1,v2,...,v4 € M, calculés dans cette
base, sont égales.

Si 'ensemble M est unimodulaire, son intersection avec tout sous-espace L; C
L est aussi unimodulaire. En effet, on peut toujours choisir une base dans L com-
patible avec L.

Théoréme C (|65, Theorem 3.5|). Tout ensemble unimodulaire est héréditaire-
ment normal.

Plus généralement, on dit qu'un ensemble M C Q™ de rang d est presque
unimodulaire si on peut choisir un sous-ensemble {vy, vy, ..., v4} € M tel que

volg(vy, Vg, ..., 0q) =m
et que pour tout autre vecteur w € M et pour tout ¢ la valeur
volg(vy, va, .o, 0y, e ooy Vg, W)

est divisible par m, c’est-a-dire est égale & km avec k € Z. Si on fixe une base
dans l'espace vectoriel (M), cette propriété peut étre vérifiée en comparant toutes
les valeurs des déterminants correspondants dans cette base donnée au lieu de
comparer les valeurs vol,. La valeur m = det(vy, vq, ..., v4) est dite le volume d'un
ensemble presque unimodulaire.

Des ensembles presque unimodulaires sont utiles dans les démonstrations ou
il faut montrer qu'un certain ensemble de vecteurs est héréditairement normal.
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On raisonne par I’absurde, en supposant qu’il y a un ENSS (vg; vy, ...,v,) dans
I’ensemble M. Puis, en sachant que M est presque unimodulaire, on analyse des
coefficients de la Q-p-combinaison correspondante pour vy, celle qui provient de la
définition de ENSS. Il y a un nombre fini de valeurs possibles pour ces coeflicients.
Avec ces données et une information supplémentaire sur le réseau de poids, on
arrive & démontrer que (vg; vy, ..., v,) n’est pas un ENSS. Cela implique que M
est héréditairement normale.

Il est connu que l'adhérence d'une T-orbite générique est normale, voir [8].
Dans le Chaptre 1, nous donnons une explication combinatoire de ce fait.

Dans le Chapitre 2, nous étudions le cas du groupe spécial linéaire. Parmi
tous les systémes de racines, ce cas est le plus difficile. Il correspond au systéme
de racines A,, :

An(n21) ? g— “ .. —0—090

2 n—1 n

Pour les modules mentionnés dans le Théoréme A, nous appliquons les Théo-
rémes B et C dans les démonstrations. Pour certains raisonnements, on a besoin
du langage de la théorie des graphes [27].

Les représentations fondamentales forment la classe la plus compliquée parmi
celles qui n’apparaissent pas dans le Théoréme A. Pour résoudre le probléme dans
tous ces cas, on utilise 'observation suivante : si on a déja trouvé un sous-ensemble
non saturé dans ’ensemble de poids de la jieme représentation fondamentale de
SL(n), alors il y a un sous-ensemble non saturé analogue dans l'ensemble de poids
de la kitme représentation fondamentale de SL(n + k). Avec une procédure ana-
logue a 'algorithme d’Euclide, on peut déduire tous les cas a partir de ceux ot un
ENSS est déja construit.

Dans le Chapitre 3, nous étudions les autres groupes classiques. Ici, les mo-
dules spineurs pour Dj et Dg posent le plus de difficultés. Nous démontrons que
les ensembles M (my), M(m5) pour D5 et M (ms), M(mg) pour Dg sont héréditaire-
ment normaux. Les méthodes utilisées pour A, ne sont pas suffisantes dans ces
cas. On a besoin d’utiliser des ensembles presque unimodulaires pour obtenir des
informations sur les ensembles de poids qui sont candidats pour étre un ENSS.

B,(n>2) o—o0— +++ —0———a——30

1 2 n—2 n—1 n
C,(n>3) o0—mo— +++ —0——o&—0D
1 2 n—2 n—1 n
Dn(n24) o—-O0— « o e n_l
1 2 n—3 n—2
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Dans le Chapitre 4, nous considérons les groupes exceptionnels. On utilise la
méme technique, y compris les ensembles unimodulaires et presque unimodulaires.
On peut voir ici que I'adhérence de chaque T-orbite est normale dans le cas des
premiéres représentations fondamentales de F et de GG5. En revanche, dans tous
les autres cas, il existe au moins une T-orbite dont I’adhérence n’est pas normale.

> O——O 1

Fs o lod o} o} o o
1 3 5 6 7 8
2
FE; o o I o o o
1 3 4 5 6 7
2
Eg o o} I o o
1 3 4 5 6
Fy o >0 o
1 2 3 4
G2 8 2

Partie 11

La seconde partie de la thése est consacrée a la transitivité infinie du groupe
d’automorphismes des variétés algébriques sur un corps de caractéristique zéro.
Cette partie est constituée de deux chapitres. Dans le Chapitre 5, le corps de
base est algébriquement clos, tandis que dans le Chapitre 6, le corps de base
est R. Ces deux cas sont complétement différents, ¢’est pourquoi nous présentons
séparément un résumé historique bref pour chacun de ces deux cas.

Groupes d’automorphismes de variétés complexes

Définition. L’action d'un groupe G sur un ensemble A est dite m-transitive si
pour deux m-uplets quelconques de points distincts (ay, ag, . .., ap) et (b1, ba, ..., by)
de A, il existe un élément g € G tel que g(a;) = b;, i = 1,2,...,m. Par exten-
sion, les actions qui sont m-transitives pour tous m € N seront dites infiniment
transitives.
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Les variétés munies d’actions de groupes multiplement transitives sont assez
rares. En effet, soit X une variété analytique lisse et soit G un groupe de Lie
agissant sur X. Evidemment, pour m > dim G, le groupe G ne peut pas agir de
fagon m-transitive sur X. Conformément a A. Borel, un groupe de Lie réel ne
peut pas agir de fagon 4-transitive sur une variété simplement connexe (voir les
Théorémes 5 et 6 dans [9]). La transitivité multiple des actions de groupes de Lie
a été étudiée par J. Tits [67]. Il a classifié toutes les actions de groupes de Lie
doublement et triplement transitives. Plus tard, ce résultat a été redémontré via
d’autres méthodes par L. Kramer [41].

Dans le cas algébrique, F. Knop [35] a trouvé toutes les actions 2-transitives
d’un groupe G algébrique connexe sur une variété algébrique X, ou le corps de
base est un corps algébriquement clos quelconque. Dans ce cas-1a, soit X = P et
G = PGL(m + 1), soit X = A™ et G est un produit semi-direct L K Transl, oil
Transl est le groupe de translations de A™ et L est un groupe qui agit linéairement
sur A™ et transitivement sur A™ \ {0}. Tous ces groupes linéaires sont énumérés
dans [35]. En particulier, ce résultat implique que la seule action 3-transitive d'un
groupe algébrique est action naturelle de PGL(2) sur P!, tandis que les actions 4-
transitives n’existent pas. V. Popov [57] a estimé le degré de transitivité "général"
pour tous les groupes algébriques simples et leurs actions sur variétés algébriques.
Ici transitivité générale signifie que l'action induite sur la puissance cartésienne
correspondante X™ a une orbite ouverte.

Finalement, on peut conclure qu’il n’y a pas d’espace avec une action infiniment
transitive lorsqu’on se restreint aux actions de groupes de Lie ou bien aux groupes
algébriques.

Dans toute la suite, on considére l'action d’un groupe complet d’automor-
phismes d’une variété. La transitivité infinie pour le groupe de tous les automor-
phismes algébriques est bien connue pour I'espace affine A™ sur un corps quelconque

algébriquement clos k, ou n > 2. La démonstration est donnée, par exemple,
dans [31, Lemma 5.5].

J.-P. Rosay et W. Rudin [61] ont étudié l'action du groupe de tous les au-
tomorphismes holomorphes de C", n > 2, sur les sous-ensembles dénombrables.
Pour deux suites quelconques discrétes et infinies de points, il a été démontré que
la premiére peut étre envoyée sur la deuxiéme par une application holomorphe.
Cependant, cette application n’est pas toujours un automorphisme. De plus, la
classe de suites pouvant étre envoyées sur une suite standard, par exemple 'en-
semble des nombres entiers, par un automorphisme holomorphe, est assez pauvre.
La situation est complétement différente pour les ensembles denses. J.-P. Rosay
et W. Rudin ont démontré que, pour deux sous-ensembles quelconques A et B

dénombrables denses dans C", n > 2, il y a un automorphisme holomorphe g tel
que g(A) = B.
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Notons Aut(X) le groupe de tous les automorphismes algébriques d'une variété
affine X. Ce groupe est trivial en général mais il est néanmoins assez riche dans
quelques cas intéressants. Evidemment, il ne peut pas étre algébrique s’il est de
dimension infinie. Dans ces cas, la description de ce groupe est assez compliquée.
Pour les surfaces dans A® données par des équations de forme uv — P(z) = 0 et
w™ — P(x) = 0, ot deg P > 1, L. Makar-Limanov [47, 48| a donné la descrip-
tion compléte du groupe d’automorphismes. Pour les surfaces dites surfaces de
Gizatullin (voir ci-aprés), une telle description a été obtenue par V.I. Danilov et
M.H. Gizatullin [17].

Rappelons la définition de 'invariant de Makar-Limanov d’une variété, donnée

dans [23, §9]

Définition. L’invariant de Makar-Limanov ML(X) d’une variété affine X est
'intersection des noyaux de toutes les dérivations localement nilpotentes dans k[X]
ou, autrement dit, la sous-algébre dans k[X| des invariants communs pour tous les
sous-groupes unipotents & un paramétre de Aut(X).

L’invariant de Makar-Limanov est un outil puissant pour distinguer des variétés
affines. En particulier, avec I’aide de cet invariant, L. Makar-Limanov [49] a démon-
tré que hypersurface cubique de Russel d’equation o + 2%y + 22 +t* = 0 dans C*,
n’est pas algébriquement isomorphe a C3, tandis qu’elle est difféomorphe a C3.
Dans le probléme de linéarisation, cet invariant est aussi trés efficace, voir [36].

Donnons quelques définitions. On suppose que le corps de base k est algébri-
quement clos et de caractéristique zéro. Toutes les variétés sont irréductibles et ré-
duites. L’action effective du groupe additif G, (k) sur la variété algébrique X définit
un sous-groupe a un parameétre unipotent dans le groupe d’automorphismes Aut(X).

Définition. Par groupe spécial d’automorphismes SAut(X), nous désignons le
sous-groupe de Aut(X) engendré par tous ces sous-groupes unipotents a un para-
metre.

Ilustrons ces notions avec des surfaces affines algébriques. Etant donnée une
surface affine normale X non isomorphe a k x k*, les trois conditions suivantes
sur X sont équivalentes :

e 'action de SAut(X) sur X est infiniment transitive sur un sous-ensemble
de X ayant un complément fini;

e X admet une complétion par une chaine de courbes lisses rationnelles ;

e l'invariant de Makar-Limanov ML(X) est trivial.

Ces surfaces sont appelées surfaces de Gizatullin. L’équivalence de deux pre-
miéres caractérisations a été démontrée par M.H Gizatullin [26] et puis par V.I. Da-
nilov et M.H. Gizatullin [17]. La troisiéme équivalence pour les surfaces lisses était
implicite dans [26]. Dans le cas de variétés normales, elle a été justifiée par A. Du-
bouloz [20].
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Il est clair qu'un automorphisme algébrique ne peut pas envoyer un point lisse
sur un point singulier, ni 'inverse. C’est pourquoi nous formulons notre tache de la
facon suivante. Soient m un nombre entier et X une variété affine algébrique, pas
nécessairement lisse. On cherche X telle que 'action de Aut(X) sur X, restreinte
au lieu lisse X,q, s0it m-transitive, c¢’est-a-dire qu’elle envoie tout m-uplet ordonné
de points distincts de X, sur tout autre m-uplet de points distincts de Xeg.

S. Kaliman et M. Zaidenberg [31, §5] ont considéré une hypersurface X dans
A" donnée par 1'équation uv — f(z1,...,2,) =0, 0un > 2et f € Klay,...,1,]
est un polynome arbitraire non constant. Par la suite, de telles variétés X sont
appelées suspensions au-dessus de Y = A". S. Kaliman et M. Zaidenberg ont
démontré que pour ces variétés X, le groupe SAut(X) agit de fagon infiniment
transitive sur X,e,.

Définition. Soit X une variété algébrique sur un corps k. Le point x € X est
dit flexible si I'espace tangent T, X est engendré, en tant qu’espace vectoriel, par
les vecteurs tangents des orbites H.x des sous-groupes unipotents a un parameétre
H C Aut(X). Une variété X est dite flexible si tout point lisse 2 € X,e lest.

Cette propriété est apparue pour la premiére fois dans [3], ot elle jouait un role
technique. Plus tard, I.V. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch
et M. Zaidenberg [2] ont démontré qu’elle était équivalente a la transitivité du
groupe SAut(X), justifiant une conjecture dans [3].

Théoréme (|2, Theorem 0.1]). Pour une variété affine X de dimension au moins 2,
les conditions suivantes sont équivalentes.

(i) Le groupe SAut(X) agit transitivement sur Xieg.
(11) Le groupe SAut(X) agit infiniment transitivement sur Xyeg.

(11i) La variété X est flexible.

Résultats du Chapitre 5

Dans ce chapitre, nous étudions les actions infiniment transitives d'un groupe spé-
cial d’automorphismes SAut(X) sur une variété affine algébrique irréductible X
sur un corps algébriquement clos de caractéristique zéro. La transitivité infinie
de SAut(X) est a priori plus forte que la transitivité infinie du groupe total d’au-
tomorphismes Aut(X). Cependant, pour nous il est beaucoup plus agréable de
travailler avec SAut(X) puisque nos outils le décrive d’une fagon trés efficace.

Définition. Par suspension au-dessus d'une variété affine Y on désigne une hy-
persurface X C Y x A? donnée par 1'équation uv — f(y) = 0, ot A% = Speck|u, v]
et f € k[Y] n’est pas constante.
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En particulier, pour X une suspension au-dessus de Y, on a dim X = 1+dimY.

Les résultats principaux de [3] sont contenus dans les théorémes suivants. Rap-
pelons que pour un groupe semi-simple algébrique G et un sous-groupe parabolique
P C G, 'espace homogéne G/ P est appelé variété de drapeauz. C’est une variété
projective.

Théoréme. Soit G/P une variété de drapeauz surk. Tout cone affine normal X
au-dessus de G/P est flexible et son groupe spécial d’automorphismes SAut(X)
agit infiniment transitivement sur le lieu lisse Xyee = X \ {0}.

Rappelons qu’une variété torique X est dite non dégénerée si k| X] ne contient
aucune fonction non constante inversible.

Théoréme. Soit X une variété affine torique non dégénerée sur k de dimension
au moins 2. Alors, X est flexible et son groupe spécial d’automorphismes SAut(X)
agit infiniment transitivement sur le liew lisse Xieg.

Théoréme D. Soit X une variété affine flexible sur k. On suppose soit que X =
A, soit que dim X > 2 et que le groupe spécial d’automorphismes SAut(X) agit
infiniment transitivement sur le lieu lisse X,cs. Alors, toutes les suspensions itérées
au-dessus de X ont les mémes propriétés. Elles sont notamment flexibles et leurs
groupes spéciaux d’automorphismes agissent infiniment transitivement sur le lieu
lisse.

En conclusion de ces théorémes, on peut déduire que l'invariant de Makar-
Limanov de ces variétés est trivial.

Dans la plupart des démonstrations, on utilise le fait suivant [23, §1.5|. Pour
un corps de caractéristique zéro, il y a une bijection entre les dérivations locale-
ment nilpotentes de 1'algebre k[X] et les sous-groupes a un paramétre de Aut(X)
algébriques unipotents.

Groupe d’automorphismes d’une variété réelle

Soit X une variété affine algébrique sur R. Pour nous, une variété affine algébrique
réelle est le lieu de zéros d'un ensemble fini de polynémes a coefficients réels dans
un espace affine réel. L’application f: X — Y est dite réguliére si elle peut étre
exprimée dans des coordonnées comme

(n)  p@)Y
f(x)_<q1(x)"”’qn(x)> Pl Prs Qly - @ € R[X]

avec q1, - - . ,, ¢n qui ne s’annulent pas sur X. Remarquons que ce ne sont pas toutes
les applications f de ce type qui peuvent étre relevées comme des applications
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régulieres X (C) — Y (C). Effectivement, §’il y a un dénominateur non trivial ¢,
alors, méme s’il ne s’annule pas sur X, il va avoir des zéros sur X (C); donc cette
expression dans les coordonnées ne va pas marcher pour X (C). De plus, il peut
étre impossible de relever cette application réguliérement sur X (C). L’application
f: X — X est dite un automorphisme algébrique si f est réguliére, bijective et
71 est réguliere. Comme précédemment, considérons le groupe Aut(X) de tous
les automorphismes algébriques de X. En général, ce groupe est assez pauvre, donc
les variétés X telles que le groupe Aut(X) soit assez riche sont intéressantes.

La transitivité infinie pour les surfaces réelles algébriques est bien étudiée.
Commencons avec une surface analytique réelle lisse connexe qui est difféomorphe
a au moins une variété réelle algébrique, autrement dit, ayant au moins un modéle
rationnel. De telles surfaces ont été classifiées par I. Biswas et J. Huisman.

Théoréme ([5, Theorem 1.2|). Soit S une 2-variété réelle analytique compacte
connexe.

1. Si S est orientable de genre supérieur a 1, alors S n’admet aucun modéle
rationnel.

2. Si S est non orientable ou bien difféomorphe a S* ou S*' x St, alors il y a, @
un 1somorphisme pres, exactement un modéle rationnel de S. Autrement dit, deuz
modéles rationnels de S sont isomorphes.

I. Biswas, J. Huisman et F. Mangolte [5], [29] ont démontré la transitivité
infinie pour cette classe de surfaces.

Théoréme (|29, Theorem 1.4]). Pour toute surface X rationnelle non singuliére
compacte connexe réelle algébrique, le groupe Aut(X) agit infiniment transitive-
ment sur X.

Pour les surfaces réelles algébriques non connexes, il n'y a pas de 2-transitivité
pour des raisons de connexité. Effectivement, deux points pris dans une méme com-
posante connexe ne peuvent pas étre envoyés sur une paire de points appartenant
aux composantes différentes. On va donc introduire la propriété suivante.

Définition. Par extension, I'action d'un groupe G sur un ensemble Y = Y LI
Y2 U ... UY?® est dite infiniment transitive composante par composante si, pour

tout s-uplet (myq,..., ms), cette action est transitive sur (m; + ...+ mg)-uplets de
forme (P!,..., P, ,P?,..., P2 .....P ..., P% ), o P]Z € Y sont deux a deux
distincts.

Conformément a 'article récent de J. Blanc et F. Mangolte [6], cette propriété
n’est pas toujours vraie pour les surfaces réelles algébriques non connexes. Soit # M
le nombre de composantes connexes d'une variété compacte M.



INTRODUCTION 23

Théoréme (|6, Theorem 1]). Soit X wune surface non singuliére réelle projec-
tive. Le groupe Aut (X ) agit infiniment transitivement composante par composante
sur X si et seulement si X est géométriquement rationnelle et #X < 3.

Dans le cas de trois composantes connexes, ce théoréme peut étre renforcé [6,
Theorem 2].

Il faut remarquer que la transitivité infinie dans tous ces cas a été obtenue au
moyen du groupe Aut(X) et non pas de SAut(X). A 'heure actuelle, la question de
la transitivité infinie de action de SAut(X) sur ces surfaces demeure une question
ouverte.

Reésultats du Chapitre 6

Ces résultats peuvent étre trouvés dans [3, 44]. A présent, nous étudions les ac-
tions infiniment transitives du groupe SAut(X) pour des variétés de dimension
quelconque sur le corps R. Tout d’abord, au prix de quelques restrictions légéres
sur la suspension, on peut généraliser le Théoréeme D.

Théoréme. Soit Y une variété flexible réelle algébrique. On suppose que le lieu
lisse Yieg est connexe et que le groupe spécial d’automorphismes SAut(Y) agit de
fagon m-transitive sur Y pour tout m € N. Considérons la suspension X =
Susp(Y, f), ou la fonction f € R[Y] vérifie la condition f(Yieg) = R. Alors, la
variété X est flexible et le groupe spécial d’automorphismes SAut(X) agit de fagon
m-transitive sur X,eg pour tout m € N.

Dans le cas particulier d'une suspension au-dessus d’une droite affine, le résultat
du Théoréme D reste vrai sur un corps quelconque de caractéristique zéro.

Théoréme. Soit k un corps de caractéristique zéro. Etant donné un polynome
[ € K[z] tel que f(k) =k, on peut considérer une surface X C A2 donnée par
léquation f(x)—uv = 0. Alors, X est flexible et le groupe spécial d’automorphismes
SAut(X) agit de fagon m-transitive sur X,eg pour tout m € N.

Dans le cas complexe, ces surfaces ont été classifiées dans des termes abstraits
par T. Bandman et L. Makar-Limanov [4].

Si X,eg n'est pas connexe, le groupe SAut(X) n’est méme pas transitif sur Xe,.
Effectivement, I'action de SAut(X) sur X laisse fixe chaque composante connexe
de X : chaque automorphisme spécial g peut étre décomposé sous la forme [[ 2;(1),
ou chaque h; est un sous-groupe a un paramétre unipotent. Pour tout x € X, la
courbe t — [] h;(t)-x relie x avec g-z. Ainsi, pour les variétés réelles non connexes,
on est obligé d’étudier la transitivité infinie composante par composante.

Soit Y une variété algébrique. On peut décomposer Yiee = Y LI...UY* selon
des composantes connexes. Pour la suspension X = Susp(Y, f), on a une partition
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Xieg = XU .LUX s' Tl est facile de démontrer que si deux points z et 2’ sont dans la
méme composante connexe de X7, leurs projections naturelles sur Y appartiennent
toutes les deux & une méme composante connexe Y de Y,ee. En revanche, on peut
avoir plusieurs composantes connexes de X,¢, au-dessus d'une composante connexe
de Yieq. Par exemple, si Y est compacte et f est strictement positive sur Y, les
deux branches de ’hyperbole uv = f(y) sont au-dessus de tout y € Y. La réunion
de toutes ces branches forme deux composantes connexes de Susp(Y?, f). Pour de
telles variétés, on généralise le Théoréme 6.1 comme ci-dessous (article en commun
avec F. Mangolte [44]).

Théoréme. Soit Y une variété affine algébrique définie sur R et soit f € R[Y].
On suppose que pour toute composante conneze Y de Yieg, la dimension dimY"
est au moins 2 et que f est non constante sur Y. Si'Y est flexible et si l'action de
SAut(Y) sur Yie est infiniment transitive sur chaque composante connexe, alors
la suspension X = Susp(Y, f) est flexible et SAut(X) agit sur X,eg infiniment
transitivement composante par composante.

Ce théoréme est le résultat principal du Chapitre 6.



Introduction

This thesis is devoted to the actions of groups of algebraic transformations on affine
algebraic varieties. In the first part we study normality of closures of maximal torus
orbits in the rational modules of simple algebraic groups. The second part deals
with actions of automorphism groups on affine varieties. We study transitivity and
infinite transitivity of such an action on the smooth locus.

Part 1

The normality problem for orbit closures

We start with a brief survey. Let G be an affine algebraic group, e.g. the special
linear group SL(n). We suppose that the ground field k is algebraically closed
and of characteristic zero. Recall that an irreducible affine algebraic variety X
is called normal if its algebra of regular functions k[X] is integrally closed in its
field of fractions. The study of normality of orbit closures has a long history. The
very first result is due to B. Kostant [37] who showed that the full nilpotent cone
in the adjoint module is normal. H. Kraft and C. Procesi [39] proved that in the
adjoint module sl(n) all the SL(n)-orbit closures are normal. In other words, the
closure in the Zarisky topology of each matrix conjugacy class is normal. For a
field k of positive characteristic, the same result for SL(n) was established by S.
Donkin [19]. Later on H. Kraft and C. Procesi [40] studied the same question
for the adjoint modules of other classical groups. They pointed out some orbits
with non-normal closures in terms of Young diagrams. E. Sommers [64] solved the
remaining case inside D,,, namely the case of the very even conjugacy class. The
normality for an orbit closure in the adjoint module is equivalent to the normality
of a certain nilpotent orbit closure in the same module. In all aforementioned
articles the authors dealt mainly with nilpotent orbits. The cases Fy, Gs, Eg are
resolved by A. Broer, H. Kraft, and E. Sommers in [12], [38], and [63], respectively.
There is no complete answer for F; and FEg yet.

Now we come to actions of an algebraic torus 7', i.e. of an affine algebraic group
isomorphic to k* x ... x k*, where k* =k \ {0}. An irreducible algebraic variety
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is called toric if X is normal and T acts on X with an open orbit. Toric varieties
play an important role in algebraic geometry, topology and combinatorics due to
their remarkable description in terms of convex geometry, see [24]. If an algebraic
torus 1" acts on a variety Y, then the orbit closure X = Ty of a point y € Y is a
natural candidate for a toric variety. To verify that it is indeed toric, it suffices to
check that X is normal. So the normality property is of great interest.

There is a link between normality of closures of torus orbits and normality of
closures of G-orbits. Indeed, the study of orbits of the G-action in the Cartesian
square g @ g of the adjoint module can be reduced to the study of T-orbits in the
adjoint module g itself, using Luna’s Etale Slice theorem.

For the time being we restrict ourselves to the case of T-actions and introduce
some terminology and a combinatorial interpretation. Let V' be a rational T-
module. We denote by A = A(T') the character lattice of T. With respect to the
T-action, the module V' can be diagonalized:

V:@VM, where V,={veV|tv=pu(t)y VteT}.

HEA

We denote by M (V) = {u € A|V, # 0} the set of weights of V. Each nonzero
vector v in V' has its weight decomposition v = v, + -+ v, v, € Vy,, vy, # 0.
Denote by M (v) the set {1, ..., us}. We can generate a semigroup Zso(fi1, - . ., iis)
with these weights. We can also generate a sublattice Z(u1, ..., us) and a rational
polyhedral cone Q=o(p1, ..., is) in the space Ag = A ®z Q.

Definition (Definition 1.2). The set of points {p1, . . ., us} C Q™ is called saturated
if
Z>0<:u17 s 7:“8) = Z(:uh s 7:“8) N @;0(”1, s 7,Us)-

The set of points {p1, ..., us} C Q" is called hereditarily normal if each its subset
is saturated.

It was proved in [32, I, §1, Lemma 1] that the closure T of the T-orbit of a
vector v is normal if and only if the set of characters {jus,...,us} is saturated.
This combinatorial criterion plays a key role in the first part of the thesis.

There are also some results in the literature concerning normality of orbit
closures for projective T-actions. Let X(v) be the closure of the T-orbit T'[v] of
a point [v] € P(V) in the projectivisation of a rational T-module V. Let P(v)
be the convex hull of M(v) in Ag. Then X(v) is normal if and only if the set
{p—po | € M(v)} is saturated for every vertex pg of the polytope P(v). This
and other criteria are given by J.B. Carrell and A. Kurth [13].

Consider a more general setting. Let G be a simply connected semisimple
affine algebraic group, T C GG be a maximal torus, B C GG be a Borel subgroup.
A.A. Klyachko [34] proved that the closure of a general T-orbit on the flag variety
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G/B is normal. Later on R. Dabrowski [16] showed that the closure of a general
T-orbit in G/P, where P C G is a parabolic subgroup, is also normal. Examples
of non-normal closures of non-general torus orbits can be found in [13].

It is well known that the closure of each T-orbit on a toric variety is normal.
Using the method of U-invariants, we can prove normality of the closure of each
G-orbit on a spherical variety for any connected reductive group G. In the case
of complexity one, I.V. Arzhantsev [1| showed that for an action of a connected
reductive group GG on a normal variety X with a one-parameter family of generic
spherical G-orbits and a good quotient 7: X — X//G, where X//G is a curve, the
closure of any G-orbit is normal.

The saturation property is important in many algebraic and geometric prob-
lems. N. White [68] proved that the set of incidence vectors of the bases of a
realizable matroid is saturated. A geometric consequence of this fact is that for
any point y in the affine cone over the classical Grassmannian Gr(k,n) the closure
Ty is normal.

Given a finite graph I' with n vertices, we can associate the following finite
collection M (I") of vectors in the lattice Z™:

M) ={ei+¢;: (ij) is an edge of I'},

where €1, €5, ..., ¢, is the standard basis of Z". The saturation property for this
set is equivalent to the fact that for two arbitrary minimal odd cycles C' and C’
in I', either C' and C”" have a common vertex or there exists an edge of I' joining
a vertex of C' with a vertex of C’, see H. Ohsugi and T. Hibi [52], A. Simis,
W. Vasconcelos, and R. Villarreal [62]. Algebraically, the saturation property
for M(T") is equivalent to the integral closedness of the subalgebra A(I") of the
polynomial algebra k[zq,xs, ..., z,] in its field of fractions Q.A(T),

A(T) =klx;z; : (1)) is an edge of I'].

C. Chindris [14] obtained some general results concerning quivers and the sat-
uration property. It was shown that a finite, connected quiver () without oriented
cycles is a Dynkin or Euclidean quiver if and only if all orbit semigroups of repre-
sentations of () are saturated.

The saturation property in a slightly different setting occurs to be important
also in some other problems of representation theory, see N. Ressayre [60] and
P.-L. Montagard, B. Pasquier, N. Ressayre [50]. These papers deal with counting
certain semigroups in the weight lattice. If it is known a priori that the semi-
group M is finitely generated, then M can be found in two steps. On the first step
we find inequalities defining the cone cone(M ), generated by the semigroup M. On
the second step we have to choose those integer points of cone(M), which actually
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belong to the semigroup M. In many interesting cases M coincides with the set
of integer points in cone(M) (the saturation problem).

For the adjoint action SL(n): sl(n) the result of B. Sturmfels [65, Ex. 3.7, [66]
says that all T-orbit closures are normal. G. Bobinski and G. Zwara [7] interpreted
this combinatorial result in terms of representations of quivers. J. Morand [51]
classified all semisimple affine algebraic groups such that all T-orbit closures in
the adjoint module are normal.

Our methods have much in common with technique used in these papers.

Let GG be a connected simply connected semisimple algebraic group and 7" be a
maximal torus in G. We formulate here the main problem being solved in Part I.

Find all simple rational G-modules V' such that for each vector v € V the
closure of its T-orbit is a normal affine variety.

Let us recall the description of the set of T-weights of a rational G-module V()
with the highest weight A\. Denote by ® the root system corresponding to G. Let =
be the root lattice, and let W be the Weyl group of ®. The weight polytope P(\)
of the module V(A) is the convex hull conv{w\ |w € W} of the W-orbit of the
point A in Ag. Then

M) =(A+Z)N PN,

see [25, Theorem 14.18] and [11, Exercices to Ch. VIII §7]. Hence, all T-orbit
closures in V' = V/(\) are normal if and only if M()) is hereditarily normal.

Results of Part 1

Summarizing results of [8, 42, 43|, we obtain the following theorem.

Theorem (Theorem 1.1). For the following types of simple algebraic groups and
the corresponding modules, and for their dual modules, the closures of all maximal
torus orbits are normal. In all other cases, the module contains a maximal torus
orbit with nonnormal closure.

Root system | Highest weight Checked in
A,,n>1 m Case 2.1
A,,n>1 T+ Ty [51, 65, 66/, Case 2.2

Ay 311 Case 2.3
Ay 47y Case 2.4
A, 27y Case 2.5
As T Case 2.7
Ay T Case 2.7
As o Case 2.7
As 3 Case 2.6
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Root system | Highest weight Checked in
B,,n>2 m Case 3.1
B o Case 3.3
B 27y Case 3.2
Bs 3 Case 3.3
By Ty Case 3.3
Cn,n >3 m Case 3.4
Cs o Case 3.5
Cy o Case 3.5
D,,n>4 m Case 3.6
D, o Case 3.7
D, 3 Case 3.8
D, Ty Case 3.8
Dy my Case 3.9
Dg s Case 3.10
Dg g Case 3.10
Fy m Case 4.1
Go m Case 4.2
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The first part of the thesis consists of four chapters. Let us present the content

of each chapter.

In Chapter 1 we reformulate the above problems in combinatorial language
and introduce the methods used throughout Part 1. If M () C M(u), and a non-
saturated subset for A is known, then it can be used as a non-saturated subset
for p. Hence, in many cases it suffices to construct one non-saturated subset
to answer in the negative the question of simultaneous normality of all T-orbit
closures. So non-saturated subsets will occur very often. In the sequel we refer to
a nonsaturated subset as an NSS. By an extended nonsaturated subset we mean a

nonsaturated subset {vy, ..

1. Vg € (Z(’Ul,’UQ, .. .,’Ur) ﬂ@}g(’l}l,’l}%. ..

ii. there exists a Qs-representation

Vo = 104, + ...+ qsVig,
with linearly independent vectors v;,, .

We call these subsets ENSSs and denote them by {vg; vy, . .

vi; € {v1, 09, ..

., v} augmented by a vector vy such that

7UT>> \ Z}O(U17 U, ..

-, Ur}

.., v;, and coefficients ¢; € [0, 1[.

., 0.} Tt is easy to show

that if the set M = {vy,...,v,} is not saturated, then there exists a vector vy such
that {vg;v1,...,v,.} is an ENSS.
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Usually it is not difficult to guess an ENSS. However, it is harder to check that
the guessed set is indeed an ENSS. One of our methods consists in the following.
Let vg, vy, ..., v, be vectors in a rational vector space Q", and let f be a linear
function on Q". We call f a discriminating linear function for the collection
{vo;v1,...,v,.} if the value f(vy) cannot be represented as a linear combination
of the values f(v1),..., f(v.) with nonnegative integer coefficients. Assume that
vo € Z(vy,ve,...,0.) N Qso(v1,v2,...,v,), and that vy can be represented as a
@Q=o-combination of linearly independent vectors vy, ..., v, with coefficients from
the interval [0, 1[. Then the existence of a discriminating function guarantees that
{vo;v1,...,v,.} is an ENSS.

Let us describe machinery which serves to establish that a given set of points M
is hereditarily normal. Choose a basis such that for any v € M, the coordinates of v
with respect to this basis are all integers. Represent each point as a column vector
of its coordinates in this basis. Let K = K (M) be an integer n X r matrix formed
by all these column vectors. The following algorithm deals with the monomial
algebras.

Definition (Definition 1.17). To each column K; = (ky;, ..., ky)T we associate a
Laurent monomial # = Mk~ The toric ideal I associated with K is the
kernel of the k-algebra homomorphism

ﬂ([ﬂj‘l,JZ‘Q, . ,SL’T] — ﬂ([tl, - ,td,tfl, .. .,t;l], Ti tKi.

Definition (Definition 1.18). Suppose that u; and u_ are two vectors in Z} with
disjoint supports, and let f = 2"+ — x%~ € Ix. We say that f is a circuit in I if
the following two conditions hold:
e the coordinates of both u, and u_ have no common divisor greater than 1;
e the set of variables which actually occur in f is minimal with respect to
inclusion among all the binomials of I.

The following two criteria are due to B. Sturmfels.

Theorem (|65, Theorem 3.8|). A set of points M is hereditarily normal if and
only if every circuit in Iy has at least one square-free monomial.

Assume that the set of vectors M C Q" has rank d, d < n, and let L =
(v|v € M) be the linear span of vectors from M. The set M is called unimodular
if for any linearly independent vectors vy,...,vy € M the d-dimensional volume
volg(vy, v, . .., v4) has constant absolute value. In a fixed basis of L, the above con-
dition is equivalent to the fact that the absolute values of all nonzero determinants
| det(vq, v, ..., v4)|, v1,02,...,v4 € M, computed in this basis are equal.

If the set M is unimodular, then its intersection with any subspace L; C L is
also unimodular. Indeed, we can always choose in L a basis compatible with L;.
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Theorem (|65, Theorem 3.5|, Theorem 1.12). Any unimodular set is hereditarily
normal.

More generally, we say that a subset M C Q" of rank d is almost unimodular
if we can choose a subset {vy, vg,...,v4} € M such that

volg(vy, vg, ..., vq) = m,
and for any other vector w € M and each ¢ the value
volg(vy, va, .., 0y e ooy Vg, W)

is divisible by m, i.e. equals km for some k € Z. If one fixes a basis in the linear
space (M), then this property can be checked by comparing the values of the
corresponding determinants in the given basis instead of computing vol;’s. The
value m = det(vy, v, ..., vy) is called the volume of an almost unimodular subset.
Almost unimodular sets are used to prove that certain sets of vectors are hered-
itarily normal. We argue by contradiction supposing that an ENSS (vg; vy, ..., v;,)
exists in the given set M. Then, using almost unimodularity of M, we analyze co-
efficients of the corresponding Q-g-combination for vy, according to the definition
of an ENSS. There is a finite number of possible values for these coefficients. Then,
using this data and additional information about the weight lattice, we show that
(vo;v1, ..., v,) is not an ENSS. This implies that M is hereditarily normal.

It is known that the closure of a generic T-orbit is normal, see [8]. In Chap-
ter 1 we give a combinatorial counterpart of this fact.

In Chapter 2 we consider the case of the special linear group. Actually, this
occurs to be the most difficult case. It corresponds to the root system A,.

A, (n>1) o

1 3

n—1 n

[N e]

For the modules mentioned in Theorem 1.1, we apply Theorems 1.19 and 1.12
in the proofs. Some reasoning uses the graph theory language. Our reference for
graph theory is [27].

Among the cases not listed in Theorem 1.1, the fundamental representations
are the most difficult to treat. To work with this class, we use the following
observation. If a non-saturated subset in the set of weights of the kth fundamental
representation of SL(n) is found, then the analogous non-saturated subset exists
in the set of weights of the kth fundamental representation of SL(n + k). Then
a procedure similar to the Euclidean algorithm reduces all the cases to those for
which an ENSS is already constructed.
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In Chapter 3 we treat the other classical groups. The most difficult cases
here are spinor modules for D5 and Dg. We prove that the sets M (my), M (m5) for
Ds and M(7s), M(mg) for Dg are hereditarily normal. Methods used for A,, are
not sufficient in these cases. We need to use almost unimodular sets to get some
information about the sets which are candidates to be an ENSS.

B,(n>2) o0—o0— +++. —O—a——30

1 2 n—2 n—1 n

Cp,(n>3) o—o— —0—o&—o

1 2 n—2 n—1 n

D, (n>4) o—o0— n—1
1 2 n—3 n—2

n

In Chapter 4 we consider exceptional groups. The same technique is used,
involving unimodular and almost unimodular sets. It turns out that all T-orbit
closures are normal just in two cases; namely, for the first fundamental represen-
tations of Fy and GS.

> O———O 1

Fs o lod o} o} o o
1 3 5 6 7 8
2
E; o o I o o o
1 3 4 5 6 7
2
Eg o o I o o
1 3 4 5 6
Fy o >0 o
1 2 3 4
Gy o&——
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Part 11

The second part of the thesis is devoted to the infinite transitivity of the automor-
phism groups of algebraic varieties over a field of characteristic zero. It consists of
two chapters. In Chapter 5 the ground field is algebraically closed, whereas in
Chapter 6 the ground field is R. These two settings are quite different. Let us
give a brief historical overview of these cases independently.

Automorphism groups of complex varieties

Definition (Definition 5.1). The action of a group G on a set A is called m-

transitive, if for any two tuples of pairwise distinct points (aq,as,...,a,) and
(b1,ba, ..., by) in A there exists an element g € G such that g(a;)) = b;, i =
1,2,...,m. By abuse of language, the actions which are m-transitive for all m € N

will be called infinitely transitive.

Manifolds with multiple transitive group actions are quite rare. Indeed, let X
be a smooth manifold, and consider a Lie group G acting on X. Clearly, for
m > dim G it cannot act m-transitively on X. According to A. Borel, a real Lie
group cannot act 4-transitively on a simply connected manifold, see Theorems 5
and 6 in [9]. Multiple transitivity of the Lie group actions on homogeneous spaces
was studied by J. Tits [67]. He classified all doubly and triply transitive Lie group
actions. This result was later reproved, using other methods, by L. Kramer [41].

In the algebraic setting, F. Knop [35] found all 2-transitive actions of a con-
nected algebraic group G on an algebraic variety X, where the ground field can be
any algebraically closed field. In this case either X = P™ and G = PGL(m + 1),
or X = A™ and G is a semidirect product L K Transl, where Transl stands for
the group of translations of A™ and L is a group acting linearly on A™ and tran-
sitively on A™ \ {0}. All such linear groups are listed in [35]. In particular, it
follows from this result that the only 3-transitive action of an algebraic group is
the natural action of PGL(2) on P!, whereas no 4-transitive action exists. V.
Popov [57] estimates the degree of "general" transitivity for all simple algebraic
groups GG and their actions on algebraic varieties. Here general transitivity means
that the induced action on the corresponding Cartesian power X™ has an open
orbit.

Summarizing, we conclude that there is no space with an infinitely transitive
action if we restrict ourselves to actions of Lie groups or algebraic group.

From now on, let us consider the action of the full automorphism group of a
variety. The infinite transitivity of the group of all algebraic automorphisms is
well known for the affine space A" over any infinite field k, where n > 2. For the
proof see e.g. [31, Lemma 5.5].
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Rosay and Rudin [61] studied the action of the group of all holomorphic au-
tomorphisms of C", n > 2, on countable subsets. For any two infinite discrete
sequences of points they showed that the first can be sent to the second by means
of a holomorphic mapping. However this mapping does not need to be an auto-
morphism. Moreover, the class of sequences that can be mapped to a standard
sequence, i.e. to the set of integers, by a holomorphic automorphism, is rather
poor. The situation is quite different for dense sets. They proved that for any
two countable dense subsets A and B of C", n > 2, there exists a holomorphic
automorphism ¢ such that g(A) = B.

Denote by Aut(X) the group of all algebraic automorphisms of an affine vari-
ety X. This group is trivial in general, but in some interesting cases it is however
rich. Obviously it cannot be algebraic if it is infinite dimensional. In these cases
its description is rather complicated. For the surfaces in A? given by the equations
uwv — P(x) = 0 and wv" — P(x) = 0, where deg P > 1, the automorphism group
was completely described by L. Makar-Limanov [47, 48]. For so called Gizat-
ullin surfaces (see below) such a description was obtained by V.I. Danilov and
M.H. Gizatullin [17].

Definition (Definition 5.40). Recall [23, §9] that the Makar-Limanov invariant
ML(X) of an affine variety X is the intersection of the kernels of all locally nilpotent
derivations of k[ X], or, in other words, the subalgebra in k[ X | of common invariants
for all one parameter unipotent subgroups of Aut(X).

The Makar-Limanov invariant is a powerful tool to distinguish affine varieties.
In particular, L. Makar-Limanov [49] showed with the help of this invariant that
the Russel cubic hypersurface z 4+ 2%y + 2% + t* = 0 in C* is not algebraically
isomorphic to C?, while it is diffeomorphic to C3. This invariant occurred to be
extremely useful in the linearization problem, see survey [36].

Let us give some definitions. We assume the ground field k to be algebraically
closed of characteristic zero. All the varieties are supposed to be irreducible and
reduced. An effective action of the additive group G, (k) on the algebraic variety X
defines a one-parameter unipotent subgroup in the automorphism group Aut(X).

Definition (Definition 5.2). By a special automorphism group SAut(X) we mean
the subgroup of Aut(X) generated by all its one-parameter unipotent subgroups.

Let us illustrate these notions on the example of affine algebraic surfaces. Given
a normal affine surface X non-isomorphic to k x k*, the following three conditions
on X are equivalent:

e the action of SAut(X) on X is infinitely transitive everywhere except a finite
number of points;

e X admits a completion by a chain of smooth rational curves;



INTRODUCTION 35

e the Makar-Limanov invariant ML(X) is trivial.

These surfaces are often called the Gizatullin surfaces. The equivalence of two
first characterizations was shown by M.H Gizatullin [26] and then by V.I. Danilov
and M.H. Gizatullin [17]. The third characterization for smooth surfaces was
implicit in [26]. For normal varieties it was proved by A. Dubouloz [20].

It is clear that an algebraic automorphism cannot send a smooth point to a
singular one, and vice versa. So our setting is the following. Let m be an integer,
and let X be an affine algebraic variety, not necessarily smooth. We are seeking
for X such that the action of Aut(X) on X, restricted to the smooth locus X,
is m-transitive, i.e. maps any ordered m-tuple of pairwise distinct points on X,
to any other such m-tuple.

S. Kaliman and M. Zaidenberg [31, §5] considered a hypersurface X in A™2
given by equation uv — f(xq,...,2,) = 0, where n > 2 and [ € k[z1,...,2,] is
an arbitrary non-constant polynomial. In the sequel such a variety X is called a
suspension over Y = A". They proved that the group SAut(X) of such a variety X
is infinitely transitive on Xi,.

Definition (Definition 5.3). Let X be an algebraic variety over k. We say that
a point x € X is flexible if the tangent space T,X is spanned by the tangent
vectors to the orbits H.xz of one-parameter unipotent subgroups H C Aut(X).
The variety X is called flexible if every smooth point z € X, is.

This property appeared first in [3|, where it played a technical role. Later on
I.V. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch and M. Zaidenberg [2]
showed that it is equivalent to the transitivity of the group SAut(X), so confirming
a conjecture in [3].

Theorem (|2, Theorem 0.1]). For an affine variety X of dimension at least 2, the
following conditions are equivalent.

(1) The group SAut(X) acts transitively on Xieg.
(1) The group SAut(X) acts infinitely transitively on Xeg.
(11i) The variety X is flexible.

Results of Chapter 5

In this chapter we study infinitely transitive actions of the special automorphism
group SAut(X) on an irreducible affine algebraic variety X over an algebraically
closed field of characteristic zero. Infinite transitivity of SAut(X) is a priori
stronger than infinite transitivity of the whole automorphism group Aut(X). How-
ever, it is more convenient for us since our tools describe SAut(X) in a rather
comfortable manner.
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Definition (Definition 5.4). We call a suspension over an affine variety Y the
hypersurface X C Y x A% given by equation uv— f(y) = 0, where A? = Speck|u, v],
and f € k[Y] is non-constant. In particular, dim X =1+ dimY".

The main results of [3] are contained in the following theorems.
Recall that for a semisimple algebraic group G' and a parabolic subgroup P C
G, the homogeneous space G/ P is called a flag variety. It is a projective variety.

Theorem (Theorem 5.5). Consider a flag variety G/ P overk. Then every normal
affine cone X over G/P is flexible and its special automorphism group SAut(X)
acts infinitely transitively on the smooth locus X,eq = X \ {0}.

Recall that a toric variety X is called non-degenerate if k[X| contains no non-
constant invertible functions.

Theorem (Theorem 5.11). Let X be any non-degenerate affine toric variety overk
of dimension at least 2. Then X 1is flexible and its special automorphism group
SAut(X) acts infinitely transitively on the smooth locus Xyeg.

Theorem (Theorem 5.30). Suppose that an affine variety X over k is flexible
and either X = A, or dim X > 2 and the special automorphism group SAut(X)
acts infinitely transitively on the smooth locus X,eg. Then all iterated suspensions
over X have the same properties, namely, they are flexible and the special auto-
morphism group acts infinitely transitively on the set of its smooth points.

As a conclusion of these theorems, we can deduce that the Makar-Limanov
invariant is trivial for the varieties under consideration.

Our main tool used throughout the proofs is the following, see [23, §1.5]. For a
field of characteristic zero, there is a bijection between locally nilpotent derivations
of the algebra k[X] and one-parameter unipotent algebraic subgroups of Aut(X).

Automorphism groups of real varieties

Let X be an affine algebraic variety over R. By an algebraic variety we mean
the zero locus of a finite set of polynomials with real coefficients in the real affine
space. The map f: X — Y is called regular if it can be written in coordinates as

f(z) = (pl(l’) Pn(T)

e , where p1,....p0, q1,...,q, € RIX
) 1 1 A

and q1, .. ., ¢, do not attain zero on X. Note that not all such maps f can be lifted
to a regular map X(C) — Y(C). Indeed, if there is a nontrivial denominator g;,
then being nonvanishing on X it can attain zero on X(C). So this coordinate
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decomposition will not work for X (C). It can be impossible to extend it regularly
to X(C). The map f: X — X is called an algebraic automorphism if f is regular,
bijective, and f~! is regular. As before, denote by Aut(X) the group of all algebraic
automorphisms of X. This group is poor in general. So the class of varieties X
such that the group Aut(X) is rich enough is of interest.

The infinite transitivity for real algebraic surfaces is rather well understood.
Let us start with a smooth connected real analytic surface diffeomorphic to at
least one real algebraic variety, in other words, having at least one rational model.
Such surfaces are all classified by 1. Biswas and J. Huisman.

Theorem ([5, Theorem 1.2|). Let S be a compact connected real analytic two-
manifold.

1. If S is orientable of genus greater than 1, then S does not admit any rational
model.

2. If S is either nonorientable, or is diffeomorphic to one of S? and S' x S*,
then there is exactly one rational model of S, up to isomorphism. In other words,
any two rational models of S are isomorphic.

I. Biswas, J. Huisman and F. Mangolte [5], [29] prove infinite transitivity for
this class of surfaces.

Theorem (|29, Theorem 1.4|). Whenever X is a rational nonsingular compact
connected real algebraic surface, the group Aut(X) acts infinitely transitively on X .

For non-connected real algebraic surfaces there is no two-transitivity by the
reason of connectedness. Indeed, two points in the same connected component
cannot be sent to a pair of points in different connected components. So it is quite
natural to introduce the following notion.

Definition (Definition 6.2). By abuse of language, we say that the action of a
group G onaset Y =Y!'UY?U...UY?* is infinitely transitive on each connected

component if for every s-tuple (mq,...,my), it is transitive on (m; + ... + my)-
tuples of the form (P!,...,P) ,P?,...,P2 ... P, ... Ps ), where P/ € Y' are

pairwise distinct.

According to a recent work of J. Blanc and F. Mangolte, this property does
not always hold for non-connected real algebraic surfaces. Let #M be the number
of connected components of a compact manifold M.

Theorem ([6, Theorem 1]). Let X be a nonsingular real projective surface. The
group Aut(X) 1s infinitely transitive on each connected component of X if and
only if X is geometrically rational and #X < 3.
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In the three component case, this theorem can be strengthened, see [6, Theo-
rem 2|.

Let us note that the transitivity in the above cases is obtained by means of
the group Aut(X) and not with SAut(X). Meanwhile, it is unknown whether
SAut(X) acts transitively on these surfaces.

Results of Chapter 6

These results can be found in [3, 44]. We study infinitely transitive actions of the
group SAut(X) for varieties of arbitrary dimension over the ground field R. First,
under some mild restrictions on the suspension, we can generalize Theorem 5.30.

Theorem (Theorem 6.1). Let Y be a flexible real algebraic variety. Suppose that
the smooth locus Yieg is connected and the special automorphism group SAut(Y')
acts m-transitively on Yies for every m € N. Consider the suspension X =
Susp(Y, f), where the function f € R[Y] satisfies the condition f(Yies) = R. Then
the variety X is flexible and the special automorphism group SAut(X) acts m-
transitively on X,eg for every m € N.

In the particular case of a suspension over an affine line, the result of Theo-
rem 5.30 remains valid over any field of characteristic zero.

Theorem (Theorem 5.31). Let k be a field of characteristic zero. Given a poly-
nomial f € kl[z] with f(k) = k, consider a surface X C A} with equation
f(x) —wv =0. Then X is flexible and the special automorphism group SAut(X)
acts m-transitively on X,ez for every m € N.

These surfaces were characterized in abstract terms by T. Bandman and L. Makar-
Limanov [4].

If X,eg is non-connected, then SAut(.X) is not even transitive on X,e,. Indeed,
the action of SAut(X) on X fixes each connected component of X: every special
automorphism ¢ admits a decomposition [ [ #;(1), where each h; is a one-parameter
unipotent group. For any « € X, the arc t — [[ h;(t) -  connects x to g - . So
for non-connected real algebraic varieties we study infinite transitivity on each
connected component, see Definition 6.2.

Let us consider an algebraic variety Y. Decompose Yo, = Y L...UY* into
connected components. For the suspension X = Susp(Y, f) we have a splitting
Xieg = XU .LUX*. It is easy to show that if two points = and 2’ are in the same
connected component X7, then their natural projections to Y are both in the same
connected component Y of Y;e,. However, there can be more than one connected
component of X, over one connected component of Y;e,. For example, if Y7 is
compact and f is strictly positive on Y, then we have two branches of hyperbola
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uv = f(y) over each y € Y'. The union of these branches form two connected
components of Susp(Y?, f). For such varieties we generalize Theorem 6.1 as follows
(joint work with F. Mangolte [44]).

Theorem (Theorem 6.3). Let Y be an affine algebraic variety defined over R
and let f € R[Y]. Assume that for each connected component Y of Yieq, the
dimension dim Y is at least 2 and f is non-constant on Y. IfY is flexible and
the action of SAut(Y') on Yie, is infinitely transitive on each connected component,
then the suspension X = Susp(Y,, f) is flexible and SAut(X) acts on X,ee infinitely
transitively on each connected component.

This theorem is the main result of Chapter 6.
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Chapter 1

Hereditary normality and
unimodular sets

Let, as before, G be a connected simply connected simple algebraic group which
corresponds to an irreducible root system ®. Fix a maximal torus 7' C G. The
main goal is to classify all simple finite-dimensional rational G-modules V' such
that for any v € V the closure T'w is normal. Obviously, this does not depend on
choice of T'. It is known that each simple module is uniquely (up to isomorphism)
defined by its highest weight. In turn, every such weight can be represented as
a nonnegative integer combination of fundamental weights. So we formulate the
result in terms of root systems and highest weights. We enumerate fundamental
weights as in [53, Chapter 4].

Theorem 1.1. For the following types of simple algebraic groups and the corre-
sponding modules, and for their dual modules, the closures of all maximal torus
orbits are normal. In all other cases, the module contains a maximal torus orbit
with nonnormal closure.

Root system | Highest weight Checked in
A,,n>1 m Case 2.1
A,,n>1 T+ Ty [51, 65, 66/, Case 2.2

Ay 3 Case 2.3
Ay 47y Case 2.4
A, 27y Case 2.5
As o Case 2.7
Ay o Case 2.7
As o Case 2.7
As 3 Case 2.6
B,,n>2 m Case 3.1

43
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Root system | Highest weight Checked in
B o Case 3.3
B 27 Case 3.2
Bs 3 Case 3.3
By my Case 3.3
Ch,,n=>3 m Case 3.4
Cs Ty Case 3.5
Cy o Case 3.5
D,,n>4 T Case 3.6
D, o Case 3.7
D, 3 Case 3.8
D, my Case 3.8
Dy Y Case 3.9
Dy s Case 3.10
Dy g Case 3.10
F, T Case 4.1
Gy m Case 4.2

In this chapter we give some algebraic definitions and reformulate the problem
in combinatorial terms. On one hand, we prove that the saturation property holds
for each subset in the set of weights of the representations listed in Theorem 1.1.
On the other hand, we produce non-saturated subsets in sets of weights for all
other representations.

1.1 Normality of torus orbits closures

Let V' be a rational T-module. Recall that A = A(T") stands for its character
lattice. With respect to the T-action, the module V' can be decomposed:

V= @Vw where V,={veV|tv=pu(t)y VteT}.
HEA

We denote by M (V) = {u € A|V, # 0} the set of weights of V. Each nonzero
vector v in V' has its weight decomposition

V=0 + v, vy, €V, v, #0.

Let M(v) stand for the set {1, ..., us}. With these weights, we generate a semi-
group Zso(p1,-- -, is), a sublattice Z(u1, ..., us) and a rational polyhedral cone
Q=o(ft1, - - -, ps) in the space Ag := A ®z Q.
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Definition 1.2. The set of points {p1, ..., us} C Q" is called saturated if

Lso(po1y -y pts) = Z(pta, - - s pos) N Qo1 - - -5 s)-

The set of points {1, ..., ust C Q" is called hereditarily normal if each its subset
is saturated.

Recall that an irreducible affine algebraic variety X is called normal if its alge-
bra of regular functions k[X] is integrally closed in its field of fractions. The fol-
lowing combinatorial criterion of normality of a T-orbit closure in a T-module [32,
I, §1, Lemma 1] plays a key role.

Proposition 1.3. Let V' be a finite dimensional rational T'-module and v = v, +
-+~ 4 v, be the weight decomposition of a vector v € V. The closure Tv of the
T-orbit of v is normal if and only if M(v) is saturated.

Corollary 1.4. Let V' be a finite dimensional rational T-module. The closures of
all T-orbits in the module V' are normal if and only if the set M (V') is hereditarily
normal.

Remark 1.5. The weight system is multiplied by —1 while replacing a represen-
tation V' of the torus T' by its dual V*. Hence the property of normality of all
T-orbits closures is preserved.

1.2  Weight decomposition

Let G be a connected simply connected semisimple algebraic group. We choose
a Borel subgroup B in GG and the maximal torus 7' C B. Denote by ® the root
system of the Lie algebra Lie(G) associated with the maximal torus 7. Let ®* be
the set of positive roots corresponding to B, and let A = {a4,...,a,} be simple
roots in ®*. Denote by 7; the fundamental weight corresponding to the simple
root ;. It is well-known that the weights 7, ..., m,. form a basis of the character
lattice A = A(T') of the torus 7T'. Since G is simply connected, this lattice is also
the weight lattice of the root system ®. The semigroup generated by fundamental
weights coincides with the semigroup of dominant weights A, . The subgroup of A
generated by the root system @ is called the root lattice, we denote it by =. It
is known that = is the sublattice of A of finite index, and oy, ..., «, form a basis
of =. For convenience, we consider weights pu € A as points of the rational vector
space Ag := A ®z Q. If the weight lattice A is realized in the space Q", then we
denote by €1, ..., &, the standard basis in Q". In all the cases, except A,,, we work
in this standard basis.

Let W be the Weyl group of the root system ®. Then W can be seen as a
finite group of linear isometries of Ag generated by reflections s,, where « is a
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root, see [30]. Recall that the reflection s, can be given as s,: f — [ — %a,
here (-,-) denote the W-invariant scalar product. Note that for any irreducible
root system ® the group W acts transitively on the set of roots of equal length,
see [10, Proposition 6.1.11]

Let V(\) be a simple G-module with the highest weight A € A,. Recall the
following description of the set of T-weights of the module V(X). The weight
polytope P(\) of the module V()) is the convex hull conv{wA|w € W} of the

W-orbit of the point A in Ag. Then
M) =(A+Z)NP(N),

see [25, Theorem 14.18] and [11, Exercises to Ch. VIII §7]. There is a partial
order on the vector space Ag: A > p if and only if A — 4 is a linear combination
of simple roots with nonnegative integer coefficients. The highest weight A\ of the
representation is the maximal element of M () with respect to this order.

Remark 1.6. Actually, we could start with a non-dominant weight A in this con-
struction. Then the formula M(\) = (A + Z) N P(\) gives the set of weights of a
representation such that its highest weight belongs to the WW-orbit of the vector .

In our situation, Corollary 1.4 can be reformulated in the following way:

Proposition 1.7. Let V/(\) be a simple G-module with the highest weight A. Then
the closure of each T-orbit in V(X) is normal if and only if M(\) is hereditarily
normal.

In the proof of Theorem 1.1 we distinguish positive cases, where we have to
prove that certain sets M (A) are hereditarily normal, and negative cases, where
it suffices to construct one nonsaturated subset in M (\). In general, the negative
cases are easier than the positive ones. The following lemma and remark show
how to produce nonsaturated subsets.

Lemma 1.8. Let A, X € Ay. Suppose that X = X', then M(\) D M(X).

Proof. Use the criterion from [11, Exercice 1 to Section VIII, §7]: the weight
N € X+ = belongs to M(A) if and only if for all w € W the weight A — w)’ is
a linear combination of simple roots with nonnegative integer coefficients. First
notice that under our assumptions X belongs to M()\). Indeed, for w = e the
weight A\ — )\ is a linear combination of simple roots with nonnegative integer
coefficients due to the assumption, and for w # e it is known that w\ = X — p,
where p is a sum of positive roots. Hence A — wXN = A — X + pu is a linear
combinations of simple roots with nonnegative integer coefficients. It means that
N € M(\), and all points of the form w\’, where w € W, belong to M (\). Using
convexity, we obtain that M (X') C M(\). O



1.3. NONSATURATED SUBSETS 47

Remark 1.9. Take X' € A, and assume that M()') is not hereditarily normal.
Then for all A € A, such that A\ > X the set M()\) is not hereditarily normal.

However, there are some negative cases which present difficulties. In the case A,
we need to treat infinitely many cases of fundamental representations 7, where
k,n € Z=p, 1 <k < n. Remark 1.9 is not applicable here. So we use a procedure
which is based on the descent as in Euclidean algorithm.

1.3 Nonsaturated subsets

The proof of the following lemma can be found in [51].
Lemma 1.10. Let M be a finite set of vectors in Q".
(i) If M is linearly independent, then M is saturated.

(ii) If M is not saturated and contains both vectors v and —v, then either M\{v}
or M\{—v} is not saturated.

(iii) Let v € Q=o(M). Then there exists a linearly independent subset M’ C M
such that v € Qso(M’).

We refer to a nonsaturated subset as an NSS. By an extended nonsaturated
subset we mean a nonsaturated subset {vy,...,v,} augmented by a vector vy such
that

o vy € (Z(vy,v9,...,0,) N Qso(v1,v2,...,0,.)) \ Zso(v1,v2,...,0,),

e there exists a (Q-g-representation

Vo = QU + o+ Qi Uy € {1, 00,0, 0 )

with linearly independent vectors v;,,...,v;, and coefficients ¢; € [0,1[. These

subsets will be called ENSSs and will be denoted by {wvg;v1,...,v.}.

The fractional part of a real value ¢ is denoted by {¢}, and the integer part
by |q|. We often say "points" instead of "elements of M". The following lemma
is useful in proofs by contradiction.

Lemma 1.11. Suppose that the set M = {vy,...,v,.} is not saturated. Then there
exists a vector vy such that {vg;vy,...,v,.} is an ENSS.

Proof. Consider any vector vy € (Z(M) N Qxo(M)) \ Zso(M), and the corre-
sponding Q- ¢-combination vy = ¢1v1 + ... + ¢-v,. By Lemma 1.10(iii) there exists
a linearly independent subset {v;,...,v,.} C {vy,...,v.} and the collection of
Qo-coefficients ¢; such that vy = qjv, + ... + ¢lv;,. If some ¢ > 1, consider
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another vector vy, = vg — |qy]viy, — -+ — | ¢ |vi, instead of vy. It is easy to see
that v} also belongs to Z(v1,...,v,) and to Qso(vy,...,v,), and does not belong
to Z=o(v1, ..., v,). However all the coefficients of the new Q-o-combination belong
to the interval [0, 1[. This means that {v{;vy,...,v,} is an ENSS. O

To prove that a certain set is an ENSS, we often use the following tool. Let
Vo, U1, ..., 0, be some vectors in a rational vector space L, and let f be a lin-
ear function on L. We call f a discriminating linear function for the collection
{vo; v1, ..., v} if the value f(vy) cannot be represented as a linear combination of
the values f(v1),..., f(v,) with nonnegative integer coefficients. If vy belongs to
Z(v1,v9, ..., 0.) NQxp(v1, V2, ..., v,) and can be represented as a Qo-combination
of linearly independent vectors vy, ..., v, with coefficients from the interval [0, 1],
then the existence of a discriminating function guarantees that {vg;vq,...,v,} is

an ENSS.

1.4 Unimodular and almost unimodular sets

Assume that the set of vectors M C Q" has rank d, d < n, and L = (v|v € M)
is the linear span of vectors from M. The set M is called unimodular if for any
linearly independent vectors vy, ...,vq € M the value of the d-dimensional volume
volg(vy, g, ..., vg) has constant absolute value. If a basis in L is fixed, then the
condition above is equivalent to the fact that the absolute values of all nonzero
determinants | det(vy, v, ..., vg)|, v1,V9,...,ug € M, computed in this basis, are
equal.

If the set M is unimodular, then its intersection with any subspace L; C L is

also unimodular. This is clear because we can choose in L any basis compatible
with L.

Theorem 1.12 (|65, Theorem 3.5]). Any unimodular set of vectors M is heredi-
tarily normal.

Proof. Suppose on the contrary that there exists an ENSS {vg;v1,...,v,.} in M.
Denote by d' the dimension of the subspace L; = (vq,...,v,), d < d. The set
{v1,..., v} is unimodular. According to the definition of an ENSS, vectors in the
corresponding (Q-g-combination for vy are linearly independent. Complete them
with elements of M to a basis vy, vy, ..., vy of the space L;. Due to unimodularity
and Cramer’s formulae, the coordinates of each v;, i > d’, in the basis vy, vo, ..., V¢
are equal to 0, 1, and —1. Then, using the initial Z-combination for vy and sub-
stituting the decompositions for v; in it, we deduce that vg has integer coordinates
in the basis vy, ..., vgy. Since vy has a unique decomposition in any fixed basis, all
the coefficients of the initial Q-y-combination are integers. 0
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We say that a subset M C Q" of rank d is almost unimodular if we can choose
a subset {vy,va,...,v4} € M such that volg(vy, vg, ..., vg) = m, and for any other
vector w € M and for each i the value

volg(v1, Vay ..oy Uy ooy Ug, W)

is divisible by m. If one fixes a basis in the linear space (M), then this property
can be checked by comparing the values of the corresponding determinants in the
given basis instead of computing volgs. The value m = det(vy, vy, ..., vy) is called
the wvolume of an almost unimodular subset. In invariant terms, M is almost
unimodular if and only if there exists a base of the lattice Z(M) formed by some
elements of M.

Lemma 1.13. Let M be an almost unimodular set of volume m and of rank d.
Then all the determinants in M are divisible by m.

Proof. Expand each w € M in the basis (v, v,...,v4). By Cramer’s formulae,
they all have integer coordinates:

det(vy,ve, ..., 0w, ..., vg)

if w=av1+...+aqug, thena; = det(vy, v o)
1,02y...,Ud

where all a; € Z because of almost unimodularity. Furthermore, for any vec-
tors wy, ..., wg € M we have det(wy,...,wy) = det A - det(vy,...,vq), where A

is an integer matrix, which expresses the set of vectors ws,...,wy in the basis
(v1,v9,...,0q). Since det A € Z, the value det(wy, ..., wy) is divisible by m, and
the proof is completed. O

To treat spinor modules in D5 and Dg cases, we need the following observations.

Lemma 1.14. Consider an almost unimodular set M such that all determinants in

M are contained in the set m-{1,aq, ..., ax}, and for some vectors wy, ..., wg € M
the value det(wy, ..., wq) equals am. Then, if we decompose any vector w € M
in the basis wq,...,wy, the coefficients of this decomposition belong to the set

{£1/a,£ai/a,...,xa/a}.
Proof. The proof follows directly from Cramer’s formulae, see above. O

By a primitive subset {vy,...,v4} in an almost unimodular set of volume m
we mean any d-element subset such that its determinant equals +m. In fact, the
proof of Lemma 1.13 says that for any primitive subset {vy,...,v5} C M the set M
belongs to Z(vy, ..., vq).

Example. Consider the set M containing the 16 points {(£1,+1,£1,+1)}. It is
easy to see that determinants of all 4-tuples equal 0, 8, or 16. This means that M
is almost unimodular.
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Lemma 1.15. Suppose that an almost unimodular set M of rank d and of vol-
ume m is not hereditarily normal, and {vo;vy,...,v.} is an ENSS. Assume that
the corresponding Qso-combination for vy involves only the linearly independent
vectors Vi, ..., Vg -

(i) If d =1k (vy,...,v¢) =d, then |voly(vy,...,vq4)| # m.

(ii) If d' < d, then for any vectors wgyq,...,wqg € M which are linearly inde-
pendent with vy, . .., vy, the value |volg(vy, ..., Vg, Wai1, ..., wq)| is different
from m.

Proof. (i) If |voly(vy, ..., va)| = m, then by Lemma 1.13 the decomposition of v
in the basis vy,...,vg has integer coefficients. Since vy,...,v4 are linearly in-
dependent, this Z-combination coincides with the initial Q-¢-combination. This
contradicts the fact that it is an ENSS.

(ii) We may suppose that the vectors wg1,...,w, enter in the initial Qso-
combination for vy with zero coefficients, and then use the reasoning of the previous
part. U

Lemma 1.16. Consider an almost unimodular set M of rank d which is not hered-

itarily normal and such that all values of determinants in it equal 0, =m, or £2m.

Let {vg; vy, ...,v,.} be an ENSS such that the corresponding Qsq-combination for vy

contains exactly the vectors vy, ... ,v;. Then there exists a vector v}y and a subset

{viy, - v} CH{or, ... 0} such that {vj; vy, ... v} is an ENSS and all the coef-

ficients in the corresponding Q=q-combination vy = ¢; vi, +...q; v;, are equal to 0
1

or 5-

Proof. Assume that the set {vy,...,v,} has rank d’. Let us first show that if d’ < d,
then in (vy,...,v.) all volg(wy,...,wy) € {0,£m/, £2m'}, w; € {vy,..., v} for
some m' (if d = d', this is a tautology). Choose a basis of vectors w; € M in
L = (M) compatible with L; = (vq,...,v.). Let wg,1,...,wq be vectors of this
basis belonging to L \ L;. Consider all possible values

{volg(uy, ..., ug, wgy1,. .., wq) | u1, ..., ug € L1}.

. . . B
In the basis constructed above the corresponding matrices have the form ( 0 E ) ,

where E stands for the identity matrix. This implies
det A € {£m, +2m}.

Now we can omit the points from M \ L; and suppose that d = d, and
m’ = m. Moreover, vectors vy,...,v; are linearly independent. If [ < d, then
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augment {vy,...,v;} by new (d—1[) vectors v, 1, ..., vq, linearly independent with
{v1,...,u}, and assume that v;44,...,v4 appear in the initial Q-o-combination
for vy with zero coefficients. If vol(vy,...,v4) = m, then by Lemma 1.15 the set
{vo;v1,...,v,.} is not an ENSS. If vol(vy,...,vq) = 2m, then by Lemma 1.14 all
the vectors v; for ¢ > d can be decomposed in the basis vy, vs,..., vy with inte-
ger or half-integer coefficients. Substituting these decompositions in the initial
Z-combination for vy, we obtain that the initial Qso-combination has integer or
half-integer coefficients (the last d — [ of them being zero). If some of them ex-
ceed 1, then, as in Lemma 1.11, we replace the vector vy by v, and obtain that all

coefficients are equal to 0 or % U

As it was mentioned in the Introduction, one more method to check hereditary
normality can be formulated as follows. Choose a basis such that for any v € M,
the coordinates of v with respect to this basis are all integers. Represent each
point as a column vector of its coordinates in this basis. Let K = K (M) be an
integer n x r matrix formed by all these column vectors. The below algorithm
deals with the monomial algebras.

Definition 1.17. To each column K; = (ki ..., k)T we associate a Laurent
monomial t%¢ = 8 tkni The toric ideal Iy associated with K is the kernel of
the k-algebra homomorphism

K[y, T, .oy xp] = K[ty ta byt ], m e R

Definition 1.18. Suppose that u, and u_ are two vectors in Z’ with disjoint
supports, and let f = z"+ — % € [x. We say that f is a circuit in I if the
following two conditions hold:
e the coordinates of both u, and u_ have no common divisor greater than 1;
e the set of variables which actually occur in f is minimal with respect to
inclusion among all the binomials of k.

Theorem 1.19 (|65, Thm. 3.8]). A set of points M is hereditarily normal if and
only if every circuit in Iy has at least one square-free monomial.

1.5 Normality of a generic T-orbit closure

Answering a question posed by V. Batyrev, we study here the generic torus orbit
closures. By a generic orbit we mean below the orbit of a vector v such that all
weight components of v are nonzero.

We need the following simple lemma.

Lemma 1.20. Let L be a vector space over Q. Suppose that the set S = {vy,...,v,} €
L generates L as a cone, i.e. Qsq(vy,...,v,) = L. Then the set S is saturated.
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Proof. For each vector v; € S, there exists a (Q-g-combination of some vectors
from S, resulting in the vector —v;. Multiplying this combination by the LCM of
the denominators of the coefficients, we obtain that

—dv; € Lxo(v, ..., 0p)
for some integer d;. Denote D = d; ...d,. We see that
—Duv; € Zso(v1, ..., 0)
for all ¢, hence (—D)Zso(v1,...,0,) C Z=o(v1,...,v,). Consequently,
Z(v1,...,0n) = (=D)Zso(v1,...,0n) + Zso(v1, ..., 0,) C Zso(v1, ..., 0n).
It follows immediately that S is saturated. O

Now we can prove the following statement.

Proposition 1.21. Let G be a semisimple algebraic group, and T C G be a maxi-
mal torus. Then the closure of a generic T-orbit in any rational finite-dimensional
G-module is normal.

Proof. For the generic vector v € V() all the components of its weight decompo-
sition are nonzero, hence the question of normality of the closure for its T-orbit
is equivalent to the question of saturatedness for the whole set M ()). First we
show that for any A € A the cone Q¢(M()\)) is a linear space. Indeed, the sum
> pen(y) M is W-invariant, hence it is orthogonal to all roots. From the fact that &
is semisimple we conclude that }_ /) = 0, it means that Qx0(M (X)) is a linear
space. Finally by Lemma 1.20 the set M()) is saturated. O

This fact has also a geometric explanation, as the rapporteur has kindly noticed.
Indeed, given a T-action on a vector space V' and a point v € V, if 0 € M (v), then
the T-orbit T'v is closed, see Proposition 6.15 in [59]. It means that each point in
Twv = T is smooth, hence T is normal.
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The root system A,

Let G = SL(n) and ® of type A, _;. The root system A,_1, where n > 2, is formed
by vectors {£(eg; —¢;)|1 <i < j<n}U{0}.
Now we pass to another notation. Consider

1 n-1 1

1
€; = —_—
n n
ith place
Notice that e, es, . .., e, (further referred to as a quasi-basis) satisfy the only linear
relation

€1+€2+...+€n20. (*)
In this quasi-basis we still have A,,_1 = {%(e; —¢;)|1 <7 < j < n}U{0}. The root
lattice = here is a lattice generated by the vectors e; — es, €9 —€3,...,€,_1 — €,.

Due to the ambiguity of notation,

E={ae +ages+...+ane, 1 nl(ar+as+...+a,)},

where | stands for divisibility, i.e. n|m <= 3z € Z, m = nz. With respect to
the simple roots e; — eg, €5 —e3,...,6,_1 — €,, the fundamental weights can be
written in the form
T =¢€1 +...+ e
Identify A with the Z-lattice generated by eq,es,...,e,. A weight xv, = aie; +
...+ aye, is dominant if and only if a; > as > ... > a,.
For a positive integer s | n, define

Z=o(s)(€1, .. en) = {Z¢=1 zie; x; €L, s | Zizlxi} :

In this notation the root lattice = coincides with Z—og)(e1, - .., e,).
The role of the Weyl group W is played here by the permutation group .5,
which acts on A by permutations of coordinates.

23
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2.1 Positive results

In this section we prove that certain weight systems are hereditarily normal.

Case 2.1. The tautological representation. Its highest weight equals 7 = e;.
The set M(ey) equals {eq,...,e,}. It is unimodular, hence hereditarily normal.

Case 2.2. The adjoint representation. Its highest weight \ is equal to m +
Tn—1 = €1 — €. Acting by W = S,,, we get all vectors of the form e; — e;. Taking
the convex hull adds only 0 to this set. We get M(\) = {0} U{e; —e; : 1 <
i,j <mn,i# j}. It was proved in |65, Ex. 3.7| or [51, Theorem 1] that this set is
hereditarily normal.

Case 2 3. The representatlon of SL(2) with the highest weight 3m;. Here we
have M (A {(— ——) ( — ) , (—% % (—5, 5)} in the usual basis). It easily
follows from Lemma 1.20 that the set M ()\) is hereditarily normal.

Case 2.4. The representation of SL(2) with the highest weight 47;. One has to
verify that the set M(\) = {(2,-2),(1,—1),(0,0),(—1,1),(—2,2)} is hereditarily
normal. According to Lemma 1.20, it can be done with a short case-by-case
consideration.

Case 2.5. The representation of SL(3) with the highest weight 2m; = 2¢e;. All
the weights of this representation are pointed in the figure below.

After an appropriate change of basis, K (M()\)) = ( Lo -1 -2 0 2 )

01 —1 0 —2 2
The set of all circuits of Ix(ar(n)) is {z10223 =1, 242506 — 1, wiry—1, 235 —1, vi3x6 —
1, 2303 — xg, 13202 — x5, 2322 — 14, 13 — w475, X3 — 2476, T3 — 1576 }. By Theorem 1.19,
it is hereditarily normal.

Case 2.6. The representation of SL(6) with the highest weight 3. The highest
weight A\ equals (%, %, %, —%, —%, —%),

M(\) = {%@1, e e =1 Y e =0}
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The matrix K formed by elements of M () in the standard basis is (K | —K),
where

1 1r 1 1 1 1 1 1 1 1

1 1 -1 1 -1 -1 1 -1 -1 -1

1 1 -1 1 -1r 1 -1 -1 1 -1 -1
21 -1 1 1 -1 -1 1 -1 -1 1 -1
-1 -1 -1 1 1 1 -1 -1 -1 1

-1 -1 -1 -1 -1 -1 1 1 1 1

This matrix is of rank 5 because dim Q(M (\)) = 5. Unimodularity of the set of
columns of K is equivalent to the same property of K;. To check this, we can
exclude the redundant first row, and calculate the values of all 5 x 5-minors of K,

1 1r-1 1 -1 -1 1 -1 -1 -1

1 -1 1 -1 1 -1 -1 1 -1 -1

Koy=1 -1 1 1 -1 -1 1 -1 -1 1 -1
-1 -1 -1 1 1 1 -1 -1 -1 1

-1 -1 -1 -1 -1 -1 1 1 1 1

An easy check in Maple 7 shows that K is unimodular, all its non-zero minors are
equal to £16, hence M () is hereditarily normal.

Case 2.7. The representations of SL(4), SL(5) and SL(6) with the highest
weight 7y = e; 4+ ey. The set of weights M () is equal to {e; +e; : 1 <i < j < n},
where n = 4, 5, 6. Suppose that there exists an ENSS {w;vy,... 05}, v; € M(N).

Let T" be the graph on n vertices associated with {vy,...,v,,} in the following
way. Each vector v, = e; +¢;, gives rise to an edge joining vertices ¢, and j;. Con-
struct a subgraph I'" C I': take all the vertices of I" and all the edges of I" entering
into the Q-combination above with nonzero coefficients. Write the coeflicients of
the Q,-combination at the edges of I''. The further proof consists of a search of
all possible graphs IV. The following observations simplify the search.

(0.1) The number of edges in each connected component of I is not greater
than the number of vertices. Otherwise, the vectors corresponding to the edges of
this component are linearly dependent.

(0.2) The number of edges in I' is less than the number of vertices (it follows
from (x) that the dimension of the enveloping space equals n — 1).

(0.3) The graph I does not contain even cycles. It follows from the fact that
the edges of an even cycle are linearly dependent: their alternating sum is zero.

(0.4) It follows from (0.1) that each connected component of ['" either is a tree
or contains exactly one cycle. In the second case it follows from (0.3) that this
cycle is odd.

(0.5) It follows from (0.2) that ['" has a vertex of degree 0 or 1.
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At each vertex, count the sum of all coefficients on the incident edges, and for
each sum take its fractional part. All these fractional parts are equal due to the
fact that all the sums in vertices (they equal the coordinates of v) become integer
after subtracting (*) with an appropriate coefficient. Now we conclude that

(0.6) I'" does not contain vertices of degree 0 and 1 simultaneously: if it does,
the fractional parts of the sums in vertices are all equal to 0, but in the terminal
vertex this sum has only one summand and is not an integer. We consider these
two cases independently.

Case 1. Graph I has a vertex of degree 0.

(1.1) As follows from (0.6), any other connected component of I is either a
point or has no terminal vertices. Moreover, (0.4) implies that it is an odd cycle.

(1.2) We have n < 6, consequently, the number of edges in " is < 5, but any
odd cycle has > 3 edges, and we yield that [” has at most one cycle.

Fulfil an exhaustive search within all graphs IV having a vertex of degree 0:

n =4, graph is a cycle of length 3 and a point,
n =25, graph is a cycle of length 3 and two points,
n =6, graph is a cycle of length 3 and three points,
n =06, graph is a cycle of length 5 and a point.

The only possible Q-combination in these cases is §(vi + - - - + v,). This means
that v =e; +es+ ...+ e, s € {3,5}, e1,...,es correspond to the vertices of the
cycle. But it does not lie in Z(vy,...,v,,) when n is even. When n = 5, consider
also the graph I'. Since v is a Z-combination of the edges of I', I' has more than 3
edges: I' DIV, I' # IV and I” has 3 edges. In the representation e; +eg + ... + e
the sum of coefficients of v is odd, hence we should apply (x) to the existing Z-
combination to get the representation e; +es+ ...+ e,. For this purpose the edges

of I" should touch all the vertices of I' (we name this property (xx)).

In Fig. 1 the graph I'" is drawn. To satisfy (xx), I" should contain at least the
following edges (up to symmetry): see Fig. 2, 3 or 4. The vertices corresponding
to e; are called V;. But in all cases we get a contradiction, since e; + es + e3 is
already a Z,-combination:

in Fig. 2: e1 + ey +e3=ViVo + Vol + V1V + V)V,
in Fig. 3: e1 + ez + ez = ViVo + VoVy + V1V + V3V,
in Fig. 4: e1+ ey +e3 =V Vo+ VoV + 2V Vi,
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Vi % Vi Vi
‘/QAV?, %AV?’ Vs Vs Vs Vs
Vie Vs Va Vs Va Vs Vi Vs

Fig. 1 Fig. 2 Fig. 3 Fig. 4

We have shown that the graph I' does not provide an NSS if I has a vertex of
degree 0.

Case 2. The graph I'" has a vertex X of degree 1 and no vertex of degree 0. Let
XY be an edge incident to X. We need to subtract (x) with the same multiplicity
as at XY. It follows that:

(2.1) Since X is a terminal vertex of I, either XY is a connected component
of I'" or the degree of Y is > 3. Indeed, suppose that the degree of Y is 2. Let
Y Z be the second edge incident to Y, and let ¢ be the value written at Y Z. After
subtracting (x) the coefficient at Y becomes equal to ¢, but it should be integer,
and we know that ¢ €]0, 1[. This is a contradiction.

Find all possible connected components of I".
On 2 vertices: o
On 3 vertices: &
On 4 vertices: ¥+ and A
If T has a connected component on 5 or 6 vertices, then this component coincides

with I. Using this observation together with (0.2), we obtain that I is a tree.
Taking into account (2.1), it remains to consider only the following trees: o,

A and <. But the edges of o= are linearly dependent (when n = 6,
one should sum all the thin edges, then subtract the thick one, and obtain (x)).
Therefore, this graph should not be considered. The result is

On 5 vertices: oo
On 6 vertices: o

Fulfil an exhaustive search within all graphs IV on n vertices satisfying all the
conditions above. In the case when one of the connected components of IV is a claw
(i.e., all the edges are incident to one vertex) with at least 4 vertices, its central
vertex will correspond to e; (it is easy to see that I cannot have more than one
claw).
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n Splitting into Admissible
connected components graphs

4 242 I

4 4 Voor 4

5 2+3 A

5 5 VN

6 24242 111

6 2+ 4 Iorll4

6 6 VA

The graphs [l and 2 do not satisfy our conditions: their edges are linearly
dependent.

If we start with I/;, we can obtain only e; as the Q,-combination: all the
three edges should appear in the Q. -combination with the same coefficient, say a,
a €]0, 1[. We sum these three vectors, obtain 3ae; +aey+aez+aey, and subtract (x)
with an appropriate coefficient. Finally we obtain 2ae;. In this notation it already
has integer coordinates (equal to zero), this means that all the other coordinates,
2a among them, should be integers, a = %, v = e;. But v cannot be obtained as
a Z-combination of vectors of type e; + ¢;. Indeed, each v; has an even sum of
coordinates, n is even, subtracting () with an integer coefficient does not change
parity of the sum of coordinates, and this proves that any vector from Z{v;}",

has even sum of coordinates.

The edges of the graph A are linearly dependent (here n = 5) because (2-first
edge + the sum of the edges of the cycle) = 0.

The graph «V.: using similar reasoning, v = e; or 2e;. But there exists an

edge in I' \ TV, hence e; is a Z,-combination of the edges of I': take the sum of
thick edges of =W\.

The edges of 1l and [ I4 are linearly dependent.

In the graph I 14 the vector v may be equal only to e;, but e; can not be
obtained as a Z-combination: 6 is even, and the sum of coordinates of e; is odd.

In the graph M the vector v has to be proportional to e, moreover, the coef-
ficient should be even (we use the reasoning as above, from the fact that 6 is even
it follows that the sum of coordinates is even for any vector from Z(vy,...,vy)).
But if we add any edge to this set, 2e; will be obtained as a Z-combination: take
the sum of thick edges of A

All the cases are considered, and this completes the proof.
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2.2 Negative results

Let A be a dominant weight not listed in Theorem 1.1. One has to construct an
NSS in M (). There are two possibilities for A: either the absolute values of all
its usual coordinates are < 1, or A has a coordinate with the absolute value > 1.
Speaking informally, the second case is practically always the consequence of the
first one (Lemma 1.8), but the NSS in the first case is constructed recursively and
its capacity increases when n increases. The construction of the second case gives
an NSS of only 4 vectors for any n.

By x; we denote the ith quasi-coordinate of a vector, if its quasi-basis repre-
sentation is fixed. Note that a discriminating function f = ayx; + ... 4+ a,x, in
quasi-basis is well-defined if and only if a; + ... + a, = 0 (for its definition, see
Section 1.3).

2.2.1 The fundamental weights

In this case \ equals

<n—k: n—k k k:)
szﬁk,n: Sy ,—ﬁ,...,——

n n

in the usual basis, 0 < k < n, n > 3 (if n = 2, the corresponding representation
is mentioned in Theorem 1.1). In some proofs we consider 7 for different SL(n)s
simultaneously, so the second index in the notation my, carries this data. Here
M(\) = {wA :w € S, }. The highest weight is equal to e; + ey + ... + ¢, in quasi-
basis, all the points of M (\) have form e;, +€;,+. . .+e;,, 1 <iyp < iy < ... <ip <n.

Now we can reformulate the problem. Let {e;} be the quasi-basis, k < n, and
the weight A = 7 is not listed in Theorem 1.1. One has to find a non-saturated
subset in the set

{ei +ei,+...4e, 1 <ip <iy<...<ip<n}

The construction uses induction on n. In the next section we produce the NSSs
which are the base of induction.

Important particular cases

Example 2.1. n = 7,k = 2. The NSS consists of those and only those vectors
which are the sums of two quasi-basis vectors connected with an edge in the graph
below. We have

1
UV =¢€] +ey+e3= 5((61+€2)+<€2+€3)+(€1+€3)),
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v=—(es+e5+es+er) =
2(eg +e3) — (ea +e4) — (e2 +e5) — (es +e6) — (e3 + e7).

€1
€2 €3

€4 €5 €g €7
Let f=5(z2+23) — 2(x; + 24 + x5 + 26 + x7). Then

fler+ex) = fler+e3) = flea+eq) =
flea+es5) = fles+es) = fles +er) =3,

f(€2—|—€3):10, f(U):f(€1+€2+€3):5-2—2:8.

It is clear that 8 cannot be represented as a sum where each summand equals
either 3 or 10.

Example 2.2. n = 8,k = 3. Consider the following vectors (in quasi-basis):

v 00111 000
vy 10011 000
Vs 11001 000
V4 11100 000
vs | =] 01110 000
V6 00110 100
vy 01010 010
vs 01100 001

Take v =(1,1,1,1,1,0,0,0) = é(vl + vy + v3 4+ vy + v5) = 205 — vg — V7 — vg. Let
f =z +5(xy + 3+ x4) + 205 — 6(z6 + x7 + xg). Then

flo) =12, f(va) = f(vs)

=S =5, S0 =11
Fles) =15, f(ve) = flur) = fvs) =

f(v) =18.

It is easy to see that 18 cannot be represented as a sum of 4, 8, 11, 12, or 15.
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Example 2.3. n =2k, k > 4.

() 100 ...00 011 ... 11
Vg 010 ... 00 101 ... 11
U3 001 ...00 110 ... 11
vg— (= 0O 0 0 ... 10 111 ... 01
Uk 000 ...0°1 111 ...10
Vk+1 010 ...00 111 ...10
Vk42 110 ...00 O11...10

Let us show that it is an NSS. Set

v=1(0,...,0,1,...,1), v =1 + Vg1 — Vkso,

(v1+---+vk):—(1,...,1,]6—1,...,16—1):
! e
1
- (0,...,0,k—2,... . k—2)=(0,...,0,1,...,1) = .

——
k k k k

To explain why v is not a Z,-combination of vectors v;, consider two cases.
Case 1: k =4. Let f = —6x3 — Txq + 5(x5 + 26 + x7) — 2x5. Then

f(vl) - f('UQ) - 87 f(l)g) - 27 f(U4) = 87 f('UEJ) = 157 f('UG) = 107 f(U) =13.

But it is easy to see that 13 cannot be represented as a sum of 2, 8, 10, or 15.
Case 2: k> 5. Let f = (k —2)(xpq1 + -+ -+ @op) — k(23 + - - - + 23). Then

f(v1) = fv2) = (k= 2)(k = 1),
flus) = f(va) == flon) = (k = 1)(k = 2) =k,
fpn) = (k=2)(k = 1), f(op2) = (k—2)%,  f(v) =k(k - 2).

If & > 6, then two least possible summands give too much: 2((k—1)(k—2)—k) >
k(k — 2), if k = 5, then 15 should be represented as a sum of 12, 7, or 9, but this
is impossible.

Example 2.4. n =2k + 1,k > 3.
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V1 o1 1 ....11 0O0... 00
Vg 10 1 ...11 00 ... 00
V3 11 0 ... 11 00 ... 00
Vg 11 1 ... 01 00 ... 00
v | 111 .10 00 ... 00
Ui 01 .. 110 10..00
Ukt 10 .. 1 10 01 ..00
Vo 11 ... 0 10 00 ... 1
Vok41 11 ... 1 0 0 00 ... 01
Let v=(1,...,1,0,...,0). Then
—— —
k+1 k
—1( + et )—1(k k,0,...,0)=(1 1,0,...,0)
U—kvl Vi1 —k s RyU L = e, U 000 U),
k+1 k k+1 k
(k_l)vk-i-l_vk—i—Q_"'_va—f—l:
— k=1, 1,0,...,0) = (k—1,....k—1,0,1,...,1) =
k=D& L0 O-t-L k- L0L )
k k+1 k k
=(0,...,0,~1,...,—1)=(1,...,1,0,...,0) = 0.
—_——— e — —— N —
k+1 k k+1 k

It suffices to show that v does not belong to Z, (v, v, ..., vok11). Let f = (k+
D(zy+ -+ ax) — k(zpa + - + 2op41). Then

f(Ul):"':f(Uk):kQ—k—la f(Ory1) =
forsa) =+ = flomp) = K> =k =1, f(v

But if £ > 3, then k% < 2(k* — k — 1), so k® cannot be represented as a sum
where each summand equals either (k? — k — 1) or k(k + 1). This means that
v & Ly (V1,V2, ..., Vopi1)-

Example 2.5. n =8,k = 2.

€2 €4 €e

(k+1),
k,Z

k
)

€3 &)

€1 €g €7
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The NSS consists of vectors which are sums of two quasi-basis vectors connected
with an edge in the graph above. Let v = e; + €3 + e3 + e5 + e + e7. Then

v = %((el +ey)+ (e +e3) + (61 +e3) + (e5+eg) + (es +e7) + (es + e7)),

v=(e1+e2)+ (e3+es) — (es+e5)+ (e5s+es) + (€5 + e7).

Check that e; + ey + e3+e5+ e+ e7 cannot be represented as a Z, -combination
of the vectors of our set. Let

f:ZL'l+I‘Q+ZE3+2(ZL‘5+ZL‘6+I‘7)+9I‘4— ].81‘8
Then

(61 + 62) (62 + 63) = f(el + 63) = 2,
fles +es) = fles + er) = fles +er) =4,
f(€3 + 64) = 10, f(€4 + 65) = 11, f(U) =9.

But 9 cannot be represented as the sum of integers 2, 4, 10, or 11.

Example 2.6. n =9,k = 3. Consider the following vectors:

V1 = e+ ex + ey, Vs = €1 + e3 + eg,
Vg = €1 + ey + e, Vg = €1 + e3 + ey,
Vs = €3 + e3 + €g, U7 = €9 + €4 + €4.

U4 = €9 + ez + ey,

Then v =e; + ey +e3 = %(vl+v2+v3+v4+v5+v6) = v, +v3 — vy
Check that v is not a Z,-combination of vy, vs, v3, v4, vs, vg, and v7. Let
[ =5(x1 + 22 + 23 + 24) — 425 + 26 + 27 + 25 + T9). Then f(v1) = 15,

f(v2) = f(vs) = f(vg) = f(vs) = fve) = f(vr) =6, f(v) =15.

Note that v # v; and f(v1) = f(v), so we conclude that if v € Z(vq,...,v7),
then v; does not occur in this decomposition. But 61 15, and this means that v
cannot be obtained as a Z-combination of v;s.

Example 2.7. n = 10,k = 4. Consider the following vectors:

v =e1 + ey +e3+es, Uy = €5 + €5 + €7 + eg,
Vg = €1 + €9 + e4 + €5, Vs = €5 + e7 + eg + €9,
V3 = €3 + €4 + €5 + €g, Vg = €g + €7 + eg + €1,

1
v=61+ez+63+e4+e5+66=§(vl+vz+v3)=v4—vs—vﬁ-
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Let us show that v € Z, (vq,...,vs). Let f = x1+x3+24+6274+623—T29—8210.
Then

flor) = fv2) = f(vs) =2, f(va) =12, f(vs) =5, f(ve) =4, f(v) =3.

But it is clear that 3 cannot be represented as a sum of 2, 4, 5, or 12.

Case when k{n,(n—k){n .

It follows that n > 5. The exceptional case % € {2,2} will be considered at the

15
end of the section. Below we suppose that % 4 {%, <}, which gives n > 7.

Lemma 2.1. Assume that there ezists an NSS for a pair (n,k), where (n,k)
satisfies the conditions above. Then for each r € N, there exists an NSS for the
pair (nr, kr).

Proof. Consider an arbitrary vector from M (). Write down its quasi-coordinates r
times in succession. The result is a vector from M (my,. ., ): it has kr 1s and
(n — k)r 0s. If one takes an NSS for (n, k) and performs this procedure on each
vector, the result will be an NSS for (nr, kr). O

Thus, if we construct an NSS for all pairs (n, k) where GCD(n, k) = 1, then
the NSS for all other pairs will be constructed according to Lemma 2.1.

Lemma 2.2 (the Step procedure). If there exists an NSS for a pair (n,k), then
there exists an NSS for the pair (n + k, k).

Proof. The keypoint is that if one takes a weight from M (7 ), writes it down in
the form where all quasi-coordinates are equal to 0 or to 1, and adds k coordinates
equal to 0, then this weight can be considered as a weight from M (7 ,44). If
one starts with an ENSS (v; vy, v, ..., v,,) for (n, k), then one should perform this
procedure on all its vectors and after that add one more vector v,,,1 which has Os
at the first n positions and 1s at the k adjoint positions. Now we show that the
obtained set (v;v1,...,v,,, Unt1) is indeed an NSS in M (7 pvk)-

Suppose that a vector v lies in the ENSS for (n, k), v = q1v1 + qava + . . . + qsvs,
q; € Q.. If we fix some representations in quasi-basis for v and for all v;, then this

equality can be re-written in the formal basis in the following form:

V=qu1 + @uat ...+ qvs —alfi + fot+ .+ fa),

where f;s are the preimages of e;s under the projection

Q" = AT)®2Q, (¢1,92,---,qn) — qr€1 + e + ... + @ney.
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Obviously, f;s are linearly independent. For each v;, fix a representation in which it
has k coordinates 1 and n—k coordinates 0. The vector v is nonzero, consequently,
it has a representation where all coordinates are nonnegative, but some of them
are zeroes. Fix this representation. Then o > 0 (otherwise all coordinates of v are
strictly positive), and we get that in Q"™ the following equality holds:

V' = oy 4 Uy + A qsUn A+ a(fagr A fark) —a(fi F fot o fagk)-

This shows that ¢’ lies in the Q,-cone generated by v/, ..., v ,v,41 (here all
vectors taken in quasi-basis {eq,...,€,1%}).

Similarly one can show that v lies in the Z(v|, ..., v, Umi1)-

To prove that the constructed set is an ENSS, it remains to show that v" does
not liein Z (v}, ..., v},, Umy1). Suppose the contrary. Let v' € Z, (v, ..., 0., Umi1).
Omit last & coordinates. We get that v € Z (v, ..., vy), so {v;v1,v9, ..., 05} is

not an ENSS for (n, k).
Notice that this proof also shows how to construct an NSS for a pair (n+k, k)
if the NSS for the pair (n, k) is given. O

Now we can explain how, using these Lemmas, the NSSs can be constructed
for all pairs (n, k), for which the following three conditions hold:

(H1<k<n-—1,

(2) GCD(n, k) =1,

B)n=>T.

Use descent on n. Suppose the NSSs are constructed for all pairs (m,[) with

n

m < n, satisfying the conditions above. Take a pair (n,k). Suppose k < 3
(otherwise change it by n — k and seek for an NSS for the pair (n,n — k), the case
n = 2k is impossible because GCD(n, k) = 1). If all the conditions are held for
the pair (n — k, k), then we have an NSS for it, and using Lemma 2.2, this NSS
can be remade into the NSS for (n, k). Let us find all the cases when at least one
of the conditions fails for (n — k, k).

Condition (1) fails iff n = 2k + 1. But we have n > 7, hence k£ > 3. In this
case we already have an NSS (Example 2.4).

Condition (2) never fails.

Condition (3) fails iff n — k < 5. Find these cases. Recall that £ < (n —1)/2.
Substitute it: n < (n—1)/2+5. This gives n < 9. List all these pairs (n, k) (with
kE<3).

n="7: pairs (7,2) and (7,3); n =8 : pair (8,3); n=9: pairs (9,2) and (9,4).

But we already have NSSs for all these pairs. Indeed, the cases (7,2) and (8, 3)
coincide with Examples 2.1 and 2.2, respectively. The cases (7,3) and (9,4) are
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the particular cases of n = 2k + 1 (Example 2.4). The case (9,2) can be obtained
from (7,2) (Example 2.1) using Lemma 2.2.

Finally, take all the cases where the NSS is already constructed as the base of
the descent. In all the other cases the descent is feasible, consequently, we have
constructed an NSS for all pairs (n, k) for which conditions (1) — (3) hold.

Now we consider the case % € {%, %} Let k =2k, n =bky, k1 > 2. If ky > 4,
we can construct an NSS using Lemma 2.2 and substitution k +— n — k: starting
with an NSS for (2ky, k1), we successively construct NSSs for (3k1, k1), (3k1, 2k1),
and (5ky, 2ky). If ky = 2, Example 2.7 can be applied.

If ky = 3, the pair (n,k) = (15,6), and the required NSS can be obtained from

Example 2.6 using Lemma 2.2.

Case when k |n or (n— k) | n.

Assume that £ < n/2. Then k| n, let d = n/k. The case k = 1 is positive, so here
k> 2.

If £ > 4, Example 2.3 shows that the NSS exists for the pair (2k, k). Using
Lemma 2.2, we can easily rebuild this NSS into the NSS for a pair (kd, d), where
d > 2. It remains to consider cases k = 2 and 3.

k = 2. Tt follows from Theorem 1.1 that d > 4. But we already have an NSS
for the pair (8,2) (Example 2.5). Using Lemma 2.2, we can construct NSSs for all
d> 4.

k = 3. We already have an NSS for (9,3). Using Lemma 2.2, we can construct
an NSS for all n such that n > 9 and 3 | n. We are done.

2.2.2 Non-fundamental weights

It follows from Lemma 1.8 that we already have NSSs for the major part of non-
fundamental weights (a non-fundamental weight can be reduced to fundamental).
However, this method does not cover all the cases, and the size of the resulting
NSS grows as dim V' does. Below, NSSs containing only 4 vectors are constructed
for all such cases.

There are two situations: all the usual coordinates of A are integer or all of
them are non-integer. Consider these cases independently. The coordinates of
vectors in the usual basis are denoted by ;.

All the coordinates of \ are integer, A\ # (1,0,...,0,—1)

Definition 2.3. By a shift for A, we mean the following procedure: take a point
A= (Y1,---,Yn), fix two indices 7 < j such that |y; —y;| > 2 and replace A with the
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point X, where X' = (..., y;—1,...,y;+1,...)ify; >y;and (...,y;+1,...,y; —
1,...) otherwise.

The point A lies in M (). Indeed, the set M(\) contains the point

(...,yj,...,yl',...)7

the convex hull of A and (...,y;,...,y;,...) contains \. Notice that after each
use of the shift the value y? + ...+ y? diminishes by a positive integer. Indeed, let
r =max{y,;,y;}, y = min{y;,y;}. Then v —y > 2, and

(=1 +(y+1)? =220+ 1+y*+2y+1 =2 +y* -2 —y—1) < 2* +y° - 2.

This means that if we apply consequent shifts to A, then this process cannot be
infinite.

Lemma 2.4. If n > 3 and \ satisfies the conditions of Subsection 2.2.2, then
M(X) contains one of the points

(2,0,...,0,—1,—1), (1,1,0,...,0,—-2), or (1,1,0,...,0,—1,—1),
and it always contains the point (1,0,...,0,—1).

Proof. Let A = (a1, ...,a,) (in the usual basis). If Vi a; € {—1,0, 1}, then, due to
the fact that A # (1,0,...,0,—1), A has at least 4 nonzero coordinates. Taking
into account that " a;, = 0, at least two of them are equal to 1 and two are
equal to —1. In this case, M()\) contains the point (1,1,0,...,0,—1,—1): split
all its other coordinates into pairs (1, —1) and make them zero (using the shift),
then permute the remaining 4 coordinates. Applying one more shift, we yield
(1,0,...,0,—1).

Otherwise, if 3, |a;| > 1 (one of the coordinates is big), then max; j(a;—a;) > 3.
Keeping at least one coordinate big, perform the shift for the pairs of indices where
|a; — a;| > 2. This process is finite. Consider a situation where we can perform
no more shifts. If we still have a nonzero coordinate with the same sign as the
big coordinate has, we can shift it with the coordinate of the opposite sign (their
difference will obviously be > 2). Otherwise we are in the case where we have a big
coordinate of one sign (without loss of generality positive) and some coordinates of
the opposite sign. If the big coordinate is > 3, then apply a shift to this coordinate
and to some negative coordinate. But we have supposed that shifts are impossible.
Then the big coordinate is equal to 2, nonzero ones among the other coordinates
are either —2 or two —1s. But if M(\) contains a point (2,0,0,...,0,—2), then
it also contains (2,0,...,0,—1,—1) = %((2, 0,...,0,-2)+(2,0,...,0,—2,0)). We
can easily get (1,0,...,0,—1), performing one more shift. O
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Construct NSSs for the first three points.
Example 2.8. A =(2,0,...,0,—1,—1), n > 3. Consider vectors

v =(1,-1,0,0,...,0), v = (=1,—1,2,0,...,0), v3 = (2,—1,—1,0,...,0),

1
v:(O,—l,l,O,...,O):é(vlJrvg):vg+v3—v1.

Suppose f = —ys, then f(vy) = f(v2) = f(vs) = f(v) = 1, but v # v; for any i.
We get a contradiction.

The NSS for the point A = (1,1,0,...,0,—2), n > 3 can be constructed
similarly (one should multiply all the coordinates by —1).

Example 2.9. A =(1,1,0,...,0,—1,—1) € M(\), n > 4. Consider vectors

vy =(1,1,-1,-1,0,...,0), wvy=(1,-1,1,-1,0,...,0),
vs =(0,1,0,—1,0,...,0), vy =(0,0,1,—1,0,...,0),

1
U:(1,0,0,—1,0,...,0):§(U1+U2):U1—|—U4—U3.

Suppose [ = —yu, then f(vi) = f(v2) = f(vs) = f(va) = f(v) =1, but v # v; for
any 7. We get a contradiction.

Now take an arbitrary dominant weight A\, n > 3, and the corresponding set
M()). It follows from Lemma 2.4 and Lemma 1.8 that an NSS for A exists.

It remains to consider the case n =2, A = (a, —a). If |a] > 3, then the segment
conv{(o(ay,as)),0 € Sy} contains the points (2, —2) and (3, —3). But this subset
is not saturated:

(1 -1)= 52, -2) = (3,-3)  (2,-2),

and the vector (1, —1) is not a linear combination of vectors (2, —2) and (3, —3)
with integer positive coefficients. If, otherwise, a € {0, £1, 42}, then each subset
in M(\) is saturated (see Theorem 1.1).

All the coordinates of A are non-integer

Lemma 2.5. Take a point A = (ay,as,...,a,) (in the usual basis), n > 4. If the
set {ay,as,...,a,} contains simultaneously o + 1, c, and o — 1 for some a € R,
then the set M(\) contains an NSS.

Proof. 1t is easy to see that M (\) contains a point v; = (a+1,a,a—1, a4, ..., a,),
as # 0 (because a4 € 7). Acting by S,,, we can get the following points from it:
v = ( a-—1, a, a+1l, ay,...,a,),
vg = ( a+1l, a-—1, a, ag, ..., ay),

vy = a, a—1, a+1l, ag...,a,).
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Let us show that this set is not saturated. Indeed,

1
5(7)1 +09) = (a, v, @y, - . ., ay),
ve+v3 — vy = (,a,q,ay,. .., a,).
If f =24, then f(v1) = f(v2) = f(vs) = f(va) = f(v) = 1. But v # v; for any i,
this means that v is not a Z,-combination of v;. O

Lemma 2.6 (The Good Triple Lemma). Let A = (ay,...,a,),n = 4, and all a;
be non-integer. If the collection aq, ..., a, contains at least three different values,
then M () contains a point of form (o + 1, o, — 1, ay, ..., a,).

Proof. Perform several shifts preserving the condition that the set {aj,...,a,}
contains at least 3 different elements. Suppose further shifts are impossible (we
mentioned above that, starting from any position, only a finite number of shifts
is possible). Consider ay., = max{ay,...,a,}, Gpin = min{ay,...,a,}, ama €
{a,...,an}, Gmid # Gmax; Gmid 7 Omin- U Gmax — Gmia = 3, then we can apply
the shift to ama. and an;q, thus we obtain three different values of coordinates
Gmins Omid + 1, Gmax — 1. Similarly, if apiq — a@min = 3, then at least one more
shift is possible. So we yield amax — Gmid; Gmid — min € {1,2}. If Gpax — mia =
(mid — Gmin = 1, we have already found a point of necessary type in M (). Up to
symmetry, one of the two cases is possible: either a,in = Amia — 2, Gmax = Gmid + 2,
O Gpmin = Gmid — 1, Gmax = Amiq + 2. Consider these two cases.

In the first case, apply the shift to aya.x and ay;,. This operation gives us the
required triple (Gmax — 1, Gmid, Gmin + 1)-

In the second case, amin = Amia — 1, Amax = @mia + 2, and we know that A
has at least 4 coordinates. If there are 4 different values among them, the fourth
will inevitably form a triple of form (o + 1, a, a — 1) with two of apax, Gmid; Gmin-
Otherwise a; € {@max, @mid, Gmin} for any i. But n > 4, this means that at least
one of the values (aj,as,...,a,) occurs twice. Suppose n = 4 (we need only 4
a;s). The multiplicities of (Gmax, Gmid, @min) Mmay be as follows: (m), (1,/\2, 1),
(m) Apply the shift to the coordinates marked with the hat. We get one of the
following collections: (@miq+1, Gmid, @mid, Gmid— 1), (@mia+ 1, Gmia+ 1, Gmids Gmia — 1),
(@mia+2, amia+1, Gmid, Gmia). Fach of them contains a triple of form (a+1, o, a—1).
But this means that here we also find a triple of form (a+ 1, o, — 1). O

Lemma 2.7. Let A\ = (aq,...,a,) be a dominant weight, n > 4, Ji with |a;| > 1,
and all a; & Z. If M(X\) does not contain a point of the form (a + 1,a,a —
1,a4,...,a,), then

2n—2 2 2 2 2 2 2 2n-—2
A= ym—y e, —— 0T A= — —, . —, — .
n n.n n n'n n n
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Proof. 1f the collection a4, ..., a, contains at least 3 different elements, then we
can use Lemma 2.6 and show that M ()\) contains a point of the desired form. This
means that Vi a; € {amax, Gmin}. Without loss of generality, we may suppose that
Amax > 1, and ayi, < 0 (otherwise multiply all a; by —1).

If amin < —1, then apply the shift to a;, and ana. Thus we get ani, + 1 and
max — 1 among the values of the coordinates, and still at least one of a,;, and
(max 18 presented (since n > 4 > 3). Using Lemma 2.6, we get a contradiction.

We see that —1 < ap;, < 0. If the collection (aq, ..., a,) contains ay.y at least
for 2 times, then apply the shift to ay;, and ap.e. Now we have apax, Gmin +1 >0
and at least one time a,,;, among the values of coordinates: all the coordinates
cannot be positive. This gives us a contradiction with Lemma 2.6.

Then G,y enters only once in (aq, ..., a,). If anax > 2, apply the shift to apnn
and apax. We get that apmax — 1 > 1, apin + 1 < 1 and ay,;, are among the values
of coordinates, which gives us a contradiction with Lemma 2.6.

We see that the collection has a form (@max, @min, Gmins - - - > @min), 1 < Gmax < 2,
—1 < amin < 0. Let ayy, = —S. We have (n — 1)amin + @max = 0 from the initial
k(n—1)

conditions. This yields apna = . But apa. < 2. Consequently,

k(n—1
M<2 = k(n—1)<2n = k<
n n—1

< 3,

because n > 4. Taking into account that a,.. > 1, we get k = 2, apax = 2"7:2,
2

amin = —%. But in the beginning of the case we could change the signs at all
the coordinates. Thus, we have two cases: A = (M, —2 2 ...,—%) and A =

n n’ n’

(_21172 2 2 2). 0

n 'n’n’’ " 0n

Applying the Lemmas, we see that in the case, when a; € Z, 3i, |a;| > 1, n > 4,
we have not constructed an NSS only in these two cases. In all the other cases the
NSS exists due to Lemma 2.5. Let us construct an NSS in these two cases. We
may assume that \ = (%, —-2 2 —%) = 2e;. Let

n’ n’

v =2ey, Vg =26y w=2e3, vz=e+ezE M), vy=es+ezE M(N).

Then vy, v, v3, vy form an NSS. Indeed, we have
1
v=e+ ey = 5(111—1—@2) =v1+vy—vs, f=x1+2x2+ 23— 3T,

Then f(v1) = f(va) = f(v3) = f(vg) = f(v) = 2, and v # v; for any i. But 2
cannot be represented as a sum of more than one 2s. We get a contradiction.
Now it remains to consider the cases n = 3 and n = 2.
In the case n = 3 we suppose that the fractional parts of all coordinates are

equal to % (otherwise change A for —\, as we have done earlier). If A = (%, %, —%),
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then M (\) is hereditarily normal (see Theorem 1.1). Below we construct an NSS
for A = (g, —%, —%) = 3e; + eg, then, using Remark 1.9, show the existence of an
NSS for all other points A. Let

2 1
V1 = €1 = 5(361 + 62) + g(eg + 363),
1 1
Vo = 261 -+ 262 = 5(361 + 62) + 5(61 + 362),

vz =3e; + e, V=2 + e Zvl+§v2=v3—v1-
If f =2y —x3, then f(v)) =1, f(ve) =2, f(v3) =3, and f(v) = 2. But v is equal
neither to vy, nor to 2v;. We get a contradiction.

Lemma 2.8. Suppose that A\ = (ay,as,a3) (in the usual basis) is a dominant
weight such that the fractional parts of all a; are equal to % Suppose also that
there exists an index i with |a;| > 1, and X # (3,%,—3). Then M()) contains a

3 3
point (3.4, ~4).

Proof. 1t follows from the conditions of the Lemma that Ji,a; > g Indeed, oth-
erwise we have at least 2 positive coordinates, each of them < %, but due to the
condition of the Lemma there exists an a; such that |a;| > 1. Suppose it is a;. We

have a; = —as—az > —%. This means that A\ = (—%, %, %) We get a contradiction.
If only one coordinate of A is positive, and it is equal to g, then \ = (%, —%, —%),

and the Lemma is proved. Otherwise either A has two positive coordinates, or one
of them is > %. In both cases we can apply the shift to a positive and a negative
coordinate, such that after it A still has a coordinate > g, and so on. O

Consider the case n = 2. Suppose that A = (5, —5), @ €N, a is odd. Then for
a = 3 the set M (\) is hereditarily normal. If a > 5, let us construct an NSS. Set

(33 (55
1 — 27272_ 272

Then (%, —%) = %Ul = 2’01 — V9 ¢ Z+(’U1,U2).

So in the case A, we have constructed non-saturated subsets in the weight
systems for all the modules not listed in Theorem 1.1.
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Chapter 3

Other classical root systems

3.1 The root system B,

The root system B,,, where n > 2, is formed by vectors {%¢; £¢;,+e; |1 < 7,5 <
n, 1 # j}. With respect to the system of simple roots

Ol =€1 —€&2,0y =&E3 —€3,...,0p1 =Ep-1—Ep, Oy =¢Ep

the fundamental weights have the form

1
7T1:€1,7T2:El+€2,...,7Tn_1:<€1+...+€n_1, 7Tn:§(€1+...+€n).

The root lattice = coincides with the lattice of all integer points in Q™. Next, the
weight lattice A has the form

A:{(ﬁl,&,...,ﬁn) | 2& EZ,&—@- EZ,i,j: 1,...,n}.

The Weyl group W acts by permutations on the set of coordinates and by changing
signs of an arbitrary set of coordinates. A weight A = (¢1,0s,...,£,) is dominant
if and only if ¢; > ... > ¢, > 0. If all coordinates of \ are integers (or all together
half-integers but not integers), then the set M(\) consists of all integer (or half-
integer but not integer, respectively) points in the polytope P(A).

3.1.1 Positive results

Case 3.1. A =m = (1,0,...,0). Then M(\) = {£e;|1 < i < n}. Obviously,
this subset is unimodular, and by Lemma 1.12 it is hereditarily normal.

Case 3.2. A =2m = (1,1), n = 2. It is easy to check case-by-case that any
subset in the set of vectors {£e; + €9, +e1, £e9} is saturated.

73
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Case 3.3. \=m, = (l

2,...,%), 2 < n < 4. In this case we have

n coordinates

One has to check that this set is hereditarily normal.
Multiply all coordinates of all vectors by 2. The problem does not change but
now all the coordinates are integers: M’(\) = {(£1,+1,...,£1)}.

n coordinates
For n = 2,3 the set M’()\) is unimodular, so by Lemma 1.12 it is hereditarily

normal.

Consider n = 4. The values of all nonzero determinants in M’()\) equal £8 and
+16. This means that M’()\) is almost unimodular. Find all 4-tuples of vectors
such that their determinant equals 16. For any vector v from M’ the vector —uv
also belongs to M’, hence we will look for such 4-tuples up to sign: we will check
only one vector from each pair of opposite vectors, namely, the one with the first
coordinate equalling 1. Also we may assume that the first vector in this 4-tuple
is (1,1,1,1). Using case-by-case consideration, we see that it can be only the
following set (given by rows of the following matrix):

w, 1 1 1 1
wy | |11 -1 -1
wy| |1 -1 1 —1
wy 1 -1 -1 1

Next, suppose that there exists an ENSS {vg;vy,...,v,.}. Using Lemmas 1.16
and 1.15, we obtain that the corresponding Q= y-combination for v, is a sum of some
+wy, dwy, fws, +w, with coefficients 0 and 1/2, i.e. q1v1+q2v2+q3v3+qsv4, where
each ¢; € {0, %} and v; = w;. Since every two coordinates of vy differ by an even
integer, 2(+q3 +q4) is even, hence (£q¢3 +q4) is integer, hence g3 and g4 are both 0
or % For other pairs of coefficients ¢; one can proceed analogously. Since vy # 0,
all the coefficients equal % If we augment {vy,vq,v3,v4} by any new vector vs
from M’'(\) (due to Lemma 1.10(ii) it is not w;, i = 1,...,4) we will express vy
as a Zso-combination. Indeed, any vector vs from M (\) which is not equal to
+w;, 1 = 1,...,4 can be represented as :i:%wl + %wg + %U)g + %w4 (for example,
(1,1,1,-1) = 1/2(wy + wy + w3 — wy)), which gives a similar representation in
vectors vy, vz, U3, va. But, if we have any vector vs of the form +3v;£3vat1vst 50y,
the vector %(vl + vy + v3 + v4) can be obtained for any choice of signs: we add
to vs those vectors v; at which vs has coefficient —%. This shows that vy can be
expressed in v; with Z-g-coeflicients. Hence, it is not an ENSS.
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3.1.2 Some negative results

Example 3.1. A = 21 = 2¢y, n = 2. Consider the following subset in M(\):
V] = 261, Uy = €1 + &9, U3 = &9, U = €] = v1/2 = vy — v3. Take a discriminating
linear function: f = 3x; + 4xs (see Section 1.3), then f(vy) = 6, f(vg) = 7,
f(vs) =4, f(v) = 3. It is clear that 3 cannot be represented as a sum of integers
4,6, and 7.

Example 3.2. A=my =¢1+e9,n > 3. Let vy =61 4+ 69, 19 =61 — &9, 13 =
E9—E3, Vg = —E3. Then v = g1 = %((€1+€2)+(€1—€2)) = (51—52)+(€2—€3)—(—€3),
but &1 & Z-o(vy,va,v3,v4). Indeed, let f = 3x; + 29 — bxg. Then f(vy) = 4,
f(v2) =2, f(vs) =6, f(va) =5, f(v) = 3, but 3 cannot be represented as a sum
of integers 2, 4, 5, and 6.

Example 3.3. A=m +m, = (3,1,...,1), n > 2. Let

_ (31 1 (3 1 1 (11 1
v = 2727---72 , U2 = 2, 2,..., 9 , U3 = 2,2,...,2 .

Then v = (1,0,...,0) = 1/3(v; + v9) = v; — v3, and if one considers the first
coordinate, it is clear that
v ¢ Lxo(v1,v2,03).
Example 3.4. A\ =7, = (%, ce %), n = 5. To simplify the notation, multiply
all the coordinates by 2. Let

v 1 1 1 1 -
Vs 1 1 1 -1 1
vs | 1 1 1 1
v | 1 -1 1 1 1|
s 1 11

g 1 1 1 -1 -1

1
U:§<U1+U2+U3+U4+U5):(171717171):U1+U2_U67

f = 31’1 + 3372 + 3373 + 2374 + 2.735,
flo) = flv2) =9, flvs) = f(va) = fus) =7, fug) =5, f(v) =13.

Note that 13 cannot be decomposed as a sum of integers 9, 7, and 5. Hence, it is
an NSS.

3.1.3 Reduction to the already examined cases

By a shift for B, we call the procedure of replacing the vector A = (¢1,...,¢,)
with the vector N = (¢1,...,¢;—1,...,¢,),if ¢; > 1. Notice that X" always belongs
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to M(\) because A— X' € = and ) is a convex linear combination of vectors A and
(l1,...,—C;, ..., 0,) with suitable coefficients (these vectors both belong to M(\)).

Lemma 3.1. Letn > 3. If A € 2\ @, then the vector e, + e belongs to M ().

Proof. Let A = (01,...,0,), {1,..., 0, €Z. Since A is a dominant weight, we have
Z? fz > 2. If Zyll Ez > 2 and fz > 0, then the pOiIlt (61, . 7&—1762‘ — ]_,fi_i_l, . 7£n)
belongs to M (A) (apply the shift). Repeating this procedure, we show that there
is a point X € M(\) with Y"1 ¢, = 2. It is either a root €;+¢;, or 2¢;, in the second
case we can obtain \” = 2¢; by acting with the Weyl group, and the midpoint of
XX is the point €; +¢; € M(X) C M()), hence g1 + 2 € M()), as well. O

Now we show how all cases from B,,, which do not appear in Theorem 1.1, can
be reduced to Examples 3.1 — 3.4, using Remark 1.9. If all coordinates of A\ are
integers and n > 3, then any weight A which does not belong to = can be reduced
to €1 + €2 by Lemma 3.1, i.e. Example 3.2 can be applied. If all coordinates of A
are integers and n = 2, then A = ({1, f3) # (2,0) but it is not a root, which gives
¢4 = 2, hence (2,0) € M()), and we can apply Remark 1.9 to Example 3.1.

If all coordinates of A\ = (¢1,...,£,) are not integers, i.e. for all i the value
20; is odd, and if in addition there exists a number ¢ such that 2¢; > 3, then
the point (2,3,...,3) belongs to M(\) (apply several shifts), and one can ap-
ply Remark 1.9 to Example 3.3. Finally, if A = (3,...,3), then we have M()\) =
{(\j:1/2, +1/2,...,+1/2)}. Multiply all the coordinates of all the vectors by 2, this

J/

n coordinates
does not change the problem, but now all the coordinates are integers: M'(\) =

{(£1,£1,...,£1)}. For n = 5 see Example 3.4, for n > 5 an NSS can be con-

n coordinates
structed in the following way: take Example 3.4 for n = 5 and append n — 5

coordinates equal to the 5th coordinate to each vector.

3.2 The root system C,
The root system C,, n > 3, is formed by vectors
{Feite;, £26, |1 <0, <n, i #j}.
With respect to the system of simple roots
Q1 =E1 —E9, Qg = €9 —E3,..., Qpy_1 = Ep_1 — En, Ap = 26,
the fundamental weights have the form

7T1:€1,7T2:€1+52,...,7Tn:€1+...+€n.
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The root lattice = coincides with the lattice of all integer points in Q™ with the
even sum of coordinates. The weight lattice A consists of all integer points in Q™.
The Weyl group W acts by permutations on the set of coordinates and by sign
changes on an arbitrary subset of coordinates. A weight A\ = ({1,0s,...,¢,) is
dominant if and only if ¢; > ... > ¢, > 0. The set M()\) coincides with the set of
integer points in P(A) such that their sum of coordinates has the same parity as
the sum of coordinates of \.

3.2.1 Positive results

Case 3.4. A = 1 = &;. Then M is unimodular, hence hereditarily normal (cf.
Case 3.1).

Case 3.5. A = my = €1 4+ g9, n = 3,4. For n = 3 this set is unimodular, hence
it is hereditarily normal. For n = 4 it is almost unimodular. All nonzero deter-
minants are equal to +2 or +4, and a 4-tuple of vectors with the determinant +4
without loss of generality coincides with the set of rows of the matrix

vy 1 1 0 0
Uy - 1 -1 0 0
vs | | O 01 1
o 0O 01 -1

Now the proof is analogous to Case 3.3. Suppose that there exists an ENSS
{vo; v1, V9, v3,v4}. Without loss of generality the vectors vy,..., vy are as above,
otherwise simultaneously change the sing of some coordinate in all the vectors.
Assume that the corresponding Q(-combination is vy = q1v1 + @202 + @33 + Q4.
Then all ¢; € {0,1/2}, ¢ = @2, and g3 = q4. But the sum of coordinates of vy is
even, consequently, all ¢; equal % simultaneously. To obtain vy as a Z-combination,
it is necessary to append a vector which is not +v;. However, it is easy to see that
all the other vectors in M(\) equal j:%vl + %'UQ + %’03 + %114. If we augment
{v1,...,v4} by any vector of this form, then the vector %vl + %vg + %Ug + %v4 will
be easily obtained as a Zo-combination (cf. Section 3.1.1).

3.2.2 Some negative results

Example 3.5. A =m +m = (2,1,0), n = 3. Let

U1 210
vul | 0 2 1
vs| | 1 0 2
o 1 20
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Take v = (1,1,1). We have v = 1/3(v1+v2+v3) = v1+va—vy. To check that v is not
a Z=o-combination of v;, consider the discriminating function f = 100z, 4+10xy+x3.
Then f(v1) = 210, f(v2) = 21, f(vs) = 102, f(vy) = 120, but f(v) = 111.

Example 3.6. Let A = 21, = 2¢1, n = 3. Consider vectors

U1 2 0 0
(%) . 0 2 0
(%] a 1 0 1
(7 0 —1 1

Then v = e1+¢e9 = 1/2(v1+v,) = v3—v4. To check that v is not a Zsy-combination
of vectors v;, consider the discriminating function f = 5z; + 3x9 + 923. Then
f(vl> = 107 f(Uz) = f(U4) = 67 f(Ug) = 147 but f(U) =38.

Example 3.7. Take A\ = m3 = € + €5 + €3, n = 3. Consider the following
vectors:

U1 1 1 1
wnl |1 -1 =1
Vs a 0 1 0
V4 0 0 —1

Then v = g1 = 1/2(v14v2) = v1 —v3+vy. To verify that v is not a Z-y-combination
of vectors v;, consider the discriminating function f = 11x; + 6x9 — 14x3. Then
f(vl> = 37 f<v2) = 197 f(’Ug) = 67 f<U4) = 147 but f(U) =11

Example 3.8. A\ =714 =& + 63+ 3+ &4, n = 4. Consider vectors

(o 1 1 1 1
Vo B 1 1 -1 -
vs | |1 0 1

V4 0 —1 1 0

Take v = (1,1,0,0) = 3(v; + v2) = v3 — vs. Consider the discriminating function
f = bxy + bry + 8x3 — x4. Then f(v1) = 17, f(ve) = f(vg) = 3, f(vs3) = 13,
f(v) = 10. It is clear that v; and v3 cannot be used in a Z-g-combination. But 10
is not divisible by 3, and we cannot obtain v, using only v, and vy.

Example 3.9. Take A = my = &1 + &9, n = 5. Consider vectors

v 10 1 00
vy 10 -1 00
vs| 01 0 10
wl"]lo1 0 =10
vs 00 1 01
Ve 00 0 11
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Then v = €1+ €& = 1/2<U1—|—U2—|—U3—|—U4) = VU2 + V3 + U5 — Vg. Take f =
bxy + 6x9 + x3 + 224 + 20x5. We have f(v1) =6, f(v2) =4, f(vs) =8, f(vy) =4,
f(’U5) = 21, f(’U6> = 22, but f(’U) = 11.

Remark 3.2. Examples 3.5 — 3.7 work for all n > 3, Example 3.8 works for all
n > 4, and Example 3.9 works for all n > 5. Indeed, we can append n — 3 zero
coordinates (n — 4 and n — 5, respectively) to each vector.

3.2.3 Reduction to the already examined cases

Consider two cases: (i) all ¢; € {0,1}; (ii) there is at least one ¢; with |¢;| > 2.
First consider case (i): all ¢; € {0, 1}, which means that A\ = m;, = e1+e2+. ..+ ¢y,
k< n.

Lemma 3.3. An NSS for the pair (k,ng) is at the same time an NSS for all the
pairs (k,n), where n = ny.

Proof. Append n — ng zero coordinates to each vector. O

Lemma 3.4. An NSS for the pair (k,n), where k+ 2 < n, is also an NSS for the
pair (k+2,n).

Proof. Use Remark 1.9: if A =¢; + ... + €19, then

1
51+52+---+5k:)\_(5k+1+5k+2):§<)\+<51+---+5k_5k+1_5k+2))7

hence it belongs to M (). This means that an NSS for (k,n) is also an NSS for
(k+2,n). O

Now take any pair (k,n), not equal to (1,n), (2,2), (2,3), and (2,4), where
k < n.

If k& is even and n < 4, then it is the pair (4,4), i.e. we get Example 3.8. If k
is even and n > 5, then we can modify Example 3.9 to get the required NSS: first
apply Lemma 3.3, and then apply Lemma 3.4. If £ is odd and k£ > 3, then we can
modify Example 3.7 to get the required NSS in the same way.

Now consider case (ii).
Definition 3.5. By a shift for C,, we denote the procedure of replacing the point
A=(.., 0.0 ..0)

with the point X' = (..., l—1,...,I'+1,...) (at the same places) when [ — " > 2.
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The point X' belongs to M (). Indeed, the point (...,I',...,I,...) belongs to
M (X). Its convex hull with A with a suitable coefficient equals A. Notice that for
[ — 1" > 2 the sum of squares of coordinates of the point \ decreases after a shift
by a positive integer:

=12+ +12=P-2+14+17+2' +1 =P+ =201 ~-1) <P+
Hence, we can consequently apply only finitely many shifts.

Lemma 3.6. Let A\ = ({y,...,4,), such that {; > 2 for some i. Then either
(2,0,...,0) or (2,1,0,...,0) belongs to M ().

Proof. Since A is dominant, we have /1 > 2. Now change A, during this process
it can be nondominant. Change sign at any coordinate, e.g. at £,, in such a way
that ¢, <0, and shift it with ¢; several times till the moment when ¢; becomes 2.
If meanwhile ¢,, becomes positive, then change its sign to make it negative, and
so on. Then fix /1 = 2 and shift other coordinates in any possible way, changing
signs at some coordinates, if needed. This process is finite, and if no further shift
is possible, then it is either the point (2,0,...,0), or the point (2,1,0,...,0). O

In case (ii) we can apply Lemma 3.6 and then Remark 1.9: the required NSSs for
all highest weights will be produced either from Example 3.5 or from Example 3.6.

3.3 The root system D,
The root system D,,, n > 4, consists of vectors
{fe;+e;|1<d,j <n,i#j}
With respect to the system of simple roots
Q] = €1 — €2,y =E3—E€3,..., 0y 1 =Ep_1 —Ep, Oy =Ep_1+&y
the fundamental weights have the form

7T1:€177T2:81+827 "'77Tn*2:81+---+8n727

1
(e14+ ... +en_1+en).

e ); T =
7Tn—1—2€1 En—1 Enaﬂ-n_Q

The root lattice = coincides with the lattice of all integer points in Q" with even
sum of coordinates. Next, the weight lattice A has the form

A:{(fl,fg,...,gn) | 20; GZ,&‘—EJ‘ GZ,i,jzl,...,n}.
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The Weyl group W acts by permutations of the set of coordinates and by changing
signs on any set of coordinates of even cardinality. The weight A = ({1, 05, ..., ¢,)
is dominant if and only if ¢4 > ... > ¢, ,,_1+¥{, > 0. If all the coordinates of \ are
integers (strictly half-integers), then the set M(\) consists of all integer (strictly
half-integer) points in the polytope P(\), such that their sum of coordinates differs
with the sum of coordinates of A by an even number.

The reasoning for D,, has another structure than in the preceding cases. The
cases of integer and noninteger coordinates of a fundamental weight are considered
separately. Many NSSs are taken from Section 3.2. Shift for D, is the same as
Shift for C,,.

3.3.1 Coordinates of all weights are integers

Case 3.6. A\ = m = ¢;. The set M(\) is hereditarily normal, the proof is
analogous to Case 3.1 of B,,.

Case 3.7. A = my = &1+¢e9, n = 4. The set M(\) coincides with the analogous
set from Case 3.5. That set is hereditarily normal.

In all other cases we construct NSSs. We often use NSSs constructed for C,,,
it is only necessary to check that for D, the weights under consideration indeed
belong to M(A). If a point v has a zero coordinate, then its orbits under the Weyl
groups in cases C), and D, coincide, because the coordinate equal to 0 can be, if
needed, multiplied by —1.

Example 3.10. A =1 +m = (2,1,0,0). We can use Example 3.5.

Example 3.11. A\ = 2m = (2,0,0,0), n = 4. Example 3.6 with the appended
column of zeroes works.

Example 3.12. A = 13+ 74 = €1 + 63 + €3, n = 4. Example 3.7 with the
appended column of zeroes works.

Example 3.13. A = m = ¢; + €9, n = 5. Example 3.9 can be applied.

Example 3.14. \ = 21y = €1 + €3 + €3 + €4, n = 4. Example 3.8 can be
applied.

Now, using Remark 1.9 applied to Examples 3.10-3.14, we show that NSSs
exist in all the remaining cases: a) all coordinates of the highest weight equal 41,
and their sum is odd; b) all coordinates of the highest weight equal +1, and their
sum is even; ¢) A has a coordinate such that its absolute value is 2 or more.

In this subsection all coordinates are integer, consequently, any set of weights
for any n can be considered as a set of weights for a greater n, filling new coor-
dinates with zeroes. Hence, Examples 3.10, 3.11, 3.12, and 3.14 provide us with
NSSs for highest weights of the same form for all n > 4, and Example 3.13 — for
all n > 5.
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In case a), if there are at least 5 nonzero coordinates, make two last of them
zero. For this take )\, which differs from A by the signs of two last coordinates,
and take the midpoint of the interval A\ instead of A. Then make two more
coordinates zero, etc., finally we reduce this case to Example 3.12.

In case b), if we have only two nonzero coordinates, we can obtain an NSS from
Example 3.13: just append the required number of zeroes. If there are 4 nonzero
coordinates, then an NSS can be obtained from Example 3.14 by appending the
required number of zeroes. If there are more than 4 nonzero coordinates (recall
that their number is even and each equals +1), then make two last of them zero,
then two more, and repeat this procedure up to the moment when their number
equals 4.

In case c), depending on the parity of Y 7 ¢;, one has to show that either the
point (2,0...,0) or the point (2,1,0,...,0) belongs to M(\). The proof is almost
the same as in the case of C,. On the first step change A to a point having at least
one zero coordinate. Actually, take A’ which is obtained from A by a sign change
of £, and /¢, simultaneously. It is important that A\’ has negative coordinates.
Now work with \. Shift /5 with any negative coordinate, e.g. with ¢,_;, till the
moment when one of them becomes zero. Permute n — 1 last coordinates to make
l,, = 0. Secondly, apply the algorithm from the proof of Lemma 3.6 to n — 1 first
coordinates of \. If in that algorithm it is required to change A with a point
w', w belongs to the Weyl group for C),, then the same procedure can be applied
for D,,. Actually, if w changes the sign of an odd number of coordinates, which
is allowed for C,, but not for D,,, then to be applicable for D,,, the element w
will also change the sign of the nth coordinate, i.e. the resulting point w\ will
be the same since ¢, = 0. This modification of w will belong to the Weyl group
of D,,. Now, exactly as in the case of C,,, apply Lemma 3.6 and then Remark 1.9,
obtaining the required NSSs for all highest weights either from Example 3.10 or
from Example 3.11.

3.3.2 Large noninteger coordinates

Here coordinates of all weights are nonintegers and there exists a coordinate whose
absolute value is not less than %

Lemma 3.7. Under these conditions M(\) contains a point of the form

311
(575757127 /57"'7Z;L)7

where l; are half-integers, i = 4,...,n.

Proof. Since A = ({1,...,£,) is dominant, ¢; is one of the coordinates with the
maximal absolute value. Now change A, letting it be nondominant. If ¢; > 3/2,



3.3. THE ROOT SYSTEM D, 83

we take A\’ which is obtained from A by a sign change of two last coordinates. It
is important for us that A" has negative coordinates. Now work with \’. Shift ¢;
with any negative coordinates till the moment when ¢; becomes equal to 3/2. If
needed, during this process make a sign change of two last coordinates again. Now
fix ¢; and perform the same procedure with ¢5 till the moment when ¢, = 1/2.
If now ¢3 and ¢, have the same sign, then change signs at ¢, and ¢, and shift /5
and ¢, till the moment when one of them becomes +1/2. If at some step they
have the same sign, change the sign at /5 and /4. Permuting the coordinates, if
needed, we may suppose that we obtained the point (3/2,£1/2,£1/2,...). Now,
if needed, change the signs at the pairs of coordinates 2,4 and 3, 4. U

Now consider the following NSS:

311 1 31
v = (5,5,5,[&,[&,,[%) , Uy = (—5,—5,57%17[‘/57,1;) s
1 31 111
=== =001 ..U = —=, =, = 0,01, ....U
U3 (272727 49 V5, ) n)? V4 < 272727 45 Y5, ) n)
1

1 3 11 13
— 5 (<_§7_§7§7l£17lé)77l1/1) + (§7§7§7l2,lé,,l;)) .

Then vo = (3, =3, 5,04, 1, ..., 1),) = 2(v1 + v2) = vy + vy — v3. If one looks at the

third coordinate, it is clear that it is indeed an NSS.

3.3.3 Small noninteger coordinates

Here all coordinates of weights are noninteger and all coordinates of the highest
weight are less than 1. Under these conditions

A=(1/2,...,1/2,41/2) € {mp_1,mn}.

Since 7,_1 and 7, are dual, it suffices to consider only the case A = 7,.

Case 3.8. For n = 4 the set M () is a subset of M (my) for B, (see Case 3.3).
Since in the case of (), all the subsets were saturated, here it is also true.

Now the aim is to show that for n = 5, 6 the answer is positive, and for n > 7
it is negative.

Case 3.9. A =715 = (l 111 l), n = 5. Here

272727272
M) (il 414l i1>\ ber of mi
— — — — — — eveln numoper oI minuses .
9 Ty Ty Ty T ) I

To simplify the notation, multiply all the coordinates by 2. We obtain the set

M'(\) = {(£1,£1,41,+1, £1) | even number of minuses}.
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Let us show that M’()\) is almost unimodular of volume 16. To compute a
determinant of five arbitrary vectors, write them as a matrix and add the first row
of this matrix to all the other rows. Now rows 2-5 are even, hence the volume of
the determinant is divisible by 16. For the following vectors

11 1 1 1
1 -1 -1 -1 -1
-1 1 -1 -1 -1
-1 -1 1 -1 -1
-1 -1 -1 1 -1

the determinant equals 16, hence M'(A) is almost unimodular. Notice that each
vector has length \/5. The value of the determinant is at the same time the volume
of the parallelepiped generated by these vectors, and the absolute value of the last
number does not exceed (v/5)° < 64, hence equals 16, 32, or 48.

Letting m = 16, we obtain that all possible nonzero values of determinants are
+m, £2m, or £3m.

Lemma 3.8. If for some vectors vy,...,vs € M'(X) the scalar product (vy,vy) =
—3, then
| det(vy, ..., vs)| < 3m.

Proof. Each vector from M’()\) has length v/5. Let Si5 be the area of the paral-
lelogram generated by vectors vy and ve. Since (vy,vy) = —3, we have Sjp = 4.
From geometrical reasons

|det(vy, . ..,v5)] < Sia- (V5)? < 48 = 3m.

Lemma 3.9. Take vq,...,vs € M'()).

(1) If | det(vy, ..., vs)| = 3m, then one may suppose that

v 1 1 1 1 1
s 1 -1 1 1 1
vs | =] =1 1 -1 1 1
v 1 1 1 -1 1
s 1 1 1 1 -1

up to the permutation of lines and the simultaneous sign change in pairs
of columns.

(ii) The following is impossible:

| det (v, v, v3, vy, v5)| = | det(vy, vo, v3, vy, v6)| = 3m.
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Proof. (i) It follows from Lemma 3.8 that no two of these vectors differ in four
coordinates. Hence, any two of these vectors differ exactly in 2 coordinates. With-
out loss of generality v; = (1,1,1,1,1) and vy = (=1, —1,1,1,1). Then each of the
three other vectors has exactly two —1s. Say that two first coordinates are prefiz.
To differ with vy exactly in two coordinates, each of the remaining vectors must
have exactly one prefix coordinate equal to —1. The pigeonhole principle gives us
that two of them (say, v3 and v) have the same prefix coordinate equal to —1,
without loss of generality this prefix coordinate is the first coordinate. Then the
first coordinate of vs also equals —1, otherwise vs cannot differ simultaneously
with v, v3, and v4 in two coordinates. Since all the vectors are pairwise distinct,
we obtain the same set as in the formulation of the Lemma.

(ii) It follows from the previous part that vs; and vs cannot differ in two co-
ordinates. Hence, if one supposes that first five vectors are as above, then wg
has four coordinates equal to —1. Without loss of generality this is either vec-
tor (1,—1,—1,—1,—1) or vector (—1,1,—1,—1,—1). No one of these vectors
works. O

Lemma 3.10. Suppose that for some vectors vy,...,vs € M'(\) all the absolute
values of their nonzero determinants are greater than m. Then all these determi-
nants equal £2m.

Proof. On the contrary, suppose that there is a determinant equalling £3m. Then
Lemma 3.9 shows that all the other nonzero determinants equal +2m. But the
alternating sum of six determinants of 5-tuples of our vectors equals det(v; —

U9,V1 — Vs,...,U1 — Vg). In the corresponding matrix all the entries are even,
hence the determinant is divisible by 32 = 2m. Contradiction with the fact that
3m £ 2m £ ...+ 2m is not divisible by 2m. O

Consider an ENSS {vg;v1,v9,...,vs}. If the rank d of this set is less than 5,
take 5 — d vectors from M’(\) to make the rank equal to 5, and assign to them
zero coefficients in the corresponding to vy Z- and Q-p-combinations. Now suppose
that this ENSS is {vg; v1, v, v3, 04, Us, ..., vs}, and only vy, v, 3, vy, U5 appear in
the Qso-combination (maybe with zero coefficients). We may count all the deter-
minants of the form

det(vy, ..., 0. .., U5, 0s),

where one of the first 5 vectors is thrown out and one new vector is taken instead
of it. Case a) one of them equals +m, case b) for all the nonzero determinants
their absolute value is greater than m.

In case b) Lemma 3.10 gives us that we have s — 5 unimodular six-element
subsets

{v1,..., 05,05}, 6<j<s,
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with m’ = 2m. In each of them v; can be expressed in vy,...,vs; with integer
coefficients, hence the determinant of each 5-tuple in the set {vy, ..., vs} is divisible
by 2m, hence equals +2m. This ENSS is hereditarily normal by Lemma 1.12, a
contradiction.

Case a) needs more punctuality. Lemma 1.15 gives us that the determi-
nant +m does not coincide with det(vq, vy, ...,v5). Without loss of generality
det(vq,...,v4,v6) = 16 (if it equals —16, transpose two first vectors, then the de-
terminant will change sign). By our assumption det(vq,...,vs5) = £2m or + 3m.

Lemma 3.11. There are no vectors wy, ..., ws in M'(X) such that the following
is true (simultaneously):

det(wy,...,ws) = £2m, det(ws, wo, w3, wy, wg) = £2m,
these determinants have different signs, and det(wy, ..., wy, wg) = £m.
Proof. Straightforward check using software Maple 7. O

Lemma 3.12. There are no vectors wy, ..., wg in M'(\) such that
det(wla e ,U}5) = —2m and det(wl, coey Wy, wﬁ) = —3m

Proof. Using Lemma 3.9, we may assume that wg = (1,1,1,1,1) and

w, 1 -1 1 1 1
w, | [ -1 1 -1 1 1
wy | T -1 1 1 -1 1
w, 1 1 1 1 -1

The hyperplane (w1, wsy, ws, wy) is defined by the equation 2z, +xo+z3+24+1x5 = 0.
Since det(wy,...,ws) < 0 and det(ws,...,ws) < 0, we have that ws and wg
belong to the same half-space with respect to this hyperplane. Hence, exactly two
coordinates of ws equal —1. Without loss of generality ws; = (1,—1,—1,1,1), but
the corresponding determinant equals —16 = —m, a contradiction. O

Recall that we had an ENSS. Let
Vg = q1U1 + ...+ Q505 (31)

and
Vo = 21U1 + ..o+ 2404 + Z6Vg (32)

be the initial Q-¢- and Z-combinations. Consider the decomposition

Vs = Y1U1 + ... + YaVs + YU
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of the vector vz in the basis {vy, v9, v3,v4,v6}. It can be re-written as

1
Vg = —@vl—...—%v4+—v5. (33)

Yo Yo Yo
Substituting (3.3) into (3.2), we obtain

1
Vg = 21U1 + 22VU9 + 23VU3 + 24V4 + 26(—&’01 — ... %U4 —+ —’U5).

3.4
Ye Ye Ye ( )

Compare (3.1) and (3.4). From the uniqueness of the decomposition in a basis it
follows that

1
q1 =21 — 2’6&, S 2 26%7(]5 =z—, all ¢; € [07 1[- (3-5)
Ye Ye Ye

If |ys| = 3, i.e. | det(vy,vq,...,v5)| = 3m, then by Lemma 3.9

vy 11 1 1 1
Uy -1 -1 1 1 1
vs |=1 -1 1 -1 1 1
Uy -1 1 1 -1 1
Us -1 1 1 1 -1
The linear combination of these vectors with Q- ¢-coefficients ¢y, . . . , g5 must belong

to the weight lattice multiplied by two, this means that all coordinates of the
resulting vector must have the same parity. Subtracting the third coordinate from
the second one, we obtain that 2(g; — ¢3) is even, which implies ¢o = ¢3, and
analogously ¢ = g3 = q4 = ¢5. The first coordinate of vy equals ¢; — 4¢o, while
all the others equal ¢; + 2¢». These numbers must also have the same parity,
consequently, ¢ € {0, é, %} Since q; — 4q» and ¢q; + 2¢» are both integers and
cannot simultaneously equal 0, we obtain that ¢; = ¢» € {%, %} Hence, vy equals
either (—1,1,1,1,1) or (=2,2,2,2,2).

Lemma 3.13. Take vectors (vq,vq, V3,4, v5) from Lemma 3.9 and any vector
ve € M'(N\)\ {vy,...,v5}.
Then the vector (—1,1,1,1,1) can be represented as a Zso-combination of vectors
(v1, v, Vs, Vg, Vs, Vg).

Proof. Up to the permutation of the last four coordinates, we can assume that vg
is either (1,1,1,—-1,—-1), or (1,—1,—1,—1,—1), or (—1,—1,—1,—1,1). Consider
these cases separately.
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(i) v = (1,1,1,—1,—1). Then
(—1,1,1,1,1) = (1,1,1, -1, = 1) + (=1, 1,1,1,1) + (1,1, ~1,1,1).
(ii) vs = (1, —1,—1,—1,—1). Then

(-1,1,1,1,1) = 2(1,-1,-1,—-1,-1) + (1,1,1,1,1) + (-1,-1,1,1,1)+
+(=1,1,-1,1,1) + (=1,1,1,-1,1) + (=1,1,1,1, —1).

(iii) vg = (=1, —1,—1,—1,1). Then
(-1,1,1,1,1) = (=1,—1,-1,—-1,1) + (1,1,1,1,1) 4+ (=1,1,1,1, —1).
O

It remains to consider the case when |ys| = 2. Here all ¢; € {0, 1}.

If 2z is even, then ¢ = 2z, _26?;—; =z —ylﬁ is an integer from the interval [0, 1],
hence it equals 0. Analogously all the other ¢;s, 7 = 2,....,5, equal 0, consequently,
vg = 0. A contradiction.

If zg is odd, then the saturation property is checked in the following way. We
need to construct a Z-o-combination for vy, to do this take the vector vg and add

several vectors from vy, ..., vs with suitable positive coefficients to obtain vy. To
show that it is possible, it is enough to verify that if we decompose both vy and
vg in the basis vy, ..., vs, then any pair of corresponding coordinates differs by an

integer and that all coordinates of vg are strictly less than 1. This guarantees that
they do not exceed the corresponding coordinates of vy, since we know that the
coordinates of vy equal ¢; and belong to the interval [0, 1[.

By (3.5), cases i = 1,2,3,4 and i = 5 should be considered separately. Since
cases 1 = 1,2, 3,4 are symmetrical, consider only cases 7« = 1 and i = 5. Since Z‘;—gl
is integer, we have that

11—z
Yo Y6 Ys Yo

is integer, analogously ¢ — y—16 = ZZ—: is integer, i.e. all the differences of the
corresponding coordinates are integer. We also know that y; = det(vs, ve, v3, vy, Ug)

and

ye = det(vy, v, v3, vy, V),
which means that |y;| € {0,1,2,3} and |ys] = 2. It follows from Lemmas 3.9,
3.11, and 3.12 that the number —Z—é is neither 1 nor % In all the other cases the
inequality —% < 1is held for all 7, 1 <7 < 4. It is also clear that i < 1. Hence,

adding some v;s (1 < ¢ < 5), we can obtain vy from wvg, and the ENSS under
consideration is not an ENSS. Therefore M’()\) is hereditarily normal.
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Case 3.10. A =715 = (%, %, %, %, %, %), n = 6. Here

M(N) ={(£1/2,£1/2,£1/2,£1/2,4£1/2,4+1/2) | even number of minuses}.
For convenience let us work with the set
M'(\) =2M(X\) = {(£1,+1,£1,£1,+1,4+1) | even number of minuses}.

Lemma 3.14. The set M'(\) is almost unimodular of volume 64. The values of
determinants equal 64 and £128, or, equivalently, £m and £2m.

Proof. Consider a subset {vq,vs,...,v6} € M’. Without loss of generality v; =
(1,1,1,1,1,1). Add v; to each of the other vectors and write down the obtained 6
vectors as rows of a matrix. The rows from the second till the sixth are even, hence
the determinant is divisible by 32, and if we divide the rows from the second till
the sixth by 2, the number of 1s in each of the rows of the remaining matrix will be
even. Now add to the first column of the new matrix the sum of all other columns.
The new first column is even, hence the determinant of the original matrix is
divisible by 64. Now find an upper bound for it. Split the vectors in three pairs and
generate a parallelogram with each pair, then the volume of the parallelepiped does
not exceed the product of areas of these three parallelograms. Each vector in M'(\)
has length /6, the absolute value of the scalar product of two arbitrary vectors
equals 2, hence the area of each parallelogram equals 6%2,/1 — (1/3)2 = 2°/2,
Finally, the volume does not exceed 2'%/2 < 192, consequently, its absolute value
equals 64 or 128. O

Suppose that we have an ENSS {wvg; vy, ve, v3, v4,v5,v6} in M'(X). Consider a
@Q=0-combination corresponding to the vector vy. By Lemma 1.15 we have that
| det(vq, v, v3, vy, s, U6)| equals 128, consequently, by Lemma 1.14 the coefficients
of the initial Q>(-combination equal 0 or %

Lemma 3.15. If the determinant of the set of vectors {vi,vq,...,v6} C M’
equals 128, then up to multiplying vectors v; by —1, multiplying pairs of coor-
dinates simultaneously by —1 and interchanging columns and rows we may assume
that it is the set of rows

w 1 1 1 1 1 1
ws 1 -1 1 1 1 1
ws | -1 1 -1 1 1 1 L
wo | =1 21 1 1 21 1 1 | wiEtvuk
ws 1 1 1 1 -1 1
we 11 1 1 1 -1
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Proof. The set M'(\) contains a vector —v for each vector v. Hence, to compute
the determinants, we may consider only 16 vectors instead of 32. Indeed, take only
vectors with the positive sum of coordinates:

Uy 1 1 1 1 1 1
s 1 1 1 1 -1 -1
Uz 1 1 1 -1 1 -1
uy 1 1 -1 1 1 -1
us 1 -1 1 1 1 -1
ug -1 1 1 1 1 -1
Uy 1 1 1 -1 -1 1
us | 1 1 -1 1 -1 1
ug | 1 -1 1 1 -1 1
1o -1 1 1 1 -1 1
U 1 1 -1 -1 1 1
Uss 1 -1 1 -1 1 1
Uz 1 1 1 -1 1 1
Ui 1 -1 -1 1 1 1
s -1 1 -1 1 1 1
U -1 -1 1 1 1 1

Without loss of generality the minor of size six contains two first rows of this
matrix. By the direct check in Maple 7 we obtain that if its determinant is 128, then
it is either the set of rows (1 2 3 4 5 6)ortheset (1 2 7 8 9 10).
Now notice that these two minors interchange if we transpose columns 5 and 6. [

Now reasoning is analogous to Case 3.3: to obtain vy as a Z-combination, we
have to use at least one more vector v;. According to Lemma 1.10(ii), vy # —uv;,
1 <7 < 6. Show that if we augment the given six vectors by any other vector v,
we obtain vy as a Z=g-combination. For convenience till the end of this proof we
suppose that M’(\) consists of points (£1,+£1,+1,+1,+1, +1) having odd number
of —1s. Then we can reformulate the result of the preceding lemma in the following
way: if the determinant of the given 6 vectors vy,...,vs equals 128, then, acting
with the Weyl group, we can map one of the (unordered) sets (v, £vs,. .., +uvg)
to the set of rows

— = = = = =
— = = = = =
— = = = =
— = = = = =
— = = = = =
— = = = =

—~

w

(=)

~—
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The vector v; € M'()\) does not equal +wv;, hence three of its coordinates
equal 1, and three other equal —1. It is easy to see that any such vector can be
expressed as a Q-linear combination of rows of matrix (3.6) if one takes three rows
with the coefficient 1/2, and three others with the coefficient —1/2. Hence, the
decomposition of the vector v; in vectors vy, ..., v has the form (:i:%vl + %1)2 +
%’Ug + %’1}4 + %’1}5 + %UG)-

Now express vy as a Q-linear combination of rows of (3.6). Let r; be the
coefficient of the ¢th row. By Lemma 1.14, each r; equals 0 or j:% (because the rows
of (3.6) may be not the initial v;s but —v;s). Show that all r; are zero. Compare the
first and the second coordinates of vy. Their difference is even. On the other hand,
it equals (—ry +ro+r3+ry+rs+rg) —(ri—ro+rs+ra+15+716) =2(r20 —71).
Consequently, either r; and 75 are both zero or both nonzero. Repeating this
procedure for other pairs of columns, we obtain that if vy # 0, then all r; are
nonzero. Hence, vy = %(vl + vg + v3 + vg + vs + vg). Notice that the vector
%(vl + vy + v3 + vg + vs + vg) can be obtained from any vector v; of the form
(£3v1 + Fvs £ fvg + Jvg £ fus + Sug) by adding several v;s (cf. Section 3.1.1).
Consequently, M’()\) is hereditarily normal.

For n > 7 multiply all the coordinates by 2. After this all the coordinates of
the initial vectors become +1. Now construct an NSS.

Example 3.15. Consider vectors

vy 11 1 1 1 1 1
Vg 1 1 1 -1 -1 -1 -1
U3 1 -1 -1 1 1 -1 -1
vy | 1 -1 -1 -1 -1 1 1
Us 1 1 -1 -1 1 1 1
Vg 11 1 1 -1 -1 1
U7 1 -1 11 1 1 -1

Then v = (2,0,0,0,0,0,0) = 3(vi +v2 +v3 + v4) = V5406 + v7 — v1. If we consider
the first coordinate, then if v is a Z-y-combination of some v;, it is the sum of two
v;s. But no pairwise sum equals v, and it is indeed an NSS.

Example 3.15 can be easily modified for the greater values of n. Indeed, append
n — 7 coordinates equalling 1 to each vector. It is easy to see that for n > 7
these vectors belong to M(A) for A = m,_1. Since 1 is at the same time the first
coordinate of all v;, each linear combination of v;s will have the same value on each
appended coordinate and on the first coordinate.

This proves Theorem 1.1 for root systems B,,, C},, and D,,.
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Chapter 4

Exceptional root systems

To finish the proof of Theorem 1.1 for exceptional root systems, we consider these
root systems individually, in alphabetical order. Since the construction of FE;
and FEjg uses the structure of Fg, we first treat Eg, and then E; and Fg. In these
cases none of the representations has all T-orbit closures normal. Then we consider
the root systems Fj and Gs. In both of these cases we show that only for the first
fundamental representation all T-orbit closures are normal.

4.1 The root system FEg

Consider Q¥ with the standard scalar product. The set of vectors

1 8 8

te;,£e; (1<i<yj<8y) and 5 2(—1)’“5@-, where Zl v; is even,
form the root system FEjg, see [10, Ch. 6, §4]. The weight lattice A coincides with
the root lattice Z. It has the following structure:

8
A=AyUA, Ag= {v €z > s even} LA = Ao+ %(1,1,1,1,1,1,1,1).
i=1
The set A; consists of all vectors which have strictly semiinteger coordinates with
the even sum. We show below that none of the sets M () for an arbitrary weight
A € A\ {0} (not only for the dominant weight, see Remark 1.6) is hereditary
normal. This implies that for every irreducible representation there exists a non-
normal T-orbit closure.
Note that the Weyl group W of the root system FEjg contains, in particular, all
the permutations of coordinates, since they are generated by the reflections s, for
the vectors « of the form €;—¢;. The group W also contains sign changes in the even

93
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number of occurences. E.g. the sign change of the first and the second coordinates
can be obtained as the superposition of reflections s,, s4,, where oy 9 = €1 £ €.

Consider a "marked" weight \° = £, 4+ 5. We show that this weight belongs
to all the M(\). Also we show that M (A°) contains an ENSS (for the definition
of an ENSS, see Section 1.3).

Example 4.1. A = \° = ¢; 4 5. Consider the following vectors of M(A\°):

U1
V2
U3
Uy
Us
Ve
U7
Ug

I
cCoOoO R OO RO
I
cor~rocoroO

I
corRroR,ROoOO
= e M e B e B e Rl e W

—HO OO~ M~ OO
I

(=i e NelNeoNol S
OO O OO O
O O OO OO oo

and the vector vy = (1,1,0,0,0,0,0,0) = %(vl + vy + v3 + vy + U5 + vg) = V7 — Vs.
Suppose that vy is represented as a Z-o-combination of other vectors. Consider
the seventh coordinate. It is clear that the coefficients at v; and vg are zero. Since
the vectors vy, ..., vg are linearly independent, vy has the unique decomposition
as a linear combination of these six vectors. The coefficients of this decomposition
are non-integers. Hence the set {vg; vy, ..., vg} is indeed an ENSS.

Next we show that for each nonzero weight A, the weight \° is contained in
M ()). Consider the cases A € Ag and A € A; separately.

Lemma 4.1. If A = (ay,...,as) € Ao \ {0}, then \° € M(N).

Proof. Obviously, there are two coordinates of the same parity a,, a; such that
la;| + |a;| = 2. Without loss of generality, we may suppose that these coordinates
are a; and as. Acting with the Weyl group, we can obtain a; > 0, a; > 0. This
gives a1 + ag > 2. Let a = “392. Obviously, @ > 1 and a is an integer. Next,
the set M(\) contains the point N = (ag, a1, —as, —ay, —as, —ag, —az, —ag). Also
it contains the point

N = (a,a,0,...,0)

because \” is the midpoint of the segment [\, N'] and A — \” € =. Obviously, the
point \° belongs to the segment [\, —\"], moreover, \°> — X" € Z. Finally we
obtain that A\° € M(\") C M(A). O

Lemma 4.2. If A = (ay,...,as) € Ay, then \° € M(\).
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Proof. Take the root oy = (%,,%) Consider the reflection s,, € W. Let

a; = b;/2. Then b; € Z, the values b; are odd and such that Z§:1 b; is divisible
by 4. Thus

so(A) = A=At as gy el gy
4 8

It Zle b; is not divisible by 8, then the vector s,,(A) is nonzero and has integer
coordinates. Hence M(\) = M(sq,(\)) > A° due to Lemma 4.1. If 335 | b is
divisible by 8, choose two coordinates having the same residues modulo 4 among b;.
We may assume that these coordinates are b; and by. Changing their signs, we
obtain the vector X € M () such that its doubled sum of coordinates is not
divisible by 8. Hence the vector s,,(\') is nonzero and has integer coordinates.

With the same reasoning as above we obtain M (\) = M(s,,\') 2 A°. O

We have shown that for Fg and for all A € A\ {0} the set M(\) contains a
non-saturated subset. Therefore, any rational Eg-module contains a T-orbit with
nonnormal closure.

4.2 The root system FEx

For the root system FE;, we use a realization which is slightly different from the one
in [10, Ch. 6, §4|. Namely, we change the signs of the first and the last coordinates.
Now the set of roots belongs to the 7-dimensional subspace L C R®, orthogonal to
the vector e; — 5. It contains the following vectors:

tete; (1<i<j<6); (o7 +es);
1 6 6
+ 5(57 +es + Z(—l)”iei), where ; v; is even.

The root lattice = is the intersection of the root lattice of Fg with L, namely,
= = = UZy, where

6
~ 1
=0 = {€ I~ ZS . E 62 even, 67 268}, =21 = 50 + 2<171717171717171)

i=1

and Z; again consists of all vectors in L having stictly semiinteger coordinates
with even sum.
The weight lattice A is an overlattice of index 2. Namely,

1
A:EU( +5(L L1, 1,—1,0,0)).
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It consists of all vectors ¢ € L such that all their coordinates are either integers
or semiintegers, their sum is even, and for all 1 < ¢ < j < 6 the value (¢; — ¢;) is
integer.

The Weyl group W contains, in particular, all permutations of the first six
coordinates. It also contains the sign changes in the even number of occurences,
where the two last coordinates are either both present or both absent. The Weyl
group W acts on @ transitively.

We need analogs of Lemmas 4.1 and 4.2 from Section 4.1. The following lemmas
will also be useful in the construction of examples.

Lemma 4.3. If A = (ay,...,as) € 2\ {0}, then M(X\) contains all the roots.

Proof. Consider first the case A € Zj. We claim that M (A) contains either the
vector €1 + €5 or the vector €7 4+ 5. Then by the transitivity of the Weyl group it
contains actually all the roots. To show the claim, we note that if S°°  |ag| # 0,
then this sum is even. Choose two numbers of the same parity such that the sum
of their absolute values is not smaller than two among aq,...,as. Now proceed
as in the proof of Lemma 4.1. We obtain that ¢; + eo € M(A). Otherwise, if
Z?:1 lag| = 0, we have A\ = as(e7 + €g), and the point €7 + 5 belongs to the
interval connecting \” and (—\"). Hence it also belongs to M (\).

Now consider the case A € Z;. Write down \ = %(bl, ..., bg, b7, b7), where all
the b;s are odd. If B = 320 | b; + 2b; is not divisible by 8, then s,,()\) € Zp, and
this case follows from the case considered above. If B is divisible by 8, then we

can choose two numbers among by, ..., bg having the same residues modulo 4. As
in the proof of Lemma 4.2, this allows to reduce the latter case to the preceding
one. 0

Lemma 4.4. Let A = (ay,...,a3) € A\ E. Then M(X) contains the vector
A = (1,0,0,0,0,0,1/2,1/2).

Proof. Since A ¢ =, then either the six first coordinates of A are integers and
two last are semiintegers, or vice versa. If the last coordinates are integers, we
can apply the reflection s,,, having changed the sign at some two of the first
six coordinates, if needed, in an order to obtain the vector such that its first six
coordinates are integers, and the two last are semiintegers. Now we may assume
that two last coordinates are semiintegers, i.e. A = (ay,as,...,aq, b7/2,b7/2) for
some integers aq,...,as and an odd integer b;.

Consider the vector \' = (aq, as, ..., ag, —b7/2, —b7/2) € M (). Since b7 is odd,
the set M () contains the vector A" = (a1, as,...,a6,1/2,1/2) € [A\, N']. Notice
that a; + ... 4 ag is odd. Consider an odd coordinate among a;; without loss of
generality we may assume that this is a;. Consider all the points which can be
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obtained from A’ by the sign change in an even number of occurences from the
second till the sixth. Their barycenter will be the point (a;,0,...,0,1/2,1/2) €
M(N).

Finally, the point (1,0,...,0,1/2,1/2) belongs to the segment joining the
points (ay,0,...,0,1/2,1/2) and (—ay,0,...,0,1/2,1/2). It follows that M(\)
contains the point A\, € M(\). O

Now we are ready to present the NSSs for all the fundamental weights.

Example 4.2. The weight A € =. By Lemma 4.3, the set M(\) contains all
the roots. Consider the following subset of M(\):

U1 1 0 0 -1 0 0 0 0

Vg 0 1 0 0 -1 0 0 0

vy | 0 0 1 0 0 1 0 0

ve | 0 0 0 0 0 0 1 11’
U 0 0 0 1 1 0 0 0

Vg /2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1 1

vy = 5(1, 1,1,-1,-1,1,1,1) = 5(01 + Vg + vz + V) = vg — Vs.
Suppose that vy is a Z>(-combination of vectors vy, ..., vs. The first three coordi-

nates of vy being smaller than one, the coefficients at vy, v9, v3 must be zero. How-
ever, in this case the fourth coordinate of this linear combination will inevitably
be nonnegative, which gives a contradiction. This means that {vg;vq,...,vg} is
indeed an ENSS.

Example 4.3. The weight A € A\ =. By Lemma 4.4, the set M(\) contains
the vector
A =(1,0,0,0,0,0,1/2,1/2),
hence it also contains the vector —s, A = %(—1, 1,1,1,1,1,0,0). Now we can give
the NSS.

v ~1/2  1/2 1/2 1/2 1/2 1/2 0 0
Vs 1/2 -1/2 1/2 1/2 1/2 1/2 0 0
Vs /2 1/2 -1/2 1/2 1/2 1/2 0 0
vy /2 1/2 1/2 —-1/2 1/2 1/2 0 0
vs 12 1/2 1/2 1/2 —-1/2 1/2 0 0
Vg /2 1/2 1/2 1/2 1/2 -1/2 0 0
vy 0 0 0 1 0 0 1/2 1/2
vs 0 0 0 0 1 0 1/2 1/2
Vo 0 0 0 0 0 1 1/2 1/2
on 0 -1 0 0 0 0 1/2 1/2
1o ~1 0 0 0 0 0 1/2 1/2



98 CHAPTER 4. EXCEPTIONAL ROOT SYSTEMS

We have:

1
Vo = (171717171717070):§(U1+U2+U3+U4+U5+U6)

:’U7+1)8‘|“'Ug—’l}10—’l}11—1)12.

If we consider the 7th coordinate, we see that the Z--combination can contain only
the first 6 vectors with nonzero coefficients. Since they are linearly independent,
we cannot obtain yet another decomposition of vy in these vectors.

Thus we have constructed an NSS for each nonzero A € A.

4.3 The root system FEj

Instead of the standard realization, we will use another more symmetric realization
in the 6-dimensional subspace of the 9-dimensional space. The coordinates of each
vector split into three triples of subsequent coordinates, and the sum in each triple
equals zero. It is easy to check that the set given below is indeed a root system.
Moreover, the Gram matrix for its simple roots coincides with the Gram matrix
for the simple roots of the root system Fj in its standard realization. Hence it is
indeed Ej.

The roots are: 18 vectors of the form €; — ¢;, where pairwise distinct indices
i, j belong to one of the triples {1,2,3}, {4,5,6}, {7,8,9}; 27 vectors of the form
(a; b; ¢), where

_ T _ 2 1 1 12 1 1 12
a,b,cE o) o) oo\ T o9y 90l 9y 9o )
{(3 3 3)(33 3)(3 33)}

and 27 vectors of the form (a; b; ¢), where

- 211 1 21 11 2
a,b,cE T ot ata ol 9y 5rs ol 505y o .
{(333) (3 33) (33 3)}

The simple roots are

ar = (0,0,0;0,0,0;0,1,—1), as = (0,1,-1;0,0,0;0,0,0),

1 21 211 211

(13:(0,0,0;0,0,0;1,—1,0), Qg = ga_gaga 37375;_57575 )
as = (0,0,0;1,-1,0:0,0,0), ag=(0,0,0;0,1,—1;0,0,0).
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The corresponding fundamental weights are

2 1 1 11 2
™M =\35 "3 __;07070' ga o) o | Ty = (1707 _1a07070707070)7
1

33 3 ’373 3
12 20002 L (2,—1,-1;0,0,0;0,0,0)
3 37 37 37 s Yy a37 37 3 ) 4 ) ) y Uy Uy Uy Uy Uy ’

4 2 22 1 1 0.0.0 2 1 111 2 0.0.0
M= |- - _Z.Z _Z __. Me= |2 - _-.- - _Z. )
5 37 37 3737 37 37 s Uy ; 6 37 37 373737 3a s Uy

The Weyl group W of the root system FEjg contains all the permutations of coordi-
nates in triples. Moreover, W acts on the set of roots transitively.

Let us show that for all A € A\ {0} the set M (\) is not hereditary normal. By
Lemma 1.8 and Remark 1.9 it is enough to show that already in the fundamental
representations not all T-orbit closures are normal, i.e. that all the sets M (7;) are
not hereditary normal.

Example 4.4. The cases A = m and A = 74 are similar, so we consider just
the case A = m. Take the root fy = $(1,-2,1;-2,1,1;1,1,—2). Then M(})
contains the vector

1
850<)\) = g(lv 17 _2727 _17 _1707070)
Hence, the set M(\) contains the set
V1 2 -1 -1 0 0 O 1 1 -2
Vo 2 -1 -1 0 0 O 1 -2 1
Vs 29 1 -1 0 0 0 -2 1 1
w = 1 12 2 -1 -1 0 0 o0
vs 311 -2 -1 2 -1 0 0 0
Ve 1 1 -2 -1 -1 2 0 0 0
U7 -1 -1 2 0 0 O 1 1 -2

We have:
Vo = (1,0,—1,0,0,0,0,0,0) = 1/3('01 + Uy + U3 + U4 + Uy —f-UG) = v — V7.

To show that {vp;vy,...,v7} is an ENSS, it remains to verify that vy is not a
Z:~o-combination of vectors vy, ..., v;. Consider the discriminating linear function
(see Section 1.3)

f = 45711 -+ ].5’[12 + 30713 - 37’L7 - 3”8 - 6n9.
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Obviously, 15 cannot be decomposed as a sum of integers 17, 14, and 2.

Example 4.5. A\ = my. The set M (ms) contains all the roots. The following
set is an ENSS:

0 10 -1 0 0 0 0 0 0
Vs 1 -1 0 0 0 0 0 0 0
V3 0 0 0 1 0 -1 0 0 0
v | = 0 0 0 1 -1 0 0 0 0|,
vs 0 0 0 0 0 0 1 0 -1
Vg 0 0 0 0 0 0 1 -1 0
V7 1/3 1/3 —2/3 —2/3 1/3 1/3 —2/3 1/3 1/3

6
1 1

Using the discriminating linear function f = 12n; + 3n,, we easily show that v,
is not a Z-g-combination of vectors vy, ...,v7. Indeed, the values of f on vectors
v1,...,v7 equal 0, 12, 9, and 5, while f(vy) = 7.

Non-saturated subsets for the other fundamental weights can be constructed
with the help of Examples 4.4 and 4.5. The weights 73 and 75 can be reduced to
Example 4.4. For instance, for w3 the vector 7 = %(—2,4, —2;0,0,0;2,—1,—1)
belongs to M (m3), so the vector

1
§<17 17 _27070707 27 _17 _1)7

which is the midpoint of the segment w37}, also belongs to M (ms). Up to a cyclic
permutation of the triples, this midpoint is . The vector 75 can be reduced to g
in the same way. Finally, the weight 74 can be reduced to m,, because

1
Ty = 5(2 -(2,-1,-1;0,0,0;0,0,0) 4+ (—1,2,—1;0,0,0;0,0,0)) € M(m4).

We have shown that for the root system FEjg the set of weights of each nonzero
representation contains an NSS.

4.4 The root system F)

The set of roots is the following subset of Q*:

1
+e; (1<Z<4), :i:{fi:t{fj (1§Z<]§4), §(i€1i€2i€3i54).
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The simple roots are %(81 —E9—E3—¢y4), €4, €3 —E4, E2 — 3. The corresponding
fundamental weights are:

m = (1,0,0,0), m = (3/2,1/2,1/2,1/2), 75 = (2,1,1,0), m = (1,1,0,0).

The root and weight lattices coincide. The cardinality of the Weyl group is
1152. It contains all the permutations of coordinates and the sign change of any
subset of coordinates. Moreover, it acts transitively on the set of roots of a given
length.

Case 4.1. A = 7. (Cf. Case 3.3.) Here M () is the set of all roots of length 1.
Suppose on the contrary that we have an ENSS (vg; vy, .. .).

Let us verify that all nonzero volumes of 4-tuples of vectors in M(\) equal 1
or 1/2. Consider any vectors vy, vy, v3,v4. If at least two of them are of the
form +¢;, then the statement is true. Indeed, if there are only two such vectors,
then D = det(vy,vq,v3,v4) = 1-(£1/4 £ 1/4). If there are exactly three such
vectors, then D = 1-(£1/2); if four, then D = +1. Otherwise at least three vectors
among the v;s have the form 1/2(+e; ey +e5+¢4). At least two of these vectors
have the same parity of the sum of coordinates. Assume that these are vectors
v1, U2, and their sums of coordinates are odd. Then apply the symmetry s,, with
respect to the root ag = %(1, 1,1,1) to all the four vectors. Then the vectors v;
and vo will have form +¢;, and we have already checked the statement for the new
4-tuple of vectors.

Now apply the properties of almost unimodular sets (see Section 1.4). If we
have an ENSS {wvg; vy, ..., v}, then the corresponding Qq-combination consists of
vectors with volume 1 (otherwise this combination will be integer by the Cramer
formulae). From the previous reasoning we may assume that these vectors are 1,
€9, €3, £€4. Looking at the form of the weight lattice, we see that vy = %(51 +
g9 + €3 + €4). Note that after adding any vector vs, vs # —¢e;, we will be able
to represent vy as a Zsp-combination of vectors vy, ..., vs. Indeed, adding to the
vector vy of the form (+1/2,£1/2,£1/2,+1/2) the vectors ¢; for the indices i such
that the ith coordinate of the vector vy is negative, we get a contradiction.

Example 4.6. A\ = my. Let vy = €1 4+ 65, vg = €1 — €9, V3 = €1 + €3, Vg = €3,
vo = 1/2(v1 + v9) = v3 — vy. Obviously, {vg;v1,...,v4} is an ENSS.

Fix ag = (1/2,1/2,1/2,1/2). We show that 74 is contained in the sets M (27 ),
M (my), M(m3). Indeed,

= %((1, 1,2,0) 4 (1,1, ~2,0)) € M(ms).

Next, sq,(m2) = (0,—1,—1,—1), hence 74 = £((1,1,1,0) + (1,1,-1,0)) € M(m).
Finally s,,(2m) = (1, —1,—1, —1), which implies

1
Ty = 5((17 17 17 _1) + (17 17 _17 1)) € M(27T1>
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For all the other dominant weights, their decomposition in the fundamental
weights contains either 2w, or my, or w3, or my, and applying Lemma 1.8 we
deduce the desired conclusion.

4.5 The root system G5

We realize G5 in the 2-dimensional subspace {(1e1 + laeg + l3e3 | {1+ {5 + (3 = 0}
of the space Q3. The following vectors are the roots:
:l:(&l — 82), :l:(El — 83), :|Z(<€2 — 83), :l:(281 — &9 — 83),
:|:(2€2 — &1 — 53), i(2€3 — &1 — 52).

The simple roots are the vectors a; = (1,—1,0) and ap = (—2,1,1). The
fundamental weights are

m = (0,—-1,1), m=(-1,-1,2).

It is clear from Fig. 5 that the Weyl group is the dihedral group of order 12. The
root and weight lattices coincide.

Case 4.2. A =my. Then M () = {£(0,1,—-1),+(1,0,—1),£(1,—1,0)}, which
is hereditary normal.

Example 4.7. A\ = my. It is the long (dominant) root, from Fig. 5 it is clear

that M () coincides with the whole root system. Consider the following vectors
(the thick edges in Fig. 5):

v 1 -1 2
v | = =2 11
s 0 -1 1
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Then vy = 1/3(vy + v2) = (—1,0,1) = v; — v3. Consider the last coordinate. It is
clear that vy is not a Z-p-combination of vectors vy, vo, vs.

All the other dominant weights can be reduced to my. Indeed, if the vector
A = 17 + comy has a nonzero coefficient ¢y, then the set M () contains M (ms),
hence M(A) is not hereditary normal. If ¢; = 0 but A\ # 7, then ¢; > 2. Then
the vector 2m = (0, —2,2) belongs to M(A). Consequently, the vectors (—2,0,2)
and (—1,—1,2) = m belong to M (), see Fig. 5.

Now the proof of Theorem 1.1 is completed.
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Part 11

Infinitely transitive actions on affine
varieties
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Chapter 5

Infinitely transitive actions over C

Definition 5.1. The action of a group G on a set A is called m-transitive, if for
any two tuples of pairwise distinct points (ay, as, ..., a,) and (by, by, ..., by) in A
there exists an element g € G such that g(a;) = b;, © = 1,2,...,m. By abuse of
language, the actions which are m-transitive for all m € N will be called infinitely
transitive.

In this chapter we study infinitely transitive actions of the special automor-
phism group SAut(X) on an irreducible affine algebraic variety X over an alge-
braically closed field of characteristic zero. Infinite transitivity of SAut(X) is a pri-
ori stronger than infinite transitivity of the whole automorphism group Aut(X).
However, it is more convenient for us since our tools describe SAut(X) in a rather
comfortable manner.

All varieties are assumed being reduced and irreducible. Let X be such a
variety.

Definition 5.2. By a special automorphism group SAut(X ) we mean the subgroup
of Aut(X) generated by all its one-parameter unipotent subgroups.

Definition 5.3. Let X be an algebraic variety over k. We say that a point v € X
is flexible if the tangent space T, X is spanned by the tangent vectors to the orbits
H.x of one-parameter unipotent subgroups H C Aut(X). The variety X is called
flexible if every smooth point x € X, is.

Recall the following definition.
Definition 5.4. We call a suspension over an affine variety Y the hypersurface

X C Y xA? given by equation uv— f(y) = 0, where A? = Speck[u,v] and f € k[Y]
is non-constant. In particular, dim X =1+ dimY.

107
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5.1 Affine cones over flag varieties

Our goal here is to prove the following statement.

Theorem 5.5. Consider a flag variety G/P over k. Then every normal affine
cone X over G/P is flexible and its special automorphism group SAut(X) acts
infinitely transitively on the smooth locus X,eq = X \ {0}.

Given a connected simply connected semisimple linear algebraic group G over k,
we consider an irreducible representation V' (\) of G with highest weight A and a
highest weight vector vy € V(A). Let

Y = Glog) CP(V(N)
be the closed G-orbit of [vy] in the associate projective representation, and
X = AffCone(Y) = Gvg = Gup U {0}

be the affine cone over Y (such a cone X is called an HV-variety in terminology

of [58]).

Remark 5.6. Actually every projective embedding ¢ : G/P =5 Y C P with
a projectively normal image Y, where P C G is a parabolic subgroup, arises
in this way. Indeed, being projectively normal Y is as well linearly normal, i.e.
¢ = @p|, where D € Pic(G/P) is very ample. Hence D ~ 7 | a;D;, where
Dy, ..., Dy are the Schubert divisorial cycles on G/P, and a; > 0 Vi = 1,...,s.
Then V() = H°(G/P,O¢/p(D))Y is a simple G-module with a highest weight
A = >0 aw;, where wy,...,ws are fundamental weights, and Y = G[vg] for a
highest weight vector vg; see e.g. [55, Theorem 5].

Now we prove Theorem 5.5. The flexibility follows from the next general ob-
servation.

Proposition 5.7. If a semisimple linear algebraic group G acts on an affine va-
riety X and this action is transitive in X,ey, then X s flexible.

Proof. The group G acts on X with an open orbit X,,, = G.zo. The dominant
morphism onto this orbit ¢ : G — X, g — g¢.xg, yields a surjection dp : g —
T., X, where g = Lie(G). We claim that g is spanned over k by nilpotent elements,
which implies the assertion. Indeed, consider the decomposition g = @le g;of g
into simple subalgebras. Let fh be the span of the set of all nilpotent elements in g.
This is an ad-submodule of g and so an ideal of g, hence a direct sum of some of
the simple ideals g;. However every simple ideal g;, © = 1, ..., k contains at least
one nonzero nilpotent element. Therefore h = g, as claimed. O
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In the setting of Theorem 5.5, X, = X if X = A" and X,, = X \ {0}
otherwise. Anyhow, the group G acts transitively on X \ {0}, see e.g. [58, Theorem
1]. Hence by Proposition 5.7 X is flexible.

Before passing to the proof of infinite transitivity, we need some preparation.

Let P C G be the stabilizer of the line (vg) C V(A\), B=TDB, C P be a Borel
subgroup of G with the maximal torus 7" and the unipotent radical B,, and A(T")
be the character lattice of T'. Consider the T-invariant (weight) decompositions

= P V) = (vo) & H(N),

velA(T)

where (vg) = V(A)y and H(A) € V()) is the hyperplane

HN= P V..

veA(T)\{\}

The coordinate function [ € V(\)* of the first projection p; : v — [\ (v)vy defines
a non-trivial character of P.

Let B~ = T'B,, be the Borel subgroup of G opposite to B = B*. The flag
variety G/ P contains an open B~ -orbit (the big Schubert cell) isomorphic to the
affine space A", where n = dim G/P. Its complement is a union of the divisorial
Schubert cycles Dy, Do, ..., Dy, see e.g. [45, pp. 22-24].

The orbit map G — P(V())), g — g.[vo], embeds G/P onto a subvariety
Y C P(V(A)). Let wy C Y be the image of the big Schubert cell under this
embedding. By [55, Thm. 2| the hyperplane

H(N) =P(H (X)) = 1,7(0) SP(V()))

is supported by the union of the Schubert divisors |J;_, D;. In particular, w) =
Y\ HN).

Let o: X — X be the blow-up of the cone X at the vertex 0. The exceptional
divisor E C X is isomorphic to Y. Moreover, the natural map 7: X \{0} =Y
yields the projection p: X — Y of the line bundle Oy(—l) on Y with E being
the zero section. Since wy = A", the restriction p: p~1(wy) — wy is a trivial line
bundle. Hence the open set

Oo=m N w)=X\HN CX\{0} 2 X\ E

is isomorphic to A™ x Al

For every ¢ € Al the invertible function I,(-,c) is constant on the affine
space A". Thus on ) = A" x Al we have [, = az* for some a € k*, where z is a
coordinate in Al. Here actually k = 1 since [, gives a coordinate on (vg). We may
assume that also a = 1 and so [)| g, : 2\ — Al is the second projection.
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To prove the infinite transitivity of the group SAut(X) in X \ {0} as stated
in Theorem 5.5, let us first show the infinite transitivity of SAut(X) in each hy-
perplane section Qy(co) := ;' (co) € X, where ¢y # 0; cf. [31, Lemma 5.6]. More
precisely, given a k-tuple of distinct points ¢y, ..., ¢ € k different from ¢y, we con-
sider the subgroup Staubi‘1 77777 o © SAut(X) of all automorphisms fixing pointwise
the subvarieties Q(¢;) for all t = 1,..., k and leaving invariant the function .

Proposition 5.8. In the notation as above, for any n > 2 and any m € N the

group S’caﬂbg\1 _____ o, acts m-transitively on Qx(co) = A™.

Proof. Let Q1,Qs,...,Q, and Q},Q), ..., Q.. be two tuples of pairwise distinct
points in )(cp). For any n > 2 the group SAut(A™) acts m-transitively on A™;
see e.g. [31, Lemma 5.5]. Since Q,(co) = A", we can find g € SAut(2,(cp)) map-
ping (Q1,Q2,...,Qm) to (Q},Q%,..., Q" ). By definition, g = §;(1)d2(1)...0,(1)
for some one-parameter unipotent subgroups 4y, dg,...,0s C SAut(Qx(co)). Let
01, 0o, ..., 0, be the corresponding locally nilpotent derivations® (LNDs for short).
First we extend them to LNDs 0y, 0s, ..., 0, of k[Q,] = k[A™ x Al] by putting
0;(1,) = 0.

Recall that €2, is a principal Zariski open subset in X defined by the function .
In particular, for every i = 1,...,s we have 0;: k[X] — k[X][1/l,]. Since k[X] is
finitely generated, there exists N € N such that (I,)"V9; is an LND of k[X] for all
i=1,...,s; cf. [33, Proposition 3.5].

Let ¢[z] € k[z] be a polynomial with ¢(cp) = 1 which has simple roots at
¢1,...,¢; and a root z = 0 of multiplicity N (we recall that ¢y # 0). Then for
every i = 1,...,s, q(l,)0; is an LND of k[X] such that the corresponding one-
parameter subgroup in Staubi‘1 extends the subgroup d;. Thus g extends to an

element of the group Staub;\1 o, Now the assertion follows. O

.....

Let 4 be an extremal weight of the simple G-module V()) different from A.
Then p defines a parabolic subgroup P’ conjugated to P, the corresponding linear
form [, € V(A)*, and the principal Zariski open subset €2, = {l, # 0} of X, where
X\ Q= H(w) = 11(0),

Lemma 5.9. For every set of m distinct points Q1,Qa,...,Qm € X \ {0} there
exists g € SAut(X) such that g(Q;) € Q, for alli=1,...,m.

Proof. Since the group G is semisimple, it is contained in SAut(X) (see [56, Lemma
1.1]). Clearly, G; := {g € G|g(Q;) € H(n)} (i = 1,...,m) are proper closed
subsets of GG. Hence the conclusion of the lemma holds for any g € G\ (G1U...U
Gm). O

!A derivation O of a ring A is called locally nilpotent if Va € A, 9"a = 0 for n > 1.



5.2. AUTOMORPHISMS OF AFFINE TORIC VARIETIES 111

Lemma 5.10. For every c # 0 the restriction 15| €,(c) is non-constant.

Proof. If the restriction 5|2, (c) were a constant equal, say, a, then the cone X
would be contained in the hyperplane al, — ¢y = 0 in V(X), which is not the
case. ]

Proof of Theorem 5.5. It n = dimG/P =1 and so G/P = P!, then X is a normal
affine toric surface (a Veronese cone). The infinite transitivity in this case follows
from Theorem 5.11 below.

From now on we suppose that n > 2. Given m € N, we fix an m-tuple of
distinct points Q9,Q9,...,Q% € Qx(1). Let us show that for any m-tuple of
distinct points @1, Qa,...,Qm € X \ {0} there exists ¢ € SAut(X) such that
BQ) = Qs H(Qu) = O,

According to Lemma 5.9 we may suppose that ¢); € Q, for alli =1,...,m.
Divide the set {Q1,Qs,...,Q} into several pieces according to the values of

lu(Qi)3 .
{Q1,Q0--.Qu} = UMy, M; = {Qi] Qi € uley)}
j=1

where ¢;,...,¢; € k* =k \ {0} are distinct. By Lemma 5.10, every intersec-
tion 2,(1) N Q,(c;) contains infinitely many points. Acting with the subgroups
Stabl & .. C SAut(X) (see Proposition 5.8), we can successively send the

pieces M; (i = 1,...,k) to the affine hyperplane section Q,(1). Further, the

resulting m-tuple can be sent to the standard one (QY, @9, ..., Q%) using an au-
tomorphism from Proposition 5.8 with ¢y = 1 and arbitrary ci,...,c,. Now the
proof is completed. ]

5.2 Automorphisms of affine toric varieties

In this section we consider an affine toric variety X over k with a torus T acting
effectively on X. We assume that X is non-degenerate, i.e. the only invertible
regular functions on X are constants or, which is equivalent, that X 2 Y x Al,
where Al = Speck][t, t71] = k*.

Theorem 5.11. Every non-degenerate affine toric variety X of dimensionn > 1
is flexible. Furthermore, for n > 2 and for any m € N the group SAut(X) acts
m-transitively on the smooth locus X,es of X.

We note that X is flexible if Aut(X) acts transitively on X,e, and at least one
smooth point is flexible on X. Both properties will be established below. Let us
recall first some necessary generalities on toric varieties.
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1. Ray generators.

Let N be the lattice of one-parameter subgroups of the torus T, M = A(T) the
dual lattice of characters, and (-,-) : N x M — Z the natural pairing. Let x™ be
the character of T which corresponds to a lattice point m € M (so that Y™ =
X)), The group algebra

k[M] = P kx"

meM

can be identified with the algebra k[T] of regular functions on the torus T. Let T.x
be the open T-orbit in X. Since the orbit map T — X, t — t.xg, is dominant,
we may identify k[X| with a subalgebra of k[M]. More precisely, there exists a
convex polyhedral cone 0¥ C Mg := M ®z Q such that k[X] coincides with the
semigroup algebra of ¢V, i.e.

kX = @ k™. (5.1)

meoVNM

see [24] for details. We denote by ¢ C Ng the cone dual to 0. The cone o
is pointed and of full dimension in Ng. Let = = {p1,...,p.} be the set of ray
generators, i.e., the primitive vectors on extremal rays of the cone o. In this
section = is not the same as in Part [. Given a ray generator p € =, we denote
by R, the associate one-parameter subgroup of T.

2. The Orbit-Cone correspondence [15, §5.2].

There exist two natural one to one correspondences ¢ PGt O, between
the faces § of o, the dual? faces 7 = §* of ¢V, and the T-orbits O, on X such that
dim O, = dim7 = dim o — dim . In particular, the unique fixed point of T in X
corresponds to the vertex of ¢V, and the open T-orbit to the cone oV itself. These
correspondences respect the inclusions: the T-orbit O, meets the orbit closure (0N
if and only if O, C O,, if and only if u C 7, if and only if u= D 74; cf. [15, §3.2].

Given a face 7 C ¢V, there is a direct sum decomposition

k[X] =k[O-]® 1(0,),

where

kKO]= P kxy", and I10)= € k" (5.2)

meTNM me(aV\T)NM

is the graded ideal of O, in k[X].

2By abuse of notation, here 6+ N ¢V is denoted simply by 6.
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A stabilizer T, = Stabr(p) of any point p € X is connected, hence T, C T is
a subtorus. Furthermore, T, C T, if and only if T.q C T.p. Moreover, T.p = X"»
(here X¢ stands, as usual, for the set of fixed points of the group G acting on X).

3. Roots and associate one parameter unipotent subgroups.

Definition 5.12. (M. Demazure [18]) A root of the cone o is a vector e € M such
that for some index ¢ with 1 <i < r, where r = card =, we have

(pi,e) = —1 and (p;,e) >0 forevery j#1. (5.3)

Let R(o) be the set of all roots of the cone o. There is a one to one correspondence
e &% H, between the roots of o0 and the one-parameter unipotent subgroups of
Aut(X) normalized by the torus, see [18] or [46]. Letting p. := p;, the root
e € R(o) defines an LND 0, of the M-graded algebra k[X] given by

0e(X™) = (pe,m)x™te. (5.4)
Its kernel is a (finitely generated) graded subalgebra of k[.X] (see [46]):
ker 0, = @ kx™, (5.5)
mepENM

where pt = {m € ¢V N M, {p.,m) = 0} is the facet® of ¢V orthogonal to p,.

Definition 5.13. (see [23], [46]) Two roots e and ¢ with p. = po are called
equivalent; we write e ~ €. Two roots e and € are equivalent if and only if
ker 0, = ker O,.

Remark 5.14. Enumerating the ray generators = = {py,...,p,} yields a disjoint
partition

R(o) =|JRi, where R;={eecR(o)|p.=pi}
i=1

are nonempty. Indeed, consider the facet 7; of ¥ orthogonal to the ray generator p;.
For every v in the relative interior Int,q(7;) the inequalities (p;, m)0 hold for all
J #1i. Let eg € M be such that (p;,e9) = —1, and let vy € Int,q(7;) N M. Letting
e = eg+ kvy with k& > 1, we obtain (p;,e) > 0 for all j # ¢ and (p;,e) = —1. Hence
e € Ry, le, pe = p;.

For instance, let X = A? be the affine plane with the standard 2-torus action
so that o and ¢ coincide with the first quadrants. Then R(o) consists of two
equivalence classes

Ri={(z,-1)|x € Z>} and Ry ={(-1,9)|y € Z>o}.

3Facets of the cone ¢V are its codimension one faces.
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4. One-parameter groups of automorphisms.

The derivation 0, generates a one-parameter unipotent subgroup
H, = M\(Gy(k)) € Aut(X),

where A, : t — exp(td,). The algebra of invariants k[X]”¢ coincides with ker 9.
The inclusion k[ X ] C k[X] induces a morphism 7: X — Z = Speck[X] whose
general fibers are one-dimensional H.-orbits isomorphic to A', cf. [59, Theorems 2.3
and 3.3]. The torus T normalizes the subgroup H,, i.e. T C N(H.). Hence T
stabilizes the fixed point set X e,

Let R. = R,. € T be the one-parameter subgroup which corresponds to the
vector p. € N. The action of R, on the graded algebra k[X] can be given, under
a suitable parametrization p. : Gy, (k) 3 t — pc(t) € Re, by

tx™ = temim e Gh(k). (5.6)

In particular, k[X]" = k[X]#c. Hence the morphism 7 : X — Z coincides
with the quotient map X — X//R.. So the general H.-orbits are closures of
general R.-orbits. By Proposition 5.17 below the latter holds actually for every
one-dimensional H,-orbit.*

There is a direct sum decomposition

kKX]=k[X]* @ € k" =kX)"aoI(D,)), (5.7)

meaVNM\pt

where D, := Xf = Z. The divisor D, coincides with the attractive set of the
action of R, on X. So every one-dimensional R.-orbit has a limit point on D.,.
The following simple lemma completes the picture.

Lemma 5.15. Let 7 be a face of 0¥, O, the corresponding orbit, T, the stabilizer
of a point in O, and =, the set of ray generators orthogonal to T, i.e., the ray
generators of the dual face 7+ C 0. Then the following hold.

(a) The orbit closure O, is stable under H, if and only if

m+e€oc’'\7 Yme (c'\7)NM such that (p.,m)>0.  (5.8)

(b) The closure O, is Hy-stable for any root € ~ e of o if one of the following
equivalent conditions is fulfilled:

4If X is a surface then all fibers of m are R.-orbit closures isomorphic to A! (see [22], the
parabolic case). While for a toric affine 3-fold X some degenerate fibers of 7 can be two-
dimensional.
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(i) pe & =r,
(i) O, Z D.,
(iii) R, Z T,.

Proof. (a) By virtue of (5.4) the ideal I(QO,) is O-invariant if and only if

X"t e 1(0;) Vx™ € I1(O;) such that (p.,m) >0, (5.9)

which is equivalent to (5.8) (see (5.2)). This proves (a).
(b) For m € M,

meo'\7< (pm) >0Vp€eZ and TpeZ=,: (p,m)>0.
For any p # p. we have (p,m + e) > (p, m). Hence (i)=(5.8).

We have O, = X and D, = Xfe = O,., where p; = (Ryp.)*. So the
equivalences (i)<(ii)<(iii) are due to the Orbit-Cone correspondence. O

Remark 5.16. Consequently, p. € Z, if O, is not H.-stable. In general, the converse
is not true. For instance, let X = A? be the plane with the standard torus action
so that = = {(1,0),(0,1)}. Let

7 = {0} and e = (0,—1), ¢ = (a,—1) ~ e, where @ > 0 and p. = (0,1).
Then (5.8) holds for H. and not for H.. Hence, p. € =, and the T-fixed point
O, ={(0,0)} is Hy-stable but not H,-stable.

One can also construct an example with dim X = 4 such that the closure O,

is He-stable for every root ¢ ~ e, whereas the equivalent conditions (i)-(iii) are
not fulfilled.

For the proof of infinite transitivity we need somewhat more precise information
concerning one-parameter group actions on toric varieties, see Proposition 5.17 and
Lemmas 5.20-5.22 below.

Proposition 5.17. Given a root e € R(o). Let, as above, H, C SAut(X) be the
associate one-parameter unipotent subgroup. Then the following hold.

(a) For every point x € X \ X the orbit H,.x meets exactly two T-orbits O,
and Oy on X, where dim O; = 1 4 dim Os.

(b) The intersection Oy N He.x consists of a single point, while

Oi.NH,x = R.y Vye O1NH,.x.
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Proof. (a) The number of T-orbits in X being finite, there exists a T-orbit O,
such that Oy N H,.z is a Zariski open subset of H,.z. So H..x C O;. There is
also another T-orbit O, that meets H,.z. Indeed, otherwise H..x = A! would be
contained in a single T-orbit O;. However, this is impossible because the algebra
of regular functions on O is generated by invertible elements. Since Oy meets Oy
we have Oy C Oy and so dim Oy < dim O;.

The torus T normalizes the unipotent subgroup H.. Hence the elements of T
send the H.-orbits into H.-orbits. In particular, for every point ¢ € H..x the
stabilizer T, preserves the orbit H..x. For all ¢ € O; N H..z the stabilizer is the
same. Since H..x C O; = X e, this stabilizer acts trivially on H,.z. Thus T, O T,
for any point r € H..x, and T, = T, if and only if r € O; N H..x.

Fix a point p € Oo N He.x. If T, C T, then T, = T, and so dim O = dim Oy,
a contradiction. Consequently, the stabilizer T, acts on H..z with two orbits, i.e.
H..x =T, .qU{p}, where ¢ € H..xz \ {p}. From the exact sequence

1T, =T, = Gnk) —1

we deduce that dimT, = 1 + dimT,. Finally H.x € O; U Oy and dimO; =
1 + dim O,, as stated in (a).

(b) We may assume that O; = T.z. Since H..x C O; and the torus T nor-
malizes the subgroup H., we have H.(O;) C ;. Thus O; is H.-stable. On the
other hand, since H..p = H..x Z O, the closure O, is not H,-stable. In partic-
ular, by Lemma 5.15 p. € Z,,, where 7; is the face of ¢¥ which corresponds to
O, = 0,,, i =1,2. Hence by the same lemma R. C T,, = T,. Let us show that
R. Z T, =T, where g € H..x \ {p}.

Applying again Lemma 5.15 we obtain that (5.8) holds for 7 = 71 but not for
T = Ty. Since 75 C 71 this implies that (5.8) does not hold for some m € 7 \ 7.
The latter is only possible if p. € 75~ \ 7. Thus by Lemma 5.15 R, Z T,, = T,.

Finally, the one-dimensional orbit T,.¢ coincides with R..q. This ends the
proof. O

Definition 5.18. We say that a pair of T-orbits (O1,0s) in X is H.-connected
if Ho.o € O; U O, for some z € X \ X, By Proposition 5.17 O, C O; and
dim Oy = 1+dim O, for such a pair (up to a permutation). Clearly, we can choose
a point x on the orbit Oy, as above. Since the torus normalizes the subgroup H.,
any point of O, can actually serve as such a point x.

Example 5.19. Given a root e € R(0), the derivation 0, as in (5.4) extends to
an LND of a bigger graded algebra

A(pe) = @ kx™ .

meM7<p€ 7m>20
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Indeed, letting k = (p.,m) > 0 yields {p.,m + ke) = 0 and so 9*(x™) € ker ..
This provides a T- and H.-stable open subset

U =SpecA(p.) = (A" ' x A' C X,

where n = dim X, Al = Speck|t,t7!], A! = Speck[u], where u = x~¢, and H, acts
by the shifts along the second factor. The only T-orbits in U are the open orbit
O; = {u # 0} (which corresponds to the vertex of ¢) and the codimension one
orbit Oy = {u = 0} (which corresponds to the ray kp. of o). It is easily seen that
the pair (Oy, Oy) is H.-connected.

From Proposition 5.17 and its proof we deduce the following criterion of H,-
connectedness.

Lemma 5.20. Let (O, 05) be a pair of T-orbits on X with Oy C Oy, where
O; = O, for a face o; of o, i = 1,2. Given a root e € R(0o), the pair (O1,O2)
is H.-connected if and only if e|l,, < 0 and o1 is a facet of o9 given by equation

(v,e) = 0.

Proof. In course of the proof of Proposition 5.17(b) we established that the pair
(01, 0s) is H.-connected if and only if O, is H,-invariant, O, is not, and dim O, =
1 + dim Oy. Moreover, if (O, 0y) is H.-connected then oy is a facet of o (and
so oy is a facet of 05), and there exists my € o \ 05 such that

(pe,mo) >0 and  mgte€oy.
Since (p;,e) > 0 Vp; # pe, we obtain that oo = cone(oy, pe). We have also e|,, =0
because e = mg + e — my € span af Thus e|,, < 0 and o3 is given in o9 by
equation (v, e) = 0.

Conversely, assume that e|,, < 0 and oy is given in o9 by equation (v,e) = 0.
Then for any m € o \ of with (p.,m) > 0 we have m + e ¢ oi (indeed, ¢|,, = 0
and so e € of). Thus (5.8) holds for oi-. Furthermore, (p.,m’) > 0 for any
m' € oi \ o5. It follows that

mo :=m' + ({pe,m') —1)-e€oi \oy and my+e€oy.
Indeed, (p.,mo) = 1 and (pe, mo + €) = 0 while (pz,m0> >0 and <pl,m0 +e)>0
for every p; # p.. Therefore (5.8) is fulfilled for o and not for o5. Consequently,
the pair (O, Oy) is H.-connected. O

Remark 5.21. Given a one-parameter subgroup R C T and a point z € X \ X%,
the orbit closure R.z coincides with an H,-orbit if and only if R.x is covered by a
pair of H,.-connected T-orbits. For instance, for X = A? with the standard torus
action and R C T being the subgroup of scalar matrices, the latter condition holds
only for the points x # 0 on one of the coordinate axis, which are T-orbits as well.
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Recall that O,v is the open T-orbit in X.

Lemma 5.22. For any © € Xyeq \ O,v there is a root e € R(0) such that
dimT.y > dimT.z

for a general point y € H..x. In particular, the pair (T.y, T.z) is He-connected.

Proof. Since z € O,v, by the Orbit-Cone Correspondence there exists a proper
face, say, 0o C o such that T.x = OO.QL. The point x € X being regular the ray
generators, say, pi,...,ps of oo form a base of a primitive sublattice N’ C N, see
[24, §2.1|. Let oy be the facet of o9 spanned by ps,. .., ps. Again by the Orbit-
Cone Correspondence, 0,1 C O—Ull and dimQ,1 = 1+ dimO,:. Let us show
that the pair (O,.,0,.) is He-connected for some root e € R(0) satisfying the
assumptions of Lemma 5.20.

Choosing a o-supporting hyperplane L C Ng such that oo = 0 N L we obtain
a splitting N = N'® N” @ N”, where NN L = N"@& N”" and N = 7Z. Consider
a linear form e; on N’ defined by

<p1761> = —1 and <p2,€1> = ... = <p37€1> = 0.

Let ey be a non-zero linear form on N”. Extending e; and e; to the whole lattice NV
by zero on the complementary sublattices we obtain a linear form e = e; + e
on N. Multiplying e, by a suitable integer we can achieve that (pj,e) > 0 for
every p; ¢ oo. Then e is a root of the cone o such that p. = p; and the condition
of Lemma 5.20 holds for e. By Lemma 5.20 the pair (0,1, 0, ) is He-connected,
as claimed. Since T.z = OU% and the torus T normalizes the group H., the desired
conclusion follows from Proposition 5.17 and the observation in Definition 5.18. [

The proof of infinite transitivity in Theorem 5.11 is based on Lemmas 5.23-5.27
below.

Lemma 5.23. For any collection of m distinct points Q1,...,Qn € Xieg there
exists an automorphism ¢ € SAut(X) such that the images

¢(Q1)7 ) gb(Qm)

are contained in the open T-orbit.

Proof. Let
d(Q1,...,Qn) =dimT.Q; + ... +dimT.Q,,.

Assume that dim T.Q); < dim X for some i. By Lemma 5.22 there exists a root
e € R(o) such that dimT.P;, dimT.Q; for a general point P, € H,..Q);. Fix an
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isomorphism A, : Go(k) —» H,. There is a finite set of values ¢ € G, (k) such that
dim T.(A\.(?).Q;) < dim T.Q); for some j # i. Thus for a general ¢t € G, (k)

d(Ae(t)-Q1; -5 Ae(t)-@m) > d(Q1, -, Q) -
Applying recursion, we get the result. O

From now on we assume that @, . .., @), are contained in the open T-orbit, say,
T.zo. We fix a maximal subset of linearly independent ray generators {p1, ..., p,} =:
=0 C =, where n = dim X. For every i = 1,...,n we choose an isomorphism
pi: G (k) — R, (denoted by the same letter as the ray generator). Recall that
for a root e € R(c) the inclusion k[X]|#e C k[X] induces a morphism 7: X — Z,
where Z = Spec k[ X|He.

Lemma 5.24. Given p; € 29 and a root e € R(c) with p. = p;, for every finite
set To, ..., Tx of pairwise distinct R.-orbits in T.xq there exists a reqular invariant
q € k[X]He which equals identically 1 on To and vanishes on Ty, ..., Ty.

Proof. The quotient morphism 7: X — Z separates typical H.-orbits, see [59,
Theorems 2.3 and 3.3]. Since the torus T normalizes the group H., there is a
T-action on Z such that the morphism 7 is T-equivariant. In particular, for every
x € T.xq the fiber of 7 through x is an H.-orbit. According to Proposition 5.17
the R.-orbits Ty, ..., Tr are intersections of the corresponding H.-orbits with the
open orbit T.zg. Thus for every j = 1,...,k there exists an invariant ¢; € k[X]e
which vanishes on 7; and restricts to 7y as the constant function 1. It is easily
seen that the product ¢ = ¢q; - ... qx € k[X]* has the desired properties. O

In the notation of Lemma 5.24, we denote by Stabz  7.(75) € SAut(X) the
subgroup of all transformations that fix pointwise the orbits 7y, . .., 7) and stabilize
the closure 7 in X.

Lemma 5.25. There exists a one-parameter unipotent subgroup

H C Stab (7o)

Tis-s T
which acts transitively on Tp.

Proof. We let, as above, e € R(0) be a root with p. = p;, and ¢ be a regular H,-
invariant, as in Lemma 5.24. The LND ¢, € Derk[X]| defines a one-parameter
unipotent subgroup H C Stabp, 7, (7p). Clearly the restriction H|7 = H,|7, acts
transitively on 75 = A! by shifts. O
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In the remaining part of the proof of Theorem 5.11 we use the following nota-

tion. For a basis 0 = {p;,...,p,} in Ng formed by ray generators, we consider
the homomorphism 6: (k*)* — T of the standard n-torus to T given by
0: (..o tn) — (p1(t1) - pultn) - (5.10)

It is easily seen that 6 is surjective and its kernel © = ker(0) is a finite subgroup in
(k*)™. We consider as well the induced surjective morphism of (k*)” to the open
orbit T.xzy. In particular, given m distinct points @1, ..., Q,, € T.xy, we can write

Q] = 9<t1,j7---7tn,j)-x07 j: 17...7771, (511)
where the point (t1;,...,%,;) € (k*)™ is determined by @; up to the diagonal
action of © on (k*)™:

19.(151, e ,tn) = (191151, e ,ﬁntn), where U = (191, e ,19”) €0O. (512)

Letting x = ord ©, by the Lagrange Theorem we have 97 =1Vi=1,... n.
We fix a standard collection of m points in T.z:

Since by our assumptions char(k) = 0 and k = k, these points are distinct. It
remains to find a special automorphism ¢ € SAut(X) such that ¢(Q;) = QY for
every j = 1,...,m. To this end we use the following Lemmas 5.26 and 5.27.

We will say that ¢,t' € k* are k-equivalent if t' = et for some kth root of unity
e e k*.

Lemma 5.26. (a) For any distinct elements ty,...,t, € k* the set of values
a € k such that t; + a and t; + a are k-equivalent for some ¢ # j is finite.

(b) Fizs € {1,...,n}. If the points QQ; and Q; lie on the same Rs-orbit then
their rth components t;, and t;, are k-equivalent for every r # s.

(¢) Suppose that the points Q;,,...,Q; lie on the same Rg-orbit T. Then

their images under a general shift on the line T) = A belong to distinct

R.-orbits for every r # s.
Proof. (a) Given a xth root of unity ¢ the linear equation

ti+a:5(tj+a)
is satisfied for at most one value of a. Now (a) follows.
The assertion of (b) holds since the Rs-action on X lifted via (5.10) affects

only the component ¢; ; of @; in (5.11), while the ©-action on (k*)" replaces the
component t; . (r # s) by a k-equivalent one.

Now (c) is immediate from (a) and (b). Indeed, for ¢ # j the intersection of
any ;- and Rj-orbits is at most finite. O
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Lemma 5.27. In the notation as above there exists 1» € SAut(X) such that the
points Y(Q1), . .., V(Qw) lie in different Ry-orbits in T.xg.

Proof. By our assumption n > 2, so there is an Ry-action on X. Let 76(2), cee 7;(2)
be the distinct Ry-orbits passing through the points @4, ..., @,, so that this col-
lection splits into k + 1 disjoint pieces. We may assume that the piece on 76(2)
is Q1,...,Q;. Applying Lemma 5.25 with p. = ps, we can find a one-parameter
77 (76(2)) acting by shifts on 76(2) >~ Al. By
Lemma 5.26 the images of ()1, ..., (Q; under a general such shift lie in different R,.-
orbits for every r # 2, while all the other points ); (j > [) remain fixed. Applying
the same procedure subsequently to the other pieces we obtain finally a special
automorphism ¢ € SAut(X) such that the points ¥(Q1),...,¥(Q,,) belong to
different R,-orbits for every r # 2. O

unipotent subgroup H C Stab

Proof of infinite transitivity in Theorem 5.11. By virtue of Lemma 5.27, we may
assume that the orbits 7;(1) = R.1.Qj,7 =1,...,m, are all distinct. By Lemma 5.25
we can change the component ¢; ; of a point (); arbitrarily while fixing the other
components and as well the other points of our collection. Thus we can achieve
that ¢, ; = j forall j = 1,...,m. This guarantees that the orbits ;.Q1, ..., .0
are pairwise distinct for any [ > 2. Applying Lemma 5.25 again to every R;-orbit
for [ = 2,...,n, we can reach the standard collection ng), .. .,Q,(SL) as in (5.13)
with ¢;;, =jforall j =1,...,m, [ =1,...,n. This proves the infinite transitivity
statement in Theorem 5.11. For the proof of flexibility, see the next lemma. [

Lemma 5.28. X is flexible.

Proof. If dim X = 1, then X = A! and the assertion is evidently true. Suppose
further that dim X > 2. We know already that the group SAut(X) acts (infinitely)
transitively on X,.. Hence it is enough to find just one flexible point in X,.,. Let
us show that the point zy in the open T-orbit is flexible. Consider the action of
the standard torus (k*)" on X induced by the T-action on X via (5.10). The
stabilizer Stab(zg) C (k*)™ being finite, the tangent map 7,(k*)" — T,,X at
each point g € Stab(zg) is surjective. Hence the tangent vectors at xy to the
orbits R;.xg, 1 = 1,...,n, span the tangent space 7,,X. By Remark 5.14 for every
i =1,...,n there exists a root e; € R(o) such that p; = p.,. Since xy cannot be
fixed by the one-parameter unipotent subgroup H.,, H.,.z¢ = R;.z¢ by virtue of
Proposition 5.17. Parameterizing properly these two orbits, their velocity vectors
at xo coincide. Therefore, T,,, X is spanned by the tangent vectors of the orbits
H.,.xo,i=1,...,n, as well, which means that the point x( is flexible on X (see
Definition 5.3). O

Now the proof of Theorem 5.11 is completed.
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Example 5.29. Consider an affine toric surface X,;, = A?/Gy, where d and e
are coprime integers with 0 < e < d, and Gy is the cyclic group generated by a
primitive dth root of unity ¢ acting on the plane A? via (.(z,y) = (Cx,(%). Tt is
well known [22], [26], [54] that for e > 2 the smooth locus (Xge)ree = Xae \ {0}
is not isomorphic to a homogeneous space of any affine algebraic group. How-
ever, X, \ {0} is homogeneous under the action of the infinite dimensional group

SAut(X).

5.3 Affine suspensions

Let k be an algebraically closed field of characteristic zero.

Theorem 5.30. Suppose that an affine variety X = X© over k is flexible and
either X = A', or dim X© > 2 and the special automorphism group SAut(X(®)
acts infinitely transitively on the smooth locus Xr(gé. Then all iterated suspensions
over XO have the same properties, namely, they are flexible and the special auto-

morphism group acts infinitely transitively on the set of its reqular points.

In this section we prove Theorem 5.30. Let us first recall necessary notions.

Let X© be an affine variety. By a cylinder over X© we mean the product
X© x A'. Given a nonconstant regular function f; € k[X(?], we define a new
affine variety

XU = Susp(X©, f,) := {fi(2) —uv = 0} € XO x A%

It is a suspension over X see Definition 5.4. By recursion, for any [ € N we
obtain the iterated suspension X® = Susp(X(~V, f).
For instance, starting with X = AF we arrive at the [th suspension X®

given in the affine space A% = Speck[zy, ...,z us,v1, ..., u;, v] by equations
vy — fi(w1, 22, ..., 1) =0
Uy — fo(w1, @2, ..., Tp, up,v1) =0
(5.14)
wu, — fi(xy, To, ..o, T, Up, V1, U,y Vo o U1, U—1) = 0,
where for every ¢ = 1,2, ..., the polynomial
fz‘ S k[l‘l, ey Ly, U, U1y e e ,ui_l,vi_l]
is non-constant modulo the ideal (ujv1 — f1,..., w101 — fi_1).

We separate the two cases in Theorem 5.30 according to the dimension of the
base. In dimension 1, the assertion holds true over an arbitrary field of character-
istic zero under an additional restriction on the function f = f;.
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Theorem 5.31. Let k be a field of characteristic zero and f € k[z] a polynomial
with f(k) = k. Consider a surface X C A3 with equation f(x)—uv = 0. Then X is
flezible and the special automorphism group SAut(X) acts m-transitively on Xieg
for every m € N.

Since the assumptions of Theorem 5.30 are fulfilled for the affine space X(© =
A* k> 1, we can conclude that for every k,l > 1 the affine variety X C AF+2
defined by (5.14) is flexible and the group SAut(X®) acts infinitely transitively

0)
on Xreg.

5.3.1 Suspension over a line

Here we prove the infinite transitivity in Theorem 5.31. The proof is elementary
and based on some explicit formulae from [47].

Proof. We may assume that d = deg f > 2. According to [47]®, in our case the
special automorphism group SAut(X) contains the abelian subgroups G, and G,
generated, respectively, by the one parameter unipotent subgroups

H,(q) : (x,u,v) — (:c +tq(u), u,v + Szt tq(z)) — f(a:)) (5.15)
and
Ho(q) : (z,u,0) <x +tglo),u+ LEE tQ(z)) —J@) v) , (5.16)

where ¢(z) € k[2], ¢(0) =0, and ¢ € k. So u € k[X]%* and v € k[X]%". We claim
that the subgroup G = (G, G,) C SAut(X) acts m-transitively on X, for every
m € N. Given an m-tuple of distinct points

Ql = (:El)ulavl)a . -an = (IL‘m,Um,’Um) € Xregy

our aim is to find an automorphism ¢ € G which sends this m-tuple to a standard
m-tuple
u; v

At B I 1

Q(o) _ (x(p) (0) (0)) i=1,....m

chosen in such a way that all vl@ are nonzero and distinct.
Step 1. Acting with G,, we can replace the original m-tuple by another one
such that v; # 0 for each + = 1,..., m. Indeed, the polynomial in ¢

flettu) - f(z)  ['(z) f9(x)
u =ttt

S5Cf. also [16], [21], and [48].

w4 € Kz, u][t],
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where f(@(z) is a nonzero constant, is non-constant provided that either f’(x) # 0
or u # 0. Since the point Qs € X is smooth, the equalities us = 0, vy = 0, f'(x;s) =
0 cannot hold simultaneously. Hence, acting by (5.15) with ¢ = z and a general ¢
does change the coordinate vy, = 0, while keeping nonzero those v; that were
already nonzero. Now the claim follows.

Step 2. Suppose further that v; # 0 for each ¢ = 1,...,m. Then, acting

with G,, we can send our m-tuple to another one where all the w; (i = 1,...,m)
are nonzero and distinct. Indeed, let
s A @) (. \d
F(Qug t) = L at), o T @) a@) e gy
1! V; d! Vi

We have (z;,v;) # (z;,v;) for all i # j because (x;,u;,v;) # (x,u;,v;) while
u; = f(z;)/v; and u; = f(z;)/v;. If v; = v;, then @Y (z;) £ f4=Y(z;) since the
linear form f(@~Y(z) is nonzero. Thus for a suitable ¢ € k[z] such that g(v;) # 0
for all 7, the polynomials F'(Q;,¢,t) and F'(Q;,q,t) are different for every i # j.
Applying an automorphism H,(q) in (5.16) with a general ¢, we obtain the result.

Step 3. We assume now that all the coordinates u; are nonzero and distinct. Let
us show that it is possible to achieve the standard values vé‘”, s=1,...,m, acting
by G,. To this end, we construct an automorphism that preserves all the points
but @; and sends ); to a new point @); with v} = vi(o). Namely, fix a polynomial
q(z) with ¢(0) =0, ¢(u;) # 0 and ¢(u;) = 0 for all j # 7. Our assumption on f(x)
guarantees that the equation f(x) = ui(vl-(o) —v;) + f(x;) has a root x = a;, where
a; € k. Applying H,(q) in (5.15) with ¢ = (a; — ;) /q(u;), we obtain the required.

Step 4. Suppose finally that v; = vi(o) for all 7. It suffices to reach the values
T, = xl(o) for all ¢ acting by an automorphism from G, (indeed, then also u; =
flx) /v = f(xz(o))/vi(o) = ugo)). This can be done by applying H,(q) as in (5.16)
with ¢ = 1 and a polynomial ¢ satisfying ¢(0) = 0 and q(vi(o)) = :L’EO) — x; for all 4.
Now the proof is completed. O

5.3.2 Infinite transitivity in higher dimensions

Clearly, it is enough to prove Theorem 5.30 for a non-iterated suspension. Before
passing to the proofs, we establish in Lemmas 5.32-5.35 some necessary elementary
facts concerning suspensions. In Lemmas 5.32-5.37 we work over an arbitrary field
k of characteristic zero.

Lemma 5.32. If X9 is irreducible, then the suspension X = Susp(X @, f) is
also irreducible.

Proof. Suppose to the contrary that there exist nonzero elements

Fi, Fy € k[ XW] = k[XO][u,v]/(uv — f) such that F\F, = 0.
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We may assume that deg, ,(F1) + deg, ,(F%) is minimal and no monomial in F;
contains the product uv, since otherwise we can replace this product by f according
to Definition 5.4. If w occurs in both F; and Fy, then deg,(F;F5) > 0 since the
leading term in u cannot cancel. Hence, up to twisting v and v, we may assume
that F} does not contain v and F5 does not contain w. Let us write

k !
F = g a;u' and Iy = E bjv’,
i=0 Jj=0

where a;,b; € k[X ], and k + [ is minimal.

If neither u nor v occurs, i.e. k =1 =0, then Fy, F, € k[X?)] are zero divisors,
which contradicts the irreducibility of X©. So k +1 > 0.

If ag = by = 0 then we can decrease the degree k + [ by dividing out u and v.
This contradicts the minimality assumption. So we may suppose that ag # 0. Then
the product F} F, contains a nonzero term agb;v!, which gives again a contradiction.

0

Lemma 5.33. We have 7T(Xr(elg)) = Xﬁgg, where 2 XM — X©) s the restriction
of the canonical projection X© x A2 — X©) ¢o X1,

Proof. Let fi, fa,..., fm € k[z1,29,...,2,] generate the ideal of X C A®. A
point P € X is regular if and only if the rank of the Jacobian matrix

of  Oh of
ox1 Oxre 0T
of2  0f of2
DO _ 31'1 33.32 T 31.5
Ofm  Ofm Ofm
o1 0x2 o o

attains its maximal value s —dim X(® at P. The corresponding matrix for X is

9fh  of of

o1 Oxo e Oz

9f2  9f2 Af2

o1 Oxre " o s 0 0
D, = : : : :

Ofm  Ofm Ofm

oz Oxo e Oz 0 0

of  9f or _, _

o1 Oxre " o v u

Obviously, rk D; < 1+ rk Dy at every point. Since dim X" = 1 + dim X, any
regular point of X() is mapped via 7 to a regular point of X©. On the other
hand, let a square submatrix M of Dy and a point P € Xﬁgg be such that M (P) is
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of rank r = s—dim X© equal to its order. We extend M to a square submatrix M’
of order r + 1 by adding the last line and one of the two extra columns of D; in
such a way that rk M'(P,u,v) = 1 + 1k M(P) = r + 1 for some (u,v) # (0,0),
where (P,u,v) € XU, Hence (P,u,v) € X%). Now the assertion follows. O

Remark 5.34. Recall [31] that an affine modification of an affine algebra A with
center (I,v), where I C Ais an ideal and v € I is not a zero divisor, is the quotient
algebra A[It]/(1 — vt), where

Bl (A)=Alf] = Ao PUt)" Al ...

n=1

is the blow-up (or the Rees) algebra of the pair (A, I) and ¢ is a formal symbol.

Geometrically, the variety Spec(A[It]/(1 — vt)) is obtained from X = Spec A
as follows. We perform a blowup of X with center I and then remove the proper
transform in Bl;(X) of the zero divisor V' (v) in X. This results again in an affine
variety. (We note that this proper transform meets the exceptional divisor £, since
v € I.) See [31, §1] for more details.

According to [31, Example 1.4 and §5], the suspension X = Susp(X (@, f)
can be viewed as an affine modification of X(© x A' (where A! = Speck][v]) with
center (I1 = (v, f),v) along the divisor v = 0. Interchanging v and w, the variety
X® can be regarded also as an affine modification of the product X © x A' (where
this time A’ = Speck|u]) with center (Iy = (u, f), u) along the divisor u = 0. The
exceptional divisors v = 0 and u = 0, respectively, of these two modifications are
both isomorphic to X© x A but different as subvarieties of X, In the sequel
for every ¢ € k we consider the level hypersurfaces U. = {u = ¢} and V, = {v = ¢}
in X

In [31, §2] a method was developed which allows to extend an LND 0 to the
affine modification provided that O stabilizes the center of the modification. In
Lemma 5.35 below we concretize this in our particular case of affine suspensions.

Given an LND ¢y of an affine domain Ay and a polynomial ¢ € k[z] with
q(0) = 0, we can define a new LND ¢' = ¢'(do,q) on A" = Ay ® k[v], where v
is a new variable, as follows. First we extend dy to A’ by letting dp(v) = 0, and
then we multiply dy by the element g(v) € ker dy. Suppose that Ay is generated by
X1,%9,...,2Ts. Then ¢ is given in coordinates by

8 (z;) = q(v)do(x;), i=1,2,...,s, 8 (v) = 0. (5.17)

Let now u be yet another variable and f € Ay be nonzero. Consider the
structure algebra A; of the suspension over Ay:

Ay = (Ag @ k[u, v])/(uv — f).
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Lemma 5.35. In the notation as above, the LND ¢ € Der A’ can be transformed
into an LND &1 = §1(0g, q) € Der Ay by letting

51($i):5/<1’i), ’izl,Q,...,S,

o1 (u) = @ do(f), (5.18)

51(v) = 8'(v) = 0.

Proof. First, we check that these formulae extend ¢’ to 6; = d;(dp, q) € Der(Ay @
klu, v]), where d; preserves the ideal (uv — f). Indeed, since q(:) € k[v] by our
choice of ¢, the derivation ¢; is well defined on the generators of Ay ® k[u,v]. It is
easily seen that d; is still locally nilpotent. The straightforward calculation shows
that d;(uv — f) = 0. Hence d; descends to an LND of the quotient algebra A,
denoted by the same symbol d;. O

Definition 5.36. Denote by G, the subgroup of the special automorphism group
SAut (X)) generated by all one-parameter unipotent subgroups

Hv<507 q) = eXp(t51)7 where ¢ € kJr and 51 = 51 (507 Q) )

with dy and ¢(t) as above®. Interchanging the roles of v and u, we obtain the second
subgroup G, C SAut(X®). Thus u € k[XW]% and v € k[XW]% . We will
show that the subgroup G' C SAut (X)) generated by G, and G, acts infinitely
transitively in Xr(ég).

Given k distinct constants ¢y, ..., c; € k. Denote by Stabg, . the subgroup of

c1...c

the group G, fixing pointwise the hypersurfaces V,, € XM, s =1,... k.

Lemma 5.37. Suppose that the group SAut(X®) acts m-transitively on X9,

Then for any distinct constants co,cy,...,c, € K* the group Staby . acts m-
transitively on V., N leelg.
Proof. Given two collections of m distinct points Pj,..., P! and @Q},..., Q. in

Voo N Xr(;g). Let Py,..., P, and Qy,...,Q,, be their m-projections to X . Notice
that the hypersurface V,, € X is mapped isomorphically onto X () via 7, while
by Lemma 5.33 we have 7(V,, N Xlgelg)) - Xr(gg). Indeed, a point P’ € V,, can be
written as P’ = (P,u,cp), where P = 7(P') € X© and u = u(P') = f(P)/co.

Conversely, these formulae give an isomorphism X (©) = V., which sends P to P’.

6Notice that for X(©) = A' = Speck|[z] and &y = d/dz we have H, (8o, q) = H,(q) from (5.16).
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Since by our assumption the group SAut(X(®) acts m-transitively on Xﬁgg,
there exists an automorphism vy € SAut(X®) which sends the ordered collection

(Pp,...,Py) to (Q1,...,Qn). It can be written as a product
k -
Yo = H eXP(5(()Z))
i=1

for some LNDs 6" ..., 6" € Derk[X(©)].
Letting ¢ = az(z —¢;1) ... (2 —¢), where a € k* is such that ¢(cy) = 1, we can
lift the 63 to the LNDs

o) = 67(",q) € Derk[XV],i=1,. .k

by Lemma 5.35. Respectively, ¢y can be lifted to a special automorphism
k .
1 = [Jexp(6)”) € G, € SAut(X™).
i=1

By virtue of (5.17) it is easily seen that the actions on X of the corresponding
one-parameter unipotent subgroups Hv(ééi), q) restrict to the original actions on
Vio = X©. So the automorphism ¢ [y, = o sends (P},..., P}) to (Q),..., Q).
Due to our choice of ¢(z), this automorphism fixes all the other hypersurfaces V.,

pointwise. O

Lemma 5.38. Let k be an algebraically closed field of characteristic zero. Suppose
as above that the group SAut(X®) acts m-transitively on Xr(gé. Then for any set
of distinct points Q,..., Q" € leelé there exists an automorphism ¢ € SAut(X M)
such that p(Q) € Uy U Vy for alli=1,2,...,m.

Proof. We say that the point Q) = (Q;, us, v;) € XY is hyperbolic if wv; # 0, i.e.
Q' ¢ UyUVy. We have to show that the original collection can be moved by means
of a special automorphism in such a way that all the points become hyperbolic.
Suppose that Qf,...,Q; are already hyperbolic while ()., is not, where [ > 0.
By recursion, it is sufficient to move Qj,, off Uy U Vj while leaving the points
T, ..., Q) hyperbolic. It is enough to consider the following two cases:

Case 1: w1 =0, v;1 # 0, and
Case 2: ujy1 = vy = 0.
We claim that there exists an automorphism ¢ € SAut(X®) which leaves the
points @7, ...,Q; hyperbolic such that in Case 1 the point ¢(Q)},,) is hyperbolic
as well, and in Case 2 this point satisfies the assumptions of Case 1.

In Case 1 we divide @, ..., Q;,, into several disjoint pieces My, ..., M} accord-
ing to different values of v so that Q) € M; < v; = ¢;, where ¢; # 0. Assuming
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that My = {Q},....,Q; @}, where i, < [ for all k = 1,...,r, we can choose
an extra point @7, € (V, N Xr(ég)) \ Up. Indeed, since ¢y = v;41 # 0, we have
Voo & X©_ Under the assumptions of Theorem 5.30 dim X > 2 hence also
dim(V,, N X5 \ Uy = dim X© > 2.

By Lemma 5.37 the subgroup Stab, C G, acts (r + 1)-transitively on

Ve N Xr(ég). Therefore we can send the (r + 1)-tuple (Q;,,...,Q; , Q) to the
(r + 1)-tuple (Q;,,...,Q; ,Q},,), fixing the remaining points of M; U ... U M.
This confirms our claim in Case 1.

In Case 2 we have @), = (Qi41,0,0) € Xlgelg). From Lemma 5.33 and its proof

it follows that Q1 = 7(Q;,,) € Xr(gg) and df (Qy1) # 0 in the cotangent space
15,,,X ©), The variety X© being flexible, there exists an LND dy € Derk[X )]
such that 9y(f)(Qir1) # 0. Letting ¢(v) = v(v — v)(v — vy) ... (v —v;) € k[v]
and choosing a set of generators xy, ..., z, of the algebra k[ X ], we extend 0y to
0, € Der k[ XW] via

al(xl) ZQ(v)aO("L‘Z)v ’i:1727"'757

or(w) = 1 a5, (5.19)

v

81(11) =0

analogously to (5.18). Due to our choice, 0 (u)(Q),,) # 0. Hence the action of
the associate one-parameter unipotent subgroup H,(dy,q) = exp(t0;) pushes the
point @}, out of Uy. So the orbit H, (0, q).Q;,; meets the hypersurface Uy C XM
in finitely many points. Similarly, for every j = 1,2, ..., the orbit H,(0,q).Q; €
Up meets Uy in finitely many points. Letting now ¢ = exp(ty0;) € H, (0o, q) C G,
we conclude that for a general value of ty € k the image ¢(Q’) lies outside Uy for
all j = 1,2,...,1+ 1. Since the group H,(0y,q) preserves the coordinate v, the
points p(Q}), ..., »(Q)) are still hyperbolic. Interchanging the roles of v and v 7 |
we can achieve that the assumptions of Case 1 are fulfilled for the new collection

0(Q1): -, (@), (@), as required. .

Proof of infinite transitivity in Theorem 5.30. If X(©© = A' then the assertion fol-
lows from Theorem 5.31. Let now dim X© > 2. To show that the action of the
group SAut(X®) on Xlgelg) is m-transitive for every m € N, we fix a standard

collection of m distinct points P;,..., P, € U N Xr(;g). It suffices to move any
other m-tuple of distinct points @,...,Q., € Xr(elg to the position of P{,..., P/,
by means of a special automorphism ¢ € SAut(X™"). In view of Lemma 5.38 we

may suppose that Q) & Uy UV for all i« = 1,...,m. Similarly as in the proof of

"We have not done this earlier in order to keep our previous notation.
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Lemma 5.38, we divide the collection @)}, ..., Q.. into disjoint pieces My, ..., My
according to the values of v so that M; C V., where ¢; € k* for all j =1,... k.
By our assumption the variety X (© is flexible. It follows that the only units in
k[X (] are constants. Consequently, since f is non-constant, we have f(X©) = k.
In particular, U, NV, # () for any ¢,d € k. Since dim X® = 14 dim X©@ > 3, the
intersection U, NV, has positive dimension, hence is infinite.
Therefore acting with the subgroups Stab, . € G, by Lemma 5.37 we can

c1...6...C
send M; to Uy NV, N X1} fixing the other pieces M; (j # i) pointwise. So we
may assume that Q,...,Q, € Uy N X,e. Applying Lemma 5.37 again with u
and v interchanged, k = 0, and ¢y = 1, i.e. acting with the subgroup G,, we can
send the resulting collection to the standard one PJ,..., P/ . Now the proof is

completed. O

5.3.3 Flexibility

To complete the proof of Theorem 5.30, it remains to establish the flexibility
of X,

Lemma 5.39. Under the assumptions of Theorem 5.30, the variety X is flexible.

Proof. We know already that the group SAut(X (1) is transitive in Xr(;g). Hence,
similarly as in the proof of Lemma 5.28, it suffices to find just one flexible point
P' = (P,u,v) € X\

The function f € k[X®] being non-constant, df (P) # 0 at some point P € X9
with f(P) # 0. Due to our assumption X (¥ is flexible. Hence there exist n locally
nilpotent derivations 881), . .,88") € Derk[X(®], where n = dim X© | such that
the corresponding vector fields &, ..., &, span the tangent space Tp X i.e.

&i(P)

rk : =n.

&n(P)

It follows that 8(()i)(f)(P) # 0 for some index i € {1,...,n}.

Let now P' = (P,ug,v9) € Xr(elé be a point such that m(P’) = P. Since
ugvg = f(P) # 0, the point P’ is hyperbolic. Letting ¢(v) = v in Lemma 5.35, we
obtain n LNDs

oM, . 0" € Derk[XW), where Y =099 v).
Interchanging v and v and letting 7 = ¢ gives yet another LND

A =8 (8 u) € Derk[ XM
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Let us show that the corresponding n + 1 vector fields span the tangent space
T XD at P’ as required. We can view 9", ..., o\ 9l as LNDs in Der k| X©][u, v]
preserving the ideal (uv — f), so that the corresponding vector fields are tangent
to the hypersurface

X = fuv - f(P) =0} € X0 x A%

The values of these vector fields at the point P’ € Xr(elé yield an (n+ 1) x (n+ 2)-
matrix

wéi(P) o (f)(P) 0

wéa(P) AV (f)(P) 0

w&(P) 0 A (f)(P)

The first n rows of E are linearly independent, and the last one is independent
from the preceding ones since 6((]2)(f)(P) # 0. Therefore rk (E) = n+1 = dim X,

So our locally nilpotent vector fields indeed span the tangent space T X1 at P/,
as claimed. O

Now the proof of Theorem 5.30 is completed.

5.4 The Makar-Limanov invariant

Recall the following definition [23, §9].

Definition 5.40. The Makar-Limanov invariant ML(X) of an affine variety X
is the intersection of the kernels of all locally nilpotent derivations of k[X], or, in
other words, the subalgebra in k[X]| of common invariants for all one parameter
unipotent subgroups of Aut(X).

From this definition it is straightforward that ML(X) = k[X]SAut(X),

Proposition 5.41. The Makar-Limanov invariant of X is trivial (that is, ML(X) =
k) provided that the special automorphism group SAut(X) acts on X with a dense
open orbit (cf. [56]).

This holds, in particular, for the varieties in all three classes from Theorems 5.5,
5.11 and 5.30 (for the first two of them, see also [33, 3.16], [46], and [56]). On
the other hand, ML(X) is trivial if X is flexible. Indeed, if f € k[X]3*"**) then
the differential df vanishes along the orbits of any unipotent subgroup, hence it
vanishes on the tangent space at any flexible point of X,. Since X is flexible, f
is constant.
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Chapter 6

Infinitely transitive actions over R

6.1 Transitivity on each connected component

The proof of Theorem 5.30, with minor changes, works also for real algebraic
varieties and leads to the following result.

Theorem 6.1. Let Y be a flexible real algebraic variety. Suppose that the smooth
locus Yieg is connected and the special automorphism group SAut(Y') acts m-
transitively on Yieg for every m € N. Consider the suspension X = Susp(Y, f),
where the function f € R[Y] satisfies the condition f(Yieg) = R. Then the vari-
ety X is flexible and the special automorphism group SAut(X) acts m-transitively
on Xyeg for every m € N.

We recall the specific notations and state the main results.

Definition 6.2. We say that the action of a group G on aset Y = Y!'UY? U
... LUY? is anfinitely transitive on each connected component if for every s-tuple

(mq,...,ms), it is transitive on (my + ...+ mg)-tuples of the form
(PL,...,P.L P2 .. P2 . P .. P)

where Pf € Y are pairwise distinct.

Theorem 6.3 (Infinite transitivity on each connected component). Let Y be an
affine algebraic variety defined over R and f € R[Y]. Assume that for each con-
nected component Y of Yiee, the dimension dimY?® > 2 and f is non-constant
on Y.

IfY is flexible and the action of SAut(Y') on Yie, is infinitely transitive on each
connected component, then the suspension X = Susp(Y, f) is flexible and SAut(X)
acts on X,eg tnfinitely transitively on each connected component.

133
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Remark 6.4. If X, is not connected, then SAut(X) is not even one-transitive
on X,ee. Indeed, the action of SAut(X') on X fixes each connected component of X:
every special automorphism ¢ admits a decomposition []h;(1), where each h; is
a one-parameter additive group. For any =z € X, the arc t — []h;(t).z then
connects x to g.x.

Remark 6.5. The number of connected components can grow on each step even if
we started with a variety ¥ whose non-singular part Y, is connected. Indeed, if f
does not attain zero on one of the connected components, say on Y, then the set
{(y,u,v) |uv = f(y),y € Y'} splits into {(y, u,v),u > 0,v > 0} and {(y, u,v),u <
0,v < 0}. We may choose one connected component of the suspension and further
perform suspensions over this connected component.

As a preliminary part of Theorem 6.3, we prove the following theorem.

Theorem 6.6 (Infinite transitivity on one connected component). Let Y be an
affine algebraic variety defined over R and f € R[Y]. Assume that Yies contains
a flexible connected component Y of dimension at least 2 such that SAut(Y) acts
infinitely transitively on Y1 and fly1 is non-constant. Let X' be a connected
component of the smooth locus of the suspension Susp(Y1, f) € X = Susp(Y, f).
Then X1 is flexible and SAut(X) acts infinitely transitively on X*.

6.2 Connected suspensions over real varieties

Here we prove Theorem 6.1. We need the following elementary lemma.

Lemma 6.7. Let Y be a smooth, connected real manifold of dimension at least
two. Then for any continuous function f :Y — R the level set f~1(c) is infinite
for each ¢ € Int f(Y).

Proof. We may assume that f|y is non-constant. Choose two points y,y2 € Y
such that f(y1) = ¢1 < ¢ and f(y2) = co > ¢. They can be joined by a smooth
path [ in Y. There exists a tubular neighborhood U of [ diffeomorphic to a cylin-
der A x I, where I = [0, 1] and A is a ball of dimension dimA =dimY —1 > 1. So
there is a continuous family of paths joining y; and y, within U such that any two
of them meet only at their ends y; and y,. By continuity, on each of these paths
there is a point ¢’ with f(y’) = c. In particular, the level set f~!(c) is infinite. O

The proof of Theorem 6.1 differs just slightly from that of Theorem 5.30. Hence
it is enough to indicate the necessary changes.

Sketch of the proof of Theorem 6.1. The assumption that the field k is algebraically
closed was actually used in the proof of Theorem 5.30 only on two occasions.
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Namely, in the proofs of Lemma 5.38 and of the infinite transitivity in Theorem 5.30
we exploited the fact that under our assumptions the level sets (V., N Xieg) \ U
and U; NV, N X,e are of positive dimension, hence are infinite. For k = k the
latter follows from the Krull theorem and the dimension count. In the case k = R,
we can deduce the same conclusion using Lemma 6.7. Indeed, in the notation as
before, for every ¢; # 0 the restrictions

T Ve, N Xveg = (Ve )reg = Yieg and  m: Uy NV, N Xpeg — fe)n Yieg
are isomorphisms. Under the assumptions of Theorem 6.1 the smooth real mani-
fold Y;eq of dimension > 2 is connected. Since f(Yies) = R, by Lemma 6.7 the level
set f71(¢;) NYieq is infinite. Since ¢ # 0, the set (Vo N Xyeq) \ Uy 2 U1 NV, N Xyeg
is infinite too.

A posteriori, the manifold X, is also connected. O

6.3 Affine modifications and lifts of automorphisms

In this section we prove the basic results of the theory over the real numbers. The
main part is close to the treatment in Chapter 5.

For every geometrically irreducible algebraic variety X over the ground field C,
there is a natural one-to-one correspondence between locally nilpotent derivations
(LND’s) 0 on C[X] and algebraic actions of one-parameter subgroups (C,+) =
Hs € SAut(X). Namely, given a locally nilpotent derivation 9, the corresponding
action is the exponential (¢, f) — > .7, %5‘% (f). Conversely, for every algebraic
action o of a subgroup (C,+) = H C SAut(X), the derivation along the tangent
vector field to the orbits of o, given by tho is an LND, see 23, § 1.5]. The
lemma below shows that the same is true for R.

Let G be an algebraic group. Recall that a G-module V' is rational if each
v € V belongs to a finite dimensional G-invariant linear subspace W C V and
the G-action on W defines a homomorphism of algebraic groups G — GL(W). A
G-algebra is an algebra with a structure of a rational G-module.

Lemma 6.8. There are one-to-one correspondences between locally nilpotent deriva-
tions of R[X|, unipotent subgroups (R,+) C Aut(X), and structures of rational
(R, +)-algebras on R[X].

Proof. For an LND D, the corresponding (R, +)-algebra is defined by the following
formula:

t: f=exp(tD)(f) :f+tD(f)+gD2(f)+....
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For any fixed f there exists an N with DV(f) = 0, so this formula gives
us a polynomial in ¢. Hence, f belongs to a (R,+)-invariant linear subspace
(f,D(f),..., DN7L(f)), which shows that R[X] is rational as a (R, +)-algebra.

Conversely, let (A,t — ;) be a rational (R, +)-algebra. Let us define

d
D(f) = o li=o ¢:(f), f €A

The main point is to prove that for each f € A some power D™ (f) vanishes.
Consider a finite dimensional invariant subspace W C R[X], f € W. Obviously, D
preserves W and the action of exp(D) on W ®g C is unipotent. By the Lie-Kolchin
theorem, the action of D is upper-triangular in some basis of W ®@g C. This means
in particular that DY = 0 for some N. Note that the actions of D on W and
of D on W ®g C were originally given by the same matrix, hence, this matrix is
nilpotent, and the derivation D on R[X] is in fact locally nilpotent. O

Here is the geometric counterpart of the affine suspensions introduced above.
Let X = Susp(Y, f) be a suspension of Y given by Definition 5.4. Consider the
cylinder Y x Al over Y, where A' = R[v]. Then Susp(Y, f) is the blow-up of Y x A!
with center (f,v) along v, which is a particular instance of an affine modification,
see [31, Example 1.4].

Let dp be an LND on R[Y] and let Hs, be the associated (R, +)-action on Y.
Recall the construction of an LND §; which lifts dp to X (see Lemma 5.35 or [31]).
Let ¢ be the lift of 6y on R[Y x A!] defined by ¢’'(v) = 0 and consider a product
01 = qd’ by a polynomial g(v) such that ¢(0) = 0. Choosing ¢ such that the value
of 07 on u preserves the relation é;(uv — f(y)) = 0, we get an LND on R[X] which
satisfies

01(g9) = q(v)dp(g)  for all functions g € R[Y],
d1(v) =0, (6.1)

There is some freedom in the choice of g(v). All the derivations obtained in this
way annihilate the function v € R[X], and the corresponding actions preserve the
sections V. = {v = ¢} N X. Notice that X can also be considered as the blow-up of
Y x SpecR[u], and the lifts of LNDs obtained in this way annihilate the function
u € RIX].

We denote by G, (resp. G,) the subgroup of SAut(X) generated by one-
parameter subgroup lifted from Y x SpecR[v] (resp. Y x SpecR[u]). Recall the
following.
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Lemma 6.9 (Cf. Lemma 5.33). Let Y be an affine variety over a field of charac-
teristic 0 and X be a suspension over'Y . Then the restrictionm: X CY xA? =Y
of the canonical projection satisfies ™(Xyeg) = Yreg-

We denote by Y, = Y'U...UY* the decomposition of Yieg into connected
components. If f is not surjective, then the suspension over a connected compo-
nent Y of Y, is either connected or consists of two components: if f|y: does not
attain zero, u and v neither attain zero, but can be either both negative, either
both positive.

For every ¢ € R the hyperplane section {v = ¢} C X will be denoted by V..
We denote by v(P) the v-coordinate of a point P € X.

Given k distinct constants ¢y, ..., ¢, € R\ {0}, we let Stab;, . be the subgroup
of G, fixing pointwise the hypersurfaces V., C X, s =1,..., k. Observe that, as
a subgroup of G,, the group Stab! stabilizes all the levels V. of the function

c1...Cck

v € R[X]%. Likewise, let Stab® . C G, be the subgroup of maps inducing the

c1...c

identity on the levels U, of the function u € R[X]%*.

Lemma 6.10. If the action of SAut(Y') on Yies is infinitely transitive on each
connected component, then for every distinct values cy,cq,...,c, € R\ {0}, the
group Stabg, . acts infinitely transitively on each connected component of Vi, N

Xreg. The same is true for the action of Staby on Uy N Xieg-

C1...C

Proof. Let Py, ..., P, and Q1,...,Q,, be two m-tuples of distinct points of V,, N
Xyeg. Since 7 restricts to an isomorphism Vi) N Xyeg — T(Xieg) = Yieg, We get
7(P;) # w(F) and 7(Q;) # m(Q;) for j # . Moreover, two points belong to the
same connected component of V,; N X, if and only if their projections belong to
the same connected component of Y,.. As a consequence, there exists a special
automorphism ¢ such that ¢.7(P;) = 7(Q;),Vj. The special automorphism
decomposes into exponentials of LND’s. We lift each of these derivations using
the polynomial ¢(z) = az(z — ¢1) ... (2 — ¢;) where a € R\ {0} is determined by
q(co) = 1. (Compare with Lemma 5.37.) O

Lemma 6.11. Let Y be an affine variety over R and X be a suspension of Y.
Let Y' CY be a connected component of Yieg of dimension at least two, f € R[Y]
such that 0 € Int f(YY), and X' be the suspension over Y. If Y is flexible and
the action of SAut(Y) is infinitely transitive on Y, then for every set of distinct
points Pi, ..., Py of X' there exists a special automorphism ¢ € SAut(X) such
that 0. P; & Uy UVgy for all j.

Proof. We follow the proof of Lemma 5.38. We say that the point P; = (R;, u;, v;) €
X1is hyperbolic if wyv; # 0, i.e. P; & UyU Vy. We have to show that the original
collection can be moved by means of a special automorphism so that all the points
become hyperbolic. Suppose that P,..., P, are already hyperbolic while P, is
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not, where [ > 0. By recursion, it is sufficient to move P, off UyUVj while leaving
the points P, ..., P, hyperbolic. It is enough to consider the following two cases:
Case 1: w1 =0, v;41 # 0, and

Case 2: ujy1 = vy = 0.

We claim that there exists an automorphism ¢ € SAut(X) leaving Pi,..., P
hyperbolic such that in Case 1 the point ¢.FP; is hyperbolic as well, and in
Case 2 this point satisfies the assumptions of Case 1.

In Case 1 we divide Py, ..., P, into several disjoint pieces My, ..., M} accord-
ing to different values of v so that P, € M; & v; = ¢;, where ¢; # 0. Assuming
that My ={P;,,...,P;,, Py}, where i, <[ forall k =1,... 7, we can choose an
extra point P/,, € (V,; N X")\ Up. Indeed, since ¢y = vi41 # 0, we have V,, = Y.
We have dim Y > 2, hence

dim(V,, N XM\ Uy = dimY"' > 2.

By Lemma 6.10 the subgroup Stab C G, acts (r + 1)-transitively on
V., N X' Therefore we can send the (r + 1)-tuple (P,,...,P,, Py1) to
(P, ..., P, P/, fixing the remaining points of M; U ... U M. This confirms
our claim in Case 1.

In Case 2 we have P, = (R;;1,0,0) € X' Tt follows from Lemma 6.9
that Riy1 = 7(F41) belongs to Y., and df(Rj+1) # 0 in the cotangent space
Ty, Y. The variety Y being flexible, there exists an LND Jy € Der R[Y] such
that Oo(f)(Ri41) # 0. Let g(v) = v(v —v1)(v — v2) ... (v — v;) be a polynomial
in R[v] and choose a set of generators xy, ...,z of the algebra R[Y]. Then, as in
(6.1), the derivation Jy can be extended to 0; € Der R[X] via

O (z;) = q(v)oo(x;), i=1,2,...,5,
81(11) =0 s
or(w) = L2 a1

v

Due to our choice, 0i(u)(P41) # 0. Hence the action of the associate one-
parameter unipotent subgroup H (9, q) = exp(t0;) pushes the point P, out of Uy.
So the orbit H(dy, q). P41 meets the hypersurface Uy C X! in finitely many points.
Similarly, for every j = 1,2,...,1 the orbit H (0, q).P; € Uy meets Uy in finitely
many points. Let ¢ = exp(tp01) € H(dy,q) C G,. For a general value of {; € R
the image ¢.P; lies outside U for all j = 1,2,...,l+ 1. Since the group H (0, q)
preserves v, the points ¢.P, ..., ¢.F; are still hyperbolic. Interchanging the roles
of u and v, we achieve that the assumptions of Case 1 are fulfilled for the new
collection p.Py, ..., p. P, p.P 1, as required. O
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6.4 Infinite transitivity on one connected compo-
nent

This section is devoted to the proof of Theorem 6.6. Recall that Y is an affine
variety defined over R, f € R[Y] is non-constant, and X = Susp(Y, f). Let Y!
be a connected component of Y., and let X! be a connected component of the
intersection Susp(Y!, f) N Xyeq.

eg»

Lemma 6.12. Let m be a positive integer and let Py, ..., P, be m points in X" .
There exist an automorphism g € SAut(X) and a nonzero real number « such that
for each i =1,...,m the number av(g.P;) is an interior point of f|y:.

Moreover, for any finite sets of real numbers U disjoint from {u(P;)} and V
disjoint from {v(P;)}, the automorphism g can be chosen in (Staby;, Staby,).

Proof. Acting with GG,,, we may assume that the m points Py, ..., P, have pairwise
distinct u-coordinates. Acting further with GG,,, we may assume that these points
have also pairwise distinct values of their v-coordinates.

The proof depends on the behavior of f. If 0 is an interior point of f(Y!), we
let ¢ = Id and choose « small enough. Then all av(F;) are close to 0, and thus
are interior points of f(Y!).

If f|y: is non-bounded and f|y: > 0, we let ¢ = Id and choose « great enough.
All av(P;) are then large enough and are thus interior points of f(Y1). In the case
fly; is non-bounded and f|y, < 0, the same argument works.

It remains to consider a bounded function f, that is f(Y!) = [a, b]. This splits
into two cases: either ab > 0, or ab = 0.

Case 1. Without loss of generality we may suppose that 0 < a < b. Let v; =
v(P;) and u; = u(P;). Consider the connected component X' of the suspension
over Y! such that all v; > 0, and all u; > 0. Let vyax and vmin be the maximal
and minimal values of v(Fy),...,v(Py,).

If Vmax/Vmin < b/a, we let g = Id. Then for any « €]a/vmin, b/Umax[, it is clear
that all real numbers aw; are interior points of f(Y!).

Otherwise, if Uyax/Umin = b/a, we need a non-trivial automorphism g. Fix € > 0.
Note that, acting with the group G,, any point P € {P, P,,..., P,} can be
mapped to a point P’ such that f(P’) is very close to b, while all the other points
are fixed. Indeed, for a general e; < &, the real number i’)&i; Z {uy, ..., upn}.
Let R in Y be such that f(R) = b — ;. We endow R with two extra coordi-
nates u = fj(_liﬁ,v = v(P) and get P' = (R, l;z]f,%,v(P)) € X'. The point P can
be mapped to P’ by an element g; of the group StabZ(Pl),...,U(P),...,U(Pm)' Thus for
a general €; < ¢, the automorphism g, of X satisfies ¢;.P; = P; for P; # P,
and f(¢1.P) > b—e.
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Choose P = P; such that v(P;) = Vmax, P; = (Ri, U, Umax)- As described above,
we map P; to P/ = (R, b;fl,vl-) such that f(R') = b — e;. Then, interchanging

u and v, and interchanging a and b, there is an element of G, which maps P/ to
P/ = (R" b=, 7(“52)”) such that f(R") = a + 5. Note that v(P/) < “Eu(P;).

? Uy 6761 b*E
If Uimax/Vmin > b/a for the new set Py, ..., P/ ..., P, we repeat this procedure.
This process is finite since at each step the product v(Fy)...v(F,,) reduces by a
factor at least %E Finally, we get m points g.P, ..., g. P, such that vyax/Umin <
b/a.

Case 2. One of a and b equals zero. Using Lemma 6.11, we map the given
m-tuple Py,..., P, in X! to points P{,..., P/ € X'\ (UyUVp). A sufficiently
small « then fulfills the required condition.

To prove the second part of the lemma, we run the proof once again but we
add an extra condition while performing the lift of an automorphism from Y to X.
Namely, for an automorphism in G, we multiply the polynomial ¢ by [, a(u),
and for an automorphism in G, we multiply the polynomial ¢ by [ ., q(v). O

Proof of Theorem 6.6. Fix two m-tuples of distinct points P, ..., P, and Q1,...,Qp,
in X'. By Lemma 6.12, up to the action of SAut(X), there exists a € R\ {0}
such that awv(P;) belongs to Int f(Y?) and av(Q;) € Int f(Y?!) foralli=1,...,m.
We denote by ¢y, ..., cp the distinct values of the v-coordinates of the given 2m
points. We split the set {Py,..., Py, Q1,...,Q,} into k subsets according to the
v-coordinate. For each 4, the set V.. N U, N X! is infinite by Lemma 6.7. In par-
ticular, for each i, we get # (V., NU, N X') > 2m. By Lemma 6.10, there exists
gi € Stab;, . such that

»Ciy-yCh

gz({Pl,,Pm,Ql,Qm}ﬂVcl) CVciﬁUa

and g; fixes all the points belonging to U;.V.,. Let us denote by Pj,..., P,
1, ...,Q), € U, the images by g, o...0g;. Since the action of Staby = G,
on U, is infinitely transitive by Lemma 6.10, there exists a special automorphism

mapping the m-tuple P/,..., P/ to Q,..., Q... O

Lemma 6.13. If SAutY acts infinitely transitively on Y' where dimY*! > 2,
then the flexibility of Y implies the flexibility of any connected component X' of
Susp(Y'!, f),

Proof. Clearly, X! is flexible if one point P = (R,u,v) € X! is and if the group
SAut(X) acts transitively on X'. Since the function f € R[Y!] is non-constant,
df(R) # 0 at some point R € Y with f(R) # 0. Due to our assumption Y is
flexible. Hence there exist n locally nilpotent derivations 8((]1), ce 8((]n) € DerR[Y7],
where n = dimY = dim Y, such that the corresponding vector fields &;,...,&,
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span the tangent space TRrY, i.e.

& (R)

rk : =n.

&n(R)

It follows that 8éi)(f)(R) # 0 for some index i € {1,...,n}.

Let now P = (R, ug,v9) € X! be a point such that 7(P) = R. Since ugvy =
f(R) # 0, the point P is hyperbolic. Make a lift as in (6.1) with ¢(v) = v. We
obtain n LNDs

oM, . 0™ e DerR[X], where 0Y) =Y (Y v).
If we interchange u and v and let j = ¢, we get another LND
A = 888 u) € Der R[X].
Let us show that the corresponding n + 1 vector fields span the tangent space
TrX at R, as required. We can view 01", ... 0" 8" as LNDs in Der R[Y][u, v]
preserving the ideal E(uv — f), so that the corresponding vector fields are tangent

to the hypersurface
X ={uww—f(R)=0}CY x A?.

The values of these vector fields at the point P’ € X yield an (n+1) X (n+2)-matrix
wh(R) &V (R 0
E— : " : :
voén(R2) 9y (f)(R) 0
w&R) 0 ()R
The first n rows of E are linearly independent, and the last one is independent
from the preceding since 652)(]0)(}%) # 0. Therefore 1k (F) = n+1 = dimX. So

these locally nilpotent vector fields indeed span the tangent space Tp X at P, as
claimed. ]

6.5 Infinite transitivity on each connected compo-
nent

The purpose of this section is the proof of Theorem 6.3. As above, Y is an
affine variety defined over R, f € R[Y] is non-constant, and X = Susp(Y, f).
Moreover, we assume that SAut(Y’) acts infinitely transitively on each connected
component of Yi.,. Recall that v(P) denotes the v-coordinate of the point P €
X CY x SpecR[u,v].
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Lemma 6.14. Assume that Y is a flexible variety. For every finite set of points
Py, ..., P, in Xy, there exists an automorphism g € SAut(X) such that all
v(g.P;) are pairwise distinct, and that all u(g.P;) are pairwise distinct.

Proof. We cannot use the starting argument of the proof of Lemma 6.12, since
several points of X may have the same projection in Y.

We denote the set of projections w(Fy),...,n(Py) by {Ri,...,Rw}. Note
that all R; belong to Y, by Lemma 6.9. Up to a special automorphism of X
we can assume that all f(R;) are pairwise distinct. This is possible since f is
non-constant on each connected component, and the action of SAut(Y) on Y is
infinite transitive on each connected component. Consider the images of Py, ..., P,
under the projection p: X — SpecR[u,v]. If w(P;) # w(F;), the projections
p(P;) and Ep(P;) cannot coincide. Otherwise f(R;) = uw; = ujv; = f(R;). If
7(P;) = m(P;), we get also p(P;) # p(P;) since the points P, and P; are distinct.

Thanks to Lemma 6.11, keeping p(FP;) # p(P;) if P; # P;, we may assume that
u(P;) # 0 and v(F;) # 0 for each i. We split the set {Py,..., P,} into several
subsets M; U ... U M} according to the v-coordinate. Let ¢; € R be such that
M; C V... Using Lemma 6.10, we act by an element of Hle Stabg, . . to
get m points with pairwise distinct u-coordinates. Arguing likewise with Stab"-
actions, we get m points with pairwise distinct u- and v-coordinates. O

Proof of Theorem 6.3. We denote by s the number of connected components of Ve,
and we suppose that the action of SAut(Y’) on Y, is infinitely transitive on each
connected component. Consider a suspension X = Susp(Y, f) and decompose
Xieg = X 'U...UX* into connected components. Recall that over each connected
component of Y., there is either one or two connected components of X, Fix
some integers my, my, . .., my, such that  _m) = m and choose two (m/+...+m,)-
tuples P = {Py,..., Py} and Q = {Q1,...,Q,} in X such that for each j, the
component X7 contains exactly m’; points of P and m/ points of Q. Let § =
PUQ={S,...5m}

By Lemma 6.14 applied to S, we may suppose that the values of the v-
coordinates are pairwise distinct and that the values of the u-coordinates are also
pairwise distinct.

We want to choose an §-tuple of values @ = (aq,...,ay) such that for all
S; € X7 the number a;v(S;) is an interior point of f|x;. To this end, we repeatedly
apply Lemma 6.12 proceeding on one connected component at each step. Notice
that we need to preserve the condition that the values of the v-coordinates are
pairwise distinct and that the values of the u-coordinates are also pairwise distinct.
At jth step, we let U = {u(S;),S; € X7} and V = {v(S;),S; & X7} and we use
g € (Staby;, Staby,) given by Lemma 6.12.

Such a choice of g provides that ¢.S; = S; for S; ¢ X7. To control the condition
that all u-values are pairwise distinct and all v-values are pairwise distinct for
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S; € X7, we require the following. For each one-parameter subgroup h(t) acting
in the course of the proof of Lemma 6.12 (recall that it is non-trivial only for
S; € X7), the conditions on ¢ are

v(h(t).S;) € V, u(h(t).S;) €U for S; € X7 ;
v(h(t).Si,) # v(h(t).55), u(h(t).Si,) # u(h(t).S;,)
for distinct Sy, S;, € X7 .
This is true for generic t. At each step we get an «; which fits for all S; € X7.
We may choose the «a; pairwise distinct. At the end, we get a collection o =
(g, ..., ), as required.

We construct an automorphism gy mapping S to (X' NU,,) U (X?NU,,) U
L U(XT N Ua,) as the product of 2m automorphisms, each of them fixing all
the points but one. Since all v-values are pairwise distinct, to map S;, we let
q(v) = o[l (v—v(Sk)) where 3 satisfies ¢(v(S;)) = 1. If S; € X7, using the lift
defined by ¢ (see (6.1)), we map S; to X/ NU,,. Notice that for {g.51, ..., go-S2m },
the u-values are no longer pairwise distinct.

To map go.P4, ..., go.P, onto go.Q1, ..., go.-Qm, We use, for each ¢, the infinite
transitivity of the group Stab,, multiplying the corresponding LNDs on

gy, Ot )

. tal HA .
R[Y] by the polynomial Eq(u) = yu(u—aq) ... (u — a;) ... (u—ay) where v is such
that ¢(c;) = 1. In this way, for each i, we fix the points lying off the ith connected
component. Finally we get an automorphism g which maps ¢o.P, ..., go. P to

90-Q1, - .., Go-Qm. Hence, gy 'ggo maps the m-tuple Pi,..., P, to Q1,...,Qp, as
required. O
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