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Abstract

Modular architecture is a hallmark of many brain circuits. Particularly, in the
cerebral cortex it has been observed that reciprocal connections are often present
between functionally interconnected areas that are hierarchically organized. Evo-
lutionary development is another distinctive characteristic of living species, even
the simplest viruses are capable to adapt to better fit new environmental condi-
tions.

Having hierarchical architectures and evolutionary features in mind, we build
unique and novel simulation framework, which allows us to model and to study
evolving hierarchically organized circuits of modules of spiking neural networks.
Each module is characterized by embedded neural development and expression of
spike timing dependent plasticity. Cell death, synaptic plasticity and projection
pruning, embedded in the neural model, drive the build-up of auto-associative links
within each module, which generate an areal activity that reflect the changes in the
corresponding functional connectivity within and between neuronal modules. Bio-
electric activity of each module is recorded by means of virtual electrodes and these
signals, called electrochipograms (EChG), are analyzed by time and frequency
domain methods in order to find general patterns of emerging behavior. Beside
time and frequency domain analysis methods, a novel robust non-linear structural
regression approach is proposed to provide researchers with more powerful tools
specially adapted to the data typically used in the domain. We tested the effect of
an external stimulus at fixed frequency fed to a sensory module, which projecting
its activity to two hierarchically organized parallel pathways. We found that
modeled circuits manifest behavior similar in certain aspects to that of real brains.
We show evidence that all networks of modules are able to maintain long patterns
of activity associated with the stimulus offset.

These findings bring new insights to the understanding of EEG-like signals,
both real and virtual. The findings prove that the approach is successful and
could be extended to model cognitive and behavioral processes in the brains.

Keywords: hierarchical neural networks, evolutionary networks, electroen-
cephalograms (EEG), group method of data handling (GMDH), robust regression.
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Synopsis

L’architecture modulaire est une caractéristique distinctive des circuits cérébraux.
En particulier, il a été observé l’existence de connexions réciproques entre des
zones fonctionnellement interconnectées dans le cortex, et qui par ailleurs sont
hiérarchiquement organisées. De plus, le développement évolutif est une autre ca-
ractéristique distinctive des espèces vivantes ; même les virus sont capables d’adap-
tation pour mieux répondre à de nouvelles conditions environnementales.

En tenant compte de ces deux importants aspects, nous avons construit un nou-
vel et unique outil de simulation permettant de modéliser et d’étudier l’évolution
des circuits multi-modulaires hiérarchiques. Dans ce modèle, chaque module est
représenté par des réseaux de neurones impulsionels et caractérisé à la fois par
des changements d’activités neurales imbriquées et par la plasticité synaptique.
La morte cellulaire, la plasticité synaptique et l’apoptose intégrés dans le modèle
créent des liens auto-associatifs au sein des modules. Ces liens peuvent générer une
activité zonale qui reflète l’évolution de la connectivité fonctionnelle à l’intérieur
comme à l’extérieur des modules, et donc entre les plusieurs modules neuro-
naux. L’activité bioélectrique de chaque module est enregistrée au moyen des
électrodes virtuelles. Les signaux, electrochipogrammes (EChG), sont analysés par
les méthodes fréquentiels et les méthodes de potentiels évoqués afin de trouver des
généralités dans le comportement émergeant. En plus de ces méthodes convention-
nelles, nous proposons une nouvelle approche de régression non-linéaire structurelle
afin de fournir des outils plus puissants et mieux adaptés aux données habituel-
lement analysées dans ce domaine. Nous avons donc testé l’effet d’un stimulus
externe sur le développement de liens fonctionnels d’un réseau neuronaux. Le cir-
cuit est structuré hiérarchiquement avec un unique module sensoriel et d’autres
modules constitués de deux voies parallèles organisées aussi de façon hiérarchique.
Nos résultats montrent que les circuits modélisés manifestent un comportement
similaire que les circuits biologiques réels. En particulier, tous les éléments du cir-
cuit peuvent traiter et maintenir des patterns d’activité liés à la disparition du
stimulus.

Les résultats obtenus dans nos expériences apportent un éclairage sur les pro-
cessus émergents et coordonnés de l’activité électrique enregistrée par des EEG de
circuits inter-corticaux hiérarchiques et évolutifs qui sont artificiels ou réels. Plus
généralement, notre approche concernant les signaux EEG pourrait être étendue
à la modélisation d’une vaste variété des processus cognitifs et comportementaux.

Mots-clés : reseaux hierarchiques de neurones, reseaux neuronaux evolutio-
naire, encephalogrammes (EEG), group method of data handling (GMDH), re-
gression robuste.
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Анотацiя

Модульна архiтектура – одна з характерних властивостей органiзацiї мозку.
Давно вiдомо, що в корi головного мозку дiлянки, вiдповiдальнi за обробку
певних видiв iнформацiї, з’єднанi мiж собою в iєрархiчно органiзовану мере-
жу. Iнша характерна риса живих iстот – притаманна їм еволюцiя, спричинена
кращою адаптацiєю до умов середовища кожного наступного поколiння.

Орiєнтуючись на цi двi вiдмiннi властивостi, ми побудували унiкальне
пристосування для симуляцiї нейронних мереж, яке дозволяє моделювати
та вивчати еволюцiйнi iєрархiчно органiзованi нейроннi кола з модулiв iм-
пульсних нейронних мереж. Для нейро-модулiв цих мереж характернi функ-
цiї розвитку нейронiв та синаптичної пластичностi залежної вiд часу надход-
ження вхiдних iмпульсiв. Видалення неефективних нейронiв та синапсiв ра-
зом з синаптичною пластичнiстю призводять до побудови в кожному модулi
ауто-асоцiативних зв’язкiв мiж групами нейронiв. Зональна активнiсть, що
генерується цими групами, вiдповiдає встановленим функцiональним зв’яз-
кам як мiж групами нейронiв рiзних модулiв, так i мiж рiзними групами все-
рединi модуля. Бiоелектрична активнiсть кожного нейро-модуля реєструєть-
ся за допомогою вiртуальних електродiв. Цi сигнали, якi ми назвали елек-
трочiпограми (EChG), аналiзувалися за допомогою частотних методiв та ме-
тодiв ключових-подiй для виявлення загальних закономiрностей, притаман-
них процесам обробки iнформацiї в нейронних мережах. Ми запропонували
новаторський метод нелiнiйної робастної структурної та параметричної ре-
гресiї, спецiально адаптований до характерних для нейрофiзiологiї даних. Ми
дослiдили ефекти подачi стимулу фiксованої частоти на двошаровi iєрархiчнi
нейроннi мережi з видiленим сенсорним нейро-модулем. Цi дослiдження пока-
зують, що нашi моделi нейронних кiл здатнi демонструвати певнi властивостi,
що притаманнi нейро-системам живих iстот. При цьому, всi мережi здатнi об-
робляти вхiдну iнформацiю, зберiгаючи характерну активнiсть, асоцiйовану
з кiнцем подачi стимулу.

Нашi дослiдженнi проливають свiтло на природу формування EEG-подiб-
них сигналiв в мозку та в модельованих великих iєрархiчних еволюцiнуючих
нейро-системах. Виконанi нами експерименти доводять можлiвiсть застосу-
вання розробленого симулятору для подальшого моделювання складних ко-
гнiтивних процесiв.

Ключовi слова: iєрархiчнi нейроннi мережi, еволюцiйнi нейроннi мере-
жi, енцефалографiя (EEG), метод групового урахвання аргументiв (МГУА),
регресiя стiйка до викидiв.

xi



xii

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



xiii

List of publications

Vladyslav Shaposhnyk, Pierre Dutoit, Victor Contreras-Lámus, Stephen Per-
rig, and Alessandro E.P. Villa.

“A framework for simulation and analysis of dynamically organized
distributed neural networks” in Artificial Neural Networks – ICANN 2009,
volume 5768 of Lecture Notes in Computer Science, pages 277–286. Springer Berlin
/ Heidelberg, 2009.

Vladyslav Shaposhnyk, Alessandro E.P. Villa, and Tetyana Aksenova.
“Advances in structural modeling robust to outliers in explanatory

and response variables” Proceedings of the 2010 IEEE World Congress on
Computational Intelligence, pages 628–635, IEEE, 2010.

Vladyslav Shaposhnyk, Pierre Dutoit, Stephen Perrig, and Alessandro Villa.
“Functional connectivity driven by external stimuli in a network of

hierarchically organized neural modules” in Artificial Neural Networks –
ICANN 2010, volume 6352 of Lecture Notes in Computer Science, pages 135–144.
Springer Berlin / Heidelberg, 2010.

Olga Chibirova, Javier Iglesias, Vladyslav Shaposhnyk, and Alessandro Villa.
“Dynamics of firing patterns in evolvable hierarchically organized

neural networks” in Evolvable Systems: From Biology to Hardware, volume
5216 of Lecture Notes in Computer Science, pages 296–307. Springer Berlin /
Heidelberg, 2008.

Stephen Perrig, Pierre Dutoit, Katerina Espa-Cervena, Vladislav Shaposhnyk,
Laurent Pelletier, François Berger, and Alessandro E. P. Villa.

“Changes in quadratic phase coupling of EEG signals during wake
and sleep in two chronic insomnia patients, before and after cognitive
behavioral therapy” in Proceedings of the 2009 conference on Neural Nets
WIRN09, pages 217–228, Amsterdam, The Netherlands, IOS Press, 2009.

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



xiv

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



xv

List of presentations

Neural Networks in Classification, Regression and Data-mining
Porto, Portugal, 2008

The 9th International Conference on Evolvable Systems: From Bi-
ology to Hardware

Prague, Check Republic, 2008

The middle-term perplexus project progress presentation
Brussels, Belgium, 2008

The 19th International Conference on Artificial Neural Networks
Limassol, Cyprus, 2009

The final perplexus project results presentation
Lausanne, Switzerland, 2010

International Joint Conference on Neural Networks 2010
Barcelona, Spain, 2010

The 20th International Conference on Artificial Neural Networks
Thessaloniki, Greece, 2010

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



xvi

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



xvii

to my Family
for their love and support

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



xviii

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



Preface

It is hard to find a black cat
in a dark room, especially,
if it is not there

S. Belloc

This history started during one pleasant evening filled with shiny red light of
sunset somewhere at the end of august, when hot summer weather already had
gone, but cold and rainy autumn weather had not arrived jet. Two month ago, I
have finished my master’s studies and received an appropriate diploma, even with
honors. I have talked about possible doctorate studies with my colleagues and, as
well, as with several graduate students of previous years and after all I had built
up a picture which was representing the subject, thought it was not in the shiny
colors at least here in alma mater, so I decided to put my efforts into commercial
area. That evening, I was on the work, it was quite late, so most co-workers are
already went home. I could calmly concentrate on an urgent stuff I had to do and
benefit of quiet office without treat of being disturbed by other urgent things or
by colleagues.

My phone rang, and to my great surprise it was not a customer with an urgent
need, nor a big boss with just another urgent matter, but Alexander Michaylovich
Reznik, my Master Thesis’ director. The talk was rather short, in a straight-
forward and clear manner he told me that it happens such that there is an open
doctorate position in France, he told me that work will be based on neural net-
works, just like the master thesis was, but he did not have more information. He
asked, if I want to try opportunity and if I mind if he would pass my contacts
to people interested to fill the position. Obviously, I had answered that it sounds
really exiting, thought it was totally unexpected. Sure, I did not mind take a
contact and to discuss a bit those matters. I had talks on the subject with my
friends and my family and was pretty sure that I will take the opportunity to
follow academic career.

Few days later, it was Monday, the 4th of September 2006, I had a call from
Tatyana Ivanovna Aksenova, my future supervisor of the thesis. She described
briefly on what was she working in Grenoble, we have discussed several more
points about the position and the expected outcome of the study, I was quite
surprised to hear about studies with obvious medico-biological focus, but never-
theless, driven by curiosity, I signed to start the doctoral study in a frame of joint
thesis supervision agreement between Kiev and Grenoble. That was a start of a
long way to this great day of final defense of the Thesis. In that moment it was
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left only 4 days before deadline of the submission of the documents for a doctoral
selection concurs in Kyïv and it was almost 5 years to the day of the defense.
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Résumé (en français)

L’architecture modulaire est une caractéristique distinctive des circuits cérébraux.
En particulier, il a été observé l’existence de connexions réciproques entre des
zones fonctionnellement interconnectées dans le cortex, et qui par ailleurs sont
hiérarchiquement organisées. De plus, le développement évolutif est une caractéris-
tique distinctive des espèces vivantes ; même les virus sont capables d’adaptation
pour mieux répondre à de nouvelles conditions environnementales.

En tenant compte ces deux importants aspects, nous avons construit un nou-
vel et unique outil de simulation permettant de modéliser et d’étudier l’évolution
des circuits multi-modulaires hiérarchiques de neurones à « décharges » qui com-
portent des particularités ontogénétiques et épigénétiques de développement (voir
Chapitre 3).

Nous avons donc testé l’effet d’un stimulus externe sur le développement de
liens fonctionnels de réseau neuronaux. Deux conditions expérimentales ont été
analysées. Dans la première, nous avons étudié le changement d’activité émergeant
par rapport aux phases développementales. Dans la seconde, nous nous sommes
focalisé sur l’évolution de la connectivité fonctionnelle à l’intérieur comme à l’exté-
rieur des modules ; donc entre les plusieurs modules neuronaux selon les types des
projections inter-modulaires présents dans la topologie du circuit. Cette synchro-
nisation des oscillations neurales est associée avec processus du développement des
liens entre les régions du cerveau qui a lieu pendant le traitement d’information
[127, 148]. Les études de simulation de l’électroencéphalographie (EEG), réali-
sées dans les expériences avec les modèles oscillatoires de populations de cellules
[89, 48], ont souligné comment la modulation de la puissance des décharges sy-
naptiques affecte l’évolution du signal dans le temps et la forme de l’onde évoquée
(i.e. ERPs).

Le circuit modélisé est structuré hiérarchiquement avec un unique module sen-
soriel et d’autres modules constitués de deux voies parallèles organisées également
de façon hiérarchique. La plasticité synaptique, la mort cellulaire et l’apoptose
sont intégrées au modèle et créent des liens auto-associatifs au sein des modules.
Ces liens peuvent générer une activité zonale qui reflète l’évolution de la connec-
tivité fonctionnelle à l’intérieur comme à l’extérieur des modules, et donc entre
les plusieurs modules neuronaux. L’activité bioélectrique de chaque module est
enregistrée au moyen des électrodes virtuelles. Les signaux, electrochipogrammes
(EChG), sont analysés par les méthodes fréquentielles et les méthodes de potentiels
évoqués afin de trouver des généralités dans le comportement émergeant.

Par ailleurs, les outils génétiques du cadre de simulation ont été utilisés pour
créer des générations de circuits neuronaux. En particulier, les paramètres du
modèle des réseaux neuronaux sont codés dans le génome des circuits. Le modèle
de simulation intègre la mutation du génome, ce nous a permis de récupérer les
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propriétés générales des circuits neuronaux.

Réseaux de neurones à décharges
Dans ce modèle, le circuit neuronal est constitué de plusieurs modules dans le-
quel chacun entre eux est un réseau d’unités neuronales distribuées sur une grille
bidimensionnelle. Les unités neuronales peuvent être de deux types : excitatrices
et inhibitrices. Ces unités sont distribuées au hasard sur la surface de la grille en
proportion 80 : 20 (respectivement, excitatrices et inhibitrices). Ces deux types de
neurones suivent la même dynamique « integrate-and-fire ». La plasticité synap-
tique se trouve modulée par l’activité de ces neurones. La plasticité synaptique
à modulation temporelle relative (Spike-Timing Dependent Plasticity, STDP) est
un changement de la force des synapses basé sur l’ordre des décharges pré- et
post-synaptique.

Les processus dynamiques (plasticité synaptique, mort cellulaire et apoptose)
intégrés dans le modèle provoquent l’apprentissage compétitif grâce à l’élimination
des synapses les moins efficaces. De même, ces processus créent des liens auto-
associatifs au sein des modules qui ouvrent les relations fonctionnelles entre des
groupes de neurones. Pour éviter la morte cellulaire excessive, le modèle intègre
l’activité de fond. Ces sont des décharges neuronales non corrélées générées selon
la distribution de Poisson à un taux moyen de 300 décharges/s et une amplitude
de 1,9 mV (ou 900 décharges/s et 1,0 mV pour les petits réseaux modélisés ; voir
l’Article A).

Deux ensembles de cellules ont été choisis au hasard parmi les neurones exci-
tateurs pour chaque module neuronal. Ces ensembles correspondent aux couches
efférentes et afférentes. En plus de l’activité interne ces neurones sont connectés
aux autres modules. Pendant les stades précoces de développement, les connexions
inter-modulaires sont établies de façon autoréflexive. C’est-à-dire que le nombre de
projections extérieures d’un neurone est proportionnel au nombre de projections
internes du même neurone. Selon la configuration expérimentale chacune de ces
couches pourraient contenir de 10% ou 20% de toutes les cellules excitatrices du
module. La présence de cellules efférentes et afférentes dans les modules nous guide
logiquement vers des ensembles hiérarques des modules, i.e. les circuits neuronaux.

Réseaux hiérarchiques
Quatre topologies de circuit ont était utilisées dans nos études (voir la figure 7.5).
Chacune était créée avec une combinaison différente de liens réciproques inter-
modulaires. Dans tous les cas, les topologies étaient composées de 6 modules
neuronales pouvant jouer 3 rôles distincts : sensoriel, traitement et moteur. Le
module sensoriel neuronal était le seul module recevant un stimulus artificiel de
l’extérieur. En plus, ce module présentait une activité de fond plus puissante que
les autres modules. Cette activité de fond reflétait les signaux plus d’activité spon-
tanée (« bruit ») du cortex périphérique.

Les quatre modules traitement ont des connexions avec le module sensoriel,
et des connexions entre-eux réciproques. Ces modules ont un rôle de traitement
de l’information. La première paire d’entre eux recevait des inputs directement à
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partir du module sensoriel, formant la première couche de traitement du circuit.
Tandis que la deuxième paire était reliée avec les autres modules de traitement
uniquement, formant ainsi la deuxième couche de traitement. Les principales carac-
téristiques des topologiques du circuit était la présence de projections réciproques
à l’intérieur d’une couche de traitement ou entre les deux couches de traitement.

La combinaison de ces caractéristiques donne quatre types de circuits possibles :

• une topologie exclusivement « feed-backward » (FB), où il y a projections
réciproques entre les couches de traitement, mais sans projections intra-
couche ;

• une topologie exclusivement « feed-forward » (FF) qui était similaire à la
première, mais sans projections réciproques entre les couches ;

• une topologie « feed-backward » avec projections intra-couche (appelée ci-
dessous « liens horizontaux ») et abrégé en FBH,

• et une topologie « feed-forward » avec des liens horizontaux (FFH) qui n’ont
pas projections réciproques entre couches, mais avec projections réciproques
intra-couche.

Dans les articles A « Dynamically organized neural networks » et B « Stimuli-
driven functional connectivity », les expériences incluent la topologie FBH unique-
ment. Nous nous sommes focalisés sur les changements du comportement émergent
causés par la présentation d’une stimulation externe. Tandis que dans la dernière
expérience (voir Chapitre 7) nous nous sommes focalisés sur l’effet des projections
réciproques sur la connectivité fonctionnelle entre modules.

La stimulation externe était appliquée dans les cellules afférentes du module
sensoriel au moyen d’un stimulus spatio-temporel. Chaque stimulation était suivie
par une période de silence (inter-stimulus intervalle, ISI) de 1000 ms. Ensemble,
ils formaient un essai d’apprentissage du réseau. Plusieurs répétitions de stimu-
lation forçaient l’apprentissage non supervisé du circuit grâce aux processus de
mort cellulaire et plasticité synaptique. Le motif de stimulus dans chaque essai
était légèrement modifié par rapport au motif initial par l’introduction d’une va-
riabilité de 10% ; i.e. une variation de 1 ms du temps d’activation (10% des cellules
afférentes sélectionnées au hasard).

Signal bioélectrique
L’activité bioélectrique de chaque module était enregistrée au moyen des élec-
trodes virtuelles. Ces signaux, appelé electrochipogrammes (EChG), se caracté-
risent par des propriétés proches de l’encéphalographie (EEG), l’electrocortico-
graphie (ECoG) et des potentiels des champs locaux (LFP). L’électrode virtuelle
comporte deux paramètres importants : sa zone de couverture et sa fonction de
sensibilité. La zone de sensibilité de l’électrode était limitée par un « cercle ».
La sensibilité de l’électrode virtuelle diminuait linéairement du centre (100%) au
bord (0%) de l’électrode. Chaque module neuronal était équipé d’au moins une
électrode virtuelle pour recueillir des signaux. Ces signaux ont été analysés par
des méthodes fréquentielles et les méthodes de potentiels évoqués afin de trouver
les caractéristiques générales dans les patterns émergents (voir Chapitre 6).
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Traits génétiques et évolution
La partie évolutive du simulateur nous permet de créer un ensemble des circuits
neuronaux lesquels ont été analysés pour déterminer les comportements communs
à l’ensemble. Quatre génomes différents correspondant à chacune des quatre topo-
logies décrites ci-dessus ont été utilisés comme ceux de base et chacun d’eux a été
modifié plusieurs fois par mutation aléatoire d’un gène. La technique « Multiple
flip-bit » [92] a été appliquée au gène du circuit responsable de la connectivité
synaptique dans les modules. Une faible variation de ce gène était même suffisante
pour produire une carte de connexion interne du module radicalement différente,
mais cette carte préserve toujours la distribution des connexions. Les espèces des
futures générations de circuits ont été réalisés selon le résultat d’une fonction
d’évaluation du circuit actuel. Donc production d’un circuit « fils » était réalisé
au moment de la mort du circuit « père ». Ceci permettait d’obtenir des espèces
différentes pour chaque type de topologie et de moyenner les signaux EChG afin
de lisser le bruit d’activité spontanée des réseaux.

Analyses bispectrales
Les electrochipogrammes sont analysés par les méthodes fréquentiellss et les mé-
thodes de potentiels évoqués afin de trouver des généralités dans le comporte-
ment émergeant des réseaux. Le paradigme expérimental présenté dans l’Article
« Stimuli-driven functional connectivity » décrivait les étapes précédentes, pos-
térieures, au commencement et à la fin de présentation d’un stimulus spatio-
temporel répété plusieurs fois (étapes nommées PRE-lerning, EARLY-learning,
LATE-learning et POST-learning). Les résultats de la modélisation sont discu-
tés à la lumière d’une expérience appliquée à une étude chez l’homme dans un
protocole expérimental et de méthodes de traitement similaires au signal traité
ici.

L’étape de « PRE-learning » pourrait représenter une situation de contrôle
conduite exclusivement par l’activité de fond du cerveau du sujet. Le sujet était
naïf, de sorte qu’un processus d’apprentissage peut se produire. Au cours de la
phase « EARLY-learning », une répétition des stimuli à intervalles réguliers était
réalisée. Elle pouvait ainsi engager un processus de reconnaissance non supervisée
qui forme les ensembles des cellules mis en évidence par la connectivité fonction-
nelle inter-modulaire. L’étape de « LATE-learning » était caractérisée par la matu-
rité du réseau dans le quel la plasticité synaptique et la mort cellulaire sont stabi-
lisées. Le niveau d’activité spontanée était le plus bas comparé aux autres étapes.
Ceci offre les meilleurs conditions d’analyse du signal. Finalement, le « POST-
learning » est conduit par échos internes du stimulus et montre comment le réseau
réagit à la disparition du stimulus.

Nous avons donc testé l’effet d’un stimulus externe sur le développement d’un
réseau de neurones. L’analyse spectrale à hauts dégrées de signaux EEG et EChG
nous permit de déterminer la gamme de fréquences de couplage de phase (fré-
quences de résonance) entre les zone corticales et entre les modules neuronaux
[140, 141]. Selon l’interprétation habituelle basée sur la théorie des ondes station-
naires, les hautes fréquences de résonance signifient que le traitement des informa-
tions est transmit à courte distance. Ceci signifie que la distance entre une paire
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de zones corticales qui traitent le signal est courte alors qu’un couplage qui se pro-
duit à des fréquences basses peut être interprétée comme un signe d’interaction
inter-corticale.

Un résultat remarquable est la constatation que dans les modélisations de
circuits, l’étape de « LATE-learning » est caractérisée par l’index de fréquences
résonantes (IRF) de 14 par rapport à l’IRF entre 43 et 62 pour les étapes de
« PRE- et de EARLY-learning » (voir les tableaux B.1 et B.2). Chez l’homme,
nous avons observé que les contrôles et les patients insomniaques après traitement
sont eux-aussi caractérisés par des valeurs d’IRF plus basses avant traitement
durant toutes les phases du sommeil.

Il faut aussi signaler que la seule condition sommeil REM laisse apparaître
une différence de fréquences de résonance dans l’intervalle 14-33 Hz au cours du
sommeil lent quel que soit le traitement. Ce dernier résultat suggère que malgré
un changement global de fréquences de résonance les interactions corticales ont
tendance à persister chez les patients lors des périodes de sommeil lent. À la fois
une stimulation appropriée des circuits modélisés et la thérapie cognitive semblent
modifier le rapport des fréquences de résonance et provoquent ainsi un déplacement
de l’index vers les basses fréquences à tous les états du cerveau.

Analyses fonctionnelles

Le Chapitre 7 décrit une des premières études concernant la simulation de si-
gnaux EEG générés par un grand échantillon de réseau de neurones hiérarchiques
de type « intgrate-and-fire ». La plupart des études importantes du domaine s’ap-
puient sur la dynamique des populations cellulaires et des masses de neurones
[56, 65, 39, 11, 59]. Quant aux études impliquant l’analyse de signaux EEG, elles
étaient généralement destinées à déterminer la stabilité de l’état dynamique du ré-
seau, l’effet du bruit sur le réseau, ou l’émergence d’une activité synchrone. Notre
approche expérimentale, quant à elle, offre la possibilité d’étudier l’effet important
que la connectivité inter-corticale (inter-modulaire) pourrait avoir sur l’activité de
circuits neuronaux ainsi que sur le développement de liens fonctionnels.

Nous avons donc testé l’effet de projections réciproques sur développement des
liens fonctionnels dans un circuit neuronal lors d’une stimulation externe artifi-
cielle. Le circuit est structuré hiérarchiquement avec un unique module sensoriel
tandis que les autres modules sont constitués de deux voies parallèles organisées
et hiérarchiques.

Nos résultats montrent que les circuits modélisés manifestent un comporte-
ment similaire aux circuits biologiques réels. En particulier, tous les éléments du
circuit maintiennent des patterns d’activité caractéristiques liés à la disparition du
stimulus. En accord avec l’étude précédente focalisée sur simulation d’un seul mo-
dule neuronal, ce résultat montre que des patterns caractéristiques de décharges
cellulaires n’étaient pas déclenchées seulement par la seule présentation du stimu-
lus, mais aussi en raison de la présence de motifs spatio-temporels intégrés dans
le stimulus. Les associations transitoires entre les réseaux neuronaux étaient évo-
quées par le stimulus, mais pas nécessairement calées à son apparition. Ceux-ci
pouvaient être aussi associés avec un phénomène de propagation de potentiels de
cohérence enregistrés dans les cultures organotypiques du cortex [136].
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Les résultats d’analyse temps-fréquentielles montrent que la disparition du sti-
mulus est un événement très important parce qu’il déclenche une activité cohé-
rente dans les basses fréquences sur l’ensemble des circuits neuronaux étudiés ici.
Ce résultat s’accorde avec d’autres obtenus chez l’homme montrant des patterns
spécifiques dans les fréquences basses associés au type de traitement d’informa-
tion (simultané ou successive) uniquement, et indépendant des autres conditions
expérimentales [108]. Il est important de noter que les densités spectrales de puis-
sance (PSD) des enregistrements EChG montrent plus d’énergie dans la bande
gamma pour les modules de la 2-ème couche de traitement du circuit FBH que
dans tous les autres circuits (la même couche). Le circuit FBH, qui se caractérise
par des projections réciproques et horizontales, est également caractérisé par une
cohérence élevée entre les couches s’étendant au cours de l’ISI dans la bande de
fréquence gamma.

Egalement, il a été modélisé un réseau caractérisé par de multiples modules
partiellement synchronisés et fortement excité par un stimulus. Ce réseau com-
portait un large éventail de comportements flexibles, adaptables et complexes.
Il a été modélisé comme la variance de l’augmentation de gain de connexion, les
connexions inhibitrices deviennant plus susceptibles de synchronisation et mondial
est représenté à diminuer [61]. L’effet de l’introduction de liens entre les modules
de la même couche (« horizontaux ») évoque également de plus puissantes exci-
tations associées au début du stimulus et une inhibition associée à la fin de sa
présentation (voir la figure 7.7) dans les modules neuronaux de la 1-ère couche de
traitement. Ces effets sont indépendamment des projections réciproques de type
« feed-back ». Dans la deuxième couche, l’effet sur les ERPs était plus subtil.
Cet effet a été plus facilement mis en évidence dans l’étude des cohérences entre
les couches. Les durées transitoires évoquées était sensibles à l’augmentation en
fonction de la profondeur hiérarchique de traitement [40].

Toutefois, dans les topologies FF et FB, nous avons trouvé des composantes
synchronisées apparaissant plusieurs centaines millisecondes après la fin du stimu-
lus. Ceci soulève la possibilité d’autres hypothèses que la simple dépendance des
connexions réciproques de « feed-back » afin de refléter une rentrée des patterns
dynamiques de comportement dans les niveaux inférieurs de la hiérarchie. L’écart
entre nos résultats et les résultats expérimentaux [40] peut être expliqué par le
modèle neuronal choisi. Les grandes populations neuronales qui se trouvent dans
le cerveau d’où émergent les patterns de décharges sont beaucoup plus complexes
que ceux qui peuvent être modélisés.

Optimisation structurelle et paramétrique de
données multivariées contaminées par des artéfacts
En plus des méthodes conventionnelles d’analyse mentionnées ci-dessus (i.e. ana-
lyses de potentiels évoqués ainsi que méthodes fréquentielles), nous proposons une
nouvelle approche de régression non-linéaire structurelle afin de fournir des outils
plus puissants et mieux adaptés aux données habituellement analysées dans ce
domaine.

Plus précisément, le Chapitre 8 décrit en premier lieu les avancées algorith-
miques concernant l’optimisation structurelle non-linaire robuste. Ces méthodes
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d’optimisation s’appuient sur des modèles polynômiaux qui concernent des don-
nées multivariées. Dans notre travail, les méthodes d’optimisation considérées sont
toujours basées sur l’approche itérative du « Group Method of Data Handling »,
ou plus particulièrement sur l’algorithme « Polynomial Neural Network » (PNN).
Toutes les versions des algorithmes PNN permettent une modélisation universelle
de la structure des données, et ce grâce à la synthèse adaptative et évolutive des
modèles effectuée par le biais d’un réseau de neurones artificiel. Ces méthodes
d’optimisation permettent alors de déduire la structure d’un modèle non-linaire à
partir des données possiblement polluées, ainsi que d’optimiser les paramètres du
modèle en question.

Dans l’étude précédente [5], l’algorithme PNN considéré traitait des données
dont les artéfacts ne se manifestaient que dans les variables de réponse (Y). La
présente contribution, quant à elle, propose une approche plus générale où les
artéfacts peuvent se manifester aussi bien dans les variables de réponse (Y) que
dans les variables d’explication (X). Nous avons amélioré l’algorithme PNN par un
système d’estimation généralisée du maximum de vraisemblance (GM-estimation)
qui permet d’évaluer la probabilité qu’une donnée soit polluée par des artéfacts
provenant d’erreurs de mesure ou de complications expérimentales. Cette méthode
d’estimation possède l’avantage d’être robuste aux artefacts qui se manifestent à
la fois dans les variables de réponse et d’explication. La nouvelle version de l’algo-
rithme PNN est désignée par « Enhanced Robust Polynomial Neural Network »
(ERPNN).

L’implémentation de l’algorithme a été testée sur des données artificielles créées
à partir de polynômes aléatoires du premier, deuxième ou troisième degré, puis
contaminées par l’introduction d’artéfacts ainsi que de bruit blanc. Nos tests
montrent que la nouvelle version s’avère plus précise que la précédente. En outre,
elle permet de reconstruire automatiquement la forme explicite des modelés non-
linéaires sous-jacents, ainsi que d’estimer leurs paramètres, et ce malgré la présence
d’artéfacts importants.

Conclusions
Les résultats obtenus dans nos expériences apportent un éclairage sur les proces-
sus émergents et coordonnés de l’activité électrique enregistrée par des EEG de
circuits inter-corticaux hiérarchiques et évolutifs qui sont artificiels ou réels. Plus
généralement, notre approche concernant les signaux EEG pourrait être étendue
à la modélisation d’une vaste variété des processus cognitifs et comportementaux.
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Chapter 1

Introduction

Good evening, ladies and
gentlemen. We are tonight’s
entertainment! I only have one
question. Where is Harvey Dent?..

The Joker, The Dark Knight

Résumé :

Nous avons construit un nouvel et unique outil de simulation permettant
de modéliser et d’étudier l’évolution des circuits multi-modulaires hiérar-
chiques de neurones à « décharges » qui comportent des particularités
ontogénétiques et épigénétiques de développement. Nous avons mené des
études de comportement émergeant de circuits structurés hiérarchique-
ment d’un module sensoriel et de quatre autres modules constitués de
deux voies parallèles organisées également de façon hiérarchique. Notre
approche permet de récupérer les propriétés générales des circuits neu-
ronaux modélisés et d’établir des schémas de liaison fonctionnelle entre
modules de circuit neuronal.

Growing experimental evidence that spike timing may be important to explain
neural computations has motivated many neuro-scientists to use spiking neuron
models, rather than the traditional rate-based models [26]. This created favorable
conditions for development of a large variety of spiking neural network simulators.
Such tools offer to the user the possibility to obtain precise simulations of a given
computational neuro-paradigm and enrich their understanding of the processes
beneath. However, the range of computational problems related to spiking neurons
is very wide, as well as the number of non-resolved neuro-physiological problems
they try to address.

The primary goal of this Thesis is to create a novel simulator based on biological
principles of the mammalian cortex. From the very beginning we supposed it
should support large-scale neural assemblies modeling, inter-cortical hierarchical
connectivity modeling, and evolutionary and genetic features for large time-scale
neural development tracking. Here, a reasonable question may arise: why do we
need another neural network simulator?

1



2 CHAPTER 1. INTRODUCTION

The literature review gave us four spiking neural simulators which have strong
support from scientific communities and are distributed on a charge-free, open
source basis: NEURON, GENESIS, NEST, and NCS. There are many other
smaller ones, but usually they are not so well developed, maintained and doc-
umented, so that evokes many difficulties of a practical kind. One of the oldest
neural simulators is NEURON. Developed in early 90s, NEURON is a simula-
tion environment for creating and using empirical models of biological neurons
and neural circuits [102]. Initially it earned a reputation for being well-suited for
models of cells with complex branched anatomy, including extracellular potential
near the membrane, and biophysical properties such as multiple channel types,
inhomogeneous channel distribution, ionic accumulation and diffusion, and sec-
ond messengers. Although complex neuron models are supported, the NEURON
simulator does not have, at least at the time the Thesis was started, a built-in
mechanism for Spike-timing-dependent plasticity (STDP), which we wanted to
be present in our model. Being written in C/C++, it features fast and efficient
implementations of these neuronal models, at the same time, that implies neither
easy simulator’s expandability, nor adoptability to new or non-standard hardware,
nor flexibility of the synapse model. Also, its primary targeting to huge super-
computers with thousands of processors was far beyond the scope of the hardware
that was expected to be available to us.

Next simulator – GENESIS is also of that kind. GENESIS (the General Neural
Simulation System) was given its name because it was designed to be an exten-
sible general simulation system for the realistic modeling of neural and biological
systems [22]. Typical simulations that have been performed with GENESIS range
from sub-cellular components and biochemical reactions [20] to complex models of
single neurons [124]. Here, “realistic models” are defined as those models that are
based on the known anatomical and physiological organization of neurons, circuits
and networks [21]. For example, realistic cell models typically include dendritic
morphology and a large variety of ionic conductances, whereas realistic network
models attempt to duplicate known axonal projection patterns. This level of bi-
ological plausibility was beyond our needs, to illustrate it we can say only that
GENESIS is not normally provided with Integrate-and-Fire (IF) model neurons.
While users have added, for example, the Izhikevich simplified spiking neuron
model [82] and they could also add IF-based forms of abstract neuron models,
these forms of neurons are not realistic enough for most GENESIS modelers [26]
and were never considered as a part of the simulator.

The NEST initiative was founded as a long term collaborative project to sup-
port the development of technology for neural systems simulations [43]. NEST
simulator was expected to address a problem of modeling neuronal networks of
biologically realistic size and complexity. A lot of emphasis is placed on the ef-
ficient representation and update of synapses. In many applications the network
construction has the same computational costs as the integration of the dynam-
ics. Consequently, NEST parallelizes both. One of the distinct features of NEST
is that it was designed to guarantee strict reproducibility: the same network is
required to generate the same results independently of external factors, like the
number of machines participating in the simulation. After all, we did not use this
simulator, but it was serving as an example for us.

The NeoCortical Simulator (NCS), as its name suggests, is optimized to model
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the horizontally dispersed, vertically layered distribution of neurons character-
istic of the mammalian neocortex. NCS development began in 1997, a time
when fascinating details of synaptic plasticity and connectivity were being dis-
covered [100] yet available simulators such as GENESIS and NEURON did not
offer parallel architectures nor the degree of neuronal compartmental simplifica-
tion required for reasonable performance times. NCS uses clock-based IF neurons
whose compartments contain conductance-based (COBA) synaptic dynamics and
Hodgkin–Huxley formulations of ionic channel gating particles [68]. The com-
partments are allocated in 3D space, and are connected by forward and reverse
conductances without detailed cable equations. Synapses are COBA, with phe-
nomenological modeling of depression, facilitation, augmentation, and STDP. No
nonlinear simplifications, such as the Izhikevich formulation, are supported. Im-
plementation of inter-cortical interactions in our simulator was inspired to some
extent by NCS.

In brief, the first two simulators were oriented towards very deep and detailed
neuronal morphology and geometry, they exceeded our needs in terms of bio-
plausibility. We were oriented towards IF-based neuronal models, because they
are relatively fast to simulate and are better adapted for large-scale parallel mod-
eling [26]. When modeling, precision is lost on the level of individual neuron, but
then that is compensated by mass-effect emerging from larger cell assemblies sim-
ulated. The NeoCortical Simulator used interesting approaches to multi-layered
dispersed network modeling, but, except this part, it does not fit very well to our
initial concept. We saw in 2008 that its development was in stagnation phase
(now we know that it was completely abandoned in 2009), so that was not an
option. NEST could be a good candidate to work with, but it was not designed
for hierarchical network simulation, which was important for us. Anyway, nei-
ther of four simulators supported evolutionary features and there was no clear
way to add it. Finally, given that the simulator was supposed to be compatible
with perplexus project’s computation’s acceleration hardware (oriented towards
Java-code translation), we had a solid set of reasons to start an independent sim-
ulator development. In this frame we started a novel simulator, which should
surpass existing ones with its evolutionary-oriented features and hierarchical cir-
cuits support, which would shed light on inter-cortical processes having place in
hierarchical evolvable neural circuits, such as brain.

The perplexus was an international project of the European Commission.
The aim of the project was to develop a scalable hardware platform made of cus-
tom reconfigurable devices endowed with bio-inspired capabilities that will enable
the simulation of large-scale complex systems and the study of emergent com-
plex behaviors in a virtually unbounded network of computing modules. In other
words, it was targeted to power a swarm of intelligent robots with capabilities
to solve given tasks. Created infrastructure was tested to prove its usefulness
as a powerful and innovative simulation tool in the following applications: neu-
ral networks modeling, culture dissemination modeling, and cooperative collective
robotics modeling. All of these applications are computationally heavy and im-
plementation of such complex models requires high performance of the simulation
that can be achieved thanks to combination of a powerful hardware platform, bio-
inspired capabilities, dynamic features, flexibility of artificial neuronal model and
data processing parallelization techniques.
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4 CHAPTER 1. INTRODUCTION

Most of the Thesis’ development has been done during the project, when our
Grenoble team was working on the neural network modeling application. We ex-
pected that the software and hardware frameworks developed in the project will
greatly speed up the simulation and will aid in creation and analysis of large bio-
logically plausible networks of spiking neurons. After the first year of the project
venue, when the initial versions of the software and the hardware were developed
by the respective teams, it became clear that our expectations about the simula-
tions will be fulfilled only partly. Unexpected difficulties and complications with
design and production of the custom computation module met by our colleagues
were leading to certain delays and ambiguities in development. It turned out that,
while we can simulate biologically plausible neural networks within the framework,
in the absence of the final hardware either simulation speed or size of the network
will be different from the expected ones. At the moment, we decided to make
accents not on study of emerging behaviors of large-scale stand-alone Spiking
Neural Network (SNN), but on simulation of distributed hierarchical neural sys-
tems, where a set of smaller biologically plausible neural tissues inter-connected
by relatively sparse projections (in comparison to the density of internal connec-
tions inside each tissue) were simulated. In this way we could efficiently apply the
framework to simulate large cell assemblies, while using smaller neural networks
as building blocks in the large hierarchical circuits. This approach was inspired
by real brains’ organization, where specialized areas of neurons are connected to
other ones, forming complex signal processing chains of the brain. Fortunately,
the project’s architecture was favorable to a small army of independent, thus par-
allel, computational agents connected by the means of the Internet Protocol (IP)
networks, which agrees with the concept of the project. Another consequence of
deviation from the initial development plan was utilization for testing purposes
of a less powerful universal processor (Intel XScale), instead of a custom-build
bio-inspired processor and in our turn we were forced to drastically reduce the
size of the stand-alone SNN. Despite it was known to have noticeable impact on
pattern generation abilities of the network.

At the same time, we were looking for a bio-inspired neural network state ac-
quisition technique, which should be fast and efficient in computation and which
could provide us with a possibility to apply analysis methods well-known from
neurophysiological studies. We knew that there are lots of studies on EEG model-
ing and closer inspection of the topic revealed that there are two main approaches
used: detailed and macroscopic modeling of EEG signals. The macroscopic models
such as the neural mass model (NMM) and the mean-field model were originally
developed to simulate activity in the olfactory cortex [55] and emergence of the
spontaneous alpha rhythms [94]. These models represent the mean activity of a
large neuronal populations and could be used to study generation of the epilep-
tic activities [145], to analyze the connectivity and coherence on EEG rhythms
[151], etc. In other words, because of relatively small number of parameters these
models could be tuned to empirical data and then used like predictors [11]. In
contrast, detailed models due to the very large number of parameters involved and
the strong dependencies between them, cannot be fit to empirical data, but they
can be used for simulations [41, 70]. That fit well to our concept, so we introduced
a way to record neuro-mimetic signals from the simulated network. We called that
approach – electrochipography (EChG). These signals were captured by the means
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of virtual electrodes injected in the neural network model and are characterized by
dynamics and features similar to those recorded in living brain structures, such as
EEG, electrocorticography (ECoG) and Local Field Potentials (LFP). According
to the model used, EChG could be considered as similar to the LFP, which is
a particular class of electrophysiological signals, dominated by the electrical cur-
rent flowing from all neighboring synaptic activity of a cell tissue. At mesoscopic
level, the recording of brain activity by means of EEG, ECoG and LFP collects
the signals generated by neurophysiological processes of cell assemblies. Thus, the
underlying non-linear dynamic activity of the system can be extracted from the
signal [27] by the means of second and third order poly-spectral analysis methods
[106] and by non-linear regression methods with dependency structure discovery.

Many brain analysis studies are targeted on discovery of the areas’ specializa-
tion and information processing chains of the brains, conducted on data recorded
by the means of EEG. Among the approaches most frequently used for such
analysis are multivariate regression methods. Classical linear regression methods
are widely used in quantitative-structure relationship studies because of fast and
mature implementations and ease of results interpretation. They reveal channels
which participate more than others in the output and give a quantitative measure
of such involvement. Another automatic structure modeling approach working
with non-linear dependencies in the data is a set of methods united under the
title of Group Method of Data Handling (GMDH), which make use of Polynomial
Neural Networks to achieve the result. Initially proposed by Ivakhnenko in the
late sixties of the XX-th century [79, 150] they were used for identification, pattern
recognition and short-term forecasting. They are featuring automatic structural
dependency discovery with a search though non-linear model space. Although
wide-spread usage of traditional linear, and sometimes non-linear, analysis meth-
ods for EEG analysis, such data often contaminated by very strong artifacts or out-
liers created by muscular activity or by external events, which have no correlation
with experiment. That is why, the robust analysis methods with automatic struc-
ture disclosure should be used to obtain meaningful undistorted results. We pro-
posed a method named Enhanced Robust Polynomial Neural Network (ERPNN)
based on GMDH paradigm and enhanced with a robustness to presence of noise
and outliers in explanatory and response variables of the data. Thus the power
of structure analysis of non-linear dynamic activity of the brain is increased once
by the absence of oversimplification introduced by linear models of activity [27],
i.e. by application of non-linear model identification offered by GMDH, and then
increased in a second time by a robust model parameter estimation. Although, the
proposed algorithm was successfully tested on artificially generated data and has
shown good results, the data obtained from the simulations was analyzed with
other approaches developed initially to work with real EEG signals, these were
evoked potential analysis, power-spectrum density analysis [47], and third-order
spectral density analysis [93, 105]. Application of the ERPNN algorithm to real
or simulated bio-electrical data is a matter of future work.

The results of the perplexus project were successfully presented to the ex-
perts of European commission in the spring of 2010 in Lausanne. At the moment
a working implementation of the distributed neural simulator with bio-electrical
signal recording and with dynamic topologies features was done. Starting from
here, we were not limited any more by the frame of the project’s goals and by the
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6 CHAPTER 1. INTRODUCTION

constrains imposed by the custom-made processor, so we have started an adapta-
tion of the simulator to run it on the powerful Mac OS X based cluster. Which
was done in a short time, thanks to initial cross-platform and distributed-platform
targeting of perplexus’s framework. Having the powerful hardware in our dis-
position, we scaled the neural network model to a large enough size and set up
a final goal to implement an expansion module to the simulator which will add
support for evolvability of the neural systems modeled on a large time scale.

The evolvability means that one or multiple neural systems will be created
according to a particular “chain of model parameters’ values” – circuits’ genome.
The framework will allow the neural systems to replicate them-selves under certain
circumstances. Replicas will not be perfect copies of the parent system, but will
be affected by random changes in the genome – the mutations, which will have an
effect on the emerging behavior of the systems. The framework will allow studing
ongoing development of the neural systems during the generation series.

Finally, without claiming completeness in a huge problem of understanding
the brain activity patterns, which is one of the major tasks of humankind, here,
we will try to put a light on one particular part of the issue. We decided to cre-
ate a novel simulation framework, which allows to model evolvable hierarchical
neural networks undergoing neural developmental phases simulated by the means
of biologically plausible neural models and to capture virtual bioelectric signals.
Modeled neural systems will allow conducting experiments with higher level of
precision and control than achievable in vivo and to decrease an amount of ex-
ternal unexplainable noise in the data. We will demonstrate that our simulation
framework under certain conditions could produce results similar to observed in
brains.
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Chapter 2

Thesis composition

Résumé :

Cette thèse est composée en trois parties : la première partie décrit le
modèle de réseau de neurones ; la seconde est consacrée aux méthodes
d’enregistrement et d’analyse des signaux bioélectriques émergeant du ré-
seau et à la discussion des résultats obtenus. Les conclusions sont présen-
tées dans la troisième partie de ce travail.

This Thesis is written in the form of compilation of articles, according to the
french higher education rules. Three articles published during the years of work
on the Thesis are assembled together, joined by intermediate parts and elucidated
in a way, which assures seamless and fluid comprehension of the work done in
the frame of the Thesis. According to the general academic paper presentation
layout the Thesis is divided into three parts: the Part I: “Modeling Biologically
Plausible Networks” – explaining the neural models used in the simulations, the
Part II: “Bioelectrical Activity Analysis” – explaining experiments organization
and data analysis done, and finally the Part III: “Conclusions” – summarizing
the discussion of the results obtained and making the final conclusions on the
work done. The articles included to the appropriate parts of the thesis so that
they either summarize the work described in a part or a chapter or they give
a self-contained description of the advancements done. We will avoid repetition
of the topics covered by the articles, whenever possible, without sacrificing the
comprehensibility of the Thesis.

The Part I: “Modeling Biologically Plausible Networks” is sub-divided into
three chapters: the first chapter shows the model of stand-alone SNN, then Ar-
ticle A: “Dynamically organized neural networks” summarizes the model and in-
troduces hierarchical neural networks. Second chapter continues with description
of the approach used to organize SNNs neuronal modules in a hierarchical way
creating neural circuits of complex topologies, and the third chapter focuses on ge-
netical, genomic and evolutionary features (on large time scale) of the simulation
framework.

In the Part II: “Bioelectrical Activity Analysis” we explain in to details analysis
approaches used, which includes event-related and time-frequency technics. These

7
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technics were applied in a study described in Article B: “Stimuli-driven functional
connectivity” to make a comparison between EEG-like signals obtained from cir-
cuits modeled with the simulator and real patients’ EEG data. In the following
chapter an experiment on functional connectivity between neural modules is ex-
plained and the results obtained are discussed. This part is closed by a conceptual
application of a robust non-linear structural and parametric regression approach
for bioelectrical data-mining, explained in Article C: “Structural modeling robust
to outliers”.

Finally, conclusions and directions for future work are given in the Part III: “Con-
clusions”.
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Chapter 3

Spiking neural networks

The number of possible “on-off”
patterns of neuronal firing is
immense; the fact that it is often
organized and functional is quite
an accomplishment!

Daniel J. Siegel

Résumé :

Ce chapitre introduit les structures biologiques et les concepts théoriques
que nous avons cherché à modéliser. Certains aspects développementaux
et fonctionnels du système nerveux central sont abordés. Les notions de
réseaux, de neurones, de synapses, de plasticité synaptique à modulation
temporelle relative (STDP), du processus d’apoptose et de l’activité neu-
ronale spontanée sont présentées ici, de même que les aspect pratiques
d’implémentation du modèle.

A huge part of the Thesis’ work was done in the perplexus project, which
was aimed to develop a scalable and distributed platform for simulation of large-
scale auto-organisative phenomena, and to the observation of emerging complex
behavior. The project’s framework creates a virtually unbounded network (Ubi-
net) of modules (Ubidules), each featured a bio-inspired reconfigurable custom
processor, which provides the platform with development, learning, and evolution
capabilities. Those features are particularly interesting for an application in the
realm of the neuro-mimetic neural networks.

From the very beginning we have decided to use a neural network model, which
is based on the large number of Leaky Integrate-and-Fire (LIF) spiking neurons.
The Integrate-and-Fire (IF) models and its derivatives have been used in a wide
variety of studies ranging from investigations of synaptic integration by single
neurons to simulations of networks containing hundreds of thousands of neurons
[32]. The IF models has proved to be particularly useful in elucidating the prop-
erties of large neural networks and the implications of large numbers of synaptic
connections in such networks. Integrate-and-fire model have an important role in
the debates about the origin and nature of response variability in cortical neurons
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12 CHAPTER 3. SPIKING NEURAL NETWORKS

[125]. The LIF model was selected as the one providing good compromise between
bio-plausibility and requirements to the computational power. More complex mod-
els based, for example, on the Izhikevich neuron [82], were not used, because of
limited computation power at our disposal.

Our model includes such important bio-inspired features as 2 types of neurons
(excitatory and inhibitory), Spike-timing-dependent plasticity (STDP) process,
apoptosis process during early development phase, synaptic pruning and cellular
death processes.

The model suggests the cells are arranged in a 2 dimensional square lattice.
Cells are differentiated into excitatory (80%) and inhibitory (20%) neurons during
early-development stem phase [25]. Initial connections between cells are created
according to the 2D Gaussian distribution. Synapse distribution parameters dif-
fered depending on the type of the neuron it is connected to. Excitatory cell
projections were around three times shorter than the ones of inhibitory cell. This
measure proactively eliminates creation of a compact self-contained cell clusters.
In order to avoid the negative edge-effects which can occur on a real square lattice,
our lattice was considered to be wrapped around a torus surface, so that cells on the
opposite edges are adjacent. A brief description of standard LIF model and STDP
model necessary for comprehension of the further results are given in the following
sections. We emphasize on the features added to the model, while very detailed
description of standard models could be found elsewhere [18, 72, 74, 32, 142].

3.1 Neural network stem

In the mature brain, the cerebral cortex appears as a layered structure (layers I-VI,
[16]) characterized by the changes in the density of cells and neuropil morphology.
The human cerebral cortex is a highly folded sheet of neurons at a density of
circa 105 neurons per mm2. One half of these cells are pyramidal cells which are
characterized by the distal connection of their axon and are the primary excitation
units of the mammalian prefrontal cortex [2]. The ability of pyramidal neurons
to integrate information depends on the number and distribution of the synaptic
inputs they receive.

Our model considers that initial cell stem is a 2-dimensional (N × N) square
lattice filled with neurons (N2 neurons in a total). Once the stem cells are located
on their final positions on the surface, they differentiate into 2 cellular types with
different probabilities. Type I neurons make excitatory projections, while Type II
neurons make inhibitory connections. This probability reflects the ratio between
the different cellular types as determined by the genome (see Figure 3.1). The
physiological ratio is about four excitatory neurons per one inhibitory neuron [25],
leading to approximately to 80% excitatory and 20% inhibitory neurons.

3.2 Neuron model

According to the chosen LIF neuromime model, at each time step the value of
the membrane potential of the ith neuron, Vi(t), is calculated according to next
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iterative equation

Vi(t+ 1) = Vreset +Bi(t)

+(1− Si(t))((Vi(t)− Vrest)kmem) (3.1)
+
�

∀j

wji(t)

where Vreset corresponds to the value of resting potential of the neuron; Bi(t) is
the background activity arriving to the neuron (see Section 3.7 for details); Si(t)
is a state of the neuron for given time t, which can be either 0 (non-spiking) or 1
(spiking); kmem = exp(−1/τmem) is the time constant associated with the leakage
of the neuron, and wji(t) is the post-synaptic potential of the jth neuron projecting
to the ith neuron (see Section 3.4 for details).

The state of a neuron Si(t) is a function of the membrane potential Vi(t) and
a threshold potential θ[q] of the neuron of type q, such that

Si(t) = H(Vi(t)− θ[q]). (3.2)

where H is the Heaviside function

H(x) =

�
0 : x < 0
1 : x ≥ 0

(3.3)

In addition, the state of a neuron depends on the refractory period trefract[q],
which forbids continuous spike bursts, such that

Si(t+∆t) =
(trefract[q] −∆t)

trefract[q]
· Si(t) (3.4)

for any ∆t < trefract[q]. For a refractory period equal to 1 time unit, the state Si(t)
is a binary variable. It is assumed that a neuron generates a spike exactly for
Si(t) = 1.

You can see an example of membrane potential Vi(t) dynamics during 160 ms of
life of a neuron on the Figure 3.2. The neuron has Vreset = −78mV , θ[q] = −40mV
and trefract[q] = 3ms a spike train of random activity is coming ranging from 0 mV
to 8 mV . The current value of membrane potential is plotted in the bottom
part of the Figure, while on the upper part a sum of random incoming activity is
shown (displayed as bars). One can see a positive discharge of 1 mV happens as a
membrane potential is reaching the threshold. At time t = 130 ms input activity
is stopped and one can see an exponentially decaying potential.

3.3 Neuronal connectivity
Genetic programs are assumed to drive the primordial pattern of neuronal connec-
tivity through the actions of a limited set of trophic factors and guidance cues, ini-
tially forming excessive branches and synapses distributed somewhat diffusely [78].
The concentration of the neuro-mediator determines the possibility to establish a
connection with another cell and it is a function of the two pre-/post-synaptic cell
types (see Figure 3.1). This random connection pattern results in a larger num-
ber of connections in the vicinity (short projections) compared to long-distance
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14 CHAPTER 3. SPIKING NEURAL NETWORKS

Figure 3.1: A schematic connectivity map, showing the gradient-based synaptoge-
nesis for one excitatory neuron. Excitatory neurons are displayed as white circles
and inhibitory as the black.

projections. Despite the fact that the genome codes for the diffusion parame-
ters on a per-neuron-type basis, the use of two gradients introduces variability in
the connection patterns, resulting in the production of diverse phenotypes trough
the same ontological process. We were developing our neural network model an-
ticipating that each neuron will receive around 3% of all possible synapses from
potentially any other neurons. Synaptic projections are established according to
the 2D Gaussian distribution. Projections originating from the inhibitory cells in
the average are 3 times longer than those originating from the excitatory cells. No
generation of new projections is allowed, although specific rules could be defined
to this purpose.

Figure 3.2: Sample dynamics of LIF neuron’s membrane potential. Current value
of membrane potential is plotted by line. A sum of random incoming activity is
shown by bars on the upper part of the figure. Discharge threshold θ[q] = −40 mV
is shown by dotted horizontal line. At time t = 130 ms input stimulation is
stopped. and The membrane potential returning back to the Vreset.

To avoid negative edge effects it is assumed that cells at edge of the lattice are
located topologically near the cells from the opposite edge, such that the whole
network is virtually located on a torus surface.
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3.4 Synapse model
Synapses can change their strength in response to the activity of both pre- and
post-synaptic cells (see Section 3.5). This property is assumed to be associated
with learning, synapse formation and pruning. Alterations in the synaptic trans-
mission can be roughly subdivided into two classes of mechanisms: long-term
potentiation (LTP) and long-term depression (LTD). LTP is measured as a persis-
tent increase in the amplitude of the excitatory postsynaptic potentials (e-PSPs),
whereas LTD is measured as a persistent decrease in the amplitude of the e-PSPs.

Figure 3.3: Arrow thickness: representation of the synapse state. Strong synapses
are represented by thicker arrows than week synapses. Excitatory neurons selected
for external input are shown as circles with a thick stroke and neurons selected to
project activity are shown as squares with a thick stroke.

Physiological studies suggest that the strength of the synapses may vary be-
tween discrete mechanistic states, rather than by adjusting their efficacy along
a continuum (see [104]). We recapitulate here the five synaptic states that have
been suggested [103] without entering into the molecular details:

active state – normal state of synapse;

potentiated state – active synapses undergoing LTP enter this state. It is re-
lated to the active state, except for a different LTD molecular mechanism;

depressed state – active synapses undergoing LTD enter this state. It is cur-
rently ill-defined, and it might differ little from the active state.

silent state – synapses in this state are characterized by the lack of synaptic re-
sponse. Though, they can be potentiated in the same way as active synapses;

recently silent state – silent synapses undergoing LTP enter this state. It dif-
fers from the active state in that synapses cannot undergo LTD.

It is assumed a priori that modifiable synapses are characterized by activation
levels [A] with N attractor states [A1] < [A2] < · · · < [AN ]. Activation levels of
exc → exc and exc → inh synapses are integer-valued levels Aji(t), with Aji(t) ∈
{[A1] = 0, [A2] = 1, [A3] = 2, [A4] = 4} (here and after exc is used as a shortcut for
“excitatory cell”, and inh, as a shortcut for “inhibitory cell”). Index j is referred
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to as the presynaptic neuron and index i as the post-synaptic neuron. These
discrete levels could be interpreted as a combination of two factors: the number
of synaptic boutons between the pre- and post-synaptic neurons and the changes
in synaptic conductance. We attributed a fixed activation level (that means no
synaptic modification) Aji(t) = 1, to inh → exc and inh → inh synapses. The
system’s genome determines the Aji(t = 0) value to use for a newly differentiated
synapses. Schematical illustration can be seen on Figure 3.3.

3.5 Spike-timing-dependent plasticity
Donald Hebb was the first to suggest a precise rule that might govern the synaptic
changes []. He proposed that the efficiency of a connection from a pre- to a post-
synaptic neuron is increased if the presynaptic neuron repeatedly or persistently
contributes to firing the post-synaptic neuron. His hypothesis emphasized the role
of causality between the pre- and post-synaptic spikes, but did not provide a rule
for decreasing of the synapse efficiency, nor did he address the issue of the effective
time window.

It has been proposed to explain the origin of LTP, i.e. a mechanism for re-
inforcement of synapses repeatedly activated shortly before the occurrence of a
post-synaptic spike [87]. It has also been proposed to explain long-term depres-
sion LTD, which corresponds to the weakening of synapses strength whenever
the presynaptic cell is repeatedly activated shortly after the occurrence of a post-
synaptic spike [83]. This rule is used in the model [67, 37].

The important consequences of synaptic strength change is possible production
of stronger information transmission. The post-synaptic potential wji is a function
of the state of the presynaptic neuron Sj, of the “type” of the synapse Pji, and of
the activation level of the synapse Aji. It is expressed by the following equation

wji(t) = Sj(t− 1) · Aji(t− 1) · Pji. (3.5)

A real-valued variable Lji(t−1) is used to implement the STDP rule for Aji(t−
1), with integration of the timing of the pre- and post-synaptic activities. The
STDP defines how the value of Lji at time t is changed by the arrival of presynaptic
spikes, by the generation of post-synaptic spikes and by the correlation existing
between these two events. On the generation of a post-synaptic spike (i.e. when
Si = 1) the value Lji receives an increment which is a decreasing function of
the elapsed time from the previous presynaptic spike at that synapse (i.e. when
Sj = 1). Similarly, when a spike arrives at the synapse, the variable Lji receives
a decrement which is likewise a decreasing function of the elapsed time from the
previous post-synaptic spike. The rule is summarized by the following equation:
Lji(t + 1) = Lji(t) + (Si(t) ·Mj(t))− (Sj(t) ·Mi(t)), where Si(t), Sj(t) are the
state variables of the ith and jth neurons and Mi(t),Mj(t) are inter-spike decay
functions. Mi(t) may be viewed as a “memory” of the latest inter-spike interval,
according to the equation:

Mi(t+ 1) = Si(t) ·Mmax[q] + (1− Si(t)) ·Mi(t) · ksyn (3.6)

where Mmax[q] a resting decay value and ksyn is a time constant associated with a
memory properties – synaptic plasticity – of a neuron.
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3.6 Cell death

The adult pattern of neuronal connectivity in the cerebral cortex is determined
by the expression of some genetic information and by epigenetic processes associ-
ated to plasticity and learning. During the early stages of development, excessive
branches and synapses are initially formed and distributed somewhat diffusely [78].
This over-growth phase is generally followed by massive synaptic pruning [114]
partially associated with genetically or pathologically programmed cell death.

Cell death may be provoked by two mechanisms: an excessive firing rate and
the loss of all excitatory inputs. An excessive firing rate is assumed to corre-
spond to the biological effect known as glutamate neurotoxicity, that induce the
expression of genes provoking cell death [38]. On the contrary, inactive synapses
that reach the lowest activation level disappear due to the absence of activity
that affects the function of the mitochondries maintaining the synapse through
the provision of energy.

Model suggests that during an initial “early developmental phase” for each
time step an average firing rate of the neuron is computed. It is computed over
a running window corresponding to 50 ms. For each type of neuron a maximum
firing rate (FRM) was determined following a parameter search procedure. In this
study we used FRMexc = 245 spikes/s and FRMinh = 250 spikes/s. If average
spiking rate FR50 exceeds FRM for the corresponding neuron type the cell had a
probability to die according to the following function

Pdeath(t) =
0.5 · t2 − 4.5 · 10−6 · t3

44 · (2.5 · 106 + 6 · 10−3 · t2)
. (3.7)

Figure 3.4: Cell death probability (in 0.01% units) as a function of time.

The early developmental phase, characterized by cell death provoked by exces-
sive firing rate, begins at time t = 0 and lasts until t = 750 ms. At the time step
next to the end of apoptosis process the STDP process is activated. The addition
of this feature greatly improved the stability of the network while maintaining its
ability to produce spatiotemporal firing patterns. We assume that developmen-
tal and learning processes are likely to potentiate (or weaken) certain pathways
through the network and provoke an appearance of cell assemblies characterized
by recurrent firing patterns.
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3.7 Spontaneous spiking activity

The central nervous system is a huge neural network whose activity varies contin-
uously without interruptions. Even at what is considered to be a low pace of brain
activity (like in sleep, in relaxed sensory deprivation states or anesthesia) neurons
receive inputs from many functional areas of the brain without any apparent re-
lation. This activity, referred as spontaneous activity or background activity, is
often considered to be associated to a kind of global controller able to increase
or decrease the reactivity of the system to a an information flow according to its
global pertinence. This mechanism could explain the differences in our reaction
times according to our state of vigilance (fast in alertness, slow in drowsiness and
even absent in deep sleep or coma).

With the advent of the network activity, several processes take place under the
control of the genetic information. In the model the background activity Bi(t),
as defined in Equation 3.2, is used to simulate the input of afferents to the ith

neuron that are not explicitly simulated within the neural network. We assume
that each neuron receives next external afferents. We simplify by a setting that all
neurons receive the same number of external projections of same strength, thus
not affected by the regular STDP, and that all of them are excitatory. Spike train
of the external input is distributed according to an independent random Poisson
process with mean rate λ.

One should note, that for smaller networks the rate of external background
activity is a critical parameter, though for larger networks it plays lesser role. In
the absence of the background activity neural networks are slowly dying, as all
projections are going to the silent state thus producing no spikes.

3.8 Efferent and afferent cells

A sub-set of excitatory neurons (about 10% of all excitatory neurons) differentiate
into the “sensory neurons” of the network. They are randomly distributed over the
surface of the network and their dynamics are the same as all the other excitatory
neurons, except that they can receive input from outside of the neural network.
We assume that the input stimulus might be an external stimulus from a source
like a microphone, an infrared photodiode, a camera or an artificial stimulus spe-
cially developed for an experiment, or also in can be a spiking activity originating
from the output layer of another neural network in a hierarchical neural system.
Do not be confused by this incoming activity and the spontaneous network ac-
tivity (mentioned in the Section 3.7), which each neuron can receive with certain
probability regardless of its type and regardless of presence external stimulus.

Another group of the excitatory neurons, approximately of the same quantity
as “sensory” ones, differentiate into actuator cells. Their dynamics is also the same
as all the other excitatory neurons, except that their spiking activity can be send
to other neural networks in hierarchical systems. A schematic representation of
the principle is shown on the Figure 3.3. Please note, although on the Figure
for the sake of simplicity “input” and “output” layers are grouped, in the modeled
network, they are are scattered randomly over the network surface.
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3.9 Model implementation
According to the perplexus project requirements the model is implemented in
Java programming language. In this way the simulator code can be split into
two parts by the translator software developed by our colleagues [29]: a custom-
processor accelerated part, which is converted into special assembly instructions
and a general part to be executed on a general purpose processor. The simulator is
written in modular way providing rich possibilities of future extension. Java-based
it can be easily run on virtually any hardware platform from a tiny mobile phone
up to a large powerful cluster.

The simulation dynamics followed a discrete time scale with time units here-in-
after referred to as time-steps. The extensive use of Fast Fourier Transform (FFT)
in our signal analysis imposed, for improved efficiency, usage of data acquisition
frequencies which are powers of two. In practice, the size of time-steps of the
simulator was adjusted to facilitate the analysis’ computations – 1024 time-steps
correspond to 1000 milliseconds.
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Introduction to hierarchical neural systems
Inspired by biological systems, where it is common to have hierarchical informa-
tion processing formed by information processing chains of specialized brain areas
where every area is responsible for its particular type of processing and driven by
perplexus project unexpected hardware limitations we have decided to shift our
focus from the simulation of large stand-alone neural networks to the simulation
of large distributed systems of smaller stand-alone neural networks.

Next Chapter will be focused on the models used to build hierarchical neural
circuits. But before that we present Article A: “Dynamically organized neural
networks”, where stand-alone neural network model is summarized and a novel
framework, aimed to drive studies of emerging behavior of hierarchical neural net-
works, is described along with short explanation of virtual electrode approach that
allows to record electrochipographys (EChGs) neuro-mimetic signal. The frame-
work described in the article is based on evolving spiking neural network model,
which is certainly an oversimplification of the reality, but it paves the way to
models which will embed increasingly higher biologically inspired parameters. A
particular feature of the approach used is a possibility to enable modeling of highly
dynamic environment characterized by evolvable topologies with modules can join
or leave the simulation at any time. The drawback is that fast changing topologies
might introduce delays of information processing and will inevitably slow down
whole simulation. Nevertheless, the framework fits well to the requirements of so-
phisticated control circuits for robotic applications in collective behavioral studies
where each robot is driven by one or more neural network [45]. That is achieved
by utilization of the Java Agent Development Environment (JADE) library – an
agent-based programming framework characterized by reduced footprint and com-
patibility with mobile robot-oriented Java environments [17].

Then in further sections, while trying to avoid repetition between the article
and the Thesis’ body, we will continue with a mapping scheme used to inter-
exchange spiking activity between the neural networks (Section 4.1), with a de-
scription of the neural circuit’ topologies (Section 4.2), the principal structure of
artificial stimulus used in the article and in the following experiments (Section 4.3),
a very brief explanation of the bio-electrical signal model (Section 4.4), as it is
described in the Article A: “Dynamically organized neural networks” and in the
Article B: “Stimuli-driven functional connectivity”. We will conclude the chapter
by covering an architecture and implementation details of the developed simulator
of distributed neural systems.
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Résumé :

Dans ce travail, nous présentons un outil de modélisation et d’analyse des
propriétés émergentes de réseaux neuraux multimodales.
Chaque module est représenté par un réseau neuronal déchargeant. Notre
modèle est un ensemble de neurones du type "leaky integrate-and-fire"
bidimensionnel qui comporte des traits génétiques, ontogénétiques et épi-
génétiques.
Une libraire de logiciel (JADE : Java Agent Development Environment)
nous a permis d’implémenter une machine artificielle (un automate) qui
gère de façon efficace des système quasi illimités d’agents communiquant
par messages. Cette approche nous permet de gérer les systèmes dyna-
miques des modules neuraux interconnectés. A n’importe quel moment,
chaque module a la possibilité d’entrer ou de sortir du système de simu-
lation tandis que le système s’adapte automatiquement à sa topologie.
Conjointement, chaque module comporte une électrode virtuelle qui capte
un signal généré par des décharges neuronales. Ce signal, electrochipo-
gram (EChG), a des propriétés proches des signaux réels enregistrés par
les moyennes des potentiels de champs locaux (LFP) ou electroencepha-
logrames (EEG). Puis une analyse spectrale et en potentiels liés à l’évé-
nement peut être réalisée sur ces signaux pour trouver des patterns du
comportement des réseaux de neurones.

23



24 ARTICLE A. DYNAMICALLY ORGANIZED NEURAL NETWORKS

Abstract

We present a framework for modelling and analyzing emerging neural activity from mul-
tiple interconnected modules, where each module is formed by a neural network. The
neural network simulator operates on a 2D lattice tissue of leaky integrate-and-fire neu-
rons with genetic, ontogenetic and epigenetic features. The Java Agent DEvelopment
(JADE) environment allows the implementation of an efficient automata-like virtually
unbound and platform-independent system of agents exchanging hierarchically orga-
nized messages. This framework allowed us to develop linker agents capable to handle
dynamic configurations characterized by the entrance and exit of additional modules at
any time following simple rewiring rules. The development of a virtual electrode allows
the recording of a “neural” generated signal, called electrochipogram (EChG), charac-
terized by dynamics close to biological local field potentials and electroencephalograms
(EEG). These signals can be used to compute Evoked Potentials by complex sensory
inputs and comparisons with neurophysiological signals of similar kind.

Keywords: spiking neural networks, hierarchical neural networks, distributed com-
puting, computational neuroscience, bio-informatics

A.1 Introduction
The brain represents by far the most complex organ of the human body and its simula-
tion will certainly remain out of reach for a long time. However the principle that govern
its development and processing represent a source of inspiration for the design of artifacts
[63]. In principle the design would consist to create programs that reproduce cognitive
processes directly at higher representational level or to create in silico artificial neural
network systems. The project perplexus is aimed at developing an ubiquitous, scal-
able and distributed platform dedicated to the simulation of large-scale self-organising
networks and to the observation of potentially emerging behaviours [123, 138]. This
platform is composed of custom reconfigurable devices endowed with computing, behav-
ing and communicating modules called Ubidules. They are based on a custom designed
processor called Ubichip and are characterized by custom designed bio-inspired features
such as growth, learning, and evolution.

This paper advocates that a network of Ubidules may offer an interesting platform to
implement a network of dynamically interacting modules characterized by integrate-and-
fire neuromimes. In particular we present the JUbiNet simulator of distributed neural
networks developed in the frame of the perplexus project and some examples of its
output in the form of brain-like recorded signals.

A.2 General concepts
JUbiNet is a highly expandable and flexible framework aimed at simulating hierarchical
neural systems. The framework is based upon three major levels, which are: phyloge-
netic, ontogenetic, and epigenetic. All components are organized in a modular way such
to enable inter-operability, compatibility, and expandability of the system and its parts
on all levels [29].

At the Phylogenetic level several simulated neural system features (neural network
parameters, topology rules of distributed network, etc.) are encoded and stored in a
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genome, distributed to lower levels of the application. Selection of alternate values of
the parameters (i.e., the alleles) is performed at this level associated to a computational
neurogenetic modeling [18].

The Ontogenetic level describes the origin and the development of the system dur-
ing its early stages of development. Genome decoding, neural network initialization,
and inter-network connection establishment rules are performed within this conceptual
level. The Epigenetic level refers to learning features, which are limited to an individual
lifetime. The neural network simulator itself naturally fits in this layer.

The current version of JUbiNet carries a full implementation of the epi- and on-
togenetic levels and partially the phylogenetic level. JUbiNet is provided with flexible
configuration facilities, a collection of data processing objects and network handling that
allows the simulation of customized spiking neural networks organized in topologies of
interest.

A.2.1 The bio-inspired neural network simulator.

The simulator is designed to efficiently emulate neural network models with emphasis on
facilities for model reconfiguration and adjustment and on functionally rich possibilities
for detailed network state acquisition. The neural simulation consists in a set of processes
run over a set of neurons.

The processes in the neural network fully determine the functional model that in-
cludes processes such as synaptogenesis, activity transmission, state recorder, learning,
etc. The simulator defines a set of interfaces to general neural concepts and property
access routines, like: neuron, synapse, network, signal-processing routines, input/output
routines. With predefined implementations of standard objects it is possible to assemble
common neural network models. The interfaces provided by the simulator are designed
to extend or replace all default objects by user defined ones.

A.2.2 The distributed hierarchical framework.

The simulation begins when a network is composed with agents (of software or hardware
nature) running distributed networking modules. Those agents are waiting for genomic
information, which is prepared and transmitted by simulation of planning or phylogenetic
modules. Genome decoding triggers network initialization and the simulation starts when
all systems are initialized.

The distributed network simulator is divided into four main parts: the network
discovery system, the link manager system, the input/output mapping and conversion
processes, and the neural network simulator itself. The network discovery system main-
tains and updates the list of available agents and their network role, which identifies the
inter-modules connectivity pattern. The link management system is instantiated as soon
as minimal information about the actual state of the network is gathered by the network
discovery system. The link manager establishes the characteristics of data-processing
connections between agents. The number, type, size, and direction of data-flows could
differ in accordance to the information in the agent’s genome.

The simulation starts as soon as mandatory data-processing links are established.
Input/output mapping and conversion routines are executed in order to handle data
translation from the internal simulator format to the format suited for data transmission
on physical supports (i.e., Bluetooth, WiFi, etc.). It is possible to emulate distributed
neural networks with dynamic or static topologies, with different triggering events as-
sociated with topological changes, with different synchronisation routines or different
behavior patterns within given interfaces and protocols.
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A.2.3 The neural state recording facilities.

The electroencephalogram is the most commonly used signal to detect and analyze brain
activity. The biophysical model of EEG generation relies on the assumption that the
current flows generated by clusters of simultaneously active synapses produce an elemen-
tary signal [51]. By means of virtual electrodes we aim at implementing the recordings
of local field potentials of densely interconnected mesh-work of simulated neurons. The
virtual electrode recorder is implemented by the simulator process and easily integrated
in the neural network simulator.

A.3 Model implementation
The main goal of our simulation is to emulate the biologically plausible behavior of hier-
archically organized inter-connected brain areas receiving external inputs from sensory
modules and ultimately projecting to actuator modules. In addition to single unit spike
trains an EEG-like signal can be recorded from each brain area. Each area is imple-
mented by means of a neural simulator agent. Each agent is aimed to include 10,000
spiking neurons, with each neuron receiving an average of 300 synaptic-inputs. Neurons
and synapses may exhibit complex dynamics characterized by first order kinetics and
may use combinations of arithmetic and logic functions. The design of the model is
initially planned at implementing up to 64 agents in the global network of agents.

A.3.1 The neural network simulator

The model is described elsewhere in more details [74, 72]. Briefly, the neural network
of each module is laid on a 2D lattice of neurons. At early developmental stages neural
cells are differentiated into two types, excitatory (exc) and inhibitory (inh) neurons. Fur-
ther differentiation mechanisms lead to the identification of input and output projecting
neurons in each module. For the sake of simplicity we can consider input and output
neurons forming an efferent and the afferent layers. Each such layer consists of approxi-
mately 10% of the total number of excitatory neurons. Initial connections between the
populations of cells are driven by synaptogenesis process and are randomly generated
according to a 2D Gaussian density function. In order to match the current Ubichip
design [138] the actual modules are based on a 20× 20 network which corresponds, at a
mature stage of development, to 4299 ± 37 exc-exc (average±SEM), 1070 ± 15 exc-inh,
3918± 52 inh-exc and 961± 33 inh-inh connections.

Both types of neurons in the network are simulated by leaky integrate-and-fire neu-
romimes, with different tuning parameters. At each time step, the value of the membrane
potential of the i-th cell V (t) is calculated such that V (t+1) = Vrest+

�
j wj(t)+Bi(t)+

(1−Si(t))((V i(t)−Vrest)kmem), where wj(t) is the synaptic weight from j-th to i-th neu-
ron, Vrest corresponds to the value of the resting potential for the neuron, B(t) is the
background activity arriving to the i-th neuron, S(t) is a binary state function of the i-th
neuron, and kmem is a membrane kinetic constant. The post-synaptic potential is im-
plemented as a function of the relative timing of pre- and post-synaptic spikes [118, 81],
that is usually referred as spike-timing dependent plasticity (STDP). In case of synaptic
depression we consider the possibility of decaying synaptic strength to zero, thus trig-
gering synaptic pruning and ultimately cell pruning processes [73]. Fig. A.1 illustrates
the characteristic stages of early phases of each module history.

The simulator is written using the Java programming language. In addition to the
proper description of the neural network it includes special routines aimed to transmit
data from/to other spiking neural networks. The simulator is configured through the
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Figure A.1: Early developmental phases in the life of a neural network module.
Time flows from left to right and from upper to lower panels. Grey dots represent
neural stem cells, white dots excitatory neurons, black dots inhibitory neurons,
crossed dots dead cells, and squares correspond to the excitatory cells that differ-
entiated into output projecting neurons of the efferent layer.

“genome”, which is read from the genome distributor agent in the network or from the
configuration file in case of a stand-alone simulation.

A.3.2 Modules distribution

We used an IP-adressing scheme to broaden the range of supported hardware platforms,
reduce development time and increase overall package performance. We use the Java
Agent DEvelopment [17] framework in order to work with an high-level abstract envi-
ronment while developing the distributed multi-module system. The JADE platform
simplifies implementation of multi-agent systems through a middle-ware that complies
with the FIPA specifications [36] and through a set of tools that support debugging and
deployment phases. Thanks to its design the agent platform can be distributed across
machines, which not even need to share the same OS. Like the simulator, the JADE
library is fully implemented in Java, providing cross-platforms integration and allows us
to focus on model development rather than on low-level system programming.

All package’s modules, including the neural network simulator, are packaged in JADE
network agents. Then, the JADE framework is used by the hierarchical neural network
stimulator routines to build up the topology of simulator agents. All inter-modules com-
munication and data-processing are considered as message exchanges ruled by several
protocols. JUbiNet reads all incoming messages from JADE message queue in a sequen-
tial manner and processes them by appropriate handlers. The processing handler sends
back a new status message to the input queue as a result of the change. We use separated
execution flows, in terms of processing threads, for the neural network simulator itself
and for the hierarchically network logic. This allows to process network communications
and simulation in parallel.

Inside the packages the execution flow is implemented as a sequential automata.
Thread switching operations are reduced in order to increase computationally efficiency.
Software testing and development is simplified by sequential data-processing routines
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Figure A.2: Sample network topology with 1 sensory module (sensor), 3 processing
modules (n1proc, n2proc, n3proc) and 1 actuator module (motor). Data-flows
between agents and their directions are depicted by arrows. The dotted arrow
(sync) refers to the synchronization link of the sensory module.

that provide higher system stability and predictability. In accordance to this concept
the network monitoring, the link manager and the input/output mapping routines are
implemented as subset automates. This implementation gives us the possibility to con-
sider a dynamic network of neural modules where some modules may enter or leave the
simulation at any time. The dynamic rearrangement of the topology is handled without
need of restarting all modules thanks to the the network monitoring system. This sys-
tem sends notification messages to the link monitor handler about agents joined or left
network and about their respective role (i.e., either sensory, actuator or processing).

Inter-agent data-processing

Sensory modules are implemented by input agents characterized by afferences originating
from sources other than other neural network simulator agents. External stimuli could be
either predefined artificial stimuli or input data generated by external sensors like camera,
radar, microphones, etc. In the current study we used input agents with predefined
artificial spatio-temporal stimuli in order to simplify the test cycle of neural modeling
and software development. Input agents have no restrictions concerning their target
agents. Agents that project their activity to recipients other than the neural network
simulator agents (e.g., external actuators) are called output agents. Output agents have
no explicit limitations to their input agents. The modules that can be connected to any
other neural network simulator agent are implemented by processing agents. An all-to-
all link manager is used to establish as many inter-modules connections as allowed by
each module’s role. An other link manager was implemented to deal with pre-defined
inter-modules topologies of special interest.

Inter-modules synchronization

The input/output data-processing routines used in the simulator are synchronized on
a same clock cycle. The simulation actually begins only after all links are established.
The execution of each next time step of the simulation is performed only after data
reception is acknowledged from all known links. This method ensures simulation to
run always in synchronization, but each topology modification provokes a pause in the
simulation. In a static topology or in an environment with a slow rate of changes (as it
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Figure A.3: Activity mapping scheme for network A connected to networks B
and C. The crosses indicate the checkerboard of the active connections between
network A and networks B and C. In case cells Ae1 and Ae4 are spiking, the
resulting output pattern of activity is determined by the combination of the ap-
propriate connectivity maps and provokes the excitation of cells Ba1, Ba4, Ca1
and Ca3.

happens most of the time) this implementation provides efficiency and consistency, but
in a highly dynamic environment it slows the overall execution due to the large time
spent in waiting status.

Input/output activity mapping

The projecting pattern of an efferent neuron towards the other agents is a copy of its
intra-module projecting pattern. Let us consider the example illustrated by Fig. A.3.
Four efferent neurons of network A, labelled Ae1, Ae2, Ae3 and Ae4, project to 1, 5, 0
and 3 cells within network A itself. This means neuron Ae1 will also project to 1 neuron
among all possible afferent neurons of the target modules, Ae2 to 5 neurons among
all possible afferent neurons of the target modules, and so on for all the other afferent
neurons. A connectivity pattern is established based on a probabilistic basis defined by
the number of potential target neurons. In this example the count of potential target
neurons (i.e., the neurons belonging to the afferent layers of the target modules) is equal
to 8.
This means that in case of neuron Ae1, each target neuron has an equiprobable chance
to be connected equal to 1

8 . In this example the target of Ae1 is actually neuron Ca1.
And so on for all other neurons. In case of a discharge pattern corresponding to cells Ae1
and Ae4 simultaneously activated the afferent neurons Ba1, Ba4, Ca1 and Ca3 would
receive a postsynaptic potential. Notice that the connectivity pattern is reshuffled when
topology is changed and probabilities of connection are modified.

A.3.3 Recording of module activity

Besides the available routines to extract spike train activity into multivariate time series,
we have developed a new package designed to record the activity of a set of neurons as
a function of their membrane potentials and the distance to the electrode tip. by means
of virtual macro electrodes. The two main parameters of the electrode are its coordinate
position C = (x, y) specified by the coordinates on the neural network lattice and its
sensibility function.

The model assumes that the electrode could be placed exactly over one neuron or
exactly in-between four neighbour neurons. The sensibility function calculates the mag-
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Figure A.4: a) Schematic electrode’s sensitivity area on the square neural network
lattice in wrapped and unwrapped representation. Each circle represents a neuron.
Intensity of black color corresponds to the intensity of the electric field recorded
by the electrode. b) Local field potentials (arbitrary scale) evoked by a stimulus
lasting 250 ms starting on time zero, recorded from a processing ubidule. The top
trace shows the averaged signal over 8 consecutive trials. The lower traces show
the individual trials.

nitude of the “electric field” generated by the neural cells at a certain distance from the
electrode tip. This function is meant to combine the electrical characteristics of the elec-
trode (mainly its impedence) and the volume conduction properties of the underlying
tissue. In the simplest case it is a linear decay function, but other user-defined functions
can be selected. We assume an isotropic neuropile such that for any sensibility func-
tion all neurons which are located at the same distance from the electrode tip form an
equipotential layer L, thus contributing equally to the recorded signal (Fig. A.4a). The
electrode radius R is the total number of equipotential layers generating a recordable
signal.

The equation Er(k) =
�τ×(k+1)−1

t=τ×k

�R
r=1 ϕ(r)

�
∀i∈L(r)Ψi(t), calculates the electrode

signal Er(k) where τ is a down-sampling parameter depending on the sampling frequency
of the recording, ϕ(r) is the sensibility function of the electrode, L(r) is the set of all con-
tributing neurons lying at distance r from the electrode tip located at C and forming the
equipotential layer L, Ψi(t) is an electric field function (e.g., Ψi(t) = |Bi(t)|+

�
j |wji(t)|

or Ψi(t) = Vi(t) ) depending on the model to be selected, Bi(t) is the background ac-
tivity afferent to the ith neuron, and wji(t) are the post-synaptic potentials of the jth

neurons projecting to the ith neuron. Notice that the raw signal recorded by such virtual
macro-electrode is called electro-chipogram (EChG) and is monopolar. Fig. A.4b shows
an example of such recordings, during a stimulus-driven task, with an Evoked Potential
obtained by averaging a few consecutive trials. The current paper is not aimed to discuss
the results of such recordings, which are now analyzed and will be extensively reported
in future papers. A common reference signal generated by the spiking activity of all
neurons of all modules is also recorded such to allow the generation of bipolar signals,
akin of biologically recorded signals, for further analysis in a standard data format used
for EEG recordings [88].

A.4 Discussion
We have presented a novel framework that allows the study of the activity of distributed
neural networks organized in distributed interacting modules by means of virtual elec-
trodes that record electrochipograms in each module. This framework offers a tools
to study neural network interactions, complex signal processing and to compare EChG
with real local field potentials and EEG recorded in experimental conditions. The current
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implementation of an evolving spiking neuronal model is certainly an utmost oversim-
plification of the reality, but the current framework opens the way to models that will
embed increasingly higher biologically inspired parameters. In a separate paper we will
report the first analyses of evoked EChG in a network of ubidules undergoing classical
paradigms such as the odd-ball or stimulus-compatibilty tasks.

A particular feature of our approach is the possibility to enable a highly dynamic
environment characterized by evolvable topologies with modules that can enter or exit
the simulation at any time. The overall design is based on a highly organized system
of agents messaging operated by automata, thus allowing dynamic topology “rewiring”
following simple rules. The drawback is that fast changing topologies might introduce
delays of information processing. This problem could be managed by implementing a
separate signal recorder agent, which would receive EChG data from all simulation agents
via the network. Then, the recordings could be synchronized. This solution would in turn
require an increased network communication bandwidth and the appearance of a kind
of centralized authority, but offer reduced agent’s file-system loads and an improvement
of agent’s performance.

This new framework fits well the requirements of sophisticated control circuits for
robotic implementations in collective behavioral studies where each robot is driven by
one or more neural networks (e.g. [45]). Mobile version of JADE compatible framework
[17] could be used in order to obtain a platform with reduced footprint and compatibility
with mobile Java environments.
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Chapter 4

Hierarchical neural systems

The inevitable result of improved
and enlarged communications
between different levels in a
hierarchy is a vastly increased area
of misunderstanding.

Laws of communication

Résumé :

Ce chapitre ainsi que l’article qui le précède décrivent le modèle de ré-
seau de neurones hiérarchique inspiré par les voies de traitement de
l’information dans cerveau. Dans ce travail, nous avons retenus quatre to-
pologies principales de circuits neuronaux. Pour toutes les analyses, les to-
pologies des circuits étaient composées de six modules neuronaux pouvant
représenter trois traitements distinctifs : sensoriel, cognitif et moteur. Seul
le module sensoriel neuronal recevait un stimulus artificiel de l’extérieur.
Les quatre modules traitement cognitif ont des connexions qui ont des
connexions réciproques et des connexions avec le module sensoriel. La pre-
mière paire d’entre eux recevait des inputs du module sensoriel, formant
la première couche de traitement du circuit. Tandis que la deuxième paire
était reliée uniquement avec les autres modules de traitement cognitif,
formant ainsi la deuxième couche de traitement. La différence principale
entre les topologiques était dans la présence de projections réciproques à
l’intérieur d’une couche de traitement ou entre les deux couches de trai-
tement.

In real brains stimulus is transduced by sensory receptors into a sequence of
electric impulses (spikes) which are sent to a group of specialized cells having,
depending of the sensory modality, either the structure of a nucleus or a sheet
of interconnected excitatory and inhibitory neurons for further processing. Like
in real brains, our model of the distributed neural system is built on the three
principal specialization of underlying neural networks. In the simulated systems
the Sensory module starts processing of sensory information received from external
(hardware) source or from artificial data-set and transmits the resulting activity by
a specific group of efferent cells (see Section 3.8), to higher level Processing neural
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networks. The neural network having a Sensory role receives only an external
information and then it may send its efferent activity to any other node of the
system. The final outcome of signal processing is Motoric output, which may
actually correspond to a real action towards the external world or to an internal
action (e.g., memorization). Motoric nodes acts on actuators, i.e., they process
informations from nodes other than sensory, but do not project back to the system.

Processing of sensory information is performed along chains of parallel and in-
terconnected areas where stimulus features are extracted and associated into rel-
evant representations following auto-associative and reinforcement learning rules.
In an oversimplified view, we can compare processing modules to cortical associ-
ation areas. An illustration of these principles could be seen on Figure 4.1. Here,
modeled neural modules of a given topology put into correspondence with the real
cortical areas. The Sensory module of the system corresponds to the occipital
lobe, which is the visual processing center of the mammalian brain containing
most of the anatomical region of the visual cortex. The first processing layer is set
to be in the correspondence with the parietal lobe, which integrates sensory in-
formation from different modalities to make possible spatial sense and navigation.
We assume that second processing layer corresponds to the frontal lobe, which is
associated with reward, attention, long-term memory, planning, and drive. And
finally, the Motoric module corresponds to the Cerebellum, which plays an impor-
tant role in motor control [57].

Figure 4.1: A sample brain map with hierarchical neural system graph projected
on it. Virtual and real neural sub-systems with similar functions are shown in
the same color. The Sensory module of the system with the Occipital Lobe are
shown in red. The Processing layers 1 and 2 with Parietal and Frontal Lobes are
shown in green and blue accordingly. And the Motoric module with Cerebellum
are shown in yellow.

4.1 Input/Output activity mapping
According to the model a set of stand-alone neural networks could be combined
into inter-connected neural circuit. During the early developmental stage affer-
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ent and efferent layers of cells are created, as it was described in the Section 3.8.
Then inter-network connections (input/output inter-network activity mapping)
are established in a way that the number of external projections from a particular
efferent neuron is proportional to the number of internal projections of the same
neuron at the early developmental stage. In the case, when a pair of neural net-
works is considered, we will call an upstream network that, which is projecting its
activity with regard to another one, and we will call a downstream network that,
which is receiving an activity from another one. In the same way we can define
upstream and downstream networks in multi-modular circuits, with the only differ-
ence that here certain networks could play both roles at the same time depending
on the pair we are looking at.

The scheme is described in details in the Article A: “Dynamically organized
neural networks”, Section A.3.2, it supposes an input-output mapping rule with
a 1-to-1 efferent-to-afferent proportion, which reflects ratio between amount of
projections in efferent layer of upstream networks and afferent layer of downstream
networks. This rule fits well to small networks (i.e. 20× 20) we are started from.
However, in larger networks (i.e. 75 × 75) used in latest experiments, the 1-to-1
rule produces constant stimulation of all afferent cells, which is equivalent to the
absence of the stimulus. Thus we used a 5-to-1 proportion, when for each 5 internal
projections 1 external projection is created. The number of external projections
remain fixed during whole simulation flow, even despite that the number of internal
projections will inevitably decrease due to projection or cell death processes.

In our simulator processing of spike train activity always done in a synchronous
way, which means that at a time-step t of a simulation’s time, all neural networks
receive an input from their appropriate upstream network (which is the output
of the upstream networks at same time-step t), then the time-step t is modeled
and the output is sent to the appropriate downstream networks of next processing
layer if it is present. To make this principle works, we suppose that a) every neural
module of every simulation starts with absolutely no input activity at time to = 0
and b) Motoric module project a fictive synchronization link to Sensory module
that creates a loop in the topology, which prevents asynchronous information
processing.

4.2 Neural topologies

A layout pattern of inter-connections of circuit’s neural modules is called topology,
it plays very important role in information processing. From connectivity point of
view, researchers usually distinguish three main categories of topologies: regular,
irregular and random structures. Regular topologies are characterized by constant
connectivity for all nodes, by a high clustering or by a long characteristic path of
the appropriate graph. The most common regular topologies are: n-dimensional
lattice, ring, and torus. Another example, which is neither of mentioned above two
types, but still a regular topology, could be seen on the Figure 4.1. Because of their
regular structure, systems of that type can be easily described by mathematical
models and are easier to model and to study than other types. Random network
structures, as ensued from their name, have random or stochastic connectivity
between the nodes. A characteristic property of such networks is small average
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path lengths between two random nodes of the network, which leads to fast, but
not assured information transmission.

Neuro-scientific studies have been shown that gray matter networks in healthy
volunteers have small-world topology with relatively low wiring costs. That is con-
sistent with prior evidence that nervous systems are organized to nearly minimize
wiring costs [15].

Irregular network structures (as on a Figure 4.2) are most common in the
real life, they are characterized by features present in both regular structures and
random structures, i.e. high clustering and small average path lengths accordingly
[143]. Those are observed in large quantities in biology, sociology, economy, and
as well, as among human created networks, like telecommunication or transport
networks. Small average path with high clustering make possible fast information
processing/transmission, so this is a good option if by whatever reason all-to-all
type of connectivity is not possible or is not desirable in the system.

Figure 4.2: An example of the irregular topology

From another point of view, topologies also can be classified as either dynamic
ones, if they are supposed to change during their “life-time” or as static ones,
if they stay fixed all the way long. Our hierarchical neural network simulation
framework supports both topological types. The first one was inspired by robotic
application of the perplexus project, where robots should navigate in a room
in order to solve goods transportation task, while avoiding collisions with other
robots and with obstacles present in the room. Although, this scenario was really
complex to analyze from the neuro-physiological point of view, we will give here a
brief description of the dynamic features of the simulator. Then we will focus on
static topologies (Section 4.2.2) inspired by the biological systems, with which we
worked a lot during the development of the Thesis.

4.2.1 Dynamic topologies

When a “community” or a number of “communities” of robots is working on a set
of tasks, then in order to complete these tasks in an efficient way, robots should
cooperate with each other and transmit to the other members of a community
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useful information, which they obtained through their own experience. It is natural
to assume that robots inevitably will leave the community due to energy refill
needs, tasks of higher priority, other system tasks, technical problems or whatever.
By the same reason from time to time new robots will join the community working
on a task, so all of them must be able to handle events of arrival of a new member
or quit of another member. A sequence of actions required to solve the given task
could be, at least hypothetically, produced by an Artificial Neural Network (ANN),
but the mentioned above events should be handled by a higher level meta-system.

Hierarchical neural network support in the framework is done on a completely
different level from the one of the neural simulation. The task may seem simple
from the first view, but it is not actually the case, because of asynchronous nature
and unpredictable relative timings of events. To make things work, we used event
serialization approach, which consider all events as messages and put them in a
processing queue. This helps to avoid arrival of multiple events at the same time
and makes system’s state change an atomic-event, which prohibits unexpected
system’s behavior. Without deepen into the low-level technical details, we will
coarsely describe here an algorithm of the developed hierarchical sub-system of the
simulator, which is schematically shown on a Figure 4.3. Then we will illustrate
it with a dynamical topology example used at the final demonstration of the
perplexus project’s results.

In a few words a neural network agent’s behavior could be described as fol-
lows: request all others networks for a connection, collect positive responses until
topology’s constraints on connections’ type and number are fulfilled, notify others
that your constraints are fulfilled (in that way processing could be started quasi-
simultaneously), collect the same notification from all connected network agents
and when that is done – start simulation processing.

In greater details the scheme is as follows. Let we have a system S of neural
modules assigned to a task. They can be already working on it (processing it) or
they can be still waiting for more Neural Network Agents (NAs) to start working.
At this point a new agent A join the system. At a particular time neural network
agent A could be found only in three different states: unconnected – it does not
have all mandatory inter-agent connections, connected – it has all mandatory con-
nections, but it waits for all other agents to switch into the same state, and finally
in a processing state, when the simulation is started. While in the case of simula-
tion task processing will mean spiking neural network (Chapter 3) modeling, in the
case of robotic application it could be something else. From the very beginning
A is in unconnected state, it has a list of all NAs in S such that it can and will
send requests for link establishment to all known agents of the S. Some of them
will send a positive response to the A including a notification of its-own current
state, while other may not. A, in its turn, will accept all positive responses until
a constraint on the connections number is fulfilled. It will remember the state of
the agent the response is received from. Then it will switch to the connected state
emitting a notification of state change to all networks it is connected to. If the
constraint will not be fulfilled within a certain time period, the agent will resend
link establishment request to all known agents of the S, this part is not presented
on the Figure 4.3 to void its over-bloating.

When A is in the connected state it will start to collect state change notifi-
cations from network agents it is connected to. And when all agents, A is linked

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



38 CHAPTER 4. HIERARCHICAL NEURAL SYSTEMS

Figure 4.3: A simplified algorithm flow used by a neural network, which is a part of
a dynamic hierarchical neural system. Module’s states are represented by circles,
actions – by rectangles, conditions – by diamonds, events – by labeled arrows, and
unconditional actions are depicted by unlabeled arrows. Dotted circles are copies
of particular states. Their only purpose to make figure comprehensible and fit well
to the page.

with, confirm their connected state, A will switch to a ready sub-state, which will
start ontogenesis of the neural network modeled. Having ontogenesis finished (it
is not a long process in comparison with the simulation time, but it can be long
enough in comparison with the connection establishment time, so it is advisable
to start it earlier) it will switch to the processing state and will notify others about
new state change. Normally in the processing state only data transmission activity
is maintained up to the moment, when whole duration of the neural system’s life
time, given by the system’s genome, is simulated. Then the agent A will proceed
with a shutdown procedure, to quit S in a correct way.

In the some cases, an agent would like to break a connection or connections,
like in the event of shutdown, to do this it will send a link-break notification to all
network agents concerned. Agent receiving such notification, no matter in which
state it is, will remove the link and will switch back to the unconnected state,
sending a notification of state change to all agents concerned and pausing its
Spiking Neural Network (SNN) simulation flow until a constraint on connections
will not be fulfilled again (this part of algorithm is not presented on the figure).
Then the system will continue the simulation from the ready sub-state, as in the
normal case.
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Figure 4.4: Topology evolution in a dynamic system. Evolution of the topology
having 6 agents P1, P2, . . . P6. At 6 distinct time-moments T1, T2, . . .T6 each one
associated with the time moment when agent joins or leaves the system. Upper
panel depicts topology changes for each time-moment. And lower panel depicts
the simulation flow. One bar corresponds to one agent P1, P2 . . . P6 accordingly,
from top to bottom. White parts of the bars correspond to the time spend in
non-processing states and gray parts of the bars correspond to the time spend in
the processing state.

Brief demonstration of the algorithm is shown on the following example and
it is also depicted on a Figure 4.4. The simulated neural system consists of 6
NAs (named P1, P2, . . . P6), they all are of processing type and thus every NA
can generate output spiking activity and can accept incoming spiking activity
from others. Every NA has a mandatory requirement to have exactly 2 upstream
networks connected, which means that each of them will have connections from
exactly 2 other agents. Every agent can project its activity to any number of
other agents, so there are no limitations on that side. All six NAs are added
to the system one by one with a delay ∆T in between. At the very beginning,
when the first (P1) and the second (P2) neural modules are added to the system,
they cannot start processing up to the moment when P3 is added, lets call that
time-moment – T1. At that time every agent fulfilled its requirement to have 2
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connections, so they switch to the connected state and then to the processing
state, starting the simulation. As time goes by, next agents (P4, P5, P6) are
added to the simulation (time moments T2, T3, and T4 respectively) and they are
randomly connected to already present and processing NAs P1, P2, and P3. Each
NA has limited simulation time, so at the moment T5 the agents P1, P2 and P3,
which all started processing together, will leave the simulation. In consequence,
the agents P4, P5, and P6 lost their connections from P1, P2, and P3 and are
forced to re-establish new ones. Fortunately, there is one possible connection-map
which fulfill all requirements. After a small delay from T5, needed for connectivity
reconfiguration, they create a new neural system with a new topology. Later, P4
also finishes its simulation and quits the system (time moment T6), breaking the
topology and leaving nodes P5 and P6 to wait, in the unconnected state, for new
arrivals (at this time there will not be any) to continue their unfinished simulation.

Although our simulator supports dynamic features, studies in the area of the
complex dynamic topologies should be based on very precise knowledge of behavior
of the SNN agents of the network. In order to proceed with that task one should
first study an emerging behavior of a neural system in stable conditions. We
decided to leave SNN application to the robotics for further study, given limited
knowledge of the processes ongoing in simulated neural circuits and a huge work
should be done to achieve a goal of creating of a learning neural circuits capable
to solve these tasks.

4.2.2 Static topologies

Neural systems with topological structure fixed through entire simulation are much
easier to organize and study, than their dynamic counterparts. As it was men-
tioned before, an assembly of neural networks organized in a static hierarchical
topology could be considered from neuro-physiological point of view as cortical
association areas (see Figure 4.1). The developed framework supports a number
of static topologies of interest which were used in the different our studies during
the Thesis’ development. Among of them there are 2 principal hierarchical topolo-
gies used most often in the studies (each of them having an optional small, but
important, variation) and a couple of other interesting topologies, which were not
extensively studied because of their complexity or on the contrary their simplicity,
but rather were taken for few simulations to check selected features of the frame-
work. Here, we will start from a detailed description of the principal topological
types and then we will give a brief description of the second – auxiliary ones.

Two principle topologies were inspired by information processing chains in the
brain. Minimal circuit of that topology contains 4 basic layers: a sensory layer, 2
layers of processing elements (so we are able to study signal propagation), and a
motoric layer (see Figure 4.5). A Sensory module corresponds to a visual process-
ing center of the brain, is connected to first two processing modules forming the first
processing layer, which is set to be in the correspondence with the parietal lobe.
Then in its turn, the first processing layer connects to the next modules correspond
to the frontal lobe (associated with long-term memory, planning, and drive). And
finally, all processing modules are connected to the Motoric module (for the sake
of simplification of topology representation on the figures, which are not covering
motoric module behavior, are drawn with connection only from the second process-
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ing layer even despite that connections from the first processing layer are present),
which correspond to the motoric control center of the brains. Depending of the
presence of reciprocal connections between first and second processing layers, we
will recognize pure feed-forward (FF) topology in the case of the absence of such
connections and in the case of the presence – pure feed-backward (FB) topology.
Two important variations of these topologies differ by the presence of intra-layer
reciprocal connections (horizontal connections), they are named feed-forward with
horizonal reciprocal connections (FFH) and feed-backward with horizonal recip-
rocal connections (FBH) for FF and FB types accordingly. All four topologies
are depicted on the Figure 4.5, the topologies without horizontal connections are
on the left of the figure and those with horizontal reciprocal connections are on
the right. These four topologies in conjunction can give an insight on importance
of reciprocal connections and better understanding of information processing in
brains (as described in the Section 7.2).
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Figure 4.5: Four principal static topologies. From left to right: pure feed-backward
topology, pure feed-forward topology, feed-backward topology with horizontal re-
ciprocal links, and feed-forward topology with horizontal links.

Available auxiliary topologies are “coupled networks”, an “all-to-all”, a “fixed-
connection number”, and a set of “circular” topologies. Coupled networks is a
simple chain topology – simplest neural system where an output of upstream
network is connected to (and only to) an input of the downstream network, this
is useful to study an effect of a single connection between the networks, as it
was done in the [74]. An “all-to-all” topology is created when each module of a
system is connected to all other modules, this is useful for verification of behavior of
distributed circuits. The topology following this simple rule could be used to model
static systems as well, as the dynamic systems, which are growing or shrinking
every time new modules join or leave the system. Pure “all-to-all” systems has
a limit to be constructed only from modules of processing type, as each module
should be able to project and receive spiking activity and thus there is no place for
a sensory module or a motoric module in the topology. Circuits of this topological
type were used extensively during the perplexus project’s venue.

A “fixed-connections number” topology is the one on which our principal topolo-
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gies, mentioned earlier, are based. Here one can control a number of connections
each neural module has. Variation of this number from one module to another one
will allow to create complex topologies. Number of connections of each module of
a system is controlled through its genome. The FBH neural system in an example
of what can be created using this approach. Being improved by flexible technic of
connection “black-listing”, i.e. by creation of lists of agents forbidden to connect
with, it allows to derive the circuits with topologies like the FFH, FF, and FB
have.

Finally, circular topologies, which are also supported by the model, are natural
extension of the principle 4 layered hierarchical topology described above to the
class of multi-layered hierarchical regular topologies. Those ones have N process-
ing layers, of M modules each, all modules of the layer i connected to all modules
of the layer i+ 1, sensory modules is connected to the first processing layer. Last
processing layer N is connected either to a motoric module or to the first process-
ing layer. Reciprocal connection within a single layer of processing modules can
be allowed or disabled, depending on the needs. On a Figure 4.6 same topology
is shown in a form of circular graph and in the form of hierarchical graph. One
can see, that this class of topologies is a feed-forward signal propagation one and
is similar to the FF and FFH topologies, depending on that if horizontal con-
nections are allowed or not. This class of topologies can aid in studies of signal
propagation in neural systems, as it gives an opportunity to extract differences in
emerging behavior between multiple processing layers.

(a) Circular representation (b) Hierarchical representation

Figure 4.6: Hierarchical and circular representation of the same topology. The
topology features 3 processing layers of 2 neural modules each, connected in a
feed-forward way.
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4.3 Artificial stimulus
A vast majority of neural systems’ topologies studied during the years of work on
the Thesis were composed not only from processing modules, but also were having
a sensory neural network in the structure. Which is not surprising, as we were
interested not only in dynamics of the SNN model it-self, but also in the emergent
behavior of the system in the different “environmental” conditions. The sensory
module is the one and only one neural network in the our neural circuit supposed
to receive an external (in relation to the system) stimulus.

The model supposes an application of a spatiotemporal spike pattern, which is
here and after referred simply as a stimulus, to the “afferent neurons” of the sensory
network. Spatiotemporal patterns for the stimulus could be passed to the simu-
lator’s framework via a set of files in Scriptable Network Graphics (SNG) format,
described in details in [76]. We decided to apply a relatively simple spatiotem-
poral stimulus repeated at regular intervals, so neural system can produce an
emergent behavior by learning the stimulus step-by-step, repetition-by-repetition.
The structure and basic parameters of the artificial stimulus is described in details
in the this Section.

4.3.1 Stimulus structure

The core of the stimulus is a spatiotemporal spiking pattern, which covers all
afferent neurons of sensory module and during certain time period of simulation,
this pattern is called Base Stimulus (BS). Temporal length of the BS is quite
short: tens of simulator’s time-steps depending on the simulation (most commonly
used were one of 10, 16 and 32 time-steps). The BS used in the simulations was
designed to stimulate each afferent neuron of the sensory network exactly one time
per BS’s temporal length. This was an unique constraint on the motif used, as
both temporal and spatial (neurons) distributions of stimulation moments were
random (see sample on the Figure 4.7). As a period of tens of milliseconds is
a really short to evoke a noticeable effect in a neural network we repeat the BS
several times in raw in order to expand overall length of the stimulation period to
hundreds of milliseconds.

Figure 4.7: Spatiotemporal structure of the Base Stimulus (BS). Each row rep-
resents one of the 20 afferent neurons of the sensory module. Each dark block
represents a stimulation impulse to a neuron. Each column represents a simula-
tion time-step.
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N1
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N12
...

N20

⇒

Figure 4.8: Stimulus variability procedure. In this example the impulses to the
randomly selected neuron N1 and neuron N12 of the stimulation motif were shifted
forward by 1 time step. Dotted spikes mark the initial position.

As a perfect repetition of events is improbable in the reality, we introduced
a variability of the BS. Each repetition of the BS has a 10% variability in a
neuron stimulation pattern. That means stimulation times can have a jitter of ±1
time-step, i.e. a particular stimulation time of a neuron could happen 1 time-step
earlier or later than it was in the original BS. A 10% variability means that at each
step a number of spikes jittered was equal to the 10% of all neurons present in the
afferent layer. Those 10% spikes were selected randomly and in the independent
way (see Figure 4.8 for an example). Please note that described procedure can
also produce an activation of a particular neuron shifted more than only for 1
time-step from its initial position in the BS. This can happen when a particular
neuron will be selected more than once for an introduction of the variability and
an activation time will be shifted multiple times in the same direction, thought a
probability of such event is much more lower than a probability of altering different
neurons each times and thus it does not have noticeable influence on the output.
In the same way, with a small probability a repetition could became the initial
BS, if activations of the same neurons would be occasionally shifted forward and
backward same number of times. This probability also goes down very fast, as the
number of neurons in the afferent layer increases.

Figure 4.9: Stimulation flow and stimulus structure. A number of repetition of
the Base Stimulus followed by an Inter-Stimulus Interval constitutes a elementary
stimulus “epoch”.

Obviously, it is still nearly impossible to extract and generalize a stimulus-
induced reaction of a neural system from its dynamics while having only one
stimulus presentation even if it was of 100-500 ms. According to the general
neurophysiological approach in the event-related evoked reaction studies, stimulus
application was extended to the following procedure: the repetitions of the BS were
followed by a silent period of certain length (according to the experiment protocol),
when no external stimulus is not applied. This was followed by a new repetition set
of the BS and the silent period, see Figure 4.9 for an illustration. Now stimulus was
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presented to the system multiple times depending on the simulation’s length and
thanks to statistical analyses we have an opportunity to study stimulus-induced
activity of the circuit.

Mentioned above period of absence of external artificial input is called Inter-
Stimulus Interval (ISI). And the stimulation sequence formed by BS repetitions
and ISI is called an elementary stimulus epoch (or epoch for short). The repe-
tition of epochs are meant not only to build a base for statistical analysis, but
also to produce self-organizing changes in the neural system corresponding to its
associative memory abilities.

4.3.2 Stimulus-driven development stages

On the global time scale (whole simulation) an application of the stimulus allows
to distinguish 4 major stages in the system’s behavior driven by the stimulus.
Let’s consider that the simulation is starting at T0 = 0 and is lasted up to Tsim

marking the end of the system’s life time. At the time moment TS the first stimulus
application happens and after M stimulation’s epochs it ends (time moment TE).

The 4 developmental stages are:

pre-learning stage t < TS; t ∈ [TpreS;TpreE]: starts slightly after T0 at the
moment TpreS, when an initial transitional state of the system stabilizes to
an acceptable level. It ends with a start of the stimulation – at time TS.
During this state no stimulation is performed, the system’s behavior mostly
conducted by the initial conditions and by stochastic process of background
activity.

early-learning stage Ts ≤ t < TE; t ∈ [TearlyS;TearlyE]: starts with the first
stimulus application TS and ends somewhere after at the time moment
TearlyE. A stimulus is applied to the system, forcing it to enter into transient
state of hyper-activity.

late-learning stage TS ≤ t < TE; TearlyE < TlateS; t ∈ [TlateS;TlateE]: starts
when a system driven by the stimulus enters in to a state, which can be
considered as steady, and ends when last epoch of the stimulus application
periods ends – time TE. This state is characterized by a maturing of the
system, where cell and synaptic pruning reached a steady state. This is the
most promising state for studies, because of the absence of huge transient
components in the emergent behavior of the system.

post-learning stage TE ≤ t < Tsim; t ∈ [TpostS;TpostE]: starts after the end of
the stimulation TE and lasts almost until to the end of simulation – time
moment TpostE. No external stimulation is present, and the system is driven
only by its own interal “echoes” of the stimulus.

The above mentioned scheme of system development stages is shown on the
Figure 4.10.
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Figure 4.10: Neural system development stages. Stimulation periods are schemat-
ically represented with black (BS repetitions) and grey (ISI periods) line segments.

4.4 Bio-electrical signal model
Discovered in 1929 by Berger, electroencephalography was at first the display over
time of the tiny rhythmic electrical currents captured by electrodes on the surface
of the scalp. Very soon the origin of these currents has been associated with
brains activity, but their precise mechanisms of generation were not completely
determined. In brief, the electroencephalography (EEG) waves were interpreted as
the result of summation of the more or less synchronized action potentials running
in the brain [3]. Interpreting the recordings of the Local Field Potentials (LFP) of
such a dense interconnected meshwork of neurons which is brain is still a difficult
task.

One of the most intriguing features of brain electrical activity is the fact that
the recorded signal is apparently similar at every scale from a few dozen of microns
(LFP) to a dozen of centimeters (EEG). This started to be solved first with the
discovery by Mandelbrot of the fractals, that is structures which are similar at
every scale. The fractal nature of the brain electric activity cannot be explained
by simple dipoles. However the increased knowledge in brain circuits [23, 24, 25,
132, 130, 131, 1] proved that the dipole theory was correct if the nature of the
dipoles was modified and the role of the thalamo-cortical loops minimized [107].

The EEG signal is the superimposition of all overlapping dipoles underneath
a given electrode. There is a clear difference in the frequency content of the signal
between rest state, active state, some sleep phases and some pathologic states
(epilepsy, senescence) of the brain, which can be discovered with EEG analysis.

Now when the computers are powerful enough to simulated large cell assem-
blies, we are trying to record EEG-like or LFP-like signals from the modeled
neural circuits by the means of virtual electrodes. We call this approach an elec-
trochipography (EChG). The virtual electrode model it-self is described in the
Section A.3.2 of the Article A: “Dynamically organized neural networks” and is
briefly recapitulated in the Section B.3 of the Article B: “Stimuli-driven functional
connectivity”. Here we will only add, that we consider the output of the electrode
as a sum of a product of cells’ spiking activity voltages over the electrode’s cov-
erage area and linear decaying function, which reflex currents loss due to distance
traveled from a particular cell to the electrode’s tip.

A big advantage of this approach is that signal analysis techniques equivalent
to those applied to real EEG and LFP recordings in neuro-physiology can be also
applied to the artificial neural system model by the means of virtual electrode’s

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



4.5. HIERARCHICAL SIMULATOR ARCHITECTURE 47

signal.

4.5 Hierarchical simulator architecture
The simulator package is a highly expandable and flexible software framework
aimed to a simulation of the distributed hierarchical biologically plausible neural
systems. All components of the framework are organized in a modular way that
allows inter-operability, flexibility, and expandability of the simulator in accor-
dance with particular needs. Formed by the biologically plausible neural network
simulator and the distributed hierarchical neural network framework it fully cov-
ers epigenetic and onto-genetic levels of a generic evolutionary concept. On the
ontogenetic level are the routines, which are in charge of the neural system’s
development during early stages, in particular there are: genome decoding, neu-
ral network initialization, and inter-network connection establishment rules. On
epigenetic level there is a neural network simulator with features limited to an
individual neural network lifetime.

All framework’s modules are implemented in Java programming language and
are using the standard Internet Protocol (IP) networks, as communication layer.
This allows to support a wide variety of the hardware and software platforms.
Distributed hierarchical neural systems are assembled from a number of basically
independent neural networks modules. Almost all their properties are configured
through a genome, at the creation time, the particular gens will control how and
when a set of the independent neural networks will assembly into a neural circuit
and which would be its topology.

As it was mentioned before in the article, the distributed neural network frame-
work is an event-driven system, it uses a Java Agent Development Environment
(JADE) library to organize inter-neural network communications of the low-level.
All events in the network are serialized at processed one by one, which facilitate
event handling and improves system’s predictability. All inter-NA communications
and spike train activity transmissions are messages ruled by number of protocols.

The distributed hierarchical neural network framework consists from a number
of software-modules, most important of them are a network discovery module, a
connection establishment module, input/output activity mapping modules, and
genome decoding modules. An overview of the framework’s architecture could be
seen on Figure 4.11. The network discovery module is responsible for the pro-
cessing of system’s IP network events in the order to discovery Neural Network
Agent (NA) present in the physical IP network. The connection establishment
module is in charge, non-surprisingly, of connection establishment (according to
the algorithm described in the Section 4.2.1) and the transmission of spiking ac-
tivity between NAs of a circuit. The input/output mapping modules implements
spike activity transmission rules described in the Section 4.1. The genome decod-
ing modules are designed to instantiate the neural networks according to the con-
figuration parameters in the genome strings taken from simulation’s pre-configured
genomes or provided by the evolutionary level of the framework.

This evolutionary layer of the model along with network’s genetics are discussed
in the next Chapter.
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JADE NN WrapperHierarchical Simulator

Neural Network Simulator

Java Agent Development Environment

I/O Mapping

Network Discovery

Connection Establishment

Virtual Electrode

Operation System

Java Virtual Machine

Figure 4.11: Hierarchical Simulator Architecture.
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Chapter 5

Evolutionary and genetic networks

The evolution of the brain not
only overshot the needs of
prehistoric man, it is the only
example of evolution providing a
species with an organ which it
does not know how to use

Arthur Koestler

Résumé :

Ce chapitre traite de la partie évolutive du simulateur. Cette partie évolu-
tive nous permet de générer des ensembles de circuits neuronaux pour dé-
terminer les comportements communs de l’ensemble. Quatre génomes dif-
férents correspondant chacune aux quatre topologies principales décrites
ci-dessus ont été utilisés comme génomes de base et chacun d’eux a été mo-
difié plusieurs fois par mutation aléatoire. La réplication est réalisée selon
le résultat d’une fonction qui évalue le résultat de l’activité des circuits.
Cette approche permet d’obtenir des ensembles de circuits différents pour
chaque type de topologie. Les signaux EChG enregistrés sont moyennés
afin de lisser le bruit d’activité spontanée dans le réseau.

From the pragmatic computational science point of view, despite developed
so well and so far connectionist approaches [84], which include all kinds of the
Artificial Neural Networks (ANNs), there are still no efficient connectionist meth-
ods capable to model complex brain functions, like adaptive learning of a large
number of objects in a multi-dimensional space or dynamic learning of multi-
ple models in a multidimensional and changing environment [10, 144] or complex
problems in a dynamically changing environment, where information from different
abstraction levels are properly used. Using, for example, evolutionary algorithms
to train an ANN and adjust the connection weights according to a fixed data
set given in advance, does not reflect the nature of learning in the brain [54].
Existing connectionist models still suffer from generic problems of computational
intelligence:

the curse of dimensionality – in a large dimensional space existing feature se-
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lection algorithms related to ANN models fail to select an optimal set of
input variables and to modify this set optimally when new data arrives;

the curse of the local optimum – the models usually reach a local, rather
than global optimum solutions;

the curse of multiple modality and multiple task learning – it remains dif-
ficult to dynamically integrate multiple models in order to discover common
patterns/relationships, features, to make the models share knowledge in or-
der to improve the learning processes.

From modeling point of view single neural network also cannot reflex all the
complexity of the brain. The principle of evolvability states that a system evolves
its structure and functionality through incremental learning from active interaction
with the environment, thus continuously improving its performance. The evolving
process is based on incremental forming of local clusters of data and developing
local functions. This principle is fundamental for any brain at all functional levels.

As we shown in previous Chapters, Spiking Neural Networks (SNNs) can be
used to build biologically plausible models of brains. Here, we will briefly cover
an evolution of an SNN based hierarchical system from the biological and the
computational points of view, then we will describe a model of the Evolving Hier-
archical Neural Network (EHNN), which should able to develop its functionality
by interaction with the environment in an incremental way, thanks to “natural”
selection approach.

5.1 Evolutionary algorithms
In modeling evolutionary approaches mean exploitation and modeling of biological
evolution for the sake of creation of intelligent systems. Evolution is considered as
a process of development of biological species in order to better adapt to environ-
ment, which is accompanied by genetic change of population and by generation
replacement [146]. In particular, this is the product of two opposing processes: one
that constantly introduce variation in traits of species and other that make par-
ticular species become more common or rare. On one side main cause of changes
in species’ rarity are natural selection and disrupt changes of environment. On
another side main cause of species variation are mutations and recombinations,
which changes the sequence of a gene, which is responsible for these or those
features.

A gene is a unit of heredity in living organisms. According to a modern working
definition of a gene, it is a locatable region of genomic sequence, corresponding
to a unit of inheritance, which is associated with regulatory regions, transcribed
regions, and or other functional sequence regions [110]. In biology it is normally a
stretch of deoxyribonucleic acid (DNA) that codes for a type of protein or for an
chain ribonucleic acid (RNA) that has certain functions in the organism. Genes
hold information, which allows to build and maintain an organism’s cells and pass
genetic traits to its offspring. The entirety of an organism’s hereditary information
is called genome and is described by an assembly of genes of organisms, as well,
as non-coding sequences of the DNA [117].
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The growth, development, and reproduction of organisms relies on cell division,
or the process by which a single cell divides into several (usually two) identical
daughter cells. This requires first to make a duplicate copy of every gene in the
genome in a process called replication and then to make a species from the genome
in a processes called transcription.

5.1.1 Traits variation

Mutations in genetic material are caused by errors occurred during transcription
phase and by reshuffling of genes in sexual reproduction (recombination). These
two factors are main sources of trait variations and they are tightly linked to
the genome variation and to the successful development of species in the natural
conditions. Though, even relatively small changes in genotype can lead to dra-
matic changes in phenotype, in most cases they did not produce visible effects in
phenotype, partially because of robustness of gene transcription procedure [7].

Usually researchers consider two main sources of genome variation:

Mutation – mutations are random changes in the DNA sequence of a cell’s
genome and are caused by radiation, viruses and mutagenic chemicals, as
well, as errors that occur during replication and transcription. These changes
can either have no effect on specie, because mutations error are suppressed
by the robustness mechanisms of genome transmission or non-favorable en-
vironment conditions or alter the product of a gene, later includes a gene
non-functioning situation [146]. Although most mutations, which change
protein sequences are neutral or harmful, some mutations under certain cir-
cumstances can have a positive effect on the organism. Such mutation may
enable the mutant organism to withstand particular environmental stresses
better than other species. In these cases a mutation will tend to become
more common in a population through mechanisms of natural selection.

Recombination (or crossover) – refers to recombination between the paired chro-
mosomes inherited from each of the parents. While in this formation, homol-
ogous sites on two chromatids can mesh with one another and may exchange
genetic information. Because recombination can occur with small probability
at any location along chromosome, the frequency of recombination between
two locations depends on their distance. Therefore, for genes sufficiently
distant on the same chromosome the amount of crossover is high enough to
destroy the correlation between alleles.

These two variation sources in conjunction with natural selection and genetic
drift, will assure viability of adapted species and extinction of the least adapted
ones.

5.1.2 Evolutionary mechanisms

The two main mechanisms, which produce evolution in the terms of iterative adap-
tation to current environmental conditions, are natural selection and genetic drift.
Natural selection is the process which “favors” species with genes that aid survival
and reproduction. Genetic drift is a random change in the frequency of alleles,
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caused by the random sampling of a generation’s genes during reproduction. The
relative importance of natural selection and genetic drift in a population varies
depending on the environment conditions and the effective population size, which
is the number of individuals capable of breeding [128]. Natural selection usually
predominates in large populations, whereas genetic drift dominates in small pop-
ulations. The dominance of genetic drift in small populations can even lead to
the fixation of slightly deleterious mutations. As a result, population size can
dramatically influence the course of evolution.

5.2 Genetic algorithms

In the computer science, Genetic Algorithms (GA) is an evolutionary algorithm-
based methodology greatly inspired by biological evolution to find or improve
models (individual solutions) that perform a user-defined task. The GA began
with the evolutionary algorithms first utilized by Nils Aall Barricelli applied to
evolutionary simulations [14].

Usually to perform a task lots of individual solutions are generated. From
generation to generation they compete among them-selves and only the best so-
lutions pass to the next generation. Because of this typical population contain
several hundreds or thousands or even millions of possible solutions, depending
on the nature of a problem. And after that for each next generation GA could
require to produce a sequence of populations each them usually of the same or
larger size than the first one. Initially GA was mainly used to solve relatively sim-
ple problems because it is hight computational intensity. Nowadays, with grow
of accessible computational power, GA is used to solve for more complex and
complex tasks.

In the genetic approach a population of genomes encoding individual solutions
of an optimization problem is generated. Every individual solution is evaluated
according to a fitness function, which in the biology is survivability of a specie and
in the computational science it is usually a minimization criterion. Best individu-
als are selected from the current population (stochastically, based on their fitness
evaluation result), their genome is modified (randomly mutated or recombined
with other genomes) and a new population spawns evolving towards even better
solutions. The new population is created on the each next iteration of the algo-
rithm. Commonly, the algorithm terminates when either a maximum number of
generations has been produced or a satisfactory fitness level has been reached for
the population. Though, a termination of the algorithm does not explicitly mean
that optimal solution is reached, usually GA gives a good sub-optimal solutions
in a reasonable time.

The GA is virtually applicable to any kind of problems. To be able to apply
GA to a problem three mandatory components should be defined: a genetic repre-
sentation of the solution space, a fitness function to evaluate individual solutions
and evolutionary operators to produce the offspring. In the next section we will
show how that fits to the biologically plausible hierarchical neural networks.
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5.3 Evolving hierarchical model
The concept of evolvable hierarchical neural network’s model is based upon three
major evolutionary levels usually considered by researchers, they are: phyloge-
netic, ontogenetic, and epigenetic [122].

epigenetic level refers to learning capacities, which are limited to an specie’s
individual lifetime. The Spiking Neural Network itself naturally fits into this
layer, because of synapse and cell evolution under Spike-timing-dependent
plasticity (STDP) and pruning processes.

ontogenetic level describes origin and development of the system during its
early stages of development. Genome decoding sequences, neural system
initialization based on decoded genome and handling neural network’s pre-
development external inter-connections establishment rules are performed
within this conceptual level. It is the level of the hierarchical meta-system.

phylogenetic level is responsible for system’s development on the large time-
scale, i.e. for feature encoding and storing in a genome, as well, as driving the
system though evolutionary and genetic development processes. Selection of
alternate values of the parameters (i.e., the alleles) is performed at this
level associated to a computational neuro-genetic modeling. The evolvable
hierarchical neural network, described in this Chapter, fits well into this
level.

Final model of hierarchical evolving spiking neural network covers all these lev-
els of the evolutionary scheme from the epigenetic level and up to the phylogenetic.
Almost every feature of neural network is represented by genome, which incapsu-
lates all relevant genes responsible for neural network shaping in a proper way:
cell types and distributions, post-synaptic potentials (PSPs) levels and refraction
periods, connectivity patterns, network topologies, and so forth.

From the evolutionary point of view modeling is a process, which consists from
the next stages: formation of an initial population, network early development,
system modeling and reproduction of the next generation of the population. Given
an initial genome the neural system is populated with the neural network mod-
ules. Each parameter of the neural network is set by the genome including, but
not limited by, connectivity rules applied to the circuit, as it is described in the
Chapter 4. When all inter- and intra-module connections are established, system
starts simulation of SNN behavior, according to the model given in the Chapter 3.
A fitness function evaluates (as described later in this Section) every complete sim-
ulation (simulated circuit) of the population and basing on the result a decision
whether to reproduce or not is taken for each particular circuit. If the decision
to reproduce is taken, one or more replicas of this system is created. Genome of
the replica is based on the one of its parent, but with random mutations. The
new population is formed by a set of all replicas produced and they are used on
the next iteration of the evolutionary procedure. The modeling terminates when
a given number of generations has been produced.

One can see that mandatory components of the GA, mentioned in the previous
section, are fulfilled in a natural way: through a genome we set up multiple param-
eters of a neural network model, then we evaluate this specie by modeling a neural
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network and by application of a fitness function to the produced output. Having
this done, we will easily select best neural system and re-spawn a new population
for further improvement. However, to complete the model we should explicitly
define a genome coding scheme, a mutation procedure and a fitness function.

5.3.1 Genome coding scheme

While in the biology gene is a DNA sequence, in the computational biology it is
a sequence of bits, describing particular specie. This approach is used in the our
model. In the our model in the absence of a level which directly models amino-
acids we should also chose the level of desired abstraction of genes and genome
coding scheme. The level of abstraction should determine if a gene will correspond
to high or low level model abstracts. For example, it can define which features
should be coded will it describe an inhibitory postsynaptic potential (i-PSP) level
of a projection or a complete topology of a neural circuit. As soon, as the model
does not have explicit DNA level, the coding scheme should determine, which
algorithm which will be used to describe, encode and decode genes of the system.
The selection of those two components will greatly affect a result of the evolutional
operators, i.e. mutation and recombination.

We used an approach, which reflects the architecture of the developed neural
network simulation framework. It allows to code almost any existing parameters of
the model, but also that means for each particular simulation we should explicitly
specify which genes will be mutated and which will not be, according to the task
of particular experiment.

The coding scheme is as follows: an ordered set of modeled genes of the neural
system is selected before simulation, it stays fixed through the whole simulation,
each numerical model parameter to encode in the genome is converted to an ap-
propriate bit-stream, then all bit-streams are merged together thus forming the
final system’s genome representation. As a set of genes of the genome is finite
and ordered and length of each gene is known a priori, the genome’s bit-chain will
definitely describe circuit’s parameters, so they could be encoded and decoded
without a loss of information. A number of descriptors is associated with each
numeric parameter coded in a genome, they are: a maximal possible parameter’s
value, a minimal possible change ∆, and a number of bits, which could be changed
by an evolutionary operator. First two parameters define how many bits are used
to describe a gene and the third defines how many of them could be changed by
mutation procedure.

Let’s consider an example: we want to code by a gene a i-PSP potential of a
projection, which is equal to 2.125 mV for the first population, the model at whole
is very sensitive to this parameter, so we do not want it to be higher than 16 mV
and change ∆ should be even to a 1/256 mV , that gives us 4 bits (16 = 24) for
the integer part of the value and 8 bits (1/256 = 2−8) for the fractional part, so
the final gene’s bit-chain is be as follows: “0010.0010.0000”. This example as well,
as a few others, is summarized in a Table 5.1.

The final system’s genome consists from a number of bit-chains, as the one
mentioned above, each corresponding to a modeled parameter. In that way, one
can encode and decode almost any set of parameters and perform experiments of
interest.
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Table 5.1: Genome coding and mutation example

Coded parameters: refractory period efferents number i-PSP
Units: time-steps cells mV
Delta: 1 4 1/256
Max: 8 1024 16
Bits total: 3 (3+0) 8 (10-2) 12 (4+8)
Value (sample): 3 400 2.125
Bitstream: 011 0010.0100 0010.0010.0000
Mutated genome:
Mutated bits: 3 6 8
Mutated stream: 010 0010.1100 0010.0001.0000
Mutated value: 2 432 2.0625

5.3.2 Mutation procedure

The mutation operator used in the model is an extension of the bit-flip operator
[92]. Having a bit-stream corresponding to the genome, we can establish an α
variability level of the genome. According to which each particular bit of the
genome may inverse its value (changing form 0 to 1 and from 1 to 0, depending on
its initial value) with a probability α/b, where b is number of bits in the bit-stream
representing the genome. It is clear, that depending on the parameters coded
such mutation procedure could product a lot of non-vital species. That would
be a costly processes in terms of computational power, given the complexity and
the time expensiveness of the simulations. In order to decrease number of non-
vital species, we introduced a rule, already mentioned above, when one should
select gene bits which could be affected by the mutation. That will allow to
select appropriate magnitude of the genome’s variability and to diminish number
of lethal mutations. In the biology genes are usually not so badly affected by the
mutation. This problem is addressed by the robustness of the gene’s structure
and the transcription mechanisms. In the our model this aspect also could be
addressed by adding the robust coding schemes, thought foresee the complexity
of the task it is left for the future work.

Considering the example from the Section 5.3.1: a gene corresponding to the i-
PSP with an initial value of 2.125mV , represented by a bit-chain “0010.0010.0000”,
have a 10 mutation-allowed bits with an α = 20%. Application of the mutation
procedure could occasionally change 2 bits the numbers 5 and 6 (from the right),
thus the gene will be mutated to a bit-chain “0010.0001.0000”, which corresponds
to a new value of 2.0625 mV . In the example shown in the Table 5.1 a genome
“011:00100100:001000100000” representing the values of “3:400:2.125” in the same
way will be mutated to the “010:00101100:001000100000” string and the corre-
sponding values of “2:432:2.0625”.
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5.3.3 Fitness function

The replication is made at the end of system’ simulation and is governed by the
fitness function, which should play a role of the natural selection, i.e. which
will “favor” the neural system species with genes that aid to solve a particular
task. Started from a modeling application, here we have not a strictly fixed func-
tion, because there are very vide range of possible tasks and applications, but a
framework which allows to implement user defined functions. Current framework
implements only two possible fitness functions: the first one – the random one
“selects” a specie for a reproduction with a given probability and the second one
is a threshold function of a number of active cells in the system, like that:

H(nactive) =

�
0 : nactive < NTr

1 : nactive ≥ NTr
(5.1)

Where nactive is a number of active cells, which is defined as the number of cells
spiking in a low-frequency band, for example: 1 − 50 Hz, and NTr is a threshold
value. In such way we consider overexcited and under-excited networks as a dead
ones.

5.3.4 Evolutionary framework conclusions

To conclude, an unique simulation framework is created, it allows to model and
to study biologically plausible hierarchical neural circuits defined by genome and
which are evolving from generation to generation with aid of mutations and a user
defined fitness function. A sample application of this framework will be presented
in the Section 7.2.

Now we have covered all modeling aspects of the biologically plausible SNN
used in our experiments, so we will proceed to the data analysis and results part
of the Thesis.

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



Part II

Bioelectrical Activity Analysis

57





59

Introduction to the Bioelectrical Activity Analysis
part

In the previous part of the Thesis the model of the evolving hierarchical spiking
neural network was described. This part is dedicated to bioelectrical data analysis
approaches and to the results obtained in the experiments observing an emerging
behavior of the neural model created. This part is divided into three chapters, each
reflecting an important period of the development of the Thesis: the first chapter
describes an application of the higher order spectral analysis to the biologically
plausible electric signals recorded by the simulated circuits, the second one de-
scribes findings on an effect inter- and intra-layer reciprocal projections have on
the hierarchical neural circuit’s emerging activity and the last chapter describes a
concept of application of the robust non-linear regression analysis methods.

Signal analysis approaches, originated from the neurophysiology, as Evoked
Potential, Power Spectral Density and bispectral methods, applied to our mod-
eled electrochipography (EChG) signals are described in the Chapter 6. Then the
results obtained by these methods application to real and to simulated data are
given in the Article B: “Stimuli-driven functional connectivity”. We will touch
briefly a neural network scaling questions and, in particular, spontaneous activity
level adaptation techniques in the Section 7.1. The behavior of the larger net-
works (6× 75× 75 cells) of four topologies featuring different combinations of the
reciprocal inter-module projections are summarized in the Section 7.2. Finally,
a concept of application of robust non-linear regression analysis is given in the
Article C: “Structural modeling robust to outliers”. The article is dedicated to the
novel non-linear regression algorithm developed during the flow of the Thesis and
featuring automatic model search in non-linear model space and model’s parame-
ter estimation robust to the outliers in both explanatory and response variables.
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Chapter 6

Bioelectrical data analysis

Résumé :

L’activité bioélectrique de chaque module a été enregistrée au moyen
des électrodes virtuelles. Ces signaux ou electrochipogrammes (EChG)
se caractérisent par des propriétés proches de celles obtenues avec
l’encéphalographie (EEG), l’electrocorticographie (ECoG) et des poten-
tiels des champs locaux (LFP). Les méthodes d’analyses fréquentielles et
de potentiels évoqués appliquées ces signaux sont décrits dans ce chapitre.

In many ways, neuroscience is a reverse-engineering of the principles of the
biology. The unknown machines are the biological systems. We dissect them to
figure out how they work. Artificial model allows to dissect the systems, without
doing this in the reality. As on the bottom level of the model we have neurons
and projections, it is natural to start a study from that level.

This chapter describes main techniques which are applied for the analysis of
simulated neural circuit’s behavior. These approaches are spatiotemporal pattern
analysis, event-related analysis, and spectral analyses. The first one is targeted at
knowledge discovery based on exact spike trains gathered from neurons or group
of neurons during a simulation or an experiment. Second one is used to generalize
activity levels of emerging behavior registered by the means of EEG-like recordings
and thus to deduct higher level patterns of behavior. The latest is used to discover
signals’ time-frequency characteristics. Let’s start from the spatiotemporal pattern
analysis.

6.1 Spatiotemporal patterns of activity
The rationale behind spike train analysis is to deduce principles of operation of
a neural network, as a black-box, by interpolation of state of neurons based on
raw spike sequences recorded from the neurons. That is, given a set of spike
train signals representing the input/output or intermediate signal of a network,
we deduce what the network is doing and how it is developing. Spike trains are
bio-electrical signals recorded from individual neurons in the brain/model. They
are essentially action potentials generated by the neurons. They are generated
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by neurons in order to communicate an information to another neurons. The
information is represented by series of “spike-coded” signals.

In the model two principal events could force a neuron to produce a spike.
On one hand, spontaneous activity process (see Section 3.7) can provoke a neu-
ron to fire whenever its excitation level is close to the activation threshold (see
Section 3.2). On the other hand spikes also can be produced by convergence of
synchronous activity (i.e., temporal summation of excitatory post-synaptic poten-
tials) of a group of neurons within the network. The information processed by a
neuron is embedded into a time-series of spike train. Since all spiking potentials
are essentially identical to one another (i.e., spikes have the same amplitude), they
represent an information used by neurons by its time-of-arrival and not by its am-
plitude. It is the time-of-occurrence of the spike and the frequency-of-occurrence
of the spike, that encodes content/information carried by the signal.

Mathematically, spike trains belong to a class of stochastic processes called a
point process. A point process is a natural process that is characterized by the
occurrence of a point-event. A point-event is an event that could be represented
by a point in time or by a point in space. A point does not occupy any finite time
or space, rather it signifies the onset of an event in time or the limit of an event
in space. In other words, a point is infinitely small. Usually points are used to
signify the onset of events. Although spiking potentials do occupy a finite time,
the time of occurrence is considered as a point because it is negligibly short. Thus,
in the analysis we could treat signal content as a point process, that allows us to
simplify the complex problem into elegant mathematics.

The spike trains of activity analyzed for a presence of recurrent patterns of
spikes, which could be recurrent in time or in space (in between several neurons
or groups of neurons). Usually this is done by complex statistical approaches
as, for example, Pattern Grouping Algorithm, described in greater detail in the
[135, 133, 134]. Despite that, some patterns could be easily spotted by a visual
inspection of a raster plot of spike occurrences. A raster plot is a figure where
each spike is depicted by a point, every line corresponds to activity over certain
period of time, usually an epoch, and each next line represents next period in the
life of a neuron or neurons.

For example on the Figure 6.1 on the top, on the middle, and on the bottom
panels one can see three raster plots corresponding to signals recorded from three
neurons in the networks. Each panel described by 250 lines of 1536 points each,
each point corresponds to a 1/1024 of a second, thus every line is 1500 ms long and
these raster-plots depict 375 seconds in live of three neurons. On the bottom panel
one can see a neuron falling into the depressive state after approximately half of
the simulation time, which is seen by lower spiking activity and in consequence
fewer points on the upper part of the raster plot. On the top and middle panels
one can see neurons with higher spiking activity during first 500 ms – having much
more points on the left part of the rasters – this is produced by incoming external
stimulus applied to the system. And also one can notice slightly higher spiking
activity at around offset of 1300 ms driven by internal synchronous activity of
neurons of the network.

Main advantage of the spike train recordings is spatial and temporal preci-
sion, in the same time it is somehow the weak point of these recordings, be-
cause it is difficult to find generalities in emerging patterns of behavior described
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Figure 6.1: Sample spike trains captured from three neurons are shown on top,
middle and bottom panels. 375 seconds in the life of three neurons are described
by a raster of 250 lines of 1536 points (1500 ms) each. Each black dot corresponds
to a spike produced by the neuron.

by spike trains. More general behavior trends could be obtained while working
with assemblies of neurons. This is where analytical approaches based on the
electroencephalography (EEG), the Local Field Potentials (LFP), and the simu-
lated EChG are handy (see the Section 4.4 for the model).

6.2 Event-related potentials
Both EEG and EChG are complex combinations of signals related to a mixture
of transient, oscillatory or relatively permanent activities of cell assemblies, some
being related together in synchronous and/or asynchronous modes. The method
chosen to sort out specific activity in the signal is the Event-related analysis,
based on event aligned Evoked Potential (EP) of the signal. Momentary (tempo-
ral) changes in brain activity, as reflected in EEG, are rarely exploited due to lack
of analytical tools and methodology [53], that is why we have used the averag-
ing event-related techniques. We use a repetitive triggering event to average the
signal’s epochs such that those components that are time-locked to the trigger-
event are summed up, while event non-related activity is averaged out, weakly
summed up or substracted when in opposite phase. In any case wanted effect is to
eliminate the irrelevant “on-going” brain or spontaneous neural network activity
referred as “background” activity and to amplify event-related part of the signal,
if it is possible.

Among the discarded “irrelevant” components there might also be signals re-
lated to the event processing, if they are different after each presentation. An
example is oscillatory activity, which might have a different phase in each single
measurement and therefore it would cancel out with signal averaging. This type
of activity is invisible on the EPs, but it is likely to be revealed by higher order
spectral analysis approaches like bispectrum and bicoherence (see Section 6.3.2
for details), which preserve the phase information by shifting the signal from time
space to frequency space through the Fourier transform of each event-related sig-
nal before averaging. Unlike to bispectral methods, Event-related Potential (ERP)
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will aid to discover only most general linear patterns of activity.

Figure 6.2: Average amplitude of the oscillations during development of a neural
system of FBH topology, in the first (solid line) and second (dotted line) processing
layers.

The easiest way to apply the ERP technique is to use an offset of the stimulus as
triggering event then to average activity during the periods equal to the stimulus’
presentation time with the Inter-Stimulus Interval (ISI) – the epoch. In this case
epochs (see the Section 4.3.1) correspond to trials, which is a more convenient term
when applied to ERP technique. The trials of the signal with stimulus-related part
discarded are called trimmed trials, they are useful in spectral analysis, as will be
discussed later. The number of trials to average depends on the signal variability
and the desired accuracy and other limiting constraints of experimental conditions.
In our neural system simulations, ERP were computed for a minimum of 25 trials,
and for most simulations it was equal to either 50 or 125 trials depending of the
experimental setup.

The last limitation is due to the stabilization time of the network at start
of the experiment due to the high level of pruning that occurs during the early
developmental phase, which is illustrated on the Figure 6.2. On the figure an
average amplitude of the EChG signal during appropriate trial (on the x-axis) is
depicted on the y-axis in mV . The early seconds of life are characterized by chaotic
transient activity, while later network converge to a stable state, so we observe
an exponential decay of activity’s amplitude during network’s development. This
signal is taken from the experiment described in a Section 7.2 and is an average of
the EChG signals from 21 neural systems simulated each having the feed-backward
with horizonal reciprocal connections (FBH) topology.

As it was mentioned before, the advantage of EPs is that the irregular part of
the signal is summed out, and the regular one is amplified. This is illustrated by
the Figure 6.3, where 25 individual trials aligned by the stimulation event (from
the trial #201 and up to the #225 from the first processing layer of the FBH
circuit) are displayed on the bottom part of the figure and corresponding EP is
shown on the upper part. While the individual trials seem chaotic, their sum
reveals certain regularities. First, higher average level of activity during 500 ms
after the stimulus onset – duration of the stimulation – short silent period just
after the end of the stimulus, characteristic for that kind of cells and occasional
high synchronous neuronal activity at around 1290 ms onset driven by internal
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Figure 6.3: Individual EChG traces per trials #201-225 aligned by stimulation
event are displayed on the bottom part of the figure. Corresponding Evoked Po-
tential (EP) is displayed in the upper part of the figure.

synchronization of the neurons (please notice high at that time-moment).
While EPs are useful for activity levels analysis, it is also important to perform

time-frequency analysis of the signal in order to find characteristic changes in the
spiking frequencies and in the frequencies of synchronous activity.

6.3 Spectral analysis
The spectral analysis provides valuable information about distribution of energies
transferred by the activity over selected frequency band. In the current study
we discuss only the two conventional methods of spectral analysis, which rely on
the stationarity of random signals, they are Power Spectral Density analysis and
bispectral analysis. A random process is strictly stationary if time shifts do not
affect its probability characteristics (mean, variance, etc). A process is Wide Sense
Stationary (WSS) if its expected power is finite, and its mean is constant and its
autocorrelation depends only on the time difference of the samples. However,
stationary processes are WSS, but not vice versa.

6.3.1 Second order spectral analysis

The Power Spectral Density (PSD) or Energy Spectral Density (ESD) is a posi-
tive real function of a frequency variable associated with a stationary stochastic
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process, or a deterministic function of time, which has dimensions of power per
frequency. In signal analysis is useful to examine the energy of a signal by decom-
posing it into a series of elementary sinusoidal components of constant amplitudes
and frequencies. The best-known method to obtain such result is the Fourier trans-
form to decompose the signal into series of sinusoidal and cosinusoidal waves. The
estimates of the energy of each elementary wave will give us energy distribution
in the frequency domain. In this case the energy is represented by its distribution
along the frequency dimension. The result of this operation is the Power Spectral
Density (PSD).

The frequency spectrum is the base conventional signal analysis. With digitized
signal, the power spectral density can be estimated with the Discrete Fourier
Transform (DFT) or its fast computational variant the Fast Fourier Transform
(FFT). There are many ways to extract the power information [129]. The two
conventional methods (direct and indirect periodograms) are parametric and easily
implemented.

The direct estimation of the PSD is a periodogram analysis, it extracts directly
the energy from the signal. Let x(n) be a WSS random process. x(n) has an
average power E given in Watts. The average of the total of energy is distributed
over some range of frequencies. The distribution over frequency ω is described by
the average PSD Sx(ω) as follows

Sx(ω) =
1

N
|

N−1�

n=0

x∗(n)e−jωn
|
2. (6.1)

The power spectra of random, zero-mean, Wide Sense Stationary signals are
obtained from the Fourier transform of these signals. In an analogous fashion the
cross-spectrum of two signals x(n) and y(n) is defined to be:

Sxy(ω) =
1

N
(
N−1�

n=0

x(n)e−jωn)(
N−1�

n=0

y(n)e−jωn)∗. (6.2)

The indirect method of estimation of the PSD is based on the autocorrelation
sequence ϕXX(τ) of the signal defined as

ϕXX(τ) =
�

t

x(t)x(t+ τ). (6.3)

With this method the signal is multiplied by a shifted version of itself, the estimate
of the PSD ΦXX(ω) being obtained by the following Fourier transform of the
autocorrelation sequence:

ΦXX(ω) =
�

τ

ϕXX(τ)e
−jωτ . (6.4)

The cross correlation ϕXY (τ) of two signals is obtained by multiplying the first
one by a shifted version of the second, i.e.

ϕXY (τ) =
�

t

x(t)y(t+ τ). (6.5)
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Accordingly, the cross PSD ΦXY (ω) is the Fourier transform of the cross correlation
sequence, i.e.

ΦXY (ω) =
�

τ

ϕXX(τ)e
−jωτ . (6.6)

The periodogram are unbiased estimators but they are not consistent. This is
due to the fact that the Fourier transform shows fluctuations at all frequencies even
if the duration of the signal tends to infinity. Thus the variance of the estimate
does not decrease to zero with increasing the duration of the time window. Usage
of long duration observation interval has another drawback with EEG because in
this case the signal tends to lose its stationarity over the entire recording interval.

A few methods can be used to reduce the variance of the PSD estimate and
make it more consistent:

• smoothing (filtering) in the frequency domain;

• multiplying the autocorrelation sequence by a lag window function;

• multiplying the time-domain data by a window function;

• averaging several periodogram estimates.

In our studies we used only the filtering technique to reduce high-frequency noise.
The two last techniques are the most used modifications of the periodogram

method in electrophysiology. First, one data interval is divided into small seg-
ments, which are multiplied by a symmetrical windowing function which tapers
the extremities of the segment minimizing the border effects on the fourier trans-
form. The resulting PSDs are then averaged to yield the final spectral estimate.
Notice that a white noise input should give a flat PSD, the would have a neural
network with pure gaussian activity. This fact will be used for adaptation of the
spontaneous activity level described in the Section 7.1. The PSD will provide a
measure of the level of activity of the neural modules in the simulated hierarchical
neural circuit.

In clinical EEG, this parameter is commonly used intuitively by simple visual
inspection to estimate the importance of the evolution of some pathological states.
Power Spectral Density (PSD) is commonly used in several analyses when the
fundamental question is a detection of little variations or changes inside one specific
window of signal like in the detection of changes in insomnia under NREM sleep
period and sex differences [35], in the identification of properties in spreading
depression in conscious rabbits [90], in the characterization of signals from sleep
EEG in twins discordant of chronic fatigue syndrome [9], in the quantification of
pharmacological effects of anesthetics on the brain and the level of sedation [46],
in the detection of annual variations of EEG in patients with chronic epilepsy [9]
among others.

6.3.2 Third order spectral analysis

This section presents the bispectral analysis in a way to emphasize its relevance to
the study of functional connectivity between interacting neuronal networks. Ta-
ble 6.1 summarizes the main functions describing second and third order cumulant
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statistics. For sake of simplicity the presentation of the bispectral analysis that
follows is based on random signal description.

Any signal (like an EEG trace) can be modeled as a polynomial function such
as

x(t) =
�

n

(akn(
�

n

cos(2πfnt+ ϕn)))

=
�

n

ann
v = a0 + a1v

1 + a2v
2 + a3v

3 + · · · (6.7)

where x(t) is the model signal formally made of a series of cosine waves, each
having their own amplitude an, frequency fn and phase ϕn which are linearly
combined to form a compound wave V .

With n = 0, 1, the resulting signal is a0+a1V , a simple combination (addition)
of independent cosine waves which is the paradigmatic model used in EEG until
the 1990s. With n = 0 . . . 2, one adds to the previous series (a0 + a1v), a new
series (a2v2) which is no more made of linear independent wave components, but
is a non linear (quadratic) combination of components. With n = 0 . . . 3, one adds
to the previous combination of linear and quadratic series (a0 + a1v + a2v2), a
new series (a3v3) which is made of new non-linear (cubic) combination of wave
components. By continuing this way, the model signal can be built to generate an
infinitely complex and precise representation of real signals.

6.3.3 Case study of non-linear signal analysis

To help with the understanding of what quadratic non linearities means in term
of signals one can simulate the case of two electrodes recording a mixture of linear
and non-linear waves.

Let’s consider an example: Channel #1 receive M successive signal which is a
mixture of linear and non linear generators G1 (f1 = 4 Hz) and G2 (f2 = 7 Hz),
such that

xC1
i (t) =

�

i

(g1 + g2 + g1g2)

=
�

i

(cos(2πf1t+ ϕ1) + cos(2πf2t+ ϕ2))

+
�

i

(cos(2πf1t+ ϕ1) cos(2 pif2t+ ϕ2))

Channel #2 receive M successive signal which is a mixture of a linear com-
bination of two generators G3 (f1 = 4 Hz) and G4 (f2 = 7 Hz) and a non linear
interaction of generators G3 and G2 (f = 7 Hz), such that

xC2
i (t) =

�

i

(g3 + g4 + g3g2)

=
�

i

(cos(2πf3t+ ϕ3) + cos(2πf4t+ ϕ4))

+
�

i

(cos(2πf3t+ ϕ3) cos(2πf2t+ ϕ2)).
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Table 6.1: Comparison of spectral and bispectral functions

Second order cumulant statistics Third order cumulant statistics

Model Signal
Linear Components

A1V
1 = a1(k

�
cos(2jπft))1

f1, f2 (no phase relations)

Quadratic Components

A2V
2 = a2(k

�
cos(2jπft))2

f1, f2, f1 + f2, f1 − f2 (same for phases)

Time Domain
Auto-Correlation

ϕxx(τ) =
�

t

x(t)x(t+ τ)

Cross Correlation

ϕxy(τ) =
�

t

x(t)y(t+ τ)

Auto-Bicorrelation

ϕxxx(τ1, τ2) =
�

τ

x(t)x(t+ τ1)x(t+ τ2)

Cross Bicorrelation

ϕxxy(τ1, τ2) =
�

τ

x(t)x(t+ τ1)y(t+ τ2)

Frequency Domain
Power Spectrum

Φxx(f) =
�

τ

ϕxx(τ)e
−2jπfτ

= X(f)X(f) = |X(f)|2

Cross Power Spectrum

Φxy(f) =
�

τ

ϕxy(τ)e
−2jπfτ

=
�

t

X(f1)Y (f2)

Auto-Bispectrum

Φxxx(f1, f2) =
�

τ

ϕxxx(τ1, τ2)e
−2jπ(f1τ1+f2τ2)

=
�

t

X(f1)X(f2) ∗X(f1 + f2)

Cross Bispectrum

Φxxx(f1, f2) =
�

τ

ϕxxy(τ1, τ2)e
−2jπ(f1τ1+f2τ2)

=
�

t

X(f1)Y (f2)X
∗(f1 + f2)

Phase Coupling Domain
Auto-Coherence

γxx(f) =
Φxx(f)�

Φxx(f)Φ∗
xx(f)

≤ 1

Cross Coherence

γxy(f) =
Φxy(f)�

Φxx(f)Φ∗
yy(f)

≤ 1

Auto-Bicoherence (normalized bispectrum)

γxxx(f1, f2) =
Φxxx(f1, f2)�

Φxx(f1)Φxx(f2)Φxx(f1 + f2)
≤ 1

Cross Bicoherence (normalized bispectrum)

γxxy(f1, f2) =
Φxxy(f1, f2)�

Φxx(f1)Φxy(f2)Φxx(f1 + f2)
≤ 1

Loose phase information.

Non-linearities considered as linearities.

Any distribution considered as gaussian.

Retain quadratic non-linear phase informations.

Detect non gaussian (skewed) distribution.

Detect quadratic non-linearities.

Zero value if a gaussian signal.
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In this particular setting, Channel #1 contains non linearities which are local to
the channel #1 electrode. Conversely, Channel #2 contains non linearities which
are due to a generator common to both channels but which is non independent
with respect to the channel #2 electrode.

The Table 6.1 shows that spectra are Fourier transforms of correlations and
coherences compare spectra by their coherent versions (i.e., all phases set to 0).
By applying conventional spectral analysis (that is computing PSD) one obtains
identical power spectra for both channels #1 and #2 with 4 frequency peaks
(Figure 6.4).

Figure 6.4: The power spectral densities of both sample channels

The Figure 6.4 shows that most energy lies at 4 and 7 Hz, as predicted by
linear theory. In addition two other peaks centered at 3 and 11 Hertz are visible,
although not predicted by linear theory. These frequency components are the
sum and the difference of the two frequencies of generators G1 (f1 = 4 Hz) and
G2 (f2 = 7 Hz) in Channel #1, and of G3 (f3 = 4 Hz) and G2 (f2 = 7 Hz) in
Channel #2. The PSD on the Figure 6.4 reveal the presence of a mixture of linear
oscillators giving peaks at f1 and f2 and non linear oscillators giving peaks at f1,
f2, (f1 + f2) and (f1 − f2).

Bispectral analysis can reveal non-linear interactions because there is a differ-
ence in the phase content of each channel. Like conventional spectral analysis,
bispectra can be applied in the single channel case (auto-bispectrum, aBIS) and
between two channels (cross-bispectrum, xBIS) Representations of bispectra are
quite difficult to understand as they are in fact 3-dimensional projections in eu-
clidian parts of a globally non euclidian “cumulant space” manyfold.

The bispectral matrix is symmetrical and has a lot of redundancy, so it is
possible to display only a triangular part in the first quadrant. For each channel
the first quadrant of the bispectral matrix is displayed in 3 dimensions with a more
precise 2 dimensional representation underneath which shows lines identifying the
relevant triangular region of interest. The Figure 6.5 shows the bispectra for both
channels. Notice that the x = y line is a symmetry axis for the quadrant.

Figure 6.5 shows four high peaks at coordinates (4,3), (7,4), (3,4) and (4,7)
in the auto-bispectrum of Channel #1. Only the first two coordinate pairs are
needed as the other two ones are their symmetric counterpart. In Channel #2 the
magnitude of the peaks at coordinates (4,3), (7,4), (3,4) and (4,7) is much lower.
The significance of the peaks can be assessed by computing the bicoherence, that
is comparing bispectrum with its maximally coupled version (all phases are set to
zero), as shown on the Figure 6.6.
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Figure 6.5: The bispectrum of both sample channels

Figure 6.6: Final coupling information obtained from both bispectrum and bico-
herence for both sample channels. Black dots marks coupled frequencies.

To summarize, Channel #1 contains 3 and 11 Hz non-linear local frequency
components, while Channel #2 has no local non-linear frequency components.
Channel #1 X(t) is non-gaussian and non-linear, while Channel#2 X(t) is non-
gaussian, but a linear combination of components, even if one of its components
is non-linear. This non-linear component is not phase linked to the other linear
component and thus is independent. To detect its phase linked companion one
has to do a cross-bispectral analysis and to be lucky enough to place the electrode
at the right place.

6.4 Spectral analysis results
The Article B: “Stimuli-driven functional connectivity” describes a study on a
development of information processing in hierarchically organized neural circuits.
We have explored one simple neural network circuit characterized by a sensory
network processing the external input and projecting its activity to two processing
areas which eventually project on a motor network. The experimental approach
to the system’s activity by recording the EChG was aimed to assess the effect
of a repeated stimulation on the functional connectivity established between the
neural network agents in the topology of interest. The third order spectral analysis
of EChG and EEG signals, which were the main tools of the study, allows to
determine the frequency range of quadratic phase coupling (resonant frequency)
across cortical areas [140, 141] and thus describe functional connectivity of the
brain areas.

The results are such that late-learning development stages of the system were
characterized by lower high-frequency activity in comparison with early-learning
stages, which is somehow similar to the behavior observed in the clinical EEG
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recordings taken from insomniac patients after appropriate treatment. In other
words, both the custom stimulation of the modeled neural network and the cog-
nitive brain therapy appear to modify the ratio of resonant frequencies provoking
a shift of the indexes towards low frequencies at all brain states.
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Résumé :

Les complexes de réseaux neuraux multimodales qui comporte des fonc-
tions de développement synaptique et cellulaire sont connectés afin qu’il
se forme un circuit hiérarchique récurent. Chaque module comporte une
électrode virtuelle qui capte un signal, l’electrochipogram (EChG), gé-
néré par des décharges neuronales. L’analyse de l’EChG est réalisé par
des méthodes d’extraction fréquentielles non linéaires. Ces méthodes nous
renseignent sur les modifications de connectivité fonctionnelle par chan-
gement de fréquences d’activité couplées.
Le paradigme expérimental permet de décrire le développement des ré-
seaux activés par le stimulus. L’analyse est réalisée sur les signaux qui
(1) précédent le stimulus, (2) suivent son apparition, et qui (3) précédent
et (4) suivent la disparition du stimulus. Ces résultats sont comparés à
d’autres résultats obtenus chez des patients dans conditions expérimen-
tales similaires. Nous montrons que notre modèle comporte des caracté-
ristiques semblables aux signaux EEG.
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Abstract
Complex neural modules with embedded neural development and synaptic plastic-
ity features have been connected to form a hierarchical recurrent circuit. Virtual
electrodes have been used to record a “neural” generated signal, called electrochi-
pogram EChG, from each module. The EChG are processed by frequency domain
methods to determine the modifications in functional connectivity by assessing
quadratic phase coupling. The experimental paradigm is aimed to describe what
happened prior to, at the beginning, towards the end, and after repeating an ex-
ternal input at fixed frequency. The results are discussed by comparing with the
same signal processing methods applied to a human study.

Keywords: spiking neural networks, hierarchical neural networks, distributed
computing, computational neuroscience, EEG.

B.1 Introduction
At mesoscopic level, the recording of brain activity by means of electroencephalog-
raphy (EEG), electrocorticography (ECoG) and local field potentials (LFP) col-
lects the signals generated by multiple cell assemblies. The neurophysiological
processes underlying those signals are determined by highly non-linear dynamical
systems [106]. Because of these nonlinearities the functional interactions between
brain areas that are simultaneously sampled by electrophysiological techniques
generate signals that can be better analyzed by third order polyspectral methods
that retain phase relationships [27]. This analysis was applied to EEG by pio-
neers as early as the 1970s [49]. Phase coupling frequencies can be interpreted as
frequencies of resonance of standing waves whose wavelength is associated to the
average distance between interacting cell assemblies [140, 141].

In the present study we simulate the activity of interconnected neural networks
undergoing neural developmental phases. The implementation of such complex
models requires high performance of the simulation that can be achieved thanks to
a powerful hardware platform, its bio-inspired capabilities, its dynamical topology,
and generic flexibility of artificial neuronal models presented elsewhere [74, 77].
The outcome is the implementation of each neural network into a Ubidule and a
network of Ubidules as a Ubinet. Within each Ubidule the emergence of functional
connectivity driven by neural development, cell and synaptic pruning, and selective
external stimuli was assessed by recording Electrochipograms (EChG) which are
analog signals similar to EEG generated by virtual electrodes located into each
Ubidule [126].

The experimental paradigm is aimed to describe what happened prior to, at
the beginning, towards the end, and after repeating an external input at fixed
frequency. The rationale is that the spike timing dependent plasticity (STDP) em-
bedded in the neural network models would drive the build-up of auto-associative
network links, within each Ubidule, such to generate an areal activity, detected
by EChG, that would reflect the changes in the corresponding functional con-
nectivity within and between Ubidules. This experiment is compared to a small
set of recordings performed in patients suffering of primary insomnia whose EEG
recordings were analyzed during several sleep phases, before and after a clinical
treatment.
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B.2 Hybrid system implementation

The Ubidule is a custom reconfigurable electronic device allowing an implemen-
tation of several bio-inspired mechanisms such as growth, learning, and neural
processing [123]. The common Ubidule platform is an hybrid system with an
XScale-class processor that manages the software components of the system, such
as ontogenetic processes, communications with other Ubidules, monitoring and
recording of the activity. This processor is equipped with an open hardware sub-
system which allows connecting any sort of USB device (sensors, actuators, Wifi
/ Bluetooth dongles, mass storage, etc.). The processor runs an embedded Linux
operating system which facilitates Ubidule programming and management while
ensuring portability at the same time.

Both hardware and software platforms are based upon modular architecture
that offers interoperability among the hardware and the software parts of the sys-
tem and simplifies the usage of bio-inspired features of the hardware. The neural
system simulator consists of multiple computational modules, each one correspond-
ing to a neural network, exchanging their neural activity and/or receiving input
data from hardware sensors (camera, photodiode, radars, etc.) and/or providing
output to hardware actuators (motor, diode array, etc.). The characteristics of
the implementation naturally geared the modeling framework towards agent ori-
ented programming. An evaluation of the available platforms of this kind led us to
select JADE [17] for the development and runtime execution of peer-to-peer appli-
cations which are based on the agent oriented paradigm [28]. It is a JAVA-based
multi-agent development system that fulfils the FIPA specifications [111].

In this study each network is a 2D lattice of 20 x 20 units that includes 80% of
excitatory units and 20% of inhibitory units. Our framework implements several
features of brain maturation, including apoptosis active during the very initial 700
time units and STDP active from the end of apoptosis until the end of simula-
tion. This framework was extensively described elsewhere [73, 74, 77]. Synaptic
pruning occured when the activation level of a synapse reached a value of zero,
so that besides cell death and axonal pruning of dead cells provoked by apopto-
sis, the units whose all synaptic connections were characterized by a zero level of
activation were definitely eliminated from the network. All units were simulated
by leaky integrate-and-fire neuromimes with background activity used to simulate
the effect of afferences that were not explicitly simulated within a network. The
background activity to each neuron was set to 900 spikes/s with a low amplitude
(1 mV ) generated by uncorrelated Poisson distributed inputs. In each Ubidule
two sets of 20 excitatory units were randomly selected among the excitatory units
corresponding to the “input” and “output” layers of the Ubidule. The neurons of
these layers send and receive connections from the other units of both types (ex-
citatory and inhibitory) within the network in addition to the connections with
other Ubidules.

Our circuit topology remained fixed during all simulations and the Ubidules
were characterized by their role in the network, i.e., sensory, processing, or motor
(Fig. B.1). In our network, the u1Sensory Ubidule has a pure sensory role. Ubid-
ules labeled u3Process, u4Process, u5Process, u6Process have a pure information
processing role and are characterized by having neither external inputs nor affer-
ences from the motor Ubidule. They are all reciprocally interconnected and send
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Figure B.1: The Ubinet hierarchical circuit used in all simulations. Solid arrows
depict connections and directions of information flow between the Ubidules.

efferent projections to u2Motor.

B.3 Electrochipograms
Our design of the bio-inspired artificial neural networks allowed us to implement re-
alistic virtual electrodes to record neuro-mimetic signals, called Electrochipograms
(EChG), characterized by dynamics and features similar to those recorded in liv-
ing brain structures. In our implementation the virtual electrode measures the
potentials over a certain ‘area’ of the 2D lattice neuronal network according to
an appropriate weighted sum [126]. The main parameters of the electode are its
position over the neural network and its sensibility function. The tip of the vir-
tual electrode was located in the middle of the 2D lattice of each Ubidule neural
network. The sensibility function depends only on the distance between a given
point of the lattice and the centre of the electrode field. According to this model,
all neurons located at the same radial distance from the center of the electrode
field make an equivalent contribution to the final electrode output and thus form
an equi-potential layer [126]. In this study, the sensibility radius was set equal to
9 with a linear decaying function.

The EChG was recorded with a 6 channels virtual electrode system with one
channel per Ubidule during 350 trials. Each trial had a fixed duration and included
two intervals: a stimulation interval followed by an inter-stimulus interval. The
stimulation was generated by spatio-temporal external stimuli applied only to
the input layer of u1Sensory lasting 128 (Type A) and 512 (Type B) time steps.
The group of simulations with higher stimulation frequency (0.89 Hz) was called
“Simulations A” and the group with lower stimulation frequency (0.67 Hz) was
called “Simulations B”. The extensive use of Fast Fourier Transform in our signal
analysis imposed, for improved efficiency, sampling frequencies which are powers of
two. In practice the time-steps of the simulator were selected for convenient time
units, i.e., 1024 time steps corresponding to 1000 ms. The inter-stimulus interval
was always equal to 1000 ms. The recording time was divided into four periods
defined following the amount of time the Ubinet was exposed to the stimulation:
(i) PRE-learning beginning at time zero and lasting 27 trials characterized by
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Figure B.2: Evoked potentials averaged over 50 trials obtained from u1Sensory
(blue solid trace) and from u4Process (green dotted trace) Ubidules during the
EARLY-learning stage. The stimulus was applied during 256 time steps. The
upper panel displays the raw evoked potentials and the lower panel shows the
signals smoothed by a Blackmann smoothing window in order to emphasize the
low frequency components.

the absence of any external stimulation (i.e., only the background activity was
present during the stimulation interval); (ii) EARLY-learning lasting 50 trials,
between trials #28 and #77; (iii) LATE-learning lasting 50 trials, between trials
#228 and #277; and (iv) POST-learning lasting 50 trials, between trials #278
and #327 again characterized by the absence of any external stimulation.

The signals recorded during the stimulation interval were averaged across sev-
eral trials in order to compute evoked potentials (e.g., Fig. B.2). The signals
recorded during the inter-stimulus interval were used for frequency domain anal-
yses that included power spectrum, bispectrum and bicoherence analyses.

B.4 Power Spectrum Analysis

Figure B.3 shows the averaged evoked potentials for the “first” (u3P,u4P) and the
“second” (u5P,u6P) processing layers and their corresponding Power Spectrum
Densities (PSD). In the PSD several peaks could be observed around 10 Hz,
15 Hz and 25 Hz. The results obtained during the EARLY-learning stage were
not significantly different from the PRE recording condition. This suggests that
PSD is little affected by the stimulus structure and by the subsequent functional
connectivity at the begin of the stimulation. This is probably due to the fact
that stimulus-driven selective cell and synaptic pruning were not yet producing
any effect. During the LATE period the PSDs were characterized by a generalized
decrease in the power and the preservation of the peak near 10Hz with a noticeable
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Figure B.3: Evoked Potentials and Power Spectrum Densities for the averaged
recordings of the pair of Ubidules in Layer 1 and in Layer 2. The left panels
correspond to stimulus Type A and the right panels to stimulus Type B. The
gray stripes correspond to the periods of stimulation. From top to bottom the
results referred to the PRE-learning, EARLY-learning, LATE-learning and POST-
learning periods.

decrease of the other peaks. It is interesting to notice that in the POST-learning
stage the multiple peaks tended to appear again, thus suggesting that they are
mainly driven by the combined effect of background activity and internal features
of the model. Another general observation is that in mature networks, i.e. during
the LATE- and POST-learning phases in comparison with EARLY- and PRE-
learning phases, PSD is getting lower, which means the total amount of energy
transferred by the neural networks is decreasing. The POST-learning phase was
characterized by 3.5 dB/Hz lower values of power than appropriate values during
PRE-learning phases. This decrease is likely to be associated to the pruning of
synpatic links and cell death.
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B.5 Quadratic Phase Coupling

The bispectral analysis was performed for all channels separatedly and the values of
phase-coupled frequencies (i.e., the frequencies of resonance f3) were determined.
Let us consider the distribution of all phase-coupled frequencies f3 observed in
single-channel and cross-channel analyses. Let us consider the frequency band ]1−
24] Hz for EChG and LF the relative number of f3 falling into this low frequency
range. Let us consider the frequency band ]60−84]Hz and HF the relative number
of f3 falling into this high frequency range. The index of resonant frequencies IRF
is defined in the range 0–100 as follows: IRF = 1

2 ×
�
100 +

�
HF−LF
HF+LF × 100

��
. A

value of IRF close to 100 corresponds to a shift of f3 towards higher frequencies
and value of IRF close to 0 corresponds to a shift of f3 towards lower frequencies.
IRF values close to 50 indicates the phase-coupling was equally distributed in
low- and high-frequency bands. The raw frequency ratio is simply defined by
RFR = LF

HF . This means a large value of RFR corresponds to a shift of phase-
coupling towards higher frequencies and a low value of RFR corresponds to a shift
towards lower frequencies.

Figure B.4 shows the distribution of f3 in the range 1 to 100 Hz during all
recording periods and for the two types of stimulus used in the Ubinet simulation.
These histograms show a shift towards an increase in low-frequencies resonances
during the LATE-learning phase, especially when compared with the distribution
during the POST-learning, when the input stimulus was absent. The quantitative
assessment of this analysis presented in Table B.1 emphasizes the change in the
value of IRF between EARLY- and LATE-learning phases. IRF ≈ 60 decreased
to IRF ≈ 14 followed by an increase to the range 26–29 during the POST-learning
phase suggests that the shift towards low frequencies of phase-coupling was pro-
voked by the learning protocol and not only due to the maturation of the network.
The analysis of IRF and RFR shows also that in the POST-learning stage the
resonant features remained affected by the functional connectivity that developed
during the trials with external stimulation and the values were intermediate be-
tween PRE/EARLY-learning and LATE-learning phase.

Table B.2 shows the relative count of phase-coupling in the frequency bands
of interest and the values of indexes IRF and RFR for all recording periods in
controls and patients suffering primary insomnia before and after treatment [112].
The frequency ranges of the bands refer to those generally used for human studies
and are different from those used for studying the Ubinet activity. However, there
is a linear correspondence between the two sets of frequency bands. The general
pattern was a high level of high frequency coupling in the group of patients before
treatment. The main effect of the treatment was to reduce high-frequency cou-
pling and shift phase-coupling towards low frequencies, somehow with a significant
increase of low frequency coupling compared to the controls. The treatment sig-
nificantly increased the phase-coupling in the low frequency band during all other
intervals, either re-establishing a level close to the controls or even beyond that
level, as observed during the REM sleep phases.
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Figure B.4: Relative distribution of the frequencies of resonance for each period
for Simulations A and B. Bin size corresponds to 2 Hz intervals. The dotted lines
delineate the limits of LF and HF bands.

B.6 Discussion
This paper described the implementation of a neuronal system simulator on a
hybrid scalable multi-agent hardware platform based on the Ubidules framework
[123] and its application to the study of information processing in hierarchically
organized neural networks circuits. We have explored one simple Ubinet net-
work circuit characterized by a sensory network processing the external input
that projects to a hierarchically organized multilayered (in our case formed by
only two layers) recurrent network of processing areas which eventually project
on a motor network that generates an activity keen to be encoded into actuators.
The experimental approach to the Ubinet activity by recording the EChG was

Table B.1: Percentage of phase-coupled frequencies in each frequency bands of
interest for the stimulus Type A and B within neural network development stages.
IRF: index of resonant frequencies. RFR: raw frequency ratio.

Learning Percentage of phase-coupled frequencies Indexes
Phase LF: ] 1-24]Hz ]24-60]Hz HF: ]60-84]Hz IRF RFR

Stimulus Type A
PRE 27 53 20 43 1.34
EARLY 20 50 30 60 0.66
LATE 38 56 6 13 6.67
POST 38 49 13 26 2.83

Stimulus Type B
PRE 20 48 32 62 0.62
EARLY 21 47 31 60 0.68
LATE 49 43 8 14 6.00
POST 44 38 18 29 2.43
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aimed to assess the effect of a repeated stimulation on the functional connectivity
established between the Ubidules. Our PRE-learning stage could represent a con-
trol situation driven exclusively by the background activity of the subject’s brain.
The subject is naive to the coming stimulus so that a learning process can occur.
During the EARLY-learning stage the repetition of the stimuli at regular inter-
vals might initiate an unsupervised recognition process that eventually shaped the
functional connectivity of feature detecting cell assemblies after selective synaptic
and cell pruning.

The third order spectral analysis of EChG and EEG allows to determine the
frequency range of quadratic phase coupling (resonant frequency) across cortical
areas [140, 141]. According to the usual interpretation based on standing waves
theory, high resonant frequencies mean that information processing is transmitted
at short distance (i.e., the distance between two nodes of the wave). A coupling
that occurs at high frequencies may be interpreted as a sign of focal cortical
interactions. Conversely, a coupling at low frequencies suggests an increased cross-
areal involvement in neural processing.

A remarkable result is the finding that in the Ubinet simulations the LATE-
learning stages were characterized by IRF ≈ 14 compared with PRE- and EARLY-
learning stages (IRF ≈ 43− 62). In the study with human Subjects we observed
that controls and patients after treatment were characterized, during all sleep
phases by values of IRF lower than insomniac patients before treatment. It is
also worth reporting that the only condition that let appear a difference of reso-
nant frequencies in the range ]13-33] Hz was during NREM sleep irrespective of
the treatment. This last result suggests that despite an overall shift of resonant
frequencies towards recovery, focal cortical interactions tended to persist in pa-
tients during NREM sleep periods. Both an appropriate stimulation of the Ubinet

Table B.2: Percentage of phase-coupled frequencies in each frequency bands of
interest for the the control group and for the group of patients before and after
treatment. REM: rapid eye movement sleep. NREM: rapid eye movement sleep.

Subject Group Percentage of phase-coupled frequencies Indexes
LF: ] 1-13]Hz ]13-33]Hz HF: ]33-48]Hz IRF RFR

Eyes Closed
Control 12 74 14 54 1.17
Patient before 2 77 21 91 10.50

after treatment 8 88 4 33 0.50
NREM

Control 57 30 13 19 0.23
Patient before 27 60 13 33 0.48

after treatment 42 57 1 2 0.02
REM

Control 4 90 5 56 1.25
Patient before 4 85 12 75 3.00

after treatment 19 79 2 10 0.11
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and the cognitive brain therapy appear to modify the ratio of resonant frequen-
cies provoking a shift of the indexes towards low frequencies at all brain states.
Our findings suggest that new tools provided by modular and scalable neural net-
work simulators offer new opportunities to neurophysiologists and clinicians to
test hypotheses based on the analysis of neural signals at mesoscopic levels.
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Chapter 7

Stimulus-evoked activity

If the human brain were so simple
That we could understand it, We
would be so simple That we
couldn’t.

Emerson M. Pugh

Résumé :

Cette partie inclus une étude pionnière dans la simulation de signaux EEG
générés par un grand échantillon de réseaux hiérarchiques de neurones de
type « intgrate-and-fire ». En effet, les études rapportées dans la littérature
analysent la stabilité de l’état dynamique du réseau, l’effet du bruit sur
le réseau, ou l’émergence d’une activité synchrone. En revanche, notre
approche expérimentale offre la possibilité d’étudier l’effet que pourrait
avoir de la connectivité inter-corticale (inter-modulaire) sur l’activité de
circuits neuronaux et sur le développement de liens fonctionnels.
Dans ce chapitre nous avons adapté les paramètres du modèle pour qu’il re-
flète au mieux le comportement des réseaux biologiques en tenant compte
de la dimension du réseau élargi par rapport à nos expériences précédentes.
Ensuite, nous avons testé l’effet de projections réciproques sur développe-
ment des liens fonctionnels dans les quatre circuits neuronaux principaux
lors d’une stimulation externe artificielle. Les résultats de la modélisation
montrent que les circuits modélisés manifestent un comportement similaire
aux celui-ci des circuits biologiques réels.

The study done in the Article B: “Stimuli-driven functional connectivity” exam-
ines the electroencephalography (EEG) and electrochipography (EChG) signals by
time- and frequency-domain methods (described in the previous Section) in order
to determine underlying modifications in the functional connectivity of circuits.
The experimental paradigm was aimed to describe what happened prior to, at the
beginning, towards the end, and after the repetition of the external input. The
results obtained from the simulated EChG signal are somehow similar to those one
can observe in clinical EEGs recorded from real persons. The EChG signals were
recorded by the virtual electrodes from multiple modules of the complex hierar-
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chical recurrent circuit with embedded neural development and synaptic plasticity
features. An implementation of the circuit (neural system) was done for a hybrid
scalable multi-agent hardware platform of the perplexus project [123].

Because of the framework’s constraints, in earlier studies our neural networks
were modeled by 20×20 cell lattices (400 neurons per module) giving 2’400 neurons
per circuit in total. These networks could be considered as medium sized ones. It
is known from theoretical studies that these circuits may not exhibit certain types
of biologically plausible features, which are in contrast observed in the larger cell
assemblies of the same neuromime [31, 30, 113]. In particular, smaller networks
may have a longer period of the initial transitional state and a shorter total life,
i.e. period from the start of simulation and up to the moment, when the majority
of neurons or projections are dead. That cuts number of the trials which could be
effectively used in the analysis.

With the end of the perplexus project we moved from custom hardware
modules to a more powerful universal computational cluster, so we had increased
network size of every module up to 5’625 cells (by using 75 × 75 lattice), which
gives us a total of 33’750 cells per neural circuit (compare that with 2’400 cells of
smaller circuit) of a typical topology consisting of 6 modules (see the Section 4.2.2
and the Article B for details). Next two sections are dedicated accordingly to
the enlarged network’s parameters adaptation, in particular to the adaptation of
spontaneous activity levels, and to the activity patterns observed in these larger
circuits of topologies with different characteristic reciprocal projections.

7.1 Spontaneous activity adaptation
For the later studies of the Thesis module’s neural lattice size was scaled up to the
75× 75 cells. We started from the model’s configuration parameters values being
the same as in our earlier experiments. They are summarized in the Table 7.1,
column “Initial net”. Then we modified them according to a network scaling study
done earlier [73]. Although many parameters are covered by this paper, it does not
cover an effect of spontaneous activity level on the network behavior. Thus this
was done separately and the results spontaneous activity adaptation are presented
here. Resulting model’s parameters are presented in the Table 7.1, column “Final
net”.

Activity’s level adaptation served to achieve two principal goals:

• to exclude a state of permanent very low spiking activity of the network,
which in turn causes massive amount of synapses falling in depressed state
followed by neural death and network’s overall inactivity

• to exclude a state of permanent very high spiking activity of the network,
leading to over-excitation of cells, making them spiking every time refractory-
lock period (2-3 time-steps) is lifted, and producing biologically non-plausible
outcome.

7.1.1 Spontaneous activity adaptation methods

The simulations were done with single Sensory neural module of 75× 75 cells and
for each combination of frequency and amplitude modeling was repeated 3 times
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Table 7.1: Small and Large models’ parameters summary

Parameter Unit Initial net Final net
Network
Lattice dimentions HxW 20× 20 75× 75
Neurons 400 5’625
Projections ≈ 8’000 ≈ 850’000
Efferent neurons 20 450
Afferent neurons* 20 900
Stimulus amplitude mV 1.60 1.90
Apoptosis started ms 0 0
Apoptosis ended ms 750 750
STDP started ms 750 750
Spontaneous activity amplitude* mV 1 1.9
Spontaneous activity frequency* Hz 900 300
Excitatory cell parameters
probability % 80 80
refractory period ts 3 3
PSP (base) mV 1.6 0.92
reset threshold mV -78 -78
spiking threshold mV -40 -40
Excitatory cell distribution
probability % 20 20
Uniform distribution weight 0.02 0.02
2D Gaussian distribution weight 0.6 0.6
2D Gaussian diameter 4 15
2D Gaussian sigma 0.5 1.875
leakage constant 0.98 0.98
Inhibitory cell parameters
probability % 20 20
refractory period ts 2 2
PSP (base) mV -1.96 -1.64
reset threshold mV -78 -78
spiking threshold mV -40 -40
Inhibitory cell distribution
Uniform distribution weight 0.02 0.02
2D Gaussian distribution weight 0.2 0.2
2D Gaussian diameter 12 45
2D Gaussian sigma 2 7.5
leakage constant 0.974 0.974
Electrode parameters
center (first electrode) x,y 9.5, 9.5 20.5, 20.5
center (second electrode) x,y N/A 55.5, 55.5
diameter cells 18 32
area covered cells 322× 1 900× 2
acquisition frequency Hz 256 256
decay function linear linear
* parameters were varying according to experimental protocol
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Figure 7.1: PSDs of the simulations with low frequency (16-32 Hz) of the sponta-
neous activity.

to obtain convergent data.
We established a “grid” of possible pairs of spontaneous activity’s amplitu-

de/frequency combinations. The upper boundary of stimulation amplitude was
limited by cell’s spiking threshold, i.e. by 38 mV and the lower, obviously by a
zero. Spiking frequency was limited by simulator’s time-resolution – up to 1024
spikes per second, i.e. 1024 Hz. From our previous studies we knew that high en-
ergies transmitted by spontaneous activity will provoke continuos discharges of the
cells, which is not biologically plausible. According to that two grids of amplitu-
de/frequency combinations were established, such that we avoid the combinations
of amplitude and frequency a priory leading to the network’s hyper activity. These
grids were as follows:

• a lower stimulation frequency grid with amplitudes of 16, 24, 32, and 40 mV
and frequencies of 32, 64, 128 Hz;

• a higher stimulation frequency grid with amplitudes of 2, 4, 8, and 16 mV
and frequencies of 250, 450, 900 Hz;

• having obtained the results from the first two sets, we added one more grid
with amplitudes ranging from 1.6 to 2.1 mV with a step of 0.1 mV and the
frequency fixed at 300 Hz.

The averaged EChG signal obtained from the simulations was used to calculate
Power Spectral Densitys (PSDs) to ensure bio-plausibility of the registered signal.
Having spatiotemporal stimulus applied to the neural module, we expect to register
a non-gaussian signal, which should result in “non-flat” power-spectrum in contrast
to the gaussian one, as it is explained in the Section 6.3. Average cell death rates
were monitored to ensure that networks stay alive and are not hyper active. In
real brains during early development phase around one third of all cells are dying
[137] and we want to stay close to this threshold.
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Figure 7.2: PSDs of the simulations with high frequency (250-900 Hz) of the
spontaneous activity.

7.1.2 Activity adaptation results and discussion

The most representative PSDs from the simulations are shown on Figure 7.1
(lower-frequency set), Figure 7.2 (higher-frequency set), and Figure 7.3 (300 Hz
frequency set). Cell death rates caused by apoptosis process (which is accounted
for approximately 96.7% of all dead cells) are summarized in the Table 7.2 and
are visualized on Figure 7.4.

Power-spectrum of the lower-frequency set is quite flat, as one can see from
the Figure 7.1. Slight shift in the activity is visible on plots corresponding to
the simulations with 128 Hz of stimulation frequency, but it is the shift to the 70-
100 Hz frequency band, which is mostly produced by random activity of cells. That
assumption is supported by the results of the high frequency set of simulations
Figure 7.2 and, in particular, by three simulations with very high spontaneous
activity levels with frequency of 900 Hz with amplitude of 16, 32, and 40 mV ,
which are producing PSD with strong peaks (5-20 times higher than any other
peaks) at ≈ 80 Hz mark. One can observe an appearance of a such peak on the
16:900 panel of the Figure 7.2, obtained from the simulation with the amplitude
of 16 mV and the stimulation’s frequency of 900 Hz. Visual inspection of spike-
trains in these simulations revealed constant spiking as soon as neuron’s refractory
period is lifted. This observation led us to believe that peaks at 80 Hz are residuals
of artifacts of the neuronal activity at frequencies of 512 Hz and 341 Hz (refractory
periods of 2 and 3 time-steps used in the our model). An activity occurring at these
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Figure 7.3: PSD of the simulations with frequency of 300 Hz.

rates cannot be captured by Fast Fourier Transform (FFT) estimations capped by
the frequency two times lower than signal’s acquisition frequency, which in the
case of EChG was equal to 256 Hz.

The results obtained with the lowest amplitude and the frequencies of 250 and
450 Hz were promising, because of a shift of the activity to the lower-frequency
band, which is much more biologically plausible than a shift towards the 80 Hz.
Cell death monitoring (summarized on the Figure 7.4) revealed a local-minimum
at 300 Hz, which corresponds to the 29% cell death. This allowed us to specify
an area of the interest at around the point of 2 mV and 300 Hz. The third set of
frequency/amplitude combinations was simulated (see Figure 7.3), as mentioned
above.

Although the very similar results obtained in this set of simulations a slighter
preference was given to the 1.9 mV stimulation, where a sharper low-frequency
peak was discovered. Visual inspection of recorded spike-trains was done to verify
observed results. It is confirmed an acceptable activity level in the whole simula-
tions’ set and, in particular, in the simulation with spontaneous activity process
characterized by a frequency of 300 Hz and an amplitude of 1.9 mV .

Now, when the parameters tuning is done, we will proceed to the study of an
effect of presence of reciprocal projections on the functional connectivity between
neural areas.

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



7.1. SPONTANEOUS ACTIVITY ADAPTATION 89

Table 7.2: Apoptosis driven cell death

Simulation parameters Observed cell death rate
Frequency Amplitude Exitatory Inhibitoty Total

Hz mV %
Low frequencies

016 16.0 25.0% 3.9% 28.9%
016 24.0 25.5% 4.0% 29.5%
016 32.0 26.2% 4.9% 31.1%
016 40.0 28.3% 5.8% 34.1%
032 16.0 25.3% 4.0% 29.4%
032 24.0 26.5% 4.7% 31.2%
032 32.0 29.2% 6.1% 35.3%
032 40.0 28.1% 6.1% 34.2%
064 16.0 27.0% 4.6% 31.6%
064 24.0 28.4% 5.6% 33.9%
064 32.0 29.9% 7.3% 37.2%
064 40.0 29.5% 7.1% 36.6%
128 16.0 28.9% 5.5% 34.4%
128 24.0 29.2% 6.5% 35.6%
128 32.0 30.8% 7.8% 38.6%
128 40.0 30.3% 7.6% 37.9%

High frequencies
250 1.0 25.2% 3.9% 29.1%
250 2.0 26.0% 3.9% 29.9%
250 4.0 26.4% 3.9% 30.3%
250 8.0 29.2% 5.1% 34.4%
250 16.0 31.5% 7.1% 38.7%
450 1.0 24.7% 3.5% 28.2%
450 2.0 26.0% 3.7% 29.7%
450 4.0 28.5% 4.4% 32.9%
450 8.0 31.9% 5.4% 37.3%
450 16.0 35.4% 8.1% 43.5%
900 1.0 26.8% 3.8% 30.7%
900 2.0 29.2% 4.1% 33.3%
900 4.0 33.7% 5.2% 39.0%
900 8.0 37.6% 6.3% 43.9%
900 32.0 39.5% 7.7% 47.2%

Mid-frequencies
280 2.0 25.2% 3.3% 28.5%
300 1.8 25.2% 3.5% 28.7%
300 1.9 25.8% 3.5% 29.3%
300 2.0 25.9% 3.6% 29.5%
320 2.0 25.7% 3.6% 29.3%
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Figure 7.4: Apoptosis driven cell death landscape depending on the spontaneous
activity level. Activity’s amplitude in mV on the X-axis, frequency in Hz on the
Y-axis, and cell death in the percentage over the total number of cells in the
network in on Z-axis.
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7.2 Reciprocal projections role
Synchronization of neural oscillations is likely to be associated with the key process
of binding of information processed in distributed brain regions [127, 148]. The
simulation studies of event-related EEG performed with oscillatory cell population
models [89, 48], have emphasized how modulation of the strengths of positive and
negative feedback between brain modules may affect the wave shape and the time
course of Evoked Potentials (EPs) [116] and in particular the emergence of damped
oscillations in presence of backward connections [40].

In the current Section we present the simulation results of activity of inter-
connected spiking neural modules undergoing ontogenetic and epigenetic develop-
mental phases (see the Chapter 3). We recorded neuro-mimetic signals EChG,
by the means of realistic virtual electrodes. The neural circuit was character-
ized by two layers of information processing networks and we study emergent
properties of stimulus-locked response depending on the presence in the circuit
of inter- and intra-layer projections. The rationale is that the Spike-timing-
dependent plasticity (STDP) embedded in the model would drive the build-up
of auto-associative network links, within each neural module, which generate an
areal activity, detected by EChG, that would reflect the changes in the corre-
sponding functional connectivity within and in-between neuronal modules. We
used genetic features of the simulation framework to code model parameters in
the neuronal genome. The drift of genes through generations of neural circuits
allowed us to observe general results that are shared by all simulated networks.

7.2.1 Modules’ characteristics

The experiments were performed using the model parameters obtained after the
tuning described in the Section 7.1. Final model parameters are shortly summa-
rized below.

Every neural module was simulated by a 2D lattice of 75×75 cells, that includes
80% of excitatory neurons and 20% of inhibitory neurons. The background activity
was generated by uncorrelated Poisson-distributed inputs at an average rate of
300 spikes/s with an excitatory postsynaptic potential (e-PSP) of 1.9 mV . An
exception to this rule was the Sensory module, that receives a stimulation of
3.8 mV , aimed to reflect stronger noise at the peripheral cortex. Synaptic pruning
occurred when the activation level of a synapse reached a zero, the cells having
all synaptic connections at zero level of activation were definitely eliminated from
the network. Pruning process co-exists in the model with cell death provoked
by apoptosis (see Section 3.6). Evolutionary part of the framework was used to
apply a mutation operator to the genome of neural circuits modeled. Multiple
bit-flip mutation operator was applied to genome, which is an extension of single
bit-flip operator [92]. Species of next generation of circuits were produced with a
probability specified by its fit function at the event associated with the “death”
(the end of the simulation time) of the parent. In this study, we used multiple
bit-flip mutation operator in conjunction with a dummy selection function, which
gives 100% probability of replication (see Section 5.3.3).

In the each neuronal module two sets of cells were randomly selected among
excitatory neurons of the module. These sets correspond to the efferent and the af-
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Figure 7.5: Four hierarchical circuits used in the experiment. The arrows depict
projections and directions of information flow between the neural network mod-
ules. FB: feed-backward topology without reciprocal projections within processing
layer (horizontal connections); FF: same as FB, but without feed-back projections
between successive layers; FBH: feed-backward topology with horizontal connec-
tions; FFH: same as FBH, but without feed-back projections

ferent layers. During early developmental stages inter-network connections (input-
output inter-network activity mapping) are established in a self-reflective manner
so that the number of external projections from a particular efferent neuron is
proportional to the number of internal projections of the same neuron at the de-
velopmental stage. For all modules but Sensory, there were 900 afferent cells and
450 efferent cells (approximately 20% and 10% of all excitatory cells of a module).
The Sensory module had both layers consisting of 450 cells. Efferent cells were
projecting 5 times less synapses to external network than they had in the inter-
nal network. This was done to escape overexcitement (persistent stimulation) of
the afferent layer, which was observed in the case of one-to-one reflection scheme.
Large number of internal projections each neuron has, caused all afferent neurons
to be stimulated every time-step of the simulation.

7.2.2 Hierarchical setup

Four circuit topologies featuring different combinations of reciprocal inter-module
links were used in the study. All topologies were composed from 6 neural mod-
ules. In all cases, neural modules of 3 roles Sensory, Processing, and Motor were
assembled in to hierarchical circuits of interest (see Figure 7.5).

In our networks, the Sensory neuronal module, labeled S, always had a pure
sensory role, this was the only network receiving external artificial sensory stimulus
and two times stronger background activity, reflecting noisier signals of peripheral
cortex. Four modules labeled P1, P2, P3, P4 had pure information processing role
and were characterized by having neither external artificial inputs nor afferences
from the Motor module. First pair of them was receiving input directly from
the Sensory module, thus forming first processing layer of the network (Layer 1),
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and second pair was connected only with other Processing and, eventually, Motor
modules, forming second processing layer of the network (Layer 2). Two principal
topological features of the circuit were reciprocal projections inside a processing
layer and reciprocal projections in-between processing layers. Combination of these
features gives us 4 possible types of topology:

• the one with reciprocal projections between the processing layers, but with-
out intra-layer projections is a feed-backward topology, abbreviated FB, de-
picted on the left panel of the Figure 7.5;

• another one without any reciprocal projection is a feed-forward topology (FF
– second on the left panel on the figure);

• a topology similar to the first, but with intra-layer reciprocal projections
(further called “horizontal” links) is called feed-backward with horizontal
projections and abbreviated as FBH, second on the right panel of the figure;

• the latest is feed-forward with horizontal links – FFH, depicted on the right
panel of the Figure 7.5.

As it was mentioned above, we focused on effect the feed-forward, feed-backward,
and horizontal inter-module projections have on the functional connectivity of the
circuit in the presence of external spatiotemporal stimulus.

7.2.3 Spatiotemporal stimulus setup

The external stimulation was applied by means of a spatiotemporal stimulus fed
to the afferent cells of the sensory module. The stimulus lasted 500 ms and ac-
tivated each afferent cell once per 10 ms on average. Each stimulus was followed
by a silent period of 1000 ms, called Inter-Stimulus Interval (ISI). The duration
corresponding to the stimulus application and ISI is an elementary “trial”. The
stimulus’ pattern in each trial was slightly modified by introduction of a 10% vari-
ability, which means a jitter of ±1 ms introduced in the activation time of 10%
randomly selected afferent cells. This straight-forward procedure was repeated
irrespective of the selected cells, so that a cell could be selected more than once
by chance and the final jitter would became greater than ±1 ms. This occur-
rence introduced even greater variability, but it happened only rarely to deviate
simulation results.

7.2.4 Experimental virtual subjects

In this study the electrode’s sensitivity was limited by a circular area with a radius
of 19 cells. Sensitivity function was decaying linearly from the center (100%) to
its edge (0%). Two electrodes, one located in the top-left “extremity” of the 2D
lattice and the second one located in the bottom-right “extremity”, were placed in
every module. The dual recording is performed only to gather additional signals
for data analysis and reduce the effect of the noise embedded in the signal. Indeed,
no difference between the electrode locations is expected because of the wrapped
toroidal model of the network’s lattice and the random distribution of the efferent
and the afferent cells across each module.
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Figure 7.6: Time-course of the peak-to-peak amplitude of the ERPs for each layer
of circuit FBH measured during the ISI as a function of the trial number. Each
point is the average of 84 recordings. The dashed lines indicate the period from
trial #128 to #228, which has been selected for further averaging for event-related
analysis.

The most common method of Signal-to-Noise Ratio (SNR) enhancement in
EEG-like signals is the stimulus synchronized averaging [71]. It suggests to aver-
age signal over multiple subjects and over multiple trials aligned by a key-event –
usually start of the stimulus presentation. This is where introduced evolutionary
features of the simulation framework came in handy. The evolutionary simulator
was used to create different genomes for each subsequent neural circuit modeled.
Four different genomes corresponding to each of the 4 topologies described above
were used as basic ones and each of them was changed 21 times by random mu-
tation of a gene responsible for actual connectivity pattern within neural module.
Even a small variation of this gene was enough to produce drastically different
internal connection maps, while preserving given distribution of the connections.
Like that, we got 21 different species representing each type of the circuit, which
is enough to average out the signal’s noise and spontaneous activity. While in
this experiment we did not use the evolutionary features of the framework to the
full extent, it is an important step to verify that everything works as intended
and it could be used in the future in more complex experiments with evolutionary
features.

7.3 Dynamics evoked by reciprocal projections

The total duration of a single simulation run was 375 seconds (250 trials of 1500ms
each). In order to improve the signal-to-noise ratio of the EChG in the time-
domain we have calculated ERPs by averaging several recordings triggered by the
same stimulus onset. The average was extended across all 21 different Virtual
Subjects obtained by genome mutation. Moreover, we grouped together the four
recordings performed from within the same layer of modules (2 recordings × 2
modules per layer). Which means that for each circuit and for each layer of the
circuit we analyzed the signals averaged across 84 recordings (= 21× 2× 2).
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Figure 7.7: ERPs averaged across 21 Subjects, 8400 trials overall, triggered by
stimulus onset. The dotted lines at 0 and 500 m correspond to the onset and
offset of the stimulus. A Blackman-Tukey curve smoothing with a window of
20 ms was applied to eliminate high frequency components. The labels refer to
the circuit and to the order of the layer. Black curves refer to ERPs recorded in
FB and FBH circuits. Gray curves refer to ERPs recorded in FF and FFH circuits.
Notice that the amplitude scales for Layer 1 and Layer 2 are slightly different.

The effect of network maturation due to plasticity, synaptic pruning and cell
death processes is illustrated by the time-course of the peak-to-peak amplitudes
of the ERPs measured after the end of the stimulus presentation during the ISI
of successive trials (Figure 7.6). The curves show that the maximum amplitude
of Layer 2 activity tended to decrease more than in Layer 1 until approximately
trial #100. After this time both layers showed a tendency to decrease the level
of activity, but in much more steady way than before and having their relative
difference unchanged.
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7.3.1 Event-related Potentials

For ERP analysis we decided to select an arbitrary range of 100 trials between
trials #128 and #228 for further averaging. This means that ERPs were analyzed
across a grand average of 8400 trials (= 21× 2× 2× 100).

Let us define MADISI as the median absolute deviation amplitude during ISI
as

MADISI = median
∀x∈XISI

(|median(t)
∀t∈XISI

− x|) (7.1)

where XISI stands for a signal recorded during the ISI periods. We can express
the strength of the response (SR) as the ratio between the median amplitude
of ERP during the stimulus presentation and the corresponding MADISI . For
Layer 1 modules SR was equal to 7.58, 7.18, 7.68 and 7.65 for the FF, FB, FFH
and FBH circuits, respectively. The values of SR for each circuit and for each
layer pair were calculated with 95% confidence intervals (Table 7.3). These data
show that in Layer 1 a moderate increase in SR by 3-7% observed in the presence
of horizontal projections was not significant. For Layer 2 modules SR was much
lower than the values found in Layer 1, as it can be immediately observed on the
ERPs plots (Figure 7.7). This is a trivial observation given the direct afferences
from the sensory module to Layer 1. For Layer 2 modules SR was equal to 2.66,
2.01, 2.05 and 1.84 for the FF, FB, FFH and FBH circuits, respectively. The
presence of horizontal links decreased SR in Layer 2 by 10-20%. The presence of
feedback projections, irrespective of the horizontal links, also reduced SR in Layer
2 response by a similar proportion. In Layer 2 these effects were cumulative and
SRFBH

was reduced by 30% compared to SRFF
.

The Figure 7.7 shows the ERPs for each topology and each layer of the circuit.
At the onset of the stimulus the amplitude of ERP increased for Layer 1 modules,
irrespective of the circuit. Interestingly, the presence of feedback projections from
Layer 2, modified the response in Layer 1 of FB and FBH vs. FF and FFH. In the
Layer 1 of feed-backward topologies a burst of γ-oscillations appeared immediately
after the stimulus onset in presence of feedback projections from Layer 2. The
horizontal projections emphasized the inhibitory offset response: in Layer 1 the

Table 7.3: SR confidence interval calculated according to the smoothed percentile
bootstrap methodology [50].

Layer Circuit SR
95% confidence

lower higher

L1

FB 7.180 6.020 8.938
FBH 7.645 6.532 8.904
FF 7.580 6.626 9.060
FFH 7.678 6.516 9.111

L2

FB 2.011 1.510 2.581
FBH 1.837 1.381 2.187
FF 2.661 1.972 3.278
FFH 2.054 1.592 2.504
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Figure 7.8: Trial-by-trial dynamics of the ERPs in Layer 1 and Layer 2 of circuits
without horizontal projections. The amplitude of the ERPs is scaled in mV and
color-coded following the colors on the right scale. The dotted lines at trials #128
and #228 indicate the range that was used to calculate the grand averaging.

duration of the offset inhibition was prolonged by approximately 40 ms; in Layer 2
the offset inhibition was sharper.

The dynamics of the ERPs can be observed on a trial-by-trial average on Fig-
ure 7.8 and Figure 7.9. It is interesting to notice that before trial #128 inhibitory
onset responses appeared transiently in Layer 2 with any kind of connectivity
among the modules. This pattern occurred briefly again near trial #180 only in
the FB circuit. For Layer 1, the comparison of the figures shows that the presence
of horizontal connections is not only making the onset excitation and the offset
inhibition sharper, but is also reducing inter-trial variability.

7.3.2 Frequency Domain Analyses

Trials #128 and #228 were used for the computation of the PSD and we averaged
the trial-by-trial PSDs. The PSD analysis shows that in any circuit Layer 1 was
characterized by a higher powers than in Layer 2 for all frequencies. This difference
is due to the direct input from the Sensory module to Layer 1. We have assessed
the effect of introducing feedback projections in the circuits by computing the
difference between the PSDs with and without feedback projections (FB and FBH
vs. FF and FFH, respectively). For each bin of the power difference curves we
calculated the 95% confidence interval based on the distribution of the trial-by-
trial difference in PSDs. We consider here the frequency bands α, β and γ in the
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Figure 7.9: Trial-by-trial dynamics of the ERPs in Layer 1 and Layer 2 of circuits
with horizontal projections. The amplitude of the ERPs is scaled in mV and color-
coded following the colors on the right scale. The dotted lines at trials #128 and
#228 indicate the range that was used to calculate the grand averaging.

ranges [5-20[, [20-40[, and [40-100] Hz, respectively. The shift in the range limits
of the frequency bands towards higher frequencies is determined by the smallness
of the network size of a module with respect to a realistic brain area. The power
of PSDFB.L1 and PSDFBH.L1 was larger due to the presence of the feedback, as
shown by the curves of the power differences that tended to stay above the zero line
(Figure 7.10b,e). In particular we observed two significant peaks in the differential
curves of Layer 1 of either circuit. In the presence of additional horizontal links
both significant peaks were in the γ-range tended to stay above the zero line
(Figure 7.10e). Notice that a burst of γ-oscillations appeared immediately after
the stimulus onset in the presence of feedback projections (Figure 7.7).

It is noticeable that in Layer 2 the horizontal links increased even further
the overall power of PSD and particularly the γ-oscillations (Figure 7.10f). On
the opposite, in the absence of horizontal links, PSDFB.L2 was characterized by
a power that tended to be smaller than PSDFF.L2, in particular in the γ-range
(Figure 7.10c). Then, PSD analysis showed that Layer 2 activity during the
stimulation was very much affected by the circuit connectivity.

During the ISI, Layer 1 was characterized by a power larger than Layer 2 at
all frequencies (Figure 7.11a,d), in a way similar to what was observed during
the stimulation. In Layer 1 the presence of feedback projections in the circuit
tended to increase the number of significant peaks in the γ-range, (Figure 7.11b,e)
especially in the absence of horizontal links (Figure 7.11b). It is interesting to
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Figure 7.10: Averaged Power Spectrum Densities during the stimulus presentation
in Layer 1 and Layer 2 of FB, FF circuits (panel a) and circuits with horizontal
links, FBH and FFH (panel d). Black curves refer to circuits with feedback projec-
tions and gray lines to feed-forward circuits. The difference PSDFB−PSDFF with
the 95% two-tailed confidence intervals (limits of the shaded area) for Layer 1 and
Layer 2 is plotted in panels b,c, respectively. The difference PSDFBH −PSDFFH

for Layer 1 and Layer 2 is plotted in panels e,f, respectively. The analysis is per-
formed with a resolution of 2 Hz. The asterisks are used to label the significant
peaks of the differential curves. We consider here the frequency bands α, β and γ
in the ranges [5-20[, [20-40[, and [40-100] Hz, respectively.

notice that the PSD in FB.L2 and FF.L2 were very similar (Figure 7.11a,c). On
the opposite, the presence of both horizontal and feedback connections increased
the power of FBH.L2 vs. FFH.L2 throughout the frequency range (Figure 7.11d),
in particular in the γ-range (Figure 7.11f).

The assessment of the correlation between EChG signals from Layer 1 and
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Figure 7.11: Averaged Power Spectrum Densities during ISI in Layer 1 and Layer
2 of FB, FF circuits (left panels) and circuits with horizontal links, FBH and FFH
(right panels). The analysis is performed with a resolution of 1 Hz. We consider
here the frequency bands α, β and γ in the ranges [5-20[, [20-40[, and [40-100] Hz,
respectively. The labels are the same as in Figure 7.10.

Layer 2 in the frequency and in the time domains on a trial-by-trial basis was
performed by the cross-coherence analysis between trials #128 and #228. The
cross-coherence XCOHA,B(f, t) between two channels, A and B, at the given fre-
quency f in the time window centered on t is calculated according to the equation

XCOHA,B(f, t) =
1

n

n�

k=1

FA
k (f, t)F

B
k (f, t)∗

|FA
k (f, t)F

B
k (f, t)|

,

where FA
k (f, t) and FB

k (f, t) are short-time Discrete Fourier Transform (DFT) of
signals A and B, and FB

k (f, t)∗ is the complex conjugate of FB
k (f, t) [42]. The

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



7.3. DYNAMICS EVOKED BY RECIPROCAL PROJECTIONS 101

0.00

0.13

0.26

0.39

0.00

0.13

0.26

0.39

◆ ◆ ◆ ◆ ◆

lag [ms]

500 1000 15000

30

50
FBH

F
re
q
u
e
n
c
y
[H
z
]

10
α

β

γ

✽ ✽ ✽

500 1000 15000

30

50
FF

10
α

β

γ

✽ ✽ ✽✽

✽ ✽ ✽✽

500 1000 15000

30

50
FB

F
re
q
u
e
n
c
y
[H
z
]

a b

lag [ms]

500 1000 15000

30

50
FFH

c d

α

β

γ

10

10

α

β

γ

✽ ✽ ✽

✽ ✽ ✽ ✽

◆ ◆ ◆◆ ◆ ◆

◆ ◆ ◆ ◆

Figure 7.12: Cross-coherence maps between the Layer 1 and the Layer 2 for all
circuits calculated between trials #128 and #228. The value of cross-coherence is
color-coded according to the scale on the right, ranging between 0 and 0.39. Non-
significant values are zeroed. The map is calculated using DFT with a resolution
of 1/16 Hz in frequency and 6 ts in time. The horizontal dotted lines correspond
to frequency band boundaries. The big arrows indicate the stimulus onset and the
vertical dashed lines at 500 and 1500 ms indicate the Inter-Stimulus Interval. A
digital infinite impulse response filter for [1− 55 Hz] bandpass was applied before
signal processing in order to reduce high frequency noise. Notice that during
ISI peaks of cross-coherence tended to appear at regular intervals in the α-band,
marked by the asterisks, and in the γ-band, marked by black diamonds. The small
arrows indicate cross-layer coherence at ∼150 ms in all circuits.

value of the cross-coherence varies between 0 meaning a complete absence of syn-
chronization and 1 meaning perfect synchronization.

The cross-layer coherence for each circuit type is illustrated by Figure 7.12.
The significance of the coherence values was assessed by bootstrap statistics [42]
such that non-significant values (2p < 5%) were zeroed for the sake of the colored
drawing of the map of Figure 7.12. We use the same α, β, and γ frequency bands
defined above. The presence of the horizontal links decreased the vast majority of
the cross-layer coherence throughout the frequency spectrum (Figure 7.12a,b vs.
Figure 7.12c,d). Notice the strong cross-layer coherence for all circuits at very low
frequencies right at the stimulus offset (lag = 500 ms) due to the offset inhibition
visible also in the ERPs (Figure 7.7).

During the stimulus presentation the cross-layer coherence was strong in the
α-band at ∼150 ms after the stimulus onset in all circuits (Figure 7.12, small
arrows). The presence of the feedback projections decreased the cross-layer coher-
ence in the β-band (Figure 7.12a,c vs. Figure 7.12b,d). A very strong cross-layer
coherence appeared ∼400 ms after the stimulus onset in the γ-band of FB circuits
(Figure 7.12a, empty circle).

During ISI we observed several interesting significant values of cross-layer co-
herence that emphasizes the effect of inter-modules connectivity on the pattern of
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activity of the entire circuit. The strongest cross-layer coherence in the β-band was
observed for the pure feed-forward circuit (Figure 7.12b). Both circuits without
horizontal links were characterized by strong cross-layer coherence in the α-band.
More interestingly the significant peaks tended to appear at regular intervals in the
α-band (marked by the asterisks on Figure 7.12) of ∼220 ms in FB, and ∼220 ms
in FF. Despite a much lesser degree of cross-layer coherence produced by the
presence of the horizontal links this rhythmic pattern was also observed in FBH
and FFH with intervals of ∼220 ms and ∼230 ms, respectively. This suggests
the presence of a slow rhythm (∼4.4 Hz) across the whole circuit independent of
backward and horizontal projections.

During ISI the activity of the two layers was coherently correlated at regular
intervals also in the γ-band (see the black diamond symbols in Figure 7.12). In
the absence of the horizontal links (Figure 7.12a,b) the rhythm was 2.3 Hz for
both FB and FF circuits. On the opposite, in the presence of the horizontal links
the rhythm of the peaks in the γ-band for FBH and FFH was a bit faster, 3.5 and
4.3 Hz, respectively. We observe that in the presence of feedback projections (FB
and FBH) the first peak of these rhythms tended to appear before the stimulus
offset (Figure 7.12a,c).

7.4 Discussion

The encoding of connectivity properties in the “genome” of the circuit allowed us
to produce many different circuit species and study the common features of infor-
mation processing shared by the whole sample of individuals. We have analyzed
the activity of four basic circuits characterized by a sensory module receiving an
external input carrying spatiotemporal information that projects to two hierar-
chically organized multilayered streams characterized by optional recurrent (feed-
back) projections from the downstream to the upstream modules and optional
intra-layer projections. Each network module undergoes a maturation process
followed by an active unsupervised learning process determined by spike-timing-
dependent plasticity rules meant to maintain active learning dynamics. These
processes are simulated at the cellular level and the network activity is recorded
by virtual electrodes located in each module. The recorded EChG signals are an-
alyzed by ERPs techniques triggered by the stimulus onset and by power density
and cross-coherence analyses.

This is the one of the first works that reports simulated EEG-like signals gen-
erated by large sample of evolvable networks of leaky integrate-and-fire neurons.
Previous simulation studies of EEG were based on population dynamics and neural
masses [56, 65, 39, 11, 59]. They were generally aimed at determining the stability
of network dynamics, the effect of noise and the emergence of synchronous activ-
ity in relation to epileptogenesis, etc. Our goal was limited to a computational
study that partially reproduces the signals observed in biological experimental
conditions. Though it represents an oversimplified approach to the complexity of
real brain networks it offers the possibility to address a key issue like the effect of
inter-areal connectivity on the network activity.

We showed an evidence that all circuits are able to maintain patterns of ac-
tivity of hundreds of milliseconds triggered by the stimulus offset. This finding
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is in agreement with the occurrence of preferred sequences of spikes, which are
dependent on the stimulus presentation but not triggered by it, recorded in the
single module simulations [75]. We have shown that the offset of the stimulus is
also the most significant event that triggers coherent activity in the low frequency
range throughout the network of any circuit studied here. It could be interpreted
according to standing waves theory. Low frequencies suggest that information
processing is made by areas located far away from each other, thus involving large
neural networks in processing stimulus related activity. This is also in agreement
with recent experimental findings in human experiments that revealed specific
low frequency coherence patterns associated with processing type (simultaneous
or successive) regardless of other experimental conditions (contents and modality)
[108].

It is interesting to notice that the Power Spectral Density of the EChG record-
ings showed more energy in the γ-band for Layer 2 of the FBH circuit than in the
same Layer of the other circuits. The FBH circuit, which is characterized by feed-
back and by horizontal projections, was also characterized by cross-layer coherence
extending during ISI in the γ-frequency range. These results suggest that in the
circuits with feedback projections the bursts of cross-layer coherent γ-activity are
likely to be triggered by some process that started during the stimulus presenta-
tion and that is not affected by stimulus offset. A network exhibiting multiple
partially synchronized modes strongly excited by a stimulus, with a wide range of
flexible, adaptable, and complex behavior, has been modeled as the variance of the
connection gain increases, inhibitory connections become more likely and global
synchronization is shown to decrease [61]. This activity might be associated with
a maintenance and control task integrated in the stimulus memorization process,
as a form of working memory [147, 136].

The effect of introducing connections between modules of the same layer pro-
voked also an enhancement of the stimulus-locked onset excitation and offset in-
hibition in the ERPs of Layer 1, the layer receiving the input from the sensory
module, irrespective of the feedback links. In Layer 2 the effect was more subtle
and we could observe it better by the cross-coherence. The duration of evoked
transients is likely to increase with the hierarchical depth of processing [40]. How-
ever, we found late components after stimulus offset in both FF and FB circuits,
which raises the possibility of alternative hypotheses that the simple dependency
on backward connections to reflect a reentry of dynamics to hierarchically lower
processing areas [40]. The discrepancy with those results may be due to the dif-
ferences with their modeling because neural masses are unlikely to realistically
account for the diversity of activity patterns that can emerge within the networks
of spiking neurons that belong to a neural module. It is important to remember
that the coherence value indicates a linear statistical association between time-
series in a given frequency band [33]. The absence of linear statistical association
between two processes does not mean the absence of any interaction. Higher-order
frequency domain statistics like bicoherence and cross-bispectral analyses might be
well suited to reveal interesting nonlinear interactions as suggested in a FBH-like
network study [112] and in the Article B: “Stimuli-driven functional connectivity”.
The search for inter-module transient functional connectivity and its comparison
with linear methods [52] is still limited by the understanding of the impact of
different methodological choices on the outcome of the analysis [15].

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



104 CHAPTER 7. STIMULUS-EVOKED ACTIVITY

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



Chapter 8

Approaches for non-linear data

analysis

All brontosauruses are thin at one
end, much much thicker in the
middle, and then thin again at the
far end. That is the theory...

The Dinosaur Sketch
Monty Python

Résumé :

Dans ce chapitre, nous présentons les objectifs pour mener les analyses
d’optimisation structurelle et paramétrique de données multivariées conta-
minées par des artéfacts. Ensuite, il est rapporté la description des avan-
cées algorithmiques concernant l’optimisation structurelle non-linaire ro-
buste (cf. Article C « Structural modeling robust to outliers »).

There are many methods that can be used to extract knowledge from exper-
imental data and to determine its mathematical structure [6]. Linear regression
analysis is widely used in quantitative structure-relationship studies because of
simplicity of the approach itself and because of ease of results interpretation.
These studies represent an important part of the drug design process, where they
are used to reveal relationships between chemical structure of compounds and
their biological activities, or of the neuro-physiology, where they are used to un-
cover brain areas more than other influenced by an input stimulus in respect to
electroencephalography (EEG) recorded, or of the physics – to discover new laws
from experimental data. The power of linear regression analysis can be signifi-
cantly increased, if it is combined with evolutionary approaches. They provide
powerful techniques to analyze large multivariate data-sets with highly collinear
variables [91, 115]. To overcome the limitation of linear models the feed-forward
Artificial Neural Networks (ANNs) and the support vector machiness (SVMs) can
be used to model complex nonlinear relationships and thus they are useful methods
in such studies. However, a serious disadvantage of these methods is that the de-
pendencies detected between parameters and response variables are hidden within

105



106 CHAPTER 8. APPROACHES FOR NON-LINEAR DATA ANALYSIS

inner structure of weight matrices and therefore an interpretation of calculated
results is next to impossible.

Approaches of Group Method of Data Handling (GMDH) represent sorting-
out methods that can be used for analysis of complex objects having no definite
theory [97, 150]. The choice of the appropriate GMDH algorithm depends on
the specifics of the problem to be solved. While the classical GMDH approaches
are well suited to solve such problems in general, the mean least squares (MLS)
method used in the core of iterative GMDH approaches, is sensitive to outliers. In
the presence of outliers the model becomes unstable which often leads to distorted
interpretation of the data. To overcome these limitations, the Robust Polynomial
Neural Network (RPNN) was proposed [5]. It is an iterative GMDH type algorithm
that provides robust linear and nonlinear modeling in the presence of outliers in
response variables and correlated or irrelevant variables. It is robust to certain
outliers and allows to control models’ complexity – number and the maximal
power of terms in the models. The algorithm converges to stable results that
can be easily interpreted. But, while the RPNN is robust to the outliers in the
response variables, it is not robust to the outliers in the explanatory variables.
Unfortunately, this type of outliers is often seen in the neuro-physiological data,
where EEGs data to analyze could be contaminated by muscular activity, eye
movement artifacts or other types of experiment non-related artifacts.

The method developed in the frame of the Thesis is named Enhanced Robust
Polynomial Neural Network (ERPNN). It is still an iterative GMDH-type algo-
rithm, like its predecessor (RPNN algorithm), so it inherits all its advantages, but
at the same time it is improved by the Generalized Maximum likelihood estima-
tor (GM-estimator) based core, which adds robustness to the outliers in the both
explanatory variable and response variables of the data set. Detailed description
of the proposed algorithm is given in the Article C: “Structural modeling robust
to outliers”. The algorithm could be used for the task of EEG signal (real or mod-
eled) classification as a function of subject’s state or mental activity type (like in
the studies [8, 12, 66]) or in EEG channels localization, to provide for a particu-
lar task meaningful set of linear or non-linear combination of EEG channels for
further interpretation and analysis [99, 139]. Despite very promising preliminary
results obtained on the artificial data revealed in the article, an application of the
algorithm to the real data is left for the future work.
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Résumé :

La régression robuste est une approche statistique d’analyse de données
de distribution non gaussienne. Plus spécifiquement, la régression non-
linéaire robuste et la modélisation structurelle encore se trouvent dans
une phase du développement active. Cet article décrit les avancées algo-
rithmiques de résolution de taches de l’optimisation structurelle. L’opti-
misation mathématique s’appuie sur des modèles polynomiales de données
multivariées polluées par des artefacts. Dans ces données, les variables des
réponses (Y) et les variables d’explication (X) peuvent contenir des arte-
facts. Dans l’étude précédente, l’ancienne méthode d’optimisation struc-
turelle (Polynomial Neural Network ; PNN) traitait les données avec arte-
facts inclus dans des variables des réponses (Y) uniquement. La nouvelle
version de l’algorithme décrite dans ce travail est toujours basée sur les
approches PNN du type GMDH. Grâce aux réseaux neuronaux artificiels
de synthèse adaptative et évolutive, cette méthode propose une modéli-
sation universelle de la structure du modèle. Plus particulièrement, cet
l’algorithme a été amélioré par un système de l’estimation générale du
maximum de vraisemblance (GM-estimation). Ce système permet à faire
l’estimation des paramètres du modèle. Cette estimation confère l’avan-
tage d’être robuste à la fois aux artefacts dans les variables de la réponse,
et aussi aux variables d’explication.
La nouvelle version du réseau de neurones polynomial robuste (ERPNN).
L’implémentation a été testée sur les données générées artificiellement.
Les données ont été crées a partir des polynômes aléatoires de deuxième
et troisième dégrée. Ensuite, un bruit blanc et des artefacts ont été in-
troduis dans les données. Cette nouvelle version s’avère plus précise que
la précédente. En outre, elle permet de reconstruire automatiquement les
modelés non linéaires de et d’estimer les paramètres des modèles malgré
la présence importante d’artefacts.

Abstract
The robust regression analysis works on data affected by deviations from a general
assumption of normality. Currently the field of robust linear regression analysis is
well developed and there are number of stable and verified by time methods. In
contrast the robust structural modeling and high-order model parameter estima-
tion are still under active development.

This paper describes advances in the algorithm development designed to solve a
task of optimal polynomial model selection on multivariate data sets in presence of
outliers in both explanatory and response variables. Previous version of our robust
Polynomial Neural Network (PNN) was addressed to the modeling of the data with
outliers in response variable only. On one side novel algorithm is still based on
GMDH-type PNN, which gives an universal model structure identification thanks
to the evolving adaptively synthesized bounded network. And on the other side
the algorithm is enhanced with GM-like estimator used for parameter estimation,
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which allows to achieve robustness to outliers in both explanatory and response
data-sets.

Enhanced RPNN was developed and tested on the artificial data-sets generated
from polynomials of up to third degree. The Gaussian noise as well as outliers was
added to the data. Enhanced RPNN demonstrated robustness to outliers in both
explanatory and response variables (with 25% of outliers) and good accuracy of
the automatic structure syntheses as well as of the parameters estimation.

Keywords: polynomial neural network, robust regression, non-linear regres-
sion, gm-estimators, structure selection

C.1 Introduction
The most important legacy of the scientific method is the necessity to build a model
aimed to explain the physical world and to test one’s hypotheses and ideas against
that model. In an ideal case an experimenter manipulates some variables and
measures the results of this manipulation. This paradigmatic case is characterized
by the selection of the variables to be manipulated – called independent variables
– and the observed variables – called dependent variables. The goal of a regression
is to find a model fitting the experimental observations given the independent
variables. Let us consider a non-linear regression model:

y = f(x; βo) + ξ (C.1)

where f(·) is a non-linear model function, x = {x1, . . . , xm} ∈ Rm is a vector of
independent variables, βo ∈ Rp is a vector of model parameters, y is a dependent
variable, and ξ is an error term. Measurements of dependent variables are generally
assumed to be characterized by a distribution identical to ξ has. However, in most
cases the distribution of ξ is not known and it is necessary to assume the presence
of outliers – observations which are very different from others in a data-set –
among the dependent variables. The outliers are characterized by measurement
errors leading to a numerical difference between the value generated by the causal
model – the real value – and the observed value. Created by an unexpected error
distribution or by a mistaken observation, outliers may lead to selection of a
wrong model f(·) and to a wrong estimation of model parameters βo. In order
to overcome the effect of the outliers in the case of linear models several methods
(e.g., Least Median Squares [120], S-estimators [95, 121], MM-estimators [149]),
were developed in order to provide robust estimators with high breakdown point
[64, 44]. In the non-linear case, a wide set of Group Method of Data Handling
(GMDH) algorithms [79] were developed for structure and model selection.

In most studies there are no possibilities to manipulate the variables and the
experimenter is actually collecting measurable information and observe how vari-
ables are related to each other. In those cases the definition of independent variable
holds with the implicit belief of the experimenter about causal relations between
variables. That means an independent variable is defined with respect to how it
is related to or influences a dependent variable. Conversely, a dependent variable
is defined with respect to how it is related to or influenced by the independent
variables. In other terms, it is often assumed that the independent variables pre-
dict or explain the dependent variables and viceversa the dependent variables are
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explained or predicted by the independent variables. For this reason, an indepen-
dent variable may be called an explanatory variable and a dependent variable may
be called a response variable. In this paper, we address for the first time the prob-
lem raised by the presence of outliers in both explanatory and response variables
in non-linear models. We present an extension of the Robust Polynomial Neu-
ral Network (RPNN) [5] inspired by GMDH algorithm, which allows a universal
model structure and parameters identification with robust statistics [69, 44].

C.2 Methods

C.2.1 GMDH Approach

The basic principles of iterative GMDH are described as follows (see [150, 96] for
more details). Let us call input variables the explanatory variables and output
variables the response variables. Let x = {x1, . . . , xm} be the vector of input
variables and let y be the output variable that is a function of a subset of input
variables y = ui(xi1, xi2, . . . , xip). Let us assume that there are n observations of
the output variable, such that X = {xij} is a m× n matrix of the input variables
and Y = (y1, . . . , yn) the vector of observations of the output variable. A random
error ξ affects each observation yj and we assume that all errors are uncorrelated
and identically distributed with finite variance Y = E(Y|x) + ξ.

The GMDH considers the class of models G that are characterized by the
following three properties: (i) class G contains structures (the term structure is
referred to any model with unidentified parameters) that are linear according to
the parameters; (ii) it exists a known transform g(·) such that g(fi, fj) ∈ G, if
fi, fj ∈ G; (iii) any element of class G is either constant, or one of the initial
input variables, or it is calculated using the transform function g(·) applied to the
other elements of the class. This method is aimed at finding a subset of variables
{xi1, xi2, . . . , xik} and a model belonging to class G that minimizes some criterion.

In the simplest case g(·) can be defined as g(fi, fj) = afi + bfj and the class
G consists of linear functions only. The input-output relationship of the analyzed
system can be implemented using an artificial neural network (ANN) having a
multilayered perceptron-type network structure (see Figure C.1). Each element
in the network implements a polynomial function of its inputs. The neurons can
be characterized by a transfer function g(·) that is a short-term polynomial of
number of variables. For example: in linear case g(·) can be g(fi, fj) = afi + bfj
or in non-linear case one of the possible generators can be g(fi, fj) = afi + bfj +
cfifj + df 2

i + ef 2
j . The composition of quadratic polynomials of latest g(·) forms

a high-order regression polynomial known as the Ivakhnenko polynomial. Notice
that the degree of the polynomial can double at each next layer of the ANN,
when models created by generator function will be used by next-step’s generator
function. Because of that, control over model complexity is required and usually
done by at least rejecting high-degree and/or long-term models.

The GMDH training algorithm is based on an evolutionary principle. The
data set is subdivided into training and test sets. At the first layer of the ANN
all possible combinations of two inputs generate the first population of neurons
according to the transfer function g(·). The size of the population at the first layer
is equal to C2

m. The coefficients of the polynomials of g(·) are estimated by least
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Figure C.1: GMDH Principle. Given a set of input variables x = {xi, . . . , xm} and
a set of output variables y = {yi, . . . , ym} GMDH is aimed at finding the models
f in the form of polynomial functions such that yi = g1(g2(. . . gk(x))).

square fitting using the training set. The best neurons are selected by evaluating
the performance on the test set according to a criterion value. The outputs of
selected neurons of the first layer are treated as the inputs to the neurons of the
second layer, and so on for the next layers, if more than two layers are used. The
size of the population of the successive layers become equal to C2

f . The external
iterative procedure controls the complexity of the models, i.e. the number of
the terms and the power of the polynomials in the intermediate models. The
best models form the initial set for the next iterative procedure. The outcome
of such internal iterative procedure is a search for optimal models given the fixed
complexity by discarding those models that are out of the specified range. The
final models found by GMDH can be obtained in their explicit form by tracing
back the path of the polynomials generated during the procedure.

C.2.2 Robust Estimation Criteria

This section explains the application of robust statistics to the criterion value
used in GMDH training instead of the originally proposed criterion of the square
of residuals. We focus here on robust linear regression methods, because GMDH
algorithms use strictly linear solver in the core, while non-linear features are intro-
duced by the form of the generator function. The solution of the Equation C.1 or
the linear model case is based on the minimization of the following criterion which
maximizes the likelihood function over vector of the model parameters β. The
classical generalized maximum likelihood-type estimator (M-estimator) for linear
regression was proposed by Huber [69] as

minβ

n�

i=1

ρ(ri) (C.2)

where residuals ri are defined by ri = yi−f(x, β), and ρ(·) is a symmetric residuals
weight function with single minimum at zero. One can consider ρ as a penalty
function for those points which are expected to be outliers in the response variable.
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If function ρ(·) is differentiable Equation C.2 can be transformed into
n�

i=1

ρ�(ri(x; β))ri(x; β) =

n�

i=1

ψ(ri(x; β))ri(x; β) = 0 (C.3)

where ψ(ri(x; β)) is a derivative of the penalty function with respect to the variable
β, so ψ(ri(x; β)) = ρ(ri(x; β))/dβ. Equation C.3 can be solved by using the
robust Iteratively Reweighted Least Squares method (IRLS) [109]. The iterative
estimation of vector β in matrix form is expressed by

β̂i+1 = (XTw−1(β̂i)X)−1 XTw−1(β̂i)y (C.4)

w−1 = min{1, 1/|ψ(r)|} (C.5)

where X is a matrix of n observations of the output variable vector x, w−1 are
weights calculated on the base of function ψ(·) and residuals. Iterations are re-
peated until convergence of estimations of parameters vector β̂i. Initial β̂0 is found
by the Mean Least Squares algorithm. The constraints put on function ρ(·) make
the method robust to outliers in the response variable y, but it is still sensitive to
outliers in the explanatory variable x.

Yohai [149] introduced MM-estimators with high efficiency and high breakdown
point. The method proceeds by finding a highly robust estimate that minimizes
an M-estimate of the scale of the residuals (the first M in the method’s name)
and then the estimated scale is held constant whilst a close-by M-estimate of the
parameters is found (the second M) by

minβ

n�

i=1

ρ(ri/σ̂r). (C.6)

An approach used in MM-estimators and S-estimators to obtain highly robust
estimates [95] suggested us that in case of outliers in the explanatory variables we
could introduce weights function, which take into account also the estimation of
real location and scale of the observed explanatory variables X. In this case we
should minimize the criterion

minβ

n�

i=1

ψ(ri(x; µ̂; σ̂x))ri(x; µ̂; σ̂x)). (C.7)

Here ψ(r) = ρ(r)/dβ can be considered as a penalty function for those points
which are expected to be outliers in explanatory or in response variables or in
both at the same time. We used Huber’s ψ function, which is

ψ(r) =

�
r if abs(r) < c
c · sign(r) if abs(r) ≥ c

(C.8)

where c is a tuning constant [69].
We assumed that all errors are uncorrelated, so it is natural to define a function

ψ(·) as a multiplication of two functions, weighting the outliers independently in
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the explanatory and in the response variables. The weight vector for the IRLS
methods is constructed in the same way: w = wrwx where weights wr are associ-
ated with response variable and defined as in Equation C.5. The weights wx are
associated with the data-set formed by the observed explanatory variables and are
defined by

wi = min{1,
�
Cτ/d2m(x)} (C.9)

∀i = {1, . . . , n},

where Cτ is a constant tuned for a selected threshold τ of the expected number
of outlier points and d2m(x) is a Mahalanobis distance [98]. We used of Cτ equal
to the value of the inverse of a cumulative density function for a χ2 distribution
with m− 1 degrees of freedom for point τ [62, 101]. The Mahalanobis distance is
defined by

d2m(x) = (x− µ̂x)
T Ŝ−1(x− µ̂x) (C.10)

where µ̂x and Ŝ are robust estimations of location and covariance of the observed
explanatory variables X. In a general case wx should be recalculated at each
iteration, when robust location µ̂x and covariance Ŝ−1 are re-estimated. The
robust location estimator was computed as the median and the robust scale esti-
mator was computed using the pair-wise algorithm based on the Orthogonalized
Gnanadesikan and Kettenring algorithm [101, 58].

In the case of outliers in the response variables, in both robust IRLS and
original RPNN, the model fit function is the weighted sum of squares of residuals

RSS =
1

n− 1

n�

i=1

ρ(ri/σ̂) (C.11)

In our new enhanced RPNN (ERPNN) algorithm we take into account possible
outliers in the explanatory variables X and the weighted sum of squares of residuals
is expressed by

RSSw =
1

n− 1

n�

i=1

ρ(ri · w
2
i /σ̂) (C.12)

where wx = {wi}, i = {1, . . . , n} as in Equation C.9.
Notice that at the very begin of the GMDH algorithm, instead of the regular

Akaike criteria used for model selection, we use a modified robust version of the
criteria with second-order bias correction [4, 34, 119] with additional leverage point
resistant term

AICr =
1

n− k

n�

i=1

ρ(ri · w
2
i /σ̂) +

n+ k

n− k − 2
(C.13)

=
n− 1

n− k
RSSw +

n+ k

n− k − 2
.

where k is a number of terms in a model evaluated.

C.2.3 Enhanced RPNN robust to outliers in explanatory

and response variables

The enhanced version of the algorithm is based on GMDH PNN for model and
parameters selection, described elsewhere [5], with robust techniques extension
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inspired by MM-estimators and S-estimators approach [149]. Let us assume n
observations of the explanatory variable, such that X� = {x̂ij} is a m× n matrix
of the observed measurements of the explanatory variables X, x ∈ Rm. We assume
one response variable y, such that the 1×n vector of the observed response variable
is denoted y�.

The goal is to find a model y = f(x; βo) + ξ where f(·) is multinomial non-
linear function whose order is known a priori to be not higher than pmax and
that cannot consist of more than tmax terms. Taking into account the presence of
outliers in both explanatory and response variables we can write X� = X+ ξx and
y� = y + ξ, whre ξx and ξ are not correlated and have a distribution that follows
a sum of Gaussian distributions with “heavy tails”.

The general procedure of the enhanced RPNN algorithm aimed at optimal
model selection is the following:

(1) Compute the robust estimation of location µ and covariance S of the ex-
planatory data-set X�;

(2) Initialize the vector of weights wx based on the estimates µ̂ and Ŝ for later use
by the iterative estimator inside the robust enhanced PNN-core algorithm,
as shown in Equation C.9;

(3) Initialize the best models set M �
best = ∅;

(4) For each pair of constraints (t, p) to the terms and power of the multinomial
non-linear function, i.e., ∀(t, p) where t ∈ {1, . . . , tmax} and p = pmax do

(4.1) Run the robust enhanced PNN-core algorithm beginning with models
set to Mstart equal to M

�
best and with model constraints set to t and p

of M �
best;

(4.2) Get Mbest model-set from enhanced RPNN-core algorithm;
(4.3) Evaluate the models from Mbest in accordance with the robust fit criteria

AICr (given in Equation C.13);
(4.4) Update M

�
best with those models found in M ∈ Mbest, which have lower

values of AICr criteria and are different by structure from the current
models in M

�
best;

(5) Choose the model M ∈ M
�
best that minimizes the AICr criteria, i.e., the best

fit model (or use the full set M
�
best with appropriate AICr values to obtain

an ordered set of best fit models, if one wants to search for more than one
model).

(6) Obtain explicit form of the selected best fit models for future analysis from
information associated with model by core of the RPNN algorithm.

Notice that the search for the raw model and parameters selection are per-
formed at the above step (4.1). The major difference of the enhanced algorithm
is that an advanced estimator robust to outliers in both explanatory and response
variables is used instead of the least square estimator (as described in Section
C.2.1) for the linear regression between the terms of model. The generator func-
tion g(fi, fj, fk) = afi + bfjfk was used in order to achieve faster computations,
without sacrificing the accuracy of the algorithm on quadratic models. Notice that
such change of the core linear solver into a fully robust one provoked changes in
the fit function and top-level model selection criterion.

The enhanced RPNN-core algorithm searches for best fit models for a given
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pair (t, p) of constraints on model terms and order, the correction weight vector
wx, and a list of starting models Mstart according to the following procedure:

(1) Initialize the working sets:
• set best models Mbest = Mstart;
• estimation of the best models set Xbest in accordance to Mbest;
• expand the working data-set Xall = [X;Xbest];

(2) ∀{i, j, k} where i, j, k ∈ {1, . . . , |Xall|} do
(2.1) Build a model Mijk = α1xi + α2xjxk where the generator function

G(i, j, k) = xi + xjxk and xp denotes the vector correspoding to the
p-th column of matrix X;

(2.2) Reject the model Mijk if it does not fit to terms and order constraints
(t, p);

(2.3) Evaluate the linear regression coefficients α1 and α2 with IRLS method
using the weight vector wx, such that the vector α = {α1;α2} satisfies
the robust linear regression model

y ≈ [xi;xj
· xk]T · α;

(2.4) Calculate the robust model fit function for model Mijk:

RSSw(r) =
n�

t=1

ρ(rt(Mijk) · w
2
xt/σ̂))

= ρ(wx([x
i;xj

· xk]T · α− y)/σ̂);

(2.5) Reject the model Mijk if

RSSw(r(Mijk)) ≥ RSSw(r(Mi)), ∀Mi ∈ Mbest;

(2.6) Reject the model Mijk if�
∃Mi ∈ Mbest : Mijk has same structure as Mi

RSSw(r(Mijk)) > RSSw(r(Mi));
(2.7) Include the model Mijk into the Mbest set and model estimation

xijk = α1x
i + α2x

jxk = [xi;xj
· xk]T · α

into Xbest, replacing a model with the same structure if it exists;
(3) Reduce the Mbest set and Xbest, given the models with the best RSSw cri-

teria;
(4) Update the model estimation set Xall = [X;Xbest];
(5) Repeat steps (2) to (4) until convergence of the models.

C.3 Results
The descibed algorithm was tested on artificial data-sets. Models of specified
degree and terms number were generated, as well as, appropriate data-sets.
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An artificial data-set X was created in accordance with Gaussian distribution
η(0, σ2

x), in all tests done σ2
x = 10. An initial model Minit satisfying to constraints

on model degree and number of terms was generated and evaluated on data-set
X, in order to obtain realizations of dependent variable y = Minit(X). An input
data-set consist from Xfit and yfit was forged as follows: explanatory variable
realizations were a superposition of “real” data and outliers

Xfit = X+ η(0, 7σ2
x) = η(0, σ2

x) + η(0, 7σ2
x) (C.14)

And dependent variable realizations were a superposition of “real” output, system-
atic error ξ, and outliers

yfit = y + η(0, 1) + η(0, 3σ2
y) (C.15)

When Mfit was build by algorithm it was tested on “clear” from outliers data-set
with zero mean and with 3 times higher standard deviation than initial data-set
has Xtest ∼ η(0, 3σ2

x). In this case we are be able to fight against model over-fitting
if it was present. Average of square of residuals (RS) was recorded as performance
measure of the fit model

RS =
1

|Xtest|
·

�

∀xi∈Xtest

(Mfit(xi)−Minit(xi))
2 (C.16)

In all experiments initial data-set Xinit was made from 100 points and test data-set
was made from other 100 points.

We run three groups of tests on those data. We test general performance
and prediction accuracy in comparison with the initial RPNN algorithm robust
to outliers in response variable only and with the IRLS algorithm based on fully
robust ρ(·) function as described in Section C.2.2. We test model selection quality
having two different model fit functions at top-level algorithm. And at the end,
we did tests with varying number of outlier points present in the data in order to
verify robustness of the algorithm.

General performance of algorithm was estimated by comparison with original
RPNN [5] and with IRLS algorithm.

For all three algorithms we did tests with linear, quadratic, and weak-cubic
models (latest ones were composed from one term of third degree and other terms
from up to second degree). In the case of IRLS algorithm, which is linear by
its nature, and models of second and third degree the initial data-set Xinit was
transformed to X�

init having all possible combinations of initial variables, which
give terms of up to second degree and up to third degree appropriately. In all tests
initial models were of second order, except general performance linear and cubic
tests, and consist from 5 terms (4 terms are made up from 4 available variables
plus a constant term). Please note, because of randomness of model generation,
it could happen, that some models were composed from not full set of variables,
for example: a model f(x) = x2

3 + x2
4 + x3x4 + 1 uses only 2 variables out of

all, while having 4 terms. The PNN algorithms were limited to search within the
models of appropriate degree and consisting from up to 6 terms. In all experi-
ments there were a total of 25 outliers (15 in explanatory X and 10 in response
y). For each condition the input data and the models were generated 200 times
and then all three algorithms were run of them. The results are summarized in
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Figure C.2: Distributions of residuals obtained with IRLS (solid line), RPNN
(dotted line), and ERPNN (dash-dot line) algorithms for the case of quadratic
models. Bin size is 300. Bins corresponding to [−300; 300) interval are truncated
at 1500, actual values are: 7749, 4831, and 18637 points for IRLS, RPNN, and
ERPNN appropriately.

Figure C.3: Comparison between IRLS (dashed line), RPNN (dash-dot line), and
Enhanced PRNN (solid line) algorithms. Experiments sorted by values of RS
criterion are placed on x-axis and values of RS criterion them-selves are on the
y-axis.
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Table C.1: General prediction accuracy with 10 outliers in dependent variable and
15 outliers in explanatory variables

Method Used RS, Total Fit Models

Linear models mean± std w. RS > 103

RPNN 9336.239± 44850.23 11.0%
IRLS 424.638± 5278.51 1.0%
ERPNN 0.471± 0.43 0.0%

Quadratic models mean/103 ± std/103 w. RS > 103

RPNN 346 164± 451 348 99.5%
IRLS 198 490± 453 752 78.5%
ERPNN 2 106± 13 404 8.5%

Cubic models mean/103 ± std/103 w. RS > 103

RPNN 266 120 481± 878 222 086 99.5%
IRLS 273 272 658± 945 446 327 85.5%
ERPNN 231 003 849± 876 882 759 38.5%

Table C.1. For quadratic models case distributions of residuals obtained thorough
all experiments for each algorithm are shown on Figure C.2 (residuals with abso-
lute values larger than 15000 are not shown on the figure; number of such points
was 2111 (10.56%), 3821 (19.11%), and 34 (0.17%) for IRLS, PRNN, and ERPNN
algorithms appropriately) and means of square of residuals (RS criterion) for each
algorithm in experiments are shown on Figure C.3. On the histogram plot bins
corresponding to [−300; 300) interval holding: 7749 (38.75%), 4831 (24.16%), and
18637 (93.18%) points for IRLS, RPNN, and ERPNN.

Please note, that for quadratic and cubic cases because of initial data-set (with
dimensions of 100×5) expansion, it became a data-set X�

fit with dimensions 100×15
and 100× 35 appropriatly.

To measure model selection features of the algorithm we expanded model search
space allowing to look up though models consist from up to 12 terms (instead of
default 6 and thus 7 terms more than actual models have). Two versions of the
algorithm were used: first as described above with AICr as model fit function
and second with plain RSSw in this role. Please note, improvement of the value
of the fit criteria was achieved with longer models allowed, which gave 2 models
more (1% more) with low values of RS criteria. The results are summarized in
Tables C.2 and C.3.

Sensibility to the outlier quantity was tested by running algorithm on models
with NO = {5, 10, 20} outliers in the response variable and NL = {0, 5, 10, 15, 20, 25}
outliers in the explanatory variables. Most illustrative results are summarized in
Table C.4. Number of models with high values of RS criterion as function of NO

and NL is summarized on Figure C.4. Change of the RS criterion through exper-
iments for selected cased are depicted on Figure C.5. Please note, that algorithm
always remained tuned for 25% of outliers (i.e. the value of the constant Cτ was
the same across all experiments).
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Table C.2: Enhanced PRNN model selection performance with AICr and RSSw

model fit criterions and maximal model length of 6 or 12 terms.

Fit Criteria Fit Models Average model length
(max terms allowed) w. RS > 103 (terms in model)
AICr (T6) 8.5% 5.11
AICr (T12) 7.5% 5.74
RSSw (T12) 7.5% 10.56

Table C.3: Enhanced PRNN fit model quality with AICr and RSSw model fit
criterions and maximal model length of 6 or 12 terms

Fit Criteria RS, best 80% RS, worst 20%
(max terms allowed) mean± std mean/103 ± std/103

AICr (T6) 10.80± 8.22 10 532± 28 453 546
AICr (T12) 12.31± 8.89 6 536± 16 842 335
RSSw (T12) 15.75± 9.95 6 536± 16 842 333

C.4 Discussion
From the Table C.1 it is seen that RPNN can not cope with such kind and amount
of outliers in the case where models are not linear. For the quadratic case only 1
model out of 200 was found correctly by RPNN, while by Enhanced RPNN – 17
models were not found correctly. Comparison with robust IRLS reveals that it is
not as good as ERPNN on linear tasks. Thought both are very good, they were
able to find good approximations for more than 99% of models. Although, ERPNN
is noticeably better than IRLS in handling higher-degree models if one apply
initial matrix expansion approach for IRLS. Obviously this approach leads to bad-
conditioned initial data matrices and much higher impact of outliers, especially,
when for high-degree models. Enhanced RPNN, because of its GMDH origins, is
less affected by bad conditioned data matrices, as it takes a combination of only
three variables at each step and model fit function can coupe with that in more
effective way, than IRLS.

As one can see from the Figure C.3 and the Figure C.5 fit models build by
algorithm are quite accurate until certain point, after which there is a great “jump”
of RS criterion to the values of 106 and higher. This happen when the algorithm
is failed to find correctly one or more terms of actual model. One absent term,
when multiplied by the order of model and, usually, replaced with another inap-
propriate high-order term, will cause such values of RS criterion. In other cases
fit model can have inaccurate parameters estimations and/or excessive terms with
coefficients close to zero, but according to our experience this will cause relatively
small deviations in RS criterion up to around 103.

Please note, that the results of the linear and the cubic cases are given for the
purpose of raw comparison with the quadratic case. One should take in to account
that RS criterion is rising far much slower in the linear case and far much faster
in the cubic case.
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Figure C.4: Percentage of models with high values of RS criterion (RS > 103)
found with ERPNN algorithm as a function of number of outlier points in ex-
planatory variables (x-axis) varying from 0 to 25 and in response variable: 5
(dashed line), 10 (solid line), and 20 (dash-dot line).

From the Figure C.4 we can see a dependency between number of the outliers
and number of models with high RS criterion (RS > 103). Because of algorithm
tuning to 25% of outliers present in the initial data, occasionally, it can behave
better on data contain more outliers, thought it can depend on the ratio between
outliers in the explanatory variables and in the response variable.

The difference between all three methods is best seen on the Figure C.2, which
shows residuals distribution. From the figure one can see that majority of points
are in the region close to zero for all algorithms, thought the distribution of resid-
uals of ERPNN algorithm has much more points close to 0 (93% points) in com-
parison to any other method (39% for IRLS and 24% for RPNN). In consequence,
distributions of residuals of models found by another algorithms have much heav-
ier “tails”, which means more wrongly selected models were used or more purely
estimated coefficients were found.

ERPNN preserves one important feature of the original PNN algorithm – an
explicit form of fit models are automatically found by the algorithm. This feature
of the algorithm is not really discussed in this paper, except for the length of
models found with different fit criterions. As it is seen from the Table C.2 with two
times longer models allowed to search through we can decrease number of models
not found correctly by 11% in comparison with standard case of 6 term models
allowed. Also it is clearly seen that Akaike based model fit criterion can achieve at
least the same results in terms of RS fit criterion values, while having almost two
times shorted models – 5.74 terms in average instead to 10.56 terms in avarage for
RSSw case. That will reduce possibility of over-fittting given by RSSw criterion.
We can see in the Table C.3, that models found with RSSw have higher value of
RS criterion on the 80% best models, than those found with AICr criterion, which
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Figure C.5: Robustness of ERPNN to the ratio of outlier points present in the
regression data-set. Experiments, sorted by value of RS criterion, are placed on
x-axis. Values of RS criterion are on the y-axis in the logarithmic-scale. 10
outliers were always present in the response variable and 10 (dash-dot line), 15
(solid line), 20 (dotted line), and 25 (dashed line) outliers were present in the
explanatory variables.

Table C.4: Sensibility to the ratio of the outlier points present in the regression
data-set.

Outliers number in RS, total Fit Models
in X in Y mean/103 ± std/103 w. RS > 103

0 10 1.92± 19.26 1.0%
5 10 193.1± 931.9 6.5%
10 10 1 128± 7 503 8.5%
15 5 1 227± 8 922 5.5%
15 10 2 106± 13 404 8.5%
15 20 7 795± 33 049 15.5%
20 10 15 051± 75 973 17.5%
25 10 67 459± 177 511 38.5%

proves that longer models found by the algorithm with RSSw criterion are worth
than those found with AICr criterion. Please note, that IRLS method does not
do model selection at all it always produce models with all possible terms made
from a combination of all initial variables.

Last, but not least, we discuss some issues associated to the practical imple-
mentation of the algorithm. As mentioned above the correction weights wx should
be recalculated at each iteration, when robust location µ̂x and covariance Ŝ are
re-estimated. In our implementation they are calculated only once and are used
in all runs of the IRLS algorithm for linear regression in the core of the PNN al-
gorithm. In our implementation we sacrifice somehow the algorithm’s precision in
favor of calculation speed. We observed that gain of speed was worth of precision
lost, but we are investigating further to determine in which cases this could pose
a problem.

Several ways are still open to improve performance of the algorithm. First of

Bio-electric patterns detection
and bio-inspired evolving neural network modeling

V. Shaposhnyk



122 ARTICLE C. STRUCTURAL MODELING ROBUST TO OUTLIERS

all quality of the outlier detection can be greatly improved if pair-wise algorithm
for robust covariance estimation will be replaced by more complex one which will
take into account all variables at whole, and not two of them at once, as it is
done in pair-wise algorithm, like OGK. From the other side such algorithms are
much more computational heavy than pair-wise ones, so if computational speed
is really important it cannot be advised. Our research was quite limited to the
class of the quadratic models, so more deep analysis should be done on algorithm’s
performance on models of higher-order. The generator function g(fi, fj, fk) = afi+
bfjfk used is very good for quadratic models’ class, but it is also known to have
some limitations when applied to higher-order polynomes. More additional studies
should be done on selection the generator function in terms of trade off between
computation speed and prediction accuracy for other higher-degree polynoms. By
the design original GMDH-algorithm has problems in the case of the high-order
models when higher-degree terms will completely outperform low-degree terms of a
model and thus later ones always will be lost during search. Possible outliers make
the solution in the case even harder and more work on adoption of fit criterion
should be done when terms with greatly different degree appear during model
estimation by the core of the PNN algorithm. Proposed enhanced RPNN preserves
good accuracy of the automatic structure synthesis of its predecessor and offers
robustness to outliers in both explanatory and dependent variables.
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Chapter 9

Final chapter

I may not have gone where I
intended to go, but I think I have
ended up where I needed to be.

Douglas Adams

Résumé :

Notre conclusion montre traite de tous les résultats obtenus et des chemins
possibles pour de futurs travaux. Quelques remarques sur le déroulement
du travail sont présentées. Elles mettent l’accent sur les contributions pra-
tiques et théorétiques de la simulation de réseaux neuronaux de grande
taille, ainsi que sur les difficultés liées à cette simulation.

This work has been conducted through a number of years. During that long
period some decisions about the contents of the Thesis were taken well in advance
and were well planned, while others were taken on the fly and developed in artistic
way. In this Chapter we will conclude all the work done in the frame of the Thesis
and then we will point out directions for possible future work.

9.1 Conclusions
In the frame of this Thesis:

• a novel hierarchical evolutionary SNN simulator was created;

• an unique agent-oriented framework targeted on mobile platforms was de-
veloped;

• we showed the evidence that hierarchical neural circuits we model exhibit
behavior similar to that observed in real humans;

• a role of inter-layer and intra-layer reciprocal inter-connections in hierarchi-
cal neural circuits was studied and the results bring the light on characteristic
activity patterns associated with particular type of reciprocal connection;
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• a multi-variative regression algorithm, featuring automatic model selection and
robust estimation of model parameters in the presence of outliers in both
explanatory and response variables, was developed and tested on artificial
data.

Novel hierarchical evolutionary SNN simulator supports a rich set of
biologically plausible features including: excessive cell death during early develop-
ment phases (apoptosis process), evolvable synapses via Spike-timing-dependent
plasticity (STDP), cell death and synaptic pruning, as a results of synapse depres-
sion, and neurons generated bio-electrical field recordings (electrochipography)
similar by its properties to the real electroencephalography (EEG) or Local Field
Potentials (LFP). Its distinct among other simulators by a unique combination of
cutting edge simulation features united in the one piece of software. These most
important features are hierarchical neural circuit modeling, which allow to reflect
information procession areal-chains of real brains, evolutionary features of circuits,
including circuit genomic representation, natural selection over circuit generations
and genetic mutations of genome, and, finally, an ability to do bio-electrical sig-
nal recordings from virtual electrodes installed on the modeled circuit’s surface
(electrochipography (EChG)). Despite the fact that current models are rather
simple ones we had shown that our simulator is capable to produce biologically
plausible output and it could be used for analysis of a large number of experiments
originating from real neuro-physiology.

An unique agent-oriented framework can run a swarm of “small” com-
puting modules (like perplexus’s Ubichip-accelerated platform or java-enabled
smartphones) reconfiguring dynamically network’s topology depending on the
agents available. Every agent of robotic system bear a Spiking Neural Network
(SNN), which can be used for environment perception and action control. Al-
though a possibility as such to run the simulator on a large number of compu-
tational modules in dynamic topologies, an overload produced by currently used
synchronous data transmission approach will be noticeable in large systems and
more efficient solutions should be studied. Notably, we believe that asynchronous
data-transmission approaches will improve the situation, but this kind of research
is left for future work.

In the Article B: “Stimuli-driven functional connectivity” we showed the
evidence that our hierarchically organized neural networks exhibit be-
havior similar to that observed in real humans. The third order spectral
analysis of both electrochipography and electroencephalography allowed us to de-
termine the frequency range of quadratic phase coupling (resonant frequency)
across cortical areas [140, 141]. A remarkable result is that modeled circuits dur-
ing later developmental stages, just like the patients after treatment during sleep
phases, were characterized by lower values of Index of Resonant Frequencies (IRF)
than during earlier stages and before treatment accordingly. Both an appropriate
stimulation of the circuit and the cognitive brain therapy appear to modify the
IRF provoking a shift of the indexes towards low frequencies at all brain states.
Which means that, according to the usual interpretation based on standing waves
theory, information processing is transmitted at long distances such increasing
cross-areal involvement in neural processing.

In the Section 7.2 we depicted a study of a role of reciprocal connections
in hierarchical circuits on an example of four topologies characterized
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by different combination of reciprocal connection types present and
we have found activity patterns characteristic for each type of connec-
tion. In particular, intra-layer projections suppress cross-areal synchronization
of a brain, forcing the circuit to exhibit stronger stimulus evoked activity, while
absence of such projections will result in weaker reaction to the stimulus and
amplification of inner-state evoked activity. Although, strength and time of ex-
posure of the behavior is topology dependent, these findings prove presence of
the non-superwised learning in the circuits and a potential possibility to achieve
supervised-like learning by introduction of the topological changes.

A number of data-analysis techniques were developed for application to the
bio-electrial signal recorded from the modeled neural networks. They were rang-
ing from simple Power Spectral Density (PSD) analysis to the bispectral analysis
and the non-linear robust regression analysis approaches. We created a pow-
erfull multi-variative regression algorithm featuring automatic model
selection and following robust parameters estimation, in the presence
of outliers in both explanatory and response variables. In all artificial test
runs the developed Enhanced Robust Polynomial Neural Network (ERPNN) ap-
proach has shown a really good performance and a robustness to outliers in either
explanatory or response variables of the data. Although, the proposed method was
really performant on artificial data tests, there are still many options to improve
its performance. But this is a subject for a next Section.
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9.2 Future work

As it has been told, there are several ways to increase the performance of the
ERPNN approach: first, outlier detection can be greatly improved if pair-wise
algorithm for robust covariance estimation will be replaced by a more sophisticated
one, which will analyze also information present in the variables as whole, and not
just in the pairs of them, as it is done in our current implementation. Other
possibilities lie in the adaptation of the generator function in terms of trade off
between computation speed and prediction accuracy for higher-degree models.
The final note about ERPNN is: although it has good results on the artificial
data, the real work will start when it will be tested on a real-world data.

Now let’s back to the simulator framework perspectives. From the SNN model-
ing point of view through the years Leaky Integrate-and-Fire (LIF) neuro-mimetic
model was pressed by the Izhikevich’s and Hodgkin-Huxley’s models [80], first of
all from the point of bio-plausibility of the observed emerging activity. The ar-
chitecture of the simulator allows relativly easy integration of the new models of
neurons. It would be really interesting to compare results of experiments based
on different neural model, which will give more insights on how, when and which
model could be and should be used.

Larger and more complex topologies could be studied with the current state
of the simulator, but a lot of research work should be done first on the scaling
of such areal neural networks. We saw in our experiments, that even with few
modules hierarchical network behavior is very different from the one expected from
the stand-along neural network of the same number of cells in total. But given
good model parameters setup, the simulations where billions of cells organized
in the biologically plausible information processing chains will undoubtfully give
very precise information on the processes taking place in the real neural systems
and thus probably could be used to predict effect of new drugs or treatments on
human’s neural system.

At the moment of writing this section we finished development of large multi-
layered hierarchical simulation-starter. Now the topologies with arbitrary number
of agents per layer and arbitrary number of layers can be started easily. Horizontal
and feed-backward reciprocal projections could be switched on and off and motoric
layer influence could be studied by adding feed-back projections from that layer
to selected processing or sensory layers.

More complex input stimulus application protocol should be implemented in
order to be able to reproduce and then to compare results of real experiments.
The first steps are already done in this direction, by introducing Go/NoGo-like
stimulus filter, which is in conjunction with motoric-layers’ feed-back will allow to
setup really interesting experiments.

As our reciprocal projection study in Section 7.2 testify, more sophisticated
analysis methods should be applied to recordings to extract useful knowledge
from the simulation results. Simple PSD and Evoked Potential (EP) are not
sufficient to obtain proofs of the behavior differences in the current state of the
model, when it is plagued by high frequency noise. Non-linear methods, like third
order spectral analysis (Section 6.3) or non-linear regression methods, as Robust
Polynomial Neural Network (RPNN), could be usefull and are very promising
to that kind of studies. Another possible solution could be to tune the model
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to produce really biologically plausible output, i.e. shifted to the low-frequency
domain in comparison to the currently observed activity.

The SNN could be used to perform recognition or prediction tanks, which
was demonstrated by number of works [85, 86]. Many learning strategies are
based on the evolutionary principles. Currently our simulation framework was
used only to obtain biologically plausible data from modeling, but it is not only
possible application of the framework. Mutation and specie selection evolutionary
features of the framework in conjunction with complex stimulation protocols could
be used to create predictors and recognizers, and, what is even more important,
it will be possible to study how exactly the learning is going on the cellular level
in these biologically plausible networks. That applications have huge potential for
comprehension of human’s memorization processes and thus could be a first step
for development of the real-world learning catalysts.

From the framework development point of view current implementation already
offers a lot of features. While every single feature is not unique to our framework,
they are also present in simulators available [60, 19, 13], the combination of the
features proposed is absolutely unique, there is no any other simulation framework,
which features distributed simulations, hierarchically organized modular network
simulations, evolutionary simulations with mutation, replication and selection sup-
port, and finally – a hallmark of the framework – bio-electric EChG recordings.
The another one really interesting and promising development direction is imple-
mentation of a version of the simulator well optimized for parallel computational
architectures, such as graphic-chip arrays, which could give a huge rise of 10-100
times of modeling speed while preserving current network dimensions, which will
fasten and ease an access to new even more sophisticated data.

Finally a powerful and feature-rich framework is created to stimulate spik-
ing neural networks organized into hierarchical neural circuits with evolutionary
features and to study emerging behaviors of these circuits. It is waiting to be
applied to even more complex cognitive and behavioral problems in the domain
of neuroscience.

November 7, 2011
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List of acronyms

aBIS auto-bispectrum

AI Artificial Intelligence

ANN Artificial Neural Network

BS Base Stimulus

COBA conductance-based

DFT Discrete Fourier Transform

DNA deoxyribonucleic acid

DSS decision support systems

EChG electrochipography

ECoG electrocorticography

EEG electroencephalography

EHNN Evolving Hierarchical Neural Network

e-PSP excitatory postsynaptic potential

EP Evoked Potential

ERPNN Enhanced Robust Polynomial Neural Network

ERP Event-related Potential

ESD Energy Spectral Density

FBH feed-backward with horizonal reciprocal connections

FB pure feed-backward

FFH feed-forward with horizonal reciprocal connections

FFT Fast Fourier Transform

FF pure feed-forward

FRM maximum firing rate

133



134

GA Genetic Algorithms

GMDH Group Method of Data Handling

IF Integrate-and-Fire

IIR Infinite Impulse Response

i-PSP inhibitory postsynaptic potential

IP Internet Protocol

IRF Index of Resonant Frequencies

ISI Inter-Stimulus Interval

JADE Java Agent Development Environment

LFP Local Field Potentials

LIF Leaky Integrate-and-Fire

LTD long-term depression

LTP long-term potentiation

MLS mean least squares

NA Neural Network Agent

NMM neural mass model

PSD Power Spectral Density

PSP post-synaptic potential

RNA ribonucleic acid

RPNN Robust Polynomial Neural Network

SNG Scriptable Network Graphics

SNN Spiking Neural Network

SNR Signal-to-Noise Ratio

STDP Spike-timing-dependent plasticity

SVM support vector machines

WSS Wide Sense Stationary

xBIS cross-bispectrum

xCoh cross-coherence
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Class Diagrams of the Framework

The whole set of classes of the developed framework contains 157 Java-classes
grouped into 23 packages, not counting those from important libraries, i.e. JADE,
and stand-alone analysis tools developed during the Thesis’s venue. That amount
of logical structures and relationships cannot be easily depicted on the paper.
Thus, the diagrams of this Appendix are neither complete, nor self-sufficient, they
are given here with only purpose to briefly depict very general frame of the devel-
oped software.
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Introduction
! This project was aimed at developing a scalable and distributed software platform 
dedicated to the simulation of large-scale multi-scale auto-organisative phenomena, and to 
the observation of potentially  emerging behaviors. The platform is composed of many 
computing, behaving and communicating modules called Ubidules with developmental, 
learning, and evolution capabilities. Ubidules can be associated to sensory, actuators and 
communicators elements.
! An unique simulation framework was developed to model large-scale biologically  
plausible neural networks and study the emergent complex behaviors in a virtually 
unbounded network of simulator modules. The biologically plausible neural network 
simulator application is offered as a tool to study information processing in brain-like 
systems. Concept of the distributed neural network is in auto-organizing three layered 
(sensory, processing, and motor) artificial neural network, each Ubidule of the network 
allows a study of an endless number of configurations aimed to suit researcherʼs specific 
interest. The simulation framework also can be used to process information in a real 
environment thanks to the interface with sensors and actuators. The real environment 
circumvent the need to simulate a virtual environment and ease the occurrence of 
unexpected emergent phenomena. 
! This Guide is organized in the following chapters. Chapter 1 describes a general 
concepts of the simulator. Chapter 2 describes an installation steps should be done to 
obtain runnable instance of the simulator. Chapter 3 describes simulatorʼs organization, 
Chapter 4 describes configuration facilities of the simulator software in order to create 
custom simulation and finally Chapter 5 describes typical simulatorʼs output.

General Overview
! The simulator software package is a highly expandable and flexible framework aimed 
for hierarchical biologically plausible neural systems simulation. All components of the 
framework are organized in a modular way and allow inter-operability, compatibility, and 
expandability  of the simulator system and its parts in accordance to the current needs. It is 
divided onto biologically plausible neural network simulator and distributed hierarchical 
evolutionary neural network simulator packages, which are together fully  cover epi-, and 
onto-genetic and phylo-genetic level of evolutionary concept. On ontogenetic level  
simulator implements routines, which are in charge of origination and the development of 
the neural system based on decoded genome during its early stages. Genome decoding, 
neural network initialization, and inter-network connection establishment rules are also on 
this conceptual level of the simulator. On epigenetic level there is neural network simulator 
package learning features, which are limited to an individual lifetime. The neural network 
simulator itself naturally fits in this layer.
! The simulator software consists from four major sub-packages oriented for specific 
simulation needs, they are:

nhrg-Jeign - the core simulator package. It allows simulation of neural network of leaky 
integrate-and-fire spiking (LIF) neurons arranged onto 2D square lattice featuring 
biologically  plausible processes in the network (i.e. STDP, synaptic prunning, cell death, 
and apoptosis).

nhrg-JJeign - an utility package designed to make core simulator package JADE 
compatible and thus distributable over remote computational hosts.
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nhrg-JElectrode - the core package implementing full set of virtual electrode functionality, 
which is run over simulated neural network.

nhrg-JNet - the core package targeted for distributed and evolutionary hierarchical neural 
network simulation. It allows to plan, create and maintain network activity connection-links 
between neural simulator agents.
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Installation Guide

The simulator is written in Java language and run on any hardware with Java Virtual 
Machine (JVM) implementation confirming to the JVM ver.1.5 specifications or later. In 
particular it was tested to run on linux and MacOSX platforms, it runs also on win32, but to 
do so batch files should be rewritten in a win32 way, which is different from unix batch. All 
instructions here are given in assumption that simulator is running on unix-like platform. 
Basic understanding of command-line commands is necessary to run the simulator. 

In order to install the simulator follow the next basic steps:

1. Download the simulator software binary package, file usually named in accordance to 
the following scheme: nhrg-jnet-<version>-bin.zip, where <version> is a three digit 
package version

2. Unzip the package (unzip nhrg-jnet-<version>-bin.zip)
3. It will create a folder name nhrg-jnet
4. Verify that you have Java Virtual Machine installed, not earlier than version 1.5 

(can been done with java -version)
5. Open terminal and navigate to nhrg-jnet folder
6. In the terminal start the basic simulation by invoking the a command ./run.sh or sh 

run.sh from the folder where simulator was unpacked
7. Wait until simulation finish

By default simulatorʼs configuration is such that 5 simulator agents (one sensory neural 
network, one motoric neural network and three processing neural network agents) will be 
started in the same JADE container, if no special simulation parameters are specified, they 
all will be situated on the same hardware node.
If such basic test-run of the simulation is failed, most probably, not all required libraries are 
in the Javaʼs CLASSPATH. Please check dependency packages listed below and JVMʼs 
documentation.

Software dependencies
Basic software: Java Virtual Machine, version 1.5 or higher.

All following libraries are mandatory  for the simulator package and normally are included in 
the simulator package. 

NHRG libraries:
- nhrg-jeign.jar - Jeign package - stand-alone biologically plausible neural network 

simulator;
- nhrg-jelectrode.jar - JElectrode package - the virtual electrode simulator; 
- nhrg-common.jar - common NHRG utilities library (including configuration parser);
- nhrg-jjeign.jar - JJeign package - JADE agent wrapper for Jeign simulator package;
- nhrg-data.jar - basic data manipulation library;
- jade-3.7.0.jar - JADE Library, including graphical user interface (GUI) for basic agent 

management tasks.
- jadeLeap-3.7.0.jar - portable version of JADE Library (the one should be used 

instead of jadeTools-3.7.0.jar - JADE tools library. 
- http-3.7.0.jar - supplementary JADE library for inter-agent communication. 
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- iiop-3.7.0.jar - supplementary JADE library for inter-agent communication.

NB! Current version of the Simulator is tested for compatibility only with JadeLeap  version 
3.7.0. It is known that Simulator will not work with JadeLeap version 3.5.0 due to inner 
Jadeʼs implementation bug with agent invocation (despite that the Simulator will work with 
generic Jade library higher than v.3.5.0, but v.3.7.0. has noticeably higher performance).

Other misc libraries:
- activation-1.1.jar 
- jms-1.1.jar 
- jmxri-1.2.1.jar 
- jmxtools-1.2.1.jar 
- log4j-1.2.15.jar
- mail-1.4.jar

Software packaging
The simulator is implemented in Java programming language, it is designed to efficiently 
emulate hierarchical neural network with especial emphasis on dynamic topology 
reconfiguration, rich possibilities for network state acquisition and evolutionary features of 
hierarchical networks. 

jnet-bin.zip is a binary  package based on JADE implementation. It is suitable for 
MacOSX, Linux, and win32 platforms with J2SE VM version 1.5 or higher. It consists of 
JNet package, as well as all other mandatory packages, like JElectrode, and Jeign. A 
number of default simulation with symmetric S3PM topology are pre-configured, so it will 
work "out of box", start-up scripts for MacOSX/Linux are supplied.

jnet-src.zip is a java source-code package. It will be required to extend functionality  of the 
simulator beyond its current limits.

Packages are available for download via these links: 
! http://neuroheuristic.org/~vshaposh/jnet-bin.zip
! http://neuroheuristic.org/~vshaposh/jnet-src.zip
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Configuration Guide
In this section simulator configuration will be described. An approach to simulationʼs 
configuration is following simulatorʼs hierarchical architecture (jeign - jjeign - jnet), so one 
should configure each stand-alone neural module, than hierarchical organization of the 
modules, than evolutionary features of the circuit. The configuration is propagated through 
configuration files or through genomic parametrization on the evolutionary level of the 
network.

! Configuration of the simulator is non-trivial task, however software framework 
provides number of facilities to ease it. By default the simulator package (unpacked) is 
organized in the following way:

lib/ folder - contains collection of all mandatory simulatorʼs libraries;

data/ folder - will contain number of output files created by simulator, those ones could be 
EChG files, network topology description files, etc;

conf/ folder - contains sub-folders with set of configuration files for each agent role, 
usually they are: def for processing agents, input-sng for sensory  agent with arti- ficial 
stimulus, and output for motoric agents. This is the place were most changes will be done 
in order to get custom simulation.

conf/P-def/net.ini file - neural circuit specific configuration parameters, this covers all 
parameters which are agent-network related, but not related nor to the epi-genetic agents 
(Jeign), nor to the general automate configuration of onto-genetic agents;

conf/X-starter-*/descriptor.ini file - onto-genetic agent message handling automate 
configuration file, this specified main functionality of the onto-genetic agents, and from that 
point of view is analogous to the Jeign simulator pre-, post-processes configuration lists;

input/ folder - contain several folders with predefined artificial stimulus SNG file-sets for 
application on sensory module; One could apply  different stimulus to the sensory agents by 
redefining those SNG file-sets.

run-*.sh file - a set of default start-up scripts. Each specify particular pre-configured 
simulation. This is most convenient configuration place if one could change one or several 
parameters for all modules of the network, without altering all simul.ini files.

The Simulator Package Configuration (simul.ini)
Stand-alone neural network configuration
Implemented in Java programming language the simulator is designed to efficiently 
emulate neural network models with especial emphasis on facilities for model recon- 
figuration and adjustment and on functionally  rich possibilities for detailed network state 
acquisition. Model used is described in the main body of the Vladyslav Shaposhnykʼs 
Doctoral Thesis.
! The simulator defines a set of interfaces to general neural concepts and property  
access routines, like: neuron, synapse, network, signal-processing routines, input/output 
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routines. Within the range of implemented objects it is possible to assembly network of 
neurons following the integrate-and-fire spiking neuron model.
The simulator is an independent software package and thus it could be executed without 
all other modules provided by other packages, but it this way it is limited to the simulation 
of stand-alone rectangular SNN. In assumption that all mandatory libraries are in the 
Javaʼs CLASSPATH. 
! The SNN simulator could be started by executing following command:

#java org.nhrg.apps.jeign.Jeign <parameters>

It is configured either with parameters read from configuration file or passed with genomic 
variables by higher-level packages of the simulator. 
! The configuration file by default is called simul.ini and is searched in the current 
working directory. Path to configuration file could be changed manually  by specifying a 
parameter -Pconf.path=<path/to/simul.ini> in the command line.
! According to the architecture each simulated timestep is pre- or post- processed by  
various processors. These processors and the order they executed fully define the 
simulation flow. Processors could be attached to Simulation object or to Network object. 
! Processor implementation classes and the order they executed are specified by  the 
parameters in the file:

net.preprocess.<index> = <ClassURI> 

and 

net.postprocess.<index> = <ClassURI>. 

! Indexes of the processes start from 0 and continue with increments of one, gaps in 
the indexation are not allowed. 

Sample process configuration section of the simulator is show below:

# define network processing routines 
net.preprocess.0  = jeign.process.BackgroundActivityProcess 
net.preprocess.1  = jeign.process.InputStimulusProcess 
net.postprocess.0 = jeign.process.STDPProcess 
net.postprocess.1 = jeign.process.PruningProcess 
net.postprocess.2 = jeign.process.SynapticActivityTransmission

This sample configuration defines 2 pre-processors and 3 post-processors, which totals in 
five active processes: application of background activity, stimulation input activity, STDP 
synapse modification, cell pruning, and transmission of synaptic activity. Comments and 
blank lines are allowed in order to improve visual performance. Comments start with ʼ#ʼ 
sign and will be ignored by the software;. 
NB! Please, pay special attention to mandatory parameters and parameters by default, as 
they could dramatically change the simulation results.

Virtual Electrode Configuration 
The virtual electrode package implements EChG recorder processes compatible with Jeign 
simulator. In order to install virtual electrode an appropriate process should be added to 
processorʼs list in simulationʼs configuration. The electrode measures local field potentials 
over simulated neural network and produces Electro-EncephaloGraphy-like output (EChG 
signal).
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! Sample configuration of composite electrode is show below.

#electrode recorder process 
net.postprocess.3=jelectrode.impl.process.CompositeElectrodeRecorder 
#sub-electrodes’ implementations 
electrode.count=2 
electrode.0.impl=jelectrode.impl.process.ReferenceElectrodeRecorder
electrode.1.impl=jelectrode.impl.process.RadialElectrodeEPRecorder
# default radial electrode parameters: X,Y, R, decay type
electrode.def.pos.x=11.5
electrode.def.pos.y=9.5
electrode.def.radius=9
electrode.def.decay.type=lin

This configuration will create a composite recorder (CompositeElectrodeRecorder) 
made of two virtual electrodes: a reference electrode () and a regular radial electrode 
(RadialElectrodeEPRecorder), which will be placed in between cells rows 9 and 10 on 
Y-axis and in between columns 11 and 12 on X-axis of 2D cell lattice of the SNN. 
! For a complete list of configuration parameters, please, consult Developers Guide 
section. 

The JNET Simulator Package
! Hierarchical evolutionary neural networks simulator is designed to run on distributed 
hardware platform, i.e. composed from a number of remote computational nodes. The 
JNET simulator could be started with following command:

#java -Xms64M -Xmx16G jade.Boot \ 
 -name mySim -agent agentName:org.nhrg.apps.jnet.JNet"( \
 -Pinet.msg.descriptor.conf.path=agent/conf/path/descriptor.ini \
 -Pinet.conf.path=agent/conf/path/net.ini)"

It is configured with parameters read from configuration file or from command line. 
Configuration parameters passed through command line will overwrite those from 
configuration file. It is a must to specify agentʼs (or agentsʼ) configuration file paths 
explicitly. 
NB! If modeling neural circuits composed from SNN of 75x75 (or above) it is strongly 
recommended to use systems, which have at least 1GB of RAM per pair of SNN 
modules. 

Defining network behavior automata (descriptor.ini)  
! All package modules, including the neural network simulator, are packaged in JADE 
network agents and then JADE framework is used by JNET hierarchical neural network 
framework to build up  network of neural simulator modules. On each module JNet takes 
incoming messages from JADE message queue and processes them by appropriate 
handlers defined in the network behavior automata. Inter-agent communication and data-
processing is considered as message exchange ruled by a number of internal protocols. 
Message processing handlers implement communication protocols and affect every aspect 
of message exchange. 

Highest level handlers are: 
- AMSNetworkMonitor - responsible for agents discovery in the network
- InputLinkMonitor - accept or refuse connections from upstream networks
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- OutputLinkMonitor - requests and establishes connections from downstream 
networks

- InputActivityMappingCodec - decode spike train arriving from other neural modules 
from a form suited for transmission to a form suited to afferent layer stimulation

- OutputActivityMappingCodec - encode efferent layer activity into a form which is 
suited for transmission over the physical IP network 

The simulator come with preconfigured automata for Processing, Sensory  and Motoric 
modules of circuit. Moduleʼs automate configurations are very general and under normal 
circumstances should not be altered, but if there is such need, please, consult Developers 
Guide section of this Manual.
! The execution flow is separated in terms of processing threads for the SNN simulator 
itself and hierarchical network logic, allowing to process network communications and to  
run  simulations in the independent way.

Defining hierarchical circuits (net.ini)
Although, automates are standard their behavior could be and should be customized in 
order to create different circuit topologies. Usually it is LinkMonitorʼs configuration 
parameters which play major role in the formation of topology, they are set up in net.ini file. 

Regular net.ini configuration is explained here:

# AMSNetworkMonitor options
network.role=P

# LinkMonitor option
links.monitor.inputs=2
links.monitor.inputs.strategy=exact
links.monitor.connect.from.blacklist=o-P1:o-P2

# Agent Launcher class
sim.agent.impl=org.nhrg.apps.jjeign.JeignAgent

This configuration is made for a processing module (network.role=P). Every neural 
network module started using this configuration will have exactly  2 incoming connections 
(links.monitor.inputs=2) and will be modeled using JeignAgent class from nhrg-jjeign 
package for SNN lattice simulation, which is JADE wrapper for Jeign class from nhrg-jeign 
package. Depending on desired topology  topology one could blacklist connections from 
another agents (links.monitor.connect.from.blacklist). It could happen that for 
complex topologies multiple net.ini files one for each agent/layer will be required. 

Defining evolutionary properties (net.ini)
In order to introduce evolutionary features to the simulator and to simplify startup of 
complex hierarchical neural circuits special agent role (Starter) was introduced. Its only 
task is to start replication of its-own neural circuit on a user-specified event. Also starting 
that agent with an immediate replication option and number of generations equal to one 
will allow to model complex hierarchical topologies without creation of a number of 
configuration files for every module of the circuit, Starter agent do this. Starters agents still 
configured via net.ini files, but with additional features specific to this role. A number of 
default Starters are included in the conf/ folder of the simulator binary package. 
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! Features of this configuration will be explained on the following example: 

#genetic network on circle topologies
inet.agent.impl=org.nhrg.apps.jnet.JNet

#config, output, and input consolidate path parameters
inet.def.conf.path=./conf
inet.def.data.path=./data
inet.def.input.path=./input

# topology specific options
inet.agent.num=6
inet.id.prefix=FS

# first generation autostart options
inet.agents.delay=1000
inet.autostart=true

This parameters will vary depending on type of topology starter agent is dedicated. Usually 
it is possible to set up  how many agents are in the circuit (inet.agent.num), are links 
between layers allowed or not, etc. It is also possible to setup specific network prefix 
(inet.id.prefix) and if first generation should be auto-started (inet.autostart) or it 
will be started manually by the researcher. Input and output folders could be set up with 
inet.def.*.path parameters.

# Genetic options
genome.population.no.cur=0  # generation to start with
genome.population.no.max=6  # generation to stop
genome.size=3
genome.prefix=gene

# Genes 0 and 1 are system ones
gene.0.impl=org.nhrg.apps.jnet.impl.genes.FixedTextGene
gene.0.name=inet.msg.descriptor.conf.path
gene.0.init=devel/conf/X-starter-GS2P2PM/descriptor.ini

# Genes 0 and 1 are system ones
gene.1.impl=org.nhrg.apps.jnet.impl.genes.FixedTextGene
gene.1.name=inet.conf.path
gene.1.init=devel/conf/X-starter-GS2P2PM/net.ini

# Connectivity seed will be mutated every time
gene.2.impl=org.nhrg.apps.jnet.impl.genes.NumericGene
gene.2.name=inet.rng.seed   # corresponding config option name
gene.2.min=0      # min value
gene.2.max=99999     # max value
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gene.2.init=11111    # initial value
gene.2.sigma=10000    # variability range
gene.2.granularity=1    # minimal delta of changes
gene.2.mutation.prob=1   # mutation probability

# Simulation options
XCsim.len=384000
XCinet.input.neurons=450
XSinet.input.neurons=900
XSsng.writer.file.mask=input/s450-l10-v45/s450-l10-v45
XSinet.input.amplitude=19

It is possible to add special parameters which will overwrite default configuration 
parameters given in particular simul.ini and net.ini files. If a parameter is prepended by XC 
it will be transmitted to all modules of the circuit (useful to ease the control of common 
parameters like simulation length). If a parameter is prepended by XS, XP, or XM that 
parameter will be transmitted only  to a module of Sensory, Processing or Motoric role 
respectively (useful to setup  specific parameters like external activity stimulation amplitude 
for Sensory module).   

Running distributed simulation
A distributed simulation from configuration point of view is absolutely  the same, as 
evolutionary hierarchical one, but it will differ by  the way JADE containers are started.  It is 
advised to launch a distributed simulation in a following way:

1. Start empty JADEʼs MainContainer (without agents) with a command: 

#java -Xms64M -Xmx16G jade.Boot -name mySim

2. On every  remote host, but one start empty JADEʼs secondary containers specifying an 
IP address of a host where MasterContainer resides: 

#java -Xms64M -Xmx16G jade.Boot \ 
 -name mySim -container -host $MASTERNODE

3. On the last remote host start JADEʼs secondary container (as before), but with a starter 
agent: 

#java -Xms64M -Xmx16G jade.Boot \ 
 -name mySim -container -host $MASTERNODE \
 -agent starterName:org.nhrg.apps.jnet.JNet"( \
 -Pinet.msg.descriptor.conf.path=agent/conf/path/descriptor.ini \
 -Pinet.conf.path=agent/conf/path/net.ini)"

After that simulation should be treated as a regular one. Simulationʼs output files will be 
created on each remote node. It is recommended to put data folder outside of NFS system.  
There is no GUI in distributed simulations.

Simulators Output
It is (if enabled in appropriate configurations):
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- EChG signals (*composite.ecg files) - virtual electrode output. EEGLab compatible 
plain text file EEG file; one row per channel; 

- network dump (*xml files) - full network dump for each timestep of simulation, for 
details, please, consult nhrg-Feign simulator documentation;

- Spike-trains (*sdf files) - SDF formatted spike trains from selected neurons, for 
details, please, consult nhrg-Feign simulator documentation. 

Getting the simulation status
In order to check status of the simulation a management agent with basic functionality 
exists. It provides facilities to track progress of the simulation and to synchronize semi-
finished simulation, which happens when several agents were started before other agents 
and their connection constraints were self-sufficient. Agentʼs actions are triggered by  JADE 
messages. Full list of available actions is available in developerʼs documentation or could 
be obtained by sending d_help message to the management agent.

To get help message through JADE GUI: 
- select management agent, usually named sMgr;
- right click, select "Send Message";
- in the popup dialog fill in language: "jnet-sl" and ontology "d_help";
- press "OK" button.

To get help message though remote command line connection: 
- open telnet connection to the simulator on port 2222, p.ex:
! telnet node1 2222  
- A command line prompt will appear;
- type d_help and then enter.

An output will be written to the terminal where simulation was started. 

In the same way, it is possible to check current simulation progress on all known agents, 
send "d_current_progress" to the management agent. It will request onto-genetic agents 
about their progress and the results will be printed on the terminal.
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Preconfigured Simulations

There are 3 pre-configured simulation included in the jnet-bin.zip package. Batch files 
which start simulations are: run-Single.sh, run-GSNLPM-2L-FB.sh and 

run-Single.sh
A stand-alone SNN simulation. Its corresponding configurations files are in the conf/Z-
Single folder. 

Usage is following: 

###############################################
####
####  ./run-Single.sh NETID NA NF
#### NETID  - connectivity RNG seed
#### NA - noise (BGA) amplitude
#### NF - noise (BGA) frequency
####
###############################################

run-GSNLPM-2L-FB.sh
A simulation of a hierarchical neural circuit of 6 modules (S, 4xP, M) connected into a 
topology with feed-backward connections, but without horizontal connections (FB). It takes 
configurations from conf/X-starter-GSNLPM, as well as S-input-sng, P-def and M-output 
folders;

Usage is following: 

###############################################
####  ./run-GSNLPM-2L-FB.sh NETID
#### NETID  - connectivity RNG seed
#### NA - noise (BGA) amplitude - fixed to 1.9 
####   (Sensory will have 2x that)
#### NF - noise (BGA) frequency - fixed to 300
####
###############################################
#### NB! At least 4GB of RAM is recommended
#### 6-8GB is highly recommended
###############################################

run-GSNLPM-6L-[MES].sh
A set is specially adopted for distributed hierarchical evolutionary simulations of FBH-like 
topologies with multiple processing layers (topology could be specified in parameters 
between FF, FB, FFH, FBH; number of processing layers by default is 6, i.e. it will start a 
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total of 14 SNN modules 6*2+2), with mutation of a gene corresponding to the connectivity 
seed parameter.

- run-GSNLPM-6L-M.sh is an empty JADE Master Container as explained in the 
Section “Running distributed simulation”

- run-GSNLPM-6L-E.sh is an empty JADE Slave Container as explained in the 
Section “Running distributed simulation”

- and run-GSNLPM-6L-S.sh is an JADE Slave Container with a starter agent, which 
will start a simulation over all nodes connected via JADE framework.

Master and Empty will start empty JADE Containers (please refer JADE documentation for 
more information), when Starter agent is launched the simulation will be started over the 
whole set of platforms hosting JADE framework.
  
Master MUST be started first and its usage is following: 

###############################################
####  ./run-GSNLPM-2L-M.sh NETID ISFF HAVEH PLOOP
#### NETID  - connectivity RNG seed
#### ISFF - if true will be a Feed-forward topology
#### HAVEH - if true will have Horizontals
#### PLOOP - if not -1 will have a loop between layers
####
###############################################

Container should be started after and the last one will be Starter, their usage is following: 

###############################################
####  ./run-GSNLPM-2L-[ES].sh NETID ISFF HAVEH PLOOP
#### NETID  - connectivity RNG seed
#### ISFF - if true will be a Feed-forward topology
#### HAVEH - if true will have Horizontals
#### PLOOP - if not -1 will have a loop between layers
####
###############################################

###############################################
####  NB! A cluster system with 16GB of RAM is
#### recommended for the simulation (6Lx2P+S+M)
####  20GB of RAM is highly recommended
###############################################
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Developerʼs Documentation
Please download javadoc documentation pages from following links:

http://neuroheuristic.org/~vshaposh/nhrg-jeign.pdf
http://neuroheuristic.org/~vshaposh/nhrg-jelectrode.pdf
http://neuroheuristic.org/~vshaposh/nhrg-jjeign.pdf
http://neuroheuristic.org/~vshaposh/nhrg-jnet.pdf
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