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Introduction

The fascinating glassy state

Glass is a ubiquitous material in our daily life; however, it is one of the most complex states
of matter. Tt is frequently used in various forms (optical glasses, glass wool...) for its numerous
physical properties.

The specificity of this peculiar state of matter is that it is between a liquid state and a
solid state. The atoms in the glass are disordered like in a liquid, but are trapped, under a
very fast cooling procedure called a quench, in a solid state. As with a liquid, the matter
flows, but on extremely long time scales, that can be counted in thousands of years. Thus, the
material appears solid for daily handling. After the success of solid state physics in describing
crystallized materials in which the atoms are ordered, physicists have paid attention to these
disordered systems, that require new concepts.

From the seventies, one type of glasses, called spin glass, has received the attention of physi-
cists. It is a magnetic glass, composed of magnetic atoms randomly distributed in space. Such
systems are frequently encountered in the study of magnetic materials, and one understands
rather well some of the underlying mechanisms leading to the formation of this phase. Spin
glass is thus considered as a model system for the study of glassy state.

During the seventies and eighties, this glass was extensively studied, both theoretically
and experimentally. The experimental approaches have revealed fascinating properties: a non
conventional order of matter, memory features... And the theoretical works have converged
towards two main descriptions of the spin glass fundamental state. Two visions that are clearly
antagonist and still heavily debated. On the one hand, a "mean-field" point of view with
coexisting multiple fundamental states. On the other hand, a "droplet" vision, with a unique
fundamental state. In order to discriminate between these two theories, it is required to know
in details, that is at the microscopic level, the fundamental states obtained after, for example,
two independent quenches.

The input of mesoscopic physics

Mesoscopic physics deals with the electronic properties of conductors in the quantum regime,
that is, when these properties are governed by the wave nature of electrons. To reach such
a regime, one needs samples below the micrometer size, and cryogenic temperatures. This
explains why the study of mesoscopic physics soared during the eighties and nineties, with the
development of adequate experimental techniques.

In particular, in this regime, electrons interfere while they diffuse in the system. This
gives rise to fluctuations in the conductance that reflect the detailed paths of the electrons
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in the sample, i.e., the disorder configuration. A measurement of these fluctuations gives a
"fingerprint" of the disorder. The idea of using such a property in the study of disordered
systems emerged simultaneously with mesoscopic physics, but only a few really conclusive
experiments have been achieved so far.

Purpose of this work

In this PhD work, we propose to implement such measurements of the conductance fluctu-
ations in spin glasses. This original mesoscopic approach provides a tool which has a unique
sensitivity to the disorder. We have elaborated mesoscopic spin glass samples, and prepared the
experimental setup required for the measurement. The comparison between results obtained
in a pure Ag sample, and in a AgMn alloy allows to highlight experimental signatures of the
spin glass phase. We have addressed the study of the resistivity of the spin glass, of the ampli-
tude of the conductance fluctuations in field and temperature, and of the correlations between
different fingerprints of the disorder configuration. Such measurements open a new way to an
experimental determination of the spin glass order parameter, that may allow characterization
of the ground state of the system.

Manuscript outline

This manuscript is divided into three parts. The first part gives an introduction to the
physics we are dealing with. Chapter 1 introduces the spin glass physics and the problematic
of the ground state in such systems. Chapter 2 details concepts of the mesoscopic physics and
in particular universal conductance fluctuations used in our study of spin glasses. Chapter 3
describes the state of the art of experimental and theoretical attempts to link mesoscopic
fluctuations and spin glasses.

The second part deals with the implementation of the experiment. In chapter 4, we present
the experimental setup and the measurement implementation.

The third part is dedicated to the results of the measurements made in mesoscopic spin
glasses. Chapter 5 presents the experimental calibration of the technique performed on a non
magnetic sample, which will serve as a reference. In chapter 6, we present the experimental
signatures of the spin glass phase on the resistivity. Our low-noise setup reveals characteristic
irreversibilities that allow to determine the freezing temperature 7,. Chapter 7 presents mea-
surements of the conductance fluctuations in spin glasses. Their dependence on the magnetic
field yields new trends towards a freezing of magnetic excitations in a spin glass. Chapter 8
deals with the analysis of the correlations between different disorder configurations. The ex-
perimental conductance fluctuations are shown to be sensitive to the magnetic disorder. We
thus study the effect of an external parameter which acts on the disorder: an additional mag-
netic field seems to modify the fingerprints in a reversible way, whereas a temperature cycle
affects them irreversibly. These results allow for a direct determination of the spin glass order
parameter.
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Chapter
Spin glasses, a model for glassy systems

In this chapter, we outline the basics on spin glasses, and the theoretical concepts linked to
the description of the ground state in these systems.

1.1 The intriguing glass phase

Condensed matter physics has been built around the success of crystal theories. When
identical atoms are arranged on a regular lattice, the properties of the whole material can be
extrapolated from the behavior of a single segment, as the translational invariance is fulfilled |1,
2]. The long-range atomic order has turned out to be a definition of the solid phase (in
opposition to the liquid or gas phases).

However, in nature one can easily find a large quantity of compounds that are not ordered in
a regular manner. This is due to a disorder in the lattice atoms’ positions (amorphous material),
or in some impurities’ - atoms different than the lattice ones - positions (alloys). One cannot
use the usual crystal theories to describe these compounds, as there are no long-range spatial
correlations. In these systems, the matter is ill-condensed'. Some of these disordered systems
are called "glasses", and have excited the curiosity of physicists.

Structural glasses (amorphous materials) are obtained by cooling down a supercooled liquid.
In the liquid state, the atoms are moving and are thus in a disordered configuration. When
the liquid is rapidly? cooled, the crystalline order may not have the time to establish. Indeed,
the atoms cannot reorganize, and they are trapped in disordered positions into the solid state.
This phenomenon appears below a characteristic temperature 7}, the glass temperature. Below
T,, the material is a solid having a structural liquid disorder. Such a fabrication protocol is
the one used by the glass-blower who sculpts our daily objects (figure 1.1).

IThis expression is taken from the title of a school at Les Houches.
2With respect to the atoms reorganization time.
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Figure 1.1: Left: a piece of obsidian, a natural volcanic glass. Right: ordinary glass being sculpted by
a glass-blower before cooling.

However the concept of glasses as a phase where disorder is frozen (quenched) is more
general than that. Glasses exhibit the following properties:

1. Absence of long-range order, revealed by diffraction experiments (Xray, neutrons...).

2. Divergence of the viscosity around a critical temperature Tj, below which one enters the
glassy phase.

3. The glass phase is metastable, the disorder configuration has slow dynamics, and the
system relaxes on very long time scales?.

The difficulties encountered in describing this intriguing state of matter have generated
new concepts and techniques. Interestingly, the models developed are also applied to general
combinatorial optimization problems, such as the "traveling salesman".

As we have already mentioned, the disorder in glasses can be of various types. In particular,
it can come from magnetic impurities; this is the famous example of the spin glass that we will
focus on in all the following.

1.2 Spin glasses

This work is dedicated to spin glasses [3, 4, 5, 6]. In these systems, the disorder is mag-
netic. It arises from the presence of magnetic impurities in a host material. Below the glass
temperature T}, the magnetic moments are competing through an interaction which is random
in amplitude and sign, and leads to frustration: none of the configurations can satisfy energet-
ically all the bonds simultaneously. This results in a state in which all the magnetic moments
are frozen in random orientations. The system has a local magnetization, but a vanishing global
one. In spin glasses, the source of randomness and the mechanisms behind the glassy behavior
are well identified; this is why they are considered as a model glass.

3The thickness of stained glasses being larger at the bottom than on the top as often been attributed to the
slow flowing down of the glass along centuries. This is not quantitatively true, though the disorder reorganizes
slowly.
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1.2.1 Disorder and frustration

As mentioned before, the two basic ingredients to obtain a spin glass phase are disorder and
frustration [7]. Frustration is a situation in which all the energetic constraints of the system
cannot be satisfied simultaneously. As an example, let us consider a triangular lattice of Ising
spins with antiferromagnetic coupling, as shown in figure 1.2 (left panel). In this situation, one
cannot satisfy the antiferromagnetic coupling for the three bonds simultaneously. If one fixes
two spins satisfying antiferromagnetic coupling, the third one cannot be fixed in a way that
minimizes the energy of the two other bonds. As a consequence, one of the three bonds is not
satisfied, it is frustrated.

In this example, one obtains several equivalent states of lowest energy: by permuting the
orientation of the spins, we change the frustrated bond, but not the energy of the system.
Therefore, one has a three-fold degenerate ground state. Such a geometrical frustration due to
the topology of the lattice is present, for example, in spin ice systems.

Q \
L \‘('1
> VO
A\
\
J<0

Figure 1.2: Examples of frustration for Ising spins: the solid bonds are satisfied, and the dashed
bonds are frustrated. Left: geometrical frustration of a triangular lattice, J < 0 is the same for all
bonds. Right: disorder induced frustration, the sign of the coupling changes with the distance. At short
distances, the coupling s J1 < 0, whereas at long distances the coupling is Ja2 > 0.

In spin glasses, the impurities are randomly distributed in space. This leads to a randomness
in the amplitude and the sign of the interaction between spins, as illustrated in the right panel of
figure 1.2. In this situation, the coupling changes with the distance between spins; the induced
frustration is due to the magnetic disorder.

Below the critical temperature Ty, the interaction becomes dominant over the temperature,
and spins are frozen in a frustrated configuration. There is no long-range spatial magnetic
order. The spins have a slow relaxation which is governed by the frustration. Thus, the
magnetic disorder is quenched below 7, and the system has a glassy behavior.

Experimentally, such a freezing of the magnetic moments can be detected by magnetic
susceptibility measurements. Like other magnetic systems presenting ordering, a signature of
a phase transition in such alloys can be obtained from the temperature dependence of the
susceptibility x (7). As shown in figure 1.3, a clear cusp appears in such a measurement, and
was originally observed by Canella and Mydosh [8].
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Figure 1.3: Low-field magnetic susceptibility x(T) of AuFe for 1 <z <8 at.%. From [8].

The amplitude and the position of the cusp depend on the magnetic impurity concentra-
tion. However, the amplitude is much smaller than what is observed in ferromagnetic systems,
reflecting a non uniform polarization of the spins in the sample.

A slow relaxation of the system is also observed in similar experiments [9] (not shown). It
shows that the macroscopic equilibrium of the system is not reached, even on time scales up to
107 s.

1.2.2 Canonical spin glasses

In spin glasses that we consider in this study, the magnetic spins are coupled by the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [10, 11, 12|. In this mechanism, a mag-
netic impurity polarizes the surrounding host conduction electrons with a susceptibility that
oscillates with the distance [1]. These polarized electrons interact in turn with a second impu-
rity. This leads to an oscillatory coupling between spins (see figure 1.4):

cos (2kpr)
(kpr)?

where Jj is the coupling constant between the electrons and the impurity.

J(r) = Jo (1.2.1)

In these alloys, the transition temperature 7} is the temperature below which the RKKY
interaction prevails over temperature, leading to frustration and glassy phase. Following ar-
guments developed by Blandin, Souletie and Tournier [13|, one can show that a characteristic
of the RKKY interaction is that 7} is proportional to the concentration of magnetic impuri-
ties ¢. The typical transition temperature expected in these alloys is about 7, = 1 K for a
concentration ¢ = 1000 ppm (part per millions).
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Figure 1.4: Sketch of magnetic moments randomly diluted in a metallic matriz, and the resulting
RKKY exchange plotted as a function of inter-impurity distance. Note that the coupling sign changes
with the distance. Extracted from [3].

Metallic spin glasses, i.e. a noble-metal host containing transition-metal impurities coupled
by RKKY interaction, are called canonical spin glasses. It is worthy to note that there is a
generic spin glass behavior which is independent of the details of the sample chemistry. Metallic,
as well as insulating spin glasses show in three dimensions a well defined phase transition at
T,. Historically, the metallic systems such as AuFe, CuMn, AgMn, have been widely studied
both theoretically and experimentally. They represent the core of what a spin glass is. We will
focus on this type of spin glass in the following experimental work.

1.2.3 Spin glass phase space

Above T}, the interaction is overcome by thermal activation and spins are paramagnetic.
In this situation, each spin relaxes very fast?, and its local magnetization is zero. In a spin
glass however, the spins are frozen in random orientations below 7}, and there exists a local
magnetization m; = (S;) # 0 (() denotes the thermal averaging). However this magnetization
is different for each site i, and the global averaged magnetization M is zero.

This spontaneous local magnetization suggests that the phase space is composed of energy
valleys. Like in the ferromagnetic case, the free-energy landscape is transformed when the
system is cooled down below the critical temperature. In spin glasses in addition, one has
numerous possible states, due to the frustration. These many states correspond to the various
orientations that a spin can take. One calls the ensemble of frozen spins a configuration of the
magnetic disorder. In the spin glass state, there are many possible spin configurations, but only
one is taken below T,. Consequently, the free energy landscape appearing below T} is viewed
as a many-valley picture. Such a landscape is depicted on figure 1.5.

At any temperature below 7y, the many-valley structure appears, with valleys which are
separated by barriers of different heights. The system is thus trapped into a specific valley «,
S or . This barrier landscape disappears when one goes to 1" > Tj; the system is restored in
a unique valley 0.

4As compared to the time scale of the experimental observation.
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Figure 1.5: Schematic picture of the hierarchical structure of the many-valley phase space as a function
of temperature. Extracted from [14].

1.2.4 Towards an order parameter

Generally, ordered phases can be described by an order parameter which is zero above the
transition temperature, and nonzero below. In spin glasses, the order is related to the freezing
of the spins. Above T, the spins relax very fast. Below 7}, they are frozen. A natural order
parameter is thus the dynamical spin configuration. This was introduced by Edwards and
Anderson [15]

draA = tlirélo ]\liillm<si<to)8i(to + t))z (122)

qea is the Edwards-Anderson order parameter. The limit on N designates the thermody-
namic limit, ¢ the time and ¢y a reference time. This correlation of the spin configurations will
clearly be zero for paramagnetic spins, and will be nonzero if the configuration is frozen.

When the spin glass is cooled down below T}, it is trapped in a valley state. In this state,
the spin configuration is frozen, and is considered independent of time. The order parameter
qe 4 thus measures the single-valley mean square local magnetization.

If one has a many-valley phase space, it is interesting to ask not only about gg4 in a single
state but also about the correlation between states. How are they linked between them? The
overlap qqp is defined between distinct valleys a and f:

1 «
Qs = > (8¢S (1.2.3)

Due to the complexity of the phase space, g,s may take many values. Therefore one can
consider its distribution P(q) [16]. For a system with only two valleys (like a ferromagnet),
g can only take two values: the value of the correlation of the valley « with the other valley
B, or with itself c. Thus, the shape of the distribution P(g) permits the investigation of the
structure of the phase space.
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1.3 Models for spin glass systems

Averaging in disordered systems

Randomness introduces special features into the theoretical treatment in statistical physics.
As we have random parameters {.J} coming into the problem, one applies statistical physics to
their distribution. Thermodynamic quantities can be derived from the free-energy that can be
expressed from the partition function Z, which depends on the disorder parameters. To recover
the macroscopic behavior, the free-energy has to be averaged (noted [ ],,) on the distribution
of {J}.

The difficulty arises in such an averaging of F' = [F{J}|,, = —kpT[In Z{J}|a, as In Z{J}
is not an extensive quantity. The widely used replica method allows to overcome this difficulty.
The average can be performed by decomposing the system into n identical replicas for a given
realization of the disorder {.J}, and then taking the limit n — 0. In this method, the problem
is symmetric under the permutation of replicas - all the replicas are equivalent.

The Sherrington-Kirkpatrick model

Phenomenologically, randomness and frustration have been identified to be the main ingre-
dients of spin glass behavior. The model introduced by Edwards and Anderson (EA) [17] in
1975 comes from this idea. Instead of taking the randomness in the spins position, one takes
the randomness in the interactions between spins lying on a regular lattice.

A mean-field version of this model was then introduced by Sherrington and Kirkpatrick
(SK) [18]. It is a generalization of the EA model for infinite-range interactions and Ising spins.
The Hamiltonian is

]' z z z
Hox = —§ZJijsi S: +hZS¢ (1.3.1)
7 2

where S? is the (Ising) spin at site ¢ and h a magnetic field applied along the z axis. J;;
represents the random coupling between the spins ¢ and 7. The sum is performed on all the
neighbors. All the randomness lies in the distribution of J;;.

In mean-field models, the dimension above which mean-field theory predicts the existence
of a phase transition at finite temperature is called the lower critical dimension d;. It has been
heavily debated in the past, and is still not precisely known. It may be lying between 2 and 3
for Ising systems, and about d; ~ 3 for Heisenberg systems with anisotropy [19, 20|.

The SK model can be solved by using the replica method, and self-consistent equations can
be derived for ¢ = [m?]a,. This solution captures well the cusp in susceptibility at T, the
signature of the magnetic freezing of the spins.

However, this treatment leads to unphysical behaviors: the entropy at zero temperature
tends to a negative value. Indeed, this solution is the replica-symmetric one, all the replicas are
considered as undistinguishable. This is the source of the unphysical features of this mean-field
solution.

Instability of the SK solution

Afterwards, de Almeida and Thouless [21]| performed a detailed analysis of the SK solution
and showed that it is unstable at low temperature, as it gives a negative susceptibility x.
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The stability condition can be calculated as a function of temperature 7" and in the presence
of a magnetic field H. It yields a stability line in the H-T plane called the A-T line. Above the
A-T line, the SK solution is stable, and the previous model describes correctly the paramagnetic
phase. Below this line however, the solution is not valid anymore. One can transpose this issue
of undistinguishable replicas to the complexity of the phase space. In this peculiar landscape,
the valleys may not be equivalent, one has to break the symmetry of the replicas of the system.
The A-T line is thus the line below which the replicas are not symmetric.

1.3.1 Replica symmetry breaking: the Parisi solution

The order parameter containing n replicas is represented as a matrix (), where a and b
are the replicas indices. In the SK solution, all the replicas are equivalent, equal to qg, except
the diagonal terms, which are zero. This symmetry has to be broken, but how?

The solution has been proposed by Parisi [22] in 1979. We detail here a step of such a
Replica Symmetry Breaking (RSB) procedure. Consider the (n x n) replica symmetric matrix
filled with g (for illustration we take n = 8 on figure 1.6). One then divides it into (n/m,)
blocks of size (m; x my). The off-diagonal blocks are left unchanged with go. The diagonal
blocks are modified, taking the same structure as the (n x n) mother matrix, with zero diagonal
value and ¢, off-diagonal value.

nxn (n/m,)x (n/m,) (m,/my)x (m,/m,)

S N S

q . (d1) (q0) . 2; 2; (Qo)
0 _ =

(qO) (Ch) (CIO) (@) | (q1)

(a1) | (q2)

- / - / - _/

Figure 1.6: [llustration of the QQ matriz replica symmetry breaking, at steps K =1 and 2.

A 4
Y

One can repeat this RSB procedure again (K is the number of RSB-steps performed), and
the best solution will be found to be the full-step RSB [23, 24] (K — o0).

After this procedure is done, one defines P(q) as the fraction of the matrix elements that
are taking the value ¢ (that is the distribution law of overlap values ¢).
When K is very large, one can express continuously the values ¢; with a function

¢ = q(r) with 0<z<1 (1.3.2)

and the distribution P(q) is given by

P(q) = (1.3.3)

where x(q) is defined such that ¢(z(q)) = q.

The full-step RSB Parisi solution removes the low temperature negative entropy and one
recovers S(7°— 0) = 0. Moreover, the magnetic susceptibility can be derived from ¢(z) [16].
The full-step RSB solution captures well the magnetic susceptibility behavior [25].
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Physical interpretation of the RSB

As we have mentioned previously, the overlap between valleys gives information on the
structure of the phase space. Let us consider a spin glass which is cooled down to a low-
temperature state. This equilibrium state « (valley) is characterized by a spin configuration
Sg*. The sample is heated up to 1" > T, to change the initial spin configuration. The cooling
down process can then be repeated. The many-valley picture suggests that one falls into a
different state Sf. An interesting quantity is the overlap g,3, defining by how much the spin
configurations are different from each other:

n

o =y D(5757) (1.3.4)

i=1

The maximum value for g,z is gg4 and the minimum value can be 0 if the two configurations
are completely uncorrelated. The distribution of these overlaps is given by

P(q) = waws6(gas — q) (1.3.5)
af

where w, and wg are the statistical weights of the valleys.

In spin glasses, it has been shown [16] that this function P(q) is indeed the one defined
from the replica-symmetry breaking solution, that is, the fraction of elements of the matrix Q4
taking the value q. The replica and the valley indices are, in this respect, identical. This is the
physical explanation of the RSB: in the spin glass phase, the valley states are not equivalent.

Therefore, the distribution P(q) gives information about the structure of the phase space
of the system. Typical examples of the P(q) distribution are given in figure 1.7.

As the temperature is decreased below 7}, the phase space is fragmented into sub valleys
separated by energy barriers. The RSB procedure gives an insight in how this happens, leading
to a hierarchical structure of the energy landscape. Above T, all the overlaps are equal to g
(unique valley). The sub-division process breaks this valley into two smaller branches ¢;, which
in turn are broken in branches ¢y, etc. This hierarchical structure is called the "hierarchical
tree" and is shown on figure 1.8.

In such a hierarchical space, each valley (or replica) can be labeled, and the value of the
overlap g,5 can be obtained by tracing back their common ancestor. A distance between two
states can be defined and an important feature of such a hierarchical space is ultrametricity:
the distances d between three states «, $ and ~ are such that

dag S max (dom; dﬁ«,) (136)

meaning in terms of overlaps

qas Z min (cha %7) (137)

This ultrametric space is a consequence of the RSB procedure and is therefore an important
property of this mean-field solution for spin glasses.
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Figure 1.7: Two typical P(q) distributions. Top: the replica symmetry is broken, P(q) is widely
distributed up to a maximum value qpa. Bottom: in the replica-symmetric case, q s single-valued.
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Figure 1.8: The hierarchical tree. The overlap between a pair of states o and [ (leaves of the tree)
depends on how many levels one must go up to find a common ancestor. The difference between ¢max
and Qmin depends on the temperature.

1.3.2 Scaling theories

An alternative theory has been based on the scaling properties of domain walls. The droplet
model is a phenomenological scaling theory introduced by Fisher and Huse [26, 27]. It is based
on domain-like excitations in Ising spin glasses, with a unique ground state.

The basic idea is to define a droplet as the lowest energy excitation (from the ground state)
of length scale L. Figure 1.9 illustrates the droplet I' which consists of all the (Ising) spins in
a compact region of size L oriented in opposite directions with respect to the ground state I'.
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At zero temperature, there exists a unique ground state I', degenerated with its symmetric T.
From this state, the creation of a droplet has an energy cost written as

Fr o Y(T)L° (1.3.8)

where F7, is the free energy cost of the droplet of size L, T is the stiffness constant and € an
additional exponent, which determines the stability of the droplets.

T
|

Figure 1.9: Schematic picture of the droplet model. The surface of the droplet is fractal. Extracted
from [26].

In the ferromagnetic case, a droplet contains L? spins, where d is the dimension. The
surface contains L1 spins and the energy cost to build an interface is thus AF ~ JLI1 If
d—1 > 0, this cost is growing with L, domain walls are not favored, and the ordered phase can
thus subsist. For the spin glass phase, the energy grows with LY, and due to the frustration,
0 < (d—1)/2 |26]. Numerical calculations give 6 ~ —0.29 for d = 2 and 6 ~ 0.19 for d = 3.
There is therefore an ordered phase at d = 3.

The behavior of the ordered phase is dominated by thermally active droplets, having a free
energy lower than kgT. Droplets of size L have a characteristic relaxation time 7, ~ 7y e #PL.
B, ~ By(T)LY is the height of the barriers, depending on the exponent ), and on By the
characteristic height. Equivalently, a relaxation processus on a time scale ¢ involves droplets of
size Ly oc [T/ Byln (t/79)]"/¥. There is a clear relation between droplet size and time relaxation
that plays a major role in the slow relaxation of the system.

Under an applied magnetic field, the magnetization of the droplet grows like® L%?, and
the interface energy still goes like L?. For 6 < d/2, the magnetic field aligns the droplets and
destroys the order. This is the case at all dimensions d, as 0 < (d—1)/2. In the droplet model,
the spin glass state does not subsist under a magnetic field.

Close to the transition point T}, the characteristic relaxation time 7(h) of the domains under
a magnetic field A can be evaluated through scaling arguments. If the observation time t is
small compared to 7(h), the system is not in equilibrium and appears partially frozen. In other
words, there exists a field h(t) below which the system appears frozen to the observer on a time

5For disordered spins, the magnetization M o N/2, with N the number of spins, and N o L% in the
droplet [28].
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scale t. The droplet theory predicts an experimental transition line under magnetic field which
is only a dynamical effect.

The droplet theory has the advantage of providing a clear picture of what happens in a spin
glass. The scaling laws describe rather well the dynamics in terms of growing domain walls
into the sample. In this framework, the broken symmetry is trivial, as there is a unique ground
state: P(q) is given by the replica symmetric example of figure 1.7.

Conclusion

Though spin glasses have been extensively studied, both theoretically and experimentally,
many open questions remain. In particular, the most successful theories lead to contradictory
results:

e The phase space structure:

The mean-field Parisi solution predicts the existence of a hierarchical phase space com-
posed of many states, and an order parameter that is continuously distributed. The
droplet model, in opposition, suggests a unique ground state and the corresponding order
parameter has only one value.

e The magnetic field effect:

The droplet model suggests that there is no transition under a magnetic field, as it
immediately destroys the spin glass order. In the mean-field model, the transition exists
within the RSB, and thus follows the A-T line.

Even if trends have been shown experimentally towards one or the other theory, it is difficult
to draw clear statements from these results.

One of the key issues in the problem of spin glasses is the overlap ¢q. A direct measurement of
q would give clear information regarding the two points discussed above. However this quantity
is very difficult to measure for two reasons:

1. The system slowly relaxes towards equilibrium, and one observes the vitreous dynamics.
However, the dynamical behavior can be linked to the equilibrium properties [29].

2. The overlap distribution requires a detailed microscopic observation of the configurations.
This could only be achieved in numerical simulations up to now.

In the present work, we propose a method to obtain experimentally the microscopic con-
figuration of the disorder. We will show that mesoscopic physics provides a unique tool to
investigate microscopic configuration resulting in a macroscopic signal, as presented in the next
chapter.



Un probléme sans solution est un prob-
léme mal posé.

Albert Einstein

Chapter
Coherent electron transport: an original probe
for disorder

Mesoscopic' physics [30, 31, 32| deals with systems that are in an intermediate scale be-
tween the microscopic and the macroscopic world. On the one hand, the microscopic scale is
governed by the wave nature of the electrons, leading to quantum transport. On the other
hand, the macroscopic world is described by collective behavior and electrons behave like clas-
sical particles. Mesoscopic effects provide a measurable signal that is strongly depending on
the microscopic details of the sample. We will exploit these effects to get an insight in the
microscopic structure of spin glasses. In this chapter, we introduce the mesoscopic interference
effects in electron transport, in particular the universal conductance fluctuations. They are
highly sensitive to the microscopic disorder configuration of the sample, and can therefore be
used as a basic tool for the study of spin glasses.

2.1 Electron transport in solids

Electricity is associated to the transport of charge carriers? through a material. If they
propagate easily, it is a good conductor (metals), otherwise it has a poor conductivity. The
resistivity measured in metals is linked to the disorder inside the sample: this is the Drude
model [1]. While crossing the sample, the electrons are scattered on centers of various types
(static defects, phonons...). The motion of the electrons is thus diffusive.

The collisions can be taken into account through a time 7, which represents the mean
free time between two scattering events. The Boltzmann equation allows to obtain the Drude
conductivity og

1 ne€’r,

o)g = — = "
Po m

(2.1.1)

!From greek "mesos" meaning intermediate.
2Electrons also carry a spin which can be exploited as well as the charge, this is the field of spintronics.
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where pg is the Drude resistivity, n. is the electron density, e is the electron charge and m* the
effective carrier mass.

In metals, conduction electrons are very well described by the semi-classical theory [1]. The
quantum nature of electrons is incorporated in the free electron approximation (the effect of
the lattice is taken into account wvia the effective mass m*). The ensemble of electrons form a
quantum gas with fermionic properties: the energy is the Fermi level Er = h%k%/2m*, with
h the Planck constant divided by 27, and where kg, the wave vector, takes into account the
wave nature of the electrons. At temperatures T well below the Fermi temperature T ~ 10* K
in metals, the electron gas is strongly degenerated and exhibits quantum properties. The
characteristic length A\p = 27 /kp is the Fermi wavelength and represents the spatial extension
of the electron wave packet.

The value of this wavelength is related to the electron density in the system

n, o (é)d (2.1.2)

where d is the dimension. In metals d = 3, and d = 2 in semiconducting heterostructures. In a
sample, one can decompose the electron transport into one-dimensional channels, corresponding
to the transverse quantization of the wave vector. In three dimensions, for a section S, the
number of channels is N. = S/A\%4. In metals, A\r is typically about 0.5 nm and is the smallest
length of the problem. The number of channels in our samples of section 100 x 100 nm? is
about N, ~ 4.10*.

In metallic systems, the free electron approximation holds very well, the plane electron
waves are propagating freely between scatterers, within a renormalisation of the carrier mass
m*. Scattering induced by the static disorder changes the orientation of the electron wave
vector /2, but not its modulus. It does not imply a loss of energy, the diffusion is elastic.
Between two collisions, the electron motion is ballistic at a speed vr which is the Fermi velocity
(vrp = (h/m*)kr ~ 1.4 10° m/s in metals). One can define the elastic mean-free-path . as the

distance traveled between two elastic scattering events
le = vpT, (2.1.3)

where 7, is the time associated with elastic scattering, that is the Drude time.

As the global motion of electrons is diffusive in the sample, it can be characterized by a
diffusion coefficient D which represents the area explored per time unit.

1
D = EUFZ@ (214)

with d the dimension of the system. In clean metals, I, ~ 30 nm and D ~ 150 cm?/s.

Coherent regime

The Drude model gives the classical resistivity of the material. The conductance of the
system is quantifying the ease for the electrons to traverse the sample diffusively. The larger the
disorder, the more difficult the electron propagation. In the Drude model, the total conductance
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is given by the sum of the diffusion probabilities for the electrons. However, the quantum nature
of the electrons is responsible for deviations to this classical resistivity. In the regime where the
electrons can interfere, the conductance has an additional component. This correction arises
from the quantum interference between electron trajectories.

As the propagating electron waves have the same energy Ep, they can interfere. However,
among the diffusion processes, there are some that change the energy of the scattered electron,
the phase of the wave associated is randomized and the electron wave cannot interfere anymore.
The coherence of the electrons is thus limited by #nelastic scattering. The length over which
an electron has lost its phase coherence is Lg, the phase coherence length.

This length depends strongly on temperature, as electron-phonon inelastic processes are
dominant at high temperature. By cooling down, these processes are weakened, and in clean
metals, Le can reach up to 20 gm. Thus, if one wants to observe the deviations to Drude
resistivity due to the quantum nature of electrons, one has to measure a sample of size L < Lg.
This explains both why these effects are not important for macroscopic samples at room tem-
perature, and the late emergence of mesoscopic physics which needs low-temperature techniques
(T < 1 K) and samples of micrometer size.

The phase coherence length is related to the phase coherence time 74 by

Lq> = \/DT<1> (215)

2.2 Umniversal Conductance Fluctuations

Mesoscopic interferences arise between electron trajectories diffusing on a length scale of Leg.
The detail of these interferences is thus depending on the microscopic disorder of the sample,
in a block of size L. For large samples, (L > Lg), the interference figure is different for each
block, and the resulting signal is canceled on average. But if the sample has a length L < Lg,
the quantum corrections to the conductance depend precisely on the microscopic realization of
the disorder. In that sense, they give a fingerprint of the disorder configuration.

-----------------------
--------------
............

........

L<L,

Figure 2.1: In a sample of length L < Lg, diffusive electron trajectories going from r to r’ interfere.
A mean to modulate the phase difference between the paths is the use of a magnetic field.

In the schematic of figure 2.1, the electron paths are interfering (L < Lg). The diffusion
of the electrons on the static disorder yields a probability P(r,7’) to cross the sample, and
the related macroscopic conductance. P(r,7’) does not change as long as the static disorder
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remains the same. If one changes the sample, one changes the disorder configuration, and the
conductance changes, due to the quantum corrections [33]. A first way to observe such effects
is thus to measure sample-to-sample conductance fluctuations [34].

A magnetic vector potential couples to the electron charge® and changes the phase of the
electron wave [35]. Therefore, a magnetic flux dephases the electron trajectories. Applying a
magnetic field does not change the disorder configuration, but changes smoothly the phase of
each electron path, in an unknown, but deterministic way. The resulting probability P(r,r’)
will fluctuate as we dephase the trajectories. Importantly, for a given realization of the disorder,
the dephasing of the paths is fixed for a given field: as a result, the fluctuations are aperiodic
but reproducible with respect to the magnetic field.

These fluctuations have been interpreted as Universal Conductance Fluctuations (UCF) by
Lee and Stone in 1985 [36]. They are:

Aperiodic: the conductance fluctuations are aperiodic. Sample-to-sample fluctuation occur
randomly.

Reproducible: with respect to the dephasing parameter, the fluctuations are reproducible for
a given realization of the disorder.

Universal: the amplitude of the fluctuation is of the order of €?/h, independently of the degree
of disorder.

As an example of the universality, conductance fluctuations of three different systems are
shown on figure 2.2. While the background conductance varies on three orders of magnitude,
the conductance fluctuations remain of order e*/h.

T T T T T T 1 T
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Figure 2.2: Comparison of aperiodic magnetoconductance fluctuations in three different systems. (a)
g9(B) in a 0.8 um diameter gold ring. (b) g(B) for a quasi 1d silicon MOSFET. (¢) numerical calculation
of g(B) for an Anderson model. Conductance is measured in units of e2/h, magnetic field in Tesla.
Note the three orders of magnitude variation in the background conductance while the fluctuations
remain of order unity. Extracted from [37].

Indeed, it can be shown that the conductance of a channel is €?/h, the quantum of con-
ductance. Thus the conductance g can be expressed in units of €?/h, and directly reflects the
number of channels N, [31] in the sample. The amplitude of mesoscopic corrections is of the
order of one channel (out of the total number of channels).

3The vector potential acts on the electron phase even in the absence of magnetic forces on the particles.
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The important feature of these conductance fluctuations that we exploit in the following
work, is that they represent a fingerprint of the microscopic disorder configuration. In this
work, we develop this original approach as a tool to study the disorder in spin glasses.

2.2.1 Quantitative description
Amplitude of the fluctuations

The amplitude of these conductance fluctuations dg2 (in units of (e2/h)?) can be calculated
from the Kubo formula [30, 33|. At zero temperature and for a length L < Lg one obtains

52 = 1257 Z( 2L2) (2.2.1)

where ¢ is the wave vector associated with the propagation mode of the electrons and s is

the spin degeneracy. The term [ is a known numerical factor depending on the time-reversal
symmetry of the problem. Note that this result does not depend on [, that is on the strength
of the disorder: the fluctuations are universal.

In our experiments, we study samples in the quasi 1d geometry, that is only one dimension
L exceeds Lg. In this case, the sum in the above equation equals 7¢/90, thus

0G? = G2 (2.2.2)

where G = se?/h is the (spin-dependent) quantum of conductance. This formula sets the am-
plitude of the universal conductance fluctuations in fully coherent systems at zero temperature.

Aperiodicity of the fluctuations

As we have mentioned above, the UCF are aperiodic. If the dependence of g on B is really
random, the following correlation function should decay to zero over some range in AB [36]:

F(AB) = (g(B)g(B + AB)) — (g(B))* (2.2.3)

where the angular brackets ( ) denote the average on the magnetic field span. In order to have
reliable results, the field span has to be much larger than the typical decay AB.

This function can be calculated, and for AB = 0, zero temperature, and large Lg, it yields
the same result as equation 2.2.2 for the amplitude of the fluctuations.

In addition, this calculation allows to obtain the typical spacing between the aperiodic peaks

of the fluctuations. One can estimate a field correlation range B, defined by F(B.) = F(0)/2.
One obtains in the quasi 1d case

P

B, ~
’qu)

(2.2.4)

where w is the width of the sample, and ®, = h/e is the flur quantum. In the quasi 1d regime,
the typical field scale between the fluctuations of the conductance is given by a quantum flux
threaded through a sample area of wLg, as sketched on figure 2.3.
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Figure 2.3: A magnetic flux @ is threaded through the coherent surface of the sample. In the quasi 1d
regime, this area is delimited by the width w and the phase coherence length Lg.

2.2.2 Effect of the temperature
Thermal diffusion length

The boundary conditions are important in coherent diffusion, as the electron can escape the
sample after its path. By doing so, it couples to the environment and loses its phase memory.
The length L of the sample over which the electrons propagate is linked to a characteristic
diffusion time 72
™D = 5
7p is the Thouless time [38|, and represents the time it takes to go diffusively across the sample.
For times larger than 7p, the boundaries of the sample are felt by the electrons.

(2.2.5)

The Thouless energy is associated with this time
E.=— (2.2.6)

When an electron crosses the sample, it acquires a phase proportional to 7p/h. There are
constructive interferences between two electron trajectories if their relative phase difference is
less than 27, that is if their energy difference Ae < E.. Thus, only the electrons lying in an
energy band of width E. around the Fermi level can participate to interference effects.

This has to be compared to the total number of electrons participating to the transport
that are lying in an energy interval of width kg7, kg being the Boltzmann constant. The ratio
between these quantities gives rise to the thermal diffusion length:

E hD
L= L[] 2 — 2.9,
T \/k:BT \/k:BT (2.2.7)

As a result, the temperature weakens coherence effects when E. < kgT, that is L > L.

Temperature-dependence of the conductance fluctuations amplitude

The universal conductance fluctuations amplitude is strongly depending on temperature.
The effect of temperature is two-fold: it changes the thermal broadening of the energy levels
(L7), but it also modifies the coherent scattering rate (Lo (7). At low temperature, these two
lengths are large, and we recover large conductance fluctuations. When temperature increases,
the fluctuations are progressively suppressed. The characteristic lengths L, Lg and Ly have to
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be compared to determine precisely the amplitude. In the asymptotic regimes for these lengths,
the temperature-dependence of the UCF amplitude is given by known analytic laws [30].

2.3 Omnsager symmetries

Note that the theoretical descriptions set above have been calculated in a two-point geom-
etry, that is when current I and voltage V are contacted on the same leads. In experimental
mesoscopic physics, one often uses four-point measurements (different contacts to drive the
current and to measure the voltage). In this situation, one really performs a local measurement
(see figure 2.4). In such geometry, special symmetries apply to the coherent magnetoconduc-
tance of a sample [39]|. These symmetries will be useful in our experiment, in order to separate
out conductance fluctuations due to orbital effects from fluctuations attributed to the magnetic
atoms.

Starting with a two-point setup having leads ¢ and 7, the current conservation and time-
reversal invariance in the presence of a flux ® imposes relations on the transmission 7' and
reflection R coefficients between ¢ and j

Tij(®) = T5(—®), Riu(®P) = Ru(—9) (2.3.1)

il 20 ®e O
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Figure 2.4: Left: two-probe measurement. The blue lines for T;;(®) and R;(®) are equivalent to the
red lines Tj;(—®) and R;;j(—®). Right: four-probe local measurement. k,l,m,n are the leads, I and V
designate current and voltage probes respectively.

In a common four-point measurement, two leads drive the current and the two others are
used to measure the voltage. In these conditions, where the leads are k, [, m and n the resistance
is given by

Rmn,kl = (h/62)(Tka'ln — TknTlm)/D (232)

where D is a determinant of the currents matrix, independent of the indices klmn. Using the
previous reciprocity equations, we obtain the Onsager relation

Rin it (P) = Rt mn(—P) (2.3.3)

This symmetry applies also to the conductance, and to the conductance fluctuations. Using
our experimental scheme of figure 2.4, one can derive from the above equation useful relations.
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We designate by I the pair of current leads and by V' the pair of voltage probes. As an example,
one can symmetrize our conductance fluctuations with respect to the field:

(Sij(B) + 5ij(—B)
2

5ij(B) — (5ij(—3)
2

§Gg = (2.3.4)

§Gy = (2.3.5)

where B is the magnetic field. 6Gg and 0G4 are respectively the symmetric and the antisym-
metric components with respect to the field.

As the Onsager relation is relying on the time-reversal invariance hypothesis, one can build
quantities that depend on this symmetry

5ij(B) - 5GV[<—B)

5G (2.3.6)
2
5o — 6Grv(B) +25Gw(—B) (2.3.7)

One symmetrizes here with respect to the I — V leads permutation. We call the magnetic
component 0Gyy, as it is a vanishing quantity when time-reversal invariance is verified. Thus,
it is sensitive to magnetic degrees of freedom that we have in a spin glass. We call the or-
bital component dGp the complementary term so that the decomposition is complete. When
performing a four-probe measurement, one can refer to such symmetries in order to extract
particular magnetic contributions [40].

Conclusion

In this chapter, we have described the quantum corrections to the conductance of a small
metallic sample, that are observable at low temperature. In particular, the interferences between
electron trajectories yield universal conductance fluctuations that are accurately representing
a fingerprint of the microscopic disorder. This kind of phenomena thus provides an original
probe to study disordered systems, like spin glasses. In such magnetic systems, we can use
special symmetries of the conductance fluctuations in order to investigate specifically the mag-
netic features of the sample. In the next chapter, we describe the few studies that have been
performed with this approach.



Les hommes construisent trop de murs
et pas assez de ponts.

Isaac Newton

Chapter
Universal conductance fluctuations and spin
glasses

The idea that universal conductance fluctuations (UCF) can be used as a probe of the
disorder in a spin glass was suggested in 1985 by Altshuler and Spivak [41]. But the link
between the UCF signal and reliable information on spin glasses is not straightforward. Several
ideas have been developed in this purpose. First, one can measure the low-frequency noise
resulting from UCF, and thus reflecting the microscopic reorganizations of the disorder. Second,
another approach consists in measuring the fluctuations as a function of the magnetic field -
the magnetofingerprint - and to extract the component that is directly due to the spin disorder
configuration.

More recently, the correlations between magnetofingerprints have been theoretically linked
to the spin overlap @, the order parameter of the spin glass transition. In this chapter, we
present these approaches that have motivated our study.

3.1 A first attempt, noise experiments

One of the promising ways to exploit the sensitivity of UCF is the measurement of 1/f
noise [42|. In glassy systems, the disorder configuration is slowly relaxing. Therefore, the
universal conductance fluctuations are affected. Such a local reorganization of the disorder
leads to an additional noise in the conductance of the sample. Consequently, measurements of
low-frequency noise in spin glasses are sensitive to the microscopic disorder reorganizations.

These ideas have been implemented experimentally, as the noise can leave direct information
on the nature of the spin glass phase [43]. The authors measured the temperature dependence
of 1/f noise in the electrical resistance of films of CuMn alloys at several concentrations [44],
as presented on figure 3.1.

One observes a sharp step in the temperature dependence of the noise, which increases by
more than one order of magnitude at the spin glass freezing temperature. This is confirmed by
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Figure 3.1: Normalized resistance low-frequency noise o (0.08—17 Hz) as a function of temperature T
for Cuyr_oMny, films at several concentrations x of magnetic impurities. In inset, the spin glass freezing
temperature (Ip = Ty in the text) determined from magnetic susceptibility and noise measurements

versus x*/3. Extracted from [{4].

comparing the characteristic temperature of the noise increase to independent estimation of T,
with susceptibility measurements, presented in the inset of figure 3.1.

As a conclusion, these measurements show that the noise signal attributed to the universal
conductance fluctuations is observable in spin glasses. However, the amplitude of the UCF
alone does not give information on the detailed microscopic configuration of the disorder in
the sample. To achieve such a probe, one has to study the reproducibility of the fingerprints.
Surprisingly, this way of investigation was less explored in the past.

3.2 Pioneering work on universal conductance fluctuations

The first measurements of universal conductance fluctuations as a function of the magnetic
field in spin glasses have been performed by de Vegvar, Levy and Fulton in 1991 [45]. This
article is the foundation of the work presented in this manuscript. In their experiment, the
authors are exploiting the ideas of Altshuler and Spivak [41], by measuring the magnetoresis-
tance of a spin glass sample at low temperature. Several samples of a 1000 ppm CuMn alloy
have been fabricated (T, ~ 1 K expected), and show clear quantum fluctuations in the mag-
netoresistance. From the amplitude of the effects, the phase coherence length is estimated to
be about 1 pum. This value is rather large, and proves that quantum interference effects can be
observed experimentally in low concentration spin glasses.

As discussed in chapter 2, it is possible to separate the magnetic and orbital contributions to
the UCF by using the Onsager relations. In this experiment, the magnetic contribution, which
is only sensitive to the magnetic disorder, has been extracted. The results are presented on
figure 3.2. As the magnetofingerprints are reproducible at low temperatures, the data suggest
that the spin configuration is indeed frozen in the spin glass sample.

The most striking result of this work is the reproducibility of the magnetofingerprint: when
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Figure 3.2: The symmetric magnetic contribution to the UCF extracted from a wire of length L =
0.65 um. The sample was field cooled from 4 K to 12 mK under 0.7 T and subsequently warmed to
the indicated temperatures. The curves are shifted for clarity. The two traces at 0.9 K indicate the
experimental reproducibility. From [}5].

cycling the field up to 9 times the exchange field H, (defined as guH, = kpgT,), the traces
remain highly identical. This is indeed surprising and suggests that the spin configuration is
not affected by such a large magnetic field.

This pioneering work clearly demonstrates that quantum fluctuations are measurable in
spin glasses. However, the magnetofingerprints are not clearly randomized when heating the
sample above T;. This can be interpreted by the presence of clusters in the sample, resulting
in a freezing of the spin configuration which is only partial [46]. Therefore, it is rather difficult
to draw quantitative conclusions from this measurement. To go further, we aim a deeper
understanding of the UCF in the spin glass regime, and a clear strategy to extract properly
and precisely relevant microscopic information on spin glasses.

3.3 A recent renewal

To tackle the above mentioned issues, we have started a collaborative effort between theoreti-
cians and experimentalists. The idea that the UCF are sensitive to the spin glass configuration
has been revisited in 2008 [47|, and has motivated our experimental work.

In the spin glass problem, the important quantity is the spin overlap @12, the order pa-
rameter of the transition. As presented in chapter 1, it is given by the correlation between the
microscopic spin configurations in the system. It can be written

Nimp

> (S5 (3.3.1)

=1

1

Q12 = —Nimp<52>
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where Nj,, is the number of magnetic impurities of spin S. ()12 is thus the spin overlap between
the spin configurations {S\"} and {S®}. This overlap represents roughly the fraction of spins
that have changed between configurations (1) and (2).

Conductance fluctuations are sensitive to a change in the spin configuration of the sample.
On the one hand, a change in the spin configuration is characterized by the overlap ). On the
other hand, the modification of the magnetofingerprints can be evaluated by the correlations.
The idea is thus to link quantitatively the correlations of the magnetofingerprints to the spin
overlap.

One considers the correlations between conductance fingerprints obtained for two different
spin configurations {Si(l)} and {SZ@)}

(AG)0 5 = (G (V. A5} ) o6 (V. 452} ))v (3.3.2)

where the average is taken over the disorder potential V. This conductances correlation is
shown to depend directly on the spin configurations correlation, that is on the spin overlap Q12

(AG) e g = F(L/Lm, Q12) (3.3.3)

where L is the sample length and L,, is called the magnetic length. This length is defined
as the length that an electron travels before it scatters elastically on a magnetic impurity.
It is the analogue of the elastic mean free path [., but between magnetic impurities. The
appropriate function F is known in mesoscopic physics theory!. This theoretical link between
the fingerprints correlation and the spin overlap ()12 is displayed on figure 3.3.
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Figure 3.3: Typical theoretical variation of the conductance correlation (6G10G2) as a function of the
spin overlap Q12. A low value L/L,, =2 and a large value L/L,, = 10 are represented.

Notice that theory predicts a resulting correlation at zero overlap (dG10G2)(Q12 = 0)
which is finite. It means that even for zero overlap, that is all the spins orientations have
changed, the correlation between traces is not zero. Indeed, the shape of the curve and the

'F(z) = 327* (22csch®(z/v/2) + V2z coth (#/V/2) — 4) where the argument z is depending both on L/L,,
and ng.
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value (0G10G2)(Q12 = 0) strongly depends on the ratio L/L,,. The magnetic length L,, plays
a very important role in the sensitivity of the UCF to the magnetic disorder : in order to "feel"
the difference between magnetic configurations and get appreciably uncorrelated fingerprints,
the electrons have to encounter a large number of magnetic impurities. This is quantified by the
ratio L/ L,,, the longer the sample, the more sensitive the UCF. For short L/L,,, the correlation
(0G10Gs) is predicted to be close to 1, whatever the value of Q12. On the contrary, for large
L/L,,, the correlation is very sensitive to )12, the spin overlap.

This has been confirmed by the PhD work of Guillaume Paulin [48]. Using a numerical
Landauer method, with a tight-binding Anderson model, they were able to numerically evaluate
the conductance fluctuations correlations (dG10G2), and recovered these analytical results [49],
which have also been confirmed by other theoretical works [50].

These results provide a quantitative way to measure the spin overlap 15 using the correla-
tion between conductance fluctuations. In theory, magnetofingerprints are taken by averaging
over a large number of disorder configurations. Experimentally, such averaging is difficult to
achieve. Thus, in the measurements, one performs an average over the magnetic field in order
to get a fingerprint of the configuration. Using the ergodic hypothesis, the average over disor-
der V' can be equivalently taken by averaging over magnetic field B. Finally, an experimental
protocol is proposed to give a direct measurement of the spin glass order parameter (Qq2, as
depicted on figure 3.4.

Temperature, T
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N N O
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B,Ep
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Figure 3.4: Temperature cycles through T,. Different measurements at temperature Ty correspond
to different spin configurations {5’;(")} Eztracted from [47].
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The main protocol suggested in figure 3.4 is the following: the system is cooled through T}
down to T¢,,, so that the spin configuration is frozen. The magnetic field is then applied, in order
to record the magnetofingerprint of the configuration {5_’;(”)} The sample is heated up to the
paramagnetic regime, the spin configuration is randomized. The operation is repeated, giving a
second magnetofingerprint {gi(nﬂ)} at Teyp. The correlation between two traces (m) = (n+1)
and (n) gives Qun, the spin overlap. Repeating this process many times should yield the
statistical distribution of overlap P(Q) that is the fundamental quantity in the theory of spin
glasses. This tool can further serve to study aging effects, through the dependence on the
waiting time t,,, and also memory effects.

Conclusion

The use of universal conductance fluctuations to study the microscopic configurations of spin
glasses is a well-established idea. However, it is difficult to draw definitive conclusions from
the existing experimental works. The new approach proposed in this work is to investigate
directly the reproducibility of the magnetofingerprints. The correlation between conductance
fluctuations traces can be experimentally measured, and allow to extract the spin overlap. We
present, in the next part, the experimental implementation of these ideas.
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Chapter
Experimental implementation

4.1 Experimental setup

In order to study mesoscopic effects in the spin glass regime, several requirements have to
be fulfilled. Low-temperature measurements are required (7" < 1 K) in order to reach the
quantum regime (L, Le =~ L), but also samples in the micron range, large magnetic fields,
as well as very low noise electronic detection as the signals to be measured are very small. In
addition, the concentration of the magnetic spins (impurities) has to be well controlled. In the
following, we detail the experimental techniques that we have implemented for the measurement
of universal conductance fluctuations in spin glasses.

4.1.1 Samples fabrication
Electron beam lithography

In order to make samples below the micrometer size, we use standard electron beam lithog-
raphy techniques. A sensitive resist is insolated by a focused electron beam, following a pattern
defined by the user. The beam affects the resist, and the insolated part is removed in a chemical
solution (the developer). This is followed by a metal evaporation on the whole substrate. The
last step consists in removing the resist layer, the so-called "lift-off". A schematic of the whole
lithography procedure is shown on figure 4.1.

The best suited geometry to study experimentally mesoscopic interference effects is the
quasi 1d geometry: only one dimension of the sample is larger than Lg. Indeed, in this geometry
the resistance is larger and the number of channels N, is reduced. As the quantum fluctuations
are of one channel, the relative resistance correction is thus larger.
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Figure 4.1: Schematic of the several steps of the lithography procedure.

There are also experimental constraints coming from the signal detection: as a very low
current is required to perform a measurement at equilibrium, we have calculated that the
resistance of the sample has to be R > 10  in order to be able to measure the UCF signal at
T = 30 mK. The length L of the sample has to be of the order of Lg. Using the resistivity of
pure noble metals, we thus have to design the sample very narrow and thin.

However, we have chosen transverse dimensions that are larger than the elastic mean free
path, in order to have three-dimensional diffusive properties for the sample. We finally designed
a sample of length L = 3 pum with several intermediate probes, of width w = 50 nm and
thickness ¢ = 40 nm. For these dimensions, we can estimate that for a concentration of
magnetic spins ¢ = 1000 ppm, there are about 300 spins in the transverse section of the wire.
An Atomic Force Microscope (AFM) picture of a typical sample is shown on figure 4.2. The
large reservoirs aim at having a good thermalization of the wire.

Choice of the materials

Canonical spin glasses that we want to study are AuFe, AgMn or CuMn alloys, in the
1000 ppm concentration regime. There are two ways to make them: we can evaporate directly
the alloy, or we can evaporate the noble metal host alone, and implant the magnetic impurities
afterwards. In such noble metals, there subsist small concentrations of magnetic impurities! in
the sample after evaporation. These give rise to a Kondo effect [51]. In this situation, the phase
coherence length is reduced [52], around the typical Kondo temperature Tk. Consequently, if
Tk is in the Kelvin range, the presence of residual magnetic impurities dramatically affects the

!These may come from the evaporator.
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phase coherence properties of the sample. It is thus very important to have a good control on
the metal evaporation in order to avoid parasite magnetic impurities effects. For this reason, we
elaborate our sample from a very high purity source of host material (samples were prepared in
the Quantronics group for Ag?, and in the Orsay group for Au), and we implant the magnetic
impurities afterwards.

Data Zoom 100.0 nm

1: Height

Figure 4.2: AFM picture of a typical sample designed for the measurement of UCFE. The current is
driven between the large reservoirs, and several voltage probes are available for measurement.

Implantation of the magnetic impurities

The implantation strategy has several advantages. As all samples are fabricated from the
same metal source in a single evaporation run, it allows for a direct comparison between the
non implanted metal and the spin glass samples. Moreover, the implantation technique ensures
a uniform spatial distribution of the spins. This is important, as a clustering of magnetic
impurities may lead to ambiguous results, due to inhomogeneities of the concentration.

The implantation has been performed in the Institut de Physique Nucléaire de Lyon (IPNL),
in a collaboration with Christophe Peaucelle and Angela Perrat-Mabillon®. The principle of
the technique is to accelerate ions in an electric field, in order to give them sufficient energy
to penetrate into the target sample. The advantages of this technique are an accurate isotopic
selection, and well controlled fluence (the number of impurities implanted per surface unit) and
penetration depth. The main drawback is that the high energy implantation creates defects in
the sample. These can however be erased by an annealing process.

2This source has been characterized in reference [53], giving typically Lg ~ 10 um at the lowest temperatures.
3See http://www.ipnl.in2p3.fr/spip.php?article212 for more information.
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In our samples, we will keep the defects for two reasons. One the one hand, the annealing
process can induce clustering of the spins, that we want to avoid. On the other hand, the static
defects created by the implantation lead to an increase of the resistance of the sample* which
helps for the conductance fluctuations measurement. In addition, it has been shown that the
presence of defects created during implantation do not lead to additional inelastic scattering in
the sample [54].

Figure 4.3: Photograph of the IMIO400 implantation equipment in IPNL.

The implantation has been performed with an IMIO400 which is represented on figure 4.3.
The energy of the accelerated ions is in the range £ = 60 to 400 keV. The ion current ranges
from few pA to hundreds of yA. During the implantation, the beam is scanning the surface of
the sample, leading to fluences ranging between 10'2 at/cm? and 10'7 at/cm?.

In canonical spin glasses, T, is proportional to the concentration c. The corresponding
fluence required is calculated from numerical simulations of the implantation process, using
the software SRIM® (the Stopping and Range of lons in Matter). Giving the information on
the source and target, we obtain from the simulation a profile of the ions distribution in the
material, as shown on figure 4.4.

From the profile, we estimate® the mean value of the gaussian (c), which is half of the
maximum value. The fluence is given by

f. = Cimpltat (4.1.1)

{e)

fe is the fluence needed to obtain a concentration cjn,p, and ngy is the atomic density of the host

material.

As an example, table 4.1 gives the fluences for the implantation of 5°Mn into Ag (40 nm
layer). For information, n, = 5.86 at/cm?® and the simulation (E = 70 keV) yields (c¢) =
12.5 10* (at/cm?®)/(at/cm?).

4For one serie of our samples, we have observed a surprising increase of the resistivity by a factor 5 between
pure Ag and implanted AgMn samples. In reference [54], implantation at equivalent energies lead to an en-
hancement factor of 1.5. For the other series of samples, we have recovered the same enhancement factor of
1.5.

Software in free access http://www.srim.org/.

6We take into account in the estimation the proportion of ions that are propagating out of the sample. They
represent in our samples about 10 % of the ions.
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Figure 4.4: Ion distribution profile as a function of target depth, as numerically computed with SRIM.
In this example, two layers of 40 nm Au + 5 nm Ti and the Si substrate constitute the target. The
profile is given in units of (at/cm?)/(at/cm?).

’ AgMn samples ‘ Cimp (PPM) ‘ fluence f. (ions/cm?) ‘ Purpose
SG-Agl/Ons-Agl 150 7.03 1013 Probe T'> T},
SG-Ag2/Ons-Ag2 400 1.87 10* UCF for T ~ T,
SG-Ag3/Ons-Ag3 700 3.28 1014 UCF for T' ~ T},
SG-Ag4/Ons-Ag4 1000 4.69 10 Probe UCF for T < T,
SG-Ag5/Ons-Agh 1500 7.03 10* Probe UCF for T' < T,
SG-Ag6/Ons-Agb 2000 9.37 10* Probe UCF for T <« T,

Table 4.1: Table of implantation values used for 5°Mn into Ag.

We have chosen the AgMn alloy for its low Kondo temperature, Tk < T}, for all the samples
fabricated. This ensures that we can neglect the influence of Kondo effect, so that we are mainly
probing the spin glass phase. As T}, is determined by the concentration (c;,, ~ 1000 ppm gives
T, ~ 1 K), samples of different concentrations have been elaborated, in order to study various
physical regimes regarding 7'/7,.

Another set of implanted samples have been prepared with AuFe alloys. In this system, the
Kondo temperature is higher Tx ~ 1 K, and we have access to a regime where T, ~ Tk.

4.1.2 Experimental setup
Dilution refrigerator

In order to cool the sample down to the quantum regime (7" < 1 K), we use a standard
commercial dilution refrigerator. This equipment was acquired at my arrival in the team. The
specifications are a base temperature of 7'~ 11 mK and a cooling power of 250 W at 100 mK.
In order to bring the sample into the magnetic coil, we have built a cold finger which was
carefully adapted to the refrigerator.
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Magnetic fields

A magnetic field perpendicular to the sample, called the Z field, is produced with a solenoidal
superconducting coil. The maximum field is about B, = 8 T. In addition, we can produce a
magnetic field in the plane of the sample, the X-Y field. This is achieved by two Helmoltz coils,
and the maximum field obtainable is B, = 1.3 T. The sample has to be well aligned with the
Helmoltz coils, so that the X-Y field is accurately produced in the plane of the sample. We have
calibrated the experimental misalignment by using a standard Aharonov-Bohm measurement:
the magnetoconductance of a mesoscopic ring is sensitive to a small perpendicular component of
the field. We have found that in our setup, the application of the X-Y field induces a component
in Z of about B, = 1.5 10’335@,, which is a quite acceptable value.

Wiring

The wiring of the dilution refrigerator has been realized with particular precautions: first,
to filter the external high-frequency noise and second, not to bring additional thermal noise to
the sample.

In our experiment, the signals are very low, thus we need a very low noise set of Direct
Coupling (DC) lines. For the wiring, we have taken special care of the high temperature
intrinsic noise of the lines, which are cabled from room temperature down to the sample. The
Johnson-Nyquist [55, 56| intrinsic voltage noise amplitude is given by AV = \/4kgT R, where
kg is the Boltzmann constant, 7" the temperature and R the resistance. Thus, for cables having
a resistance of about 100 2, the resulting noise at 300 K is about 1 nV. In order to have an
experimental noise limited by the amplifiers (0.4 nV/v/Hz), we have wired the fridge from room
temperature 300 K to 4 K with low-resistance coaxial shielded cables”.

Moreover, in this type of experiments, the low temperature noise can be attributed to
extrinsic high-frequency electromagnetic radiation in the GHz range [57]. To circumvent this
problem, we use Thermocoaz cables that act as very good radio-frequency filters [58]. For a
length of about 2 m, the electromagnetic signal is attenuated enough to ensure that the sample
is not affected by the external radiation. At 4 K, a connection is thus made between the high
temperature coaxial cables and the thermocoax cables. We paid attention to the thermalization
of the wires at each stage of the dilution refrigerator, and the length of the wires between stages
has been maximized in order the reduce the thermal flow. The detailed schemes of the wiring
are shown in appendix A.

After wiring, the refrigerator has been cooled down to a base temperature of 7" = 15 mK.
This means that the wiring does not significantly degrade the cooling properties. With this
setup, we have verified that the electrons are cooled down to 40 mK, by measuring the temper-
ature dependence of the resistance in a long wire. As a conclusion, the refrigerator has been
prepared to allow measurements below the nV noise level, down to 40 mK.

An ultra-low noise detection

The samples we want to study are metallic. The resulting resistance of a typical quasi 1d
Ag wire is about 10 €2. As the resistance of the system is small, the best suited setup for the
measurement is a current bias, and we measure the voltage of the sample.

"An alloy of Cu and Be with resistance R ~ 4Q/m.
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In order to perform a measurement at equilibrium for the electrons, the condition eVgmpre <
kT has to be fulfilled. e is the electron charge, and Vygmpe the voltage across the sample. In
the temperature range of interest, the bias current ranges from the nA to the pA. The relative
resistance fluctuations amplitude is of the order of one channel, that is AR/R ~ 10~ in our
samples (R = 10 Q corresponds to N, = 2500).

In this setup, we use a standard Lock-In technique. The sample voltage probes are connected
to a home-made amplifier "EPC1-A". This amplifier has a gain up to 10* and a noise level of
0.4 nV /v Hz. In addition, as we want to measure small relative corrections to the resistance,

we use a bridge configuration.

Additional filtering of the signal is realized at room temperature with low-pass filters at the
MHz level, and band-pass filters at the Lock-In frequency.

As the whole circuit contains several inductive or capacitive components, we have optimized
the detection noise level with respect to the frequency of the Lock-In. The 1/f noise of the
amplifiers increases below 1 Hz. We have measured the noise level of the whole setup as a
function of the frequency f around 10 Hz at room temperature. The results are presented on
figure 4.5, and show that for the optimum frequency of f =~ 11 Hz, the noise is minimum. The
increase at larger frequencies is attributed to a parasitic noise that we could not remove. At f ~
11 Hz, and at 4 K, the sample noise level has been regularly measured at AV = 0.36 nV/\/H_z.
This confirms that our experimental setup is limited by the amplifier noise level.
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Figure 4.5: Noise level measured for two samples as a function of frequency at room temperature. It

18 manimum for a frequency of about 11 Hz.

The signal measured is sent to a 16 bits Analog to Digital Converter, and recorded on a
computer with a dedicated acquisition program, built using the software LabView. Output
voltages (Digital to Analog Converter) are used to sweep the magnetic field. The thermometry
of the fridge is monitored independently with a temperature controller "TRMC2". The scheme
of the electronic measurement setup is summarized on figure 4.6.
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Figure 4.6: Scheme of the electronic measurement setup. The Lock-In delivers an excitation voltage
Vewe through a resistance Ry, and measures the input channels A (sample) and B (opposition). The
subtracted signal A-B is sent to the computer for recording.

4.2 Measurement implementation

In this section, we present the experimental quenching strategy and the analysis tools that
we have developed in order to obtain a reliable measurement of the correlations between mag-
netofingerprints.

4.2.1 Rapid quench strategy

A crucial point in the physics of spin glasses is to know whether there exist in the ground
state a unique spin configuration, or many of them. One protocol to test this is to compare spin
configurations resulting from several thermal cycles above T},. The thermal cycle is realized by
heating the sample above Ty, so that the spin configuration is randomized, and then cooling
down the sample, so that the spin configuration is frozen. In order for the magnetofingerprints
to be comparable, the sample has to be quenched rapidly from 7} > T, to T, < T,. That is, it
has to be cooled down fast enough to prevent any reorganization of the spins at an intermediate
temperature between T} and T,. This type of quench is not achievable by heating the whole
refrigerator, as it takes several hours to heat it up to 4 K and cool it down again to 50 mK.

We have thus developed a strategy to heat locally the sample and quench it in a controlled
manner. This can be realized by injecting a large electrical current [ into the sample, which
acts as a Joule heater. This allows to change the temperature rapidly. Such heating effect has
been previously studied in the context of decoherence at very low temperature [59, 60, 61].

In order to control the effective temperature of the sample, we have calibrated our method.
On the one hand, the (weak) temperature dependence of the resistance AR(T') is measured
while cooling down the whole fridge, and represents the reference curve. On the other hand, we
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measure the resistance variation when applying a large heating current ARy(I). When applying
a large heating current I, the effective temperature T,¢; of the sample is locally higher than
the temperature of the refrigerator. The comparison between the resistance variation ARy([)
obtained and the reference curve AR(T') allows to convert the applied heating current into the
effective temperature of the sample.

Experimentally, the AR(T') curve is obtained by using the detection described in 4.6. The
resistance variation induced by the heating current I”¢ is measured via the Lock-In detection
by superposing an additional current 4¢. As an example, we present measurements performed
in a pure Ag sample. The quasi 1d wire probed is shown on figure 4.7, and the results are
presented on figure 4.8.

Figure 4.7: Scanning electron microscope picture of the sample. The current is driven from I+ to
I—, and the voltage measured between V4 and V —.

In this experiment, the heating current has been applied to the sample at a refrigerator
temperature Ty = 40 mK. By comparing ARy(I) with the reference AR(T'), the observed
increase shows that we are able to reach 7,7y ~ 17 K for a current of I = 100 pA. We can
graphically determine the heating current needed to reach an effective temperature on demand.
It is worthy to discuss the homogeneity of the temperature in the wire. At high temperatures,
typically above 1 K, the electron-phonon interaction dominates the electron energy relaxation.
In this regime, the temperature profile is constant in the wire, all the energy is dissipated in the
reservoirs [61]. At low temperatures (below 1 K), the electron-electron interaction dominates
and the temperature is inhomogeneous in the sample. When we heat the system above 1 K,
we can thus consider that the temperature is homogeneous in our sample.

As a conclusion, this heating technique allows to access a range of temperatures lying well
above T}. In addition, when we cut the heating current, the sample is cooled down very rapidly.
In our situation, the overheat in the metallic wire is dissipated in the substrate, and is limited by
the Kapitza resistance. The time it takes for a wire to be cooled down to the fridge temperature
has thus been estimated to be about 10 ps at 100 mK [62]. Consequently, we estimate that
our samples are cooled down faster than 1 ms, and this technique can be used to perform an
experimental quench of the high temperature spin configuration in a calibrated way.
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Figure 4.8: Resistance variation of an Ag sample as a function of temperature T (bottom axis) and
as a function of current I (top axis). The conversion is graphically determined, for I = 40 pA, the
resistance variation corresponds to T ~ 14 K.

4.2.2 Correlations

Correlations are a tool which allows to evaluate quantitatively the similarity of data. The
measurement of a magnetofingerprint yields an array of values of the conductance variation
AG as a function of the magnetic field. A natural tool to compare such traces is the linear (or
Pearson) correlation coefficient C' defined for two sets of data X = {x;} and Y = {y;}

ZN(%‘ —7).(yi — )
C(X,Y) = i
VEY @ — 220/ - 97

where the notation (~) denotes the mean of the ensemble, and N the number of points. The

(4.2.1)

denominator normalizes the correlation C to 1.

This coefficient gives a quantitative measurement of the similarity of two magnetofinger-
prints, that is of two spin configurations. Let us consider two magnetofingerprints taken on the
same sample at different times. If the disorder is completely frozen, the spin configuration does
not change, and the two traces are strictly identical. The correlation is C' = 1. On the con-
trary, if the disorder has been completely randomized, after a time spent in the paramagnetic
regime for instance, the correlation C' — 0. The correlation coefficient can be negative when

the magnetofingerprints are exactly symmetric with respect to the mean, C' = —1. Note that
having an anti-correlation C' = —1 is giving as strong information on the spin configuration
than C' = 1.

In order to implement these correlations, we have measured several magnetofingerprints in
a pure Ag sample, as a function of time. The sample is the same as the one shown in figure 4.7.
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At low temperature, the disorder in the Ag sample is frozen, as thermal activation does not
permit the motion of atoms. Therefore, we can test the stability of the magnetofingerprints in

Ag as a function of time. We have performed this experiment for 4 days, with more than 40
traces taken. The results are shown on figure 4.9.
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Figure 4.9: Top: two experimental magnetofingerprints taken at a time interval of four days. Bot-

tom: correlation coefficient of two magnetofingerprints taken at different times. Each point shows the
correlation of a trace taken at time t with the trace taken at t = 0.

The correlation coefficient C(t = 0;¢) is calculated between magnetofingerprints taken at
time ¢ = 0 and an arbitrary time ¢. This correlation is roughly constant as a function of
time, around a mean value of C' = 0.95. This coefficient is not reaching the ideal value of
1, due to the noise on the magentofingerprint signal. This point is discussed in the next
section. The fluctuations around the mean value evaluates the uncertainty of the measurement:
C =0.95£0.01. As a conclusion, during this four days experiment, the traces remain highly

correlated, we can consider that the static disorder is unchanged or in other words, that the
atoms do not mowve.
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4.2.3 Calibration of the reproducibility

The correlation coefficient between two experimental magnetofingerprints can be strongly
affected by the noise of the measurement. Indeed, for each experimental curve, there is a white
noise superimposed to the UCF signal, determined by the noise floor of the electronic setup.
As the signal is small, the signal to noise ratio can be quite poor. Therefore, the quantitative
comparison between the curves is sensitive to this noise.

In our experiment, this noise issue is very important, as the correlation between magnetofin-
gerprints has to be determined reliably. In addition, the uncertainty on such a measurement
has to be properly calibrated, so that we can draw clear conclusions on the spin configura-
tion changes. For this purpose, we have studied both experimental and numerically simulated
magnetofingerprints.

In particular, we have studied how the correlation coefficient is affected by the noise floor
of the detection. We calculate the correlation coefficient between two identical simulated mag-
netofingerprints on each of which we add different random noises. Because of this noise, the
resulting correlation coefficient is smaller than 1. The coefficient C' is calculated as a function
of the inverse of the signal to noise ratio called h, and is presented on figure 4.10.
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Figure 4.10: Correlation coefficient calculated between two identical simulated magnetofingerprints,
as a function of the inverse of the signal to noise ratio h.

In our experimental situations, the signal to noise ratio yields typically h ~ 0.2, and this
leads to a correlation coefficient C' = 0.96 determined from the simulated curves, which is in
very good agreement with experimental observations.

In addition, we have investigated how the correlation coefficient C' evolves with the size of the
experimental field span AB over which we calculate the correlation. Thus, we have evaluated
the correlation coefficient between magnetofingerprints as a function of the field interval AB.
Results obtained from experimental data are presented on figure 4.11.
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Figure 4.11: Left: correlation as a function of the field span AB obtained experimentally. The data
converges rapidly to a constant value. Right: correlation deviation to the constant value C — (C) as a
function of AB. Above AB = 10000 G, the error is negligible.

We observe that the correlation coefficient C' is converging rapidly when the field interval
increases. For this sample, if the field span AB > 10000 G, C is obtained with an uncertainty
below £0.01.

Conclusion

In order to implement UCF measurements in spin glasses, we have elaborated suitable
nanostructures of spin glasses by using standard e-beam lithography and implantation tech-
niques. We have prepared an experimental setup capable of ultra low-noise measurements
(0.4 nV/v/Hz) of magnetofingerprints (up to AB = 8 T) at temperatures down to 7' = 40 mK.
In addition, we have developed and calibrated a quenching method for cooling our samples,
which is necessary to obtain different spin configurations of the sample in a reliable way. Fi-
nally we have established the experimental conditions required for a proper and quantitative
determination of the correlation coefficient C'.
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Si faire était aussi aisé que savoir ce
qu’il est bon de faire, les chapelles
seraient des églises, et les chaumiéres
des pauvres gens des palais de princes.

William Shakespeare, Le marchand de
Venise

Chapter
Experimental calibration on pure Ag

In order to calibrate the experiment, we have implemented Universal Conductance Fluctu-
ations (UCF) measurements of a pure Ag sample which will serve as a reference in the analysis
of spin glasses. First, we have characterized the coherence properties of a Ag sample by stan-
dard weak-localization measurement. Second, we have performed UCF measurements. Their
behavior is in good agreement with theoretical predictions.

5.1 Weak-localization measurements

We want to characterize the phase coherence in our Ag samples, by measuring the amplitude
of Lg. For this purpose, we use a well-established procedure consisting in performing a weak-
localization measurement. Weak-localization is a quantum correction to the conductance arising
from interferences between time-reversed electron paths. This interference leads to an increase
of the resistance, which is suppressed by applying a perpendicular magnetic field. The magnetic
field for which this correction is eliminated depends directly on Lg [63]. Therefore, a low-
temperature magnetoresistance measurement allows to determine Lg. This method has been
extensively used for the determination of the phase coherence length in various materials (as
an example, see [64]).

We have prepared the samples from a high purity silver source (99.9999 %, prepared in
the Quantronics group). We have fabricated in the same evaporation run long wires allowing

1

for the measurement of weak-localization® and short wires for the measurement of universal

conductance fluctuations. A picture of the long wire sample is presented on figure 5.1.

Using the experimental setup described in chapter 4, we have measured the low-field mag-
netoresistance of such a long Ag wire at low temperatures. In Ag, spin-orbit effects lead to a
weak-antilocalization: the resistance is increasing as we apply the magnetic field. The method

'For short samples L ~ Lg the signal is dominated by UCF. For long wires L > Lg, the UCF signal is
canceled on average, only the weak-localization signal subsists.

47
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used for the determination of Lg however remains the same. The experimental magnetoresis-
tance data is fitted with the quasi 1d theoretical formula [65], a method previously reported
by our group [54]. Such a measurement is repeated at several temperatures, and the resulting
temperature dependence of Lg is presented on figure 5.1.
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Figure 5.1: Left: scanning electron microscope (SEM) picture of the sample used to measure the weak
localization. The wire has dimensions L = 86 um, w = 110 nm and t = 40 nm. Right: experimental
phase coherence length Lo as a function of temperature. The solid line is a fit to the power law T—1/3
predicted by the AAK theory.

The temperature dependence obtained is in good agreement with the power law Lg oc T-1/3
predicted by Aronov, Altshuler and Khmelnitsky (AAK) [66] in these systems. The experimen-
tal coefficient of this power law is lower than the one predicted by AAK, as it is frequently
observed in such metallic samples [52]. The absolute value of Lg reaches about 7 pm at 60 mK.
This is indeed the order of magnitude expected for a very clean metal. This measurement
thus confirms that there are no important quantities of magnetic impurities having a Kondo
temperature T > 60 mK. This sample is thus suitable for being the pure Ag reference for our
experiment.

5.2 Universal conductance fluctuations

We have measured the universal conductance fluctuations in a quasi 1d sample of length L >
Lg which is presented on figure 5.2. The multiple voltage probes allow to choose experimentally
the length of the probed section of the wire.

The magnetoconductance measurements have been performed by using the experimental
protocol described in chapter 4. At the lowest temperature 7" = 40 mK, the conductance
fluctuations are clearly visible, as shown on figure 5.3. For comparison, the noise level is also
shown on this figure. We have measured two traces, separated by a time interval of a few
hours, and they are highly reproducible: the correlation coefficient is C' = 0.98. As expected,
the conductance fluctuations have an amplitude of (e?/h).
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Figure 5.2: SEM picture of the sample used to measure the UCF. The left image shows a large view,
and the right is a zoom on the center part. The wire has dimensions L = 20 pm, w = 100 nm and

t = 40 nm, with voltage probes arranged every pum.
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Figure 5.3: Universal conductance fluctuations measured as a function of the magnetic field B in a
range of £2 T at T = 40 mK. The noise level of the measurement is shown by the blue trace. The
two traces in green and red have been taken successively, separated by a time interval of few hours, and

show high reproducibility.

Magnetoresistance of the sample have been further measured on a large field span at several
temperatures between 40 mK and 1 K. Two raw curves are shown on figure 5.4. One can clearly
see the decrease of the fluctuations when the temperature is raised.

In order to check that we can quantitatively extract Lo from the UCF measurements,
we have compared the results obtained using this technique with those obtained using weak-
localization measurements. In the case of the UCF, the phase coherence length is extracted by
analyzing the amplitude of the conductance fluctuations.
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Figure 5.4: Universal resistance fluctuations as a function of the magnetic field (plotted on an interval
of 0.7 T), measured on a sample of length L ~ 8 pum. Top: at T' = 50 mK. Bottom: at T = 450 mK.

Amplitude analysis

As presented in chapter 2, the amplitude of UCF depends on the quantities L, Lg and
Lp. In our experiment, the sample has a length L = 8.4 pum. The thermal length is given

by Ly = ,/];—DT. The diffusion coefficient D is obtained from the resistivity of the sample:
D =210 em?/s. In these conditions, the amplitude of the UCF is given by |30]
L2 Le(T)
AG*(T) = ETT (5.2.1)

where F is a constant of proportionality which has a theoretical value e, ~ 0.28.

At each temperature, the amplitude of the conductance fluctuations AG is obtained by
taking the standard deviation of the magnetoconductance fluctuations on the whole field range.
The comparison between the resulting value L3¢ and the value obtained from weak-localization
LY is presented on figure 5.5.
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Figure 5.5: Phase coherence length Lg extracted from the weak-localization (red triangles) and the
UCF (green dots), as a function of temperature. The dashed lines show a fit to a power law dependence
close to the T~Y/3 predicted by AAK.

The phase coherence lengths extracted from the two methods are in good agreement, in
both temperature dependence and absolute value. In this experiment, Lg is very sensitive to
the amplitude of the conductance fluctuations, and this explains the dispersion of the values.
Though this determination is not as accurate, it gives the same trend for L¢ as the weak-
localization measurement. As a conclusion, the phase coherence length determined by UCF
measurement or by weak-localization measurement is the same. This proves that the UCF can
lead to a reliable determination of L [67], which can be applied at non zero magnetic field.

5.3 Onsager relations

As presented in chapter 2, by using the Onsager symmetries one can extract the magnetic
contribution AG); to the UCF. In the following, we calibrate the amplitude of AG}; in a non
magnetic Ag sample.

V+ V-
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©
+ 7 | g T

' segment '
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Figure 5.6: Scheme of a four-probe measurement. Contacts 1,2,3,4 can be used as current leads or
voltage probes in order to extract the different contributions to the UCF.
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We have measured the magnetoconductance fluctuations of the sample described previously,
in a four probe configuration. As presented on figure 5.6, contact numbers (1,4) are connected
as current leads I, and contacts (2,3) as voltage probes V. We thus obtain a set of data
G423 called Gy (B). After permutation of voltage probes, now connected to (1,4), and current
leads connected to (2,3), we repeat the measurement in the same conditions. It gives a second
set of data Gasiy called Gy (B). For a non magnetic system, the Onsager symmetry holds:
Gvi(B) = Gyy(—B). We present the experimental curves obtained on figure 5.7.
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Figure 5.7: Conductance fluctuations as a function of the magnetic field, at T = 400 mK for a Ag
sample. The two different measurements Gry(—B) and Gyi(B) are compared. They visually look
similar, and the calculated correlation coefficient between the curves is C' = 0.87.

The pair of curves (G (—B), Gy (B)) has a high correlation coefficient of C' = 0.87. Ex-
perimentally, we observe a small deviation to the ideal value C' =~ 1 which we believe is not
significative, and probably due to a possible asymmetry between the probe configurations.
Indeed, for comparison, the correlation between Gy (B) and Gy (—B) is C' = 0.2.

Amplitude of the different contributions

From the experimental magnetoresistance traces we can extract
_ AR;y(B) — ARy (—B)

ARy (5.3.1)
2
ARy ARy (B) +2ARVI(_B) (5.3.2)

where AR, is the magnetic component and ARy the orbital component. In a non magnetic
system, like the Ag sample we are studying, the magnetic component should be zero as time-
reversal invariance is fulfilled. The obtained traces for magnetic and orbital components are
shown on figure 5.8. In this experiment, the amplitude of the magnetic component extracted
is ARy =~ 0.9 m(Q, whereas the amplitude of the orbital component is ARy ~ 2.2 mf). The
magnetic component amplitude is slightly higher than the noise level (AR5 = 0.4 m2), but
is clearly smaller than the orbital one.
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Figure 5.8: Resistance fluctuations as a function of the magnetic field in a pure Ag wire. Top trace:
orbital component ARo, bottom trace: magnetic component ARpr. The curves have been shifted for

clarity.

In spin glasses, we have local random fields that break the time-reversal symmetry of the
system. In order to understand how this affects the different components, we use an additional
parallel field B, which breaks the time-reversal invariance in the sample. Magnetoresistance
traces are recorded by sweeping B, but under several stationary values of B,,. For each set
of curves, we extract the magnetic and orbital components. The measured amplitudes are
presented on figure 5.9.
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Figure 5.9: Various resistance fluctuations amplitudes as a function of the parallel field By,, taken
at T =200 mK. The open symbols show ARyy (green) and ARy (blue). The solid symbols represent
ARy (red) and ARo (black).
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We observe that the experimental amplitudes ARy and ARy; are roughly constant as
a function of B,,, up to 1 T. At B, = 0 G, ARy < ARp as the time-reversal invariance
is fulfilled. By applying the additional field B,,, we break progressively the time-reversal
invariance, and the amplitude of the magnetic component ARj; increases. Above a value of
the order of B,, ~ 500 G, the amplitudes of AR, and ARy are about the same.

The field scale B,, ~ 500 G is compatible with the amount of field required to produce
a flux quantum @ in the side area of the sample, which is indeed the field scale needed to
dephase time-reversed paths in the sample. Figure 5.9 thus shows an experimental signature of
the breaking of time-reversal symmetry in a non magnetic system, due to an external magnetic

field.

Conclusion

In this chapter, we have presented the experimental results obtained in a non magnetic
Ag sample, which will serve as a reference for the measurements in spin glasses. We have
shown that our Ag samples have good coherence properties before implantation, with a phase
coherence length Lg of 7 pm. The universal conductance fluctuations can be measured, and
used to quantitatively extract Lg. In addition, we have validated the method for the extraction
of ARy, the component of the fluctuations which is linked to the magnetic properties of the
sample.
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Chapter

Remanence in the resistivity of AgMn spin glass

We characterize the low temperature properties of AgMn spin glass mesoscopic samples. An
important point is to be able to evaluate 7}: our small samples do not provide enough volume
to allow for usual magnetic susceptibility measurements. In this chapter, we present the results
obtained on the resistivity of AgMn samples.

6.1 Size effects in spin glasses

In usual thermodynamic phase transitions, size effects are important. There exist a critical
dimensionality range in which the transition exists. In spin glasses, the lower critical dimension
has been heavily debated and investigated, and is thought to be between d =2 and d = 3. As
we reduce the dimensions of the system to observe coherent effects, the question of the existence
of a spin glass phase in such samples is thus relevant.

To answer this question experimentally, the main difficulty arises from the fact that mag-
netic susceptibility measurements cannot be performed in low-dimensional systems. There are
however two experiments that have circumvented this issue.

A first investigation has been realized in thin AuFe films |68|, by measuring the anomalous
Hall resistivity which gives a signal directly proportional to the magnetic susceptibility. There-
fore, they could observe the cusp as a function of temperature, characteristic of the spin glass
behavior. The transition temperature as determined was not modified down to a thickness of
about 15 nm.

Another study was performed on multi-layer samples of CuMn and AgMn, the stacking
of thin layers allowing for direct magnetic susceptibility measurements [69]. Here also, the
transition temperature was not affected down to thicknesses of 15 nm. As a conclusion, in
our mesoscopic samples of dimensions L > [, > 15 nm, we can estimate that the spin glass
transition is still three dimensional.

35
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6.2 Experimental signatures of the spin glass phase

6.2.1 Temperature dependence of the resistivity

Bulk properties

Unlike magnetic susceptibility, the resistivity does not offer sharp features around 7 in
spin glasses. However, the additional magnetic scattering of the electrons in these systems is
expected to affect the resistivity p. The effect of the magnetic spins is two-fold. On the one
hand, there is a Kondo effect: the resistance is increasing with decreasing temperature below
the Kondo temperature Tx. On the other hand, the spin glass phase appears below T, and
the resistance is decreasing with decreasing temperature, due to the spins freezing. In low-
concentration canonical spin glasses, the interplay between the two contributions leads to a
non-monotonic behavior of the temperature-dependence of the resistivity |70, 71].

A maximum appears at a temperature 7,, which has been theoretically linked to the two
characteristic temperature scales |72, 73|

T
T x Tyln (T—g) (T, > Tk) (6.2.1)

K

This maximum in resistivity has been previously observed in various bulk metallic spin
glasses as shown on figure 6.1.
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Figure 6.1: Resistivity variation as a function of temperature for several concentrations in a AuFe
alloy (Tx ~ 1 K). Left: for high concentrations (Ty > Tk ), the spin glass contribution prevails,
from [71]. Right: in the diluted regime (Ty < Tk ), the Kondo contribution is important, from [70].

Experimental study of AgMn wires

We investigate the low-temperature resistivity behavior of AgMn wires. The quasi 1d sam-
ples have been elaborated from a very well controlled source of Ag 6N, and further implanted
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with Mn ions, at a concentration ¢ = 700 ppm. For this alloy, we thus expect T, ~ 700 mK
and T = 40 mK [74]. The wire is shown on figure 6.2, and has a total length L = 3 pm, width
w = 50 nm and thickness t = 40 nm, with several voltage probes available along the wire.

Figure 6.2: Scanning electron microscope picture of the sample. The current is driven from I+ to
I1—, and the voltage measured between V+ and V —, that can be chosen along the wire. A perpendicular

magnetic field B, can be applied.

We measure a AgMn wire of length L. = 2 pm, using the experimental measurement scheme
described in chapter 4. The resistance measured at 4 K is R = 105 €. This yields a resistivity
of p = 1.1077 Q.m, and a diffusion constant D = 42 e¢m?/s. For comparison, the resistivity
of the pure Ag sample is pa, = 2.107® Q.m, and D = 210 cm?/s. The resistance variation is
recorded while cooling down the sample, as presented on figure 6.3.
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Figure 6.3: Variation of the resistance AR = R — Ry in Q as a function of the temperature T in K
(log scale). At high temperature (above 10 K), the electron-phonon scattering processes are dominating.
At low temperature (below 3 K) the electron-electron interaction prevails.
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The total low temperature resistance can be written as the sum of different contributions
R=Ry+ ARe,ph + AR._.+ ARgsq (6.2.2)

where Ry is the residual resistance due to static impurities, AR,_,, is due to the electron-phonon
scattering, AR._. the term due to electron-electron scattering, and we add ARgq to take into
account the magnetic scattering. When temperature decreases from room temperature, the
phonon contribution becomes weaker, and the resistance decreases as a known power law 717
which is experimentally observed above 10 K. At lower temperatures, the resistance variation
is attributed to electron-electron scattering and a spin glass contribution. In order to extract
the spin glass contribution, the electron-electron contribution has to be known.

This electron-electron contribution can be determined by measuring the low temperature
resistance in a pure Ag sample. In metals, the electron-electron interaction leads to a correction
at low temperature, which can be written for quasi 1d wires |75]

R? Ly
AR, . =0.782\,—— 6.2.3
€e—e O'R L ( )
where Ry is the quantum of resistance h/ez, and Ly = \/hD/kgT the thermal length. A, is
a parameter representing the strength of electron-electron interactions in the sample. We have
measured the low-temperature resistance of a pure Ag sample which is plotted on figure 6.4 as
a function of T-1/2.
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Figure 6.4: Resistance variation in a pure Ag sample as a function of T2 in K=1/2. Data points
follow the expected power law. The slope of the solid line yields the value of ..

The experimental data follow very well the expected power law. All the other parameters
being known, the slope of the fitted line yields a value of A, ~ 3.1 which is in excellent agreement
with previous measurements [54, 76] in Ag'.

'n reference [54], )\, is found to be the same for the unimplanted AgAgl and the 30 ppm implanted AgAg3
samples. We can thus assume that the implantation does not affect A,.



Chapter 6. Remanence in the resistivity of AgMn spin glass 59

Let us go back to our spin glass sample AgMn 700 ppm. The low-temperature resistance
variation is plotted on figure 6.5 in the same way as the previous Ag sample. One clearly
sees the deviation between the experimental AgMn data and the theoretical electron-electron
contribution, which is indicated by the solid green line.
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Figure 6.5: Resistance variation in AgMn 700 ppm as a function of T='/2. The ezperimental data

AReyzp (in red) deviate from the theoretical AR.—. (in green) below a temperature T ~ 1.5 K.

We observe a clear deviation between the AgMn data and the expected electron-electron
contribution below a temperature T ~ 1.5 K. Therefore, this deviation is interpreted as a
signature of the presence of magnetic impurities in the sample. At high temperature (above
1.5 K), the data follow well the theoretical electron-electron contribution AR, . (in green
on figure 6.5). In order to extract the resistance contribution attributed to the influence of
the magnetic spins ARgg, we subtract the theoretical electron-electron contribution AR, .
from the experimental data. The resulting temperature dependence ARgq(T) is presented on
figure 6.6.

The experimental spin glass contribution obtained is decreasing below a temperature 7}, ~
2 K. As the Kondo temperature of the alloy is very low (7, > Tk), the interplay between
Kondo and spin glass is unbalanced, the Kondo influence is negligible. Such a decrease in the
resistance confirms a spin glass-like behavior of the AgMn wire and is consistent with previous
bulk measurements |77, 78, 71].
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Figure 6.6: Spin glass resistance contribution ARgg extracted as described in the text, as a function
of temperature. The experimental data are in red, and a fit to equation 6.2.4 with Ty, = 0.7 K 1is shown
in green.

This interplay between Kondo effect and spin glass freezing has been theoretically studied
by Vavilov et al. |73|. They propose an analytical description of the resistance in the regime
Tg > TKi

ARgsq(T) = m (1 — ag%) (6.2.4)
where A is a numerical prefactor and ag is taking into account the impurity spin S. For a spin
S = 5/2 that is the case of Mn in Ag, ag = 2.33. The fitting of the data with this equation is
shown on figure 6.6. For T = 40 mK fixed, the best agreement with the data is obtained for
a prefactor value A = 0.06 and for T, =~ 0.7 £ 0.1 K. Below T}, the theoretical calculation is
not valid anymore. The data is very well described by the formula in the temperature range
between T}, and T5,,. Therefore, the experimental data show that T, ~ 0.7 K in our AgMn wire,
in agreement with what is usually observed for such alloys at this concentration.

6.2.2 Magnetic irreversibilities
Irreversibilities in the magnetic susceptibility

Spin glasses are sensitive to very small magnetic fields. In particular, a small field applied
above Tj before cooling down strongly influences the low-temperature properties of the spin
glass. Let us distinguish two cooling down protocols used for the measurement of the magnetic
susceptibility x:

e Zero-field-cooled (ZFC): The system is cooled down below T, without applying a magnetic
field. In the low temperature phase, a small field is applied to measure the susceptibility.

e Field-cooled (FC): The system is cooled down under a given weak magnetic field B. The
susceptibility can be recorded at the same time.
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Striking differences between the two protocols have been experimentally observed, as shown
on figure 6.7.
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Figure 6.7: Static susceptibility of CuMn vs temperature for 1.08 and 2.02 at.% Mn. Field-cooled
[(a),(c)] and zero-field cooled (H < 0.05 G) [(b),(d)] measurements have been done in an external field
H =5.9 G. Extracted from [79].

One observes a clear deviation between the field-cooled xpc and the zero-field-cooled Y zpc
susceptibilities, appearing below T;, and which is called magnetic irreversibility. Moreover, the
FC curve is reversible, as shown with the double-arrow: the FC susceptibility is the same when
going down or up in temperature. As a conclusion, the transition temperature 7} can also be
defined by the onset of strong irreversibilities in quantities measured by a ZFC and a low-field
FC protocols.

Experimental study of AgMn

As mentioned previously, there is no abrupt change of the resistivity p around 7j. Another
signature linked to 7} is the appearance of magnetic irreversibilities, which can be detected
by a direct comparison between FC and ZFC experiments. The idea is thus to look for these
magnetic irreversibilities in the resistivity of our spin glass samples.

Using the same AgMn sample as previously, we record the resistivity variation Ap as a
function of temperature while cooling down from 900 mK to 200 mK. As a reference curve,
we use the ZFC protocol, cooling down the sample without magnetic field. We repeat the
procedure after applying above 7, a small magnetic field B, kept constant during the cooling
(FC protocol). The results of this experiment are presented on figure 6.8.

We have measured the resistivity variation for B, =0, B, =5, B, = 10 and B, = 35 G
applied at 7" = 900 mK. While the curves are superimposed at high temperature, we observe
small deviations between ZFC and FC curves at low temperature. As the deviation is very
small, we have taken great care for the measurement. We have used a long integration time
(50 s) so that the noise level is reduced to ~ 120 pV (corresponding to 0.24 pQ2.m). Thus, the
temperature ramp must be very slow, we have taken a cooling rate T=5 mK /min, that yields
a measurement resolution of 20 mK. To make the curves comparable, it is very important that
the cooling down procedures are strictly the same.
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Figure 6.8: Resistivity variation as a function of temperature from 900 to 200 mK under several fields
B.. Low fields of B, =5, B, = 10 and B, = 35 G applied above T' = 0.9 K make the data deviating
from the B, =0 G curve.

The observed deviation is of the order of 1 pQ2.m at T'= 200 mK. We have checked that the
magnetoresistance of the sample cannot account for this deviation. First, the applied field is
much smaller than the typical decorrelation field B < B, ~ 1000 G, so that the effect cannot be
attributed to quantum magnetoresistance (UCF or weak-localization). More precisely, we have
measured the low temperature magnetoresistance at low fields: at 7" = 300 mK constant, we
sweep slowly the field up to B = 100 G. The resistance does not change more than 0.075 p{2.m
in this field range. As a result, the observed deviations are more than one order of magnitude
larger, and magnetoresistance contribution can be ruled out.

It is also important to characterize accurately the drift of the experiment. This has been
quantified by repeating twice exactly the same cooling down experiment. We obtain two curves
taken at different times R(7T,t1) and R(T,t). The difference between the two curves ARy =
R(T,t,) — R(T,t5) depends only on R(ty — t1) the drift of the experiment during one cooling
procedure. The resulting data (not shown) displays a drift A <0.11 pQ.m.

We have also estimated the drift directly by measuring the resistance as a function of time.
Within the time of the cooling down procedure, we obtain a drift of A < 0.15 p€2.m in good
agreement with the previous estimate. Therefore, the drift of the experiment is also one order
of magnitude smaller than the measured deviations.
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In order to highlight these irreversibilities, we subtract the ZFC reference data from the FC
curve, as presented on figure 6.9. For each set of data (including the drift), we have averaged
the experimental points in order to reduce the noise, so that the trend is clearly visible. The
averaged drift is also shown for comparison.
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Figure 6.9: Difference between FC and ZFC resistivity curves, as a function of temperature, for
B, =5 G and B, = 35 G. The drift is shown for comparison. The data have been averaged, and the
curve B, = 10 G has been removed for clarity. Dashed lines are a guide to the eye.

Though the deviation is small, it becomes clearly visible below 670 mK. Note that the ZFC
curve is not taken after application of the magnetic field in the spin glass phase, as usually
done in magnetic susceptibility measurements. However, we have checked that the application
of the field at low temperature does not change significantly Apzrc, which indicate that the
results should be the same. As the deviation is not attributed to magnetoresistance effects, we
can assert that it is due to the magnetic response of the sample, similarly to what is observed
for the magnetic susceptibility.

In addition, our data suggest that the amplitude of the effect depends on the applied field,
which is consistent with recent measurements of the irreversibility in the magnetic susceptibility
of spin glasses [80, 81]. We have also checked that the FC curve is reversible: the Appc(T) data
follow closely the same trace when cooling down or when heating up. The important point is
that the difference between FC and ZFC curves appears exactly at the transition temperature
T, which is in good agreement with the one determined independently from the temperature
dependence of the resistance. We therefore conclude that we can determine 7, ~ 670 mK from
the onset of irreversibilities in the resistivity of AgMn.
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Conclusion

We have confirmed that our mesoscopic AgMn wire has a spin glass-like behavior in the
temperature dependence of the resistance. From this measurement, we are also able to obtain
an estimate of T, which is consistent with previous bulk measurements. In addition, we have
observed remanence, due to a small magnetic field, in the resistivity of our sample which
appears below T;. Consequently, this remanence effect and the temperature dependence of the
spin glass resistance can be combined to determine 7}, directly in a mesoscopic wire, for which
magnetic susceptibility measurements are not possible.
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Chapter
Universal conductance fluctuations in AghMn
spin glass

As the phase coherence length Lg is limited by the inelastic processes, its measurement
gives information on the underlying electron energy relaxation mechanisms. As an example,
a low-temperature measurement yielding Lo oc T7'/3 is characteristic of a quasi 1d system in
which the electron-electron interaction is the main scattering mechanism. This is known as the

AAK theory, as mentioned in chapter 5.

However, such a technique has been only poorly used in the study of magnetic systems.
One reason is that the weak-localization correction is not an well adapted tool to extract Lg
in magnetic systems!. Therefore we will evaluate Lg from Universal Conductance Fluctuations
(UCF) measurements.

For such measurements, there are theoretical predictions concerning paramagnetic systems:
when applying a magnetic field, the spins are polarized and it is predicted that the phase
coherence length Lg increases |82, 83]. This behavior has been qualitatively observed in low
concentration magnetic alloys: at large fields, the amplitude of Aharonov-Bohm oscillations or
UCF increases, and this has been used as a test of the presence of magnetic impurities in a
metal [84, 85, 86]. Very little is known in the case of spin glass samples.

In this chapter, we present the UCF measurements that we have performed in a AgMn:700 ppm
spin glass wire. The phase coherence length in the system can be quantitatively extracted from
the data. The resulting Lg is shown to be sensitive to the magnetic field.

7.1 Measurement of universal conductance fluctuations

We have measured the magnetoresistance of a AgMn:700 ppm wire shown on figure 7.1.

'In magnetic systems, time-reversal symmetry is broken and therefore time-reversed paths giving rise to
weak-localization are destroyed.

65
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Figure 7.1: Scanning electron microscope picture of the sample. The current is driven from I+ to [—,
and the voltage measured between V+ and V—. Resistance fluctuations are recorded while sweeping the

perpendicular magnetic field B..

We probe a sample of length L = 2 pm, width w = 50 nm and thickness ¢ = 40 nm. The
perpendicular magnetic field B, is swept from 0 to 8 T and the resistance fluctuations are
recorded by using the experimental setup described in chapter 4, at several temperatures from
T =60 mK to T'=1 K. As an example, two typical curves are presented on figure 7.2.

T=80mK
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Figure 7.2: Resistance variation of a AgMn:700 ppm wire as a function of the magnetic field from O
to 8 T at high (T = 400 mK, red) and low (T = 80 mK, green) temperature. Dashed lines are a guide

to the eye.

The signal observed is composed of a classical magnetoresistance on which the universal
conductance fluctuations are superimposed. Such a shape of the classical magnetoresistance
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has been previously observed in similar experiments [45]. As it is not present in the pure Ag
sample, we conclude that this is a feature of the spin glass phase. It may be attributed to a
polarization of the magnetic spins with the field, which results in a decrease of the resistance
and deserves further investigations. Note that for higher concentration alloys (and higher
temperatures), a different magnetoresistance varying as B? has been reported [87].

To continue our study, we subtract this overall magnetoresistance to our data, so that only
the universal resistance fluctuations are left, as presented on figure 7.3.
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Figure 7.3: Resistance fluctuations as a function of magnetic field B, in a range between 0 and 8 T.
Top: at T'= 80 mK. Bottom: at T = 400 mK.
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7.2 Magnetic excitations

At all temperatures, we observe that the amplitude of the fluctuations AR enhances when
increasing the magnetic field. As mentioned previously, this could be attributed to the presence
of magnetic impurities being polarized by the magnetic field. Qualitatively, we observe two
regimes for the amplitude of the fluctuations: a low-field regime B, < 4 T and a high-field
regime B, >4 T.

In order to characterize this enhancement with the magnetic field, we calculate the amplitude
of the UCF averaged on a large interval (typically 2 T), and we slide this interval along B,. We
can thus compute the amplitude of the UCF as a function of the magnetic field, as presented
on figure 7.4.
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Figure 7.4: Normalized averaged amplitude of the UCF as a function of the magnetic field at T =1 K.
The crossover field is about 4 T. The dashed line is a guide to the eye.

Enhancement of Lg

This analysis confirms the two regimes for the amplitude of the UCF, with a crossover field
around 4 T. Such an increase of the amplitude can be attributed to an enhancement of the phase
coherence length Lg(B,) in the sample. Qualitatively, when the magnetic field gets larger than
4T, the sample evolves from a non-polarized situation to a regime where the spins are polarized.
When scattering, the electrons can exchange energy with non-polarized spins, whereas polarized
impurities act as static. The inelastic magnetic scattering degree of freedom is thus weakened
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when a magnetic field B, > 4 T is applied, and this leads to an enhancement of Lg. Such an
experimental behavior is qualitatively in agreement with theoretical predictions [83].

We can estimate the value of the phase coherence length from the UCF amplitude AR
(the procedure is described later in details). We obtain Le(B, < 4 T) ~ 0.067 pm and
Le(B, >4 T)~1.65 um at T'= 1 K. The enhancement factor is about 25. Such a large factor
is not surprising, as we have a quite large concentration of magnetic impurities (¢ = 700 ppm)
in the sample, which should lead to a high magnetic scattering rate.

Freezing magnetic excitations

At high temperatures 7' > T}, we expect that the magnetic field is polarizing "free" magnetic
impurities. However at low temperatures T° < Tj, the sample is in a spin glass state. In this
regime, we observe a similar enhancement of Lg, but in two steps. The averaged amplitude
of the UCF as a function of magnetic field for the two temperature regimes is presented on
figure 7.5.
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Figure 7.5: Normalized averaged amplitude of the UCF as a function of the magnetic field at T =1 K
(T >Ty) and T = 62 mK (T < Ty). The high temperature curve shows two plateaus, whereas the low
temperature curve shows three plateaus. The curves have been shifted for clarity. The field values B
(B2) represent the end (beginning) of first (last) plateau.

We observe an enhancement of Lg with the magnetic field even below T,. This is still
attributed to a weakening of the magnetic scattering with increasing magnetic field. However
the shape of this enhancement suggests that some magnetic excitations of the spin glass sample
are suppressed stepwise.

We notice that the typical field scale for which the amplitude increases is roughly the same at
low and high temperatures. In order to investigate this in detail, we determine experimentally
the field By for which the amplitude starts to increase (end of first plateau), and the field By



70 7.2. Magnetic excitations

for which it becomes constant again (beginning of last plateau), in all the temperature range.
The results are presented on figure 7.6.
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Figure 7.6: Magnetic field values By and By determined as presented in the text, as a function of
temperature. They are constant above and below a value T for which they seem to join together.

The two field values By and B, obtained are roughly constant up to a temperature of
T’ =~ 500 mK. Above this temperature, the two values seem to merge. The low temperature
UCF "plateau" between B; and Bs observed in figure 7.5 disappears for T' > T". Above T", B,
and Bj delimit the region for which the UCF amplitude increases.

Note that the temperature 7" for which the behavior changes is different than the charac-
teristic temperature of the system 7, ~ 700 mK, though these temperatures are quite close. In
addition, the order of magnitude of the field for which L4 increases B, ~ 4 T is much larger
than the typical spin glass field scale B, ~ 0.1 T, defined as guB, = kgT, with g = 2 the
Landé factor, p = bup the magnetic moment of Mn in units of Bohr’s magneton and kg the
Boltzmann constant.

In this experiment, the large value of B,, could be attributed to the rigidity of the spin
glass phase to an external magnetic field. In CuMn alloys, such robustness can be attributed
to random anisotropy [88], that affects the phase diagram of spin glasses [89]. In AgMn alloys,
we can expect the same type of anisotropy, that could prevent the spins from fully rotating in
the presence of a magnetic field.

As a conclusion, we can use the field-dependence of phase coherence length as a tool to study
unexpected magnetic features of the sample. The observed behavior in our spin glass AgMn
sample may be attributed to magnetic excitations (droplets, spin waves...), or an intermediate
phase of the system... It leads to questions on the effect of a magnetic field in spin glasses that
clearly deserve further investigations.
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7.3 Temperature dependence of the phase coherence length

We now turn to the analysis of the temperature-dependence of the phase coherence length
in the AgMn sample. From the above study, we define two distinct regimes for the behavior
of the UCF amplitude: the low-field regime for B < B; < 2 T and the high-field regime for
B > By > 6 T. We extract the average amplitude of the UCF in the two regimes, at all
temperatures. The resulting data are presented on figure 7.7.
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Figure 7.7: Amplitude of the UCF as a function of temperature, in the low-field (green) and high-field
(red) intervals. The two curves seem to join together at low temperatures (dashed lines are a guide to

the eye).

The enhancement of the UCF amplitude with the magnetic field is clearly visible at all
temperatures. In the high-field regime, we may consider that the spins are polarized, and that
the resulting UCF amplitude reaches the value one should obtain in presence of static magnetic
impurities. At low field, we observe that the UCF amplitude increases faster with decreasing
temperature than the high-field data. In order to highlight this effect, we calculate the ratio
r = AR(low B)/AR(high B) as a function of temperature, as presented on figure 7.8.

Above T" ~ 400 mK, the ratio is roughly constant, the UCF amplitude has the same
temperature dependence at low and high field. However below 7", the amplitude of the UCF
at low field is increasing towards the amplitude of the high-field regime (r — 1). Indeed, this
is a signature of the freezing of the magnetic moments in the spin glass phase: as temperature
decreases, spins are freezing, becoming similar to static impurities for the electrons. In this
experiment, with respect to Lg, the effect of reducing the temperature is thus equivalent to the
effect of applying a large magnetic field. As a result, the fluctuations amplitude at low field
tends towards the high-field value representing a full freezing of the spins.
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Figure 7.8: Ratio r of the amplitudes at high and low field as a function of temperature. Above
T' ~ 400 mK, the ratio is constant. Below this temperature, it increases.

High-field behavior

In the high-field regime, Lg is greatly enhanced (a factor 25). In this situation, L < Lg
and the amplitude of the UCF is only weakly depending on Lg. Therefore, we cannot extract
precisely the phase coherence length in this regime.

Extraction of the phase coherence length

In our spin glass, we write the phase coherence scattering rate as the sum of the inelastic
scattering rates mechanisms at low temperature? (below 1 K)

1 1 1
i I 3.1
Iz, (734

where L designates the inelastic magnetic scattering, and L._. the electron-electron scattering.
The electron-electron term is well known as it is given by the AAK [66] theory. In clean metals
this scattering mechanism is dominant at low temperature (see chapter 5). In a spin glass
however, we expect that the magnetic scattering prevails, so that the phase coherence length
is essentially limited by Lo = Lg (as Ly < Le_.). At larger fields, due to the polarization
of the impurities, the magnetic scattering length increases, and the phase coherence length is
thought to be dominated by the residual electron-electron interaction Lg(B — 00) = L. [83].
The resulting phase coherence length at low field is presented as a function of temperature on
figure 7.9.

2Below 1 K, the electron-phonons interaction term is negligible.
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Figure 7.9: Ly = L as a function of temperature extracted from the amplitude of the low-field UCF.

The phase coherence length in the sample is quite short: it ranges from 67 nm at T'=1 K
to 300 nm at 7" = 62 mK. Such a low absolute value of Lg can be attributed to the strong
magnetic scattering off the spins (the spin concentration in the sample is ¢ ~ 700 ppm). When
decreasing the temperature, Lg is increasing rapidly, which may be interpreted as a consequence
of the spins freezing.

Determination of the free spins population

From this measurement, we can extract the magnetic scattering time 7, = L2?/D with
D = 42 ¢cm?/s the diffusion coefficient determined from the resistivity of the sample. The
measurement of this scattering time temperature-dependence may give an insight on how the
spins are frozen in the sample. In the following, we propose an interpretation that leads to a
determination of the concentration of free spins in the spin glass phase.

We consider that the magnetic scattering is governed by an energy exchange between an
electron and a free spin impurity, like in the case of the Kondo effect. In this case, the resulting
Ty is directly proportional to the density of magnetic scatterers involved ny,,(7). This is
theoretically described by the Nagaoka-Suhl formula [90] in the regime 7" > Tk, Tk being the
Kondo temperature (Tx = 40 mK in our alloy).

B (T 725(S +1)
(T)  wvp w28(S+1)+1n?(T/Tk)

(7.3.2)

where vp is the Fermi density of states, S the spin of the impurity and n,,,(7) the density of
magnetic impurities participating to the inelastic scattering. As temperature decreases, spins
are progressively frozen, and we can consider that the free spins population is reduced.
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The above equation can be rewritten in order to allow the determination of the concentration
of scattering impurities as a function of temperature

K 72S(S + 1)+ 1In* (T/Tk)
75(T) m2S(S+1)

Cimp(T) = (7.3.3)

with 75 = 0.58 ns.ppm the maximum Kondo scattering in Ag (as measured in reference [91]).
Therefore we obtain the temperature dependence of c¢;,,,, presented on figure 7.10.
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Figure 7.10: "Free" spin impurities concentration as a function of temperature. The concentration is
normalized to the nominal concentration of impurities co = 700 ppm, and the temperature is normalized
to the spin glass temperature Ty = 700 mK.

We clearly see the freezing of the magnetic impurities in the spin glass phase: the free spins
population decreases as the temperature is reduced. In our AgMn:700 ppm alloy, we find about
27 ppm, i.e. ¢/co = 4% of free spins at the lowest temperature (7/7, = 0.09). At T'= 1K, the
free spins population increases up to ¢/co = 89%. Such mesoscopic measurements may provide
a unique access to the freezing of the spins as a function of temperature. And the experimental
data may thus be compared with theoretical models. In particular, the temperature-dependence
of the free spins population should be linked to the temperature-dependence of the internal fields



Chapter 7. Universal conductance fluctuations in AgMn spin glass 75

distribution in the sample. This distribution can give an insight in the underlying interaction
mechanisms (short-range or mean-field).

Conclusion

Using UCF, we have performed measurements of the phase coherence length Lg in a
AgMn:700 ppm spin glass wire. We observe that Lg strongly increases with the magnetic
field, in agreement with previous works. At low temperature, this enhancement is still present
but becomes stepwise. This feature could be attributed to intermediate magnetic excitations of
the system, that disappear above a temperature close to 7},. In addition, we are able to extract
quantitatively Lg¢ from the low-field part of the UCF. We interpret the observed increase of
Lg as a freezing of the magnetic spins when temperature is reduced. We propose that the Lg
measured may provide a unique tool to probe the population of free spins in a spin glass.
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7.3. Temperature dependence of the phase coherence length




L’homme le plus simple qui a de la pas-
sion persuade mieux que le plus élo-
quent qui n’en a point.

Francois de La Rochefoucauld,
Maximes

Chapter
Measurement of the magnetofingerprints
correlations

We present in this chapter measurements of the correlations between magnetofingerprints
obtained in AgMn spin glasses. We studied the sensitivity of the UCF to the spin configuration,
and the influence of magnetic field and temperature on this configuration.

8.1 Scaling effects: the route to overlaps

In this section, we consider the question of the sensitivity of our technique to a change in
the spin configuration of the spin glass. As presented in chapter 3, the correlation coefficient C
and the spin overlap ¢ are linked together by a known function of L/L,,, L being the length of
the sample and L,, the magnetic length. Indeed, the correlation will be affected by a variation
of ¢ only if L/L,, is large: the phase difference between paths encountering a different spin
configuration increases with the number of magnetic scattering events. Therefore, we have to
test the sensitivity of our technique on long wires.

We have thus performed an experimental comparison between pure Ag and AgMn wires.
On the one hand, we measure the magnetofingerprints in a pure Ag sample at low temperature.
We first take a reference curve, representative of the (non magnetic) disorder configuration,
and then we heat up the sample to about 15 K for 15 hours. The sample is heated by using an
additional current, as described in chapter 5. We cool down the sample back to the measurement
temperature, and we record a second magnetofingerprint. As shown on figure 8.1, the two traces
remain highly correlated: the correlation coefficient C' = 0.95, meaning that we do not modify
the disorder (positions of atoms or defects) in the Ag sample. On the other hand, we repeat the
same experiment in a long wire (L ~ 17 um) of AgMn spin glass of concentration ¢ = 400 ppm
(T, ~ 400 mK). We heat up to 15 K (=~ 37 T,) for 20 min. The two traces obtained before
and after the thermal cycle (shown on figure 8.1) are visibly different, the resulting correlation
coefficient is C' =~ 0.2.

7
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Figure 8.1: Comparison of the magnetofingerprints obtained before and after a thermal cycle at high
temperature. Top: in the Ag sample, the traces remain highly correlated C = 0.95. Bottom: in the
spin glass sample AgMn:400 ppm (L ~ 17 um), the fingerprints are visibly different, the correlation is
C =~ 0.2.

As a result, the experiment on pure Ag proves that the position of the atoms did not change
during the thermal cycle. For the AgMn sample, in strong contrast, the magnetofingerprints
clearly change, as the spin configuration has been modified - the orientation of the spins,
not their position - at high temperature. This clearly shows that the universal conductance
fluctuations are sensitive to the reorganization of the spin configuration.
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8.2 Field effects: spin glass rigidity?
An unexpected field robustness

The effect of an external magnetic field on the spin glass phase remains quite beyond a com-
plete understanding. In particular, the pioneering measurements of magnetofingerprints in spin
glasses have revealed an unexpected robustness against magnetic field: the magnetofingerprint
was not modified, even by applying a magnetic field much larger than the typical spin glass
field scale B, [45], as if the spins were not affected. On the contrary, we have observed in our
experimental magnetofingerprints indications that the spins may be polarized by the magnetic
field, as discussed in chapter 7. In this section, we investigate the effect of a magnetic field on
the spin configuration in spin glass wires.

In the usual view of spin glasses, one expects that a magnetic field larger than B, should
destroy the ordered phase. B, is defined by kg1, = guB, with kp the Boltzmann constant, g
the Landé factor, and p the magnetic moment, expressed in units of the Bohr magneton pp. In
our low concentration alloys, T, = 700 mK leads to B, ~ 1000 G (using g = 2 for the electrons
and p =5 pp for Mn).

We have measured magnetofingerprints on a AgMn sample of length L &~ 17 pm and con-
centration ¢ = 400 ppm (7}, ~ 400 mK). The field is swept from B, =0 to B, = 8 T, that is 80
times larger than B,, at a temperature 7" = 100 mK and we repeat the measurement, so that
we obtain two magnetofingerprints which are shown on figure 8.2.

16 T
1.2

0.8

— UCF #1
-1.2 —— UCF #2

o 110" 210* 310* 410" s510* e610° 710" 810
Bz (G)
Figure 8.2: Resistance fluctuations as a function of the magnetic field for a AgMn:400 ppm wire

(L =~ 17 um). Two successive traces are shown, separated by a time scale of few hours. Though the
system has been brought to a very high field, the trace is highly reproducible.

The two successive traces are highly reproducible (C' = 0.94), though in the time between,
we have applied a magnetic field much larger than B,. This high correlation of the UCEF may
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lead to the conclusion that the spin configuration does not change even under high magnetic
field. This is very surprising, as it contradicts the usual vision of spin glasses.

Decorrelation of the magnetofingerprints

From the high correlation coefficient, we can estimate that less than 1 % of the spins are
rotated by the magnetic field. However, in our signal of figure 8.2, we observe the enhancement
of the fluctuations with magnetic field, which is a convincing signature of a polarization effect
on the magnetic impurities, as already discussed in chapter 7. Therefore these contradictory
results deserve further investigations.

In order to understand more in details the effect of the external magnetic field, we use an
additional in-plane field (X —Y field B,,). The perpendicular field B, is still used to obtain the
magnetofingerprints, but under several constant values for B,,. We measure the UCF traces at
low temperatures, deep into the spin glass phase T' < Ty, so that the dynamics of the system
appear frozen on the time scale of the experiment (which is confirmed by the reproducibility
of the curves). We measure successively three magnetofingerprints. We first take a reference
magnetofingerprint of the spin configuration, without additional field B,, = 0 T. Then, we
apply a parallel magnetic field of B,, = 1 T, and take the second magnetofingerprint. We
switch the parallel field back to B, = 0 T before taking the third trace. Results of this
experiment are presented on figure 8.3.

Bxy=0G_#1
Bxy=10000G_#2
— Bxy=0G_#3

i W’W\ N \f\//\l\"‘\/v\m

1 A ,=0.07 \/J\h/\/\
@ 0 l i \/\
o y /‘V’\\,,/ U\\'\/\v

55— 0. 03

? MWW \/\/ _097N

-6 ‘IO -5.5 ‘IO -5 10 -4.5 10 -4 10 -3.5 10 -3 10*
Bz (G)

Figure 8.3: Three successive magnetofingerprints of the spin configuration, taken for different values
of the in-plane field Byy. The first trace #1 and the third trace #3 are taken at By, = 0 G whereas
the second trace #2 is taken at By, = 10000 G. The correlation between traces is indicated.
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When we apply a large additional magnetic field, the magnetofingerprint is visibly strongly
affected: the correlation between traces #1 and #2 gives Cj5 = 0.07. The same correlation
is found between traces #2 and #3, therefore the parallel field changes significantly the mag-
netofingerprint. Surprisingly however, we recover exactly the original magnetofingerprint when
we switch back the field: the correlation between traces #1 and #3 is Ci3 = 0.97. From these
data, we could infer that the magnetic field deforms the spin configuration in a reversible way.

The effect of the external magnetic field on the magnetofingerprints may have two distinct
origins. On the one hand, the parallel magnetic field B,, dephases the electron trajectories as
well as B,, and thus affects the magnetofingerprints. This orbital effect is perfectly reversible.
On the other hand, the magnetic field may polarize the spins, which would also affect the
magnetofingerprints. In spin glasses, it is theoretically predicted that the UCF are governed by
these two effects, and thus by two field scales [41]. The first one B, is attributed to orbital effects,
due to the coupling of the electrons to the magnetic flux. The second B; is the characteristic field
scale attributed to the electron scattering off magnetic spins, and is only present in magnetic
systems. Consequently, we should have the two effects on our magnetofingerprints.

In order to distinguish which effect is dominant, we investigate the temperature dependence
of the typical field scale for the decorrelation of the experimental magnetofingerprints. For
orbital effects, the field scale B. depends on Lg, and should thus vary with temperature. For
spin effects, we suggest that the field scale B; is linked to a spin glass feature, and may be
independent of 7.

We thus repeated the previous experiment, for various values of B, in a AgMn:700 ppm
alloy (L ~ 17 pm). We performed two sets of measurements, at 7' = 65 mK and 7" = 400 mK.
From these data, we calculated the correlation between the reference magnetofingerprint at
B,, = 0 G and a given trace taken at B,,. The results are presented on figure 8.4.
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Figure 8.4: Correlation coefficient C(Byy = 0; Byy) in a AgMn:700 ppm alloy (L ~ 17 pm), as a
function of By, for two different temperatures T = 65 mK (green) and T = 400 mK (red).
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The field scale of the decorrelation is clearly changing with the temperature. The val-
ues can be estimated by reading B, when C(B,, = 0;B.,) = 0.5. We obtain B, (T =
65 mK) ~ 618 G and B, (T = 400 mK) ~ 1600 G. For comparison, we have performed
the same experiment in a non magnetic Ag wire, and the decorrelation field is also depend-
ing on temperature in a similar way. As a conclusion, when sweeping the parallel magnetic
field, orbital effects prevail on the spin effects (B.<B;s) in our AgMn wire, and the observed
reversibility of the magnetofingerprints is attributed to orbital effects.

Discussion and prospects

In order to circumvent the previous issue, we propose to separate out the orbital and mag-
netic contributions to the UCF. This can be achieved using the Onsager symmetries, as de-
scribed in chapter 2. One measures the magnetofingerprints in two configurations, between
which one has permuted the I —V current-voltage contacts. One can thus construct a quantity
which is only depending on the magnetic part of the UCF

AR[\/(B) — ARVI(—B)

ARy = 5

(8.2.1)

In principle, this magnetic contribution should directly reflect spin effects in the sample.
Note that in order to perform this construction, we have two requirements to fulfill. First, Lg
has to be larger than L, so that we perform a real four-probe measurement. Second, L,, < L
is necessary to obtain a good sensitivity of the magnetofingerprints to the spin configurations.
As a conclusion, we experimentally need a system where L,, < L < Lg. As L,, depends
on the exchange coupling J, or the impurity concentration, it may eventually be tuned in
future experiments, in order to allow for a direct extraction of ARjy;. Measuring this magnetic
component may bring new insight on the influence of a magnetic field, and in particular the
physics lying behind the observed robustness upon field cycling.

How can we interpret this robustness with the magnetic field? Let us discuss the field-
temperature (mean-field) phase diagram of our spin glass. In AgMn alloys, the presence of
random anisotropy should affect this phase diagram [92, 89]. In particular, it enhances the field
value required to destroy the spin glass order. Theoretical calculations thus give a critical field
which is about 5 B, at low temperature (7' < 0.17}), that is a field about 1 T in our samples.

Experimentally, one usually measures the irreversibility line, that is the line below which
the response of the system is different between Field-cooled (FC) and Zero-field-cooled (ZFC)
protocols. One thus finds a field line which very rapidly increases in the vicinity of 7}, |93, 94]
for CuMn and AgMn systems.

Our experiment brings new important information. We observe an increase in the amplitude
of the conductance fluctuations as a function of magnetic field, which is a consequence of
the polarization of the spins. It suggests that the spin configuration is affected: spins are
"unlocked", they are not frozen anymore. This polarization starts at a field about By ~ 2 T
(see chapter 7).
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In addition, our experiment reveals that the spin configuration has not changed after a field
cycle at 8 T. The field effect thus appears as reversible; when applying a magnetic field, the
system evolves in the phase space along a certain path, and when we decrease the magnetic
field, the system evolves back on the same path, so that it comes back to its original state. Such
a behavior would imply some memory features in spin glass systems, directly at the microscopic
level: each spin evolves back to its original orientation.

As a conclusion, we may infer that we have two different field scales in our system. A field
B > B; ~ 2 T is sufficient to "unlock" the spins at low temperature, and to start to polarize
them. However, a field of 8 T is not strong enough to affect the spin configuration in an
wrreversible way: the system keeps the memory of its original zero-field state, at a microscopic
level.

8.3 Temperature effects: a determination of the overlaps?

A natural and simple way to change spin configurations in a spin glass is to cycle the sample
to temperatures above Tj.

The sample is heated and quenched by using a DC current as described in chapter 5.
Figure 8.5 shows the calibration experimentally obtained for a long wire of AgMn:700 ppm. It
allows to convert reliably the heating current I in an effective temperature 7" for the sample.
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Figure 8.5: Measurement of the resistance variations AR(T) and AR4(I). Bottom axis: log scale of
T in K. Top axis: log scale of I in uA. The resistance variations are plotted on the same scale and
have been shifted for clarity. The two curves show a good agreement, and allow for a determination of
T for a giwen I applied.
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We describe here the protocol that we have used to study the effect of temperature on
the spin configurations. All the magnetofingerprints are taken at the same low temperature
Threas = D0 mK, so that the dynamics is frozen on the time scale of the measurement'. From
low temperature, we apply a current [y in order to heat the sample at a temperature 7T during
a time 7. The system is then quenched down to Tjcqs < Ty, the measurement temperature.
This thermal cycle can eventually be realized in the presence of a magnetic field By. At
low temperature, we measure the magnetofingerprint of the spin configuration (n). We can
repeat this annealing, quench, measurement procedure in order to obtain the magnetofingerprint
(n 4+ 1). This protocol is sketched on figure 8.6.

L J

BC]:O

Figure 8.6: The temperature of the system is raised to Ty for a time T at zero magnetic field. The
system 1is then quenched, and the magnetofingerprint is taken. The operation can be repeated, so that
we can compare the successive magnetofingerprints. This protocol can be performed for different values
of Ty, T or By.

We have performed this experiment in a long AgMn:400 ppm wire (L ~ 17 um). We expect
that the evolution of the spin configuration at high temperature depends on: the annealing
temperature Tj, the time 7 spent, and the magnetic field By. Different magnetofingerprints
obtained after an annealing of the sample at Ty > T, are presented on figure 8.7.

We observe that within this protocol the magnetofingerprints evolve towards a different
trace, that is in an érreversible way. This behavior is contrasting with the influence of the mag-
netic field which modifies reversibly the spin configuration. Such an evolution of the traces can
be characterized by calculating the correlation C), 11 between successive magnetofingerprints,
as a function of the intermediate annealing temperature Ty. The results, obtained for 7 = 5 min
and By = 0 fixed, are shown on figure 8.8.

We observe that the experimental correlation between magnetofingerprints decreases very
slowly with 75, and remains quite large (C' > 0.5). Surprinsingly, it appears that the sample
has to be heated to temperatures 7T, > T, in order to obtain weakly correlated traces.

'We have checked that at such temperatures, the magnetofingerprint is not changing, up to several days.
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Figure 8.7: Resistance fluctuations as a function of magnetic field for a AgMn:400 ppm alloy (L =~
17 um). A reference magnetofingerprint (red curve) is taken. The sample is then annealed at Ty = 9 K,
and the magnetofingerprint is measured (blue curve). The sample is annealed again at Ty = 14 K, and
the magnetofingerprint obtained (green curve). The three traces have been shifted for clarity.
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Figure 8.8: Correlation coefficient of successive magnetofingerprints Cy ny1, as a function of the
annealing temperature Ty. This correlation is decaying slowly as Ty increases. For comparison, the
green point represents the correlation in the pure Ag sample. The dashed lines are a guide to the eye.

At this point, it is crucial to ask about the sensitivity of our technique. We have presented
in chapter 3 the theoretical link that has been established between the correlation coefficient
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(12 and the spin overlap gi2. Cs is obtained experimentally from the magnetofingerprints, and
¢12 represents the overlap between spin configurations. The relation Cia(qi2) strongly depends
on the ratio L/L,,. In particular, the correlation at zero overlap g2 = 0 is not zero, and may
indeed be quite large, depending on the value of L/L,,. This dependence of C'(¢ = 0) as a
function of the ratio L/L,, is presented on figure 8.9 (top).
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Figure 8.9: Top: theoretical correlation coefficient at zero overlap C(q = 0) as a function of L/Ly,.
The minimum experimental decorrelation C' = 0.42 allows to determine a ratio L/L,, = 7.5. Bottom:
the spin overlap q extracted from the experimental data using L/L,, = 7.5, as a function of Ty the
annealing temperature. The dashed line is a guide to the eye.

We have thus tried to extract the spin overlap ¢ from the measured correlation C' at each
temperature Tp. We can roughly estimate the ratio L/L,, by considering the lowest correlation
found experimentally C' = 0.42, that we identify as the minimum correlation, that is when all
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the spins have rotated (¢ = 0). The curve plotted in figure 8.9 allows to graphically determine
L/L,,, assuming that in our case C(¢ = 0) = 0.42. Consequently, we can directly convert the
experimental data C'(7p) in q(7p), which is presented on figure 8.9 (bottom).

The resulting decay of ¢(Tp) is very sharp, and surprisingly the temperature for which it
mainly decreases is much larger than 7,. This suggests that one needs to heat the sample
up to very high temperature in order to obtain a low spin overlap. It is worthy to discuss
the extraction procedure, which depends crucially on L/L,,. In order to determine this ratio
more precisely, one can try to anneal the sample at larger T}, looking for a saturation of the
correlation C'. Such saturation would give the base line C(¢ = 0) for the experiment. From
this line, it is thus possible to extract univocally L/L,,. A cross check experiment would be
to measure C at a constant value of Ty (that is a constant ¢) and as a function of the length
L. The scaling function obtained may be compared to theoretical predictions, leaving L,, as a
fitting parameter. These experiments may be performed in future works.

From the experimental findings, it remains that the temperature needed to appreciably
change the correlation is much larger than 7,. From figure 8.9, we can infer that 80% of the
spins need an annealing temperature of 7T ~ 15 K to rotate. This suggests that we may have
another characteristic energy scale in the system, which governs the "unlocking" of the spin
configuration at the microscopic level. For example, it could be attributed to dynamical effects:
in our experiment we observe the spins that relax on a time shorter than 7, the annealing time.
This surprising result clearly deserve further investigations.

In this experiment, we have used the correlation between disorder magnetofingerprints as a
new tool to trace back the spin overlap. Such a direct determination of ¢(7") allows in principle
to distinguish a low-temperature spin glass phase ¢ = 1 from a high-temperature paramagnetic
phase ¢ = 0. It is thus possible to repeat this experiment in the presence of a magnetic field By,
in order to probe the field-temperature phase diagram of the sample. Using this protocol, one
can also investigate the dynamics of the system by varying the annealing time 7. Therefore,
such a measurement of the spin overlap ¢ opens a new way to probe the spin glass phase at the
microscopic level.

Conclusion

In this chapter, we have measured the correlations between experimental magnetofinger-
prints in a AgMn wire. Using this original tool, we can investigate microscopically the effect of
a magnetic field on the spin glass phase. We observe that the magnetofingerprints are deformed
in a reversible way by the magnetic field. By measuring the correlations between magnetofin-
gerprints as a function of temperature, we are able to measure the spin overlap ¢(7"). This
opens the possibility to study directly the statistical distribution of the order parameter P(q),
which is the fundamental quantity characterizing the ground state of spin glasses.
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Conclusion

In this work, we have implemented measurements of universal conductance fluctuations in
spin glasses. The idea that such mesoscopic phenomena allow to trace back reorganizations in
the microscopic disorder has been experimentally validated in a quantitative way. This new
and original approach gives access to a direct measurement of fundamental parameters of spin
glasses which were not accessible up to now.

We have fabricated mesoscopic spin glass samples in which the electronic phase coherence
length is sufficiently large to allow for the measurement of quantum conductance fluctuations.
We have developed a strategy of local heating which allows to achieve fast thermal cycling of
our sample.

Resistivity measurements in our mesoscopic sample show the usual signatures of a spin
glass phase. In addition, our resistivity measurement reveals remanence, appearing below the
transition temperature 7,. Such a measurement can be used to determine T, directly in a
mesoscopic wire where usual magnetic susceptibility measurements are not possible, due to
their small volume.

The amplitude of universal conductance fluctuations is sensitive to the inelastic scattering
of the electrons in the sample, thus allowing for the study of the internal excitations of our spin
glass. We have observed the freezing of some excitations of the system in the presence of an
external magnetic field. Moreover, this type of measurement gives a new access to important
quantities: the determination of the electron phase coherence length in the spin glass may be
linked to the population of free spins. This opens new prospects for the study of these systems
at a microscopic level.

Universal conductance fluctuations give a magnetofingerprint of the sample disorder. We
have studied the correlations between different configurations, in order to extract direct in-
formation on how the disorder evolves in the spin glass. We have studied modifications of
the magnetic configuration due to an external parameter. If we apply a magnetic field, the
magnetofingerprints seem to be modified in a reversible way. However, when we cycle the sam-
ple above T}, the magnetofingerprints are irreversibly affected. From the measurement of the
correlation between magnetofingerprints, we can directly extract ¢, the order parameter of the
spin glass phase.

This work opens new ways to numerous prospects on the experimental study of spin glasses
using quantum conductance fluctuations. In particular, these measurements allow to access to
the order parameter ¢ of the transition. By repeating the experiment under different experi-
mental conditions, we can obtain the statistical distribution P(q) of this parameter, which is
the fundamental quantity characterizing the ground state of spin glasses. It is also possible to
study the field-temperature phase diagram or the relaxation time in spin glasses directly from
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a microscopic point of view. We would like to point out that this experimental approach is
not restricted to the study of metals, it can be performed in semi-conducting systems as well.
Though we cannot conclude yet between the two main models describing spin glasses, there
is a real hope that such measurements of the universal conductance fluctuations may bring
important new insights on the nature of the ground state of spin glasses.



Appendix
Wiring of the fridge

In this appendix, we present the detailed wiring of the dilution fridge.

High-Temperature Wires — 09/02/09 st

____________________

=
Thermal Anchorto 4K
CuBewires:
Sheath - Stainless Steel
Insulator- Teflon
Core-CuBe
L=15m;R=6Q
SMAconnectors  N_ o T
(Core + Sheath)
Top-plate 1:19 wires
300 K Top-plate 2:21 wires 4K
T

Figure A.1: High-temperature wiring (from 300 to 4 K) with low resistance wires.
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4K-stage connections from CuBe to Thermocoaxs
09/02/09

Thermal anchor at 4 K

High-T wires | e Thermocoaxs Duratrod
; [ solderings |

soldering .

40 connections painted with silver paste

Figure A.2: Detail of the connection at 4 K between low resistance cables and thermocoaxs. Special
care is taken for the thermalization.

4K-stage connections - 09/02/09

Silver paste

Calo-4 K
Thermal anchors

Figure A.3: Photograph of the 4 K connection between cables.
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Low-temperature wires —

09/02/09

Thermocoaxs wires :
Sheath -Stainless Steel
Insulator—MgO powder

Core - NiCr

L>2m;R~100-150Q

§Therma|anchor Thermalanchor Thermalanchor = Thermalanchor

~aoo...

39 SMC connectors
(Core + Sheath)

1K-Pot Still Cold-Plate Mixing Chamber
1_1 —
MC-Plate
]
4 K 1K 900 mK 100 mK 15 mK

Figure A.4: Low-temperature wiring (from 4 K down to the mizing chamber plate) with thermocoazs.

Low-temperature wires — 09/02/09

Still Cold-plate Mixing Chamber
—

Rolled thermocoaxs

Figure A.5: Photograph of the low-temperature wiring.
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MC-Plate : bottom view

39 connections

09/02/09

Figure A.6: Bottom view of the mizing chamber plate.

MC-Plate — 09/02/09

«— Bottom view

Figure A.7: Photograph of the mizing chamber plate. The bottom wview is on the cold-finger side.
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Cold-finger wires — 09/02/09

15 mK
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Figure A.8: Cold-finger wiring with shielded cables.

Cold-finger wires — 09/02/09

Sample-
holder

stage
MC-plate

Teflon isolation (recovers the whole rod now)

Figure A.9: Photograph of the cold-finger wiring.
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Sample-holder stage — 09/02/09

PCB circuit

Cu caps (stucking RF-lines holes)

Figure A.10: Photograph of the sample-holder stage.

Top plates : top view

300 K

@ @ ©

@

Top-plate 1 Top-plate 2

Rk : Nothing connectedon Free « F » 09/02/09

Figure A.11: Top view of the room-temperature connection plates.



Appendix
Extraction of the phase coherence length from
the universal conductance fluctuations

We detail here the procedure used to extract the phase coherence length Lg in a spin
glass sample. The temperature-dependence of the amplitude of the Universal Conductance
Fluctuations (UCF) depends on several characteristic lengths: the thermal length Ly defined
in chapter 2, the phase coherence length Lg(7") and the length of the sample L. When these
lengths are comparable, which is the case in the spin glass sample, the amplitude of the UCF
is described by the following formulas [95].

One sets a = (L/mLe)* and b = 2(L/mLr)?. For a quasi 1d sample, the variance of the
UCF 4g2, in units of (e?/h)?, is given by

B
4 [ 1
I(a,b) = / . drF(z)) RN
(n? +a)* — 2%0°

4 0o
J(a,b) == F/ dl’F(l‘) Zn: [(nQ + a)z + 1.2b2]2

o0

[21(a,b) + J(a,b)]

where s is the spin degeneracy and [ a numerical factor taking into account time-reversal
symmetry. The function F(z) = (xcothz — 1)/(sinh2?). This formula can be computed
numerically, and one recovers analytic functions in the asymptotic regimes [30]. As an example,

R 2
5g% = 2§§2 Pl when Ly < Lo < L.

In our experiment, we have in addition to take into account spin-orbit effects that are not
negligible in Ag, and elastic magnetic scattering due to the presence of magnetic impurities. It
leads to a modification of the above formulas [96]. These effects can be directly incorporated by

2 2
setting d = % (%) with L, the spin-orbit length and ¢ = % (ﬁ) with L,, the magnetic
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length. One sets a,, = a + ¢ + d, and the resulting variance of the UCF is thus written as

P =5 <%J(a, b) + ;](am,b)) +5 <i[(a, b) + Zmam,b)) (B.0.1)

Typically, for the calculation presented in chapter 7, we have used the following parameters.
The spin-orbit length L, ~ 300 nm is known in Ag [54]. We have evaluated that L/L,, ~ 1.
The thermal length L7 is calculated at all temperatures. From the experimental amplitude of
the UCF 0g(T'), we can thus calculate numerically the corresponding value for Le.
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Résumé

Le verre de spin est une phase de la matiére dans laquelle le désordre magnétique est gelé.
Etant considéré comme un systéme modéle des verres en général, il a fait 'objet de nombreux
travaux théoriques et expérimentaux. Les recherches ont convergé vers deux principales de-
scriptions de I’état fondamental du systéme diamétralement opposées. D’une part, la solution
"champ-moyen" nécessite une brisure de symétrie non triviale, et I’état fondamental est composé
de multiples états organisés en une structure hiérarchique. D’autre part, une approche de "gout-
telettes", fondée sur la dynamique hors-équilibre d’un état fondamental unique. La validation
expérimentale d’une de ces deux théories nécessite une observation détaillée de 1’échantillon au
niveau microscopique. La physique mésoscopique, basée sur les effets d’interférences électron-
iques, propose un outil unique pour accéder a cette configuration microscopique des impuretés :
les fluctuations universelles de conductance. En effet, ces fluctuations représentent une em-
preinte unique du désordre dans I’échantillon. Ce travail présente la mise en ceuvre de mesures
de fluctuations de conductance universelles dans les verres de spin. Les effets d’interférences
électroniques étant sensibles aux processus de décohérence du verre de spin, ils donnent accés
expérimentalement a de nouvelles quantités concernant les excitations du systéme. La mesure
des corrélations entre les empreintes du désordre permet quant a elle d’explorer sous un angle
nouveau l'ordre non conventionnel de cet état vitreux.

Mots-clefs : Physique Mésoscopique, Transport Electronique Cohérent, Fluctuations Uni-
verselles de Conductance, Verres de Spin, Systémes Désordonnés, Cohérence Quantique, Nanos-
tructures Métalliques, Recouvrement de Spins, Empreinte Magnétique.

Abstract

The spin glass is a state of matter in which the magnetic disorder is quenched. Being
considered as a model system for glasses in general, it has been extensively studied, both
theoretically and experimentally. The research have converged towards two main descriptions
of the fundamental state of the system that are clearly antagonist. On the one hand, the
"mean-field" solution has a non trivial broken symmetry, and the ground state is composed of
multiple states in a hierarchical structure. On the other hand, a magnetic "droplet" model,
based on the off-equilibrium dynamics of a unique ground state. The experimental validation of
one of these two theories requires a detailed observation of the sample at the microscopic level.
Mesoscopic physics, which deals with interference effects of the electrons, proposes a unique
tool to access to this microscopic configuration of the impurities: the universal conductance
fluctuations. Indeed, these fluctuations represent a unique fingerprint of the sample disorder.
This work presents the implementation of universal conductance fluctuations measurements in
spin glasses. The electron interference effects being sensitive to the decoherence processes of
the spin glass, they give access experimentally to new quantities related to the excitations of
the system. The measurement of correlations between the disorder fingerprints allow to explore
under a new perspective the non conventional order of this glassy state.

Keywords: Mesoscopic Physics, Coherent Electron Transport, Universal Conductance Fluctu-
ations, Spin Glasses, Disordered Systems, Quantum Coherence, Metallic Nanostructures, Spin
Overlap, Magnetofingerprint.



