
HAL Id: tel-00685854
https://theses.hal.science/tel-00685854

Submitted on 6 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design, vérification et implémentation de systèmes à
composants
Sophie Quinton

To cite this version:
Sophie Quinton. Design, vérification et implémentation de systèmes à composants. Mathéma-
tiques générales [math.GM]. Université de Grenoble, 2011. Français. �NNT : 2011GRENM002�. �tel-
00685854�

https://theses.hal.science/tel-00685854
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Sophie Quinton

Thèse dirigée par Susanne Graf

préparée au sein du laboratoire VERIMAG
et de l’école doctorale MSTII

Design, vérification et implémenta-
tion de systèmes à composants

Thèse soutenue publiquement le 21 janvier 2011,
devant le jury composé de :

Mr Jean-Bernard Stefani
Directeur de recherches, Président
Mr Albert Benveniste
Directeur de recherches, Rapporteur
Mr Roberto Passerone
Assistant professor, Rapporteur
Mr Kim Larsen
Professor, Examinateur
Mr Stavros Tripakis
Research scientist, Examinateur
Mme Susanne Graf
Directrice de recherches, Directrice de thèse

2 TABLE OF CONTENTS

Table of contents

Table of contents 3

Introduction (en français) 7

Introduction (in English) 19

I Contract-Based Design and Verification of Component-Based Systems 41

1 Preliminaries and related work 43
1.1 Preliminaries . 43

1.1.1 Labeled transition systems . 43
1.1.2 Modal transition systems . 48

1.2 Related work . 49
1.2.1 The BIP framework . 49
1.2.2 Interface theories . 57

2 Defining contract frameworks 61
2.1 Methodology . 61
2.2 Definitions . 63

2.2.1 Component framework . 63
2.2.2 Contract framework . 64
2.2.3 Dominance . 67

2.3 Reasoning within a contract framework . 68
2.3.1 Compositionality . 69
2.3.2 Circular reasoning . 70
2.3.3 A sufficient condition for dominance . 73

2.4 Verifying systems of arbitrary size . 73
2.4.1 Formal methodology . 73
2.4.2 An application to resource sharing in a network 75

2.5 Proofs . 77

3

4 TABLE OF CONTENTS

3 Beyond the definitions 79
3.1 Possible extensions . 79

3.1.1 Structuring . 80
3.1.2 Projection . 82
3.1.3 Equivalence of glues . 83
3.1.4 Defining glues on a partition . 84
3.1.5 Well-formedness . 85

3.2 Additional notions . 86
3.2.1 Consistency . 86
3.2.2 Compatibility . 87
3.2.3 Composition of contracts . 91
3.2.4 Multiple contracts for components . 92

3.3 Combining two refinement relations . 93
3.3.1 Relaxing assume-guarantee reasoning . 94
3.3.2 Relaxing circular reasoning . 94

3.4 Proofs . 95

4 A contract framework for the BIP semantic level 97
4.1 Necessary ingredients for a successful encoding . 98
4.2 The BIP semantic contract framework . 99
4.3 Coherence conditions . 101

4.3.1 Composition of glues and equivalence of components 101
4.3.2 Structuring systems . 102
4.3.3 Consistency between v and 4 . 102
4.3.4 Preservation of refinement by composition 103
4.3.5 Soundness of circular reasoning . 103

5 Two component frameworks for BIP 105
5.1 A first variant: BIP with maximal progress . 107
5.2 A second variant: multi-shot BIP . 113
5.3 Projection . 117

6 Application to I/O automata and to the SPEEDS project 119
6.1 Encoding of interface I/O automata . 119

6.1.1 The I/O contract framework . 120
6.1.2 Coherence conditions . 121
6.1.3 Using the I/O contract framework . 124

6.2 The SPEEDS project . 127
6.2.1 The L0 contract framework . 128
6.2.2 The L1 contract framework . 132
6.2.3 Consistency between L0 and L1 . 133
6.2.4 Implementation issues . 134

TABLE OF CONTENTS 5

6.2.5 Proofs . 136

7 Contract frameworks for transition systems 141
7.1 Labeled transition systems . 141

7.1.1 Definitions . 141
7.1.2 Refinement in any context . 144
7.1.3 Structural consistency . 144

7.2 Modal transition systems . 145
7.2.1 Definitions . 145
7.2.2 Refinement in any context . 146
7.2.3 Structural consistency . 146

7.3 Labeled transition systems with priorities . 148
7.3.1 Definitions . 148

7.4 Modal transition systems with priorities . 149
7.4.1 Definitions . 149

7.5 Proofs . 152
7.6 Conclusion . 159

7.6.1 Summary . 159
7.6.2 Perspectives . 159

II Implementation of Distributed Systems with Complex Interaction 161

8 Achieving distributed control through model checking 163
8.1 Preliminaries . 163

8.1.1 Petri nets . 163
8.1.2 Constraints . 164
8.1.3 Distributed setting . 166
8.1.4 Defining properties . 167
8.1.5 Knowledge . 168

8.2 The support policy . 169
8.2.1 Building the support table . 169
8.2.2 Distributed control based on the support table 170
8.2.3 Deadlock-freedom . 172

9 A synchronization-based approach 173
9.1 A synchronization-based approach . 173

9.1.1 An example where the support policy fails 173
9.1.2 Existing solutions . 174
9.1.3 Adding synchronizations to provide sufficient knowledge 175
9.1.4 A distributed controller imposing the global property 176
9.1.5 Minimizing the number of coordinators . 177

6 TABLE OF CONTENTS

9.2 Implementation and experimental results . 179
9.2.1 The pragmatic dining philosophers . 179
9.2.2 Of tracks and trains . 182

10 Reducing the need for additional synchronizations 187
10.1 Alternative to adding synchronizations . 188

10.1.1 Support policy based on the controlled system 188
10.1.2 Controllers based on an incomplete support table 191

10.2 Comparison with existing work . 193
10.2.1 History-based controllers . 193
10.2.2 A practical solution to the distributed control problem 194

10.3 Conclusion . 196
10.3.1 Summary . 196
10.3.2 Perspectives . 198

Conclusion 199

Bibliography 201

Introduction (en français)

Contexte et motivation

L’informatique fait partie de notre quotidien depuis maintenant plusieurs décennies. Elle a

bouleversé le fonctionnement de notre société. Les ordinateurs sont partout autour de nous, depuis

les téléphones portables jusqu’aux avions, et ils font tout pour nous : ils conduisent, jouent de la

musique, ils nous permettent de communiquer avec le reste du monde, nous donnent accès à un savoir

infini... Récemment, les progrès considérables dans les capacités de nos ordinateurs ont été surpassés

seulement par la demande de systèmes toujours plus sophistiqués. Développer de tels systèmes à la

fois larges et complexes est un challenge. À cette fin, les designers appliquent une méthode qui a

prouvé son utilité dans divers contextes à travers les âges : diviser pour régner. Son principe est sim-

ple mais efficace : un problème de grande taille est résolu plus facilement s’il est divisé en plusieurs

sous-problèmes de plus petite taille, qui peuvent à leur tour être décomposés, et ainsi de suite jusqu’à

obtenir des sous-problèmes suffisamment petits pour être résolus directement. Une fois ces sous-

problèmes résolus, la solution du problème de départ est obtenue par composition des solutions des

sous-problèmes. Dans l’univers du design de systèmes, cette approche est appelée design à base de

composants. La solution du problème est un composant, qui est soit assez petit pour être construit

directement — on l’appelle alors composant atomique — soit obtenu en composant des composants

plus petits — on l’appelle alors composant hiérarchique. Ainsi, le problème de la construction de

systèmes complexes de grande taille est résolu en écrivant des composants atomiques et en les assem-

blant pour former des composants hiérarchiques de plus en plus complexes jusqu’à obtenir le système

voulu.

Un système construit de manière simple et claire est moins susceptible de contenir des erreurs.

De plus, cela peut améliorer considérablement les résultats obtenus lors de la phase de vérification

7

8 INTRODUCTION

ultérieure. Pour cette raison, il existe une grande variété de formalismes pour développer des systèmes

à base de composants. Les langages synchrones comme LUSTRE [CPHP87] ou Signal [BGJ91] ont

été transférés avec succès du monde académique à l’industrie. Les langages de modélisation de sys-

tèmes tels que SystemC [Sys] et Simulink [Sim] sont également largement utilisés dans l’industrie.

Des frameworks comme Ptolemy [EJL+03] et 42 [MB07] s’attachent à gérer l’hétérogénéité en per-

mettant de combiner plusieurs modèles de calcul et communication.

Récemment, de nombreux langages sont apparus dans lesquels l’interaction entre composants est

complexe : les connecteurs ne servent pas seulement à transférer des données mais jouent également

un rôle dans la synchronisation des composants. Parmi ces formalismes on trouve le Kell calcu-

lus [BS03] et le calcul de connectors Reo [Arb04]. Nous nous intéressons particulièrement au frame-

work BIP [GS05, BBS06, BS08a] developpé à Verimag. BIP est un langage dans lequel la représen-

tation de l’interaction est assez expressive pour décrire de nombreux modèles, depuis le rendez-vous

jusqu’au broadcast. De plus, à l’image des composants, il est possible de définir des connecteurs

hiérarchiques, c’est-à-dire des connecteurs définis comme la composition de plusieurs connectors.

Dans de tels formalismes, il est essentiel de raisonner sur la structure du système. Notre travail est

motivé par le framework de composants HRC (Heterogenous Rich Component, composant riche et

hétérogène), divisé en deux parties L0 et L1, défini dans le projet SPEEDS [SPE] et utilisé dans le

projet COMBEST [COM]. HRC L0 a été inspiré par les langages synchrones tandis que HRC L1 a

été inspiré par BIP.

Dans cette thèse, nous avons étudié comment les systèmes complexes sont designés, vérifiés puis

implémentés. En particulier, à cause de la grande variété de formalismes existants, nous nous sommes

attaché à trouver des définitions suffisamment expressives pour pouvoir inclure BIP, mais aussi assez

générales pour pouvoir être appliquées à d’autres langages. Ainsi, ce document est organisé autour de

deux parties :

– Part I : Design et vérification à l’aide de contrats de large systèmes de composants. Nous

fournissons une définition de framework de composants qui est assez abstraite pour inclure BIP

et les frameworks HRC L0 et L1, mais peut également s’appliquer simplement à une variété

d’autres frameworks.

– Part II : Implémentation de systèmes avec interaction complexe dans un contexte distribué.

Ce travail s’applique de façon naturelle à BIP et sa politique de priorités, mais nous avons

généralisé la contrainte à respecter à n’importe quelle propriété de sûreté.

INTRODUCTION 9

Design et vérification de larges systèmes

Au fur et à mesure que les systèmes croissent en taille et en complexité, le nombre d’erreurs

qu’ils contiennent croît également. De plus, ces erreurs deviennent de plus en plus difficiles à détecter

et réparer. Vérifier la correction d’un système est un problème si difficile que les ordinateurs sont

probablement les seuls produits vendus sans la garantie d’être sans défaut.

Cependant, pour certains systèmes, cette situation n’est pas acceptable parce qu’une erreur peut

causer des pertes humaines (par exemple si un avion s’écrase), ou conduire à une perte financière

lourde (par exemple s’il y a une erreur de fonctionnement dans un téléphone portable produit en très

grande quantité). En conséquence, des méthodes formelles sont nécessaires pour assurer la correction

de certains systèmes, notion qui doit être définie formellement, par exemple comme étant la confor-

mité à un ensemble de requirements. De tels requirements prennent différentes formes en fonction du

domaine d’application, par exemple des pré- et post-conditions pour les appels de fonction, ou des

propriétés temporelles qui se divisent entre propriétés de sûreté (“rien de mal n’arrivera jamais”) et

les propriétés de vivacité (“quelque chose de bien finira par arriver”). Une méthode de vérification

efficace pour des systèmes complexes de grande taille doit posséder les propriétés suivantes :

– passage à l’échelle : l’approche doit fonctionner pour des systèmes de très grande taille

– prédictabilité : les erreurs de design doivent être détectées aussi tôt que possible lors de la phase

de design

– réutilisabilité : il doit être possible de réutiliser des parties du processus de vérification si un

composant est remplacé par un autre similaire

Comme nous nous intéressons aux systèmes critiques, tester est nécessaire pour détecter des er-

reurs rapidement, mais pas suffisant car cela ne fournit pas de garantie de correction. Parmi les méth-

odes de vérification, le model checking est une approche totalement automatisée basée sur l’explo-

ration exhaustive de l’espace d’états du modèle du système, qui est en général une machine d’états

finie. Malheureusement, cette méthode souffre du fameux problème de l’explosion de l’espace d’é-

tats : elle devient vite irréalisable si les composants s’éxécutent de façon concurrente car le nom-

bre d’états du modèle augmente exponentiellement par rapport au nombre de composants. Le model

checking ayant été largement étudié, de nombreuses améliorations ont été proposées afin de résoudre

ce problème. Elles se répartissent entre trois catégories, qui peuvent être combinées : les techniques

symboliques [McM93], les techniques à base d’abstraction [CGL94, GS97, BMMR01, CGJ+00] and

les méthodes compositionnelles.

Les méthodes compositionnelles (pour une présentation exhaustive, cf [dRdBH+01]) sont celles

qui gèrent le mieux le problème de l’explosion de l’espace d’états. Elles appliquent la méthode diviser

10 INTRODUCTION

pour mieux régner pour inférer, à partir de propriétés locales aux composants, une propriété (globale)

du système. Ces approches incluent le model checking compositionnel [CLM89, Lon93] et la mini-

mization compositionnelle [CGL94], qui peut être guidée par les propriétés [CLM89, LGS+95] ou

bien par le contexte [GSL96]. Assume-guarantee est une autre approche [Jon83] basée sur la décom-

position du système en plusieurs morceaux dont on prouve qu’ils satisfont tous une certaine garantie à

la condition que leur environnement (c’est à dire le reste du système) satisfasse une certaine hypothèse

(assumption).

La génération automatique d’assumptions utilisant des algorithmes d’apprentissage a été proposée

dans [CGP03]. Cependant, ces techniques ont encore des difficultés à se montrer plus efficaces que

l’approche monolithique [CAC08], bien que des progrès importants aient été accomplis récemment

en rendant l’apprentissage implicite [CCF+10]. Pour les systèmes BIP, l’outil D-Finder [BBSN08,

BBNS09] utilise des invariants de composant ainsi que des invariants d’interaction pour prouver des

propriétés de sûreté de façon compositionnelle.

Les approches compositionnelles sont performantes par rapport au problème de l’explosion de

l’espace d’états. Cependant, elles n’offrent pas d’incrémentalité pour utiliser une propriété d’une

composition de components à un niveau hiérarchique plus élevé. Certains travaux dans cette direction

existent déjà : par exemple D-Finder offre désormais quelques possibilités en ce sens et [Sin07] s’in-

téresse aux question de substitutabilité (remplacer un composant par un autre) dans le raisonnement

par assume-guarantee. Cependant ces résultats restent insuffisants pour un contexte industriel, où

les composants sont souvent construits par des équipes différentes voire même achetés à d’autres

compagnies, et où la possibilité d’intégrer des composants dans un système préexistant est essen-

tielle. C’est la raison pour laquelle nous voulons combiner les approches compositionnelles avec une

méthodologie incrémentale.

Motivation for using contracts

Les frameworks de contrats [BCP07, BFM+08] et d’interface [dAH01a, LNW06] émergent

comme le formalisme de choix lorsque les systèmes sont designés par de grandes équipes réparties en

sous-équipes indépendantes, or lorsque la chaîne d’approvisionnement est complexe [Dam05, SPE].

Un des clés du raisonnement par contrats est que ces derniers peuvent être utilisés aussi bien pour

le design que pour la vérification. Les contrats sont des contraintes de design sur les implémenta-

tions qui sont maintenues tout au long du cycle de vie des systèmes. Comme pour le contrat-based

design [Mey92], nous utilisons les contrats pour contraindre, réutiliser et remplacer les implémenta-

tions.

INTRODUCTION 11

Les contrats expriment à la fois l’assumption (hypothèse) faite par le component sur son en-

vironnement et la guarantee (garantie) concernant le comportement attendu du composant. Dans

le context du design de programmes, par exemple dans les méthodologies de design orientées ob-

jet, les contrats sont généralement de simples pré- et post-conditions, comme dans [Mey92]. Dans

le context du design de systèmes, des contrats plus expressifs sont nécessaires, par exemple pour

spécifier des propriétés temporelles de sûreté et de vivacité. C’est le rôle des spécifications d’inter-

face [GSL96, dAH01a].

Le raisonnement à base de contrats utilise pleinement la notion d’incrementalité. En effet, les

contrats fournissent pour les composants une abstraction qui peut être utilisée pour la composition et

la réutilisation. En particulier, parce qu’un contrat exprime des contraintes sur l’environnement dans

lequel un composant peut être utilisé, il est possible de raisonner sur des systèmes fermés (i.e., qui ne

peuvent plus être composés) plutôt que sur des systèmes ouverts qui peuvent être utilisés dans n’im-

porte quel environnement. D’autre part, le raisonnement à base de contrats permet l’implémentabilité

indépendante : dans une approche de design du haut vers le bas, un contrat est écrit pour chaque

sous-composant du système, et ces contrats peuvent être raffinés indépendemment les uns des autres.

De plus, comme les contrats sont écrits à chaque niveau de hiérarchie du système, ils évitent le prob-

lème de l’explosion de l’espace d’états. Enfin, cette approche peut toujours être combinée avec des

approches compositionnelles à chaque niveau de hiérarchie.

Le projet SPEEDS proposait d’utiliser les contrats pour prouver des propriétés du framework

de composants HRC. À la fois pour HRC L0 et HRC L1, des théories de contrats devaient être

dévelopées. À la fin, ces théories devaient être unifiées pour combiner les résultats de vérification de

leur chaînes d’outils respectives, qui sont basées sur des relations de raffinement différentes. Nous

avons montré que prouver des propriétés de systèmes construits à partir de composants L0 et L1

ne nécessite pas un framework sémantique unificateur ; l’intégration des frameworks de composition

dans un framework unificateur, comme présenté ici, suffit.

Contribution

Notre but n’est pas de proposer un nouveau framework générique de design mais plutôt de définir

un ensemble minimal de propriétés qui doivent être satisfaites par une théorie de contrats pour perme-

ttre certaines règles de preuves. Nous rendons explicites certaines questions auxquelles doit répondre

quelqu’un qui définit un framework de contrats ou qui se demande quel framework utiliser. Par exem-

ple, est-ce que la règle de preuve qu’on appelle raisonnement circulaire est correcte dans mon cadre ?

Est-il possible de décomposer un composant hiérarchique selon n’importe quelle partition de ses

12 INTRODUCTION

sous-composants ? Répondre à ces questions offre des réponses sur l’applicabilité de raisonnements

incrémentaux et compositionnels plus sophistiqués. Ainsi, notre approche vise à séparer la question

des propriétés qui dépendent du framework utilisé de celles qui en sont indépendantes et résultent de

règles de preuve génériques.

Notre définition de framework de composant est très abstraite : nos opérateurs de composition

(que nous appelons glues) permettent de représenter une grande variété de modèles d’interaction

depuis la communication input/output (I/O) jusqu’aux connecteurs BIP avec politique de priorités. En

particulier, cela nous permet de travailler avec des frameworks sémantiques de bas niveau aussi bien

qu’avec des frameworks syntaxiques. D’autre part, l’abstraction de ports, qui un ingrédient essentiel

pour prouver le raffinement entre spécifications à différents niveaux de granularité, peut être considéré

comme une glue. Nos contrats ont une partie structurelle, qui décrit la glue avec laquelle le composant

doit être connecté à son environnement. Ainsi, dans les frameworks où l’interaction est complexe,

nous montrons que les proproiétés structurelles et compositionnelles d’un composant peuvent être

établies en s’appuyant fortement sur la structure du système et de façon moins importante sur les

propriétés comportementales de l’environnement. C’est utile en particulier parce que la structure d’un

système en construction peut être fixée bien avant certaines propriétés comportementales, qui doivent

être raffinées tout au long du processus de design. Contrairement aux automates d’interface [dAH01a],

mais à l’image des automates d’interface I/O [LNW06], nos contrats distinguent explicitement entre

une assumptionA représentant une propriété de l’environnement, et une guarantieG représentant une

propriété que le composant en cours de design doit garantir dans tout environnement se comportant

en accord avec A. Nous discutons ce choix dans le chapitre 2.

Munis de cette définition générique de framework de composant, nous nous intéressons aux rela-

tions de raffinement. Dans le design de systèmes, le raffinement est défini entre une spécification et

une implémentation [LW94, dAH01a, Sin07]. Dans les frameworks de contrat, le raffinement prend

plusieurs formes : raffinement par rapport à une spécification (conformité), raffinement entre contrats

(dominance) and raffinement d’une implémentation par rapport à un contrat (satisfaction). Dans les

théories de contrats existantes, les deux dernières sont dérivées de la première. Nous proposons une

relation plus faible entre conformité and raffinement sous contexte, à partir de laquelle les relations

de dominance et satisfaction sont dérivées. Cela nous permet d’obtenir des règles de raisonnement

plus efficaces. D’autre part, nous généralisons l’usage qui est parfois fait du raffinement dans tout

contexte (par contraste avec les raffinement dans un contexte donné) à des relations plus faibles, ce

qui permet également d’obtenir des méthodes de raisonnement plus puissantes. Notons que nous ne

discutons pas du problème de trouver des relations de raffinement appropriées : cela reste une étape

INTRODUCTION 13

de design dans la construction du framework de composant, tout comme la spécification de contrats

est une étape de design dans la construction de systèmes. Notre but est de faciliter le processus de

design en spécifiant clairement quelles sont les propriétés nécessaires pour permettre certaines règles

de preuve.

Nous discutons certaines règles pour le raisonnement compositionnel. En particulier, nous nous

intéressons au raisonnement circulaire qui entraîne une règle de preuve intéressante pour prouver la

dominance sans composer les contrats, ce qui est impossible dans le cas général et non souhaitable

dans de nombreux frameworks concrets. Le raisonnement circulaire implique une contrainte as-

sez forte sur la relation de raffinement sous contexte, qui peut ne pas être satisfaite par la relation

disponible. Nous montrons comment relâcher cette contrainte, en particulier en combinant plusieurs

relations de raffinement. Notons également que nous ne proposons pas de méthode pour construire

un framework dans lequel le raisonnement circulaire est correct. Cette question a déja été étudiée

dans [McM99, Mai03b]. En particulier, [Mai03a] prouve qu’une telle règle ne peut être à la fois cor-

recte (sound) et complète. Enfin, nous présentons un ensemble d’applications qui met en avant le

généralité de nos définitions. La pertinence du choix de nos définitions est mise en évidence dans ces

exemples.

Organisation

– Le chapitre 1 présente des notions de base sur les systèmes de transition et leur relations de

raffinement. Il décrit également trois frameworks qui sont souvent utilisés ou mentionnés dans

le reste de la partie I.

– Le chapitre 2 présente notre méthodologie à base de contrats pour vérifier des systèmes de taille

arbitraire. Elle définit nos frameworks de contrats et présente certaines règles pour raisonner

dessus.

– Le chapitre 3 met cette méthodologie en perspective en discutant comment certains concepts

habituels qui n’apparaissent pas dans nos définitions peuvent être intégrés. En particulier, nous

justifions le choix d’éviter la composition de contrats dans certains frameworks.

– Les chapitres 4 à 7 présentent plusieurs frameworks de contrats, chacun mettant en avant un

aspect différent de notre méthodologie. Plus précisément :

– Le chapitre 4 présente un framework de contrats pour le niveau sémantique de BIP. Cet

exemple simple donne une première illustration des définitions présentées dans les chapitres

précédents.

– Le chapitre 5 définit deux variantes du framework de composants BIP qui sont utilisées dans

14 INTRODUCTION

le chapitre suivant. Ces variantes n’ont jamais été proposées auparavant et elles mettent en

évidence l’importance d’avoir une sémantique compositionnelle cohérente avec la mise à

plat de systèmes.

– Le chapitre 6 montre comment les automates d’interface I/O peuvent être simplement

représentés en utilisant un framework de contrat pour lequel les preuves de cohérence sont

techniques mais simples. Des preuves plus complexes peuvent alors être grandement simpli-

fiées. Ensuite, nous présentons les frameworks HRC L0 and L1 et nous décrivons comment

les résultats obtenus à partir d’outils pour L0 et L1 peuvent être utilisés ensemble grâce au

raisonnement circulaire combiné.

– Le chapitre 7 présente et discute plusieurs relations de raffinement pour des frame-

works basés sur des systèmes de transition étiquetés (LTS, Labeled Transition Systems) et

généralise l’usage du raisonnement circulaire combiné du chapitre précédent. Un framework

basé sur les systèmes de transition modaux (MTS, Modal Transition Systems) est ensuite pro-

posé, pour lequel la cohérence structurelle est une propriété utile. Enfin, deux frameworks

utilisant des priorités statiques sont décrits, pour les LTS puis les MTS, ce qui illustre que le

raffinement dans tout contexte peut dans certains cas être strictement plus fort que la relation

de conformité.

Bien que cela ne soit pas présenté dans cette thèse, nous avons également appliqué notre

méthodologie à un framework de contrats plus complexe qui est assez expressif pour décrire des

échanges de données entre composants et des propriétés de progrès. Ce framework a été appliqué à

un algorithme pour le partage de ressources dans un réseau. Une description détaillée de ce travail est

disponible dans [BHQG10c, BHQG10b].

Implémentation de systèmes distribués avec interactions complexes

Le travail présenté dans la partie II est motivé par le challenge posé par l’implémentation dis-

tribuée de systèmes BIP [BBBS08]. Ce problème peut se généraliser à la question de contrôler un

système existant de façon à le forcer à satisfaire une contrainte de sûreté supplémentaire [RW92] —

par exemple une politique de priorités. En pratique, cela est rendu possible par l’addition d’un pro-

cessus superviseur, qui s’éxécute en synchronie avec le système. Les superviseurs sont en général des

automates (d’états finis) qui observent le système et progressent selon les transitions qu’ils observent,

et ont de plus la capacité de bloquer certaines transitions en fonction de leur état courant.

Ce problème est lié au problème de la synthèse à partir de spécifications temporelles (LTL, Linear

INTRODUCTION 15

Temporal Logic), qui est 2EXPTIME hard pour les systèmes réactifs séquentiels et indécidable pour

les systèmes concurrents, comme démontré par Pnueli and Rosner [PR90].

Une étude exacte de l’existence d’un contrôleur global (complètement synchronisé) peut être

basée sur la théorie des jeux. De fait, on peut voir le problème comme l’implémentation d’une

stratégie pour le jeu à deux joueurs suivant : un joueur, l’environnement, peut toujours choisir en-

tre les transitions incontrôlables possibles tandis que l’autre joueur peut choisir entre les transitions

contrôlables. Le but du contrôleur est de s’assurer que la contrainte est satisfaite par une éxécution

choisie conjointement. Ce problème peut être résolu en utilisant des algorithmes basés sur les jeux de

sûreté [Tho95].

Le problème du contrôle distributé

Maintenant, intéressons-nous à la question du contrôle distribué [RW92, YL02] : des contrôleurs

locaux, un par processus ou ensemble de processus, peuvent interdire l’éxécution de certaines transi-

tions afin d’éviter la violation de la contrainte imposée. À cause de la nature distribuée du système,

chaque contrôleur a une vision limitée du système global. La synthèse de contrôleur distribué pour

imposer une contrainte globale est un problème indécidable dans le cas général [Tri04, Thi05]. On

peut rendre le problème décidable en réduisant la concurrence dans le système. Dans le pire des cas,

il ne reste plus aucun concurrence et un contrôleur totalement global est construit. Cependant, même

avec cette hypothèse assez forte, le problème de synthèse de contrôleur reste difficile à gérer. Une

approche pragmatique est basée sur la vérification de properties de connaissance grâce auxquelles

les contrôleurs locaux peuvent décider ou non de bloquer une transition. Deux approches différentes

existent pour synthétiser des contrôleurs distribués, qui sont alors soit conjonctifs soit disjonctifs.

Un contrôleur conjonctif autorise une transition seulement si tous les contrôleurs locaux l’au-

torisent. En d’autres termes, il est suffisant pour bloquer une transition qu’un contrôleur local le

décide. Le choix d’un contrôleur conjonctif est motivé par le besoin d’avoir un système qui se com-

porte exactement comme spécifié par un langage régulier donné. Dans ce cas, tous les comportements

du système non contrôlé qui ne violent pas la contrainte imposée doivent être possibles. Il est alors

nécessaire qu’au moins un processus sache quand une transition possible dans le système viole la

contrainte, afin de la bloquer. Cette approche nécessite une connaissance suffisante de chaque pro-

cessus pour permettre le maximum de transitions autorisées. Elle est suivie par [RR00], qui étudie

la possibilité de construire un contrôleur utilisant de la connaissance (propriété qui s’appelle Kripke

observability dans ce travail).

Un contrôleur disjonctif autorise une transition si au moins un contrôleur local l’autorise. Selon

16 INTRODUCTION

cette approche, suivie par [BBPS09], il est possible d’interdire une transition même si elle ne viole

pas la contrainte imposée mais l’absence de blocage doit être préservée. La construction du contrôleur

est différente de celle du contrôle conjonctif car elle requiert seulement qu’au moins un processus

autorise une transition. Cette approche préserve la correction du contrôleur même si la connaissance

ne suffit pas à autoriser toutes les transitions qui ne violent pas la contrainte.

Dans [RR00] comme dans [BBPS09], la connaissance est utilisée comme un outil pour constru-

ire des contrôleurs distribués. À partir d’une connaissance précalculée qui reflète dans chaque état

local toutes les situations possibles des autres processus, le contrôleur local d’un processus décide à

l’éxécution si une action de ce processus peut être éxécutée sans violer la contrainte imposée. Par-

fois, cependant, la connaissance des processus individuels n’est pas suffisante. Alors, la connaissance

conjointe de plusieurs processus peut être monitorée à l’aide de contrôleurs associés à des groupes de

processus au lieu de processus individuels. Dans le pire des cas, un contrôleur global est construit, qui

peut contrôler le système selon la contrainte. Malheureusement, cela cause la perte de la concurrence

entre les processus qui sont monitorés conjointement.

Contribution

L’approche proposée ici étend l’approche de [BBPS09]. Nous supposons que les systèmes per-

mettent l’addition de synchronisations supplémentaires. Cette hypothèse est raisonnable car il existe

de toute façon un mécanisme de synchronisation pour implémenter le système de façon distribuée.

Plutôt que des synchronisations permanentes entre groupes de processus, nous proposons une

méthode pour construire des contrôleurs distribués qui synchronisent les processus temporairement.

Nous utilisons des techniques de model checking pour précalculer un ensemble minimal de points de

synchronisations auxquels la connaissance conjointe de plusieurs processus peut être calculée durant

de courtes phases de coordination. Après chaque synchronisation, les processus impliqués peuvent de

nouveau progresser indépendemment les uns des autres jusqu’à ce qu’une autre synchronisation soit

nécessaire.

Ces synchronisations temporaires entre plusieurs processus sont rendus possibles par l’utilisa-

tion d’un algorithme de coordination basé sur des échanges de messages, tel que α-core [PCT04].

De telles synchronisations impliquent un surcoût de communication important. En conséquence, il

est essentiel de minimiser le nombre de messages résultant de ces synchronisations additionnelles.

Nous obtenons des résultats dans ce domaine en réduisant le nombre de coordinateurs qui gèrent ces

synchronisations.

Une des limitations de cette méthode est liée au fait que nous calculons la connaissance sur le

INTRODUCTION 17

système que nous voulons contrôler et non sur le système contrôlé. Les processus ont alors moins

de connaissance et donc il est possible que nous introduisions plus de synchronisations que néces-

saire. Nous proposons des techniques qui réduisent l’impact de ce problème ainsi que comment ces

nouvelles techniques peuvent combinées avec celles qui existent déjà, comme par exemple la connais-

sance avec mémoire parfaite. Enfin, nous montrons l’intérêt des contrôleurs à base de connaissance

en tant que solution pragmatique au problème de la synthèse de contrôleur.

Organisation

– Le chapitre 8 généralise the travail de [BBPS09] à des contraintes de sûreté arbitraires.

– Le chapitre 9 présente notre méthode pour construire des contrôleurs distribués en synchro-

nisant les processus temporairement ainsi que pour réduire le surcoût de communication dû

aux synchronisations additionnelles. Il présente également des résultats expérimentaux.

– Le chapitre 10 décrit nos techniques pour éviter des synchronisations inutiles et comment com-

biner plusieurs techniques. De plus, il met en perspective les contrôleurs à base de connais-

sance, mettant en évidence leur intérêt.

Bien que cela ne soit pas présenté dans ce document, un travail préliminaire sur l’intégration

de contraintes haut-niveau avec l’algorithme de coordination a déjà été entrepris. Des résultats sont

présentés dans [BHGQ10].

18 INTRODUCTION

Introduction (in English)

Contexte et motivation

L’informatique fait partie de notre quotidien depuis maintenant plusieurs décennies. Elle a

bouleversé le fonctionnement de notre société. Les ordinateurs sont partout autour de nous, depuis

les téléphones portables jusqu’aux avions, et ils font tout pour nous : ils conduisent, jouent de la

musique, ils nous permettent de communiquer avec le reste du monde, nous donnent accès à un savoir

infini... Récemment, les progrès considérables dans les capacités de nos ordinateurs ont été surpassés

seulement par la demande de systèmes toujours plus sophistiqués. Développer de tels systèmes à la

fois larges et complexes est un challenge. À cette fin, les designers appliquent une méthode qui a

prouvé son utilité dans divers contextes à travers les âges : diviser pour régner. Son principe est sim-

ple mais efficace : un problème de grande taille est résolu plus facilement s’il est divisé en plusieurs

sous-problèmes de plus petite taille, qui peuvent à leur tour être décomposés, et ainsi de suite jusqu’à

obtenir des sous-problèmes suffisamment petits pour être résolus directement. Une fois ces sous-

problèmes résolus, la solution du problème de départ est obtenue par composition des solutions des

sous-problèmes. Dans l’univers du design de systèmes, cette approche est appelée design à base de

composants. La solution du problème est un composant, qui est soit assez petit pour être construit

directement — on l’appelle alors composant atomique — soit obtenu en composant des composants

plus petits — on l’appelle alors composant hiérarchique. Ainsi, le problème de la construction de

systèmes complexes de grande taille est résolu en écrivant des composants atomiques et en les assem-

blant pour former des composants hiérarchiques de plus en plus complexes jusqu’à obtenir le système

voulu.

Un système construit de manière simple et claire est moins susceptible de contenir des erreurs.

De plus, cela peut améliorer considérablement les résultats obtenus lors de la phase de vérification

19

20 INTRODUCTION

ultérieure. Pour cette raison, il existe une grande variété de formalismes pour développer des systèmes

à base de composants. Les langages synchrones comme LUSTRE [CPHP87] ou Signal [BGJ91] ont

été transférés avec succès du monde académique à l’industrie. Les langages de modélisation de sys-

tèmes tels que SystemC [Sys] et Simulink [Sim] sont également largement utilisés dans l’industrie.

Des frameworks comme Ptolemy [EJL+03] et 42 [MB07] s’attachent à gérer l’hétérogénéité en per-

mettant de combiner plusieurs modèles de calcul et communication.

Récemment, de nombreux langages sont apparus dans lesquels l’interaction entre composants est

complexe : les connecteurs ne servent pas seulement à transférer des données mais jouent également

un rôle dans la synchronisation des composants. Parmi ces formalismes on trouve le Kell calcu-

lus [BS03] et le calcul de connectors Reo [Arb04]. Nous nous intéressons particulièrement au frame-

work BIP [GS05, BBS06, BS08a] developpé à Verimag. BIP est un langage dans lequel la représen-

tation de l’interaction est assez expressive pour décrire de nombreux modèles, depuis le rendez-vous

jusqu’au broadcast. De plus, à l’image des composants, il est possible de définir des connecteurs

hiérarchiques, c’est-à-dire des connecteurs définis comme la composition de plusieurs connectors.

Dans de tels formalismes, il est essentiel de raisonner sur la structure du système. Notre travail est

motivé par le framework de composants HRC (Heterogenous Rich Component, composant riche et

hétérogène), divisé en deux parties L0 et L1, défini dans le projet SPEEDS [SPE] et utilisé dans le

projet COMBEST [COM]. HRC L0 a été inspiré par les langages synchrones tandis que HRC L1 a

été inspiré par BIP.

Dans cette thèse, nous avons étudié comment les systèmes complexes sont designés, vérifiés puis

implémentés. En particulier, à cause de la grande variété de formalismes existants, nous nous sommes

attaché à trouver des définitions suffisamment expressives pour pouvoir inclure BIP, mais aussi assez

générales pour pouvoir être appliquées à d’autres langages. Ainsi, ce document est organisé autour de

deux parties :

– Part I : Design et vérification à l’aide de contrats de large systèmes de composants. Nous

fournissons une définition de framework de composants qui est assez abstraite pour inclure BIP

et les frameworks HRC L0 et L1, mais peut également s’appliquer simplement à une variété

d’autres frameworks.

– Part II : Implémentation de systèmes avec interaction complexe dans un contexte distribué.

Ce travail s’applique de façon naturelle à BIP et sa politique de priorités, mais nous avons

généralisé la contrainte à respecter à n’importe quelle propriété de sûreté.

INTRODUCTION 21

Design et vérification de larges systèmes

Au fur et à mesure que les systèmes croissent en taille et en complexité, le nombre d’erreurs

qu’ils contiennent croît également. De plus, ces erreurs deviennent de plus en plus difficiles à détecter

et réparer. Vérifier la correction d’un système est un problème si difficile que les ordinateurs sont

probablement les seuls produits vendus sans la garantie d’être sans défaut.

Cependant, pour certains systèmes, cette situation n’est pas acceptable parce qu’une erreur peut

causer des pertes humaines (par exemple si un avion s’écrase), ou conduire à une perte financière

lourde (par exemple s’il y a une erreur de fonctionnement dans un téléphone portable produit en très

grande quantité). En conséquence, des méthodes formelles sont nécessaires pour assurer la correction

de certains systèmes, notion qui doit être définie formellement, par exemple comme étant la confor-

mité à un ensemble de requirements. De tels requirements prennent différentes formes en fonction du

domaine d’application, par exemple des pré- et post-conditions pour les appels de fonction, ou des

propriétés temporelles qui se divisent entre propriétés de sûreté (“rien de mal n’arrivera jamais”) et

les propriétés de vivacité (“quelque chose de bien finira par arriver”). Une méthode de vérification

efficace pour des systèmes complexes de grande taille doit posséder les propriétés suivantes :

– passage à l’échelle : l’approche doit fonctionner pour des systèmes de très grande taille

– prédictabilité : les erreurs de design doivent être détectées aussi tôt que possible lors de la phase

de design

– réutilisabilité : il doit être possible de réutiliser des parties du processus de vérification si un

composant est remplacé par un autre similaire

Comme nous nous intéressons aux systèmes critiques, tester est nécessaire pour détecter des er-

reurs rapidement, mais pas suffisant car cela ne fournit pas de garantie de correction. Parmi les méth-

odes de vérification, le model checking est une approche totalement automatisée basée sur l’explo-

ration exhaustive de l’espace d’états du modèle du système, qui est en général une machine d’états

finie. Malheureusement, cette méthode souffre du fameux problème de l’explosion de l’espace d’é-

tats : elle devient vite irréalisable si les composants s’éxécutent de façon concurrente car le nom-

bre d’états du modèle augmente exponentiellement par rapport au nombre de composants. Le model

checking ayant été largement étudié, de nombreuses améliorations ont été proposées afin de résoudre

ce problème. Elles se répartissent entre trois catégories, qui peuvent être combinées : les techniques

symboliques [McM93], les techniques à base d’abstraction [CGL94, GS97, BMMR01, CGJ+00] and

les méthodes compositionnelles.

Les méthodes compositionnelles (pour une présentation exhaustive, cf [dRdBH+01]) sont celles

qui gèrent le mieux le problème de l’explosion de l’espace d’états. Elles appliquent la méthode diviser

22 INTRODUCTION

pour mieux régner pour inférer, à partir de propriétés locales aux composants, une propriété (globale)

du système. Ces approches incluent le model checking compositionnel [CLM89, Lon93] et la mini-

mization compositionnelle [CGL94], qui peut être guidée par les propriétés [CLM89, LGS+95] ou

bien par le contexte [GSL96]. Assume-guarantee est une autre approche [Jon83] basée sur la décom-

position du système en plusieurs morceaux dont on prouve qu’ils satisfont tous une certaine garantie à

la condition que leur environnement (c’est à dire le reste du système) satisfasse une certaine hypothèse

(assumption).

La génération automatique d’assumptions utilisant des algorithmes d’apprentissage a été proposée

dans [CGP03]. Cependant, ces techniques ont encore des difficultés à se montrer plus efficaces que

l’approche monolithique [CAC08], bien que des progrès importants aient été accomplis récemment

en rendant l’apprentissage implicite [CCF+10]. Pour les systèmes BIP, l’outil D-Finder [BBSN08,

BBNS09] utilise des invariants de composant ainsi que des invariants d’interaction pour prouver des

propriétés de sûreté de façon compositionnelle.

Les approches compositionnelles sont performantes par rapport au problème de l’explosion de

l’espace d’états. Cependant, elles n’offrent pas d’incrémentalité pour utiliser une propriété d’une

composition de components à un niveau hiérarchique plus élevé. Certains travaux dans cette direction

existent déjà : par exemple D-Finder offre désormais quelques possibilités en ce sens et [Sin07] s’in-

téresse aux question de substitutabilité (remplacer un composant par un autre) dans le raisonnement

par assume-guarantee. Cependant ces résultats restent insuffisants pour un contexte industriel, où

les composants sont souvent construits par des équipes différentes voire même achetés à d’autres

compagnies, et où la possibilité d’intégrer des composants dans un système préexistant est essen-

tielle. C’est la raison pour laquelle nous voulons combiner les approches compositionnelles avec une

méthodologie incrémentale.

Motivation for using contracts

Les frameworks de contrats [BCP07, BFM+08] et d’interface [dAH01a, LNW06] émergent

comme le formalisme de choix lorsque les systèmes sont designés par de grandes équipes réparties en

sous-équipes indépendantes, or lorsque la chaîne d’approvisionnement est complexe [Dam05, SPE].

Un des clés du raisonnement par contrats est que ces derniers peuvent être utilisés aussi bien pour

le design que pour la vérification. Les contrats sont des contraintes de design sur les implémenta-

tions qui sont maintenues tout au long du cycle de vie des systèmes. Comme pour le contrat-based

design [Mey92], nous utilisons les contrats pour contraindre, réutiliser et remplacer les implémenta-

tions.

INTRODUCTION 23

Les contrats expriment à la fois l’assumption (hypothèse) faite par le component sur son en-

vironnement et la guarantee (garantie) concernant le comportement attendu du composant. Dans

le context du design de programmes, par exemple dans les méthodologies de design orientées ob-

jet, les contrats sont généralement de simples pré- et post-conditions, comme dans [Mey92]. Dans

le context du design de systèmes, des contrats plus expressifs sont nécessaires, par exemple pour

spécifier des propriétés temporelles de sûreté et de vivacité. C’est le rôle des spécifications d’inter-

face [GSL96, dAH01a].

Le raisonnement à base de contrats utilise pleinement la notion d’incrementalité. En effet, les

contrats fournissent pour les composants une abstraction qui peut être utilisée pour la composition et

la réutilisation. En particulier, parce qu’un contrat exprime des contraintes sur l’environnement dans

lequel un composant peut être utilisé, il est possible de raisonner sur des systèmes fermés (i.e., qui ne

peuvent plus être composés) plutôt que sur des systèmes ouverts qui peuvent être utilisés dans n’im-

porte quel environnement. D’autre part, le raisonnement à base de contrats permet l’implémentabilité

indépendante : dans une approche de design du haut vers le bas, un contrat est écrit pour chaque

sous-composant du système, et ces contrats peuvent être raffinés indépendemment les uns des autres.

De plus, comme les contrats sont écrits à chaque niveau de hiérarchie du système, ils évitent le prob-

lème de l’explosion de l’espace d’états. Enfin, cette approche peut toujours être combinée avec des

approches compositionnelles à chaque niveau de hiérarchie.

Le projet SPEEDS proposait d’utiliser les contrats pour prouver des propriétés du framework

de composants HRC. À la fois pour HRC L0 et HRC L1, des théories de contrats devaient être

dévelopées. À la fin, ces théories devaient être unifiées pour combiner les résultats de vérification de

leur chaînes d’outils respectives, qui sont basées sur des relations de raffinement différentes. Nous

avons montré que prouver des propriétés de systèmes construits à partir de composants L0 et L1

ne nécessite pas un framework sémantique unificateur ; l’intégration des frameworks de composition

dans un framework unificateur, comme présenté ici, suffit.

Contribution

Notre but n’est pas de proposer un nouveau framework générique de design mais plutôt de définir

un ensemble minimal de propriétés qui doivent être satisfaites par une théorie de contrats pour perme-

ttre certaines règles de preuves. Nous rendons explicites certaines questions auxquelles doit répondre

quelqu’un qui définit un framework de contrats ou qui se demande quel framework utiliser. Par exem-

ple, est-ce que la règle de preuve qu’on appelle raisonnement circulaire est correcte dans mon cadre ?

Est-il possible de décomposer un composant hiérarchique selon n’importe quelle partition de ses

24 INTRODUCTION

sous-composants ? Répondre à ces questions offre des réponses sur l’applicabilité de raisonnements

incrémentaux et compositionnels plus sophistiqués. Ainsi, notre approche vise à séparer la question

des propriétés qui dépendent du framework utilisé de celles qui en sont indépendantes et résultent de

règles de preuve génériques.

Notre définition de framework de composant est très abstraite : nos opérateurs de composition

(que nous appelons glues) permettent de représenter une grande variété de modèles d’interaction

depuis la communication input/output (I/O) jusqu’aux connecteurs BIP avec politique de priorités. En

particulier, cela nous permet de travailler avec des frameworks sémantiques de bas niveau aussi bien

qu’avec des frameworks syntaxiques. D’autre part, l’abstraction de ports, qui un ingrédient essentiel

pour prouver le raffinement entre spécifications à différents niveaux de granularité, peut être considéré

comme une glue. Nos contrats ont une partie structurelle, qui décrit la glue avec laquelle le composant

doit être connecté à son environnement. Ainsi, dans les frameworks où l’interaction est complexe,

nous montrons que les proproiétés structurelles et compositionnelles d’un composant peuvent être

établies en s’appuyant fortement sur la structure du système et de façon moins importante sur les

propriétés comportementales de l’environnement. C’est utile en particulier parce que la structure d’un

système en construction peut être fixée bien avant certaines propriétés comportementales, qui doivent

être raffinées tout au long du processus de design. Contrairement aux automates d’interface [dAH01a],

mais à l’image des automates d’interface I/O [LNW06], nos contrats distinguent explicitement entre

une assumptionA représentant une propriété de l’environnement, et une guarantieG représentant une

propriété que le composant en cours de design doit garantir dans tout environnement se comportant

en accord avec A. Nous discutons ce choix dans le chapitre 2.

Munis de cette définition générique de framework de composant, nous nous intéressons aux rela-

tions de raffinement. Dans le design de systèmes, le raffinement est défini entre une spécification et

une implémentation [LW94, dAH01a, Sin07]. Dans les frameworks de contrat, le raffinement prend

plusieurs formes : raffinement par rapport à une spécification (conformité), raffinement entre contrats

(dominance) and raffinement d’une implémentation par rapport à un contrat (satisfaction). Dans les

théories de contrats existantes, les deux dernières sont dérivées de la première. Nous proposons une

relation plus faible entre conformité and raffinement sous contexte, à partir de laquelle les relations

de dominance et satisfaction sont dérivées. Cela nous permet d’obtenir des règles de raisonnement

plus efficaces. D’autre part, nous généralisons l’usage qui est parfois fait du raffinement dans tout

contexte (par contraste avec les raffinement dans un contexte donné) à des relations plus faibles, ce

qui permet également d’obtenir des méthodes de raisonnement plus puissantes. Notons que nous ne

discutons pas du problème de trouver des relations de raffinement appropriées : cela reste une étape

INTRODUCTION 25

de design dans la construction du framework de composant, tout comme la spécification de contrats

est une étape de design dans la construction de systèmes. Notre but est de faciliter le processus de

design en spécifiant clairement quelles sont les propriétés nécessaires pour permettre certaines règles

de preuve.

Nous discutons certaines règles pour le raisonnement compositionnel. En particulier, nous nous

intéressons au raisonnement circulaire qui entraîne une règle de preuve intéressante pour prouver la

dominance sans composer les contrats, ce qui est impossible dans le cas général et non souhaitable

dans de nombreux frameworks concrets. Le raisonnement circulaire implique une contrainte as-

sez forte sur la relation de raffinement sous contexte, qui peut ne pas être satisfaite par la relation

disponible. Nous montrons comment relâcher cette contrainte, en particulier en combinant plusieurs

relations de raffinement. Notons également que nous ne proposons pas de méthode pour construire

un framework dans lequel le raisonnement circulaire est correct. Cette question a déja été étudiée

dans [McM99, Mai03b]. En particulier, [Mai03a] prouve qu’une telle règle ne peut être à la fois cor-

recte (sound) et complète. Enfin, nous présentons un ensemble d’applications qui met en avant le

généralité de nos définitions. La pertinence du choix de nos définitions est mise en évidence dans ces

exemples.

Organisation

– Le chapitre 1 présente des notions de base sur les systèmes de transition et leur relations de

raffinement. Il décrit également trois frameworks qui sont souvent utilisés ou mentionnés dans

le reste de la partie I.

– Le chapitre 2 présente notre méthodologie à base de contrats pour vérifier des systèmes de taille

arbitraire. Elle définit nos frameworks de contrats et présente certaines règles pour raisonner

dessus.

– Le chapitre 3 met cette méthodologie en perspective en discutant comment certains concepts

habituels qui n’apparaissent pas dans nos définitions peuvent être intégrés. En particulier, nous

justifions le choix d’éviter la composition de contrats dans certains frameworks.

– Les chapitres 4 à 7 présentent plusieurs frameworks de contrats, chacun mettant en avant un

aspect différent de notre méthodologie. Plus précisément :

– Le chapitre 4 présente un framework de contrats pour le niveau sémantique de BIP. Cet

exemple simple donne une première illustration des définitions présentées dans les chapitres

précédents.

– Le chapitre 5 définit deux variantes du framework de composants BIP qui sont utilisées dans

26 INTRODUCTION

le chapitre suivant. Ces variantes n’ont jamais été proposées auparavant et elles mettent en

évidence l’importance d’avoir une sémantique compositionnelle cohérente avec la mise à

plat de systèmes.

– Le chapitre 6 montre comment les automates d’interface I/O peuvent être simplement

représentés en utilisant un framework de contrat pour lequel les preuves de cohérence sont

techniques mais simples. Des preuves plus complexes peuvent alors être grandement simpli-

fiées. Ensuite, nous présentons les frameworks HRC L0 and L1 et nous décrivons comment

les résultats obtenus à partir d’outils pour L0 et L1 peuvent être utilisés ensemble grâce au

raisonnement circulaire combiné.

– Le chapitre 7 présente et discute plusieurs relations de raffinement pour des frame-

works basés sur des systèmes de transition étiquetés (LTS, Labeled Transition Systems) et

généralise l’usage du raisonnement circulaire combiné du chapitre précédent. Un framework

basé sur les systèmes de transition modaux (MTS, Modal Transition Systems) est ensuite pro-

posé, pour lequel la cohérence structurelle est une propriété utile. Enfin, deux frameworks

utilisant des priorités statiques sont décrits, pour les LTS puis les MTS, ce qui illustre que le

raffinement dans tout contexte peut dans certains cas être strictement plus fort que la relation

de conformité.

Bien que cela ne soit pas présenté dans cette thèse, nous avons également appliqué notre

méthodologie à un framework de contrats plus complexe qui est assez expressif pour décrire des

échanges de données entre composants et des propriétés de progrès. Ce framework a été appliqué à

un algorithme pour le partage de ressources dans un réseau. Une description détaillée de ce travail est

disponible dans [BHQG10c, BHQG10b].

Implémentation de systèmes distribués avec interactions complexes

Le travail présenté dans la partie II est motivé par le challenge posé par l’implémentation dis-

tribuée de systèmes BIP [BBBS08]. Ce problème peut se généraliser à la question de contrôler un

système existant de façon à le forcer à satisfaire une contrainte de sûreté supplémentaire [RW92] —

par exemple une politique de priorités. En pratique, cela est rendu possible par l’addition d’un pro-

cessus superviseur, qui s’éxécute en synchronie avec le système. Les superviseurs sont en général des

automates (d’états finis) qui observent le système et progressent selon les transitions qu’ils observent,

et ont de plus la capacité de bloquer certaines transitions en fonction de leur état courant.

Ce problème est lié au problème de la synthèse à partir de spécifications temporelles (LTL, Linear

INTRODUCTION 27

Temporal Logic), qui est 2EXPTIME hard pour les systèmes réactifs séquentiels et indécidable pour

les systèmes concurrents, comme démontré par Pnueli and Rosner [PR90].

Une étude exacte de l’existence d’un contrôleur global (complètement synchronisé) peut être

basée sur la théorie des jeux. De fait, on peut voir le problème comme l’implémentation d’une

stratégie pour le jeu à deux joueurs suivant : un joueur, l’environnement, peut toujours choisir en-

tre les transitions incontrôlables possibles tandis que l’autre joueur peut choisir entre les transitions

contrôlables. Le but du contrôleur est de s’assurer que la contrainte est satisfaite par une éxécution

choisie conjointement. Ce problème peut être résolu en utilisant des algorithmes basés sur les jeux de

sûreté [Tho95].

Le problème du contrôle distributé

Maintenant, intéressons-nous à la question du contrôle distribué [RW92, YL02] : des contrôleurs

locaux, un par processus ou ensemble de processus, peuvent interdire l’éxécution de certaines transi-

tions afin d’éviter la violation de la contrainte imposée. À cause de la nature distribuée du système,

chaque contrôleur a une vision limitée du système global. La synthèse de contrôleur distribué pour

imposer une contrainte globale est un problème indécidable dans le cas général [Tri04, Thi05]. On

peut rendre le problème décidable en réduisant la concurrence dans le système. Dans le pire des cas,

il ne reste plus aucun concurrence et un contrôleur totalement global est construit. Cependant, même

avec cette hypothèse assez forte, le problème de synthèse de contrôleur reste difficile à gérer. Une

approche pragmatique est basée sur la vérification de properties de connaissance grâce auxquelles

les contrôleurs locaux peuvent décider ou non de bloquer une transition. Deux approches différentes

existent pour synthétiser des contrôleurs distribués, qui sont alors soit conjonctifs soit disjonctifs.

Un contrôleur conjonctif autorise une transition seulement si tous les contrôleurs locaux l’au-

torisent. En d’autres termes, il est suffisant pour bloquer une transition qu’un contrôleur local le

décide. Le choix d’un contrôleur conjonctif est motivé par le besoin d’avoir un système qui se com-

porte exactement comme spécifié par un langage régulier donné. Dans ce cas, tous les comportements

du système non contrôlé qui ne violent pas la contrainte imposée doivent être possibles. Il est alors

nécessaire qu’au moins un processus sache quand une transition possible dans le système viole la

contrainte, afin de la bloquer. Cette approche nécessite une connaissance suffisante de chaque pro-

cessus pour permettre le maximum de transitions autorisées. Elle est suivie par [RR00], qui étudie

la possibilité de construire un contrôleur utilisant de la connaissance (propriété qui s’appelle Kripke

observability dans ce travail).

Un contrôleur disjonctif autorise une transition si au moins un contrôleur local l’autorise. Selon

28 INTRODUCTION

cette approche, suivie par [BBPS09], il est possible d’interdire une transition même si elle ne viole

pas la contrainte imposée mais l’absence de blocage doit être préservée. La construction du contrôleur

est différente de celle du contrôle conjonctif car elle requiert seulement qu’au moins un processus

autorise une transition. Cette approche préserve la correction du contrôleur même si la connaissance

ne suffit pas à autoriser toutes les transitions qui ne violent pas la contrainte.

Dans [RR00] comme dans [BBPS09], la connaissance est utilisée comme un outil pour constru-

ire des contrôleurs distribués. À partir d’une connaissance précalculée qui reflète dans chaque état

local toutes les situations possibles des autres processus, le contrôleur local d’un processus décide à

l’éxécution si une action de ce processus peut être éxécutée sans violer la contrainte imposée. Par-

fois, cependant, la connaissance des processus individuels n’est pas suffisante. Alors, la connaissance

conjointe de plusieurs processus peut être monitorée à l’aide de contrôleurs associés à des groupes de

processus au lieu de processus individuels. Dans le pire des cas, un contrôleur global est construit, qui

peut contrôler le système selon la contrainte. Malheureusement, cela cause la perte de la concurrence

entre les processus qui sont monitorés conjointement.

Contribution

L’approche proposée ici étend l’approche de [BBPS09]. Nous supposons que les systèmes per-

mettent l’addition de synchronisations supplémentaires. Cette hypothèse est raisonnable car il existe

de toute façon un mécanisme de synchronisation pour implémenter le système de façon distribuée.

Plutôt que des synchronisations permanentes entre groupes de processus, nous proposons une

méthode pour construire des contrôleurs distribués qui synchronisent les processus temporairement.

Nous utilisons des techniques de model checking pour précalculer un ensemble minimal de points de

synchronisations auxquels la connaissance conjointe de plusieurs processus peut être calculée durant

de courtes phases de coordination. Après chaque synchronisation, les processus impliqués peuvent de

nouveau progresser indépendemment les uns des autres jusqu’à ce qu’une autre synchronisation soit

nécessaire.

Ces synchronisations temporaires entre plusieurs processus sont rendus possibles par l’utilisa-

tion d’un algorithme de coordination basé sur des échanges de messages, tel que α-core [PCT04].

De telles synchronisations impliquent un surcoût de communication important. En conséquence, il

est essentiel de minimiser le nombre de messages résultant de ces synchronisations additionnelles.

Nous obtenons des résultats dans ce domaine en réduisant le nombre de coordinateurs qui gèrent ces

synchronisations.

Une des limitations de cette méthode est liée au fait que nous calculons la connaissance sur le

INTRODUCTION 29

système que nous voulons contrôler et non sur le système contrôlé. Les processus ont alors moins

de connaissance et donc il est possible que nous introduisions plus de synchronisations que néces-

saire. Nous proposons des techniques qui réduisent l’impact de ce problème ainsi que comment ces

nouvelles techniques peuvent combinées avec celles qui existent déjà, comme par exemple la connais-

sance avec mémoire parfaite. Enfin, nous montrons l’intérêt des contrôleurs à base de connaissance

en tant que solution pragmatique au problème de la synthèse de contrôleur.

Organisation

– Le chapitre 8 généralise the travail de [BBPS09] à des contraintes de sûreté arbitraires.

– Le chapitre 9 présente notre méthode pour construire des contrôleurs distribués en synchro-

nisant les processus temporairement ainsi que pour réduire le surcoût de communication dû

aux synchronisations additionnelles. Il présente également des résultats expérimentaux.

– Le chapitre 10 décrit nos techniques pour éviter des synchronisations inutiles et comment com-

biner plusieurs techniques. De plus, il met en perspective les contrôleurs à base de connais-

sance, mettant en évidence leur intérêt.

Bien que cela ne soit pas présenté dans ce document, un travail préliminaire sur l’intégration

de contraintes haut-niveau avec l’algorithme de coordination a déjà été entrepris. Des résultats sont

présentés dans [BHGQ10].

Context and motivation

Computer science has been part of our life for a few decades now. The changes it has introduced

in our modern society are quite astonishing: computers are everywhere from cellphones to laptops

to airplanes, and they do almost everything for us: they drive for us, they play music, they allow us

to communicate with the rest of the world, they give us access to unlimited knowledge etc. Lately,

the huge progress in the abilities of our computers has been overtaken only by the demand for more

and more sophisticated systems. Developing such large and complex systems is a challenging task.

To tackle this issue, system designers apply an old method that has proved its effectiveness in various

contexts throughout history: divide and conquer. Its principle is simple and powerful: a large problem

is solved more easily if it is split into smaller subproblems, which can in turn be decomposed, and so

on until the size of the subproblems becomes manageable. Once these subproblems have been solved,

the solution to the original problem is defined as the composition of the solutions to the subproblems.

In the world of system design, this approach is called component-based design. The solution to the

30 INTRODUCTION

problem is a component, which can be either small enough to be designed directly — it is then

called atomic — or built by composing smaller components — then being called hierarchical. Thus,

the problem of designing large and complex systems boils down to writing atomic components and

assembling them into hierarchical ones.

A system written in a clear and simple way is less error-prone. Furthermore, this can significantly

improve the results provided by the later verification phase. For this reason, there is a large variety

of formalisms for dealing with component-based frameworks. Synchronous languages such as LUS-

TRE [CPHP87] or Signal [BGJ91] have been successfully transferred from the academic world to

the industrial one. System modeling languages such as SystemC [Sys] and Simulink [Sim] are also

widely used in the industry. Frameworks such as Ptolemy [EJL+03] and 42 [MB07] focus on handling

heterogeneity by allowing combination of several models of computation and communication.

In the past decade, many languages in which interaction is complex — connectors are not

only used to transfer data from one component to another but play a role in the synchronization

of components — have been designed. Such formalisms include the Kell calculus [BS03] and the

connector calculus Reo [Arb04]. Among them, we are particularly interested in the BIP frame-

work [GS05, BBS06, BS08a] developed at Verimag. BIP is a language in which interaction is expres-

sive enough to encompass many schemes, from rendezvous to broadcast. Furthermore, as connectors

are first-class entities just like components, it is possible to define hierarchical connectors, which are

connectors defined as a composition of other connectors. In such frameworks, reasoning about the

structure of the system is essential. Our work has a practical motivation in the component frame-

works HRC L0 and L1 — standing for heterogeneous rich components — defined in the SPEEDS IP

project [SPE] and used in the COMBEST project [COM]. HRC L0 is inspired by the synchronous

languages while HRC L1 is inspired by BIP.

In this thesis, we have studied how complex systems are designed, verified and then implemented. In

particular, because of the great variety of existing formalisms, we have focused on finding definitions

expressive enough to encompass BIP, but general enough to apply to other languages. Thus, this

document is organized in two parts, as follows:

– Part I: Design and verification of large systems of components using contracts. We provide a

definition of component framework that is abstract enough to encompass the BIP and HRC L0

and L1 frameworks, but that also applies in a simple way to a variety of other frameworks.

– Part II: Implementation of systems with complex interactions in a distributed setting. This natu-

rally applies to BIP and its priority policy, but we have generalized the constraint to be enforced

to any safety property.

INTRODUCTION 31

Design and verification of large systems

As systems grow in size and complexity, the number of errors that they contain also grows, and

furthermore they become harder to detect and to fix. The problem of verifying the correctness of a

system is so difficult to solve that a computer is probably the only product that is sold without the

guarantee that it has no defect.

However, for some systems, this situation is not acceptable, either because an error may cost

human lives (e.g. if an airplane crashes), or because it may result in a huge financial loss (e.g. if there

is a potential malfunction in a cellphone that is produced in very large quantities). Therefore, formal

methods are required in order to ensure the correctness of some systems, where this notion has to

be formally defined, for example as conformance to some set of requirements. Such requirements

are of various forms depending on the application domain. Examples are pre- and postconditions

for methods calls, or temporal properties which divide into safety properties (“something bad never

happens”) and liveness properties (“something good eventually happens”). An efficient verification

method for large and complex component-based systems should have the following qualities:

– scalability: the approach must scale to very large systems

– predictability: design errors should be detected as early as possible in the design phase

– reusability: there must be a way to reuse parts of the verification process if a component is

replaced by another one that is similar but not identical

As we focus on critical systems, testing, although it is necessary in order to detect errors in a

lightweight way, is not sufficient, as it provides no guarantee of correctness. Among the methods for

formal verification, model checking is a fully automated one based on exhaustive exploration of the

state space of the model of the system, which is usually a finite state machine. However, it suffers from

the well-known state space explosion problem: the method soon becomes intractable if components

execute concurrently, because the number of states of the model grows exponentially in the number of

components. As model checking has been widely studied, many improvements have been proposed

in order to solve this problem. They fall into three categories, which can be combined: symbolic

techniques [McM93], abstraction techniques [CGL94, GS97, BMMR01, CGJ+00] and compositional

methods.

Compositional approaches (for a comprehensive survey, see [dRdBH+01]) are those that tackle

the state space explosion problem in the most efficient way. They apply divide-and-conquer to in-

fer, from (local) properties of the components, a (global) property of the system. These approaches

include compositional model checking [CLM89, Lon93] and compositional minimization [CGL94]

— which can be property-driven [CLM89, LGS+95] or context-driven [GSL96]. Assume-guarantee

32 INTRODUCTION

is another approach [Jon83] based on decomposing a system into several parts and proving for each

part that it satisfies some guarantee under the assumption that the rest of the system satisfies its as-

sumption. Automated assumption generation using machine learning algorithms has been proposed

in [CGP03]. However, these techniques still have difficulty proving more efficient than the mono-

lithic approach [CAC08], even though much progress has been made lately by making learning im-

plicit [CCF+10]. For BIP systems, the D-Finder tool [BBSN08, BBNS09] uses component as well as

interaction invariants to prove safety properties in a compositional manner.

Compositional approaches deal with the state-space explosion problem very efficiently. However,

they lack incrementality to use a property of a composition at a higher level of hierarchy. Some works

already exist — D-Finder now provides some limited results in this direction and [Sin07] tackles

substitutability (replacing one component by another one) in assume-guarantee reasoning — yet this

remains insufficient in an industrial context, where components are often designed by different teams

or even bought from other companies, and where the ability to incorporate components into an exist-

ing system is essential. This is the reason why we would like to combine compositional approaches

with an incremental methodology.

Motivation for using contracts

Contract [BCP07, BFM+08] and interface [dAH01a, LNW06] frameworks are emerging as the

formalism of choice when systems are designed by large teams consisting of independently working

subteams, or when the supply chain is complex [Dam05, SPE]. The key idea is that contracts are

used both for design and verification. Contracts are design constraints for implementations which

are maintained throughout the development and life cycle of the system. Like in contract-based de-

sign [Mey92], we use contracts to constrain, reuse and replace implementations.

Contracts express both the assumption made by the component with respect to its environment

and the guarantee about the promised behavior of this component. In the context of program design,

for example in object-oriented design methodologies, contracts are usually simple pre- and post con-

ditions, as in [Mey92]. In the context of system design, more expressive contracts are needed, for

example for specifying temporal safety and progress properties. This is the role of interface specifi-

cations [GSL96, dAH01a].

Contract-based reasoning makes full use of the notion of incrementality. Indeed, contracts pro-

vide for components an abstraction that is adequate for composition and reuse. In particular, because

a contract expresses constraints about the environment into which a component may be used, it is

possible to reason about closed systems — which cannot be composed anymore — rather than open

INTRODUCTION 33

systems — which may be used in an unknown environment. Besides, contract-based reasoning can

provide independent implementability: in a top-down design approach, contracts are written for each

subcomponent of the system, and these contracts can be further refined independently of the other

subcomponents. Furthermore, as contracts are written at each level of hierarchy in the system, they

avoid the state-space explosion problem. Besides, this approach can still be combined with composi-

tional approaches at each level of hierarchy.

The SPEEDS IP project proposed to use contracts for proving properties within the component

framework HRC. For both HRC L0 and HRC L1, contract theories had to be developed. At the

end, these theories had to be unified to combine verification results from their respective tool chains,

which are based on different refinement relations. We show that proving properties of systems built

from L0 and L1 components does not require a unifying semantic framework; an embedding of the

composition frameworks into a unifying one, as presented here, is sufficient.

Contribution

Our goal is not to propose a new generic design framework but rather to define a minimal set

of properties which a given contract theory should satisfy to allow some specific proofs. We explicit

some questions which must be answered by someone defining a contract framework, or wonder-

ing which existing one to use. For example, is the proof rule called circular reasoning sound in my

framework? Is it possible to decompose a hierarchical component according to any partition of its

subcomponents? Answering these basic questions provides clues for using more sophisticated incre-

mental and compositional reasoning. In that sense, our approach aims at a separation of concerns

between framework-dependent properties and generic proof rules.

Our definition of component framework is very abstract: our composition operators (which we

call glues) encompass a variety of interaction models from I/O communication to BIP connectors and

priority policies. In particular, this allows us to work with low-level semantic frameworks as well as

syntactic ones. Besides, port hiding, which is a key ingredient for proving refinement between speci-

fications at different levels of granularity, can be seen as a glue. Our contracts have a structural part,

which describes the glue with which the component is expected to be composed with its environment.

Thus, in frameworks where interaction is complex, we show that structural and behavioral proper-

ties of a component can be established by relying heavily on the structure of the system and less

importantly on the behavioral properties of its environment. This is particularly useful as the archi-

tecture of a system under construction may be fixed long before its behavioral properties, which need

to be refined throughout the design process. Unlike interface automata [dAH01a], but like interface

34 INTRODUCTION

I/O automata [LNW06], our contracts distinguish explicitly between an assumption A representing

a property of the environment, and a guarantee G representing a property that the component under

design must guarantee in an environment behaving in accordance with A. We discuss this choice in

Chapter 2.

Equipped with this generic definition of component framework, we focus on refinement re-

lations. In system design, refinement is defined between a specification and an implementa-

tion [LW94, dAH01a, Sin07]. In contract frameworks, it takes different forms: refinement with re-

spect to a specification (conformance), refinement between contracts (dominance) and refinement of

an implementation with respect to a contract (satisfaction). In existing contract theories, the latter two

relations are derived from the former one. We require here only a loose coupling between confor-

mance and refinement under context, from which dominance and satisfaction are derived. This can be

used for providing more efficient proof rules. Besides, we generalize the use that is sometimes made

of refinement in any context (by contrast with refinement in a given context) to weaker relations,

thus providing again more powerful reasoning schemes. Note that we do not address the problem of

finding appropriate refinement under context relations: this remains a design step in the building of

the contract framework, just like specification of contracts is a design step in the building of systems.

What we do is helping in the design process by stating clearly the properties required from such

relations for allowing particular reasoning rules.

We discuss some rules for compositional reasoning. In particular, we focus on circular reasoning,

as it entails an interesting rule for proving dominance that does not require composing contracts —

which is impossible in the general case, and undesirable in most concrete frameworks. Soundness of

circular reasoning imposes a relatively strong requirement on the refinement relation. Thus, it may

not hold for the refinement under context at hand. We show how to relax this constraint, in particular

by combining several refinement relations. Note that we do not discuss how to build a framework

for which circular reasoning is sound. This has already been studied, e.g. in [McM99, Mai03b]. In

particular, [Mai03a] proves that it cannot be sound and complete.

Finally, we present a variety of meaningful instantiations, which emphasizes the generality of our

definitions. The relevance of the choices made in our definitions is illustrated in these examples.

Organization

– Chapter 1 presents basic notions about transition systems and their refinement relations. It also

describes three frameworks which are used or often referred to in the rest of Part I.

– Chapter 2 presents our contract-based methodology for verifying systems of arbitrary size. It

INTRODUCTION 35

defines contract frameworks and discusses rules for reasoning within them.

– Chapter 3 puts this methodology into perspective by discussing whether and how usual con-

cepts which are missing from our definitions can be integrated into it. In particular, we justify

our choice to avoid composing contracts in some frameworks.

– Chapters 4 to 7 present several contract frameworks, each of them emphasizing a different

aspect of our methodology. More specifically:

– Chapter 4 presents a contract framework for the semantic level of BIP. This simple example

gives a first illustration of the definitions presented in the previous chapters.

– Chapter 5 defines two variants of the BIP component framework which are used in the next

chapter. These variants had never been formalized before and they emphasize the importance

of providing a compositional semantics consistent with flattening.

– Chapter 6 shows how I/O interface automata can be easily represented as a contract frame-

work in which coherence proofs are technical but straightforward. More intricate proofs can

then be drastically simplified. After this, we present the HRC L0 and L1 frameworks and

describe how the results obtained from tools for both can be used together using combined

circular reasoning.

– Chapter 7 discusses several refinement relations for frameworks based on LTS and general-

izes the use of combined circular reasoning made in the previous chapter. It then proposes

a framework based on MTS, where structural consistency is a useful property. Finally, it

defines two frameworks handling static priorities, for LTS and MTS, which illustrates that

refinement in any context may be much stronger than conformance.

Although this is not presented in this thesis, we have also applied our methodology to a com-

plex contract framework that is expressive enough to handle data exchange between components and

progress properties. It is applied to an algorithm for sharing resources in a network. More detail can

be found in [BHQG10c, BHQG10b].

Implementation of distributed systems with complex interactions

The practical motivation for the work presented in part II is the distributed implementation of BIP

systems, which is a challenging issue [BBBS08]. It can be generalized to the problem of controlling

an existing system in order to force it to satisfy some additional safety constraint [RW92] — e.g. a

priority policy. In practice, this is done by adding a supervisor process, which is usually an automa-

ton running synchronously with the controlled system. Supervisors are often (finite state) automata

36 INTRODUCTION

observing the controlled system, progressing according to the transitions they observe and having the

ability to block some transitions depending on their current state.

This problem is related to the synthesis problem from LTL specifications, which was shown by

Pnueli and Rosner [PR90] to be 2EXPTIME hard for sequential reactive systems and undecidable for

concurrent systems.

An exact check for the existence of a global (completely synchronized) controller can be based on

game theory. Accordingly, one may present the problem as implementing a strategy for the following

two player game. One player, the environment, can always choose between the enabled uncontrollable

transitions, while the other player can choose between the enabled controllable ones. The goal of the

controller is to ensure that the constraint is satisfied by the jointly selected execution. This can be

solved using algorithms based on safety games [Tho95].

The distributed control problem

Now, suppose that the situation at hand is that of a distributed control [RW92, YL02]: local con-

trollers, one per process or set of processes, may restrict the execution of some of the transitions if their

occurrence violates (or may violate) the imposed constraint. Due to the distributed nature of the sys-

tem, each controller has a limited view of the entire system. The problem of synthesizing a distributed

controller that imposes some global constraint on a system is, in general, undecidable [Tri04, Thi05].

One can achieve decidability at the expense of reducing concurrency. In the worst case, no concur-

rency remains and a completely global controller is built. Even under this flexible design assumption,

the synthesis problem remains highly intractable. One practical method for designing controllers is

based on checking knowledge properties upon which the processes can make their decisions whether

to allow or block transitions.

Two different approaches have been proposed in order to tackle the distributed control problem.

The first one is based on conjunctive (distributed) controllers while the second one uses disjunctive

(distributed) controllers.

A conjunctive controller allows a transition to be fired only if all local controllers allow it. In other

words, it is sufficient for a transition to be blocked that one local controller decides it. The choice of

a conjunctive controller is motivated by the desire to make the system behave exactly according to

a given regular language. In this case, all behaviors of the uncontrolled system which do not violate

the additional constraint imposed by the language should be allowed. It is then necessary that if a

transition is enabled by the system under control but must be blocked according to the additional con-

straint, at least one process knows that fact and is thus able to prevent the execution of the transition.

INTRODUCTION 37

This approach requires sufficient knowledge to allow any transition enabled according to a given reg-

ular specification. This is the approach followed by [RR00], where knowledge-based controllability

(termed Kripke observability) is studied as a basis for constructing a distributed controller.

A disjunctive controller allows a transition to be fired if at least one of the local controllers sup-

ports it. In this approach, which is the one chosen in [BBPS09], we are allowed to limit the possible

choices in order to impose the given global constraint. The construction is different from conjunctive

control, as it requires that at least one process knows that the occurrence of some enabled transi-

tion preserves the correctness of the imposed constraint, hence supports its execution. This approach

preserves the correctness of the controller even if there is not sufficient knowledge (in individual

processes) to allow every globally feasible transition.

In [RR00] as well as in [BBPS09], knowledge is used as a tool for constructing distributed con-

trollers. The knowledge of a process in any particular local state includes the properties that are com-

mon to all reachable (global) states containing it. Note that there are several definitions for knowledge,

depending on how much of the local history may be encoded in the local state.

In [BBPS09], distributed control is achieved by first precalculating the knowledge of individual

processes in each of their local state using model checking. Based on that precalculated knowledge,

reflecting in a given local state all the possible situations of the other processes, the local controller of

a process decides at runtime whether an action of that process can be executed without violating the

imposed constraint.

Sometimes, however, the knowledge of individual processes is not sufficient. Then, the joint

knowledge of several processes may be monitored using fixed controllers associated with groups

of processes instead of individual processes. In the worst case, a completely global controller is built,

which can control the system according to the property. Unfortunately, this causes the loss of concur-

rency among the processes that are jointly monitored.

Contribution

The approach suggested here extends the knowledge-based approach of [BBPS09]. We assume

that systems are flexible to the addition of further synchronizations — which seems reasonable as

there exists a synchronization mechanism for implementing the system in a distributed manner.

Instead of permanent synchronizations via fixed groups of processes, we propose a method for

constructing distributed controllers that synchronize processes temporarily. We use model-checking

techniques to precalculate a minimal set of synchronization points, where joint knowledge, i.e.,

knowledge common to several processes, can be achieved during short coordination phases. After

38 INTRODUCTION

each synchronization, the participating processes can again progress independently until a further

synchronization is called for.

Temporary multiprocess synchronizations are achieved by a coordination algorithm based on

asynchronous message passing, such as the α-core algorithm [PCT04]. Such synchronizations are

expensive as they incur communication overhead. Therefore, an important part of our task is to min-

imize the number of messages resulting from additional synchronizations. This is done by reducing

the number of coordinators involved in those synchronizations.

One major deficiency of this method is due to the fact that we calculate the knowledge on the

system that we want to control, and not on the controlled system. Processes have less knowledge, and

as a result, we may introduce far more synchronizations than needed. We show techniques that reduce

the impact of this problem, and how these new techniques can be profitably coupled with existing

ones, such as knowledge with perfect recall, and then we advocate knowledge-based controllers with

additional synchronizations as a practical solution to the distributed control problem.

Organization

– Chapter 8 generalizes the work of [BBPS09] to arbitrary safety constraints.

– Chapter 9 presents our method for constructing distributed controllers by synchronizing pro-

cesses temporarily, and how the communication overhead induced by these additional synchro-

nizations can be reduced. It also presents some experimental results that we have obtained.

– Chapter 10 describes our techniques for avoiding unnecessary synchronizations, and how sev-

eral techniques can be combined. Furthermore, it puts knowledge-based controllers into per-

spective, showing their interest in practice.

Although this is not presented in this document, a preliminary work on how to integrate high-level

constraints into the underlying coordination algorithm has already been undertaken. Some results are

presented in [BHGQ10].

INTRODUCTION 39

Instructions for the reader

– The preliminary part about Labeled Transition Systems (Section 1.1.1) may be skipped by a

reader familiar with inclusion of traces, simulation and ready-simulation.

– Similarly, the reader already acquainted with Modal Transition Systems and their classical

refinement relation may skip Section 1.1.2.

– The presentation of the BIP framework (Section 1.2.1) should be read before Chapter 4, as

there are several ways of defining BIP and it specifies the definitions which are used in this

thesis.

– Although related, Part I and Part II can be read in any order.

– Proofs are either just after theorems, or at the end of the chapter in which theorems appear.

Conventions and notations

– Unless otherwise stated, all sets are supposed to be finite in this thesis.

– As we are only dealing with integer numbers here, [i, j] denotes, for i and j integers such that

i ≤ j, the set of integers that are greater than or equal to i and less than or equal to j.

– The set of powersets of a set X is denoted 2X rather than P(X).

– When representing graphically transition systems, we show only states which are reachable

from the initial state. We use two slightly graphical representations for transition systems:

– One that represents states as circles. The initial state is pointed at by an arrow with no origin

state.

– Another where states are implicit and only transitions are represented. In this case, the con-

vention is that the initial state is at the top.

– For labeled transition systems, we sometimes adopt the convention that in any state q, there

exists a transition q ∅−→ q. As we do not deal with data transformation, such a transition is

equivalent to an absence of transition. In this case, ∅ is implicitly defined as a label of any

transition system.

40 INTRODUCTION

Part I

Contract-Based Design and Verification
of Component-Based Systems

41

Chapter 1

Preliminaries and related work

In this chapter, we first recall some basic definitions about labeled transition systems and modal

transition systems and their usual refinement relations, which are used throughout this document.

Then, we present the BIP framework, which is one the main motivations for our work. We briefly

discuss BIP in its generality, then we present two variants which had never been formalized before

and that we use in this thesis. Finally, we review the state of the art in the domain of interface theories,

from which our work on contract frameworks is inspired. In particular, we emphasize the properties

of these theories that do not extend to frameworks with complex interaction such as BIP.

1.1 Preliminaries

1.1.1 Labeled transition systems

Labeled transition systems are used to describe abstractly the behavior of systems. They define

how these systems can evolve from one state to another by firing a transition associated with a label

that names the operation performed during the transition.

Definition 1.1.1 (Labeled transition system) A labeled transition system (LTS) is defined as a tuple

(Q, q0,Σ,−→) where Q is a set of states, q0 ∈ Q is the initial state, Σ is a set of labels and −→ ⊆
Q× Σ×Q is a transition relation.

For a ∈ Σ, we call q the origin and q′ the destination of a transition (q, a, q′). We use the following

notations: (q, a, q′) ∈−→ is denoted q a−→ q′. Given q ∈ Q and a ∈ Σ, if there exists a state q′ ∈ Q
such that q a−→ q′, then a is said to be enabled in q, which is denoted q a−→. In the sequel, whenever

an LTS Si is introduced, it is understood that it is of the form Si = (Qi, q
0
i ,Σi,−→i).

43

44 PRELIMINARIES AND RELATED WORK

b

a

q01 q11a

Figure 1.1 – A first LTS S1

b

a

q02 q12

Figure 1.2 – A deterministic LTS S2

Let us consider a very simple LTS which we will use as a running example.

Example 1.1.2 We define S1 = (Q1, q
0
1,Σ1,−→1) by: Q1 = {q0

1, q
1
1}, Σ = {a, b} and −→1=

{(q0
1, a, q

0
1), (q0

1, a, q
1
1), (q1

1, b, q
0
1)}.

Graphically, S1 is represented in Figure 1.1, where circles denote states and arrows are transitions

whose labels are written on the arrows. We show only states which are reachable from the initial

state. The initial state is represented using an arrow with no origin state.

Definition 1.1.3 (Determinism) An LTS S is deterministic if for every state q ∈ Q and every label

a, there is a most one state q′ such that q a−→ q′.

An LTS which is not deterministic is called non-deterministic. Determinism expresses that in every

state, once a label has been chosen, there is at most one possible destination. For example, S1 is non-

deterministic because there are two transitions labeled by a with q0
1 as origin. On the contrary, S2 as

shown in Figure 1.2 is deterministic. Note that there exist other (stricter) notions of non-determinism.

Now, given a non-deterministic LTS S, it is always possible to build a deterministic LTS Sdet

which is related to S by some equivalence relation, namely equality of the set of traces. Before

presenting determinization, let us introduce traces [HU79]. We do not consider infinite traces.

Definition 1.1.4 (Set of traces) A (finite) trace of an LTS S is a sequence of labels a1.a2 . . . an for

which there exists a sequence of states q0.q1 . . . qn such that q0 = q0 and for every 0 ≤ i < n there

is a transition qi
ai+1−→ qi+1. The length of the trace is n. The set of traces of S is denoted Tr(S).

Traces are in general denoted σ. The sequence q0.q1 . . . qn is called the sequence of states corre-

sponding to a1.a2 . . . an. Traces express the sequence of labels that can be observed when executing

an LTS. Note that any prefix of a trace of an LTS is also a trace of this LTS. As an example, the traces

of S1 are all the sequences of a and b such that every b is preceded by at least one a, while traces of

S2 are such that every b is preceded by exactly a. Hence, Tr(S2) ⊆ Tr(S1) but Tr(S1) 6⊆ Tr(S2).

PRELIMINARIES AND RELATED WORK 45

{q01}

a

b

a{q01 , q11}

Figure 1.3 – The determinization Sdet
1 of S1

b

a

q13q03
q23

b

Figure 1.4 – An LTS S3 with a deadlock

Property 1.1.5 In a deterministic LTS, every trace has only one corresponding sequence of states.

Proof. As the initial state is unique, the proof is a simple induction on the length of the traces. 2

Definition 1.1.6 (Determinization) The determinization of an LTS S, denoted Sdet , is the LTS

(2Q, {q0},Σ,−→det) where −→det consists of triples in 2Q × Σ × 2Q and is the smallest relation

such that for Q,Q′ ⊆ Q, Q a−→det Q′ if and only if Q′ 6= ∅ and Q′ = {q′ | ∃q ∈ Q s.t . q
a−→ q′}.

The condition Q′ 6= ∅ ensures that there exists a transition in the determinized LTS only if there

exists at least one corresponding transition in the original LTS. Note that for a given S, Sdet is unique

and deterministic. Uniqueness and determinism come from the fact that in every state Q′ is uniquely

defined. The determinization of S1 is shown on Figure 1.3. Only states which are reachable are rep-

resented, where reachability is defined as follows.

Definition 1.1.7 (Reachable states) In an LTS S, a state q ∈ Q is reachable if it appears in at least

one trace of S. The set of reachable states of S is denoted reach(S).

One should note that the number of states of a determinization is exponentially larger than the one of

the original system. However, some (or in some cases many) of these states may not be reachable.

Property 1.1.8 For any LTS S, it holds that Tr(S) = Tr(Sdet).

Proof. We prove by induction the following property: for any l ≥ 0, the set of traces of length

l of S is equal to the set of traces of length l of Sdet , and for any σ of length l in these sets,

if Q0.Q1 . . . Ql−1 is the (unique) sequence of states corresponding to σ in Sdet , then we have

Ql−1 = {ql−1 ∈ Q | q0.q1 . . . ql−1 is a sequence of states in S corresponding to σ}. 2

Comparing sets of traces is one possibility for comparing LTS, it is not the only one. In particular,

as illustrated by Property 1.1.8, equality of trace sets does not take non-determinism into account. In

particular, it does not express properties related to deadlocks, i.e. states in which the system cannot

progress anymore.

46 PRELIMINARIES AND RELATED WORK

S1 S2 Sdet
1 S3

S1 X X
S2 X X X X
Sdet

1 X
S3 X X X X

Table 1.1 – Simulation relations between S1, S2, Sdet
1 and S3

Definition 1.1.9 (Deadlock) A state q ∈ Q in which no a ∈ Σ is enabled is a deadlock.

Definition 1.1.10 (Deadlock-freedom) An LTS without any deadlock state is called deadlock-free.

As an example, S2 and S3 represented in Figure 1.4 have the same set of traces, yet S2 is deadlock-free

while S3 is not.

We now introduce simulation [Mil89], which is a relation taking into account non-determinism.

Definition 1.1.11 (Simulation) Let S1 and S2 be two LTS. A relation R ⊆ Q1 ×Q2 is a simulation

relation of S2 by S1 iff q0
1R q0

2 and for any pair (q1, q2) ∈ Q1 ×Q2 and any q′1 ∈ Q1:

q1R q2 and q1
a−→1 q

′
1 implies that there exists q′2 ∈ Q2 such that q2

a−→2 q
′
2 and q′1R q′2

S1 simulates S2 if and only if there exists such a relation.

Intuitively, an LTS S1 simulates S2 if any reachable state q1 of S1 can be mapped to a state q2 in S2

such that all labels enabled in q1 (w.r.t S1) are also enabled in q2 (w.r.t. S2).

If we look at the four examples that we have presented so far, we have the relations represented in

Table 1.1: Xdenotes that there exists a simulation of the LTS associated with the column by the LTS

corresponding to the line. An empty cell denotes that there exists no such simulation. In particular,

this table illustrates the fact that simulation is reflexive (for any S, identity is a simulation of S by S)

and that for any S, S simulates Sdet .

The unique simulation relation between S1 and Sdet
1 is shown in Figure 1.5, left: a green dashed

arrow from q to q′ denotes that qR q′. Similarly, the unique simulation between S3 and S2 is shown

on the right of Figure 1.5. Note that S2 simulates S3 and vice versa, but not with the same relation.

Property 1.1.12 For any LTS S, S simulates Sdet .

Proof. Let R ⊆ Q × 2Q be a relation defined as follows: qRQ if and only if q ∈ Q, for any q ∈ Q
and Q ⊆ Q. RelationR is a simulation of Sdet by S. 2

PRELIMINARIES AND RELATED WORK 47

b

a

a

a

b

a

b

a

b

a

b

Figure 1.5 – Simulation relation between S1 and Sdet
1 (left) and S3 and S2 (right)

Property 1.1.13 If S1 simulates S2 then Tr(S1) ⊆ Tr(S2).

Proof. Again, the proof is a simple induction on the length of the traces. 2

Simulation is strictly stronger than inclusion of traces. Furthermore, inclusion of traces and sim-

ulation can be related by the following equivalence.

Property 1.1.14 Tr(S1) ⊆ Tr(S2) if and only if Sdet
1 simulates Sdet

2 .

Proof. We decompose this proof into two implications.

=⇒ : Suppose every trace of S1 is a trace of S2. We defineR ⊆ 2Q1 × 2Q2 as follows: {q0
1}R{q0

2},
and if Q1RQ2 and Q1

a−→ Q′1, then Q′1RQ′2, where Q′2 = {q′2 | ∃q2 ∈ Q2 s.t . q2
a−→ q′2}.

RelationR is a simulation of Sdet
2 by Sdet

1 .

⇐= : is a direct consequence of Property 1.1.13 and Property 1.1.8. 2

In some cases, we will need a relation more discriminating than simulation: we will use ready-

simulation, which imposes that a transition in the simulated LTS should have a counterpart in the

simulating LTS.

Definition 1.1.15 (Ready-simulation) Let K1 and K2 be two LTS. A relation R ⊆ Q1 × Q2 is a

ready-simulation if it is a simulation such that for any pair (q1, q2) ∈ Q1 ×Q2, if q1R q2 then:

q2
a−→ implies q1

a−→

Table 1.2 shows which of the simulations presented in Table 1.1 are also ready-simulations: a

ready-simulation relation is denoted by Xand a simulation which is not a ready-simulation by 7. In

48 PRELIMINARIES AND RELATED WORK

S1 S2 Sdet
1 S3

S1 X 7

S2 X X 7 X
Sdet

1 X
S3 7 7 7 X

Table 1.2 – Ready-simulation relations between S1, S2, Sdet
1 and S3

particular, notice that the simulations represented in Figure 1.5 are not ready-simulations. This shows

that ready-simulation is sufficient to handle properties related to deadlock-freedom.

Finally, we define an even stronger relation called bisimulation. It is mentioned only is the next

section, so we not discuss it in detail.

Definition 1.1.16 (Bisimulation) Let K1 and K2 be two LTS. A relationR ⊆ Q1 ×Q2 is a bisimu-

lation if it is a simulation and furthermoreR−1 is a simulation of K1 by K2.

1.1.2 Modal transition systems

Modal transition systems (MTS, [LX90]) are labeled transition systems where transitions have

in addition a modality, which is either may or must and allows distinguishing between impossible,

possible and required behaviors of a component. MTS express loose specifications in so far as they

encode into a single automaton an over- and an under-approximation of the expected behavior of

a system under design without implicitly relying on state information. They are therefore suitable

to reason about both safety and progress properties in the context of the composition that we have

chosen.

Definition 1.1.17 (Modal transition system) A modal transition system (MTS) is a tuple M =

(Q, q0,Σ, 99K,−→), where Q is a set of states, q0 ∈ Q is an initial state, Σ is a set of labels,

while 99K and −→ in Q× Σ×Q are transition relations such that:

∀q, q′ ∈ Q,∀a ∈ Σ, q
a−→ q′ =⇒ q

a
99K q′

A transition in 99K, called a may-transition, may be present as well as not in an implementation of

M while a transition in −→, called must-transition, must be present. Thus 99K represents the over-

approximation and −→ the under-approximation specified by M .

PRELIMINARIES AND RELATED WORK 49

q03

q13 q13

tea?
coffee?

coffee!

tea!

Figure 1.6 – An MTS describing a coffee machine

This condition that must-transitions must also be may-transitions is called modal consistency. As

for LTS, an MTS Mi is implicitly associated with a tuple (Qi, q
0
i ,Σi, 99Ki,−→i).

Figure 1.6 shows an example of MTS: full lines represent must-transitions and dashed lines may-

transitions. May-transitions which are also must-transitions are not represented. Notice that an MTS

cannot express that the transitions related to tea should be either both present or both absent.

MTS are typically used for writing abstract specifications of systems. In this context, refining an

MTS means choosing, for every may-transition, whether it should be removed, transformed into a

must-transition or kept like this. Must-transitions must be preserved and no transition may be added.

Definition 1.1.18 (Modal refinement) Consider two MTS called M1 and M2. M1 refines M2 if and

only if there exists a relation R ⊆ Q1 × Q2 such that q0
1R q0

2 and for any pair (q1, q2) ∈ Q1 × Q2

and any q′1 ∈ Q1, q′2 ∈ Q2, whenever q1R q2 the following holds:

– q1
a
99K q′1 implies that there exists q′2 ∈ Q2 such that q2

a
99K q′2 and q′1R q′2

– q2
a−→ q′2 implies that there exists q′1 ∈ Q1 such that q1

a−→ q′1 and q′1R q′2

For example, the MTS of Figure 1.6 may be refined in 3 different ways, as the may-transition

can be preserved, removed or transformed into a must-transition. Note that an MTS with only may-

transitions can be seen as an LTS, and in this case modal refinement corresponds to simulation.

1.2 Related work

1.2.1 The BIP framework

BIP [GS05, BBS06, BS08a] is a framework for designing component-based systems with com-

plex interactions. Its main principle is that there should be a clear separation between the behavioral

and the architectural parts of systems. Indeed, such a separation allows efficient structural verification

50 PRELIMINARIES AND RELATED WORK

techniques [BBSN08]. The BIP framework has been fully implemented in a toolset including a fron-

tend for generation of C++ code from BIP specifications, an execution engine, and analysis tools for

state-space exploration and deadlock detection [BBNS09].

In BIP, the classic notion of input/output is replaced by the more expressive notion of multi-party

interaction, where each partner imposes constraints on when the interaction may take place. Thus,

no notion of input completeness is required. This rendezvous-like interaction mechanism is related

to process algebras such as CCS [Mil80] or CSP [Hoa85], and so is the restriction to a strictly local

notion of state. It has been shown in [BS08b] that the set of glues that can be defined within the BIP

framework is, according to a definition taking into account the ability to coordinate components, more

expressive than composition operators of CCS, CSP and SCCS [Mil83]. In fact, any glue definable

by a set of SOS-rules — in a simple restriction of the GSOS format — is definable in BIP.

In BIP, systems and components are built by superposing three layers of modeling: Behavior,

Interaction, and Priority — hence the name. Interaction and priority form the architecture of the

system. The behavior of atomic components is typically represented as an LTS; interaction describes

how components communicate and synchronize, with priority filtering among the interactions enabled

in a given state, e.g., a backup interaction should not happen if a normal interaction is also possible.

There exist various flavors of BIP. Here is an overview of the variants that have been studied so far:

B Behaviors may be LTS or Petri nets. In this thesis, we also use MTS whenever some notion of

progress is required. In general, behaviors are enriched with variables and guards.

I Interactions may be structured into (potentially hierarchical) connectors. They may also involve

data transfer. Some variants (in particular those with data transfer) offer the ability to internalize

some ports (that is, internal ports do not appear at the interface of the component) and to

associate new ports with connectors, which we call encapsulation.

P Priorities may be static or dynamic.

Two different semantics have also been provided: a one-shot semantics allows firing a single

connector in a given state. On the contrary, a multi-shot semantics allows firing several connectors at

the same time, provided that they do not involve the same ports.

In this section, we introduce the BIP framework based on the way it was presented in [GS05]. We

discuss the issue of finding a semantics that is compositional, i.e., a semantics such that the semantics

of a composite component can be deduced from the semantics of its constituting components. This

problem has not been explicitly tackled so far, and we will examine it further in Chapter 5, where we

formalize two variants of the BIP framework for which we provide compositional semantics. We also

explain why it is not possible in the general case to provide such compositional semantics in the form

PRELIMINARIES AND RELATED WORK 51

of a behavior.

In contrast with [GS05] but without loss of generality, the BIP framework as we present it here

does not structure interactions into connectors. We have chosen this presentation because it makes the

presentation simpler and furthermore connectors are particularly useful in presence of encapsulation,

which is not the case here, as the interface of a composite component is defined by the interface of its

constituting components: it is not possible to hide, add or rename ports.

Let us introduce first some notations. In this section as well as in the rest of this thesis, compo-

nents are denoted K1,K2 etc. Sets of components are sometimes denoted K1,K2 etc. A component

K interacts with its environment through its ports, which form the interface of K, thus defining

what can be observed from the behavior of K by its environment. We suppose given a set of ports

Ports containing all ports that can possibly be defined. Sets of ports are denoted P , or P when they

correspond to the interface of a component. It is understood that they are all subsets of Ports .

To define our component framework, we proceed as follows: we first define atomic components

which are identified with their behavior, then interactions and finally priorities. Based on these defi-

nitions, we introduce composite components and their semantics. Moreover, we define an operation

called flattening which allows representing any composite component as a composition of atomic

components using a single interaction model and priority order, that is in the layered BIP form. We

show that this operation is consistent with the semantics previously introduced in the sense that the

semantics of a component is equivalent (defined as bisimilar) to the semantics of its flattened form.

Let us start by defining the behavioral layer of BIP. We use the term atomic component rather than

behavior to emphasize their role in component-based design.

Definition 1.2.1 (Atomic component) An atomic component on a interface P is represented by an

LTS K = (Q, q0, 2P ,−→).

We choose here to label transitions of atomic components by sets of ports rather than ports in order

to encompass the case where such components interact with their environment through several ports

at the same time — e.g. in a synchronous system.

An interaction is characterized by a non-empty set of ports which synchronize, generally involv-

ing more than one component and possibly involving several ports of the same component. This loose

definition allows us to define an interaction model on a set of ports without considering to which com-

ponent these ports belong to. Hence the following definition.

Definition 1.2.2 (Interaction model) An interaction α in a set of ports P is a non-empty set of ports

such that α ⊆ P . An interaction model I on a set of ports P is a set of interactions α in P .

52 PRELIMINARIES AND RELATED WORK

Note that by defining interactions as sets of ports through which these components synchronize,

we restricted their use in this thesis to synchronization purposes. In particular, no data exchange or

transformation can be specified.

Now that we have formalized the first two layers of the BIP framework, namely atomic compo-

nents for behavior and interaction models for interaction, let us define priority. Priorities are used to

arbitrate between simultaneously enabled interactions, for example to enforce scheduling policies.

Definition 1.2.3 (Priority order) A priority order ≺ on an interaction model I is a strict partial

order on I.

Atomic components, interaction models and priority orders form the basis of our framework.

What we now focus on is how these concepts can be used in component-based design. In particular, we

define composite (non-atomic) components and provide a semantics for them. In fact, we provide two

such semantics, one that is compositional and another one for closed systems. Having a compositional

semantics is useful especially if it is in the form of an atomic component, as in this case one can reason

only about atomic components. The reason why we need two different semantics is the following: the

intended goal of priorities is to filter away some transitions in states where another transition with a

preferred interaction is possible. However, this cannot be done in a compositional manner. Intuitively

the reason is that an interaction that has lower priority than another one in a local state of a component

K may be part of an interaction with maximal priority in the corresponding global state of a composite

component containing K. Thus, all enabled transitions must be kept until the system is closed, that

is, cannot be composed anymore. Independently of this, priorities also must be preserved. This means

that the compositional semantics of a component on an interface P has to be defined as a pair (B,≺)

where B is an LTS labeled by 2P and ≺ is a priority order on 2P .

Definition 1.2.4 (Component, Composite component) A component is either an atomic component

or it is inductively defined as the composition of a set of components {Ki}ni=1 with disjoint interfaces

{Pi}ni=1 using an interaction model I on P =
⋃n
i=1 Pi and a priority order ≺ on I. Such a compo-

sition is called a composite component on P and it is denoted I≺{Ki}ni=1.

Note that the interface of a composite component is the union of the interfaces of its constituting

components. From now on, when we say that a component is of the form I≺{K1, ... ,Kn}, it is

understood that all Ki are components with disjoint interfaces, I is an interaction model on
⋃n
i=1 Pi

and≺ is a priority order on I. The pair (I,≺), also denoted I≺, is a glue on P in the sense of [Sif05],

because it expresses how to compose a set of components so as to make them interact.

PRELIMINARIES AND RELATED WORK 53

semantics

K3 K4

I≺

I1
≺1 I2

≺2

K1 K2 K5

JI≺{I1
≺1{K1}, I2

≺2{K2}}K

and K2 = {K3,K4,K5}
with K1 = {K1,K2}

Figure 1.7 – Semantics of a composite component

Definition 1.2.5 (Glue) Given a set of ports P ⊆ Ports , an interaction model I on P and a priority

order≺ on I form together a partial function which associates with every set of components {Ki}ni=1

with disjoint interfaces {Pi}ni=1 such that P =
⋃n
i=1 Pi a component on P . We call such a function a

glue on P .

In order to define semantics of components, we first define how we compose priority orders.

Definition 1.2.6 (Composition of priorities) Given two priority orders ≺1 and ≺2 on two interac-

tion sets denoted respectively I1 and I2, their composition denoted ≺1 × ≺2 is the least priority

order (if it exists) on I1 ∪ I2 containing ≺1 and ≺2.

We can now define our two semantics of components. The compositional semantics of a compo-

nent consists of an LTS and a priority order while the closed one is simply an LTS. In both cases, the

semantics of a composite component is inductively defined based on the compositional semantics of

its constituting components.

Definition 1.2.7 (Compositional semantics) The compositional semantics of a component K is a

pair (BK ,≺K) defined as follows:

– if K is an atomic component, then BK = K and ≺K= ∅
– if K is of the form I≺{K1, ... ,Kn}: denote (Bi,≺i) the compositional semantics of Ki for

i ∈ [1, n], with Bi = (Qi, q
0
i , 2
Pi , i). Then ≺K=≺ × ≺1 × . . .× ≺n if it exists, and

BK = (Q, q0, 2P ,) is defined by: Q = Q1 × ...×Qn, q0 = (q0
1, ... , q

0
n), P =

⋃n
i=1 Pi and

given two states q = (q1, . . . , qn) and q′ = (q′1, . . . , q
′
n) in Q and an interaction α ∈ I, q α

 q′

if and only if:

– ∀i such that α ∩ Pi = ∅, q1
i = q2

i

– ∀i such that α ∩ Pi = αi for some αi 6= ∅, qi
αi i q

′
i

54 PRELIMINARIES AND RELATED WORK

Note that the compositional semantics of a component may not be defined, as its constituting priority

orders may be contradictory. According to this definition, components not involved in an interaction

do not move when this interaction takes place. Also, as already explained, note that priorities do

not play any role in the definition of BK . Compared to the compositional semantics (BK ,≺K) of a

component K, the closed semantics is the LTS obtained by filtering away in BK transitions which do

not have maximal priority according to≺K . The closed semantics of componentK, which we denote

JKK, is defined as follows.

Definition 1.2.8 (Closed semantics) Let K be a component. Denote (BK ,≺K) the compositional

semantics of K with BK = (Q, q0, 2P ,). The closed semantics of K, denoted JKK, is defined

as (Q, q0, 2P ,−→), where given two states q = (q1, . . . , qn) and q′ = (q′1, . . . , q
′
n) in Q and an

interaction α ∈ 2P , q α−→ q′ if and only if q α
 q′ and @α′ ∈ I such that α ≺ α′ and q α′

 .

Figure 1.8 illustrates this definition on an example. For clarity, a singleton interaction {p} is

denoted p, and union of interactions is represented using a dot, thus {p1, p2} is denoted p1. p2. Note

that ports a and f are exported by defining singleton interactions.

{b ≺ b.e}

{a, b, e, b.e, f, c.d}

a

c

b

eb
c d

f

a

e

f
d

a

f

f

e
b.e

c.d

b

Figure 1.8 – Closed semantics of a composite component

A key feature of BIP is that glues themselves can be composed, which is done layerwise. This

allows “flattening” composite components, that is, representing them using only atomic components

and a single interaction model and priority layer (see Figure 1.9) — which is the representation in

three layers (Behavior, Interaction, Priority) advocated in the introduction. We have already defined

composition of priorities, let us define now composition of interaction models.

PRELIMINARIES AND RELATED WORK 55

Definition 1.2.9 (Composition of interaction models) Let I1 and I2 be two interaction sets on re-

spectively P1 and P2. Their composition, denoted I1 ∗ I2, is the set of interactions α ⊆ P1 ∪P2 such

that ∀i, α ∩ Pi = ∅ or α ∩ Pi ∈ Ii.

Note that this composition is associative and commutative. Also, there is no condition on the set of

ports on which interaction models are defined for composing them. An interaction appears in the

composition I1 ∗ I2 if its projection onto P1 and P2 appears in respectively I1 and I2.

The composition ◦ of glues is then trivially defined as layerwise composition of the interaction

and the priority layers: I1
≺1 ◦ I2

≺2 = (I1 ∗ I2)≺1×≺2 .

Definition 1.2.10 (Flat component) A component is called flat if it is atomic or of the form

I≺{K1, . . . ,Kn}, where all Ki are atomic components. A component that is not flat is called hi-

erarchical.

A hierarchical component K is of the form I≺{K1, . . . ,Kn} such that at least one Ki is composite.

Thus, such a K can be represented as I2
≺2{I1

≺1{K1},K2}, where K1 and K2 are sets of components.

Definition 1.2.11 (Flattening of components) The flattened form of a component K is defined in-

ductively as follows:

– if K is a flat component, then its flattened form is equal to K.

– otherwise,K is of the form I2
≺2{I1

≺1{K1},K2}, and then its flattened form is the flattened form

of (I2
≺2 ◦ I1

≺1){K1 ∪ K2}.

Finally, the following theorem relates (when used inductively) the semantics of a hierarchical

component and its flattened form.

Theorem 1.2.12 JI2
≺2{I1

≺1{K1},K2}K and J(I2
≺2 ◦ I1

≺1){K1 ∪ K2}K are bisimilar.

For the sake of clarity, we use the following notations:

– K1 = {Kk}mk=1 and K2 = {Kk}nk=m+1

– Q1 = Q1 × . . .×Qm and Q2 = Qm+1 × . . .×Qn
– P1 =

⋃m
k=1 Pk, P2 =

⋃n
k=m+1 Pk and P = P1 ∪ P2 =

⋃n
k=1 Pk

Note that I1 is defined on P1 while I2 is defined on P (and not on P2).

Proof. Let (Bh,≺h) and (Bf ,≺f) be the compositional semantics of respectively the hierarchical

component I2
≺2{I1

≺1{K1},K2} and its flattened form (I2
≺2 ◦ I1

≺1){K1 ∪K2}. We show that ≺h=≺f

56 PRELIMINARIES AND RELATED WORK

semantics semantics

flattening

∼= ?

K1 K2

K5K3 K4K1 K2

I≺

I1
≺1 I2

≺2 I≺ ◦ I1
≺1 ◦ I2

≺2

JI≺ ◦ I1
≺1 ◦ I2

≺2{K1 ∪ K2}KJI≺{I1
≺1{K1}, I2

≺2{K2}}K

K5K2K1 K3 K4

Figure 1.9 – Flattening of a hierarchical component

and that Bh and Bf are bisimilar. Denote (Bi,≺i) the compositional semantics of Ki for i ∈ [1, n2],

and (Bs,≺s) that of component I1
≺1{K1}.

By definition, ≺s=≺1 × ≺1 × . . .× ≺m and then ≺h=≺2 × ≺s × ≺m+1 × . . .× ≺n. Also by

definition, ≺f= (≺2 × ≺1)× ≺1 × . . .× ≺n. Hence ≺h=≺f .

Let us now show the bisimulation. We defineR ⊆ ((Q1)×Q2)× (Q1 ×Q2) as:

((q1, . . . , qm), qm+1, . . . , qn)R (q′1, . . . , q
′
n) , ∀i ∈ [1, n] : qi = q′i

We show that this relation is a bisimulation. The initial states are trivially related.

Let us show that ((q1, . . . , qm), qm+1, . . . , qn)
α
 h ((q′1, . . . , q

′
m), q′m+1, . . . , q

′
n) if and only if

(q1, . . . , qn)
α
 f (q′1, . . . , q

′
n) for α ∈ 2P . Let αs = α ∩ P1 and αi = α ∩ Pi for i ∈ [1, n].

By definition, ((q1, . . . , qm), qm+1, . . . , qn)
α
 h ((q′1, . . . , q

′
m), q′m+1, . . . , q

′
n) if and only if:

– α ∈ I2

– either αs = ∅ and (q1, . . . , qm) = (q′1, . . . , q
′
m); or (q1, . . . , qm)

αs s (q′1, . . . , q
′
m)

– for all i ∈ [m+ 1, n], either αi = ∅ and qi = q′i; or qi
αi i q

′
i

Similarly, (q1, . . . , qn)
α
 f (q′1, . . . , q

′
n) if and only if:

– α ∈ I2 ∗ I1

– for all i ∈ [1, n], either αi = ∅ and qi = q′i; or qi
αi i q

′
i

Let us suppose that ((q1, . . . , qm), qm+1, . . . , qn)
α
 h ((q′1, . . . , q

′
m), q′m+1, . . . , q

′
n) and show that

(q1, . . . , qn)
α
 f (q′1, . . . , q

′
n).

PRELIMINARIES AND RELATED WORK 57

If αs = ∅, then as α ∩ P ∈ I2 and α ∩ P1 = ∅, we have by definition of ∗ that α ∈ I2 ∗ I1.

Besides, αs = ∅ implies that ∀i ∈ [1,m] : αi = ∅ and qi = q′i, hence (q1, . . . , qn)
α
 f (q′1, . . . , q

′
n).

If αs 6= ∅, then (q1, . . . , qm)
αs s (q′1, . . . , q

′
m), which implies that αs ∈ I1 and ∀i ∈ [1,m], either

αi = ∅ and qi = q′i; or qi
αi i q

′
i. Besides, we have: α∩P ∈ I2 and α∩P1 ∈ I1, so α ∈ I2 ∗ I1. As

a result, (q1, . . . , qn)
α
 f (q′1, . . . , q

′
n).

Now, let us suppose that (q1, . . . , qn)
α
 f (q′1, . . . , q

′
n). There remains for us to show that

((q1, . . . , qm), qm+1, . . . , qn)
α
 h ((q′1, . . . , q

′
m), q′m+1, . . . , q

′
n). As I2 is defined on P , α ∈ I2 ∗ I1

implies that α ∈ I2 (because α is an interaction and thus cannot be empty).

If ∀i ∈ [1,m] : αi = ∅, then αs = ∅ and it holds that (q1, . . . , qm) = (q′1, . . . , q
′
m). Otherwise,

that is if αs 6= ∅, then αs ∈ I2 ∗ I1 implies that αs ∈ I1 and so (q1, . . . , qm)
αs s (q′1, . . . , q

′
m).

Hence the result. 2

1.2.2 Interface theories

Originally, contracts were introduced in the context of object-oriented programming [Mey92].

Since then, they have been adapted to many other application domains, e.g. to Web services [PS07,

BZ07, Pad08, CGP08], where the emphasis is on compatibility and independent implementability

(also called substitutability).

Contracts are of particular interest for speculative design, where distributed teams use a notion

of rich component and contract for working concurrently on partial designs. Interfaces [GSL96,

dAH01a] have been proposed for this purpose and focus on incremental design through compo-

sition of interfaces. As for contracts, there exist many different interface theories: timed inter-

faces [dAHS02], resource interfaces [CdAHS03], Web service interfaces [BCH05], relational in-

terfaces [TLHL09] etc. Interface theories are based on a fixed model of composition — usually

synchronous input/output (I/O) composition. Any interface theory must ensure independent imple-

mentability, that is, that implementations can be derived from specifications independently of each

other and associativity, i.e., the order of composition does not affect the properties of the global

system.

In their seminal paper [dAH01a] and later in [dAH01b] and [dAH05], de Alfaro and Henzinger

introduced interface automata as behavioral contracts. An interface automaton describes how a com-

ponent and its environment are expected to interact via input/output composition. As interface au-

tomata are not necessarily input-enabled, a single automaton represents both the assumption made by

the component on its environment and the guarantee provided by this component:

58 PRELIMINARIES AND RELATED WORK

– Assumption: an output transition t! in the interface automaton must correspond to an input

transition t? in the environment. Indeed, t! is considered legal by the interface, thus it must be

accepted by the environment. Besides, absence of an input transition t? in the interface automa-

ton must correspond to absence of a corresponding output t! transition in the environment. That

is, an implementation of the interface is not required to accept t, so the environment must not

offer it.

– Guarantee: an input transition in the interface automaton must correspond to an input transition

in the implementation, and absence of an output transition in the interface automaton must

correspond to absence of a corresponding output transition in the implementation.

As a direct consequence, refinement is defined as alternating simulation [AHKV98]: a implementation

accepts more inputs and provides fewer outputs than its interface.

In [dAH01a], the motivation for interfaces is to check compatibility in open systems: two inter-

faces are compatible if there exists an environment in which they can be used together, that is, the

guarantee of one does not violate the assumption of the other. This approach is optimistic in contrast

with component refinement, where components have to respond to any environment, thus leading to

a heavy defensive design style. Note that working with an open system as here implicitly defines an

interface for the environment matching that of the component, thus closing the system — but allowing

the environment interface to be refined as components are added.

In [LNW06], Larsen, Nyman and Wąsowski introduce interface I/O automata, which are inspired

from interface automata, but differ in several ways. An I/O interface automaton consists of two I/O au-

tomata [Lyn96], thus separating explicitly the assumption (called the environment) and the guarantee

(called the specification). Unlike interface automata, such I/O automata are input-enabled. [LNW06]

then focuses on composition of interfaces and provides a system of inequalities whose maximal solu-

tion it the most general composition. Two operations, zip and unzip allow translation from interface

automata to interface I/O automata.

An extension of interface I/O automata with modality has been proposed in [LNW07]. However,

the separation between assumption and guarantee is dropped there. This approach was developed

further by Raclet et al. in [RBB+09b, RBB+09a] using residuation [Rac08] and allowing for multiple

viewpoints and component reuse [DHJP08].

Keeping assumption and guarantee separate has several advantages. First, it improves reusability,

as checking refinement under a new context can be achieved much more easily, for example if the

new environment refines the old one in any context. Second, an interface is necessarily a composi-

tion representing how the global (closed) system should behave. Keeping assumption and guarantee

PRELIMINARIES AND RELATED WORK 59

separate — the guarantee then representing a component property — avoids storing their product.

The approach proposed in [BCP07, BCF+07, BFM+08] for the L0 framework of the SPEEDS

project is again based on disjoint assumptions and guarantees. There, a new issue appears, called con-

sistency: the assumption and the guarantee of a contract may be contradictory. This problem occurs

neither for interface automata nor for interface I/O automata, because an interface automaton is an

implementation of itself, and the guarantee of an interface I/O automaton is an implementation of this

automaton.

Our setting in this thesis is more general than all these approaches: we use glues, that is, sets

of operators closed by composition which map sets of behaviors into behaviors [Sif05]. We do not

suppose the existence of an algebra of contracts allowing composition and conjunction of contracts.

Indeed, in frameworks for which the least upper bound of two components with the same inter-

face is not defined, composition and conjunction of contracts are not always definable. Besides, in

frameworks with rendezvous interaction, there is no unzip function from a single interface to a pair

assumption/guarantee — only a relation. Hence, we keep assumptions and guarantees separate. In our

framework, consistency is irrelevant for the same reason as for interface I/O automata. Finally, we do

not address compatibility in its generality but we provide a structural counterpart for this notion as

well as for consistency.

60 PRELIMINARIES AND RELATED WORK

Chapter 2

Defining contract frameworks

In this chapter, we present the design methodology that we propose. In particular, we give a

generic definition of contract framework, and state the necessary ingredients for using circular rea-

soning within such a framework.

2.1 Methodology

From a macroscopic point of view, we adopt a top-down design and verification methodology in

which high-level requirements are pushed progressively from the level of the system to the level of

atomic components — which we call implementations. As usual, this is just a convenient represen-

tation; in real life, the final picture is always achieved after several iterations alternatively going up

and down the hierarchy. So far, we keep the notion of component very abstract, as this methodology

applies to any component framework, provided some conditions — which will be listed later — are

fulfilled. Our approach is based on contracts which we suppose in general to be provided by the sys-

tem designer: building a contract for a (possibly hierarchical) component is considered as a design

step.

For a component K, a contract describes 1) the interface PK of K 2) the interaction gl between

K and its environment (denoted E), and 3) an abstraction A of the expected behavior of E and an

abstraction G of the promised behavior of K. The idea is that the system component is refined into

a set of subcomponents assembled using a complex interaction layer. Contracts are associated with

each of the subcomponents in such a way that if we can build implementations satisfying the contracts

of the subcomponents, then their composition satisfies the system contract.

61

62 DEFINING CONTRACT FRAMEWORKS

(conformance)

(satisfaction)|= C2 |= C3I3|= C1 I2I1

4 ϕ

A G

gl

w.r.t. glI
{C1, C2, C3} dominates C

C

A2

A3 G3

G2

gl2

gl1

A1G1

gl3

C3

C2

C1

gl

GA

gl I

Figure 2.1 – Method for proving gl{E, gl I{I1, I2, I3}} 4 ϕ

Our methodology is illustrated in Figure 2.1. We suppose given a global requirement ϕ which the

systemK under construction, together with an environment abstracted by a propertyA, has to satisfy.

Both ϕ and A are expressed w.r.t. the interface PK ofK. We proceed as follows: (1) define a contract

C for PK which conforms to ϕ; (2) defineK as a composition of subcomponents Ki and a contract Ci
for each of them; possibly iterate this step if needed; (3) prove that any set of implementations Ii for

Ki satisfying the contracts Ci, when composed, satisfy the top-level contract C (dominance) — and

thus guarantee ϕ; (4) provide such implementations.

The global requirement ϕ appears at the top, while the implementations Ii are at the bottom. Note

that K is not directly represented in the figure: it has the same interface as G and is obtained by

composing the implementations Ii with gl I . That is, K = gl I{I1, I2, I3}. Similarly, E appears only

in the conclusion, namely that gl{E,K} 4 ϕ.

The correctness proof for a particular system is split into 3 phases: conformance (denoted 4) of

the top-level contract C to ϕ, dominance between the contracts Ci and C, and satisfaction (denoted |=)

DEFINING CONTRACT FRAMEWORKS 63

of the Ci by the implementations Ii. Thus, conformance relates properties of closed systems — as a

contract defines a closed system made of the composition of its assumption and guarantee — while

dominance relates contracts and satisfaction relates components to contracts.

2.2 Definitions

Let us define now the various notions that have been informally introduced in the previous section.

We develop a generic framework that supports hierarchical components and mechanisms to reason

about composition. The following notions and properties form the basis of this framework. We use

glue operators [Sif05] to generalize the parallel composition found in most traditional frameworks.

2.2.1 Component framework

The notion of component is intentionally kept very abstract to encompass various frameworks. It

may be e.g. a labeled transition system, but it may also have a structural part, e.g. be a BIP component.

We will see several examples of such component frameworks in the next chapters, some providing a

low-level semantic representation of components and some a high-level syntactic one.

Definition 2.2.1 (Component framework) A component framework is a tuple (K,∼=,GL, ◦) where:

– K is a set of components. Each component K ∈ K has as interface a set of ports, denoted PK .

– ∼= ⊆ K×K is an equivalence relation. In general, this equivalence is derived from equality or

equivalence of semantic sets.

– GL is a set of glue (composition) operators. A glue is a partial function 2K −→ K transforming

a set of components into a new component. Each gl ∈ GL is associated with a set of ports Sgl
from the original set of components — called its support set — and a new interface Pgl for

the new component — called its exported interface. A composition K = gl({K1, . . . ,Kn}) is

defined if K1, . . . ,Kn ∈ K have disjoint interfaces, Sgl =
⋃n
i=1 PKi and the interface of K is

Pgl , the exported interface of gl .

– ◦ is a partial operation on GL to hierarchically compose glues. gl ◦ gl ′ is defined if Pgl ′ ⊆ Sgl .
Then, its support set is Sgl\Pgl ′∪Sgl ′ and its interface isPgl (see Figure 2.2). Furthermore, this

operation must be consistent with ∼= in the sense that gl{gl ′{K1},K2} ∼= (gl ◦ gl ′){K1 ∪ K2}
for any sets of components Ki such that all terms are defined. It is left-associative.

To simplify notation, we write gl{K1, . . . ,Kn} instead of gl({K1, . . . ,Kn}).

Figure 2.2 shows how hierarchical components (the colored ones) are built from atomic ones

(the white components). Incidentally, there is no explicit distinction between atomic and hierarchical

64 DEFINING CONTRACT FRAMEWORKS

K1

Sgl◦gl ′Sgl ′Sgl

gl ′{K1,K2}

K2 K3 K4
∼=

K2K1 K3 K4

(gl ◦ gl ′){K1,K2,K3,K4}gl{gl ′{K1,K2},K3,K4}

Figure 2.2 – A hierarchical component and its equivalent “flattened” form

components: if there exists a way of representing a hierarchical component as an atomic one, this has

to be expressed as a function preserving equivalence. We made this choice because in frameworks

working at the semantic level, atomic and hierarchical components are the same. For example, in

the BIP semantic framework of Chapter 4 where components are labeled transition systems (LTS), a

composition of LTS is an LTS.

Figure 2.2 also illustrates the coherence condition that ◦must ensure. Note that the representation

of glues — drawing full lines for representing connectors which can even be hierarchical — is just

one among other possible sets of glues. Dashed lines show how the exported interface is built based

on inner ports and connectors. This representation is inspired by the BIP framework.

2.2.2 Contract framework

We now have to define the relations mentioned in the methodology, namely: conformance, sat-

isfaction and dominance. In general, satisfaction and dominance are derived from the definition of

conformance. Here, we loosen the coupling between these relations in order to obtain stronger rea-

soning schemata for dominance. More precisely, we introduce a relation called refinement under

context, from which we derive satisfaction and dominance. Refinement under context is related to,

but not necessarily derived from, conformance.

Before giving the formal definition of contract framework, we introduce the notion of context,

first to describe how a component may be connected to its environment (i.e. the rest of the system)

and then to express a property of this environment. Thus, a context restricts how a component may

be further composed. In the sequel, the set of contexts associated with a component framework is

denoted Ω.

Definition 2.2.2 (Context) A context for an interface P is a pair (E, gl) where E ∈ K is such that

P ∩ PE = ∅ and gl ∈ GL is defined on P ∪ PE .

DEFINING CONTRACT FRAMEWORKS 65

Definition 2.2.3 (Contract framework) A contract framework is defined by a structure of the form

(K,∼=,GL, ◦,4, {vω}ω∈Ω) where:

– (K,∼=,GL, ◦) is a component framework, whose set of contexts is Ω.

– 4⊆ K × K is a conformance relation, that is, a preorder over the set of components with the

same interface.

– {vω}ω∈Ω is a set of refinement under context relations, one for each context ω in Ω, such that:

– given a context ω for an interface P , vω is a preorder over the set of components on P
– for any K1, K2 on the same interface P and for any context (E, gl) for P , it holds that: if

K1 vE,gl K2, then gl{K1, E} 4 gl{K2, E}
– for any K1, K ′1, K2 on the same interface P and for any context (E, gl) for P , we have: if

K1
∼= K ′1, then K1 vE,gl K2 if and only if K ′1 vE,gl K2.

The coherence conditions that must be satisfied by the refinement under context relation — one with

respect to conformance and one with respect to equivalence — come from the fact that we have chosen

in this definition to keep these three notions decoupled: we still need to make sure that refinement

under context allows deducing conformance for closed systems, and that equivalent components have

the same refinement properties.

Example 2.2.4 Typical notions of conformance 4 when components are labeled transitions systems

(LTS) are trace inclusion (see Definition 1.1.4) and its structural counterpart, simulation (Defini-

tion 1.1.11).

Example 2.2.5 Refinement under context (denoted v4) is usually defined as the weakest preorder

implying conformance and preserved by composition:

K1 v4E,gl K2 , gl{K1, E} 4 gl{K2, E}

Example 2.2.6 Conformance itself is another candidate for refinement under context if it is preserved

by composition, that is, if: K1 4 K2 implies gl{K1, E} 4 gl{K2, E} for any E.

However, defining refinement under context as K1 vE,gl K2 , K1 4 K2 means in fact not

taking the environment into account, thus it is of limited interest. In some cases, as in Chapter 7,

conformance actually corresponds to refinement in any context. This is not always the case, and a

counter-example is given in Chapter 7.

Notation 2.2.7 (Refinement in any context) If K1 refines K2 in any context for PK1 = PK2 then

we omit the context and simply write K1 v K2.

66 DEFINING CONTRACT FRAMEWORKS

b2

a1

b1 a1c2

a2

c1

a1

b1

K

b1 b1

GA

Figure 2.3 – K v4A,gl G for conformance defined as simulation.

Definition 2.2.8 (Contract) A contract C for an interface P consists of:

– a context E = (A, gl) for P; A is called the assumption

– a component G on P called the guarantee

We write C = (A, gl , G) rather than C = ((A, gl), G). The interface of the environment is implic-

itly defined by gl while A expresses a constraint on it and G a constraint on the refinements of K.

The “mirror” contract C−1 of C is (G, gl , A), i.e. a contract for the environment. In the rest of this

document, a contract Ci is implicitly defined as (Ai, gl i, Gi).

Definition 2.2.9 (Satisfaction) A component K satisfies a contract C = (A, gl , G), denoted K |= C,

if and only if K vA,gl G.

Example 2.2.10 Suppose that components are LTS, conformance is simulation and refinement under

context is the usual derived notion defined in Example 2.2.5. Suppose also that composition gl is

defined as the synchronization between actions with the same letter (a1 synchronizes with a2 and

the corresponding label in the composition is a1|a2 etc.) and interleaving of others. Then Figure 2.3

shows K, A and G such that K satisfies the contract (A, gl , G). Indeed, even though K does not

simulate G (after b1 is fired it offers c1 instead of a1), it still behaves like G in the context of (A, gl),

which prevents b1 from taking place.

A contract C = (A, gl , G) defines a closed system, namely gl{A,G}. Thus we say that C con-

forms to a property ϕ (as required by the methodology of Figure 2.1) when gl{A,G} conforms to

ϕ. In some interface theories [GSL96, dAH01a], the component gl{A,G} is used to represent the

contract — which consists only of A and G, as gl is predefined. This is possible because there is

only one maximal pair (A,G) corresponding to an interface. This does not hold in general. Indeed,

in frameworks with rendezvous interaction, several pairs (A,G) can correspond to the same interface

DEFINING CONTRACT FRAMEWORKS 67

(see Example 2.2.11), as the component and its environment can both prevent a rendezvous from

taking place. This is one reason for keeping assumptions and guarantees separate.

Example 2.2.11 Consider the same framework as in Example 2.2.10 and suppose that gl{A,G} is

an LTS with only one label a1|a2 that does nothing. Since gl{A,G} is obtained by synchronization, it

is sufficient that at least one of the two component forbids its action ai for the rendezvous not to take

place. There are thus three possible incomparable pairs (A,G) of length 1: one where A does noting

but G offers a2, a second where A offers a1 but G does nothing and the third where both do nothing.

A second reason for keeping assumption and guarantee distinct in our definition of contract (as

is the case in the interface I/O automata of [LNW06]) is related to the design process: A is intended

to be an abstraction of the environment of the component while G is an abstraction of the expected

behavior of the component under study. Thus, if some hypotheses are modified during the design

process, assumption and guarantee can be modified independently of each other.

Another advantage of our notion of contract with respect to system design is its structural part. It

allows us to separate the architecture and the requirements of the system under construction, which

evolve independently during the development process. In particular, in frameworks where interaction

is rich, refinement can be ensured by relying heavily on the structure of the system and less impor-

tantly on the behavioral properties of the environment. This is discussed in Chapter 7.

So, we now have, given a contract framework, a definition of conformance and satisfaction. Dom-

inance is defined in the next section.

2.2.3 Dominance

Dominance is the key notion that distinguishes reasoning in a contract framework from reason-

ing in a component framework. Intuitively, dominance can be seen as a refinement relation between

contracts. More specifically, a contract C dominates a contract C′ whenever every implementation of

C, that is, every component satisfying C, is also an implementation of C′. Thus dominance is a very

strong property, as it implies that all components satisfying the dominating contract (C) also satisfy

the dominated one (C′). Once dominance has been established, there is no need to handle imple-

mentations anymore, only assumptions and guarantees which are expected to be much smaller. More

specifically, assumptions and guarantees should be of the same complexity at each level of hierarchy

while implementations go much larger.

In this section, we provide a definition of dominance involving a composition of components for

which we will provide later a sufficient condition for proving such dominance without having to deal

68 DEFINING CONTRACT FRAMEWORKS

with actual implementations. Let us start with a first definition of dominance for two contracts with

the same glue part.

Definition 2.2.12 (Binary dominance) Let C and C′ be two contracts for the same interface P , with

C = (A, gl , G) and C′ = (A′, gl ′, G′) — implying that PG = PG′ . C dominates C′ if and only if

gl = gl ′ (and as a consequence PA = PA′) and:

for any K on P , if K |= C then K |= C′

The question of how to relate contracts which are defined on different interfaces, or which have

equivalent rather than equal glues, is discussed in Section 3.1.

If one cannot compose contracts or wants to avoid it (see discussion in Section 3.2), a dominance

check involves in general not just a pair of contracts. A typical situation would be the one depicted

in Figure 2.1, where a set of contracts {Ci}ni=1 are attached to disjoint interfaces {Pi}ni=1. Besides, a

glue gl I is defined on SglI =
⋃n
i=1 Pi and a contract C is given for PglI .

We thus need a broader notion of dominance than the binary version presented above: a set of

contracts {Ci}ni=1 dominates a contract C w.r.t. a glue gl I if and only if any set of components satis-

fying the contracts Ci, when composed using gl I , makes a component satisfying C. Formally, this is

defined as follows.

Definition 2.2.13 (Dominance for a composition) Let C be a contract for P , {Ci}ni=1 a set of con-

tracts for respectively {Pi}ni=1 and gl I a glue such that SglI =
⋃n
i=1 Pi and PglI = P . Then {Ci}ni=1

dominates C with respect to gl I iff for any set of components {Ki}ni=1 on respectively {Pi}ni=1:

if for every i ∈ [1, n], Ki |= Ci, then gl I{K1, . . . ,Kn} |= C

How do we prove dominance? The definition we have given is semantic, and concretely we do

not want to manipulate implementations in order to establish dominance. More generally, what are

the additional proof rules that we need in order to reason within contract frameworks as they are

introduced? The following section answers those questions.

2.3 Reasoning within a contract framework

Compositional reasoning means proving properties of a system based on local properties of its

components. It is usually based on the following rule: if an implementation I conforms to its spec-

ification S, then whenever composed with any component E it still conforms to S — this is called

DEFINING CONTRACT FRAMEWORKS 69

composability — and so I ‖ E conforms to S ‖ E, where ‖ denotes generically parallel composition.

This rule allows concluding from I1 4 S1 and I2 4 S2 that I1 ‖ I2 4 S1 ‖ S2. The proof given

below uses this rule twice, once for composing I1 with I2, the second time for composing I2 with S1.

Then, the result is obtained by commutativity of parallel composition and transitivity of conformance.

I1 4 S1

I1 ‖ I2 4 S1 ‖ I2

I2 4 S2

I2 ‖ S1 4 S2 ‖ S1

I1 ‖ I2 4 S1 ‖ S2

2.3.1 Compositionality

Let us consider now refinement under context and see how we can adapt the previous rule to

our problem. First, composability obviously does not hold anymore: an implementation refines a

specification in a given context, and there is no guarantee about what happens in another context. The

only rule that is specified in our definition of contract framework is that refinement under context

implies conformance: I vEgl S implies gl{I, E} 4 gl{S,E}. This rule is not sufficient to derive

gl{I1, I2} 4 gl{S1, S2} from I1 vI2,gl S1 and I2 vI1,gl S2. In fact, we only have:

I1 vI2,gl S1

gl{I1, I2} 4 gl{S1, I2}

I2 vI1,gl S2

gl{I2, I1} 4 gl{S2, I1}

This means that we need the following, stronger rule if we want to apply compositional reasoning:

I1 vI2,gl S1 I2 vI1,gl S2

gl{I1, I2} 4 gl{S1, S2}

This rule is still not sufficient because it does not allow incremental design, i.e. incorporating parts

of the environment into the component under study: indeed, it only allows proving conformance, not

refinement under context. It is thus useless if one wants to establish dominance. So we generalize

again this rule by introducing a environment E for I1 and I2:

I1 vglE2
{I2,E},gl1 S1 I2 vglE1

{I1,E},gl2 S2 gl1 ◦ glE2
= gl2 ◦ glE1

= glE ◦ gl

gl{I1, I2} vE,glE gl1{S1, S2}

We will actually always use a weaker version of this rule. The reason is that we will never use this

rule alone, but always in conjunction with other proof rules, so we only need the following property.

Definition 2.3.1 (Compositionality) A set of refinement under context relations {vω}ω∈Ω is said to

70 DEFINING CONTRACT FRAMEWORKS

glE{E1, E2}

gl1{I, E1}

gl2{gl1{S, E1}, E2}}

gl1{S,E1}

gl{S, glE{E1, E2}}

=⇒

I

E2E1S E2

E1I

E1S

I vglE{E1,E2},gl S =⇒ gl1{I, E1} vE2,gl2 gl1{S,E1}

Figure 2.4 – Compositionality, i.e. preservation of refinement by composition

be preserved by composition if and only if the following rule applies whenever all terms are defined:

I vE,gl S E = glE{E1, E2} gl ◦ glE = gl2 ◦ gl1
gl1{I, E1} vE2,gl2 gl1{S,E1}

(CMP)

This property, which we call compositionality, is illustrated in Figure 2.4.

Note that provided it is always possible to find glE1
and glE2 such that gl2 ◦ gl1 = glE1

◦ glE2
and all

terms below are defined, compositionality is weaker than the previous proof rule. This comes directly

by using reflexivity of refinement under context before applying that rule:

I vglE{E1,E2},gl S E1 vglE2
{I,E2},glE1

E1 gl ◦ glE = gl2 ◦ gl1 = glE1
◦ glE2

gl1{I, E1} vE2,gl2 gl1{S,E1}

The additional condition about the existence of glues allowing decomposition of the system as

glE1
{E1, glE2

{I, E2}} may be puzzling. It arises from the fact that the conditions expected from

the set of glues GL and its composition operator ◦ in the definition of component framework are very

limited: we only require that there always exists a flattened form of hierarchical components.

2.3.2 Circular reasoning

So, we now have a proof rule which relates different refinement under context relations. However,

this rule does not allow to derive independent implementability. That is, the premises of (CMP)

DEFINING CONTRACT FRAMEWORKS 71

require that an implementation refine its specification in the actual context in which it is used. This

is highly undesirable for at least two reasons: one is that implementations are expected to be very

complex, thus manipulating them is likely to be intractable; the other is that whenever a small change

occurs in the implementation of a part of the system, all the proofs have to be started all over again. To

avoid this situation, we need another property of refinement which allows proving refinement using

the abstract environment provided by the specifications rather than the concrete one provided by the

implementations. Most frameworks offer the following rule:

Definition 2.3.2 (Assume-guarantee) If a componentK refinesG in an abstract context (A, gl) and

if E refines A in any context, then K also refines G in the concrete context (E, gl).

K vA,gl G E v A

K vE,gl G
(AG)

This rule is in general called assume-guarantee, because the component assumes a property that is

satisfied by its environment and guarantees a property based on this assumption. It is quite limited

because the environment has to satisfy a much stronger property than the component. As the envi-

ronment of one component consists of other components, this means that in order to apply this rule

one has to find a way of “breaking the symmetry” of the dependency between component and envi-

ronment by finding a component which can guarantee its property independently of its environment.

This property may then be used as an assumption for a second component etc. When the system is

complex and there are many component, finding such a proof strategy may be very complicated. This

is why the following rule, which implies the previous one and is commonly referred to as circular

reasoning because it is symmetric, is more interesting.

Definition 2.3.3 (Circular reasoning) If a componentK refinesG in an abstract context (A, gl) and

if E refines A in the abstract context (G, gl), then K refines G in the concrete context (E, gl).

K vA,gl G E vG,gl A

K vE,gl G
(CR)

This property can be proved in a given framework by an induction based on the semantics of compo-

sition and refinement [McM99, Mai03b]. Chapter 4 shows a framework in which (CR) is sound.

However, circular reasoning is not sound in general. In particular, it is unsound when composition

is based on synchronizations (as they exist in e.g. in Petri nets or process algebras) or instantaneous

mutual dependencies between inputs and outputs (as they exist in synchronous formalisms). Exam-

ple 2.3.4 explains two reasons for the non validity of circular reasoning for v4 which are illustrated

72 DEFINING CONTRACT FRAMEWORKS

in Figures 2.5 and 2.6.

c2

a2

c1

a1

A G

a2

b2

a1

b1

E

a2

b2 c2

K

a1

b1 c1

Figure 2.5 – A counterexample to (CR) due to non-determinism.

a2 a1

GAE

b2 a2

K

b1 a1

Figure 2.6 – A counterexample to (CR) due to strong synchronization.

Example 2.3.4 Suppose, as in the previous examples, that components are LTS and composition

gl is defined as the synchronization between actions with the same letter and interleaving of others.

Suppose also that conformance is simulation and refinement under context is the usual derived notion:

K1 v4E,gl K2 , gl{K1, E} 4 gl{K2, E}

The examples in Figures 2.5 and 2.6 are both counterexamples to the circular rule, that is:K v4A,gl G
and E v4G,gl A but K 6v4E,gl G. Figure 2.5 shows that non-determinism of the abstract environment

is a problem. In Figure 2.6, both the assumption A and the guarantee G forbid b to occur. This

allows their respective refinements according to v4, E and K, to offer b — since they can rely on G

respectively A to forbid its actual occurrence. But obviously, the composition of the implementations

gl{E,K} now allows b.

Because circular reasoning is not sound for all refinements under context, it may be useful to use a

stronger (more restrictive) definition of refinement under context in order to make circular reasoning

sound. This will be illustrated later, especially in Chapter 6 which is related to the SPEEDS project.

DEFINING CONTRACT FRAMEWORKS 73

2.3.3 A sufficient condition for dominance

We provide now a sufficient condition for dominance when circular reasoning is sound. It relies

on the fact that local assumptions are indeed discharged, that is, implied by the environment defined

by the guarantees of the peers and the global assumption A. Notations are those introduced in Defini-

tion 2.2.13.

Theorem 2.3.5 If ∀i, ∃glEi , gl ◦ gl I = gl i ◦ glEi and circular reasoning is sound, then to prove that

{Ci}ni=1 dominates C w.r.t. gl I , it is sufficient to prove that:{
gl I{G1, . . . , Gn} |= C
∀i, glEi{A,G1, . . . , Gi−1, Gi+1, . . . , Gn} |= C−1

i

This condition shows that the proof of a dominance relation boils down to a set of satisfaction checks,

one for proving refinement between the guarantees, the second for discharging individual assump-

tions. This result is particularly significant because one can check dominance without having to com-

pose neither implementations nor contracts.

Note that there is no mention of how to find the set of glues {glEi}
n
i=1 which are required for the

property to hold. As will be shown in the actual frameworks which are presented in the next chapters,

this is not always trivial.

2.4 Verifying systems of arbitrary size

We formalize here how apply our design and verification methodology can be generalized to

recursively defined systems.

2.4.1 Formal methodology

Consider a component grammar consisting of:

– a set of terminal symbols {A, I1, ... , Ik} representing implementations;

– a set of nonterminal symbols {S,K0,K1, ... ,Kn} representing hierarchical components;

S, which defines the top-level closed system, is the axiom;

– a set of rules corresponding to design steps which define each non-terminal either as a compo-

sition of subsystems or as an implementation:

– S −→ gl{A,K0}.

74 DEFINING CONTRACT FRAMEWORKS

– For i ∈ [0, n], at least one rule either of the form Ki −→ Ij (where j ∈ [1, k]) or of the form

Ki −→ glΣi{Kj}j∈Σi , where Σi is a set of indices in [0, n] and glΣi is a glue on the union

of the interfaces of Kj .

Rewrite rules express how a hierarchical component is either associated with an implementation or

decomposed into a set of subcomponents. In particular, K0 represents the system under design and A

is a property of its real environment. Thus, S stands for the system along with its environment.

Given such a grammar, we provide a methodology for both design and verification of systems

which can be represented as words accepted by this grammar. This approach is based on the four

steps presented in Figure 2.1, namely conformance, decomposition, dominance and satisfaction. We

choose again a top-down presentation, but one can proceed in a different order.

1. formulate a global requirement ϕ characterizing the closed system S made of K0 and its envi-

ronment E, define a contract C = (A, gl , G) associated with K0 and prove that gl{A,G} 4 ϕ

2. define for every non terminal Ki a contract CKi = (AKi , glKi , GKi) such that for every rule

Kl −→ glΣl{Kj}j∈Σl having an occurrence of Ki on the right-hand side, there exists glEi
such that glKl ◦ glΣl = glKi ◦ glEi

3. for each Ki −→ glΣi{Kj}j∈Σi , show that {CKj}j∈Σi dominates CKi w.r.t glΣi
4. prove that implementations satisfy their contract: Ki −→ Ij =⇒ Ij |= CKi

Theorem 2.4.1 Let G be a grammar such that all methodology steps have been completed to guar-

antee a requirement ϕ. Any component system corresponding to a word accepted by G satisfies ϕ.

Proof. By a simple induction on the number of steps required for deriving the accepted word

from S, we can prove that the system represented by K0 satisfies its contract (A, gl , G), that is,

K0 vA,gl G. This implies, as one of the coherence conditions of our contract framework, that

gl{A,K0} 4 gl{A,G}. As conformance is transitive, we have gl{A,K0} 4 ϕ. 2

Corollary 2.4.2 If circular reasoning is sound, we can modify the methodology as follows to be able

to refine also the environment of the system: (1) E appears instead of A as a terminal symbol; (2) the

initial rewrite rule S −→ gl{A,K0} is replaced with S −→ gl{E,K0}; (3) Step 4. is enriched with

a proof that the actual environment E satisfies the “mirror” contract of C, that is, E |= (G, gl , A).

Proof. As K0 vA,gl G (by induction as before) and E vG,gl A, we obtain by circular reasoning

that K0 vE,gl G, which implies that gl{E,K0} 4 gl{E,G}. Besides, E vG,gl A implies that

gl{E,G} 4 gl{A,G}. Thus, we obtain, again by transitivity, that gl{E,K0} 4 ϕ. 2

DEFINING CONTRACT FRAMEWORKS 75

2

3

1

6

4

7

5

Node

Node

Node Node

Node Node

Node

Node

Node

Network

Figure 2.7 – The overall structure of the application.

2.4.2 An application to resource sharing in a network

In [BHQG10c], which is not presented in this thesis, we have applied this methodology to a non-

trivial algorithm [DDHL09] for sharing resources by means of a token ring in networks structured

as binary trees. Figure 2.7 illustrates the structure of such networks and the colored arrows show in

which order tokens are transmitted across the system. The top-level requirement ϕ has both a safety

and a progress part. Thus, the contract framework that is defined is quite complex as it has to be

expressive enough to encompass safety and progress while handling data transfer. In this context, not

having to prove correctness of the proof rules in the concrete setting is very helpful.

Networks are defined according to the following grammar G, where {E, INode} are terminals and

{Sys,Net ,Node} nonterminals with axiom Sys . The rules are:

Sys −→ glNet{E,Net}
Net −→ Node

Net −→ gl{Node,Net ,Net}
Node −→ INode

Our goal is to prove that every system built according to G, thus consisting of a network together with

an environment E that gives back tokens and privilege immediately, conforms to ϕ. This is achieved

by following the four verification steps discussed before. More precisely:

1. We formulate a contract CNet = (ANet, glNet, GNet) associated with Net (which plays here the

role of K0) and we prove that glNet{ANet, GNet} conforms to ϕ.

2. We define CNode = (ANode, glNode, GNode) associated with Node (note that we already have a

contract for Net). We do not explain here how the glEi are computed.

3. We show that CNode dominates CNet and that {CNode, CNet, CNet} dominates CNet w.r.t. gl .

76 DEFINING CONTRACT FRAMEWORKS

4. We prove that INode satisfies CNode and that E satisfies C−1
Net = (GNet, glNet, ANet).

Note that this proof implies that all networks that can be built according to this grammar satisfy ϕ.

In [BHQG10c], we use the sufficient condition provided by Theorem 2.3.5 for proving dominance.

Then, a prototype implemented in Java discharges automatically the single conformance check and

all the satisfaction checks — i.e., those relating implementations to contracts and those resulting from

the dominance problem.

DEFINING CONTRACT FRAMEWORKS 77

2.5 Proofs

Theorem 2.3.5 If ∀i, ∃glEi , gl ◦ gl I = gl i ◦ glEi and circular reasoning is sound, then to prove that

{Ci}ni=1 dominates C w.r.t. gl I , it is sufficient to prove that:{
gl I{G1, . . . , Gn} |= C
∀i, glEi{A,G1, . . . , Gi−1, Gi+1, . . . , Gn} |= C−1

i

Proof. For every i ∈ [1, n], let Ki be a component on Pi. Suppose the following:

1. ∀i, ∃glEi , gl ◦ gl I = gl i ◦ glEi
2. gl I{G1, . . . , Gn} vA,gl G
3. ∀i, glEi{A,G1, . . . , Gi−1, Gi+1, . . . , Gn} vGi,gli Ai
4. ∀i, Ki vAi,gli Gi

We aim at proving gl I{K1, . . . ,Kn} |= C, that is: gl I{K1, . . . ,Kn} vA,gl G. For this, we show by

induction that for any l in [0, n], for any partition {J,K} of [1, n] such that |J | = l:{
gl I{KJ ∪ GK} vA,gl G
∀i ∈ K, glEi{A, E

J,K
i } vGi,gli Ai

with KJ = {Kj}j∈J , GK = {Gk}k∈K and with EJ,Ki = KJ ∪ (GK\{Gi}).

– l = 0. By (2) and (3) the property holds.

– 0 ≤ l < n. We suppose that our property holds for l. Let {J ′,K ′} be a partition of [1, n] such

that |J ′| = l + 1. Let q be an element of J ′. We fix J = J ′\{q} and K = K ′ ∪ {q}.

Step 1 We first prove that gl I{KJ
′ ∪ GK′} vA,gl G.{
Kq vAq ,glq Gq from (4)

glEq{A, E
J,K
q } vGq ,glq Aq

The second property is our recurrence hypothesis, as q ∈ K. Thus, by circular reasoning (CR):

Kq vglEq{A,E
J,K
q },glq

Gq

As refinement under context is preserved by composition, we obtain by (CMP):

gl I{Kq, EJ,Kq } vA,gl gl I{Gq, EJ,Kq }

78 DEFINING CONTRACT FRAMEWORKS

This is equivalent to gl I{KJ
′ ∪ GK′} vA,gl gl I{KJ ∪ GK}.

Finally, by using the recurrence hypothesis: gl I{KJ
′ ∪ GK′} vA,gl G.

Step 2 We now have to prove that:

∀i ∈ K ′, glEi{A, E
J ′,K′

i } vGi,gli Ai

We fix i ∈ K ′. We have proved in step 1 that:

Kq vglEq{A,E
J,K
q },gl Gq

K = K ′ ∪ {q}, so i ∈ K. Thus, by compositionality (CMP), we obtain:

glEi{Kq, A, EJ,K\{i}q } vGi,gli glEi{Gq, A, E
J,K\{i}
q }

This boils down to glEi{A, E
J ′,K′

i } vGi,gli glEi{A, E
J,K
i }.

Hence, using the recurrence hypothesis: glEi{A, E
J ′,K′

i } vGi,gli Ai.

Conclusion By applying our property to l = n, we get:

gl I{K1, . . . ,Kn} vA,gl G
2

Chapter 3

Beyond the definitions

In this chapter, we put our methodology into perspective. In Section 3.1, we discuss features which

may seem to be missing from our contract frameworks. In fact, some of them can be expressed using

our definitions while others require only slight changes in the theory. Then, Section 3.2 recalls notions

which are at the core of most interface theories: consistency and compatibility. Since our definition

of component framework is generic enough to encompass frameworks with complex interaction, we

introduce a structural counterpart for these two notions. Then, we justify our choice not to require an

algebra of contracts. Finally, in Section 3.3, we propose a novel mechanism for establishing domi-

nance when circular reasoning is not sound, which is based on the combined use of two refinement

under context relations. A somewhat surprising corollary is that this mechanism can also be used to

relax circular reasoning when it is unnecessarily strong.

3.1 Possible extensions

The definition of contract framework that we have introduced is kept as simple as possible in order

to encompass a large variety of frameworks. As a result, it may seem too limited for some specific

frameworks. In particular, we now discuss four features which are not explicitly mentioned in our

approach and which are useful in some contexts:

– structuring allows recomposing a hierarchical component according to any partition of its sub-

components

– projection permits to project the behavior of a component onto a subset of its ports

– equivalence of glues is used to reason not only about systems with exactly the same glues

79

80 BEYOND THE DEFINITIONS

– defining glues on a set of interfaces rather than a set of ports allows enforcing stronger condi-

tions on glues.

– well-formedness deals with the preservation of properties which are not directly expressible in

the formalism used to represent components.

For each of these extensions, we discuss whether and how our definitions can be adapted.

3.1.1 Structuring

In a component framework, two types of equivalence-preserving transformations of components

are of particular interest. The first one transforms any hierarchical component into a “flat” one,

i.e., a component consisting of a unique glue composing all its atomic (non-hierarchical) subcom-

ponents. This is achieved by the composition operator ◦ on glues which ensures by definition that

gl{gl ′{K1},K2} is equivalent to (gl ◦ gl ′){K1 ∪ K2} for any sets of components Ki such that all

terms are defined.

Symmetrically, it is also interesting to be able to structure a composition according to a given

partition of the subcomponents. In particular, this allows focusing on a subsystem, by representing

how this subsystem is connected to its environment, that is, the rest of the system.

Definition 3.1.1 (Structuring) A component framework allows structuring if for any component

K = gl{K1 ∪ K2}, it is possible to find glues gl1 and gl2 such that gl2{gl1{K1},K2} is defined

and equivalent to K.

Example 3.1.2 Consider a component K = gl{K1, . . . ,K5}. As illustrated in Figure 3.1, we can

transform K into the equivalent component gl1,2{gl1{K1,K2}, gl2{K3,K4,K5}}. This is done by

applying structuring twice: first, with the partitionK1 = {K1,K2} andK2 = {K3,K4,K5} to build

gl ′1{gl1{K1,K2},K3,K4,K5}; then, with K1 = {K3,K4,K5} and K2 = {gl1{K1,K2}} in order

to obtain the result.

structuring

K5K2K1 K3 K4
K3 K4 K5K1 K2

gl1,2
gl

gl1 gl2

Figure 3.1 – Structuring a system to find gl1, gl2 and gl1,2 such that gl = gl1,2 ◦ gl1 ◦ gl2.

BEYOND THE DEFINITIONS 81

Note that by flattening again the system, we obtain the following:

gl1,2{gl1{K1,K2}, gl2{K3,K4,K5}} ∼= (gl1,2 ◦ gl1){K1,K2, gl2{K3,K4,K5}}
= (gl1,2 ◦ gl1){gl2{K3,K4,K5},K1,K2}
∼= (gl1,2 ◦ gl1 ◦ gl2){K3,K4,K5,K1,K2}
= (gl1,2 ◦ gl1 ◦ gl2){K1,K2,K3,K4,K5}

Remember that ◦ is left-associative.

Structuring is a key property because it lifts the conditions imposed on glues in the compositionality

rule (CMP): given a system K = gl{S, glE{E1, E2}}, it is always possible to find gl1 and gl2 such

that K ∼= gl2{gl1{S,E1}, E2}} by flattening and then structuring.

Frameworks allowing data transfer do not always allow structuring: consider a framework as in

the variant of BIP presented in [BJS09], where connectors are allowed to perform some operations

on data, e.g., computing the maximum value of the variables associated to the ports involved in the

interaction, and then setting all the variables to this value. Then, although flattening is still possible,

structuring is not in general, intuitively because composition of function is always defined, but it is

not always possible to decompose a function of three arguments into two functions of 2 arguments.

The condition related to glues in the sufficient condition for dominance 2.3.5 is different from

structuring. In this case, two glues are given, corresponding to gl and gl2 in the definition of structur-

ing, and the problem is to find — if it exists — gl1 such that gl = gl2 ◦ gl1.

Definition 3.1.3 (Compatibility of glues) Consider two glues gl and gl2 with the same exported in-

terface. We say that gl and gl2 are compatible if there exists gl1 such that gl = gl1 ◦ gl2.

In the context of the dominance problem, the goal is to relate the glue gl i provided in each Ci
to the actual environment of component Ki, as illustrated in Figure 3.2: gl is the glue defined in the

top-level contract and gl I defines how subcomponents are composed. Thus, the actual environment

of subcomponent K1 consists of components K2 to K4 and A, the top-level assumption. However,

the glue gl1 provided in the contract for K1 has been defined for an abstract environment A1, hence

the need for a glue glE1
representing the environment of K1 as a single component with the same

interface as A1.

We call compatibility inference the ability of a component framework to determine for any two

glues whether they are compatible, furthermore providing the glue that makes them compatible if

it is the case — gl1 in the definition of compatibility, glE1
in the dominance problem. The BIP

82 BEYOND THE DEFINITIONS

∼=
K2K1 K3 K4

K3 K4K2

K1

gl1

glE1

gl ◦ gl I

A
A

Figure 3.2 – glE1
allows relating the glue gl1 provided in C1 to the actual environment for K1.

semantic and the I/O component frameworks presented in Chapter 4 and 6 both allow structuring and

compatibility inference, but the two variants of BIP presented in Chapter 5 do not. Intuitively, this

is because the exported port of a connector may have an arbitrary name, and so if a port of K1 is

connected to two ports of A1 in the same way (the allowed interactions are the same), then it is not

possible to determine automatically which actual port should be mapped onto which abstract port.

3.1.2 Projection

The basic idea of incremental design is that details are abstracted away from low-level imple-

mentations to top-level specifications. This requires hiding ports of the lower-level contracts which

do not appear at the interface of the top-level contract. For this, we need a notion of projection of the

behavior of a component onto a subset of its interface. A simple and elegant way of doing this is to

represent such a projection as a glue.

As shown in Figure 3.3, the projection Π of an interface P onto a subset of its ports P ′ ⊆ P is a

glue with support set SΠ = P and exported interface PΠ = P ′. K is represented as a composition

because this will typically be the case. Furthermore, it must be consistent with the given notions of

equivalence of components ∼=, refinement under context {vω}ω∈Ω and conformance 4. As there are

already coherence conditions between those relations, we only need the following additional condi-

tion, as illustrated in Figure 3.3:

if K vA,gl◦Π G, then Π{K} vA,gl Π{G}

Note that in terms of satisfaction of contracts, this condition is equivalent to:

if K |= (A, gl ◦Π, G), then Π{K} |= (A, gl ,Π{G})

In other words, {(A, gl ◦ Π, G)} dominates (A, gl ,Π{G}) with respect to Π — this is the definition

BEYOND THE DEFINITIONS 83

K2

K

K1

AG

(gl ◦Π){G,A}

SΠ SglSgl◦Π

A

Π{G}

=⇒

gl{Π{G}, A}

G

K2

K

K1

Π{K}

Figure 3.3 – Property of a projection: K vA,gl◦Π G =⇒ Π{K} vA,gl Π{G}.

of dominance for a composition with a single subcomponent. Thus, contracts for different interfaces

are related: one can use (A, gl ,Π{G}) instead of (A, gl ◦Π, G) at a higher level of hierarchy.

Example 3.1.4 In a semantic framework where components are LTS, the usual projection for LTS

can be represented as a set of glues as described here. Formally, given an LTS K on an interface P
and a subset P ′ ⊆ P , the projection ofK onto P ′ is the LTSK ′ = (Q, q0,P ′,−→′), where q1

α′−→′ q2

if and only if q1
α−→ q2 for some α ⊆ P such that α′ = α ∩ P ′. As by convention ∅ is a label of all

our LTS, we do not need to introduce τ -transitions.

3.1.3 Equivalence of glues

In frameworks where glues are rich, it may be of interest to consider an equivalence relation

on glues. A typical case is that of BIP interaction models, which may have differently structured

connectors, but still correspond to the same set of interactions. It would seem natural to define such

relation with respect to equivalence of components, as in the following:

Two glues gl and gl ′ with the same support set and exported interface are equivalent if

and only if gl{K1, ... ,Kn} ∼= gl ′{K1, ... ,Kn} for any set of components such that all

terms are defined.

84 BEYOND THE DEFINITIONS

For example, consider interaction models as they are presented in Definition 5.2.2 of the presenta-

tion of the BIP framework, and equivalence of components as syntactic equality of their compositional

semantics. Then, two interaction models Γ and Γ′ are equivalent according to the proposed definition

if they have the same set of blackbox multi-shot interactions, i.e.Mbb(Γ) = Mbb(Γ′) and further-

more every such interaction m is associated with the same set of white-box multi-shot interactions

wb(m) — this comes directly from the definition of compositional semantics.

However, this condition for equivalence of glues is unnecessarily strong. Indeed, ∼= is typically

a relation that is preserved by composition, whereas equivalence of glues is needed only for closed

systems. In our example, for example, one would like to define equivalence of interaction models as

equality of set of interactions I(Γ) = I(Γ′), which preserves equivalence with respect to the closed

semantics of BIP rather than the compositional one. For this reason, we do not provide a definition

for equivalence of glues, but only focus on how to work with such a relation within our contract

framework: if the following variant of the compositionality rule holds, where equivalence of glues is

denoted ∼, then it is possible to relax the sufficient condition for dominance 2.3.5.

I vE,gl S E = glE{E1, E2} gl ◦ glE ∼ gl2 ◦ gl1
gl1{I, E1} vE2,gl2 gl1{S,E1}

(CMP∼)

If (CMP∼) holds, then instead of requiring that for every contract Ci there exists a glue glEi such

that gl ◦ gl I = gl i ◦ glEi , it is sufficient to require that gl ◦ gl I ∼ gl i ◦ glEi . The reason for this is that

glEi is used in the proof only for applying compositionality. Note also that equivalence of glues can

be combined with structuring and compatibility inference.

3.1.4 Defining glues on a partition

In our definitions, a glue is defined on a support set, independently of how this support set is par-

titioned into interfaces. This is the case in the frameworks that we present in the following chapters,

and this simplifies notations. However, some frameworks require that the subset be given as a parti-

tion. The first variant of the BIP framework that was presented in Chapter 1 is an example: indeed,

ports of a same component may not be connected.

The definition of glue can be then extended: a glue is associated with a set of disjoint interfaces

Sgl (rather than a set of ports) and a composition K = gl{K1, . . . ,Kn} is defined if Sgl = {PKi}ni=1

(instead of Sgl =
⋃n
i=1 PKi). Besides, gl ◦ gl ′ is defined if Pgl ′ ∈ Sgl (and not Pgl ′ ⊆ Sgl). Then, its

support set is Sgl\{Pgl ′} ∪ Sgl ′ (with respect to Sgl\Pgl ′ ∪ Sgl ′). In the sequel, every glue is defined

on a union of interfaces, which we now replace by a set of interfaces.

BEYOND THE DEFINITIONS 85

3.1.5 Well-formedness

In this section, we justify informally the need for a notion of well-formedness of systems to

deal with a property that cannot be expressed in the considered component framework. Consider for

example a framework where components are represented by modal transition systems — one such

framework is presented in Chapter 7. It is possible to prove that an MTS is deadlock-free, but it

is not possible to express deadlock-freedom as an MTS. Another scenario is as follows: under some

unexpected input, a reactive component may fail to produce an output because its internal computation

does not terminate. Here, it is probably not even possible to prove termination of a given specification.

Let us focus first on the deadlock-freedom example. We define conformance as refinement of

MTS, that is: K1 refines K2 if and only if all must-transitions are preserved from K2 to K1 and

all may-transitions of K1 are also allowed in K2. Intuitively, deadlock-freedom is preserved by con-

formance because it is derived from must-transitions, which are preserved by refinement. As a con-

sequence, if one proves that gl{A,G} is deadlock-free, then for any implementation K satisfying

C = (A, gl , G), the system gl{A,K} is also deadlock-free — remember that K vA,gl G implies

gl{A,K} 4 gl{A,G}. Thus, deadlock-freedom has to be proven only once.

However, a top-level description is typically not fine-grained enough to guarantee deadlock-

freedom. Thus, we are also interested in preserving well-formedness in a bottom-up fashion.

This may be achieved by strengthening the definition of dominance — stating that a contract

C = (A, gl , G) dominates C′ = (A′, gl , G′) if any implementation of C is also an implementation of

C′ — by adding the following constraint:

for any E on PA, if E |= (G′, gl , A′) then E |= (G, gl , A)

That is, C dominates C′ if and only if any implementation of C is an implementation of C′ and any

implementation of C′−1 is an implementation of C−1. This ensures, provided circular reasoning is

sound, that the assumption of the low-level contract is indeed satisfied in the actual environment of

the component.

Lemma 3.1.5 Consider a component K on an interface P , and two contracts Cc and Cabs for P with

gl c = glabs that we denote gl . Suppose that K |= Cc while Cc dominates Cabs and E |= C−1
abs . If

circular reasoning is sound, then gl{E,K} 4 gl{Ac, Gc}.

Proof. We have:

1. K vAc,gl Gc

86 BEYOND THE DEFINITIONS

2. Cc dominates Cabs
3. E vGabs ,gl Aabs

From (2) and (3), we get, by our new definition of dominance, that:

4. E vGc,gl Ac
As a result, using (CR) on (1) and (4), we have:

5. E vK,gl Ac
This in turn implies that:

6. gl{E,K} 4 gl{Ac,K}
Besides, (1) implies that:

7. gl{Ac,K} 4 gl{Ac, Gc}
Finally, by transitivity, we get from (6) and (7) the result, that is:

8. gl{E,K} 4 gl{Ac, Gc}
2

This property means that it is sufficient to prove well-formedness on any contract in the design

process — not only on the top-level contract — to ensure that the concrete system is also well-

formed. Note that this well-formedness condition is obviously preserved by our sufficient condition

for dominance, which is based on requiring that all assumptions are verified.

If we look back at our example of an unexpected input leading to a component never producing

an output, we find that the stronger definition of dominance defined here is also helpful in this case.

Indeed, Step 5. in the previous proof ensures that the concrete assumption made by the component

about its inputs is indeed satisfied. This allows using other tools, or even an informal argument to

prove well-formedness (termination in this example).

3.2 Additional notions

In this section, we focus on notions which usually appear in existing interface theories but are not

present in our definition of framework, for example consistency and compatibility, In particular, we

present our reasons for not using an algebra of contracts.

3.2.1 Consistency

A notion of consistency is used in [BCP07, BCF+07, BFM+08] in order to check that a contract

can actually be satisfied. This is needed because assumptions and guarantees are sets of behaviors and

BEYOND THE DEFINITIONS 87

may thus arbitrarily constrain ports which are controlled by the environment or by the component.

Informally, consistency is defined as follows:

A contract is consistent if there exists at least one implementation satisfying it.

In the context of this thesis, as refinement under context is a preorder, there does always exist a com-

ponent satisfying a contract (A, gl , G), namelyG. Intuitively, the difference between both approaches

is that we consider guarantees as the expression of what the component should offer and not of how

it should actually behave.

Hence consistency is not relevant here. However, if contracts are used in top-down design, refining

a component into several subcomponents may lead to inconsistency in the sense that G may not be

obtainable as a composition using a given glue. This is what we call structural consistency.

Definition 3.2.1 (Structural consistency) Let C = (A, gl , G) be a contract and gl I a glue such that

PglI = PG and SglI ∩ PG = ∅. Consider a partition {Pi}ni=1 of Sgl . Then C is consistent with

respect to gl I and {Pi}ni=1 if and only if there exist K1, . . . ,Kn on respectively P1, . . . ,Pn such that

gl I{K1, . . . ,Kn} |= C.

Figure 3.4 presents an example based on MTS, which we describe informally here and in detail

in Chapter 7. The contract C = (A, gl , G) represented in Figure 3.4 states that in an environment that

may always offer a2 and b2, a component satisfying C must offer only a1 in state q0 and then it must

offer b1 and possibly a1 in state q1. However, this behavior cannot be obtained by a composition using

gl I . Indeed, firing a1 modifies the conditions imposed on b1, while these two interactions are part of

two different components which cannot observe each other. Thus, b1 must be offered and forbidden

in states which are indistinguishable by the component in charge of it.

3.2.2 Compatibility

Compatibility is a notion that we have not studied in detail in this thesis. The reason is that it

is useful in a bottom-up design approach, but no so much in a top-down approach as we propose.

Informally, compatibility is expressed as follows:

Two components are compatible if there is an environment where they can work together.

In terms of contracts, two contracts (A1, G1) and (A2, G2) for disjoint interfaces are compatible

if there exists at least one environment E such that E ‖ G1 v A2 and E ‖ G2 v A1 — that is,

such that both assumptions can be discharged. Compatibility can be established by finding a winning

strategy in a two-player game as described in [dAHS02, CdAHS03].

88 BEYOND THE DEFINITIONS

a

b1

b

q0

a1

q1
a1

b1

q
a2

b2

a1 b2a2b1

gl{G,A}

? ?

gl I{?,?}

a1

Figure 3.4 – An example of structural inconsistency.

In a context where glues are parametrized, compatibility requires the existence of a environment

E and furthermore four different glues that relate the two contracts and E. This is illustrated on

Figures 3.5 and 3.6: given two contracts C1, C2 and a glue gl defining how two components K1, K2

satisfying these contracts are intended to be composed, the goal is to find a context for the obtained

component gl{K1,K2} and two glues glE1
, glE2

that relate assumption A1 (respectively A2) to the

actual environment of K1 (resp. K2), namely a composition of E and K2 (resp. of E and K1).

Definition 3.2.2 (Compatibility of contracts) Let P1 and P2 be disjoint interfaces. Two contracts

C1 = (A1, gl1, G1) and C2 = (A2, gl2, G2) for respectively P1 and P2 are compatible if and only

if there exists a component E and two glues glE1
and glE2

such that glE1
{E,G2} |= C−1

1 and

glE2
{E,G1} |= C−1

2 , all terms are defined and furthermore: gl1 ◦ glE1
= gl2 ◦ glE2

.

C1 and C2 are compatible with respect to a glue gl on P1 ∪ P2 if and only if they are compatible

and there exists a glue glE such that gl1 ◦ glE1
= gl2 ◦ glE2

= glE ◦ gl .

BEYOND THE DEFINITIONS 89

P1 PA1

C1 C2

G1 A1
A2 G2

glE2

E

glE1

glE

gl

PA2 P2 Pgl PE

Figure 3.5 – Given C1, C2 and gl , does there exist appropriate glE1
, glE2

and (E, glE)?

Pgl

PE

P2

P1

gl

glE

Figure 3.6 – Structure of the system under design

Property 3.2.3 Consider two contracts C1 and C2 for disjoint interfaces P1 and P2. If C1 and C2 are

compatible w.r.t.gl , then {C1, C2} dominates C = (E, glE , gl{G1, G2}), where we use the notations

of Definition 3.2.2.

Proof. This property is a direct application of the sufficient condition for dominance 2.3.5. 2

Compatibility focuses on assumptions being actually discharged. In this respect, it is related to

well-formedness. In particular, it is preserved only by the strong definition of dominance provided

in Section 3.1.5 — which we call strong dominance in the following property. We suppose here that

circular reasoning is sound.

90 BEYOND THE DEFINITIONS

Property 3.2.4 Consider two contracts C1 and C′1 for the same interface P1 and a contract C2 for an

interface P2 disjoint from P1. If C1 and C2 are compatible and C′1 strongly dominates C1, then C′1 and

C2 are compatible.

Proof. Suppose that C1 = (A1, gl1, G1) and C2 = (A2, gl2, G2) are compatible and that C′1 =

(A′1, gl1, G
′
1) strongly dominates C1. Then there exists E, glE1

and glE2
such that:

1. glE1
{E,G2} vG1,gl1 A1

2. glE2
{E,G1} vG2,gl2 A2

3. G′1 vA1,gl1 G1

4. A1 vG′1,gl1 A
′
1

We want to show that glE1
{E,G2} vG′1,gl1 A

′
1 and glE2

{E,G′1} vG2,gl2 A2.

By circular reasoning (CR) on 1. and 3. we obtain:

5. glE1
{E,G2} vG′1,gl1 A1

We can then conclude by transitivity of vG′1,gl on 5. and 4. the first part of our result.

By applying (CR) to 3. and 1. we get:

6. G′1 vglE1
{E,G2},gl1 G1

Using preservation of refinement by composition on 6., we obtain:

7. glE2
{E,G′1} vG2,gl2 glE2

{E,G1}
Finally, by transitivity of vG2,gl2 , we get the second part of our result from 7. and 2. 2

Like consistency, compatibility has a structural counterpart related to the glues that must be found

to establish compatibility.

Definition 3.2.5 (Structural compatibility) Contracts C1 and C2 for disjoint interfaces P1 and P2

are structurally compatible if and only if there exists glE1
and glE2

such that P2 ⊆ SglE1
, P1 ⊆ SglE2

and gl1 ◦ glE1
= gl2 ◦ glE2

.

Note that if glE and gl are provided, then establishing structural compatibility of contracts boils down

to prove that glE ◦ gl and gl1 are compatible according to Definition 3.1.3, and glE ◦ gl and gl2 also.

Example 3.2.6 In the HRC L0 framework presented in Chapter 6, assumptions and guarantees are

expressed on the same set of ports. That is, glues in such contracts are implicitly defined as sets of

binary rendezvous. However, glues in the general framework may contain n-ary rendezvous. Such

a situation is illustrated in Figure 3.5, where hierarchy allows building a rendezvous between the

BEYOND THE DEFINITIONS 91

three components. In this context, finding glE1
and glE2

is quite straightforward, intuitively because

a rendezvous involving three participants a, b and c can be decomposed into two rendezvous: the first

between a and b, the second between the group {a, b} and c.

3.2.3 Composition of contracts

Some contract frameworks, such as the HRC L0 framework presented in Chapter 6, define an

algebra on contracts. Having a contract algebra is nice because a dominance problem then boils down

to checking that C1 ‖ C2 ‖ . . . ‖ Cn dominates C for a given ‖ defined on contracts. In particular, this

implies that it is sufficient to define dominance as a binary relation.

In our context, where glues are parametrized, dominance would still have to be defined with

respect to a glue gl , and we would need for each glue gl the existence of an operator g̃l on contracts

such that: {
K1 |= C1

K2 |= C2

=⇒ gl{K1,K2} |= g̃l{C1, C2}

We do not propose such an algebra for two reasons: first, this in not possible in general (see Exam-

ple 3.2.7), for example in frameworks which do not define a least upper bound of components, and we

do not want to restrict ourselves to frameworks for which composition of contracts is defined. Rather,

our aim is to propose a generic notion of contract framework which imposes minimal constraints on

the component framework it is associated with. Second, composing contracts is not always desirable,

as this may lead to state explosion in many concrete contract frameworks. Our goal is to show that it

is possible to reason efficiently about contracts without ever composing them.

Example 3.2.7 Let us sketch informally a simple example where two contracts cannot be composed.

Consider three interfaces as in Figure 3.7. Suppose that we have two contracts C1 and C2 for respec-

tively P1 and P2 such that gl1 = gl2 consists of a single rendezvous connector between one port

of each Pi and two ports of PE (denoted pE and p′E). Suppose also that both assumptions A1 and

A2 express that this rendezvous should not take place. The assumption of a contract C = g̃l{C1, C2}
would also be that the environment should prevent this rendezvous from taking place. However, two

ports of PE may be used for this purpose. If the component framework does not permit to offer either

an interaction on pE or on p′E without offering both, then there does not exist a least restrictive global

assumption.

92 BEYOND THE DEFINITIONS

P2

PE

P1

glE = gl1 = gl2

Figure 3.7 – Structure of a system for which contracts cannot be composed

3.2.4 Multiple contracts for components

In complex resource-constrained systems, a unique decomposition of the system under design is

often not realistic. The approach developed here can handle independent development of multiple

requirements. Let us consider attaching several contracts to the same component. It fact, this could

lead to different interpretations. Indeed, a component K satisfying two contracts C1 = (A1, gl1, G1)

and C2 = (A2, gl2, G2) could mean:

1. either that K is expected to be used in an environment satisfying both assumptions; C1 =

(A1, gl1, G1) and C2 = (A2, gl2, G2) must be structurally compatible. This corresponds to

using several contracts for the same component to describe different viewpoints of this compo-

nent.

2. or K is expected to be used in an environment satisfying at least one of the assumptions. This

corresponds to using several contracts for the same component to describe use cases.

If the first approach is taken, then all assumptions must be discharged (for well-formedness and for

applying our sufficient condition for dominance). All guarantees may be used to discharge an as-

sumption, but viewpoints can help choosing a subset of relevant guarantees. If the second approach

is preferred, then at least one assumption per component must be discharged, and only the guar-

antees corresponding to discharged assumptions may be used. We have not addressed in this thesis

the question of how to optimize the verification process to these methodologies involving multiple

requirements.

BEYOND THE DEFINITIONS 93

3.3 Combining two refinement relations

We consider here using two relations of refinement under context instead of a single one. This

idea comes from the comparison between the circular reasoning and assume-guarantee proof rules:

K vA,gl G E vG,gl A

K vE,gl G
(CR)

K vA,gl G E v A

K vE,gl G
(AG)

As these rules are very similar, we wondered whether it was possible to unify them, and how useful

this could be. The key to unification is to see refinement in any context as a very strong refinement

under context — a relation so strong that if it holds, it actually holds for any context. This leads to the

following rule, where two refinement relations, namely vα and vβ , appear instead of just one:

K vαA,gl G E vβG,gl A

K vαE,gl G
(PCR)

We call this rule pseudo-circular reasoning. Rule (CR) is obtained from (PCR) by taking vβ =vα.

Rule (AG) is obtained by defining vβ as vα in any context, that is:

K1 vβE,gl K2 , ∀ω ∈ Ω. K1 vαω K2

As for the interest of such a rule, which is detailed in the next two subsections, it is actually

twofold. A first advantage is that it provides a compromise between a fully symmetric proof rule

(circular reasoning) and a fully asymmetric one (assume-guarantee). Indeed, circular reasoning allows

the environment E of the component K to rely on properties of K as much as K is allowed to rely

on E. On the other hand, assume-guarantee denies E the possibility to rely on any property of K.

In between, whenever circular reasoning is not sound, pseudo-circular reasoning reintroduces some

asymmetry while still allowing E to rely on some properties of K.

A second, somewhat unexpected advantage of this rule is that it can also be applied forvβ weaker

than vα, thus relaxing rule (CR) when it is unnecessarily strong. Chapter 6 presents applications of

both approaches in the context of the HRC L0 and L1 frameworks where two refinements under

context are considered, one supporting circular reasoning and the other not.

94 BEYOND THE DEFINITIONS

3.3.1 Relaxing assume-guarantee reasoning

As already discussed, there are refinement relations for which circular reasoning is not sound.

Then, one is left with the assume-guarantee proof rule, which is much more restrictive with respect

to E. Now, suppose that vα does not allow circular reasoning, but that we have a second, stronger

refinement under context vβ which is strong enough to guarantee pseudo-circular reasoning.

In this case, we can use rule (PCR) instead of (AG) for dominance checks. Note that the question

of finding the actual proof remains, just like for assume-guarantee reasoning: which part of the system

is supposed to refine its guarantee according to vα and which part according to vβ? However, if vβ

is weaker than refinement in any context — as should be the case — then (PCR) relaxes (AG) and

thus allows establishing dominance more often than (AG).

3.3.2 Relaxing circular reasoning

Now, is there any interest in using (PCR) when vβ is weaker than vα? Suppose that circular

reasoning is sound for vα and that we have another, weaker, refinement under context relation vβ

such that pseudo-circular reasoning is sound forvα andvβ . In this case, rule (PCR) relaxes rule (CR)

for circular reasoning. In particular we prove that pseudo-circular reasoning allows the following

sufficient condition for dominance (when vα is stronger than vβ).

Theorem 3.3.1 If ∀i, ∃glEi , gl ◦gl I = gl i ◦glEi and pseudo-circular reasoning is sound forvα and

vβ , then to prove that {Ci}ni=1 dominates C w.r.t. gl I , it is sufficient to prove:{
gl I{G1, . . . , Gn} |=α C
∀i, glEi{A,G1, . . . , Gi−1, Gi+1, . . . , Gn} |=β C−1

i

This is useful for two reasons: one is that pseudo-circular reasoning allows establishing dominance

more often than circular reasoning, as the condition that must be fulfilled by the environment of each

component is weaker than the one for circular reasoning. In particular, if various methods or tools are

used in the same framework, and some of them can only guarantee refinement with respect to vβ ,

then they can still be used in conjunction with the pseudo-circular approach.

The other reason is thatvβ may be not only weaker but also less costly to check thanvα (this will

be the case of vL0 compared to vL1 in Chapter 6). In this case, pseudo-circular reasoning increases

the scalability of dominance checks, as only one satisfaction check with respect to vα has to be

performed while n satisfaction checks are needed with respect to vβ .

BEYOND THE DEFINITIONS 95

3.4 Proofs

NB: Remember that the following theorem is given for vα stronger than or equal to vβ .

Theorem 3.3.1 If ∀i, ∃glEi , gl ◦ gl I = gl i ◦ glEi and pseudo-circular reasoning is sound for vα and

vβ , then to prove that {Ci}ni=1 dominates C w.r.t. gl I , it is sufficient to prove that:{
gl I{G1, . . . , Gn} |=α C
∀i, glEi{A,G1, . . . , Gi−1, Gi+1, . . . , Gn} |=β C−1

i

Proof. For every i ∈ [1, n], let Ki be a component on Pi. Suppose the following:

1. ∀i, ∃glEi , gl ◦ gl I = gl i ◦ glEi
2. gl I{G1, . . . , Gn} vαA,gl G

3. ∀i, glEi{A,G1, . . . , Gi−1, Gi+1, . . . , Gn} vβGi,gli Ai
4. ∀i, Ki vαAi,gli Gi

We aim at proving that gl I{K1, . . . ,Kn} |=α C, that is: gl I{K1, . . . ,Kn} vαA,gl G. For this, we

show by induction that for any l in [0, n], for any partition {J,K} of [1, n] such that |J | = l:{
gl I{KJ ∪ GK} vαA,gl G
∀i ∈ K, glEi{A, E

J,K
i } vβGi,gli Ai

with KJ = {Kj}j∈J , GK = {Gk}k∈K and with EJ,Ki = KJ ∪ (GK\{Gi}).

– l = 0. By (2) and (3) the property holds.

– 0 ≤ l < n. We suppose that our property holds for l. Let {J ′,K ′} be a partition of [1, n] such

that |J ′| = l + 1. Let q be an element of J ′. We fix J = J ′\{q} and K = K ′ ∪ {q}.

Step 1 We first prove that gl I{KJ
′ ∪ GK′} vαA,gl G. Kq vαAq ,glq Gq from (4)

glEq{A, E
J,K
q } vβGq ,glq Aq

The second property is our recurrence hypothesis, as q ∈ K. Thus, by circular reasoning (CR):

Kq vαglEq{A,EJ,Kq },glq
Gq

96 BEYOND THE DEFINITIONS

As refinement under context is preserved by composition, we obtain by (CMP):

gl I{Kq, EJ,Kq } vαA,gl gl I{Gq, EJ,Kq }

This is equivalent to gl I{KJ
′ ∪ GK′} vαA,gl gl I{KJ ∪ GK}.

Finally, by using the recurrence hypothesis: gl I{KJ
′ ∪ GK′} vαA,gl G.

Step 2 We now have to prove that:

∀i ∈ K ′, glEi{A, E
J ′,K′

i } vβGi,gli Ai

We fix i ∈ K ′. We have proved in step 1 that:

Kq vαglEq{A,EJ,Kq },glq
Gq

As vα is stronger than vβ , we also have:

Kq vβ
glEq{A,E

J,K
q },glq

Gq

K = K ′ ∪ {q}, so i ∈ K. Thus, by compositionality (CMP), we obtain:

glEi{Kq, A, EJ,K\{i}q } vβGi,gli glEi{Gq, A, E
J,K\{i}
q }

This boils down to glEi{A, E
J ′,K′

i } vβGi,gli glEi{A, E
J,K
i }.

Hence, using the recurrence hypothesis: glEi{A, E
J ′,K′

i } vβGi,gli Ai.

Conclusion By applying our property to l = n, we get:

gl I{K1, . . . ,Kn} vαA,gl G
2

Chapter 4

A contract framework for the BIP
semantic level

From now on, Part I is devoted to providing and discussing meaningful contract frameworks

illustrating all the concepts introduced in the previous chapters. More precisely, it is organized as

follows:

– Chapter 4 defines a contract framework for the semantic level of BIP.

– Chapter 5 introduces two component frameworks based on BIP that structure interaction and

allow encapsulation. These component frameworks form the basis of two contract frameworks

in Chapter 6, respectively for I/O interface automata and for the SPEEDS framework L1.

– Chapter 6 presents applications of our methodology to I/O interface automata and then to the

SPEEDS framework. contract frameworks based on the component frameworks of the previous

chapter.

– Chapter 7 discusses in depth the differences between the various refinement under context

introduced for LTS in the previous chapters. It also proposes contract frameworks for MTS

and then LTS with priorities as well as MTS with priorities. Refinement in any context and

structural consistency are also discussed.

In this short chapter, we define a first simple contract framework corresponding to the BIP se-

mantic level. At the semantic level, a component can be seen as an LTS: that is, we do not consider

composite components. Also, we do not deal with priorities in this variant. This simple framework

presents a first solution to the issue of finding a refinement under context for which circular reasoning

is sound.

97

98 A CONTRACT FRAMEWORK FOR THE BIP SEMANTIC LEVEL

We present the proofs in some detail for two reasons: first, to show that they are technical but

quite simple; second, because the proofs for the other frameworks are similar. Before starting with

the definitions, let us recall the definitions that are required and the proofs that we have to provide.

4.1 Necessary ingredients for a successful encoding

Here is a summary of the definitions required to build a contract framework. One needs:

1. a component framework consisting of:

(a) a set of components K

(b) an equivalence relation ∼= on these components

(c) a set of glue operators GL

(d) a composition operator ◦ on these glues

2. a conformance relation 4

3. a set of refinement under context relations {v}ω∈Ω

Furthermore, there are some coherence conditions to establish between these various notions. In the

following, items introduced by N relate to conditions referring to the component framework while

those preceded by � refer to the contract framework. These conditions are between, respectively:

N composition of glues and equivalence of components, that is, ◦ and ∼=

� conformance and refinement under context, i.e., 4 and {v}ω∈Ω

� refinement under context and equivalence of components, i.e., {v}ω∈Ω and ∼=

Then, before using circular reasoning, the following questions must be answered:

� Is refinement under context preserved by composition?

� Is circular reasoning sound?

N Given a glue gl on P (i.e. Sgl = P) and gl1 on P1 ⊆ P , can we determine whether there exists

gl2 such that gl = gl1 ◦ gl2?

If the answer to the last question is negative, then such gl2 must be provided by the user for each

contract before applying the sufficient condition for dominance 2.3.5.

A CONTRACT FRAMEWORK FOR THE BIP SEMANTIC LEVEL 99

4.2 The BIP semantic contract framework

Let us now introduce formally the BIP semantic contract framework. The component framework

that we define in this section is strongly related to the framework presented in the preliminaries of

this thesis. However, there are two key differences:

– We do not consider priorities. How to enrich this framework with priorities will be explained

in Chapter 7.

– We do not handle hierarchical components. This will also be discussed later.

These strong restrictions have many consequences. First, by getting rid of priorities, the compositional

semantics and the closed one defined in the preliminaries become identical. In particular, the composi-

tional semantics of a component can be expressed as an LTS. In other words, for any given composite

(possibly hierarchical) component, there exists an atomic component that has the same compositional

semantics. This implies that in a verification process, it is possible to consider only atomic compo-

nents, and this is what we do in this chapter. As a result, a glue I as defined here does not build a

composite component from a set of components K1 . . .Kn; instead it associates with {Ki}ni=1 what

would be defined in the preliminaries as the compositional semantics of I{K1, . . . ,Kn}. This is the

reason why we call this framework a semantic framework.

As before, we suppose that a set of all possible ports Ports is given. The BIP semantic framework

is as follows:

– A component K is an LTS (Q, q0, 2P ,−→), where P is called the interface of K.

– ∼= is syntactic equality, possibly after renaming of states 1.

– A glue I on a set of ports P is defined by a set of interactions (i.e. non empty sets of ports) in

P and is such that I{Ki}ni=1 is the n-ary product of LTS K1, . . . ,Kn where transitions with

labels in the same interaction are synchronized. This is formally defined below.

– I1 ◦ I2 is the glue defined by the set of interactions which are allowed by both I1 and I2

according to the composition of interaction sets of Definition 1.2.9.

We adopt the convention that in a component K = (Q, q0, 2P ,−→), it holds that ∀q ∈ Q : q
∅−→ q.

As already mentioned and unless otherwise stated, a component Ki is implicitly defined as a tuple

(Qi, q
0
i , 2
Pi ,−→i).

Definition 4.2.1 (Interaction, Glue) Consider a set of ports P ⊆ Ports . An interaction in P is a

non-empty subset of P . A set of interactions I in P defines a glue I which associates, with every

set of components {Ki}ni=1 with disjoint interfaces {Pi}ni=1 such that P =
⋃n
i=1 Pi, a component

1. Note that it could as well be defined as bisimulation.

100 A CONTRACT FRAMEWORK FOR THE BIP SEMANTIC LEVEL

I{K1, ... ,Kn} on P defined as the LTS (Q, q0, 2P ,−→) where:

– Q = Q1 × ...×Qn
– q0 = (q0

1, ... , q
0
n)

– given two states q = (q1, . . . , qn) and q′ = (q′1, . . . , q
′
n) in Q and an interaction α ∈ I,

q
α−→ q′ if and only if ∀i, qi

αi−→i q
′
i where αi = α ∩ Pi.

Now that we have fully defined the component framework that we are studying in this chapter, we

can focus on finding appropriate refinement relations. The conformance that we choose is simulation

(see Definition 1.1.11), as is very often the case for frameworks based on LTS. The reason for that is

that simulation preserves safety properties, which are essential to the design of many systems.

Definition 4.2.2 (Conformance) K1 4 K2 , K1 simulates K2.

Even for this classical definition of conformance, how to define refinement under context is an

interesting question. In Chapter 2, the following usual definition was proposed:

K1 v4E,I K2 , I{K1, E} 4 I{K2, E}

It was then illustrated in Section 2.3.2, when circular reasoning was presented, that this usual def-

inition yields a refinement under context v4 for which circular reasoning is not sound in presence

of non-determinism or strong synchronization. Our framework here offers both, thus we need an-

other relation if we want to apply the sufficient condition provided in Section 2.3.3. The definition

below tackles these two problems by “breaking the symmetry” between component and environment

within the definition: in a given state, a component make take into account only the past actions of its

environment E, and not the interactions possible in the current state of E.

Definition 4.2.3 (Refinement under context) Refinement under context is defined as follows:

K1 vE,I K2 if and only if there exists a relationR ⊆ (Q1 ×QE)×Q2 such that:

– (q0
1, q

0
E)R q0

2

– if (q1, qE)R q2, q1
αK−→1 q

′
1 and α = αK ∪ αE ∈ I, then there exists q′2 such that q2

αK−→2 q
′
2

and any q′E such that qE
αE−→E q

′
E satisfies (q′1, q

′
E)R q′2

We use the convention that ∀q ∅−→ q, so the above condition includes cases where only K1 or only E

move on. This refinement is in fact a stronger version of v4, as will be proved in Chapter 7. Suppose

that (q1, qE)R q2 and q1
αK−→1 q

′
1. Then the above definition can be rephrased as follows:

A CONTRACT FRAMEWORK FOR THE BIP SEMANTIC LEVEL 101

– If αK is structurally forbidden, that is, there is no interaction α allowed by I that projects onto

αK , then it is not required that transition q1
αK−→1 q

′
1 have a counterpart in −→2.

– Otherwise, q1
αK−→1 q

′
1 must have a counterpart q2

αK−→2 q
′
2, even if the environment E does not

offer any interaction that could match αK .

– Furthermore, this counterpart must be the same for all possible moves of E that have the same

label: any q′E such that qE
αE−→E q

′
E satisfies (q′1, q

′
E)R q′2.

– Note that q′1 and q′2 have to be related byR only if there exists some q′E such that qE
αE−→E q

′
E .

That is, two states q′1 and q′2 are related only if (q′1, q
′
E) and (q′2, q

′
E) are both reachable in

respectively I{K1, E} and I{K2, E}.
This choice of refinement under context is one among possible relations consistent with simulation

and for which circular reasoning is sound. Other relations are discussed in Chapter 7.

We have defined a contract framework in which circular reasoning is sound: the next section

contains all the proofs required to establish this result. Although a bit technical, these proofs are

simple and short.

4.3 Coherence conditions

We first focus on the conditions required from our component framework, that is: 1. coherence

between ◦ and ∼=, then: 2. possibility to structure systems. After this, we will present the proofs

related to conformance and refinement under context, namely: 3. consistency of 4 and {v}ω∈Ω,

4. preservation of refinement under context by composition and 5. soundness of circular reasoning.

The condition that {v}ω∈Ω and ∼= must be coherent is trivially true.

4.3.1 Composition of glues and equivalence of components

Proof. The first condition relates to composition of glues. We must show that for any glues I1, I2 and

any sets of components Ki such that all terms are defined, I1{I2{K1},K2} ∼= (I1 ◦ I2){K1 ∪ K2}.
- We write the proof for K1 = {K1,K2} and K2 = {K3}. The generalization should be clear. The

syntactic differences between both components are bold and colored.

I1{I2{K1},K2} = (Q, q0,P,−→), where:

– Q = (Q1 ×Q2)×Q3

– q0 = ((q0
1, q

0
2), q0

3)

– P = P1 ∪ P2 ∪ P3

– for q=((q1, q2), q3) and q′=((q′1, q
′
2), q

′
3)

in Q and α ∈ I1, q α−→ q′ if and only if

α ∩ (P1 ∪ P2) ∈ I2 and qi
αi−→i q

′
i for

i ∈ {1, 2, 3}, where αi = α ∩ Pi

102 A CONTRACT FRAMEWORK FOR THE BIP SEMANTIC LEVEL

(I1 ◦ I2){K1 ∪ K2} = (Q, q0,P,−→), where:

– Q = Q1 ×Q2 ×Q3

– q0 = (q0
1, q

0
2, q

0
3)

– P = P1 ∪ P2 ∪ P3

– given q = (q1, q2, q3) and q′ = (q′1, q
′
2, q
′
3)

in Q and α ∈ I1 ◦ I2, q α−→ q′ if and

only if qi
αi−→i q

′
i for i ∈ {1, 2, 3}, where

αi = α ∩ Pi

Thus, after renaming states of I1{I2{K1},K2} — a state of the form ((q1, q2), q3) becomes

(q1, q2, q3) — there only remains to prove that interactions from both LTS are the same. That is, we

must show that α ∈ I1 ◦ I2 if and only if α ∈ I1 and α ∩ (P1 ∪ P2) ∈ I2. As I1 ◦ I2 and I1 are

both defined on P1 ∪ P2 ∪ P3 while I2 is defined on P1 ∪ P2, this is easily obtained: by definition

α ∈ I1 ◦ I2 if and only if α ∩ (P1 ∪ P2 ∪ P3) ∈ I1 and α ∩ (P1 ∪ P2) ∈ I2. 2

4.3.2 Structuring systems

The second coherence condition with respect to the component framework is about structuring a

composition according to any given partition.

Definition 4.3.1 (Decomposition of interaction sets) A interaction set I on P can always be put

under the form I ′ ◦ I1 ◦ I2, where I ′ is defined on P and the Ii are defined on a partition {P1,P2}
of P . A trivial decomposition is to choose I ′ = I and Ii = 2Pi . A more interesting decomposition is

the following: I ′ = I and Ii = {α ∩ Pi | α ∈ I}.

As a consequence, if we suppose given I on P and I1 on P1 ⊆ P , there exists I2 such that

I = I1 ◦I2 if and only if any interaction α ∈ I is such that α∩P1 ∈ I1. If so, then I2 = I is already

a solution, but more interestingly, one can choose I2 = I\I1.

4.3.3 Consistency between v and 4

Proof. Suppose that K1 vE,I K2. Let us show that I{K1, E} simulates I{K2, E}.
- LetR′ ⊆ (Q1 ×QE)× (Q2 ×QE) be defined as:

(q1, qE)R′ (q2, q
′
E) , q′E = qE ∧ (q1, qE)R q2

- We show thatR′ is a simulation relating states of I{K1, E} and I{K2, E}
- The first condition, namely that (q0

1, q
0
E)R′ (q0

2, q
0
E), holds by definition.

- Now, suppose (q1, qE)R′ (q2, qE) and (q1, qE)
α−→ (q′1, q

′
E). We have to prove that:

∃q′2 s.t. (q2, qE)
α−→ (q′2, q

′
E) and (q′1, q

′
E)R′ (q′2, q′E)

A CONTRACT FRAMEWORK FOR THE BIP SEMANTIC LEVEL 103

- We decompose α as αK ∪ αE , which implies that q1
αK−→1 q

′
1 and qE

αE−→E q
′
E .

- From (q1, qE)R q2 and q1
αK−→1 q′1, we conclude that there exists q′2 such that q2

αK−→2 q′2 and

∀q′′E , qE
αE−→E q

′′
E =⇒ (q′1, q

′′
E)R q′2.

- In particular, we have (q′1, q
′
E)R q′2. This implies that (q′1, q

′
E)R′(q′2, q′E).

- Besides, q2
αK−→2 q

′
2 and qE

αE−→E q
′
E , so (q2, qE)

α−→ (q′2, q
′
E).

- Hence the result. 2

4.3.4 Preservation of refinement by composition

Proof. Define a context (E, I) for an interface P and IE , E1, E2 such that E = IE{E1, E2}.
Suppose that K1 vE,I K2. Let us show that I1{K1, E1} vE2,I2 I1{K2, E1}.
- As QE = QE1 ×QE2 , there exists a relation R ⊆ (Q1 × (QE1 ×QE2))×Q2 with the properties

stated in Definition 4.2.3.

- We defineR′ ⊆ ((Q1 ×QE1)×QE2)× (Q2 ×QE1) by:

((q1, qE1), qE2)R ′(q2, qE1) , (q1, (qE1, qE2))R q2

- Let us prove thatR′ has the expected properties:

- First, ((q0
1, q

0
E1

), q0
E2

)R ′(q0
2, q

0
E1

) holds by definition.

- Suppose now that ((q1, qE1), qE2)R ′(q2, qE1) and (q1, qE1)
α′−→ (q′1, q

′
E1

) with α′ = αK ∪ αE1 .

Suppose α = α′ ∪ αE2 is in I2. We must prove that there exists q′2 such (q2, qE1)
α′−→ (q′2, q

′
E1

) and

any qE2 such that qE2

αE2−→ q′E2
satisfies ((q′1, q

′
E1

), q′E2
)R ′(q′2, q′E1

).

- Note that (q1, qE1)
α′−→ (q′1, q

′
E1

) implies that q1
αK−→ q′1 and qE1

αE1−→ q′E1
.

- As (q1, (qE1 , qE2))R q2 and q1
αK−→ q′1, we know that there exists q′2 such that q2

αK−→ q′2 and any

(qE1 , qE2) such that (qE1 , qE2)
αE1

∪ αE2−→ (q′E1
, q′E2

) satisfies (q′1, (q
′
E1
, q′E2

))R q′2.

- Let us show that this q′2 has the expected properties.

- First, as qE1

αE1−→ q′E1
and q2

αK−→ q′2, it holds that (q2, qE1)
α′−→ (q′2, q

′
E1

).

- Second, let qE2 be such that qE2

αE2−→ q′E2
. Then (qE1 , qE2)

αE1
∪ αE2−→ (q′E1

, q′E2
), which implies that

(q′1, (q
′
E1
, q′E2

))R q′2. This, by definition, implies that ((q′1, q
′
E1

), q′E2
)R ′(q′2, q′E1

). 2

4.3.5 Soundness of circular reasoning

Proof. Suppose that K vA,I G and E vG,I A. Let us show that K vE,I G.

- As K vA,I G and E vG,I A, there exist two relations R1 and R2 which are defined respectively

104 A CONTRACT FRAMEWORK FOR THE BIP SEMANTIC LEVEL

on (QK ×QA)×QG and (QE ×QG)×QA as in Definition 4.2.3.

- We defineR ⊆ (QK ×QE)×QG as follows:

(qK , qE)R qG , ∃qA ∈ QA. (qK , qA)R1 qG ∧ (qE, qG)R2 qA

Let us prove thatR is indeed a refinement under context.

- The first condition is obvious: (q0
K , q

0
E)R q0

G.

- Now consider qK , qE and qG such that (qK , qE)R qG. Let qA be such that (qK , qA)R1 qG and

(qE , qG)R2 qA. Suppose qK
αK−→K q′K and α = αK ∪αE ∈ I. We have to prove that there exists p′G

such that: (a) qG
αK−→G q

′
G and (b) ∀q′′E , qE

αE−→E q
′′
E =⇒ (q′K , q

′′
E)R q′G.

- As (qK , qA)R1 qG, qK
αK−→K q′K and α = αK ∪αE ∈ I, there exists q′G such that (a1) qG

αK−→G q
′
G

and (b1) ∀q′′A, qA
αE−→A q

′′
A =⇒ (q′K , q

′′
A)R1 q

′
G. We show that this q′G satisfies (a) and (b).

- Condition (a) is exactly the same as (a1), we focus on condition (b): let q′E be such that qE
αE−→E q

′
E .

We show that (q′K , q
′
E)R q′G.

- As (qE , qG)R2 qA, qE
αE−→E q

′
E and α = αK ∪αE ∈ I, there exists q′A such that (a2) qA

αE−→A q
′
A

and (b2) ∀q′′G, qG
αK−→G q

′′
G =⇒ (q′E , q

′′
G)R2 q

′
A.

- Thus, applying (b1) to this q′A, we obtain that (q′K , q
′
A)R1 q

′
G.

- Besides, as qG
αK−→G q

′
G, by applying (b2) to this q′G we obtain (q′E , q

′
G)R2 q

′
A.

- Finally, according to the definition ofR, we can conclude that (q′K , q
′
E)R q′G. 2

Chapter 5

Two component frameworks for BIP

In this chapter, we present two variants of the BIP framework which we use in the sequel to build

contract frameworks, and which had never been formalized before. Both variants structure interac-

tions using connectors and provide mechanisms for encapsulation: that is, new ports are associated

with connectors and the interface of a composite component is the set of ports corresponding to

its internal connectors. Encapsulation enables to abstract the behavior of a component in a black-box

manner, by describing only which connector is triggered but not exactly which interaction takes place.

This makes it much more complicated to provide a compositional semantics than in the white-box BIP

framework presented in the preliminaries. There exists two variants of the BIP framework handling

encapsulation: one is the formalism defining the BIP2 tool-chain, which does not allow flattening;

another is [BJS09], which handles only a specific class of interaction models (sets of rendezvous con-

nectors progress) and no priority. In fact, it is not possible to combine the full expressivity of BIP with

flattening and encapsulation. As a result, the two variants proposed here are restrictions:

1. The first variant, which we call BIP with maximal progress, has the following characteris-

tics: behaviors are LTS, interactions provide encapsulation, priorities are limited to maximal

progress and we use two one-shot semantics, one that is compositional and black-box, and an-

other for closed systems that is white-box. This combination of features is close to the actual

implementation in the BIP2 tool-chain, but has never been formalized like this before.

2. The second variant, which we call multi-shot BIP, differs from the first one mainly in that

its compositional semantics is multi-shot. Thus, this variant is powerful enough to encompass

synchronous systems. As a side effect, it cannot handle priorities.

Table 5.1 presents a summary of the differences between the variants of BIP presented in this

thesis. In more detail, these differences are related to each other as follows:

105

106 TWO COMPONENTS FRAMEWORKS FOR BIP

white-box first variant second variant
structured interaction no yes yes

encapsulation no yes yes
priorities yes only maximal progress no

transitions labeled by interactions ports interactions
interaction model on set of ports set of disjoint interfaces set of ports

restrictions none each interaction in at most one connector none
restrictions none 0 or 1 port of a component per connector none

Table 5.1 – Summary of the differences between the variants of BIP presented in this thesis

– As already stated, the main difference between the two variants and the white-box framework

presented in Chapter 5 is that these variants provide a mechanism for encapsulation: they struc-

ture interactions into connectors, and only these connectors appear at the interface of a compos-

ite component. That is, the environment of such a component cannot distinguish interactions

from the same connector. Note that in [GS05], interactions are also structured into connec-

tors although no encapsulation is possible. We have chosen to present connectors only as a

means for encapsulation. Also, note that our closed semantics are white-box, as encapsulation

is neither necessary nor useful for a system that cannot be composed anymore.

– Providing semantics for a framework encompassing encapsulation and flattening is a challeng-

ing task. We propose here two different solutions. The first one preserves a subset of the possi-

ble priority orders, namely maximal progress, because they can be dealt with in a compositional

way if the following restriction is made: an interaction cannot be part of several connectors. To

ensure this property in hierarchical components, we have to require furthermore that connector

are used only to connect ports of different components and never ports of the same component.

This in turn implies that interaction models have to be defined on sets of interfaces so that it

is possible to distinguish which port belongs to which component when defining connectors.

Finally, this makes labeling transitions by interactions useless, as a component cannot activate

more than one port at the same time.

Note that there are other possibilities to build a BIP framework encompassing encapsulation and

flattening. For example, one could define a compositional semantics as in the white-box framework,

that is, as a pair made of an LTS and a priority order. However, even in this case, not all priorities can

be handled as they have to be expressible at the interface of the component.

This chapter is organized as follows: we present BIP with maximal progress, then multi-shot BIP.

Finally, we show how hiding of ports can be encoded in an elegant manner. We leave it to the next

TWO COMPONENTS FRAMEWORKS FOR BIP 107

pγ

Sγ
Sγ′

γ

pγ′

K2
K1

γ′

Γ{K1,K2}

Figure 5.1 – The role of connectors in a composition

chapter to prove that these two frameworks are indeed component frameworks as defined in Chapter 2.

5.1 A first variant: BIP with maximal progress

In this variant, as in the next one, interactions are structured using connectors. Priority is restricted

to maximal progress within a connector. Even with this strong restriction, we need, in order to provide

a compositional semantics, to require furthermore that at most one port of each component (atomic

or composite) can be triggered at a time, and to restrict interaction models to sets of connectors with

disjoint interaction sets. In this constrained setting, transitions are labeled by ports, and not by in-

teractions. An interaction corresponds to exactly one connector, which simplifies both the conditions

related to maximal progress and the proof of consistency between the semantics of a hierarchical

component and its flattened form.

Definition 5.1.1 (Atomic component) An atomic component on a interface P is defined by an LTS

K = (Q, q0,P,−→).

As in the semantic framework, an interaction is represented as a non-empty set of ports, but now we

can structure them into connectors, as in the following definition.

Definition 5.1.2 (Connector) A connector γ is defined by a set of ports Sγ called the support set of

γ, a port pγ called its exported port and a set I(γ) of interactions in Sγ .

The intuition behind support set and exported port is illustrated in Figure 5.1, where connectors relate

in a composition a set of inner ports (of the subcomponents) to an outer port (of the composite com-

ponent). One should keep in mind that a connector γ, and thus the exported port pγ , represents a set

of interactions rather than a single interaction.

108 TWO COMPONENTS FRAMEWORKS FOR BIP

a cb

pγ

d

Figure 5.2 – A rendezvous connector

a cb

pγ

d

Figure 5.3 – A multiple broadcast

Typical connectors represent rendezvous (only one interaction, equal to the support set), broad-

cast (all the interactions containing a specific port called trigger) and also mutual exclusion (some

interactions but not their union). When the set of interactions of a connector is closed by union (no

mutual exclusion), we use the following convention for graphically representing connectors: a trigger

port (a port p such that {p} is an interaction) is associated with a triangle while the other ports, called

synchrons, are associated with semi-circles. For example, the connector of Figure 5.2 has no trigger

and thus only one interaction, namely {a, b, c, d}, while that of Figure 5.3 has as interaction set all

the interactions which contain at least c or d.

When combined with hierarchy of connectors, the representation of interaction sets using triggers

and synchrons is quite expressive, and allows many interesting transformations [BS08a]. When this

representation is not sufficient (the interaction set of some connector is not closed under union),

or when we do not want to represent explicitly the interaction sets of connectors, we only draw

the connections between support set and exported port, as in Figure 5.1. We now define interaction

models, which define sets of connectors that can be used together in order to compose components.

As we do not allow connecting two ports of the same component in one connector, an interaction

model has to be defined for a given set of interfaces.

Definition 5.1.3 (Interaction model) An interaction model Γ defined on a set of disjoint interfaces

{Pi}ni=1 is a set of connectors with distinct exported ports and disjoint interaction sets, and such that

every connector has a support set included in
⋃n
i=1 Pi and containing at most one port in every Pi.

In this definition, an interaction corresponds to at most one connector, i.e., if i ∈ I(γ) and i ∈ I(γ′),

then γ = γ′. However, connectors in an interaction model are not required to have pairwise disjoint

support sets and a port may be connected through several connectors.

An interaction model Γ defines an interface, denoted PΓ, namely {pγ | γ ∈ Γ}. SΓ =
⋃n
i=1 Pi

is called the support set of Γ. Besides, I(Γ) denotes the set of all interactions of the connectors in Γ,

i.e.: I(Γ) =
⋃
γ∈Γ I(γ). In Figure 5.1, Γ is composed of connectors γ and γ′.

TWO COMPONENTS FRAMEWORKS FOR BIP 109

In this section, the only priority order that we consider is maximal progress, first, because it is not

possible in the general case to provide a compositional semantics for priority orders in presence of

encapsulation, and second because we only need maximal progress in this thesis.

Definition 5.1.4 (Maximal progress) Given an interaction model Γ, maximal progress≺MP is de-

fined by ∀i, j ∈ I(Γ):

i ≺MP j , i ⊆ j ∧ ∃γ ∈ Γ, i ∈ I(γ) ∧ j ∈ I(γ)

Maximal progress is a priority order that relates interactions of the same connector γ, and gives higher

priority to the larger interaction. It applies only to interactions in the same connector for two reasons:

one is that otherwise it is not possible to provide a compositional semantics in the form of an LTS;

the second reason is that maximal progress makes more sense applied only within a connector.

Definition 5.1.5 (Component, Composite component) A component is either an atomic component

or it is inductively defined as the composition of a set of components {Ki}ni=1 with disjoint interfaces

{Pi}ni=1 using an interaction model Γ on {Pi}ni=1. Such a composition is called a composite compo-

nent on PΓ and it is denoted Γ{Ki}ni=1.

We now provide two semantics enforcing maximal progress — called respectively compositional

and closed semantics — which are intended for different purposes. The compositional, black-box

semantics must be preserved by composition, and will be used to express the behavior of a component

when it is part of a larger system, thus it refers to exported ports. The closed semantics will be

used for expressing the behavior of a closed system, that is, a system that has no interaction with

an environment. In particular, the closed semantics is white-box in the sense that it reflects the inner

interactions taking place and not only the corresponding exported ports at the interface of the system.

These differences are illustrated in Figure 5.4, where a simple composite component is given with its

two corresponding semantics, compositional (top-right) and closed (down-right). Maximal progress

ensures that, although they could be fired separately, b and e are both fired in a single transition.

Consider a composite component K defined by a set of components {Ki}ni=1 and an interaction

model Γ on {Pi}ni=1.

Definition 5.1.6 (Compositional semantics) The compositional semantics of K is denoted |K| and

is defined as (Q, q0,PΓ,), where Q =
∏n
i=1Qi, q

0 = (q0
1, . . . , q

0
n) and is defined as follows.

Given two states q1 = (q1
1, . . . , q

1
n) and q2 = (q2

1, . . . , q
2
n) in Q and γ ∈ Γ, q1 pγ

 q2 if and only if

there exists α ∈ I(γ) such that:

110 TWO COMPONENTS FRAMEWORKS FOR BIP

d

pγ′

a

b

c
f

d

e

pγpa

a e f

pf

b
c

K

|K|

JKK

pγ

pγ′

b.e

c.d

pa

pf

a

f

Figure 5.4 – A composite (left) and its compositional (top-right) and closed (bottom-right) semantics

1. ∀i such that α ∩ Pi = ∅: q1
i = q2

i

2. ∀i such that α ∩ Pi = {pi} for some pi ∈ Pi: q1
i
pi i q

2
i

3. @α′ ∈ I(γ) such that α ≺MP α′ and satisfying conditions 1. and 2.

Components not involved in the interaction do not move. Note also that the priorities resulting from

maximal progress can be applied locally. Indeed, filtering is done only between interactions in the

same connector, which are indistinguishable at the interface of K. The closed semantics only differs

from the compositional semantics in that it is white-box, so labels are interactions in I(Γ) rather than

ports in PΓ.

Definition 5.1.7 (Closed semantics) The closed semantics of K is denoted JKK and is defined as

(Q, q0, I(Γ),−→), where Q =
∏n
i=1Qi, q

0 = (q0
1, . . . , q

0
n) and−→ is defined as follows. Given two

states q1 = (q1
1, . . . , q

1
n) and q2 = (q2

1, . . . , q
2
n) in Q and an interaction α ∈ I(Γ), q1 α−→ q2 iff:

1. ∀i such that α ∩ Pi = ∅: q1
i = q2

i

2. ∀i such that α ∩ Pi = {pi} for some pi ∈ Pi: q1
i
pi i q

2
i

3. @α′ ∈ I(Γ) such that α ≺MP α′ and satisfying conditions 1. and 2.

In this semantics, only interactions that are locally enabled in all concerned components, and

furthermore not inhibited by any larger interaction, may be fired.

We still have to describe how interaction models can be composed. The difficulty of this compo-

sition lies mainly in handling hierarchical connectors. If pγ′ ∈ Sγ , then γ and γ′ can be composed to

form a hierarchical connector denoted γ ∗ γ′ (see Figure 5.5) with support set Sγ ∪ Sγ′\{pγ′}, with

exported port pγ and whose interaction set is computed from I(γ) as follows: each interaction α in

TWO COMPONENTS FRAMEWORKS FOR BIP 111

=∗

a b cc a b

pγ

pγ′

pγ′

pγ

Figure 5.5 – A hierarchical connector

which pγ′ occurs is replaced by a set of interactions identical to α except that the occurrence of pγ′ is

replaced by an interaction of I(γ′).

Definition 5.1.8 (Hierarchical connector) Let γ and γ′ be two connectors such that pγ′ ∈ Sγ . The

hierarchical connector γ ∗ γ′ resulting from their composition is defined as follows:

– Sγ∗γ′ , Sγ ∪ Sγ′\{pγ′}
– pγ∗γ′ , pγ

– I(γ ∗ γ′) , {α ∈ I(γ) | pγ′ /∈ α} ∪ {α.α′ | α.pγ′ ∈ I(γ) ∧ α′ ∈ I(γ′)}

Example 5.1.9 Consider, as in Figure 5.5, γ such that Sγ = {pγ′ , c} and I(γ) = {{pγ′ , c}}; con-

sider also γ′ with Sγ′ = {a, b} and I(γ′) = {{a}, {b}, {a, b}}. Then γ ∗ γ′ has as support set

{a, b, c}, as exported port pγ and as interaction set {{a, c}, {b, c}, {a, b, c}}.

Connectors whose exported ports and support sets are not related are called disjoint. They need not

be composed. Note that according to our definition of connector, a connector γ may have as exported

port pγ a port that is also in its support set Sγ . We use this possibility in Chapter 6 to export ports

while preserving their name in the I/O contract framework. As a result, ∗ may not be commutative.

However, it is always associative.

Definition 5.1.10 (Composition of interaction models) The operator ∗ is extended to interaction

models as follows. The composition Γ1 ∗ Γ2 of two interaction models Γ1 and Γ2 is obtained from

Γ1 ∪ Γ2 by inductively composing all connectors which are not disjoint.

Flattening of components, that is, representing them using only atomic components and a single

interaction model, is defined as in the semantic framework.

Definition 5.1.11 (Flat component) A component is called flat if it is atomic or of the form

Γ{K1, . . . ,Kn}, where all Ki are atomic components. A component that is not flat is called hier-

archical.

112 TWO COMPONENTS FRAMEWORKS FOR BIP

A hierarchical component K is of the form Γ{K1, . . . ,Kn} such that at least one Ki is composite.

Thus, such a K can be represented as Γ2{Γ1{K1},K2}, where K1 and K2 are sets of components.

Definition 5.1.12 (Flattening of components) The flattened form of a component K is defined in-

ductively as follows:

– if K is a flat component, then its flattened form is equal to K.

– otherwise, K is of the form Γ2{Γ1{K1},K2}, and then its flattened form is the flattened form

of (Γ2 ∗ Γ1){K1 ∪ K2}.

Finally, as in the semantic framework, the following theorem relates the semantics of a composite

component and its flattened form.

Theorem 5.1.13 JΓ{Γ′{K1},K2}K and J(Γ ∗ Γ′){K1 ∪ K2}K are equivalent in the following sense:

there exists a renaming of labels in (Γ ∗ Γ′){K1 ∪ K2} as below that makes them bisimilar.

Let Bh = JΓ{Γ′{K1},K2}K and Bf = J(Γ ∗ Γ′){K1 ∪ K2}K be the behavior of respectively the

hierarchical component and its flattened form. Formally, the renaming of Bf is an LTS Bf ′ =

(Qf , q
0
f , I(Γ),−→f ′), that is, only the set of labels and the transition relation are modified: the renam-

ing consists in replacing every interaction in I(Γ′) by its corresponding exported port — remember

that there is only one such port.

The transition relation of |Γ′{K1}| is denoted 1. For the sake of clarity, we also use the follow-

ing notations for i = 1 and i = 2:

– Ki = {Kk}nik=mi
with m1 = 1 and m2 = n1 + 1

– Qi = Qmi × . . .×Qni
– P i =

⋃ni
k=mi

Pk
– Qi denotes qmi , . . . , qni where qk ∈ Qk for mi ≤ k ≤ ni
– Qi

αi
99Ki Q′i denotes that for every Kk in Ki, either Kk is not involved in αi (i.e., αi ∩Pk = ∅)

and then qk = q′k, or it is involved in αi (i.e., αi ∩ Pk = {pk}) and then qk
pk k q

′
k

– αi is said to be enabled in Qi if there exists Q′i such that Qi
αi
99Ki Q′i

Proof. We defineR ⊆ ((Q1)×Q2)× (Q1 ×Q2) as:

((Q1),Q2)R (Q′1,Q′2) , Q1 = Q′1 ∧Q2 = Q′2

We show that this relation is a bisimulation. The initial states are trivially related.

TWO COMPONENTS FRAMEWORKS FOR BIP 113

Let us suppose that ((Q1),Q2)
αh−→h ((Q′1),Q′2) and then show that (Q1,Q2)

αh−→f ′ (Q′1,Q′2).

According to the definition of closed semantics, there is no interaction larger than αh that is enabled

in ((Q1),Q2). Besides, αh contains at most one port of PΓ′ .

If there is no port of PΓ′ in αk, then αf = αh and (Q1,Q2)
αh−→f ′ (Q′1,Q′2).

Now, suppose that there is one port of PΓ′ in αk. We decompose αh into {pγ}∪α2, where γ ∈ Γ′

and α2 ∈ 2P
2
. Thus, (Q1)

pγ
 1 (Q′1) andQ2

α2
99K2 Q′2. This in turn implies, according to the definition

of compositional semantics, that there exists α1 ∈ I(Γ′) such that Q1
α1
99K1 Q′1 and @α′1 ∈ I(Γ′)

such that α1 ≺MP α′1 and α′1 is enabled in Q1.

Let us prove that (Q1,Q2)
αf−→f (Q′1,Q′2) for αf = α1 ∪ α2. Q1

α1
99K1 Q′1 and Q2

α2
99K2 Q′2, so

we only have to prove that there is no interaction larger than αf that is enabled in (Q1,Q2). Suppose

that there is an interaction α′ ∈ I(Γ ◦ Γ′) larger than αf and enabled in (Q1,Q2). Then α′ can be

decomposed into α′1 ∪ α′2 with α′1 ∈ I(Γ′), α′2 ∈ 2P2 , so α1 ⊆ α′1 and α2 ⊆ α′2. Furthermore,

Q1

α′1
99K1 Q′1 and Q2

α′2
99K2 Q′2.

Maximal progress within I(Γ′) implies that α1 is maximal among the interactions in I(Γ′) en-

abled inQ1, so α1 = α′1. Besides, maximal progress within I(Γ) imposes that {pγ} ∪α2 is maximal

among the interactions in I(Γ) enabled in (Q1),Q2. As {pγ}∪α′2 is in I(Γ) and enabled in (Q1),Q2,

we have α2 = α′2. Thus, (Q1,Q2)
αf−→f (Q′1,Q′2) which implies, according to the definition of re-

naming, that (Q1,Q2)
αh−→f ′ (Q′1,Q′2).

Symmetrically, suppose that (Q1,Q2)
αh−→f ′ (Q′1,Q′2). By definition of renaming, this implies

that αh can be decomposed into αh = {pγ} ∪ α2, where γ ∈ Γ′ and α2 ∈ 2P
2
. Furthermore, there

exists α1 ∈ I(γ) such that Q1
α1
99K1 Q′1, Q2

α2
99K2 q′2 and αf = α1 ∪ α2 is maximal among the

interactions in I(Γ ◦ Γ′) enabled in (Q1,Q2).

(Q1)
pγ
 1 (Q′1), and Q2

α2
99K2 q′2, so we only have left to show that there is no interaction larger

than αh that is enabled in ((Q1),Q2). Suppose that there exists such an interaction α′ = {pγ} ∪ α′2.

This means that α1 ∪ α′2 is enabled in (Q1,Q2) and larger than αf . Because of maximal progress

within I(Γ ◦ Γ′), this implies that α′2 = α2, and thus α′ = αh. 2

5.2 A second variant: multi-shot BIP

We now propose a second variant that also provides structured interaction and encapsulation but

relaxes the conditions of the first variant with respect to composition — thus encompassing multishot

semantics — at the cost of not expressing any priority, not even maximal progress. As most of the

definitions are common, we write in bold the differences introduced in this setting.

114 TWO COMPONENTS FRAMEWORKS FOR BIP

We do not require here that at most one of the ports of a component can be activated at the same

time. This implies that components are labeled in this variant with interactions rather than ports, and

furthermore we need to use multi-shot for defining our compositional semantics. We make this choice

for three reasons: first, we want the possibility to decompose a composite component Γ{K1,K2,K3}
into Γ2{Γ1{K1,K2},K3}. This is not possible in general if ports of the same component cannot

be connected higher in the hierarchy. For example, a connector γ with support set Sγ = {a, b, c}
and interaction set I(γ) = {{a, b}, {a, c}, {b, c}} cannot be represented as a hierarchical component

without connecting two ports of the same component. A second motivation for this choice is to define

interaction models on a set of ports without mentioning the partition of this set according to the

interfaces of the components to be composed. Finally, this formalism illustrates how a synchronous

semantics could be enforced in this framework.

Definition 5.2.1 (Atomic component) An atomic component on a interface P is defined by an LTS

K = (Q, q0,2P ,−→).

Note that here atomic components are labeled by sets of ports rather than ports, because the environ-

ment of a component may trigger several of its ports at the same time. The definitions of interaction

and connector are those of the first variant. However, the definition of interaction model can be sim-

plified. Indeed, as it is now allowed to connect two ports of the same component, an interaction model

can be defined on a set of ports rather than a specific partition of this set. Besides, we also drop the

condition that an interaction must be part of at most one connector, because this situation may happen

anyway due to hierarchical connectors, as illustrated in Figure 5.6.

Definition 5.2.2 (Interaction model) An interaction model Γ on a support set SΓ is a set of connec-

tors with disjoint exported ports and with support sets included in SΓ.

Definition 5.2.3 (Component, Composite component) A component is either an atomic component

or it is inductively defined as the composition of a set of components {Ki}ni=1 with disjoint interfaces

{Pi}ni=1 using an interaction model Γ on P =
⋃n
i=1 Pi. Such a composition is called a composite

component on PΓ and it is denoted Γ{Ki}ni=1.

We now focus on semantics. As previously, the compositional semantics refers to exported ports

(it is black-box) while the closed semantics distinguishes the different interactions in each connector

(white-box). Besides, here the compositional semantics now allows several ports to be fired at the

same time. The reason is that these ports may be part of the same connector at a higher level of

TWO COMPONENTS FRAMEWORKS FOR BIP 115

Γ′ Γ ◦ Γ′Γ
p1 p2

pa
p1 p2

a
a b c d

b c d

pr pc

Figure 5.6 – Interaction {a, c} may be part of several hierarchical connectors

hierarchy. On the contrary, the closed semantics that we defined allows firing only one connector

at a time. Figure 5.7 shows the compositional (top-right) and closed (down-right) semantics of the

composite component represented on the left.

Consider a composite component K defined by a set of components {Ki}ni=1 and an interaction

model Γ with support set SΓ =
⋃n
i=1 Pi. For defining our compositional semantics, we now need to

define what a multi-shot interaction is, and in fact we need two such notions, one for representing

black-box interactions and one for white-box interactions.

Definition 5.2.4 (Multi-shot interaction) Given an interaction model Γ, a black-box multi-shot in-

teraction is of the form {pγ1 , . . . , pγk}, where all connectors γi have pairwise disjoint support sets.

Each such interaction m = {pγ1 , . . . , pγk} is associated with a set of white-box multi-shot interac-

tions denoted wb(m) and defined as: wb(m) = {α1 ∪ . . . ∪ αk | ∀i ∈ [1, k], αi ∈ I(γi)}.

The set of legal black-box, respectively white-box, multi-shot interactions of Γ is denotedMbb(Γ),

respectivelyMwb(Γ). Multi-shot interactions allow concurrency, as interactions from non-conflicting

connectors may be fired simultaneously (unless stated otherwise by the components’ behaviors).

Definition 5.2.5 (Compositional semantics) The compositional semantics of K is denoted |K| and

is defined as (Q, q0,Mbb(Γ),), where Q =
∏n
i=1Qi, q

0 = (q0
1, . . . , q

0
n) and given two states

q1 = (q1
1, . . . , q

1
n) and q2 = (q2

1, . . . , q
2
n) in Q and a multi-shot interaction m ∈Mbb(Γ), q1 m

 q2 if

and only if there exists α ∈ wb(m) such that ∀i, q1
i

αi i q
2
i , where αi = α ∩ Pi.

Again, components not involved in the interaction do not move, but this can expressed simply here

by using the convention that ∀q, q ∅−→ q. The closed semantics is similar to that of the first variant,

except that the condition related to maximal progress has been removed.

116 TWO COMPONENTS FRAMEWORKS FOR BIP

d

pγ′

pγpa

a b e f

pf

c

b e

d

c

a f

K

|K|

JKK

pγ

pγ′

c.d

pa.pf

pf

a

pa

b.e

f

Figure 5.7 – A composite (left) and its compositional (top-right) and closed (bottom-right) semantics

Definition 5.2.6 (Closed semantics) The closed semantics of K is denoted JKK and is defined as

(Q, q0, I(Γ),−→), where Q =
∏n
i=1Qi, q

0 = (q0
1, . . . , q

0
n) and−→ is defined as follows. Given two

states q1 = (q1
1, . . . , q

1
n) and q2 = (q2

1, . . . , q
2
n) in Q and an interaction α ∈ I(Γ), q1 α−→ q2 if and

only if ∀i, q1
i

αi i q
2
i , where αi = α ∩ Pi.

Composition of interaction models is the same as in the first variant. Finally, we have again the

theorem relating the semantics of a composite component and its flattened form.

Theorem 5.2.7 JΓ{Γ′{K1},K2}K and J(Γ ∗ Γ′){K1 ∪ K2}K are equivalent in the following sense:

there exists a renaming of labels in (Γ ∗ Γ′){K1 ∪ K2} as below that makes them bisimilar.

For simplifying notation, we suppose that K1 = {K1,K2} and K2 = {K3} and we denote Bh
the behavior of the hierarchical component, i.e., JΓ{Γ′{K1,K2},K3}K and Bf the behavior of its

flattened form J(Γ ∗ Γ′){K1,K2,K3}K. The transition relation of |Γ′{K1,K2}| is denoted 1,2.

As before, the renaming consists in replacing interactions of I(Γ′) by the corresponding exported

ports. However, due to the fact that an interaction may be part of several connectors, possibly through

hierarchical connectors, some problems may arise in this renaming. Figure 5.6 illustrates this: depend-

ing on the context, αf = {a, c} of the flattened component may be renamed into either αh = {pa, pc}
or α′h = {pr}.

Formally, the renaming of Bf is an LTS Bf ′ = (Qf , q
0
f , I(Γ),−→f ′), that is, only the set of

labels and the transition relation are modified. The new transition relation is defined as follows.

(q1, q2, q3)
αh−→f ′ (q1, q2, q3) if and only if:

1. (q1, q2, q3)
αf−→f (q1, q2, q3); we decompose αf into αf = α1 ∪ α2 ∪ α3 with αi ∈ Pi

2. αh can be decomposed into m ∪ α3 such that m ∈Mbb(Γ′) and α1 ∪ α2 ∈ wb(m)

TWO COMPONENTS FRAMEWORKS FOR BIP 117

Proof. We defineR ⊆ ((Q1 ×Q2)×Q3)× (Q1 ×Q2 ×Q3) as:

((q1, q2), q3)R (q′1, q
′
2, q
′
3) , q1 = q′1 ∧ q2 = q′2 ∧ q3 = q′3

We show that this relation is a bisimulation. The initial states are trivially related.

Suppose that ((q1, q2), q3)
αh−→h ((q′1, q

′
2), q′3). Let us show that (q1, q2, q3)

αh−→f ′ (q′1, q
′
2, q
′
3).

According to the definition of closed semantics, αh can be decomposed as αh = m ∪ α3 where

m ∈ Mbb(Γ′), α3 ∈ P3, and furthermore (q1, q2)
m
 1,2 (q′1, q

′
2) and q3

α3 3 q
′
3. This in turn implies,

according to the definition of compositional semantics, that there exists α1 ∈ P1 and α2 ∈ P2 such

that α1 ∪ α2 ∈ wb(m), q1
α1 1 q

′
1 and q2

α2 2 q
′
2.

As qi
αi i q

′
i for i ∈ [1, 3], we have (q1, q2, q3)

αf−→f (q′1, q
′
2, q
′
3) for αf = α1 ∪ α2 ∪ α3. Thus,

according to the definition of renaming and of αf , this implies that (q1, q2, q3)
αh−→f ′ (q′1, q

′
2, q
′
3).

Symmetrically, suppose that (q1, q2, q3)
αh−→f ′ (q′1, q

′
2, q
′
3). By definition of renaming, this implies

that αh can be decomposed into m ∪ α3 with m ∈ Mbb(Γ′) and α3 ∈ P3 and furthermore that there

exists α1 ∈ P1 and α2 ∈ P2 such that α1 ∪ α2 ∈ wb(m) and (q1, q2, q3)
αf−→f (q′1, q

′
2, q
′
3) for αf =

α1∪α2∪α3, which implies that qi
αi i q

′
i for i ∈ [1, 3]. We obtain from this that (q1, q2)

m
 1,2 (q′1, q

′
2)

and then ((q1, q2), q3)
αh−→h ((q′1, q

′
2), q′3). 2

Data transformation will not be dealt with in this thesis, although we have also studied frameworks

handling data. The interested reader is referred to [BHQG10b, BHQG10c] for a framework inspired

by BIP an handling data transformation.

5.3 Projection

We discuss here a simple way of handling hiding of ports, by using the convention that ∀q, q ∅−→
q. Indeed, such a convention makes sense in a context without variables, as a transition labeled by ∅
from q to q is really equivalent to an absence of progress. Note that as a result, an LTS is in deadlock

in a state q if its only transition enabled in q is q ∅−→ q.

If we adopt this convention, then we can modify the semantics provided in the previous sections

as follows: ∅ can be defined as an interaction, and components that do not take part in an interaction

may still perform an internal computation labeled by ∅. Then, hiding a connector is achieved simply

by defining its exported port as ∅. Hiding a port p is achieved by defining a connector with support

set {p}, interaction set {{p}} and exported port ∅. Hence the following definition of projection.

118 TWO COMPONENTS FRAMEWORKS FOR BIP

Definition 5.3.1 (Projection) The projection of a component K defined on an interface P onto a

subset of its ports P ′ ⊆ P , denoted ΠP ′(K) is |glΠ{K}| where:

glΠ = {γp | p ∈ P ′ ∧ Sγp = {p}, pγp = {p}, I(γp) = {{p}}}
∪{γp | p ∈ P\P ′ ∧ Sγp = {p}, pγp = {∅}, I(γp) = {{p}}}

It is also useful in some contexts (for example in the L0 framework) to define an inverse projection

that augments the set of ports of a component. It is also possible to define it as a glue

Definition 5.3.2 (Inverse projection) The inverse projection of a component K defined on an inter-

face P onto a superset of its ports P ′, denoted Π−1
P ′ (K) is |gl−1

Π {K}| where:

gl−1
Π = {γp | p ∈ P ∧ Sγp = {p}, pγp = {p}, I(γp) = {{p}}}
∪{γp | p ∈ P ′\P ∧ Sγp = {∅}, pγp = {p}, I(γp) = {∅}}

Chapter 6

Application to I/O automata and to the
SPEEDS project

In this chapter, we present two distinct applications involving the variants of BIP presented in the

previous chapter. The first application is the representation of I/O interface automata [LNW06] as a

contract framework using BIP. The second application is the definition of two contract frameworks in

the context of the SPEEDS project, called L0 and L1, for which we provide a methodology making it

possible to use them jointly.

6.1 Encoding of interface I/O automata

Input/Output (I/O) automata [Lyn96] are a formalism of choice to describe and analyze distributed

systems. I/O automata interact with each other by synchronizing an output action in one I/O automa-

ton with a corresponding input action in another interacting I/O automaton. Outputs are typically

used to represent method calls, data transmission, return of method calls, exceptions raised during

execution etc. Symmetrically, inputs usually model method invocations, receiving of data, and return

location of a function call.

One difficulty when dealing with I/O automata is the following: in general, in the concrete sys-

tem represented by an I/O automaton, whenever an output is possible, the data are sent whether the

corresponding input is possible or not. In the latter case, the data are lost. However, composition of

I/O automata is by strong synchronization. This means that in the abstract setting, an output may take

place only if the corresponding input is also possible. To solve this discrepancy, one usually assumes

input-completeness (i.e., all inputs are always possible).

119

120 APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT

Larsen et al., inspired by [dAH01a], have proposed in [LNW06] an interface theory dealing with

this issue, based on the use of I/O interface automata. Their approach consists in defining an interface

as a pair assumption/guarantee where both assumptions and guarantees are I/O automata. A syntac-

tic notion of illegal state is introduced to capture situations when an output is offered without the

corresponding input being possible.

In this section, we show that I/O interface automata [LNW06] can be nicely represented as a con-

tract framework using BIP. We build on the variant BIP with maximal progress but restrict ourselves

to a subset of the BIP glues defined in Section 5.1. In particular, the distinction between inputs and

outputs is used only here to determine which component triggers an interaction (the one proposing

the output), and behaviors are represented by LTS instead of I/O automata. We are then able to ver-

ify that no output is lost like any other safety property, by checking that no output occurs without

the corresponding inputs also being present. We then provide alternative and simpler proofs for two

theorems presented at the beginning of [LNW06], which are only based on abstract concepts such as

transitivity and reflexivity of refinement under context, soundness of circular reasoning etc.

6.1.1 The I/O contract framework

The I/O component framework that we define is based on the first variant BIP framework pre-

sented in Chapter 5, namely BIP with maximal progress. Note that it is essential here to ensure

maximal progress. Indeed, we do not define connectors as rendezvous between an output and the cor-

responding input, but as broadcasts where the input is not necessary for the interaction to take place.

In this context, if two interactions are possible, e.g., a single output {p!} or the same output along

with its corresponding input {p!, p?}, then the latter should be preferred.

In the context of I/O automata, the set of ports Ports is partitioned into input ports Ports? and

output ports Ports ! such that each port appears in both sets. In this section, ! (respectively ?) is used

to denote that a port is an output (respectively an input) or that a set of ports contains only outputs

(resp. inputs). Inputs and outputs are used only to define the connectors. We use the notations and

definitions introduced for BIP with maximal progress in Section 5.1.

Definition 6.1.1 (Component framework) The I/O component framework is defined as follows:

– K is a set of (possibly composite) components.

– K1
∼= K2 , |K1|det = |K2|det 1. It is obviously an equivalence relation.

1. Remember that Adet denotes the determinization of A for any LTS A; see Definition 1.1.6.

APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT 121

– Given a set of ports P = P?∪P !, we define an interaction model on P (and the corresponding

glue) by the following set of connectors Γ. For each p ∈ P:

– if p? and p! are both in P , then we define γp with support set {p!, p?}, exported port ∅ and

interaction set {{p!}, {p?, p!}}.
– if p? is in P but not p!, then we define γp with support set {p?}, exported port p? and

interaction set {{p?}}.
– similarly, if only p! is in P , then we define γp with support set {p!}, exported port p! and

interaction set {{p!}}.
– ◦ is the composition of such interaction models as defined in Section 5.1. Note that if Γ and Γ′

are of the form described in the previous item, then so is Γ ◦ Γ′.

Note that there is exactly one interaction model per support set. Note also that unlike in the more

general framework BIP with maximal progress, it is not necessary here to define the support set of a

glue as a partition.

Definition 6.1.2 (Conformance) K1 4 K2 , Tr(JK1K) ⊆ Tr(JK2K)

For I/O interface automata, refinement under context is the usual one. As exactly one component

has control over an interaction (the component whose port is the output), this definition is sufficient

to ensure soundness of circular reasoning.

Definition 6.1.3 (Refinement under context) Refinement under context is defined as follows:

K1 vE,Γ K2 , Tr(JΓ{K1, E}K) ⊆ Tr(JΓ{K2, E}K)

Interestingly, we know something more about an interaction model Γ that is used to define a

closed system: it must be such that all inputs have a corresponding output and vice versa. That is, it

consists only of connectors of the form {{p!}, {p?, p!}}.

6.1.2 Coherence conditions

Here is a brief summary of the conditions to be checked:

N composition of glues and equivalence of components, that is, ◦ and ∼=
Formally: Γ1{Γ2{K1},K2} ∼= (Γ1 ◦ Γ2){K1 ∪ K2}

� conformance and refinement under context, i.e., 4 and {v}ω∈Ω

Formally: if K1 vE,Γ K2, then Γ{K1, E} 4 Γ{K2, E}
This is trivially obtained from the definitions of v and 4.

122 APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT

� refinement under context and equivalence of components, i.e., {v}ω∈Ω and ∼=
Formally: if K1

∼= K ′1 then K1 vE,Γ K2 if and only if K ′1 vE,Γ K2

This comes directly from the fact that |K1| = |K ′1| implies that JΓ{K1, E}K = JΓ{K2, E}K.

� Is refinement under context preserved by composition?

� Is circular reasoning sound?

N Given a glue Γ on P (i.e. SΓ = P) and Γ1 on P1 ⊆ P , can we determine whether there exists

Γ2 such that Γ = Γ1 ◦ Γ2?

Coherence between ◦ and ∼=

Proof. We want to show that |Γ1{Γ2{K1},K2}|det = |(Γ1 ◦Γ2){K1 ∪K2}|det . Theorem 5.1.13 says

that JΓ1{Γ2{K1},K2}K and J(Γ1 ◦Γ2){K1 ∪K2}K are bisimilar after hiding data transfer within K1.

By definition of closed and open semantics, this implies that |Γ1{Γ2{K1},K2}| and |(Γ1 ◦Γ2){K1 ∪
K2}| are bisimilar. Hence the result. 2

Preservation of refinement by composition

Proof. Refinement under context is preserved by composition.

- Let (E,Γ) be a context for an interface P and ΓE , E1, E2 such that E = ΓE{E1, E2} and Γ◦ΓE =

Γ2 ◦ Γ1, where Γ1 is defined on PK1 ∪ PE1 and Γ2 is defined on PΓ1 ∪ PE2 .

- By definition, K1 vE,Γ K2 , Tr(JΓ{K1, E}K) ⊆ Tr(JΓ{K2, E}K).

- Besides, according to the definition of E etc., we have:

Γ{K1, E} = Γ{K1,ΓE{E1, E2}}
= (Γ ◦ ΓE){K1, E1, E2}
= (Γ2 ◦ Γ1){K1, E1, E2}
= Γ2{Γ1{K1, E1}, E2}

- Similarly, we obtain that Γ{K2, E} = Γ2{Γ1{K2, E1}, E2}.
- Hence: K1 vE,Γ K2 ⇐⇒ Tr(JΓ2{Γ1{K1, E1}, E2}K) ⊆ Tr(JΓ2{Γ1{K2, E1}, E2}K).

- The right part of this equivalence, by definition of refinement under context, is equivalent to:

Γ1{K1, E1} vE2,Γ2 Γ1{K2, E1}. 2

This proof is a direct consequence of properties of composition of BIP glues. We now prove and

discuss soundness of circular reasoning.

APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT 123

Soundness of circular reasoning

Proof. Let us suppose that K vA,Γ G and E vG,Γ A and show that K vE,Γ G.

- That is, suppose (1) Tr(JΓ{K,A}K) ⊆ Tr(JΓ{G,A}K) and (2) Tr(JΓ{G,E}K) ⊆ Tr(JΓ{G,A}K).

We have to prove that Tr(JΓ{K,E}K) ⊆ Tr(JΓ{G,E}K).

- As {v}ω∈Ω is consistent with ∼=, we may safely suppose that K, A, G and E are deterministic, and

as a consequence so are JΓ{K,A}K, JΓ{G,A}K, JΓ{G,E}K and JΓ{K,E}K.

- To simplify notations, we omit in the rest of the proof the brackets JK.

- We prove by induction on the length of the traces that any trace of Γ{K,E} is a trace of Γ{K,A},
of Γ{G,A} and of Γ{G,E}.
- The property trivially holds for traces of length 0.

- Suppose now that this property holds for traces of length l. Let σ be a trace of Γ{K,E} of length

l + 1. We decompose σ as σ′. α.

- Denote (qK , qE) the state of Γ{K,E} reached after firing σ′ from the initial state. As Γ{K,E} is

deterministic, this state is unique (see Property 1.1.5).

- As σ′ is a trace of Γ{K,E} of length l, it is also a trace of Γ{K,A}, Γ{G,A} and Γ{G,E}. Denote

respectively (qK , qA), (qG, qA) and (qG, qE) the states reached after firing σ′ from the initial state.

- As already mentioned, Γ defines a closed system and as a result it is specific: all inputs have a cor-

responding output and vice versa. That is, Γ consists only of connectors of the form {{p!}, {p?, p!}}
with p? ∈ PK and p! ∈ PE — we say that p is controlled by E — or p? ∈ PE and p! ∈ PK — where

p is controlled by K.

- Suppose that p is controlled by K in Γ{K,E}— and thus also in Γ{K,A}. Thus, α is either {p!}
or {p?, p!} with p! ∈ PK and p? ∈ PE . This implies that p! is enabled in qK .

- Suppose first that α = {p?, p!}.
This implies that p? is enabled in qE .

Because of (1), p! is enabled in qG (whether p? is enabled in qA or not does not matter here). Hence,

α is enabled in (qG, qE), so σ is a trace of Γ{G,E}.
As σ is a trace of Γ{G,E}, we get from (2) that α is enabled in (qG, qA). This in turn implies that p?

is enabled in qA and thus α is also enabled in (qK , qA).

Thus, if p is controlled by K in Γ{K,E} and if α = {p?, p!}, then σ is a trace of Γ{G,E}, Γ{K,A}
and Γ{G,A}.
- Suppose now that α = {p!} (p is still controlled by K).

Because of maximal progress, this implies that p? is not enabled in qE .

As before, because of (1), p! is enabled in qG (whether p? is enabled in qA or not does not matter

124 APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT

here). Hence, α is enabled in (qG, qE), so σ is a trace of Γ{G,E}.
As σ is a trace of Γ{G,E}, we get from (2) that α is enabled in (qG, qA). This in turn implies that p?

is not enabled in qA and thus α is also enabled in (qK , qA).

- Thus, if p is controlled by K in Γ{K,E} (whether α = {p!} or α = {p?, p!}), then σ is a also trace

of Γ{G,E}, Γ{K,A} and Γ{G,A}.
- Suppose now that p is controlled by E in Γ{K,E} and then also in Γ{G,E}. This implies that p!

is enabled in qE .

- Again, suppose first that α = {p?, p!}.
This implies that p? is enabled in qK .

Because of (2), p! is enabled in qA (whether p? is enabled in qG or not does not matter here). Hence,

α is enabled in (qK , qA), so σ is a trace of Γ{K,A}.
As σ is a trace of Γ{K,A}, we get from (1) that α is enabled in (qG, qA). This in turn implies that p?

is enabled in qG and thus α is also enabled in (qG, qE).

Suppose now that α = {p!} (p is still controlled by E).

Because of maximal progress, this implies that p? is not enabled in qK .

As before, because of (2), p! is enabled in qA (whether p? is enabled in qG or not does not matter

here). Hence, α is enabled in (qK , qA), so σ is a trace of Γ{K,A}.
As σ is a trace of Γ{K,A}, we get from (1) that α is enabled in (qG, qA). This in turn implies that p?

is not enabled in qG and thus α is also enabled in (qG, qE).

- Thus, if p is controlled by E in Γ{K,E} (whether α = {p!} or α = {p?, p!}), then σ is a also trace

of Γ{G,E}, Γ{K,A} and Γ{G,A}.
- Hence the result. 2

Soundness of circular reasoning in this case is ensured by the asymmetry in the interaction: exactly

one component has control over an interaction, which implies that knowing what happens in the

global system is sufficient to determine what may be possible for each component. In particular, if an

interaction is forbidden, then only the trigger of this interaction must forbid it, because the synchrons

will anyway be blocked by the absence of the trigger.

6.1.3 Using the I/O contract framework

To illustrate the usefulness of reasoning at this level of abstraction, we present simple proofs for

two theorems of [LNW06] which are applications of circular reasoning. As they are completely inde-

pendent of the I/O framework and only rely on compositionality and soundness of circular reasoning,

they hold in any contract-based verification framework ensuring these two properties. These theorems

APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT 125

are presented in the context of a dominance problem where two low-level contracts (A1,Γ1, G1) and

(A2,Γ2, G2) must dominate a top-level contract (A,Γ, G) with G = Γ1,2{G1, G2}.

The first theorem states that it is sufficient to discharge assumptions Ai in the abstract context to

be sure that these assumptions are indeed discharged by any actual context satisfying its own contract.

Theorem 6.1.4
ΓA,2{A,G2} vG1,Γ1 A1 ∧ ΓA,1{A,G1} vG2,Γ2 A2

is equivalent to

∀K1,K2,K1 vA1,Γ1 G1∧K2 vA2,Γ2 G2 =⇒ ΓA,2{A,K2} vK1,Γ1 A1∧ΓA,1{A,K1} vK2,Γ2 A2

Proof. The right-to-left implication is trivial since G1 vA1,Γ1 G1 and G2 vA2,Γ2 G2 (because for

any A and Γ the relation vA,Γ is reflexive). Now let us fix K1 and K2 and suppose that the following

properties hold. 
ΓA,2{A,G2} vG1,Γ1 A1 (1)

ΓA,1{A,G1} vG2,Γ2 A2 (2)

K1 vA1,Γ1 G1 (3)

K2 vA2,Γ2 G2 (4)

Our goal is to prove that ΓA,2{A,K2} vK1,Γ1 A1 and ΓA,1{A,K1} vK2,Γ2 A2. By applying

circular reasoning (CR) to (3) and (1), and to (4) and (2), we get the following:{
K1 vΓA,2{A,G2},Γ1

G1 (5)

K2 vΓA,1{A,G1},Γ2
G2 (6)

Then, by preservation of refinement by composition (CMP), we get from (5) and (6):{
ΓA,1{A,K1} vG2,Γ2 ΓA,1{A,G1} (7)

ΓA,2{A,K2} vG1,Γ1 ΓA,2{A,G2} (8)

We now apply transitivity of vG2,Γ2 (resp. vG1,Γ1) to (7) and (2) (resp. (8) and (1)):{
ΓA,1{A,K1} vG2,Γ2 A2 (9)

ΓA,2{A,K2} vG1,Γ1 A1 (10)

126 APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT

Finally, by applying circular reasoning (CR) to (9) and (4), and to (10) and (3), we get the result:{
ΓA,1{A,K1} vK2,Γ2 A2

ΓA,2{A,K2} vK1,Γ1 A1

2

The second theorem is a special case of the sufficient condition for dominance expressed in The-

orem 2.3.5. We give here the proof for this particular case to emphasize the relevant properties.

Theorem 6.1.5
ΓA,2{A,G2} vG1,Γ1 A1 ∧ ΓA,1{A,G1} vG2,Γ2 A2

implies

∀K1,K2,K1 vA1,Γ1 G1 ∧K2 vA2,Γ2 G2 =⇒ Γ1,2{K1,K2} vA,Γ Γ1,2{G1, G2}

Proof. let us fix K1 and K2 and suppose that the following properties hold.
ΓA,2{A,G2} vG1,Γ1 A1 (1)

ΓA,1{A,G1} vG2,Γ2 A2 (2)

K1 vA1,Γ1 G1 (3)

K2 vA2,Γ2 G2 (4)

Our goal is to prove that Γ1,2{K1,K2} vA,Γ Γ1,2{G1, G2}.
The first two steps of this proof already appeared in the previous proof.

By applying circular reasoning (CR) to (3) and (1), we get:

K1 vΓA,2{A,G2},Γ1
G1 (5)

Then, by preservation of refinement by composition (CMP), we obtain:

ΓA,1{A,K1} vG2,Γ2 ΓA,1{A,G1} (6)

Next, we apply transitivity of vG2,Γ2 to (6) and (2):

ΓA,1{A,K1} vG2,Γ2 A2 (7)

We now apply (CR) to (4) and (7):

K2 vΓA,1{A,K1},Γ2
G2 (8)

APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT 127

We apply (CMP) to (8) and to (5):{
Γ1,2{K1,K2} vA,Γ Γ1,2{K1, G2} (9)

Γ1,2{K1, G2} vA,Γ Γ1,2{G1, G2} (10)

Finally, by transitivity of vA,Γ applied to (9) and (10), we obtain the result:

Γ1,2{K1,K2} vA,Γ Γ1,2{G1, G2} 2

Note that this theorem expresses the sufficient condition for dominance provided in Theorem 2.3.5

in the case where there are only two components with contracts (A1,Γ1, G1) and (A2,Γ2, G2),

and where the global contract is (A,Γ,Γ1,2{G1, G2}). The left-hand side in the theorem above and

Γ1,2{G1, G2} vA,Γ Γ1,2{G1, G2} (implied by reflexivity of vA,Γ) correspond exactly to the suffi-

cient condition of 2.3.5. Hence, {(A1,Γ1, G1), (A2,Γ2, G2)} dominates (A,Γ,Γ1,2{G1, G2}), which

is exactly the right-hand side of Theorem 6.1.5.

The proofs presented here do not depend on the formalism of I/O automata, which makes them

shorter and easier to understand than in [LNW06].

6.2 The SPEEDS project

We show now how the general methodology presented in Chapter 2 has been applied in the con-

text of the SPEEDS project [SPE]. In this project, a modeling framework called HRC — standing for

Heterogeneous Rich Components — has been defined to provide system designers with an environ-

ment for contract-based design. HRC offers the possibility to define hierarchical components where

interactions and data exchange are defined by explicit connectors between ports which define the

component’s interface. Components are associated with behaviors (implementations) and contracts

are represented as a pair of behaviors (that is, properties) expressing an assumption on the environ-

ment and a guarantee, that is a property that the component’s implementation must realize in any

environment obeying the constraint imposed by the assumption.

In HRC, we choose to represent behaviors on an interface (that is represented as a set of portsP) as

labeled transition systems, which are sufficiently enriched to represent hybrid and stochastic behaviors

as well as implementations realizing complex data transformations. To simplify the presentation, we

restrict ourselves here to abstract transition systems without data nor any other extension.

Definition 6.2.1 (LTS as behaviors) A behavior on a set of ports P is a labeled transition system as

128 APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT

in Definition 1.1.1 and such that its set of labels is 2P .

For hierarchical model composition, there exist several models defining different levels of abstraction:

they range from low-level semantic composition (called L0) to user level composition which general-

izes the composition primitives existing in commercial design tools. We discuss here two layers: L0

which we already mentioned, and L1 which offers a richer set of glues.

In L0, connectors are simple name matchings which connect an output port to one (or more) input

ports, possibly in a hierarchical fashion. The composition semantics is synchronous, that is, a transi-

tion of a composed system involves all components in a globally maximal interaction. L1-connectors

are more complex; they are inspired by BIP connectors [GS05]. In L1, a connector defines a set of

possible interactions on a set of ports, which may be output, input or event ports. For compatibility

reasons, connectors on inputs and outputs must obey the same constraints as L0 connectors, that is,

connect exactly one output to a set of inputs and define exactly one interaction involving all connected

ports. The L1 execution model is more asynchronous as executions of different connectors are inter-

leaved. In fact, it corresponds to the second variant of BIP presented in the previous chapter called

multishot BIP.

6.2.1 The L0 contract framework

At the semantic level, the L0 contract framework of the SPEEDS HRC model is based on a simple

trace-based representation, and uses set operations for the definition of the operators. In other words,

LTS are used at the L0 level as recognizers for the trace representation. This is convenient, as the

synchronous composition semantics translates into simple intersection of trace sets. In this context, we

are not concerned with the specific form of a trace (more details can be found elsewhere [BFM+08]).

Instead, we simply assume that for any set of ports P there exists a set of corresponding tracesG over

those ports which we call behaviors or runs over P . As discussed in Section 5.3, the set of behaviors

is equipped with a projection operator ΠP1(G)which restricts the behaviors to ports in P1 ⊆ P2, and

a corresponding inverse projection Π−1
P2

(G) to extend the behaviors to a larger set of ports P2.

A component K with interface PK at level L0 is defined as a set of behaviors over PK . The

behaviors correspond to the history of ports that are visited when traversing the transitions of the LTS.

Composition, in the original formulation, is defined as a new LTS obtained by the Cartesian product

of the transition systems, and by retaining only the pairs of transitions whose labels of ports match,

given the correspondence induced by the connectors. If the matching ports of the two components

had the same names, composition at the level of trace sets would boil down to a simple intersection

of the sets of behaviors. Because this is not true in general, and is forbidden by the definitions of

APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT 129

our framework (components must have disjoint sets of ports under composition), we must introduce

the connectors as explicit components that establish a synchronous relation between the histories of

connected ports. The collection of these simple connectors forms the glues Γ of our framework at

the L0 level. In addition to that, to make intersection work, we must also equalize the ports of all

trace sets using inverse projection, to have a coherent representation of the composite. In particular,

if K = {K1, . . . ,Kn} is a set of components such that P1, . . . ,Pn are pairwise disjoint, then a

composition operator Γ for K is a component KΓ defined on the ports P = PΓ ∪
⋃n
i=1 Pi, and:

K = Γ{K1, . . . ,Kn}

= ΠPΓ
(KΓ ∩Π−1

P K1 ∩ . . . ∩Π−1
P Kn)

Component KΓ is always taken as an identity operator, and is used exclusively to rename ports in

the composition and to construct the new interface PΓ. In the following, at the semantic level, we

implicitly assume the appropriate connector components are used whenever a composition is required,

and instead use components with equal sets of ports for convenience.

The definition of ◦ is straightforward. Since glues are themselves components, their composition

follows the same principle as component composition. Finally, the∼= relation onK is taken as equality

of sets of traces.

It is easy to define a notion of conformance 4 for the L0 model. This notion is equivalent to the

traditional notion of refinement, and is defined as trace containment. More formally, ifK1 andK2 are

components over the same set of ports P , then K1 4 K2 if and only if K1 ⊆ K2.

L0 contracts

Contracts are defined in L0 as pairs (A,G) of components over the same set of ports. In partic-

ular, A represents the assumptions of the contract, or, equivalently, the behaviors that are considered

acceptable by the contract. Likewise, G expresses the guarantees, or those behaviors that are possi-

ble under the contract, provided the assumptions are satisfied. The glue Γ is implied by port name

matching.

The definition of refinement under contextvE,Γ is derived from the definition of composition and

conformance as in Example 2.2.5. K1 vE,Γ K2 if and only if Γ{K1, E} 4 Γ{K2, E}. The relation

so defined is a preorder, and satisfies by definition the conditions required by our framework.

In the L0 model, contract satisfaction is defined as refinement under the context of the assump-

130 APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT

tions. Formally, a component K satisfies a contract C = (A,G) if and only if

K ∩A ⊆ G.

Observe that the above is equivalent to K ∩ A ⊆ G ∩ A. In our framework, this translates into

Γ{K,A} 4 Γ{G,A}, where Γ is the appropriate composition operator that computes the identity

relation. By definition, this is the same as K vA,Γ G. Thus, the definition of satisfaction in HRC is

consistent with the more general definition of satisfaction of our framework.

In the L0 model there exists a unique maximal component satisfying a contract C, namely:

MC = G ∪ ¬A, (6.1)

where ¬ denotes the operation of complementation on the set of all behaviors over ports PA. The

operation of computing a canonical form is well defined, since the maximal implementation is unique,

and it is idempotent. It is easy to show thatK |= C if and only ifK ⊆MC . We say that a contract C =

(A,G) is in canonical form when G = MC . Every contract has an equivalent contract in canonical

form, which is obtained by replacingG withMC . In the following, we focus on contracts in canonical

form, since several expressions can be simplified. The limitation is that complementation may not

be effective in certain models (such as timed models). Besides, in our methodology, assumptions are

meant to be used top-down by implementations, not to help discharging guarantees in a bottom-up

fashion. Thus, MC is likely to be more expressive than needed. In such cases, the use of canonical

forms is precluded, and the more generic L1 theory is required.

Parallel composition of contracts in L0

Contract composition formalizes how contracts related to different components should be com-

bined to specify a single, compound, component. Let C1 = (A1, G1) and C2 = (A2, G2) be contracts.

First, composing these two contracts amounts to composing their promises. Regarding assumptions,

however, the situation is more subtle. Suppose first that these two contracts possess disjoint sets of

ports and variables. At a first sight, the assumptions of the composite should intuitively be simply the

conjunction of the assumptions of the rich components, since the environment should satisfy all the

assumptions. In general, however, part of the assumptions A1 will be already satisfied by composing

C1 with C2 acting as a partial environment for C1. Therefore,G2 can contribute to relaxing assumption

A1, and vice versa. Whence the following definition:

APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT 131

Definition 6.2.2 (Composition of contracts) The parallel composition C1 || C2 is defined as the con-

tract C = (A,G) such that:

A = (A1 ∩A2) ∪ ¬(G1 ∩G2),

G = G1 ∩G2.

Note that the so defined contract is in canonical form.

The following result, which is not true in the general case, expresses the strong compositional prop-

erties of the L0 contract theory.

Lemma 6.2.3 If K |= C and K |= C′, then K ∩K ′ |= C || C′.

Dominance in L0

Dominance is defined in L0 as a contravariant relation between assumptions and guarantees. The

relation between guarantees is required for general dominance, whereas the second condition for

assumptions is intended for preserving well-formedness.

Definition 6.2.4 (L0-Dominance) A contract C = (A,G) dominates a contract C′ = (A′, G′) if and

only if A ⊇ A′ and G ⊆ G′.

Dominance amounts to relaxing assumptions and reinforcing promises. Note that if C dominates C′

and C′ dominates C, then C = C′. Furthermore, if C dominates C′ thenMC |= C′. This property implies

the following result, which relates the definition of dominance in L0 to the more general definition of

our contract framework:

Lemma 6.2.5 If K |= C and C dominates C′, then K |= C′.

As a partial order, dominance admits both greatest lower bounds and least upper bounds, which we

call conjunction and disjunction of contracts, respectively. Let C1 = (A1, G1) and C2 = (A2, G2) be

contracts. The greatest lower bound of C1 and C2, written C = C1 u C2, is given by C = (A,G) where

A = A1 ∪A2 and G = G1 ∩G2. Similarly, the least upper bound of C1 and C2, written C = C1 t C2,

is given by C′ = (A′, G′) where A = A1 ∩ A2 and G = G1 ∪ G2. Note that the result of these

operations are contracts in canonical form. Minimal and maximal contracts can also be defined, as

well as complementation, making L0 contracts a boolean algebra.

132 APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT

Discussion

The L0 contract framework has strong compositional properties, which derive from its simple

definition and operators. The theory, however, depends on the effectiveness of certain operators, com-

plementation in particular, which are necessary for the computation of canonical forms. While the

complete theory can be formulated without the use of canonical forms, complementation remains

fundamental in the definition of contract composition, which is at the basis of system construction.

Circular reasoning is sound for a contract framework based on canonical forms. This is because

any behavior that is not allowed to the environment, is instead allowed by the guarantees. This is no

longer the case for contracts which are not in canonical form. This is a limitation of the L0 framework,

since working with canonical forms could prove computationally hard.

In the following section we analyze a higher level model, for which there is no obvious compo-

sition of contracts. We will show that the high level framework, called L1, can be used consistently

with L0 by proving that properties in L1 are preserved in L0 by soundness results.

6.2.2 The L1 contract framework

The HRC L1 framework (1) is able to express more complex glues and (2) decouples the notions

of conformance and refinement in a context in order to enable circular reasoning even for contracts

that are not in normal form, and thus avoid the limitations of the L0 contract framework.

For defining the L1 contract framework, we follow the general methodology exhibited in Sec-

tion 2.1. The L1 component framework corresponds to the multishot BIP component framework of

Chapter 5.

L1 contracts

Let P be an interface and Γ a glue with P in its support set, which implicitly defines an interface

PE of the environment. An L1-contract for P is then of the form (A,Γ, G) where A is an LTS on PE
and G an LTS on P . Note that we have provided a compositional semantics which associates with

every component an atomic one that is equivalent, so it is sufficient to consider only atomic compo-

nents, that is, LTS. It now remains to define the two refinement relations, conformance and refinement

under context. We choose L1-conformance to be simulation, that is, the structural counterpart of L0-

conformance (trace inclusion).

Definition 6.2.6 (L1-conformance) K1 4L1 K2 , JK1K simulates JK2K.

APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT 133

Thus, L1-conformance is identical to L0-conformance for behaviors without non-observable non-

determinism, and otherwise it is stronger. Note that in verification tools, in order to check trace inclu-

sion efficiently, one will generally check simulation anyway.

For refinement under context, which defines contract satisfaction, we choose a stronger relation

than for L0, in order to be able to use circular reasoning for dominance checks.

Definition 6.2.7 (L1-satisfaction) Given an LTS K on an interface P and a contract (A,Γ, G) for

P , we define satisfaction as:

K vL1
A,Γ G ,

{
Γ{K,Adet} 4L1 Γ{G,Adet}
(qK , qA)R (qG, q

′
A) ∧ qK

α−→K =⇒ qG
α−→G

where Adet is the determinization of A (see Definition 1.1.6) and R is the relation proving that

Γ{K,Adet} 4L1 Γ{G,Adet}.

That is, vL1 strengthens the usual notion of refinement under context defined in Example 2.2.5

and used in the L0 framework by determinizing A and adding a condition stating that every transition

of a refining state must correspond to a transition in each corresponding abstract state — but the

target states must be related only if the environment allows this transition. As a consequence, vL1

allows circular reasoning. Note that in frameworks with data, one usually requires preservation of

certain predicates from the concrete to the abstract transition system; here we require preservation of

transition enabledness, independently of data.

Note that we are interested in preserving well-formedness in this framework. As a result, we use

strong dominance here as in Section 3.1.5.

6.2.3 Consistency between L0 and L1

In the previous sections, we have introduced two different notions of refinement under context:

vL0 and vL1 where the second is strictly stronger than the first one. As already stated, circular

reasoning is sound for vL1 but not for vL0.

Now, based on the results of Section 3.3, we provide a way of relaxing the dominance checking

for L1. Symmetrically, we propose a verification condition for L0-satisfaction that does not require

the actual environment to refine the abstraction of the environment in any context. As explained in

Section 3.3, these two improvements are based respectively on the following two theorems.

Theorem 6.2.8 If K vL1
A,Γ G and E vL0

G,Γ A, then K vL1
E,Γ G.

134 APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT

This allows us to relax our sufficient condition for dominance in L1. This is particularly interesting

because checking L0-satisfaction is obviously easier than checking L1-satisfaction. Thus, checking

that a set of contracts {Ci}ni=1 L1-dominates a contract C requires one L1-satisfaction check and n L0-

satisfaction checks. Moreover, this relaxed rule allows establishing dominance more often. Finally,

L1- and L0-satisfaction are very similar. As a result, if L1-satisfaction cannot be established, the

relation under construction can be reused to check L0-dominance.

Theorem 6.2.9 If K vL0
A,Γ G and E vL1

G,Γ A, then K vL0
E,Γ G.

This second theorem allows in the SPEEDS project building a complete tool chain based on a set

of tools checking either L0-satisfaction or L1-dominance (implemented by a set of L1-satisfaction

checks). We can check a complete contract hierarchy requiring dominance checks using the existing

L1 dominance checker, and at the very end check satisfaction mostly with the more scalable L0

satisfaction checker.

Based on these theorems, it is possible to combine in several ways the results from the L0-

satisfaction and L1-dominance/satisfaction checker that have been developed in the SPEEDS project.

6.2.4 Implementation issues

We have developed a dominance and satisfaction checker for the L1 framework. This prototype

is based on the Maude rewrite engine [Mau]. We do not present it in detail here but we describe a

specific problem that is related to the question of structuring of systems discussed in Section 3.1.1.

The situation is illustrated in Figure 6.1: given a dominance problem, that is, a top-level contract C for

an interface P; a decomposition ΓI of this interface; a set of low-level contracts {Ci}ni=1, how do we

find the glues ΓE1 and ΓE2 that are necessary to apply our sufficient condition for dominance? The

L0-dominance problem is more specific than the general dominance problem described in Chapter 2,

because connectors are rendezvous, and rendezvous can be easily restructured. However, in the dom-

inance checker that we have implemented, the exported port of a connector is defined by a function

∗ of its support set: if γ is such that Sγ = {p1, p2}, then pγ = ∗{p1, p2}. Thus, we are left with

a problem of unification of names, because ΓE1 and ΓE2 are obvious, but their exported interfaces

do not necessarily match PA1 and PA2 . Rather than introducing explicitly renaming of ports in the

system, our implementation computes a renaming of ports in PA1 , PA2 and P such that all interfaces

match.

APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT 135

P1

PA1

PA2

P2

PA

P

C1 C2

G1 A1
A2 G2

ΓE2

ΓE1

ΓI

AG

C

Figure 6.1 – Given C, C1, C2 and ΓI , how to find ΓE1 and ΓE2?

136 APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT

6.2.5 Proofs

We prove here the following theorems:

1. L1-satisfaction implies L0-satisfaction

2. Soundness of circular circular reasoning for vL1

3. Soundness of pseudo-circular reasoning for vL1 and vL0

4. Soundness of pseudo-circular reasoning for vL0 and vL1

We also provide characterizations of vL1 and vL0 which are used in the proofs.

Lemma 6.2.10 JΓ{K1, E}K simulates JΓ{K2, E}K if and only if there existsR ⊆ (Q1 ×QE)×Q2

such that:

– (q0
1, q

0
E)R q0

2

– If (q1, qE)R q2 and (q1, qE)
α−→ (q′1, q

′
E) for α ∈ I(Γ) such that α = αK ∪ αE , then

∃q′2 s.t. q2
αK−→ q′2 and (q′1, q

′
E)R q′2.

Characterization of L1-satisfaction

Lemma 6.2.11 K1 vL1
E,Γ K2 if and only if there exists a relationR ⊆ (Q1 × 2QE)×Q2 such that:

– (q0
1, {q0

E})R q0
2

– If (q1,QE)R q2 and q1
αK−→1 q

′
1, there exists q′2 such that:

1. q2
αK−→2 q

′
2

2. if there exists αE , qE ∈ QE and q′E ∈ QE such that qE
αE−→E q′E and αK ∪ αE ∈ I(Γ),

then (q′1,Q′E)R q′2 where Q′E is {q′E | ∃qE ∈ QE s.t. qE
αE−→E q

′
E}.

We use the convention that ∀q ∅−→ q, so the above condition includes cases where only K1 or only

E move on.

Characterization of L0-satisfaction

Lemma 6.2.12 K1 vL0
E,Γ K2 if and only if there exists a relationR ⊆ (2Q1 ×QE)× 2Q2 such that:

– ({q0
1}, q0

E)R{q0
2}

– If (Q1, qE)RQ2 and (q1, qE)
α−→ (q′1, q

′
E) for q1 ∈ Q1 with α = αK ∪ αE ∈ I(Γ), then

there exists q2 ∈ Q2 and q′2 ∈ Q2 such that q2
αK−→ q′2 and (Q′1, q′E)RQ′2 for Q′1 defined as

{q′1 | ∃q1 ∈ Q1 s.t. q1
αK−→1 q

′
1} and Q′2 defined as {q′2 | ∃q2 ∈ Q2 s.t. q2

αK−→2 q
′
2}.

We use the convention that ∀q ∅−→ q, so the above condition includes cases where only K1 or only

E moves on.

APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT 137

L1-satisfaction implies L0-satisfaction

Proof. We suppose that K1 vL1
E,Γ K2, and then we prove that K1 vL0

E,Γ K2.

- As K1 vL1
E,Γ K2, there exists a relation R ⊆ (Q1 × 2QE)×Q2 as in Lemma 6.2.11.

- We define R ′ ⊆ (2Q1 × QE) × 2Q2 as follows: we define ({q1}, qE)R′ {q2} iff there exists

QE ⊆ QE such that qE ∈ QE and (q1,QE)R q2.

- Obviously ({q0
1}, q0

E)R′ {q0
2}.

- Now suppose ({q1}, qE)R′ {q2} and (q1, qE)
α−→ (q′1, q

′
E) with α = αK ∪ αE ∈ I(Γ). We must

show that there exists q′2 ∈ Q2 such that q2
αK−→ q′2 and ({q′1}, q′E)R′ {q′2}.

- Let QE ⊆ QE be such that qE ∈ QE and (q1,QE)R q2. We have q1
αK−→1 q

′
1. Thus, there exists q′2

such that q2
αK−→2 q

′
2.

- Besides, as qE
αE−→E q

′
E , we have (q′1,Q′E)R q′2 where Q′E is {q′E | ∃qE ∈ QE s.t. qE

αE−→E q
′
E}.

- Hence, by definition ofR′: ({q′1}, q′E)R′ {q′2}. 2

Soundness of circular reasoning for vL1

Proof. Let K be a component on P , (E,Γ) a context for P and C = (A,Γ, G) a contract for P .

- Suppose that K vL1
A,Γ G ∧ E vL1

G,Γ A. We have to prove that K vL1
E,Γ G.

- AsK vL1
A,Γ G andE vL1

G,Γ A, there exist two relationsR1 andR2 on respectively (QK×2QA)×QG
and (QE × 2QG)×QA as in Lemma 6.2.11.

- We define R ⊆ (QK × 2QE) × QG as follows: for any qK ∈ QK , QE ⊆ QE and qG ∈ QG,

(qK ,QE)R qG iff there exists QA ⊆ QA, QG ⊆ QG, qE ∈ QE and qA ∈ QA such that qG ∈ QG,

(qK ,QA)R1 qG and (qE ,QG)R2 qA.

- We have to prove thatR ensures the conditions of Lemma 6.2.11. Obviously, (q0
K , {q0

E})R q0
G.

- Let qK ∈ QK ,QE ⊆ QE and qG ∈ QG be such that (qK ,QE)R qG. Let QA ⊆ QA, QG ⊆ QG,

qE ∈ QE and qA ∈ QA be such that qG ∈ QG, (qK ,QA)R1 qG and (qE ,QG)R2 qA.

- Now suppose qK
αK−→K q′K .

- We have to prove that there exists q′G such that:

1. qG
αK−→G q

′
G

2. if there exists αE , qE ∈ QE and q′E ∈ QE such that qE
αE−→E q′E and αK ∪ αE ∈ I(Γ), then

(q′K ,Q′E)R q′G where Q′E is {q′E | ∃qE ∈ QE s.t. qE
αE−→E q

′
E}.

- Because (qK ,QA)R1 qG and qK
αK−→K q′K , we know that there exists q′G such that:

– qG
αK−→G q

′
G

138 APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT

– if there exists αA, qA ∈ QA and q′A ∈ QA such that qA
αA−→A q′A and αK ∪ αA ∈ I(Γ), then

(q′K ,Q′A)R q′G with Q′A defined as {q′A | ∃qA ∈ QA s.t. qA
αA−→A q

′
A}.

- We show that this q′G satisfies the two conditions required above fromR. Condition 1. is exactly the

same as forR1.

- Let us show that the second condition holds. Suppose that there exists αE , qE ∈ QE and q′E ∈ QE
such that qE

αE−→E q′E and αK ∪ αE ∈ I(Γ). Let Q′E be defined as above by Q′E = {q′E | ∃qE ∈
QE s.t. qE

αE−→E q
′
E}. We have to show that (q′K ,Q′E)R q′G.

- As (qE ,QG)R2 qA and qE
αE−→E q

′
E , we know that there exists q′A such that:

– qA
αE−→A q

′
A

– if there exists αG, qG ∈ QG and q′G ∈ QG such that qG
αG−→G q′G and αG ∪ αE ∈ I(Γ), then

(q′E ,Q′G)R q′A with Q′G defined as {q′G | ∃qG ∈ QG s.t. qG
αG−→G q

′
G}.

- Thus, applying the second property offered byR1 to this αE and q′A, we obtain that (q′K ,Q′A)R1 q
′
G

where Q′A is defined as {q′A | ∃qA ∈ QA s.t. qA
αE−→A q

′
A}.

- Besides, as there exist indeed qG ∈ QG and q′G ∈ QG such that qG
αK−→G q′G, then applying

the second property offered by R2, we obtain (q′E ,Q′G)R2 q
′
A for Q′G defined as {q′G | ∃qG ∈

QG s.t. qG
αK−→G q

′
G}.

- Finally, according to the definition of R , we can conclude that (q′K ,Q′E)R q′G. 2

APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT 139

Pseudo-circular reasoning for vL1 and vL0

Proof. Let K be a component on an interface P , (E,Γ) a context for P and C = (A,Γ, G) a con-

tract for P . We suppose that K vL1
A,Γ G and E vL0

G,Γ A, and then we prove that K vL1
E,Γ G.

- As K vL1
A,Γ G, there exists a relationR1 on (QK × 2QA)×QG as in Lemma 6.2.11.

- As E vL0
G,Γ A, there exists a relationR2 on (2QE ×QG)× 2QA as in Lemma 6.2.12.

- We define R ⊆ (QK × 2QE) × QG as follows: for any qK ∈ QK , QE ⊆ QE and qG ∈ QG, we

define (qK ,QE)R qG iff there exists QA ⊆ QA such that (qK ,QA)R1 qG and (QE , qG)R2QA.

- We have to prove thatR ensures the conditions of Lemma 6.2.11. Obviously, (q0
K , {q0

E})R q0
G.

- Let qK ∈ QK ,QE ⊆ QE , qG ∈ QG be such that (qK ,QE)R qG. Let QA be such that

(qK ,QA)R1 qG and (QE , qG)R2QA.

- Now suppose qK
αK−→K q′K .

- We have to prove that there exists p′G such that:

1. qG
αK−→G q

′
G

2. if there exists αE , qE ∈ QE and q′E ∈ QE such that qE
αE−→E q′E and αK ∪ αE ∈ I(Γ), then

(q′K ,Q′E)R q′G where Q′E is {q′E | ∃qE ∈ QE s.t. qE
αE−→E q

′
E}.

- Because (qK ,QA)R1 qG and qK
αK−→K q′K , we know that there exists q′G such that:

– qG
αK−→G q

′
G

– if there exists αA, qA ∈ QA and q′A ∈ QA such that qA
αA−→A q′A and αK ∪ αA ∈ I(Γ), then

(q′K ,Q′A)R q′G with Q′A defined as {q′A | ∃qA ∈ QA s.t. qA
αA−→A q

′
A}.

- We show that this q′G satisfies the two conditions required above fromR. Condition 1. is exactly the

same as forR1.

- Let us show that the second condition holds. Suppose there exist αE , qE ∈ QE and q′E ∈ QE

such that qE
αE−→E q′E and αK ∪ αE ∈ I(Γ). Let Q′E be defined as above by Q′E = {q′E | ∃qE ∈

QE s.t. qE
αE−→E q

′
E}. We have to show that (q′K ,Q′E)R q′G.

- As qE
αE−→E q′E and qG

αK−→G q′G, we know that (qE , qG)
α−→ (q′E , q

′
G). Thus, from

(QE , qG)R2QA and because qE ∈ QE , we can conclude that there exist qA ∈ QA and q′A ∈ QA
such that qA

αE−→ q′A and (Q′E , q′G)R2Q′A for Q′E defined as above and Q′A defined as {q′A | ∃qA ∈
QA s.t. qA

αE−→A q
′
A}.

- Now, applying the second property offered by R1 to this αE , qA and q′A, we obtain that

(q′K ,Q′A)R1 q
′
G with QA as defined above.

- Finally, according to the definition of R , we can conclude that (q′K ,Q′E)R q′G. 2

140 APPLICATION TO I/O AUTOMATA AND TO THE SPEEDS PROJECT

Pseudo-circular reasoning for vL0 and vL1

Proof. Let K be a component on an interface P , (E,Γ) a context for P and C = (A,Γ, G) a con-

tract for P . We suppose that K vL0
A,Γ G and E vL1

G,Γ A, and then we prove that K vL0
E,Γ G.

- As K vL0
A,Γ G, there exists a relationR1 on (2QK ×QA)× 2QG as in Lemma 6.2.12.

- As E vL1
G,Γ A, there exists a relationR2 on (QE × 2QG)×QA as in Lemma 6.2.11.

- We define R ⊆ (2QK ×QE) × 2QG as follows: for any QK ⊆ QK , qE ∈ QE and QG ⊆ QG, we

define (QK , qE)RQG iff there exists qA ∈ QA such that (QK , qA)R1QG and (qE ,QG)R2 qA.

- We have to prove thatR ensures the conditions of Lemma 6.2.12. Obviously, ({q0
K}, q0

E)R{q0
G}.

- Let QK ⊆ QK , qE ∈ QE and QG ⊆ QG be such that (QK , qE)RQG. Let qA be such that

(QK , qA)R1QG and (qE ,QG)R2 qA.

- Now suppose (qK , qE)
α−→ (q′K , q

′
E) for qK ∈ QK with α = αK ∪αE ∈ I(Γ). LetQ′K be defined

as {q′K | ∃qK ∈ QK s.t. qK
αK−→K q′K} and Q′G as {q′G | ∃qG ∈ QG s.t. qG

αK−→G q′G}. We have to

prove that there exists qG ∈ QG and q′G ∈ QG such that qG
αK−→ q′G and that (Q′K , q′E)RQ′G.

- As (qK , qE)
α−→ (q′K , q

′
E), we know that qE

αE−→E q′E . Then, because (qE ,QG)R2 qA and

qE
αE−→E q

′
E , there exists q′A such that:

– qA
αE−→A q

′
A

– if there exists αG, qG ∈ QG and q′G ∈ QG such that qG
αG−→G q′G and αG ∪ αE ∈ I(Γ), then

(q′E ,Q′G)R q′A with Q′G defined as above.

- This implies in particular that (qK , qA)
α−→ (q′K , q

′
A). Thus, from (qK ,QA)R1 qG and because

qA ∈ QA, we can conclude that there exists qG ∈ QG and q′G ∈ QG such that qG
αK−→ q′G and

(Q′K , q′A)R1Q′G for Q′K and Q′G defined as above.

- This gives us the qG and q′G we were looking for. There only remains to prove that (Q′K , q′E)RQ′G.

- Now, applying the second property offered by R2 to this αK , qG and q′G, we obtain that

(q′E ,Q′G)R2 q
′
A.

- Hence, according to the definition of R , the conclusion that (q′K ,Q′E)R q′G. 2

Chapter 7

Contract frameworks for transition
systems

In this chapter, we explore more thoroughly various refinement under context relations that en-

sure soundness of circular reasoning within contract frameworks based on transition systems. We

introduce a contract framework for modal transition systems (MTS), which is directly inspired by

the BIP semantic framework of Chapter 4. When using MTS, structural consistency as discussed in

Section 3.2.1 is a useful notion which allows detecting whether a contract can possibly be satisfied

by a composition using a given glue. We provide a necessary and sufficient condition for structural

consistency. We then focus on refinement in any context, which is the same as conformance for frame-

works without priorities, as is usually the case. This is no longer true when priorities are introduced.

The contract framework for MTS with priorities shows the interest of combining those two concepts:

while the MTS contract framework without priorities is directly related to the framework for LTS, it

is no longer the case in presence of priorities.

7.1 Labeled transition systems

7.1.1 Definitions

When dealing with LTS, there are two obvious conformance relations to consider: inclusion of

traces and simulation. In this chapter, we focus on the various refinement relations consistent with

simulation. Of course, a similar approach is possible for refinements with respect to inclusion of

traces.

141

142 CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS

c2

a2

c1

a1

A G

a2

b2

a1

b1

E

a2

b2 c2

K

a1

b1 c1

a2 a1

GAE

b2 a2

K

b1 a1

Figure 7.1 – K v2
A,I G and E v2

G,I A but K 6v2
E,I G.

Definition 7.1.1 (Conformance) K1 4 K2 , K1 simulates K2.

Let us start with a quick summary of the various refinement under context relations that have been

proposed until now in this thesis. Two relations are natural candidates:

1. K1 v1
E,I K2 , K1 simulates K2

2. K1 v2
E,I K2 , I{K1, E} simulates I{K2, E}

However, none of them is satisfactory. The first one is too strong as it does not take at all the envi-

ronment into account — it actually corresponds to refinement in any context. On the contrary, the

second relation (which we have called the usual refinement under context in Example 2.2.5) is too

weak to ensure soundness of circular reasoning. Let us recall the two reasons for that: one is related

to non-determinism, and so does not interfere when conformance is inclusion of traces; the other is

related to rendezvous interactions — as illustrated in Figure 7.1. In Chapter 4, we have proposed a

relation for which circular reasoning is sound (Definition 4.2.3):

3. K1 v3
E,I K2 , There exists a relationR ⊆ (Q1 ×QE)×Q2 such that:

– (q0
1, q

0
E)R q0

2

– if (q1, qE)R q2, q1
αK−→1 q

′
1 and α = αK ∪αE ∈ I, then there exists q′2 such that q2

αK−→2 q
′
2

and any q′E such that qE
αE−→E q

′
E satisfies (q′1, q

′
E)R q′2

A slightly different relation is suggested in Section 6.2.2 about the L1 framework (Definition 6.2.7):

4. K1 v4
E,I K2 ,

{
There exists a simulation R between I{K1, Edet} and I{K2, Edet}
such that (q1, qE)R (q2, q

′
E) ∧ q1

α−→1 =⇒ q2
α−→2

CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS 143

a1

c1

b1

a2

b2 c2

Figure 7.2 – Structure of the system used to build the counterexamples of this section.

b2

a1

b1 a1c2

a2

c1

a1

b1

b1b1

K1 E K2

Figure 7.3 – K1 v4
E,I K2 but K1 6v1

E,I K2.

Those relations are defined in a similar way. They are in fact related by the following theorem.

Theorem 7.1.2 Consider K1 and K2 two components for an interface P and (E, I) a context for P .

K1 v1
E,I K2 =⇒ K1 v4

E,I K2 =⇒ K1 v3
E,I K2 =⇒ K1 v2

E,I K2

None of the converse implications is true. Figure 7.3 shows a situation K1 v4
E,I K2 but K1 6v1

E,I

K2. Besides, in Figure 7.1, K v2
A,I G but K 6v3

A,I G. These counterexamples are given for: K1 and

K2 defined on P = {a1, b1, c1}; E defined on PE = {a2, b2, c2}; I = {{a1, a2}, {b1, b2}, {c1, c2}},
as shown in Figure 7.2 — we use a representation with connectors only for illustration purposes.

Note that these counterexamples are relevant for any framework encompassing rendezvous (strong

synchronization). Finally, v4 is strictly stronger than v3 because it does not take into account inter-

actions which are structurally forbidden.

Now that we have classified these relations, we focus on pseudo-circular reasoning. The following

theorem states that it is always sound except for the case of circular reasoning for v2.

Theorem 7.1.3 For i ∈ [1, 4], K viA,I G and E vjG,I A implies K viE,I G if and only if i or j is

not 2.

144 CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS

Does there exist a refinement weaker than v3 but still strong enough to offer sound circular rea-

soning? In fact, there is: the condition that any transition q1
αK−→1 q

′
1 that is not structurally forbidden

should have a counterpart q2
α2−→2 q

′
2 can be relaxed.

Definition 7.1.4 (Controlled interaction) Consider a component K on an interface P and an in-

teraction model I such that P ⊆ SI . An interaction αK ∈ 2P is controlled by K if and only if

αE ∈ I.

If K controls αK , then it cannot rely on its environment to prevent αK from taking place. How-

ever, if αK is always part of interactions α = αK ∪αE such that αE is controlled by the environment,

and if the environment offers none of these αE , then it does not matter whether αK is enabled in q2

or not, because this has no effect on the composition. Thus, we can relax our definition:

K1 v3′
E,I K2 , there exists a relationR ⊆ (Q1 ×QE)×Q2 such that:

– (q0
1, q

0
E)R q0

2

– if (q1, qE)R q2, q1
αK−→1 q

′
1 and α = αK ∪ αE ∈ I, then:

there exists q′2 such that q2
αK−→2 q

′
2 and any q′E such that qE

αE−→E q
′
E satisfies (q′1, q

′
E)R q′2

or

∀αE ∈ IE s.t. αK ∪ αE ∈ I : αE ∈ I ∧ @q′E : qE
αE−→E q

′
E

Note that in a framework without rendez-vous and non-determinism, this definition boils down to

usual refinement.

7.1.2 Refinement in any context

Composition à la BIP of LTS without priorities only reduces the set of possible behaviors. Thus,

the “least helpful” environment is the one that accepts everything. This implies that refinement in

any context is equivalent to refinement in the empty context, i.e., conformance — in other words,

simulation. As a consequence, refinement in any context is the same for the four relations defined in

this chapter:

Theorem 7.1.5 For i ∈ {1, 4}, given two components K1 and K2 on the same interface, K1 vi K2

if and only if K1 simulates K2.

7.1.3 Structural consistency

Consistency issues are almost irrelevant when dealing with LTS because the LTS that does nothing

trivially refines any LTS, and it can be obtained by any composition of “idle” LTS. As a result,

structural consistency is always ensured. This will no longer be the case for MTS.

CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS 145

7.2 Modal transition systems

LTS allow reasoning about safety properties only. This is why we now present a contract frame-

work for Modal Transition Systems (MTS), in which we can reason about not only safety properties

and also some progress properties, such as absence of interlocks or specification of some "minimal

behavior".

MTS [LX90] are labeled transition systems where transitions have in addition a modality, either

must or may. MTS used as specifications are very useful because they contain both an over- and

under-approximation of their possible implementations, thus allowing verification of both safety and

some progress properties. We now present a contract framework based on MTS and equipped with a

refinement under context such that circular reasoning is sound. This framework is tightly related to

the one introduced for LTS.

7.2.1 Definitions

We suppose given a set of ports Ports .

– K is the set of all possible MTS with labels in 2Ports

– ∼= is syntactic equality, possibly after renaming of states

– glues are defined by interaction sets denoted I in P and I{K1, . . . ,Kn} is the composition of

MTS defined below

– ◦ is defined as for LTS

Definition 7.2.1 (Composition of MTS) The composition of a set of MTS {Ki}ni=1 on disjoint in-

terfaces {Pi}ni=1 by a glue I on P =
⋃n
i=1 Pi, which is denoted I{K1, . . . ,Kn}, is an MTS

(Q, q0, 2P , 99K,−→) such that Q =
∏n
i=1Qi, q

0 = (q0
1, . . . , q

0
n) and 99K and −→ are defined

by: ∀α ∈ I, ∀q1 = (q1
1, . . . , q

1
n), q2 = (q2

1, . . . , q
2
n) ∈ Q,

– q1 α
99K q2 if and only if ∀i : α ∩ Pi = ∅ or q1

i

αi
99K q2

i where αi = α ∩ Pi
– q1 α−→ q2 if and only if ∀i : α ∩ Pi = ∅ or q1

i
αi−→ q2

i where αi = α ∩ Pi

Interestingly, the convention that ∀q : q
∅−→ q′ cannot be safely applied to must-transitions for MTS.

Note that this definition preserves modal consistency.

The counterpart of simulation for MTS is modal refinement as defined in Section 1.1.2. This is

the reason why we choose here to define conformance as modal refinement.

Definition 7.2.2 (Conformance) K1 4 K2 , K1 � K2, where � is modal refinement.

146 CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS

Definition 7.2.3 (Refinement under context) Let K1 and K2 be two MTS on the same interface P ,

and (E, I) a context for P . K1 vE,I K2 , there exists a relation R ⊆ (Q1 ×QE) ×Q2 such that

(q0
1, q

0
E)R q0

2 and where (q1, qE)R q2 implies:

1. if q1
αK
99K1 q′1 and α = αK ∪αE ∈ I, then there exists q′2 such that q2

αK
99K2 q′2 and any q′E such

that qE
αE
99KE q′E satisfies (q′1, q

′
E)R q′2

2. if q2
αK−→2 q

′
2 and α = αK ∪αE ∈ I, then there exists q′1 such that q1

αK−→1 q
′
1 and any q′E such

that qE
αE−→E q

′
E satisfies (q′1, q

′
E)R q′2

We use here again the convention that ∀q : q
∅
99K q and ∀q : q

∅−→ q. Note however, that if there is a

must-transition q2
αK−→2 q

′
2, it is not permitted to K1 to fire an internal transition before offering αK .

This definition is directly inspired by the refinement under context for LTS of Chapter 4. In particular,

it can adapted to take into account triggers and synchrons in a way similar to that discussed in the

previous section.

7.2.2 Refinement in any context

Interestingly, here also, refinement in any context and conformance are identical.

Theorem 7.2.4 Modal refinement � corresponds to refinement in any context.

7.2.3 Structural consistency

The contract (A, I, G) represented in Figure 7.4 states that in an environment that may always

offer a2 and b2, a component satisfying C must offer only a1 in state q0 and then it must offer b1
and possibly a1 in state q1. However, this behavior cannot be obtained by a composition using II
defined as two rendezvous connectors between respectively a1 and a2 and then b1 and b2. Indeed,

firing a1 modifies the conditions imposed on b1, while these two interactions are part of two different

components which cannot observe each other. Thus, b1 must be offered and forbidden in states which

are indistinguishable by the component in charge of it.

We now define a characterization of structural consistency for MTS, based on a projection of the

must-relation of G. Interestingly, the projection discussed in Section 5.3 cannot be directly adapted

to MTS without interfering with the definition of refinement under context that we have introduced

for MTS. The reason has already been mentioned: to establish that K1 vA,I K2, if there is a must-

transition q2
αK−→2 q

′
2, it is not permitted to K1 to fire an internal transition before offering αK . As a

result, the projection that we propose here does not introduce transitions labeled by ∅.

CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS 147

a

b1

b

q0

a1

q1
a1

b1

q
a2

b2

a1 b2a2b1

? ?

a1

I{G,A}

II{?,?}

Figure 7.4 – An example of structural inconsistency.

Definition 7.2.5 (Projection of an MTS) Let K = (Q, q0, 2P , 99K,−→) be an MTS on P . The pro-

jection of K onto P ′ ⊆ P is an MTS (2Q,Q0, 2P
′
, 99Kπ,−→π) where:

– Q0 = {q0} ∪ {q | q0 α1
99K . . .

αk
99K q where ∀i ∈ [1, k] : αi ∩ P ′ = ∅}

– 99Kπ and −→π are the smallest relations in 2Q × 2P
′\{∅} × 2Q such that for Q,Q′ ⊆ Q:

- Q α′
99Kπ Q′ , ∃q ∈ Q s.t . q

α
99K q′ with α ∩ P ′ = α′ and Q′ = {q′} ∪ {q′′ | q′ α1

99K . . .
αk
99K q′′

where ∀i ∈ [1, k] : αi ∩ P ′ = ∅}
- Q α′−→π Q′ , ∃q ∈ Q s.t . q

α−→ q′ with α ∩ P ′ = α′ and Q′ = {q′} ∪ {q′′ | q′ α1−→ . . .
αk−→ q′′

where ∀i ∈ [1, k] : αi ∩ P ′ = ∅}

Informally, Q′ is the set of states in Q that can be reached from q′ by firing only transitions that are

invisible in the projection. Note that this definition preserves modal consistency.

Let C = (A, I, G) be a contract for an interface P . Let II be a glue on P and {Pi}ni=1 a partition

ofP . As defined in Section 3.2.1, C is consistent with II and {Pi} if and only if there existB1, . . . , Bn

on respectively P1, . . . , Pn such that II{B1, . . . , Bn} |= C.

By projecting the must-transitions of G onto each Pi, we obtain an under-approximation of the

must-transitions of the possible Ki. As a consequence, if II{G1, . . . , Gn} does not satisfy C, then C

148 CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS

is not consistent with II and {Pi}. In a top-down design approach, this means that either contract C
must be modified, or another decomposition has to be found. This is the meaning of the following

theorem.

Formally, define for i ∈ [1, n] a component Gi obtained from the projection of G onto Pi
by replacing the may relation by the must relation — that is, if the projection of G onto Pi is

(2Q,Q0, 2P
′\{∅}, 99Kπ,−→π), then Gi = (2Q,Q0, 2P

′\{∅},−→π,−→π).

Theorem 7.2.6 C is consistent with II and {Pi} if and only if II{G1, . . . , Gn} |= C.

Note that by projecting the may-transitions of G onto each Pi, we obtain an under-approximation

of the may-transitions of the possible Ki, which boils down to an under-approximation of an over-

approximation, thus being useless.

7.3 Labeled transition systems with priorities

7.3.1 Definitions

– K, GL and ◦ are respectively the set of components, the set of glues and the composition

operator on glues defined in the BIP semantic framework of Section 1.2.1

– K1
∼= K2 , |K1| = |K2|

– K1 4 K2 , JK1K simulates JK2K

Unlike in Chapter 4 and because of the priorities, it is not sufficient here to define refinement under

context for atomic components, namely LTS. The reason for this is that it is not possible to define a

compositional semantics in the form of LTS, and one needs to preserve the priority order of a compos-

ite component. As a result, the following definitions are given for components which can be atomic

as well as composite. These definitions are all based on the compositional semantics of components

defined in Section 1.2.1, which associates with a component K a pair (BK ,≺K), also denoted |K|.
In order to define refinement under context, we introduce the notion of inhibited interaction. An in-

teraction is inhibited in a local state when it cannot have maximal priority in a given composition.

Definition 7.3.1 (Inhibited interaction) Consider an LTSB onP and a glue gl = (Γ,≺) onP∪PE .

An interaction α ⊆ P is inhibited in a state q ∈ QB w.r.t. gl iff it is possible in q and one of the

following propositions holds:

– There is no interaction αE ⊆ PE such that α ∪ αE ∈ I(Γ).

CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS 149

– For any αE ⊆ PE such that α ∪ αE ∈ I(Γ), there exists α′ ⊆ P that is possible in q and such

that α′ ∪ αE ∈ I(Γ) and α ∪ αE ≺ α′ ∪ αE .

Sometimes, we mention explicitly the transitions by which α is inhibited, namely the transitions α′

defined above. Typically, an inhibited interaction is a subset of an interaction in the same connector

that is also possible.

Let (KE ,Γ≺) be a context for an interface P with |KE | = (BE ,≺E). Let Ki = (Bi,Γi,≺i),

i ∈ {1, 2}, be two components on P . |Ki| is denoted (Bi,≺i).

Definition 7.3.2 (Refinement under context) K1 vE,Γ≺ K2 ,≺1=≺2 and there existsR ⊆ (Q1×
QE)×Q2 such that:

– (q0
1, q

0
E)R q0

2

– if (q1, qE)R q2, q1
αK−→1 q

′
1 and α = αK ∪ αE ∈ I, then:

1. there exists q′2 such that q2
αK−→2 q

′
2

2. all interactions that can inhibit α in q2 are also possible in q1

3. any q′E such that qE
αE−→E q

′
E satisfies (q′1, q

′
E)R q′2

The only difference between this refinement relation and the one introduced in Section 1.2.1 for the

BIP semantic level is item 2. which adds a condition related to priorities, as we explain now. Even

if a transition q1
αK−→1 q

′
1 has a counterpart in K2, it may happen that this counterpart is inhibited

by another transition (or a set of transitions). As a consequence, K1 may not behave like K2 with

respect to Γ≺. To avoid this, we require that an interaction αK may be possible in q1 only if all the

interactions that inhibit α in q2 are also possible in q1.

Interestingly, refinement in any context is much stronger than conformance, as K1 v K2 if and

only if |K1| ready-simulates |K2|.

7.4 Modal transition systems with priorities

7.4.1 Definitions

In this section, we present a contract-based verification framework which uses Modal Transition

Systems (MTS) to represent atomic behaviors, and such that interaction is complex and involves static

priorities.

150 CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS

– K, GL and ◦ are respectively the set of components, the set of glues and the composition

operator on glues defined in the BIP semantic framework of Chapter 4 adapted to handle MTS

instead of LTS

– K1
∼= K2 , |K1| = |K2|

– K1 4 K2 , JK1K refines JK2K

Because we are interested in structural verification and we do not want to compute an order in

which assumptions must be discharged, we want refinement under context to preserve soundness of

circular reasoning. In the previous chapter, this question was answered in the simpler case where there

are no priorities. Priorities increase significantly the complexity of the problem, because interactions

that are inhibited may become enabled in a given context.

Definition 7.4.1 (Possible vs. enabled interaction) Let B be an MTS and (Γ,≺) a composition op-

erator on P . An interaction α ∈ 2P is called must-possible (resp. may-possible) in a state q ∈ Q iff

there exists q′ ∈ Q s.t. q α−→ q′ (resp. q
α
99K q′).

An interaction is said must-enabled (resp. may-enabled) in q iff is must-possible (resp. may-possible)

in q and there is no interaction with higher priority may-possible in q.

The function pos2 (resp. pos3) : Q −→ 22P returns for any state q ∈ Q the set of must-possible

(resp. may-possible) interactions in q, and similarly for en2 and en�. Note that must-enabledness is

lost as soon as an interaction with higher priority may be possible. As some transitions that are inhib-

ited may get higher priority through composition, we need another notion which we call maximality.

Maximal interactions are possible in a given state q but not necessarily enabled. They might be inhib-

ited by another interaction, but in the given context they are not necessarily inhibited by it. Besides,

interactions that are enabled in q are not necessarily maximal because they may not be part of any

possible interaction in the global system.

One can do better than considering all interactions possible in q1. Indeed, an interaction αK that

is possible in q1 may not be part of any interaction enabled in q, for example in the following cases:

– such an interaction is structurally impossible

– any such interaction has lower priority than a must-enabled interaction.

– it is a subset of an interaction in the same connector that is also possible.

Interactions that are must-enabled are preserved by refinement, except those that are inhibited

by another must-transition. Besides, forbidden interactions (interactions which are not may-enabled)

are also preserved by refinement except those that are structurally impossible. Hence the following

definition of maximality.

CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS 151

Definition 7.4.2 (Maximal interaction) Let K be a component on an interface P with open seman-

tics (B,≺P). Let γE be a glue on P ∪ PE . We denote (Γ,≺) = γE ◦ (ΓP ,≺P). An interaction

αK is ∗-maximal for ∗ ∈ {2,3} in qB, qA w.r.t. γE , which is denoted αK ∈ max∗ (qB, qA, γ), iff

αK ∈ pos∗ (qB) and ∃αE such that:

– αK ∪ αE ∈ pos3 (qB, qA)

– ∀α. αK ∪ αE ≺ α =⇒ α /∈ pos2 (qB, qA)

– ∀α′K .∀α′E . αK ∪ αE ≺ α′K ∪ α′E =⇒ α′K /∈ pos2 (qB) ∨ α′E\αE 6∈ pos2 (qE)

This definition of maximality is based on the properties proposed above. We denote by max (q1, q2, γ)

the set of interactions that are maximal in q1 w.r.t. γ and q2. We can now define refinement under

context.

Let (KE , γ) be a context for an interface P with KE = (BE , γE ,≺E) and γ = (Γ,≺). Let

Ki = (Bi, γi,≺i), i ∈ {1, 2}, be two components on P . We define γG = γ ◦ γE .

Definition 7.4.3 (Refinement under context) K1 vKE ,γ K2 , there exists R ⊆ (Q1 ×QE)×Q2

such that (q0
1, q

0
E)R q0

2 and (q1, qE)R q2 implies:

1. max3 (q1, γG) = max3 (q2, γG)

2. ∀αK ∪ αE ∈ en3 (q1, qE),∀q1 s.t. q1
αK
99K q′1,

∃q′2 :

{
q2

αK
99K q′2

∀q′E , qE
αE
99K q′E =⇒ (q′1, q

′
E)R q′2

3. max2 (q2, γG) = max2 (q1, γG)

4. ∀αK ∪ αE ∈ en2 (q2, qE),∀q2 s.t. q2
αK−→ q′2,

∃q′1 :

{
q1

αK−→ q′1

∀q′E , qE
αE−→ q′E =⇒ (q′2, q

′
E)R q′1

As usual, conditions 2 and 4 correspond to the intuitive notion that B vA,γ G iff γ{B,A} ready-

simulates γ{G,A}, except that they imply determinization of E. Conditions 1 and 3 ensure that

only the past is used, while abstracting away transitions that are harmless because they will never be

enabled in the global system. With MTS and priorities, a component may thus rely on transitions from

its environment to inhibit some of its own transitions, which was not possible without modalities.

152 CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS

7.5 Proofs

Theorem 7.1.2 v1 =⇒ v4 =⇒ v3 =⇒ v2.

Proof. Let K1, K2 be defined on P , let (E, I) be a context for P with E defined on PE .

Step 1: K1 v1
E,I K2 =⇒ K1 v4

E,I K2.

- Suppose K1 v1
E,I K2. By definition, there exists a relation R s.t. for any pair (q1, q2) ∈ Q1 ×Q2:

q1R q2 ∧ q1
αK−→1 q

′
1 =⇒ ∃q′2 s.t. q2

αK−→2 q
′
2 ∧ q′1R q′2.

- We defineR′ ⊆ (Q1 ×QE)×Q2 as follows:

(q1, qE)R ′q2 , q1R q2

- Let us show that this relation has the right properties. Obviously, (q0
1, q

0
E)R ′q0

2 .

- Now, suppose that q1
αK−→1 q

′
1 and α = αK ∪ αE ∈ I. We have to show that there exists q′2 such

that q2
αK−→2 q

′
2 and for any q′E such that qE

αE−→E q
′
E , it holds that (q′1, q

′
E)R ′q′2.

- The q′2 provided by R (as q1R q2 and q1
αK−→1 q

′
1) is a solution. Indeed, it is such that q2

αK−→2 q
′
2

and q1R q2. So, if there exists q′E such that qE
αE−→E q

′
E , then by definition (q′1, q

′
E)R ′q′2.

Step 2: K1 v4
E,I K2 =⇒ K1 v3

E,I K2.

- Suppose K1 v4
E,I K2. According to the characterization of v4 provided by Lemma 6.2.11, there

exists R ⊆ (Q1 × 2QE) × Q2 such that (q0
1, {q0

E})R q0
2 and: if (q1,QE)R q2 and q1

αK−→1 q′1,

there exists q′2 such that: (1) q2
αK−→2 q

′
2; (2) if there exists αE , qE ∈ QE and q′E ∈ QE such that

qE
αE−→E q

′
E and αK ∪αE ∈ I, then (q′1,Q′E)R q′2 whereQ′E is {q′E | ∃qE ∈ QE s.t. qE

αE−→E q
′
E}.

- We defineR′ ⊆ (Q1 ×QE)×Q2 as follows:

(q1, qE)R ′q2 , ∃QE . qE ∈ QE ∧ (q1,QE)R q2

- Let us show that thisR′ has the expected properties.

- First, as (q0
1, {q0

E})R q0
2 , we have by definition (q0

1, q
0
E)R ′q0

2 .

- Now suppose that (q1,QE)R q2 and q1
αK−→1 q

′
1. The q′2 provided by R is the one we are looking

for, as it ensures: from (1), that q2
αK−→2 q

′
2; from (2), that if there exists αE and q′E ∈ QE such that

qE
αE−→E q

′
E and αK ∪ αE ∈ I, then (q′1,Q′E)R q′2 where Q′E is {q′E | ∃qE ∈ QE s.t. qE

αE−→E q
′
E .

This, in particular, implies that q′E ∈ Q′E , hence (q′1, q
′
E)R q′2.

CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS 153

HHH
HHHi
j

1 4 3 2

1 Step 1

4 X Step 2

3
Step 5

X Step 3

2 Step 4 7

Table 7.1 – Structure of the proof of Theorem 7.1.3

Step 3: K1 v3
E,I K2 =⇒ K1 v2

E,I K2.

This has already been proven in Chapter 4: indeed, this corresponds to the coherence condition be-

tween 4 and v as they are defined in the contract framework for the semantic level of BIP. 2

Theorem 7.1.3 K viA,I G and E vjG,I A implies K viE,I G iff i or j is not 2.

Proof. The structure of the proof is presented in Table 7.1. It has already been proved that circular

reasoning is sound forv4 and forv3. Besides, we have two counterexamples (see Figure 7.1) showing

it is not sound for v2. We prove the rest in five steps.

Step 1: for any j ∈ {1, 4}, K v1
A,I G and E vjG,I A implies K v1

E,I G.

- The reason for that is very simple: K v1
A,I G⇐⇒ K simulates G⇐⇒ K v1

E,I G.

Lemma 7.5.1 If pseudo-circular reasoning is sound forvα andvβ , and ifvγ =⇒ vβ , then pseudo-

circular reasoning is also sound for vα and vγ .

The proof of this lemma is trivial: suppose that K vαA,I G and E vγG,I A. Then E vβG,I A, thus by

pseudo-circular reasoning K vαE,I G.

Step 2: We have shown in Chapter 6 that pseudo-circular reasoning is sound for vL1 (that is, v4)

and vL0. According to Lemma 7.5.1, we only have to prove that v2 =⇒ vL0 to have soundness

of pseudo-circular reasoning for v4 and v2, and as v3 =⇒ v2 (Theorem 7.1.2) also for v4 and

v3. Now, remember that K1 v2
E,I K2 is defined as I{K1, E} simulates I{K2, E}. This naturally

implies that Tr(I{K1, E}) ⊆ Tr(I{K2, E}) (see Property 1.1.13), which is how K1 vL0
E,I K2 is

defined.

154 CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS

Lemma 7.5.2 Characterization of v2

K1 v2
E,I K2 if and only if there exists a relationR ⊆ (Q1 ×QE)×Q2 such that:

– (q0
1, q

0
E)R q0

2

– If (q1, qE)R q2, (q1, qE)
α−→ (q′1, q

′
E) and α = αK ∪ αE ∈ I, then ∃q′2 s.t. (q2, qE)

α−→
(q′2, q

′
E) and (q′1, q

′
E)R q′2.

Step 3: Pseudo circular reasoning is sound for v3 and v2.
- We suppose that K v3

A,γ G and E v2
G,γ A and we prove that K v3

E,γ G.

- As K v3
A,γ G, there exists a relationR3 on (QK ×QA)×QG as ni

- As E v2
G,γ A, there exists a simulation relationR2 on (QE ×QG)×QA as in Lemma 7.5.2.

- We defineR ⊆ (QK ×QE)×QG as follows:

(qK , qE)R qG , ∃qA ∈ QA such that (qK , qA)R3 qG and (qE , qG)R2 qA

- We have to prove thatR ensures the conditions of Definition 4.2.3. Obviously, (q0
K , q

0
E)R q0

G.

- Let qK ∈ QK , qE ∈ QE , qG ∈ QG be such that (qK , qE)R qG. Let qA be such that (qK , qA)R3 qG

and (qE , qG)R2 qA.

- Suppose qK
αK−→K q′K and α = αK ∪ αE ∈ I. We have to prove that there exists q′G such that:

1. qG
αK−→G q

′
G

2. ∀q′E , qE
αE−→E q

′
E =⇒ (q′K , q

′
E)R q′G

- As (qK , qA)R3 qG, qK
αK−→K q′K and α = αK ∪ αE ∈ I, we know that there exists q′G such that:

– qG
αK−→G q

′
G

– ∀q′A, qA
αE−→A q

′
A =⇒ (q′K , q

′
A)R1 q

′
G

- We show that this q′G satisfies the conditions above forR.

- The first condition is exactly the same as forR3. Let us show that the second condition holds.

- Suppose that qE
αE−→E q

′
E . We show that (q′K , q

′
E)R q′G.

- Because (qE , qG)R2 qA and (qE , qG)
α−→ (q′E , q

′
G), there exists q′A such that (qA, qG)

α−→ (q′A, q
′
G)

and (q′E , q
′
G)R2q

′
A.

- This implies in particular that qA
αE−→A q

′
A.

- Thus, applying the second property offered byR3 to this q′A, we obtain that (q′K , q
′
A)R1 q

′
G.

- Finally, according to the definition of R , we can conclude that (q′K , q
′
E)R q′G.

Step 4: Pseudo circular reasoning is sound for v2 and v3.
- We suppose that K v2

A,γ G and E v3
G,γ A and we prove that K v2

E,γ G.

CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS 155

- As K v2
A,γ G, there exists a relationR2 on (QK ×QA)×QG as in Lemma 7.5.2.

- As E v3
G,γ A, there exists a simulation relationR3 on (QE ×QG)×QA as in Definition 4.2.3.

- We defineR ⊆ (QK ×QE)×QG as follows:

(qK , qE)R qG , ∃qA ∈ QA such that (qK , qA)R2 qGand(qE , qG)R3 qA

- We have to prove thatR ensures the conditions of Lemma 7.5.2. Obviously, (q0
K , q

0
E)R q0

G.

- Let qK ∈ QK , qE ∈ QE , qG ∈ QG be such that (qK , qE)R qG and (qK , qE)
α−→ (q′K , q

′
E) with

α = αK ∪ αE ∈ I.

- We have to prove that there exists q′G such that (qG, qE)
α−→ (q′G, q

′
E) and (q′K , q

′
E)R q′G.

- As (qK , qE)
α−→ (q′K , q

′
E), we have qE

αE−→E q′E . Then, as (qE , qG)R3 qA, we know that there

exists q′A such that:

– qA
αE−→A q

′
A

– ∀q′G, qG
αK−→G q

′
G =⇒ (q′E , q

′
G)R2 q

′
A

- We fix this q′A. From the first item above, and because (qK , qE)
α−→ (q′K , q

′
E) implies that

qK
αK−→K q′K , we get that (qK , qA)

α−→ (q′K , q
′
A).

- As (qK , qA)R2 qG, this implies that there exists q′G such that (qG, qA)
α−→ (q′G, q

′
A) and

(q′K , q
′
A)R2 q

′
G.

- Thus, applying the second property offered byR3 to this q′G, we obtain that (q′E , q
′
G)R2 q

′
A.

- Finally, according to the definition of R , we can conclude that (q′K , q
′
E)R q′G.

Step 5: This step is a direct application of Lemma 7.5.1. 2

156 CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS

Theorem 7.1.5 K1 vi K2 if and only if K1 simulates K2, for any i ∈ {1, 4}

Proof.

⇐= The proof that simulation implies refinement in any context is trivial. Indeed, if K1 simulates

K2, then by definition for any E, I, K1 v1
E,I K2, which according to Theorem 7.1.2 implies that

K1 viE,I K2 for any i ∈ {1, 4}.

=⇒ Now let us consider the other implication. LetK1,K2 be two LTS on P . We only need to prove

this implication for v2, because K1 viE,I K2 =⇒ K1 v4
E,I K2 for any i ∈ {1, 4}.

Suppose that for any context (E, I) for P , K1 v2
E,I K2. Let us prove that K1 simulates K2. We

proceed in two steps: we define a context (E⊥, I⊥) which corresponds to an environment that does

nothing. As our composition of LTS can only restrict behavior, such an environment is in fact the

“least helpful” with respect to refinement under context. We then prove that refinement in the context

of (E⊥, I⊥) implies simulation.

Let P be the interface of K1 and K2. We define E⊥ as ({q⊥}, q⊥, ∅, ∅), that is, an LTS with only

one state and no transition. We define I⊥ as 2P , that is, all interactions of K1 andK2 are allowed. We

have K1 v2
E⊥,I⊥ K2, so according to Lemma 7.5.2, there exists a relation R ⊆ (Q1 × {q⊥}) × Q2

such that:

– (q0
1, q⊥)R q0

2

– If (q1, q⊥)R q2 and (q1, q⊥)
α−→ (q′1, q⊥), then there exists q′2 such that (q2, q⊥)

α−→ (q′2, q⊥)

and (q′1, q⊥)R q′2.

DefineR′ ⊆ Q1 ×Q2 by: q1R′ q2 , (q1, q⊥)R q2. ThenR′ is obviously a simulation relation. 2

CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS 157

Theorem 7.2.4 Modal refinement � corresponds to refinement in any context.

Proof. This proof is inspired by that of the corresponding theorem for LTS. Let K1 and K2 be two

components on the same interface P .

⇐= Suppose K1 � K2. Let (E, I) be a context for P . We show that K1 vE,I K2.

By definition of �, there exists a relation R′ ⊆ Q1 × Q2 such that q0
1R′ q0

2 and for any pair

(q1, q2) ∈ Q1 ×Q2, whenever q1R′ q2, the following holds:

– for any q′1 ∈ Q1, q1
α
99K q′1 implies that there exists q′2 ∈ Q2 such that q2

α
99K q′2 and q′1R′ q′2

– for any q′2 ∈ Q2, q2
α−→ q′2 implies that there exists q′1 ∈ Q1 such that q1

α−→ q′1 and q′1R′ q′2
We define R ⊆ (Q1 × QE) × Q2 as: (q1, qE)R q2 , q1R′ q2. Let us show that this relation is a

refinement under context as in Definition 7.2.3. It trivially holds that (q0
1, q

0
E)R q0

2 . Now, let q1 ∈ Q1,

q2 ∈ Q2 and qE ∈ QE be such that (q1, qE)R q2. We have to prove that:

1. if q1
αK
99K1 q′1 and α = αK ∪ αE ∈ I, then there exists q′2 such that q2

αK
99K2 q′2 and any q′E such

that qE
αE
99KE q′E satisfies (q′1, q

′
E)R q′2

2. if q2
αK−→1 q

′
2 and α = αK ∪αE ∈ I, then there exists q′1 such that q1

αK−→1 q
′
1 and any q′E such

that qE
αE−→E q

′
E satisfies (q′1, q

′
E)R q′2

Those conditions are obviously satisfied according to the definitions ofR andR′.

=⇒ Now let us consider the other implication. Let K1,K2 be two LTS on P . Suppose that for any

context (E, I) for P , K1 v2
E,I K2. Let us prove that K1 � K2.

We proceed in two steps: we define a context (E⊥, I⊥) which corresponds to an environment that

does not interfere with the execution of the component. We then prove that refinement in the context

of (E⊥, I⊥) implies modal refinement.

We define E⊥ as ({q⊥}, q⊥, ∅, ∅, ∅), that is, an LTS with only one state and no transition. We

define I⊥ as 2P , that is, all interactions of K1 and K2 are allowed. We have K1 vE⊥,I⊥ K2, so there

exists a relationR ⊆ (Q1 × {q⊥})×Q2 such that (q0
1, q⊥)R q0

2 and where (q1, q⊥)R q2 implies:

1. if (q1, q⊥)
α
99K (q′1, q⊥), then there exists q′2 such that (q2, q⊥)

α
99K (q′2, q⊥) and (q′1, q⊥)R q′2

2. if (q2, q⊥)
α−→ (q′2, q⊥), then there exists q′1 such that (q1, q⊥)

α−→ (q′1, q⊥) and (q′1, q⊥)R q′2
DefineR′ ⊆ Q1 ×Q2 by: q1R′ q2 , (q1, q⊥)R q2. ThenR′ is obviously a modal refinement. 2

158 CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS

Theorem 7.2.6 C is consistent with II and {Pi} if and only if II{G1, . . . , Gn} |= C.

Proof.

⇐= This is a direct application of the definition of structural consistency.

=⇒ Suppose that II{G1, . . . , Gn} 6|= C. Let us show that there exist no K1, . . . ,Kn such that

II{K1, . . . ,Kn} |= C. Denote Gπ = II{G1, . . . , Gn}. We denote by Qπ the set of states of Gπ.

Define R′ ⊆ (Qπ × QA) × QG as (qπ, qA)R′ qG , ∀i ∈ [1, n] : qG ∈ Qiπ where qπ =

(Q1
π, . . . ,Qnπ). We show that ifR′ is not a refinement under context, then no relation can be.

Observation 1. All must-transitions in G have a counterpart in Gπ = II{G1, . . . , Gn}.
Suppose that qG

αK−→G q′G. Let us show that there exists q′π such that qπ
αK−→π q

′
π. As (qπ, qA)R′ qG,

qG ∈ Qiπ for all i. Denote αi = αK ∩ Pi for i ∈ [1, n]. By definition of projection, if αi 6= ∅, then

Qiπ
αi
99Kπ Qi

′
π where q′G ∈ Qi

′
π ; if αi = ∅, then q′G ∈ Qiπ. By definition of composition using II , this

implies that (Q1
π, . . . ,Qnπ)

αK−→π (Q1′
π , . . . ,Qn

′
π) where Qi′π = Qiπ for i such that αi = ∅. Moreover,

q′π = (Q1′
π , . . . ,Qn

′
π) is such that (q′π, qA)R′ q′G.

Observation 2. The may transition relation is equal to the must transition relation in all Gi, hence

in Gπ. The conclusion from this observation is that if R′ is not a refinement under context, then the

only possible reason for that is that some must-transition of Gπ has no may-counterpart in G. Let us

focus on this situation. Suppose that (qπ, qA)R′ qG and qπ
α−→π q

′
π and qG 6

α
99KG. We know that:

– ∀i : qG ∈ Qiπ
– by definition of projection, there exists q and q′ such that q α−→G q′ and for all i ∈ [1, n],

q ∈ Qiπ and q′ ∈ Qi′π .

States in the same set Qiπ are indistinguishable by component Gi and by any other component on Pi
according to the definition of composition. So, a refinement under context would have to be a relation

making qπ unreachable. This is however not possible because all combinations of states in qπ are

reachable by a sequence of must-transitions starting in the initial state, which has to be preserved by

refinement. 2

CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS 159

7.6 Conclusion

7.6.1 Summary

The motivation for our work was not directly to help system designers by providing a specific

contract framework and tools supporting them but rather to help the designers of contract frameworks

by introducing a notion of contract framework that should be as general as possible and provide rules

for reasoning with contracts depending on properties ensured by the component framework on top of

which the contract framework is built.

The basic notion of contract framework poses the minimal conditions for soundness of circular

reasoning, which allows any component in a system to rely on assumptions of its environment without

the risk of introducing inconsistency. By loosening the relation between refinement in a closed system

and refinement in a given context, we have defined for several component frameworks a refinement

relation such that circular reasoning can be applied even though the usual refinement does not per-

mit it. Also, we have provided a generalized version of circular reasoning based on two refinement

relations.

We use the structural part of contracts to define refinement under context, but also to provide

structural counterparts to properties such as consistency and compatibility. Besides, we have deliber-

ately avoided to use composition of contracts and shown that it is possible to reason about contracts

without ever composing them.

The top-down design and verification methodology that we have proposed can be applied to sys-

tems of arbitrary size. Our abstract definition of component framework encompasses a large class of

formalisms and interaction models: I/O automata, several variants of BIP, HRC L0 and L1. Our en-

coding of I/O interface automata emphasizes the interest of splitting proofs between generic concepts

(circular reasoning, preservation of refinement by composition etc.) and ad-hoc definitions. The three

contract frameworks based on the BIP component framework make it clear that providing a compo-

sitional semantics that is consistent with flattening is essential. Finally, our encoding of the HRC L0

and L1 frameworks provide a formal basis for the integration of their respective tool chains in the

SPEEDS project using combined circular reasoning.

7.6.2 Perspectives

There is no application of the frameworks defined in this thesis. Our goal here was rather to build

a formal and abstract methodology for building contracts frameworks. We have indeed applied our

methodology to a concrete verification problem for a protocol in tree-like networks. This problem

160 CONTRACT FRAMEWORKS FOR TRANSITION SYSTEMS

requires data transformation and data transfer as well as safety and some progress requirements.

Thus, a rather ad-hoc framework has to be defined, and we have shown how the use of our approach

to avoid as much as possible reasoning about the actual framework. The interested reader is referred

to [BHQG10c].

We have only hinted at the possibility of using multiple contracts and multiple hierarchical de-

compositions. This area of research is very promising and research as well as experiments are required

to invent heuristics for taking advantage of such features.

One question raised in this work concerns what to do if an assumption cannot be discharged in a

dominance check. Modifying either this assumption or the other contracts is one possibility, but there

are others. For example, if one is able to identify prefixes of the executions leading to a violation of

the assumption, one could check precisely the possible executions of the system after this violation.

One could also estimate or compute the probability that such a violation takes place. In other words,

it would be interesting to consider an approach in which contracts may be violated but a diagnostic

is then provided. Note that this suggestion is different from using probabilistic contracts: the idea

here is rather to use a non-probabilistic framework and to work with probabilities only for specific

executions.

Part II

Implementation of Distributed Systems
with Complex Interaction

161

Chapter 8

Achieving distributed control through
model checking

The practical motivation for the work presented in this part of the thesis is the distributed im-

plementation of BIP systems. We have shown in Part I that component frameworks which offer a

complex interaction layer (such as BIP) can be a powerful tool for design and verification of large

systems, because they allow enforcing some properties structurally. There remains the question of

how such systems can be implemented in a distributed setting. Although the formalism used in Part II

is different from that of Part I — we consider processes rather than components, and their behaviors

are not transition systems but Petri nets — the connection between the two parts should be clear.

8.1 Preliminaries

Before presenting a generalization of the support policy introduced in [BBPS09], we need to

define some concepts related to Petri nets, distributed control and knowledge.

8.1.1 Petri nets

We represent distributed systems as Petri nets, but the method and algorithms developed here can

equally apply to other models, e.g., communicating automata or transition systems, which form the

basis of the formalism used in [GPQ10].

Definition 8.1.1 A Petri net N is a tuple (P, T,E, s0) where

– P is a finite set of places. The set of states (markings) is defined as S = 2P .

163

164 ACHIEVING DISTRIBUTED CONTROL THROUGH MODEL CHECKING

– T is a finite set of transitions.

– E ⊆ (P × T) ∪ (T × P) is a bipartite relation between the places and the transitions.

– s0 ⊆ 2P is the initial state (initial marking).

For a transition t ∈ T , we define the set of input places •t as {p ∈ P |(p, t) ∈ E}, and the set of

output places t•as {p ∈ P |(t, p) ∈ E}.

Definition 8.1.2 A transition t is enabled in a state s if •t ⊆ s and (t•\•t) ∩ s = ∅. We denote the

fact that t is enabled from s by s[t〉.

A state s is in deadlock if there is no enabled transition from it.

Definition 8.1.3 A transition t can be fired (executed) from state s to state s′, which is denoted by

s[t〉s′, when t is enabled in s. Then, s′ = (s\•t) ∪ t•.

We will use the Petri net of Figure 8.1 as a running example. As usual, transitions are repre-

sented as lines, places as circles, and the relation E as a set of arrows from transitions to places and

from places to transitions. The Petri net of Figure 8.1 has places named p1, p2, . . . , p8 and transitions

a, b, . . . , e. We represent a state by putting tokens inside the places of this state. In the example of

Figure 8.1, the depicted initial state s0 is {p1, p4}. The transitions enabled in s0 are a and b. Firing a

from s0 means removing the token from p1 and adding one in p3.

Definition 8.1.4 An execution is a maximal (i.e., it cannot be extended) alternating sequence of states

and transitions s0t1s1t2s2 . . . with s0 the initial state of the Petri net, such that for each state si in

the sequence, si[ti+1〉si+1.

We denote the executions of a Petri net N by exec(N). The prefixes on the executions in a set X are

denoted by pref (X). A state is reachable in a Petri net if it appears in at least one of its executions.

We denote the reachable states of a Petri net N by reach(N). The reachable states of our running

example N are: {p1, p2}, {p1, p4}, {p2, p3}, {p3, p4}, {p5, p6}, {p5, p8}, {p6, p7} and {p7, p8}.

8.1.2 Constraints

The constraints that we want to enforce in a distributed way are of the form Ψ ⊆ S × T for a

given Petri net. That is, Ψ defines which transition may be fired in which global state. Note that there

may be states in which no transition is enabled with respect to Ψ. Let (N,Ψ) be the pair made of a

Petri net N and the constraint Ψ that we want to enforce.

ACHIEVING DISTRIBUTED CONTROL THROUGH MODEL CHECKING 165

 p1

p3

p5

p7

p4

p6

p8

p2

a

c

d e

b

Figure 8.1 – A Petri net with initial state {p1, p2}

Definition 8.1.5 A transition t of N is enabled with respect to Ψ in a state s if s[t〉 and, furthermore,

(s, t) ∈ Ψ. An execution of (N,Ψ) is a maximal prefix s0t1s1t2s2t3 . . . of an execution of N such

that for each state si in the sequence, (si, ti+1) ∈ Ψ.

We denote the executions of (N,Ψ) by exec(N,Ψ), and the set of states reachable in these exe-

cutions by reach(N,Ψ). We assume that those sets are nonempty. Clearly, reach(N,Ψ) ⊆ reach(N)

and exec(N,Ψ) ⊆ pref (exec(N)); recall that restrictingN according to Ψ may introduce deadlocks.

The problem we want to solve is as follows:

Given a Petri net with a constraint (N,Ψ), we want to obtain a Petri net N ′ such that

exec(N ′) ⊆ exec(N,Ψ). In particular, this means that the states in reach(N ′) which are

deadlocks of N ′ must be deadlocks in reach(N,Ψ) or be empty.

It is possible to avoid the situation where (N,Ψ) introduces deadlocks which are not in N . This

is achieved by computing based on Ψ a global constraint Ψ′ such that: (1) the executions of (N,Ψ′)

satisfy Ψ and (2) Ψ′ does not introduce deadlocks with respect to N because it blocks transitions

which lead to states in which the system cannot progress without violating Ψ. As already mentioned,

this can be done using game theory [Tho95].

We are interested in particular in enforcing priority orders. Indeed, a priority order� is a partial

order relation among the transitions T of N and thus defines a constraint Ψ in a straightforward

166 ACHIEVING DISTRIBUTED CONTROL THROUGH MODEL CHECKING

manner. Given a priority order�, Ψ is defined by: (s, t) ∈ Ψ if and only if t is enabled in s and has

a maximal priority among the transitions enabled in s. That is, there is no other transition r with s[r〉
such that t � r. We write exec(N,�) and reach(N,�) instead of exec(N,Ψ) and reach(N,Ψ),

respectively. Note that priority orders do not introduce new deadlocks, and thus we have exec(N,�
) ⊆ exec(N).

Let us now consider the Petri net of Figure 8.1 and the priorities a � b and d � e. When the

priorities are not taken into account, there are four different executions of N , namely abcde, bacde,

abced and baced (states are abstracted away). However, when taking the priorities into account, there

is only one execution left: baced. Thus, priorities are used in this context for scheduling purposes.

8.1.3 Distributed setting

Definition 8.1.6 A process of a Petri net N is a subset of the transitions π ⊆ T .

We assume a given set of processes ΠN that covers all the transitions of net N , i.e.,
⋃
π∈ΠN

π = T . A

transition can belong to several processes, e.g., when it models a synchronization between processes.

Note that we do not require our processes to be sequential.

The neighborhood of a process π describes the part of the system whose state π can observe at any

given moment. Our definition is only one among others, and our results still apply to other definitions

of neighborhood. In particular, it may be more realistic not to consider outputs places as part of the

neighborhood, but only input places.

Definition 8.1.7 The neighborhood ngb(π) of a process π is the set of places
⋃
t∈π(•t ∪ t•).

Definition 8.1.8 The local state of a process π of a Petri net N in a state s is s|π = s ∩ nbg(π).

That is, the local state of a process π in a global state s consists of the restriction of s to the neighbor-

hood of π. It describes what π can see of s based on its limited view.

Definition 8.1.9 Define an equivalence relation ≡π⊆ S × S such that s ≡π s′ when s|π = s′|π.

Figure 8.2 represents one possible distribution of our running example. We represent processes by

drawing dashed lines between them. Here, the left process πl consists of transitions a, c and d while

the right process πr consists of transitions b, c and e. The neighborhood of πl contains all the places

of the Petri net except p2 and p8. The local state s0|πl corresponding to the initial state s0 = {p1, p2}
is {p1}. Note that the local state s|πl corresponding to s = {p1, p8} is also {p1}, hence s0 ≡πl s.

ACHIEVING DISTRIBUTED CONTROL THROUGH MODEL CHECKING 167

 p1

p3

p5

p7

p4

p6

p8

p2

a

c

d e

b

πl πr

ngb
πl

Figure 8.2 – A distributed Petri net with two processes πl and πr

It is easy to see that the enabledness of a transition depends only on the local state of a process

that contains it, i.e., if t ∈ π and s ≡π s′ then s[t〉 if and only if s′[t〉. This means that executing

the unconstrained system in a distributed way only requires a mechanism for handling conflicting

transitions, as each process locally knows which of its transitions are enabled in a given state. Thus,

the only difficulty is when looking for a mechanism to safely execute the system in a distributed way

lies in handling the additional constraint.

8.1.4 Defining properties

We use places also as state predicates where s |= pi if and only if pi ∈ s. This is extended

to Boolean combinations on such predicates in a standard way. For a state s, we denote by ϕs the

formula that is a conjunction of the places that are in s and the negated places that are not in s. Thus,

ϕs is satisfied by state s and by no other state. For the Petri net of Figure 8.2, the initial state s is

characterized by ϕs = p1 ∧ p2 ∧¬p3 ∧¬p4 ∧¬p5 ∧¬p6 ∧¬p7 ∧¬p8. For a set of states Q ⊆ S, we

can write a characteristic formula ϕQ =
∨
s∈Q ϕs or use any equivalent propositional formula.

168 ACHIEVING DISTRIBUTED CONTROL THROUGH MODEL CHECKING

Definition 8.1.10 A formula ϕ is an invariant of a Petri net N if s |= ϕ for each s ∈ reach(N), i.e.,

if ϕ holds in every reachable state.

We define the following formulae representing sets of states as explained above. These formulae

will be useful for implementing our distributed controller.

– ϕreach(N): all the reachable states of N .

Similarly, ϕreach(N,Ψ) denotes the reachable states of (N,Ψ).

– ϕen(t): the states in which transition t is enabled.

– ϕΨ(t): the states s in which transition t is enabled and (s, t) ∈ Ψ.

Formally: ϕΨ(t) = ϕen(t) ∧
∨

(s,t)∈Ψ ϕs.

– ϕΨ
df : the reachable states in which at least one transition is enabled w.r.t. Ψ, i.e., the reachable

states which are deadlock-free w.r.t. Ψ.

Formally: ϕΨ
df = ϕreach(N,Ψ) ∧

∨
t∈T ϕΨ(t).

– ϕs|π : the states in which the local state of process π is s|π.

We can perform model checking in order to calculate these formulae, and store them in a compact way,

e.g., using BDDs. For Ψ representing priority constraints, we denote ϕΨ(t) by ϕmax(t): it corresponds

to the states in which transition t has a maximal priority among all the enabled transitions of the

system. That is, ϕmax(t) = ϕen(t) ∧
∧
t�r ¬ϕen(r).

8.1.5 Knowledge

Our approach for a local or semi-local decision on firing transitions is based on the knowledge

of processes [FHVM95]. Basically, the knowledge of a process in a given global state is the set

of reachable global states that are consistent with the local state of that process. For example, in the

initial state represented in Figure 8.2, the left process πl knows that the current global state is {p1, p2},
because it is the only reachable state that projects onto {p1}. Indeed, neither {p1, p8}, nor {p1} nor

{p1, p2, p8} are reachable. In fact, in this example, both processes always know the exact global state

of the system based on their local state.

Definition 8.1.11 A process π knows a (Boolean) property ϕ in a state s, denoted s |= Kπϕ, exactly

when for each reachable s′ such that s ≡π s′, we have that s′ |= ϕ.

We obtain immediately from the definitions that if s |= Kπϕ and s ≡π s′, then s′ |= Kπϕ.

Furthermore, the process π knows ϕ in state s exactly when (ϕreach(N) ∧ ϕs|π) ⇒ ϕ is a tautology.

Given a Petri net and a Boolean property ϕ, one can perform model checking in order to decide

whether s |= Kπϕ.

ACHIEVING DISTRIBUTED CONTROL THROUGH MODEL CHECKING 169

The definitions of neighborhood, local state, equivalence and knowledge all naturally extend to

sets of processes: given a set of processes Π ⊆ ΠN , we define ngb(Π) =
⋃
π∈Π ngb(π). The other

definitions follow immediately. Note that a joint local state, that is, the local state of a set of processes

Π, is equivalently represented as a tuple consisting of the local states of the processes in Π.

8.2 The support policy

In this section, we generalize the support policy introduced in [BBPS09] for priorities to any

constraint Ψ of the form presented before. This method uses model checking to analyze the system

and identify when a process can decide, based only on its local state, whether some enabled transition

is allowed by Ψ or should be blocked. The support policy is based on a support table ∆ which

indicates, for each process in each local state, which transitions are supported and may thus be safely

fired. The basic principle of the support policy is the following:

In a state s, a transition t is supported by a process π containing t if and only if π knows in

s (based on its limited view of the system) about (s, t) respecting Ψ, i.e.: s |= KπϕΨ(t). A

transition can be fired in a state only if, in addition to its original enabledness condition,

at least one of the processes containing it supports it.

The disjunctive nature of the controller that will result from this policy appears in the fact that a

transition needs only one local controller to support it in order to be fired.

8.2.1 Building the support table

Given a Petri net N and a constraint Ψ, the corresponding support table ∆ is built as follows: we

check for each process π, reachable state s ∈ reach(N) and transition t ∈ π, whether s |= KπϕΨ(t).

If it holds, we put in the support table at the entry s|π the transitions t that are responsible for satisfying

this property. In fact, as s |= Kπϕ and s ≡π s′ implies that s′ |= Kπϕ, it is sufficient to check this for

a single representative state containing s|π out of each equivalence class of ‘≡π’. The construction of

the support table is simple and its size is limited to the number of different local states of the process

and not to the (sometimes exponentially larger) size of the state space.

The support table ∆ corresponding to our running example is shown in Figure 8.3. ∆ is split into

two parts, one per process. The arrows point to the entries in the table corresponding to the global

state represented on the left. In this state, process πr does not support any of its transitions as none

of them is enabled. On the other hand, process πl supports a because it knows that the global state is

170 ACHIEVING DISTRIBUTED CONTROL THROUGH MODEL CHECKING

{p1, p4}, hence it knows that b is not enabled. Note that in this example a local state corresponds to

exactly one global state, but this is in general not the case, as will be illustrated in the following.

p1

p3

p5

p7

p4

p6

p8

p2

a

c

d e

b

πl πr

ngb
πl

∆πl ∆πr

−→
p1 ∅

p1, p4 {a}
p3 ∅

p3, p4 {c}
p5, p6 ∅
p5 {d}

p6, p7 ∅
p7 ∅

−→
p2 {b}
p4 ∅

p2, p3 {b}
p3, p4 {c}
p5, p6 {e}
p5, p8 ∅
p6 {e}
p8 ∅

Figure 8.3 – A Petri net with priorities a� b and d� e along with its support table ∆

8.2.2 Distributed control based on the support table

We use the support table ∆ to control (restrict) the executions of N so as to satisfy Ψ. Each

process π of N (that is, π ∈ ΠN) is equipped with the entries of this table of the form s|π for s

a reachable state. Before firing a transition, process π consults the entry s|π that corresponds to its

current local state, and supports only the transitions that appear in that entry. This can be represented

as an extended Petri net N∆, as we explain now.

For simplicity of the transformation, we consider extended Petri nets [GL81], where processes

may have local variables, and transitions have an enabling condition and a data transformation.

Definition 8.2.1 An extended Petri net has, in addition to the Petri net components, for each process

π ∈ ΠN a finite set of variables Vπ and (1) for each variable v ∈ Vπ, an initial value v0 (2) for

each transition t ∈ T , an enabling condition ent and a transformation predicate ft on the variables

ACHIEVING DISTRIBUTED CONTROL THROUGH MODEL CHECKING 171

Vt =
⋃
π∈proc(t) Vπ, where proc(t) is the set of processes to which t belongs. In order to fire t, ent

must hold in addition to the usual Petri net enabling condition on the input and output places of t.

When t is executed, in addition to the usual changes to the tokens, the variables in Vt are updated

according to ft.

A Petri netN ′ extendsN ifN ′ is an extended Petri net obtained fromN according to Definition 8.2.1.

The comparison between the original Petri net N and N ′ extending it is based only on places and

transitions. That is, we ignore (project out) the additional variables.

Lemma 8.2.2 For a Petri net N ′ extending N , exec(N ′) ⊆ pref (exec(N)).

Proof. The extended Petri net N ′ only strengthens the enabling conditions and gives values to the

added variables, thus it can only restrict the executions. However, these restrictions may result in new

deadlocks. 2

We have the following monotonicity property.

Theorem 8.2.3 Let N be a Petri net and N ′ an extension of N . If s |= Kπϕ in N , then s |= Kπϕ

also in N ′.

Proof. The extended Petri net N ′ restricts the set of executions, and possibly the set of reachable

states, of N . Each local state s|π is part of fewer global states, and thus the knowledge in s|π can

only increase. 2

Monotonicity is important to ensure Ψ in N∆. Indeed, the knowledge allowing to enforce Ψ

by the imposed transformation is calculated based on N , but is used to control the execution of the

transitions of N∆. Monotonicity thus ensures the correctness of N∆ with respect to Ψ.

The extended Petri net N∆ is obtained from N and Ψ by defining the additional condition ent
for an enabled transition t to be fired as:

∨
π∈proc(t)KπΨ(t). That is, t can be fired if is supported

by at least one process containing it. The knowledge properties calculated in ∆ are encoded in the

variables and updated as transitions are fired. Note that N∆ is indeed a controlled version of N , as it

can only restrict the executions of N . It is distributed, because one set of variables per process is used

to define the additional enabledness conditions. Only variables of processes involved in a transition t

can be used to determine whether t can be fired or not, and only those variables are updated when t is

fired. Finally, it is disjunctive, because a transition can be fired if at least one process supports it.

172 ACHIEVING DISTRIBUTED CONTROL THROUGH MODEL CHECKING

Note that defining controllers as extended Petri nets allows the use of some finite memory that

is updated with the execution of observable transitions. This can be useful, e.g., when constructing a

controller based on knowledge with perfect recall [vdM98]. However, a controller based on simple

knowledge, as in Definition 8.1.11, does not have to exercise this capability.

8.2.3 Deadlock-freedom

The extended Petri net N∆ obtained from N and Ψ obviously enforces Ψ, since only supported

transitions are fired, and only transitions which are known to be enabled with respect to Ψ are sup-

ported. However, N∆ does not ensure that no deadlock is added with respect to (N,Ψ). If N∆ does

not introduce any deadlock with respect to (N,Ψ), we say that it implements (N,Ψ). We now focus

on the issue of determining whether an extended Petri net N∆ implements (N,Ψ) or not.

Definition 8.2.4 We define the following properties kπi :

– kπ1 =
∨
t∈πKπΨ(t): process π can identify a transition t such that it knows that t is enabled

with respect to Ψ.

– kπ2 = ¬kπ1 ∧Kπ
∨
ρ6=π k

ρ
1: process π does not know whether it has a transition with maximal

priority, but in all the global states s′ with s′|π = s|π some other process ρ is in a local state

where kρ1 holds. This allows π to remain inactive without risk of introducing a deadlock.

– kπ3 = ¬kπ1 ∧ ¬kπ2 : π does not know whether or not there is a supported transition.

kπ1 can be extended to sets of processes: kΠ
1 =

∨
t∈TΠ

KΠΨ(t), where TΠ =
⋃
π∈Π π.

Note that kπ1 ∨ kπ2 ∨ kπ3 ≡ true .

The construction in [BBPS09] checks whether
∨
π∈Π k

π
1 holds in all reachable states of the orig-

inal system that are not deadlock (or termination). If so, it is sufficient that each process supports a

transition when it knows that Ψ(t) holds in order to enforce the additional constraint Ψ (in that case,

priority) without introducing any additional deadlock. What to do when this check fails is the object

of the next chapter.

Chapter 9

A synchronization-based approach

9.1 A synchronization-based approach

It is not possible in general to decide, based only on the local state of a process or a set of

processes, whether some enabled transition is allowed by Ψ. Thus, there are cases where the support

policy as introduced in the previous chapter fails, because N∆ has more deadlocks than (N,Ψ).

Before discussing existing solutions to this and presenting a new one, let us look at one example

where this situation arises.

9.1.1 An example where the support policy fails

Consider a concurrent system as in Figure 9.1, with two processes πl (left) and πr (right) with

disjoint sets of transitions, each one of them having initially a nondeterministic choice. The priorities

in this system are δ � b� β. Each process can observe only its own transitions.

In the initial state, all four enabled transitions α, γ, a, c are unordered by priorities, and thus all

are maximal. If α is fired and subsequently a (or vice versa), we reach a global state where process

πr does not have any enabled transition with maximal priority since b � β. Process πl does, and it

can execute β. Thereafter, since δ � b, process πl cannot execute δ and must wait for process πr to

execute b. Now, with its limited observability, πl cannot distinguish between the situation before or

after bwas executed by πr. Thus πl lacks the capability, and the corresponding knowledge, of deciding

whether to execute δ. In this state, πr cannot distinguish between the situation before and after β was

executed, and cannot decide to execute b. Accordingly, the local knowledge of the processes in this

example is not sufficient to construct a controller. In the initial state, both processes can progress

173

174 A SYNCHRONIZATION-BASED APPROACH

p1

p4p3

p7

p9

p2

p5 p6

p8

α

δ

β

a

b

γ c

πl πr

∆πl

−→

p1 {α, γ}
p3 {β}
p4 ∅
p7 ∅
p9 ∅

∆πr

−→
p2 {a, c}
p5 ∅
p6 ∅
p8 ∅

Figure 9.1 – A Petri net with priorities δ � b� β

freely, but then reach a situation where they do not know locally when they can safely progress.

9.1.2 Existing solutions

To handle situations where the support policy fails, two suggestions have been made:

1. Use knowledge of perfect recall [vdM98, BBPS09]. This means that the knowledge is not based

only on the local state, but also on the limited history that each process can observe. Although

the history is not finitely bounded, it is enough to calculate the set of states where the rest of the

system can reside at each point. A subset construction can be used to supply for each process

an automaton that is updated according to the local history. This construction is very expensive:

the size of this automaton can be exponential in the number of global states. Furthermore, al-

though in this way we extend our knowledge (by separating local states according with different

histories), this still does not guarantee that a distributed controller can be found. In particular,

knowledge of perfect recall is useless in the situation of Figure 9.1.

2. Combine the knowledge of some processes together by synchronizing them [BBPS09]. The

definition of knowledge can be used for sets of processes rather than individual processes.

With their combined knowledge, one can achieve more situations where the maximal priority

transition is known. However, to use this knowledge at runtime, these sets of processes need to

A SYNCHRONIZATION-BASED APPROACH 175

be able to access their joint local state. This means synchronizing them, at the cost of losing

concurrency. At the limit, all processes can be combined, and no concurrency remains.

9.1.3 Adding synchronizations to provide sufficient knowledge

Instead of the fixed synchronization between processes suggested in [BBPS09], we propose to

use temporary synchronizations: processes coordinate to achieve joint knowledge (i.e. knowledge of

a set of processes), whenever their local knowledge is not sufficient to ensure deadlock-freedom. This

does not reduce the concurrency as much as the previous method, but induces some communication

overhead as the temporary synchronizations are achieved through exchange of messages.

We now calculate the support table ∆ iteratively, first adding entries corresponding to local states

as in Chapter 8, then (joint) local states of pairs of processes, then triples etc. At each stage of the

construction, ∆ is identified with its set of (non-empty) entries, which are (joint) local states s|Π
satisfying kΠ

1 — that is, local states in which the joint knowledge of the processes in Π is sufficient

to ensure progress. Remember that the joint local state of a set of processes Π can be seen as a tuple

consisting of the local states of the processes in Π.

Definition 9.1.1 A set of (joint) local states ∆ is an invariant if each non-deadlock reachable global

state contains at least one (joint) local state from ∆.

The first iteration includes in ∆, for every π ∈ ΠN , the singleton local states satisfying kπ1 , i.e.

states in which progress of π is guaranteed. With each entry corresponding to such a local state s|π,

we associate the actual transitions t that make kπ1 hold.

If ∆ is an invariant, then the method presented in the previous chapter is sufficient to build N∆

implementing (N,Ψ). However, if ∆ is not an invariant, then we need to consider joint local states.

Definition 9.1.2 A synchronization state is a reachable global state in which none of the correspond-

ing individual local states satisfies kπ1 .

The existence of a synchronization state means that ∆ is not an invariant without adding some tuples

for synchronization.

We first calculate for each local state not satisfying kπ1 whether it satisfies kπ2 . Let Uπ be the set of

local states of process π satisfying kπ3 , that is, satisfying neither kπ1 nor kπ2 . Now, in a second iteration,

we add to ∆ pairs (sπ, sρ) ∈ Uπ × Uρ for π 6= ρ if there exists a synchronization state s such that

s|π = sπ, s|ρ = sρ and furthermore s |= k
{π,ρ}
1 . Again, we associate with that entry of the table ∆

176 A SYNCHRONIZATION-BASED APPROACH

the transitions t that witness the satisfaction of k{π,ρ}1 . The second iteration terminates as soon as ∆

is an invariant or if all such pairs of local states have been classified.

In a third iteration, we consider triples of local states from Uπ × Uρ × Uσ such that no subtuple

is in ∆, and so forth. Eventually, ∆ becomes an invariant, in the worst case when synchronization

states themselves are added to ∆: indeed, synchronizing all the processes ensures that any transition

enabled and allowed by Ψ in such a state will be supported. Our construction guarantees that each

time the transition associated with a tuple (s|π1 . . . s|πk) from ∆ is executed from a state that includes

these local components, the constraint Ψ we want to impose is preserved.

If we go back to our example, the support table presented in Figure 9.1 must be enriched by the

entries of Table 9.1. Note that in this example, there is one entry in the support table per synchro-

nization state. This is in general not the case for systems with more than two processes because one

synchronization may be sufficient to ensure progress in several synchronization states. Also, during

execution of our example, a synchronization may take place only when the system has reached a

synchronization state. This again is not the case in general. Indeed, as will be illustrated later, two

processes may decide to synchronize because they both know that a synchronization state may have

been reached, although this is actually not the case.

∆πl, πr

p5, p7 {b}
p7, p8 {δ}

Table 9.1 – Additional entries for the support table of Figure 9.1 to become an invariant

9.1.4 A distributed controller imposing the global property

We now have to explain how the joint local knowledge used to enforce the invariance of ∆ is

achieved in practice. Indeed, the method proposed in the previous chapter for building the extended

Petri net N∆ from N and Ψ does not apply directly. The reason is that joint knowledge cannot

be expressed by disjoint sets of variables. We solve this by adding synchronizations amongst the

processes involved.

Such synchronizations are achieved by using an algorithm like α-core [PCT04], which allows

processes to notify, using asynchronous message passing, a set of coordinators about their wish to

be involved in a joint action. Once a coordinator has been notified by all the participants in the syn-

chronization it is in charge of, it checks whether conflicting synchronizations are already under way

A SYNCHRONIZATION-BASED APPROACH 177

(a process may have notified several coordinators). If this is not the case, coordination succeeds, and

the synchronization can take place. We assume that the correctness of the algorithm guarantees the

atomic-like behavior of the coordination process, allowing us to reason at a higher level of abstraction

where we treat the synchronizations provided by α-core (or any similar algorithm) as transitions that

are joint between several participating processes.

Thus, if a transition t is associated with a singleton element s|π in ∆, then the controller for

π, in local state s|π, supports t. Otherwise, t is associated with a tuple of local states in ∆; when

reaching any of these local states, the corresponding processes π1 . . . πk try to achieve a synchroniza-

tion using the coordination algorithm. If coordination succeeds, and the synchronization takes place,

the associated transition t is then supported by all the participating processes (there may be several

such transitions). Formally, for each transition t associated with a tuple of local states (s|π1 . . . s|πk),

we execute a transition enabled exactly in the global states containing this tuple and performing the

original transformation of t.

9.1.5 Minimizing the number of coordinators

It is wasteful to set up one coordination for each joint local state involving at least two processes

in ∆. We now show how to minimize the number of coordinators for pairs of the form (s|π, r|ρ) in ∆.

The general version of this method for larger tuples is analogous. We denote by ∆π,ρ the set of pairs

of ∆ made of a local state from process π and one from process ρ.

A naive implementation may use a coordination for every pair in ∆. Nevertheless, the large num-

ber of messages needed to implement coordination by an algorithm like α-core suggests that we

minimize their number. The opposite extreme would be to use a unique coordination between every

two processes π and ρ. However, as α-core does not offer guarded coordinations, success of a co-

ordination does not imply in this case that the resulting synchronization will be useful. Thus, many

(expensive) useless coordinations may be achieved, not even guaranteeing eventual progress.

We propose an intermediate solution. Consider now a set of pairs Γ ⊆ ∆π,ρ such that if

(s, r), (s′, r′) ∈ Γ, then also (s, r′), (s′, r) ∈ Γ (s and s′ do not have to be disjoint, and neither

do r and r′). This means that Γ is a complete bipartite subgraph of ∆π,ρ. It is sufficient to generate

one coordination for all the pairs in Γ: upon success of the coordination, the precalculated table ∆π,ρ

will be consulted about which transition to allow, depending on s|π and s|ρ. Thus, according to this

strategy, a sufficient number of coordinations is formed by finding a covering partition Γ1, . . . ,Γm

of complete bipartite subgraphs of ∆π,ρ. That is, each pair (s|π, r|ρ) ∈ ∆π,ρ must be in some set Γi.

However, the minimization problem for such a partition turns out to be in NP-Complete, as stated in

178 A SYNCHRONIZATION-BASED APPROACH

process πl process πr process πrprocess πl

s3

r1r1

s1

s2

s3

s1

s2

r2 r2

r3r3s4 s4

Figure 9.2 – Minimizing the number of coordinators

the following theorem.

Property 9.1.3 [Orl77] Given a bipartite graphG = (N,E) and a positive integerK ≤ |E|, finding

whether there exists a set of subsets N1, . . . Nk for k ≤ K of complete bipartite subgraphs of G such

that each edge (u, v) is in some Ni is in NP-Complete.

We use the following notation: when Γ is a set of pairs of local states, one of π and the other of

ρ, we denote by Γ|π and by Γ|ρ the π and the ρ components in these pairs, respectively. We suppose

that |∆π,ρ|π| ≤ |∆π,ρ|ρ|, i.e., the number of elements paired up in ∆π,ρ is smaller for π than for

ρ. If this is not the case, one simply has to replace π with ρ and vice versa in the sequel. We apply

the following heuristics to calculate a (not necessarily minimal) set of complete bipartite subsets

Γi ⊆ ∆π,ρ covering ∆π,ρ.

Let the elements of ∆π,ρ|π (that is, the π components of the pairs in ∆π,ρ) be x1, . . . , xm. We start

with a first partition Γ1, . . . ,Γm where Γi is the set of pairs in ∆π,ρ containing xi, for any i ∈ [1,m].

These sets are obviously complete, and the partition is a covering.

Now, in order to refine this partition, we check for each two sets Γi and Γj whether Γi|ρ = Γj |ρ.

If it is the case, we merge them into a single set Γi ∪ Γj . The resulting set is complete because it

contains a pair (xi, y) if and only if it also contains (xj , y), where y ∈ ∆π,ρ|ρ. Note that each xi
always appears in exactly one subgraph, thus we cannot repeat the process for π.

Figure 9.2 shows how this heuristics works for an example. Lines represent pairs of local states

must be synchronized; blacks dots represent coordinators. The left-hand side of the figure shows the

A SYNCHRONIZATION-BASED APPROACH 179

coordinators induced by ∆π,ρ and the right-side the minimal set of coordinators that is obtained by

our heuristics. We start with process πr: each Γi contains a single state of πr. In this case, the initial

partition turns out to be already the solution. Note that starting with process πl would also result in a

solution with three coordinators, because the coordinators for s3 and s4 can be merged.

9.2 Implementation and experimental results

We have implemented a prototype for experimenting with this approach. This tool first builds the

set of reachable states and the corresponding local knowledge of each process. Then, it checks whether

local knowledge is sufficient to ensure correct distributed execution of the system under study. We al-

low simulating the system while counting the number of synchronizations and synchronization states

encountered during execution as a measurement of the amount of additional synchronization required.

9.2.1 The pragmatic dining philosophers

The example that we used in our experiments is a variant of the dining philosophers where

philosophers may arbitrarily take first either the fork that is on their left or right, provided it is on

the table (see Figure 9.3). In addition, a philosopher may hand over a fork to one of his neighbors

when his second fork is not available and the neighbor is looking for a second fork as well. Such

an exchange (labeled ex) is a way to avoid the well-known deadlocks when all philosophers hold

one fork in their left (respectively right) hand: our philosophers are pragmatic enough to exchange

forks when they have nothing better to do. This example is partially represented by the Petri net of

Figure 9.4.

In our example, places (concerning philosopher β) are defined as follows:

– fork i: the i-th fork is on the table.

– 0forkβ (respectively 2forksβ): philosopher β has no fork (respectively 2 forks) in his hands.

– 1fork lβ (respectively 1fork rβ): philosopher β holds his left (respectively right) fork.

Transitions (concerning philosopher β) play the following role:

– getklβ (respectively getkrβ), k = 1, 2: philosopher β takes the fork on his left (respectively on

his right). This is his k-th fork.

– eat-and-returnβ: philosopher β eats and puts both forks back on the table.

– exα,β: philosopher α gives his right fork to philosopher β.

– exβ,α: philosopher β gives his left fork to philosopher α .

180 A SYNCHRONIZATION-BASED APPROACH

Figure 9.3 – The pragmatic dining philosophers

Processes correspond to philosophers. The transitions defining a process β are those with a β in

their name, including the four exchange transitions exα,β , exβ,α, exβ,γ and exγ,β . In Figure 9.4, tran-

sitions related only to philosopher β are in blue. Transitions in orange and green are shared between

β and one of his neighbors (respectively α on the left and γ on the right).

Not controlling exchanges at all allows non-progress cycles, that is, philosophers exchanging

forks without ever eating. To avoid this, we add priorities which allow exchange actions only when a

blocking situation has been reached within some degree of locality.

First variant. We use a priority rule stating that an exchange between philosophers α and β has

lower priority than α or β taking a fork. This leads to the following priorities for each α and β such

that α is βs left neighbor:

– exα,β � get2l
α : if α can pick up a left fork, he may not give his right fork to β.

– exβ,α � get2r
β : symmetrically if β can pick up a right fork.

In this variant, local knowledge is sufficient. Indeed, when philosopher β and both his neighbors

are blocked in a state where they all have a left (respectively a right) fork, then philosopher β has

enough knowledge to support an exchange with his left (respectively right) neighbor — because he

knows that he has nothing better to do. For any number of philosophers, there is no synchronization

state. Thus, no extra synchronization is needed.

A SYNCHRONIZATION-BASED APPROACH 181

... ...
fork i+1

fork i

1fork lγ1fork rβ

0forkα
0forkβ 0forkγ

get2l
β

get2r
β

exβ,α

get1l
β get1r

β
1fork rγ

eat-and-returnβ

exβ,γexα,β ex γ,β

2forksβ
2forksα 2forksγ

1fork rα1fork lα
1fork lβ

Figure 9.4 – A partial representation of the dining philosophers (philosopher β)

Second variant. Now, to further reduce the number of exchanges, one may decide that philosopher

β may give his left fork to his left neighbor α only if (1) α is blocked (2) β is blocked and (3) βs

right neighbor γ is also blocked (the exchange of right forks is similar). This is situation represented

in Figure 9.3. This translates into adding the following priorities:

– exα,β � get2l
δ , eat-and-returnδ (with δ the left neighbor of philosopher α)

– exβ,α � get2r
γ , eat-and-returnγ (with γ the right neighbor of philosopher β)

Local knowledge alone cannot ensure here correct distributed execution. However, binary syn-

chronizations are sufficient in this example to ensure that the system is always able to move on, for

any number of philosophers.

In Table 9.2, we show results for the second variant with 6, 8 and 10 philosophers. In all cases,

there are two synchronization states which correspond to the situation where all philosophers hold

their left fork, or they all hold their right fork.

182 A SYNCHRONIZATION-BASED APPROACH

philosophers 6 8 10
strategy min average min average min average

reachable states 729 6561 59049
synchronizations

322
354

229
285

178
237

synchronization states encountered 253 149 100

Table 9.2 – Results for 100 executions of 10,000 steps for the second variant

For computing the number of synchronizations, we used each time 100 runs of a length of 10,000

steps (i.e. transitions). Note that the number of exchange transitions is identical to the number of

synchronizations. We provide results according to two different strategies:

1. Synchronizations are allowed only when no other transition is supported.

2. Synchronizations and supported transitions have the same probability.

The first strategy (denoted min in Table 9.2) cannot be distributed and only aims at simulating how

many synchronizations are needed to escape the synchronization states encountered during execution.

The second strategy (denoted average) is implementable in a distributed setting. As one can see, this

strategy increases the number of synchronizations taking place (because a synchronization can take

place as soon as the philosophers involved in it all believe that a synchronization state may have been

reached), but allows reaching synchronization states less often. Thus, the communication overhead

induced by synchronizations which are unnecessary with respect to deadlock freedom is compensated

by the added degree of progress achieved by the system.

9.2.2 Of tracks and trains

Another example that we worked with is taken from [BBPS09]. This example is interesting in so

far it shows the limit of an approach to distributed control that only aims at avoiding deadlocks.

In this example, trains enter and exit a train station, evolving between track segments. A track

segment can accept a single train at a time, therefore there must be some mechanism to detect and

resolve conflicts amongst trains trying to access the same track segment.

The Petri net associated with a given a set of trains K and a set of segments S has the following

sets of places:

– poutside−k has a token when train k is outside the train station.

– pk@s has a token when train k is at segment s.

– pempty−s has a token when segment s is empty.

A SYNCHRONIZATION-BASED APPROACH 183

5

7
2

3

4

1

6

Figure 9.5 – Topology of the train station

Transitions represent a train entering or exiting the train station, or progressing from one track to

another. We consider in our example the topology shown in Figure 9.5: a train entering via segment 1

can progress to segment 5 and then segment 7 before exiting the station again.

More generally, transitions are of the following form:

– Train k enters the train station at a segment s ∈ {1, 2, 3, 4}: input places are poutside−k and

pempty−s; the unique output place is pk@s.

– Train k moves from segment s to segment s′ for (s, s′) ∈ {(1, 5), (2, 5), (3, 6),

(4, 6), (5, 7), (6, 7)}: input places are pk@s and pempty−s′ ; output places are pempty−s and pk@s′ .

– Train leaves the station at segment s = 7: the unique input place is pk@s and output places are

poutside−k and pempty−s.

Unlike in [BBPS09], our processes are the trains instead of the segments. Thus, all transitions belong

to exactly one process. The neighborhood of a process k — that is all input or output places of one of

its transitions — consists of:

– pempty−s for any segment s

– pk@s for any segment s

– poutside−k

Note that the places pempty−s are in the neighborhood of all processes while all other places are in the

neighborhood of exactly one process. Intuitively, this means that a train can detect whether another

train wants to access the same segment, but not which train it is.

We consider 3 types of trains: high-speed TGV trains, local trains and freight trains. Priorities

are defined so that the high-speed TGV trains can progress more quickly than other trains, whereas

freight trains can move only if they are not in conflict with any other train. More precisely:

– There is no priority to enter the system.

184 A SYNCHRONIZATION-BASED APPROACH

TGV
freight

local 2

local 1

TGV
local 1

freight
local 2

Figure 9.6 – Two examples of synchronization states

– If two trains want to access the same segment, then the one that has the highest priority will

progress.

– Because of the topology of the train station, only one train at a time can exit the system, and no

priorities are needed amongst exit transitions.

For the experiments, we have fixed the number of trains as follows: 1 TGV train, 2 local trains,

and 1 freight train. Out of 1961 reachable states, 72 are synchronization states. They correspond to

situations where the TGV is blocked by another train that cannot move on. Figure 9.6 shows two

such cases. In the example on the left, only local2 can move on. It is stuck however because it knows

that there is a train on segment 6 but does not know which train. The example on the right is slightly

different because both local1 and local2 can move on but are stuck because they do not know the type

of each other.

In our example, binary synchronizations are sufficient to ensure that the system is always able to

move on, and this also if we increase the number of trains. Synchronization states are handled differ-

ently depending on whether the TGV is blocked by the freight train or by a local train (say, local1).

In the first scenario represented in Figure 9.6, any of the following two synchronizations is sufficient:

synchronization between local2 and the TGV, or between local2 and the freight train. Indeed, both

synchronizations provide local2 with enough knowledge to support its transition to segment 7. In the

second scenario of Figure 9.6, any of the following three synchronizations is helpful: synchronization

between the TGV and any local train, or between the local trains. Let us recall that synchronizations

are defined between given local states of processes. This implies that, although all processes are will-

ing to synchronize because they suspect a synchronization state, only synchronizations which lead to

a transition being supported take place.

We have simulated this example 1,000 times for traces of length 10,000 steps (i.e. transitions).

We observe that in most cases (785 out of 1,000 executions), no synchronization is needed at all.

A SYNCHRONIZATION-BASED APPROACH 185

The reason for this surprising result is that partial deadlocks are frequent in this system. Suppose, for

example, that the freight train enters segment 1, and then local1 enters segment 2. At this moment,

neither freight nor local1 can move on anymore. Once such a state is reached, no synchronization

state can be reached anymore because the remaining trains, namely the TGV and local2, can go on

forever on segments 3, 4, 6 and 7. Thus, deadlock-freedom is achieved here by blocking a part of the

system so that the rest of it can go on forever without problems. We will discuss this issue later.

186 A SYNCHRONIZATION-BASED APPROACH

Chapter 10

Reducing the need for additional
synchronizations

In this chapter, we look at the problem of reducing the need for additional synchronizations in

order to control distributed systems. We identify a key issue of the knowledge approach, which is

that knowledge is computed based on the original, uncontrolled system (N). In fact, this is merely an

approximation, as the actual knowledge needs to be satisfied by the controlled system (N∆). After

control has been applied, there are fewer executions, and fewer reachable states, hence the knowledge

cannot decrease. This observation leads to the two following results.

The first result is somewhat surprising: we prove that it is safe to calculate knowledge by consider-

ing only the executions of the original system that satisfy the desired constraint, that is, the executions

of (N,Ψ). This provides a smaller set of executions and reachable states, hence also potentially more

knowledge.

A second result is that once we control a system according to its knowledge properties, we obtain

again a system with fewer executions and reachable states: even if in the original system there are

reachable states where the system lacks the knowledge to continue, these states may, in fact, already

be unreachable in N∆. Thus, one needs to make another round of checks.

These two results can be used in conjunction with other methods for constructing distributed

controllers based on knowledge:

– Using knowledge of perfect recall (proposed in [BBPS09]).

– Adding coordinations to combine knowledge (proposed in the previous chapter).

We show here that all these techniques are independent of each other, hence can be combined.

187

188 REDUCING THE NEED FOR ADDITIONAL SYNCHRONIZATIONS

10.1 Alternative to adding synchronizations

In the following two sections, we develop the two results briefly described in the introduction.

10.1.1 Support policy based on the controlled system

The first technique is based on the following observation:

Instead of calculating the knowledge with respect to all the executions of the original

system, we may calculate it based on the executions of the original system that satisfy Ψ.

The states reachable in these executions represent a subset of the states reachable in the original

system. Furthermore, for each local state, the set of global states containing it is contained in the

corresponding set of the original Petri net. Thus, our knowledge in each global configuration may

not decrease, but possibly grows. Still, we need to show that calculating knowledge using this set of

executions produces a correct controller.

Theorem 10.1.1 Let N be a Petri net and Ψ a property to be enforced. Let ∆ be the support ta-

ble calculated for reach(N,Ψ), and let N∆ be the extended Petri net constructed for ∆. Then

exec(N∆) ⊆ pref (exec(N,Ψ)).

Proof. When a transition t of N∆ is supported in some state s according to the support table ∆,

then for some supporting process π ∈ ΠN , s |= KπϕΨ(t). By definition of the knowledge operator,

this implies that (s, t) ∈ Ψ. Thus, each firing of a transition of N∆ preserves Ψ. However, it is

possible that at some point, there is not enough knowledge to support any transition. 2

Note that this proof does not guarantee that N∆ implements (N,Ψ), i.e., that reach(N∆) does

not contain deadlocks which are not in reach(N,Ψ) because in some states not enough knowledge is

available to support transitions.

Let ϕsupport(π) denote the disjunction of the formulae ϕs|π such that the entry s|π is nonempty in

the support table. A sufficient condition for N∆ to implement (N,Ψ) is:

ϕΨ
df →

∨
π∈Π

ϕsupport(π) (10.1)

This condition requires that for each state in reach(N,Ψ) that is not a deadlock, at least one transition

is supported. When this condition does not hold, we say that the support table is incomplete.

REDUCING THE NEED FOR ADDITIONAL SYNCHRONIZATIONS 189

Consider Petri net N1 of Figure 10.1 with the given priority rules. The separation of transitions of

N1 according to processes is represented using dashed lines.

The example shows three processes π1 (left), π2 (in the middle), π3 (right) that use binary synchro-

nizations and priorities to enforce mutual exclusion for the execution of critical sections (biriei)i∈[1,3].

Intuitively, priority rules bi � {rj , ej} and ri � ej give higher priority to transitions close to the end

of the critical sections over the others. This enforces the mutual exclusion. Moreover, priority rules

s23 � {b1, r1, e1} and b2 � b3 enforce a particular execution order of critical sections: repeatedly

π1 followed by π3 and then by π2.

Using the method of [BBPS09] described in Chapter 8, no controller is found because the support

table is incomplete. Indeed, as all states are reachable, no process has enough knowledge to enter or

progress in its critical section.

Now, if we calculate the support table on the prioritized executions, we are able to construct a

controller for N1. Indeed, in the prioritized executions, there is always at most one process in its

critical section. Thus, process π1 always supports all its transitions as it can only enter the critical

section in global states in which the other processes are blocked in front of a synchronization. Process

π3 supports all its transitions except s23. Process π2 supports transition s23 when π1 is in p1, transition

b2 when π3 is in p10, and transitions r2 and e2 in all cases. Thus, considering only states which are

reachable in the prioritized system when building the support table yields a solution without additional

synchronization.

Note that if we use the synchronization-based approach of Chapter 9, several additional syn-

chronizations are added in order to check maximality of transitions in the critical section. Out of 80

reachable states, 26 are global states in which no process can support an interaction. More precisely,

4 transitions out of 11 always require a synchronization to be fired: these transitions are b1, r1, b3, r3.

As a result, an execution of 10,000 steps contains exactly 3636 (= 10000× 4/11) synchronizations.

Consider now a simplification of this example with two processes instead of three. In this case,

interestingly, the synchronization-based approach does not result in the execution of any additional

synchronization. The reason for this is that the states requiring additional synchronizations are exactly

the states in which no transition can be supported, meaning that synchronizations are added only when

they are necessary. As these states are unreachable in the prioritized executions, no synchronization

ever takes place. This emphasizes the fact that both approaches can be combined efficiently.

190 REDUCING THE NEED FOR ADDITIONAL SYNCHRONIZATIONS

 p6

p7

p9

p2

p5

p8

p10

p1

p3

p4

p11

p12

p13

s12

b3

r3

e2

b2

r2

e3

s23b1

r1

e1

∀i ∈ [1, 3], bi ≪ {rj, ej}j 6=i

∀i ∈ [1, 3], ri ≪ ej 6=i

s23 ≪ {b1, r1, e1}
b2 ≪ b3

Figure 10.1 – A Petri net N1 with three processes π1, π2 and π3

REDUCING THE NEED FOR ADDITIONAL SYNCHRONIZATIONS 191

10.1.2 Controllers based on an incomplete support table

We now show that even an incomplete support table ∆ for (N,Ψ) may still define a controllerN∆

implementing (N,Ψ). The reason is that states that are reachable in the executions of (N,Ψ) may be

unreachable when applying the controlling the system according to this support table. The executions

according to the support table may be a subset of the executions of (N,Ψ), and the synchronization

states may not be reachable.

We illustrate this on an example, again using priorities to define the constraint. Consider Petri net

N2 of Figure 10.2. It represents two processes πl (left) and πr (right) with a single joint transition,

which means that πl can observe whether πr is in one of the places p8 and p9. Similarly, πl can

observe whether πr is in p2 or in p3.

 p1

p2

p3

p4 p5

p6

p8

p9

p10

p11

p12

p13

p7

a

b

e

h

k

c

f

j

d

ig

πl = {a, b, e, f, g, j}
ngb(πl) = {p1, ... , p6, p8, p9}

πr = {c, d, e, h, i, k}
ngb(πr) = {p2, p3, p7, ... , p13}

Figure 10.2 – A Petri net N2 with two processes πl and πr

Suppose that Petri net N2 must be controlled according to the following set of priority rules:

192 REDUCING THE NEED FOR ADDITIONAL SYNCHRONIZATIONS

p7 p8 p9 p10 p11 p12 p13

p1 a, d a, i a

p2 c, d e i �

p3 f, g, c, d f, g f, g, h f, g, k f, g f, g, i f, g

p4 d � h 8 � i �

p5 j, d j j, h j j j, i j

p6 d � h 8 � i �

Table 10.1 – Support policy for N2 with priorities k � j and c� b� i

k � j and c� b� i. The support table is calculated based on the reachable states in the prioritized

system (priorities make state {p1, p8} unreachable).

Table 10.1 presents a view of the global states of the Petri net. These states are of one of the

following type:

– non-reachable in the prioritized system (they are represented in gray)

– in termination/deadlock in the prioritized system (�)

– deadlock only in the controlled system (8)

– non-deadlock

In the latter case, the cell contains the transitions which are supported in this state by any of the

processes (i.e., we have accumulated all the transitions supported by the local states that constitute

together the global state). A red cross in this incomplete table represents a state in which no process

supports any transition. There are two such states, namely {p4, p10} and {p6, p10}. The situation in

both states is the following: πl has terminated and πr could take transition k, but without an additional

synchronization, there is no way for πr to know that it may safely execute k.

Note that in state {p1, p7}, process πl supports a and process πr supports d; it is impossible for πl
to know whether πr is in p12 or not, and therefore b (which has lower priority than i) is not supported

by πl. Similarly, πr does not support c (which has lower priority than b). While c is supported, e.g., in

{p2, p7}, transition b is never supported, hence never fired in N∆
2 , although it is allowed according to

the priority rules in some states.

As a consequence, the set of states reachable in N∆
2 may be smaller than reach(N2,�). Indeed,

reach(N∆
2) does not contain any state including place p2 together with p9, p10 or p11. This means in

particular that the red crosses in Table 10.1, corresponding to states in which no process supports any

transition, are in fact not reachable, and thus N∆
2 implements (N2,�).

REDUCING THE NEED FOR ADDITIONAL SYNCHRONIZATIONS 193

p7 p8 p9 p10 p11 p12 p13

p1 a, b, c, d a, b a, b, i a, b

p2 c, d e i �

p3 c, d f, g f, g, h k 8 i 8

p4 c, d � h k � i �

p5 j, c, d j j, h j, k j j, i j

p6 c, d � h k � i �

Table 10.2 – Support policy for N2 with priorities g � k and f � i without history

10.2 Comparison with existing work

10.2.1 History-based controllers

We show now that the use of perfect recall is independent of the methods proposed in this chapter,

meaning that in some cases only history is able to provide a controller, while in others it is still relevant

to check whether an incomplete table provides a controller.

Consider the Petri net N2 of Figure 10.2, this time with priorities g � k and f � i. In this case,

the set of reachable states is the same, regardless of the use or not of priorities. Consequently, there is

no difference between the support policy based on the unrestricted system and the prioritized execu-

tions. Moreover, this support policy fails because there are two reachable global states in the support

table where no process is supporting a transition, which are marked by red crosses in Table 10.2:

{p3, p11} and {p3, p13}. Furthermore, these global states are also reachable in the controlled system,

meaning that the heuristics applied in the previous example does not help either.

Nevertheless, this example may be controlled if perfect recall is used. If the left process πl can

remember the path it takes to reach p3, it can distinguish between reaching p3 directly after p1 (by

firing a) or respectively by passing through place p2. Now, the set of reachable states contains enough

information for the support policy to succeed.

Our last example illustrates the combined use of perfect recall and an incomplete table to build

a controller. Consider again the Petri net N2 of Figure 10.2, now with priorities g � k, f � {i, k}
and c � b � i. On one hand, building the support table using the prioritized executions does not

provide enough knowledge to control the system, and the incomplete support table does not provide a

controller. On the other hand, the use of history as shown previously does not help either. Table 10.3

reflects the incomplete support table constructed using jointly the prioritized executions and perfect

194 REDUCING THE NEED FOR ADDITIONAL SYNCHRONIZATIONS

p7 p7 after p3 p8 p9 p10 p11 p12 p13

p1 a, d a, i a

p2 c, d e i �

p3 after p1 c, d, g f, g g, i g

p3 after p2 f, g, h k 8

p4 c, d � h k � i �

p5 j, c, d j j, h j, k j j, i j

p6 c, d � h k � i �

Table 10.3 – Support policy for N2 with g � k, f � {i, k}, c� b� i and history

recall. Additional information related to perfect recall is presented in the rows and columns of the

table only when it is relevant for the support table. We can observe that in {p3 after p2, p11}, no

transition is supported by any process. However, the system can be controlled according to this table.

Indeed, the additional deadlock marked by a red cross in Table 10.3 is actually unreachable within

the controlled system — for a reason similar to one presented in the example of Section 10.1.2. This

illustrates that sometimes, only the combination of several techniques leads to a controller.

10.2.2 A practical solution to the distributed control problem

We now show some connections between the classical controller synthesis problem (see,

e.g., [RW92]) and knowledge-based control. We have provided a solution to the synthesis of dis-

tributed controllers, based on adding synchronizations in order to combine the knowledge of indi-

vidual processes. In this section, we want to put the knowledge-based solution in the context of the

distributed control problem when adding synchronizations is not allowed.

The knowledge approach to control in [RR00] requires that there is sufficient knowledge to allow

any transition of the controlled system that does not violate the constraint Ψ. In [BBPS09], which

we extend here, this requirement is relaxed; the knowledge must suffice to execute at least one en-

abled transition not violating Ψ when such a transition exists. In the more general case of distributed

controller design, one may want to block some enabled transitions even if their execution does not

immediately violate the enforced property. This is required to prevent the transformed system from

later reaching deadlock states, where the controlled system originally had a way to progress (thus,

introducing new deadlocks). When a controller is allowed to block transitions even when their ex-

ecution does not immediately lead to violation of the property to be preserved, the situation can be

recovered.

REDUCING THE NEED FOR ADDITIONAL SYNCHRONIZATIONS 195

Notice that the Petri net of Figure 9.1, where local knowledge is not sufficient for controlling the

system, can be easily controlled by blocking transitions — even when they are known to be maximal:

we may choose either to block α in favor of γ, or to block a in favor of c. Blocking both α and a

is not necessary. This illustrates that distributed controllers are more general than knowledge-based

controllers. This example also shows that there is no unique maximal solution to the control problem

that blocks the smallest number of transitions. Note that an alternative solution to blocking α or a can

be achieved using a temporary synchronization between the processes, as shown earlier.

Actually, even if we redefine our knowledge-based controllers so that they can block transition in

order to avoid a deadlock later in the execution, they will still be less powerful than general distributed

controllers. The reason for that is that local (knowledge-based) controllers lack the ability to agree a

priori on transitions which should be taken or not. Consider a variant of the Petri net of Figure 9.1,

where a situation similar to that between δ, b and β occurs in the right branch of the processes after γ

and c are fired. A distributed controller can still decide that the left process will go left while the right

process will go right. This is not feasible using knowledge-based controllers.

On the other hand, there is no algorithm that guarantees constructing distributed controllers. It

was shown in [Tri04, Thi05] that the problem of synthesizing a distributed controller is, in general,

undecidable. We show here that even when restricting the synthesis problem to priority policies,

the problem remains undecidable. The proof for that is given below. Notice that when we have the

flexibility of allowing additional synchronizations, as in Chapter 9, the problem, in the limit, becomes

a sequential control problem, which is decidable.

Theorem 10.2.1 Constructing a distributed controller that enforces a priority policy is undecidable.

Proof. Following [Tri04], the proof is by reduction from the post correspondence problem (PCP).

In PCP, there is a finite set of pairs {(l1, r1), . . . , (ln, rn)}, where the components li, ri are words

over a common alphabet Σ, and one needs to decide whether one can concatenate separately a left

word from the left components and a right word from the right components according to a mutual

nonempty sequence of indexes i1i2 . . . ik, such that li1 li2 . . . lik = ri1ri2 . . . rik .

Let i ∈ {1..n}, l̂i be the word lii, i.e., the ith left component concatenated with the index i.

Similarly, let r̂i be rii. We consider two regular languages: L = (l̂1 + l̂2 + . . . + l̂k)
+ and R =

(r̂1 + r̂2 + . . . + r̂k)
+. Now suppose a process πp executes according to the regular expression

l.L.x.a.b + r.R.x.c.d. The choice of πp between l and r is uncontrollable. Suppose also that πp
coordinates (through shared transitions) the alphabet letters from Σ with a process πq1 , and the indexes

letters from Σ with another process πq2 . After that, πq1 and πq2 are allowed to interact with each

196 REDUCING THE NEED FOR ADDITIONAL SYNCHRONIZATIONS

other. Specifically, πq2 sends πq1 the sequences of indexes it has observed. Suppose that now πq1 has

a nondeterministic choice between two transitions: α or β. The priorities are set as b � α � a and

d � β � c. All other pairs of transitions are unordered according to�. If πq1 selects α and r was

executed, or πq1 selects β and l was executed, then there is no problem, as α is unordered with respect

to c and d, and also β is unordered with respect to a and b, respectively. Otherwise, there is no way to

control the system so that it executes the sequence a.α.b or c.β.d allowed by the priorities.

We show by contrapositive that if there is a controller, then the answer to the PCP problem is

negative. Suppose the answer to the PCP problem is positive, i.e., some left and right words are

identical and with the same indexes. Then process πq1 cannot make a decision: the information that

πq1 observed and later received from πq2 is exactly the same in both cases for the mutual left and

right word. Thus, πq1 cannot anticipate whether c.d or a.b will happen and cannot make a safe choice

between α and β accordingly.

Conversely, if there is no controller, it means that πq1 cannot make a safe choice between α and

β. This can only happen if πq1 and πq2 can observe exactly the same visible information for both an l

and an r choice by πp.

This means that deciding the existence of a controller for this system would solve the corre-

sponding PCP problem. It is thus undecidable. 2

Note that in this proof we do not ensure a finite memory controller, even when one exists. Indeed,

a finite controller may not exist. To see this, assume a PCP problem with one word {(a, aa)}. To

check whether we have observed a left or a right word, we may just compare the number of a’s that p

has observed with the number of indexes that q has observed.

We have shown that even our limited problem (and running example) of controlling a system

according to priorities is already undecidable. This advocates that the construction of knowledge-

based controllers, and furthermore, the use of additional synchronization, is a practical solution to the

distributed control problem.

10.3 Conclusion

10.3.1 Summary

Imposing a global constraint upon a distributed system by blocking transitions is, in general,

undecidable [Tri04, Thi05]. One practical approach for this problem is to use model checking of

knowledge properties [BBPS09], where a precalculation is used to determine when processes can

REDUCING THE NEED FOR ADDITIONAL SYNCHRONIZATIONS 197

decide, autonomously, to take or block an action so that the global constraint will not be violated.

If we allow additional synchronizations, the problem becomes decidable: at the limit, everything

becomes synchronized, although this, of course, is highly undesirable. Since the overhead induced by

such synchronizations is important, we strive to minimize their number, again using model checking.

This framework applies in particular to the design of controllers that guarantee a priority policy among

transitions.

For achieving a distributed implementation, one can use a multi-party synchronization algorithm

such as the α-core algorithm [PCT04]. Based on that, we presented an algorithm that uses model

checking to calculate when synchronization between local states is needed. The synchronizing pro-

cesses, successfully coordinating, are then able to use the support table calculated by model checking,

which dictates to them which transition can be executed. Some small corrections to the original pre-

sentation of the α-core algorithm appear in [KP10].

Furthermore, we have observed that the knowledge used for constructing a distributed controller

is computed based on the original (uncontrolled) system. Thus, it may be pessimistic in concluding

when transitions can be supported. This has led us to two useful observations that can remove the

need for some of the additional synchronizations used to control the system:

1. Although the analysis of the knowledge of the system is done with the original system, it is safe

to use only the executions that satisfy the constraint. This results in fewer executions and fewer

reachable states, thus enhancing the knowledge.

2. Blocking transitions (not supporting them) because of lack of knowledge has a propagating

effect that can prevent reaching other states. Thus, even when the support policy may seem to

fail without additional synchronization, this may not be the case. Indeed, analyzing the system

when it is restricted according to the support table may be sufficient: the deadlocks correspond-

ing to states where no enabled transition is supported are in fact unreachable.

We have shown that using these two observations is orthogonal to other tools used to force

knowledge-based control such as using knowledge of perfect recall and adding temporary or fixed

synchronizations between processes.

These two results have been integrated into the prototype presented in Chapter 9. More precisely,

the support table is actually built directly from the set of reachable states in the prioritized executions.

Then, if the table contains empty entries, we check the reachability of the states in which no transition

can be supported before adding synchronization.

Finally, we have proved that the distributed control problem is undecidable even for the special

case of enforcing a priority policy, which is the original motivation for this work. This advocates

198 REDUCING THE NEED FOR ADDITIONAL SYNCHRONIZATIONS

using knowledge-based controllers enriched with additional synchronizations as a practical solution

to the distributed control problem.

10.3.2 Perspectives

There are many interesting ways of refining the approach presented here. A first refinement is

to find a compromise between progress and communication overhead. The example with tracks and

trains illustrates that deadlock-freedom is not sufficient in many contexts. Allowing for more progress

implies adding communication overhead. Thus, we need to define other meaningful criteria to decide

when a synchronization should be added. In particular, this requires to have a better understanding of

the impact of synchronizations on the number of messages exchanged during the coordinator process.

We have already started to study the question of how the synchronization layer and the coordination

layer can be profitably merged in [BHGQ10], but this is preliminary work.

Another improvement on our work would be to combine it with abstraction techniques. Indeed,

knowledge of a process, defined as the set of global reachable states consistent with its local state, is

well-suited for being obtained based on an abstraction of the rest of the system.

Finally, it would be meaningful to integrate this approach into the distributed implementation

of BIP [BBS06] which is currently under development. So far, only systems without priorities have

been implemented [BBJ+a, BBJ+b]. The question of how to implement BIP systems in a distributed

setting remains a challenging task.

Conclusion

We have focused in this thesis on three different aspects of the building of systems: design, ver-

ification and implementation. We have advocated that the first two phases should be combined to be

more efficient. In particular, designing systems using contracts makes it possible to use these con-

tracts as verification steps. We have presented frameworks in which interaction is complex and can

thus simplify both the design and the verification phase, because the structure of the system and its

behavior are separated. Part II illustrates the difficulty of implementing such complex interaction

models efficiently in a distributed setting. The approach proposed here for distributed control is based

on model checking, and thus does not scale to large systems as those targeted by Part I.

Two improvements could help this method scale. The first one would be to find other, maybe

more suitable notions of knowledge. So far, we have used a rather naive definition based on the set of

reachable global states. Many other possibilities exist and they have to be studied. Also, observability

can be modified: neighborhood as it is defined here is not so easy to implement with α-core and other

definitions could probably improve the efficiency of the whole approach.

A second possible improvement would to find adequate abstractions that can be combined with

the model checking phase of the method. Indeed, a nice development of this thesis would be to use the

contracts from the design and verification phase to improve the implementation phase. That is, just

like contracts can be used as abstractions provided by the user for verification purposes, they could

be used for implementation purposes.

In a different direction, protocols implementing distributed algorithms usually collect and encode

some informal “knowledge” into local states by circulating messages. These various “knowledge”

properties could be a source of inspiration for new formal definitions of knowledge, and they could

lead to formal methods for the verification and distributed implementation of protocols.

199

200 CONCLUSION

Bibliography

[AHKV98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternating

refinement relations. In Proceedings of CONCUR’98, pages 163–178, 1998.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component composition.

Mathematical Structures in Computer Science, 14(3), 2004.

[Bag89] Rajive Bagrodia. Synchronization of asynchronous processes in CSP. ACM Trans.

Program. Lang. Syst., 11(4):585–597, 1989.

[BBBS08] Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis. Distributed se-

mantics and implementation for systems with interaction and priority. In Proceedings

of FORTE’08, volume 5048 of LNCS, pages 116–133. Springer, 2008.

[BBG+10] Saddek Bensalem, Marius Bozga, Susanne Graf, Doron Peled, and Sophie Quinton.

Methods for knowledge-based controlling of distributed systems. In Proceedings of

ATVA’10, volume 6252 of LNCS, pages 52–66. Springer, 2010.

[BBJ+a] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph

Sifakis. Automated conflict-free distributed implementation of component-based mod-

els. To appear in Proceedings of SIES’10.

[BBJ+b] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph

Sifakis. From high-level component-based models to distributed implementations. To

appear in Proceedings of EMSOFT’10.

[BBNS09] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. D-finder:

A tool for compositional deadlock detection and verification. In Proceedings of

CAV’09, volume 5643 of LNCS, pages 614–619. Springer, 2009.

[BBPS09] Ananda Basu, Saddek Bensalem, Doron Peled, and Joseph Sifakis. Priority scheduling

of distributed systems based on model checking. In Proceedings of CAV’09, volume

5643 of LNCS, pages 79–93. Springer, 2009.

201

202 CONCLUSION

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time

components in BIP. In Proceedings of SEFM’06, pages 3–12. IEEE Computer Society,

2006.

[BBSN08] Saddek Bensalem, Marius Bozga, Joseph Sifakis, and Thanh-Hung Nguyen. Compo-

sitional verification for component-based systems and application. In Proceedings of

ATVA’08, volume 5311 of LNCS, pages 64–79. Springer, 2008.

[BCF+07] Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca, Roberto

Passerone, and Christos Sofronis. Multiple viewpoint contract-based specification and

design. In Proceedings of FMCO’07, volume 5382 of LNCS, pages 200–225. Springer,

2007.

[BCH05] Dirk Beyer, Arindam Chakrabarti, and Thomas A. Henzinger. Web service interfaces.

In Proceedings of WWW’05, pages 148–159, 2005.

[BCP07] Albert Benveniste, Benoît Caillaud, and Roberto Passerone. A generic model of con-

tracts for embedded systems. CoRR, abs/0706.1456, 2007.

[BFM+08] Luca Benvenuti, Alberto Ferrari, Leonardo Mangeruca, Emanuele Mazzi, Roberto

Passerone, and Christos Sofronis. A contract-based formalism for the specification

of heterogeneous systems. In FDL, pages 142–147. IEEE Computer Society, 2008.

[BGJ91] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous program-

ming with events and relations: the SIGNAL language and its semantics. Sci. Comput.

Program., 16(2):103–149, 1991.

[BGL03] Saddek Bensalem, Susanne Graf, and Yassine Lakhnech. Abstraction as the key for

invariant verification. In Verification: Theory and Practice, pages 67–99, 2003.

[BGO+04] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. The IF

toolset. In Proceedings of SFM’04, pages 237–267, 2004.

[BGP03] Howard Barringer, Dimitra Giannakopoulou, and Corina S. Pasareanu. Proof rules for

automated compositional verification. In Proceedings of ESEC/FSE’03, 2003.

[BHGQ10] Imene Ben-Hafaiedh, Susanne Graf, and Sophie Quinton. Building distributed con-

trollers for systems with priorities. Technical Report TR-2010-15, Verimag, 2010.

[BHQG10a] Imene Ben-Hafaiedh, Sophie Quinton, and Susanne Graf. A contract approach for

reasoning about progress: Application to resource-sharing in a network, 2010. To

appear in Proceedings of FLACOS’10.

CONCLUSION 203

[BHQG10b] Imene Ben-Hafaiedh, Sophie Quinton, and Susanne Graf. A contract framework for

reasoning about safety and progress. Technical Report TR-2010-11, Verimag, 2010.

[BHQG10c] Imene Ben-Hafaiedh, Sophie Quinton, and Susanne Graf. Reasoning about safety and

progress using contracts, 2010. To appear in Proceedings of ICFEM’10.

[BHS07] Dirk Beyer, Thomas A. Henzinger, and Vasu Singh. Algorithms for interface synthesis.

In Proceedings of CAV’07, pages 4–19, 2007.

[BJS09] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source architecture

transformation for performance optimization in BIP. In SIES, pages 152–160. IEEE

Computer Society, 2009.

[Blo93] Bard Bloom. Ready Simulation, Bisimulation, and the Semantics of CCS-Like Lan-

guages. PhD thesis, MIT, 1993.

[BLO98] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstractions of infi-

nite state systems compositionally and automatically. In Proceedings of CAV’98, pages

319–331, 1998.

[BM79] Robert S. Boyer and J. Strother Moore. A computational logic. Academic Press, 1979.

[BMMR01] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani. Auto-

matic predicate abstraction of C programs. In Proceedings of PLDI’01, pages 203–213,

2001.

[BS83] Gael N. Buckley and Abraham Silberschatz. An effective implementation for the gen-

eralized input-output construct of CSP. ACM Trans. Program. Lang. Syst., 5(2):223–

235, 1983.

[BS03] Philippe Bidinger and Jean-Bernard Stefani. The Kell calculus: operational semantics

and type systems. In Proc. of FMOODS’03, volume 2884 of LNCS, 2003.

[BS08a] Simon Bliudze and Joseph Sifakis. The algebra of connectors - structuring interaction

in BIP. IEEE Trans. Computers, 57(10):1315–1330, 2008.

[BS08b] Simon Bliudze and Joseph Sifakis. A notion of glue expressiveness for component-

based systems. In Proceedings of CONCUR’08, volume 5201 of LNCS, pages 508–

522. Springer, 2008.

[BZ07] Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreography

conformance and contract compliance. In Software Composition, pages 34–50, 2007.

204 CONCLUSION

[CAC08] Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke. Breaking up is hard to

do: An evaluation of automated assume-guarantee reasoning. ACM Trans. Softw. Eng.

Methodol., 17(2):1–52, 2008.

[CCF+10] Yu-Fang Chen, Edmund M. Clarke, Azadeh Farzan, Ming-Hsien Tsai, Yih-Kuen Tsay,

and Bow-Yaw Wang. Automated assume-guarantee reasoning through implicit learn-

ing. In Proceedings of CAV’10, volume 6174 of LNCS, pages 511–526. Springer, 2010.

[CCST05] Sagar Chaki, Edmund M. Clarke, Nishant Sinha, and Prasanna Thati. Automated

assume-guarantee reasoning for simulation conformance. In Proceedings of CAV’05,

pages 534–547, 2005.

[CdAHS03] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga.

Resource interfaces. In Proceedings of EMSOFT’03, pages 117–133. ACM, 2003.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchroniza-

tion skeletons using branching-time temporal logic. In Proceedings of Logic of Pro-

grams’82, volume 131 of LNCS, pages 52–71. Springer, 1981.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In Proceedings of CAV’00, volume

1855 of LNCS, pages 154–169. Springer, 2000.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstrac-

tion. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,

2000.

[CGP03] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learning

assumptions for compositional verification. In Proceedings of TACAS’03, volume 2619

of LNCS, pages 331–346. Springer, 2003.

[CGP08] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web

services. In Proceedings of POPL’08, pages 261–272, 2008.

[CH07] Krishnendu Chatterjee and Thomas A. Henzinger. Assume-guarantee synthesis. In

Proceedings of TACAS’07, pages 261–275, 2007.

[CLM89] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Compositional model

checking. In Proceedings of LICS’89, pages 353–362. IEEE Computer Society, 1989.

[CM07] Pablo F. Castro and T. S. E. Maibaum. A complete and compact propositional deontic

logic. In Proceedings of ICTAC’07, pages 109–123, 2007.

CONCLUSION 205

[COM] Combest project. http://www.combest.eu.

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lustre: A declarative

language for programming synchronous systems. In Proceedings of POPL’87, pages

178–188, 1987.

[dAH01a] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC / SIGSOFT

FSE, pages 109–120, 2001.

[dAH01b] Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based

design. In Proceedings of EMSOFT’01, pages 148–165. ACM, 2001.

[dAH05] Luca de Alfaro and Thomas Henzinger. Interface-based design. In D. Harel M. Broy,

J. Gruenbauer and C.A.R. Hoare, editors, Engineering Theories of Software-intensive

Systems, volume 195 of NATO Science Series: Mathematics, Physics, and Chemistry,

pages 83–104. Springer, 2005.

[dAHM00] Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. Detecting errors before

reaching them. In Proceedings of CAV’00, pages 186–201, 2000.

[dAHS02] Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Timed interfaces. In

Proceedings of EMSOFT’02, pages 108–122. ACM, 2002.

[Dam05] Werner Damm. Controlling speculative design processes using rich component mod-

els. In Proceedings of ACSD’05, pages 118–119. IEEE Computer Society, 2005.

[DDHL09] Ajoy Kumar Datta, Stéphane Devismes, Florian Horn, and Lawrence L. Larmore. Self-

stabilizing k-out-of- exclusion on tree networks. In Proceedings of IPDPS’09, pages

1–8. IEEE Computer Society, 2009.

[DHJP08] Laurent Doyen, Thomas A. Henzinger, Barbara Jobstmann, and Tatjana Petrov. In-

terface theories with component reuse. In Proceedings of EMSOFT’08, pages 79–88.

ACM, 2008.

[dRdBH+01] Willem P. de Roever, Frank S. de Boer, Ulrich Hannemann, Jozef Hooman, Yassine

Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification: Introduction to

Compositional and Noncompositional Methods, volume 54 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 2001.

[EC80] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties of

parallel programs using fixpoints. In Proceedings of ICALP’80, volume 85 of LNCS,

pages 169–181. Springer, 1980.

http://www.combest.eu

206 CONCLUSION

[EJL+03] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, Stephen

Neuendorffer, S. Sachs, and Yuhong Xiong. Taming heterogeneity - the Ptolemy ap-

proach. Proceedings of the IEEE, 91(1):127–144, 2003.

[FHVM95] Ronald Fagin, Joseph Y. Halpern, Moshe Y. Vardi, and Yoram Moses. Reasoning about

knowledge. MIT Press, Cambridge, MA, USA, 1995.

[GGMC+06] Gregor Gößler, Susanne Graf, Mila E. Majster-Cederbaum, Moritz Martens, and

Joseph Sifakis. Ensuring properties of interaction systems. In Program Analysis and

Compilation, pages 201–224, 2006.

[GL81] Hartmann J. Genrich and Kurt Lautenbach. System modelling with high-level petri

nets. Theor. Comput. Sci., 13:109–136, 1981.

[GL91] Orna Grumberg and David E. Long. Model checking and modular verification. In

Proceedings of CONCUR’95, volume 527 of LNCS, pages 250–265. Springer, 1991.

[GLL99] Alain Girault, Bilung Lee, and Edward A. Lee. Hierarchical finite state machines with

multiple concurrency models. IEEE Trans. on CAD of Integrated Circuits and Systems,

18(6):742–760, 1999.

[GMF07] Anubhav Gupta, Kenneth L. McMillan, and Zhaohui Fu. Automated assumption gen-

eration for compositional verification. In Proceedings of CAV’07, volume 4590 of

LNCS, pages 420–432. Springer, 2007.

[GPB05] Dimitra Giannakopoulou, Corina S. Pasareanu, and Howard Barringer. Component

verification with automatically generated assumptions. Autom. Softw. Eng., 12(3):297–

320, 2005.

[GPC04] Dimitra Giannakopoulou, Corina S. Pasareanu, and Jamieson M. Cobleigh. Assume-

guarantee verification of source code with design-level assumptions. In Proceedings

of ICSE’04, pages 211–220, 2004.

[GPQ10] Susanne Graf, Doron Peled, and Sophie Quinton. Achieving distributed control

through model checking. In Proceedings of CAV’10, volume 6174 of LNCS, pages

396–409. Springer, 2010.

[GQ07] Susanne Graf and Sophie Quinton. Contracts for BIP: Hierarchical interaction models

for compositional verification. In Proceedings of FORTE’07, volume 4574 of LNCS,

pages 1–18. Springer, 2007.

[Gru05] Orna Grumberg. Abstraction and refinement in model checking. In Proceedings of

FMCO’05, pages 219–242, 2005.

CONCLUSION 207

[GS97] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with pvs. In

Proceedings of CAV’97, pages 72–83, 1997.

[GS03a] Gregor Gößler and Joseph Sifakis. Component-based construction of deadlock-free

systems: Extended abstract. In Proceedings of FSTTCS’03, pages 420–433, 2003.

[GS03b] Gregor Gößler and Joseph Sifakis. Priority systems. In Proceedings of FMCO’03,

volume 3188 of LNCS, pages 314–329. Springer, 2003.

[GS05] Gregor Gößler and Joseph Sifakis. Composition for component-based modeling. Sci.

Comput. Program., 55(1-3):161–183, 2005.

[GSL96] Susanne Graf, Bernhard Steffen, and Gerald Lüttgen. Compositional minimisation of

finite state systems using interface specifications. Formal Asp. Comput., 8(5):607–616,

1996.

[HJS01] Michael Huth, Radha Jagadeesan, and David A. Schmidt. Modal transition systems:

A foundation for three-valued program analysis. In Proceedings of ESOP’01, volume

2028 of LNCS, pages 155–169. Springer, 2001.

[HM92] Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity for

modal logics of knowledge and belief. Artificial Intelligence, 54(2):319–379, 1992.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[HQR00] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. Decomposing refine-

ment proofs using assume-guarantee reasoning. In Proceedings of ICCAD’00, pages

245–252, 2000.

[HQRT98] Thomas A. Henzinger, Shaz Qadeer, Sriram K. Rajamani, and Serdar Tasiran. An

assume-guarantee rule for checking simulation. In Proceedings of FMCAD’98, pages

421–432, 1998.

[HS07] Thomas A. Henzinger and Joseph Sifakis. The discipline of embedded systems design.

IEEE Computer, 40(10):32–40, 2007.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, 1979.

[HZ92] Joseph Y. Halpern and Lenore D. Zuck. A little knowledge goes a long way:

Knowledge-based derivations and correctness proofs for a family of protocols. J. ACM,

39(3):449–478, 1992.

208 CONCLUSION

[Jon83] Cliff B. Jones. Tentative steps toward a development method for interfering programs.

ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[KP10] Gal Katz and Doron Peled. Code mutation in verification and automatic code correc-

tion. In Proceedings of TACAS’10, volume 6015 of LNCS, pages 435–450. Springer,

2010.

[Lar89] Kim Guldstrand Larsen. Modal specifications. In Automatic Verification Methods for

Finite State Systems, volume 407 of LNCS, pages 232–246. Springer, 1989.

[LGS+95] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and Saddek Ben-

salem. Property preserving abstractions for the verification of concurrent systems.

Formal Methods in System Design, 6(1):11–44, 1995.

[LL98] Bilung Lee and Edward A. Lee. Hierarchical concurrent finite state machines in

ptolemy. In Proceedings of ACSD’98, pages 34–40. IEEE Computer Society, 1998.

[LN05] Edward A. Lee and Stephen Neuendorffer. Concurrent models of computation for

embedded software. In Computers and Digital Techniques, pages 239–250, 2005.

[LNW06] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Interface input/output

automata. In Proceedings of FM’06, volume 4085 of LNCS, pages 82–97. Springer,

2006.

[LNW07] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/O automata

for interface and product line theories. In Proceedings of ESOP’07, volume 4421 of

LNCS, pages 64–79. Springer, 2007.

[Lon93] David E. Long. Model checking, abstraction and compositional reasoning. PhD thesis,

CMU, 1993.

[LP07] Cosimo Laneve and Luca Padovani. The must preorder revisited. In Proceedings of

CONCUR’07, volume 4703 of LNCS, pages 212–225. Springer, 2007.

[LSW95] Kim Guldstrand Larsen, Bernhard Steffen, and Carsten Weise. A constraint oriented

proof methodology based on modal transition systems. In Proceedings of TACAS’95,

volume 1019 of LNCS, pages 17–40. Springer, 1995.

[LW94] Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.

Program. Lang. Syst., 16(6):1811–1841, 1994.

[LX90] Kim Guldstrand Larsen and Liu Xinxin. Equation solving using modal transition sys-

tems. In Proceedings of LICS’90, pages 108–117. IEEE Computer Society, 1990.

CONCLUSION 209

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[LZZ05] Edward A. Lee, Haiyang Zheng, and Ye Zhou. Causality interfaces and compositional

causality analysis. In Proceedings of FIT’05, 2005.

[Mai01] Patrick Maier. A set-theoretic framework for assume-guarantee reasoning. In Proceed-

ings of ICALP’01, volume 2076 of LNCS, pages 821–834. Springer, 2001.

[Mai03a] Patrick Maier. Compositional circular assume-guarantee rules cannot be sound and

complete. In Proceedings of FoSSaCS’03, volume 2620 of LNCS, pages 343–357.

Springer, 2003.

[Mai03b] Patrick Maier. A Lattice-Theoretic Framework for Circular Assume-Guarantee Rea-

soning. PhD thesis, Universität des Saarlandes, 2003.

[Mau] Maude system. http://maude.cs.uiuc.edu.

[MB07] Florence Maraninchi and Tayeb Bouhadiba. 42: programmable models of computation

for a component-based approach to heterogeneous embedded systems. In Proceedings

of GPCE’07, pages 53–62. ACM, 2007.

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Trans.

Software Eng., 7(4):417–426, 1981.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[McM99] Kenneth L. McMillan. Circular compositional reasoning about liveness. In Proceed-

ings of CHARME’99, volume 1703 of LNCS, pages 342–345. Springer, 1999.

[MCM08] Mila E. Majster-Cederbaum and Moritz Martens. Compositional analysis of deadlock-

freedom for tree-like component architectures. In Proceedings of EMSOFT’08, pages

199–206. ACM, 2008.

[Mey92] Bertrand Meyer. Applying "design by contract". IEEE Computer, 25(10):40–51, 1992.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer,

1980.

[Mil83] Robin Milner. Calculi for synchrony and asynchrony. Theor. Comput. Sci., 25:267–

310, 1983.

[Mil85] George J. Milne. Circal and the representation of communication, concurrency, and

time. ACM Trans. Program. Lang. Syst., 7(2):270–298, 1985.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

http://maude.cs.uiuc.edu

210 CONCLUSION

[MP83] Zohar Manna and Amir Pnueli. How to cook a temporal proof system for your pet

language. In Proceedings of POPL’83, pages 141–154, 1983.

[MP91] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: Spec-

ification. Springer, 1991.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4), 1989.

[Orl77] James B. Orlin. Contentment in graph theory: covering graphs with cliques. Indaga-

tiones Mathematicae, 80(5):406–424, 1977.

[Pad08] Luca Padovani. Contract-directed synthesis of simple orchestrators. In Proceedings of

CONCUR’08, volume 5201 of LNCS, pages 131–146. Springer, 2008.

[PCT04] José Antonio Pérez, Rafael Corchuelo, and Miguel Toro. An order-based algorithm

for implementing multiparty synchronization. Concurrency - Practice and Experience,

16(12):1173–1206, 2004.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proceedings

of POPL’89, pages 179–190, 1989.

[PR90] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In

Proceedings of FOCS’90, volume II, pages 746–757. IEEE Computer Society, 1990.

[PS07] Cristian Prisacariu and Gerardo Schneider. A formal language for electronic contracts.

In Proceedings of FMOODS’07, volume 4468 of LNCS, pages 174–189. Springer,

2007.

[QBHG09] Sophie Quinton, Imene Ben-Hafaiedh, and Susanne Graf. From orchestration to chore-

ography: Memoryless and distributed orchestrators. In Proceedings of FLACOS’09,

2009.

[QG08a] Sophie Quinton and Susanne Graf. Contract-based verification of hierarchical systems

of components. In Proceedings of SEFM’08, pages 377–381. IEEE Computer Society,

2008.

[QG08b] Sophie Quinton and Susanne Graf. A framework for contract-based reasoning: Moti-

vation and application. In Proceedings of FLACOS’08, pages 77–84, 2008.

[QGP10] Sophie Quinton, Susanne Graf, and Roberto Passerone. Contract-based reasoning for

component systems with complex interactions. Technical Report TR-2010-12, Ver-

imag, 2010.

CONCLUSION 211

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent

systems in CESAR. In Proceedings of Symposium on Programming’82, volume 137

of LNCS, pages 337–351. Springer, 1982.

[Rac08] Jean-Baptiste Raclet. Residual for component specifications. Electr. Notes Theor.

Comput. Sci., 215:93–110, 2008.

[RBB+09a] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît Caillaud, Axel Legay,

and Roberto Passerone. Modal interfaces: unifying interface automata and modal spec-

ifications. In Proceedings of EMSOFT’09, pages 87–96. ACM, 2009.

[RBB+09b] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoît Caillaud, and Roberto

Passerone. Why are modalities good for interface theories? In Proceedings of

ACSD’09, pages 119–127. IEEE Computer Society, 2009.

[Rei84] John H. Reif. The complexity of two-player games of incomplete information. J.

Comput. Syst. Sci., 29(2):274–301, 1984.

[RR00] Karen Rudie and S. Laurie Ricker. Know means no: Incorporating knowledge into

discrete-event control systems. IEEE Transactions on Automatic Control, 45(9):1656–

1668, 2000.

[RSW04] Thomas W. Reps, Shmuel Sagiv, and Reinhard Wilhelm. Static program analysis via 3-

valued logic. In Proceedings of CAV’04, volume 3114 of LNCS, pages 15–30. Springer,

2004.

[RW87] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event

processes. SIAM J. Control Optim., 25(1):206–230, 1987.

[RW92] Karen Rudie and W. Murray Wonham. Think globally, act locally: decentralized su-

pervisory control. IEEE Transactions on Automatic Control, 37(11):1692–1708, 1992.

[Sif05] Joseph Sifakis. A framework for component-based construction extended abstract. In

Proceedings of SEFM’05, pages 293–300, 2005.

[Sim] Simulink. http://www.mathworks.com/products:simulink/.

[Sin07] Nishant Sinha. Automated Compositional Analysis for Checking Component Substi-

tutability. PhD thesis, CMU, 2007.

[SPE] SPEEDS project. http://www.speeds.eu.com.

[Sys] Open systemC initiative. http://www.systemc.org/.

http://www.mathworks.com/products:simulink/
http://www.speeds.eu.com
http://www.systemc.org/

212 TABLE OF CONTENTS

[Thi05] John G. Thistle. Undecidability in decentralized supervision. System and Control

Letters, 54:503–509, 2005.

[Tho95] Wolfgang Thomas. On the synthesis of strategies in infinite games. In Proceedings of

STACS’95, volume 900 of LNCS, pages 1–13. Springer, 1995.

[TLHL09] Stavros Tripakis, Ben Lickly, Thomas A. Henzinger, and Edward A. Lee. On relational

interfaces. In Proceedings of EMSOFT’09, pages 67–76. ACM, 2009.

[Tri04] Stavros Tripakis. Undecidable problems of decentralized observation and control on

regular languages. Inf. Process. Lett., 90(1):21–28, 2004.

[vdM98] Ron van der Meyden. Common knowledge and update in finite environment. Informa-

tion and Computation, 140(2):115–157, 1998.

[YL02] Tae-Sic Yoo and Stéphane Lafortune. A general architecture for decentralized super-

visory control of discrete-event systems. Discrete Event Dynamic Systems, 12(3):335–

377, 2002.

	Table of contents
	Introduction (en français)
	Introduction (in English)
	I Contract-Based Design and Verification of Component-Based Systems
	Preliminaries and related work
	Preliminaries
	Labeled transition systems
	Modal transition systems

	Related work
	The BIP framework
	Interface theories

	Defining contract frameworks
	Methodology
	Definitions
	Component framework
	Contract framework
	Dominance

	Reasoning within a contract framework
	Compositionality
	Circular reasoning
	A sufficient condition for dominance

	Verifying systems of arbitrary size
	Formal methodology
	An application to resource sharing in a network

	Proofs

	Beyond the definitions
	Possible extensions
	Structuring
	Projection
	Equivalence of glues
	Defining glues on a partition
	Well-formedness

	Additional notions
	Consistency
	Compatibility
	Composition of contracts
	Multiple contracts for components

	Combining two refinement relations
	Relaxing assume-guarantee reasoning
	Relaxing circular reasoning

	Proofs

	A contract framework for the BIP semantic level
	Necessary ingredients for a successful encoding
	The BIP semantic contract framework
	Coherence conditions
	Composition of glues and equivalence of components
	Structuring systems
	Consistency between and
	Preservation of refinement by composition
	Soundness of circular reasoning

	Two component frameworks for BIP
	A first variant: BIP with maximal progress
	A second variant: multi-shot BIP
	Projection

	Application to I/O automata and to the SPEEDS project
	Encoding of interface I/O automata
	The I/O contract framework
	Coherence conditions
	Using the I/O contract framework

	The SPEEDS project
	The L0 contract framework
	The L1 contract framework
	Consistency between L0 and L1
	Implementation issues
	Proofs

	Contract frameworks for transition systems
	Labeled transition systems
	Definitions
	Refinement in any context
	Structural consistency

	Modal transition systems
	Definitions
	Refinement in any context
	Structural consistency

	Labeled transition systems with priorities
	Definitions

	Modal transition systems with priorities
	Definitions

	Proofs
	Conclusion
	Summary
	Perspectives

	II Implementation of Distributed Systems with Complex Interaction
	Achieving distributed control through model checking
	Preliminaries
	Petri nets
	Constraints
	Distributed setting
	Defining properties
	Knowledge

	The support policy
	Building the support table
	Distributed control based on the support table
	Deadlock-freedom

	A synchronization-based approach
	A synchronization-based approach
	An example where the support policy fails
	Existing solutions
	Adding synchronizations to provide sufficient knowledge
	A distributed controller imposing the global property
	Minimizing the number of coordinators

	Implementation and experimental results
	The pragmatic dining philosophers
	Of tracks and trains

	Reducing the need for additional synchronizations
	Alternative to adding synchronizations
	Support policy based on the controlled system
	Controllers based on an incomplete support table

	Comparison with existing work
	History-based controllers
	A practical solution to the distributed control problem

	Conclusion
	Summary
	Perspectives

	Conclusion
	Bibliography

