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Introduction






La plupart des travaux mathématiques sur les équations de Stokes et de Navier-Stokes
dans des domaines bornés ont considéré ces systémes avec une condition aux limites de type
Dirichlet pour le champ de vitesses. Néanmoins, dans les applications, il est possible de se
trouver face & des problémes o1l il est nécessaire de faire intervenir d’autres types de conditions

aux limites. Pour le cas du systéme de Stokes :

—VvAu+Vr=f dans {2,
divu =0 dans €2,

si on suppose que le bord I' a trois parties I'y, I's et I's, ces conditions aux limites peuvent

étre de la forme :

U = U sur I'q,
uxn=gxmn et ™=mp sur I'g, (0.1)
u-n=g et curlu xn=hxn sur I's,

ou f, ug, g, o, g et h sont données et n est la normale extérieure au bord de Q2. On notera
que ces conditions aux limites sont de trois types différents: vitesse donnée sur une partie de
la frontiére de Q (notée I'1), pression et composante tangentielle de la vitesse données sur une
deuxiéme partie de la frontiere (I's), vitesse normale et composante tangentielle du tourbillon
données sur une troisiéme partie du bord (notée I's). On peut poser un probéme analogue

mais relativement aux équations stationnaires de Navier-Stokes :

—vAu+u-Vu+Vr=§f dans {2,
divu =0 dans €2,

avec les mémes conditions dans (0.1), sauf que la pression statique 7 dans (0.1) va étre rem-

, . . . 1 2 .. N . , . .
placée par une pression dynamique : 7+ 5|u|® qui joue le réle joué par la pression statique.

La premiére condition donnée dans (0.1) est une condition classique, c’est 'adhérence
a la paroi I'y, que celle ci soit fixe (ug = 0) ou mobile (cas d’un obstacle ou d’une paroi
qui se déplace dans I’écoulement). Les conditions aux limites données sur I'y et I's sont en
revanche moins considérées dans la littérature. Dans les applications, on trouve fréquemment
des problémes dans lequels les conditions aux limites données sur I'y et sur I's interviennent

d’une fagon naturelle. Voici quelques exemples :

Exemple 1: L’écoulement de Poiseuille. Cet exemple consiste & étudier I’écoulement
dans un cylindre (disons de génératrices paralléles a 1'axe x3). Ici © désigne le volume occupé
par le fluide, I'y est formé des surfaces latérales du cylindre, I's a deux parties: 'entrée I'o; et
la sortie T'yg, I's est vide (voir la figure ¢i-aprés). Les parois latérales étant supposées rigides
et fixes, on suppose ici que g = 0, ’écoulement est normal a I'entrée et & la sortie, ¢’est-a-dire

(g = 0) et la pression est constante a 'entrée et a la sortie.
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Figure 1:

Exemple 2: Ecoulement dans une tuyauterie. Le domaine { représente I'ensemble
de la tuyauterie (voir la figure ¢i dessus). Dans ce cas, I'; est formé des parois des tuyaux
et I'y est 'union de toutes les entrées et sorties du réseau de tuyaux. Ainsi, I'y = U;I'y; o

chaque T'y; représente une entrée ou une sortie sur laquelle la pression est connue, I's est vide.

I

Figure 2:

On peut supposer que ug et g sont nulles, ce qui veut dire que les parois de la tuyauterie
sont rigides et que le fluide adhére aux parois. De plus, le fluide entre et sort du réseau avec

une vitesse tangentielle nulle.

Bien que moins vaste que celles portant sur des conditions de type Dirichlet, il existe
néanmoins une littérature importante concernant ’analyse mathématique et ’approximation
numérique des probléemes de Stokes et de Navier-Stokes avec les conditions aux limites de type
(0.1). Concernant 'analyse mathématique, une des premiéres références que 1'on peut citer
concerne le travail de Conca ef. al. [26] ot les auteurs étudient les équations de Stokes et de
Navier-Stokes avec les conditions aux limites (0.1). Dans un cadre hilbertien, ils obtiennent
ainsi des résultats d’existence et d’unicité pour le probléme variationnel associé. Des résultats
analogues sont également établis dans le cas des équations de Navier-Stokes stationnaires.
Leur étude fut ensuite complété par Bernard [15], principalement au sujet de la régularié. Les

résultats d’existence et d’unicité démontrés dans [26] sont basés sur le lemme de Lax-Milgram



et dépendent de la géométrie des problémes, c’est-a-dire de € et de la partition {I'y, Ty, T's}.
Nous pouvons citer également C. Ebmeyer and J. Frehse [34] qui ont étudié le probléme
stationnaire de Navier-Stokes dans un domaine polyhédral et lipschitzien, avec des conditions
aux limites portant sur la composante normale de la vitesse et la composante tangentielle
du tourbillon en dimension 3. Les auteurs ont établi des résultats de régularité W42 pour
s < 3/2. De nombreux auteurs se sont intéréssés a des problémes de type Stokes mais avec
d’autres conditions aux limites portant sur le tenseur des contraintes. Nous pouvons citer par
exemple [16], [20] et [25].

Concernant ’analyse numeérique, nous renvoyons par exemple a [1, 2, 33] ou des méthodes
d’élements finis pour la formulation tourbillon-vitesse-pression ont été obtenues et analysées
en dimension deux. Dans [37, 38|, une discrétisation par éléments finis dans I’espace H (curl)
pour le probleme de Navier-Stokes est considérée. Dans [37], les inconnues sont la fonction
courant, le tourbillon et la pression, tandis que dans [38], les inconnues sont la vitesse et
la pression. Des méthodes spectrales ont été considérées dans [14] pour les équations de
Stokes dans un domaine bidimensionnel ou tridimensionnel, munies de conditions aux limites
portant sur la composante normale de la vitesse et la composante tangentielle du tourbillon.
Ces conditions aux limites sont traitées dans [13] pour les équations de Navier-Stokes avec une
approche similaire.

Cette thése est consacrée a 'étude des équations de Stokes et de Navier-Stokes avec dif-
férentes conditions aux limites de type (0.1). La thése se compose de quatre parties. Dans
la premiére, nous nous intéressons en premier lieu a I'obtention d’inégalités de Sobolev pour
des champs de vecteurs u € LP(Q2). Dans un second temps, nous établissons des résultats
d’existence pour les potentiels vecteurs avec diverses conditions aux limites. La seconde par-
tie est consacrée a la résolution de problémes de Stokes avec des conditions aux limites de type
(0.1) et de systemes elliptiques qui se traduisent par des équations de Stokes sans la pression.
Dans la troisiéme, on étudie les équations d’Oseen et de Navier-Stokes correspondantes et on
termine dans une derniére partie par ’analyse numérique de ces équations.

L’objet principal de ce travail consiste a étendre au cadre non hilbertien les résultats
concernant les potentiels vecteurs établis dans Amrouche et al [3] et ceux concernant les
équations de Stokes et de Navier-Stokes établis dans Conca et al [26].

Dans les trois premiéres parties, nous considérons le cas trés général ou le domaine €
occupé par un fluide est un ouvert borné tridimensionnel éventuellement multiplement connexe
et suffisamment régulier (en général au moins lipschitzien, parfois de classe C !, voire de classe
C21). Dans la derniére,  est un ouvert borné polygonal.

La partie I est découpée en trois chapitres.

Le chapitre 1 est naturellement dédié aux notations, définitions et propriétés des espaces
fonctionnels et aux résultats fondamentaux sur lesquels nous nous appuyons dans la suite. On

commence par donner des résultats de densité de l'espace D(2) dans l'espace des champs de

vecteurs LP a divergence LP ou au rotationnel LP. Ceci permet de définir proprement les traces
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de certains champs de vecteurs et des formules de Green appropriées (voir le travail de [22]
dans le cas d’un polyhédral lipschitz). Nous donnons ensuite des caractérisations de duaux
d’espaces fonctionnels qui correspondent ici aux espaces naturels dans lesquels nous prendrons
les fonctions extérieurs. On y établit aussi un autre résultat concernant les traces de fonctions
peu réguliéres & laplacien dans W~1P(Q). Nous donnons également un résultat concernant
I’identité algébrique et topologique de 'espace des champs de vecteurs LP & divergence LP et
a rotationnel LP avec trace tangentielle et trace normale nulles avec ’espace W(l)’p (Q). Ce
résultat est connu (voir [3] et [39]) dans le cas p = 2 et nous donnons une extension au cas
p # 2 ou la situation est différente comme nous allons le voir plus loin.

Dans le chapitre 2, nous nous consacrons a la preuve de deux types d’inégalités, ol la norme
L? du gradient peut étre contrélée par celle de la divergence, du rotationnel et d’une quantité
qui refléte la structure topologique du domaine suivant la condition aux limites considérée.

La premiére concerne les champs de vecteurs tangents a la frontiére :

J
IV 0]l zr() < CUIdV 0]l 10y + lleurl o]l gy + Y [(v - 0, Lx,]). (0.2)

Jj=1
La deuxiéme concerne les champs de vecteurs normaux a la frontiére :

I
IV o]l zr() < C(|div o]l o) + leurl v grg) + Y [{v - n, T)r,]). (0-3)

i=1
Les preuves sont basées sur ['utilisation des formules classiques de représentations intégrales
pour les champs de vecteurs faisant apparaitre les opérateurs divergence et rotationnel. A
ces formules de représentations, on applique 'inégalité de Calderon-Zygmund et les résultats
classiques sur les traces pour obtenir les estimations (0.2) et (0.3). Nous pouvons citer ici
Von Wahl [55] pour une approche similaire dans un domaine simplement connexe et de bord
connexe (ce qui implique en fait que le premier et le deuxiéme nombre de Betti sont nuls), o
il estime la norme du gradient par la norme de la divergence et celle du rotationnel. Comme
conséquence de ces inégalités, on montre l'identité algébrique et topologique de I'espace des
champs de vecteurs LP & divergence LP et a rotationnel LP avec trace tangentielle ou trace
normale nulle avec un sous-espace de W1P(Q). On étend ce dernier résultat au cas o la
trace tangentielle ou la trace normale ne sont pas nulles mais appartiennent a l’espace de
traces W1=1/PP(T') ou W'~V/PP(I'). Nous considérons aussi le cas des espaces de Sobolev

fractionnaires. On termine ce chapitre par des propriétés de compacité.

Dans le chapitre 3 de cette premiére partie, nous donnons une généralisation des résultats
concernant les potentiels vecteurs, scalaires et les potentiels vecteurs faibles en théorie LP avec
1 < p < o0, étendant ainsi les résultats établis par Amrouche, Bernardi, Dauge et Girault 3]
et par [4] dans le cadre hilbertien (voir aussi les résultats établis par D. Mitrea, M. Mitrea et J.
Pipher [47] dans le cas de domain lipschitzien de R?). Dans un premier temps, nous montrons

I’existence d’un potentiel vecteur associé & un champ de vecteurs a divergence nulle et vérifiant



une condition de flux nul. Ce résultat de base nous permettra ensuite de construire d’autres
types de potentiels vecteurs. Contrairement au cas hilbertien ou la preuve est basée sur la
transformée de Fourier, pour p # 2 on fait intervenir la solution fondamentale du laplacien.
Dans un second temps on construit, a 'aide du potentiel vecteur de base, trois types de

potentiels vecteurs. En particulier, trois types de conditions aux limites sont proposées :

Yv-n=0, vxn=0, ¥Pvp=0 surl.

Pour prouver I'existence et I'unicité de ces potentiels vecteurs on passe comme pour le cadre
hilbertien par la résolution de certains problémes elliptiques. Le lemme de Lax-Milgram
ne s’appliquant plus, on est amené & établir une condition Inf-Sup permettant d’utiliser le

théoréme de Babugka-Brezzi :

Jqcurl§ - curl p dz

inf sup > (0.4)
p#0 £€#£0

Cette derniére joue ici un role clef pour établir 'existence et 'unicité de solutions pour
le probléme de Stokes considéré et plus généralement, comme on le sait, pour les problémes
elliptiques linéaires. Nous adaptons aussi des résultats concernant les potentiels scalaires et
les potentiels vecteurs faibles établis dans le cadre hilbertien (|3]) au cas 1 < p < co. Enfin, en
utilisant les résultats précédents, nous donnons une nouvelle formulation pour le probleme de
Stokes avec une condition aux limites de type Dirichlet, ou 'inconnue est le potentiel vecteur.
Nous commencons par le cas du potentiel vecteur normal (¢ x n =0 sur I') et puis le cas
du potentiel vecteur tangentiel (¢» - m = 0 sur I'). L’avantage de cette méthode est que la
contrainte de la divergence n’est pas exigée pour I'espace des fonctions tests. Ces résultats de
la premiére partie ont fait ’objet d’une Note soumise aux “ Comptes Rendus de I’Académie

des Sciences de Paris ”.

Dans la partie II, nous appliquons les résultats de la partie I pour étudier le probleme
de Stokes toujours en théorie LP avec différentes conditions aux limites. Contrairement au
probléme de Stokes avec une condition de bord de Dirichlet, les conditions aux limites données
sur I'y et T's dans (0.1) permettent de découpler la pression 7 du champ de vitesses u & partir
des équations. Des formulations variationnelles peuvent étre introduites pour le probléme

réduit de Stokes (sans le terme en 7).

Dans le chapitre 4, nous étudions le probléme de Stokes avec des conditions aux limites
portant sur la composante normale du champ de vitesses et la composante tangentielle du

tourbillon :



Table of contents 10

—Au+Vr=f e divu=0 dans €2,
(St) u-n=gqg, et curluxn=hxn surl,

(u-n, s, =0, 1<j<J

Les conditions aux limites données dans (S7) permettent en fait d’obtenir la pression 7
directement comme solution d’un probléme de Neumann. C’est la raison pour laquelle nous

sommes naturellement conduits & étudier le probléme elliptique suivant :

—AgE=f et divE=0 dans €,
(ET) En=g, et curléExn=hxn surl,

(§-m, 1)y, =0, 1<ji<J
On commence donc par établir I'existence de solutions faibles pour ce dernier probléme, ce
que Von fait grace a la condition Inf-Sup (0.4). Par un argument de régularité, on déduit
ensuite 'existence de solutions fortes. Nous nous intéressons aussi a la recherche des solutions
tres faibles correspondantes que l'on obtient par des arguments de dualité. Une des difficultés
consiste & donner un sens aux traces de fonctions trés peu réguliéres et a obtenir par le biais
de lemmes de densité les formules de Green adéquates. On est alors en position de faire le
méme travail pour le probléme (S7). Les derniéres conditions dans (St) sont des conditions
de flux nuls & travers les coupures ¥; permettant d’obtenir I'unicité de w.

En suivant le méme schéma qu’au chapitre 4, nous abordons ensuite dans le chapitre 5

I’étude du probléme elliptique suivant :

—Aé=f et dive=0 dans €2,
(En) Exn=gxn, sur T,
(€ n, p, =0, 1<i<I,

qui va s’avérer trés utile pour la résolution du probléme de Stokes avec des conditions aux

limites portant sur la pression et sur la composante tangentielle du champ de vitesses :

—Au+Vr=f et divu=0 dans 2,
(Sn) uxmn=gxmn, e T=mg sur T,
(u-m, 1)p, =0, 1<i<I.
Ici encore, la pression peut étre obtenue directement comme solution d’un probléme de Dirich-

let et la résolution du probléme (FEy) se fait au moyen de l'obtention de la condition Inf-Sup
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. sup Jocurl§ - curlpdz
eevy @ eevi@ lEllxz @llel gr g
p#0 £70 N

> 3. (0.5)

Ensuite, nous donnons une variante du systéme de Stokes (S y) dans le cas ou la condition
de compatibilité n’est pas vérifiée. Ce qui fait apparaitre des constantes comme inconnues
supplémentaires. Enfin la derniére section de ce chapitre est consacrée a deux types de dé-

compositions de Helmholtz :

i) si uwe LP(Q), il existe x € WIP(Q), w € W P(Q) N XX (Q), 2 € KL(Q) tel que :
u=2+Vyx+curlw, (0.6)

ii) si u € LP(Q), il existe x € Wol’p(Q), we WIP(Q)NXP(Q), z€ KN(Q) tel que :
u=2z+Vyx+curlw. (0.7)

Ces conditions Inf-Sup et ces décompositions de Helmholtz ont été récemment établies par
Kozono et Yanagisawa [46] dans le cas d’un ouvert de classe C'* utilisant pour cela la théorie
d’Agmon-Douglis-Nirenberg. Citons également le travail de Buffa et Ciarlet, Jr [21] dans le

cas d’un polyhédre lipschitzien en théorie hilbertienne.

Le Chapitre 6 est consacré a la résolution des problemes elliptiques (E7,) et (E'y) qui sont

des variantes des probléemes (E7) et (En) :

—Au=f dans (),
(E7) u
u-n=g e —xn=hxn surl,
an
et
, —Au=f dans €,
(E'y) ou
uxn=gxn e — -n=h surl.
on

Les résultats de la seconde partie ont fait I’objet d’une Note soumise aux “ Comptes Rendus

de ’Academie des Sciences de Paris 7.

La partie III concerne les équations stationnaires d’Oseen et de Navier-Stokes et se
compose de deux chapitres. Dans le premier chapitre, on commence par étudier le probléme

linéaire : on cherche u, 7w et des constantes C;, 1 < i < I solution de :

—Au+tcurlaxu+Vr=Ff dans 2

divu =0 dans
(OSnN) uxn=0 sur T,
m=my+ Cj sur Iy, i =1,...,1,

friu-ndaz(), 1=1,...,1,
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ou f, a et my sont données. Comme pour le probléme de Stokes, on établit des résultats
d’existence et d’unicité de solutions faibles et fortes pour (OS ). Par un argument de point
fixe, on résout ensuite le probléme non linéaire correspondant. Le second chapitre est consacré
a I’étude du méme probléme avec les conditions aux limites portant sur 4 - n et curlu x n.

La partie IV est divisée en deux chapitres. Le chapitre 9 est consacré a la discretisation
par la méthode de Nitsche des équations de Stokes avec diverses conditions aux limites. Il
s’organise comme suit: dans la section 9.1, nous rappelons la méthode de Nitsche pour le
probléme de Poisson tandis que les sections 9.3 et 9.4 sont consacrées & 1’analyse de la méthode
de Nitsche pour le probléme de Stokes avec les diverses conditions aux limites sans introduire
la vorticité comme une nouvelle inconnue. Enfin, ces résultats théoriques sont illustrés dans
la section 9.5 par quelques résultats numériques. Dans le chapitre 10, nous analysons une
méthode de Galerkine discontinue (DG) pour le méme probléme. Dans la section 10.2, nous
écrivons le probéme discret. Puis nous démontrons dans la section 10.3, que les estimations
de l'erreur d’approximation sont optimales, en vitesse et en pression. Quelques résultats
numériques de convergence sont décrits en section 10.4 qui sont parfaitement cohérents avec

I’analyse.

Les notations de la derniére partie sont indépendantes des parties précédentes.
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Chapter 1

Basic properties of the functional

framework

Let © be a bounded connected open set of R3 and I' its boundary. In this chapter,
is supposed of class C%' except in some cases where we will precise that the boundary
can be more regular. Then a unit exterior normal vector to the boundary can be defined
almost everywhere on 92; it is denoted by m. The generic point in Q (or R?) is denoted by
x = (21, 2, x3). We denote by I';, 0 < i < I, the connected components of I', 'y being the
boundary of the only unbounded connected component of R*\Q. We fix a smooth open set O
with a connected boundary, such that 2 is contained in O, and we denote by ;, 1 < i < I,
the connected components of O\Q with boundary T; (I'g U O for i = 0). We do not assume
that € is simply-connected, but we suppose that there exists J connected, oriented and open
surfaces Xj, 1 < j < J, called ‘cuts’, contained in €2, such that each surface ¥; is an open
subset of a smooth manifold M;, the boundary of ¥; is contained in I' for 1 < j < J, the
intersection ;Y is empty for i # j, and the open set Q° = Q\ U}]:1 ¥; is simply-connected
and pseudo-Lipschitz (see |3]). For J = 1 with I = 3, see for example Figure 1.1. We need
Sobolev spaces W *P(I';) on the connected component I';, for 0 <i < I, 1 < p < oo and for
some real numbers s. We can also define Sobolev spaces on the cuts W *P(3;) as restrictions
to X; of the distributions belonging to W *P(M;). We will denote by W *P(%;)" the dual
space of W *P(%;).

15
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Figure 1.1:

Finally, [-]; denote the jump of a function over X;, for 1 < j < J and (-,-)x, x denotes the
duality pairing between a space X and X’. Using the derivation in the distribution sense, we
can define the operators curl and div on LP(Q2) for 1 < p < co. Indeed, let (-,-) denote the
duality pairing between D(2) and its dual space D'(2). For any function v = (v1,v9,v3) in
LP(Q), we have

VC‘O = (@17 ©2, 903) € D(Q)7

(curlv, ) = /U-curlcpd:l:
Q

Dz Op2 dp1  Ops dpa  Op1
= oo - - d
/g; <vl(a$2 8173) +U2(al‘3 aibl) Jrvg(al'l 81132) i

Vo € D(Q),

' 0 0 0
<d1vv,90>:/Qv.gradgodx:[2<018£+U2a;+v3£> dz.

We note that the vector-valued Laplace operator of a vector field v = (v, ve, v3) is equiva-
lently defined by

A v = grad (divv) — curlcurl v (1.1)
or by
Av = (Avl, AUQ, A’Ug).
For any function ¢ in W 1P(0°), grad ¢ can be extended to L?(Q). We denote this extension
by grad gq. In the sequel, the letter C denotes a constant that is not necessarily the same at

its various occurrences and p denotes unless it is explicitely mentioned, a real number such

that 1 < p < oo. This leads to the following definitions.
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Definition 1.0.1. For 1 < p < oo, the space H?(curl, ) is defined by
HP(curl,Q) = {ve LP(Q);curl ve LP(Q)} , (1.2)

and is provided with the norm:

1
ol (eurt ) = (1017 oy + leurd vl g )"
The space HP(div,(?) is defined by
HP(div,Q) = {v e LP(Q);div v e LP(Q)} (1.3)
and is provided with the norm
1
ol a2y = (1101l 0y + Iiv 0l 0)”
Finally, we set
XP(Q) = HP(curl, Q) N HP(div, Q). (1.4)

It is provided with the norm
1
x7(Q) = ([[olly gy + ldiv 0] ) + leur olffq))"

These definitions will also be used with © replaced by R3.

Let us firstly give an adaptation of a basic result which can be found in [39] and [52].

Proposition 1.0.2. The space D(Q) of the restrictions to Q of functions of D(R?) is dense
both in HP(div,Q) and in HP(curl,Q), for 1 <p < oc.

Proof. We give the proof of the density in H P(curl, Q) and the proof for the space H P(div, )

is very similar. Let u be some element of H ?(curl, ©2). We have to prove that w is a limit in

HP?(curl, ) of vector functions of D(£2).

1. Assume for the moment that 2 is strictly star-shaped with respect to one of its points,

after translation in R, we can suppose this point is 0. This amounts to say that
MO Vo< A< and Q C AQ, VA > 1.

Here, we take A > 1 and we set ) = AQ.

For a function ¢ defined on €, we set:

wel o) =e(3). (1.5)
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Which we extend to distribution, 7' € D'(Q) — T € D'(2,) by:

(Tx, ©) = XT, p1), ¢ €D(Q)

>

The distribution Ty belongs then to D’(2y). It is easy to check that:
1
VT € D'(Q), curl(Ty) = X(curlT)A,.

Due to ([52], Chapter 1, Lemma 1.1), the restriction to  of the function uy, A > 1,

converge to u in HP(curl, Q) as A — 1. Let ¢ € D(2)) and ¢ =1 on €. the function

puy, extended by 0 outside 2 clearly belongs to H P(curl, R?) and has compact support.

The result is then proved by regularization. Let p € D(R?), be a smooth C* function

with compact support, such that p > 0, [ps p(z) dz = 1. For € € (0,1), let p. denote the
1

function x — (5)p(Z). As ¢ — 0, pe converges in the distribution sence to the Dirac

distribution and it is a classical result that for any v in H P(curl, R3)

pe ¥V — v in HP(curl, R%), . (1.6)

As a consequence, p. * pu, belongs to D(R?) since this function has a compact support

(supp(pe * uy) C (supppe) + (supppuy)) and components which are C*. Moreover,
lim pe % Py = puy in HP(curl, R3).
E—>

We note:

wy, = the restriction of the functions gu, to Q.

Hence w is the limit in H P(curl, Q) of the functions p. *xwy as A — 1. the result follows

since p. * wy belongs to D(12).

2. In the general case, we use the following property (cf. for exemple Bernardi [14]).

A bounded, Lipschitz-continuous open set is the union of a finite number of

star-shaped, Lipschitz-continuous open sets.

Clearly, it suffices to apply the above argument to each of these sets to derive the desired
result on the entire domain.
Indeed the sets €, (;)jcs form an open covering of Q. Let us consider a partition of

unity subordinated to the covering 6; N €:
1=p+ Zcpj, where ¢ € D(Q),¢; € D(0; NQ).
jedJ
We may write

U = Qu + Z pju.
jeJ
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Since the function pu has compact support in €2 it can be shown as in (a) that pu is
the limit in H?(curl, Q) of functions belonging to D(Q) (function pu extended by 0
outside € belongs to H?(curl, R?) and for ¢ sufficiently small, p. * pu has compact

support in ).

Let us consider now one of the function u; = @ju. Let oy, A # 0, be the linear
transformation x — Ax. The set 0;- = 0; N ) is star-shaped with respect to one of its

points y, by taking y as origin, it is clear that :
9;C97-C0>\93 for A > 1,
O’)ﬂ;CO',\ei;C(% for0<A<1

Let v o o) denote the function = +— v(ox(z)) then, the restriction to ¢ of the function
uj ooy, A > 1, converges to u; in HP(curl, 07) as A — 1 (cf. [52], Lemmal.l p
7). But if ¢; € D(oA(¢})) and ¢; = 1 on ¢, the function ¥j(ox o u;) clearly belongs
to HP(curl, R®) (the function 1;(oy o u;) extended by 0 outside oxt; ). Take w; =
¥j(oy o uj;). Since this function belongs to H?(curl, R?) and has a compact support,

by regularization, the function p. * w; belongs to D(R3). Moreover, .
lin(l),oE xw; =w; in HP(curl, R?).
e—

Since the restriction to 9;- of the function p, * w; converges to the restriction of the
function oyou; to 67, it can be shown that w; is is the limit in H ?(curl, 0}) of functions

belongings to D(#';), as A — 1.
O

Remark 1.0.3. Note that the previou proof for the space HP(curl, Q) is general and does
not use the particular structure of the differential system curl, and we can use the same proof

for the space HP(div, ©2). We can easily derive by the same arguments that The space D(Q2)

is also dense in XP(Q2).

As proven in Reference [39], chapter I, section 2 for the Hilbertian case, these properties of
density allow for defining tangential or normal traces for the functions of these spaces. More
precisely, any function v in H P(curl, Q) has a tangential trace v X n in W _%’p(F), defined
by

Vi € WHP(Q), (v x n,cp>r—/ﬂv-curlapdw—/ﬁcurlv-cpd:c, (1.7)

1 /
where the symbol (-, ) denotes the duality pairing between W _%’p(f‘) and W' P (I).
Any function v in H?(div, 2) has a normal trace v - n in W _%’p(F), defined by

Yo € WHP(Q), (v-n,0)p = / v-gradpdz + / (divo)pdz. (1.8)
Q Q
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We can define the ‘homogeneous’ spaces:

Hp(curl,Q) ={v € HP(curl,Q); v x n =0 on I'},
HP(div,Q) ={ve H?(div,Q); v-n=0o0nT}.

Following the approach in [52] and [39] for the case p = 2, we can prove that D(12) is dense
in H{(curl,Q) and in H[(div,) for any 1 < p < .

For 1 < p < oo, we denote by [H¥(div,Q)]" and by [H{(curl,2)]" the dual spaces of
H [ (div,Q) and H [(curl, Q) respectively. We can characterize theses spaces as it is stated in

the following propositions.

Proposition 1.0.4. A distribution f belongs to HJ(div,Q) if and only if there exist ¢ €
Lpl(Q) and x € L’ (Q), such that f =1 + grad x. Moreover, we have the estimate

191 2 () + Xl 2o () < ClLFlEz (aiv 0 (1.9)

Proof. For any function v € Lp/(Q) and y € LP (Q), we have

Vv € D(Q), (¢ +gradyx, v)pa)xp@) = /Q(¢ v — xdivo)da.

The linear form in the right-hand side of the above relation is continuous for the norm
H}(div, Q). Since D() is dense in HJ(div, ), we deduce by density that % + grad x
is an element of [H ['(div, )]’

Conversely, we set E = LP(Q) x LP(Q) endowed whith the norm

\s\»—‘

lvlle = (lvlge ) + Idivll7,q)7-

The operator T' : v — (v, dive) is continuous from H¥(div, ) onto E. Its range R(T) is a
closed subspace of E and T is an isomorphism from H{ (div, ) onto R(T’) and is an isometry.
Hence, with each g € HE(div, Q)’, we associate the element g* € (R(T))’ such that

Vv € H{(div, Q), (g, v >Hg’(div,9)'xH (div,Q) = =(g" Tv >(R(T))’><R(T)‘

Note that || g | gz iv,0r = 9" lr(ry because T'is an isometry. By the extension theorem

of Hahn-Banach, g* can be extended in LP () x L (Q) to an element called (1, x) with
r .

(81 g + I )7 = 19y We deduce tha:

Vv € Hi(div, Q), (g, v)mpaiv, oy« HP (div,Q) = /Q(1P v+ xdivo)dz.

So, g is equal to ¥ — grad x in  with the estimate (1.9). O
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We skip the proof of the following result as it is entirely similar to that of Proposition 1.0.4.

Proposition 1.0.5. A distribution f belongs to H} (curl, Q) if and only if there exist functions
e LV (Q) and € € Lp/(Q), such that f = 1 + curl&, and we have the following estimate:

||¢||LP/(Q) + || 3 ||LI>’(Q) < CH fHIif(curl, Q)+
However, we can impose on £ a boundary condition as in the following Proposition.

Proposition 1.0.6. For any f € HY (curl,Q)', there exist functions ¢ € I’ (Q), € € Lp/(Q),
such that f =1 4+ curl & where & satisfies

divE=0in and £&-nmn=0onTl, (1.10)
and we have the estimate:

H¢||LP’(Q) + Hf”l—,p/(g) < CHfHHé’(curl,Q)" (111)

Proof. Let f in H(curl, Q). Applying Proposition 1.0.5, we can write f as f = ¢ + curlg,
where 9 € L’ (Q) and &€ € L”' (). The problem: find y in W 1#'(€)/R such that,

Vg e WHP(Q), /gradx~gradqdw:/S-gradqdw.
Q Q
has a unique solution x satisfying the estimate:
19 Xl @y < CllEll g iy < OIS Nrrpeust - (1.12)

The function £ = £ — grad y belongs to L” (Q) and satisfies (1.10). The inequality (1.11)
follows easily from (1.12). O

Definition 1.0.7. Let X} (Q), X2(Q) and X[ (2) be the following subspaces of XP((2):
X5 () ={ve XP(Q); vxn=0o0nT}, (1.13)

X2(Q)={ve XP(Q);v-n=0o0nT},
and

XP(Q) = XZ(Q) N X2(9Q). (1.14)

The following theorem gives a characterization of the space X5 (2). Using Fourier trans-

form, the same result can be found in [3] or [39] for the case p = 2.
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Theorem 1.0.8. The space X['(Q) coincides with Wol’p(Q). Moreover, we have the following

estimate: for any function v in X5(Q)
[ vllwir@) < C ([ curlv| ) + [ div o) (1.15)

where C' > 0 depends only on p and €.

Proof. Since the imbedding of W§?(€2) in X () is obvious, we study the inverse imbedding.
Let v be any function in X J(€2). We would prove that v € W1 ().

We define the extension ¥ of v by v = v in Q and ¥ = 0 in R*\ 2. Since v is in X §(€), it is
easy to check from (1.7) that curl ¥ belongs to LP(R?). Similarly, the fact that v is in X 2(€2)

implies that div ¥ belongs to LP(R3). Moreover, we have:
[dive |[rp) = [[divo ||Lems), [leurlv ||z q) = [ curl v [ grgs).-

But, —Av = curlcurlv — Vdivv. Then, Av belongs to ng’p(RS) which is the dual space
of the weighted Sobolev space (see |7]):

WP (R?) = {v € D'(R), — € LV (R®), Vv € I¥ (R%)},
wo
where wy = 1+ |z| if p’ # 3 and wy = 1 + |z|In(2 + |z|). Moreover, for any function ¢ in
Wol’p/(R?’) and any ¢ = 1,2,3 we have:

0 ~ .0
(-2 diva, ) , :—/ dive 22 dz Vi=1,2,3.
dx; Wy b PR3 x WP (R3) R3 Ox;
0 ~
Especially if o =1 and p < %, we have (—divw, 1) ) =0.
0x; Wy b P(R3) < WP (R3)

Similarly, we can check that (curlcurlv, e;) =0, for i = 1,2, 3, where (e;); is the canonical

basis of R3. Hence, (—Awv;, 1) =0, forp< % Due to the isomorphism:
A Wol’p(R?’)/P[l_%] — Wo_l’p(Rg’)LP[l_%], (1.16)

there exists z € Wé’p(Rg’) such that A z = A v, with the estimate

IN

HZHWOLP(RS) CHAFIEHWO*LP(RS) (1.17)

A

C(Idiv v || zprs) + || curl v || gp(rs))

< CO([[divv [ zeq) + [[curl v || gr(qy),

and where we have used relation (1.1). Hence, z — v is a harmonic polynomial of W(l)’p (R3) +
LP(R3). Consequently, there exists a unique constant vector k such that ¥ = z + k, with
k =0 if p < 3. We then obtain ¥ € W P(R?) and v € W (). Moreover,

[vllw ey < ClIVvLr@) < ClIV 2| pr@)-

It follows from (1.17) that the inequality (1.15) holds. O
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Remark 1.0.9.

By using the isomorphism (1.16), the following formula is checked

HZH Wé’p(]R3)/P[1—%] <C HA 5” Wal’P(R:s)-

But |12y oy, = IV 2lpresy, then
r

IA

IV 2| e (rs) CllAD| g -1.p (g
< C <||curlcur15\| wibres) IV div 5||W51,p(R3)) .
As it was more ||V z||gp(rs) = ||V V|| gr(r3), we have

IV 9| gr(ra) < O ([leurl 9| gr(rs) + [[div o] o (rs)) -

Finally by restriction on 2, the following estimate is readily checked for any function of the
space X §(Q):
IV 0o < C ([leurlv| o) + [|div o]l zr()) -

Finally, we introduce the space
EP(A,Q) ={h e LP(Q), Ah € W 1P(Q)}, (1.18)
which is a Banach space for the norm

bl Era.0) = IRllLr@) + 1A Rl —1.0(0)-

Then, let us observe in the following lemma that for h € EP(A, ) it is possible to define a
trace h|p in Wﬁi’p(f‘).
Lemma 1.0.10. Assume that ) is of class Cb'. The space D(Q) is dense in EP(A,Q).
Moreover, the mapping v : h — h|r defined on D(Q) can be extended by continuity to a linear
and continuous mapping, still denoted ~ from EP(A,Q) into W_%’p(f‘) and the following
Green’s formula holds:

for any x € WP (Q) N Wol’pl(Q) and any h € EP(A,Q), we have

/{;hAXd.’E <Ah, X>W71VP(Q)><W01’I)/(Q) = <h, %> 1, 1*%,]3/ . (119)
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Proof. Let £ in (EP(A,Q))" such that (¢, v) = 0 for any v in D(€2). We known that there exist
£ e LV (Q) and g € W, (Q) such that for any u in EP(A,Q),

(€)= [ Fude+ (Bughy g o

Since ¢ vanishes on D(Q), we have f+A g =0 in€Q. Then, g belongs to W 2 (Q) ﬂWol’p/(Q),
since A g belongs to LPI(Q) and Q is of class C1!. Let now fand g the extensions of f and
g respectively by zero outside of Q. Then f € L¥ (R%), g € Wol’p , (R3) and for any ¢ € D(R3)

we have
/ fgodx+/ §Ag0dm:/fgpdm+/gA<pdx:0.
R3 R3 Q Q

This implies that f + A§ =0 in R3. So § € W27 (R3), since A§ € L” (R3) and § € L (R?).
We deduce that g belongs to WOQ’pI(Q). As D(Q) is dense in WOQ’p/(Q), let (v)x be a sequence
of D(Q) that tends to g in W 2# (Q). Then, for u € EP(A,Q),

<€, u> = —/(;'LLAgdm + (Auag>W71,p(Q)><Wol’p,(Q)
= khi& (—/Qqukd:L'—i-<Aua¢k>W—1,p(Q)XW01'p/(Q)>

= lim <—/uA1/)kdw+/uA@Z)kdx> =0.
k—oo Q Q

Then ¢ also vanishes on EP(A, Q) and D() is dense in EP(A, Q).

Let now u € D(Q2) and v € D(2). The following Green’s formula holds:

/uAvd:c—l—/’uAudm:/uavdm.
Q Q r on

As D(Q) is dense in W2F (Q), this equality is still valid for v € W2 (Q) and u € D(Q).

Therefore,

Ov
| [ugel < lullsaalolhy o

1 .7 /
Now, we known that for any p element of WP (I'), there exists an element v of W 2P (Q)N
W, (9) such that

ov
v=0. g —ponl and [ollyar < Clul oy

1 .7
Hence the above inequality implies that for u € WP (T)
<C /
| [l < Clulleramllol s
Thus,

||UHW—%,p(F) < C||U||EP(A,Q)-
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Therefore, the linear mapping v : u — ulp defined on D(Q) is continuous for the norm of

EP(A,Q). Since D(S2) is dense in EP(A,(2), v can be extended by continuity to a mapping
1
still called v € L(EP(A,Q), W »?(T')) and we have the Green’s formula (1.19). O
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Chapter 2

Regularity and compactness results

2.1 Introduction and preliminaries

This chapter is devoted to the proof of some regularity and compactness properties concerning
the spaces X7(Q2) and X }(Q2). It is organised as follows. In Section 2.2, we will prove an
estimate of V u in terms of div 4, curl » and additional terms which reflect the topological
structure of €. Firstly, we consider homogeneous boundary conditions: either the tangential
component of u vanishes on I' or the normal one does, which leads to Theorem 2.2.2 and
Theorem 2.2.7. Secondly, we give in Corollary 2.2.12 an extention to the case of inhomoge-
neous normal boundary conditions. We refer to Corollary 3.3.6 in Chapter 3 for the case of
inhomogeneous tangential boundary conditions. We deduce from the above inequalities two
regularity results concerning the continuous imbeddings of both spaces X §(Q) and X7(Q)
into W P(Q), see Theorem 2.2.4 and Theorem 2.2.8. Finally, in Section 2.3, we prove in
Theorem 2.3.2 that the imbeddings of the spaces X 2(Q) and X §(Q) into LP(§) are compact.
In all this chapter, we suppose that Q is of class C!.

We start off with giving two density results. These results are proven in [3] for p = 2 and
we give here a generalization for any 1 < p < oco. Note that in our work the first lemma is

proven in a different way.

Lemma 2.1.1. The space W'P(Q) N XX(Q) is dense in the space X5 (Q).
Proof. Let £ belongs to (X43:(€2))’, the dual space of X%} (€2). We know that there exist
fel’(Q), geLF(Q) and h € L () such that

(E,v>:/f-vdx+/hdivvdm+/g~curlvda;, Vo € XK (Q). (2.1)
Q Q Q

We suppose that
(€, v) =0 Yve WH(Q)N XL Q). (2.2)

27
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So, we have in the sense of distributions in {2
f—Vh+curlg =0. (2.3)

Therefore, due to (2.2) we have for any y € W2P(Q2) N Wolvp(Q)
/f-dez+/hAxdx:0. (2.4)
Q Q

Then it follows that divf = Ah in Q. Thus, h € Ep/(A,Q), since f € Lf”/(Q). Applying
(1.19), we obtain for any y € W 2P(Q) N W,"? ()

. 0x
/QhAxda; — (div f, X>W,17p/(Q)XW01,p(Q) = (h, a—ﬂ)p (2.5)

/Qf -Vyxdz = —(div f, X>W_1,p/(Q)XW01,p(Q),

it follows from (2.4) that
(h, Z2)r =0,  VYx € W2P(Q)nW,?(Q). (2.6)

1
Now, let p be any element of W' »P(T'). Then, there exists an element x of W2P(Q) N
W, P(Q) such that 2X = onT. Hence, (2.6) implies that

h, _1 =0, 2.7
< 'u>W T (O)xW =B P(D) (27)

and h = 0 in W_ﬁ’p,(lj). Because A h belongs to W =17 (Q) and h € LY (Q), then h €
Wol’p,(Q). As a consequence, due to (2.3), curl g belongs to L7 (). Finally, let v in X% ().
From (2.3) and since h € Wol’p(Q), we can write

/f‘vdx—i-/hdivvdm+/curlg-vd$20, Vo e X5 (Q). (2.8)
Q Q Q
As g € H” (curl, Q), we have also

Vv € H{(curl, ), /chrlg cvdx = /Qg ~curlvde.

Then it follows from the last equality and (2.8) that £ vanishes on X% (Q2), thus proving the
required density. O

We give now the correspending result for the space X 1(Q2)

Lemma 2.1.2. The space W'P(Q) N X2(Q) is dense in the space X7(Q).
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Proof. Let v be any function in X 7(Q2). Applying Remark ??0Choizdem yields that there is

a sequence (vy)x of D(§2) which converges to v in X P(Q2). Next, for each k, we consider the

unique solution yy in W HP(Q), with zero mean value, of the Neumann problem:
Axr =diveg inQ) and OnXt =0 -n onl.

Due to the regularity assumption on the domain €2, for each k, the function y; belongs to

W2P(Q), so that the function vy — grad yy, is in W1P(Q). Finally, due to the convergence
of (vg)r in X P(Q), it is easy to check that the sequence (xx)r converges in W 1P(Q) towards
the solution y of the problem:

Ax =dive inQ) and Ox=v-n=0 onl.

This solution also belongs to W 2P(€2). Hence, the sequence (vy — grad x + grad x)y is in

WhP(Q) N XL(Q) and converges to v in X £(2), which proves the lemma. O

In the sequel, we require a basic result which is known as the Peetre-Tartar Lemma, (cf.
references [39, Chapter I, Theorem 2.1|)

Theorem 2.1.3. (Peetre-Tartar) Let E1, Eo, E3 be three Banach spaces, A operator in L(E1, E3)
and B a compact operator in L(E7, E3) satisfying:

Vue By, |lullg ~[|Aulg, + || Bul| g (2.9)
then the following properties hold:

the dimension of Ker A is finite. The range space R(A) of the operator A is a closed subspace
of Ey and the mapping A: Ey/Ker A — R(A) is an isomorphism.

if G is a Banach space and M € L(E1,G) satisfies
Vu € Ker A\{0}, Mu#0, (2.10)
then
Vue By, lulg = [|Aulg, + [[Mulc (2.11)
2.2 Sobolev’s inequalities and regularity results

The aim of this subsection is to prove continuous imbeddings of both spaces X*.(Q2) and
XR(€) in WHP(Q). In a first step, we give density results concerning the two spaces. In a
second step, we introduce two integral operators that allow to estimate V v by curlwv, divv
and the flux of v past the boundary I'; for 1 < ¢ < I provided that v x n =0 on I', and by
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curl v, div v and the flux of v past the cuts ¥X;, 1 < j < J provided that v-n = 0 on I" which

are useful to deduce the continuity of the imbedding.

We introduce now the linear integral operator

1 )
TAz) = -5 A 63 %]a: — €71 dog. (2.12)

The next lemma gives some properties of this operator.

Lemma 2.2.1. We have the following properties:

. The operator T is compact from LP(T') into LP(T).

. The space Im(Id + T) is a closed subspace of LP(T") and Ker(Id + T) is of finite dimension.
It is spanned by the traces of the functions grad qfv -n|p, 1 < i < I, where each qu 18 the
unique solution in W 2P (Q) of the problem

~Ag¥ =0 in €,
N, =0 and ¢|r, = constant, 1<k <1, (2.13)
<6n qy{V7 1>Fk =ik, 1 <k<I, and <anq1N7 1>F0 =—1,

(see section 3.3).
. For any v € WP (Q):

1

lo- nll oy < CIId+T) (v 0)llogey + Y [(v- n, L)r,). (2.14)
i=1

Proof. 1. According to [55], we have T € L(LP(T'), W1P(T)). Since the embedding of the
space W LP(T') in LP(T) is compact, we obtain that T is compact from LP(T) into LP(T).

2. By virtue of the first point and the Fredholm alternative, we have that the space
Ker(Id 4 T) is of finite dimension and Im(I/d 4+ T') is a closed subspace of LP(T"). Since the
functions grad qlN , 1 <4 < I are linearly independent, it is readily checked that grad qZN ‘n|p
are also linearly independent for 1 < i < I (for the properties of ¢¥, see section 3.3).

Now, let v € D(Q). Then the quantity v - n satisfies on I' the following representation (see
[55]):

(Id+T)w-n) = — <grad/9’$iy’divyv(y)dy>-n

™
. curl/ ! curl, v(y)d n
2 ol —y[ T v

curl/F \xiﬂ(” % n)(ﬁ)dag) n.
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As D(Q) is dense in W LP(Q), this relation is still valid for v € W 1?(Q). In particular, if

v xn =0onTI, then we have
(Id+T)( ) ! d/ ! di (y)d
: = —— | gra —di .
v-n 5 | 8 P— vyv(y)dy | - n

1 1
- 5 (curl/Q mcurly v(y)dy) - n. (2.15)

Since grad ¢ belong to W 7(Q) and grad ¢¥ xn = 0 on T, due to (2.15), foreach 1 <i < T
the function grad ¢/ - n belongs to Ker(Id + T). Since the dimension of Ker(Id+T) is equal
to I (see [55], the set {grad ¢ - m|r, 1 <i < I} is a basis of Ker(Id + T).

3. The operator Id + T is linear, continuous and surjective from LP(T") onto Im(/d + T).
Since Ker(Id + T) is of finite dimension, through the theorem of open application we deduce
the existence of a constant C' > 0 such that (2.14) holds. O

The result of the next theorem is a generalization of the one in [55] to the case I > 1. So, we
I
expect that for an estimate of V u in addition to div v and curl u the quantity > (v-n, 1),
i=1
if v X m vanish on I'.

Theorem 2.2.2. Let v € WYP(Q) such that vx n =0 on T'. Then the following estimate
holds

I
IV vl ey < C(||div v]| o) + [lcurl v gp o) + Z (v-n, 1)r,|), (2.16)
=1

where the constant C' depends only on p and €.

Proof. We use the same arguments as in [55] and we proceed in two steps. First, we prove

that for any function v of W P(Q) with v x n = 0 on T’ we have:

I
v - nHWk%,P(F) < C(||div v]| o) + leurl vl goy + > (v - n, Lr,]). (2.17)
=1

Let v € W1P(Q) with v x n = 0 on I'. By using the integral representation (2.15) we

obtain

|+ T)(w- )|y < O]

1
grad/ —— divy v( y’
[z —yl

1
curl/ ———curly, v(
alz -yl

LP(T)

o)

_l’_
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By the trace inequality, we have

I(Id+T)(v - n)|| gy < C(ngad/|iy|divyv(y)dyHW1,p(m

1
+ chrl/ ——curly v( dyH )
olz—yl WP (Q)

By using the Calderén-Zygmund inequalities, we obtain
1(Id +T)(v - n)| oy < C (|[div v o) + [[eurlv| r(q)) -

Thus, it follows directly by using (2.14) that

I
lo - nllLoqry < C(l[div o]l Lo + leurl ooy + Y [{v - 0, )r,]). (2.18)
i=1

Moreover, from the equality (2.15) we obtain

(I )l 2o

”U : ’n’”Wpl

1
df —di d H
PPy <r>+’ sra /Q\w—yl vy v(y)dy w BT

1
1/ — curl d H .
+ chr/gx_ycuryv(y) y Wlfi’p(r))

It is well known (see [55]), that

|7 )| Cllv - all oy

1
Wl—ﬁsp(r)

Then, by the trace theorem

1 .
||'U'n||W17% S C(an”Lp(p)—i—ngad/ idlvly dy”Wlp

vp(I\)
1
+ chrl P ‘curl v( dy”W1Pm>

We use again the Calderén-Zygmund inequalities and (2.18) to obtain (2.17), which completes
the proof of the first step.

1
Secondly, as v belongs to WI_E’p(I‘), due to the trace theorem, there exists a u €

W 1P(Q) such that

v=u onl and ||ull g i) < C”UHW“%"?(F)'

Since v x n =0on I', v|r = (v - n)n. Then, by using (2.17) we have

[ulwine < Cllv-nl gy,

I
< O(Idiv vl poe) + leurl ollpry + > [0 m, rl). (219)
i=1
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We know that, for any function w of WO1 P(Q)), we have the following integral representaion

(see [55])
w grad 1 1 div, w(y)dy + curl 1 1 curl, w(y)dy
=— — [ ———div — ) — :
dm Jo |z —y| Y dm Jo |z —y| Y

Using the Calderén-Zygmund inequalities or inequality (1.15), we have
IV wl|gr (o) < C(|divw|| gz o) + leurl w|| (o). (2.20)
Applying (2.20) to v —u € Wol’p(Q), we obtain
IV (v —u)|r@) < C(HdiV v||gr (o) + [|div u| g () + [[curl v grq) + ||CUF1UHLP(Q))-

Finally, the assertion (2.16) follows directly by using (2.19). O

Remark 2.2.3. We recall that if p = 2, any function v of H'(Q) N X% (Q) satisfies (see [3],
Lemma 2.11)

v vHiQ(Q) = [|curl v||%2(9) + ||div UH%Q(Q) - /F(Tr B)(v-n)*dr,

where B is the curvature tensor of the boundary and Tr B denote the trace of the operator B.
In the case p # 2, we have the inequality (2.16) which allows us to estimate V v by curl v,
I
divwand ) [(v-n, 1),
i=1

We can now prove the following theorem.

Theorem 2.2.4. The space X5 (Q) is continuously imbedded in W'P(Q) and there ezists a
constant C, such that for any v in X%, (Q):

I
vl wiw(q) < C(llvll zr(e) + l|div vl Lo (o) + [lcurl v]| gp oy + Z (v-n, )r,|). (2.21)

i=1
Proof. Let v be any function in X%(2). Due to Lemma 2.1.1, there exists a sequence (vj)g
of WP(Q)N XK () which converges to v in XP(Q). Applying the estimate (2.16) to vy, for
each k, we see that the sequence (vy)y is bounded in W P(Q). Hence it admits a subsequence
which converges weakly in W 'P(Q) and the limit is nothing else but v. The inequality (2.21)
follows directly from (2.16) and it gives the continuity of the imbedding. O

Remark 2.2.5. It is proved in [30], when the set 2 is a convex polyhedra that there is a real
number po > 2 such that for all p, 2 < p < pg, any function v in X% () belongs to wir(Q)
and satisfies the estimate (2.21) with pg depends on the geometry of the domain §2. Theorem

2.2.4 is an extension of this result to any p, 1 < p < oo when € is of class C b1,
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In order to prove the corresponding theorem for the space X 2(Q), we introduce the fol-

lowing linear integral operator

RX(z) = ;ﬂ/rcurl(‘:(_&)g) x ndog. (2.22)

We give somie properties of this operator.

Lemma 2.2.6. We have the following properties:

. The operator R is compact from LP(T") into LP(T).

. The space Im(Id + R) is a closed subspace of LP(T") and Ker(Id + R) is of finite dimension.
It is spaned by the the traces of the functions grad qJT x n|p, 1 <j<J, where each qu 1s the
unique solution in W 2P(Q°) of the problem

—Aq]T =0 in Q°,

Gan:O on I’

2.23
{qf}k:constant and [anqu]k:o, 1<k<J, (2.23)
<8nq‘;r7 1>Ek = 05k, 1< k < J7
(see section 3.2 ).
. For any v € W"P(Q) we have:

J
lo x | gory < C(II(Id+ R) (v x )| oy + ) [{v- 2, 1)s,1). (2.24)

j=1

Proof.
1. According to [55], we have R € L(LP(T), W 1P(I")). The compact imbedding of the
space W 1P(T") in LP(T") implies that T is compact from LP(T') into LP(T).

2. By virtue of the first point and the Fredholm alternative, we have that the space
Ker(Id + R) is of finite dimension and Im(Id + R) is a closed subspace of LP(T"). We will
sgﬂater in section 3.2 that the functions g/;a:iq]r belong to W 1’p(9)ﬁnce the functions
grad qu, 1 < j < J are linearly independent, it is readily checked that grad qu X m|p are also
linearly independent for 1 < j < J.

For v € D(Q), the quantity v x n satisfies on I" the following representation (see [55]):

2T

+ L (grad/rxia(v-n)(@ ng) < n

T
_ L curl/ ! curl,v(y)dy | x n
2 alz—yl v ‘

(Id+ R)(vx n) = — <gmd/Q ’miy’divy v(y)dy) < n
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As D(Q) is dense in W LP(Q), this relation is still valid for v € W 1?(Q). In particular, if

v-n =0onTI, we have

1 1

(Id4+ R)(v xn) = 5 (grad/Q mdivy v(y)dy) X n
1
2m

1
<curl/ ——curly v(y) dy) X 1. (2.25)
olz—yl

Since g/l';l:quT belong to W 1P(Q), due to (2.25), for each 1 < j < J the function g/ré/(ing )
belongs to Ker(Id+ R). Since the dimension of Ker(Id+ R) is J (see [55]), the set {grad q]T X
n|r, 1 <j < J} is a basis of Ker(/d + R).

3. The operator Id + R is linear, continuous and surjective from LP(I") onto Im(Id + R).
Since Ker(Id + R) is of finite dimension, through the theorem of open application we deduce
the existence of a constant C' > 0 such that (2.24) holds. O

The result of the next theorem is a generalization of the one in |55] to the case J > 1. So, we
J
expect that for an estimate of V v in addition to div v and curl v the quantity ) (v-n, I)s;
j=1
if v - n vanish on I'.

Theorem 2.2.7. Let v € W'P(Q) such that v-n = 0 on T'. Then the following estimate
holds

J
IV ]| g0y < C(||div vl o) + [[curl v|| gr o) + Z [(v-n, 1)s;]), (2.26)
i=1

where the constant C' depends only on p and €.

Proof. We use the same arguments as for Theorem 2.2.2. First, we prove that for any function
v of WP(Q) with v -n =0 on T' we have:

J

< C(||divaLp(Q) + ||curlvHLp(Q) + Z [{v-mn, 1>2j\). (2.27)
j=1

o mll g

Let v € W1P(Q) with v - n = 0 on I'. By using the integral representation (2.25), the

trace inequality and the Calderén-Zygmund inequalities we obtain
[(Id + R)(v x n)||prry < C (|div | 1o () + [[curl ]| gr(q)) -

Thus, it follows directly by using (2.24) that

J

lo x alloey < C(Idiv ol + leurl o]l gy + 31w - m, 1) ). (2:28)
j=1
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Moreover, from the equality (2.25) we obtain

o xnl o pugy < (R 0y, o ferad [ 2

(1) ol —y|

+ chrl/ﬂ’miy’curlyv(y)dyHWI_;’p(F)).

divyv(y) dyH W' EP )

It is well known (see [55]), that

oo

Loy < Cllv x n|gr),

Then, by the trace theorem

IN

C(Hv x n gery + ‘ grad

loxnl ) divy v(y) dy|

paP(F) Wlp

o
olz — yl

1
+ chrl/ ——curly v( dyH )
ol —yl WP (Q)

We use again the Calderén-Zygmund inequalities and (2.28) we obtain (2.27), which completes
the proof of the first step.

1
Secondly, as v belongs to W " ('), due to the trace theorem, there exists a u € W ()
such that

v=u onl and  |ull gy 10(q) < C[v]| Wi be )

Since v-n =0 on I', v|p = v X n. Then, by using (2.27) we have

lullw ey < Clloxnll g,
J
< C(Hdlv ’UHLp(Q) + HCUI‘I’UHLP(Q) + Z ’<’U ' n, 1>2j|>. (2.29)
j=1

Then we can proceed exactly as in the end of the proof of Lemma 2.2.2 in order to prove
(2.26). O

As a consequence, the following theorem can be proved as in Theorem 2.2.4 by using
Lemma 2.1.2 and Lemma 2.2.7.

Theorem 2.2.8. The space X7(Q) is continuously imbedded in WLP(Q) and for any function

v in X7(Q), we have the following estimate:

7
vl wir) < C(lvllzr@) + Idiv ol o) + [leurl o] g + Z [(v-n, 1)s,]). (2.30)
j=1
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Remark 2.2.9. We recall that if p = 2, any function v of H'(Q) N X%(9) satisfies (see [3],
Lemma 2.11)

v v||§.12(m = [|curl UH%Q(Q) + ||div "’Hi2(§2) - /FB(v X n,v X n)dr,

but for p # 2, we have the inequality (2.26) which allows us to estimate V v by curlwv, div v
J
and Y [(v-n, 1)s;|. As for the case of the space X}, (), we have the imbedding of the space
j=1

X2.(Q) in W'P(Q) for any 1 < p < co when the domain € is of class C1'!, contrary to what

is shown in [30], when the domain  is a convex polyhedra. The author has proved that there
is a real number po > 2 such that for all p such that 2 < p < pgo, any function v in X7 (Q)
belongs to WP(Q) and satisfies the estimate (2.30) with po depending on the geometry of
Q.

Now, in the following we show that the results of Theorem 2.2.8 can be extended to the
case where the boundary conditions v - n = 0 on I' is replaced by inhomogeneous one. More

precisely, we introduce the following space for s € R, s > 1:
X *P(Q) = {v € IP(Q); dive € W*17(Q), curlo € W5 P(Q) and v-n € W* »?(I)},

Theorem 2.2.10. The space X1P(Q) is continuously imbedded in WP (Q) and we have the

following estimate for any v in X P(Q):

ol wirq) < C(Ivllpr @) + lleurl vl groy + [|div vl o) + [|o- ”lefl, (2.31)

D P(F)>

Proof. Let v any function of X P(Q). Due to the regularity of €, the following Neumann
problem
Ax=dive in2 and Jdyx=v-n onl,

has a unique solution x in W 2P(Q) with the estimate

Il < CIdiv ol + - nll 1y ) (2:52)

Hence, the function w = v—grad y is a divergence-free function of X £(€). Applying Theorem
2.2.8, we have w belongs to W () and then v is in W ?(Q). So applying Inequality (2.30)

to w we obtain
lwllw1p@) < C(lwll @) + lcurlw| ).

Then, the inequality (2.31) follows directly from (2.32). O
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Remark 2.2.11. This result can be obtained in another way. Indeed, observe that the identity
mapping belongs to £( W'P(Q), X1P(1)), which implies that its inverse is also continuous.
As a consequence, Inequality (2.31) can be readily checked for any function v in X1P(1Q)
which gives the continuity of the imbedding of X?(Q) into W1P((Q).

More generally, we can derive the following corollary exactly in the same way.

Corollary 2.2.12.
i) Let m € N* and Q of class C™'. Then the space X™P(Q) is continuously imbedded in
W'™P(Q) and for any function v in W™P(Q), we have the following estimate

1ol w0y < C ([0l zr o) + leurlvll yymro) + A1V vllw m-1o@) + o0l 1y ) (233)

™)
i) Let s=m+ 0, m € N* and 0 < 0 < 1, Assume that Q is of class C™ 51, Then, the space
X*P(Q) is continuously imbedded in W*P(Q) and and for any function v in X*P(Q), we have

the estimate:

ol wer@) < C(lvllzr) + leurl vl yro1p gy + ldiv vl 1oy + [lv- n“Ws—%,p(F))' (2.34)

2.3 Compactness properties

In the following, we give a non-compactness result of the space X?(Q) into LP(Q2), where a
similar proof for p = 2 can be found in [3|. Next, we will prove that the vanishing of the

tangential component or the normal component on the boundary implies the compactness.

Proposition 2.3.1. The imbedding of XP(§2) into LP(Q2) is not compact.

Proof. Let (gx)r be a sequence which tends to 0 weakly but not strongly in Wlf%’p(l“). For

any k, we consider the unique solution yj of the problem
Axr =0 1in Q and Xt =¢gr onl.
Since Q is of class C11, y;. belongs to W1P(Q). Moreover, we have

||Xk:HW1,p(Q) < C”gkuwl—%,p(r)'

Then, the sequence (xz)x is bounded in W P(Q), and it tends to 0 weakly but not strongly
in W LP(Q). Finally, for any k, the function v, = grad y;, satisfies

curlvy, =0 and divev, =0 in Q.

The sequence (vg)r tends to 0 in LP(Q) weakly but not strongly, because if it converged
strongly, due to the compact imbedding of W P(Q) into LP(Q), the sequence (x)r would
converge strongly to 0 in W bP(2), which is forbidden by the choice of (g ). O
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We state the following result.

Lemma 2.3.2. The imbeddings of the spaces X?() and X¥.(Q) into LP(Q) are compact.

Proof. Let us give the proof for the case of X7(Q) and with the same arguments, we can
derive the result for the case of X ¥ (£2). Let (ug)x be a bounded sequence of X 2(Q). Due to
Theorem 2.2.8, the sequence belongs to W 7(Q) and satisfies the estimate (2.26). It follows
from this estimate that the sequence (uy); is bounded in W P(Q). Then, by the Sobolev-
Rellich compactness theorem, there exists a subsequence (uy )y which converges strongly in
LP(€). Hence we have derived the result for the space X%.(€2). The proof for X% () is very
similar. Indeed, for each bounded sequence (uy); of X X(Q), exactly as previously, due to
Lemme 2.2.4, we check that there exist a subsequence (ux ) which converges strongly in

O
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Chapter 3

Vector potentials

In this chapter, we consider the same domain as the previous one and here we want to prove
some results concerning the vector potentials. The chapter is organised as follows. In section
3.1, we first give a basic result about the vector potential without boundary conditions useful
for the remainder of this chapter (see Lemma 3.1.1). Next, sections 3.2, 3.3 and 3.4 are
respectively devoted to the proof of existence and uniqueness of tangential vector potentials,
normal vector potentials and an other type with vanishing trace on the boundary. For the
construction of these vector potentials, an important tool is the characterization of the kernel.
The main results are Theorem 3.2.5 for the tangential vector potentials, Theorem 3.3.7 for
the normal vector potentials and Theorem 3.4.2 for the vector potentials with vanishing trace
on the boundary. In sections 3.5 and 3.6 we will get interested respectively in the case of
scalar potentials and weak vector potentials. Finally, using the previous results about vector
potentials, we will consider a new formulation to the Stokes equations with the Dirichlet

boundary condition, where the unknown is the vector potential.

3.1 Vector potential without boundary conditions

This section is devoted to proof of the following basic lemma. A detailed proof for the case
p = 2 can be found in [3|, Lemma 3.5 and in [39], Chapter I, Theorem 3.4. For 1 < p < oo,

we give a different proof using the fundamental solution of the laplacian.

Lemma 3.1.1. A vector field u in HP(div, Q) satisfies

divu=0 inQ and (u-m, )p =0, 0<i<I, (3.1)
if and only if there exists a vector potential ¥y in WYP(Q) such that
u = curly,. (3.2)

41
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Moreover, we can choose g such that divipy = 0 and we have the estimate

Yol wir) < C llullzrq), (3.3)

where C' > 0 depends only on p and €.

Proof. 1. Let us show that (3.2) implies (3.1). Clearly, div (curle)) is equal to 0, for any
function v, in W 'P(Q). Next, we must check that (u - n, Dp, =0. For 0 <i <1, let u; be
a function of D(R?) satisfying:

0<pi(r)<1inR® and p; =4;; in aneighbourhood of T;.
We set w; = curl(p;1py). Obviously w; belongs to LP(2) and div w,; = 0. Moreover,
w;-nlp, =0 if j#4, w; n|r, =u-nr,.

Hence, for 0 < i < I we have
(w-mn, p =(w; n, I)p = / divw;dz =0
’ Q

which is the desired condition.

2. Conversely, let u be any function satisfying (3.1). The idea is to extend u to the whole

space so that the extended function u belongs to LP(R?), is divergence-free and has a compact
support. Then, it will be easy to construct its stream function by means of the fundamental
solution of the Laplacian.
Using the above notation, let xo in W 1?(£2) be the unique solution up to an additive constant
of the following Neumann problem —Ayg = 0 in ¢ and Jy,xo = u -n on g, Jpxo =
0 on O, and let x; € W1P(Q), with 1 < i < I, be the unique solution up to an additive
constant of the problem: —Ay; =0 in ; and 0,x; = u - n on I';, with the estimate

IXill w1o(0,) < Cllullzr@),

(recall that m denotes the unit outward normal to 2 and O). Now we can extend u as follows

Uu in €,
u=4 grady; in€Q;, 0<i<I, (3.4)
0 in R3\O.

Clearly, u belongs to H P(div, R3) and is divergence-free in R3. The function 1, = curl( E *

u ), with E the fundamental solution of the laplacian, satisfies

curlypy=u and divep, =0 inR>.
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Therefore
IV Yollzrrsy = |V (curl( E + w))| gr(r3)-

Applying the Calderon Zygmund inequality, we obtain
IV ol prrsy < ClA(E* )| grrsy < Cllul|prrs) < Cllullzr(q)-

It follows from this estimate that V b, belongs to LP(R?), hence its restriction to § belongs to
LP(9). Due to [8] (Proposition 2.10), 1, belongs to W 1P(Q). As a consequence, 1, satisfies
the condition (3.2) and the estimate (3.3). O

3.2 Vector potential tangential

In this subsection we focus our attention on the construction of a vector potential in X ().
We require the following preliminaries which are the equivalent to those in [3] for an arbitrary

p with 1 < p < .

Lemma 3.2.1. If v belongs to HY(div, ), the restriction of ¥ - n to any Z; belongs to the
1 .7
dual space WP (2;), and the following Green’s formula holds:
J
Vx € WP (Q°),

J

(Y- n, [X]j>2j = P - gradxdw—i—/ xdivp de. (3.5)
1 QO o

1 /
Proof. Let pu be any element of WP (X;), for a fixed integer j with 1 < j < J. we can
find ¢ in W L' (Q°) such that [ ]y is equal to 0 for all k # j, [¢]; is equal to p and ¢ satisfies

the estimate

el ey < €l (3.6)
Next, for any function 1 in D(2), the following Grenn’s formula holds:
(Y- n, u>2j —/ ¢~grad<pd:l:—|—/ pdivepde. (3.7)
QO o

Hence, the above inequality implies that
(Y- n, M>zj| < CH"anHp(div,Q)||M||W1—i,p/(2j)a
where C' is the constant of (3.6) . Thus
9 - n”Wlfi,p/(Ej)l < Cl|Yll e iv,0)-
Since D(R) is dense in H['(div, ), the normal trace of functions in D(2) on X; can be
extended to functions of HJ(div, Q) and the above inequality holds for any function % in
HP(div, Q). We introduce the partition of unity §; € D(R?) such that

J
d0;=1, 0<6;(x)<1inR® and 0; = ;) in a neighbourhood of .
j=1
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Then, from (3.7), we can write

3

(¥ -n, 0lplj)y. = 0. ¥ - grad (0;¢) dz + /O 00 divep de. (3.8)

The Green’s formula (3.5) follows easily from (3.8). O

We introduce the space

ePF = {T‘ € lep(QO); [T’]] = Constant, 1 S] < J} )

The next lemma is an extension of Lemma 3.11, [3] for the case 1 < p < oo, where the proof

is similar and gives a characterization of the space ©F.

Lemma 3.2.2. Let r belong to W “P(Q°). Then r belongs to ©P if and only if

—~

curl(gradr) =0 inQ.

Proof. Let r in W1P(Q°) and ¢ in D(9). We have
< curl(g/;z_la T), P >pQ)xDQ) = / gradr - curl pdz.

Then, by applying (3.5), we deduce that for any function » € W 1P(0°) and ¢ € D(Q):

J
<curl(grad ), >D @ = Z/ j(curlp - n)dr. (3.9)
(1) x
Besides that, we have

Vo € D), Yue LP(X)), / pu(curly - n)dr = (grad u x n, <p>2j . (3.10)
2;
Now, let  belong to ©F; by applying (3.10) with i = [r];, we infer from (3.9) that curl(g/;a_la T)
is equal to 0.

Conversely, let 7 belong to W 1P(0°) and satisfy curl(gradr) = 0. It follows from (3.9)

and (3.10) that

J

J
Vo € D(Q Z (grad[r]; x n), p)s, = 0. (3.11)
7j=1

Therefore, let u; is a function of D(R3) for 0 < j < J satisfying
0<pj(z)<1inR® and pj =4 in a neighbourhood of T.

Then, by rewriting (3.11) with ;¢ in place of ¢, we find that

(grad ([7]x) x n) ([r]x) =0, for 1 <k < J, and [r]; is constant. O
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We denote K%.(Q2) the space
KR(Q) ={we X/(Q); curlw =0inQ and divw =0 in Q}. (3.12)

As shown in [3] Proposition 3.14, the space K#(Q) is spanned by the functions g/r\éaqf,
1 <35 < J, where each q]-T belongs to H!(Q°) is unique up to an additive constant and satisfies

~A¢T' =0 in Q°,

Ongl =0 on I

3.13
[q;‘r}k:constant and [&qu]k:(); 1<k<J, ( )

(Onagl 1) =dj0 1Sk <,
k

Corollary 3.2.3. The functions g/;z_i::lqu, 1 < j < J belong to WH9(Q) for any q¢ > 2 and
the space K4.(Q) is spanned by these functions.

Proof. First, let us check that g/ITa_laqu belongs to K*%.(Q) for each 1 < j < J. According to
[3], the functions g/r\a/dqu belong to K2 (). Then, it suffices to show th%/r\a/d qu belong
to LP(2) when p > 2. Observe that, thanks to Theorem 2.2.8, we have grad q;; belong to
H'(Q).Therefore, using the Sobolev’s imbedding, the functions g/r;(/iq;fp belong to L°(Q) and
then to X%(Q). It follows from Theorem 2.2.8 and the Sobolev’s im]igd/ding, that ngqujT
belong to L*°(€2). As a consequence, for any 1 < ¢ < oo, we have grad qu € LI(Q). We
deduce the first part of our statement by using again Theorem 2.2.8. We already know that
the functions g/r;(/iqu are linearly independent. Let show now that those functions span
K'.(Q) for any 1 < p < oo. Let w € K2(Q). The function

J
v=w — Zw n, 12 gradq]
7j=1

belongs to K £(€) and satisfies (v - n, 1)y, =0, for 1 < k < J. Using (2.26), we deduce that
V v is equal to zero. Then v = @ € R®. Now, @ = 0 because a - n = 0 on I'. Hence v is zero
and this finish the proof. O

Let us state the following consequence

Corollary 3.2.4. On the space X1.(Q), the seminorm

J
w — [Jeurl w]| gr () + |divw|pe) + > [(w-n, 1)y], (3.14)
j=1
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is equivalent to the norm || - || xr(q). In particular, we have the following Poincaré inequality

for every function u in the Sobolev space WP(Q) with u-n =0 on T':

J
0]l ey < Clleurl vl gy + [|div vl o) + > _(v-n, 1)x (3.15)
7=1

Proof. The proof consistes in applying “Peetre-Tartar Lemma”, (cf. references [39], Chapter [,
Theorem 2.1), with the following correspondance: Ey = X%.(Q), Ey = LP(Q) x LP(Q), B3 =
LP(Q), Au = (div u, curlw), B = Id, the identity operator. Due to the compactness result of

Theorem 2.3.2, the canonical imbedding Id of F into Ej is compact. Besides, let G = K2(Q)
J —
and let M : X%.(€2) — K7(Q) be the following mapping: u — Mu = Y (u-n, 1)y, grad q;‘-r.
j=1
We set |Mul|lg = Z [(u-mn, 1)s,|. Tt is clear that M € L(X,(2), K7(€2)). Next, it is clear

that if u € Ker A\{O} K7.(Q)\{0}, then Mu =0 < u = 0 and this finish the proof. [

Theorem 3.2.5. A function u in HP(div, Q) satisfies (3.1) if and only if there exists a vector
potential ¥ in WHP(Q) such that

u=curly and divey =0in
Y-n=0 on T, (3.16)
<¢'n’71>2jzoal§j§<]

This function 1 is unique and we have the estimate:

¥l wieq) < Cllullzrg)- (3.17)

Proof. Step 1: Necessary conditions. The necessity of conditions (3.1) was estabished in
the proof of Lemma 3.1.1.

Step 2: Uniqueness. The uniqueness of this function ) follows from the characterization
of the kernel K%.(Q2). Indeed, Suppose 1,1, are two vector potentials which satisfy (3.16)
and set ¥ = 1p; —1py. The function 9 belongs to K7.(Q) and since it verifies the last condition
n (3.16), we deduce that 1 = 0.

Step 3: Existence. Let u be in HP(div, ) and satisfies (3.1). According to Lemma
3.1.1, there exists 1, € W LP(Q) with divap, = 0 in Q, such that 4 = curle, and with

H'lrbOHlep(Q) < CHUHLP(Q)
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We introduce the solution x in W 2P(£2), unique up to an additive constant, of the problem:
—Ax=0inQ, and 0,x =1, -n onl,
which satisfies the estimate

Iz < Clo 1 30

We set
J

W =y —gradx — 3 ((h — grady) -, 1)y, gradq/,
j=1
where qu are the solutions of the problem (3.13). Then, it is easy to check that the function
1 belongs to X 7(2) and satisfies (3.16). Hence, ¢ belongs to W 1?(Q) by applying Theorem
2.2.8 and we have the estimate (3.17). O

3.3 Vector potential normal and first elliptic problem

This subsection is devoted to the normal vector potentials. As previously, we define the kernel
K% (Q) = {w e X%(Q), curlw = 0 and divw = 0 inQ}.

It is shown in 3], Proposition 3.18, that the space K3/(Q) is spanned by the functions grad qV,
1 <i < I, where each ¢ € H'() is the unique solution of the problem

—quN =0 in Q,
q¥r, =0 and ¢M|r, = constant, 1<k <1, (3.18)
<8nq;N, 1>Fk:5““’ 1<k<I, and <8nqlN, 1>F0:_1'

With an argument entirely similar to that used in the proof of Corollary 3.2.3, we have the

following result

Corollary 3.3.1. The functions grad qZN belongs to WH4(Q) for any q¢ > 2 and the space
KX.(Q) is spanned by those functions for 1 <i < 1.

Proof. Since € is of class C11, it is clear that each ¢¥ € W27(Q) for any 1 < r < co. We
know that the functions grad qlN are linearly independent. It remains to prove that they span
K% (Q). Let w any function in K% () and consider the function

I
U=w— wa n, 1pgradql.
i=1

Observe that u € K (Q) and satisfies (u - n, 1), = 0 for any 1 < i < I. We deduce from
Theorem 2.2.2 that Vu = 0. Hence, u = a € R3 and a = 0 because a x n = 0 on I'. That
ends the proof. O
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We define the space
VE(Q) ={w e X1(Q); divw =0inQ and (w - n, 1)z, =0, 1 <j < J},

which is a Banach space for the norm || - || xr(q). As a consequence, we have the following

result

Lemma 3.3.2. The following Inf-Sup Condition holds: there exists a constant 3 > 0, such

that
Jocurl - curl pdz

inf sup > 3. (3.19)
eevi @ eevi) l€llx@llell g g
w#0 £#40 r

Proof. We need the following Helmholtz decomposition: every vector function g € LP(2) can
be decomposed into a sum g = V x + z, where z belongs to HP(div, Q) with divz = 0, x
belongs to Wol’p(Q) and satisfies the estimate

IV xllzr @) < Cllgllze)- (3.20)
Let ¢ any function of V’:}I(Q). Due to Corollary 3.2.4 we can write

| [qcurly - g dz|

|61l g < Clleurl ]|y ) = € sup (3:21)
X5 (Q) L7 () geLP(Q) g1l zr ()
g7#0
It is clear that
/ curly -V xdz =0. (3.22)
Q
We set ,
E:Z_Z<Z'n7 1>FZV(EN7
i=1

so, z € LP(2),divz =0 and (z-n, 1)r, = 0 for each 0 <14 < I. Due to Theorem 3.2.5, there
exists a potential vector ¢ € V4.(Q) such that Z = curle inQ. This implies that

/curlap-gdm:/curlcp'zdx:/curlcp-de.
Q Q Q

Moreover, we have

I
Izllzriy + D [z - m, DIV ¢l (o
=1
Izl + Cllz-nll 1,

IA

[E215 220

IN

()
Since z belongs to H P(div, 2) and divz = 0, by using the continuity of the normal trace

operator on H P(div, ), we obtain

12l () < Cllzllp(0)- (3.23)
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So, the following inequality can be checked by a combination of (3.20) and (3.23)

1Zllzr () < Cllgllzr()- (3.24)
Finally, we can write
!churlcp . gd:l:‘ < C" churlcp . de‘ _ !churlcp . curlwdw‘
gl zr ) - 12| zr () |curl 4| gy (o)

But by Corollary 3.2.4 we have

1%l xz.(0) = lleurl | g (o).

Then,
| [ocurly - g dz| - C‘ Jocurle- curl'(/)da:”
lgllzr ) 1l x2 ()
and the Inf-Sup Condition (3.19) follows immediately from (3.21). O

In the next, we illustrate the importance goal of the Inf-Sup Condition by using it to

resolve the following first elliptic system.

Proposition 3.3.3. Assume that v belongs to LP(). Then, the following problem

—A€ =curlv in 2,
dive=0 inQ,
(3.25)
£ n=0, (curlé —v) xn=0 onl,
<£'In'7 1>Z]‘ :Oa 1SJSJ;
has a unique solution in WYP(Q) and we have:
1€l wir ) < Cllollzeo)- (3.26)

Moreover, if v € WYP(Q) and Q is of class C>', then the solution & is in W>P(Q) and

satisfies the estimate:

€]l w2 ) < CUlvl weq)- (3.27)

Proojf) First step: Existence and uniqueness. Due to Lemma 3.3.2, the following problem:
find &€ € V4(Q) such that

YV € V%(Q), / curl{ - curlpdz = / v-curlpde. (3.28)
Q Q
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satisfies the Inf-Sup condition (3.19). So, it has a unique solution & € V%.(2) since the right-
hand side belongs to (V’}/ (2))" . We known that due to Theorem 2.2.8, this solution &€ belongs
to W 1P(Q). Next, we want to extend (3.28) to any test function @ in X’%(Q) We consider

the solution x in Wl’p/(Q) up to an additive constant of the Neumann problem:

Ax=divpg nQ and g;( =0 onl. (3.29)
Then, we set
J
¢=p—gradxy — > ((@—gradx) n, 1)y, gradg; . (3.30)
j=1

Observe that ¢ belongs to V]}/ (©) and curlp = curlp. Hence, (3.28) becomes: find & €
V() such that

Vo € XIF}/(Q), / curl¢ - curlpdz = / v -curlpde. (3.31)
Q Q

It is easy to proof that every solution of (3.25) also solves (3.31). Conversely, let € the solution
of the problem (3.31). Then,

Vo € X?F/(Q), (curl(curlé — v), @) =0.

[H? (div, Q)] x H? (div, Q)

So —A¢ is equal to curlv in Q. Moreover, by the fact that &€ belongs to the space V1.(Q)

we have divg = 0in Q, {-n =0on T and (§-n, 1)s, =0 forany 1 < j < J. Then, it

remains to verify the boundary condition curlé x n = v x n onT of (3.25). The function

z = curl & — v belongs to X?(Q2) and curl z = 0. Consequently, for any ¢ € XI:’FI(Q) we have:
Jo z-curlgpdz + (zxn,@) 1 1

w P P()xw PP ()

= (curlz,p) = 0. (3.32)

[H? (div, Q)] x HY (div, Q)
Using (3.31), we deduce that
Ve € VE(Q), (2 xn,@)r=0.

1 / /
Let now p any element of the space W 1=prp (T"). So, there exists an element @ of W b7 ()
such that ¢ = p, on I', where p, is the tangentiel component of g on I'. It is clear that ¢

belongs to X‘?(Q) and
(z X n,pu)r = (z X n,p)r = (z x n,p)r =0. (3.33)

This implies that z x n = 0 on I' which is the last boundary condition in (3.25). Let
B e L(VE(R),(VE(Q))) be the operator defined by

Vpe VIL(Q), Vee V’;(Q), (Bp, ) = /chrlu‘curlcpdx. (3.34)
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It is clear that the operator B is an isomorphism from V%.(2) onto (VZT’/ (Q)), and

lllxy @) = 1B Bl o) (3.35)

Hence, since £ is the solution of the problem (3.31) we have:

B v -curlpdx
IBEl = 5w H<H£> -~ sw fQ’ H le
T pevy (@) 1Plx?( v 1Plxr ()
so#O p#0

Then,
IBE oy < 022
The estimate (3.26) follows by using (3.35) and Lemma 2.2.7.

Second step: Regularity. Now, we suppose that v € Wl’p(Q) and Q is of class C?1.
Let & € W P(Q) given by the first step and we set z = curlé — v. It is clear that z
belongs to X §(Q). Applying Theorem 2.2.4, we obtain that z € W Lp(Q). This implies that
curl¢ € W P(Q). Applying Corollary 2.2.12, we deduce that & belongs to W %P(Q). This
finish the proof of the proposition.

O

Remark 3.3.4) Note that we can prove directly that the solution & € W1P(Q) of the problem
(3.25) is unique. Indeed, we suppose that v = 0 and we set z = curl€. Then, z belongs to
KZ%.(©) and due to Corollary 3.3.1 we can write:

(z-m, 1)p,gradq.
1

I
=

Since grad ¢ € Wh4(Q) for any ¢ > 1, the function z belongs to L*(Q). So,

I
/ |2)? dz = Z(z n, L)r, / curl¢ - grad ¢ dz = 0.
Q Q

Hence, zis zero and £ belongs to K7.(€2). Due to Corollary 3.2.3, we can write £ as:

J
€= (6 n s gradg)

7=1
and &€ = 0 since € satisfies the last condition in (3.25).

If v belongs only to LP(Q2), then (curl€ —v) xn € Wﬁi’p(lﬂ) but neither curl € x n nor vx n

is deﬁned However, if v belongs to H?(curl, ), then v x n and curl€ x n have a sense in
W oI,
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We give the following corollary which extends Theorem 2.2.4 to the case where the bound-
ary condition v X n = 0 on I is replaced by inhomogeneous one. we introduce the following
space for s € R, s > 1:

Y SP(Q) = {v € LP(Q); dive € W 1P(Q), curlv € W 1P(Q) and vxn € WS_%’p(Q)}.

Corollary 3.3.5. The space Y'P(Q) is continuously imbedded in W P(Q) and we have the
following estimate: for any v in Y1P(Q),

vl wriw(q) < C(””HLP(Q) + [[eurl v|| gr oy + [|div || Lr(q) + [|v X Wlf%,p(r)) (3.36)

Proof. Let v any function of Y 1P(Q). We set z = v — curl€ where £ € W 2P(Q) is the
solution of the problem (3.25). Hence, z belongs to the space X ¥ (). Applying Theorem
2.2.4, we have z belongs to W 1P(Q). Then, v is necessarly in W “P(Q) and the inequality
(3.36) can be easily deduced by using inequalities (3.27) and (2.16). O

More generally, we can prove:

Corollary 3.3.6.
Let m € N* and Q is of class C"™'. Then the space Y™P() is continuously imbedded in
W™P(Q) and we have the following estimate: for any function v in WP (Q),

[l wmr ) < C(HUHLP(Q) + [[eurlvf| yrm-1.0(qy) + [[div ol[ m-15(0) + [Jv X n”W'm—%,p(FQ'
(3.37)

Let s=m+4o0, m e N* and 0 < 0 < 1, Assume that Q is of class C™ 1. Then, the space
Y*P(Q) is continuously imbedded in W*P(Q) and for any function v in Y"™P(Q) we have the

following estimate:
lellwer(@) < O (vl oy + leurl vl ge-sn )+ ldiv vlosngoy +lloxnl s, ). (339)
The following theorem is the main result of this subsection
Theorem 3.3.7. A function w in HP(div, Q) satisfies:
diveu=0 inQ, u-n=0 onI' and (u-mn, 1>Ej =0, 1<j<], (3.39)
if and only if there exists a vector potential ¥ in WIP(Q) such that

u=curly and divy =0in Q,
Ppxn=0 on T, (3.40)
(¥ -n, 1)p, =0, forany 1 <i <1

This function ¥ is unique and we have the estimate:

1Yl wr) < Cllullpr@)- (3.41)
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Proof. Step 1: Necessary conditions. Let us show that (3.40) implies (3.39). Clearly,
div (curle) = 0. Next, we must check that u-n =0 on I' and (u - n, 1>2]- = 0, for any
1 < j < J. From formulas (1.7) and (1.8), because 9p € W P(Q) we have for any Y in
W22 (Q) respectively:

/ curly -grad ydz = (u-n, )r, (3.42)

Q

/ curly - grad ydz = —(¢» x mn, grad x)p. (3.43)
Q

If 4 x n vanishes on I, we have (u-n, x)r = 0 for any function x in W >#'(Q) and in particular
for x € D(). Because u - n € Wﬁi’p(f’) and D(Q) is dense in W' (Q), (u - n, x)r = 0 for
any function y in W1 (Q) and then u - n =0 on T. Since curlep belongs to Hb(div, Q), it
follows from Lemma 3.2.1 that curle) - n belongs to Wl‘%’f’(zj)’, for 1 < j < J. Then, the
density of D(X;) in Wlf%’p(Ej)’ and the choice g =1 in (3.10) give

(curlyp - n, 1)y, =0, 1 <j < J, (3.44)

which is the last condition in (3.39).

Step 2: Uniqueness. The proof is similar to that of Theorem 3.2.5 and it follows from the
caracterization of the kernel K%.(Q). Indeed, Suppose 1,1, are two vector potentials which
satisfy (3.16) and set ¥ = 1p; — 1P,. The function 3 belongs to K%.(2) and since it verifies
the last condition in (3.16), we deduce that ¢ = 0.

Step 3: Existence. Let u € HP(div, 2) be any function satisfying (3.39). According to
Lemma 3.1.1, there exist ¥, € W P(Q) with divp, = 0 and such that u = curle,. Due to
Lemma 3.3.2, the following problem: find & € V%(Q) such that

Ve € V]LT’I(Q), /curlﬁ-curlgodx:/¢0-curlcpdx—/curl¢0-cpdx, (3.45)
Q Q Q

satisfies the Inf-Sup condition (3.19). So, it has a unique solution & € V(1) since here also
the right-hand side belongs to (V%(Q))’ . We known that due to Theorem 2.2.8, this solution
& belongs to W 1’p(Q). Next, as in the proof of Proposition 3.3.3 we want to extend (3.45) to
any test function @ in X’%(Q) Let x in W %' (Q) satisfying (3.29) and @ € Vrf,'i/ (Q) satisfying
(3.30). Due to (3.39), we have

/curl’t,bo-gradxdm:/u-gradxdxzo,
Q Q

and from (3.5) we obtain

J

/ curlvyy - g/r\éaqu dz = / U - gradq]-T dz = Z[QJT}MU 'n, 1)z, =0.
Q Qe k=1
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Hence, (3.45) becomes: find &€ € V1.(Q) such that

Vo € X%’(Q), / curl{ - curlpdzr = / 1y - curlpdz — / curly - pdx. (3.46)
Q Q Q

By using the same arguments as in Proposition 3.3.3, we can prove that every solution of

(3.46) also solves the problem

—AE=0 in €,
divg =0 in €,

3.47
E-n=0, curl¢ xn =19y xn onl, ( )

(€-m )y, =0, 1<j<J.

According to Corollary 3.3.5, this solution & belongs to W 2P(2). Then, we set

I
¥ =y —curl§ — Y ((py —curlé) - n, 1)r, grad g/,
=1

and it follows that the function v belongs to W 1P(Q) satisfies (3.40) and the estimate (3.41).
O

We skip the proof of the next corollary about equivalent norms, because it uses exactly

the same tools as in the proof of Corollary 3.2.4.

Corollary 3.3.8. On the space X3 (Q), the seminorm

I

w i [leurlw| g () + [[div wlie@) + ) [{w-n, 1| (3.48)
i=1

is equivalent to the norm || - || x»(q). In particular, we have the following Poincaré inequality
for every function w in the Sobolev space WP(Q) with u x n =0 on T':

I
19l ey < Clleurl o] ooy + [|div ]| ooy + Z(U‘ n, 1)r,) (3.49)

=1

3.4 Other vector potentials
We define the space

KD(Q) ={w e W P(Q); curlw = 0 and div (Aw) = 0 inQ}.
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It has proven in [3] that the space K2(f) is spanned by the functions grad ¢!, for 1 <i < I,

7

where ¢) is the unique solution in H 2(Q) of the problem

—A2q? =0 in €,

Py =0 and ¢Qlr, =6, 1<k<I,
(3.50)
Ong? =0 on I,

(On (AGY), 1>Fk =6k, 1<k<I and (0, (Ag)), 1>F =-1.

0

We have the following regularity result

Lemma 3.4.1. The solution ¢ of the problem (3.50) belongs to W*4(Q) for any q > 1.

Theorem 3.4.2. A function u in HP(div, Q) satisfies:
dive=0 inQ, u-n=0 onl' and (u-mn, 1>Ej =0, 1<j<], (3.51)
if and only if there exists a vector potential ¥ in Wl’p(Q) such that
u=curly and div(Ay)=0in Q,
(3.52)
P =20 onT, (On(divep), 1)p, =0, forany 0 <i<I
This function ¥ is unique and we have the estimate:

[l wieq) < Cllullzr )

Proof. We only need to prove that with any function u satisfying (3.51) we can associate the
vector potential in (3.52). The inverse can be proved exactly with the same argument as in
Theorem 3.3.7. Here also the unigneness result is a consequence of the characterization of the
space K{(Q).

Assume that (3.51) holds and let 17) denote the potential vector associated with u by Theorem
3.3.7. We introduce the fourth-order problem

A’ =0 inQ, x=0 and ansz-n onl.

~ 1
Since € is of class C' and 4 - n belongs to Wl_g’p(f‘), this problem has a unique solution
x in W 2P(Q). Finally, the function

I
1/’ = /l:b - gradX + Z<BN<AX)7 1>Figrad qz(‘]v
i=1

satisfies (3.52). O
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By using the same arguments and in this ones the kernel:
K(gnﬂ’p(Q) ={w ¢ Wgn—H’p(Q); curl w = 0 and div (A™w) = 0inQ},

we can prove the following result (see [4] for the case p = 2).

Theorem 3.4.3. Assume that the boundary of Q is of class C™TH1 for some integer m > 1.
For any vector field w in W("P(Q) that satisfies:

divu=0inQ and (u-n 1)y, =0, 1<5<J,
there exists a vector potential ¥ in W8n+1’p(Q) such that
u=curly, divA™ ' =0inQ and |9 i) < Cllul wme ). (3.53)
Moreover, there exisls a unique vector polential ¥ in WOmH’p(Q), satisfying (3.53) and

(OpdivAyp™ 1. =0, 0<i<I. (3.54)

3.5 Scalar potential

In this section we present several results concerning scalar potentials. We begin with the

following fundamental result.

Theorem 3.5.1. Let f € W "P(Q) for some integer m > 0. then the following properties

are equivalent:

w-mr@)f, @) W () = 0 forall p € {pe Wy (Q), dive =0inQ},
me,p(ﬂ) <f, (p) W(;n’p/(Q) = 0 fOI‘ all %2} S {(P S 7)((2)7 leLP = 0 in Q},

There exists a distribution x € W ~™TLP(Q), unique up to an additive constant, such that

f=grady in (.

If in addition Q is simply-connected, the above properties are equivalent to:

curl f=0 in Q.

Proof. We refer to [5] for the equivalence between (i), (i7) and (éi7). It is clear that (ii7)
implies (#v), then it remains to prove that (iv) implies (éii). Let then f € W ~"P(Q) be such
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that curlf = 0 in . With the same arguments as in [5] we can prove the existence of a
unique u € WP (Q) and a unique p € W="+12(Q) /R such that

A"y +gradp=f and divu=0 in Q.

Hence, A™ curlu = 0 in . Because the hypoellipticity of the pluriharmonic operator
A™ this implies that (see [31]) curl w belongs to C*>°(€2). We deduce that curl curl w belongs
to C*°(2) which implies that A™wu € C*°(Q2). By the classical Poincaré theorem, there exists
g € C>®(Q) such that A™wu = gradq. Thus, f = grad (p + ¢) and by using 8|, Proposition
2.10, we deduce that the function x = p + ¢ belongs to the space W ~"+LP((Q). O

Theorem 3.5.2. For any function f € LP(Q) that satisfies
curlf=0 and / frvde=0 for all v € K;I(Q), (3.55)
Q

there exists a scalar potential x € W 'P(Q), unique up to an additive constant, such that

f=grad x and the following estimate holds:

IxXllw1r@yr < ClFllzr o) (3.56)

Proof. First, we prove that for any v € Hg/ (div, Q) such that dive = 0in€Q, there holds
Jof -vdz =0. For such v € Hgl(div,Q), let

J
Z v-n, s, gradq]
7=1

and w = v — 2. According to Theorem 3.3.7, there exists a vector potential ¢p € W 1”’/(Q)
satisfying w = curl, diveyp =0 in Q and ¢ x n =0 on I'. Hence

/Qf-vdw:/gf-curlipdw:().

The result is then a consequence of Lemma 2.7 of [6]: there exists a function xy € W 1P(Q)
satisfying f = grad y and the estimate (3.56) holds. O

Theorem 3.5.3. For any f in the dual space of Hgl(div , Q) with curl f=0 inQ and satisfies

aY (aiv.ay W v>H0p/ vy =0 forallve Kb (), (3.57)

there exists a scalar potential x in LP(Q2), unique up to an additive constant, such that f =

grad x and the following estimate holds:

||XHLP(Q)/R < CH'fHHé’/(diV,Q)" (358)
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Proof. Let f in Hé’/ (div, ). Due to Proposition 1.0.4, there exist ¢ € LP(Q) and xo € LP(Q)
such that f = 1 + grad xo, with the estimate

1270 + Ixollry < Ul e

. . pl . _
By the density of D(Q2) in H (div, ), we have HY (div 79),<grad X0 5 U>H(§"(div,Q) = 0 for all

v € Kg(Q). Therefore, the function @ € LP(Q) satisfies the conditions (3.55) of Theorem
3.5.2. Hence, there exists a function ¢ € W ?(Q) such that 1) = grad q, with the estimate

||Q||W1ap(Q)/R < CHdJ”LP(Q) < CH'fHHgl(diVJ))’.

Hence, the function xy = g + xo satisfies the announced properties. O

Remark 3.5.4. If Q is simply-connected, for a distribution fin the dual space Hé)/(div, Q)
with curl f = 0, there exist a unique function x € LP(Q) to an additive constant, such that
f = grad x, without f satisfies the condition (3.57).

3.6 Weak vector potential

We know that for a given function f in W ~1P(Q), there exist a unique u € Wol’p(Q) and
X € LP(€2) such that

f=-Au+grady and dive =0 inQ, (3.59)
and satisfying the estimate:
1wl w i) + IXlze @)/ < Cllflw-10(0)-

We give the following result where the proof for the case p = 2 can be found in [4].

Proposition 3.6.1. For any f in the dual space Hg,(div, Q) there exist a unique u €
W2P(Q) N Wol’p(Q) and x € LP(Q) solution to (3.59) and satisfying the estimate

ol o + Ilo@m < Ol g (3.60)

Proof. Let f be in the dual space of Hé’/ (div, ). According to Proposition 1.0.4, there exist
P € LP(Q) and xo € LP(Q?) such that f = ¢ + grad xo and

W lzecay + Ixollzmer < OW Lyt gy
Thanks to the regularuty of T, there exist u € W 2P(Q)N Wol’p(Q) and ¢ € W LP(Q) satisfying

9 = —Au +gradg and divu =0 in{2, (3.61)
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with
1wl w2 @) + ldllwrr@r < CllYl @)
Then w and x = q + xo satisfy the announced properties. O

We next consider the following result.

Theorem 3.6.2. For any f in the dual space of Hé)/(curl , Q) with div f= 0 inQ and satisfies

_ '
H (curl ,ﬂ)'<f’ U>Hé7,(cur1 o =0 forallve Ky(Q), (3.62)

there exists a vector potential € in LP(Q) such that
f=curlg, with diveE=0 inQ and &-n=0 onTl, (3.63)

and such that the following estimate holds:

€127 < Ol gy eurr (3.64)

Proof. Let f be in the dual space of Hg,(curl , ) and satisfies (3.62). According to Theorem
1.0.6, there exist ¥ € LP(Q2) and &, € LP(Q) such that f = 1 + curl§, , where div€, =0 in

Qand ;- n =0 on I' and we have the following estimate:
11z @) + €0l 27 @) < CllF | g’ e, oy
holds. By the density of D(£2) in I-Ig, (curl, ), we deduce that for all v in K%(Q), we have

curl§,, v) =0.

H? (curl, Q) { H? (curl, Q)

Since grad ¢V belongs to K%(Q), it follows that

N _ L
HY (curl, Q),<f , grad g; >H§'(cur1, Q) = 0 foralli=1,...,1.

Then, the function ¢ € LP(1) satisfies the relation (¢-m, 1)r, = 0forall 1 <i < I. According
to Theorem 3.2.5, there exists a vector potential ¢ € W P(Q) such that ¥ = curlp, with
dive =01in Q and ¢ - n =0 on I', and such that

lellw ey < CllYlrr@)-

Hence, the vector field & = &g +  satisfy the announced properties. O

Remark 3.6.3. If we assume that {2 has a connected boundary I', a distribution f belongs to
H(’))/ (curl, Q) such that divf = 0 if and only if there exists a function & € LP(2), such that
f=curlg, where divg =0 in Q and £ - n =0 on T', without f satisfies the condition (3.62).

Moreover, £ is unique up to an additive element of K2(€2).
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For any integer m > 0, the space
H;""(curl, Q) = {v € H(curl, Q), curlv € W""(Q)}.
It can be shown that its dual space H —m.p’ (curl, Q) is characterized by
H " (curl, Q) = {4 + curl&, ¥ € HY (curl, Q), £ € W " (Q)}.

We can prove that D() is dense in H["P(curl, Q) and that the following Green formula
holds:
for any & € H ™" (curl, Q) and v € H}""(curl, Q)

- (curt, @) (CULE, O) P (curt, @) T g -’ () (&5 Curlv) g mr(q) = 0.

Theorem 3.6.4. For any f in the dual space H_l’p'(curl,Q) that satisfies
divf=0inQ and (f,v)=0 forall ve Ky (Q), (3.65)
there exists a vector potential € in W12 (Q) such that
f=curlg, with divé =0 inQ, (3.66)
and such that the following estimate holds:

HE”W—LP’(Q) < CH-fHH—LP/(cur]’Q)‘ (3'67)

Proof. Let f be in the dual space H ~'7' (curl, Q). Then, there exist f, € Hg,(curl ,02)" and
& € W 1 (Q) such that f = f, + curl&,, and satisfying the estimate

”fOHH(fl(curl,Q)/ + HEOH w—Lr'(Q) < CH.fHH—Lp’(CHrLQ)'

Since &, € W ~1P'(Q), there exist 6y € LP' (Q) satisfying divfy = 0in €, 8y-n = 0 on T and
x € L¥ (Q) such that £, = curl 8y + grad y and

HOOHLP'(Q) + HXHLP/(Q)/R < C|& w17 (Q)

Since f € Hg/(curl, Q) then f, = 1y + curl gy, with ¢, € LP(Q), ¢, € LP(Q), dive, =0
in Q, py-n=0o0nT and:

H/lp()”Lp(ﬂ) + HSDOHLP(Q) < C”fOHHg/(Curl,Q)’.
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Then f =1, + curl ¢, + curlcurl 8y = ¢, + curl p, with p = ¢+ curl 8y, divp =0 in .
Thanks to the density of D(Q2) in H(}’p(curl, ), we infer that

1 (eurt @) (CUTLEL V) g 1oy ) = 0, forall v € K% (Q).

Since div f = 0, then div ¢, = 0 and therefore the condition (¢, - n, 1), = 0 is automatically
satisfied for any ¢ = 1, ..., I. Then according to Theorem 3.2.5, there exists a vector potential
p € LP(Q) such that

Py=curly, dive=0 inQ2 and ¢-n=0 onl,

and
lellze) < Clloll rr)-
Hence, the vector field & = p + ¢ satisfies the announced properties. O

More generally, we can prove:

Theorem 3.6.5. Given any integer m > 0 and any distribution fin the dual sapce H*m’p/(curl, )
that satisfies (3.65), there ezists a vector potential &€ in WP (Q) such that

f=curlg,  with  divé=0 mQ and (€] mriq) < ClFl g ms a0

3.7 The Stokes problem in vector potential formulation

We consider the following Stokes problem:
—vAu+Vr=Ff inQ,
divu =0 in Q, (3.68)
u=20 on I

where f is a given data in LP(Q), v is a positive viscosity, u is the velocity and 7 is the
pressure. We know that the problem (3.68) is equivalent to the variational formulation: find
u € VP such that

Voe VY, V/gradu-gradvdX:/f-vda:, (3.69)
Q Q

where VP = {v € W?(Q), dive = 0 inQ}.

We will use Theorem 3.2.5 or Theorem 3.3.7 in order to obtain new variational formulations
of this problem where the unknown is the vector potential 1. Let begin with the tangential

vector potential. We define the space
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WZEQ) = {peXP(Q), Ape LP(Q), curlcurlp € LP(Q),
(p-n, )y, =0,1<j<J and curlp =0 onl'},

which is a Banach space for the norm
lellwe@)r = llellxre@) + 1A @llzr) + lcurlcurl ¢ gy (o).
We consider the problem: find ¢ in W 2(€) such that

Vi € W;ZI(Q), V/Alb' A(de:/f-curlcpdm. (3.70)
Q Q

By virtue of the continuity of the mapping u +— % (see Theorem 3.2.5) from VP into W2(),

where 1 is the vector potential defined in (3.16), we can prove easily the following result

Theorem 3.7.1. If (u, 7) is the solution in WP(Q) x LP(Q)/R of the Stokes problem (3.68),
then vector potential 1 defined in (3.16) is a solution of the problem (3.70).

In order to study the problem (3.70), we require the following lemma which is proven in

[3] for p = 2 by the use of the formula:

|lgrad (div <p)||i2(ﬂ) + ||curl curl(pHiz(Q) =|A QO”%Q(Q).

For the case p # 2, we use an other argument.

Lemma 3.7.2. The mapping: ¢ — [|A @||rr(q) is a norm on WZ2(Q), equivalent to the norm

I llwro):-

Proof. Tt is clear that we have only to prove that for any ¢ € WX(Q), we have:

lellwr@) < ClA@| e ). (3.71)

We can apply Corollary 3.2.4 to ¢, next Corollary 3.3.8 to curl ¢ then we derive

lellw ey < Cldivel rq) + 1A @llrr) + [[curleurl | gr ().

Since div ¢ € W P(Q) and satisfies fQ dive dz = 0, so the Poincaré inequality implies that

lellwe@) < C(llgrad (div )| zr o) + |A @l zro) + [[curlcurl | ge () ).

We set z = curlp. Then, z satisfies: Az = curl(Ap) € W 1P(Q)in Qand z=0onT.
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According to [10], the function z belongs to W&’p(Q) and satisfies the estimate

B o) < Cllcurl (A ¢)|| w ~Lp(Q)-

Especially, we have

[curlcurl ||z o) < ClA @l Lr ()

By using the identity (1.1), we can easily derive the same inequality for gard (div ¢) which
gives (3.71) and finishes the proof. O

The problem (3.70) is solved when p = 2 (see [3]), where the well-posedness follows imme-
diately from Lax-Milgram’s Lemma. For p > 2, we will apply Theorem 3.2.5 and a uniqueness
result in order to prove the existence of solution of the problem (3.70). And once the problem

is solved for all p > 2, a duality argument will also solve it for p < 2. We have this first result

Theorem 3.7.3. For p > 2, the problem (3.70) has at most one solution.

Proof. We suppose that 1, 14 are two solutions of the problem (3.70) and we set ¥ = ¥, —1,.
Then, 1 belongs to W 2(Q2) and satisfies

Vo € WE(Q), /A'I,Z)-Acpda::O.
Q
So, as p’ < 2 then
Yo € W2(Q), /A¢-Acpd:c:O.
Q

By choosing ¢ = v and applying Lemma 3.7.2 for p = 2, we deduce that ¥ = 0. O

Theorem 3.7.4. Let p > 2. For any f in LP(Q), problem (3.70) has a unique solution in
Wi (Q).

Proof. We known that the Stokes problem (3.68) has a unique solution (u, 7) € W&’p(Q) X
LP(Q)/R. By applying Theorem 3.7.1, the unique vector potential associated with u and
defined in (3.16) is a solution of (3.70). Since due to Theorem 3.7.3 this problem has at most

one solution, it is the only solution. O

As a consequence, we have the following result

Corollary 3.7.5. The following Inf-Sup Condition holds: there exists a constant 3 > 0, such
that

A Apd
inf  sup JoAY Apdz > . (3.72)

eew? @ vewz@) [¥llw@llelwr o) —
»#0 Pp#0
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Proof. Let a be the bilinear form defined on W2 () x W2 (Q) by:
a(y, @) = /me Apde.

Let A € L(WE(Q), (WE(Q))) and A’ € L(WE (), (WE(Q))') be the operators defined
by
V€ WE(Q), Yo € WE(Q), a(p, 9) = (A%, @) = (1, A'p)

The Babuska-Brezzi’s Theorem implies that, for p > 2, the operator A associated with a
is an isomorphism from W2 (Q) onto (Wg(Q))’ and its dual operator A’ is an isomorphism
from WF_IF’/(Q) onto (WZ2(€))". But since the bilinear form a is symmetric, the operator A’
coincides with A if we interchange p by p’. As p’ < 2, this means that the above isomorphisms
are valid for all real numbers p > 1. So, the Babuska-Brezzi’'s Theorem implies that the
Inf-Sup Condition (6.13) holds for all p > 1. The next theorem collects these results. O

Theorem 3.7.6. Let 1 < p < oco. For any data f € LP(Q), the problem (3.70) has a unique
solution in WH(Q).

To illustrate the relation that exists between the solution of the Stokes problem and the
solution of the problem (3.70), let us remark that u = curle is the solution of problem (3.69)

and we can prove the following corollary.

Corollary 3.7.7. The solution 1 of problem (3.70) is divergence-free. Moreover, there exists
7 in LP(Q)/R such that the pair (u = curly, 7) is a solution of the Stokes problem (3.68).

In a manner analogous to one previously used, but more complicated, we will construct a
new equivalent problem where the unknown is the normal vector potential. We cannot apply
directly Theorem 3.3.7 to u because the necessary condition (u-n, 1)y, =0for 1 <j < Jis

not always satisfied. So we introduce the function
J
0= Zu n, 12 gradq],
7=1

and since ((u —§)-n, 1)s, =0 for 1 < j < J, we apply Theorem 3.3.7 to the function u — 4.

Then, there exists a vector potential @ such that

u=curly+6 inQ and  divep =0 inQ, (3.73)
PYxn=0 onl, (p-n, )r,=0 forany 0<i<L
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Now, we introduce the space

Z3(Q) = {peXN(Q), Apc LP(Q), curlcurlp € LP(Q),
(p-n, )y, =0, 0<i<I},

provided with the same previous norm || - || wr (). We will need also the space
W (Q) ={p e ZX(Q), 36 € K7.(Q) such that (curlp +8) x n =0 on I'}.

We remark that curle + § belongs to K7(Q) with null tangential traces on I'. Then, it is
zero and there exists at most one function d(¢) € K7(Q) such that (curlp + d(¢)) x n =0

on I

We consider the problem : find ¢ € W (Q) such that

Vo € W]{’,/(Q), y/QAz,ZrAcp da;:/Qf-(curlcp+5(cp)) dz. (3.74)

We can easily prove the following result:

Theorem 3.7.8. If (u, 7) is the solution in WP (Q) x LP(Q)/R of the stokes problem (3.68),
the vector potential v introduced in (3.73) is a solution of problem (3.74).

By using the same techniques of proof introduced for the case of tangential vector potential,

we can prove easily the two following results.

Theorem 3.7.9. The mapping: ¢ — ||Ap|gr) is a norm on WL (Q), equivalent to the
norm || - [lwr(qy and for any fin LP(SY), the problem (3.74) has a unique solution in Wg,(Q).

Corollary 3.7.10. The solution v of problem (3.74) is divergence-free. Moreover, there exists
7 in LP(Q) /R such that the pair (u = curly+38(v)) is a solution of the Stokes problem (3.68).
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Part 11

The Stokes equations and elliptic
systems with non standard boundary

conditions
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Chapter 4

The Stokes equations with the

tangential boundary conditions

In this chapter, Q is supposed of class C!'!' except in some cases where we will precise

that the boundary can be more regular.

4.1 Introduction and preliminaries
In this section we will study the Stokes problem:

—Au+Vr=f and divu=0 in (2,
(S7) Ju-n=¢g and curluxn=hxmn onl’,

(u-n, )y, =0, 1<j<J

4.2 Weak solutions

The aim of this subsection is to give a variational formulation of problem (S7) and to prove

the existence and the uniqueness of weaks solutions. Let us consider the space
EP(Q) = {ve W'(Q), Av e [HY (div, Q)]'}.

This is a Banach space for the norm

lollzr@) = llvllwir@) + 1AV g gy oy

We have the following preliminary result.

Lemma 4.2.1. Assume that ) is of class C%'. The space D(Q) is dense in EP().

69
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Proof. Let P is a continuous linear mapping from W 1?(Q) to W P(R3), such that Pv|q = v.
Then, for every continuous linear form £ € (EP(Q))’, there exists a pair (f, g) € W~ (R3) x
Hg/(div, Q) such that

(€ v) =, PV) gy 1ot (s w o ms) T (B0, g>[Hg’(div,Q)]/><H(§”(div,Q)’

for any v € EP(Q). Thanks to the Hahn-Banach theorem, it suffices to show that any £ = 0 on
D(9) is actually zero on EP(Q). Let’s suppose that £ = 0 on D(Q2) and let § € HP (div, R?)
be the extension by 0 of g to R?. Then, for any ¢ € D(R?) we have

<-f7 SO>W*1*”/(R3)><W1’P(R3) + /R3 Ap- gd.’B =0,
since (f, ¢) = (f, Pv) where v = ¢|q. It follows that
f+Ag=0 inR3

So, g belongs to Wl’p,(R3), since f € W_l’p/(]RS). As a consequance g belongs to
Wol’p/(Q). Then, by the density of D(Q2) in Wol’p/(Q), there exists a sequence (g;) € D()
such that g, — g in W L2'(Q)). Thus, for any v € E?(2), we have

(£v) = lm {~(Ag,, Po)+(Av, g}

—oo JO
= 0.

Thus, £ is identically zero. O
As a consequence, we have the following result.

Corollary 4.2.2. The linear mapping v : v — curlv|r x n defined on D(Q) can be extended

to a linear continuous mapping
1
v EP(Q) — W »P(T).

Moreover, we have the Green formula: for any v € EP(Q) and any ¢ € W (Q) N Xg(Q)
with dive =0 in Q

—(Aw, ¢>[H§/(div7 Q)< Y (div, ) = /Q curlv- curlpdz + (curlv x n, ), (4.1)

where the duality on T is defined by (-, -)r = (-, '>W_%”’(F) W 1y
X
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Proof. Let v € D(Q) and o € W7 (Q) N X;il(Q), then formula (4.1) obviously holds. For
1 / /
every u € W »? (T'), there exists ¢ € W 7 (Q) such that ¢ = g, on T with

Il 1@y < el 3 < Clbl 3

Consequently,

. < ;o
(curlv x n, N>W*%’p(r)xW%’p ol S CHUHEP(Q)HIJ‘”W%@ ()

Thus,

|lcurlv x n|| 1
w

Loy < COlv|gr@)-

We can deduce that the linear mapping « is continuous for the norm of E?(Q). Since D(12) is
1

dense in EP(£), v can be extended by continuity to v € L(EP(2); W ~»?(T)) and formula

(4.1) holds for all v € EP(Q) and ¢ € W 7 (Q) N X2 () with dive = 0 in Q. 0

Proposition 4.2.3. Let f belongs to LP(Q2) with divf=01in Q , g € Wlf%’p(lﬂ) and h €
1 /
WP () verify the following compatibility conditions: for any v € K7 (),

/Qf. vdz+ (h x n, v>W’%”’(F)xW%””(F) =0, (4.2)
/gda =0, (4.3)
r
f-n+divp(hxn)=0 onT, (4.4)
where divr is the surface divergence on I'. Then, the problem
—Aé=f and divE=0 in €,
(ET) E-n=g and curléxn=hxn onl,
<€"I’L, 1>Ej :07 ]-Sjgja
has a unique solution & in Wl’p(Q) satisfying the estimate:
1€ hwiney < C{I F iz + 18 lwismoy + 1A% nllgpmny } (45)

Moreover, if g € W2~ VPP(T), h € Wl_l/p’p(F) and Q is of class C*', then the solution &
belongs to W?P(Q) and satisfies the estimate

1€l weng < O F ooy + 19 lwe vy + 1A X 2l grvmog - (46)
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Prooff) We suppose that f € LP(Q) with divf =0in Q, g € Wlf%’p(f‘) and h € Wﬁi’p(F)
and we prove that problem (E7) has a unique solution & in W P(Q) satisfying the estimate
(4.5).

Step 1: Uniqueness. We begin to prove uniqueness of weak solution of (E7). We suppose
that & € W 1P(Q) satisfies: ~A€=0,div€ =0in Qand &-n =0, curl{ x n = 0 on T with
the condition (£ - n, 1)s;, = 0 for any 1 < j < J. The function w = curl& belongs to LP(Q)
and satisfies:

divw =0, curlw =0in{) and w x n =0 onI.

This implies that w € K §(2). Due to Corollary 2.7, we can write:

1

w = Z(w -m, 1), grad ¢} .
i=1

So, s
/ |’w\2dmzz<w-n, 1>pi/curl§-gradqfvdm—0.
Q Q

i=1

Hence, w is zero and £ belongs to K 7(Q). Thanks to Corollary 2.4 , we can write £ as:
J —_
§=> (£-m, 1)ygradg] =0,
j=1
and the proof of the uniqueness is completed.

Step 2: Compatibility conditions. Before solving the problem (Er7), we show that the
conditions (4.4) and (4.3) are necessary. First, we set z = curl&, with £ solution of the
problem (E7). It is clear that

Yo € W2’p,(Q), (curlz - n, )r = (z x n, Vp)r,

where the bracket denote the duality W ~1/P2(I') x W /PP (I'). So that f must satisfy:

(f-n, o)r = (h xn, Vo)r = —(divr (h x 1), 9)r.
This shows that f - n + divy (b x n) = 0 in the sense of Wﬁl*i’p(F). We deduce in fact that
1

divr b belongs to W~ »P(T") and the above equation occurs to the sense of the last space.
Next, the fact that [, gdo = 0 is due to div€ = 0 in Q. Before the justification of the

compatibility condition (4.2), we consider the Neumann problem:
. 06
(N) AO=0inQ and 9 =Y onT.

Since g € Wlf%’p(f‘) and satisfies (4.3), this problem has a unique solution § € W 2P((Q)
satisfying the estimate:

19 w2000 < Cll gl 1-1mmry- (4.7)
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J —
Weset w=§—-Vband 2z =w— ) (w-n, l)s, grad qu. Then, problem (E7) becomes:
j=1
—Az=f and divz=0 in ),
z:n=0 and curlzxn=hxn onT, (4.8)

(z:m, 1)y, =0, 1<j<J

It is easy to prove that every solution of (4.8) also solves: find z € V 2(Q) such that

Vi € V%I(Q) /curlz -curl pdz /f pdz —
Q

— (h xmn, cp) by w b () (4.9)

We are now able to justify the compatibility condition (4.2). It comes from the variational
formulation (4.9) by taking ¢ in K{Z ().

Step 3: Existence. We next prove existence of weak solutions of (E7). We know from
Lemma 3.3.2, that the problem (4.9) satisfies the Inf-Sup condition (3.19). So, It has a
unique solution z € V%.(€) since the right-hand side belongs to (V%I(Q))’. We known due to
Theorem 1.16 that this solution z belongs to W ?(Q). Next, we want to extend (4.9) to any
test function ¢ in XI%/(Q) We consider the solution x in W %' (Q) up to an additive constant

of the Neumann problem:

Ax=divp inQ and g;( =0 onl. (4.10)
Then, we set
J
¢=p—grady — > ((@—grady) n, 1)y, gradq, . (4.11)
j=1

Observe that ¢ belongs to VIC;“/(Q) and curly = curlp. Moreover, using the compatibility
conditions (4.2) and (4.4), we obtain:
Vx € W (), /f Vxdz — (h xn, Vx)r=(f-n+divr(hxn), x)r =0,
Q

and for 1 < j < J,
/Qf-gradqud:E —(h x mn, gradqu>p =0.

So, the problem (4.9) becomes: find z € V2(€) such that

VQ)EX%I(Q) /curlz'curltfodm:/f-cﬁdm—(h><n,<79>p. (4.12)
Q Q

It is easy to prove that every solution of (4.8) also solves (4.12). Conversely, let z a solution
of the problem (4.12). Then,

Ve € D((Y), (curl(curlz — f), ¢)pq)xpa) = 0.
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So —A z is equal to f in . Moreover, by the fact that z belongs to the space V1.(2) we
have divz =0in 2, 2-n =0on I and (z-n, 1)y, =0, 1 < j < J. Then, it remains to
verify the boundary condition curl z x n = h X n onI'. We multiply the equation —A z = f
in Qby ¢ € X:’F’/(Q), we integrate on Q and we compare with (4.12). Consequently, for any
pE X];(Q) we obtain:

(curlz x n, ¢ )r =(h X n, @)r.

1 .7 /
Let now p any element of the space W '~ 77 (T'). So, there exists an element ¢ of W LF' (Q)
such that ¢ = p, on I', where p, is the tangential component of g on I'. It is clear that ¢
belongs to X’;(Q) and
(curlz x n,pu)r — (h x n,u)r = (curlz x n,pu,)r — (h X n, p,)r
= (curlz x n,)r — (h x n,p)r =0.
This implies that curlz x n=h x n on I
We deduce that &€ = 2z + V0 € W 1P(Q) is a solution of the problem (E7).
Step 4: Estimate. In order to prove the estimate (4.5), let us consider the operator B €
L(VE(Q), (VE(Q))") defined by
VA e V5(Q), Ve V’:’FI(Q), (BX, ) = / curl X - curl pdz. (4.13)
Q

Thanks to the Inf-Sup condition (3.19), the operator B is an isomorphism from V%.(Q) onto
(VF(Q)), and for any A € V2(Q),

Al = 1B Ay oy (414)
Hence, for z € V £(Q) solution of problem (4.9) we have:
B -pd h X n,
) Bz _ g, Jofiedstihxm e
AT N 7 e [
<P750 ©#0
Then,
1B 21l 3y < C(IF i + 18 X mllgy 1700 )-
Using (4.14) and the continuous embedding of X 7(2) in W ?(Q) we obtain:
120w oy < C(IF iy + I8 X Rllgy —1/mnqry ) (4.15)

The estimate (4.5) follows directly from (4.7) and (4.15).

Step 5: Regularity. Let £ €¢ W ?(Q) the solution of (E7). We suppose now that g €
W2=1pP(T), h € WI=YPP(D), Qs of class C ! and we prove that & belongs to W 2P(Q). We
set z = curl&. It is clear that z € X;p(Q). It follows from Theorem 3.3.5 that z € W P(Q).
As a consequence, & belongs to X 27(€). By Corollary 2.2.12, we have £ € W 2P(Q).

O
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We now can solve the Stokes problem (St).

Theorem 4.2.4. (Weak solutions for (St)) Let f, g, h with:
p’ . / l—l,p _l7p
fe (HY (div, Q)), ge W »"(T), he W »"(I), (4.16)

and verify the compatibility conditions (4.2)-(4.3). Then, the Stokes problem (ST) has a unique
solution (u, T) € WP(Q) x LP(Q)/R satisfying the estimate:

ey + 1) < O1F gy, ey + 1901 sy + IR XA g ) (417

Proof. Step 1: Uniqueness. We begin to prove uniqueness of weak solution of (S7). We
suppose that f =0in Q, g =0and h =0 on I'". Since Au-n =0 on I', we find that 7
satisfies: A7w = 0in Q and SZ = 0on I'. We deduce that m = constant in 2 and this implies
the uniqueness, up to an additive constant, of the pressure. So, we are reduced to a problem
of type of (E'r) with the unknown w. Using the same uniqueness argument in Proposition

5.2.4, we can prove that u = 0 in Q.

Step 2: Compatibility conditions.
We note that condition (4.3) is necessary, because divu = 0 in . We will justify the
necessity of condition (4.2) below. Let 6 € W27p (Q) the unique solution of the Neumann

problem (N). Weset w =u—V6fand z = w— E (w-n, L)y, grad qT Then, problem (S7)

7=1
becomes
—Az+Vr=f and divz=0 in €,
z-n=0 and curlzxn=hxn onT, (4.18)

(z:m, 1)y, =0, 1<j<J

It is easy to prove that every solution of (4.18) also solves (4.9) where we replace the inte-

gral [, f - @ dx by the brackets (-, -) which justifies the necessity of the

[HP (div, Q) x HY (div, Q)’
compatibility condition (4.2) by taking ¢ € K7 ().

Step 3: Existence. We next prove existence of weak solutions of (S7). We know that

problem (4.9) has a unique solution z € V7 (Q) satisfying the estimate:

20w 2oy < CUF N ey + 1 % Bl gy - (4.19)
We set

J
p=¢p-Y (¢ n l)x gradq],
J=1
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where ¢ € X;i/(Q) with dive = 0 in . It is clear that @ belongs to V;i/(Q). Using the
compatibility condition (4.2), there exists a unique z € V2(2) such that for any ¢ € X;il(Q)
with dive =0 in Q:

/ curl z - curl pdx
Q

hxn, ) 1 (4.20)

(f, ‘P>(H0P’(div,Q))/ng’(div,Q) —{ W 5P () x W%’P'(r)’

Let us take ¢ € D,(Q2) as the test function in (4.20). Then we get
(=Az —f, @)p@)yxp@) =0, forany ¢ € Dy(0).
By De Rham theorem, there exist a function m € LP(Q2) such that
—-Az+Vr=f inQ.

Moreover, by the fact that z belongs to the space VL(Q), we have divz =0in Q, z-n =0
onI'and (z-n, 1)s, =0, 1 < j < J. The remainder boundary condition curlz x n = h X n
on I' is implicitly contained in (4.20). Observe that since f and Vr are two elements of
[Hé’/ (div, )], it is the same for A z. Otherwise, D(f2) is dense in Hé’/ (div, ), it is clear
then that for any ¢ € Héol(div7 Q):

<V T, @)[Hg’l(dimﬁ)]’ngl(div, Q) =0

Moreover, if ¢ € er,'i,(Q) with dive = 0 in ©, using (4.1) we have
(ZA2 Ohp e wv.yxmd @v.e) /chrl #-curlpdz +
+ (curlz x n, ¢)

w %’p(l")x WP @’
We deduce that for all ¢ € X;Z,(Q) with dive =0

(curlz x n, p) 1, =(hxmn, )

1 1 1 .
W RT()x WP WP x WP (r)

1 . /
Let now p any element of the space W '~ " (T"). So, there exists an element ¢ € W 17 (Q)
such that dive =01in Q and ¢ = p, on I'. It is clear that ¢ € X;i/(Q) and

(curlz x n, w)yr — (h X n, p)r = (curlz x n, p,)r — (h X n, p)r

= <CllI'1,Z X n, 90>F - <h X n, (30)1—‘ =0.

This implies that cur z x n = h x n on I'. As a consequence, the pair (z, 7) € W MP(Q) x
LP(Q)/R is the unique solution to the problem (4.18). Finally (u = z4+V 6, n) € W 1P(Q) x
LP(2)/R is the unique solution of the problem (St). O
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Remark 4.2.5. Observe that if we suppose in Theorem 4.2.4 that f € LP(Q) with divf=0
in © and we add the compatibility conditions (4.4), then the pressure 7 is constant. Indeed,
from the first equation in the Stokes problem (S7), we obtain that A7 = 0 in  and 8—; =
f-n+divp (h x m) = 0 on T'. This implies that 7 is a constant and we are reduced to solve
the problem

—Au=f in Q,

divu=20 in €,

(4.21)
u-n=g, curluxn=hxn onl,

(u-n, 1)g, =0, 1<j<J

where the well-posedeness of this problem is given by Proposition 4.2.3.

We can also solve the Stokes problem when the divergence operator does not vanish and

it is a given function. So, we focus on the study of the problem:

—Au+Vr=f and divu = x inQ,
u-n=¢g and curluxn=hxn onl, (4.22)

(u-n, )y, =0, 1<j<J

Corollary 4.2.6. For every f, x, g, h with

fe[HY (div, Q), x € L(Q), g WV/PP(1), he W1/PP(D),

with the compatibility condition (4.2) and

/ xdz = (g, 1)r, (4.23)
Q

the Stokes problem (4.22) has exactly one solution u € WHP(Q) and m € LP(Q)/R. Moreover,
there exists a constant C > 0 depending only on p and Q such that:
| wllwre +lImlr@mr < C(Hf ||[Hg’(divvﬂ)}/ + Ixllze) + 19 lw1-1/mp @y +

+ H hxmn H Wfl/p,p(r)) (4.24)

Proof. We consider the Neumann problem:

Af=x inQ, %:g on I’
on

which has a unique solution § € W2P(Q)/R and verifies the estimate:

18llw 2@y < C (Il o) + gl 1-vmaqe )- (1.25)



Chapter 4. The Stokes equations with the tangential boundary conditions 78

Set g = V . By Theorem 4.2.4, there exists a unique (z, 7) € W YP(Q) x LP(Q)/R solution

of problem:
—Az+Vr=f+Vyxand divz=0in ), z-n=0and curlzxn=hxn onTl,

satisfying the estimate:

2w 10y + Il o@) < (1F gy s gy + 1 % 2l + I

where V x € [HY (div, Q)]" and satisfies (V x, grad qu>[H€/(div7 Q< HY (div, @) = 0. Finally,
the pair of functions (u, ) = (z + wuo, ) is the required solution. O

4.3 Strong solutions and regularity for the Stokes system (S7)

Theorem 4.3.1. (Strong solutions for (St)) Assume that Q is of class C*'. Let f, g h
such that:
feI’(Q), gew*VPP() and he W!-V/PP(D) (4.27)

and satisfying the compatibility conditions (4.2)-(4.3). Then, the solution (u, 7) of problem
(St) given by Theorem 4.2.4 belongs to W2P(Q) x W 'P(Q) and satisfies the estimate:

i@y + Ilw o) < O flla) + 119 oy, +1AX R ) (428)

Proof. Before, we note that under the hypothesis of Theorem 4.3.1, the data f, g ans h satisfy
also the hypothesis of Theorem 4.2.4. So, this implies that problem (Sr) has a unique solution
(u, ) € W IP(Q) x LP(Q)/R. Moreover, since 7 satisfies:

div(iVr—f)=0 inQ, (Vr—f) - n=—divpr(hxmn) onl. (4.29)

Then, 7 € WHP(Q). Now, we set F = Vr —f € L’(Q). So, problem (Sr) becomes:
—Au=Fanddivu =0in Q, u-n=gand curlu xn=hxnonl and (u-n, 1), =0
for any 1 < j < J. Therefore, F, g and h satisfy the assumptions of Proposition 4.2.3. Then,
u belongs to W 2P(Q). O

Remark 4.3.2. Note that in Theorem 4.3.1, to prove the regularity of the velocity, we have
used the result of Proposition 4.2.3. We can establish this regularity result by using other

argument. Let us explain. We set z = curlu. Then, z satisfies:
z€ LP(Q), divz=01in{), curlze LP(Q), zxn=hx n onT.

Using Theorem 3.3.5, the function z belongs to WP(2). As a consequence, thanks to Corol-
lary 2.2.12, the solution u of the problem (S7) belongs to W2P((Q).
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Corollary 4.3.3. Let fe [Hg/ (div, Q)]', g =0 and h =0 on I" with f satisfying the compat-
1bility condition
P’ —

Then, the solution (u, 7) of problem (St) given by Theorem 4.2.4 belongs to WP () x LP(R).

Proof. Let f in the dual space of Hé’/(div, Q). We know (see Proposition 1.2) that there exist
¥ € LP(Q) and xo € LP(Q2) such that

f=v+Vxo and [[¢|rr@) + [x0llzr) < CI S H(Hg'(div,ﬂ))"

Since (V xo, g?a/dq;fp) = 0 and f satisfy the compatibility condition

(HY (div, Q) x HE' (div, Q)
(4.30), it is the same for 4. Thanks to Theorem 4.3.1, there exist u € W *P(Q) and 6 €

W LP(Q) satisfying

[ Aut Vo= inQ,
divu =0 in ),
u-n=0, curlu x n =0, onl,
(u-n, )y, =0, for any 1 <j < J,

with
| ullwzeq) + [10llwiee) < CllYllzr@)-
Then, u and ™ = 0 + x¢ satisfy the announced properties. O

Using the same arguments in the proof of Corollary 4.2.6, we have the following result
concerning strong solution of the Stokes problem (4.22), where the divergence operator does

not vanish.

Corollary 4.3.4. For every f, x, g, h with
feELP(Q), xe WIP(Q), ge W2 VPP(D), he Wi-Vrr(D),

with the compatibility condition (4.2) and (4.23), the solution (u, w) of the Stokes problem
(4.22) given by Corollary 4.2.6 belongs to W?P(Q) x WLP(Q)/R. Moreover, there ezists a
constant C > 0 depending only on p and Q such that:

lullwze) +ITllwis@mr < C(Hf lzr) + IXlw e + 1 9 lw 21wy +

+ R nl g ). (4.31)

In the general case we have the following theorem.
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Theorem 4.3.5. Let m > 0 be an integer. Suppose that Q is of class C™ 11 and f, g, h with

fe Wnr(Q), ge wmt2Uep(ry) pe wmti-lUee(T)

satisfying the compatibility condition (4.2)-(4.3). Then, the solution (u, w) of the problem
(ST) given by Theorem 4.3.1 belongs to W™ 2P(Q) x W™HLP(Q) satisfying the estimate:

1wl wmren) + I7lwmiio@) < O Ffllwirg) + llg Iy msz gy HIBX Bl ity
(4.32)

4.4 Very weak solutions for the Stokes system (Srt)

We are going to study the existence result of very weak solutions for the Stokes problem (S7).

In the sequel, we will use the following space:

TP(Q) = {go e HE(div, Q); dive € Wol’p(Q)} .

Lemma 4.4.1. The space D(R) is dense in TP(Q) and for all x € W ~1P(Q) and ¢ € T (),

we have:

(Vx, %)(Tp’(g))lx 7 (Q) — —(x, div ‘P)Wfl’p(g)xwg,p/(ﬂ). (4.33)

Proof. In a first step, we consider that €2 is strictely star-shaped with respect to one of its
points which is taken as the origin. Then, for any ¢ € TP?(Q), we take @ its extension by
zero to R3. Thus, ¢ € H?(div, R?) and as divy = d/n\f:o € Wol’p(R3), then @ € TP(R?). For
0 < 1, we define the functions:

po(x) = go(%), for a.e & € R3.
Since supp @y C 0Q C Q, the function @y has a compact support in 2. Moreover, @, €

T?(R?) and
lim gy = & in TP(R3).

The result is then proved by regularization. Let p € D(R3), be a smooth C* function with

compact support, such that p > 0, ng p(z)dz = 1. For ¢ > 0, let p. denote the function

x — (E%)p(f) As e — 0, p. converges in the distribution sence to the Dirac distribution.

As a consequence, p. * @y|q belongs to D(2) and

lim lim p. * @y = @ in TP(R?).
e—00—1
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The result follows because ¢ is the limit in TP?(Q) of the restriction of the functions pe * @y
to €. In the case where €2 is not star-shaped, we have to recover €2 which is Lipschitz by a
finite number of star open sets. Finally the relation (4.33) is a simple consequence of this
density. [

Lemma 4.4.2. A distribution f belongs to (TP()) if and only if there exist ¢ € L”/(Q) and
fo € WP (Q), such that

f=v+ V.

Moreover, we have the estimate

19l 3 () + [ folly —1o ) < CllFllzr@y- (4.34)

Proof. i) For any function ¢ € Lp/(Q) and fy € VV‘LP/(Q)7 we have

Vo € D(Q), (¥ +V fo, v)p(oxpe) = /Q'(/) -vdz — (fo, div U>W71’p/(Q)XW01,p(Q).

The linear form in the right-hand side of the above relation is continuous for the norm of
TP(Q). Since D(N) is dense in T'P(Q2), we deduce by Hahn-Banach Theorem that ¥ + V fj

is an element of T'7(Q)’.

ii) Conversely, we set E = H['(div, Q) x Wol’p(Q) equipped whith the norm

1l = ol aiv, ) + 145 vl 1o

The operator T': v — (v, divw) is continuous from T?(2) onto E. Its range R(T') is a closed
subspace of E and T is an isomorphism from T?(Q) onto R(7") and is an isometry. Hence,
for each f € TP(Q)’, we associate the element f* € (R(T'))" such that

Vo e TP(Q),  (f, v)rreyxrre = (F" T )Ry <R(T)-

Note that || f [|zr@) = [If*[lr(r)y because T is an isometry. By the extension theorem of
Hahn-Banach, f* can be extended in [HJ(div, Q)] x W =17 (Q) to an element called (h, g)
with ||Bl (e @iv.o)y + ||9||W—1m’(g) = [|f*llr(r)y- We deduce that there exist ¢ € L7 () and
X € LP'(Q) such that:

Yv € TP(Q), <f, v >Tp(Q)’><Tp(Q) = /Q’(’b cvdz — <g, div U>W*1»FI(Q)><W01”7(Q) +

+ (VX )2 (div, Q) x HP (div,0)-

So, f is equal to ¥ + V fy in Q where fy = g + x and satisfies the estimate (4.34). O



Chapter 4. The Stokes equations with the tangential boundary conditions 82

We shall use the space
H (A Q) = {v e I(Q); Av e (T7(Q)'},
equipped with the topology given by the norm:

lollzr @) = lvller@) + 1A vl 2w g -

The following lemma will help us to prove a trace result.

Lemma 4.4.3. The space D(Q) is dense in H,(A; Q).

Proof. Let £ € (H ,(A; ©)) such that for any v € D(2), we have (€, v) = 0. We want to prove
that £ = 0. Using the Riesz’s representation lemma, there exists (u, z) € L¥ (Q) x TP (Q)
such that: for any v € H ,(A; ),

£, v) = /Q u-v+ (Aw, z>(Tp/(Q)),XTp/(Q). (4.35)

Observe that we can easily extend by zero the functions u and z in such a way that & € LP (R3)
and Z € TP (R3) (i.e. Z € H” (div, R?) and divz € W1# (R3)). Now, we take ¢ € D(R3).
Then, we have by definition that:

/ﬂ~goda:+/ z- Apdr = (¢, ¢la) =0, (4.36)
R3 R3

and thus & + AZ = 0 in D(R?). Using that z € L” (R?) and AZ = —u € LP (R3), we
conclude that Z € W > (R3) and therefore z € Wg’p/(Q). As D(Q) is dense in Woz’p/(ﬂ),
there exists a sequence (zp)y C D(Q) such that z; — z in W27 (Q), when k — oco. In

particular, z — z in Tp/(Q). Finally, we consider v € H ,(A; Q) and we have to prove that
(€, v) = 0. Observe that:

£, v) = —/Q’v -Azdzx+ (Aw, z>(Tpr(Q)),pr/(Q) (4.37)
= klingo ( — /Q v-Azpde + (Avw, zk>(Tp/(Q)),XTp/(Q)) (4.38)
= lim (—/v-Azk+/v-Azkdm):O. (4.39)
k—oo Q Q
Therefore, D(Q?) is dense in H ,(A; Q). O

We define the space:

Y2(Q) = {goe W2P(Q); ¢ -n=0, divp=0, curlp x n =0 onF}.
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Let us introduce some notations. For any vector field v on I', we shall denote by v, the

component of v in the direction of n, while we shall denote by v, the projection of v on the

tangent hyperplane to I'. In other words
Up =0V 1 V=V — Upn.

Let us now consider any point P on I" and choose an open neighbourhood W of P in I' small
enough to allow the existence of two families of C? curves on W. The lengths s, so along
each family of curves, respectively, are a possible system of coordinates in W. We denote by
T1, T2 the unit tangent vectors to each family of curves, respectively. With this notations, we
have v; = Zi:l VR Tk, where v; = v - 7;. Consequently for any v € W 2P (), we have the

following formulas:

dive = divrvt—QKv-nqtg—v'n onT, (4.40)
n
dv 2 ark L v
“on = r 441
on " 1; 8n ont (4.41)
2 Jov
curlv = Z X T + 5 <" onl, (4.42)

where K denotes the mean curvature of I', divr is the surface divergence.
The following lemma proves that the tangential trace of the curl of function v of H ()
1
belongs to W~ »P(T).

Lemma 4.4.4. The mapping v : u +— curlu|p x n on the space D(Q) can be extended
by continuity to a linear and continuous mapping still denoted by ~, from H,(A; Q) into
W_l_%’p(F) and we have the following Green formula: for any uw € H,(A; Q) and ¢ €
Y7 (%),

(A u, ‘P>(TP’(Q))'xTP’(Q) = /Q u-Apdx+ (curlu x n, p)r, (4.43)

where the dualiy on T is given by (-, )r = (-, .>W717%‘p(I‘)><W”l/p*p/(l‘)'

Proof. Let u € D(Q), then formula (4.43) is valid for any ¢ € Y:IF’/(Q). Let p € WiH/pr (1),

Then, there exists a function ¢ € W > () such that: ¢ = p, on I'. Moreover, using (4.40),

0
we must, choose ¢ such that 9P n= —divr p; on I, in order to obtain divp =0 on I'. We

on

0
can also fix 8—('0 X n so that we have curlyp x n = 0 on I'. For this, using (4.42) and the fact
n
2 (8 Mt

S XTi)XT7.
j=1 (98] J)

0
that (z x m) x n = —z; for any vector field z, we must choose (ai)t =5
n

dp 0 py
As a consequence, Fr i divp uﬁZ] 1 (8 55

X Tj) x 1 and ¢ satisfies the two conditions:

divip =0 and curlp x n =0 onl.
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Let us summarizes. The function ¢ belongs to Y{Z/(Q) and satisfies:

P = onl,
5 2 4.44
a‘Z:—ndivr,ut+z::(asj xT;)xn onT, (4.44)
such that
H‘PHW?,p/(Q) < CHNHWlH/p,p’(F)- (4'45)
Consequently,
(curlu x n, ,u>p‘ = ‘(curlu X n, ut>p‘ = )(curlu X T, @)r

IA

HUHLP(Q) |l w 2P (Q) + 1A uH(TP/(Q))/ |l T (Q)

A

<l a1l o0
Thus, using (4.45), we obtain for any u € D(Q):

[curlu x nHqu%,p(F) < Cllulla,a;0)-

Therefore, the linear continuous mapping 7 : « +— curl u|r x n defined on the space D(Q) is

continuous for the norm of H ,(A; ). Since D(Q) is dense in H ,(A; Q), then we can extend
1

continuously this mapping from H ,(A; Q) into W ~17%2(I") and we have the Green formula

(4.43). O

Theorem 4.4.5. (Very weak solutions for (St)) Assume that Q is of class C>'. Let f, x,
g and h with:

Fe(T7(Q)), x € LP(Q), g € W YPP(T), he Wi-1/pr(D),

and satisfying the compatibility conditions (4.2) and (4.23). Then, the Stokes problem (4.22)
has ezactly one solution u € L?(Q) and m € W ~LP(Q)/R. Moreover, there exists a constant

C > 0 depending only on p and Q such that:

lullzr@ + Il -y < C(IFlgwayy +Ixllzn)+ Il -y +

kgt ) (4.46)

Proof. We proceed in three steps.



Very weak solutions for the Stokes system (St) 85

First step: Thanks to the Green formula (4.43), it is easy to verify that (u, m) € LP(2) x
W ~1P(Q) is solution of problem (4.22) without the last condition, is equivalent to the varia-
tional formulation: find (u, 7) € LP(2) x W ~LP(Q) such that for any ¢ € Y’%/ (), and for
any ¢ € W17'(Q)

_/S:ZUALPdw - <7T7 diVLP>W,1,p(Q)XWO1,p’(Q):<f,Q0>Q+<th,(P>F
/Qu Vgdz = —/qudw {9 O w -1/wrryxwi/es (> (4.47)
where the dualities on  and I' are defined by:

(= (- >(Tp’(Q))/><Tp’(Q) (o ={) W —1-Vpp(T)x W 1HV/pr (1)

Indeed, let (u, ) € LP(Q) x W ~1P(Q) be a solution to (4.47). It is clear that:
—Au+Vr=f and divu=yxin Q.

Consequently u € H ,(A; ), because the characterization given by Lemma 4.4.2 implies that
Ve (TP(Q)). Using Lemma 4.4.1 and Lemma 4.4.4, we obtain for any ¢ € Y’%/ (Q):

_/Qu -Apdz — (curlu x n, p)r — (7, div ¢>W—1’P(Q)xwolvp'(9):<f’ P)a-

Then, by (4.47) we deduce that for any ¢ € Yg(Q),
(curlu x n, p)r = (h X n, P)r.

Let € W 'HY/PP (). As in the proof of Lemma 4.4.4, there exists a function ¢ € W 27 (Q)
satisfying (4.44). So, we can write that for any p € W +1/P# (D),

(curlu x n, wyr = (curlu x n, p,)r = (curlu x n, p)r =

= <h’ X n, l’l’t>F = <h’ XM, ”’>F

Which implies that curlu x n = h X n on I'. From the equation divu = x in 2, we deduce
that for any ¢ € W' (Q), we have

<'u, " n, Q>W71/p~,p(r)><wl/p-,p’(p) = <97 Q>Wfl/pqp(r)><wl/p,p’(r)'

Consequently, u-n = g in W ~1/P» (I"). The converse is a simple consequence of Lemma 4.4.1,
Lemma 4.4.3 and Lemma 4.4.4.
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Second step : Let’s now solve problem (4.47). We suppose that g = 0 on T and [, x dz = 0.
We know due to Corollary 4.3.4 that for any pair (F, £) € (P (Q) LK 2()) x (W' (Q) n
L’Sl(Q)), there exists a unique ¢ € W 27 (Q) and ¢ € W %' (Q)/R satisfying:

—-Ap+Vq=F in €,
divep =¢ in (2,
@w-n=0and curlp x n =0 onl,
(p-n, 1)y, =0, forany 1 <j < J,

with the estimate

el 2y + Il @y < CHUIF Iy + 1€l - (4.48)

Note that for any K € R,

| /Q xqdz| = | /Q x @+ K)de | < el vz

and

[(F> pral < If e @y lellze@) < I ey el w2 -

From these bounds, we have

}(f, pia+(hxn, p)r— / qum’
Q
< C(HfH(Tp/(Q)), + 1R x gy 1vmp ) + IIXHLP(Q)) X (HFHLP/(Q) + \|.g||W1,p/(Q)),

In other words, we can say that the linear mapping;:

(F.€) — (. oo+ (h x n, <P>r—/Qqu$

defines an element of the dual space of (L' (Q) L K2(Q)) x Wol’p/(Q) N LSI(Q) and accord-
ing to the Riesz’s representation theorem, there exists a unique (u, m) € (LP(Q)/ K1 (Q)) x
W =LP(Q) /R solution of problem (4.47) satisfying the bound (4.46).

Third step : Now, we suppose that g # 0 and the compatibility condition (4.23) holds. We

consider the Neumann problem:

Af=yx inQ and 29 =g onl,
on

which has a unique solution § € W P(Q)/R satisfying the estimate:

101lw 1r )/ < C(IIxl e + 19l -1m0(ry) - (4.49)
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Set w = V6. By step ii), there exists a unique (z, 7) € LF(Q2) x W ~1P(Q)/R solution of

problem:

“Az+Vr=f+Aw in{,
divz =0 in €,
z-n=0and curlzxn=hxn onl,

(z:m, 1)y, =0, forany 1 <j < J.

Indeed, we have Aw = V x and the characterization given by Lemma 4.4.2 implies that
Aw € (N?(Q)). Moreover, since [, Aw - vdz = 0 for any v € K%’i/(Q), then f + Aw
and h x m satisfies the compatibility condition (4.2). Finally, the pair of functions (u, 7) =

(z + w, ) is the required solution. [J

Corollary 4.4.6. Assume that Q is of class C>'. For f € (TP (Q)), g € W ~Y/P?(T) and
h € WI=VPP(DY) satisfying the compatibility condition (4.2) and (4.3), the problem (Er)
has a unique solution & € LP(QY), with the estimate

|l zr o) < C(HQHW*UP»P(F) + [[h x | Wflfl/pvp(r))- (4.50)

Proof. we proceed in two steps.

First step. We suppose that ¢ = 0 on I'. Thanks to the Green formula (4.43), it is easy to
verify that & € LP(Q) is solution of problem (Er) without the last condition, is equivalent ot
the variational formulation: Find & € LP(Q2) such that

Ve e Yg(g)v / § - Apdr = (f, ‘P>(Tp’(Q))/><Tp’(Q) —(h xmn, ‘P>Wflfl/p,p(p)xW1+1/p,p’(r)'

? (4.51)
Let’s then solve problem (4.51). We know from Proposition 4.2.3 that for all F € L (Q) L
Kg(Q), there exists a unique @ € W >P'(Q) satisfying

—Ap=F and divp =0 in €,
@w-n=0, and curlp xn =0 onl,

(p-m, 1)y, =0 forany 1 <j < J.

with the estimate

H‘PHWZ,P’(Q) < CHFHLP’(Q)~
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Then, we have:

2 @)z @ — Bx @] < Il grayllelzr o+
<l gy |l e
= P 2
Ol x nllyy o Il 2o +
<

C(HfH(TP/(Q))I + Hh X n” W—l—l/p,p(r)) ||F||L1’/(Q)'

In other words, we can say that the linear mapping

T: F—(f, Lp>(Tp/(Q))/><TP/(Q) — (h x m, (p>W—l—l/p,p(r)xW1+1/P7P’(1")?

is continuous on L¥ (Q) L K g(Q). According to the Riesz representation theorem, there
exists a unique &€ € LP(Q)/ K 7.(Q) such that:

VF € LPI(Q) 1 KJQ (Q)v T(F) = <£7 F>LP(Q)XLP/(Q)7

i.e £ is solution of (ET).

Second step: Now, we suppose that g € W~1/PP(T) and consider the Neumann problem:
Find § € W LP(Q)/R such that

20

A=) inQ and — =g onl,
on

where A € R is chosen such that Ames () + frgda = 0. We set up = V6. By step i), there
exist a unique z € LP(Q)/ K7 (Q) solution of problem:

—Az=0 and divz=0 in €,

z-n=0 and curlzxn=hxn on I

Finally, & = z + ug is the required solution.



Chapter 5

The Stokes equations with the normal

boundary conditions

In this chapter, Q is supposed of class C!'!' except in some cases where we will precise

that the boundary can be more regular.

5.1 Introduction and preliminaries
In this section we will study the Stokes problem:

—Au+Vr=f and divu=0 in €,
(SN) Suxn=gxn and 7=m onl,

(u-n, )r, =0, 1<i<I.

5.2 Weak solutions

The aim of this subsection is to give a variational formulation of problem (Sy) and to prove

a theorem of existence and uniqueness of weak solutions.
We define the space
VE(Q) ={w e XX,(Q);divw =0inQ and (w - n, )p, =0, 1 <i < T},
which is a Banach space for the norm || - || x»(q)-
We begin with the following useful result.

Lemma 5.2.1. The following Inf-Sup condition holds: there exists a constant 8 > 0, such

that
Jocurl - curl pdz

eV =0 (51)
pevi @ eevi @ I€lxz @@l xr o)
¥#0 £#£0

89
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Proof. The proof is very similar to that of Lemma 3.3.2. Let ¢ any function of V?\I,(Q). Due
to Corollary 3.3.8, we can write: for any ¢ € VJ’\’,/ (Q)

(5.2)

lp-gd
< Cleurlpl| ;o =C  sup [ Jocurle-g z‘
©@ gerr)  llgllere
970

Il oy

We use now the Helmholtz decomposition g = V x + z, where y € W ?(Q) and 2z belongs to

HP?(div, Q) with divz =0in Q and z - n =0 on I'. Moreover, we have the estimate

IV xllze) < Cllgllzr(o)-

We set
J

Z=2z— Z(z -n, L)y, gradq}-ﬂ7
j=1

so, z € IP(Q),divz =0inQ, z-n =0on I and (z-n, 1), = 0. Due to Theorem 3.3.7,
there exists a potential vector ¢ € V&,/(Q) such that Z = curle inQ with the estimate
1| wirQ) < C||z|| (- This implies that

/curl<p~gd:c:/curl<p~zdz:/curlap-5d:c.
Q Q Q

Moreover, we have
J

IZlzr) < Clizllprey + Y [z n, Dy, |lgrad q] || o)
j=1

Since z belongs to HJ(div, ), then due to Lemma 3.2.1, the restriction of z - © to any X,
1 7
belongs to the dual space W bmprp (X;)". Thus, we obtain

J
1Zzr@) < Clizllpr) + D1zl e, o llgrad ¢ | o).
=1

So, since div z = 0 we deduce that:

1zl zr (@) < Cllzllzre) < Cllgllzr)-

Finally, we can write

| g curly - g dz| <C‘ch1irlcp~de‘ _ !fﬂcurlgo‘curh/)dx‘.
12|l 7 (o) |curl || gr (o)

9]l zr ()
But by Corollary 3.3.8 we have

1l x2 (@) = l[curl || gr ().

Then,

| [ocurly - g dz| | [ curle - curley dz|

<C
lgllzr )

9

1]l x2 (o
and the Inf-Sup condition (5.1) follows immediately. O
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We are now interested to the resolution of a second type of elliptic system.

Proposition 5.2.2. Let f € (Hgl(curl, 2)) with divf = 0 in Q and satisfying the compati-

bility condition:

P —
Ve Ky (@), (F ) (g (curt o < B2 (curt @) = O (5.3)
Then, the following problem
—A¢E=f inQ,
divE =0 in Q,
(5.4)
Exn=0 onl,
(€ n 1), =0, 1<i<I,
has a unique solution in W'P(Q) and we have:
”£HW1’p(Q) < CHfH[Hgl(curl,Q)}" (55)

Moreover, if f € IP(Q) and Q is of class C>', then the solution & is in W*P(Q) and satisfies

the estimate:

1€l w2r ) < Cll fllzr@)- (5.6)

Proof. i) Due to Theorem 5.2.1, the following problem: find £ € VX, (Q) such that

Vo € V’Z'\/,(Q), / curlé - curlpdz = (f, ¢)q, (5.7)
Q

satisfies the Inf-Sup condition (5.1), where the duality on € is

<" >Q - <.’ '>(H§/(cur1,Q))’XHé’l(curl,Q)'

So, it has a unique solution & € V% () since the right-hand sides belongs to (V?\;(Q))’.
We known that due to Theorem 3.3.7, this solution £ belongs to W P(Q). Next, we want
to extend (5.7) to any test function ¢ in X’K,(Q) Let us ¢ € Xﬁl,(Q) and we consider the
solution x in W% (Q) satisfying: Ax =dive inQ and x =0 onT. We set

I

$=¢—gradx— > (¢ —gradx) - n, L)r, gradg).
=1

Observe that ¢ belongs to V];\/,(Q) and curl ¢ = curl¢. Hence, thanks to (5.3) problem (5.7)
becomes: find € € VA (Q2) such that

Yo € X’])\I/(Q), /chrl§ ~curlpdz = (f, p)a. (5.8)
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That means that problem (5.7) and problem (5.8) are equivalent. It is easy to prove that every
solution of (5.4) also solves (5.8). From now on, we are in position to justify the compatibility
condition (5.3). It comes from the variational formulation (5.8) by taking the test function
p e K]’\’;(Q) Conversely, let & € V() the solution of the problem (5.8). Then,

v —
Vo e X(Q), (curlcurl —f, cp>[ng(curL Q) xHY (curl, @) — 0.

So —A¢ is equal to f in Q. Moreover, by the fact that £ belongs to the space V& () we
have divé =0in Q, &€ xn=0onI"and (§-n, l)r, =0, 1 <¢ < . This prove that £ solves
(5.4). Let B € L(VE (), (VL (2))) be the operator defined by

Vp e VE(Q), Vee VE(Q), (Bp, )= / curlu - curlpde. (5.9)
Q
It is clear that the operator B is an isomorphism from V%, (Q) onto (V£ (Q))’, and

el x2 ) =2 1B pell vz )y - (5.10)

Hence, since £ is the solution of the problem (5.7) we have:

B¢, curl{ - curlpdz
IBEl(ve @y = s W = sw . el
PEVR () ® X5 eV (Q) ¥ X% ()
70 @0

Then,
HB€H(V7\;(Q))/ < HfHLp(Q)
The estimate (5.5) follows by using (5.10) and Theorem 2.2.4.

ii) We suppose that f € LP(Q), Q is of class C?! and we set z = curl€. Then, the

function z satisfies:
ze€ LP(Q), curlz =f € LP(Q0), divz =0 and z-n =0.
Due to Theorem 2.2.8, z belongs to W 1P(Q). As a consequence & satisfies:
£cIP(Q), curlé € WP(Q), divé =0 and € x n = 0.

We deduce by using Corollary 3.3.6 that the solution & belongs to W %P(Q) and satisfies the
estimate (5.6). O

Remark 5.2.3.

Thanks to the characterization of the kernels K7.(Q2) and K&(Q), we can in fact show directly
the uniqueness of the solution & € W1P(Q) of the problem (5.4). Indeed, we suppose that
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f =0 and we set z = curl€. Then, z belongs to K2(€) and due to Corollary 3.2.3 we can

write:
J

z= Z(z n, 1)y, grad q;‘-r.
j=1

Since K2(Q) ¢ Wh1(Q) for any ¢ > 1, the function 2z belongs to L?(Q). So,

J
/Q|z|2dx: Z(z n, 1)s, /chrl£ : gradq;‘r dx = 0.

j=1
Hence, zis zero and £ belongs to KX (£2). Due to Corollary 3.3.1, we can write £ as:

1

£=> (¢-m rgradg

i=1
and € = 0 since ¢ satisfies the last condition in (5.4).
We can replace in (5.4) the right hand side by the curl of an element v € LP(2). Indeed, due

to Theorem 3.6.2, every element f € (Hé’/(curl, 2))" with divf= 0 in Q and satisying the

compatibility condition (5.3), can be written as the curl of a function v € LP(Q).

Corollary 5.2.4. Let f€ (Hg)’/(curl, 2))" with div f= 0 in Q and satisfying the compatibility
condition (5.3) and g € Wl_l/p’p(F). Then, the following problem

—AE=f in €,

divE =0 in ),
(En)

EXxXn=gxn onl

(&-n, )r, =0, 1 <i<I,

has a unique solution in W1IP(Q) and we have:

1€ lwroe < C(1F g curt oy 19 Pl wr-vimnqry ) (5.11)

Proof. i) Let &, be the divergence free lift of g:
€ =g,onl, divéy=0inQ and &, WP(Q),

whit the estimate:
”50” w LP(Q) < C”gtH W 1-1/p.p(T)

Then setting z = £ — &, problem (E y) is equivalent to: find z € W '?(Q) such that
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—Az=f—-A¢g, in €,
divz =0 in €,
(5.12)
zxn=0 onl",
(z-mn, )r, =0, 1<i<I.

Observe that F' = f + curlcurl £, belongs to [I—Ié’l(curl, )] and satisfies the compatibility

condition (5.3). Then, due to Proposition 5.2.2, there exists a unique z € W (Q) solution
of (5.12). Then, & = z + &, € W P(Q) is a the unique solution of (Ex) which satisfies the
estimate (5.11). O

The next theorem provided the information on the solvability, in weak sense, of the inho-

mogeneous Stokes problem (Sy).

Theorem 5.2.5. (Weak solutions for (Sx)) Let f, g, mo with
fe (HY (curl, Q)), ge W'=V/PP(D), my e WI-V/PP(D), (5.13)
satisfying the compatibility condition:

Vv e K]I\’,/(Q), (f, U>Q—/7Tov'ndU:0, (5.14)
r

where (-,-)q = Then, the Stokes problem (Sn) has a unique

Co g (curt )y < Y (curt )"
solution (u, ™) € W'P(Q) x W P(Q) satisfying the estimate

[ wll wir@) T |7 HWLP(Q) < C(H‘fH(Hé’/(curl,Q))/ + [lg x n wi-1/pery T ||7TOHW1—1/10,p(F))-
(5.15)

Proof. First, we consider the problem
Ar=divf inQ, w=m onl. (5.16)

Because divf € W ~1P(Q), this problem has a unique solution m € W P(Q) satisfying the

estimate

HWHWLP(Q) < C<||f||(H(§J/(Cur1,Q))’ + ||7T0HW1*1/1’*P(F))' (517)

Next, observe that F = f — V 7 is an element of [Hé)/(curl7 Q)]’. Moreover, since f satisfies

the compatibility condition (5.14), we have then

Vve KyQ), (F,v) =0.

(H(?/ (curl, Q)) XH(I)JI (curl, )
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So problem (Sy) becomes: —Au = F in Q, dive = 0in Q, u x n = g x n on I' and
(u-n, 1)p, =0 for any 1 <i < I which is equivalent to: Find u € X §(Q) such that:

u—gé€vViQ)
Vv € V]’\’;(Q), / curlu -curlvde = (F | v)q.

Q
We are now able to justify the compatibility condition (5.14). It comes from the last variational

formulation by taking v € K %(Q) Moreover, since F' satisfies the assumptions of Corollary
5.2.4, this problem has a unique solution u € W 1"”(Q) satisfying the estimate
ol o) < CUF gyt curt.cop *+ 19 % 7l i-1mnry): (5.18)

Finally, the pair (u, 7) € W P(Q) x W P(Q) is the unique solution of the problem (Sy)
and the estimate (5.15) follows easily from (5.17) and (5.18). O

Remark 5.2.6. If we take mop € W ~1/PP(I") we obtain that 7 € LP(Q) a unique solution of
the problem:
—Anr=divf inQ and w=my onT.

But we are not able to solve problem (Sy) because in this case f = curl (curlu) + V7 ¢
[HY (curl, Q)]'.
We can also solve the Stokes problem (S ) when the divergence operator does not vanish

and it is a given function. So, we focus on the study of the problem:

—Au+Vr=f and divue =y inf,
uxn=gxn and w=m onT, (5.19)

(u-m, 1)p, =0, 1<i<I.

Corollary 5.2.7. Let f, x, g, mo with
fe [HY (curl, Q), x e W(Q), ge WITVPP(D), 19 € WIVPP(T)

and satisfying the compatibility condition:

Vv e K]Z\),/(Q), (f,v)a —/F(TFO —x)v-ndo =0. (5.20)

Then, the Stokes problem (5.19) has ezactly one solution u € WIP(Q) and 7 € W1P(Q).

Moreover, there exists a constant C' > 0 depending only on p and Q such that:

lullwieq) + I7llwieg) < C(Hf ”[Hg’( Tt Ixllw1e@) + 19 llw1-1/m00) +

curl, Q

+ ol 1-1/mmry ) (5.21)
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Proof. We consider the problem:
Ar=divf+Ax inQ, =w=m onl. (5.22)

Because div f + Ay € W ~1P(Q), this problem has a unique solution 7 € W LP() satisfying

the estimate

Iellw o) < CON g tourncpy + Il 2oty + ol 1-srmmqry) - (5:23)

So problem (5.19) becomes:

—Au=f—-Vr and divu = x in{,
UXN=gXxXn onT, (5.24)

(u-n, )r, =0, forany 1 <i<].

To solve (5.24), we shall reduce it to the homogeneous condition on the divergence in Q. For

this, we consider the problem
Af=x inQQ and 6=0 onl.

Since x € LP(Q), it has a unique solution # € W 2P(Q), with

101w 200) < Cllixllr0)- (5.25)

Taking w = V 6 and defining

~

w=w— wa n, 1pgradql,
=1

we see that w € W1P(Q) with divw = y, curlw = 0, in Q, w x n = 0 on I and
(w-mn, 1)r, =0 for any 1 <i < I. Finally, taking z = u — w, we see that the problem (5.24)

can be reduced to the following problem for z:

—Az=F and divz =0 in €,

zZXn=gxmn onT, (5.26)

(z-m, 1)p, =0, forany 1 <i<I,
where F = f — V7 + Aw. Under our assumptions and since Aw = Vy € LP(Q), F €
[Hg’,(curl, 2] with div F = 0 in 2 and satisfies the compatibility condition (5.3). Applying
Corollary 5.2.4, we deduce the existence of a unique solution z € W P(Q) of (5.26). Moreover,

using (5.23) we have the estimate:

121w 100) < CUFN g0 e, oy HIXIW @) 0l 11wy + 9 xRl gy 1-1/mm ) - (5:27)
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As a consequence, u = z +w € W 'P(Q) is the unique solution of (5.24). It remains to show
(5.21). Observe that w belongs to W ?(Q) and satisfies w x n = 0 on I'. From Corollary

3.3.8, we see that the semi norm

I
w — |[eurl w| gr (o) + [|div w|[ 1) + Z {(w-n, 1)r,|
i=1
is equivalent to the norm || || 1.5 (q). Since curlw = 0 in Q and (w - n, 1)r, = 0, this yields
the existence of a constant C' > 0 such that:
l@]lvw1pQ) < Clixllr©)- (5.28)
We obtain the desired estimate (5.21) from (5.23), (5.27) and (5.28). O

Remark 5.2.8. Notice that in the corresponding theorem for the problem (St), we took
X € LP(€2). In the case of the problem (Sy), we can not suppose the same, because we need
to solve (5.19), the fact that Vx € [Héol (curl, ©)]', which is not checked because x is only
LP(Q). To get around such difficulty, we took x € W LP(Q).

5.3 Strong solutions and regularity for the Stokes system (Sy)
We give the following preliminary result.

Lemma 5.3.1. The mapping v — curlv - n is continuous from WYP(Q) into W ~1/PP(I)

and we have the relation:

curlv-n = 28 x 7;)-n onl, in the sense of W —1/Pe(D), (5.29)
Sj

Proof. Let v € W 'P(Q). By the density of D(Q) in W P(Q), there exits a sequence v, €
D(Q) which converges to v in W “P(Q). We know from (4.42), that for any vy € D(Q), we

have

curlv, = i (ZZ; XTj+ % X onT. (5.30)
So, Do,
curlvy - n = Z ds,; X T] -n onl.
Since v converges to v in Wl_l/p’p(F), we deduce that the term (i 81; ) ‘n
j=1 9 5j

2
converges to ( Z x T;) - m in W ~Y/PP(T). Moreover, curl v belongs to H P(div, ) and
=105j
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by the continuity of the normal trace operator, we have the convergence of curlvy - n to
curlv - n in W ~Y/PP(I'), which proves formula (5.29). O

Corollary 5.3.2. Let ve WY (Q). If vx ne€ W2 VPP() then curlv-n e W1=V/PP(I)

and

lcurl v nlly 1-1/ppry < Cllv X nllgra-1/mp

Proof. Due to Lemma 5.3.1, we have

v

lo - n = 7 . T,

curlv - n (jlaSjXTj) n  on

and consequently we have:
2.9 (v
curlv-n = (]laz;xﬁ)‘n—i-(;Wxﬁ)-n (5.31)
) 2.9

= (S gem) e (LG )
Jj=1 j=1
2

+ (Z(v-n)({):jxq> n

Observe that the two last terms vanish. Moreover, since v x n € W 27YPP(T), the
tangential derivation on I' belongs to W 1*l/p’p(lﬂ). By the regularity of I', we deduce that
the first term in (5.31) belongs to W ~Y/PP(T). This prove Corollary 5.3.2 O

Theorem 5.3.3. (Strong solutions for (Sx)) Assume that  is of class C*'. Let f, g and

o With:

feI’(Q), ge W /pP(1), my e WiTV/PP(D) (5.32)

satisfying the compatibility condition (5.14). Then, the solution (u, 1) € WHP(Q) x W LP(Q)
of the Stokes problem (Sy) given by Theorem 5.2.5 belongs to W2P(Q) x W 1P(Q).

Proof. Let (u, 7) € W LP(Q) x W LP(Q) be the solution given by Theorem 5.2.5. It suffices
to prove that u € W 2P(Q). The function z = curl u satisfies:

z € LP(Q), divz =0, curlz e LP(Q).

Moreover, since g X n € W2_1/7"”’(F)7 due to Corollary 5.3.2, z - n belongs to W 1=1/PP(T).
We deduce from Theorem 1.18 that z € W MP(Q). As a consequence, it follows from Theorem
2.12 that u belongs to W 2P(Q). O
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We can also consider strong solutions in the case when the divergence operator does not
vanish and we have only to consider regular boundary data for the velocity. So, the proof of

the following result is quite similar to that of Theorem 5.3.3 above.

Corollary 5.3.4. Let f, g, x, mo with:
feIP(Q), ge W¥XUPP(D), x e W'P(Q), mpe W' ~1/PP(D) (5.33)

satisfying the compatibility condition (5.20). Then, the solution (u, T) € WHP(Q) x W 1P (Q)
of the Stokes problem (5.19) given by Corollary 5.2.7 belongs to W*P(Q) x W P (Q).

5.4 Very weak solutions for the Stokes system (Sy)

In this subsection, we are going to study the existence of very weak solutions for the Stokes

equations (Sy). Before, we give some preliminary results.

We introduce the space:
NP(Q) ={v e WyPQ), curlv € HY(curl, Q)},
equipped with the topology given by the norm

H’UHNP(Q) = HUHWLP(Q) + ||CurlvHHp(curl,Q)‘

We have the following density result:

Lemma 5.4.1. The space D(Q) is dense in NP(€2).

Proof. In a first step, we consider that €2 is strictely star-shaped with respect to one of its
points which is taken as the origin. Then, for any v € N P(Q), we take v its extension by zero
to R3. Thus, v € W '?(R?) and as curlv = curlw € H?(curl, R3), then v € N?(R3). For
0 < 1, we define the functions:

vo(z) = v(%), for almost all z € R,

Since supp vg C 0Q C Q, vy has a compact support in . Moreover, vy € N P(R3) and

lim %y =¥ in NP(R?).

The result is then proved by regularization. Let p € D(R?), be a smooth C*® function with
compact support, such that p > 0, [ps p(x)dz = 1. For € > 0, let p. denote the function



i)

Chapter 5. The Stokes equations with the normal boundary conditions 100

x — (E%)p(g) As e — 0, p. converges in the distribution sence to the Dirac distribution.

As a consequence, p. * vg|q belongs to D(2) and
lim lim p, x 9g = ¥ in NP(R?).

e—00—1

The result follows where v is the limit in IV ?(Q) of the restriction of the functions p * vg to
Q. In the case where () is not star-shaped, we have to recover € which is Lipschitz by a finite

number of star open sets. O

We introduce the following spaces
LP(Q) = {v € LP(Q)), divv = 0},
which is Banach space for the norm | - ||zr(q), and
GP(Q) = {V8, 6§ € W, P (Q)}.

The following lemma gives a characterization for the dual space of LZ(2).

Lemma 5.4.2. We have the following properties:

°(Q) = I2(Q) & GP(9).

i) (L5 ()" = L5 ().

ii)

Prodyf) Let v any element of LP(Q2) and x € Wol’p () the solution of the Dirichlet problem:
Ax =dive in Q. Weset u = v — Vx. We remark that u € L2(Q) and Vx € GP(Q). So,

we have:

LP(Q) = L2(Q) + GP(Q).

We next show that LE(Q)NGP(2) = 0. Let v € LE(Q)N GP (). Then, we can write v = V x
with x € Wol’p(Q). Since divv = 0 in €2, we deduce that v = 0 and consequently we have

LP(Q) = L2() @ GP(Q).

We observe that L2(Q) = LP(Q)/GP(Q) and (LE(Q)) = GP(Q)*. Moreover, L2(Q) is a
closed subspace of LP(Q). Hence, if we prove that L2 ()1 = GP(Q) this will imply

}_

GP(Q)" = (LF () = LE(Q) = LE(9),

q

which is the required result because G?(Q)+ = (L2(Q))'.
First, let u € GP(Q). Then, we have for any v € L¥ (Q)

/u~vdm:/ Vrn-vdz =0,
Q Q
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because 7 belongs to Wol’p(Q). Hence u € LZ (Q)1 and GP(Q) c LZ (Q)+. Conversely, let
u € LP() such that for any v € L (Q):

/ u-vdx =0. (5.34)
Q

By choosing v in the space V = {v € D(12), divy = 0in2} and using De Rham’s Lemma,
we deduce that u = V7, where 7 € W 1P(Q). As 7 is unique up to an additive constant, we

can choose this constant in such a way that [,7de = 0. From (5.34), we obtain
Vve Ll (Q), (m v- n>W1,1/p,p(F)XW,1/1)/,?/(” =0. (5.35)

Let now g€ W—Y?"P(I') and § € W' (Q) a solution of the followin Neumann problem

N in €, ( )
Y 5.36
5 = P w1l Dwismamyaw oy on

Next, we set v = V §. We deduce from (5.36) that:

<7T’ w—= m@% 1>F>W 1-1/p.p(D)x W —1/p":2' () = 0.
Then
VN € Wﬁl/p P (F)7 <777 M)W 171/p,p(p)xw71/p’,p’(r) = Oa

which implies that 7 = 0 on I'. Consequently, u belongs to GP(). Therefore, LE (Q)+ C
G ?(Q) which finishes the proof.

O
Now, we introduce the space:
M?(Q) = {(v, 7) € IE(Q) x LP(Q); —Av+Vre[HY (curl, Q)'},
which is a Banach space for the norm:
(v, M)lar@) = vllzr@) + 17l + | —Av + VWH[HOP'(CMLQ)]/-
Lemma 5.4.3. The space D,(Q) x D(Q) is dense in MP(Q).
Proof. Let £ in [M P(Q)] such that:
V(v, ) € Dy(Q) xD(Q), (£, (v, 7)) =0. (5.37)

Using the Riesz’s Representation Lemma, there exist f € Lg/(ﬂ), A e LP(Q) and g €
Hé’l(curl, ), such that for any (v,7) € MP(Q),



Chapter 5. The Stokes equations with the normal boundary conditions 102

£, (v, m) = /Qf -vdx + /Q Ardx + (—Av+Vm, g>[H(§’/(curl,Q)]’ngl(curl,Q) (5.38)

where we have used that [L2(Q)] = L¥ (Q) (as in Lemma 5.4.2 ). In particular, if (v, 7) €
D, () x D(R2), we have

/fmdm%—/)mrda:—i—(—Ag, v)q — (divg, m)q =0,
Q Q

where (-, -)q is the duality bracket between D'(2) and D(Q2). Particularly, if 7 = 0, we obtain
for any v € D,():

/f-vdw+<—Ag, v)o =0.
Q

Since f — A g belongs to W ~%P(Q), using De Rham’s Lemma (see [6]), there exists 6 €
W ~LP(Q), unique up to an additive constant, such that

f-Ag=V0 inQ. (5.39)

We can choose also in particular v = 0 and this time, we obtain for any = € D(Q2):

/)\de —(divg, m)q =0,
Q

which implies that
A=divg inQ. (5.40)

Observe that we can extend by zero the functions f, A and g in such a way that
fel’(RY, NeLP(R?) and g e HY (curl, R?).

Moreover, for any x € D(R?) such that Ay = 0 in Q, we have by (5.38) with v = V x|q:
/ f-Vxdz=0.
Q

1 1
Let u € W»"P(I'). By the density of D(I') in W »"P(T), there exist a sequence j € D(T')
1
such that p converges to p in W " P(I'). Let now ¢ be a solution of the problem

—Agpr =0 in,
ok (5.41)

Ok = Mk onl

We know that ¢, belongs to C(Q). Let ¢ € D(R3) the extension of ¢ to R3. Then ¢y,

belongs to D(2) and we have,

0—/Qf'V<Pk = (f-n, ) 1y 1,

w PP (m)xw oIy
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L

= 0 for any p € W »"P(I'). Consequently, f-n =0 on I' and

SO, <f n, M) S 1.,
N WP (D)xW P (D)
div f = 0 in R3. Now, we take ¢ € D(R3) with dive = 0 and ¢ € D(R?), we obtain by (5.37)

and (5.38):

/RBf-cpd:c—k/R?jqum—i-/Rs(—Acp—i—Vq)-'gdm:0. (5.42)

In particular, if ¢ = 0, then by De Rham’s Lemma:

f-Ag=Vb, inR> (5.43)

with 6y € D'(R?). Since divf = 0 in R3, then —Adivg = A6y in R3. But f € L” (R?) and
suppf is compact, then f € W0_2’p/ (R3) where WO_Q’p/ (R3) is the dual space of the weighted

sobolev space

W2P(R?) = {v € D'(R3), — € I’(R?), ~2 € IP(R%), D?v € LP(R%)},

wo w1

with wo = (1 + |z[)? if p ¢ {3/2,3}, wo = (1 + |z|)?In(2 + |z|) if p € {3/2,3}, w1 = (1 +|z])
if p# 3, w1 =(1+]z|)In(2 + |z|) if p = 3. Consequently Vb, € W&z’p/(Rg). We deduce
that 6 € W, ¥ (R3) and then 6y = —divg in R3. By taking in (5.43) the restriction to €,
we obtain f — Ag = Vplg. As Q is connected, there exists a unique constant a such that

0 =0+ ain Q up to an additive constant. Thus relation (5.43) becomes Ag — Vdivg = f
in R?. As curlg = curlg and curlg € Hp,(curl, R3), then curlg € I-Iégl(curl, ).

Moreover, if ¢ = 0, we obtain from (5.42) that:

/quer/ Vq-gdz =0,
R3 R3

which implies that: A = div § in R®. We deduce that div g belongs to L” (R?) and to L ()
by restriction on €. Then, g € Héol(div, Q). As a consequence, g belongs to W&7p/(Q) and
curlg € Hg,(curl, Q). So, g belongs to N7 (Q) and due to Lemma 5.4.1, there exists a
sequence (g,)r € D() such that g, converges to g in N? () when k — oo. Now, we
consider (v, m) € M P(Q). Observe that
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€, (v, m) = —/curlcurlg-vda;+/7rdivgdx+
Q Q

+ (-Av+Vm, g>[H5' (curl, Q)]’XHOP/(CUI'L Q)

= lim (—/curlcurlgk-vd$+ mdivg,dz +
k—oo Q Q

+ <_A v+ VT, gk)[Hg/(curl, Q)]’XHé)/(curl, Q))

= lim (—/curlgk-curlvdx+/wdivgkdx+
Q Q

k—o0

+ /curlgk'curlvdx—/Trdivgkda;) = 0.
Q Q

Therefore, D, () x D(Q) is dense in M P () O

In order to give meaning to the trace of a very weak solution of the Stokes problem (S y),

we need to introduce the space:

YR(Q)={pe W?*(Q), pxn=0 and dive =0 onT}.

Theorem 5.4.4. The linear mapping v : (u, 7) — (uxn, w|r) defined on Dy(Q) x D(Q) can
be extended by continuily to a linear and continuous mapping, still denoted by vy, from MP(Q)
into WYPP(T) x W =1/PP(T), and we have the Green formula: for any (u, ) € MP(Q) and

p € Y(Q),

(—Au+Vm, plg = —/Qu-Acpd:IH— (ux n, curl ) —
— /Qﬂdivgoda:—i— (m, - n>W,1/p,p(F)XW1/p,p/(F), (5.44)
where
(e = >[Hg”(cur1,Q)nyg”(curl,Q)’ (e = 0 ) wvmm oy wiree' ()

Proof. Let (u,7) € Dy(Q) x D(Q), then formula (5.44) is valid for any ¢ € Y]’\’,,(Q). Let
p € WYPP(T). Then, there exists a function ¢ € W () such that:

0
@ =0 and —(P:uxn on I’
on

and verifying:

”('pHWQ»T—’/(Q) < C”Nle/p,p’(r) (5-45)
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Moreover, since ¢ = 0 on I', using (4.42) we obtain: curl¢p = —p, on I'. Then, the function

¢ belongs to Y ]’\’,’(Q) Consequently,

(u x n, u)p‘ = ’(u X n, curl p)p
(5.46)
< = Au+ V7l s o 19 ey + 12 18 @l o +
il ldiv @l
< Ol M ar@lel e o (5.47)

Thus, using (5.45), we obtain for any (u, m) € D, () x D(Q):

1w X 2|l gy -1/pp @y < Cll(w, ™) a7 ()

Next, we have Aw € W ~1P(Q) and 7 € LP(Q), then due to [10], the trace of 7 on T' belongs

to W ~Y/PP(T). Moreover, we have:

N

Il -smmry < C(Imlzaey + 1A Tlw 1oy
C(Inllney + Il = Au+ V|,
Cll(w, 7)| a0

IN

HY (curl, Q))’)

IN

Therefore, we obtain that the linear continuous mapping v : (u, 7) — (ur x n, 7|p)

defined on the space D,(2) x D(?) is continuous for the norm of M P(€). Since D,(§2) X
D(Q) is dense in M P(f2), then we can extend this mapping from M () into W ~1/PP(I) x
W —1/P2(I') and the Green formula (5.44) holds for any (u, 7) € MP(Q) and for any ¢ €
Y2 (Q). O

Theorem 5.4.5. (Very weak solutions for (Sy)) Assume that Q is of class C>'. Let f, g

and my with:

fe HY (curl, Q ' ge WVPP(TY, 1y e WYPR(T),
0

and satisfying the compatibility conditions (4.2) and (5.14). Then, the Stokes problem (Sy)
has exactly one solution w € LP(Q2) and m € LP(?). Moreover, there exists a constant C' > 0
depending only on p and ) such that:

lellgooy + 7o) < C(1Fge oy 1 9l w—moy + 1ol -s/mary ) (548)
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Proojf) First step: Thanks to the Green formula (5.44), it is easy to verify that (u,m) €
LP(Q) x LP(Q) is solution of problem (Sy), without the last flux condition, is equivalent to
the variational formulation: Find (u, w) € LP(2) x LP(Q) such that for any ¢ € Y}{;(Q) and
g € Wy (@),

/ u-Apdzr + / mdivpdz = —(f, ¢ )a + (g x n,curlp)r + (0, ¢ - n)r
Q Q
/ u-Vgdz = 0. (5.49)
Q
Indeed, let (u, ) € LP(2) x LP(Q) be a solution to (5.49). It is clear that:
—Au+Vr=f and divu=0 in Q.

Using Green formula (5.44), we obtain for any ¢ € Y%(Q) :
—/ u-Apdz + (u x n,curlp)r —/ wdivp dz +/7r0go-nda:<f, P)Q-
Q Q T

Then, we deduce that for any ¢ € Y%(Q),

(uxn, curlp)r + (7, ¢ - n)r = (g x n, curlg)r + (mo, ¢ - n)r.
Let g € W'/PP (). Then, there exists a function ¢ € W > (Q) such that:

%
@ =0 and a—n:ut on I,

and this implies that curlyp x n = —p, on I' and ¢ € Y]’\);(Q). We deduce that for all
pe WHre (),

(uxn, wr=(gxn, wr.

Consequently u x n = g x n on I'. Let us prove now that 7 = mg on I". For any A €

, / 0
W 1H1/pP (1) there exists a function ¢ € W %P (Q) such that: ¢ = An and 5‘790 n=—K\
n

on I'. Observe that ¢ belongs to Y}\’,l(Q) and then for any A € W1+V/2P(T) we have:

<7T, )‘>W7171/p,p(r)><wl+1/p,p’(r) = <7TO> A)wflfl/pyp(p)xw 1+1/p,p’(r)a

and then, 7 = mg on I.
The converse is a simple consequence of the Green formula (5.44) and the fact that for any
@ YL(Q):

/Qu -Vdivpdz = (u - n, dive)g = 0.
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Second step : Let’s now solve problem (5.49). We know due to Corollary 5.3.4 that for any
(F, x) € I’ (Q) LK () x W, (Q), there exists a unique ¢ € W >” () and ¢ € W,"¥ ()
satisfying :

—-Ap+Vg=F in €,
divep = x in €,
@exn=0 and ¢=0 onl’,
(p-n, 1)p, =0 forany 1 <i <1,

with the estimate

H‘P”W2,P’(Q) + HQHW Lp'(Q) < (HFHLP’(Q) + HXHWOLP’(Q))- (5-50)

From this bound, we have

(F, 9)a — (g x n, curlg)r — (mo, - n)r (5.51)
< (M lzrie + 19 % nll gy -1y + ol -1mncey ) (1F gy + Il 1o )

In other words, we can say that the linear mapping:

(Fv X) = <fa LP>Q - <g X1, CllI'l(P)[‘ - <7T0’ @ - n>F

defines an element of the dual space of L¥’ (Q)LK R (Q)x Wol’p/ (©) and according to the Riesz’s
representation theorem, there exists a unique (u, 7) € LP(Q)/K X (Q) x W ~1P(Q) satisfying

/ w-Fdz —/dex —{f, @) — (g x n, curl@)r — (w0, @ - m)r
Q Q

A such solution (u, 7) satisfies the problem (S ) without the last condition but we have only

to set

(u-mn, 1)p, VqZN.
1

u=1u-—

1
1=

It is clear that u € LP(Q) is also solution of (Sy) and satisfies its last condition. Moreover,
7w € W ~bP(Q) satisfies:
Anr=divf inQ? and 7w =mp onl.

Since divf € W ~1P(Q) and w9 € W ~/PP(T), we deduce from [10] that 7 belongs to LP(Q).
Finally, we can prove easily the estimate (5.48).
0

Now we set the space:
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MP(Q) = {v € IX(Q); Av e [HE (curl, Q)'},

which is a Banach space for the norm:

lollaer@) = lvllze@) + 1A Yl g o e, -

Using the same arguments given in the Lemma 5.4.3, we can prove that the space D, () is
dense in M P(Q2). To give a sense to the trace of functions which belong to MP(Q), we have

the following lemma, where the proof is very similar to that of Theorem 5.4.4.

Lemma 5.4.6. The linear mapping v : uw+—— u X n|p defined on Dy () can be extended to

a linear continuous mapping
v MP(Q) — WP,

Moreover, we have the Green formula: for any u € MP(Q) and ¢ € Y%(Q),
(Au, p)o = /Q u-Apdz— (uxmn, curlp) W—1/Pp (D) x W1/ () (5.52)

where the duality on Q is the following

<.7 >Q - <.’ '>[Hgl(cur1,Q)]’XHg/(curl, Q) (553)

As a consequence, we have the following result concerning very weak solutions for the

elliptic problem (F ).

Corollary 5.4.7. Assume that Q0 is of class C*'. Let f € [Hé’l(curl, M| with divf= 0 in
1

Q and g € W »P('). Then the problem (EN) has a unique solution & € LP(Q), with the

estimate

H £ HLP(Q) < C(HfH[Hop/(curl, QY + Hg X ’I’LH Wﬁé’p(f‘)). (554)

Proof. Thanks to Green formula (5.52), it is easy to verify that & € LP(2) is solution of
problem (E ) is equivalent to the following variational formulation: Find & € LP(2) such
that for any ¢ € YJI\’,/(Q) and for any ¢ € Wol’p/(Q):

- §-Apdz = (f, p)o—(g9xmn, Curl@)Wfl/p,p(r)xwl/pvp'(p)a
£ Vgdz — 0. (5.55)

where the duality on € is defined in (5.53). We are now able to conclude by using the regularity
of its dual problem presented in Proposition 5.2.2. O
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5.5 A variant of the system (Sy)

As it is shown in the previous sections, in order to solve problem (S ), the data must satisfy
the compatibility condition (5.14). Now, what happen if this condition is not satisfied? As

will appear, the answer strongly depends on the following variant of the Stokes problem (Sy) :

Find functions u, 7w and constants C; for ¢ = 1,..., I, such that:
—Au+Vr=f and divu =0 in €,
UXn=gxmn onl,
(Sn)

m=m9 only and w=my+C; onlj, 1<i<]I

(u-n, r, =0, 1<i<I,

situation that we can be found in the paper [26]. Let us compare with our approach.

Theorem 5.5.1. Let f, g and mo such that:

feHY (curl, Q), ge WUPP(T), xy e WITVPR(T),

Then, the problem (Sy) has a unique solution w € W'P(Q), 7 € WLP(Q) and constants
C1,...,Cr satisfying the estimate:

1l o) + Il o) < C U g eu ayp + 190 wr-v/ma ey + 70l 1-1/mary) s (5.56)

and where C1,...,Cr are given by (5.58)

Proof. Observe that the following problem

—Au+Vr=f and divu =0 in 2,

UXN=gXxXn onl',

T = onTy, (5.57)
T=m+(f, VgV la — (m0, Vg -n)r only,, 1<i<I

(u-n, L)r, =0,

has a unique solution (u, 7) € W YP(Q) x W P(Q) since the compatibility condition (5.14)

is verified. For ¢ =0,...,I, we set
Ci={f, V4o~ (r, Vg nr, (5.58)

and finally, u, 7 and the constants C, ..., C are solutions of (S'y). O
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Remark 5.5.2.
Observe that if we suppose that the compatibility condition (5.14) is verified, we have that
C; = 0 for all 4 = 1,...,] and we have reduced to solve the problem (S’y) without the

constant Cj.

We can also give a similar variant of system (Sr).

5.6 Helmholtz decompositions

According to the two types u - n and u X n of boundary conditions on I', we give decom-
positions of vector fields u in LP(Q2). Our results may be regarded as an extension of the
well-known De Rham-Hodge-Kodaira decomposition of C*°-forms on compact Riemannian
manifolds into LP-vector fields on 2. We can find similar decompositions in [46], where the

authors consider more regular domain with C*°-boundary I'. We can see also [52] for the case

p=2.

Theorem 5.6.1.

Let u € LP(Q). Then, there exist x € WIP(Q), w € WEP(Q) N XK(Q), 2 € K(Q) such that
u can be represented as:
u=z+ Vx+ curl w, (5.59)
where z is unique, x is unique up to an additive constant and w is unique up to an additive

element of KX.(Q). Moreover, we have the estimate:

12l 2o @) + IXllw e/ + 1wl wreq) ke @) < Cllullpr @) (5.60)

Let w € LP(2). Then, there exist x € Wol’p(Q), we WHP(Q)N XP(Q), z€ KX (Q) such that
u can be represented as:
u=z+ Vyx+curlw, (5.61)
where z and X are unique and w is unique up to an additive element of K1.(Q). Moreover, we

have the estimate:

12l v () + Ixllw e ) + Wl wir) k2 @) < Cllullp@)- (5.62)

Proof.
Let u € LP(f2). The scalar potential y € W 1P(Q) is taken as a weak solution of the following

problem:
div(Vx—u)=0inQ, (Vx—u)-n=0onT, (5.63)

or equivalently of

Ve W (), /vx.vudm:/u.vﬂdx. (5.64)
Q Q
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Such a scalar function x as (5.64) is unique up to an additive constant and satisfies the

estimate:
IxXllw1r@)ymr < Cllullzr @) (5.65)

Next, the vector potential w € W 1P(Q)N X~ (©2) can be derived from the point 77) of Remark
5.2.3. For u € IP(Q), we take w € W 1P(Q) such that:

—Aw=curlu in Q,
divw =0 in Q, (5.66)

wxn=0 on .
The vector potential w is unique up to an additive element of K §(Q) and satisfies the estimate:
lwllw o) xz @) < Cllullr @) (5.67)
Finally, let us define z = u — V x — curl w. Then, z € K7(Q) and satisfies the estimate
Izllzr @) < llullzr@) + IV Xl zr (@) + l[curl w||geq) < CllullLr(q), (5.68)

which yields the representation (5.59) of u. The estimate (5.60) is a consequence of (5.65),
(5.67) and (5.68).

Let u € LP(Q2). Compared with (5.63), the scalar potential x € Wol’p(Q) is taken as the weak

solution of the Dirichlet problem:
Ax=divy inQ, x=0onT. (5.69)
Such a scalar function y is unique and satisfies the estimate:

IXllw e < Cllullzro)- (5.70)
The vector potential w € W 4P (Q)NX 2 (Q) can be derived from Lemma 3.3.3. For u € LP(1)

we take w € W P(Q) such that:

Aw =curlu in Q,
divw =0 in Q, (5.71)

w-n=0, (curlw—u)xn=0 onl.
The vector potential w is unique up to an additive element of K 2 () and satisfies the estimate:
lwllw o) xr@) < Cllullr @) (5.72)

Let us define z = w — V x — curl w. Then, similarly to the proof of the above i) we obtain
the representation (5.61) of u and the estimate (5.62).
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Remark 5.6.2.
Note that in the representation (5.59), if €2 is simply connected then z = 0, situation that
can be the same in (5.61) if we suppose that the boundary I' is connected or in other words

without holes.

In the decomposition (5.59), z being a divergence-free vector field with a zero normal trace on
the boundary. We know from Theorem 3.2.5 that z = curly with ¢ € WH?(Q), divep = 0
in Qand ¥-n=0onT.

In the decomposition (5.61), z being an element of K% (). We know then that z is a gradient
of a function of W 1(Q).



Chapter 6

Elliptic systems with non standard

boundary conditions

6.1 Study of the problem (Pr7)

Lemma 6.1.1. Assume that ) is of class C>'. Let f belongs to LP(Q) with p > 6/5. Then,
the following problem

(Pr) —Au=f in 2,
Pr
u-n =0, @xnzo onl,

on

has a unique solution u in W2’p(Q) satisfying the estimate:

[ull w2 ) < Cll fllzr@)- (6.1)

Proojf) First case: p = 2. A variational formulation of the problem (Py) can be introduced
by the bilinear form a(-, ) : HY(Q)N X2(Q) x HY(Q) N X#(Q) — R, which is defined by

a(u, 'v):/ Vu:Vode.
Q

Obviousely, a(-, -) is continuous over H ()N X 2(Q) and according the Poincare’s Inequality
(see [9], Proposition 2.1), it is also coercive over H 1(Q) N X 4(Q). Using a Green’s formula,
we have that the problem (Pr) is equivalent to the following variational formulation: Find
u € H'(Q) with w-n =0 on T such that:

Vo€ HY Q)N X2(Q), a(u, v) = / f-vde. (6.2)
Q

Since the right hand-side defines a linear continuous form on [H () N X 4(Q))’, we deduce
by the Lax-Milgram’s Lemma that problem (6.2) has a unique solution v € H*(Q) N X 2(Q)

satisfying the estimate:
”uHHl(Q) <C|r ||L2(Q)- (6.3)

113
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Moreover, we set z = curlu. Then z satisfies the problem

—Az=curlf and divz=0 in €,
zxn=0 on T, (6.4)
(z-mn, )p, =0, forany 0 <i <.

Since curl f satisfies the compatibility condition (5.3), it follows from Proposition 5.2.2 that
z € H'(Q) and satisfies the estimate

121l g1y < Cllfllz20)- (6.5)

Next, Vdivu € L*(Q). As a consequence div u belongs to H'(2) and using (6.3) and (6.5),
we obtain

1div |l g1 (0) < Cllf 220 (6.6)
Finally, applying Corollary 2.2.12 leads to deduce that u € H?(Q). Using (6.5) and (6.6)
gives directly (6.1) for p = 2.

Second case: p > 2. We know that problem (Py) has a unique solution u € H?*(Q) —
L>*(Q). Then u

the function z = curlu is a solution in W ?(Q) of the problem (6.4). This implies that
Vdivu € IP(Q) and by [5, Proposition 2.10], we have divu € W1P(Q). Applying again
Corollary 2.2.12, we deduce that u € W *P(Q2) and satisfies the estimate (6.1).

belongs to L1(Q2) for all 1 < ¢ < oco. Moreover as for the case p = 2,

Third case: 6/5 < p < 2. Observe that since f € L6/5(Q), as in point i) by using the Lax-
Milgram lemma, the problem (Pr) has a unique solution u € H '(Q) satisfying the estimate:

HUHHl(Q) <C|f HL6/5(Q)'

Next, we use the same argument as in the second step in order to prove that curlu € W 7(Q)
and then Vdivu € W P(Q). Now, since u € L5(Q) — LP(Q) and u-n = 0 on I then due
to Theorem 2.2.12, u belongs to W %P(Q) and satisfies the estimate (6.1).

O

We can also, consider the case of the non homogenuous boundary conditions.

Theorem 6.1.2. Assume that Q is of class C>'. Let f € IP(Q), g € WVPP(T) and
h e W_l/p’p(F). Then, the following problem

—Au=Ff in Q,

(P7)
u-n=4g, @xn:hxn onl,

on

has a unique solution u in Wl’p(Q) satisfying the estimate:

lull wroy < C(1Fllzr@) + lgllw -1y + 1Al w-1/m0(r)) - (6.7)
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Moreover, if g € W2 VPP(T) and h € W'=VYPP(T), then the solution u belongs to W2P(Q)

and satisfies the estimate:

lul wery < CUI fllzr) + gl z-1may + 1Bl wr-1/mery)- (6.8)

Proof.

. We suppose that g € W'=1/P2(I') and h € W ~V/PP(T). Let § € W2P(Q) a solution of the

Neumann problem:

Af=Xin€, and %:g on T,
on

where A € R is chosen such that Ames{2 + frgdx = 0. We set ugp = V0. It is clear that

0
a—uo xn e W YPP(T). We are reduced to solve the following problem:
n

, —Az=f in (2,
(PT()) az auO (69)
z:n=0, — xXxn=hxn———xn onl,
on on
and we consider three cases:
First case: p = 2. We will repeat quickly the reasoning given in Lemme 6.1.1. The problem
(Pl,) is equivalent to the following variational formulation: Find z € H'(Q) N X2(Q) such
that for any v € H'(Q) N X 2(Q),

0
/Vz:Vvdw—/f-'vd:B—i—(hxn—uo,v>Hl/z(F)X1{1/2(F). (6.10)
0 0 on

This problem is well posed thanks to the Poincaré inequality and the Lax-Milgram’s Lemma.

Moreover, the solution z € H 1(Q) satisfies the estimate:

Izl i) < CULF Nzz) + 9lmzmy + IR g -12))- (6.11)

Finally, the function u = z + ug € H () is the unique solution of (P/) and satisfies the
estimate (6.7).

Second case: p > 2. We know by the first step that problem (P’To) has a unique solution
z € HY(Q). Let prove now that z € W P(Q). We set w = curlz. Then, w is solution of
the elliptic problem:

—Aw =curlf in€Q,
divw =0 in€2,
Ouo

on

((w -7, I)r, =0 forany 0<i<I.

(6.12)

wXxXn=hxn-— onl’,
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According to Corollary 5.4.7, this problem has a unique solution w € LP(€Q). This implies
that Vdivz € W ~1P(Q) and then divz € LP(Q). Moreover, using the Sobolev’s imbedding,
the function z belongs to L°(2). Then, z belongs to W LP(Q) for p < 6. If p > 6, then z
belongs to W 15(Q) — L>®(Q). So, z € L4(Q) for any 1 < ¢ < co. So, due to Theorem 2.2.8,
z belongs to W 1P(Q). Finally, the function u = z + ug € W '2(Q) is the unique solution of
(P7.) and satisfies the estimate (6.7).

Third case: p < 2. Let a be the bilinear form defined on W P(Q) N X 2(Q) x W1 (Q) N
X2(9) by:
a(z, v) :/ Vz-Vuvde.
Q
Let
Ae L(WIP(Q)n XP(Q), (WIP(Q)nXP(Q))

and

/

AleL(w 1””/((2) NXL(Q), (W Lr)n X))
be the operators defined by
Vze WH(Q)n XE(Q), Yo e WH(Q)n X2 (Q),

a(z, v) = (Az, v) = (z, A v).

The Babuska-Brezzi’s Theorem implies that, for p > 2, the operator A associated with a is an
isomorphism from W bF(Q) N X 2(Q) onto (W )N XCZ;/ (Q))" and its dual operator A’ is
an isomorphism from W ' (Q) N X;il(Q) onto (W P(Q) N XL2(Q))". As a consequence, the
following Inf-Sup Condition holds: there exists a constant 3 > 0, such that

Vz-Vod
inf sup JoVz Vvdz > f. (6.13)
veW 1P (Q) ze W Lr(Q) HVZHLP(Q)HVUHLP’(Q)
v-n=0 z-n=0

But since the bilinear form a is symmetric, the operator A’ coincides with A if we interchange
p by p'. As p/ < 2, this means that the above isomorphisms are valid for all real numbers
p > 1. Again, the Babugka-Brezzi’s Theorem implies that the Inf-Sup Condition (6.13) holds
for all p > 1. Finally, the function u = z + ug € W P(Q) is the required solution of the
problem (PF).

. Now, we suppose that g € W2 /PP(T') and h € W "V/PP(T). Let u € W P(Q) the unique

solution of (P}.) and we set z = curlu. Then, z satisfies the following problem:

—Az=curlf and divz =0 in Q)
zxm=hxmn onT (6.14)

(z-m, L)r, =0, forany 0 <i<].
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Due to Corollary 5.4.7, z € W P(Q) and satisfies the estimate

12w 1p@) < C(IFllzr@) + 1k X ln’”Wlfl/PaP(F))‘ (6.15)

This implies that Vdivu € LP(Q) and again due to |5, Proposition 2.10|, we have divu €
W P(Q). Finally, we are able to conclude by applaying Corollary 2.2.12.

6.2 Study of the problem (Py)

We now interested to solve an elliptic system with an other kind of boundary condition.

Lemma 6.2.1. Assume that Q) is of class C*'. Let f belongs to LP(Q)) with p > 6/5. Then,
the following problem

—Au=f in 2,

(Pn)
uxn=>0, %-nzo onl,
on

has a unique solution u in W>P(Q) satisfying the estimate:

[ull w2 ) < Cll fllzr@)- (6.16)

Prodyf) First case: p = 2. We can prove exactly as for the problem (Pr), the existence of a
unique solution uw € H 1(Q) of problem (Pr). Next, let prove that u € H %(Q). Let E(A, Q)
the space defined by:

EA, Q) ={veHYN), AveclIL*0)}

Observe that u € E(A, Q). We know that if v € E(A, Q), then Vv € H V(") and by the

density of D(Q) in E(A, ), formula (4.40) can be extended for any function E(A, Q). So,
applying formula (4.40), we have

dive = Ku-ne HY*T)

. Since Adivu € H ~1(Q), it follows then that divu € H(Q). Now, we set z = curlu.
Then z € X 2(Q) and by Theorem 2.2.8, the function z belongs to H '(Q). Applying Theorem
3.3.6, we deduce that u € H ?(Q).

Second case: p > 2. We know that problem (Pr) has a unique solution u € H?(Q) —
W 16(Q) — L*®(Q). Then u belongs to LI(Q) for all 1 < ¢ < co. Moreover, curlu € LP(Q)
for any p < 6. Now, due to the regularity of §2, the mean curvature K of T' belongs to C “1(T).
So, Ku - n belongs to W1=1/65(I") and divu belongs to W 1=1/66(I"). We have also that
Adivu =divf € W 1P(Q). So, we distinguish two cases:
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a) We suppose that p < 6. So we have divu € W1P(Q) and then z = curlu € X2(Q) —
W 1P(Q). Applying Corollary 3.3.6 gives that u € W 2P(Q).

b) We consider now the case p > 6. We know that v € W25(Q) — W1>(Q). So as
previously, we can prove that dive € WP(Q) and curlu € W 'P(Q). By applying

again Corollary 3.3.6, we are able to conclude.

iii) Third case: 6/5 < p < 2. We proceed as in the first case i) in order to prove that the
problem (Py) has a unique solution u € H '(Q). Here again we have divu € H'/?(T)
and A (divu) € W ~1P(Q). As a consequence, divu belongs to W 1P(Q) and we prove as
previously that curl w € W P(Q) which implies that u € W 2P(Q).

O

We also can consider the case of the non homogenuous boundary conditions.

Theorem 6.2.2. Assume that Q is of class C>'. Let f € LP(Q), g € W=VPP(T) and
h € W=YPP(T). Then, the following problem

—Au=f in 2,

(Pw)
o U X n=g, @-n:h onl,
on

has a unique solution wu in Wl’p(Q) satisfying the estimate:
HUH wir(Q) < C(H.fHLP(Q) + Hgnwlfl/up(r) + ”hHW*U%P(F))‘ (6.17)

Moreover, if g € W2-V/PP(T) and h € W1=YPP(T), then the solution u belongs to W>P(Q)

and satisfies the estimate:

”UHW2vP(Q) < C(HfHLP(Q) + HQHWZ*l/pw(F) + HhH Wlfl/zap(r)) (6.18)

Proof.

1. We suppose that f =0, g € WV/PP(T') and h € W ~V/PP(I'). Let € € W 1P(Q) a solution
of the problem (see Corollary 5.2.4):

AE=0 and divE=0 in Exn=g onl.

We are reduced to solve the following problem:

) —Az= in Q,
(Pn,) oz 9 (6.19)

-n=h——-n onl,
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and we consider three cases:

First case: p = 2. Using the Lax-Milgram’s Lemma, we can prove that problem (P, ) has
a unique solution z € H ().

Second case: p > 2. We know by the first step that problem (73]’\,0) has a unique solution
z € HY(). Let prove now that z € W P(Q). Observe that z-n € H'/2(T) — W ~1/65(T).

Then we observe two cases:

a) We suppose that p < 6. Using formula (4.40), we obtain that div z satisfies:

A(divz) =0 in 2 and divz:Kz'n—i—h—gfl-n on I (6.20)
We note that V& € LP(Q) and A(VE) = 0 in Q. Then, V& € W ~Y/PP(I) and
gfl-n € W =YPP(T) so that div z € LP(Q). Moreover, we set w = curl z. Observe that

curlw = curlcurl z = —A z + Vdivz. Then, curlw € W ~17(Q) and Acurlw =0
in Q. Due to [10] the trace of curl w on T belongs to W ~'~1/P(I). Since the function

w satisfies

Aw=0 and divw =0 in Q,

(6.21)
w-n=0 and curlw xne W-=1/PP(I) on T,

it follows from Corollary 4.4.6, that w € LP(2) and by Corollary 2.2.4, we deduce that
z e Whr(Q).

b) Now we suppose that p > 6. We know only that the solution z € W 15(Q) — L>®(Q).
Then, z -n € W1/66(I") < W=1/949(T) for any finite g. We deduce again from (6.20)
that divz € LP(Q). Next, as previously, we can prove that curlz € LP(2). Finally,
since z € L®(Q) — LP(Q), we have that z € W 1P(Q).

Third case: 1 < p < 2. By using a duality argument, as for problem (Pr), the problem
(771’\,0) has a unique solution z € W 1P(Q) .

Finally, the function u; = z + € € W 1P(Q) is the unique solution of the problem

—A’U,lz() inQ,
8u1

on

Uy X n =g, ‘n=h onl,

. We suppose that f € LP(€2), g = 0 and h = 0. Thanks to Lemma 6.2.1, there existes a unique
solution us € W 2P(Q) of the problem (Py).

We deduce from the points 1. and 2. that the function u = u; +us € W P(Q) is the required
solution of the problem (P}).
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. We suppose now that g € W2~1/PP(I") and h € W'=V/PP(I'). Then, £ € W 2P(Q) and
0
£ n € W-YPP(I'). By (6.20) divz belongs to W 1P(Q). We set w = curlz. Then,

an
curlw € IP(Q) and A (curl w) = 0 in Q. This implies that curl w belongs to W ~/P2(I).
Since w satisfies (6.21), then due to Proposition 4.2.3, w € W ?(Q). Applying Corollary

3.3.6, we obtain that z € W 2P(Q). Finally, the solution u = z + & of (Py) belongs to
W 2P(Q).

O
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Oseen and Navier-Stokes problem with

non standard boundary conditions
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Chapter 7

Oseen problem with normal boundary

conditions

7.1 Introdution

In this chapter, we want to study the existence of a generalized and strong solutions for the

following problem:

.
—Au+curla xu+Vr=f in €,

divu =0 in Q,
uxmn=0 on T, (7.1)
T =m0+ ¢ onl;, 1 =0,...,1,

Jpou-mdo=0,i=1,...1,
where f, a and 7y are given functions, ¢; are constants and we will denote by ¢ the vector

c=(co,...,cr).

7.2 Study of the problem (7.1)
First, we are going to suppose that

curla € L¥?(Q) and that f e [HZ(curl, Q)] or f e L5°(Q).
We introduce the space:

VN:{vEHl(Q); divv=0inQ, vy xn=0onI and /

v-n:O,V1§z’§I}.
T

Let us give the following lemma concerning a Poincaré type inequality which is a conse-

quence of Corollary 3.3.8 (see also [26]).

123
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Lemma 7.2.1. The space Vi is a Hilbertian space and the semi norm:

v (/Q |curl v\Q) i (7.2)

is a norm on Vy equivalent to the full norm of H' ().
We have the following theorem.

Theorem 7.2.2. Let f € [Hi(curl, Q)]', 7o € H=Y/%(T') and a € D'(Q) such that curla €
L3%(Q). Then, there ewists a unique w € Vy such that

Vove Vy, / curlu - curl vdz + / (curla x u) - v= (f, v)q — (7o, v- N)p, (7.3)
Q Q

where the dualities on Q) and T are defined by:

()2 =V E2curt, ) x B2 (curl), @0 (0 = & Vg2 xm1/2(r)- (7.4)

Moreover, we have the estimate:

[l g1y < C(HfH[Hg(curl,Q)]/ + HWOHH—I/Q(F))- (7.5)

Proof. Let a(-,-) : Vn x V xy — R be the following bilinear continuous form:
Vu,v e Vy, a(u,v)= / curlu - curl v dz +/(curla X u)-vdz. (7.6)
Q Q

The bilinear form a(-,-) is coercive on Vy x V. Indeed, by Lemma 7.2.1, the semi norm

[curlv| 2 () is equivalent to the norm [v|| g1 and for any v € V' we have:

/(curlaxv)-sz.
Q

Since the right-hand side in (7.3) belongs to (V n)’, by the Lax-Milgram Lemma, the problem
(7.3) has a unique solution u € V y satisfying the estimate (7.5). O

Remark 7.2.3. In the same way, suppose that f belongs to L%/° (Q) with 7, a as in Theorem
7.2.2. Then, the problem (7.3) has a unique solution u € H'(Q) where we replace the brackets

(s ) (H2 (curl, Q)] x B2 (curl, o) DY the integral Jof-vda.
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Remark 7.2.4. Before establishing the link between the problem (7.1) and the variational
formulation (7.3), we will see in what functional space it is reasonable to find the pressure 7
appearing in (7.1), knowing that we are first ineresting to velocity fields in w € H'(Q) with
f e L5°(Q) (see Remark 7.2.3). With a such vector u, we have curla x u € L%°(Q) —
H1(Q). Since Auc H(Q), we deduce from the first equation in (7.1) that V7 € H~1(Q).
According to [6], the pressure 7 belongs to L?(£2). Furtheremore,

—A7 =divf—div(curla x u),

so that Am € W™16/5(Q). We can prove as in Lemma 1.0.10 that the trace of = on T’ belongs
to H ~/2(I') so that we must assume that my € H ~1/3(T").

Theorem 7.2.5. Let f€ L%°(Q), 7o € H Y2(I") and a € D'(Q) such that curl a € L*?(Q).
Then, the problems:

Find (u, 7, ¢) € Viy x L*(Q) x R satisfying (7.1) with (x, 1)r =0 (7.7)
and
I
Find uw € Vy and constants cy, ..., cr satisfying Z cimes';+(my, 1)r = 0 and such that
=0

Vve Vy, /curlu~curlvdm+/(curlax u)-vdm:/f~vd:1:—<7r0, v-n)r, (7.8)
Q Q
Q

Vi=1,...,1, ci—C[):/ﬁVqlNda;—/(curlaxu)~Vq£Vd:1:—<7r0,Vq;N‘n>r (7.9)
Q Q

are equivalent

Proojf) Let (u, m, ¢) € H'(Q) x L*(Q) x RI*L, with (rr, 1) = 0, solution of the problem (7.1)
and we prove that u and the constants cg, ..., cy are also solution of the variational problem
(7.8) and (7.9). It is clear that u € V j and that Z,{:U cimesI'; + (mp, 1)1 = 0. The relation
(7.8) is satisfied. Indeed, multiplying the first equation of (7.1) by v € Vy, integrating by

parts in 2, we obtain

/(—Au+V7r)-vd:1:+/(curla><u-v)dx:/f~vda;. (7.10)
Q Q Q
But D,(Q) x D(Q) is dense in the space

M= {(u, 7)€ HXQ) x L*(Q); —~Au+Vre LYQ)}

and we have the following Green formula: For any (u, 7) € M and ¢ € H}(Q) with pxn =0

on I':
/(—Au +V7) pde = / curlu - curlpdz + (7, ¢ - n)r. (7.11)
Q Q
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Taking into account the boundary condition that verify the pressure 7 on I', we have:
Vve Vy, (m v-n)r=(m, v-n)r, (7.12)
which implies that u satisfies (7.8). It remains to prove the relation (7.9).
Now, let v € H}(Q) with v x n =0 on I and we set
I

’U():U—Z(/ v-n) V. (7.13)

i=1 T
Observe that vg belongs to V . Multiplying the first equation of (7.1) by v, integrating by
parts in € and using the relation (7.8) with the test function vy and (7.25), we obtain

_g(/riv.n)/Q(curla><u)-Vq?hz%—i(/nfu-n)/Qf.VqlNdac
I
— Z(/v n) cj/ Vg n+ (m, Vgl - >}

i=1 71
_ Z( [ n>{<c_co>+<m,v% )

Particularly, for v = Vq]N , we deduce that

j—Co = / f- Vquz - /(curla X u) -quvdw — (mo, Vqév -n)r,
which is the required relation in (7.9).

Reciprocally, let u € V v a solution of (7.8) and ¢y, ..., c; constants satisfying the condition
Zi[:o cimesI'; + (mo, 1)r = 0 and (7.9). To prove the first equation of the problem (7.1), let
us take a function v € D,(2) as the test function in (7.8). It is clear that for any v € D, ()
we have:

(~Awu+curle x u —f, v)p(Q)xp) = 0.

So, by the De Rham’s Theorem, there exists a distribution 7 in D’(Q2) defined uniquely up to

an additive constant such that
—Au+curlaxu—f=-Vr (7.14)

in the sens of distributions in Q. Moreover, since A € H ~(Q) and curl a x u € L5/°(Q) —
H ~1(Q), we deduce that V& € H~'(Q). Due to [6], m belongs to L?*(). Now, applying

divergence operator to equations (7.14), we obatin :

A =divf —div(curla x u) € W 55/5(Q). (7.15)
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Since m € L?(f)), we can prove as in Lemma 1.0.10 that the trace of 7 on I' belongs to
H~'Y2(T"). Then, since m is defined up to an additive constant, we can choose the this

constant so that (m, 1)p = 0.

It remains to prove the boundary condition on the pressure. Let v € H}(Q) with v x n =0

on I'. Multiplying (7.14) by v, integrating by parts in  we obtain as before:

/curlu-curlvder/(curlaxu)-vdx:/f-vdm<7r,v-n>p, (7.16)
Q Q

Using the decomposition (7.13), we obtain:
/ curlu - curlvgdz +/(curla X u)-vode —/f ~vodz + (7, vo - n)r
Q Q

I

= —Z(/Z'mn)/g(curlaxu)-quvdm+iz[; /vfu n/f VN dx —

i=1 YT

Z(/Fiv-n)(ﬂ, VgV -n)p. (7.17)

=1

Particularly, if fr v-n=0forany i=1,...,I, we deduce from (7.8) that:
(m, vo-n)r = (m, Vo - N)r. (7.18)
Using again (7.8), the relation (7.17) becomes:

;(/ﬂ”'")@ﬂv%w'nﬁ = Z /v n /f VN dz —

=1

]~

(/Fiv-n)/g(curla xu) VgV¥dz. (7.19)

i=1
Now, using the decomposition (7.13) and (7.18), we can write for any v € H1(Q) with

vXxn=0onl":

1
(m,v-n)r = (m vo- nr—i—Z/ ), Vg n)r

1=

I
— (m, o0 m)e+ > ([ vm)(m V¥ e
i=1 T
Using (7.19) this last relation becomes:

1

(m,v-n)r = <7r,v~n>+ v-n) f VgV dx —

v-n curla x u) - Vg dz.
) ( q;
4 Q
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As a consequence, from the relation (7.9) we obtain:
I I
(m,v-n)p = <7r0,v0-np+z / 71'0,qu >F+Z(/v (¢i — co)
=1 i=1 T
I
= (mo, v M) F+Z ¢i —Co, V- M)T.
=1
Since div v = 0 in ©, we have > [ v -7 =0 and then we can write
i=0
I
(m,v-n)r = (m, v-n)r+ Z(ci, v-n)yr = (mo+c¢, v-n)p, (7.20)
i=0
with c=¢; on I'; for any ¢ =0, ..., I.
Finally, let u € H/2(T;) for any fixed j with 0 < j < T and we set
- W on I';,
0 onI'—T}.
We know that there exists a vector v € H 1(Q) with dive = 0 in Q such that
(= fep)n o
p— == Jp.u)n  onTy
v = Ty T ’ (7.21)
0 onI'—T.
As a consequence we have,
(m =m0, pr; = (T =m0, W)r; = (T — M0, W - M)r = (¢, )T (7.22)
and then m = 7y +¢; on I';.
O

Theorem 7.2.6. Let f € L5/°(Q), curla € L*?(Q) and my € H ~'/%(T), then the problem
(7.1) has a unique solution (u, w, ¢) € HY(Q) x L*(Q) x R with (r, 1)p = 0 and we have

the following estimates:
ull g1 o) < C(Hfl|L6/5(Q) + H7T0||H—1/2(I‘))7

Il 2y < C(1+ lewrl all s ) (I gore ey + Ioll i 2.
where ¢ = (co,...,c1).

Moreover, if mo € WY/55/5(T) then w e W25/5(Q) and = € WH6/5(Q).

(7.23)

(7.24)
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Prodf) Let f € L%°(Q), curla € L*?(Q) and myp € H~Y2(T). We know due to Theorem
7.2.5 that the problem (7.1) is equivalent to (7.8)-(7.9). Due to Remark 7.2.3, we deduce that
(7.1) has a unique solution (u, 7, ¢) € HY(Q) x L?(Q) x RI*! satisfying the estimate (7.23).
The estimate (7.24) can be obtained by using the fact that the pressure 7 verifies:

—Ar=divf +div(curla x u) in Q and 7m=my+¢ onT}. (7.25)

Now, we suppose that my € W1/66/5('). Let (u, m, ¢) € H(Q) x L*(Q) x R'*! the solution
of (7.1) given by step i). Since the pressure 7 verifies (7.25), we deduce directly that 7 €
W 16/5(Q). The velocity u is then a solution of the following problem:

—-Au=F in €,
divu =0 in Q,
uxn=0 on I,
fFiu-ndU:O, i=1,...,1,

with F = f — V7 —curla x u € L%%(Q). We deduce from Proposition 5.2.2, that u €
W 26/5(Q).
O

Remark 7.2.7. Even if the pressure 7 change in m — ¢p, the system (7.1) is equivalent to the

following Oseen problem:

(

—Au+tcurlaxu+Vr=f in €,
divu=0 in €,

(OSy) uxn=0 on T,
m=m9 only, and w=mg+a i=1,...,1, on I';,
friu-nda:(), i=1,...,1,

where the unknowns constants satisfy for any ¢ =1,...,1:
;= / f- VqZNd:c—/(curla x u)- Vg dz— (m, Vg - n)r.
Q Q
But, it is clear that the new pressure m does not satisfy the condition (m, 1)p = 0.

For 1 < r, p < 0o, we introduce the space
HyP(curl, Q) = {p € L"(Q), curlp € LP(), ¢ x n =0 onl},
which is a Banach space for the norm

el 2y 7 curt, @) = l@llzr @) + lleurlo| gy o).
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We can prove that the space D(12) is dense in Hgl’p/(curl, Q) and its dual space can be

characterized as:

[Hg/’p/(curl, V)] ={F +curly, Fc L' (Q), ¢ € LF(N)}. (7.26)

Remark 7.2.8. If we suppose that f € [H(]G’Q(curl, Q)), curla € L*?(Q) and 7y € HV/2(I),
then the problems (7.7) and (7.8)-(7.9) are equivalent. The proof is similar to that of Theorem
7.2.5 with the difference that we use here the duality brackets between [HOG 2(curl, Q)] and
Hg’2(curl, Q) in place of the integral on € in the right hand side of (7.8) and the density of

D, (2) x D(R2) in the space
M = {(u, ) € HX(Q) x L*(Q); —Au+ V7 e [Hy*(curl, Q)]'}.
6,2

It is easy now to expand Theorem 7.2.6 to the case where f € [H;“(curl, Q)]

Theorem 7.2.9. Let f € [H06’2(curl, Q) curla € L¥%(Q) and 7y € HY2(T'), then the
problem (OSN) has a unique solution (u, w, ) € H*(Q)x L*(Q) xR satisfying the estimates:

Nl < O ggo2 e, oy + 170l -172¢r). (7.27)

HWHH(Q) < C(l + ||curl a’HL3/2(Q)) (”ﬂhﬂgv?(curlﬂ)y + HWOHH—U?(F))? (7.28)

where a = (au, ..., ag).

Now, we consider the case of non homogenuous boundary conditions and when the diver-

gence operator does not vanish.

Theorem 7.2.10. Let f € [Hy*(curl, Q))', curla € L¥?(Q), x € WS/5(Q), my € H~/2(T)
and g € HY?(T'). Then the problem

—Au+tcurlaxu+Vr=§f in €,

divu =y in €,

UXN=gxXmn on T, (7.29)
m=mg onlyg, and w=mg+q;, t=1,...,1, on I';,
friu~ndo':O7 i=1,...,1,

has a unique solution (u, m, o) € HY(Q) x L?(Q) x R! wverifying the estimate:

Iy < (Mg eun, ay + 1oll 1oy + (U4 lleurl al o) x

% (Il rorsay + lgllmregey) ) (7.30)
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HWHLQ(Q) < 0(1 + |lcurl a||L3/2(Q)) <||-ﬂ|[H06’2(CurLQ)]/ + HWOHH—l/?(F) + (1 + [|curl a||L3/2(Q)) X
% (Il sy + 9l grvze) )

where o« = (aq,...,ar). Moreover, if f € L6/5(Q), mo € W/6S/5(T) and g € W7/6’6/5(F),
then uw e W29/5(Q) and = € W16/5(Q).

Prodf) Let g € HY?(I'). We know that there exists w € H'(Q) such that w = g on I and
verifying:
HwHHl(Q) < CHg"Hlﬂ(p)- (7.31)

Let 6 € H?(2) the unique solution of the problem:

Af=divw — x inQ,

(7.32)
=0 onl,

satisfying the estimate:

H9||H2(Q) < C(HXHWLG/s(Q) + HdiV’wHLQ(Q))' (7.33)
We set ug = VO + w. Then, ug € Hl(Q) and satisfies:

divug=xin Qand up x n =g x n on I
with:

luoll g ) < C(Ixlhwiesq) + 119l grzm)- (7.34)

We know by Theorem 7.2.9 that there exists a unique (z, 7, o) € H }(Q) x L?(Q) xR’ solution
of )
—Az+curla x z+Vr=F in €,

divz =0 in €,
zxn=0 on T, (7.35)
m=m9 on g, m=my+ oy only, 1=1,...,1,

friz-nda:O, i=1,...,1,

where Fo = f+A up—curl a x ug. Observe that A ug = V y—curl (curl ug) € [H(?’Z(curl, )

which implies that Fg € [Hg’z(curl, )]". Moreover, z satisfies the estimate:

12l < C(IF e eu oy + 12 woliar e eur ay +

+ fleurla X 1] 02 ey + ||7r0||H_1/2(F)) (7.36)
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Using the estimate (7.34), we obtain:

Il < C(IF ez eunn ay + ITollz-vvzy + (1+ leurl all oz gy) x

% (Il rors(gy + Igllragey) ) (7.37)
In addition the pressure 7 satisfies the estimate:
Il 2y < C(1+ lenrlallgorziey) (1Foll g2 ey + 70l v2qr))
using again (7.34), we obtain:

HT('”LQ(Q) < C(l + chrlGHLS/Q(Q))(HfH[HOG,2(CurLQ)]/ + (1 + chrlaHLg/z(Q)) X

% (Il 15y + gl grrzqey) + Imoll 172y )

Finally, the pair of functions (u, 7) = (z + ug), 7) is the required solution.

Now, we suppose that f € L%5(Q), mp € W/66/5(I") and g € W 7/69/5(T"). Let (u, 7, a) €
H'(Q) x L?(Q) x R! the solution of (7.29) given by step i). Since the pressure 7 verifies

—An=divf+ Ax—div(curla x u) in Q,

which belongs to W ~16/5(Q), then = € W 6/5(2). The velocity u is then a solution of the

following problem:

—Au=F in Q,
divu = x in €,
UXn=gxmn on I,
friu~nda':0, i=1,...,1,

with F = f — V7 —curla x u € L5°(Q). We set z = curlu. Then the function z
satisfies: z € L9/°(Q), divz = 0in Q and curlz = F + Vx € L%°(Q). Moreover, since
ux n e WT0/5T) applying Corollary 5.3.2 we obtain that z - n € WY%6/5(I"). So, from
Theorem 2.2.10, we deduce that z belongs to W 1/°(Q). Then, u satisfies:

u e L°(Q), divu = y € WH/5(Q), curlu € W '%/5(Q) and u x n. € W 7/66/5(1),

We deduce from Corollary 3.3.6 that u belongs to W 26/5((2).
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7.3 Generalized and strong solutions

We begin by proving strong solution for the problem (OSy).
Theorem 7.3.1. Let p > 6/5,
fe IP(Q), me WI=YPP(I), curla e L*(9)

with
5 if p< 5 if p> J J + e if 5
= — 1 — et 1 — = - 1 = —
§ 5 p 9 §=Pp p 9’ S 5 € p 9’
for some arbitrary € > 0. Then, the solution (u, w) given by Theorem 7.2.6 belongs to

W2P(Q) x WIP(Q) and satisfies the estimate:

lull w2r ) + 7w e < C(1+ lleurlallgo)) (Iflzr @) + 170l 1-1/00(r)) - (7.38)

Proof. We know by Theorem 7.2.6 that the solution (u, 7) belongs to W 26/5(Q) x W 16/5(Q).

We set b = curla. Then b € L3 (). Since the space D,(12) is dense in L;(£2), there exists

a sequence by € D, () such that by converges to b in L*(Q) as A — 0. Therefore, we search
for (uy, my, ay) € W2P(Q) x W1P(Q) x R solution of the problem:

—Auy+byxuy+Vm=f in Q
divuy, =0 in O

(OSN)A uyxn=>0 on T,
m, =79 only, and 7T>\:7r0+af‘, 1=1,...,1, on I,
friuA-ndU:O, i=1,...,1,

with ay = (a7, ..., a}). Remember that from above we can obtain a unique solution (u, my)
belongs to W 26/5(Q)x W 16/5(Q). Since uy € L(), then byx uy € L5(Q). Using the Stokes
regularity, we deduce that (uy, m) belongs to W 2P(Q) x W LP(Q) if p < 6. Now, we suppose
that p > 6. We know that uy € W2%(Q) and then uy € L®(Q) and by x uy € L®(Q).
Again using the Stokes regularity, we deduce that (uy, ) belongs to W 2P(Q) x W LP(Q).
Thus, we focus on the obtention of a strong estimate for (u), 7)) independently from A. Let
e >0 with 0 < A < ¢/2. We consider:

by=b{+b5, where b5 =Dbxpyy and b§,=by—bS, (7.39)

being b the extension by zero of b to R? and p, /2 the classical mollifier. By regularity estimates

for the Stokes problem, we have

I
lurllw 2oy + Imallw s < C (1) + [Tl 1-mary + 3 lod] + 1oy x wallzo(ey )

=1
(7.40)
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where the constant C' is independent of \. We note that

I
So1edl < C(IF lgeraay (1 + 1Bl gorzgy) + Imollzr-12qry ),
=1

IN

c(|yf\|L6/5(Q)(1 + [leurl a|| gs/2 ) + Hwoy\H,l/z(r)). (7.41)

Now, we use the decomposition (7.39) in order to bound the term ||b) x u,||gr(q). We observe
first that

185, 2llz=(0) < 1bx = bllg=(0) + b = bx pepallps) S A+ €/2< e (7.42)

Recall that

W 22(Q) — L™(Q)
with %:%—%ifp< %, for anyleifp:%andfor any m € [1, oo] if p > % Moreover
the imbedding

W 2(Q) — L9(9)
is compact for any ¢ < m if p < %, for any g € [1, oo if p = % and for any ¢ € [1, oo] if p > %
Then, using the Holder inequality and the Sobolev imbedding, we obtain

165, 2 % uxllzr(@) < 1165 2llze@lluallpm @) < Cellurlly 200, (7.43)

where % = % — %, which is well defined because the definition of the real number s. For the

second estimate, we consider two cases.

Case p < 3/2. Let r € [3, o] such that % =141andt>1suchthat 141 = 2+ 1 satisfying:

161 X urllzr) < [101llzr @ lluallgs
< 118l gy 1oz e lall o
Using the estimate (5.18), we have
155 x wallze(a) < Cellbllgagey (I lzosqey + Imoll vz )- (7.44)

Thanks to the following imbeddings
Q) — I5@),  WIUr(r) o B2,
we obtain that
155 x wallzec@) < CellBllgoragey (I vy + Il s-svmmry ) (7.45)
Using (7.43) and (7.45), we deduce from (7.40) and (7.41) that

lusllw 2oy + lmallw @) < € (1F @)1+ leurl all ) + Il 1-1/moqry ), (7:46)

where in this case s = %
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Case p > 3/2. We know that for any € there exists C! > 0 such that

JuallLes (@) <€ llurllwer ) +Collualls o)

Moreover, we have

1A X uxllze() < [[ballzr (@) luall L) (7.47)

Thanks to (7.40), (7.41) and (7.23), we deduce the estimate (7.46) where we replace L3/%(1)
by LP(2) because in this case s = p. The estimate (7.46) is uniform on A, and therefore we

can extract subsequences, that we still call {uy}x, {mx}x and {a},, such that if A — 0,

uy — u weakly in W 2P(Q),

and

7y — m  weakly in W P(Q), o} — a; forany i=1,...,1.

It is easy to verify that (u, m, a) is solution of the problem (OS y) where a = (a1, ..., ar1),
m=moon'ygand 7 = my+a; on I'; for any ¢ = 1,...I. Moreover, (u, m) satisfies the estimate
(7.38).

We are now interested in the study of generalized solutions of the problem (7.29) where
u € WHP(Q) for 1 < p < co. As for the case p = 2, we choose f € [Hg,’p/(curl7 2)]" with

% = % + % Observe that the pressure 7 is a solution of:

Ar=divf —div(curla x u) + Ax inQ, m=mgonly and 7 =my+ ; onl}.

If u € WY (Q), then u € LP*(Q) with 1% = % — L if p < 3, px arbitrary in [1, co[ if p = 3
and px = oo if p > 3. Consequently, if we keep the same hypothesis on curla € L3/2(Q)
we have curla x u € L'(Q) with t = rif p < 3, t <r=3ifp=3andt = 3 < rif
p > 3. Consequently, if p < 3, we have A7 € W ~17(Q), so that if 79 € W 1=1/""(T), then
T e W (Q). But,if p> 3, Ar ¢ W ~7(Q) if we suppose only that curl a € L3?(2). The
next theorem give the existence of solutions u € W 'P(Q) with p > 2 provided that curl a is

in a space L°(Q2) with s large enough.

Theorem 7.3.2. Let p > 2. Let f€ [H()T/’p/(curl7 Q), x e Wh(Q), g WITV/PP(T). We
suppose that 7o € W1=1/7(T) and curl a € L*(Q) with 1= ;1) + % and s satisfies:

s:g if 2<p<3, s:g—i—eifp:S and s=r if p> 3,



Chapter 7. Oseen problem with normal boundary conditions 136

for some arbitrary e > 0. Then the problem (7.29) has a unique solution (u, 7, a) € WP(Q)x
WLT(Q) x R! satisfying the estimate

2
lull ey + I7llwir@ < C(1+ |curlal|psq) (||f\|[Hg/,p'(curl,Q)y + gl wi-1/pp @y +
ol a-sme ey + Il e ) (7.48)

where o = (o, ..., Q7).

Proof. As for the Stokes problem (S)), where the external forces belong to H [ / (curl, ), we

can prove that the problem:

(
—Aug+Vqg=Ff, dvug=yx in Q

U XN =gXnN on I

’ g (7.49)
g=0onTy and g =« onl;, i=1,...,1,

Jr o uw-ndo=0,i=1,...,1,

with o, = (f, V q7'N>[H0T/’p,(curl,Q)}’XHOT/’p/ (curl, Q)+IF x V ¢~ -n, has a unique solution (uo, qo) €
W P (Q) x W LT (Q) satisfying the estimate

lesoll v 1y + ol ) < € (1 g7 e, ey + 191w 1170y + Il r(@)) - (7:50)

Now, observe that with the values chosen for s and 7, since ug € W P(Q) — LP*(Q) and

)
curla € L*(Q2), we can verify that curla x ug € L"(Q2). Indeed, if p < 3, then 1% = %

+]%:§andifp>3,

W=

and % + 1% = 1 If p = 3, then there exists € > 0 such that

r

3
2 + €
then px = oo and r = s. We note also that with this choice of r, we have the imbedding
W 27(Q) — WP(Q) and r > 6/5 because p > 2. Finally, from Theorem 7.3.1, we deduce
the existence of a unique (z, ) € W 27(Q) x W 7(Q) solution of

/

—Az+curla xz+V0=—curla X ug, divz=0 in
zxn=0 on I,

(7.51)
f=m9gonly and 6 =my+ G; only, i=1,...,1,
friz~nd0':0, i=1,...,1,

with 8; = — [curla x (ug+ 2) - V¢ dz — [ 7V - n and using (7.38) we have the

estimate

12l w2r@) + 10lwir@) < C(1+ |curlalgs(q)) (chrl a X uo||rr(a) + HTFOHWPUW(F))

IA

C(1+ [curlal|rs(q)) (chrl aHLS(Q)(HfH[Hgﬂp’(curl’Q)]/ +

_l’_

lgllw1-1/mmey + Ixlwrr@) + ol ) (7.52)
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The pair (u, 7) = (z + ug, g + 0) € WHP(Q) x WLT(Q) is a solution of (7.29). Estimate
(7.48) follows from (7.52) and (7.50). O

Now, we will treat the case p < 2 and first we consider the case where: y =0 and g = 0.

Proposition 7.3.3. We suppose that p < 2. Let f € [Hg/’p/(curl, Q)), curla € L°(Q2) and
mo € W=/ (T) with

. 3 9 + 6e 3 3p .. 3

-1 / f e — f — d = f — 2 .

r +e€ i p<g T g2 Tp=g5andr 317 if 5<p<2 (7.53)
3p . 3 3 : 3 3 .. 3

=(1+¢ f = s== fp=-and s== if = 2

s (+6)4p—3—e’(3—p)1 p<2,s 2+61 p=y5and s= i 2<p< )
(7.54)

where €, € > 0 are arbitrary. Then the problems:

Find (u, 7, a) € WIP(Q) x W (Q) x R satisfying (OSy) (7.55)

with o = (a1, ..., 1) and the variational formulation:

Find (u, 7, ) € WHP(Q) x W (Q) x R satisfying ux n= 0on T and fFi u-n =0 such that :
V(w, 0, d) € WHP'(Q) x W™ (Q) with divw e W 2" (Q) satisfying :

wxn=0 onT, —curlax w+ V0 e[H P(curl, Q)] and Jr,wn=0, 1<i<I,
#=0only 6=d; only,

(u, ~Aw—curlax w+Vo)q,. - [, rdivwds=

(fowa, , — [pmow-n,

Vi=1,...,1, «a; =, quN>QT,YP, —fQ(curlax u)-VqlNdz—fFWquzN-n.

(7.56)
are equivalent, where d = (di,..., d;) and where the brackets (-, '>QP*YP denotes the dual-
ity [Hg*’p(curl, )] x Hé’*’p(curl, Q) and (-, -)a,, , denotes the duality [Hg/’p/(curl, )] x
Hgl’p,(curl, ).

Proof) Let (u, 7, @) € WIP(Q) x WH(Q) x R a solution of (OSy) and let (w, 6, d) €
W L (Q) x WP (Q) with divw € Wol’p*/(Q) satisfying :

wxn=0onl, —curlaxw+Vlc [Hé’*’p(curl, Q)] and friw-n =0, 1<i<I,

6 = 0onTy 6 = d; onT;. By the density of D(2) in the space Hg/’p/(curl, Q) and
H{ " (curl, Q), we obtain:

(—Awu, w)q, o = / curlu -curlwdz
’ Q
= (u, curlcurlw)q .

= (u, —“Aw + Vdivw)q,. .



Chapter 7. Oseen problem with normal boundary conditions 138

But, since Vdivw € LP"'(Q), we have Vdivw € [HY ?(curl, Q)]'. Moreover, it is clear that
Aw € [HY P(curl, Q))'. Then, we can write:

(u, —Aw+Vdivw)g,. , = (u, —Aw)g (7.57)

p*,p’

because fQ 4 - Vdivwdez = 0 since divue = 0 in Q and divw = 0 on I'. Next, if curla x
w+Vre[H] " (curl, Q)], then

(curla x u + V7, w)q, , :/(curla xu+ V) wdz,
’ Q
where the integral is well defined because curl a € L*(2) with %—i— 1% + 1% =1if3/2<p<2
and%—l—é—l—#<1if1<p<3/2. Moreover, %+#:1,if3/2§p<2and%+p}* <1lif

1 < p < 3/2. As a consequence, we can write

/(curla><u+V7r)~wda;:/(curlaxu)-wdm—i—/Vw-wdm.
Q Q Q

Next, it is clear that

/(curlaxu)-wdx:—/(curlaxw)-udx.
Q Q

Also, since m € W (Q) and w € H? " ®")"(div, Q) we have

/Vw"wdm:—/ﬂdivwdx—i—/ww-n. (7.58)
Q Q r
where H?" ") (div, Q) = {ve L’ (Q), dive € L(p*/)*(Q)}. In order to establish (7.58),

*/

we just check that = + # < 1 and we use the density of D(Q) in HP™>®")" (div, Q) (see

[10]).

Now, since divu = 0 in Q we have for any § € W 12" (Q):

O:—/ Hdivudm:/u'vedm—/Ou-nda.
Q ) T

Here too, the last Green formula is verified. Indeed, since u € W P(Q) — LF (Q) wich
implies that w € H?"?(div, Q). Let us summarize. We have obtained that:

(Fow)a, , = (u,—Awg,. - /

Q

=+ /Wow-n—l—/u'Vde—/Hu-nda.
r Q r

Using the properties of w and 0, we obtain that (u, ) satisfies the first equation in (7.56).

(curla x w)-udm—/ﬂdivwdx
Q

With the same arguments used in Theorem 7.2.5, we can prove that the constants a;, for
1 < < I satisfy the last relation in (7.56).
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Reciprocally, let (u, 7, a) € WIP(Q) x W1IT(Q) x R’ a solution of (7.56). First choose
w € D() and § = 0, then we deduce that

—Au+curla xu+Var=Ff in Q.

Next, we choose w = 0 and 6 € D(f2). Then, we obtain that dive = 0 in . We know
that u x n = 0 on I' and that fFi u - ndo = 0. Then it remains to prove the boundary
condition given on the pressure m. Let then w € W ' (Q) with w x n = 0 on I and such
that divw € Wol’p "(Q). We obtain as previously,

(f, wha, , =(u, —Aw)q,. —/(curla X w)-ude —/
» P ’ Q

7rdivwd:1:+/7rw-n.
Q

r

Let § € W 1" (Q). Then,

(fow, , = (u, —Aw>QP*Yp+/Q(—curla><w+V6?)-ud:B—/QV0-udw

— /Wdivwdz—i—/ww-n.
Q r

I
w = w—Z(/.w-n)quN—i—z, (7.59)

=1 Iy

But,

with z = Zle(fri'w . n)VqlN. We set wg = w — z, then if —curla x wg + VO €
[H} ?(curl, Q)]" we obtain:

(f, w0>Qr,yp, + (f, Z>Qr,’p, = (u, ~Awg—curla x wo+Vb)q,. — /Q(curla X z)-u

- /VG-U—/wdivw0+/7rw0~n+/7rz~n. (7.60)
Q Q r r

This last relation is valid for z = 0 and we deduce from (7.56) that:

—/VG-udw—i—/wwo-n—/wOwo-n:O.
Q r r

Choosing # =0 on I'g and 6§ = d; on I'; for any 1 < ¢ < I, we obtain

/F(?T—?TQ)’U]O"I’L:O.

Now, we return to the relation (7.60) and we can write:

/wz-n = (f, 2)a, p,+/(curla><z)-udx
- :

Q

= {f,2z)a, , — /Q(curla X u)-zdz
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So that, using the decomposition (7.59) and the last relation in (7.56) we obtain that:

/ﬂw-n = /Wwo-n+/7rz-n
r r r

= /wofwo.n+<f, z)a, ,/(curlaxu)-zdm
r e Q

I
= /1—\7T0w0n+;(\/rzwn)<f’ vQ?{V)Q,,/’p/
I
. -V alV
4 (/Flw n)/g(curla xu)- Vg dz. (7.61)

=1

This implies that

/Fﬂw-n = /Fﬂowo-n+§(/nfw-n)(/FWOquV-n—i-ai),

and then

/7rw~n = /71'0'11]0‘714‘5 ozi/w'n
r r i r;

with C' =0 onI'yg and C' = «; on I';.

We use exactly the same arguments as in Theorem 7.2.5 and we obtain that:
m=mg on 'y and m = my+ «; on I},

which finishes the proof. O

Now, we are going to solve the problem (7.56).

Theorem 7.3.4. Under the assumptions of Proposition 7.3.3, the problem (7.56) has a unique

solution (u,m, o) satisfying the estimate:
oy < €O+ lleurlal @) (1l g et o + M0l (762)
Imllw 1r @) < C(1+ chrlaHLS(Q))B(Hf\l[Hg',p/(curm)l, + ol 1-1/rr @) (7.63)

Prodf) Since p' > 2, we know due to Theorem 7.3.2 that for any F € [HY P(curl, Q)]
and ¢ € Wol’p*/(ﬂ), there exists a unique (w, 0, d) € W' (Q) x W™ (Q) x R! with
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divw € Wol’p*/(Q) such that:
—Aw —curla xw+VO=F, divw = in ],
wxn=0onl,

(7.64)
=0 only and 8 =d; only, 1<i<I,

fFi'w~n:0, 1<i<I,

satisfying the estimate:

2
wl| wLr'(Q) + HQHWLP*/(Q) < C(l + chrlaHLs(Q)) (‘|F||[H(§’*’p(curl,ﬂ)]’ + H(‘O”Wl’p*/(Q))’
(7.65)

where d = (dy,...,dr) and
di = (F,V ¢¥)q +/(curla xw) -Vg¥de, 1<i<I.
Q
Remark that we can apply Theorem 7.3.2 because the real s defined in (7.54) satisfies the
assumptions of Theoreme 7.3.2 where however we must replace p by p’. Indeed, since p’ > 2,

we have s = 2 if 2 < p' < 3, s = 3 + € if p’ = 3. For the last condition, s = p*' if p’ > 3.

But, 1% = %3—% Then;’% = %3—% = 41;—;3. We deduce that s = 4;’%3 if p > 3. So,
-3 _ _3p _ ' _ 3 : i
s = T3 T s T S T B Now, using (7.65) we obtain:
‘<f7w>ﬂr/7p/ —/71'0’117 . n‘
r

< g o 19w+ Il g0l

S C(HfH[H(;‘/’p/(curl,Q)}’ + ||7T0“W17%,T‘(F))(1 + ||CllI'lO,”LS(Q))2 X

X

IF gz 2 et o 1l ()

In other words, the linear mapping
(F790) <f7 w)ﬂ,,,/yp/ - / Tow - N,
r

defines an element (u, 7) of the dual space of [H(I)J*’p(curl, )] x Wol’p*,(Q) which means that
(u, m) € Hé’*’p(curl, Q) x W ~1P"(Q) and satisfies:

<’U,, F>Qp*7p - <7T7 90>W71,p*(Q)XW01sp*,(Q) = <f7 w>QT/’p/ - /FTer "n, (766)
with

lll g% errr, ) + 1Tl -1 (@) < C(L+ [leurlalps())? x

X (H'f”[Hg,’p/(curl,Q)}’ + ”71-0HW1*1/T'17'(F))' (767)
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We have then

(u,—Aw — curla x w + V6>Qp*yp — (m,div w>W71’T(Q)XWO1,Tf(Q) = (f. w>QT,,p,

- /7r0'w -n(7.68)
r

for any (w,0) € W7 (Q) x W™ (Q) with divw € Wol’p*/(Q) satisfying w x n =0 on I,
Jo,w-n=0forany 1 <i<1I, —curlaxw+ V0 € [HP P(curl, )], 6 = 0 on Ty and
finally 0 = d; on T;. Then, we have proved that (u, 7) € HY *(curl, Q) x W ~1#"(Q) satisfies
the first equation in (7.56)

We prove now that v € WIP(Q), 7 € WI"(Q) and that the second equation in (7.56)
is verified. We choose w = 0 and 6 € D(£2). Then, we obtain divue = 0 in Q. Since
u € Hé’*’p(curL Q) and dive = 0 in Q, we deduce by, Theorem 2.2.4, we obtain that
u € WUYP(Q). The estimate (7.62) follows from (7.67). Next, we choose w € D() and
0 € D(Q2), we obtain

—Au+curla x u+Vr=f in Q. (7.69)

But curla € L*(Q2) and u € LP"(Q) with s defined in (7.54), we have then curla x u € L"(f)
with 7 defined in (7.53). So, since curla x u + V7 € [Horl’pl(curl7 Q) — W E(Q), we
have Vo € W ~17"(Q) and then also 7 € L" (). This means in particular that

(ﬂ,divw)wLp*(Q)XW&,p*/(Q)—/erdivw,

because we have divw € L) (Q) = LP(Q) with L+ ]% < 1. It remains to show that
fFi u-ndo = 0and 7 € WIT(Q). For the first point, we choose in (7.68) w = 0 and
0 € WhP"'(Q) with @ = 0 on Ty and § = §;; on T';j for any 1 < j < I and fixed i in [1, I]. We
deduce from (7.68) that fFi u-ndo =0 for any ¢ in [1,]. For the second point, we know
that m satisfies

A =divf —div(curlae x w) in Q,

and as in the point #) in the proof of Theorem 7.2.5, we can prove that 7 verifies the boundary
conditions:

m=my on Iy and T =7+ a; onl}.

Then, using (7.53) and (7.54) we can verify that A7r € W ~57(Q). So, 7 € W1T(Q) and

satisfies the estimate:

I7llwir) = (Wl oo e ey + leurl allzsc@y el @) + Iolly 1-1mr ). (7.70)

Finally the estimate (7.63) follows from (7.70) and (7.67).
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The next theorem give an extension of the previous one to the case of the problem (7.29).

Theorem 7.3.5. Let p < 2,
fe[H 7 (curl, Q), x € W(Q), ge WV/PP(I') and o € W'=1/""(I), curla € L°(Q)

with v and s satisfies (7.53) and (7.54). Then the problem (7.29) has a unique solution
(u, T, @) € WIP(Q) x WL (Q) x R! satisfying the estimates

IN

2
1wl woe ) C(1+ |lcurl a| (o)) ((1 + [[curlal z+(q)) (||ﬂ|[Hé~/,p'(cur1,Q)],

+ Dgllwi-vmny + Xl o) + Imoly 11 ry) (7.71)

3
I7llwrir@) < C(1+ llcurlal|g:(q)) ((1 + |lcurl al| g+(q)) (”ﬂ|[H5',p'(CurL Q)
+ lgllr-1m00y + Ixllw @) + 7ol H/w(r)) (7.72)

where a = (1, ..., ay) with a; = ({, quN)Qr,’p, +Jr (X—Wo)quN'n—fQ(curlax n)-Vgl.

Proof. Let (ug, qo) € WP(Q) x WLT(Q) such that (7.49) and satisfies the estimate (7.50).
Next, we consider (z, 6) € W1P(Q) x W17 (Q) solution of (7.51). We note here that we
appply Theroem 7.3.4 because curla x ug € [Hg/’p,(curl, Q)]". Indeed, using (7.53) and
(7.54), we have curla x ug € L"(Q2) — [I—Iorl’pl(curl, 2)]". Moreover using (7.62), we obatin

that z satisfies the estimate:

IN

2
HZ”WLP(Q) C(l + ”CUFIGHLS(Q)) (HCUPIG x UOH[HOTI’pl(curl, Q) + ”7TO||W1*1/T,T(F))

N

2
C(1+ |curlal|g:(q))” (llcurl a x wol g (o) + [|I7olly 1-1/rr(ry)

2
< O(1+ [leurlal (o))" ([leurl a| g [ woll w 1r 0y + 170l 1-1/mr(ry) -
Using the estimate (7.50), we deduce that z satisfies:
< c(1 la| gs)*(|lcurl a| g
2w < OO+ lleurd @) (lewrl allzo (1 g o et o
+ gl -very + Ixllwir@) + ||770HW1—1/N“(F))' (7.73)
Similarly, using (7.63) and (7.50), we obatin the estimate:
0 < c(1 1 ’ 1
H ||W1”"(Q) = ( + ||CLII‘ aHLS(Q)) (HCUI‘ aHLS(Q)(Hf”[Hgl,P/(CurLQ)}/
+ gl 11y + X)) + 7ol 1-1/mery)- (7.74)

Finally, the pair (u, 7) = (z + ug, o + ) € W HP(Q) x WLT(Q) is a solution of (7.29).
Estimates (7.71) and (7.72) follows from (7.50), (7.73) and (7.74). O
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Proposition 7.3.6. Let p such that 6/5 < p < 6. We suppose that f € [Hgl’p/(curl, ),
X €EWL(Q), ge WIV/PP(D), g € WY/ (T') and curl a € L*(Q) with

6 3 9+ 6u . 3 ., 3
=1 if 2 < — = f p== and r= f = <6 7.75
r + i 57p<2,7“ 9+2M1 p=5 and 7 3+p1 5 <P=6 (7.75)
3p .. 6 3 3 . 3
=(1 ! f —<p<-= == fp=- =3 d
s=( +M)4p—3 M’(B—p)l FSP<g s 2+,u1 p=g orp=3, an
3 3
=— if = < .
s=5 1 2<p_6, (7.76)

where p, ' > 0 are arbitrary. Then, the solution (u, ) satisfies the estimate:
lullwie) + [7llwir@ < C(1+ |curlalgs(o) ((HfH[HOr’,p’(wrm)], + lImollw 1-1/mr(ry
£ (1 leurl al z@) (Il e + gl gismogey) ) (777

Proof. The case p = 2 is treated in Theorem 7.2.10. We will repeat quickly the reasoning

given in Theorem 7.3.1.

i) First case: 2 < p < 3. We obtain, thanks to the regularity for the Stokes problem

luallw o) + Imallwir@) < C(HfH[Hg',p'(erQ)], + [Ixllw e @)
gl 1-1/m0 0y + 70l 11/ 0y + 101 ¥ U/\HLT(Q)) (7.78)
where we have used the continuous imbedding L"(Q2) — [H P
ity (7.42), the Holder inequality and the Sobolev embedding, we obtain

curl, Q). Using the inequal-

1652 X urllzr) < Hbf\,Q”L%(Q)HUAHLP*(Q)
< Cellunllwir):
For the second estimate, we have:
167 x uallzr@) < [105llpe luallzea)
<

10115272 19 2Ly

where k €]1,2[ is such that 1+ = 24§ and 1 = 1 + %. We choose t €]3, 22 [ for that
6 < g < px. So, for any € > 0, we known that there exists a constant C! > 0 such that:

luallzo) < € lurllw o) + Colluallgs -

Hence, by Theorem 7.2.10, we obtain
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fuallyw oy + Imalwir@ < CO+ lleurtal g o) (1 g0 s + 170w 1-mmcr

+ (14 |[curlal s )(HXHWM(Q)JrHgllwl—w,p(p)))

L2(Q)

ii) Second case: 3 < p < 6. Using again the regularity for the Stokes problem, we have the

estimate (7.78) with now

1652 X urllzr) < Celluallze@) < Cellurllwirg  ifp>3,

1652 % “AHL3/2(Q) < Cellunlpa) < CﬁHU/\HWLP(Q) if p =3,

2 1 1

where 3= 7 + 53— For the second estimate, we have:
2
161 X uxllzr@) < (101l g luallps
<

[curl al|zs ) llpe/2ll e o) lwall s @)

o

ii) Second case: 2 < p < 2. As in Theorem 7.3.4 | we use a duality argument. O

Corollary 7.3.7. Let 1 < p < &, fe LP(Q), x € W'P(Q), g € WITVPPI(T), 75 €

W 1=1/2P(T) with curl @ € L*(Q) where

|

5 z’fp<§ , s=p if p>§ and s:§+e if p=—, (e >0 s arbitrary).

"7 2 2 2
Then the problem (7.29) has a unique solution (u,m) € W>P(Q) x W 1P(Q).
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Chapter 8

Navier-Stokes problem with normal

boundary conditions

As a consequence of the previous study in Chapter 7, we want in this chapter to study the

following Navier-Stokes equations:

—Au+curluxu+Vr=f in Q,

divu = x in Q,
(NSn) uxn=g on I,
m=mo on I'; and m = mg + ¢; only, i=1,...,1,

Jrou-mdoe=0,i=1,....1,

where f, and mg are given functions, ¢; are constants and we will denote by ¢ the vector
c=(c1,...,cr).

In the search of a proof of the existence of generalized solution for the Navier-Stokes

equations (NS y), we consider the case of small enough data.

Theorem 8.0.8. Let f € [Horl’pl(curl, Q), x e W (Q), ge W'VPP(D). my e WI-1/rr(D)

. 3
with %<p<3 and 'r:%.

There exists a constant a; > 0 such that, if
15 g gy I @) + 18l -simay + ol 137y < 1,

then, there exists a solution (u, w, ¢) € WIP(Q) x W7 (Q) xR! to problem (N'S y) verifying

the estimate
ol ey < OO g + X0 1)+ Nl vy + ol s-27mqry). (8
with ¢; = (f, Vai)a, ,, + Jr (x =m0) V¢’ - n— [ (curlu x u) - Vg

147
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Moreover, there exists a constant ag €]0, 1] such that this solution is unique, if

H‘f”[Hgl‘p/(cul‘l,Q)]’ + HXHWLT(Q) + HgHWl*l/%P(F) + HTFOHW1*1/TH"(F) S Q2.

Proof. 1) Existence: We begin to prove existence of generalized solutions. We want to apply
Banach’s fixed point theorem. The idea is to do this fixed point over the Oseen problem (7.29).

We are searching for a fixed point for the application T,
T : WQ) — WhP(Q)
a — u,

where given @ € W P(Q), T a = u is the unique solution of (7.29), where we replace a; by
¢;, given by Theorem 7.3.2 and Theorem 7.3.5. In order to apply the fixed point result, we
have to define a neighborhood B}, in the form:

By={ac W'(Q), |a]ysq <A}

Let a1 and a2 € B). If we choose a contraction method, we must prove that: there exists a
constant 6 €10, 1] such that

[Tar — Tas|lw o) = llur — vallw ey < Ollar — a2 wirq)- (82)

In order to estimate [|uy —ua| g 15, We observe that for each k = 1,2, (uy, m;) € W LP(Q) x
W LT (Q) verifies:

—Awup+curlagy X up, + Vo, =Ff in €,

divug = x in Q,
U XN =g Xn on I',
m, =mg on 'y and 7, = mg + ¢ only, i=1,...,1,

Jo,uk-mdo=0,i=1,....1,
with the estimate:
el oy < OO+ lleurlael g o) (1]t eurt cyp + 1ol -3/mrry

+ (A fleurlarll 5 I(Ixlwir@) + 19l 1-1mp0y) )-
LZ(Q) )

However, in order to estimate the difference w; — w9, we have to reason differently. We start

with the problem verified by (u, 7) = (w1 — w2, M1 — m2), which is the following one:

—Au+curla; x u+Vr7=—curla x us in Q,
divu =0 in Q,
uxn=>0 on T,
=0 on I,
friu-ndazo, i=1,...,1,
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where @ = a1 — a2. Using the estimate made for the Oseen problem successively for u and

U9, we obtain that:
lullw 1oy < C(1+ lleurl ay| o) (leurla x us] (o).

Then

IN

lullwig < C(+leurlallzeg)leurl al g g luzlp- o (8.3)

IN

C2(1 + [leurl 1] /s ) (1 + lewrl a2 gorzioy) (g o

+  lImollw 1-1/mr ey + (1+ chrla\|1;3/2(sz)) (Il 1) + HSI||W1—1/p,p(p)))-

We set a« = ”'f”[HOT/’p,(CUI‘l,Q)]’ + ||7T0HW1*1/TW(F) and /6 = ”XHWl’“(Q) + ||gH Wlfl/p‘p(f‘)' Then,
(8.3) becomes:

lullw o)y < C1C%|allw o)1+ Cillaillw 1o0)) (1 + Cillaz] w 1))

where Cy > 0 is such that
Yo e WP(Q), |lcurl UHL3/2(Q) < Cillv|lw e (8.5)
Thus, we can (for instance) obtain estimate (8.2) if we consider r such that
C1C*(1+ CiN)? (a+ B(1+ C1N)) < 1,
that is verified, for example, taking:
A=Cpl ((20102(a +p3)) - 1) and o+ < (20,02)7L, (8.6)
Therefore, if (8.6) is verified, then the fixed point u* € W 1P(Q) satisfies the estimate:
|l 10y < Cla+B) (1 + Cillu |l 1(ey) (8.7)

ie
1wl ey < 27,

where z* is the smallest solution of the equation: x = ax? + 1 with a = CCyi(a + B), i.e
2
x* = ————— where we suppose that a < 1/4. Thus,

1++v1—4a

4a
[l wir) £ ——F—=3 < 4a, (8.8)

(1++1—4a)? ~
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which proves the point i) and the estimate (8.1).
ii) Uniqueness: We shall next prove uniqueness. Let us denote by (uj, m) the solution
obtained in step i) and by (ug, m2) any other solution for (NSy) corresponding to the same

data. Setting u = 41 — uo and m = m; — mo. We find that:

—Au+curlu; xu+Var=—curlu x us in Q,

divu =0 in Q,

uxn=0 on T, (8.9)
=0 on I,
Jrou-mdo=0,i=1,....I

Then,
lullw1r@) < C(1+ [[eurluf| o2 o)) ([[curl w X us g (), (8.10)
i.e as in step i):
lwllw e < (14 Crlluillw o) Crlllull w e q)lluzll w e q)- (8.11)
But, fori =1, 2
il o) < C(L+ Culluill g iv () (@ + B), (8.12)
and then,
il w10 () < 4¥CCh, (8.13)

where 7 = I 17 curtcog + X0 1)+ 7ol -370rry + 1911y 1-1/ma gy e obtain
lall 1@y < CO (1 +4C3C7)ACC ully 1o - (8.14)

Then, if CC%(l + 40%07)40017 < 1, we deduce that v = 0 and the proof of uniqueness is
completed. O
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Chapter 9

A Nitsche type Method

In this chapter, we consider a discretization based on continuous finite elements of the
Stokes problem with non-standard boundary conditions. In what follows ) denotes a Lipschitz
domain of R? with a polygonal boundary I' = 9Q. The velocity u and the pressure p are

assumed to satisfy:

—vAu+Vp = f, inQ, (9.1)
Vou = 0, inQ, (9.2)

where v > 0 is the kinematic viscosity of the fluid and f is the density of external forces.
We suppose that I' is devided into three open and disjoint subsets I'1,I'9,I's such that I' =
[y uUTyUTs.

On the boundary I", we let n = (n1, n2) denote the unit outward normal and ¢ = (—ng, n;)

denote the unit tangential. Given vector data wug, @, b and scalar data pg, wg, we consider

the following boundary conditions:

u-n = up-n, u-t=ug-t on Iy, (9.3)
u-t = a-t P = Do on Iy, (9.4)
u-n = b-n curl w = wy on I's, (9.5)

The chapter is organized as follows. First, in Section 9.1, we recall Nitsche’s method for the
Poisson problem. Section 9.2 is devoted to the description of fonctional framework. Next, in
Section 9.3, we formulate and analyze the Nitsche method for the Stokes problem. In Section
9.4, we establish the stability of the method. Finally, the last section deals with the numerical

experiments.

9.1 Definition of the method

Nitsche’s Method [48, 53] was originally introduced for the purpose of solving Dirichlet

problems without enforcing the boundary conditions in the definition of the finite element
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spaces. For simplicity we consider the Poisson problem:
—Au=f in{Q,
u=4g onl",
which can be written in weak form as: Find u € u, + H$(Q) such that
Vo e Hi(Q), B(u, v)=F(v),
where B(u, u) = [, Vu-Vovdz and F(v)= [,f - vdz.
The finite element space is defined, using a shape-regular triangulation of €2, as:
Vi,={ve HYQ), (v)|r € Py, VT € T;,}.

In Nitsche’s method no boundary conditions are imposed on the space, but the variational
formulation is augmented by appropriate terms. The method is defined as: Find up € Vi
such that:

Vv e Vi, Bp(up, v) =F(v), (9.7)
where
Bp(up, v) = / Vu, -Vodz — <% v)r — (uy 8—v>r+ Z l(uh V)e
) Q an M ) an ef ‘e‘ ) )
e€Fn
and

0
F(v) :/Qf-vda:— (9, a%>r+ > %Qq, V)e,
ecFy

where Fj, is the collection of edges on I' and v > 0 is a stabilization parameter.

By use of Green’s formula, we have the following proposition.
Proposition 9.1.1. The method (9.7) is consistent in the sense that:
By (up, — u, v) =0, for all v € V}, and for w sufficiently regular.

For the purpose of stability and error estimate, we introduce the following mesh dependent

norm:
lloll* =1V olia+ > %anae'
ecFp
In order to show that the method (9.7) is stable, we shall show that By(-, -) is coercive with
respect to the norm ||| - |||, given that v is chosen large enough. In order to do so, we need the
following inverse inequality:
Voe Vi S lellVo-nlZ, < IV ol (9.5)

ecFy

We are now ready to give the coercivity result.
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Lemma 9.1.2. If v > 0 s large enough, then the following estimate holds:
By (up, up) = CllJun|?, (9.9)
for all u, € Vi, independent of h and we have

1w — upll| < CB*||ulli11,0- (9.10)

Proof. Let us here simply indicate the main steps in the proof. First one has

ou
Bu(un, wn) = |V unlq = 2500 wnr+ 35 Cllunlf o (9.11)
ecFy
Next, using the inverse inequality (9.8), it follows that if v > C?, the stability estimate (9.9)
holds, where C is the constant in the discrete trace inequality (9.8). The error estimate (9.10)

then follows from the interpolation estimate in the norm ||| - ||| O

9.2 Preliminary notations and results

Let (73)5, be a shape-regular family of tiangulations of 2. For each triangle T, we denote by

hy its diameter, by |T'| its area and let h = Inax hr. We agree to denote by F the set of
€lp

edges situated on the part I'; of the boundary (i = 1,2, 3). Moreover, the meshes are supposed

to be shape-regular, i.e., there is a constant ¢ > 0, independent of h, such that:
hr
— <e¢, VA >0, VT €T,
pPT
Here pr denotes the diameter of the largest circle inscribed in T'. For every k € N and T € 7T,

we denote by Pk the space of the polynomial functions defined on T of degree less than or

equal to k, and by P} the space Py, x P,. We introduce the following finite dimentional spaces:

Vi, = {’Uh S CO( ), Uh‘T € Py, VT € 7;1}

Qn = {an €C°(Q), qulr € P1, VT € Tp,}.

We suppose that the pair (Vy, Q) satisfies a uniform inf-sup condition:

by (qns vn) S B

inf sup

e Th > 2 (9.12)
n€Qn y,ev,nmi(? lanllogllvn]] = Vv

where 5 > 0 independent of h, v and =, the bilinear form by, is defined in (9.19) and the norm

[ ] in (9.15).
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Many finite element pairs are known to satisfy the inf-sup condition such as the classical
P2~ P! Taylor-Hood method (see [39]).

One needs to define the following Hilbert spaces:
V ={v e L?(Q), dive € L*(Q), curl v € L*(Q)}, (9.13)

Vo={v e V(Q), v-n|r,ur; = v - t|r,ur, = 0}. (9.14)
The spaces V and V are both normed by

. 1/2
lollv = (||vllo,0 + [[div v[lo,o + [[curlv]lo o) /.

Now, let us introduce a bilinear form on V' x V) representing our stabilization term:

J(u,v)zy< Z ‘;/e(u~t)(v~t)ds+ Z |;/6(11-71)(1;-n)ds),

e€FLUFE e€FLUF}

and let us also introduce the following semi-norm on V:

[un

2

0] = (v(ldiv v |3 + llcurl v |3 ) + 77 (v, 0) ), (9.15)

where 7 > 0 is a stabilization parameter. Then we can prove:

Lemma 9.2.1. The application v — [[v]] is a norm on V.

Proof. We only have to show that [[v]] = 0 implies v = 0. So let v € V}, such that
||div v ||, = |curlv [jo o = J(v,v) = 0. On the one hand, it follows that v - n = 0 on every
edges e € f;ll U .7:2. On the other hand, one gets that v - £ = 0 on every edges e € .7:% U ]—'}QL.

Then, v belongs to V. It is known that for any function v of V, we have

lvllog < € (lldivolloo + fewl o). (9.16)

Then, the fact of ||div v |jpo = [[curl v ||, = 0 implies that v = 0 on Q, which concludes the
proof. O

9.3 Formulation of the Nitsche’s method

Our method can now be defined as follows: Find (up, pr) € V' x Qp such that

an(®h; Vh) 4 On(ph; va) = Fr(vn),  Von € Vi,
n(@h, Vi) + bu(Ph, vi) = fr(va) h h (9.17)

br(an, vn) = gn(an) Vg, € Qn,
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where the bilinear, respectively linear forms are defined as follows:

ap(up, vy) = V(/chrluhcurlvhdw+/Qdivuhdivvhdw> (9.18)
_ Z /curluh vp - t) ds+/curlvh(uh t)ds )
eeFlUF? € ¢
_ Z /le’U,h vy - n)ds +/d1vvh(uh n)ds )
ef,{uf;“; ¢ ¢
+ |/uhtvhtds+z ’/uhnvhn)ds)
f,{uﬂ Fluf;"‘;
bh(qh, vh) = / qndiv vy dx + Z / qnvp - nds. (919)
e€FLUF}

Frlop) = /f vhdw—uz (/curlvh ug - tds+/(divvh)uo-nds

667:1 € €
_ fy/uo n vy, - nds—/uo tvy - tds) —VZ (/(curl’uh)a.tds
’e‘ 6.7:2 €
h
+ /povh~nds—m/a'tvh-tds)—uz (/(divvh)b-nds
¢ €l Je e€F3 €
— /wgvh-tds—’;/b-nvh-nds>. (9.20)

n(vn) Z/qhu[) nds + Z/th nds. (9.21)

1
‘7:}1

The following Lemma states that the proposed method is indeed consistent.

Lemma 9.3.1. For a sufficiently reqular solution (u, p) of the continuous problem (9.1)-(9.5),

we have:

ap(u, vp) + bp(p, vn) = lp(vp), Vop € Vi, (9.22)

by (qn, w) = gn(qn) Yan € Qp.

Proof. Let (u, p) be a sufficiently regular solution of (9.1)-(9.5). The second relation is obvi-

ous, since div u = 0 in ). The first consistency property is obtained after integrating by parts
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on each element T and using the supposed regularity of the continuous solution:

Z/(ycurlucurlvh—pdivvh)dm = /(—yAu—i—Vp)-vhdz
TET, T Q

+ Z veurlu (v, - t)ds
eeUi_, 7}, ‘

— Z /p'vh~nds.

. Je
SGU?=1 F

Therefore, since divu = 0 in 2 and taking into account the boundary condition given in
(9.3)-(9.5), the definition of ay (-, -) and by (-, -), we obtain that (u, p) verifies the first property
in (9.22).

O

9.4 Stability

Lemma 9.4.1. If v is large enough, there exists a constant C > 0 such that for oll v, € Vj,

an(vp, vy) > Cllop]]? (9.23)

Proof. By definition one has that

an(vp, vp) = [[vp]]* — 20 Z /curlvh(vh 1) —2v Z /div vp(vp-m).  (9.24)

ecFlUF2 € ecFLUFR "~ ¢

So one only has to control the two last terms. Using the Cauchy-Schwarz, it follows that

2

1
—2u curlvy(vp - t) > —2v |e|||curlvh||% . — ||vp - tH%’e
’ le]
€

ee]-‘,iu}‘ﬁ ee}‘;u}‘ﬁ ee]-‘;ufﬁ

ol

A classical scaling argument together with the equivalence of norms in finite dimensional

spaces yields for any polynomial function u that

Vielllulloe < ellullor

where c is a constant independent of the discretization.
Now let e € .7-",1 U _7-",% such that e = 0T with T € 7. Obviousely,

V elllcurlvy||o,e < cflcurlvy||or.
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So by summing upon all edges of ]-'}1 U ]-'}ZL it follows that

1
le]

NI

2 Y [ eulvg(vy, - ) = —2clﬁ||cur1vh|]07g( S a- t||3’e)
c€FLUF} C c€F}UF?
The bound for the last term in (9.24) is very similar and we can check that

1

le]

N[

w3 [divon(onen) = <2eavldivonloa( Y

2
v - n”O,e)
c€FRUFE " ceFLUF}

Then, we obtain,

261 Y 3
an(on o) 2 [on)* = 2 (VW llewdonoa) (32 lon - tlR)”
V7 cerpur2 ¢
202 . vy %
= AWldvenloo) (3l i)’
V7 e€FLUFE c
and finally,
2 c 2
an(vp, vp) 2 [[vn]]” — ﬁ[[’”h]] :
In conclusion, ay(-,-) is positive definite for v > ¢?. So the statement clearly holds. O

We obtain stability of the pressure via the inf-sup condition (9.12). Th details are skipped
here, since they will be given later in the context of the discontinuous Galerkin formulation.
The continuity of the linear forms f; and g;, follows with the same arguments. So, we are

able to state the following result.

Theorem 9.4.2. For ~y sufficiently large, the problem (9.17) has a unique solution.

Proof. Since the hypotheses of the Babuska-Brezi Theorem are satisfied, the mixed variational

formulation (9.17) is well-posed. O

9.5 Numerical results

In this section, we present several numerical experiments in order to confirm the theoretical
results. We are first interested in the convergence rate and next in the flow arround cylinder
confined between two plates. The developed codes are based on the C++-library Concha [51].
We use the P2 — P! Taylor-Hood finite element pair.
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9.5.1 Mesh convergence

We first study the behavior of the numerical scheme (9.17) with respect to mesh refinement.

We consider the exact solution of the Stokes problem:

o

7 sin(mx) cos(my)

) , p = sin(mz) sin(my), (9.25)

—m cos(mx) sin(my)

on the sequare 2 = [—1,1] x [—1,1]. This solution satisfies dive = 0 and / pdz = 0.
Q

We take v = 10 and v = 1. We present in Table 9.1 the values of the errors on different
meshes obtained for the velocity u together with its curl and div in the L?—norm, the errors
for the velocity in the H'—norm and the boundary errors, while the error for the pressure is

given in the L?—norm.

One may notice that the errors on p and u are both in O(h?) in the L? —norm for the
pressure and in the energy norm for the velocity. They are in agreement with the theoritical
results: the error is divided by 4 when the mesh size h is divided by 2. The exact solution is

depicted in Figure 9.1.

N [ lellia | lp=palog [ llcutl@lloe [ 14iv (@loa | Jee) | lelos
16 4.4846e-01 | 3.1296-01 3.4895e-01 | 2.9378e-01 | 4.8003e-01 | 3.1792e-02
64 1.0483e-01 | 6.3539-02 7.7568e-02 | 7.2695e-02 | 8.1571e-02 | 3.9029e-03
256 | 2.5710e-02 | 1.5023-02 1.8546e-02 | 1.8123e-02 | 1.4988e-02 | 4.9024e-04
1024 | 6.3950e-03 | 3.7030-03 4.5626e-03 | 4.5231e-03 | 2.7033e-03 | 6.1426e-05
4096 || 1.5966e-03 | 9.2248-04 1.1337e-03 | 1.1296e-03 | 4.8227e-04 | 7.6902e-06
16384 || 3.9902e-04 | 2.3042-04 2.8271e-04 | 2.8228e-04 | 8.7373e-05 | 9.7799¢-07
Table 9.1: Pressure error in L? and velocity error e = u — uy, in different norms for v = 10.
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Pt

(a) Velocity (b) Pressure

Figure 9.1: Exact Velocity and Pressure

9.5.2 Test: Flow around cylinder confined between two plates

Now, we consider a flow past a cylinder of radius R = 0.01m symmetrically placed in a
rectangle with of length 0.3m and height 0.04m, see Figure 9.2. This geometry is taken from
[43]. We compute the drag coefficient Cp along the cylinder. The results are illustrated in
Table 9.2. In addition, we give the extrapolated values. The computed values are in good

agreement with the reference values given in [51].

______

Figure 9.2: Geometry of the cylinder between two flat plates

In this numerical experiments, the normal velocity and the vorticity are imposed on the
inlet. On the outlet, the pressure is imposed together with the tagential velocity. We present
in Figure 9.3 and Figure 9.4 the velocity field and the pressure.
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Figure 9.3: Calculated velocity for the flow test around cylinder

(D) )

Figure 9.4: Calculated pressure for the flow test around cylinder

ne Cp ACp || Cp

256 131.757 | — —

1024 || 132.166 | 0,409 || 132,3023
4096 | 132.274 | 0,108 || 132,31
16384 || 132.301 | 0,027 || 132,31
65536 || 132.308 | 0,007 || 132,3103

Table 9.2: Drag results on succesive meshes.



Chapter 10

A Discontinuous Galerkin method

The aim of this chapter is to study a Discontinuous Galerkin method for the Stokes equations
(9.1)-(9.5).
10.1 Preliminary notations and results

For defining our DG method for the Stokes problem, we use the notations of Chapter 9. We
recall thet ]-',il denotes the set of edges situated on the boundary I';, ¢ = 1, 2, 3 . We denote
by £/ the set of internal edges of 7, and by Cj, the set of all edges of 7, Cp, = EM U Fj.
Let e denote a segment of Sfl"t shared by two triangles T} and Ts of 7p,; we associate with e,
once and for all, a unit normal vector n. directed from T to Ts, and we define the jump and

average of function ¢ on e by

W= ln) e~ )l {0} =500 In) e (o 1n) o

If e is adjacent to Of), then m. is the unit normal n exterior to 2 and the jump and the

average of ¢ on e coincide with the trace of ¢ on e.

In what follows, we take £k = 1, 2 or 3 and we introduce the finite dimensional spaces:
Xy ={v, € L*(Q), vylr € Py, VT € T},
Qn = {an € L§(Q), anlr € Per, VT € Tp.},
Let us recall the approximation properties of X and Qp (see also [40]). We denote by
rh € L(L(S2), Qp) the L?—projection such that, for any T € 7},
vp € L3(Q), Vg€ Pp, /Tq(rh(p) -p) =0, (10.1)

163
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For each integer k = 1, 2, 3, it is known that there exists an operator R;, € L(H(Q), X})
such that for any T' € 7, and any e € Cp,, one has:

Yo € HY(Q), Vq € Py_1, / qdiv (Rp(v) —v) =0, (10.2)
T

Yo € H(Q), Vg € Py_1, / gcurl (R, (v) —v) =0, (10.3)
T

Voe HYQ). YaePir  [a[Ri)=0. (10.4)

thanks to the fact that the space X} contains nonconforming finite element spaces. Moreover,

for s € [0, k], the following interpolation estimates holds:

Vp € H*(Q) N L§(Q), Ip = ra(®)llor < Ch |plsr (10.5)

Vo e HUQ), | Ri(v) — vllir < Chloluiran. (10.6)
Where Ar is a suitable macro-element containing 7. When k = 1, Ap = T, this case follows

from [28]. The case k = 2 follows from [36] and k£ = 3 from [29].

Before defining the DG method, we consider the variational formulation for the probelm (9.1)-
(9.5). We suppose that

f € LQ(Q)a Po € LQ(FQ)a h € L2(F3)7
Ju* € H'(Q) such that divu* =0, u*|p, = ug, v*xnlp,=axn, u*-n|r, =b-n.
Then, the Stokes problem (9.1)-(9.5) is equivalent to the variational formulation: (see [24])

Find(u,p) € (u* + Vi) x L?(2) such that:
a(u,v) +b(p,v) =l(v) Yve V , (10.7)
b(g, ) —0 vge Q)

where the bilinear and the linear forms are defined by:
a(u,v) = 1// curlw - curlv de,
Q
b(p,v) = —/ pdivov de,
Q

l(v) = /fvd:c—/ po(v-n)ds+/ (h xn)-vds.
Q T's I's
Now, let us introduce two bilinear forms on X, representing our stabilization terms:

M) =v Y [t ot ds

e€Cp\F} ‘e‘
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Jg(uh,v):y Z ‘i’/[u-ne].[’v-ne]ds

eech\]‘_}%

Let us also introduce the following mapping :

N[

lloll = (v > (Idivo |3 7+ lewl [ 7) + o (Ji(v, v) + Ja(v, v)) ) (10.8)
TeT,

where o > 0 is a stabilization parameter. Then we can prove:
Lemma 10.1.1. The application v — |||v||| is a norm on Xj,.

Proof. We only have to show that |||v||| = 0 implies v = 0. So let v € X} such that

divo ||2 - + ||curl v|? = Ji(v,v) = Jo(v,v) = 0. On the one hand, it follows that
e 0,T 0,T
€1p

[v - me] = 0 on every edges e € Cp|F7. Then, v is continuous across the internel edges and
belongs to H (div, ). On the other hand, one gets that [v - t.] = 0 on every edges e € Cp,|F}.
Then, v belongs to H (curl, ©2). As a consequence v belongs to V. Using the inequality

9.16) and the fact of divo [|2 7 + [[curl v||? = 0 implies that v = 0 on €2, which
0,T 0,T
TE'Z-}L ) )
concludes the proof. O

10.2 The discrete formulation and the well-possedness of the

discrete problem

We consider the next discrete DG formulation of (9.1)-(9.5), where Nitsche’s method is em-

ployed in order to treat the non-homegeneous boundary conditions:

(wn,pn) € Xp X Qn,
an(wh, v1) + on(pn,vn) =In(vn) ,  Vop € Xp, (10.9)

by (qn, up) =gnlqn) Yan € Qp.

The bilinear, respectively linear forms are defined as follows:

an(+ ) = Ao(+ ) + A1(, ) + Ao(-, 1) + U(Jl('v )+ (e ))

Ao(up,vp) =v Z (/ curluhcurlvh—i-/ div uj, div vh>.
T T

TeT;
Aq(up, vp) = —Z/eegfg (/e{curluh}[vh “te] + /e{curlfuh}[uh : te]>.
Ao(un o) = —v 3 (/e{divuh}['uh nd + /e{divvh}[uh ne).

eECh,‘fﬁ
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bn(qn, o) = —v Y /thivvhd$+ > [Han}on-ndn,

TeT, e€Cy|F2 "¢

TeT, 66.7:1 ¢
/ -y, - t) yz(/(curlvh)a'te+/povh‘ne—U/a-te-vh~te> ;
™ Z N\, : el Je
—VZ(/leth ne—/wovh~te—U/b~nevh~ned7>.
6.7:3 e e ‘€| e

1(qn) Z/Qhuo nd7+2/%b ndy.

e€F} ecFp

The aim of this section is to prove the well-posedness of the previous discrete formulation
(10.9). For this purpose, we shall apply the Babuska-Brezzi theorem. Let us begin by checking
the coercivity of the bilinear form ay(+,-) on the discret Kernel Keryby,, as well as the inf-sup

condition for by, (-, -) with respect for the norm ||| - |||.
Lemma 10.2.1. If o is large enough, there exists a constant C > 0 such that for oll v, € Xp
an(vp, vp) > C||vp ||| (10.10)
Proof. One has by definition that
ap(vp, vy) = H|’uh|H2 + Ai(vp, vp) + A2(vp, vp). (10.11)

So one only has to control the two terms A;(vp, vy,) and As(vp, vp).
By definition

A (vp, vp) = —2v Z {curlvp }vp - te].

GECM]‘—‘S[
Using the Cauchy-Schwarz, it follows that
1 1
2 1 2
Ar(opon) = =20 | D Jell{eurlon} 3. > @H[vh “te]l3 e
eech|]-',§’ eech|]-',§’

A classical scaling argument together with the equivalence of norms in finite dimensional

spaces yields for any polynomial function u that

Vlelllulloe < ellullor
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where c¢ is a constant independent of the discretization.
Now let e € £ such that {e} = Ty N T with Ty, Ty € T;. Obviousely,

f Z [(curl wy) /7 [lo.e

IN

< 5(||cur1vh||o,n + leurlop o, )

a completely similar argument holds on a boundary edge e € ]-'fl, i = 1,2. So by summing

upon all edges it follows that

Ay (v, v) = =2¢1 (Vv Y el wpllor) v/ T (vn, o)
TeT,

The bound for As(wvp, vy,) is very similar and we can check that
Az(vp,vp) = —2c2(Vv Z |div vpllor) v/ J2(vh, va) -
TETh
As a consequence, we have
201

an(vn,vn) > oall? - f\fZHCUﬂvhHOT)( o Ji(vn, vp))

TeT,

- 2 (W > ldivpllor) Vo Ja(vn, vh),

TeTy

SIS

and finally,

an(wn, on) 2 [l 1P = = o 1P
In conclusion, ay (-, ) is positive definite for ¢ > ¢2. So the statement clearly holds. O

Let us now focus on the inf-sup condition for by (-, -), with respect to the norm ||| - ||.

Lemma 10.2.2. There exists a constant 3 > 0, independent of h and v, such that

inf sup _bnla,v) > ﬁ (10.12)

9€@n vex, lalloalllvlll — vv

Proof. The proof is rather classical. With any ¢ € @}, we shall associate w € X, such that

b(g, w) = |lallg o (10.13)

(10.14)

For this purpose, we make use of the continuous inf-sup condition for the Stokes problem (see
for instance [39]). Thus, let ¢ € Q C L2(Q) and let z € H{(Q) such that:

divz =gq
[z]lL0 < cllalloq
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Then we put w = Rp(z) € Xp,. By construction, we have according to (10.2) and (10.4) on
every T € Ty, and every e € Cp:

[ adivwds = [ qdivz=Jaliq
T T ’
[t nds =0
50 b (g, w) = [|q||§ o- Next, since [z - n.] = 0 we have
Ji(w,w) = Ji(z— Rpz,z — Ryz)
1
= v > gl = Raz)- Ll

EGCH]‘E

IN

cylz\ig.

The last inequality is obtained in a classical way by using (10.6) after passing to reference

element and by making use of the trace inequality. Similarly, we can check that
Jo(w, w) < o]z,
Therefore, by using the interpolation estimate (10.6) we get

Hlwll* = v |div(Raz)llg,0+v Y llewrl (Raz)llf 0 + o (Ji(w, w) + Jo(w, w))
TeT, TeTy,

< Ovlzliq

SO
lfwll < CvVligllon

which finally yields

2
sup b(q, v) > br(q, w) > lall§ o
vex, llvlll llwll — Cvvldloe

3
> — .
=z ldllog

O

In order to establish the continuity of the bilinear form ay(-,-), it is sufficient to notice
that the following bounds hold true:

N[

v S [fewtug) o tdds < (v lel lewlunlR, | Ti(on0n)

c€CulF} " e€Cy|F}
3
1
< (v ) llewlunl§r | Ji(vn, vi)?
TeT,
< |llunlHITvalll-
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Here above, we have applied to ¢ = curl u; the next trace inequality on e C 9T combined

with an inverse inequality:
1
Vel

Similar arguments yield

%

1
< o —
‘076 — C(hTHw’

C
o + [Ylir) < o 1¥llo,7-
T

v [A{divup} - [on - neds < |[Jug]|| [||oa]ll
eEChU:,% ¢

and the continuity of bs(-,-):

=

NI

A

> [wdwendas < = X lellal. ] oo

e€Cy|F2 "¢ e€Cy|F?

NI

< Zlalor Ta(on, vi)*.

The continuity of the linear forms I;,(-) and gp(-) follows with the same arguments.

We are now able to state the main results of this section.
Theorem 10.2.3. For o sufficiently large, the mized problem (10.9) has a unique solution.

Proof. According to Lemmas 10.2.1 and Lemma 10.2.2, the hypotheses of the Babuska-Brezzi

theorem are satisfied (cf. [17]). Therefore, the variational formulation (10.9) is well-posed. O

10.3 A priori error estimates

This section is devoted to the derivation of optimal a priori error estimates for both the
velocity and the pressure for the DG formulation (10.9). We will first consider the energy

norm for the error on the velocity and then the L?-norm for the pressure.

Let us first establish some auxiliary results.

Lemma 10.3.1. If (u,p) is a sufficiently regular solution of the continuous Stokes problem,

then we have the following consistency properties

ah(u, ’Uh) + bh(p, ’Uh) = lh(vh), Yo, € Xp, (10.15)
br(an, w) = gn(an), Van € Qh. (10.16)
Proof. The proof is rather classical. The second relation is obvious, since divu4 = 0 on any

triangle, [u-n.] = 0 across any internel edges and u-n. = ug-n. for e € .7-",1, u-n, = b-n, for

ec f}? . The first consistency property is obtained after integrating by parts on each element
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and using the following regularity of the Stokes problem with data f € L*(Q) on a Lipschitz
polygon : (u,p) € H%(Q)x H'(Q). This ensures that curl u, div w and p have a trace on each
line segment e, which moreover belongs to L?(e). Since curlu € H (curl, Q) and u € H 1(Q),
it follows that curl u - ¢, » - ¢ and u - n are continuous across any internal edge, so the desired

relation holds true. O

Lemma 10.3.2. Assume that u belong to H*"1(Q). Then there erists a constant ¢ > 0
independent of h and v such that

V’Uh S Xh, \ah(u — Rhu, ’Uh)’ S cﬁhk|||vhH| |u’k+1’g. (10.17)

Proof. We recall that as(-,-) = Ao(-,-) + A1 (-, ) + Aa(-,-) + o (J1(+,-) + J2(+,-)). The Cauchy-

Schwarz inequality and the approximation result (10.6) immedialtely give that

VY]
V]

Ao(u — Rpu, vp)

IN

v Y llewl(u — Ryu)llfr > lleurlog
TeT, TeT,

+ v D lldiv(u - Ryu)|r > lldivon |
TeTy, TeT,

c VR uley1alllval|

(SIS
N

IN

Using Cauchy-Schwarz inequality in the first jump term, we obtain

1/2
1
Ji(w—Ryu,vp) < v | Y —llu—Ruull3, [lonlll

 lel
eECh‘]'—h
Let e be an internal edge common to the triangles T and T5. The proof is completely similar

for a boundary edge. using the Trace inequality:

1 1 1
I[(w = Rpu) - nellloe < ¢ (*Hu — Rpullon + —|w — Ryul

\/ ‘e| th th

+ Ju-— Rhu|1,T1) (10.18)

01 +|u — Rpulim

it follows, thanks to (10.6), that
1/2

1
Ji(u — Ryu,vp) < ey/vhF [ > m”[’vh]”%,e |ulkiro < evrh*||vnlll [ulkio-
6€Ch‘.7:2

We can easily check that the same bound follows for the second jump term Ja(-, ).

The property (10.3) of the interpolation operator Ry, gives on the one hand

Z /{curl v} [(u— Rpu)-t] =0

€Ech|.7:}?l’
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and on the other hand

Z {divop} [(u — Rpu) -m] =0

e
66Ch|.7:,2l

since {curlv} and {divv,} belong to Pi_; on every edge.

So, we only have to bound the remainning parts of the terms A; and As respectively

v Z {curl(vw — Rpu)} - v, - t] (10.19)
6ECh|.7:}31 ¢
and
v Y [{div(u — Ryu)} - [vg - ne). (10.20)
6€Ch‘.7'—2 ¢

For this pupose, let us introduce the classical Lagrange interpolation operator of polynomial

degree k, denoted by Lj, and let us insert it in the two last terms. Then, we can write that
/{curl (u — Rpu)} - [vp - te]ds = /{curl (uw — Lpu)} - [vy, - te]ds
e (&

+ /{Curl (Lh'u, — Rhu)} . [fvh . te]dS
< |lvn - tellloel|{curl (u — Lpu)
o tdloel{ewl(La — Row)} o

Thanks to the same trace inequality as in (10.18), one obtain

1 _
——|[{cwrl (u — Lpw)} < ch* Hulps1mum,-

Vel
Then,
1/2

1
> [tewttu-Baw}-o-tds < ab |5 ot | el
eechlfB ¢ eéch‘fg

IN

Nl el

Next, using that Lpu — Rpu is a piecewise polynomial, we obtain by means of a scaling

argument that :

1 1
|[{curl (Lpu—Rpu)}|oe <c <h|]curl (Lpu — Ryu)|om + h—”curl (Lpu — Rh“)HO,Tg) )

1 2

1
Vel
By means of the triangle inequality, we can deduce that on any triangle T,

[eurl(Lpu — Rpu)lor < |Lpu —ul; o+ |u — Ryul; ¢

IN

Chl}‘u|k:+1,AT
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so finally,

Z {curl (Rpu — Lpu)} - [vy - te d3< R* /T (v, vp, ) |tlk+1.0-

eech|f3 ¢

The term in (10.20) has the same structure as the one in (10.19), thus it satisfies the bound

c
Z {div(Rpu — Lpu)} - [vp, - ne|ds < \ﬁhk\/JQ(vh, vp) |Ulkt1.0-

eeCh\}‘Q €

It is now sufficient to gather together the previous estimates in order to end the proof. O

Lemma 10.3.3. Suppose p € H*(Q). Then there exists a constant ¢ > 0 independent of h

and v such that

c
X — < —pk 10.21
Vo, € Xp, b (p — D, vh)| < ﬁh (10.21)
Proof. We recall that
bh(p —rhp,vn) = — Y / —rmp)divepde+ Y [{p—rap}[vn-nc)ds
TGT Eech|.7:2 €
= Z /{p—?“hp} ['uh-ne] dS.
eech‘]:}% ¢
Then,
1/2
c
b (p — 7o, v1)| < NG > lell{p = rap}llg. [lonll].
EEChU‘—,QL

On each edge e € C,|F? such that e C 9T, we bound the term ||[{p — 71p}||o.c as in the proof
of the Lemma 10.3.2. Denoting by [; the Lagrange interpolation operator on P, for k =2

or 3, we obtain:

Viellp =rmplloe < Vlel(llp — hplloa + llnp — 7apllo0)
< c(llp = pllo,r + hrlp — hplir + ke — rapllor)

For k = 1, we directly have:

Vlelllp = rmuplloa < c(llp — rapllor + hrlp — raphir) < ch|plir.

So the announced result holds. O
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Theorem 10.3.4. Let (u,p) € H*1(Q) x H*(Q) be the solution of the continuous Stokes

problem and let o1 and o9 be sufficiently large (as in Lemma 10.2.1). Then, the solution
(un,pr) of the discrete problem (10.9) satisfies the following a priori error bounds
1

%‘ph{:,ﬂ)a

Ip—pullon < ch*(wlulkiia + |plea), (10.23)

llu—wll < ch*(Vilulkiro+ (10.22)
with a constant ¢ independent of h and v.
Proof. According to Lemma 10.2.1, one has for v large enough that

o H| up, — Ryu |||2 < ah(uh — Rpu,up — Rhu)
= ap(up,up — Rpu) — ap(u,up, — Rpu) + ap(u — Ryu, up, — Ryu)
= lh(uh—Rhu) —bh(ph,uh —Rhu) —ah(u,uh —Rhu)

+ ap(u — Rpu,up, — Ryu).
Thanks to the consistency property stated in Lemma 10.3.1, one gets that
a ||| wn — Rpw ||IP< ba(p — ppywn — Rpu) + ap(u — Ryw, up, — Ryu). (10.24)
On the one hand, the continuity property proved in Lemma 10.3.2 implies that
an(u — Ryu,up, — Ryu) < e/phF|ulii ol |un — Ryull|.
On the other hand, we write that
bn(p — phy un — Rpw) = bp(p — rap, up — Rpu) + by (rnp — ppy upn — Rpu)

and we notice that, thanks to the second equation of (10.9) and to the interpolation properties
of Ry, we have that

br(rhp — ph, up, — Rpu) —bp(rap — phy Rpw) + gn(rap — pp)
= —bn(rhp — pn, w) + gn(rnp — 1)

= —gn(rap — ) + gn(rnp — pr) = 0.

Using now Lemma 10.3.3, it follows that

C
bu(p — prs un — Ruu) < —h"[plialllun — Ryul].
Vi
From (10.24), we obtain that
1
Il wn — Rau ||< ch®(Valulpir0 + ﬁ\p!m)- (10.25)

Finally, by means of the triangle inequality and thanks to the relations

Ji(u — Rpu,u — Rpu) < cuh2k|u|i+179

Jo(u — Rpu,u — Rpu) < CVh2k|u|i+1,Qa
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we deduce (10.22).

In order to establish the error estimate for the pressure, we write that

[P = prlloe < llp = rapllog + llrnp — palloo-
According to the discrete inf-sup condition (see Lemma 10.2.2), one has that

b - ) b — b — ,
Irnp — prlloga < Vv sup b(rhp = Phy 0n) _ VY o 0nnP =P, vn) + bu(p — ph, vn)
B wnexy, [vnlll B w,ex, vnlll

The continuity property of Lemma 10.3.3 gives :
bu(rnp — p, o) < —=h*[[[oalllple.o
N

whereas the consistency property of Lemma 10.3.1 together with the first variational equation
of (10.9) yield
ba(p — ph, va) = —an(u — Up, vp), Vop € Xp.

One can then show, using Lemma 10.3.2 and the continuity of ap(-, ) on Xy, that

ap(u —up,vy) = ap(u — Rpu,vp) + ap(Rpu — up, vp)
ev/vh* w10

IN

onlll +2 Il Raw — wp (|| [los]]-
In conclusion, we obtain that
Irap = prllo < ch*(V]ulriro + ko) + evv || Ryu — up ||,

which together with (10.25) and (10.5) imply the desired estimate (10.23). O

10.4 Mesh convergence

We study the behavior of the numerical scheme (10.9) with respect to mesh refinement, for
k =1, 2. We present in Table (10.1) and (10.2) the values of the errors on different meshes.

They are in agreement with the theoretical results.
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ne | lu—wunlloo | lp=pulloo | lw—unlho| J(ee)
16 1,36082e-00 | 6,28132e-01 || 8,82325e-00 | 9,08897e-00
64 2,65389e-01 | 3,18345e-01 || 4,45542e-00 | 2,98147e-00
256 6,69665e-02 | 1,60014e-01 || 2,23499e-00 | 1,03609e-00
1024 || 1,68163e-02 | 8,01187e-02 || 1,11850e-00 | 3,64884e-01
4096 || 4,21325e-03 | 4,00744e-02 || 5,59379e-01 | 1,28887e-01
16384 || 1,05444e-03 | 2,00391e-02 || 2,79705e-01 | 4,55587e-02
65536 || 2,63752e-04 | 1,00198e-02 || 1,39854e-01 | 1,61065e-02

Table 10.1: Velocity and pressure errors on a sequence of uniformly refined meshes for £ = 1.

ne | llu—unlog | Ip—puloo | llu—walie | Jlee)
16 1,18628e-01 | 2,03708e-01 || 1,83275e-00 | 1,25154e-00
64 1,58137e-02 | 5,11701e-02 || 4,55609e-01 | 2,31933e-01
256 2,01513e-03 | 9,84020e-03 || 1,13720e-01 | 4,08763e-02
1024 2,53415e-04 | 2,12524e-03 || 2,84119e-02 | 7,16563e-03
4096 3,17409e-05 | 5,12599e-04 || 7,10052e-03 | 1,25951e-03
16384 || 3,97059e-06 | 1,27238e-04 || 1,77480e-03 | 2,21942e-04

Table 10.2: Velocity and pressure errors on a sequence of uniformly refined meshes for £ = 2.
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Analyse Mathématiques et Approximation Numérique des Equations de
Stokes et de Navier-Stokes avec des Conditions aux Limites Non standard

Résumé : Les travaux de la thése portent sur la résolution des équations de Stokes, d’abord avec des
conditions au bord portant sur la composante normale du champ de vitesse et la composante tangentielle
du tourbillon, ensuite avec des conditions au bord portant sur la pression et la composante tangentielle du
champ de vitesse. Dans chaque cas nous démontrons ’existence, 'unicité et la régularité de la solution.
Nous traitons aussi le cas de solutions trés faibles, par dualité. Le cadre fonctionel que nous avons choisi
est celui des espaces de Banach du type H(div) et H(rot) ou lintersection des deux, basés sur 'espace
LP, avec 1 < p < oo. En particulier, on se place dans des domaines non simplement connexes, avec des
frontiéres non connexes. Nous nous intéressons en premier lieu & 'obtention d’inégalités de Sobolev pour
des champs de vecteurs w € LP(Q). Dans un second temps, nous établissons des résultats d’existence
pour les potentiels vecteurs avec diverses conditions aux limites. Ceci nous permet d’abord d’effectuer
des décompositions de type Helmholtz et ensuite de démontrer des conditions Inf — Sup 'orsque la
forme bilinéaire est un produit de rotationnels. Ces conditions aux limites font que I’équation de la
pression est indépendante des autres variables. C’est la raison pour laquelle nous sommes naturellement
conduit & étudier les problémes elliptiques qui se traduisent par les systémes de Stokes sans la pression.
La résolution de ces problémes se fait au moyen des Conditions Inf — Sup qui jouent un réle clef pour
étabilir I’éxistence et 'unicité de solutions. Nous donons une applications aux systémes de Navier-Stokes,
ou on obtient I'existence d’une solution en effectuant un point fixe autour du probléme d’Oseen. Enfin,
deux méthodes numériques sont proposées pour approcher le probléme de Stokes. Nous analysons d’abord
une méthode de Nitsche et puis une méthode de Galerkin discontinu. Quelques résultats numériques de
convergence sont décrits qui sont parfaitement cohérents avec ’analyse.

Mots clés : Stokes - Navier-Stokes - Oseen - Conditions aux limites - Potentiels vecteurs - Inégalités
de Sobolev - Conditions Inf — Sup - Problémes elliptiques - Décompositions d’Helmholtz - Méthode de
Nitsche - Méthode de Galerkin Discontinu.

Mathematical Analysis and Numerical Approximation of the Stokes and
Navier-Stokes Equations with Non Standard Boundary Conditions

Abstract : This work of thesis deals with the solving of the Stokes problem, first with boundary conditions
on the normal component of the velocity field and the tangential component of the vorticity, next with
boundary conditions on the pressure and the tangential component of the velocity field. In each case,
we give existence, uniqueness and regularity of solutions. The case of very weak solutions is also treated
by using a duality argument. The functional framework that we have choosed is that of Banach spaces
of type H(div) and H(rot) or their intersection based on the space LP, with 1 < p < oco. In particular,
we suppose that  is multiply connected and that the boundary T' is not connexe. We are interested
in a first time by some Sobolev inequality for vector fields u € LP(f2). In a second time, we give some
results concerning vector potentials with different boundary conditions. This allow to establish Helmholtz
decompositions and Inf — Sup condition when the bilinear form is a rotational product. Due to these non
standard boundary conditions, the pressure is decoupled from the system. It is the reason whay we are
naturally reduced to solving elliptic problems which are the Stokes equations without the pressure term.
For this, we use the Inf — Sup conditions, which plays a crutial role in the existence and uniqueness of
solutions. We give an application to the Navier-Stokes equations where the proof of solutions is obtained
by applying a fixed point theorem over the Oseen equations. Finally, two numerical methods are proposed
inorder to approximate the Stokes problem. First, by means of the Nitsche method and next by means
of the Discontinuous Galerkin method. Some numerical results of convergence verifying the theoretical
predictions are given.

Keywords : Stokes - Navier-Stokes - Oseen - Boundary conditions - Vector potentials - Sobolev inequality

- Inf-Sup conditions - Elliptic problems - Helmholtz decomposition - Nitsche method - Discontinuous
Galerkin method.
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