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Introduction

Today, computers are heavily used to carry out all sorts of computations. The question of designing ecient code is thus crucial, and it occurs at several levels. First, it is important to design ecient algorithms, relying on the appropriate data structures. Second, one needs to turn algorithms into programs, which typically implies to make several implementation choices, that may strongly impact the running time in practice. Third, the compiler should provide further optimizations, depending on the target architecture. This thesis addresses two situations where we aim at ecient code. First, we will focus on computations involving dense structured matrices. Such matrices appear frequently in computer algebra, in coding theory for error correction, and in signal and image processing. In this case, the structure implies that the matrices, while being dense, can be stored more eciently than an arbitrary dense matrix. This allows for the design of fast algorithms, like those that we will present in Part I. Second, we present some work on the evaluation of arithmetic expressions in Part II. Implementing eciently the evaluation of a given arithmetic expression on a target architecture may be quite dicult, all the more as the architectures tend to become more complex. Optimization of one or several criteria (like latency or numerical accuracy) may require to explore a set of possible implementations in order to extract the relevant ones. Part II presents a general framework that allows for such a search process, as well as other analyses that can be used to gain some insight into the properties of the set of implementations.

Part I Improving computations with structured matrices

In many cases, the structure of a matrix A, when there is one, can be exposed by applying an appropriate linear map L to it so that the rank α of the resulting matrix L(A) is small, in a sense that depends on the context. Then, A can be represented by two matrices G and H having only α columns and such that L(A) = GH T . Classical choices for displacement operator L are Sylvester's operator ∇[M, N] : A → MA -AN and Stein's operator ∆[M, N] : A → A -MAN. By taking M and N among diagonal matrices, and unit ϕ-circulant matrices and their transposes, several well-known types of matrices are is also represented using a generator.

In Part I, we rst focus on the problem of inverting a structured matrix: given a generator (G, H) for a regular matrix A, compute eciently a generator (Y, Z) for A -1 . Subsequently, since fast inversion algorithms rely on the problem of multiplying a structured matrix of displacement rank α by α vectors, we also consider the slightly more general problem of computing the multiplication of a structured matrix by a matrix. signicantly improve a code generator for fast and accurate-enough polynomial evaluation on VLIW architectures, that is used in the context of a libm. In particular, we measure an average gain of about 50% in the overall generation time. Second, we address the issue of evaluating a polynomial with scalar coecients at a matrix point with a minimum number of matrix-matrix multiplications. The explorative aspect of our framework is then used to study the set of optimal schemes, and to deduce the optimality of some known schemes for small polynomial degrees.

Outline of Part II

The second part of this document is organized into ve chapters as follows.

Chapter 4 On the evaluation of arithmetic expressions. This chapter serves as an introduction to our work on the evaluation of arithmetic expressions. The implementation of a given arithmetic expression raises several questions in various elds of computer science. Our initial context, that is, the implementation of oating-point operators for integer VLIW processors based on polynomial approximation, also provides several questions, some of them being classical, while others are more specic. We rst present these issues along with some background material. Then we conclude this fourth chapter with the detailed list of our contributions to the domain of arithmetic expression evaluation.

Chapter 5 How to model and analyze implementations of arithmetic expressions. This chapter introduces a way to model and analyze the dierent implementations of an arithmetic expression using evaluation schemes and decompositions. Together, they allow for the design of divide-and-conquer analysis algorithms. This approach is rst illustrated with the description of an exhaustive generator of evaluation schemes. Furthermore, a way to model optimization criteria is discussed, and the previous generator is extended so that only the schemes achieving a value below a given threshold for some criterion are generated.

Chapter 6 On the combinatorics of evaluation schemes. This chapter focuses on combinatorics issues related to sets of evaluation schemes. We will see how to count the total number of schemes, and how to get the distribution of these schemes according to some given criterion. Furthermore, we will present an asymptotic study of several sequences that appear when counting the number of schemes for some parameterized families of expressions.

Chapter 7 Optimization. This chapter is dedicated to optimization issues. We rst introduce a simple optimization algorithm that works well with some criteria like the latency on unbounded parallelism. Then, several more complex algorithms are given in order to tackle more optimization problems, like the minimization of the number of multiplications. Finally, we address the question of multicriteria optimization and, in particular, we propose an algorithm that computes the best trade-os between two given criteria, like latency and accuracy.

Part I Improving computations with structured matrices

Chapter 1

Computing with structured matrices

This chapter serves as an introduction for the rst part of this document. After a short reminder on matrix arithmetic in Section 1.1, we examine in Section 1.2 several special matrices, for which the problems of multiplication by a vector and linear system solving can be solved in quasi-linear time using polynomial arithmetic. Then, we introduce in Section 1.3 the basics of the structured matrix theory, which is a general framework that covers all the special matrices listed in Section 1.2, along with generalizations of them.

Next, we explain in Section 1.4 how to perform basic operations on structured matrices, like multiplication by a vector, transposition, addition or multiplication, and inversion.

Most of the material presented in these rst four sections is taken from [vzGG03] and [START_REF] Bini | Polynomial and Matrix Computations[END_REF][START_REF] Victor | Structured Matrices and Polynomials[END_REF]. Finally, in Section 1.5, we discuss issues on structured matrix inversion and on the multiplication of a structured matrix by a matrix, and we detail our contributions to this domain.

Preliminaries on dense matrices

This section aims at recalling a few results about dense matrix multiplication and block Gaussian elimination. Matrices considered in this rst part of the document will have coecients in a eld K, and the set of the m × n matrices with coecients in K will be denoted by K m×n .

Notation

Here and hereafter, I n is the identity matrix of order n, and J n is the reexion matrix of order n, whose (i, j) entry is 1 if i + j = n + 1, and 0 otherwise:

I n =    1 . . . 1    and J n =    1 . . . 1    .
We will also write e n,i for the ith unit vector of K n , and e n for the vector of K n whose all entries are equal to 1. Moreover, for any matrix A, we denote its (i, j) entry by a ij and its jth column by a j . Furthermore, when A ∈ K m×n and when m 1 , m 2 , n 1 , and n 2 are positive integers such that m = m 1 + m 2 and n = n 1 + n 2 , we can partition the matrix A into blocks as

A = A 11 A 12 A 21 A 22
, where A ij ∈ K m i ×n j .

(1.1)

Matrix multiplication

Given two matrices A and B in K n×n , the naive way to compute the product matrix AB takes n 3 multiplications and n 3 -n 2 additions in K. Yet, one can perform this operation asymptotically faster than O(n 3 ). The rst algorithm that achieves a subcubic cost for matrix multiplication is due to Strassen. He proposes in [START_REF] Strassen | Gaussian elimination is not optimal[END_REF] an algorithm in O(n log 2 7 ), where the exponent is log 2 7 ≈ 2.807. Several variants of Strassen's algorithm were designed to decrease this exponent (see [vzGG03, Note 12.1] and the references therein), and the most powerful variant up to now is one by Coppersmith and Winograd [START_REF] Coppersmith | Matrix multiplication via arithmetic progressions[END_REF], which achieves a complexity in O(n 2.376 ).

In this document, we shall write O(n ω ) for the cost of the multiplication of two n × n matrices. Coppersmith and Winograd's method shows that one can achieve ω ≤ 2.376. While it is not known yet whether the multiplication of two n×n matrices can be achieved in quasi-quadratic time with respect to n, we will assume in this document that ω > 2.

Matrix multiplication is at the heart of algorithms in linear algebra. As a consequence, many other problems involving n × n matrices over a eld (including matrix inversion, solving a linear system, and computing the determinant or the rank) can be solved at the same asymptotic cost O(n ω ) as matrix multiplication [IMH82].

Matrix inversion using block Gaussian elimination

Matrix inversion can be achieved thanks to Gaussian elimination with pivoting. We recall here a block version of Gaussian elimination without pivoting, which relies on matrix multiplication and thus achieves a cost in O(n ω ) provided all the matrices that need to be inverted are nonsingular.

Let A ∈ K n×n be a nonsingular matrix, partitioned as in (1.1) with m 1 = n 1 so that A 11 is in turn a square matrix. Supposing that A 11 is also nonsingular, we can dene the Schur complement of A 11 in A, which we shall denote by S:

S = A 22 -A 21 A -1 11 A 12 .
Let also E and F be the block matrices dened by

E = I n 1 -A 21 A -1 11 I n 2 and F = I n 1 -A -1 11 A 12 I n 2 .
recursive factorization of the inverse of A [Pan01, p. 157]:

A -1 = F A -1 11 S -1 E.

(1.2)

If we want to compute the inverse of A recursively using the above formula, we need the upper-left blocks of A 11 and S to be in turn invertible, and so forth. The correct hypothesis on A is to assume that it is strongly regular, 1 that is, all the square upper-left blocks of A have to be nonsingular. If A is strongly regular then so are A 11 and S, and (1.2) gives a recursive algorithm to compute A -1 whose cost C(n) satises

C(n) = 2 • C n 2 + O(n ω ),
which leads to C(n) ∈ O(n ω ).

Note that not all nonsingular matrices are strongly regular. In order to invert any nonsingular matrix in O(n ω ), one can use an inversion algorithm based on LUP decomposition [START_REF] Bunch | Triangular factorization and inversion by fast matrix multiplication[END_REF]. Yet, matrix inversion using block Gaussian elimination plays an important role in our context since it serves as a basis for the inversion of structured matrices (see Section 1.4.3).

1.2 Special matrices and fast polynomial arithmetic

Toeplitz matrices and polynomial multiplication

Consider the following matrix-vector product:

      a 0 a 1 a 0 a 2 a 1 a 0 a 2 a 1 a 2       •   b 0 b 1 b 2   =       a 0 b 0 a 0 b 1 + a 1 b 0 a 0 b 2 + a 1 b 1 + a 2 b 0 a 1 b 2 + a 2 b 1 a 2 b 2      
.

(1.3)

Let a(x) = 2 i=0 a i • x i and b(x) = 2 i=0 b i • x j . One can see that the resulting vector is made of the coecients of the polynomial c = a • b. Using naive matrix-vector product, we get the coecients of c in O(n 2 ). Yet, supposing that K = C for instance, we can compute c using O(n log n) operations in C thanks to the FFT (Fast Fourier Transform) algorithm. Actually, not all elds K support the FFT. However, the multiplication of two polynomials with degree less than n can still be achieved using O(n log n log log n) operations in K [vzGG03, Theorem 8.22]. This remains asymptotically better than the naive matrix-vector product.

The gain obtained in the previous example reects the fact that we have a very specic matrix in the matrix-vector product. In fact, this matrix is a special case of Toeplitz matrix:

1 We may also equally say strongly nonsingular. Denition 1.1. Let m and n be two positive integers, and v ∈ K m+n-1 be a vector indexed from 1 -n to m -1. The Toeplitz matrix T(v, m, n) is the m × n matrix whose entry (i, j) is v i-j . In particular, when m = n, we have the following square Toeplitz matrix

T(v) = T(v, n, n) =       v 0 v -1 . . . v 1-n v 1 v 0 . . . . . . . . . . . . . . . v -1 v n-1 . . . v 1 v 0       .
Similarly, given a vector v ∈ K n , one can dene the n × n lower-triangular Toeplitz matrix L(v) and the n × n upper-triangular Toeplitz matrix U(v) by

L(v) =      v 0 v 1 v 0 . . . . . . . . . v n-1 . . . v 1 v 0     
and

U(v) =       v 0 v 1 . . . v n-1 v 0 . . . . . . . . . v 1 v 0      
.

One noticeable property of these triangular Toeplitz matrices is that multiplying one of them by a vector can be achieved using a product of two polynomials. Let u, v

∈ K n , u(x) = n-1 i=0 u i • x i , u(x) = n-1 i=0 u n-1-i • x i , and v(x) = n-1 i=0 v i • x i . We can indeed
deduce by looking at (1.3) that:

• the ith entry of the vector L(u)v is the coecient of x i-1 in u(x)v(x),

• the ith entry of the vector U(u)v is the coecient of x n-2+i in u(x)v(x).

Similarly, if we now have u ∈ K m+n-1 and u(x) = m+n-2 i=0 u i+1-n • x i then the ith entry of T(u, n, n)v is the coecient of x n-2+i in u(x)v(x).

Cost of polynomial multiplication and of (Toeplitz matrix) × vector product Following [vzGG03, p. 242], we write M(n) for the cost of multiplying two polynomials over K[x] with degree less than n, and we assume that:

• M(n) is superlinear, that is, the function n → M(n)/n is nondecreasing;

• M(n) is at most quadratic, that is, for all n, m ∈ N >0 , we have M(mn) ≤ m 2 M(n).

Moreover, the superlinearity property implies that, for all n, m ∈ N >0 :

M(mn) ≥ m • M(n), M(m + n) ≥ M(m) + M(n), and M(n) ≥ n.
(1.4)

We can now sum up our previous remark: Property 1.1. Given u, v ∈ K n , one can compute L(u)v and U(u)v using M(n) operations in K. In addition, given u ∈ K m+n-1 and v ∈ K n , one can compute T(u, m, n)v using M(m + n) operations in K. If m = n then it becomes M(2n) ∈ O(M(n)) operations in K.

Note that, using the techniques in [START_REF] Mulders | On short multiplications and divisions[END_REF], one can actually avoid to compute all the polynomial products mentioned above, thus saving some work. Yet, all the costs remain in O(M(n)).

Linear systems involving Toeplitz matrices

We have just seen that the product of a square Toeplitz matrix by a vector can be achieved faster than in O(n 2 ) using polynomial multiplication. In fact, a similar conclusion holds for solving linear systems that involve Toeplitz matrices [Pan01, 2.5 and 2.11]: Property 1.2. Let n ∈ N >0 and u, v ∈ K n with u 0 = 0. Matrices L(u) and U(u) are then nonsingular, and L(u) -1 v and U(u) -1 v can be computed using O(M(n)) operations in K.

Moreover, let n ∈ N >0 , u ∈ K 2n-1 , and v ∈ K n . If T(u) is nonsingular then the computation of T(u) -1 v can be achieved using O(M(n) log n) operations in K.

Vandermonde matrices, multipoint evaluation and interpolation Multipoint evaluation

The problem of multipoint evaluation is the following: Given x ∈ K n and p ∈ K[x] with deg(p) = m, compute p(x i ) for 1 ≤ i ≤ n. As stated in [vzGG03, Corollary 10.8], this problem can be solved using O(M(n) log n) in K when m < n. Like for polynomial multiplication, we can rewrite this problem into a product of a special matrix by a vector. Denition 1.2. Let x ∈ K m . The Vandermonde matrix V(x, n) is the m × n matrix whose entry (i, j) is equal to x (j-1) i : Moreover, when m = n, we shall write V(x) instead of V(x, n).

V(x, n) =      1 x 1 x 2 1 . . . x n-1 1 1 x 2 x 2
If x ∈ K m , p is a polynomial of degree less than n, and v ∈ K n denotes the vector whose ith entry is the coecient of x i-1 in p then the problem of multipoint evaluation is equivalent to computing the product V(x, n)v. As a consequence, we deduce for m = n that multiplying a square Vandermonde matrix by a vector can be achieved in O(M(n) log n) operations in K.

Interpolation

The problem of interpolation is the opposite of multipoint evaluation: Given a repetitionfree vector of points x ∈ K n (that is, x i = x j for all i = j) and a vector of values y ∈ K n , nd the unique polynomial p ∈ K[x] of degree less than n such that p(x i ) = y i for all 1 ≤ i ≤ n. The matricial form for this problem is to nd the vector v such that V(x)v = y.

Since x i = x j for i = j, we have that the Vandermonde matrix V(x) is invertible, so the solution for the interpolation problem is v = V(x) -1 y. Solving this linear system using one of the usual methods for dense matrices would yield a cost in O(n ω ) operations in K. Yet, interpolation can be achieved in O(M(n) log n) operations in K (see for instance [vzGG03, Corollary 10.12]).

Summary

We can sum up the two facts mentioned above with the following property by: Property 1.3. Let x, y ∈ K n . One can compute V(x)y using O(M(n) log n) operations in K. Moreover, when x is repetition-free, V(x) is invertible and one can compute V(x) -1 y using O(M(n) log n) operations in K.

Other links between special matrices and polynomials

There exist several other special matrices for which some linear algebra operations can be achieved asymptotically faster than for general dense matrices. We cite here two of them: Hankel and Cauchy matrices.

Hankel matrix Denition 1.3. Let m and n be two positive integers, and v ∈ K m+n-1 be a vector indexed from 1 -n to m -1. The Hankel matrix H(v, m, n) is the m × n matrix whose entry (i, j) is v i+j-1-n . In particular, when m = n, we have the following square Hankel matrix:

H(v, n, n) =       v 1-n . . . v -1 v 0 . . . . . . v 0 v 1 v -1 . . . . . . . . . v 0 v 1 . . . v n-1      
.

Since H(v, m, n) = T(v, m, n)J n , linear algebra operations involving Hankel matrices will essentially have the same cost as their Toeplitz counterpart.

Cauchy matrix Denition 1.4. Let m and n be two positive integers, and let x ∈ K m and y ∈ K n be such that x i = y j for all (i, j). The Cauchy matrix C(x, y) is the m × n matrix whose entry (i, j) is equal to 1 x i -y j :

C(x, y) =            1 x m -y 1 1 x m -y 2 . . . 1 x m -y n            .
Multiplication of the Cauchy matrix C(x, y) by a vector v is related to the multipoint evaluation of the rational function n j=1

v j x -y j at x 1 , . . . , x m , and it can be achieved when m = n using O(M(n) log n) operations in K [Pan01, page 88]. Moreover, if x and y are two repetition-free vectors of size n then C(x, y) is nonsingular and C(x, y) -1 v can also be computed using O(M(n) log n) operations in K [Pan01, page 92].

Summary

To conclude this section, we present in Table 1.1 a summary of all the costs of matrixvector multiplication and linear system solving for all the special matrices we have mentioned so far. We add to it the Vandermonde transposed matrix, for which the costs of multiplication by a vector and linear system solving are also in O(M(n) log n)

(see [START_REF] Gathen | Computing Frobenius maps and factoring polynomials[END_REF]Theorem 10.4] and [Pan89,10]). Notice that we do not need to consider the transpose for the other matrices since we have L(u) T = U(u), T(u, m, n) T = T(J m+n-1 u, n, m), H(u, m, n) T = H(u, n, m), and C(x, y) T = -C(y, x).

Table 1.1: Costs of matrix-vector multiplication and linear system solving for several types of matrix.

A Av A -1 v dense, unstructured O(n 2 ) O(n ω ) triangular Toeplitz O(M(n)) O(M(n)) Toeplitz O(M(n)) O(M(n) log n) Hankel O(M(n)) O(M(n) log n) Vandermonde O(M(n) log n) O(M(n) log n) Vandermonde transposed O(M(n) log n) O(M(n) log n) Cauchy O(M(n) log n) O(M(n) log n)
Except for the dense matrix case, all the costs mentioned in Table 1.1 are quasi-linear in n. In the sequel, we will use the notation O˜(n), which means O(n log k n) for some constant k ∈ N. In other words, we add a tilde in Landau's Big-O notation to indicate that logarithmic factors have been dropped. The conclusion is therefore that, for all the special matrices mentioned in this section, multiplication by a vector can be achieved in O˜(n) instead of O(n 2 ) and linear system solving can be achieved in O˜(n) instead of O(n ω ).

Matrices with displacement structure

In the previous section, we have seen several types of matrices for which the costs of multiplication by a vector and linear system solving can be achieved in quasi-linear time with respect to the dimension n. All these matrices share the particularity that only O(n) coecients are needed to represent them. In this section, we present an approach that was introduced by [KKM79] in order to put these matrices together in the same framework.

Displacement operators and displacement rank

Toeplitz, Hankel, Vandermonde, and Cauchy matrices of size n × m can be represented by O(n + m) elements in K. Therefore, there exist strong relations between the mn coecients in these matrices. Let A be one of such matrices. The idea is to exploit these relations in order to compress A. More precisely, by applying an appropriate linear operator L : K m×n → K m×n called displacement operator, we aim at turning A into a matrix of low rank L(A) [KKM79]. Two families of displacement operators are commonly used:

Denition 1.5. Let M ∈ K m×m and N ∈ K n×n . The linear operator

∇[M, N] : K m×n → K m×n A → MA -AN,
is called Sylvester's displacement operator associated to M and N, and the linear operator

∆[M, N] : K m×n → K m×n A → A -MAN,
is called Stein's displacement operator associated to M and N.

Let us introduce a few more denitions before giving examples:

Denition 1.6. Let L : K m×n → K m×n and A ∈ K m×n . We will call hereafter displacement rank of A with respect to operator L the rank of the matrix L(A). If this rank is α then for any β ≥ α there exist pairs of matrices (G, H) such that

G ∈ K m×β , H ∈ K n×β , L(A) = GH T .
Any such pair will be called a generator of length β for A with respect to operator L.

A given matrix A is considered to be structured when its displacement rank α with respect to some displacement operator L is small (in a sense that depends on the context) compared to m and n. Indeed, (G, H) contains only α(m + n) elements instead of mn for A. So, when α is small, (G, H) can thus be viewed as a compressed form the structured matrix A.

Main examples Toeplitz and Hankel structures

The structure in Toeplitz and Hankel matrices comes from the repetition of coecients along the diagonals. The idea to obtain a low displacement rank is to subtract the given matrix by a shifted version of it in order to produce lots of zeros. For this purpose, we introduce the family of so-called unit ϕ-circulant matrices Z n,ϕ ∈ K n×n , where n ∈ N >0 , ϕ ∈ K and the (i, j) entry of Z n,ϕ is ϕ in position (1, n), ones in positions (i + 1, i), and zeros everywhere else:

Z n,ϕ = ϕ 1 . . .

1

.

When ϕ = 0 the matrix Z n,0 is called a shift matrix.

One can easily check that, for instance: 

∆[Z m,0 , Z T n,0 ] (T(v, m, n)) = v 0 v -1 ... v 1-n v 1 . . . v m-1 = v 0 1 v 1 . . . v m-1 • 1 v -1 . . .

Generalization

Here and hereafter, we will restrict ourselves to displacement operators ∇[M, N] and ∆[M, N] with displacement matrices M and N such that M ∈ {D(x), Z m,ϕ , Z T m,ϕ }, x ∈ K m , ϕ ∈ K; N ∈ {D(y), Z n,ψ , Z T n,ψ }, y ∈ K n , ψ ∈ K.

(1.5)

As we have seen above, this covers all the special matrices mentioned in Section 1.2.

In addition, each time we encounter a matrix A whose displacement rank α according to ∇[M, N] or ∆[M, N] is small, we will say that this matrix A is like the special matrix that also has a small displacement rank for this operator. This generalization is important because of observations like the following one: the product of two Toeplitz matrices is not a Toeplitz matrix in general, but it is always a Toeplitz-like matrix. Tables 1.2 and 1.3 sum up all the structures that we shall consider in the following of this part. We present here several cases where the displacement operator is indeed invertible, and where we have formulas to achieve the recovery of A from (G, H). First, we recall two well-known formulas for the Cauchy-like structure. Then, we present two general reconstruction formulas that we illustrate on two examples that we will reuse in Section 2.3:

Vandermonde-like and Hankel-like structures.

Reconstruction for Cauchy-like structure For x ∈ K m and y ∈ K n , assume M = D(x), N = D(y), x i = y j for all (i, j).

(1.6a)

Then ∇[M, N] is invertible and it is known [GO94a] (see also [START_REF] Victor | Structured Matrices and Polynomials[END_REF]page 8]) that ∇[M, N](A) = GH T is equivalent to A = α j=1 D(g j ) C(x, y) D(h j ).

(1.6b)

Similarly, assuming now that x i y j = 1 for all (i, j), ∆[M, N] is invertible and ∆[M, N](A) = GH T is equivalent to A = α j=1 D(g j ) C(x, y) D(h j ),

with C(x, y) the m by n matrix [1/(1 -x i • y j )] i,j (see [START_REF] Victor | Structured Matrices and Polynomials[END_REF]Example 4.4.7]).

General reconstruction formulas

For the other structures mentioned in Section 1. 3.2, we will rely on two general reconstruction formulas (one for Sylvester's displacement operator, and one for Stein's displacement operator). These formulas involve Krylov matrices:

Denition 1.7. For M ∈ K m×m , u ∈ K m , and ∈ N >0 , the Krylov matrix K (M, u) is the m × matrix whose jth column equals M j-1 u.

Lemma 1.1 (see [START_REF] Victor | Inversion of displacement operators[END_REF]). If ∆[M, N](A) = GH T then for any positive integer , we have

A -M AN = j≤α K (M, g j )K (N T , h j ) T .
The special shape of Krylov matrices implies, when M is invertible, that K (M -1 , M -1 u) = M -K (M, u)J . Using this identity, an analog for Sylvester's displacement of the previous lemma follows easily: Lemma 1.2. If ∇[M, N](A) and if (det M, det N) = (0, 0) then M A -AN = j≤α K (M, g j )J K (N T , h j ) T for any positive integer .

Since we have already dealt with the Cauchy-like structure, we have that either M or N is a shift matrix Z * , * or Z T * , * . Using an appropriate value of , we thus obtain either M = λI m or N = λI n , so that we can deduce from the above lemmas a formula for A.

Example of the Vandermonde-like structure (operator ∇[D(x), Z T n,0 ])

For x ∈ K m , assume now M = D(x), N = Z T n,0 , x i = 0 for all i.

(1.7a)

Then det M = 0 and Lemma 1.2 with = n tells us that A can be recovered as follows:

A = D(x) -n α j=1
K n (D(x), g j )J n K n (Z n,0 , h j ) T . Now, K n (D(x), u) = D(u)V(x, n) and K n (Z n,0 , u) = L(u) for all x ∈ K m and u ∈ K n . Hence, noticing that D(x) -n V(x, n)J n = D(x) -1 V(x -1 , n), we get A = D(x) -1 α j=1 D(g j ) V(x -1 , n) U(h j ).

(1.7b)

Example of the Hankel-like structure (operator ∇[Z m,1 , Z T n,0 ])

Assume that M = Z m,1 , N = Z T n,0 .

(1.8a)

Since det M = 0 = det N, Lemma 1.2 with = n tells us that ∇[M, N] is invertible and that we can recover A as follows:

A = Z -n m,1 α j=1 K n (Z m,1 , g j )J n K n (Z n,0 , h j ) T = α j=1 K n (Z -1 m,1 , Z -1 m,1 g j )K n (Z n,0 , h j ) T . Now, K n (Z n,0 , u) = L(u) and L(u) T = J n L(u)J n for all u ∈ K n . Moreover, if g j ∈ K m+n-1 denotes the vector in K m+n-1 whose th entry is equal to g j,1+( mod m) , we have [JM10a, Appendix A] that K n (Z -1 m,1 , Z -1 m,1 g j ) = T( g j , m, n)J n . Therefore, we obtain A = α j=1
T( g j , m, n) L(h j ) J n .

(1.8b)

Remarks

For the other structures mentioned in Section 1.3.2, we refer to [START_REF] Victor | Structured Matrices and Polynomials[END_REF]4.4] and [START_REF] Victor | Inversion of displacement operators[END_REF],

where several reconstruction formulas (and their hypotheses) resulting from the two aforementioned lemmas are given. Now, let A ∈ K m×n be a structured matrix according to L = ∆[M, N] or ∇[M, N] with M and N as in (1.5). Given a length-α generator (G, H) for A, and assuming that the hypotheses for the reconstruction formula associated to L holds, we have that A is equal to a sum of α products involving a constant number of special matrices from Section 1.2. Therefore, given a vector b ∈ K n , we can compute Ab from G, H, and b in O˜(α(m + n)): First, we distribute b in the sum; Then we compute each of the α terms within this sum in O˜(n) as seen in Table 1.1; And nally we perform the sum in O(αm).

Basic computations with structured matrices

Let us now review a few rules that allow one to carry out basic operations involving structured matrices. The main point here is to show that the concept of structured matrix is preserved in some way when adding, transposing, multiplying, and extracting structured matrices. Therefore, these operations can be performed by computations on generators, so that the structured matrices are never built explicitly. This oers the advantage that quasi-linear algorithms with respect to the dimensions of the involved matrices can be derived for all these operations.

The following properties are extracted from [Pan01, 1.5]. One can nd the corresponding proofs therein.

Addition of two structured matrices

If two matrices share the same structure, we can add them and obtain another matrix, which also has this structure. This actually comes from the choice of a linear operator as the displacement operator L:

Property 1.4. Let A, B ∈ K m×n , G A ∈ K m×α , H A ∈ K n×α , G B ∈ K m×β , and H B ∈ K n×β . If L(A) = G A H T A and L(B) = G B H T B then L(A + B) = GH T , where G = [G A |G B ] and H = [H A |H B ].
First, note that computing the generator (G, H) for A + B described above requires no arithmetic operations in K. Next, notice that, if A and B have respectively a displacement rank of α and β, we deduce that the displacement rank of A + B is at most α + β. While it is easy to nd cases where A + B has actually a displacement rank equal to α + β, it may happen that this displacement rank is smaller. For instance, think of the case where B = -A, where the displacement rank will drop to zero.

Transposition of a structured matrix Property 1.5. Let A, G, H be such that ∇[M, N](A) = GH T . By transposing the identity MA -AN = GH T , we obtain

∇[N T , M T ](A T ) = -HG T , so that the pair (-H, G) is a ∇[N T , M T ]-generator for A T . Similarly, let A, G, H be such that ∆[M, N](A) = GH T . By transposing the identity A -MAN = GH T , we obtain ∆[N T , M T ](A T ) = HG T , so that the pair (H, G) is a ∆[N T , M T ]-generator for A T .
In the second case, computing the proposed generator for A T requires no operations in K. For the rst case, we need to compute the opposite of all the elements in H, so αn ∈ O(α(m + n)) operations in K are needed.

Multiplication of two structured matrices

Property 1.6. Let A ∈ K m×p and B ∈ K p×n . One has the following equality: α+β) . Therefore, the displacement rank of AB is at most α + β.

∇[M, N](AB) = ∇[M, P](A) B + A ∇[P, N](B). Moreover, if (G A , H A ) is a length-α generator of A for operator ∇[M, P] and if (G B , H B ) is a length-β generator of B for operator ∇[P, N], we get ∇[M, N](AB) = GH T , where G = [G A |AG B ] ∈ K m×(α+β) and H = [B T H A |H B ] ∈ K n×(
The multiplication rule for Stein-type displacement operators is a bit more complicated. The equivalent of the rst formula in Property 1.6 is

∆[M, N](AB) = ∆[M, P](A) B + MA ∇[P, N](B).
In order to obtain a formula with Stein-type displacement operators only, we need to make some extra assumption. For instance, if P is invertible, we deduce that

∆[M, N](AB) = ∆[M, P](A) B + MAP ∆[P -1 , N](B).
In this case, given a ∆[M, P]-generator (G A , H A ) of length α for A and a ∆

[P -1 , N]- generator (G B , H B ) of length β for B, the matrices G = [G A |MAP G B ] and H = [B T H A |H B ] form a ∆[M,
N]-generator of length α + β for AB. We refer to [Pan01, Theorem 1.5.4] for a more complete result, and to [Kal94, Proposition 2] for the product of two Toeplitz-like matrices (operator ∆[Z n,0 , Z T n,0 ]), where the length achieved is 2 α + β + 1. Computing the proposed generator for AB requires that we compute the products like AG B , that is, products of the form structured matrix × vectors. A naive way to perform these products is to successively multiply the structured matrix by each vector like in Section 1.4.1. This yields a cost of O˜(αβ(m

+ p + n)) operations in K. When β ∈ O(α) and m, p ∈ O(n), this amounts to O˜(α 2 n).

Extraction of a submatrix

Given positive integers n 1 and n 2 such that n

1 + n 2 = n, we partition A, G, H, M, N into n i × n j or n i × α blocks as A = A 11 A 12 A 21 A 22 , G = G 1 G 2 , H = H 1 H 2 , M = M 11 M 12 M 21 M 22 , N = N 11 N 12 N 21 N 22 .
(1.9) 2 In this case, P = Z T n,0 is not invertible, so the previous reasoning leading to a generator of length α + β does not hold.

We shall write µ and ν for the rank of, respectively, M 12 and N 21 . Consequently, those two matrices can be written

M 12 = U 1 V T 2 , N 21 = U 2 V T 1 (1.10)
for some full column rank matrices

U 1 ∈ K n 1 ×µ , V 2 ∈ K n 2 ×µ , U 2 ∈ K n 2 ×ν , and V 1 ∈ K n 1 ×ν .
Similarly, let us write µ and ν for the rank of, respectively, M 21 and N 12 so that

M 21 = U 2 V T 1 , N 12 = U 1 V T 2 for some full column rank matrices U 2 ∈ K n 2 × µ , V 1 ∈ K n 1 × µ , U 1 ∈ K n 1 × ν , and V 2 ∈ K n 2 × ν .
Property 1.7. From ∇[M, N](A) = GH T and the partitioning into blocks we deduce that, for i, j ∈ {1, 2}, submatrix A ij satises the following matrix equation

∇[M ij , N ij ](A ij ) = G ij H T ij ,
where (see for example [Pan00, Proposition 4.4]):

G 11 = G 1 -U 1 A 12 U 2 ∈ K n 1 ×(α+µ+ν) ,
(1.11a)

H 11 = H 1 A T 21 V 2 V 1 ∈ K n 1 ×(α+µ+ν) , (1.11b) G 12 = G 1 -U 1 A 11 U 1 ∈ K n 1 ×(α+µ+ ν) , H 12 = H 2 A T 22 V 2 V 2 ∈ K n 2 ×(α+µ+ ν) , G 21 = G 2 -U 2 A 22 U 2 ∈ K n 2 ×(α+ µ+ν) , H 21 = H 1 A T 11 V 1 V 1 ∈ K n 1 ×(α+ µ+ν) , G 22 = G 2 -U 2 A 21 U 1 ∈ K n 2 ×(α+ µ+ ν) , H 22 = H 2 A T 12 V 1 V 2 ∈ K n 2 ×(α+ µ+ ν) .
It should be noted that, for all the structures mentioned in Section 1.3.2, the ranks µ, ν, µ and ν are always at most 1. Consequently, the property above tells us that a submatrix of a structured matrix is almost as structured as the initial matrix, for any structure of interest here.

In order to eectively compute G ij and H ij as above, we need to perform products like A 12 U 2 , where the matrix on the left is a submatrix of A. We do not know yet a generator for A 12 , but we can use the ones of A instead and compute A • 0 U 2 , from which we extract the rst n 1 rows. Using successive structured matrix × vector products, the computation of A 12 U 2 can then be achieved using O˜(α(m + n)ν) operations in K. Assuming that µ, ν, µ and ν are small constants, and using the same method for the other products appearing in the above denitions of G ij and H ij , we conclude that generators for A ij can be deduced from the length-α generator (G, H) of A using O˜(α(m + n)) operations in K.

Inversion of a structured matrix

One of the most important properties of structured matrices is that the inverse of a structured matrix is also structured. This is summarized by the following theorem [Pan01, Theorem 1.5.3]:

Property 1.8. If A ∈ K n×n is nonsingular and ∇[M, N](A) = GH T with G, H ∈ K n×α then ∇[N, M](A -1 ) = -A -1 ∇[M, N](A) A -1 = YZ T , where Y := -A -1 G and Z := A -T H.
Moreover, let A ∈ K n×n be nonsingular and

∆[M, N](A) = GH T with G, H ∈ K n×α : • if M is invertible then ∆[N, M](A -1 ) = A -1 M -1 ∆[M, N](A) A -1 M = YZ T ,
where

Y := A -1 M -1 G and Z := M T A -T H; • if N is invertible then ∆[N, M](A -1 ) = NA -1 ∆[M, N](A) N -1 A -1 = YZ T ,
where Y := NA -1 G and Z := A -T N -T H.

Like for the multiplication, the situation is simpler with a Sylverster-type displacement operator ∇[M, N]. In this case, we can conclude without any assumption on M or N that the ∇[N, M]-displacement rank of A -1 is equal to the ∇[M, N]-displacement rank of A. This is also true for Stein-type operators given the invertibility of M or N, or in some special cases like the Toeplitz-like structure (see [KKM79, Theorem 1]).

Therefore, each time we consider the inverse A -1 of a structured matrix A, we will assume that A -1 is actually represented by a generator (Y, Z). For instance, suppose we want to solve a structured linear system, that is, to compute A -1 b for some structured matrix A and some input vector b. This computation will be carried out by rst computing a generator for A -1 from the one of A, and then applying the reconstruction formula corresponding to the displacement operator associated to A -1 in order to compute the product A -1 • b.

One classical algorithm to compute a generator for A -1 , given a generator (G, H) for the Toeplitz-like matrix A, was introduced independently by Morf [START_REF] Morf | Doubling algorithms for Toeplitz and related equations[END_REF], and Bitmead and Anderson [START_REF] Bitmead | Asymptotically fast solution of Toeplitz and related systems of linear equations[END_REF]. Their recursive approach, sketched in Algorithm 1.1, can be viewed as a structured version of the matrix inversion using block Gaussian elimination mentioned in Section 1.1.2. Indeed, instead of manipulating matrices themselves, MBA produces generators for the involved matrices using the rules on addition and multiplication of structured matrices mentioned in Section 1.4.2. Thus, a generator for the Schur complement S is computed at line 3, for instance.

One technical issue with this approach lies in the growth in length of the intermediate generators, resulting from the successive additions and multiplications of structured matrices. In order to achieve a cost of O˜(α 2 n) with this approach, where α and n are the dimensions of matrices at input, one must ensure that both the generator (G S , H S ) used Algorithm 1.1: Sketch of the Morf/Bitmead-Anderson (MBA) algorithm for divideand-conquer inversion of Toeplitz-like matrices [START_REF] Morf | Doubling algorithms for Toeplitz and related equations[END_REF][START_REF] Bitmead | Asymptotically fast solution of Toeplitz and related systems of linear equations[END_REF].

Input : G, H ∈ K n×α such that ∆[Z n,0 , Z T n,0 ](A) = GH T . Assumption: A is strongly regular. Output : Y and Z such that ∆[Z T n,0 , Z n,0 ](A -1 ) = YZ T . Compute a length-α generator (G 11 , H 11 ) for A 11 1 (Y 11 , Z 11 ) ← MBA(G 11 , H 11 ) 2 Compute a generator ( G S , H S ) for S = A 22 -A 21 A -1 11 A 12 3 Deduce from ( G S , H S ) a length-α generator (G S , H S ) for S 4 (Y S , Z S ) ← MBA(G S , H S ) 5 Compute generators for -A -1 11 A 12 S -1 , -S -1 A 21 A -1 11 and A -1 11 + A -1 11 A 12 S -1 A 21 A -1 11 6 Deduce a generator ( Y, Z) for A -1 = A -1 11 +A -1 11 A 12 S -1 A 21 A -1 11 -A -1 11 A 12 S -1 -S -1 A 21 A -1 11 S -1 7 Deduce from ( Y, Z) a length-α generator (Y, Z) for A -1 8 return Y and Z 9
for the recursive call and the output generator (Y, Z) are of length α. We have already discussed the size of a generator for the inverse when commenting Property 1.8 above, and seen that size α is to be expected. In fact, the same conclusion holds for the Schur complement, which was one of the main contributions from [START_REF] Morf | Doubling algorithms for Toeplitz and related equations[END_REF] and [START_REF] Bitmead | Asymptotically fast solution of Toeplitz and related systems of linear equations[END_REF]. Yet, the arithmetic on structured matrices provides larger generator matrices. To cope with this length issue, one uses a generator compression stage 3 which, given matrices G, H ∈ K n×β such that GH T has rank α ≤ β, computes matrices G c , H c that satisfy G c H T c = GH T but now have exactly α columns. We refer to [Pan92b, Pan92a, Pan93] and [START_REF] Victor | Structured Matrices and Polynomials[END_REF]4.6] for more details about this compression stage, and to [Kal94] for a complete study of the length of intermediate generators in MBA and a proof that it can be implemented so as to achieve a total cost in O˜(α 2 n).

Since its rst statement in 1980, MBA has been improved in several ways. Kaltofen all the structures mentioned in Section 1.3.2 is described in [START_REF] Victor | Structured Matrices and Polynomials[END_REF]5]. Furthermore, more recent works [START_REF] Bostan | Solving Toeplitzand Vandermonde-like linear systems with large displacement rank[END_REF][START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF] show that it is possible to use polynomial matrix multiplication in order to speed-up the multiplications of type "Toeplitz-like matrix × matrix". Then, a cost of O˜(α ω-1 n) for inversion of Toeplitz-like matrices, as well as for the other structures via a reduction to the Toeplitz-like case.

To conclude, let us mention a few alternatives to MBA for the problem of structured This gives a deterministic algorithm whose complexity for block Hankel matrices is in O˜(α ω-1 n), using the complexity announced in [START_REF] Giorgi | On the complexity of polynomial matrix computations[END_REF] for matrix-Padé approximation.

Furthermore, it may happen that the generator of a structured matrix is also structured.

This occurs for instance with a block Toeplitz matrix where the blocks themselves are Toeplitz matrices. In this special cases, algorithms that are faster than MBA can be designed [Kha08, 4 and 5].

While all these alternatives of MBA are interesting, we aim at asymptotically fast inversion for all the structures mentioned in Section 1.3.2. Therefore, we will focus on variations of MBA in the next chapters.

Contributions of this thesis

In this work, we will focus on structured matrices as in The contributions to this rst part of the document are;

• a general, compression-free approach for structured matrix inversion, extending the algorithm for Cauchy-like matrices in [START_REF] Cardinal | On a property of Cauchy-like matrices[END_REF][START_REF] Cardinal | A divide and conquer method to solve Cauchy-like systems[END_REF];

• a new approach for the fast computation of multiplications of the form structured matrix × matrix, extending the approach for Toeplitz-like matrices (with Stein's displacement operator) presented in [Bos10, page 210];

• some software developments, and experimental results.

Let us now detail these three points.

Compression-free approach for structured matrix inversion

As mentioned in Section 1.4. for structured matrix inversion. While suppressing the compression steps leaves the asymptotic cost of structured matrix inversion unchanged, it yields smaller dominant terms in the overall cost.

Reviewing Cardinal's algorithm

A compression-free algorithm for the Cauchy-like structure was introduced by Cardinal [START_REF] Cardinal | On a property of Cauchy-like matrices[END_REF][START_REF] Cardinal | A divide and conquer method to solve Cauchy-like systems[END_REF]. The key point in his algorithm is to compute recursively the specied 

generator for A -1 : Y = -A -1 G, Z = A -T H.
Y = F Y 11 Y S and Z = E T Z 11 Z S , where E = In 1 -A 21 A -1 11 In 2 and F = In 1 -A -1 11 A 12 In 2 .
In fact, this formula holds for all the structures dened by an operator ∇[M, N] with M and N T lower triangular. This fact is a consequence of a general formula, holding for ∇[M, N] with arbitrary matrices M and N, that we shall prove in Section 2.2.1.

Algorithm GenInvLT

Combining the formula in [GO94b, Theorem 2.3] for a compression-free generation of the Schur complement S and the aforementioned recursive formula for a compression-free generation of A -1 , we obtain when M and N T are lower triangular an inversion algorithm without compression, that we call GenInvLT (see Section 2.3.1).

Cost for the Cauchy-like structure. In Section 2.3.2, we prove that GenInvLT for the Cauchy-like structure as dened in (1.6a) requires at most

3 log(n) MM C (α, n) + O(α n log(n))
eld operations, where MM C (α, n) denotes the cost of a product Cauchy-like matrix × vectors where the displacement rank of the Cauchy-like matrix and the number of vectors are both equal to α. Moreover, assuming in addition that x and y are repetition free, we can use a simplication pointed out by Cardinal, leading to a cost of at most

2 log(n) MM C (α, n) + O(α n log(n)) eld operations.
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Cost for the Vandermonde-like structure. In Section 2.3.3, we prove that GenInvLT for the Vandermonde-like structure as dened in (1.7a) requires at most

3 log(n) MM V (α, n) + O(α M(n) log 2 (n))
eld operations, where MM V (α, n) denotes the cost of a product Vandermonde-like matrix × vectors where the displacement rank of the Vandermonde-like matrix and the number of vectors are both equal to α. Moreover, assuming in addition that x is repetition free, we can extend Cardinal's simplication for the Cauchy-like case, leading to a cost of at most

2 log(n) MM V (α, n) + O(α M(n) log 2 (n)).
eld operations.

Algorithm GenInvHL

For the Hankel-like structure, we want to consider the displacement operator ∇[Z n,0 , Z T n,0 ] in order to have M = N = Z n,0 lower triangular. However, the operator is not invertible, meaning that the matrix A cannot be recovered from its generator (G, H) only. To cope with this diculty, we need to deal with additional data called the irregularity set [START_REF] Victor | Structured Matrices and Polynomials[END_REF]p. 136]. In Section 2.3.4, we explain how to extend Algorithm GenInvLT in order to handle the Hankel-like structure with its irregularity set. This yields Algorithm GenInvHL. Moreover, we show that inverting a Hankel-like matrix using GenInvHL requires at most

2 log(n) MM H (α, n) + O(α M(n) log(n)).
eld operations, where MM H (α, n) is the counterpart of MM C (α, n) and MM V (α, n) for Hankel-like matrices.

Comparison with the classical MBA algorithm

Finally, a study of the cost of the classical MBA approach yields a cost dominated by 14 log(n) MM * (α, n) with * ∈ {C, V, H} depending on the structure. Therefore, we conclude that our approach leads to a theoretical speed-up of 14/3 ≈ 4.67 in general, and of 14/2 = 7 in some situations.

Fast multiplication of a structured matrix by a matrix

The other part of our work on structured matrices, which is presented in Chapter 3, deals with the multiplication of a structured matrix by a matrix. Given an m × n structured matrix A with a displacement rank α and an n × β matrix B, the problem is to compute eciently the product AB.

Extension of the approach in [Bos10, page 210]

For α = β and for square Toeplitz-like matrices (with Stein's displacement operator), the approach in [Bos10, page 210] gives a multiplication by a matrix that can be achieved in O˜(α ω-1 n) eld operations using fast multiplication of polynomial matrices. We extend it in this thesis to all the structures in Table 1.2, and to the rectangular case.

Polynomial expression of AB. In Section 3.2, we propose a polynomial expression for the matrix product AB, generalizing the one proposed in [Bos10, page 210] for the Toeplitz-like case. This points out the problem of computing the polynomial row vector

R = U T (VW T mod P ) given U ∈ K[x] α×1 m , V ∈ K[x] α×1 n , and W ∈ K[x] β×1
n , and where P is either x n -ψ or n i=1 (x -y i ).

Computation of R = U T (VW T mod P ). In Section 3.3, we provide two algorithms for the computation of R, assuming that β = α. First, we explain how one can use the material in [Bos10, page 210] in order to solve the case where P = x n -ψ. This yields Algorithm ComputeRx, for which we prove that it requires at most O˜(α ω-1 (n + m)) eld operations (see Theorem 3.2 for a more precise result). Then, we propose an extension of the material in [Bos10, page 210] so as to deal with the case where P = n i=1 (x -x i ). This yields Algorithm ComputeRy, whose cost is also in O˜(α ω-1 (n + m)) (see Theorem 3.4 for a more precise result).

Resulting costs for the multiplication of a structured matrix by a matrix.

Combining the two previous points, we obtain a general algorithm for the multiplication structured matrix × vectors, in the case where α = β. In Section 3.4.1, we obtain the following costs, depending on the structure and the eld in use, and for N = m + n: 

O(α ω-1 M(n) log n) O(α ω-1 n log n + α log α M(n) log n) Vandermonde- or Cauchy-like O(α ω-1 M(n) log n + α M(n) log 2 n) O(α ω-1 n log n + α M(n) log 2 n)
Combining [START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF] and [Bos10, page 210] leads to a slightly better cost for the Cauchyand Vandermonde-like structures. Nevertheless, our approach has the advantage to be direct for these two structures, contrary to the approach in [START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF] which reduces them to the Toeplitz-like case.

Software development

In addition to our theoretical results above, we have implemented the algorithms introduced in Chapters 2 and 3 within the C++ library SLA5 (Structured Linear Algebra).

This library already provided general support for Stein's displacement operator, as well as a compression routine. We have added to it about 3000 lines of code, oering the following features:

• some support for the Cauchy-like structure (operator ∇[D(x), D(y)]) and the Hankellike structure (operator ∇[Z m,0 , Z T n,0 ]);

• an implementation for ve inversion algorithms (three variants of MBA, GenInvLT from Section 2.3.1, and GenInvHL from Section 2.3.4);

• extra support for polynomial matrices;

• an implementation of Algorithms mpx, mpy, and ComputeRy (see Section 3.3).

This code is used for three kinds of experiments:

• First, we compare for the Cauchy-like structure (with a naive implementation of the multiplication Cauchy-like matrix × vectors) the costs of the various inversion algorithms implemented. The theoretical speed-ups announced above

• Second, we measure the time spent on irregularity-set handling within Algorithm GenInvHL, so as to conrm experimentally that, compared to the overall cost, it is negligible in practice.

• Third, we measure the impact of using a fast multiplication Cauchy-like matrix × vectors in GenInvLT. This yields signicant speed-ups.

Chapter 2

Compression-free inversion of structured matrices

The goal of this chapter is to extend a compression-free algorithm by Cardinal [START_REF] Cardinal | On a property of Cauchy-like matrices[END_REF][START_REF] Cardinal | A divide and conquer method to solve Cauchy-like systems[END_REF] for Cauchy-like matrix inversion to a broader class of structured matrices. In a rst section, we will discuss the idea underlying Cardinal's approach, that is, the computation of a specied generator for the inverse of a Cauchy-like matrix, rather than just an arbitrary one of length α. Then, we will show in a second section that, using specied generators, we can design a general compression-free version of MBA, and that we only need to deal with three structures that are Cauchy-, Vandermonde-, and Hankel-like in order to obtain a specied generator for any invertible matrix with one of the nine structures mentioned in Table 1.2. Next, we introduce in a third section two new compressionfree algorithms: GenInvLT for the inversion of Cauchy-and Vandermonde-like matrices, and GenInvHL which is a slight extension of the previous algorithm in order to cover the Hankel-like case. A detailed cost analysis will be provided for each of these three cases. Finally, experimental results are reported in a fourth section. For the Cauchylike structure, for instance, the speed-ups compared to MBA are by a factor from 4.6 to 6.7. This suggests that our extension of Cardinal's compression-free approach may yield algorithms that are not only simpler but also signicantly faster in practice.

Most of the work presented in this chapter has been published in [JM10b].

Techniques to avoid compression stages

As mentioned in Section 1.4.3, classical algorithms for structured matrix inversion are often based on two compression stages to cope with a growth in length of the intermediate generators. We review here two techniques that make it possible to avoid this compression:

1. When the displacement operator is ∇[M, N], and when M and N T are lower triangular, one can use an explicit formula in order to obtain a generator for the Schur complement that has already the expected length. Thus, the rst compression stage can be avoided;

2. For the Cauchy-like case with displacement operator ∇[D(x), D(y)], an algorithm by Cardinal managed to also suppress the second compression stage.

Generation of the Schur complement without compression

Let us partition A, M, N, G, and H as in Section 1.4.2. The authors of [GO94b, Theorem 2.3] (see also [OP98, Lemma 3.1] and [Pan01, 5.4]) remarked that, when M 12 = 0 and N 21 = 0, one can perform the block Gauss elimination described in Section 1.1.2 directly on the generator. More precisely, starting with MA -AN = GH T , we may premultiply by E =

In 1 -A 21 A -1 11 In 2 , postmultiply by F = In 1 -A -1 11 A 12
In 2 , and then look at the bottom-right blocks in order to obtain the following property:

Property 2.1. Let A ∈ K n×n be such that its top-left block A 11 ∈ K n 1 ×n 1 is invertible, and let (G, H) be a ∇[M, N]-generator for A. If M 12 and N 21 are zero matrices then one has

M 22 S -SN 22 = G S H T S ,
where

G S = G 2 -A 21 A -1 11 G 1 and H S = H 2 -A T 12 A -T 11 H 1 .
Therefore, using the last two equations and given any generators for A -1 11 , A 12 and A 21 , one can compute a ∇[M 22 , N 22 ]-generator for the Schur complement S whose length is α. As it is the expected length for a generator of S in MBA, the compression stage before the recursive call on the Schur complement is no more needed. Notice that, since we perform recursive calls, we may want to suppress the aforementioned compression stage for each of these calls. This can be achieved if M 11 , M 22 , N T 11 and N T 22 are also block lower triangular, and if their respective diagonal blocks are in turn lower triangular, and so on recursively. As a consequence, the correct assumption for a complete suppression of the rst compression stage becomes that M and N T are lower triangular.

More general formulas

In fact, one does not need to assume that M 12 and N 21 are zero matrices in order to get a direct formula for G S and H S . Indeed, let µ and ν be the rank of M 12 and N 21 , respectively. Hence, as already mentioned in (1.10), we can write

M 12 = U 1 V T 2 and N 21 = U 2 V T 1 with U 1 ∈ K n 1 ×µ , V 2 ∈ K n 2 ×µ , U 2 ∈ K n 2 ×ν , and V 1 ∈ K n 1 ×ν . Then, [Pan00, Proposition 4.5]
gives us the following general description of the structure of the Schur complement S of A 11 in A:

∇[M 22 , N 22 ](S) = G S H T S ,
with G S and H S the two matrices in K n 2 ×(α+µ+ν) given by

G S = G 2 -A 21 A -1 11 G 1 A 21 A -1 11 U 1 -SU 2 ,
(2.1a)

H S = H 2 -A T 12 A -T 11 H 1 S T V 2 A T 12 A -T 11 V 1 .
(2.1b)

Notice that the displacement rank of S for operator ∇[M 22 , N 22 ] is not equal to α in all generality. Yet, the previous equations tell us that it is at most α + µ + ν.

Cardinal's algorithm for Cauchy-like matrix inversion

When the displacement operator considered is ∇[D(x), D(y)], that is, when considering Cauchy-like matrices, Cardinal [START_REF] Cardinal | On a property of Cauchy-like matrices[END_REF][START_REF] Cardinal | A divide and conquer method to solve Cauchy-like systems[END_REF] proposed an inversion algorithm that completely avoids the compression stages of MBA (yet, the asymptotic cost remains unchanged). His approach is based on two mutually-recursive routines (see Algorithms 2.1 and 2.2):

• GenSchur returns the generator for the Schur complement as in Property 2.1, along with a generator for the submatrix A -1 11 ;

• Invert returns the generator for A -1 as dened in Property 1.8, that is, Y = -A -1 G and Z = A -T H, where (G, H) is the generator provided as input for A.

Algorithm 2.1: GenSchur (from [Car00]) Input : x, y ∈ K n and G, H ∈ K n×α such that ∇[D(x), D(y)](A) = GH T , and two positive integers n 1 and n 2 such that n 1 + n 2 = n. Assumption: A is strongly regular, and x 1 , . . . , x n , y 1 , . . . , y n are pairwise distinct. The key point for this approach to work lies in the precise specication of the output for Invert. Instead of computing any length-α generator for A -1 , we get a specic one that is precisely related to the input of the routine. This has several consequences:

Output

: Y 11 = -A -1 11 G 1 , Z 11 = A -T 11 H 1 , G S = G 2 -A 21 A -1 11 G 1 , and H S = H 2 -A T 12 A -T 11 H 1 . G 1 G 2 ← G with G i ∈ K n i ×α ; H 1 H 2 ← H with H i ∈ K n i ×α 1 [ x 1 x 2 ] ← x with x i ∈ K n i ; [ y 1 y 2 ] ← y with y i ∈ K n i 2 if n 1 ≤ α then 3 Evaluate G 1 H T 1 and deduce the matrix A 4 Y 11 ← -A -1 11 G 1 ; Z 11 ← A -T 11 H 1 5 else 6 (Y 11 , Z 11 ) ← Invert(x 1 , y 1 , G 1 , H 1 ) 7 G S ← G 2 + A 21 Y 11 ; H S ← H 2 -A T
• First, the formulas from Property 2.1 can be simplied as shown at line 8 in Algorithm 2.1, since we know that Y 11 = -A -1 11 G 1 and Z 11 = A -T 11 H 1 ;

• Second, it can be checked (see [START_REF] Cardinal | A divide and conquer method to solve Cauchy-like systems[END_REF]Proposition 6]) that the pair ( G, H) computed at line 4 in Invert satises

∇[D( x), D( y)]( A) = G H T , where A = S A 21 A -1 11 -A -1 11 A 12 A -1
11 , so that it can be viewed as a generator for the specic Cauchy-like matrix A;

Algorithm 2.2: Invert (from [Car00]) Input : x, y ∈ K n and G, H ∈ K n×α such that ∇[D(x), D(y)](A) = GH T . Assumption: A is strongly regular, and x 1 , . . . , x n , y 1 , . . . , y n are pairwise distinct.

Output

: Y = -A -1 G and Z = A -T H, so that ∇[D(y), D(x)](A -1 ) = YZ T .
Choose two positive integers n 1 and n 2 such that n

= n 1 + n 2 1 Y 11 , Z 11 , G S , H S ← GenSchur(x, y, G, H, n 1 , n 2 ) 2 [ x 1 x 2 ] ← x with x i ∈ K n i ; [ y 1 y 2 ] ← y with y i ∈ K n i 3 G ← G S Y 11 ; H ← H S Z 11 ; x ← [ x 2 y 1 ]; y ← [ y 2 x 1 ] 4 Y 11 , Z 11 , G S , H S ← GenSchur( x, y, G, H, n 2 , n 1 ) 5 Y ← G S Y 11 ; Z ← H S Z 11 6
return Y and Z 7

• Third, using the same reasoning as in the second point, we can prove that the pair (Y, Z) computed at the end of Invert is actually a generator for A -1 .

Notice that, while the minimal assumption for Cauchy-like matrix reconstruction (for Sylvester's displacement operator) is that x i = y j for all 1 ≤ i, j ≤ n, Cardinal's approach also asks that x i = x j and y i = y j for i = j. This unusual assumption is a consequence of the entries of x and y being mixed in the denitions of x and y. A way to get rid of this stronger assumption, along with the gain we can obtain when it holds, will be discussed in Section 2.3.2.

Formulas for the generator of a Cauchy-like matrix inverse

The precise specication of the output plays a central role in Cardinal's algorithm. Therefore, let us introduce the following denition:

Denition 2.1. Let A ∈ K n×n be invertible, and (G, H) be a ∇[M, N]-generator for A of length α. We will call specied generator of A -1 associated to (G, H) the pair (Y, Z) dened by

Y = -A -1 G and Z = A -T H.
In particular, (Y, Z) is a ∇[N, M]-generator for A -1 of length α, and we will usually refer to it as the specied generator for A -1 when G and H can be determined by the context.

It should be noted that this formula, which is a straightforward consequence of a remark in [HR84], was explicitly stated in [Pan89]. Yet, superfast algorithms for structured matrix inversion did not really exploit it, except Cardinal's one.

Our goal in the sequel of this chapter will be to use specied generators as much as possible, and to design algorithms similar to MBA but, following Cardinal's approach, without the compression stages. To achieve this, let us rst reconsider this approach so as to deduce more explicit formulas for the generator (Y, Z) returned by the routine Invert. 

G S = G 2 -A 21 A -1 11 G 1 = Y 11 + A -1 11 A 12 S -1 G S = Y 11 -A -1 11 A 12 Y S and Z S = H 2 -A T 12 A -T 11 H 1 = Z 11 -A -T 11 A T 21 S -T H S = Z 11 -A -T 11 A T 21 Z S .
Therefore, we deduce the following new formulas for Y and Z:

Y = Y 11 -A -1 11 A 12 Y S Y S and Z = Z 11 -A -T 11 A T 21 Z S Z S .
Using the matrices E =

In 1 -A 21 A -1 11 In 2 and F = In 1 -A -1 11 A 12
In 2 , we can rewrite the last two equations as:

Y = F Y 11 Y S and Z = E T Z 11 Z S .
As a consequence, the absence of compression for the generator of A -1 in Cardinal's approach appears to be an opposite process of the one from Property 2.1: In order to avoid the need for compression before the second recursive call in MBA, we performed an elimination on the generator; Here, the compression stage following the second recursive call is suppressed by some kind of recursive reconstruction formulas.

Computations with specied generators

This section presents two results involving the concept of specied generators:

• First, we formalize and generalize the analysis performed in the previous section.

We then obtain a new, compression-free formulation of the MBA algorithm;

• Second, we recall some classical reductions that we will use to restrict our future analysis to only three structures, and we show that, as soon as these three structures are handled correctly, we can compute specied generators for all the nine structures mentioned in Section 1.3.2.

Before we start, let us just introduce a useful notation:

Notation 2.1. For X ∈ K m×n and α ≤ n, we write X →α for the matrix

[x 1 | • • • |x α ] ∈ K m×α made of the rst α columns of X.

Recursive factorization formula

At the end of Section 2.1. 

Y S = -S -1 G S , Z S = S -T H S .
Then the matrices Y and Z of the specied generator of

A -1 satisfy Y = F Y →α 11 Y →α S , Z = E T Z →α 11 Z →α

S

,

where E = In 1 -A 21 A -1 11 In 2 and F = In 1 -A -1 11 A 12
In 2 are the classical block Gaussian elimination matrices.

Proof. Since

A -1 = F A -1 11 S -1 E, we obtain -A -1 G = F -A -1 11 G 1 -S -1 (G 2 -A 21 A -1 11 G 1 )
.

It follows from (1.11a) and (2.1a) that G 1 = G →α 11 and that G 2 -A 21 A -1 11 G 1 = G →α S .
The expression claimed for Y = -A -1 G then follows from applying the rule A(B →α ) = (AB) →α twice, and from the denitions of Y 11 and Y S . The expression for Z can be obtained in a similar way, using (1.11b) and (2.1b).

A rst consequence of this theorem is a compressed analogue of the classical recursive factorization formula (1.2):

Y Z T = F Y →α 11 Y →α S Z →α 11 Z →α S T E.
Indeed, this recursive formula allows to factor a specied generator of the inverse for A in terms of specied generators for the inverse of its upper-left block A 11 and for the inverse of the Schur complement of A 11 in A.

A second consequence of Theorem 2.1 is that, for A strongly regular, we immediately get a recursive algorithm à la MBA whose key steps are the computation of generators Figure 2.1: General compression-free approach for structured matrix inversion.

Given a generator (G, H) of length α for A, 1. to prove that we can come down to the three following types of structure:

1
(M, N) ∈ (D(x), D(y)), (D(x), Z n,0 ), (Z n,0 , Z T n,0 ) , (2.2)
that is, to Cauchy-, Vandermonde-and Hankel-like structures;

2. to show that the classical technique used to ensure the strong regularity of the matrix in input is compatible with the concept of specied generator.

We will see that, in both cases, the initial matrix A we want to invert will be replaced with a matrix A ∈ {A T , P 1 AP 2 }, where P 1 and P 2 are two n × n matrices. Therefore, let us rst see how one can deduce the specied generator for A -1 given the specied generator for A -1 .

Recovery after matrix transformations

Applying twice the rule for the product of two structured matrices mentioned in Property 1.6, we can straightforwardly deduce explicit formulas for generating products of three matrices:

Lemma 2.1. Let A, G, H be such that ∇[M, P](A) = GH T and, for two matrices P 1 and P 2 , let

A = P 1 AP 2 . If ∇[ M, M](P 1 ) = G P 1 H T P 1 and ∇[N, N](P 2 ) = G P 2 H T P 2 then ∇[ M, N]( A) = G H T ,
where

G = [P 1 G|G P 1 |P 1 AG P 2 ] and H = [P T 2 H|P T 2 A T H P 1 |H P 2 ].
As an example, let us mention three special cases which we will use later: assuming

M, N ∈ {Z n,ϕ , Z T n,ϕ }, let rst (P 1 , P 2 ) = (I n , J n ) and ( M, N) = (M, N T ).
Then obviously ∇[ M, M](P 1 ) is zero and, using the facts that J 2 n = I n and 

J n Z n,ϕ J n = Z T n,ϕ (see [ 
∇[M, N T ](A J n ) = G(J n H) T .
(2.3a)

Similarly, exchanging the roles of P 1 and P 2 yields

∇[M T , N](J n A) = (J n G)H T ,
(2.3b)

while taking P 1 = P 2 = J n gives ∇[M T , N T ](J n A J n ) = (J n G)(J n H) T .
(2.3c) Property 1.5 in Section 1.4.2 and Lemma 2.1 above provide formulas for generating the matrix A ∈ {A T , P 1 AP 2 } from some generators of the matrix A. Conversely, we give in the theorem below some formulas for recovering specied generators of the inverse of A from specied generators of the inverse of A.

Theorem 2.2. Let A ∈ K n×n be invertible, (G, H) be a ∇[M, N]-generator of length α for A, and (Y, Z) be the specied generator for

A -1 associated to (G, H). Let A ∈ K n×n be invertible and, for G, H ∈ K n×β , β ≥ α, dene Y = -A -1 G, Z = A -T H.

Then

• for A = A T and ( G, H) = (-H, G), one has

Y = -Z, Z = Y;
• for A = P 1 AP 2 with P 1 , P 2 ∈ K n×n invertible, and for G, H as in Lemma 2.1, one has

Y = P 2 Y →α , Z = P T 1 Z →α .
Proof. In the rst case, Y = -(

A -T )(-H) = A -T H = Z and Z = (A T ) -T G = A -1 G = -Y.
Now, in the case where A = P 1 AP 2 Lemma 2.1 implies that the rst α columns of Y are Y →α = -(P 1 AP 2 ) -1 P 1 G = P -1 2 Y. Similarly, the rst α columns of Z are Z →α = (P 1 AP 2 ) -T P T 2 H = P -T 1 Z.

For example, when P 1 , P 2 ∈ {I n , J n }, it follows from Lemma 2.1 that β = α. Consequently, Theorem 2.2 yields

(Y, Z) = (J n Y, Z) if A = A J n , (2.4a) (Y, Z) = ( Y, J n Z) if A = J n A, (2.4b) (Y, Z) = (J n Y, J n Z) if A = J n A J n .
(2.4c)

Reduction to basic displacements

A rst consequence of Theorem 2.2, when it comes to computing specied inverse generators, is that the nine possible displacements dened in (1.5) can be reduced to the three basic ones in (2.2).

First, it follows from (2.3a) and (2.4a) that the case N = Z n,ψ reduces to the case N = Z T n,ψ . Similarly, (2.3b) and (2.4b) imply that the case M = Z T n,ϕ reduces to the case M = Z n,ϕ . We thus are left with the four cases dened by M ∈ {D(x), Z n,ϕ } and N ∈ {D(y), Z T n,ψ }.

Using the transposition rule from Property 1.5 allows to further reduce the case where M = Z n,ϕ and N = D(y) to the case where M = D(y) and N = Z T n,ϕ . Due to the nature of the transformations applied to the n×α generators (sign changes, permutations), the three reductions done so far imply an extra cost of only O(α n) operations in K. To reach (2.2) it remains to zero out the scalars ϕ and ψ. This can be done without transforming A, but only its displacement: for example, by combining the obvious identity

Z n,ϕ = Z n,0 + ϕ e n,1 e T n,n , (2.5) with ∇[D(x), Z T n,ψ ](A) = GH T and ∇[Z n,ϕ , Z T n,ψ ](A) = GH T , we arrive at, respectively, ∇[D(x), Z T n,0 ](A) = G H T (i) with G = [G|Ae n,n ] and H = [H|ψ e n,1 ],
and 

∇[Z n,0 , Z T n,0 ](A) = G H T (ii) with G = [G| -ϕ e n,
M, N P 1 P 2 D(x), D(y) C( x, x) D(r 1 ) C(y, y) D(r 2 ) D(x), Z T n,0 C( x, x) D(r 1 ) L(r 2 ) Z n,0 , Z T n,0 U(r 1 ) L(r 2 )
For all these cases, one may check that the structure of A, P 1 , and P 2 allows to prepare ( G, H) in Lemma 2.1 and to recover (Y, Z)

in Theorem 2.2 in time O(α M(n)) or O(α M(n) log(n)).

Compression-free structured matrix inversion

In order to cover simultaneously the three displacements in (2.2) to which we have previously reduced, we assume in this section that both operator matrices M and N T are lower triangular.

Algorithms for lower triangular operator matrices M and N T

Since M and N T are lower triangular, we have in particular that the blocks M 12 and N 21 are zero, so that their respective ranks µ and ν satisfy µ = ν = 0. From (1.11) it then follows that the submatrix A 11 satises

∇[M 11 , N 11 ](A 11 ) = G 1 H T 1 .
(2.6) Thus, some generators of length at most α for A 11 can be read o the rst n 1 rows of some generators of length at most α for A.

Assuming that A 11 is invertible, consider now the associated specied generator of A -1 11 , that is,

Y 11 = -A -1 11 G 1 , Z 11 = A -T 11 H 1 .
(2.7)

Combining the two identities in (2.7) with the explicit Schur complement generation formulas from Property 2.1 yields

∇[M 22 , N 22 ](S) = (G 2 + A 21 Y 11 )(H 2 -A T 12 Z 11 ) T .
(2.8)

In other words, the precise specication of the above generator of the inverse of A 11 can be exploited to simplify even further the generator of the Schur complement. In [Car99,

Proposition 1], Cardinal had already noted this formula but only for the Cauchy-like structure (M and N diagonal). Now, assuming further that A is strongly regular (which, if randomization is allowed, makes sense in view of the probabilistic reductions to strong regularity shown in Section 2.2.2), we obtain Algorithm 2.3.

Algorithm 2.3: GenInvLT Input : M, N ∈ K n×n and G, H ∈ K n×α such that M and N T are lower triangular, and ∇[M, N](A) = GH T . Assumption: A is strongly regular, and m ii = n jj for all (i, j).

Output : Y = -A -1 G and Z = A -T H, so that ∇[N, M](A -1 ) = YZ T . if n = 1 then 1 Evaluate the dot product GH T 2 Deduce the scalar A 3 Y ← -A -1 G; Z ← A -T H 4 else 5 n 1 ← n 2 ; n 2 ← n 2 6 G 11 ← G 1 ; H 11 ← H 1 7 (Y 11 , Z 11 ) ← GenInvLT(M 11 , N 11 , G 11 , H 11 ) 8 G S ← G 2 + A 21 Y 11 ; H S ← H 2 -A T 12 Z 11 9 (Y S , Z S ) ← GenInvLT(M 22 , N 22 , G S , H S ) 10 Y ← Y 11 -A -1 11 A 12 Y S Y S ; Z ← Z 11 -A -T 11 A T 21 Z S Z S 11 return Y and Z 12 Theorem 2.3. Algorithm GenInvLT is correct.
Proof. When n = 1, the assumption on M and N implies that A is the scalar

α i=1 g 1i h 1i m 11 -n 11 .
Correctness then follows immediately in this case. Assume now that n > 1 and, in order to proceed by induction, assume correctness for n < n. The matrix A 11 is strongly regular (since A is) and it satises (2.6), where, by assumption M 11 and N T 11 are both lower trian- gular and with disjoint diagonals. Since n 1 < n, the induction assumption then implies that the pair (Y 11 , Z 11 ) returned by the rst recursive call is precisely ( -A -1 11 G 1 , A -T 11 H 1 ). Therefore, the computed pair (G S , H S ) satises (2.8), where, by assumption, S is strongly regular (since A is) and where M 22 and N T 22 are both lower triangular and have disjoint diagonals. Since n 2 < n, the induction assumption implies that the pair (Y S , Z S ) returned by the second recursive call is exactly (-S -1 G S , S -T H S ). The conclusion then follows from Theorem 2.1.

To implement Algorithm GenInvLT and bound its cost, all we need is to be able to evaluate the four matrix products

A 21 Y 11 , A T 12 Z 11 , A -1 11 A 12 Y S , A -T 11 A T 21 Z S .
(2.9)

In the next subsections, we study the evaluation of those expressions for each of three basic structures of the Cauchy, Vandermonde, and Hankel types. That requires in each case a detailed analysis of the structure of the matrices A -1 11 , A 12 , A 21 , and their transposes.

Since in (2.9) there are two ways of parenthesizing the products of three matrices, we will also study the structure of A -1 11 A 12 and (A 21 A -1 11 ) T . The parenthesizations (A -1 11 A 12 )Y S and (A 21 A -1 11 ) T Z S will be referred to as Cardinal's trick later on, as they have been initially used in [START_REF] Cardinal | On a property of Cauchy-like matrices[END_REF] for the Cauchy-like case.

Cost functions

Algorithm GenInvLT essentially requires the ability to eciently evaluate products of the form AB and A T B, where A is a structured matrix, and B consists of one or several vectors. In order to precisely describe its cost in the case of Cauchy-, Vandermonde-, and Hankel-like structures, we introduce the following functions. For the Cauchy-like structure (1.6a), let MM C : N >0 × N >0 × N >0 → R ≥0 be such that, for A ∈ K n×n given by the right-hand side of (1.6b) and B ∈ K n×β , the products AB and A T B can be computed using at most MM C (α, n, β) operations in K. We dene the functions MM V and MM H in a similar way for, respectively, the Vandermonde-like and Hankel-like structures. Also, when β = α we shall simply write MM * (α, n), for * = C, V, H.

As mentioned in Table 1.1, we have that multiplying C(x, y) T = -C(y, x), C(x, y), V(x, n), or V(x, n) T by a vector can be done in time O(M(n) log(n)). Hence by a straightforward application of the summation formulas (1.6b), (1.7b), and (1.8b), one has

MM * (α, n, 1) ∈ O(α M(n) log(n)) for * = C, V, MM H (α, n, 1) ∈ O(α M(n)).
We shall also use the three properties given below: Lemma 2.2. Let k, ∈ O(1). Then

MM V (α + k, n, α) ∈ MM V (α, n) + O(α M(n) log(n)), (2.10a) MM H (α + k, n, α) ∈ MM H (α, n) + O(α M(n)), (2.10b) and, for * = C, V, H, MM * (kα, n, α) ∈ k MM * (α, n) + O(α n).
(2.11) Proof. To get (2.10) note that, for all * , MM * (α+k, n, α) is in MM * (α, n, α)+MM * (k, n, α)+ O(αn). Indeed, one can evaluate our sum of α + k products by adding the rst α terms and the last k terms separately, and then combining the two intermediate results. Since moreover MM * (k, n, α) ≤ αMM * (k, n, 1), (2.10a) and (2.10b) follow from the complexities of MM V (α, n) and MM H (α, n) mentioned above. To establish (2.11), notice that a sum of kα terms for α vectors can be evaluated via k sums of α terms for α vectors plus a nal sum in O(α n), repeated times.

Finally, we assume as for M(n) that the functions MM * (•, n) are superlinear. This assumption will allow us to simplify the cost bounds of the algorithms of Section 2.3.1 and can be easily supported by naive implementations in O˜(α 2 n) as those used in Section 2.4.1.

Application to Cauchy-like matrices

We consider here the specialization of Algorithm GenInvLT to the Cauchy-like structure dened in (1.6a). Partitioning the two vectors x and y conformally with A yields

x = x 1 x 2 , y = y 1 y 2 , x 1 , y 1 ∈ K n 1 , x 2 , y 2 ∈ K n 2 .
(2.12)

Lemma 2.3. Let the matrices A, G, H, Y 11 , Z 11 , G S , H S be as in Algorithm GenInvLT. Then

• ∇[D(x i ), D(y j )](A ij ) = G i H T j for 1 ≤ i, j ≤ 2, • ∇[D(y 1 ), D(x 1 )](A -1 11 ) = Y 11 Z T 11 , • ∇[D(y 1 ), D(y 2 )](A -1 11 A 12 ) = -Y 11 H T S , • ∇[D(x 2 ), D(x 1 )](A 21 A -1 11 ) = G S Z T
11 . Proof. Since D(x) and D(y) are diagonal matrices, their o-diagonal blocks are zero, and the rst identity follows from Property 1.7. To obtain the second identity, it suces to pre-and postmultiply by A -1 11 both sides of the rst identity for (i, j) = (1, 1), and then to use the specication of Y 11 and Z 11 . Using the multiplication rule from Property 1.6, we deduce further from the rst identity for (i, j) = (1, 2) and from the second one that

∇[D(y 1 ), D(y 2 )](A -1 11 A 12 ) = Y 11 Z T 11 A 12 + A -1 11 G 1 H T 2 = Y 11 (Z T 11 A 12 -H T 2 ), which by denition of H S equals -Y 11 H T S . Similarly, ∇[D(x 2 ), D(x 1 )](A 21 A -1 11 ) = G 2 H T 1 A -1 11 + A 21 Y 11 Z T 11 = (G 2 + A 21 Y 11 )Z T 11 ,
which by denition of G S equals G S Z T 11 .

Theorem 2.4. Let n be a power of two and M, N ∈ K n×n be as in (1.6a). Then Algorithm GenInvLT requires at most

3 log(n) MM C (α, n) + O(α n log(n))
eld operations. If the set {x 1 , . . . , x n , y 1 , . . . , y n } has cardinality 2n then this bound drops to

2 log(n) MM C (α, n) + O(α n log(n)).
Proof. When n = 1, A = ( α i=1 g 1i h 1i )/(m 11 -n 11 ). Hence A -1 can be computed using 2α + 1 operations in K, and the cost for n = 1 is C(α, 1) := 4α + 2. Consider now the case n ≥ 2. Using Lemma 2.3 together with Property 1.5, we see that the matrices A -1 11 , A 12 , A 21 , and their transposes are all of the Cauchy-like structure dened in (1.6a). Furthermore, for each of them a generator of length at most α can deduced in time O(α n) from the quantities computed by Algorithm GenInvLT. 

Application to Vandermonde-like matrices

Let us now focus on the cost of Algorithm GenInvLT when M and N correspond to the Vandermonde-like structure dened in (1.7a). We assume x to be partitioned as in (2.12).

Lemma 2.4. Let the matrices A, G, H, Y 11 , Z 11 , G S , H S be as in Algorithm GenInvLT. Let also w 11 be the last column of A 11 and v T 12 be the rst row of A -1 11 A 12 . Then

• ∇[D(x 1 ), Z T n 2 ,0 ](A 12 ) = G 1 H T 2 + w 11 e T n 2 ,1 , • ∇[D(x 2 ), Z T n 1 ,0 ](A 21 ) = G 2 H T 1 , • ∇[Z T n 1 ,0 , D(x 1 )](A -1 11 ) = Y 11 Z T 11 , • ∇[D(x 2 ), D(x 1 )](A 21 A -1 11 ) = G S Z T 11 , • ∇[Z T n 1 ,1 , Z T n 2 ,0 ](A -1 11 A 12 ) = -Y 11 H T
S + e n 1 ,n 1 (e n 2 ,1 + v 12 ) T . Proof. In this case, the upper-right block of N satises N 12 = e n 1 ,n 1 e T n 2 ,1 . Hence we 

deduce from ∇[M, N](A) = GH T that ∇[D(x 1 ), Z T n 2 ,0 ](A 12 ) = G 1 H T 2 + A 11 e n 1 ,
∇[Z T n 1 ,0 , Z T n 2 ,0 ](A -1 11 A 12 ) = -Y 11 H T S + e n 1 ,n 1 e T n 2 ,1 .
Then, using (2.5) with (ϕ, n) = (1, n 1 ) together with the denition of v 12 yields the announced expression.

Theorem 2.5. Let n be a power of two and M, N ∈ K n×n be as in (1.7a). Then Algorithm GenInvLT requires at most

3 log(n) MM V (α, n) + O(α M(n) log 2 (n))
eld operations. If, in addition, the set {x 1 , . . . , x n } has cardinality n then this bound drops to

Proof. When n = 1, A -1 = x 1 /( α i=1 g 1i h 1i ), so that the cost is C(α, 1) := 4α + 1. Assume now that n ≥ 2. Lemma 2.4 implies that A 12 , A 21 , and A -T 11 share the same Vandermonde-like structure (1.7a) as A and A 11 . However, A 12 has displacement rank bounded by α + 1 and computing its generator can be done at cost O(α M(n) log(n)) by applying (1.7b) to A 11 . Hence, for n ≥ 2,

C(α, n) ≤ 2 C(α, n/2) + 4 MM V (α, n/2) + 2MM V (α + 1, n/2, α) + k α M(n) log(n),
for some constant k. From (2.10a), and the superlinearity of M(n) and MM V (•, n), we then deduce the rst cost bound.

If all the x i are distinct then, for A 21 A -1 11 , we proceed as for the Cauchy-like case. For A -1 11 A 12 , note that J n 1 A -1 11 A 12 is Hankel-like in the sense of (1.8a). Hence, one may rst generate the latter matrix in time O(α M(n) log(n)) by obtaining the vector v 12 after two applications of (1.7b), then multiply by Y S using (1.8b), and re-apply a reexion. Thus,

C(α, n) ≤ 2 C(α, n/2) + MM V (α, n/2) + MM V (α + 1, n/2, α) + MM C (α, n/2) + MM H (α + 1, n/2, α) + k α M(n) log(n),
for some constant k, and the conclusion follows as before.

Note that unlike for the Cauchy-like case, if α is small enough then in the cost bounds of Theorem 2.5 both summands have the same order of magnitude.

Extension to Hankel-like matrices

Let us now consider the Hankel-like structure dened by M = Z n,0 and N = Z T n,0 . Al- though M and N T are lower triangular, Algorithm GenInvLT cannot be used directly in this case as the operator ∇[Z n,0 , Z T n,0 ] is not invertible. Covering such a structure, however, is interesting in particular as it yields an immediate extension to some Toeplitz-like matrices (see [START_REF] Victor | Structured Matrices and Polynomials[END_REF]Remark 5.4.4] and our Section 2.2.2).

To cope with the singularity of the displacement operator, some additional data, called irregularity set in [Pan01, p. 136], are needed, which typically consist in a few entries of

A. An irregularity set for ∇[Z n,0 , Z T n,0 ] is given by the last row of A. Indeed, for u T = e T n,n A we see that ∇[Z n,0 , Z T n,0 ](A) = GH T and (2.5) imply

∇[Z n,1 , Z T n,0 ](A) = [G | e n,1 ] [H | u] T ,
(2.13) so that the matrix A is Hankel-like in the sense of (1.8a), with displacement rank α + 1.

Consequently, the reconstruction formula (1.8b) can be used.

We need to exhibit an irregularity set for ∇[Z T n,0 , Z n,0 ] too, because we shall multiply with inverses of Hankel-like matrices. A suitable choice here is v T = e T n,1 A -1 , the rst row of the inverse of A: indeed, if ∇[Z T n,0 , Z n,0 ](A -1 ) = YZ T then, recalling (2.3c), we may check that J n A -1 J n satises an identity similar to (2.13); it is thus fully determined by, up to reexions, Y, Z, and its last row v T J n .

The resulting adaptation of Algorithm GenInvLT to the Hankel-like operator ∇[Z n,0 , Z T n,0 ] is as follows:

Algorithm 2.4: GenInvHL

Input : G, H ∈ K n×α such that ∇[Z n,0 , Z T n,0 ](A) = GH T , and u = A T e n,n (the last row of A). Assumption: A is strongly regular. Output : Y = -A -1 G, Z = A -T H, and v = A -T e n,1 (the rst row of A -1 ). if n = 1 then 1 Y ← -u -1 G; Z ← u -1 H; v ← u -1 2 else 3 n 1 ← n 2 ; n 2 ← n 2 4 [ u 11 u 12 ] ← A T e n,n 1 ; [ u 21 u 22 ] ← u 5 (Y 11 , Z 11 , v 11 ) ← GenInvHL(G 1 , H 1 , u 11 ) 6 G S ← G 2 + A 21 Y 11 ; H S ← H 2 -A T 12 Z 11 7 u S ← u 22 -A T 12 A -T 11 u 21 8 (Y S , Z S , v S ) ← GenInvHL(G S , H S , u S ) 9 Y ← Y 11 -(A -1 11 A 12 )Y S Y S ; Z ← Z 11 -(A -T 11 A T 21 )Z S Z S 10 w ← -S -T A T 12 v 11 ; v ← v 11 -A -T
11 A T 21 w w 11 return Y, Z, and v 12 Theorem 2.6. Algorithm GenInvHL is correct. Proof. When n = 1, both A and u are reduced to the scalar a 1,1 and correctness is then straightforward. Assume now that n > 1 and, in order to proceed by induction, assume correctness for n < n. The vector u is split into u 21 ∈ K n 1 and u 22 ∈ K n 2 . Similarly, the vector of coecients of row n 1 of A is split into u 11 ∈ K n 1 and u 12 ∈ K n 2 . Hence u 11 equals A T 11 e n 1 ,n 1 (that is, the vector of coecients of the last row of A 11 ), u 22 = A T 22 e n 2 ,n 2 , and u 21 = A T 21 e n 2 ,n 2 . Recalling that S = A 22 -A 21 A -1 11 A 12 , we deduce that the vector u S computed by Algorithm GenInvHL satises u S = S T e n 2 ,n 2 and thus is the vector of coecients of the last row of S. Since the computation of Y and Z is unchanged in comparison to Algorithm GenInvLT, we still have Y = -A -1 G and Z = A -T H. All that remains is to prove that v is actually the vector of coecients of the rst row of A -1 . By induction, v T 11 and v T S correspond to the rst rows of A -1 11 and S -1 , respectively. Using the factorization of A -1 seen in (1.2) and letting w T = -v T 11 A 12 S -1 , we get:

e T n,1 A -1 = e T n 1 ,1 -e T n 1 ,1 A -1 11 A 12 A -1 11 S -1 E = v T 11 w T E = v T 11 -w T A 21 A -1 11 w T ,
which is exactly the way the vector v is computed.

Lemma 2.5. Let A, G, H, Y 11 , Z 11 , G S , H S , u 11 be as in Algorithm GenInvHL. Recall that u 11 is the last row of the matrix A 11 and let w 11 be its last column. Then

• ∇[Z ,n1 0, Z T n 2 ,0 ](A 12 ) = G 1 H T 2 + w 11 e T n 2 ,1 , • ∇[Z n 2 ,0 , Z T n 1 ,0 ](A 21 ) = G 2 H T 1 -e n 2 ,1 u T 11 , • ∇[Z T n 1 ,0 , Z n 1 ,0 ](A -1 11 ) = Y 11 Z T 11 , • ∇[Z T n 1 ,0 , Z T n 2 ,0 ](A -1 11 A 12 ) = -Y 11 H T S + e n 1 ,n 1 e T n 2 ,1 , • ∇[Z n 2 ,0 , Z n 1 ,0 ](A 21 A -1 11 ) = G S Z T 11 -e n 2
,1 e T n 1 ,n 1 . Proof. Proceed as for Lemma 2.3 and Lemma 2.4.

Theorem 2.7. Let n be a power of two and M, N ∈ K n×n be as in (1.8a). Then Algorithm GenInvHL requires at most

2 log(n) MM H (α, n) + O(α M(n) log(n)).
eld operations.

Proof. When n = 1, u is a scalar and the algorithm has cost C(α, 1) := 2α + 2. Assume now n ≥ 2. Given G, H, and u, one has (2.13) and thus (1.8b) yields [u T 11 , u T 12 ] in time O(α M(n)). From Lemma 2.5, all the blocks involved have the same structure as A, up to transposition and row/column reexion, and with sometimes a displacement rank α + 1 instead of α. Generating theses blocks requires the knowledge of the vectors u 11 (already computed) and w 11 (computable as u 11 ), which has cost O(α M(n)). Now, one may check that the irregularity sets of A 12 , A 21 , J n

1 A -1 11 J n 1 , J n 1 A -1 11 A 12 , A 21 A -1 11 J n 1 , and J n 2 S -1 J n 2 are, respectively, u 12 , u 21 , v 11 , v T 11 A 12 , u 21 A -1 11 J n 1
, and v S . The vector u 12 has already been computed, u 21 is part of the input, v 11 and v S are computed recursively, and the two remaining vectors can be recovered in time O(α M(n)) from u 21 , v 11 , and the generators of A -1 11 and A 12 . Consequently, all the products that appear in Algorithm GenInvHL can be produced by applications of (1.8b). Finally, Algorithm GenInvHL still uses O(α n) additions, so that the total cost bound is given by

C(α, n) ≤ 2 C(α, n/2) + 4 MM H (α + 1, n/2, α) + k α M(n),
for some constant k. The conclusion follows from (2.10b) and the superlinearity assumptions.

Experimental results and concluding remarks 2.4.1 Experimental results

For our experiments, we have implemented several algorithms and structures within the C++ library SLA 1 (Structured Linear Algebra). This library already provided, among other features, some general support for Stein's displacement operator, a routine for generator compression, one implementation of MBA for the Toeplitz-like structure (operator ∆[Z m,ϕ , Z T n,ψ ]) and a framework for testing and timing purpose. We have added to it:

• some support for the Cauchy-like structure (operator ∇[D(x), D(y)]);

• some support for the Hankel-like structure (operator ∇[Z m,0 , Z T n,0 ]);

• an implementation of Pan and Zheng's algorithm [START_REF] Victor | Superfast algorithms for Cauchy-like matrix computations and extensions[END_REF];

• an implementation of GenInvLT and GenInvHL;

• and nally, two implementations of MBA, the rst one being based on the description of MBA in [Kal94], and the second one being a slight variation with additional compression stages.

We estimate the size of the code produced to be around 2000 lines. For all our experiments, we take for K the nite eld F p with p = 999999937 elements. For basic operations in K, we use the library NTL2 developed by Shoup, which also provides fast, FFT-based polynomial arithmetic over K[x]. Since operations in K are achieved in constant time, we are thus able to measure and compare the algebraic costs for the dierent algorithms. All the computations are carried out on a desktop machine with an Intel R Core TM 2 Duo processor at 2.66 GHz.

Comparison of the dierent approaches for the Cauchy-like structure

As a rst experiment, we measure the algebraic costs of several algorithms for the Cauchylike structure. Generators (G, H) in input are picked randomly, while operator matrices D(x), D(y) are chosen in order to satisfy all the assumptions made on the algorithms. From Property 1.6, we deduce that multiplying an n × n Cauchy-like matrix of displacement rank α with another n × n Cauchy-like matrix of displacement rank β costs essentially MM C (α, n, β) + MM C (β, n, α). Such multiplications are used in MBA in order to compute generators for the Schur complement S and the inverse A

-1 = B 11 -B 12 -B 21 S -1 , where B 11 = A -1 11 + A -1 11 A 12 S -1 A 21 A -1 11 , B 12 = A -1 11 A 12 S -1 , and B 21 = S -1 A 21 A -1
11 . The parenthesization we have chosen for our implementation, along with the dominant cost for each operation and the length of intermediate generators, are presented in Table 2.1. Counting the costs of all these products using (2.11) and the superlinearity of MM C (•, n) leads to a bound of 14 MM C (α, n) in the recurrence equation for the cost of MBA, which gives a total cost dominated by 14 log(n) MM C (α, n). In Figure 2.2(a), we observe a speed-up around 4.6 ≈ 14/3 between MBA and our rst variant of GenInvLT, and around 6.7 ≈ 14/2 between MBA and GenInvLT using Cardinal's trick, which is in agreement with our analysis above. 

S X 1 = A -1 11 A 12 2α 2MM C (α, n 2 ) S = A 22 -A 21 X 1 4α MM C (α, n 2 , 2α) + MM C (2α, n 2 , α) A -1 X 2 = A 21 A -1 11 2α 2MM C (α, n 2 ) B 12 = X 1 S -1 3α MM C (2α, n 2 , α) + MM C (α, n 2 , 2α) B 21 = S -1 X 2 3α MM C (α, n 2 , 2α) + MM C (2α, n 2 , α) B 11 = A -1 11 + B 12 X 2 6α MM C (3α, n 2 , 2α) + MM C (2α, n 2 , 3α)
The Pan-Zheng variant of MBA replaces structured matrix multiplications for the generation of S with the direct application of the formulas

G S = G 2 -A 21 A -1 11 G 1 and H S = H 2 -A T 12 A -T
11 H 1 from Property 2.1. Thus, they avoid compression for the com- putation of a generator for S. The pair (G S ,

H S ) is obtained in 4MM C (α, n
2 ). Later, the generator for A -1 is deduced by generating successively X 1 , X 2 , B 12 , B 21 , and B 11 , as in Table 2.1. Again, using (2.11) and the superlinearity of MM C (•, n) yields a bound of 14 MM C (α, n) in the recurrence equation for the cost of Pan-Zheng, so that the total cost is also dominated by 14 log(n) MM C (α, n) for this method. Therefore, suppressing the compression stage for the Schur complement is not enough to decrease the constant in the dominating part of the cost, and this is reected in practice by Figure 2.2(a), where the costs of the MBA and Pan-Zheng algorithms are overlaid.

In fact, the main factor to achieve speed-ups lies in keeping intermediate generator lengths as small as possible, so as to reduce the costs of the products of the form Cauchylike matrix × vectors. This motivates for a second implementation of MBA, where a compression stage is systematically added after each generator computation involving an addition or a multiplication of Cauchy-like matrices. Indeed, we have seen in Lemma 2.3 that at least X 1 and X 2 in Table 2.1 possess length-α generators. It appears in practice that it also holds for B 12 and B 21 . Hence, with additional compression stages, we obtain a variant of MBA where each dominant cost from Table 2.1 drops to 2MM C (α, n

2 ). This yields an overall cost for this new method in 6 log(n) MM C (α, n) + O(α n log(n)), which is 14/6 times faster than the original MBA, but still 3 times slower than the fastest version of GenInvLT.

To conclude with this experiment, the main part of the cost in MBA and its variations comes from the products Cauchy-like matrix × vectors. Completely avoiding compression implies that generators for these Cauchy-like matrices is always kept as small as possible, which in turn allows us to obtain speed-ups up to ≈ 6.7 in practice. Finally, it should be noted that all the approaches based on compression are using as intermediate quantities the matrices X 1 and X 2 . As remarked in Section 2.3.2, computation with these two matrices can only be carried out under the assumption that {x 1 , . . . , x n , y 1 , . . . , y n } has cardinality 2n. Therefore, the rst variant of GenInvLT, which is the second fastest method, is also the only one which works under the weaker assumption than x i = y j for all 1 ≤ i, j ≤ n. This was also made possible thanks to the usage of direct formulas for the generation of S and A -1 in order to suppress the compression stages.

Estimation of the cost for GenInvHL

As a second experiment, we measure the computation time of GenInvHL, along with:

• the time spent to compute the irregularity sets of all intermediate quantities, that is, additional rows that where needed in order to use the reconstruction formula (1.8b) for the Hankel-like structure;

• the additional time due to subblocks having displacement rank α + 1 instead of α like in the Cauchy-like case.

The matrices G and H in input are again picked randomly, and we set n = 400 and take increasing values of α. First, we can see that the overall cost of GenInvLT is quadratic with respect to α, which is in agreement with the cost announced in Theorem 2.7 and the fact that we used a routine for the products Hankel-like matrix × vectors such that MM H (α, n) ∈ O(α 2 M(n)). Second, the cost of the additional computations for the Hankel-like structure compared to Cauchy-like appears to be negligible. Indeed, the two sources of this extra work have a cost which is linear in α, while we just have seen that the overall cost grows like α 2 . In fact, the linear shape of the curve for the cost related to irregularity set issues conrms what we have said in the proof of Theorem 2.7, while the linear shape of the cost due to extra displacement rank for some subblocks was predicted by Equation (2.10b) from Lemma 2.2.

Concluding remarks on our new approach

Let us conclude this chapter with three remarks on our new approach for structured matrix inversion:

1. We have presented in this chapter a general compression-free approach that we have specialized to three structures (Cauchy-, Vandermonde-, and Hankel-like).

Yet, some reductions exist among these three structures, see for instance [Pan00,6]. Therefore, it would be interesting to compare our approach for the three aforementioned structures, and see whether a reduction to the best specialization can improve performance for the two other structures.

2. At the end of Section 2.2.1, we have introduced a general version (see Figure 2.1) of our new approach. We have then remarked that having M and N T lower triangular is preferable, and so brought down to this situation in Section 2.2.2. However, the reductions we propose therein do not work for the (Toeplitz+Hankel)-like structure,

which corresponds to the displacement operator ∇[M, N] with M = N = Z n,0 + Z T n,0 .
In this case, we can still apply the general approach in Figure 2.1. Indeed, Since the displacement ranks for A 11 and S are at most α + 2 (see (1.11) and (2.1), respectively), we obtain the recursive equation cost

C(α, n) ≤ 2 C(α + 2, n/2) + O(MM T+H (α, n/2)).
Assuming that C(•, n) is increasing, and that the product of an n×n (Toeplitz+Hankel)like matrix of displacement rank α by an n×α matrix can be done in

MM T+H (α, n) ∈ O˜(α 2 n), this yields a total cost in O(MM T+H (α + 2 log 2 (n), n) log 2 (n)) ∈ O˜(α 2 n).
3. When analyzing the cost of our new approach for the Cauchy-, Vandermonde-, and Hankel-like structures, it appears that what dominates is the cost of products structured matrix × vectors, where the number of vectors is of the order of α, the displacement rank of the structured matrix. Moreover, this was conrmed by our experiments. Until now, we have assumed that the cost for this operation satises [START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF][START_REF] Bostan | Algorithmes rapides pour les polynômes, séries formelles et matrices[END_REF] for the Toeplitz-like structure. The next chapter will extend this result to the other structures.

MM * (α, n) ∈ O˜(α 2 n) for each structure. Yet, a better asymptotic of O˜(α ω-1 n) was achieved in [BJS07,

Chapter 3 Fast multiplication of a structured matrix by a matrix

In this chapter, we study the problem of multiplying an m × n structured matrix A by an n × β matrix B. In the case of square Toeplitz-like matrices (with Stein's operator), recent works in [START_REF] Bostan | Solving Toeplitzand Vandermonde-like linear systems with large displacement rank[END_REF][START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF] and [Bos10, page 210] have shown that, when β is equal to the displacement rank α of the structured matrix, the product AB can be computed using O˜(α ω-1 n) eld operations. We aim here at generalizing this result to all the structures mentioned in Table 1.2, and for rectangular matrices. After some preliminaries in Section 3.1, we introduce in Section 3.2 a general polynomial expression for the product AB, which generalizes the one proposed in [START_REF] Bostan | Solving Toeplitzand Vandermonde-like linear systems with large displacement rank[END_REF][START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF] for the Toeplitz-like structure.

The evaluation of the polynomial expression obtained requires to compute the polynomial

row vector R = U T (VW T mod P ), for some U ∈ K[x] α×1 m , V ∈ K[x] α×1 n , and W ∈ K[x] β×1 n ,
and where P is either x n -ψ or n i=1 (x -y i ). When α = β and P = x n , an ecient way to compute R is provided by [START_REF] Bostan | Algorithmes rapides pour les polynômes, séries formelles et matrices[END_REF]page 210]. We extend this work in Section 3.3 to the case of P = x n -ψ and P = n i=1 (x -y i ). Next, we propose in Section 3.4 a new algorithm for the computation of AB. We show that its cost when α = β is in O˜(α ω-1 (n + m)), and propose a cost for the general case α = β. Finally, we study the impact of this fast structured matrix × matrix routine on the inversion algorithms presented in the previous chapter.

While we focus here on Sylvester's displacement operator, we refer to [BJMS11] for an adaptation to Stein's displacement operator.

Preliminaries

In this rst section, we introduce some material that we will use in the sequel of this chapter.

Multiplication of polynomial matrices

Let us rst recall the cost of the multiplication of polynomial matrices. Property 3.1. Let MM : N >0 × N >0 → R >0 be such that two matrices in K[x] n×n d can be multiplied using at most MM(n, d) operations in K. By [CK91], one has

MM(n, d) ∈ O n ω M(d) . (3.1a)
If K is a eld of characteristic zero, or a nite eld of cardinality at least 2d then it was shown in [START_REF] Bostan | Polynomial evaluation and interpolation on special sets of points[END_REF] that

MM(n, d) ∈ O n ω d + n 2 M(d) . (3.1b) Cost function f K
The next function is introduced in order to make the intermediate complexity results

concise. Let f K : N >0 × N >0 → R >0 be dened as follows: if K is a eld of characteristic zero, or a nite eld of cardinality at least 2d then f K (n, d) = n ω-1 d + n log n M(d), (3.2a) otherwise, f K (n, d) = n ω-1 M(d). (3.2b)
The operators Pol and rev Now, let us introduce two operators that we will heavily use when presenting polynomial expressions for the matrix product AB, where A is a structured matrix.

For m ∈ N >0 and a = [

a 1 | • • • |a m ] T ∈ K m , we write Pol m (a) for the polynomial 0≤i<m a i+1 x i ∈ K[x] m . Conversely, given a ∈ K[x]
m , the vector of its m coecients in the monomial basis will be written Pol -1 m (a). We shall also use reversals of polynomials [vzGG03, page 254]: for n ∈ N >0 and a ∈ K[x] n , we write rev n (a) for the polynomial in K[x] n given by rev n (a) = x n-1 a(1/x). Three properties will be useful in the sequel:

For a ∈ K n , Pol n (J n a) = rev n (Pol n (a)). (3.3a) Second, one may check that for a ∈ K[x] m and b ∈ K[x] n , a rev n (b) = rev m+n-1 (rev m (a) b). (3.3b) Third, one may check that for a, b ∈ K[x] n , the quotient in the division of ab by x n satises ab div x n = rev n (x rev n (a) rev n (b) mod x n ). (3.3c)
The operators Pol m , Pol -1 m , and rev n are linear maps. Also, most of the time we will apply them in a componentwise fashion to sets of vectors or polynomials: for example,

for A = [a 1 | • • • |a n ] ∈ K m×n with jth column a j we write Pol m (A) to denote the polynomial row vector [Pol m (a 1 )| • • • |Pol m (a n )] in K[x] 1×n m .
Polynomial P x and matrix W(x)

For x ∈ K n , let P x denote the monic polynomial of degree n

P x (x) = n i=1 (x -x i ).
Let P x denote the rst derivative of P x . If x is repetition free then P x (x i ) is nonzero for all i, and we dene W(x) = D(P x (x)) -1 V(x).

Displacement matrices considered in this chapter

For this chapter, we will assume that: andx, y ∈ K n two repetition-free vectors.

M ∈ {D(x), Z m,ϕ , Z T m,ϕ }, N ∈ {D(y), Z n,ψ , Z T n,ψ } with ϕ, ψ ∈ K,
(3.4) Assuming that the vector x encountered in diagonal displacement matrices is repetitionfree will allow us to use the matrices V(x) -1 and W(x).

Polynomial expressions for structured matrix reconstruction

Let A be an m × n matrix such that ∇[M, N](A) = GH T with (M, N) as in (1.5). Our goal in this section is, given an n × β matrix B, to express the product AB in terms of operations on polynomial matrices. Recall from Lemma 1.2 that one formula to recover

A from G and H involves a sum of matrix products involving Krylov matrices and their transposes. Therefore, we start with several formulas involving the operator Pol * , and the displacement matrices M, N, and their associated Krylov matrices. Then, we use them in order to prove a general expression for AB.

Polynomial expression for products with displacement matrices and their associated Krylov matrices

When applying operator Pol * to the reconstruction formula of a structured matrix, the main issue becomes to transform expressions with the following shape: Pol m (X u), where X is either M, N, a Krylov matrix, or a slight variation of one of the previous matrices. We list here all the formulas that we will need in order to prove Theorem 3.1 in Section 3.2.2.

Case of Z m,ϕ , K n (Z m,ϕ , u), and K n (Z n,ψ , u) T Lemma 3.1. For any positive integer n, one has

Pol m Z n m,ϕ u = x n Pol m (u) mod (x m -ϕ).
This implies that Chapter 3. Fast multiplication of a structured matrix by a matrix

• for any ψ ∈ K, Pol m (Z n m,ϕ -ψI m )u = (x n -ψ)Pol m (u) mod (x m -ϕ); (3.5) • for v ∈ K n , Pol m K n (Z m,ϕ , u)v = Pol m (u)Pol n (v) mod (x m -ϕ). (3.6)
Proof. The rst equality, which is well-known [Pan01, 2.6], tells us that applying n times the shift matrix on vector u means multiplying the polynomial u(x) by x n modulo (x m -ϕ).

It can be easily proved by induction over n

∈ N >0 by noticing that Pol m (Z m,ϕ u) = xPol m (u) mod (x m -ϕ).
The second and third equations then come from the rst point and the linearity of Pol m . For the third one, we may consider the relation

K n (Z m,ϕ , u)v = n-1 i=0 v i Z i m,ϕ u.
In the following, we will also encounter products of type K n (Z n,ψ , u) T v. It is easy to check that, for any u ∈ K n , one has

K n (Z n,ψ , u) T = J n K n (Z n,ψ , u)J n . (3.7)
Hence, a polynomial interpretation can be deduced from the previous lemma and polynomial reversals.

Case of D(u) and K m (D(y), u) Lemma 3.2. Let x, u, v ∈ K m and assume x is repetition free. Then

Pol m V(x) -1 D(u)v = Pol m V(x) -1 u Pol m V(x) -1 v mod P x . (3.8)
Moreover, the three following identities hold:

• For any n ∈ N >0 and ψ ∈ K, Pol m V(x) -1 D(x n -ψe m )v = (x n -ψ)Pol m V(x) -1 v mod P x ; (3.9) • For any n ∈ N >0 and w ∈ K n , Pol m V(x) -1 V(x, n)w = Pol n (w) mod P x ; (3.10) • For any n ∈ N >0 and w ∈ K n , Pol m V(x) -1 K n (D(x), u)w = Pol m V(x) -1 u Pol n (w) mod P x . (3.11)
Proof. The rst identity tells us that scaling and then interpolating a vector v is the same as interpolating both v and the scaling vector u, and taking the product of the resulting polynomials modulo P x = m i=1 (x -x i ). Indeed, in both cases, we end up with a polynomial of degree less than m whose value in x i is u i v i .

The second identity comes from the fact that Pol m (V(x) -1 u) = (x n -ψ) mod P x when the vector u satises u i = x n i -ψ. The third identity says that evaluating a polynomial w ∈ K[x] n at the x i 's for 1 ≤ i ≤ m and then interpolating at these same x i 's is the same as taking w modulo P x . To prove it, remark that the polynomials on both sides of the equality are of degree less than m, and since they coincide at x = x i for 1 ≤ i ≤ m, they are thus equal.

Finally, the fourth identity is obtained by combining the fact that, by denition of Krylov matrices, K(D(x), u) = D(u)V(x, n) with (3.8) and (3.10).

Case of K m (D(y), u) T Finally, let us see a more technical formula that will be used when proving Theorem 3.1 for the Vandermonde-like structure. Lemma 3.3. Let y ∈ K n be repetition free, and let m ∈ N >0 and ϕ ∈ K be such that

ϕ = y m i for i = 1, . . . , n. Then for u, v ∈ K n , one has Pol m J m K m (D(y), u) T D(ϕe n -y m ) -1 v = P -1 y Pol n W(y) -1 D(u)v mod (x m -ϕ).
Proof. First, by denition of Krylov matrices, one has

K m (D(y), u) = D(u)V(y, m), so that J m K m (D(y), u) T D(ϕe n -y m ) -1 v = J m V(y, m) T D(u)D(ϕe n -y m ) -1 v.
Furthermore, for any w ∈ K n , the following equation holds [BLS03, 6.2]:

Pol m V(y, m) T w = n j=1 w j Z j , where Z j = (1 -y j x) -1 mod x m .
Then, for w = D(u)D(ϕe n -y m ) -1 v and because of (3.3a), we obtain

Pol m J m V(y, m) T w = rev m n j=1 w j Z j = n j=1 u j v j ϕ -y m j rev m (Z j ).
(3.12)

From the denition of Z j , we deduce that Z j = m-1 i=0 (y j x) i so that rev m (Z j ) = m-1 i=0 y i j x m-1-i . Thus, (x -y j )rev m (Z j ) equals x m -y m j , and since (x m -y m j ) mod (x m -ϕ) = ϕ -y m j = 0 and x -y j is invertible modulo x m -ϕ by assumption, we get

(ϕ -y m j ) -1 rev m (Z j ) = (x -y j ) -1 mod (x m -ϕ).
(3.13) By combining (3.12) and (3.13), and since

P y = n j=1 (x -y j ) is invertible modulo x m -ϕ, we obtain Pol m J m V(y, m) T w = P -1 y n j=1 u j v j P y,j mod (x m -ϕ),
where P y,j = P y x -y j ∈ K[x] n for j = 1, . . . , n. We can then conclude by applying the following formula from [Pan01, p. 90]:

n j=1 x j P y,j = Pol n W(y) -1 x with x = D(u)v.

Notation

For the sequel of this chapter, we will associate one polynomial P M and three matrices U M , V M , and W M to the displacement matrix M. Their denitions are presented in Table 3.1. Similarly, we associate P N , U N , V N , and W N to the displacement matrix N.

Table 3.1: Denition of P M , U M , V M , and W M for a given displacement matrix M.

M P M U M V M W M Z m,ϕ x m -ϕ I m J m I m Z T m,ϕ x m -ϕ J m I m J m D(x) P x V(x) V(x) W(x)
We can formulate a few remarks on these denitions:

• Since we assume x to be repetition-free when M = D(x), matrices U M , V M , and W M are always invertible;

• P M is the characteristic polynomial of M;

• U M was chosen so that a simple polynomial interpretation for the product U -1 M K n (M, u)v holds (see (3.6) and (3.11) for instance).

Notice that, since we assume x to be repetition-free when M = D(x), matrices U M , V M , and W M are always invertible.

Polynomial expression of AB for Sylvester's displacement

Theorem 3.1. Let A ∈ K m×n be such that ∇[M, N](A) = GH T with M and N as in (3.4), let B ∈ K n×β , and let U T = Pol m (U -1 M G), V T = Pol n (V -1 N H), and W T = Pol n (W -1 N B).
If gcd(P M , P N ) = 1 then the matrix product AB is given by

AB = U M Pol -1 m P -1 N R mod P M , with R = U T VW T mod P N .
In order to prove Theorem 3.1, we have to cover nine cases. In fact, we will split them into three classes:

1. the Toeplitz-like class, 3. the Cauchy-like class, covering the last case where M and N are both diagonal matrices.

Notice that, in all cases, the assumption gcd(P M , P N ) = 1 implies that (det M, det N) = (0, 0). Indeed, suppose both det M and det N were zeros, then x would divide both the characteristic polynomials P M and P N of M and N, which contradicts gcd(P M , P N ) = 1.

Therefore, Lemma 1.2 can be applied for the rst two classes.

Proof of Theorem 3.1 for the Toeplitz-like class 

In this case (M, N) ∈ {Z m,ϕ , Z T m,ϕ }×{Z n,ψ , Z T n,ψ },
(Z n,ψ , u) T = J n K n (Z n,ψ , u)J n for any u ∈ K n , we obtain Z n m,ϕ A -ψA = j≤α K n (Z m,ϕ , g j )K n (Z n,ψ , h j )J n .
By multiplying both sides of this equality by B, applying the linear operator Pol m to every column, and using (3.5) and (3.6), we deduce that

P N Pol m (AB) ≡ j≤α Pol m (g j )Pol n K n (Z n,ψ , h j )J n B mod P M .
Since P N is invertible modulo P M and since Pol m (AB) has degree less than m, we deduce that Pol m (AB) = P -1

N j≤α Pol m (g j )Pol n K n (Z n,ψ , h j )J n B mod P M .
From (3.6) it follows that the right-hand side of the previous identity equals

P -1 N j≤α Pol m (g j ) Pol n (h j )Pol n (J n B) mod P N mod P M ,
which can be rewritten in matrix form as

P -1 N Pol m (G) Pol n (H) T Pol n (J n B) mod P N mod P M .
The desired expression for AB then follows from the fact that

(U M , V N , W N ) = (I m , I n , J n ) when (M, N) = (Z m,ϕ , Z T n,ψ
). The other three subcases (M, N T ), (M T , N), (M T , N T ) can be reduced to the previous one by using (2.3a), (2.3b) and (2.3c), respectively.

Proof of Theorem 3.1 for the Vandermonde-like case

In this case the four possibilities for (M, N) are (D(x), Z T n,ψ ), (D(x), Z n,ψ ), (Z m,ϕ , D(y)), and (Z T m,ϕ , D(y)). It suces to prove the theorem for the rst and third subcases, and then to deduce the second and fourth subcases from (2.3a) and (2.3b).

Let (M, N) = (D(x), Z T n,ψ ). Then P M = P x and P N = x n -ψ. We deduce from Lemma 1.2 with = n, Z n n,ψ = ψI n , and

K n (Z n,ψ , u) T = J n K n (Z n,ψ , u)J n that D(x) n A -ψA = j≤α K n (D(x), g j )K n (Z n,ψ , h j )J n .
Recalling that x is repetition free, we can pre-and post-multiply both sides of the identity above by V(x) -1 and B:

V(x) -1 D(x n -ψe m )AB = j≤α V(x) -1 K n (D(x), g j )K n (Z n,ψ , h j )J n B.
By applying Pol m , using (3.9) and (3.11), and since P N is invertible modulo P M and the entries of Pol m (V(x) -1 AB) have a degree less than m, we obtain

Pol m (V(x) -1 AB) = P -1 N j≤α Pol m V(x) -1 g j Pol n K n (Z n,ψ , h j )J n B mod P M .
As for the Toeplitz-like case, we deduce from (3.6) that the right-hand side of the identity above can be written in matrix form as

P -1 N Pol m V(x) -1 G Pol n (H) T Pol n (J n B) mod P N mod P M .
The assertion follows from the fact that

(U M , V N , W N ) = (V(x), I n , J n ) when (M, N) = (D(x), Z T n,ψ ).
Let us now consider the case where (M, N) = (Z m,ϕ , D(y)). Using Lemma 1.2 with = m and Z m m,ϕ = ϕI m ,

AD(ϕe n -y m ) = j≤α K m (Z m,ϕ , g j )J m K m (D(y), h j ) T .
On the other hand, P M = x m -ϕ, P N = P y , and it follows that the diagonal matrix multiplying A in the above identity is invertible. 3 Consequently, the product AB is given by

AB = j≤α K m (Z m,ϕ , g j )J m K m (D(y), h j ) T D(ϕe n -y m ) -1 B.
Applying Pol m , and then (3.6) and Lemma 3.3, we obtain

Pol m (AB) = P -1 N j≤α Pol m (g j )Pol n W(y) -1 D(h j )B mod P M .
Since W(y) -1 D(h j ) = V(y) -1 D(h j )D(P y (y)), using (3.8) shows that the right-hand side of the above identity is

P -1 N Pol m (G) Pol n V(y) -1 H T Pol n W(y) -1 B mod P N mod P M . Observing that (U M , V N , W N ) = (I m , V(y), W(y)) when (M, N) = (Z m,ϕ , D(y)) concludes
the proof in this case.

Proof of Theorem 3.1 for the Cauchy-like case

In this case (M, N) = (D(x), D(y)), so that P M = P x and P N = P y . Furthermore, the assumption gcd(P M , P N ) = 1 implies that x i = y j for all (i, j) and a recovery formula for A is given by (1.6b): 

A = j≤α D(g j )C(x, y)D(h j ).
Pol m V(x) -1 AB = j≤α Pol m V(x) -1 g j Pol m V(x) -1 C(x, y)D(h j )B mod P M . One has C(x, y) = D(P y (x)) -1 V(x, n)W(y) -1 ,
v ∈ K n , Pol m V(x) -1 C(x, y)v = P -1 y Pol n W(y) -1 v mod P x .
Thus, proceeding as for the second Vandermonde-like case, we deduce that

Pol m (V(x) -1 AB) = P -1 N Pol m V(x) -1 G Pol n V(y) -1 H T Pol n W(y) -1 B mod P N mod P M .
The conclusion follows from the fact that (U M , V N , W N ) = (V(x), V(y), W(y)) when (M, N) = (D(x), D(y)).

Computing the row vector

R = U T (VW T mod P )
The previous section has shown that computing the product AB relies on the following problem:

Given three polynomial vectors U ∈ K[x] α×1 m , V ∈ K[x] α×1 n , and W ∈ K[x] β×1 n , to- gether with a polynomial P in K[x] of degree exactly n, compute the polynomial row vector R ∈ K[x] 1×β m+n-1 such that R = U T (VW T mod P ).
In this section, we shall study how to compute the polynomial row vector R in the case where β = α. Note rst that with no loss of generality n can be assumed to be an integer power of two: dening n = 2 log n and δ = n -n, one may check that a mod b = x -δ (x δ a) mod (x δ b) for any a and nonzero b in K[x]; applying this identity componentwise to the denition of R gives R = x -δ U T V(x δ W) T mod (x δ P ) , (3.14) where now x δ W has degree less than n and x δ P has degree n.

We have also seen in the previous section that P is either x n -ψ or 1≤i≤n (x -y i ) for some given y 1 , . . . , y n , ψ in K. Let us study these two cases separately.

Case where

P = x n -ψ Algorithm for ψ = 0 A method for computing R = U T (VW T mod x n ) when U, V, W are three column vectors in K[x] α×1 n is proposed in [Bos10, page 210].
The idea is to split the polynomials within U, V, and W into their low and high parts, while doubling the number of columns for these three matrices. Thus, starting from column vectors, we eventually obtain (nearly)

square matrices, where we can apply the fast polynomial matrix multiplication mentioned in Property 3.1. We present in Algorithm 3.1 a slight generalization of this approach, where we allow U to be in K[x] α×1 m for some integer m independent of n.

Algorithm 3.1: mpx (modulo of power of x)

Input: U ∈ K[x] α×1 m , V, W ∈ K[x] α×β d .
Assumption: β and d are powers of two, α

≤ βd = n, β ≤ α := 2 log α . Output: R ∈ K[x] α×1 m+d-1 such that R = U T VW T mod x d . if β = α then R ← U T VW T mod x n 1 else 2 V 0 ← V mod x d/2 ; V 1 ← V div x d/2 ; V ← [V 0 V 1 ] 3 W 0 ← W mod x d/2 ; W 1 ← W div x d/2 ; W ← [W 1 W 0 ] 4 R ← mpx(U, V , W ) 5 R ← U T V 0 W T 0 + x d/2 R 6 return R 7
Assume for now that Algorithm mpx is correct and uses O(f K (α, n + m)) operations in K, where f K is the cost function dened in (3.2). We will present in Section 3.3.2 a generalization of mpx for which we shall prove the correctness and show that it also runs using O(f K (α, n + m)) eld operations. Before that, let us see how mpx allows us to cover the case of x n -ψ for all n ∈ N >0 and ψ ∈ K.

Algorithm for ψ = 0

Let us now consider P = x n -ψ with ψ = 0. We can reduce to the case of x n thanks to the following lemma. Lemma 3.4. Let U = rev m (U), V = x rev n (V), and W = rev n (W). Then R can be written

R = R 1 + ψ rev m+n-1 (R 2 ), where R 1 = U T (VW T mod x n ) and R 2 = U T V W T mod x n .
Proof. Note rst that a mod (x n -ψ) = a mod x n + ψ(a div x n ) for any a ∈ K[x] of degree less than 2n. Applying this identity componentwise to the matrix VW T gives R = R 1 + ψ R 2 , where R 1 = U T (VW T mod x n ) as wanted, and where R 2 = U T (VW T div x n ).

The desired expression for R 2 then follows by (3.3c) and then (3.3b). Now, using the transformation described in (3.14) so as to deal with any value of n, and calling mpx twice for the computation of R 1 and R 2 as in Lemma 3.4, respectively, we

obtain Algorithm 3.2. Algorithm 3.2: ComputeRx Input: U ∈ K[x] α×1 m , V, W ∈ K[x] α×1 n , ψ ∈ K. Assumption: α ≤ n. Output: R ∈ K[x] 1×α m+n-1 such that R = U T (VW T mod (x n -ψ)). δ ← 2 log n -n 1 R 1 ← x -δ mpx(U, V, x δ W, n + δ) 2 U ← rev m (U); V ← x rev n (V); W ← rev n (W) 3 R 2 ← x -δ mpx( U, V, x δ W, n + δ) 4 R ← R 1 + ψ rev m+n-1 (R 2 ) 5 return R 6 Theorem 3.2. Let N = m+n. Algorithm ComputeRx works correctly and uses O(f K (α, N )) operations in K.
Proof. Correctness follows from Lemma 3.4. The two calls to the routine mpx cost O(f K (α, N )) eld operations, while the multiplications/additions involving the scalar ψ, the shifts by powers of x, and the four reversals imply an overhead in O(αN ). The conclusion follows from the denition of the cost function f K .

3.3.2

Case where P = 1≤i≤n (x -y i )

To deal with the case where P = 1≤i≤n (x-y i ), we propose to generalize Algorithm mpx.

Notice that x n actually corresponds to the special case where y i = 0 for all i. While mpx relies on splittings of polynomials into their low and high parts, we use here splittings based on Euclidean division, as described in the following lemma:

Lemma 3.5. For α, β, n ∈ N >0 , let V, W ∈ K[x] α×β n and let P ∈ K[x] of degree n. Let P 1 , P 2 ∈ K[x] be such that P = P 1 P 2 , and let V 0 = V mod P 1 , V 1 = V div P 1 , W 0 = W mod P 1 , W 1 = W div P 1 , and W 2 = W mod P 2 . If the degrees n 1 , n 2 of P 1 , P 2 satisfy n 1 ≤ n 2 then VW T mod P = V 0 W T 0 + P 1 [V 0 V 1 ][W 1 W 2 ] T mod P 2 and the matrices [V 0 V 1 ] and [W 1 W 2 ] are in K[x] α×2β n 2 . Proof. By denition, V = V 0 + P 1 V 1 , so that VW T = V 0 W T + P 1 V 1 W T .
On the other hand, depending on whether we use P 1 or P 2 , we can rewrite W in two dierent ways, leading to

VW T = V 0 (W 0 + P 1 W 1 ) T + P 1 V 1 (W 2 + P 2 X) T
with X denoting W div P 2 . Since P = P 1 P 2 , we deduce that

VW T mod P = (V 0 W T 0 mod P ) + P 1 ((V 0 W T 1 + V 1 W T 2 ) mod P 2 ).
The entries of V 0 and W 0 have degree less than n 1 , those of W 2 have degree less than n 2 , and those of V 1 and W 1 have degree less than n -n 1 = n 2 . From n 1 ≤ n 2 it then follows that the entries of [V 0 V 1 ] and [W 1 W 2 ] have degree less than n 2 . This implies also that the entries of V 0 W T 0 have degree less than the degree n of P , so that V 0 W T 0 mod P equals V 0 W T 0 .

Note that, when n is a even, applying Lemma 3.5 with P = x n and n 1 = n 2 = n/2 yields the recursive formula used for R at line 6 in Algorithm mpx. Now, if we apply Lemma 3.5 with P = P y = n i=1 (x -y i ) and n 1 = n 2 = n/2, we see that we need to know the coecients of polynomials P 1 = n/2 i=1 (x -y i ) and P 2 = n i=n/2+1 (x -y i ) in order to be able to carry out the computations. For now, we will assume that n is an integer power of two, and consider a subproduct tree T y for y ∈ K n . This subproduct tree, like the one Figure 3.1, will contain all the polynomials needed recursively, and can be computed using O(M(n) log n) operations in K [vzGG03, Algorithm 10.3]. Supposing that this tree T y has already been computed, we can retrieve P y (the label at the root of T y ), and P 1 and P 2 (the label at the left and right children of the root, respectively) in constant time. Then, we can use P 1 and P 2 to perform the Euclidean divisions within the denitions of V x 4 -10x 3 + 35x 2 -50x + 24

0 , V 1 , W 0 , W 1 , and W 2 in O(M(n)) [vzGG03,
x 2 -3x + 2
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Theorem 3.3. Let n = βd and N = m + n. Algorithm mpy works correctly and uses

O(f K (α, N )) operations in K, where f K is the cost function dened in (3.2).
Proof. Let k ∈ N be such that β = α /2 k and let us prove correctness by induction on k. and T is the subproduct tree associated to the vector [y d/2+1 , . . . , y d ] T of length d/2. Since 2β = α /2 k-1 and d/2 = n/α • 2 k-1 , the induction hypothesis gives R = U T (V W T mod P 2 ). Thus the matrix R returned by the algorithm when k ≥ 1 is U T (V 0 W T 0 + (V W T mod P 2 )P 1 ) which, since P 1 P 2 = P y and n 1 = n 2 = d/2, is by Lemma 3.5 equal to the desired result U T (VW T mod P y ).

Let C(k) denote the cost of the algorithm for a given value of k. If k = 0 then V and W are in K[x] α×α d . Since α is at most α, we may augment V and W with α -α zero columns, perform the multiplication, and then read VW T , all this using MM(α, d) eld operations. Then, given VW T in K[x] α×α 2d together with P y in K[x] of degree d, the cost of Algorithm 3.3: mpy (modulo polynomial P y )

Input: U ∈ K[x] α×1 m , V, W ∈ K[x] α×β d
, subproduct tree T y for some y ∈ K d . Assumption: β and d are powers of two, α ≤ βd = n, β ≤ α := 2 log α . Output: R ∈ Now, since k = 0, we have d = n/α < 2n/α ≤ 2N/α. On the other hand, c < m/α + 1 and α ≤ n, so that c < N/α. Using these bounds on c and d together with the properties of the cost functions M and MM allows us to conclude for the case k = 0.

K[x] 1×α m+d-1 such that R = U T (VW T mod P y ). if β = α then 1 P y ← the polynomial at the root of T y 2 R ← VW T mod P y 3 R ← U T R 4 else 5 P 1 ← the polynomial at the root of the left subtree of T y 6 T ← the right subtree of T y 7 P 2 ← the polynomial at the root of T 8 V 0 ← V mod P 1 ; V 1 ← V div P 1 9 W 0 ← W mod P 1 ; W 1 ← W div P 1 ; W 2 ← W mod P 2 10 V ← [V 0 V 1 ]; W ← [W 1 W 2 ] 11 R ← mpy(U, V , W , T ) 12 R ← U T V 0 W T 0 + P 1 R 13 return R 14 computing R is in O(α 2 M(d)). Finally, given U in K[x] α×1 m and R in K[x] α×α
Let us now bound C(k

) when k ≥ 1. Given V, W ∈ K[x] α×β d and P 1 , P 2 in K[x]
of degree d/2, we can compute the V i 's and the W i 's using c 1 αβM(d) eld operations for some constant c 1 independent of k. Then R is computed recursively using C(k -1) eld operations, and it remains to bound the cost of producing the result as

R = Q + Q with Q = (U T V 0 )W T 0 and Q = P 1 R . For now let us write D(k) for the cost of Q. Given R in K[x] 1×α m+d/2-1 and P 1 in K[x] of degree d/2, we get Q using αM(m + d) eld operations and, since both Q and Q are in K[x] 1×α
m+d-1 , we can add them together using α(m

+ d) eld operations. Since d = n/β ≤ n and N = m + n, we deduce that C(k) ≤ (c 1 + 2)αM(N ) + C(k -1) + D(k) for k ≥ 1. Since k ≤ log α, this implies C(k) ≤ (c 1 + 2)α log α M(N ) + C(0) + D(1) + • • • + D(k). In order to bound D(k) let us rewrite U T as U T = [1, x c , x 2c , . . . , x (β-1)c ]U T with c = m/β and U ∈ K[x] α×β c
The product U T V 0 W T 0 involves three polynomial matrices of respective dimensions β × α, α × β, β × α, and whose entries have degree less than max{c, d/2} ≤ N/β =: δ. Following [BJS08, Lemma 7] one may check that such a product has cost bounded by c 2 αβ ω-1 M(δ) for some constant c 2 independent of k; if the eld K has characteristic zero or is a nite eld of cardinality at least 2δ, this bound becomes c 2 αβ ω-1 δ + c 2 αβM(δ) with c 2 and c 2 two constants independent of k. Using the fact that δ < 2N/β and bounding by αN the number of additions used when multiplying by [1, x c , x 2c , . . . , x (β-1)c ], we obtain

D(k) ≤ c 1 αβ ω-2 M(N ), or, if K has characteristic zero or is a nite eld of cardinality at least 2N , D(k) ≤ c 1 αβ ω-2 N + c 1 αM(N ); here, c 1 , c 1 , c 1 denote some constants independent of k. Since 1≤j≤k (α /2 j ) ω-2 is in O(α ω-2 ) for ω > 2 and α ≤ α, we deduce that D(1)+• • •+D(k) is either in O(α ω-1 M(N ))
or in O(α ω-1 N + α log αM(N )), depending on K. (Note that ω = 2 would imply the replacement of α ω-1 by α log α.) Hence C(k) is bounded as wanted, and the conclusion follows.

As in Section 3.3.1, let us conclude this section with an algorithm, Algorithm 3.4, that

allows us to compute R given U ∈ K[x] α×1 m , V, W ∈ K[x] α×1
n , and y ∈ K n , and without assuming that n is an integer power of two.

Algorithm 3.4: ComputeRy

Input:

U ∈ K[x] α×1 m , V, W ∈ K[x] α×1 n , y ∈ K n . Assumption: α ≤ n. Output: R ∈ K[x] 1×α m+n-1 such that R = U T (VW T mod P y ). δ ← 2 log n -n 1 W ← x δ W;
y ← y augmented with δ zeros 2 T y ← the subproduct tree associated to vector y Proof. Correctness follows from the identity in (3.14) and the claim of correctness in Theorem 3.3. For the cost, it follows from n + δ < 2N that the subproduct tree can be deduced from y using O(M(N ) log N ) operations in K. The conclusion follows from bounding the overhead due to scaling by powers of x by O(αN ), from the cost bound given in Theorem 3.3, and from the denition of the cost function f K .

3 R ← mpy(U, V, W, T y ) 4 R ← x -δ R

Fast multiplication by a matrix and application to inversion

Let A ∈ K m×n be a matrix structured according to operator ∇[M, N] with M, N as in (3.4), and let B ∈ K n×β . Suppose gcd(P M , P N ) = 1. We have seen in Section 3.2 how to express the multiplication AB as a function of R = U T (VW

T mod P N ) for some U ∈ K[x] α×1 m , V ∈ K[x] α×1 n , W ∈ K[x]
β×1 n , and P N dened from a length-α generator for A. Next, we have seen in Section 3.3 ecient algorithms for the computation of R when the number of columns of B is equal to the displacement rank of A, that is, when β = α. What remains is to deduce the overall cost for the computation of AB. Section 3.4.1 is devoted to this task, starting with the case β = α and then dealing with any value of β. Then, we review the costs for structured matrix inversion proposed in Section 2.3 and present some experimental results.

Fast multiplication by a matrix

Let us rst consider the case where the number of columns of B is equal to the displacement rank of A. Using Theorem 3.1 and the algorithms ComputeRx and ComputeRy from Section 3.3, we obtain the algorithm to compute AB described in Figure 3.2. Given a length-α generator (G, H) for A ∈ K m×n , and B ∈ K n×α , 1. Compute U, V, W, P M , and P N as dened in Theorem 3.1; 2. Using ComputeRx when P N = x n -ψ or ComputeRy when

P N = n i=1 (x -y i ), compute R = U T (VW T mod P N ); 3. Deduce AB = U M Pol -1 m P -1 N R mod P M .
Theorem 3.5. Let M, N be as in (3.4) and such that gcd(P M , P N ) = 1, and let A ∈ K m×n be given by a ∇[M, N]-generator (G, H) of length α. Let also B ∈ K n×α . One can compute the matrix product AB from G, H, and B using O˜(α ω-1 N ) operations in K, where N = m + n.

More precisely, depending on the structure of matrix A and on the eld K, one can achieve a cost as presented in the following table .  arbitrary eld eld of characteristic zero, or nite eld of cardinality at least 2N Toeplitz-like

O(α ω-1 M(N )) O(α ω-1 N + α log α M(N ))
Vandermonde-like or Cauchy-like

O(α ω-1 M(N ) + α M(N ) log N ) O(α ω-1 N + α M(N ) log N )
Proof. It suces to prove the four costs announced in the table. For this, we have to analyze the cost for each of the three steps in Figure 3.2. First, let us detail the cost of

Step 1:

• For the Toeplitz-like class, P M = x m -ϕ and P N = x n -ψ and the matrices U M , V N , and W N are either the identity or the reexion matrix. Hence, no operation in K is needed for this case.

• For the Vandermonde-like and Cauchy-like classes, at least one of U M and V N is a Vandermonde matrix, so that we can get U and V using O(α M(N ) log N ) operations in K.

It remains to check that this bound also covers the cost of computing W. This is

clear if N is (the transpose of ) Z n,ψ , since then W N is either I n or J n . If N = D(y) then W -1 N B = V(y) -1 D(P y (y))B.
Given y and B, one can compute the coecients of P y using O(M(n) log n) eld operations, then deduce those of P y using O(n) eld operations, and produce the vector of values P y (y) using O(M(n) log n) eld operations. Scaling B ∈ K n×α into B = D(P y (y))B has cost O(αn) and the product V(y) -1 B can be done using O(α M(n) log n) eld operations. Hence, if N = D(y) then W can be obtained using O(α M(N ) log N ) operations in K.

Thus, in either case, the cost of Step 1 is in O(α M(N ) log N ).

The cost for Step 2 in Figure 3.2 are given by Theorems 3.2 and 3.4. For the Toeplitzlike class, the matrix N is always a unit circulant matrix, so we can get R using O(f K (α, n)) operations in K. As for the Vandermonde-like and Cauchy-like classes, we can always bound the cost to compute R by the cost of Algorithm ComputeRy, which is in

O(f K (α, n)+ N log N ).
Now, let us look at the cost of Step 3 in Figure 3.2:

• For the Toeplitz-like class, P M = x m -ϕ and P N = x n -ψ. The cost of getting b := P -1

N mod P M ∈ K[x] m is in O(N ) according to [BJMS11]. In addition, c := R mod P M ∈ K[x] 1×α
m can be computed using O(αN ) eld operations. Then the product bc mod P M is obtained using O(α M(m)) eld operations and, since in this case U M is either the identity or the reexion matrix, we conclude that the total cost for Step 3 is in O(α M(N )).

• For the Vandermonde-like and Cauchy-like classes, we get P M and P N in O(M(N ) log N ) using subproduct trees. Then a := P N mod P M and c = R mod P M can be deduced using O(M(N )) and O(α M(N )) eld operations, respectively (see [vzGG03, Exercise 9.16(i)]). On the other hand, the cost for the inverse b = a -1 mod P M is in O(M(m) log m) while the cost for the product bc mod

P M is in O(α M(m)) (see [vzGG03, Corollary 11.8]). Finally, applying U M costs in this case O(α M(m) log m),
from which we conclude that, for Vandermonde-like and Cauchy-like classes, the to-

tal cost of Step 3 is in O(α M(N ) log N ).
We can summarize the costs of the three steps for the dierent classes as follow:

Toeplitz-like class Vandermonde-like and

Cauchy-like classes

Step 1

O(α M(N ) log N ) Step 2 O(f K (α, N )) O(f K (α N ) + M(N ) log N ) Step 3 O(α M(N )) O(α M(N ) log N )
Using the denition of the cost function f K (α, N ) in (3.2a) or (3.2b) depending on K, adding the costs within each column of the table above, and recalling that α ≤ n ≤ N allows us to conclude.

Remarks

Let us comment on the costs mentioned in Theorem 3.5. When α is a small constant, and for all eld K, the cost for the Toeplitz-like class when m = n becomes O(M(n)), which corresponds to the product matrix Toeplitz × vector, as expected. The same remark holds for the Vandermonde-like and Cauchy-like classes where the cost becomes

O(M(n) log n).
Now, consider the unstructured case where α = n, and assume that K is either a eld of characteristic zero or a nite eld of cardinality at least 2n. When ω > 2, we have n log n ∈ o(n ω-1 ) and we obtain that, for all the structures, the product of an n × n (un)structured matrix by an n × n matrix is achieved in O(n ω ). Thus, this extends the approach for Toeplitz-like matrices in [Bos10, page 210] to the case of the Vandermondelike and Cauchy-like classes.

Extension to β columns

Let us denote by SMM(α, N ) an upper bound on the cost to multiply a structured matrix A ∈ K m×n , given by a generator of length α, by a matrix B ∈ K n×α .

So far we have considered products AB for which the matrix B has exactly α columns. Let us now give a cost analysis in the general case where B has any number β of columns. Theorem 3.6. Let A ∈ K m×n be a structured matrix according to ∇[M, N] with M, N as in (3.4) and given by a length-α generator (G, H). Suppose that gcd(P M , P N ) = 1, and let B ∈ K n×β . Let also α = min{α, β} and ᾱ = max{α, β}. Then the product AB can be deduced from G, H, and B using ᾱN + 2ᾱ/α • SMM(α, N ) eld operations.

Proof. Assume rst that α < β. Dening k = β/α and β = kα, let us augment B with zero columns into the n × β matrix B = [B|0]. This matrix can be partitioned into k blocks B 1 , . . . , B k , each having exactly α columns, so that the product AB can be read o the k products AB 1 , . . . , AB k . The cost of getting all these products is bounded by k SMM(α, N ), and the conclusion follows from the fact that k < β/α + 1 < 2β/α. 

G = [G 1 | • • • |G k ] and H = [H 1 | • • • |H k ], each block G j or H j having β columns. Hence ∇[M, N](A) = j≤k G j (H j ) T .
On the other hand, the invertibility of ∇[M, N] implies that for each j, there is a unique matrix A j in K m×n such that ∇[M, N](A j ) = G j (H j ) T . Since ∇[M, N] is linear and invertible, we deduce that A = j≤k A j . To obtain AB from G, H, B in this case it thus suces to set up the blocks G j and H j , to compute the k products A j B, and to add those products together. The multiplication step has cost k SMM(β, N ) and the addition step has cost (k -1)mβ. Noting that k < α/β + 1 ≤ 2α/β allows us to conclude.

Application to structured matrix inversion New cost for structured matrix inversion

Recall from Section 2.3.1 the cost functions MM * for * ∈ {C, V, H} that we have introduced for the cost analyses of algorithms GenInvLT and GenInvHT. The quantity MM * (α, n) ( * ∈ {C, V, H}) denotes the cost of the multiplication of an n × n structured (Cauchy-, Vandermonde-, and Hankel-like, respectively) matrix, given by a length-α generator, by an n × β matrix. In Section 2.4.1, we have assumed a cost in O˜(α 2 n) for these three functions. Yet, Theorem 3.5 above gives us new achievable costs for MM * (α, n) that are in O˜(α ω-1 n). Using these new costs for MM * (α, n), and remarking that we can still assume the superlinearity of MM * (•, n) in this case, we can deduce new costs for the inversion of Cauchy-like, Vandermonde-like, and Hankel-like matrices from Theorems 2.4, 2.5, and 2.7, respectively. Corollary 3.1. Let n be a power of two and let A be strongly regular and structured as in (1.6a) (Cauchy-like), (1.7a) (Vandermonde-like), or (1.8a) (Hankel-like). Then we can compute the inverse of A using either Algorithm GenInvLT (for Cauchy-and Vandermonde-like structures) or Algorithm GenInvLT (for Hankel-like structure) using at most O˜(α ω-1 n) eld operations.

More precisely, depending on the structure of the matrix A and on the eld K, one can achieve a cost as presented in the following table .   arbitrary eld eld of characteristic zero, or nite eld of cardinality at least 4n Hankel-like

O(α ω-1 M(n) log n) O(α ω-1 n log n + α log α M(n) log n)
Vandermondeor Cauchy-like

O(α ω-1 M(n) log n + α M(n) log 2 n) O(α ω-1 n log n + α M(n) log 2 n)
Inversion of structured matrices in O˜(α ω-1 n) was already obtained for the Toeplitzlike structure (operator ∆[Z n,0 , Z T n,0 ]) in [START_REF] Bostan | Solving Toeplitzand Vandermonde-like linear systems with large displacement rank[END_REF][START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF]. In addition, we can nd in 

(α ω-1 M(n) log n) or O(α ω-1 n log n + α log α M(n) log n)
for inversion, depending on the eld K. Here, we propose a cost for the inversion of Vandermonde-like and Cauchy-like matrices that is slightly worse. Yet, our approach has the advantage that it provides direct (that is, without reduction to another structure) inversion algorithms, which can be interesting for practical reasons. First, our approach requires fewer eorts to be implemented when one only needs to deal with a structure other than Hankel-or Toeplitz-like. Indeed, support for this particular structure suces with our approach, while support for two structures and one reduction among them is needed with the approach in [START_REF] Bostan | Solving Toeplitzand Vandermonde-like linear systems with large displacement rank[END_REF][START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF]. Second, as soon as α is large enough, namely when α ≥ (log n) 1/(ω-2) , the cost of our approach for Vandermonde-like and Cauchy-like is dominated by O(α ω-1 M(n) log n) which is the asymptotic cost for the Hankel-like structure. Finally, the reductions in [START_REF] Bostan | Solving Toeplitzand Vandermonde-like linear systems with large displacement rank[END_REF][START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF] have the same asymptotic cost that Toeplitz-like matrix inversion, so that the overhead they imply may impact the overall cost in practice.

Experimental results

Let us conclude this section with some experiments. As we did for Chapter 2, we have implemented the algorithms introduced in this chapter within the library SLA, along with some extra support for polynomial matrix multiplication. This has yielded about 1000 additional lines of code in SLA.

Our goal is to illustrate the impact of using the fast multiplication of a structured matrix by a matrix introduced in Figure 3.2 on our algorithms for structured matrix inversion. For this purpose, we compare, for the Cauchy-like structure, Algorithm GenInvLT with a naive multiplication Cauchy-like matrix × vectors in O(α 2 M(n) log n), as in Section 2.4.1, to Algorithm GenInvLT with the fast multiplication Cauchy-like matrix × vectors in O˜(α ω-1 n), as described in this chapter. Note that, since we use a matrix multiplication based on Strassen's algorithm, and without any assumption on the eld K, we actually have here a cost in O(α 1.81 M(n) + α M(n) log n) according to Theorem 3.5.

As in Section 2.4.1, computations are carried out on a desktop machine with an Intel R Core TM 2 Duo processor at 2.66 GHz. We work with the nite eld F p with p = 999999937, and the generator matrices G and H are picked randomly. In addition, we x the values of x and y dening the displacement operator ∇[D(x), D(y)] so that {x 1 , . . . , x n , y 1 , . . . , y n } has cardinality 2n. Thus, we can use the fastest version of GenInvLT, that is, the one relying on Cardinal's trick. Figure 3.3 illustrates the speed-up that we obtain when using the fast multiplication of a Cauchy-like matrix by a matrix, instead of the naive multiplication Cauchy-like matrix × vectors. The displacement rank α ranges from 10 to 100, while the dimension n ranges from 100 to 1000. As one can see on the gure, the version with fast multiplication is up to 8.5 times faster than the one using naive multiplication.

Moreover, the speed-up around 3 for α < 32 is quite noticeable. Indeed, such values of α do not allow to use Strassen's algorithm for polynomial matrix multiplication. Yet, a signicant speed-up is already achieved, so that using matrices of polynomials in order to perform a multiplication of the form Cauchy-like matrix × vectors seems intrinsically better than computing successively all the products Cauchy-like matrix × one vector. Now, let us x α and look at the behavior of the speed-up with respect to the dimension n. As mentioned earlier, both the naive and the fast routines for Cauchy-like matrix × vectors multiplication are in O(M(n) log n) (α is a xed constant). Therefore, they both lead to a cost in O(M(n) log 2 n) for inversion. Yet, we can observe a slow increase of the speed-up with respect to n. For instance, when α = 100, the speed-up goes from ≈ 5.2 for n = 100 to ≈ 8.5 for n = 1000. The fact that the speed-up actually decreases just after a power of two (see n = 300 and n = 600) lets us imagine that the overall increase might be due to threshold eects within the library NTL.

Finally, if we x n and look at the behavior of the speed-up with respect to the dimension α, we observe a clean increase. For instance, when n = 1000, the speed-up varies from ≈ 2.8 when α = 10 to ≈ 8.5 when α = 100. This can be partially explained since the fast version uses Strassen's algorithm, which leads to a cost in O(α 1.81 ) instead of O(α 2 ) (n being constant here). In addition, by looking at the behavior in the range 10 ≤ α ≤ 32, where Strassen's algorithm is not used, we also think that part of the speed-up's increase is due to another factor.

To conclude, note that this is a rst experiment, and that the speed-up we obtain here is not completely understood. Nevertheless, using fast multiplication of a structured matrix by a matrix appears to be very promising in practice.

Conclusions and perspectives for Part I Conclusions

Structured matrices of size m × n and displacement rank α are matrices that can be represented by a generator having only α(m + n) coecients instead of mn. Many operations like transposition, multiplication by a vector, addition or multiplication of structured matrices, and inversion, can be performed using generators, which yields a sizeable gain when α is small. In particular, when α is a small constant, we obtain quasilinear costs with respect to n (assuming m ∈ O(n)), whereas the corresponding costs for dense, unstructured matrices are in O(n 2 ) or in O(n ω ). In this rst part of the document, we have focused on the most common structures that are Cauchy-like, Vandermonde-, Toeplitz-and Hankel-like structures, and we have worked on two problems related to these structures: inversion and multiplication by a matrix.

Superfast algorithms for inverting a structured matrix are known since the apparition of the MBA algorithm in 1980 [START_REF] Morf | Doubling algorithms for Toeplitz and related equations[END_REF][START_REF] Bitmead | Asymptotically fast solution of Toeplitz and related systems of linear equations[END_REF]. A major issue with this approach is to control the size of the generators for intermediate quantities so as to ensure a nal cost in O˜(α 2 n) for inversion. This control is usually achieved with so-called compression steps. A noticeable variant of MBA due to Cardinal [START_REF] Cardinal | On a property of Cauchy-like matrices[END_REF][START_REF] Cardinal | A divide and conquer method to solve Cauchy-like systems[END_REF] proposes to cope with this diculty, in the case of Cauchy-like matrices, by computing specied generators for the intermediate quantities and the inverse, that have already an appropriate size.

Following this idea, we have designed a general, compression-free algorithm relying on a new, recursive formula for the specied generator of the inverse. We have studied in detail the cost of this new approach for three structures: Cauchy-, Vandermonde-and Hankellike matrices. Each cost was expressed as a function of MM * (n, α) with * ∈ {C, V, H}, which is the cost for the multiplication of an n × n structured (Cauchy-, Vandermonde-, and Hankel-like, respectively) matrix A by α vectors, where α is the length of the generator provided for A. Comparing with several variants of MBA, it has appeared that removing the two compression steps within MBA, while keeping the asymptotic cost unchanged, leads to a signicant decrease in size for the intermediate generators, and so to smaller products of the form structured matrix × vectors. This yields theoretical speed-ups up to a factor of 7, which were indeed observed in practice in our experiments.

As a consequence of our work on structured matrix inversion, we have obtained that this operation heavily relies on a single basic block, which is the multiplication structured matrix × vectors, where the displacement rank of the structured matrix and the number of vectors are of the same order. Recent works in [START_REF] Bostan | Solving Toeplitzand Vandermonde-like linear systems with large displacement rank[END_REF][START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF] and [START_REF] Bostan | Algorithmes rapides pour les polynômes, séries formelles et matrices[END_REF]page 210] show that, in the case of Toeplitz-like matrices (with Stein's displacement operator), such a multiplication can be achieved in O˜(α ω-1 n) eld operations using fast multiplication of polynomial matrices. This thesis extends this idea to all the aforementioned structures for Sylvester's displacement operator. First, we have introduced a polynomial expression of the matrix product AB, where A is an m×n structured matrix of displacement rank α and B ∈ K[x] n×β . This has pointed out the problem of computing the polynomial row vector R = U T (VW

T mod P ) given U ∈ K[x] α×1 m , V ∈ K[x] α×1
n , and W ∈ K[x] β×1 n , and where P is either x n -ψ or n i=1 (x -y i ). Second, we have proposed algorithms to compute R in the case where α = β, that are in fact generalizations of the approach in [Bos10, page 210] for the case where P = x n and m = n. Finally, combining the two previous points has led to a general algorithm for the multiplication structured matrix × vectors in O˜(α ω-1 (m + n)) when the number of vectors is α. In addition, for each structure, the cost obtained matches with the one of the underlying special matrix (Cauchy for Cauchylike structure, and so on) when α is a small constant. These costs also match with the cost O(n ω ) for dense, unstructured matrix multiplication when m = n = α, assuming that the eld K is either of characteristic zero or a nite eld with 4n. Finally, using the new costs for the multiplications structured matrix × vectors, we have deduced new costs in O˜(α ω-1 n) for our inversion algorithms in Chapter 2. Compare to the asymptotic costs obtained with [START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF] and [Bos10, page 210], our approach for inversion is slightly worse for Cauchy-and Vandermonde-like. Yet, it yields direct inversion algorithms for these two structures, contrary to the approach in [START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF] which reduces them to the Toeplitz-like case. Furthermore, a rst experiment with Cauchy-like matrices has shown that using our fast algorithm for the multiplications of the form Cauchy-like matrix × vectors within our inversion algorithm leads to signicant speed-ups in practice.

Perspectives

As we have seen, our direct approach for the inversion of Cauchy-and Vandermonde-like matrices does not achieve the best known asymptotic costs to solve these two problems.

One question is then to see whether it can be improved so as to compete with the best known algorithms that use a reduction to Toeplitz-like matrix inversion. If we look closely at the overall inversion algorithm, we can see that some intermediate quantities are computed several times within the routine for fast structured matrix × vectors multiplication. By identifying them and factorizing their computation, we may be able to solve this issue.

The implementation of the various algorithms presented in this rst part of the thesis have also raised several questions. First, it would be interesting to estimate the quantity of extra-memory needed by our algorithms, and to see whether in-place versions can be designed for some of them. Second, adding some support for a given structure implies to code several routines like the multiplication by a vector. Such routines may be implemented in several ways, depending on the formula in use. To choose a formula involving a minimum number of memory operations like copying or reverting of vectors is a very dicult and tedious task. Therefore, it would be interesting to see if we can model the formulas using the language proposed in [START_REF] Franchetti | Operator language: A program generation framework for fast kernels[END_REF] and thus use the SPIRAL project [PMJ + 05, PFV11] in order to tune the code for these routines. Finally, we have mentioned that inversion of a given structured matrix can be achieved either by a direct approach, or by reducing the problem to the inversion of a matrix having another structure. We think that the various alternatives implied by the dierent reductions deserve investigation. However, this may take quite some time if done by hand. Again, it would be interesting to see how general frameworks for automatic code optimization such as SPIRAL can help us to speed up the exploration process.

Part II

Analyzing the implementations of arithmetic expressions

Chapter 4

On the evaluation of arithmetic expressions This chapter serves as an introduction to our work on the evaluation of arithmetic expressions. First, we give an overview of some of the common issues arising when one is to implement a given arithmetic expression. Then, we focus on the initial context that has led us to this work, that is, the generation of polynomial evaluation codes for a library providing software support of oating-point numbers on integer processors. We also explain how this context has motivated us to design a general framework for analyzing the implementations of arithmetic expressions. Finally, we summarize our contributions to this domain.

Issues underlying the evaluation of arithmetic expressions

Arithmetic expressions are expressions made of sums and products of variables. While the order of the terms and the implicit parenthesization do not matter when we look at the mathematical object, they become an issue when one wants a good implementation of it on some architecture. Indeed, nowadays' architectures usually provide only binary operations, so that choices have to be made in order to go from the mathematical object to one concrete implementation. This raises several questions in various elds of computer science.

Issues in algebraic complexity

In this eld, the main concern is to estimate the number of arithmetic operations needed to evaluate a given expression. This could mean nding the exact minimum number of operations, obtaining a relevant lower bound of this number and/or designing an algorithm with as few operations as possible.

Answers to these questions are quite sensitive to the computation model considered (see the discussion in [BCS97, 1]). The model of straight-line programs (SLP) [BCS97, 4.1] has been successfully used to derive some interesting results. In this model, an evaluation consists in a sequence of binary operations whose operands are taken among the input variables and the already computed quantities.

Among the main results of this eld, one can cite the works on the minimum number of multiplications in order to evaluate a n (also known as the problem of shortest addition chains for n) which are reviewed in [START_REF] Knuth | of The Art of Computer Programming[END_REF]4. Finally, we can cite the technique of preconditioning, that is, a "free" pre-computation that aims to turn the initial evaluation problem into a simpler one. This may be relevant when the underlying evaluation has to be performed with lots of dierent values for the inputs, so that the cost for the pre-computation does not matter much. Indeed, it has been intensively studied for that case of polynomial evaluation: [Knu62, Eve64] showed that this evaluation for polynomials in C[X] can be performed in n additions and only n+3 2 multiplications; [PS73] introduced another approach more suitable for polynomials in R[X], with n + O(log n) multiplications; and [START_REF] Victor | Strassen's algorithm is not optimal: trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations[END_REF] discusses optimality issues for polynomials over the reals and the complex numbers with respect to the degree.

Issues in combinatorics

In the SLP model without division, it has been proved that there exists a one-to-one correspondence between implementations for a n and the set of binary rooted trees with exactly n leaves. The number of such trees, and so the number of implementations for a n , is the nth number of the Wedderburn-Etherington sequence [Wed22, Eth37]. While we do not know any closed-form formula for this sequence, it is easy to compute the values for small values of n through a recurrence formula. Moreover, [Ott48] gives the asymptotic behavior of this sequence when n tends to innity, showing that the number of implementations for a n grows roughly exponentially with respect to n.

This kind of correspondence can be established for other simple arithmetic expressions, as soon as the set of implementations can be described within a theory called the species theory [FS09]. When it is the case, this theory provides useful tools to compute the number of objects of size n eciently [Piv08, PSS08], and to describe the asymptotic behavior when n grows to innity [FS09, 6]. In our context, this helps to get precise information about the number of implementations for simple arithmetic expressions.

Issues in compilation and code generation

We have already mentioned the question of minimizing the number of operations, which leads to ecient evaluations on a purely sequential architecture. However, architectures oering some kind of parallelism have been available since decades [Kuc77]. In our context, we may want to exploit instruction level parallelism (ILP). This type of parallelism can be either MIMD (multiple instruction multiple data) parallelism, where we assume to have p processors available that can perform any kind of instruction, or SIMD (single instruction multiple data) where we impose moreover that each processor performs the same instruction at each cycle.

In the MIMD model, the latency for evaluating an arithmetic expression (possibly with divisions) involving n variables (each appearing only once) has been well studied.

Assuming that binary + and × have a unit cost, it is remarked in [START_REF] Kuck | Bounds on the parallel evaluation of arithmetic expressions using associativity and commutativity[END_REF] that this latency is at least log 2 n , and that one can use associativity and commutativity in order to perform the evaluation in at most log 2 n +2d+1 cycles, where d is the maximum level of nested parentheses. Moreover, the authors show that this evaluation can be carried out using at most n-2d 2 processors. This result is extended in [Bre74], where the author proves that, using also distributivity, and regardless of the depth of parenthesization, one can achieve a latency of 4 log 2 n + 10(n-1) p cycles, where p is the number of processors in use. We can also cite [START_REF] Brent | The parallel evaluation of arithmetic expressions without division[END_REF], which deals with expressions without divisions, and [START_REF] Kuck | Time bounds on the parallel evaluation of arithmetic expressions[END_REF] were sharper bounds are provided in several cases.

While these results are eective (that is, we can deduce from the proofs algorithms to achieve the announced bound for a given expression), they have several limitations: rst, even though the upper bounds are close to the lower bound log 2 n , one can always hope to nd a better solution for a special case; second, SIMD parallelism is not directly handled and, while one can simulate an MIMD architecture with a SIMD one and apply the techniques for the MIMD case, this multiplies the latency by a constant as noted in

[Kuc77], and again, one may hope for a faster evaluation; third, the main criterion on pipelined architectures is throughput, and not latency; fourth, the usage of operators like the fused multiply-add (FMA), which maps (a, b, c) to a • b + c and is now a standard operator in oating-point arithmetic [IEE08], is not addressed.

Another approach in order to nd a fast way to evaluate an expression on a given architecture is to write a program that will look at many possibilities and generate the code for the fastest evaluation encountered. This approach, which becomes more usable as computer power increases, is embraced for instance in [START_REF] Green | Faster Math Functions[END_REF], and in [START_REF] Harrison | The computation of transcendental functions on the IA-64 architecture[END_REF], where the authors describe a heuristic search for fast evaluation of univariate polynomials on the Itanium R processor using only the FMA operator.

Issues in numerical analysis

When one wants to perform a computation involving real or complex numbers, this computation is usually performed with some nite precision arithmetic instead. In this case, evaluations are subject to some rounding errors, and it becomes an issue to control these errors, or at least to have a good insight into their impact. Indeed, the way we perform some evaluation can greatly aect the numerical quality of the result. See for instance [Hig02, 4.2] which discusses the impact of ordering when performing a sum of n terms in oating-point arithmetic.

As soon as one uses xed-point arithmetic (see [START_REF] Yates | Fixed-Point Arithmetic: An Introduction[END_REF] for a good introduction on this topic) or oating-point arithmetic as dened in the IEEE-754 standard [IEE08],

the behavior of operators + and × is well specied and models like the ones in [Hig02, 2.2] can be used to bound the errors occurring during the evaluation of an arithmetic expression. It thus becomes possible to deduce a priori error bounds, that is, bounds on the evaluation error that are functions of the precision and the actual values of the input variables. These a priori bounds may be pessimistic in practice for the evaluation of a univariate polynomial [START_REF] Revy | Analyse et implantation d'algorithmes rapides pour l'évaluation polynomiale sur les nombres ottants[END_REF], and one may prefer to compute a tighter error bound alongside with the actual computation (see the concept of running error in [Hig02, 3.3]).

Another approach to obtain a tight error bound is embraced by the tool Gappa [START_REF] Melquiond | De l'arithmétique d'intervalles à la certication de programmes[END_REF].

This tools aims at certifying a given error bound 1 on the evaluation of an arithmetic expression by means of rewriting rules and bisection of the intervals where the variables range.

Another issue lies in improving the numerical quality. The software tool Fluctuat 

Context and motivation

In this section, we present the initial context that have led us to study the evaluation of arithmetic expressions. It lies in the development of a software tool named CGPE

(Code

Generation for Polynomial Evaluation). This tool is used to generate part of the code within the library FLIP 3 (Floating-point Library for Integer Processors), whose goal is to provide software single-precision support for integer processors. We rst give an overview of FLIP. Then, we focus more especially on CGPE. Finally, we conclude this section by motivating our choice to design a general approach for analyzing the evaluation of a given arithmetic expression.

Floating-point arithmetic support for integer processors

Embedded systems are nowadays ubiquitous. Because embedded processors need to be small, some of them still do not have a oating-point unit, so that they can only perform computations on (nite-size) integers. In order to run codes relying on oating-point 1 It can also nd out one if none was provided.

2 See http://cgpe.gforge.inria.fr/, [Rev09, MR11], as well as Section 8.1.1. 3 http://flip.gforge.inria.fr/ arithmetic on these so-called integer processors, one needs a library that emulates oatingpoint numbers using the integer type available in hardware. FLIP is one of such libraries.

It can provide single-precision oating-point support for any 32-bit integer processor, and has been especially optimized for VLIW (Very Long Instruction Word) architectures as implemented by the ST231 processor from STMicroelectronics's ST200 family [START_REF] Fisher | Embedded Computing: A VLIW Approach to Architecture, Compilers and Tools[END_REF].

Implementation of oating-point operators in FLIP

Ecient implementations of a oating-point operator usually rely on the evaluation of a polynomial approximating this operator on a small interval. This is the approach embraced by FLIP to provide a software support for single precision on integer processors.

Apart from the basic operators (+,-,×, and the FMA), the generic path of the other operators (elementary functions such as division, square root, trigonometric functions, exponential, logarithms, . . . ) is or will be implemented according to the following classical process (see [Mul06, 3] and [MBdD + 10, 11]):

1. Range reduction: Evaluation of operator f at point x is replaced with the evaluation of f (x) by use of mathematical properties on f (symmetries, algebraic identities). This is done so that all the possible values for x lie in a small interval I.

2. Polynomial approximation: One computes some polynomial approximation of f on I. In practice, the software tool Sollya [START_REF] Chevillard | Évaluation ecace de fonctions numériques -Outils et exemples[END_REF] is used in order to get an approximation polynomial p(x) of minimum degree, given some bound on the approximation error.

3. Polynomial evaluation: One chooses an implementation for the evaluation of p(x). This implementation should take advantage of the features of the target architecture as much as possible. However, as already mentioned in the previous section, this choice may impact the numerical quality of the result.

4. Final routine: One looks at the value resulting from the evaluation of p(x) in order to deduce the correct rounding for f (x), or a result accurate for all but the last bit.

Note that, since the processor only provides integers, the evaluation at step 3 will be carried out using xed-point arithmetic [START_REF] Yates | Fixed-Point Arithmetic: An Introduction[END_REF]. This means that we use integer instructions, but that we read the result as if there were a radix point within the encoding of integers at a position determined in advance.

Furthermore, note that we only give here a general view of the whole process used within FLIP. Steps 1 and 4 are usually specic to each operator. Moreover, one needs to decode the input, handle special cases, and compute the sign and exponent in addition to p(x) in order to encode the result after step 4. All this work should be done as much as possible in parallel of the four aforementioned steps. We refer to [JMM + 10] for more details on this topic.

Example: implementation of

√ x

The example presented here comes from [START_REF] Jeannerod | Computing oating-point square roots via bivariate polynomial evaluation[END_REF]. Suppose we have an integer processor and we want to provide to it support for the square root operator in single precision 

and

√

x), the correct exponent being e/2 .

In fact, one of the contributions of [START_REF] Jeannerod | Computing oating-point square roots via bivariate polynomial evaluation[END_REF] is to provide a clever way to obtain such a v. Their idea is to evaluate the special bivariate polynomial

q(x, y) = 2 -25 + y • p(x),
where p is a polynomial approximant of

√ 1 + • on [0, 1), at point (x, y) = (m -1, 2 δ ). If p - √ 1 + • ∞,[0,1
) and the error entailed by the computation of q(m -1, 2 δ ) are small enough (see [JKMR11, Lemma 1] for the complete result) then the value v obtained will be accurate enough to deduce RN(

√

x). The introduction of such a bivariate polynomial is motivated by the fact that it allows for more parallelism. Indeed, we can distribute y inside the evaluation of p(x) and thus reduce the latency.

As mentioned above, the question of nding a good polynomial approximant can be solved by using the software tool Sollya. Therefore, what remains is to nd an accurateenough way to evaluate our special bivariate polynomial q(x, y) on [0, 1)×{1,

√

2}. Several tools to check the accuracy of a given code exist, like Fluctuat [PGM04] or Gappa [START_REF] Melquiond | De l'arithmétique d'intervalles à la certication de programmes[END_REF].

Yet, one has rst to generate a code before calling one of these tools.

Generating fast and accurate-enough code for polynomial evaluation

The choice of the way to implement the polynomial evaluation at step 3 of the aforementioned process is a major issue. As we have said, the implementation should be accurate enough, in the sense that the error entailed by the usage of xed-point arithmetic is no greater than a given bound. Moreover, the polynomial evaluation is typically the largest part of the code for an operator, and thus, we really need to do it as fast as possible.

Classical schemes for polynomial evaluation 

+ a 0 × x + a 1 × x + a 2 × x a 3
(a) Horner's rule.

+ + a 0 × × x x a 2 × x + a 1 × × x x a 3
(b) Second-order Horner's rule.

+ + a 0 × x a 1 × × x x + a 2 × x a 3 (c) Estrin's rule.

Generation of polynomial evaluation codes for FLIP with CGPE

The classical schemes mentioned above can be adapted for evaluating bivariate polynomials, as shown for example in [CK04, PS00] for Horner's rule. Yet, none of them appears to be appropriate for our context:

• As already mentioned, Horner's rule fails to expose ILP. On the contrary, Estrin's rule requires more multiplications, and thus may be harder to schedule on an architecture with limited parallelism;

• The numerical properties of these rules for a given polynomial are, to the best of our knowledge, not completely understood, especially for the special bivariate case;

• Finally, recall from the example of the square root operator that we need to deduce the values of x and y from the encoding of the oating-point number at input. In practice, the value of x is known before the one of y, and this has to be taken into account for the latency. In this situation, we will speak about the delay of y, that is, the number of cycles between the availability of the value of x and the availability of the value of y. Classical rules for bivariate polynomials were designed with the assumption that the values of x and y are known at the same time (thus, assuming a delay of 0 cycle). Therefore, they may not be adapted when the delay is larger, like in the case of the square root of FLIP, where it is of 3 cycles.

For all these reasons, we needed a tool to explore the possible implementations of polynomial evaluation, and this is why a rst version of CGPE has been introduced in [Rev09]. Given:

• the coecients of a polynomial p(x) or q(x, y) = α + y • p(x),

• a small interval for each variable x and y,

• a maximal evaluation error bound ε,

• information about the target architecture (cost of operators + and ×, available parallelism),

• possibly a delay on variable y, CGPE returns a C code for the evaluation of p(x) or q(x, y), which is as fast as possible on the target architecture, and whose evaluation error due to the use of xed-point arithmetic is guaranteed (through calls to Gappa) to be no greater than the bound ε. CGPE was mainly used in order to generate code for the ST231 processor, which is a 4-issue VLIW integer processor. This processor can perform four additions in parallel, but is limited to two multiplications in parallel. Moreover, while the addition is done in 1 cycle, one has to wait 3 cycles in order to get the result of a multiplication. Yet, multiplication is pipelined, so that we can launch two of them per cycle.

Other context requiring polynomial evaluation: matrix function evaluation

The context of libm design presented in Section 4.2.1 is not the only one that leads to the need of nding a good way to evaluate a polynomial p. For instance, ecient code for the evaluation of f (A) where f is an elementary function and A is an n × n matrix may also rely on polynomial approximation. We refer to [Hig08, 1013] for examples of algorithms based on Padé approximants to evaluate f (A) where f ∈ {exp, log, sin, cos}.

is to compute all the evaluation schemes of a given arithmetic expression. This algorithm is the rst example to illustrate our approach, and is mainly for theoretical purpose.

However, allowing the user to provide some constraints that will be used in the generation process leads to an eective algorithm named GenerateWithHint (see Section 5.4.3).

It computes, given a measure on the evaluation schemes, all the schemes for an expression whose measure is less than a given threshold. This algorithm is used:

1. at the end of Chapter 5, in order to study the number of squarings lying in the evaluation schemes for a n with a minimum number of multiplications;

2. in Section 8.2, in order to generate evaluation schemes for polynomials which achieve a minimum number of non-scalar multiplications.

Counting issues

We propose three counting algorithms. The rst one, Algorithm Count (see Section 6.1), allows us to compute the number of evaluation schemes for a given arithmetic expression.

This algorithm is used in Section 6.2.1 to retrieve several known sequences (like the number of schemes for a n when n ∈ N). Moreover, by applying it in Section 6.2.2 to univariate polynomials p(x) and then to special bivariate polynomials q(x, y) = α+y•p(x) with deg(p) = n, we deduce two new sequences, A169608(n) and A173157(n).

In the previous algorithm, we have associated only one value to the given arithmetic expression: its number of schemes. Instead of considering the set of schemes as a whole, we can consider a partition of it with respect to some measure. Algorithm CountPerMes relies on this idea to compute recursively the distribution of the evaluation schemes for a given arithmetic expression according to a measure. We apply this algorithm in Sections 6.4.2 and 6.4.3 to deduce the distribution of the evaluation schemes for a univariate polynomial according to rst the number of multiplications, and second the latency. In particular, we obtain a Gaussian-like shape for the latency, which conrms the intuition that there are only few optimal and nearly optimal schemes according to this measure.

In addition, as we did for generation, we design in Section 6.4.4 a counting algorithm, extending the previous one by adding a threshold at input that is used in order to reduce the number of schemes considered during the computation. This yields Algorithm

CountWithHint that we use:

1. to compute faster than with CountPerMes the number of schemes for univariate polynomials having an optimal or nearly optimal latency; 2. to compute the number of schemes achieving the minimum number of matrix-matrix multiplications for p(A) (see Section 8.2.2).

Optimization issues

In Section 7.1.2, we introduce a rst optimization algorithm named Optimizer. While this algorithm is fast, its correctness requires the measure we want to optimize to be such that optimizing the subexpressions can lead to the optimal value for the initial expression. This is satised by the latency, but not by the number of multiplications, for instance.

We illustrate this algorithm with three examples:

Chapter 5

How to model and analyze implementations of arithmetic expressions

In this chapter, we present a way to model and analyze the dierent ways of evaluating some arithmetic expression thanks to the concept of evaluation scheme. The rst section deals with the formal denition of evaluation schemes, while the second section shows how one can manipulate them algorithmically in order to perform some analysis. Then, a third section illustrates how to generate the evaluation schemes exhaustively. Finally, we will discuss how to model an optimization criterion in a fourth section and propose an algorithm for generating all the evaluation schemes that satisfy an optimization constraint.

5.1 Modelling implementations with the concept of evaluation scheme

Evaluation of arithmetic expressions

An arithmetic expression is basically a mathematical object made of constants in some commutative ring R and one or several variables, that are linked together by additions 1 and multiplications. Evaluating this expression means computing its value in R when one gives some values for all the variables. Without loss of generality, we can replace every constant in our expression with symbolic variables (whose value will always be the same for all evaluations) and only consider arithmetic expressions without constants.

The evaluation can then be performed as follows: we start with the actual values for each variable, then we take two already known values and we add or multiply them in order to create a new value, nally we go on until we get the value corresponding to our arithmetic expression. This corresponds to the concept of straight-line program [BCS97,

4.1]:

1 Subtraction can be considered as a special case of addition, as noticed in [Bre74].

Denition 5.1. A straight-line program (SLP) is a nite sequence (a 1-k , . . . , a -1 , a 0 , a 1 , . . . , a r ) such that:

• for all 1 ≤ j ≤ k, a 1-j represents a value in R for the jth variable;

• for all 1 ≤ i ≤ r, a i = a m a n with ∈ {+, ×} and m, n < i.

We will say that a given SLP evaluates an arithmetic expression if the nal result a r for this SLP is indeed the value corresponding to our expression, whatever the values we choose for the variables. For instance, a 0 = a a 1 = a 0 × a 0 // a2 a 2 = a 1 × a 0 // a 3 a 3 = a 1 × a 2 // a 5 a 4 = a 3 × a 3 // a 10 a 5 = a 4 × a 3 // a 15 Given such a tree, we can get back to the corresponding DAG by merging the internal node corresponding to the same subexpression. It is also straightforward to retrieve the corresponding arithmetic expression. Going from an arithmetic expression to an ordered binary tree is not as direct since one may perform some choices like the order of the dierent terms or the way to perform a sum/product of more than two terms with binary operations only. These choices are usually dictated by conventions like left to right summation.

The dierent ways to evaluate a given arithmetic expression come from how we read this mathematical object. Moreover, one can replace the expression with a mathematically equivalent one by using some algebraic identity before performing the evaluation.

While this transformation can be quite sophisticated, like when preconditioning a polynomial [Knu62, Eve64] in order to evaluate it with as few multiplications as possible, we will restrict ourselves, as in [Bre74] and [Kuc77], to the basic algebraic identities inferred from the commutative ring structure, that is, commutativity, associativity, and distributivity. Let us list these rules exhaustively, and illustrate their eect on a given internal node within an ordered binary tree: Notice that each rule is reversible, in the sense that we can go from the right hand side back to the left hand side using only the listed rules (for rules r 3 and r 4 , use commutativity on both nodes, then associativity, and again commutativity on both nodes).

Previous works [KM74, Bre74, Kuc77] essentially used these rules in order to turn an ordered binary tree into another one with a smaller depth or with much more instruction level parallelism. This has yielded several bounds on the time needed to evaluate an arithmetic expression depending on the number of variables, the level of nested parentheses, and the number of processors available. Here, we intend to focus more on the set of all the trees that we could obtain by applying these rules successively. We dene this set as follows:

Denition 5.2. Let f be some arithmetic expression, and t be the ordered binary tree for evaluating f that is deduced from reading f using some implicit rules to cope with ambiguity. We will denote by P(f ) the closure of {t} under the rules r 1 to r 6 , and we will call it the set of the parenthesizations of f hereafter.

In order for this denition to be correct, we need to ensure that the set P(f ) is the same regardless of the way we read f to deduce the rst tree t. This holds since the variations in the reading of f can be handled using commutativity and associativity only.

The motivation in adding distributivity (and so factorization) to the set of rules lies in the fact that this rule is the key to increase parallelism in some arithmetic expressions, like when moving from Horner's rule to Estrin's rule [Kuc77]. Now, one can think that this set of rules is quite restrictive. Indeed, adding new variables or changing the set of variables by some precomputation is not possible. Moreover, simple algebraic identities like a 2 -b 2 = (a + b) • (a -b) or a -a = 0 are not covered.

Nevertheless, our choice is motivated by two reasons:

1. Given an arithmetic expression f , the diversity in the set of the possible parenthesizations P(f ) already allows to derive interesting results.

2. We want the set P(f ) to be nite, so that an exhaustive analysis of it makes sense.

To handle an identity like a -a = 0, we need a rule in order to go from 0 to a -a. But this kind of rule can be used anywhere in order to make the size of an evaluation tree arbitrary large, and thus P(f ) would be innite. In our simple set of rules, only distributivity increases the size of a tree, but it also pushes down the multiplications so that we cannot use this rule endlessly.

Finally, we have not considered the case of other operators here. When working within a eld K, we may want to use division. We could have added a few rules for this operation, like one to go from (a + b)/c to a/c + b/c and vice versa. However, we have mainly worked on mathematical objects dened without divisions, like powers of a and polynomials. In this context, division may help (we can evaluate a 15 as a 16 /a for instance) but the relevant identity is a/a = 1, which would give us an innite set for P(f ). Another operator of interest is the fused multiply-add (FMA) which maps (a, b, c) to a • b + c. Again, it is possible to add specic rules to handle it, but its ternary nature would make things more dicult, and we have not investigated this for now.

Going from evaluation trees to evaluation schemes

Typically, computations will be carried out using a standard xed-point or oating-point arithmetic. In this context, the only rules that still hold among the rewriting rules mentioned above are the commutativity of + and the commutativity of × [MBdD + 10, 2.4]. Applying any other rule may lead to a dierent numerical result.

We are actually interested in the potentially numerically distinct evaluations of a given arithmetic expression f . For u, v ∈ P(f ), let us note u ≡ v when one can go from u to v only by applying commutativity of + and ×. Then, what we want to consider is the set of equivalence classes for the relation ≡ in P(f ), which we will denote by S(f ) = P(f )/≡.

The eect of commutativity on an ordered binary tree is to swap the two children of a given internal node. Thus, considering equality modulo ≡ means that the order of the children in our trees does not matter. Therefore, one way to deduce S(f ) from P(f ) is to turn all the ordered binary trees in P(f ) into unordered binary trees and to keep only one occurrence of each tree obtained. Notice that, in terms of SLPs, going from P(f ) to S(f ) means that we do not mind about the order of the operands for each operation in the sequence forming the SLP.

Figure 5.2 illustrates how to go from the arithmetic expression a 0 + a 1 + a 2 to all its evaluation schemes. If we read this expression with left-associativity for + in mind, we will obtain a rst ordered binary tree for the evaluation a 0 + a 1 + a 2 , which is drawn in blue in the gure. Then, we apply commutativity of + (rule r 1 ) and associativity of + (rule r 3 ) as much as we can, so as to get a set of ordered binary trees closed by these rules 3 , that is, the set P(a 0 + a 1 + a 2 ) of all parenthesizations for a 0 + a 1 + a 2 . Then, we compute the equivalence classes in P(a 0 + a 1 + a 2 )/≡ = S(a 0 + a 1 + a 2 ). We obtain the three classes represented in dashed boxes, that is, the three evaluation schemes for our expression a 0 + a 1 + a 2 . 

a 0 + a 1 + a 2 . + + a 0 a 1 a 2 + a 2 + a 0 a 1 + + a 1 a 0 a 2 + a 2 + a 1 a 0 r 1 r 1 r 1 r 1 + a 0 + a 1 a 2 + a 0 + a 2 a 1 + + a 1 a 2 a 0 + + a 2 a 1 a 0 r 1 r 1 r 1 r 1 + + a 0 a 2 a 1 + a 1 + a 0 a 2 + + a 2 a 0 a 1 + a 1 + a 2 a 0 r 1 r 1 r 1 r 1 r 3 r 3 r 3 r 3 r 3 r 3
Note that it was important to allow commutativity for + in a rst step before reducing modulo ≡. Indeed, we would never have gone from the initial ordered tree in blue to the dashed box in red at Figure 5.2 using only associativity. Therefore, we would have missed the evaluation scheme corresponding to this box.

Decompositions and subexpressions for an arithmetic expression

One advantage of representing evaluation schemes as binary trees lies in the fact that the inductive nature of trees helps to think in a divide-and-conquer way. Thus, a complex 3 There is no multiplication, so that the other rules could never be applied. scheme can be viewed as a binary operation on two simpler schemes, and so on until we arrive at a leaf corresponding to one of the variables within the initial arithmetic expression. This is summarized by the following characterization of evaluation schemes: Denition 5.3. Given an arithmetic expression f , an evaluation scheme s for f is:

• either a single leaf. In this case, f is a variable and s is therefore its unique evaluation scheme. In the following, we will call such a scheme a trivial scheme, and we will usually speak about the variable itself instead of its scheme;

• or an unordered binary tree with a root labelled with an operator ∈ {+, ×} and two (potentially equal) sons s 1 and s 2 . In this case, we will speak about a non-trivial scheme.

Moreover, in the second case, we can completely dene s by the pair ( , {s 1 , s 2 }). In the sequel, such a pair will be referred to as the decomposition of the scheme s.

Notice that we used a set of schemes in this denition of decomposition. Indeed, evaluation schemes are unordered binary trees, and using a set helps to have no order between s 1 and s 2 since {s 1 , s 2 } = {s 2 , s 1 }.

Now, let us generalize this concept of decomposition to arithmetic expressions. A given evaluation scheme s being an unordered binary tree with operators at its internal nodes and variables at its leaves, we can associate a mathematical expression to it. More precisely, we can dene inductively the semantic ν(s) of the scheme s by:

• if s is a leaf, then ν(s) = x where x is the variable labelling the leaf;

• otherwise, s = ( , {s 1 , s 2 }) and ν(s) := ν(s 1 ) ν(s 2 ).

Thus, this function ν allows us to go back from an evaluation scheme to the underlying arithmetic expression. With it, we can extend the concept of decomposition to arithmetic expression in the following way:

Denition 5.4. Let f be an arithmetic expression not reduced to a single variable. For every evaluation scheme s = ( , {s 1 , s 2 }) for f , we can associate the pair ( , {ν(s 1 ), ν(s 2 )}).

Such a pair will be called thereafter a decomposition of f , and we will denote the set of all the decompositions for f by

D(f ) := ( , {ν(s 1 ), ν(s 2 )}), ( , {s 1 , s 2 }) = s ∈ S(f ) .
Moreover, whenever f is a variable, we dene D(f ) := ∅ and we say that f is trivial.

If we consider the example of Figure 5.2, the decomposition associated to the scheme corresponding to the yellow box for instance is +,

a 2 , + a 0 a 1
. Thus, we deduce the decomposition (+, {a 2 , a 0 + a 1 }) for a 0 + a 1 + a 2 . By proceeding in the same way with the two other evaluation schemes for a 0 + a 1 + a 2 , we obtain all its decompositions:

D(a 0 + a 1 + a 2 ) = +, {a 2 , a 0 + a 1 } , +, {a 1 , a 0 + a 2 } , +, {a 0 , a 1 + a 2 } .
Note that the number of decomposition for an arithmetic expression is always smaller than its number of evaluation schemes, because of the semantic abstraction performed with ν.

The set of decompositions for a given arithmetic formula f will play an important role in the sequel. Indeed, this is the key that will allow us to perform a divide-and-conquer analysis of the set of evaluation schemes S(f ), since it turns a formula f into one operand with two smaller formulas as operands. These formulas can be analyzed recursively in order to deduce some relevant information of S(f ). Because of the fact that f usually has several decompositions, and because of the successive recursive calls we may perform, many formulas are analyzed when we want some information on S(f ). This leads us to introduce the following denition:

Denition 5.5. Let f be an arithmetic expression. An arithmetic expression g is a subexpression of f if there exists an unordered binary tree s such that ν(s) = g and s is a strict subtree of at least one element of S(f ).

For instance, if we go back to the example of a 0 + a 1 + a 2 from Figure 5.2 and look at all the arithmetic expressions that we can form from the strict subtrees of the 3 evaluation schemes, we obtain the following list of subexpressions: a 0 , a 1 , a 2 , a 0 +a 1 , a 0 +a 2 , a 1 +a 2 .

Roughly speaking, the subexpressions of an expression f are all the arithmetic expressions that are computed as intermediate quantities in the evaluation schemes in S(f ). Thus, we may need to consider all of them to analyze S(f ). Note that, because we only consider strict subtrees, f cannot be a subexpression of itself. Moreover, a variable has no subexpression since its only scheme is a leaf, which has no strict subtree.

Algorithmic analysis of the set of evaluation schemes

Now that we have delimited the set S(f ) of all evaluation schemes for a given arithmetic expression f , we intend to address issues like counting the number of schemes in S(f ), or nding an optimal scheme according to a given criteria. Our approach will consist in elaborating for each problem some generic algorithm, implementing it in C++, and testing it on one or several expressions.

As we have seen in the previous section, the concept of decomposition allows us to adopt a divide-and-conquer point of view, and thus to design divide-and-conquer analysis algorithms. The analysis of S(f ) can then be summarized as going through all the decompositions of f , doing recursive calls, and deducing some result from what has been computed recursively. Since we have to deal with several arithmetic expressions recursively, our algorithm should be designed so as it can handle a family of arithmetic expressions F. This section discusses the properties that must be satised by F, presents several examples of families of arithmetic expressions, and ends up with some practical considerations.

Requirements for a family of arithmetic expressions

In order for a divide-and-conquer analysis of S(f ) to work for any f ∈ F, the family of arithmetic expressions F should however satisfy a few properties:

1. We have to guarantee that any subexpression g of f ∈ F is also in F in order to have a correct input while doing a recursive call.

2. We need a partial order ≺ F such that for each f, g ∈ F, g is a subexpression of f implies g ≺ F f . This is crucial to ensure the termination of the analysis: we need to perform recursive call on "smaller" objects. Notice that one cannot construct an innite decreasing sequence for ≺ F because subexpressions come from strict subtrees and, as we start with nite trees, we will end up in nite time with a leaf (that is, a tree without subtrees).

3. In fact, the partial order of the previous point is not sucient. Storing eciently the results of all the recursive calls requires that we provide a total order < F on F. As before, we can see that (F, < F ) has a minimum. Notice also that one can dene the equality = F from < F (f = F g ⇔ ¬(f < F g) and ¬(g < F f )). This was not possible with the partial order ≺ F because of incomparable elements.

4. Finally, this approach can be applied only if we have a way to compute the set D(f ) of all the decompositions for a given f ∈ F. Therefore, we must suppose that we have a mapping, named decompose thereafter, that returns for every f ∈ F the list of all the decomposition for f . Note that, if we have a total order < F as in point 3, we can lighten the notation for the decompositions of an expression f . In the sequel, we will write such decompositions ( , f 1 , f 2 ) instead of ( , {f 1 , f 2 }), with the implicit hypothesis that f 1 ≤ F f 2 .

Examples of arithmetic expression families

Let us see a few families of arithmetic expressions which satisfy the requirements stated in the previous section.

Powers of a

One easy example is the family of the powers of some variable a, that is, F = {a n , n ∈ N >0 }:

• Any element a n of F can be represented eciently since the whole information lies in its exponent n.

• We can naturally extend the natural order < on N >0 to F by saying that x i < F x j if and only if i < j,

• Given n ∈ N >1 , the decompositions for x n will all have the form (×, x i , x j ), where 1 ≤ i ≤ j ≤ n -1 and i + j = n. Hence, we can easily generate D(x n ).

• Finally, we can deduce from the decompositions of x n that its subexpression set is {x i , 1 ≤ i ≤ n -1}, which is formed by all the expressions less than x n .

Therefore, F = {a n , n ∈ N >0 } is a suitable family of arithmetic expressions. In a same way, if we are interested in a particular power a N with N > 1, we can also consider the family {a n , 1 ≤ i ≤ N } with the encoding and total order as above.

Sums of n + 1 variables

Suppose that we have a sequence (a i ) i∈N of variables and that we want to evaluate n i=0 a i for some n ∈ N. Subexpressions for this sum will be of the form i∈I a i with I some subset of {0, . . . , n}. Thus, let us consider the family F = { i∈I a i , I ⊂ N nite}.

• An element f ∈ F can be represented by its support (the set of indices for all the variables that appear in f ). This support I can in turn be encoded as a non-negative integer σ(I) = i∈I 2 i .

• We can use the natural order in N to dene the order < F . Note that the subexpressions of f = i∈I a i for a given nite I ⊂ N are the sums with a support J I, which are less than f with respect to < F since σ(J) < σ(I).

• The decompositions for f = i∈I a i will all be of the form (+, j∈J a j , k∈K a k ) with4 J K = I and σ(J) < σ(K) (we cannot have equality here because each variable in f will only appear on one side of the + operator). If we denote by i M the largest number in I and let I := I \ {i M }, we can generate all the pairs (J, K) corresponding to decompositions for f by enumerating all the bipartitions (J, K ) of I with J = ∅ and setting K = K ∪ {i M }. Indeed, i M being the largest number in I, it has to belong to K to ensure that σ(J) < σ(K), and then J can be any non-empty subset of I . Therefore, F = { i∈I a i , I ⊂ N nite} is a suitable family of arithmetic expressions.

Univariate polynomials

Finally, let us consider the case of univariate polynomials, which is a bit more sophisticated. The main mathematical object of interest is p(x) = n i=0 a i x i . Among the subexpressions of p(x), we have, like for the sums of variables, expressions of the form i∈I a i x i where I {0, . . . , n}. Moreover, we can nd two other types of subexpressions for p(x):

• all the powers x i with 1 ≤ i ≤ n,
• sums i∈I a i+k • x i with I {0, . . . , n} and 1 ≤ k ≤ n -max i∈I i.

These subexpressions appear when we apply factorization (rule r 6 page 95) to binary trees for the evaluation of p(x).

Therefore, the family to consider in this case is

F = {x n , n ∈ N >0 }∪{ i∈I a i+k • x i , I ⊂ N nite, k ∈ N}.
• We can encode some f ∈ F with a pair of non-negative integers (m f , n f ):

1. m f will represent the support for the sum. Having m f = 0 will mean that f is actually a positive power of x. Otherwise, f = i∈I a i+k • x i for some nite set I and we dene m f := σ(I) = i∈I 2 i .

2. n f will be either the positive exponent n of f = x n when m f = 0, or the non-negative integer k used to shift the indices in a sum (or, equivalently, the power of x which has already been factored out of f ).

• Then, we can dene < F such that g < F f if and only if (m g , n g ) < lex (m f , n f ), where < lex is the lexicographical order on N 2 . Let us check that this order is compatible with the subexpressions: * Subexpressions for x n are x i with 1 ≤ i ≤ n -1. This case is handled correctly since (0, i) < lex (0, n).

* A power x i is always smaller than a monomial or a sum of monomials since (0, •) < lex (σ, •) when σ > 0. This covers the case of powers being subexpressions of sums.

* Finally, g = i∈I a i+k • x i is a subexpression of f = j∈J a j+k • x j when:

1. k ≥ k (we may have factored by some power of x), and 2. I + (k -k ) := {i + k -k , i ∈ I} ⊆ J (we may have removed some monomials).

Note that we cannot have both equalities here, since this would imply g = f and f is not a subexpression of itself. This implies that m g = σ(I) < σ(J) = m f since, either k > k and σ(I) ≤ 2 k -k σ(J) < σ(J), or k = k and we cannot have the equality in the second part so that I J, hence σ(I) < σ(J). Therefore, g < F f since (m g , k) < lex (m f , k ).

• It remains to see how one can compute the set of decompositions for all f ∈ F.

We have already dealt with the case where f = x n in the rst example (even if we need to adjust the encoding for this example). As for f = i∈I a i+k • x i , we get two types of decompositions:

* First, we can split the sum into two parts as in the second example. Such decompositions are of the form (+, q(x), r(x)) where every monomial from p(x) ends up either in q(x), or in r(x), except a i M x i M which has to be in r(x) to ensure that q(x) < F r(x). Generating these decompositions can be done in the same way as we did for sums in the previous example.

* Second, we can factor by some power x r with 1 ≤ r ≤ min i∈I i. The corresponding decompositions are (×, x r , i∈I-r a i+(k+r) • x i with I -r := {i-r, i ∈ I}, and their generation is not an issue.

Practical considerations

Let us rst introduce a useful notation:

Notation 5.1. Given a nite set X, we will denote the subsets of X of size 1 or 2 by P 2 (X) := {S ⊂ X, 1 ≤ |S| ≤ 2}, where |S| denotes as usual the cardinality of the set S.

This notation allows us to be more precise on the nature of the decompositions for a non-trivial arithmetic expression f ∈ F. Indeed, since we suppose that any subexpression g of f has to be in F, all the decompositions ( , {f 1 , f 2 }) (or ( , f 1 , f 2 ) with f 1 ≤ F f 2 ) for f are mathematical objects belonging to the set {+, ×} × P 2 (F).

We can then summarized the requirements pointed out in Section 5.2.1 as follow:

Assumption 5.1. In the sequel, each time we speak about a family of arithmetic expressions F, we will assume that we have at our disposal:

• a reasonable way to encode the elements of F,

• a total order < F on F,

• a map decompose : F → P {+, ×} × P 2 (F)

such that:

1. For all f ∈ F and subexpression g of f , g is also in F and g < F f . In other words, F is closed with respect to the concept of subexpression, and any expression is always greater than any of its subexpressions.

2. For all f ∈ F, decompose(f ) is the set of all the decompositions for f and can be computed algorithmically.

In practice, the family F is given in the form of a class providing two methods < and decompose. Elements of F will then be instances of this class. An example of C++ interface for such a class is shown in Figure 5 Here, decomp<F> is a structure encoding objects in D(F) = {+, ×} × P 2 (F).

In the sequel, we will introduce several algorithms to generate schemes in S(f ), count them or nd optimal schemes according to a given criteria. The input of one such algorithm will always contain some value f ∈ F. In practice, our C++ implementation of these algorithms are parameterized by a class F using the template mechanism, so that they may be used for any family of arithmetic expressions F as in Assumption 5.1, as soon as one provides a C++ class F for it.

Exhaustive generation of the evaluation schemes

The rst thing we may want to do with evaluation schemes is to generate them. In this section, we will present a generalized version of the algorithm introduced in [Rev09, 6.1] to compute the evaluation schemes for univariate and bivariate polynomials. Contrary to the original version which was based on dynamic programming [CLRS09, 15], we present here a divide-and-conquer algorithm (Algorithm 5.1) using the memoization technique [START_REF] Michie | memo functions and machine learning[END_REF]. With memoization, we do not need to have some extra knowledge on the pattern of the successive recursive calls, as it is the case for dynamic programming. Therefore, it is more suited to deal with families of arithmetic expressions in all generality.

Algorithm 5.1: Generate Input : f ∈ F Output : S = set of all the evaluation schemes for f Parameter: a hash table h : F → S(F), initially empty, where the results obtained during recursive calls will be stored if h[f ] is dened then return h[f ] // the result was already computed Proof. Let us prove the correctness of Algorithm 5.1 by complete induction on f ∈ F.

1 ← decompose(f ) 2 if = ∅ then S ← {f } // f is a variable 3 else S ← ∅ 4 foreach ( , f 1 , f 2 ) ∈ do 5 S 1 ← Generate(f 1 ) 6 if f 1 = f 2 then 7 for {s 1 , s 2 } ∈ P 2 (S 1 ) do S ← S ∪ s 1 s 2 8 // for any set in P 2 (S 1 ) of size 1, we set s 1 = s 2 . else 9 S 2 ← Generate(f 2 ) 10 for (s 1 , s 2 ) ∈ S 1 × S 2 do S ← S ∪ s 1 s 2 11 h[f ] ← S
When f admits no decomposition (in particular, when f is the minimum for (F, < F )), f is a variable. In this case, the only evaluation scheme for f is the leaf labelled with f and the algorithm is correct.

Let f ∈ F be a non-trivial arithmetic formula such that Generate(g) is correct for all g < F f . Since f is non-trivial, all its evaluation schemes have the shape ( , {s 1 , s 2 }) where each s i , i ∈ {1, 2}, is a scheme for some subexpression f i = ν(s i ) of f . We may assume without loss of generality that f 1 ≤ F f 2 , so that the corresponding decomposition for f of the scheme ( , {s 1 , s 2 }) can be written ( , f 1 , f 2 ) ∈ D(f ). Therefore, the set of evaluation schemes we are aiming at is:

S(f ) = ( ,f 1 ,f 2 )∈D(f ) s 1 s 2 ∈ S(f ), ν(s 1 ) = f 1 and ν(s 2 ) = f 2 = ( ,f 1 ,f 2 )∈D(f ) s 1 s 2 ∈ S(f ), s 1 ∈ S(f 1 ) and s 2 ∈ S(f 2 ) = ( , f 1 , f 2 ) ∈ D(f ) f 1 = F f 2 s 1 s 2 ∈ S(f ), s 1 ∈ S(f 1 ) and s 2 ∈ S(f 1 ) ( , f 1 , f 2 ) ∈ D(f ) f 1 < F f 2 s 1 s 2 ∈ S(f ), s 1 ∈ S(f 1 ) and s 2 ∈ S(f 2 ) .
Algorithm 5.1 considers all the decompositions for f with its foreach loop, and then adds evaluations schemes to the variable S depending on the equality of f 1 and f 2 . This approach matches the last part of the aforementioned equation. What remains is to show that, in both cases, the algorithm computes accurately and without redundancy the set of evaluation schemes corresponding to the current decomposition for f . Let us x a decomposition ( , f 1 , f 2 ) for f with f 1 < F f 2 . Because f i < F f for i ∈ {1, 2}, the inductive hypothesis implies that S i is actually S(f i ). What we have to prove in this case is that

γ : S(f 1 ) × S(f 2 ) → s 1 s 2 ∈ S(f ), s 1 ∈ S(f 1 ) and s 2 ∈ S(f 2 ) (s 1 , s 2 ) → s 1 s 2
is bijective. This function is obviously surjective. Suppose now that 5 γ(x, y) ≡ γ(x , y ).

Because f 1 = F f 2 , we cannot have x ≡ y . Hence, we deduce that x ≡ x and y ≡ y so that (x, y) and (x , y ) correspond to the same element in S(f 1 ) × S(f 2 ). Therefore, γ 5 Remember from Section 5.1.2 that evaluation schemes are equivalence classes for the relation ≡, that is, equality modulo commutativity.

is also injective, so it is bijective and we can conclude that Algorithm 5.1 is correct and without redundancy in this case.

Suppose now that we have a decomposition ( , f 1 , f 2 ) for f where f 1 = F f 2 . This time, we know by induction that S 1 , which is the result of the unique recursive call, is equal to S(f 1 ), and we have to show that

γ : P 2 (S(f 1 )) → s 1 s 2 ∈ S(f ), s 1 ∈ S(f 1 ) and s 2 ∈ S(f 1 ) {s 1 , s 2 } → s 1 s 2
is bijective. As we consider all singletons and all pairs of schemes for f 1 within P 2 (S(f 1 )), γ is surjective. Next, let us assume that γ ({x, y}) ≡ γ ({x , y }) for some x, y, x , y . We have either x ≡ x and y ≡ y , or x ≡ y and y ≡ x , so we deduce that x, y ∈ {x , y } (that is, {x, y} ⊂ {x , y }) and that x , y ∈ {x, y} (that is, {x , y } ⊂ {x, y}). Therefore, {x, y} = {x , y }, so that γ is also injective, and Algorithm 5.1 is correct and without redundancy in this case too.

The cost of this algorithm highly depends on the nal number of evaluation schemes, and we will see in the next chapter that this number can be quite large even for relatively small expressions like a degree-6 polynomial (see Section 6.2.2). Therefore, Generate is usually not a practical algorithm. However, it plays a signicant theoretical role since algorithms that we will introduce in the sequel are heavily based on this one and share its skeleton. Moreover, algorithm correctness proofs in Chapters 6 and 7 will be much simpler because we will be able to reuse the work we have done here to show that Generate(f) actually returns all the evaluation schemes for f and that each scheme was only considered once.

Remark also that we presented here a complete version of the algorithm, with explicit memoization through the use of the hash table h as a parameter. For the sake of simplicity, the following algorithms will be written without the extra lines due to memoization.

However, this technique will still be used implicitly and when we will discuss the costs of our algorithms.

How to model an optimization criterion

The main issue with the evaluation of some arithmetic expression is to nd out one or several good evaluation schemes to perform it. Of course, the preferred schemes depend heavily on the context. We may want the scheme to be fast on some architecture with parallelism, or very accurate, or even with as few operations as possible. This section introduces a way to tackle these goals through the concept of measure.

Modelling an optimization criterion with a measure

The basic idea in order to compare schemes and to choose the best ones is to associate to every scheme some value, which will reect its quality. This leads us to the following denition:

Denition 5.6. Given a family of arithmetic expressions F, we will call measure any function ϕ : S(F) → T , where (T, < T ) is a totally ordered set.

Here, we choose to allow any return type T for a measure as soon as we have a total order on T , which is mandatory in order to be able to compare the quality of schemes. While (N, <) is a usual choice for T , it can be more relevant to consider more sophisticated sets for two reasons: rst, to t better with what we want to model (see Example 2 below); second, for eciency (see Example 3 below).

While a measure as in the above denition is sucient in order to compare schemes, it does not t well with our idea of analyzing schemes in a divide-and-conquer way. For this purpose, we need to express the measure of a non-trivial scheme s = ( , {s 1 , s 2 }) as a function of and the measures for s 1 and s 2 . Thus, we introduce the following denition: Denition 5.7. We say that a measure ϕ : S(F) → T is recursively computable when there exists a function ρ : {+, ×} × T × T → T such that for every non-trivial scheme s = ( , {s 1 , s 2 }), we have:

ϕ(s) = ρ( , ϕ(s 1 ), ϕ(s 2 )).
Notice that ρ(a, b, c) must be symmetric with respect to b and c since we can swap s 1 and s 2 in the decomposition of s.

Not all measures are recursively computable, as we will see in the next section. However, whenever it is the case, the measure ϕ is completely determined as soon as we have its values on variables and the corresponding function ρ. Figure 5.4 shows what a C++ interface for a recursively computable measure may look like. Notice that, in addition to ρ (method rho) and the values on variables (available through the method phi), we also export the return type T along with a total order for it (available through M::Compare()).

These elements are indeed part of the denition of our measure.

Examples of measures

Let us see three examples of measures that we will use to illustrate some of the algorithms in the next chapters.

Latency on unbounded parallelism

Given an arithmetic expression f , one of the most simple criteria we may want to optimize is the depth of an evaluation scheme for f . This depth is dened as the length of the longest past from the root to any leaf in the DAG corresponding to the evaluation scheme.

Actually, operators + and × may have dierent costs (like in the ST231 processor). Hence, instead of the length, it becomes more relevant to consider the sum of the costs related to the internal nodes from the root to a leaf. The maximum sum then corresponds to the latency 6 of the evaluation scheme, and our goal is to nd the minimal feasible latency // some useful internal variables }; among all the evaluation schemes for f . Notice that depth is handled as the special case where the costs for + and × are both equal to 1.

Let us denote by L(s) the latency for the scheme s and by C the cost for operator ∈ {+, ×}, and show that latency is a recursively computable measure. This is a consequence of the following facts:

• L(

s 1 s 2 ) ≤ max{C + L(s 1 ), C + L(s 2 )}.
Indeed, a path from to a leaf is either followed by a path in s 1 , whose cost is at most C + L(s 1 ), or followed by a path in s 2 , whose cost is at most C + L(s 2 ).

• L(

s 1 s 2 ) ≥ C + L(s i ) for i ∈ {1, 2}.
There exists for i ∈ {1, 2} a path p i in s i whose cost is L(s i ), and putting in front of p i makes a path in s of cost C + L(s i ).

Therefore, we can conclude that:

L(

s 1 s 2 ) = C + max{L(s 1 ), L(s 2 )}.
(5.1)

This last equation tells us that ρ( , a, b) := C + max{a, b} is an appropriate function to compute L(•) recursively.

Accuracy

Another interesting property for an evaluation scheme is its accuracy. The true accuracy, dened as the maximum absolute or relative error entailed by the evaluation among all the possible inputs, is usually out of reach. A classical way to tackle accuracy issues is then to use abstractions in order to get a (possibly pessimistic) bound on the error.

We can cite a recent work of Martel [Mar09a,[START_REF] Martel | Program transformation for numerical precision[END_REF], where interval arithmetic [Hig02, 26.4] is used to achieve this abstraction. Any arithmetic expression, evaluated using oating-point arithmetic with rounding to nearest (RN), is associated to two intervals (one to bound the possible values at execution, and one to bound the corresponding error). These pairs of intervals (denoted in bold font hereafter) are computed inductively using the following rules [Mar09a, Figure 2]:

• For each variable, the interval of values has to be provided by the user, and the corresponding error is set to 0 = [0, 0].

• We associate v 1 + v 2 , ε 1 ⊕ ε 2 ⊕ 1 2 ulp(v 1 + v 2 ) to f = f 1 + f 2 , where: * (v i , ε i )
is the pair of intervals associated to f i for i ∈ {1, 2}; * operator + indicates that computations are carried out with rounding to nearest, while operator ⊕ is used for computations with rounding down and up so as to ensure that the inclusion property holds:

∀a ∈ a := [a, a], b ∈ b := [b, b], a + b ∈ a ⊕ b; * ulp([x, x]
) bounds the actual error due to rounding and is dened by [-y, y] with y = max{ulp(|x|), ulp(|x|)} and ulp(x) standing for the unit in the last place, that is, the weight of the least signicant bit of x.

Notice that it is mandatory to use operator ⊕ (and not +) for the error part in order to get a correct bound.

• Similarly, we associate to f = f 1 × f 2 the pair

v 1 × v 2 , ε 1 ⊗ v 2 ⊕ v 1 ⊗ ε 2 ⊕ ε 1 ⊗ ε 2 ⊕ 1 2 ulp(v 1 × v 2 ) ,
where (v i , ε i ) is again the pair of intervals associated to f i for i ∈ {1, 2}, and ⊗ is dened so that the corresponding inclusion property holds.

Note that this way of measuring accuracy actually corresponds to a recursively computable measure in our model. Indeed, each expression f is associated to an object ϕ(s) ∈ T , where T is the set of pairs of intervals. Moreover, the inductive rules for + and × mentioned above allow us to compute ϕ(f ) recursively. Finally, a relevant total order for < T can be dened by looking at the magnitudes and widths of the error and value parts. We will present with more details in Section 8.1.2 a model to analyze accuracy, which is an adaptation of the one mentioned here to t with the xed-point arithmetic available on the ST231 processor.

Number of multiplications

In this last example, we consider the number of multiplications as our optimization criterion. We can easily dene ϕ : S(f ) → N such that ϕ(s) returns the number of internal nodes labelled with operator × in the DAG 7 associated to s. However, this denition is a typical example of a measure not having the property of recursive computability. A counterexample is illustrated in Figure 5.5. Looking at the scheme in Figure 5.4(a), we want to set ρ(×, 2, 2) := 3, since the left and right subschemes have both two multiplications, and the whole scheme has three multiplications (the red, blue, and black ones). Figure 5.5: The number of multiplications in evaluation schemes is not recursively computable.

In this case, a solution is to ask for a more precise measure. Indeed, if we dene T := P S(F) and ϕ : S(F) → T such that ϕ(s) returns the set of all the multiplications (given as the schemes below each internal node labelled with ×), we can easily cope with the issue of common subexpressions.

Then, if we dene ρ as:

ρ : S(F) × {+, ×} × T × T → T (s, +, a, b) → a ∪ b (s, ×, a, b) → {s} ∪ a ∪ b
we can compute ϕ recursively, from which the number of multiplications can be deduced.

Let us make a few remarks about this solution:

1. First, function ρ needs to have access to the current scheme s = ( , {s 1 , s 2 }) in addition to , ϕ(s 1 ), and ϕ(s 2 ). While this is slightly more complicated than in the denition of recursive computability, it is not a real issue in practice.

2. Second, manipulating sets of schemes is more costly than working with integers.

Hence, using this new measure will yield slower algorithms than if we used the measure for latency or accuracy mentioned in the previous two examples.

3. Third, we ask for a total order for T = P S(F) , but the only natural order on T , which is the inclusion, is a partial order. To get a total order compatible with the number of multiplications, we have to compare the cardinalities, but we still need to add some arbitrary order on sets which share the same cardinality (this can always be done since these are nite sets).

While the situation is not as nice as for latency or accuracy, we will be able to derive interesting results with this measure in Chapter 7. Furthermore, a variation of this measure will be used successfully in Sections 6.4.2 and 8.2.

Generation under constraints

Now that we have a way to evaluate the quality of evaluation schemes, let us see a variant of the generation algorithm introduced in Section 5.3, where we generate only schemes whose measure achieves a certain bound provided by the user.

Here, we x some family of arithmetic expressions F and a measure ϕ : S(F) → T . We assume that the total order < T on T is chosen so that a lower value according to < T means a better quality. The problem is therefore to generate all the schemes s such that ϕ(s) is less than or equal to some bound B ∈ T . This bound B is therefore a new input to our algorithm, and we will need to update it appropriately before each recursive call. Such an update requires that we have a good insight into the evolution of the measure when we decompose a formula, and it will be represented by a function update: D(F) × T → T . For instance, supposing we are interested in the number of multiplications, we can dene:

update : D(F) × T → T (+, f 1 , f 2 ), b → b (×, f 1 , f 2 ), b → b -1
meaning that, whenever the operator within the decomposition is ×, we consume one multiplication. This function update, which will be a parameter to our algorithm, has also to be provided by the user.

The result for this approach is Algorithm 5.2. The name GenerateWithHint refers to the fact that we use the measure ϕ (along with adaptive bounds) as a hint about which scheme is worth generating. Theorem 5.2. Provided that for all evaluation scheme s = ( , s 1 , s 2 ) where s 1 and s 2 are schemes for f 1 and f 2 , respectively, and for all b ∈ T , we have

ϕ(s) ≤ T b ⇒ ϕ(s 1 ) ≤ T b ∧ ϕ(s 2 ) ≤ T b ,
where b := update(( , f 1 , f 2 ), b), Algorithm 5.2 generates all the evaluation schemes s for f such that ϕ(s) ≤ T B. Moreover, each time it tries to add an evaluation scheme to the set r, this scheme is actually a new one for f (that is, unions at lines 10 and 14 are disjoint).

Proof. Let us prove by complete induction on f ∈ F that for all B ∈ T , a call to GenerateWithHint(f, B) returns the set of all the evaluation schemes s for f such that ϕ(s) ≤ T B.

When f admits no decomposition (in particular, when f is the minimum for (F, < F )), f is a variable. In this case, the only evaluation scheme for f is f itself, and the algorithm correctly returns, for any B, the singleton {f } if ϕ(f ) ≤ T B and an empty set otherwise.

Let f ∈ F be a non-trivial arithmetic expression, B ∈ T be some bound, and suppose that the induction hypothesis holds for all g < F f . As f is non-trivial, any scheme s for f must have the following shape: ( , s 1 , s 2 ) where is some operator, and s 1 (resp. s 2 ) is a scheme for f 1 < F f (resp. f 2 < F f ). 

Output

: The set r of all the evaluation schemes s for f such that ϕ(s)

≤ T B. ← decompose(f ) 1 r ← ∅ 2 if = ∅ and ϕ(f ) ≤ T B then r ← f 3 else 4 foreach ( , f 1 , f 2 ) ∈ do 5 B ← update(( , f 1 , f 2 ), B) 6 r 1 ← GenerateWithHint(f 1 , B ) 7 if f 1 = f 2 then 8 for {s 1 , s 2 } ∈ P 2 (r 1 ) do 9 if ϕ s 1 s 2 ≤ T B then r ← r ∪ s 1 s 2 10 else 11 r 2 ← GenerateWithHint(f 2 , B ) 12 for (t 1 , t 2 ) ∈ r 1 × r 2 do 13 if ϕ s 1 s 2 ≤ T B then r ← r ∪ s 1 s 2 14 return r 15
The set we want to generate is:

{s ∈ S(f ), ϕ(s) ≤ T B} = ( , f 1 , f 2 ) f 1 = F f 2 s ∈ S(f ), s = s 1 s 2 with {s 1 , s 2 } ∈ P 2 (S(f 1 )) such that ϕ(s) ≤ T B ( , f 1 , f 2 ) f 1 < F f 2 s ∈ S(f ), s = s 1 s 2 with (s 1 , s 2 ) ∈ S(f 1 ) × S(f 2 ) such that ϕ(s) ≤ T B .
The hypothesis in our theorem tells us that any s = ( , {s 1 , s 2 }) such that ϕ(s) ≤ T B, s 1 and s 2 must satisfy ϕ(s 1 ) ≤ T B and ϕ(s 2 ) ≤ T B . That is to say, if we seek for a scheme s whose value according to ϕ is less than B, we only need to look at subschemes s 1 and s 2 whose values by ϕ are less than or equal to B . But the induction hypothesis Table 5.1 provides a summary of this study. The rst terms of four sequences are presented. While the minimal number of multiplications in order to evaluate a n was already known (see [START_REF] Knuth | of The Art of Computer Programming[END_REF]4.6.3] and the references therein) and appears in the On-Line Encyclopedia of Integer Sequences8 as sequence A003313, the three other sequences are new ones that we have added to the encyclopedia:

• A186435(n) gives the number of schemes achieving the minimal number of multiplications.

• A186437(n) is the maximal number of squarings that we can extract from an evaluation scheme for a n with a minimal number of multiplications. This sequence coincides with log 2 (n) for many values of n. Nevertheless, there are values were A186437(n) is one less than log 2 (n) , the rst ones being n = 23, 39, 43, 46, 75, . . . .

• Finally, A186520(n) gives the number of evaluation schemes for a n that achieve both the minimal number of multiplications and the maximal number of squarings therein. It can be noted that the proportion of such schemes among the schemes with a minimal number of multiplications (that is, the ratio between A186520(n) and A186435(n)) varies a lot. Obviously, it is equal to 1 when n is a power of 2, but it may become quite small, as we can see with n = 79, where we get a ratio of 1/330 ≈ 0.003. In this case, choosing an evaluation scheme for a 79 that only minimizes the number of multiplications will likely be non-optimal in a context where squaring is faster than a general multiplication. Chapter 6

On the combinatorics of evaluation schemes

In this chapter, we will focus on combinatorics issues. First, we explain how to adapt the generation algorithm, introduced in the previous chapter, in order to count the number of evaluation schemes for a given arithmetic expression. This gives us a counting algorithm that we apply to various classes of arithmetic expressions. Thus, we discover two new sequences that we have added to the On-Line Encyclopedia of Integer Sequences. Then, we present some asymptotic results, and more precisely we give asymptotic bounds on the number of schemes for polynomials. Finally, we discuss how, given an additional measure ϕ, we can perform a ner counting. For that purpose, we introduce two new algorithms: the rst one allows us to count the number of schemes with respect to ϕ; and the second one focuses on counting the number of schemes whose value by ϕ is below a given threshold.

Counting evaluation schemes

Suppose that we have a class F satisfying the requirements exposed in Section 5.2.3. The problem is then to design an algorithm that returns for every f ∈ F the corresponding number of evaluation schemes. The idea is to proceed as in Algorithm 5.1, but we settle here for counting how many schemes we encounter instead of actually creating and adding them in a set. What results is Algorithm 6.1.

Before we prove the correctness of Algorithm 6.1, let us state a simple property on P 2 (X) that will be useful for the sequel:

Property 6.1. If X is nite then |P 2 (X)| = |X| • (|X| + 1) 2 .
Proof. If X is nite, it admits |X| subsets of size 1, and

|X| 2 = |X| • (|X| -1) 2
subsets of size 2. Adding these two terms gives the result.

We can now tackle the issue of correctness: Theorem 6.1. Algorithm 6.1 is correct.

Algorithm 6.1: Count

Input : f ∈ F Output: n = number of evaluation schemes for f ← decompose(f ) 1 if = ∅ then n ← 1 2 else 3 n ← 0 4 foreach ( , f 1 , f 2 ) ∈ do 5 if f 1 = f 2 then n ← n + Count(f 1 ) • (Count(f 1 ) + 1) 2 6 else n ← n + Count(f 1 ) • Count(f 2 ) 7 return n 8
Proof. Let us proceed by complete induction on f ∈ F. If f admits no decomposition (in particular when f is the minimum for (F, < F )), it is a variable. Hence, there is one way to evaluate f , and Algorithm 6.1 is correct. Suppose now that f is not a variable, and that for all g < f , Count(g) is the number of evaluation schemes for g. We have seen in Theorem 5.1 that we encountered each scheme for f exactly once during Algorithm 5.1.

Here, instead of combining evaluation schemes with some loop like in Algorithm 5.1, Algorithm 6.1 just adds the number of schemes that would have been produced. This number for a given decomposition δ = ( , f 1 , f 2 ) depends on the equality of the two subexpressions f 1 and f 2 :

• When f 1 = f 2 ,
there is a bijection between S(f 1 ) × S(f 2 ) and the schemes of S(f ) corresponding to δ. Therefore, we have to add |S(f

1 )| • |S(f 2 )| = Count(f 1 ) • Count(f 2 ) by induction (each f i is smaller than f ).
• When f 1 = f 2 , there is a bijection between P 2 (S(f 1 )) and the schemes of S(f ) corresponding to δ. By induction, |S(f 1 )| = Count(f 1 ) and thus, we must add Count(f 1 ) • (Count(f 1 ) + 1) 2 by Property 6.1.

Let us conclude this section with a remark about the cost of Algorithm 6.1. While not explicitly written, we also use memoization in the actual implementation in order to avoid redundancy in the successive recursive calls. Thus, as the arithmetic cost in the main loop is constant, 1 the overall cost is bounded by the product of the number of distinct recursive calls by the maximum size of a decomposition . Concrete costs for dierent families of arithmetic expressions will be presented in the next section. Notice that we consider here the number of arithmetic operations and comparisons in F as the 1 We assume that elements in F can be stored eciently, so that the comparisons < F , and as a consequence = F , can be done in constant time.

cost of Count. Yet, core operations consist in basic operations on big integers. Therefore, the binary cost may be higher depending on how big these integers get.

Application examples

We have implemented the algorithm mentioned in the previous section within CGPE.

By xing one class F satisfying the constraints mentioned in Section 5.2.3, we obtain an instance of our algorithm for this class. We can then compute the number of evaluation schemes for each f ∈ F. Usually, we are more interested in a sequence (f i ) i∈N >0 of arithmetic expressions in F. In this case, we obtain an integer sequence made of the number of schemes for the f i s. In this section, we will rst see how our approach allows us to retrieve some known OEIS sequences, before dealing with new sequences.

Retrieving three already known sequences

For testing purpose, we have computed the rst terms of the following sequences of the OEIS:

• A001147(n) = number of ways to sum n + 1 variables,

• A001190(n) = number of ways to evaluate a n with a commutative non-associative multiplication,

• A085748(n) = number of ways to evaluate a•b n with a commutative non-associative multiplication.

For the sum of variables n i=0 a i , there actually exists a closed formula for the number of evaluation schemes (see Property 6.2 in Section 6.3). Therefore, it was easy to validate our implementation using this case. Yet, the cost for our approach is not so good, since it is in O(4 n ) instead of O(n) for the closed formula. Indeed, the number of recursive calls is in O(2 n ) since we have to consider all the sums i∈I a i for I ⊂ {0, . . . , n}. Moreover, the number of decompositions for a given sum is also exponential in the number of variables in this sum, which is bounded by n + 1. So it is in O(2 n ). One should note that our algorithm fails to make use of the fact that the number of evaluation schemes for a sum only depends on the number of variables (and not on the name of the variables). If we can forget all the indexes, and group together all the decompositions with the same number of variables at each side of the operator +, we obtain a more reasonable cost of O(n 2 ) (O(n) recursive calls, with O(n) groups of decompositions, and a cost of O(1) per group).

We will reuse this remark for the case of polynomials in the next section.

For sequence A001190(n) (case of a n ), it turns out that our algorithm reduces to computing the successive terms using the classical recursive formula [Eth37, page 37] along with the technique of memoization. We get O(n) recursive calls, each of them with a cost in O(n), giving us an overall cost in O(n2 ). In practice, we are able to compute the 6000 rst terms of these sequences in about 1 minute on a desktop machine. However, one can be even more ecient. Indeed, evaluation schemes for a n are objects that t into the theory of combinatorial species.

2 In this theory, the sequence corresponding to the number u n of objects of size n is associated with a so-called generating function, which is basically a series whose coecients are the u n 's. Pivoteau, Salvy, and Soria [PSS08, [START_REF] Pivoteau | Génération aléatoire de structures combinatoires : méthode de Boltzmann eective[END_REF] have shown how to use Newton iterations in order to get the rst coecients of the series in O(n log n) arithmetic operations.

The results for A085748(n) are similar to the ones for A001190(n). We still have O(n) recursive calls (a • b i for 0 ≤ i ≤ n, and b i for 1 ≤ i ≤ n), each involving O(n) decompositions. So our algorithm runs in O(n 2 ). In practice, we obtain the rst 4000 terms of A085748(n) in about one minute. Yet, the technique based on Newton iteration described above can also be applied in this case so as to get an asymptotic cost of O(n log n) arithmetic operations.

On the number of schemes for evaluating polynomials

Our initial motivation for counting evaluation schemes lies in the polynomial case [JMM + 10].

We want to generate ecient code for evaluating polynomials, and thus we are interested in the growth of the number of evaluation schemes with respect to the degree of the polynomial. This information actually gives us a clue about how scalable the other algorithms applied on polynomials may be, and about the necessity to restrict ourselves by using strong heuristics. In fact, we will study here two types of polynomials: rst, univariate polynomials; and second, special bivariate polynomials q(x, y) = α + y • p(x), where α is a constant and p is a univariate polynomial.

Univariate case

Table 6.1 shows the number of evaluation schemes for a univariate polynomial with respect to the degree. This sequence, added in the OEIS as A169608, can be obtained by applying Algorithm 6.1 parameterized with the class of univariate polynomials as described at Section 5.2.2. We can easily provide an asymptotic bound on the asymptotic arithmetic cost by noting that:

• the number of recursive calls is equal to

n number of powers of x + n i=0 (i + 1) number of possi- ble factorizations • 2 n-i
number of polynomials with a valuation equal to i = 2 n+2 -3,

• the cost for each recursive call is bounded by O(2 n ), since we can do at most n factorizations by a power of x, and at most 2 n support splittings.

Hence, the arithmetic cost is in 3 O(4 n ). Notice that the indices do not matter here in the sense that, for instance, the number of schemes for a 1 + a 2 • x is the same as the one for a 0 + a 1 • x. Therefore, it is better to use a slightly modied version of the class of univariate polynomials F introduced in Section 5.2.2, where this behavior is taken into account. We achieve this by redening the order < F in the following way:

• (0, b) < F (0, d) ⇔ b < d, • if a, c ∈ N, (a, c) = (0, 0) then (a, b) < F (c, d) ⇔ a < c.
With this new denition, two polynomials will only be compared through their supports, so that a 1 + a 2 • x and a 0 + a 1 • x will be seen as equal. The new number of recursive calls is then:

n + n i=0 2 n-i = 2 n+1 + n -1,
which is asymptotically half of the previous number. In practice, the terms A169608(n) for n ≤ 20 were obtained in about 105 minutes with our C++ implementation using the new order mentioned above. As we wanted a few more terms, we have also implemented an optimized C version, specialized for univariate polynomials, where:

• powers of x are handled separately,

• univariate polynomials can therefore be represented by a unique integer for its support (instead of a class encapsulating two integers),

• we use dynamic programming and store the results in a pre-allocated array.

This version gives us the 20th rst terms in about 15 minutes, and we were able to compute the values of A169608(n) for n ≤ 25 in about 4.5 days.

Special bivariate case

: q(x, y) = α + y • p(x)
Another useful class of arithmetic expressions for the implementation of oating-point operators through polynomial approximation is the class of bivariate polynomials of the form q(x, y) = α +y •p(x) where α is a constant and p(x) is a univariate polynomial [START_REF] Jeannerod | Computing oating-point square roots via bivariate polynomial evaluation[END_REF].

We can dene this class of arithmetic expressions in our framework in the following way:

• We consider the family F = {x i , i ∈ N} ∪ {y • x i , i ∈ N 0 } ∪ { i∈I a i+k x i , k ∈ N and I nite} ∪ { i∈I a i+k y x i , k ∈ N and I nite} ∪ {α + i∈I a i y x i , I nite}.
• We encode an element f ∈ F with:

* one boolean b which indicates whether the expression is bivariate (that is, whether y or α is present) or not, * one integer s representing the support of the sum (the lowest bit of s corresponding to α, and its (i + 1)st bit corresponding to the presence of i in I). The special case s = 0 means that the expression is either x n or y x n , * one integer k for the power of x when s = 0 or the shift in the indices when s = 0.

Table 6.2 illustrates the encoding for some expressions. Notice that some encodings are forbidden: (f, 0, 0) (x 0 is not in F), (f, s, •) with s an odd number (the presence of α implies that the expression is bivariate), and (t, s, k) with s an odd number and k ∈ N >0 (the presence of α implies that the shift must be 0).

• We use the lexicographical order for < F (true being larger than false).

• Finally, we can compute the decomposition for f ∈ F in a way similar to what we did for univariate polynomials. Indeed, we only need to add factorizations by y for bivariate expressions. Table 6.2: Example of encodings for some bivariate polynomials.

Here, booleans are represented by t (true) and f (false).

Expression

x 3 y y x 2 a 1 x + a 2 x 2 a 1 + a 2 x α + a 2 y x 2 Encoding (f, 0, 3) (t, 0, 0) (t, 0, 2) (f, 12, 0) (f, 6, 1) (t, 9, 0)

We have applied Algorithm 6.1 to this new family of arithmetic expressions, and deduced a new sequence added into the OEIS as A173157. Table 6.3 shows the rst 21 terms, that were obtained in 12.5 hours. While the encoding here is a bit more complicated than for univariate polynomials, the orders for the number of recursive calls and for the cost per call are the same. So, this algorithm also runs in O(4 n ). 

Concluding remarks

The results for these two experiments suggest that exhaustive search among the evaluation schemes for polynomials becomes out of reach as soon as the total degree is greater than 5. Typical degrees for polynomial approximants for binary32 (single precision) function being around 10 (see for instance Table 5.3 in [Rev09]), we will have to use heuristics in order to reduce the number of evaluation schemes considered when we seek for a fast and accurate enough way to evaluate such polynomials. Moreover, the fast growth within the two sequences tells us that these heuristics must be drastic if we want our approach to be even slightly scalable.

Summary

All the sequences mentioned in the previous two sections are listed in Table 6.4. This table also gives, for each sequence, the corresponding complexity when using Count, and the best known complexity. Recall that we consider here arithmetic complexity, so that we do not take the size of integers involved into account. Even if arithmetic complexity does not reect the real cost, it is still a relevant indicator to compare the performance between our algorithm and other works. While our general approach fails to achieve a reasonable complexity in the case of sums of variables, where a closed formula exists, we obtain a satisfactory complexity for the two other classical sequences. Better complexity may be achieved through techniques from the theory of combinatorial species. However, this is advanced material, quite dierent from our approach, and it is not clear to us whether it can cover the polynomial cases that we handle here. 
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Asymptotics of counting sequences

Several sequences have been mentioned in Section 6.2. Table 6.5 shows the rst terms of each of these sequences side by side. It gives us a rst idea about how fast these various sequences grow. Our goal in this section is to discuss the asymptotic behavior of A169608(n). To achieve this, let us rst review some already known results.

Table 6.5: Numbers of evaluation schemes for several arithmetic expressions. 

a n a • b n n i=0 a i p(x) with deg p = n α + y • p(x) with deg p = n n A001190(n) A085748(n) A001147(n) A169608(n) A173157(n) 0 1 1 1 1 1 1 1 1 1 1

Preliminary remarks

We have already mentioned the existence of a closed formula for the number of evaluation schemes for n i=0 a i . Here is the precise result along with a proof. Property 6.2. Let A001147(n) be the number of evaluation schemes for n i=0 a i . We have

A001147(n) = n-1 i=1 (2i + 1) = (2n)! 2 n • n! ∼ n→+∞ √ 2 2n e n .
Proof. The main idea is rst to count the dierent parenthesizations for n i=0 a i , and then to notice that each class modulo commutativity has the same cardinality. Hence, we can easily deduce the number of evaluation schemes from the number of parenthesizations.

A parenthesization for the arithmetic expression n i=0 a i can be viewed as a binary tree with + at its internal nodes and the a i 's in some order at its leaves. One has (n + 1)! possible permutations for the a i 's, and the number of binary trees with exactly n + 1

leaves is the nth Catalan number 4 C n = 2n n n + 1 = (2n)! n! • (n + 1)!
. Therefore, we deduce that the number of parenthesizations for n i=0 a i is actually

(2n)! n!
. Now, let us take a look at what commutativity is in this case. Changing the order of the two operands for a given + corresponds to swapping the two sons of the corresponding internal node in the binary tree. As we have exactly n internal nodes, we can apply commutativity to any subset of these n nodes to obtain an equivalent binary tree modulo commutativity. Moreover, this process allows us to cover all the equivalence classes of a given tree, which has thus a cardinality of 2 n .

Therefore, all the equivalence classes modulo commutativity have the same cardinality 2 n , and the number of evaluation schemes for n i=0 a i is the number of parenthesizations divided by 2 n , that is, A001147

n) = (2n)! 2 n • n! . ( 
The rst equality in Property 6.2 is easily deduced by unfolding the denition of the factorial at the numerator and denominator, and simplifying all the even numbers.

Finally, the asymptotic equivalent is a consequence of Stirling's formula 5 about the equiv- alence for n!.

The asymptotic study of sequence A001147(n) is fairly simple because all the equivalence classes modulo commutativity share the same cardinality, so that we can go easily from the number of parenthesizations to the number of schemes. Unfortunately, this does not hold for the other sequences we are interested in, which may explain why the results in the next two sections (6.3.2 and 6.3.3) will be less strong than the previous one.

Asymptotic equivalence for sequences A001190 and A085748

The number of evaluation schemes for x n corresponds to the number of weakly binary trees. This sequence, called Wedderburn-Etherington sequence, has been well studied, and despite the lack of closed formula, we have the following result [Ott48] about the asymptotic behavior of the sequence: 4 E. Catalan introduced these numbers, which have many interpretations, in 1838. See for instance Example 5.3.12 in [Sta99] for the interpretation mentioned here.

5 J. Stirling proved in 1730 that n! ∼ n→+∞ n e n √ 2πn.

Property 6.3. Let a n be the nth term of the Wedderburn-Ethernington sequence, that is, the number of evaluation schemes for a n . We have

a n ∼ n→∞ η ξ n
n 3/2 with ξ ≈ 2.48325 and η ≈ 0.31877. Proof. Here, we will only summarize with our notations the main steps of the proof of Proposition VII.5 in [FS09] (see also [Fin94, 5.6] for a similar proof ).

First, we consider the set A of all the evaluation schemes for a n when n ∈ N >0 . For all n ∈ N >0 , A contains exactly a n evaluation schemes for a n , and we associate to it the series A(z) := +∞ i=1 a i z i . Notice that we could prove that the convergence radius for A(z) is at least 1/4 by comparing a n with the nth Catalan number. Now, if we look at the inductive nature of A, we can see that each of its elements is either a or s 1 × s 2 , where {s 1 , s 2 } ∈ P 2 (A). We can use this information in order to derive a functional equation satised by A(z):

A A(z) = = {a} z 1 scheme for a 1 + × s 1 s 1 n i=1 a i z 2i A(z 2 )
a n schemes for a 2n

, s 1 ∈ A

+ × s 1 s 2 1 2 A(z) 2 -A(z 2 )
number of schemes for n=i+j:

a i • a j minus a n/2 (case of s 1 = s 2 ) divided by 2 because of the symmetry of s 1 and s 2 , {s 1 , s 2 } ⊂ A, s 1 = s 2 So, we have A(z) = z + 1 2 A(z) 2 + A(z 2 ) .
We can then study this function equation in order to show that

A(z) ∼ z→1/ξ 1 -2 √ π η 1 -ξ z,
where η and ξ are constants that can be eciently approximated by adapting the approach in [Wed22]. This equivalence allows us to conclude. Indeed, it is known (see [FS09, Corollary VI.1]) that the coecient a n of A(z) is equivalent to its counterpart in the series on the right-hand side, for which we can easily see that it is itself equivalent to η ξ n n 3/2 .

Sequences A001190 and A085748 are closely related due to the similarity between a n and a • b n . In fact, one evaluation scheme for a • b n is made of a multiplied by some scheme for b i 1 , the resulting product a • b i 1 being in turn multiplied by a scheme for b i 2 , and so on until b ir , for some sequence (i 1 , . . . , i r ) such that i 1 + i 2 + • • • + i r = n. Let us denote by B the set of all the evaluation schemes for a • b n when n ∈ N. What the previous remark tells us is that there is a natural bijection between B and the nite sequences of elements in A. This is summarized by the following equation B = SEQ(A), (6.1) using the notation from [FS09, I.2]. This equation is the key to transpose Property 6.3 to A085748: Theorem 6.2. Let b n be the number of evaluation schemes for a • b n . We have

b n ∼ n→∞ ξ n 2π η √ n
with ξ, η as in Property 6.3.

Proof. Like for A, we can associate to B the series B(z) := +∞ i=0 b i z i . The link between A and B expressed in Equation (6.1) implies the following relation for the corresponding series:

B(z) = 1 1 -A(z) . (6.2)
One can think of the similarity between 1 1-x = i≤0 x i and a sequence of elements of X which is either the empty sequence, or an element of X i with i ≥ 1. A formal explanation of this fact can be found in [FS09, Theorem I.1]. Now, we can use Equation (6.2) and the asymptotic equivalent for A(z) mentioned before to deduce the following asymptotic equivalent for B(z):

B(z) ∼ z→1/ξ 1 2 √ π η (1 -ξ z) -1/2 . (6.3) 
All that remains is to express the right-hand side as an innite series, and deduce some asymptotic equivalence for its nth coecient, which will also hold for b n . Since

1 (1 -z) 1/2 = +∞ n=0 n -1/2 n z n with r n = r(r -1) . . . (r -n + 1) n! = +∞ n=0 (2n)! 4 n (n!) 2 z n , we deduce that 1 2 √ π η (1 -ξ z) -1/2 = +∞ n=0 ξ n 2 √ π η (2n)! 4 n (n!) 2 z n , so that the nth coecient of the series is equivalent to ξ n 2πη √ n
, which ends the proof.

Lower and upper bounds on the number of evaluation schemes for polynomials

In this section, we aim at estimating how fast the sequences A169608(n) and A173157(n) grow when n tends to innity. Let us focus on univariate polynomials to begin with. The approach mentioned previously for a n and a • b n does not seem to t for this case. In fact, the family F of arithmetic expressions from which we have deduce A169608(n) contains sparse polynomials, which are best represented by sets of integers rather than integers.

This makes it dicult to dene properly a series corresponding to the set S(F). Moreover, we cannot adopt a labelled point of view where we x an unordered tree and then put the a i 's in any order at the dierent leaves. This covers the case of n i=0 a i , where the variables play the same role, but we do not have such a symmetry in a polynomial.

Therefore, given n ∈ N, we propose to nd two sets of schemes S n and S n satisfying

S n ⊂ S( n i=0 a i x i ) ⊂ S n
and such that we could easily express their cardinalities as a function of the sequences from the previous section. Then, asymptotics for log |S n | and log |S n | will give us a lower and an upper bound, respectively, for the asymptotics of log A169608(n), that is, a precise information about the growth of A169608(n).

Lower bound for A169608(n)

In order to get a good lower bound, we need to consider a signicant part of the schemes in S( n i=0 a i x i ). We choose here to consider the set S n of all schemes corresponding to a parallel evaluation of all the monomials a i • x i for 0 ≤ i ≤ n followed by a sum of the n+1 resulting quantities. Actually, S n is what we would obtain if we remove factorization (rule r 6 ) from our set of rules in Section 5.1.1. As we only remove one rule, we hope that S n will be close to S( n i=0 a i x i ). The number of schemes in S n satises:

|S n | = A001147(n)
number of ways to add the n + 1 monomials

• n i=0 b i number of ways to evaluate a i • x i so that log |S n | = log A001147(n) ∼ n→+∞ n log n + n i=0 log b i ∼ i→+∞ i log ξ . (6.4)
Indeed, the asymptotics for log A001147(n) is straightforward given the closed formula from Property 6.2 and Stirling's formula, and the asymptotics for log b i can be veried as follows:

log b i i log ξ = log b i i log ξ -1 2 log i • i log ξ -1 2 log i i log ξ = 1 + log(b i • √ i/ξ i ) log(ξ i / √ i) → i→+∞ -log(2πη)/+∞=0 • (1 + o(1)) → i→+∞ 1.
Now, since i log ξ is non-negative for all i ∈ N and i log ξ diverges, we deduce that For each edge in the scheme for n i=0 a i (the green one here), we choose a scheme for a • b i with 0 ≤ i ≤ n (here, we choose the blue scheme corresponding to i = 2), and we insert this scheme alongside the edge.

n i=0 log b i ∼ n→+∞ n(n + 1) 2 log ξ ∼ n→+∞ n 2 log ξ.
+ × × a b b = + × × x x
Therefore, the sum in Equation (6.4) is predominant over log A001147(n), and we can conclude that log

|S n | ∼ n→+∞ n 2 log √ ξ. Since log A169608(n) ≥ log |S n |,
this tells us that the asymptotic growth of the logarithm of the number of schemes for univariate polynomials is at least quadratic. If we look at the overall shape of the numbers of schemes in Table 6.1, we can indeed see that the curve made of the leading digits looks like a parabola.

Upper bound for A169608(n)

In order to get an upper bound, we will consider all the unordered binary trees of the following form:

• First, we start from an evaluation scheme for n i=0 a i . We have thus an unordered binary tree with 2n edges.

• Second, we choose for each edge one evaluation scheme for a • b i with 0 ≤ i ≤ n and we insert it at the level of the edge as illustrated in Figure 6.1. This gives us a new set S n . We can rst notice that, if we only allow the insertions at edges connecting an internal node to a leaf then we would have obtained the set S n introduced for the lower bound. Now, by allowing insertions everywhere, we are able to restore all the chains of multiplications within a given evaluation scheme for n i=0 a i x i given its skeleton (that is, the unordered binary tree where we have removed all the internal nodes labelled with a multiplication). Of course, this construction creates many unordered binary trees whose underlying mathematical expression is not n i=0 a i x i . In fact, we obtain n i=0 a i x e i for some non-negative integers (e 0 , . . . , e n ) depending on how we have inserted schemes.

Remark that we limit ourselves to insert schemes for a • b i with 0 ≤ i ≤ n since the maximum power of x in n i=0 a i x i is x n , and that we allow the trivial scheme for a•b 0 = a so that we can leave some edges untouched.

The number of unordered binary trees in S n is: Now, we can proceed as for the lower bound. First we apply the logarithm to both sides of the previous identity:

|S n | = A001147(n)
log |S n | = log A001147(n) ∼ n→+∞ n log n + 2n • n i=0 log b i ∼ i→+∞ i log ξ
.

The same argument holds for the asymptotics of log b i , and the one of n i=0 log b i . So we conclude that log |S n | ∼ n→+∞ n 3 log ξ. While this does not match the lower bound mentioned earlier, it is not too far from it. Moreover, this upper bound proves that the number of evaluation schemes for p(x) is not doubly exponential.

Bounds for A173157(n)

We can formulate of few remarks concerning A173157(n):

• Obviously, any scheme for p(x) gives us a scheme for q(x, y) = α + y • p(x), so that A173157(n) ≥ A169608(n).

• Actually, we even have A173157(n) ≥ A169608(n+1). Indeed, replacing y with x in a scheme for q(x, y) gives us a scheme for evaluating a degree-(n+1) polynomial, and this mapping is surjective. We can move y before evaluating y •x i using associativity and commutativity, which becomes impossible when y is turned into x.

• Finally, we can take a scheme for a degree-(n + 1) univariate polynomial, which will have at most (n+1)(n+2) 2 leaves labelled with x, and decide for each of those leaves to turn the x into a y. This is kind of the opposite of the process mentioned in the previous point. It allows us to get back, among others, all the schemes for q(x, y) = α + y • p(x) (with deg p = n). Therefore, using this idea, we can deduce the identity

A173157(n) ≤ (n + 2) 2n+3 • A169608(n + 1),
which is actually a consequence of Property 6.4 below. Property 6.4. Let (m, k) ∈ N 2 , p(x) be the univariate polynomial whose encoding is (m, k + 1), and q(x, y) be the special bivariate polynomial whose encoding is (true, m, k).

Then, for all s ∈ S(q(x, y)), there exists s ∈ S(p(x)) such that changing at most max{|m|, 1} instances of x by y in s gives (modulo a renaming of the coecients) s, where |m| is the number of bits with a value of 1 in m.

Proof. We proceed by strong induction on (m, k) ∈ (N 2 , < lex ):

• For (0, 0), we have q(x, y) = y, p(x) = x, |m| = 0, and the result holds since we need to replace 1 = max{|m|, 1} instance of x in the sole scheme for x in order to get the sole scheme for y.

• For (m, k) = (1, 0), we have q(x, y) = α, and we do not need to change anything in the sole scheme s ∈ S(a 1 ) to obtain the sole scheme s of q(x, y).

• Otherwise, (m, k) is such that the bivariate polynomial q(x, y), whose encoding is (true, m, k), is non-trivial. Indeed, either |m| > 1 and we can (at least) split the monomials in q(x, y) to form a sum of two new polynomials, or m is even6 and we can (at least) factor by some power of x.

So, let s := ( , {s 1 , s 2 }) ∈ S(q(x, y)). We need to nd s ∈ S(p(x)) satisfying the statement in our property. Let q 1 (x, y) and q 2 (x, y) be such that s i ∈ S(q i (x, y)) and the encoding for q i (x, y) is (m i , k i ), for i ∈ {1, 2}. Let us distinguish between four cases: * If

= +, we have |m| > 1 and |m| > |m i | ≥ 1 for i ∈ {1, 2}. We can apply the induction hypothesis on s 1 and s 2 in order to get s 1 and s 2 , and dene s = ( , {s 1 , s 2 }). Since we can go from s i to s i by turning at most |m i | instances of x into y, for i ∈ {1, 2}, we can go from s to s in at most

|m 1 | + |m 2 | = |m| = max{|m|, 1} changes; * If
= ×, m = 0, and, say, q 1 (x, y) = x j for some positive integer j, we have (m 2 , k 2 ) = (m/2 j , k +j) < lex (m, k) and we conclude by applying the induction hypothesis on s 2 . Indeed, we then obtain a scheme s 2 , so that we can dene s = ( , {s 1 , s 2 }) which is a scheme of p(x), and from which we can to s in at most |m 2 | = |m| changes (in s 2 ); * Finally, if = × and, say, q 1 (x, y) = y • x j for some non-negative integer j, we have (m 1 , k 1 ) = (0, j) < lex (m, k) (either m > 0, or m = 0 and q(x, y) = y • x k with k > j). In the case, we conclude by applying the induction hypothesis on s 1 . We then obtain s 1 , so that we can dene s = ( , {s 1 , s 2 }) which is a scheme of p(x) and from which we can go to s in at most max{|m 1 |, 1} = 1 ≤ max{|m|, 1} changes (in s 1 ).

With this property, we can conclude that A173157(n) ≤ bound on the number of ways to turn at most n + 1 instances of x into y in a scheme for p(x) with deg(p

) = n + 1 n+1 k=0 (n + 1)(n + 2)/2 k • A169608(n + 1) ≤ n+1 k=0 (n + 2) 2 k • A169608(n + 1) ≤ n+1 k=0 (n + 2) 2k • A169608(n + 1) ≤ n+1 k=0 (n + 2) 2n+2 • A169608(n + 1) ≤ (n + 2) 2n+3 • A169608(n + 1).
Therefore, we have

log A169608(n + 1) ≤ log A173157(n) ≤ log A169608(n + 1) + (2n + 3) log(n + 2),
and it is straightforward to conclude that:

• log A173157(n) ∈ Θ log A169608(n + 1) , • log A173157(n) ∈ Ω(n 2 ),
• log A173157(n) ∈ O(n 3 ).

Summary of the dierent bounds

Let us summarize the dierent bounds that we have obtained in this section: Theorem 6.3. We have log A169608(n) ∈ Ω(n 2 ) and log A169608(n) ∈ O(n 3 ). Furthermore, we have the following inequalities:

A169608(n + 1) ≤ A173157(n) ≤ (n + 2) 2n+3 A169608(n + 1) so that log A173157(n) ∈ Θ(log A169608(n + 1) ).
As a consequence, we also have log A173157(n) ∈ Ω(n 2 ) and log A173157(n) ∈ O(n 3 ).

To conclude this asymptotic study, let us see graphically how the dierent sequences and bounds mentioned in this section compare. For the univariate case, we can see in Figure 6.2 that the lower bound log |S n | for log A169608(n) is quite sharp compared to the upper bound log |S n |. Indeed the curves for log |S n | and log A169608(n) are overlaid in the gure. Therefore, we speculate that log A169608(n) is actually in Θ(n 2 ).

Finally, Figure 6.3 illustrates how the sequence log A173157(n) is located in relation with its lower and upper bounds. As we have said, the asymptotic behavior of log A173157(n) coincides with the one of log A169608(n + 1) . Again, by comparing with the curves of the asymptotics found for the lower and upper bounds in the univariate case, it is more likely that the order of magnitude for log A169608(n) is Θ(n 2 ). 6.4 Counting evaluation schemes with respect to a given measure One question that may arise when trying to optimize some criterion is to nd the number of optimal schemes. More generally, when we have some measure dened on the evaluation schemes, we may want to know how the dierent evaluation schemes split up according to this measure. After introducing a new algorithm for this purpose in Section 6.4.1, we will discuss the number of multiplications and the latency of evaluation schemes for univariate polynomials in Sections 6.4.2 and 6.4.3, respectively. Finally, we will discuss how to restrict ourselves to nearly optimal schemes, and what we gain by doing so in Section 6.4.4.

A ner-grained adaptation of the generation algorithm

Let us assume that we have a recursively computable measure ϕ : S(F) → T . Hence, we have the values associated to all the trivial schemes, plus a function ρ : {+, ×}×T ×T → T allowing us to compute the measure of a non-trivial scheme. While we have focused on the cardinality of S(f ) for f ∈ F in Algorithm 6.1, we propose here to consider the partition of S(f ) according to ϕ and thus to propagate recursively the distribution of the number of schemes for f according to ϕ, represented as mapping r : T → N. This approach is presented in Algorithm 6.2. Note that, in this algorithm, we assume that each time we try to access a value r(t) which was not previously dened, the corresponding value is 0.

Theorem 6.4. Algorithm 6.2 is correct.

Proof. Let us proceed by complete induction on f ∈ F. If f admits no decomposition (in particular when f is the minimum for (F, < F )), it is a variable. Hence, f has only one evaluation scheme which is f itself, and Algorithm 6.2 returns r : ϕ(f ) → 1, which is correct.

Suppose now that f is not a variable, and that for all g < f , CountPerMeasure(g) is correct and gives us the distribution of the evaluation schemes for g with respect to the measure ϕ.

As we have seen in Theorem 5.1, we encountered each scheme for f exactly once during Algorithm 5.1.

Let s := ( , {s 1 , s 2 }) be such a scheme. Each s i is thus a scheme for some arithmetic expression f i < F f . Moreover, f 1 ≤ F f 2 . We then have two cases:

• Either f 1 < F f 2 . In this case, the schemes s := ( , {s 1 , s 2 }) for f corresponding to Algorithm 6.2: CountPerMeasure Input : f ∈ F, and a measure function ϕ : schemes → T Output: a partial map r : T → N which gives for every t ∈ Dom(r) the number of evaluation schemes s for f such that ϕ(s

) = t ← decompose(f ) if = ∅ then dene r with r(ϕ(f )) ← 1 else foreach ( , f 1 , f 2 ) ∈ do r 1 ← CountPerMeasure(f 1 ) if f 1 = f 2 then for {t 1 , t 2 } ∈ P 2 (Dom(r 1 )) do t ← ρ( , t 1 , t 2 ) if t 1 = t 2 then r(t) ← r(t) + r 1 (t 1 ) • (r 1 (t 1 ) + 1) 2 else r(t) ← r(t) + r 1 (t 1 ) • r 1 (t 2 ) else r 2 ← CountPerMeasure(f 2 ) for (t 1 , t 2 ) ∈ Dom(r 1 ) × Dom(r 2 ) do t ← ρ( , t 1 , t 2 ) r(t) ← r(t) + r 1 (t 1 ) • r 2 (t 2 ) return r the decomposition ( , f 1 , f 2 ) are in bijection with S(f 1 ) × S(f 2 ) = t 1 ∈Dom(r 1 ) t 2 ∈Dom(r 2 ) S(f 1 )| t 1 × S(f 2 )| t 2 ,
where S(f i )| t i := {s ∈ S(f i ), ϕ(s) = t i }. By assumption, ϕ(s) only depends on , ϕ(s 1 ) and ϕ(s 2 ), so that all (s 1 , s 2 ) ∈ S(f 1 )| t 1 × S(f 2 )| t 2 lead to schemes s with the same value t := ϕ(s) = ρ( , t 1 , t 2 ). Algorithm 6.2 thus considers each pair (t 1 , t 2 ) and adds to r(t) the corresponding number of schemes, that is, r 1 (t 1 ) • r 2 (t 2 ).

• Or f 1 = F f 2 . In this case, the schemes s := ( , {s 1 , s 2 }) for f corresponding to the decomposition ( , f 1 , f 1 ) are in bijection with

P 2 (S(f 1 )) = t 1 ∈Dom(r 1 ) P 2 (S(f 1 )| t 1 ) t 1 , t 2 ∈ Dom(r 1 ) t 1 < T t 2 S(f 1 )| t 1 × S(f 1 )| t 2 .
Indeed, if s 1 , s 2 ∈ S(f 1 ), we have to consider {s 1 , s 2 } only once, and:

* either ϕ(s 1 ) = T ϕ(s 2 ), and the scheme is taken into account once in the disjoint union on the right side, * or ϕ(s 1 ) = ϕ(s 2 ) and the scheme is taken into account once in the disjoint union on the left side because of P 2 (•).

Then, again, each set of the union is constant with respect to ϕ, and Algorithm 6.2 adds the corresponding cardinalities correctly.

Remark that Algorithm CountPerMeasure may be quite signicantly costly than Algorithm Count, especially when there are a lot of possible values for ϕ(s) when s ∈ S(f ).

After illustrating this problem on two examples, we will see how to get good performance if we are only interested in nearly optimal schemes.

Number of evaluation schemes for polynomials with respect to the number of multiplications

We can apply Algorithm 6.2 on univariate polynomials in order to deduce the distribution of schemes according to the number of multiplications. For this purpose, we will use for ϕ a variant of the measure we introduced at the end of Section 5.4.2. In fact, we do not need to keep trace of all the multiplications in schemes as before, since only multiplications of type x i × x j may occur more than once.7 Therefore, we propose to do the following:

• First, we precompute all the evaluation schemes for x i where 1 ≤ i ≤ n and we number them.

• Then, we dene T := N × P(N 2 ) and ϕ : S(F) → T . The integer will correspond to the number of multiplications involving at least one coecient a i , and the set will list all the multiplications of the type x i × x j , represented as pairs (i + j, σ) where i + j is the corresponding power of x and where σ indicates the actual scheme in use for x i+j .

• Trivial schemes have no multiplication, so we set their measure to (0, {}). We also dene the following function ρ in order to recursively compute ϕ:

ρ(+, (a 1 , b 1 ), (a 2 , b 2 )) = (a 1 + a 2 , b 1 ∪ b 2 ), ρ(×, (a 1 , b 1 ), (a 2 , b 2 )) = (a 1 + a 2 + 1, b 1 ∪ b 2 ) when f 1 or f 2 is not a power of x, ρ(×, (0, b 1 ), (0, b 2 )) = 0, b 1 ∪ b 2 ∪ {(i + j, σ)} when f 1 = x i , f 2 = x j ,
and the scheme used for x i+j is the σth one.

Notice that, in the last case, we only have multiplications between powers of x, so the rst component is always 0.

• Finally, we need to provide a total order on T = N × P(N 2 ), which has to be consistent with the total number of multiplications. We will say that (a 1 , b 1 ) < T (a 2 , b 2 ) when: 

* or b 1 < b 2 , that is, assuming b i = {(n (k) i , σ (k) 
i )} sorted according to the lexicographical order < lex , there exists k 0 such that (n

(k 0 ) 1 , σ (k 0 ) 1 ) < lex (n (k 0 ) 2 , σ (k 0 )
2 ) and for all k < k 0 , (n

(k) 1 , σ (k) 1 ) = lex (n (k) 2 , σ (k) 2 ).
Because of the complexity in the choice for type T , the analysis will be more costly than the one in the previous section. Moreover, we get a more rened result than what we were aiming for, so that we need to perform a post-treatment to actually deduce the number of multiplications from the dierent t ∈ T . Table 6.6 shows the distribution of the evaluation schemes for a degree-7 and a degree-8 polynomial according to the number 8 We choose to give priority to schemes with more multiplications between powers of x since they are more likely to bring more common subexpressions in the sequel.

of multiplications. This number can range from n, which is known to be optimal [START_REF] Victor | Methods of Computing Values of Polynomials[END_REF] and uniquely achieved [Bor71] by Horner's rule, to n(n+1) 2 , which corresponds to naive schemes where we compute a

i • x, (a i • x) • x, (a i • x 2 ) • x, . . . , (a i • x i-1 ) • x for all 1 ≤ i ≤ n.
The computation takes about 86 seconds for n = 7 and 1.5 hours for n = 8. We have also tested Algorithm CountPerMeasure on univariate polynomials using latency as the measure. Figure 6.4 illustrates how the evaluation schemes for a degree-18 polynomial split up with respect to the latency on unbounded parallelism, assuming that addition and multiplication cost 1 and 3 cycles, respectively. This gure was generated from the results obtained after about 69 hours of computation. The latency ranges from 16 cycles, which is 1 cycle less than the classical Estrin scheme, to 72 which is the latency for Horner's rule. The distribution looks like a Gaussian, while slightly more concentrated on the left, and it is actually centered around 40 cycles which is a bit less than 44 = 72+16 2 . What interests us here more particularly in Figure 6.4 is the part near the optimal latency, shown in Table 6.7. As one can see, the number of nearly optimal schemes is quite small in comparison to the total number of schemes. Nevertheless, even the number of schemes with the optimal latency of 16 cycles is too large (> 10 24 ) to think about exhaustive generation. On the other hand, having so many optimal schemes lets us hope that, when we aim at a fast and accurate-enough scheme, restricting the search to optimal (or nearly optimal) schemes should be enough. This is actually the point of view we embrace in the software CGPE [START_REF] Mouilleron | Automatic generation of fast and certied code for polynomial evaluation[END_REF]. Theorem 6.5. Provided that for all evaluation scheme s = ( , s 1 , s 2 ) where s 1 and s 2 are schemes for f 1 and f 2 , respectively, and for all b ∈ T , we have

ϕ(s) ≤ T b ⇒ ϕ(s 1 ) ≤ T b ∧ ϕ(s 2 ) ≤ T b
where b := update(( , f 1 , f 2 ), b), Algorithm 6.3 is correct.

Proof. The proof can easily be derived from the proofs of correctness for GenerateWithHint, since what CountWithHint does is to keep the cardinalities instead of the sets manipulated within GenerateWithHint. We still proceed by complete induction on f ∈ F, and the case where f admits no decomposition is correct since the algorithm returns r(ϕ(f )) = 1 if the measure for the sole scheme of f is less than or equal to B, and nothing (that is, 0 scheme) otherwise.

Suppose now that f is not a variable and that for all g < f , CountWithHint(g, B ) is correct and gives us the distribution with respect to the measure ϕ of the evaluation schemes s ∈ S(g) such that ϕ(s) ≤ T B .

As we have seen in Theorem 5.2, each scheme s ∈ S(f ) such that ϕ(s) ≤ T B is encountered exactly once during Algorithm 5.2. What we need here is therefore to count the exact number of schemes involved in each case: schemes involved is, like in the proof of Theorem 6.4,

s ∈ S(f ), s = s 1 s 2
with {s 1 , s 2 } ∈ P 2 (S(f 1 )) and ϕ(s)

≤ T B = t 1 ∈Dom(r 1 ) s ∈ S(f ), s = s 1 s 2
with {s 1 , s 2 } ∈ P 2 (S(f 1 )| t 1 ) and ϕ(s)

≤ T B {t 1 , t 2 } ∈ P 2 (Dom(r 1 )) t 1 < T t 2 s ∈ S(f ), s = s 1 s 2 with (s 1 , s 2 ) ∈ S(f 1 )| t 1 × S(f 1 )| t 2 and ϕ(s) ≤ T B
So, if t 1 = T t 2 and ρ( , t 1 , t 2 ) ≤ T B, we get r 1 (t 1 )•(r 1 (t 1 )+1) 2 schemes by Property 6.1.

Otherwise, we have t 1 < T t 2 and the corresponding number of schemes is r 1 (t 1 ) • r 1 (t 2 ).

In all cases, Algorithm 6.3 actually adds in r(t) the correct number of schemes. Hence it is correct.

Implementation results

We have implemented CountWithHint and tested it on univariate polynomials with the latency as a measure in order to generate Table 6.7 again. The function in use to update the bound before recursive calls was dened by: update

: D(F) × T → T ( , f 1 , f 2 ), b → max{b -C , 0}.
The computation time was around 8 hours, which means that the speed-up achieved with this approach is approximately 8.6.

Moreover, suppose that we only want the number of optimal schemes with respect to the latency. What we can do is to initialize B with 0, run CountWithHint, see if we get a positive number of evaluation schemes, and start again after increasing B by 1 if it is not the case. At the end of this process, we will obtain the minimal latency, along with the number of schemes achieving it. Doing this for a degree-18 polynomial allows us to nd the rst row of Table 6.7 in about 3 hours, which is 23 times faster than computing the complete distribution of schemes according to the latency.

Chapter 7

Optimization

We have seen so far how to generate, for a given arithmetic expression f , all its evaluation schemes and how to count them. For practical purposes, we are more concerned with nding, among all the evaluation schemes, some relevant subset which contains only optimal or nearly optimal schemes according to a given measure. The rst section deals with a direct adaptation of the rst generation algorithm mentioned in Section 5.3 in order to tackle optimization issues. Unfortunately, this simple approach fails to nd the optimal value for some of the measures we are interested in, like the minimization of the number of multiplications. Therefore, we will present in a second section several other algorithms that handle all the recursively computable measures, and compare them. Finally, a third section will discuss multicriteria optimization. Furthermore, we will address the issue of nding a good trade-o between two measures and see a couple of situations where we can quickly nd relevant information about the possible trade-os.

7.1 Adapting the generation algorithm for optimization 7.1.1 Optimizing the latency on unbounded parallelism

We can naively optimize the latency on unbounded parallelism 1 by rst generating all the schemes and then checking their latencies to deduce its minimum feasible value, but this is absolutely not ecient. In fact, minimum latency is a property attached to an arithmetic expression, and the idea is therefore to abstract the set of evaluation schemes with the best latency achieved among them. Hence, we can manipulate only latencies and forget about the underlying schemes, as shown in Algorithm 7.1. 

Output

: the minimum feasible latency r for f . ← decompose(f )

1 if = ∅ then r ← 0 2 else 3 r ← ∞ 4 foreach ( , f 1 , f 2 ) ∈ do 5 r 1 ← MinLat(f 1 ) 6 if f 1 = f 2 then r ← min{r, C + r 1 } 7 else 8 r 2 ← MinLat(f 2 ) 9 r ← min r, C + max{r 1 , r 2 } 10 return r 11 min s∈S(f ) L(s) = min ( ,f 1 ,f 2 )∈D(f ) min s 1 ∈ S(f 1 ) s 2 ∈ S(f 2 ) L( s 1 s 2
).

(7.1) Note that we do not bother to avoid redundancy in the inner minimum on the right hand side, since it does not change the value for this minimum. Hence we can handle both cases from the test at line 7 in one shot.

Moreover, recall that latency is recursively computable as we have seen in Section 5.4.2, and that we have:

L( s 1 s 2 ) = C + max{L(s 1 ), L(s 2 )}. (7.2)
In addition:

• max{L(s 1 ), L(s 2 )} ≥ L(s i ) ≥ min s ∈S(f i ) L(s ) for i ∈ {1, 2}
, so for all s 1 ∈ S(f 1 ), s 2 ∈ S(f 2 ) we have max{L(s 1 ), L(s 2 )} ≥ max{ min

s 1 ∈S(f 1 )
L(s 1 ), min

s 2 ∈S(f 2 ) L(s 2 )}
and we can take the minimum over (s 1 , s 2 ) ∈ S(f 1 ) × S(f 2 ) to deduce that min s 1 ∈ S(f 1 )

s 2 ∈ S(f 2 ) max{L(s 1 ), L(s 2 )} ≥ max{ min s 1 ∈S(f 1 ) L(s 1 ), min s 2 ∈S(f 2 ) L(s 2 )}.
• The left-hand side of this last inequality is also not larger than the right-hand side, as we can see by taking for s i some scheme minimizing L(s i ) for i ∈ {1, 2}.

Therefore, the following equality holds:

min s 1 ∈ S(f 1 ) s 2 ∈ S(f 2 ) max{L(s 1 ), L(s 2 )} = max{ min s 1 ∈S(f 1 ) L(s 1 ), min s 2 ∈S(f 2 ) L(s 2 )}. (7.3)
Putting Equations (7.1), (7.2), and (7.3) together, we deduce that:

min s∈S(f ) L(s) = min ( ,f 1 ,f 2 )∈D(f ) min s 1 ∈ S(f 1 ) s 2 ∈ S(f 2 ) L( s 1 s 2 ) = min ( ,f 1 ,f 2 )∈D(f ) min s 1 ∈ S(f 1 ) s 2 ∈ S(f 2 ) C + max{L(s 1 ), L(s 2 )} = min ( ,f 1 ,f 2 )∈D(f ) C + min s 1 ∈ S(f 1 ) s 2 ∈ S(f 2 ) max{L(s 1 ), L(s 2 )} = min ( ,f 1 ,f 2 )∈D(f )
C + max{ min

s 1 ∈S(f 1 )
L(s 1 ), min

s 2 ∈S(f 2 ) L(s 2 ) .
By induction, we know that r 1 = min s 1 ∈S(f 1 ) L(s 1 ) and r 2 = min s 2 ∈S(f 2 ) L(s 2 ), and Algorithm 7.1 correctly computes r = min ( ,f 1 ,f 2 )∈D(f ) C +max{r 1 , r 2 } = min s∈S(f ) L(s).

Generalization to recursively computable measures

Algorithm 7.1 can actually be generalized so that we obtain an optimization algorithm that works for dierent measures. As in Section 6.4, we ask the user to provide as input a measure ϕ satisfying the recursive computability hypothesis. Thus, ϕ is given by its values on atoms and a function ρ for recursive computation. With this input, we can still go through all the decompositions for f , compute the corresponding values, and take the minimum, as we did in Algorithm 7.1. What results from this generalization is Algorithm 7.2.

Theorem 7.2. If ρ( , x, y) is non-decreasing with respect to x and with respect to y for all then Algorithm 7.2 is correct.

Proof. The case of f being a variable is obviously handled correctly. What remains is to generalize the reasoning in the proof of Theorem 7.1 when f is non-trivial.

The key points were Equations (7.1) to (7.3). The rst one (along with the remark about the redundancy we did not take care of ) still holds when we replace L with ϕ. Equation (7.2) actually illustrates the fact that the function ( , x, y) → C + max{x, y} is the appropriate function ρ in order to compute the latency recursively. In the present case, it is automatically deduced from the denition of ρ (which is a consequence of the recursive computability for ϕ). As for the third equation, we need to generalize it, and this is where the non-decreasing hypothesis will play an important role.

in the foreach loop, and the cost for each step in this loop. Moreover, elements of F and T are often simple enough so that the last cost is constant (think of the example with latency in Section 7.1.1).

2. Instead of computing the minimum according to < T in the foreach loop, one can also keep one or several decompositions that achieve this minimum. By doing so, it becomes straightforward to rebuild one optimal scheme afterwards.

Comparison with GenerateWithHint and CountWithHint

As already mentioned, we can deduce information about the optimality according to a given measure by using either GenerateWithHint or CountWithHint. However, whenever one wants to get only the optimal value, along with a few schemes achieving it, Optimizer is far more ecient. For instance, if we come back to the example of the minimum latency for a univariate polynomial with C + = 1 and C × = 3, we have seen in Table 6.7 that the optimal latency is 16 and is achieved by ≈ 8.36 × 10 24 schemes. Getting this results took about 3 hours with CountWithHint, and generating all these schemes with GenerateWithHint is totally out of reach. Yet, using Optimizer, we can get one optimal scheme in only 22 minutes. This eciency is explained by the two following reasons:

• First, Optimizer manipulates only decompositions and elements in T , while algorithms CountWithHint and GenerateWithHint have also to deal with huge integers and sets of schemes, respectively.

• Second, Optimizer focuses on recursively optimal schemes, that is, optimal schemes that are only made of optimal subschemes. The existence of such recursively optimal schemes is implied by the fact that ρ is non-decreasing, which tells us that improving a subscheme will never give a worse nal result. However, not all the optimal schemes are recursively optimal, as illustrated by Figure 7.1. Therefore, contrary to CountWithHint and GenerateWithHint that take all the optimal schemes into account, Optimizer is not suitable for an exhaustive study of the optimal schemes.

Figure 7.1: Evaluation schemes with a minimal depth for a 9 can be formed with a nonoptimal evaluation scheme for a 4 . Limitation of this approach: the case of the number of multiplications

Minimizing the number of multiplications needed in order to evaluate an arithmetic expression like a n is a dicult problem, see the discussion about conjecture failures in [START_REF] Knuth | of The Art of Computer Programming[END_REF]page 477]. In our context, this case provides an example of optimal scheme s = ( , {s 1 , s 2 }) where neither s 1 nor s 2 is optimal. Indeed, consider the following optimal2 scheme for a 29 :

a 2 = a × a a 3 = a × a 2 a 5 = a 2 × a 3 a 6 = a × a 5 a 12 = a 6 × a 6
a 17 = a 5 × a 12 a 29 = a 12 × a 17

(7.5)
At the end of this sequence, we multiply a 12 obtained after 5 operations with a 17 obtained after 6 operations. But optimal evaluation schemes for a 12 and a 17 have only 4 and 5

operations, respectively (refer to [Knu98, Figure 15 in 4.6.3] or Section 7.2.1).

Recall that we can measure the number of multiplications for a given scheme using ϕ : S(F) → P(S(F)) dened in Section 5.4.2. This is a recursively computable measure, but the example mentioned above points out that the corresponding function ρ is not non-decreasing. Indeed, we may have used the following scheme in order to evaluate a 12 :

a 2 = a × a a 4 = a 2 × a 2 a 8 = a 4 × a 4 a 12 = a 4 × a 8 .
This scheme s 1 is better than the scheme s 1 that can be extracted from Equation (7.5) since there is one less multiplication. However, if we try to evaluate a 29 using s 1 in addition to the scheme s 2 for a 17 that we deduce from Equation (7.5), we will have fewer common subexpressions (a 12 is computed in two dierent ways), so that ρ(×, ϕ(s 1 ), ϕ(s 2 )) will contain more schemes than ρ(×, ϕ(s 1 ), ϕ(s 2 )).

Nevertheless, it is still possible to use Optimizer so as to minimize heuristically the number of multiplications required to evaluate a n . Namely, we can run the algorithm while forgetting about the hypothesis on ρ, and hope that the nal result will not be too far from the optimal one. We have tested it and compared the result with the table given in the On-Line Encyclopedia of Integer Sequences3 . For 1 ≤ n ≤ 10001, our algorithm answers in 2 minutes and 55 seconds, and gives the optimal number of multiplications, along with an optimal scheme, for ≈ 87.3% of the inputs n. The rst values of n where our algorithm fails to nd an optimal scheme are n = 77, 154, 229, 233, 294, . . . . In this case, we obtain each time a scheme with only 1 extra multiplication compared to the optimal. Therefore, despite the lack of correctness, Optimizer still produces a reasonable result in this case. Furthermore, it should be noted that, among the values of n for which Optimizer is not correct, we nd several cases that are known to be dicult ones. For instance, Knuth's power tree method fails for n = 77, 154, 233, . . . [Knu98, page 464].

Global optimization

In order to tackle the limitation of the algorithm Optimizer introduced in the previous section, we propose three other algorithms:

1. OptimizerSet, which is a generalization of Optimizer in order to optimize a criterion for a set of arithmetic expressions rather than for a single expression; 2. GlobalOptimizer, which is the counterpart of CountPerMeasure for optimization;

3. GlobalOptimizerWithHint, which is the counterpart of GenerateWithHint and CountWithHint.

In practice, the third algorithm performs better than the other two. Yet the rst algorithm may be useful when one wants to optimize the evaluation of two quantities in the same time. This may happen for instance when using a rational function instead of a polynomial to approximate a mathematical function. As for the second algorithm, it is presented for the sake of completeness.

Detour via the optimization of sets of expressions

So far, each time one of our algorithms has to deal with a decomposition ( , {f 1 , f 2 }), it performs two recursive calls on f 1 and f 2 . By doing so, it becomes harder to handle properly the common subexpressions in f 1 and f 2 . One idea, suggested in [Knu69, 4.6.3,

Problem 32] for the question of minimizing the number of multiplications for evaluating a n , consists in generalizing the optimization problem for f ∈ F to sets of elements in F.

Thus, instead of the two recursive calls mentioned above, one can make a recursive call on the set {f 1 , f 2 }.

Actually, [DLS81] answers [Knu69, 4.6.3, Problem 32] by showing that the generalized problem is NP-complete. Nevertheless, we think that this approach deserves investigation. Indeed, we do not know the complexity of the initial problem, and, as already mentioned, there are situations where we really want to deal with several expressions at the same time.

In order to embrace this approach, let us generalize for this section only some of the concepts introduced in Chapter 5:

• We still ask for a family of arithmetic expressions as in Section 5.2.3;

• A measure will be a function ϕ : P(S(F)) → T , where T has a total order < T ;

• The problem of optimization we consider here is to nd, given a set of arithmetic expressions F = {f 1 , . . . , f r }, the quantity min (s i ∈ S(f i )) 1≤i≤r ϕ({s 1 , . . . , s r }) ;

• We will assume that all the measures ϕ will be recursively computable in the following sense: there exists ρ : {+, ×} × T → T such that for all set of schemes S = {s 1 , . . . , s r } and for all i such that s i = ( , s , s r ), we have ϕ(S) = ρ , ϕ {s 1 , . . . , s i-1 , s i+1 , . . . , s r } ∪ {s , s r } .

where F = {f 1 , . . . , f r }, F = {f 1 , . . . , f k }, and S(F ) = S(f 1 ) × • • • × S(f r ) is the set of of evaluation schemes for F . The rst equality comes from the denition of ρ, and the second equality holds since we have supposed that ρ( , •) is non-decreasing. Now, it is easy to see that for all ( , F ) ∈ D(F ), we have F ≺ F (F is obtained by replacing one element of F with 0, 1, or 2 smaller elements). Hence the induction hypothesis tells us that OptimizerSet(F ) = min s ∈S(F ) ϕ(s ). Therefore, our algorithm actually computes the right part of Equation (7.6) and thus it is correct.

We have tested OptimizerSet in order to compute the rst terms of the sequence A003313 in the On-Line Encyclopedia of Integer Sequences, whose nth term is the minimal number of multiplications for evaluating a n . The main advantage of OptimizerSet is that we can use directly the number of multiplications for the measure, instead of computing sets of schemes. The corresponding function ρ is then dened by:

ρ : {+, ×} × N → N (+, i) → i (×, i) → 1 + i,
and, as ρ(+, •) and ρ(×, •) are non-decreasing, the hypothesis of Theorem 7.3 is satised. Furthermore, the cost of OptimizerSet for a n can be bounded by 2 n+O(log n) as follows:

• As a i is represented by i, the sets of arithmetic expressions encountered recursively will be subsets of {1, . . . , n}. • Finally, the cost at each step of the foreach loop is constant.

This bound on the cost of our approach is fair considering that the problem solved here is NP-complete. For 1 ≤ n ≤ 100, we obtain a computation time of about 35 minutes, the important point being that, contrary to Optimizer, we get the correct value for n = 77.

If one really wants the optimal number of multiplications in order to evaluate a n , we suggest to look at [Knu98, 4.6.3] and the references therein for a more practical approach, especially if n is a xed constant. Yet, our approach instantiated for this issue performs reasonably well, and its generality enables to tackle other problems. See for instance the last paragraph of Section 8.2.2, where we use OptimizerSet to minimize the number of non-scalar multiplications for the simultaneous evaluation of two polynomials.

Algorithms GlobalOptimizer and GlobalOptimizerWithHint

Instead of considering sets of arithmetic expressions like in the previous section, we can, as in CountPerMeasure, return for each subexpression the set of all achievable values according to the given measure. Then, it is easy to deduce the optimal value since we Output : r = {ϕ(s), s ∈ S(f ) and ϕ(s) ≤ T B} ∈ P(T ).

← decompose(f ) 1 r ← ∅ 2 if = ∅ and ϕ(f ) ≤ T B then r ← ϕ(f ) 3 else 4 foreach ( , f 1 , f 2 ) ∈ do 5 B ← update(( , f 1 , f 2 ), B) 6 r 1 ← GlobalOptimizerWithHint(f 1 , B ) 7 if f 1 = f 2 then 8 for t 1 ∈ r 1 do 9 t ← ρ( , t 1 , t 1 ) 10 if t ≤ T B then r ← r ∪ {t} 11 else 12 r 2 ← GlobalOptimizerWithHint(f 2 , B ) 13 for (t 1 , t 2 ) ∈ r 1 × r 2 do 14 t ← ρ( , t 1 , t 2 ) 15 if t ≤ T B then r ← r ∪ {t} 16 return r
17 that the cost of GlobalOptimizerWithHint is not very smooth with respect to n. In fact, computing recursively A003313(n) implies that all the values A003313(i) for i ≤ n are computed, and since we use increasing bounds within GlobalOptimizerWithHint until we get a result, the cost for A003313(i) when it is a local maximum is signicantly larger. Noting that i = 79 achieves such a local maximum thus explains the dierence between the costs for n = 60 and n = 80. 

ρ : {+, ×} × T × T → T , (a 1 , . . . , a r ), (b 1 , . . . , b r ) → ϕ 1 ( , a 1 , b 1 ), . . . , ϕ r ( , a r , b r ) .
Then, using the lexicographical order on T , we can call Optimizer and eventually get a satisfactory scheme. If the rst measure ϕ 1 satises the hypothesis of Theorem 7.2, that is, if ρ 1 is non-decreasing with respect to its second and third variables respectively, we will at least get an optimal scheme according to this measure. Indeed, the lexicographical order on T implies that the order on the rst component prevails over the other.

Unfortunately, even though all the ρ i are non-decreasing with respect to their second and third variables, we have no guarantee to get an optimal result in the sense of < lex (that is, a result where the ith component is best possible after we have optimized the (i -1)st rst components). Think of an optimization of latency and then accuracy for f = ( , f 1 , f 2 ). We may have to choose between a fast but highly inaccurate scheme for f 1 , and a slightly slower but very accurate one. Then, if the fastest scheme for f 2 is slow enough, it is best to choose the accurate scheme for f 1 since we get the same speed but a greater accuracy. However, Optimizer will choose the faster scheme for f 1 .

• Third, it is possible to cope with the non-optimality in Algorithm Optimizer by using GlobalOptimizerWithHint instead. Indeed, as soon as we have a good insight on how the behavior of ϕ 1 when we decompose an expression, we can derive a function update that we can use within GlobalOptimizerWithHint. Notice that information on ϕ 1 is enough since we can restrict ourselves to bounds

B in T = T 1 × • • • × T r of type (x, ∞ 2 , . . . , ∞ r ).
This technique allows us to greatly limit the search space, and thus to deduce the optimal achievable value according to < lex , along with one or a few optimal schemes.

We have tried the last two approaches on a concrete example. Suppose we want to evaluate the polynomial p(x) = 2.71828185208141803741455078125 + 0.00000143982470035552978515625 x + 1.35907874070107936859130859375 x 2 -0.905038728378713130950927734375 x + 1.010036041028797626495361328125 x 4 -0.94749634526669979095458984375 x + 0.831820450723171234130859375

x 6 -0.6024215556681156158447265625 x + 0.321694311685860157012939453125 x 8 -0.108315038494765758514404296875 x + 0.016886915080249309539794921875 x 10 , 

((((x).((x).(x))).(((x).(x)).((x).(x)))).(((((x).(x)).((x).(a 10 ))) + ((x).(((x).(a

9 )) + (a 8 )))) + (a 7 ))) +

(((((x).((x).(x))).(((x).(x)).(((x).(a 6 )) + (a 5 )))) + ((((x).((x).(x))).(((x).(a

4 )) + (a 3 ))) + (((x).((x).(a 2 ))) + ((x).(a 1 ))))) + (a 0 )) (b) Scheme returned by GlobalOptimizerWithHint.
which is a good approximant of exp (1+x) 1+x

on the interval [0, 0.99999988079071044921875],

using double-precision oating-point arithmetic. We use the model described in Section 5.4.2 to measure the accuracy, except that we choose to consider a 1-ulp error for + and × (instead of 1 2 -ulp errors) so that it covers every rounding mode of the IEEE-754 standard. The resulting schemes are shown in Figure 7.2: On the one hand, Optimizer gives us in 1 second the scheme of Figure 7.2(a) which has a latency of 13 cycles and an error bound of 4.45862214951341271429 × 10 -15 according to our model; On the other hand, GlobalOptimizerWithHint returns after 72 seconds the scheme of Figure 7.2(b) which has also a minimal latency of 13 cycles, but a slightly smaller error bound of 3.64884386153025096137 × 10 -15 . Thus, as we can see on this example, Optimizer is able to quickly optimize the latency and give a scheme with a reasonable error bound, while GlobalOptimizerWithHint takes more time to optimize rst the latency and then the error bound.

Even if we have not tried the rst approach based on GenerateWithHint, we can claim that it would have taken much more time than the two others. Indeed, generating all the 48151536 evaluation schemes with the optimal latency of 13 already takes around 11 minutes. In addition, while limiting the number of evaluation schemes generated at each step would decrease the computation time, there is no reason that the best error bound among the remaining schemes would be as good as the one provided by GlobalOptimizerWithHint. In this situation, GlobalOptimizerWithHint should therefore be preferred over GenerateWithHint.

Search for a trade-o

Let us see now a last algorithm for this chapter, designed in order to address the issue of trade-o for a set of criteria. We will actually restrict ourselves to the case of two criteria for the sake of simplicity, and in order to avoid prohibitive computation time. However, the ideas presented here can be extended to more criteria.

Figure 7.3 illustrates how the evaluation schemes for a degree-5 polynomial split up according to their latency (assuming a cost of 1 cycle for addition and of 3 cycles for multiplication) and their number of multiplications. All the evaluation schemes, repre-sented with crosses, lie in the red array. If we want to minimize both the latency and the number of multiplications, the more at bottom-left we are, the better it is. Therefore, the possible best choices in this case are the corners of the red area represented with blue dots, that is, schemes with a latency of 10 and 7 multiplications, or with a latency of 12 and 6 multiplications, or with a latency of 20 but only 5 multiplications.5 All the other schemes will have either a larger latency, or a larger number of multiplications (or both)

than the schemes at the blue dots. propose is a mix between algorithms Optimizer and GlobalOptimizer, that we will call BiOptimizer. Like in GlobalOptimizer, we will compute a set of achievable trade-os at each step (the crosses in Figure 7.3), but then we will select only the optimal ones (the blue dots) like when we only keep the optimal value in Optimizer. What we compute recursively is therefore the list of optimal trade-os for each subexpression.

Let

T 1 ×T 2 be the partial order on T 1 × T 2 dened by: there exists an i such that

∀(a 1 , a 2 ) ∈ T 1 , (b 1 , b 2 ) ∈ T 2 , (a 1 , a 2 ) T 1 ×T 2 (b 1 , b 2 ) ⇔ a 1 ≤ T 1 b 1 and a 2 ≤ T 2 b 2 .
(i-1)
T1×T2 x so we do not need to keep x.

• • • • • x (i-1) (j) (b) Second case:
x is an optimal trade-o, so we insert it and remove all the

(n) such that i -1 < n < j since x T1×T2 (n) .
2. For every scheme s ∈ S(f ), there exists an index n such that r (n)

T 1 ×T 2 ϕ 1 (s), ϕ 2 (s) . In other words, there should exist at least one trade-o in r that is not worse than what we obtain with s for both measures.

The rst fact is a simple consequence of the fact that each point added in r is achievable by construction. Consider now a scheme s = ( , {s 1 , s 2 }) for f with s 1 ∈ S(f 1 ) and s 2 ∈ S(f 2 ). Since f i < F f for i ∈ {1, 2}, the induction hypothesis tells us that there exists r

(n i ) i ∈ r i such that r (n i ) i T 1 ×T 2 (ϕ 1 (s i ), ϕ 2 (s i )). Hence, with (a 1 , a 2 ) := r (n 1 ) 1 , (b 1 , b 2 ) := r (n 2 ) 2
, and x := ρ 1 ( , a 1 , b 1 ), ρ 2 ( , a 2 , b 2 ) , we deduce that

x i = ρ i ( , a i , b i ) ≤ T i ρ i ( , ϕ i (s 1 ), ϕ i (s 2 )) = ϕ i (s)
for i ∈ {1, 2} since ρ i is non-decreasing by assumption, and a i ≤ T i ϕ i (s 1 ) and b i ≤ T i ϕ i (s 2 )

by denition of T 1 ×T 2 .

Therefore, x T 1 ×T 2 ϕ 1 (s), ϕ 2 (s) . Moreover, since this x is eventually taken into account in one of the inner loops of the algorithm, and thanks to the behavior of the routine insert, we will always have some element y ∈ r such that y T 1 ×T 2 x after the call to insert(x, r). Let r (n) be such an element of r at the end of the foreach loop.

By transitivity, we have r (n) T 1 ×T 2 x T 1 ×T 2 ϕ 1 (s), ϕ 2 (s) , which proves the second fact.

We can make a few remarks on this new algorithm:

• Let us comment on the expected cost of BiOptimizer. On one hand, it will be higher than when we use Optimizer, since we propagate lists of achievable values instead of only one optimal value. On the other hand, we can hope that the list of optimal trade-os will be signicantly smaller than the set of all the values achieved by the dierent evaluation schemes. In this case, BiOptimizer will run much faster than GlobalOptimizer or even than GlobalOptimizerWithHint.

• Like for all the previous optimization algorithms, we can always keep trace of the decompositions achieving a given value, so that we can get back one or several schemes corresponding to it.

Algorithm 7.7: BiOptimizer Input : f ∈ F. Parameter: Two recursively computable measures ϕ i : S(F) → (T i , < T i ) for i ∈ {1, 2}.

Output : The list of all the optimal achievable trade-os (represented by pairs in T 1 × T 2 ) sorted by lexicographical order. ← decompose(f )

1 if = ∅ then r ← ϕ 1 (f ), ϕ 2 (f ) 2 else 3 r ← [ ] 4 foreach ( , f 1 , f 2 ) ∈ do 5 r 1 ← bioptim(f 1 ) 6 if f 1 = f 2 then 7 for {(a 1 , a 2 ), (b 1 , b 2 )} ∈ P 2 (r 1 ) do 8 x ← ρ 1 ( , a 1 , b 1 ), ρ 2 ( , a 2 , b 2 ) 9 insert(x, r) 10 else 11 r 2 ← bioptim(f 2 ) 12 for (a 1 , a 2 ), (b 1 , b 2 ) ∈ r 1 × r 2 do 13 x ← ρ 1 ( , a 1 , b 1 ), ρ 2 ( , a 2 , b 2 ) 14 insert(x, r) 15 return r 16
• The choice underlying the trade-o may be linked to variables. In practice, we handle this case by allowing the user to set her/his own optimal lists of trade-os for the variables. See the rst example of the next section for an illustration of this aspect.

• We may still have relevant results when the ρ i 's are not non-decreasing, as we will see in the second example of the next section. However, we lose the guarantee of optimality.

Application to polynomial evaluation

Let us see two applications of the algorithm introduced in the previous section.

Trade-o between latency and delay for special bivariate polynomials

The rst example directly comes from the implementation of oating-point operators for VLIW integer processors, like the ST231 processor, in the framework of the FLIP software library (see Section 4.2.1). Recall that for some operators, the polynomial to evaluate is of the form q(x, y) = α + y • p(x) where p(x) = n i=0 a i • x i is some univariate polynomial of degree-n [START_REF] Jeannerod | Computing oating-point square roots via bivariate polynomial evaluation[END_REF]. In this case, the actual values for x and y have to be deduced from the encoding of the oating-point number in input. This is done with a few instructions designed by hand, and minimizing the latency for this part is tedious.

However, the value of x is usually known before the value of y. This was modelled in the software CGPE by a parameter called the delay D, that represents the number of cycles we have to wait for before we can access the value of y when evaluating q(x, y).

A natural question is then to see the impact of this delay on the minimum latency for the evaluation. Indeed, it may be hard and time-consuming to gain even 1 cycle in the sequence of instructions for the computation of the value of y, and doing so gives no a priori guarantee that the overall latency will also decrease.

We propose here to use BiOptimizer in order to get more information about the impact of the delay D on the minimum latency. The two measures we will use are rst the latency (with C + = 1 and C × = 3 as it stands for the ST231 processor), and a new measure for the delay dened as follows:

• the delay for x, α, and any a i is ∞;

• the delay for y is some parameter D;

• the delay for a non-trivial expression f = ( , f 1 , f 2 ) is the minimum of the delays for f 1 and f 2 , meaning that we use ( , x, y) → min{x, y} for the recursive computation of the delay.

In fact, the measure of scheme s can be thought of as being the maximum allowed delay for an evaluation of s, which will be linked to the minimum latency we try to achieve. The order we use is therefore > since a greater allowed delay means less eort on the design of the sequence of instructions to get the value of y. Now, in order to compute the trade-o between the minimum latency and the maximum delay, what we do is to

x for y the following list of optimal trade-os: [(0, 0), (1, 1), . . . , (M, M )], where M is some maximal bound for the delay. This tells us that y can be evaluated in i cycles when the delay is at most i, for 0 ≤ i ≤ M . Now, we can use BiOptimizer to propagate this information and obtain the list of optimal trade-os for q(x, y), which is what we were looking for.

We have xed M = 12 and run BiOptimizer for q(x, y) with a degree for p(x) ranging from 0 to 12. The corresponding result, obtained in about 7 seconds, is illustrated at Table 7.2, where each row corresponds to one degree for p(x), each column to one value for the delay D, and each entry to the corresponding latency. With this table, we can conclude for instance that, for deg(p) = 8, one cannot hope to decrease the latency by decreasing the delay D if D is already at most 3. On the contrary, it is worth trying to get a delay of 3 cycles instead of 4 in this case, since it allows us to save 1 cycle for the evaluation scheme.

Trade-o between latency and accuracy

As a second illustration of BiOptimizer, let us come back to the example mentioned at the end of Section 7.3.1, where we wanted to evaluate a degree-10 polynomial p(x) on the interval [0, 0.99999988079071044921875]. The list of tradeos obtained using the latency and accuracy as rst and second measures respectively is shown in Figure 7.5.

The conclusion is similar to the one from Section 7.1.3. We used here as the second measure the accuracy, whose corresponding function ρ is not non-decreasing in all generality. Therefore, one hypothesis of Theorem 7.5 is not satised, and we have thus no guarantee to get optimal trade-os with BiOptimizer. Yet, using this algorithm yields relevant results. Indeed, for the optimal latency of 13, we nd the maximum error bound 3.72775790717401075969×10 -15 , which is only slightly worse than the best achievable bound 3.64884386153025096137 × 10 -15 pointed out by GlobalOptimizerWithHint. However, the computation time for this new approach is 12 times smaller (6 seconds instead of 72). Moreover, we get the behavior of the error bound (according to our model) with respect to the latency achieved. Notice also that, compared to Optimizer whose computation time was around 1 second, we manage to get a better accuracy for the optimal latency along with more information on the trade-o between latency and accuracy at a reasonable extra cost.

Finally, one interesting issue about the latency-accuracy trade-o lies in the behavior of the minimum error bound when one increases the acceptable latency. For sums of variables, this issue was addressed in [LMT10], where the authors conclude that relaxing slightly the time constraints for evaluating the sum helps to strongly improve accuracy.

Here, we are able with our general approach to show experimentally that the same conclusion holds for some univariate polynomials. Indeed, if we accept to use a scheme of 16 cycles instead of 13 in the example of Figure 7.5, we obtain an error bound three times closer to the best one. Note that the same outcome was observed on several other univariate polynomials. x

• • • • • • • • • • • • • • • 13 
1/2 x -1/2 x 1/3 x -1/3 log 2 (1 + x) 1 √ 1+x 2 exp(1+x) 1+x sin(1+x) 1+x +1 exp(cos(1 + x))
Degree (dx,dy) (8,1) (9,1) (8,1) (9,1) (6,0) (7,0) (10,0) (5,0) (8,0) Delay on y 2 3 9 9

Approximation interval • A bound on the latency is never provided, so the target latency in use came from a heuristic estimation of the minimum latency on unbounded parallelism. Unfortunately, this estimation was 1 cycle below the actual value for two cases.

{1, 2 1/2 }×[0, 1] {1, 2 1/3 , 2 2/3 }×[0, 1] [0.5, 1] [0, 0.5] [0, 1] [0, 1] [0,
• Numerical aspects are only taken into account after the scheme set computation step. Therefore, one numerically bad subscheme could end up in several of the nal sets of schemes, which will have to be invalidated individually despite the common source of error. This is what happens for instance with function log 2 (1 + x) in Table 8.1.

• What dominates the generation cost is the last two lters. In particular, the scheduler is very slow when given an invalid scheme (see the timings for functions x -1/2 and exp(1+x) 1+x in Table 8.1, for instance), and Gappa may lose some time in analyzing several times the same subscheme for the reason mentioned in the previous point.

In addition, setting properly all the parameters for the scheme computation step required us to acquire some good knowledge on the combinatorics of evaluation schemes. In particular, the decision to limit exhaustive generation to polynomials with a support of size no more than 5 was motivated by the values in Tables 6.1 and 6.3. Moreover, the study on the distribution of schemes according to latency of Section 6.4, which tells us for instance that there are 69, 384, 330 optimal schemes for a degree-8 univariate polynomial, conrms the need for other heuristics. Thus, a user unfamiliar with these issues may have diculties to use CGPE eciently. Finally, the choice to consider only decompositions into low part plus high part for polynomials with large supports can be motivated by noting that this should lead, in the manner of Estrin's rule, to schemes with low latency.

Nevertheless, this still remains a somewhat arbitrary choice.

8.1.2 Adding more constraints within the scheme set computation step

In the design of CGPE introduced in the previous section, the approach of the scheme set computation step is very similar to our algorithm GenerateWithHint used with the measure corresponding to latency. The lesson learnt from the previous chapters is that we can really improve some recursive analysis of the set of evaluation schemes, both in terms of speed and result's relevance, by adding more constraints. Thus, we propose here three ideas, detailed below, to improve CGPE (the rst two being already mentioned in [START_REF] Mouilleron | Automatic generation of fast and certied code for polynomial evaluation[END_REF]). This yields the new design shown in Figure 8.1(b).

Optimizing the latency in a precomputation

As we have seen in Section 7.1.1, minimizing the latency can be achieved eciently using

Optimizer. Therefore, we propose to call this algorithm before we start the scheme set computation step. The motivation for this precomputation is twofold:

• Recall that the initial design of CGPE relies on a heuristic estimation of the minimum latency on unbounded parallelism. Instead of starting with a possibly underestimated value, it is better to actually compute the exact value.

• We can keep trace of all the decompositions leading to optimal schemes. Then, instead of restricting ourselves to decompositions of the type low part plus high part as explained before, we would rather use the set of decompositions pointed out by Optimizer, at least as long as we generate subschemes on a critical path.

It should also be noted that using Optimizer beforehand results in a simplication of the user interface. Indeed, several of the technical parameters for the scheme set computation step were introduced in order to lead the recursive generation of schemes.

With our precomputation, a more relevant information is automatically deduced, so that the user now only has to state the number of schemes to be kept for each subexpression.

Inserting numerical constraints during the computation of schemes

The second improvement lies in the introduction of a systematic verication of the numerical properties as soon as a scheme is generated. Then, we can discard on the y schemes that may not be evaluated with unsigned xed-point arithmetic or the one with overowing additions. This way, we can avoid the situation where one good subscheme according to latency, but not suitable numerically speaking, ends up in many of the nal schemes, invalidating them all.

To perform this verication, we propose to adapt the model of accuracy of [Mar09a] and presented in Section 5.4.2. Thus, we will attach two intervals to each generated scheme s: a rst interval value(s) enclosing all the possible values at execution time;

and a second interval error(s) enclosing the dierence between the real mathematical value and the result actually obtained on the architecture. Checking the constant-sign constraint reduces therefore to see whether 0 belongs to the interior of value(s) or not, and the absence of overow for an addition can be proved whenever all the values in value(s) t in the chosen xed-point format.

For any trivial scheme s, thus corresponding to a coecient or a variable, value(s) is an input of our problem, and we set error(s) = [0, 0] since coecients and variables are supposed to be exactly representable. Otherwise, we have s = ( , {s 1 , s 2 }). The quantity value(s) is obtained directly by using multiple precision oating-point interval arithmetic [START_REF] Moore | Interval Analysis[END_REF][START_REF] Alefeld | Introduction to Interval Analysis[END_REF] as provided by the library MPFI, 3 and error(s) can be deduced as follows:

• If = + then s 1 and s 2 have to be in the same xed-point format. Moreover, value(s) must have a constant sign and ensure that no overow occurs. When it is the case, the addition entails no error and thus we dene error(s) = error(s 1 ) + error(s 2 ).

Otherwise, the current scheme is not suitable for our purpose, and so we discard it;

• If = ×, we rst check whether the xed-point numbers in value(s) can be stored with no more than f bits for the integer part, where f is the integer part size chosen for the current subexpression. If not, s is not suitable and thus discarded.

Otherwise, its error bound is computed as follows:

error(s) = error mul + error(s 1 )

• error(s 2 ) + error(s 1 ) • value(s 2 ) + value(s 1 ) • error(s 2 ),
where error mul is the error entailed by the unsigned multiplication itself. On the ST231 processor, we have a truncated multiplication so that error mul = [0, 2 f -32 ].

Notice that, with this verication, both the rst and third lters mentioned in the previous section become useless. Indeed, generated schemes will pass the rst lter by construction, and it is straightforward to check, for each scheme s in the nal set, whether error(s) has a magnitude less than the maximum error bound provided by the user.

Therefore, we can avoid the calls to Gappa.

Finally, it should be noted that interval arithmetic can also be used to bound values and errors for a polynomial evaluation in oating-point arithmetic, thanks to models like the one in [Mar09a]. Therefore, while we have focused here on xed-point arithmetic, one can design a similar numerical constraint in order to check, for instance, the absence of overow and underow in an evaluation using oating-point arithmetic.

Early schedulability checking

As a third improvement, we propose to add a simple test of schedulability on the target architecture for each generated scheme. The main motivation for this is to avoid dealing with schemes that will obviously not have the same latency on the target architecture as on unbounded parallelism. As a consequence, we hope to increase the proportion of schemes that will pass the schedule checking in the selection step. The test we have implemented is based on the following remark. If we encounter a scheme with several critical paths (that is, with several paths having a cost equal to the latency on unbounded parallelism), we will need to launch many operations during the rst cycles. However, we usually have only a few issues available, like for the ST231 processor which has 4 issues and only 2 multipliers. Hence, we may not have enough resources to launch all the operations in the critical paths.

Therefore, each time we create a new scheme, we compute for each cycle the number of operations and the number of multiplications that should be launched before this cycle.

Then, we check that, at any time, the number of operations (resp. multiplications) to be launched is no more than the maximal number of operations (resp. multiplications) that can be launched on our architecture. Consider for instance the scheme of p(x) = a 6 • x 6 + a 5 • x 5 from Figure 8.2, whose latency on unbounded parallelism (using ST321 processor's costs of + and ×) is 10 cycles. This scheme will pass our test since there are 1 ≤ 2 multiplication (x × x) to be launched at cycle 0 (before cycle 1), 5 ≤ 2 × 4 multiplications to be launched before cycle 4, 7 ≤ 2 × 7 multiplications to be launched before cycle 7, and nally 7 ≤ 2 × 10 multiplications and 8 ≤ 4 × 10 operations to be launched before cycle 10.

Notice that we completely forget about dependency between the operations here, so a scheme that passes our test may still have no good scheduling on the target architecture.

Actually, the scheme presented in Figure 8.2 is not schedulable in 10 cycles on the ST231 processor. Indeed, operations x × x 2 , x 2 × x 2 , x 2 × a 6 and x 2 × a 5 cannot be launched before cycle 3, since the value of x 2 is needed. And, as they all are on critical paths, we have four multiplications to schedule on cycle 3, which exceeds the number of available multipliers on the ST231 processor. Nevertheless, we observe in practice that this simple test already removes thousands of unschedulable schemes for several of the functions considered in Table 8.2.

Experimental results

In order to compare this new design of CGPE to the previous one, we have redone the experiments from Table 8.1. The new timings are shown in Table 8.2. Before commenting the new results in detail, it should be noted that the naive usage of interval arithmetic presented in Section 8.1.2 is a fast but rough way to bound the actual values and errors.

Therefore, using it within the scheme set computation step may lead us to drop many valid schemes. Actually, there were two cases, log 2 (1 + x) and exp(1+x) 1+x

, where we ended up with no scheme left at the end of this step. When this situation happens, we run again the scheme computation step without the numerical checking that is postponed to an additional lter, based on a call to Gappa, within the scheme selection step. In fact, Gappa makes a more clever use of interval arithmetic, so that it usually provides better bounds than naive interval arithmetic. Yet, it is also slower, and we prefer to avoid it when naive interval arithmetic is sucient.

As we can see in Figure 8.2, the precomputation of the minimal latency on unbounded parallelism is merely free. Moreover, the restriction in the decompositions resulting from this precomputation allows us to quickly compute a set of optimal schemes with respect to the latency. This is particularly true for x 1/3 and x -1/3 where we do not suer from a slow computation step due to the large target latency anymore.

The scheme selection step is also greatly improved by the new design. As remarked earlier, the numerical checking applied during the scheme set computation step renders two of the three lters obsolete. Thus, for 7 of the 9 functions, we can avoid costly calls to Gappa. Moreover, we are able (except for one function) to exhibit more schemes that can be evaluated in unsigned xed-point arithmetic, as we can see by comparing the number of schemes left after the scheme set computation step in Table 8.2 to the number of schemes left after the arithmetic operator choice lter in Table 8.1. As for the two remaining cases (that is, log 2 (1 + x) and exp(1+x) 1+x ), the rst scheme computation with numerical checking is actually quite fast, 4 so it does not entail a large overhead.

In addition, we can still benet from the other additional constraints during the second scheme computation. For instance, in the case of exp(1+x) 1+x

, we obtain thanks to our schedulability test 23 schedulable schemes instead of 5. Since our scheduler usually runs faster on schedulable schemes, this saves a lot of work later in the scheduling checking.

In practice, the cost for this lter indeed drops from 67 to 3 seconds.

Table 8.2: Timings for the new design of CGPE.

x 1/2 x -1/2 x 1/3 We draw up a summary of the results and total computation times for both approaches in Table 8.3. As we can see, our new design usually produces at least as many schemes as the previous approach, and with a smaller amount of time. It only fails once to achieve as many schemes, but in exchange for a sizeable speed-up. Moreover, it is slower than the previous design only once. Finally, while it is delicate to draw quantitative conclusions since the computation time for both approaches is very sensitive to several aspects (like the inherent diculty of the polynomial evaluation and the number of schemes left after each step), we observe for our small set of examples an average gain of ≈ 50% in the total generation time. This, in addition to the decrease in the number of parameters to be xed by the user, allows us to conclude that the new design performs better and that its underlying approach is promising. 

Evaluation of a polynomial at a matrix point

Up to now, we have only addressed the issue of evaluating polynomials at a scalar point.

Yet the framework introduced in the previous chapters is suitable for the study of evaluation schemes for p(A) where p is a degree-d polynomial with coecients in K = R or C, and A is a matrix in K n×n .

Motivation and underlying issues Context and motivation

One can extend the denition of functions from K to K like sines, logarithms or exponentials in order to get a new function taking a matrix as input and returning another matrix. Evaluating such matrix functions is of great interest. In particular, we can nd exponentials of matrices in the solutions of linear ordinary dierential equations, which in turn appear in control theory and in simulations in physics. We refer to [Hig08, 1.1 1.4] for more details.

Higham proposes in [START_REF] Nicholas | Functions of Matrices: Theory and Computation[END_REF] algorithms for evaluating f (A) with f ∈ {exp, log, sin, cos} based on rational approximants for these functions. To be more precise, these algorithms use a (d, d )-Padé approximant of the corresponding power series f (x) = i≥0 f i x i , that is, a pair of polynomials (p, q) such that:

• deg p ≤ d and deg q ≤ d ,

• q(x) • f (x) -p(x) = O(x d+d +1 ).

The problem of evaluating f (A) reduces then to the evaluation of two polynomials p and q at a matrix point, followed by the computation of D -1 N or ND -1 where N = p(A) is the matrix numerator and D = q(A) is the matrix denominator.

How to evaluate p(A)

The evaluation of p(A) can be achieved in three ways:

1. In a context where transforming the polynomial or the matrix at input is not allowed, the evaluation will correspond to a straight-line program starting with A and the coecients of p and using only matrix additions, scalar-matrix multipli- 3. Finally, one can compute a suitable decomposition for the matrix A, so that the problem of computing p(A) becomes easier. In [START_REF] Giesbrecht | Nearly optimal algorithms for canonical matrix forms[END_REF] for instance, the author uses the decomposition underlying the Frobenius normal form in order to achieve a cost of O˜(MM(n) + d) for the evaluation of p(A).

In the current context, the more relevant way to evaluate p(A) seems to be the rst one, for the two following reasons:

• First, the degree of the polynomial coming from the Padé approximants (typically, d ≤ 13) mentioned before are too small for the polynomial preconditioning techniques to become better than the approach without preconditioning. Recall indeed the extra O(log d) in the number of non-scalar multiplications achieved, which is not compensated for by the gain of √ 2d non-scalar multiplications for small values of d;

• Second, we want to consider only simple algorithms, using + and × only and without any preconditioning, so that the error bound on the polynomial evaluation described in [Hig08, Theorem 4.5] remains valid. This way, we can change the polynomial evaluation without compromising the numerical properties of the whole approach.

Therefore, the reference for the evaluation of p(A) will be here the rst algorithm of The special case of exp(A)

Algorithm 8.1 illustrates Higham's approach for the case of exp(A). To ensure a good numerical result, the matrix A is rst pre-scaled so that exp(A) is computed through exp( Ã)

(2 s )
, where à := A/2 s . Then, as à has a small norm, the exponential is replaced with a (d, d)-Padé approximant.

Algorithm 8.1: Sketch of the approach in [START_REF] Nicholas | Functions of Matrices: Theory and Computation[END_REF]10.3] for the evaluation of exp (A). What is really interesting in this example is the link between the two polynomials involved in this Padé approximation, which actually reects the fact that e -x = 1/e x .

This rises the question of evaluating simultaneously both the even and odd parts of a given polynomial at a matrix point in an ecient way.

We do not insist on the choices for parameters s and d, see the discussion in [START_REF] Nicholas | Functions of Matrices: Theory and Computation[END_REF]10.3] for the details. The conclusion is that a trade-o between the degree d for the approximation and the scaling factor 2 s (and so the number s of nal squarings) has to be found, that this trade-o depends on the number of matrix-matrix multiplications involved in the polynomial evaluations, and that the interesting range for d is 1 ≤ d ≤ 13.

What we aim at here is to study the polynomial evaluation step itself, and to automatically retrieve or improve the evaluation scheme proposed in [Hig08, Equation 10.34]. 5 Division is not allowed in their model. So we will not be able to distinguish between A • B and B • A anyway. Therefore, the set S(p(A)) remains relevant as a model for the dierent ways to evaluate p(A) on a machine with nite-precision arithmetic.

Minimizing the number of non-scalar multiplications

In order to minimize the number of non-scalar multiplications in an evaluation scheme for p(A), we will use a new measure mainly based on the one described in Section 6.4.2.

Actually, the only dierence with the previous measure lies in the fact that we have to avoid counting multiplications of type a i • A j since they are scalar-matrix ones. Thus, we will use here the measure ϕ : S(F) → T := N × P(N 2 ) such that:

• For a given scheme s, ϕ(s) returns both the number of matrix-matrix multiplications involving at least one coecient a i and the set of powers of A computed within the scheme;

• For any trivial scheme s (that is, a single leaf ), we set ϕ(s) := (0, {});

• For any non-trivial scheme, ϕ can be computed recursively using the function ρ The total order for T will be the same as in Section 6.4.2, that is: Fewer multiplications is better; Then, the more A i 's computed, the better (since this increases the potential of common subexpressions); Finally, the sets of schemes for the A i s are compared. Now that we have an appropriate measure, we can use some of the algorithms introduced in the previous chapters in order to study the set of evaluations schemes for p(A)

with a minimum number of matrix-matrix multiplications. The result of our study is presented in Table 8.4:

• Using GlobalOptimizerWithHint, we can rst determine this minimum number of matrix-matrix multiplications, and produce one scheme that is optimal with this respect. The main conclusion we can draw here is that, for d ≤ 15, this minimum number coincides with the value achieved through Paterson and Stockmeyer's algorithm [PS73]. Hence, even though the best known lower bound is smaller, their approach is optimal.

• The number of optimal schemes can be determined with CountWithHint. Comparing with the total number of evaluation schemes shown in Table 6.1, we can see that only a few schemes are optimal in this context. In fact, their number is even small enough to think of an exhaustive search. Notice also that, as CountWithHint has only to deal with small-size numbers, its computing time is only slightly larger that the one for GlobalOptimizerWithHint.

• Finally, we have used GenerateWithHint rst in order to conrm the results of the previous two algorithms, and second to look at the shape of the optimal evaluation schemes. As one can see, the generation time is quite low for d ≤ 9, so that a ne tuning through exhaustive analysis is possible even at compile time. Also, one can go through the exhaustive study for d ≤ 12 within a reasonable amount of time. While Paterson and Stockmeyer's algorithm appears to be optimal in our computation model for d ≤ 15, there is still room for further investigation. First, let us discuss a classication of optimal schemes for small degrees. By looking at the output of GenerateWithHint for 0 ≤ d ≤ 12, we were able to distinguish between three classes of optimal schemes:

1. First, we have several variations of Paterson and Stockmeyer's algorithm. Namely, a sequence A, A 2 , . . . , A k is computed for some k, then chunks of size k are formed, and the nal result is deduced by using Horner's rule with A k and these chunks. The dierences between these variations come from the associativity of + within the chunks, and the way these chunks are formed (a k • A k may be placed either as a k • A k in the ( -1)st chunk, or as a k • I n in the th chunk).

2. Second, we nd schemes based on the sequence A, A 2 , A 4 , . . . , performing the evaluation in an even/odd way. These schemes are actually variations of the modular splitting algorithm presented in [BZ09, 4.4], which has usually a few more non-scalar multiplications than Paterson and Stockmeyer's algorithm. However, modular splitting appears to be competitive for d ∈ {5, 7, 10};

3. Third, we were able to extract, for d = 7, some exotic schemes (in the sense they do not seem to look like known schemes) such as

(a 0 • I n + a 1 • A) + (a 4 • A 4 + a 5 • A 5 ) + A 2 × a 2 • I n + (a 3 • A + a 6 • A 4 ) ,
where

• A 2 = A×A,

• A 4 = A 2 ×A 2 = (A × A) × (A × A),

• A 5 = A×A 4 = A × (A × A) × (A × A) .
As implied by the optimality of Paterson and Stockmeyer's algorithm, we are able to nd, for every degree d ≤ 15, many schemes that belong to the rst class. On the contrary, optimal schemes from the second and third classes only exist for some degrees.

By looking at the complete output of GlobalOptimizerWithHint for 13 ≤ d ≤ 15, we have determined that modular splitting can be optimal only for d ∈ {5, 7, 10, 13, 14}, and we have exposed exotic schemes only for n ∈ {7, 13, 14}. 
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We have represented here the schemes for each A i , but they are actually stored as a pair of integers in the implementation.

Such a diversity in the optimal schemes lets us think that improvements of the parallelism, the memory usage, or the numerical quality may be achieved by exhaustive or where non-scalar multiplications are not taken into account. As a rst experiment, we ask for the minimal number of non-scalar multiplications for the evaluation of the set

0 ≤ i ≤ d, i even a i x i , 0 ≤ i ≤ d, i odd a i x i ,
which is the exact form of our current problem. Thus, we were able to obtain the minimum number of non-scalar multiplications needed to evaluate simultaneously the even and odd parts of a degree-d polynomial when d ≤ 7. These numbers, along with the computation time, are presented in Table 8.5. Since they match the ones from [Hig08, Table 10.3],

we are able to conclude that, for d ≤ 7, one cannot hope to perform the simultaneous evaluation of the odd and even parts of p faster than what Higham proposes. where we compute with OptimizerSet the minimum number of non-scalar multiplications in order to evaluate {q, r} as in Equation (8.1), and add 2 to the result in order to take into account the multiplications A × A and A × r(A 2 ). Since we put some constraints on the way of evaluating the odd and even parts of p, this second experiment is actually a heuristic optimization, and thus it only gives an upper bound on the minimal number of non-scalar multiplications. Results are presented in Table 8.5, and again, they match with the one from Table [START_REF] Nicholas | Functions of Matrices: Theory and Computation[END_REF]Table 10.3]. This proves that, if we impose the evaluation of the odd and even parts of p to be performed as in Equation (8.1) then Higham's approach is optimal, at least for d ≤ 13.

ization of the optimization problem to sets of expressions (OptimizerSet), and a global optimization relying on additionnal constraints (GlobalOptimizerWithHint). We have also seen how using prioritization within a set of criteria allows us to reuse monocriterion optimization for the purpose of multicriteria optimization. Finally, we have proposed an algorithm aiming at nding good trade-os given two criteria, that we have applied rst to solve a question about latency and delay raised by the design of the FLIP library, and second to study the trade-o between latency and accuracy for polynomial approximation. This last experiment leads us to the conclusion that relaxing slightly the constraint on optimal latency may lead to far more accurate schemes.

Moreover, the material introduced in this part has been used in two more advanced contexts. First, our general framework allowed us to partially rewrite CGPE. By adding more constraints within the step that computes schemes, we were able to signicantly decrease the overall generation time for several functions. Second, we have reviewed the evaluation of a univariate polynomial at a matrix point, and shown that, in the absence of preconditionning, Paterson and Stockmeyer's algorithm achieves the minimal number of matrix-matrix multiplications, at least up to degree 15. A similar study for the computation of exp(A) with Padé approximants also proved the optimality of Higham's approach [START_REF] Nicholas | Functions of Matrices: Theory and Computation[END_REF]10.3] in terms of the number of matrix-matrix multiplications.

Last but not least, we have developed a C++ library that contains all the algorithms mentioned in Chapters 5 to 7 (≈ 1200 lines of code), several families of arithmetic expressions (≈ 1500 lines of code), and several measures (≈ 400 lines of code). This library was used to develop the example codes (33 of them, for a total of ≈ 3200 lines of code) that lead to the results presented all along this part of the document, and we are eager to test it for other types of arithmetic expressions, or with other optimization criteria, like the memory usage for software implementation, and the area usage for hardware. For the case of polynomial matrices, we still need to design a model for the numerical error analysis so as to obtain a complete code generator that really exploits the values of the coecients of p in order to produce a sharp error bound. Finally, a generalization of our approach in order to handle 3-ary operators would allow us to analyze implementations relying on the FMA operator, which is nowadays heavily used for accurate oating-point implementations.

Abstract

Designing ecient code in practice for a given computation is a hard task. In this thesis, we tackle this issue in two dierent situations.

The rst part of the thesis introduces some algorithmic improvements in structured linear algebra.

We rst show how to extend an algorithm by Cardinal for inverting Cauchy-like matrices to the other common structures. This approach, which mainly relies on products of the type structured matrix × matrix, leads to a theoretical speed-up of a factor up to 7 that we also observe in practice. Then, we extend some works on Toeplitz-like matrices and prove that, for any of the common structures, the product of an n × n structured matrix of displacement rank α by an n × α matrix can be computed in O˜ α ω-1 . This leads to direct inversion algorithms in O˜ α ω-1 , that do not rely on a reduction to the Toeplitz-like case.

The second part of the thesis deals with the implementation of arithmetic expressions. This topic raises sereval issues like nding the minimum number of operations, and maximizing the speed or the accuracy when using some nite-precision arithmetic. Making use of the inductive nature of arithmetic expressions enables the design of algorithms that help to answer such questions. We thus present a set of algorithms for generating evaluation schemes, counting them, and optimizing them according to one or several criteria. These algorithms are part of a library that we have developed and used, among other things, in order to decrease the running time of a code generator for a mathematical library, and to study optimality issues about the evaluation of a small degree polynomial with scalar coecients at a matrix point.

Keywords: structured linear algebra, matrix product, matrix inversion, arithmetic expressions, code generation, combinatorics and optimization of evaluation schemes.

Résumé

Le développement de code ecace en pratique pour eectuer un calcul donné est un problème dicile.

Cette thèse présente deux situations où nous avons été confronté à ce problème.

La première partie de la thèse propose des améliorations au niveau algorithmique dans le cadre de l'algèbre linéaire structurée. Nous montrons d'abord comment étendre un algorithme de Cardinal pour l'inversion de matrices de type Cauchy an de traiter les autres structures classiques. Cette approche, qui repose essentiellement sur des produits de type matrice structurée × matrice , conduit à une accélération d'un facteur allant jusqu'à 7 en théorie et constaté en pratique. Ensuite, nous généralisons des travaux sur les matrices de type Toeplitz an de montrer comment, pour les structures classiques, calculer le produit d'une matrice structurée n × n et de rang de déplacement α par une matrice n × α en O˜ α ω-1 n . Cela conduit à des algorithmes en O˜ α ω-1 n pour l'inversion de matrices structurées, sans avoir à passer par des matrices de type Toeplitz.

La deuxième partie de la thèse traite de l'implantation d'expressions arithmétiques. Ce sujet soulève de nombreuses questions comme le nombre d'opérations minimum, la vitesse, ou encore la précision des calculs en arithmétique approchée. En exploitant la nature inductive des expressions arithmétiques, il est possible de développer des algorithmes aidant à répondre à ces questions. Nous présentons ainsi plusieurs algorithmes de génération de schémas d'évaluation, de comptage et d'optimisation selon un ou plusieurs critères. Ces algorithmes ont été implanté dans une librairie qui a en autre été utilisée pour accélérer un logiciel de génération de code pour une librairie mathématique, et pour étudier des questions d'optimalité pour le problème de l'évaluation d'un polynôme à coecients scalaires de petit degré en une matrice.

Mots-clés : algèbre linéaire structurée, produit de matrices, inversion de matrices, expressions arithmétiques, génération de code, combinatoire et optimisation des schémas d'évaluation.
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  Toeplitz matrix has a displacement rank at most equal to 2 for operator ∆[Z m,0 , Z T n,0 ]. The same result holds for operators∆[Z m,ϕ , Z T n,ψ ], ∆[Z T m,ϕ , Z n,ψ ], ∇[Z m,ϕ , Z n,ψ ] and ∇[Z T m,ϕ , Z T n,ψ ],where ϕ and ψ are any elements of K. Similarly, a Hankel matrix has a displacement rank at most equal to 2 for operators∆[Z m,ϕ , Z n,ψ ], ∆[Z T m,ϕ , Z T n,ψ ], ∇[Z m,ϕ , Z T n,ψ ] and ∇[Z T m,ϕ , Z n,ψ ],where ϕ and ψ are any elements of K.Vandermonde structureIn a Vandermonde matrix, a given column is equal to the previous column pre-multiplied by the diagonal matrix D(x) dened by so that V(x, n) has a displacement rank of 1 (assuming x = 0) for the displacement operator ∇[D(x), Z n,0 ].Cauchy structureFor Cauchy matrices, we will use two diagonal matrices for the displacement operator. Let x ∈ K m and y ∈ K n . We have∇[D(x), D(y)] (C(x, y)) m • e T n ,so that C(x, y) has a displacement rank of 1 for the displacement operator ∇[D(x), D(y)].

  Basic properties of structured matrices 1.4.1 Recovering a structured matrix from its generators One may wonder whether it is possible to explicitly build a structured matrix A given some generator (G, H) for it. To answer this question, a study of the invertibility of the operators ∇[M, N] and ∆[M, N] has been carried out in [Pan01, Theorem 4.3.2].

[

  Kal94, Kal95] proposed to add a probabilistic preconditioning in order to get rid of the strong-regularity assumption on A. Pan and Zheng [PZ00] gave a version of MBA for Cauchy-like matrices (with Sylvester-type operator ∇[D(x), D(y)]). Moreover, using an explicit formula for a generator of the Schur complement pointed out in [GO94b, Theorem 2.3], they managed to avoid the compression stage (line 4 in Algorithm 1.1) preceding the second recursive call. Cardinal [Car99, Car00] presented an algorithm, again for the Cauchy-like structure, where both compression stages are avoided. One version of MBA for Vandermonde-like matrices can be found in [OS03]. Finally, a uniform approach covering

  ω-1 M(N )) O(α ω-1 N + α log α M(N )) Vandermonde-like or Cauchy-like O(α ω-1 M(N ) + α M(N ) log N ) O(α ω-1 N + α M(N ) log N )Application to structured matrix inversion Using the aforementioned costs for the functions MM * yields the following costs for our inversion algorithms introduced in Chapter 2 depending on the structure and the eld in

Figure 2 .

 2 Figure 2.2 shows computing times for inverting Cauchy-like matrices of displacement rank α = 10 when n increases. First, we can remark in Figure 2.2(a) that we obtain a computing time that is quasilinear with respect to n for each method, as expected. Moreover, as shown by Figure 2.2(b), the time spent in the compression routine for the two variants of MBA, and forPan and Zheng's algorithm conrms that compression is really negligible in practice, compared to the total cost. Yet, compression-free algorithms perform better than algorithms using compression. The main dierence explaining the various performances lies in the number and the size of products of the form Cauchy-like matrix × vectors. We have already seen in Theorem 2.4 that the choice in the parenthesizations leads to one variant in 3 log(n) MM C (α, n) and, up to stronger conditions on the input, to another variant in 2 log(n) MM C (α, n). Let us now estimate this cost for the three other algorithms in Figure 2.2(a).

Figure 2

 2 Figure 2.2: Cost (in seconds) of Cauchy-like matrix inversion for α = 10 and increasing values of n.

  Figure 2.3 shows the result of our experimentation.

Figure 2 . 3 :

 23 Figure 2.3: Cost (in seconds) of Hankel-like matrix inversion using GenInvHL, for n = 400 and increasing values of α.

  and thus P M = x m -ϕ and P N = x n -ψ. Consider rst the subcase where (M, N) = (Z m,ϕ , Z T n,ψ ). By applying Lemma 1.2 with = n, and since Z n n,ψ = ψI n and K n

  Now pre-multiply by V(x) -1 , post-multiply by B, and then apply Pol m and (3.8). It follows that

  Theorem 9.6]. Now, we can introduce Algorithm 3.3.

Figure 3 .

 3 Figure 3.1: Example of subproduct tree T y , where y ∈ R 4 is such that y i = i.

(

  Here only β and d depend on k ∈ {0, 1, . . . , log α }, while α, m, and the product n = βd are xed.) If k = 0 then β = α and the algorithm returns the correct result. If k ≥ 1 then the computed matrices V and W are in K[x] α×2β d/2

d

  , we set up R in two steps as follows: rewriting U T in the form U T = [1, x c , x 2c , . . . , x (α-1)c ]U T with c = m/α and U ∈ K[x] α×α c , we compute rst Q = U T R using MM(α, max{c, d}) eld operations, and then deduce R from Q using O(α(m + d)) eld operations. In summary, C(0) = 2MM(α, d) + MM(α, max{c, d}) + O(α 2 M(d) + αm).

  4. Let N = m+n. Algorithm ComputeRy works correctly and uses O(f K (α, N )+ M(N ) log N ) operations in K.

Figure 3 .

 3 Figure 3.2: General approach for the multiplication of an m × n structured matrix of displacement rank α by an n × α matrix.

[

  [START_REF] Bostan | Solving Toeplitzand Vandermonde-like linear systems with large displacement rank[END_REF][START_REF] Bostan | Solving structured linear systems with large displacement rank[END_REF] reductions from the Vandermonde-like and Cauchy-like structures to the Toeplitz-like one. Using these reductions and the cost proposed in [Bos10, page 210] for the multiplication of Toeplitz-like matrices yields a cost of O
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 33 Figure 3.3: Speed-up obtained by replacing the naive Cauchy-like matrix × vectors multiplication with the fast multiplication of a Cauchy-like matrix by a matrix from Figure 3.2.

[

  PGM04] has been developed in order to analyze the sources of numerical errors and to indicate the places in C code that cause much of them. Moreover, Martel has designed some techniques described in [Mar07, Mar09a, Mar09b] in order to turn a code for an arithmetic expression into a mathematically equivalent but more accurate one. Other techniques can be used to improve numerical quality. For instance, the rounding error due to a sum of two oating-point numbers is also a oating-point number and it can be computed exactly [Knu98, Theorem B, page 236]. Thus, this computed error can be injected again later, in order to reduce the nal evaluation error. This idea has led to the compensation technique [Kah65, Bab69], which was extensively used by Ogita, Rump, and Oishi in order to compute sums of n variables accurately [ORO05, Rum09]. Finally, we can cite the recent work in [LMT10], where the authors analyze the dierent possible implementations for a sum of 10 terms in order to nd a trade-o between the latency and rounding errors.

3 .

 3 Estrin's rule. This last rule is based on the divide-and-conquer paradigm, and consists in splitting up the polynomial into its low and high parts. Then, both parts are evaluated in a recursive way, until getting degree-1 polynomials, as shown in Figure4.1(c). Its implementation tends to expose more ILP than the previous rules, but to the detriment of an increase of the number of multiplications, since it requires about n + log(n + 1) -1 multiplications.
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 41 Figure 4.1: Classical rules for degree-3 univariate polynomial evaluation.

  Figure 5.1(a) shows an SLP for the evaluation of a 15 . As noticed in [BCS97, page 105], such a sequence of binary operations can also be represented as a direct acyclic multigraph 2 (DAG) where all the nodes have an outer degree of 0 or 2. The DAG corresponding to the SLP in Figure 5.1(a) is given in Figure 5.1(b). Alternatively, one may consider ordered binary trees, like in Figure 5.1(c), instead of DAGs.

Figure 5 . 1 :

 51 Figure 5.1: Example of SLP for evaluating a 15 and its corresponding DAG and binary tree.

  Corresponding ordered binary tree.
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 52 Figure 5.2: The set of all the evaluation schemes (represented as dashed boxes) for

  1. Algorithm 5.1 computes the set of all the evaluation schemes for the arithmetic expression f ∈ F given as input. Moreover, each time the algorithm adds a new element in S, this element is a new evaluation scheme for f .
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 54 Figure 5.4: Example of a C++ interface for a class implementing a measure.

However, Figure 5

 5 .4(b) tells us that we should have ρ(×, 2, 2) = 4 instead, which conicts with what we have for Figure 5.4(a). Example where 2 multiplications on the left and 2 multiplications on the right give 3 multiplications overall. Example where 2 multiplications on the left and 2 multiplications on the right give 4 multiplications overall.

  Algorithm 5.2: GenerateWithHint Input : f ∈ F, and a bound B ∈ T . Parameter: A recursively computable measure ϕ : S(F) → (T, < T ), and a function update: D(F) × T → T to adjust the bound before the recursive calls.
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 61 Figure 6.1: How to insert multiplications in order to turn a scheme for n i=0 a i into a

  for evaluating a • b i with 0 ≤ i ≤ n
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 6 Figure 6.2: Log-lin graph of the dierent functions mentioned during the asymptotic study of A169608(n).
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 63 Figure 6.3: Log-lin graph of the dierent functions mentioned during the asymptotic study of A173157(n).

6.4. 3

 3 Number of evaluation schemes for polynomials with respect to the latency

Figure 6 . 4 :

 64 Figure 6.4: Distribution of the evaluation schemes for p(x) with deg p = 18 according to the latency on unbounded parallelism when C + = 1 and C × = 3.

  The evaluation scheme for a 4 (part in blue) has depth 2. The evaluation scheme for a 4 (part in red) has depth 3, which is not optimal.

  F, and a bound B ∈ T . Parameter: A recursively computable measure ϕ : S(F) → (T, < T ) dened by its values on variables and by ρ : {+, ×} × T × T → T , and a function update: D(F) × T → T to adjust the bound before the recursive calls.
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 72 Figure 7.2: Evaluation schemes obtained by optimizing rst the latency and then the accuracy. ((((x).((x).(x))).(((x).(x)).((x).(x)))).((((x).(x)).(((x).(a 10 )) + (a 9 ))) + (((x).(a 8 )) + (a 7 )))) + (((((x).(x)).((x).(x))).((x).(((x).(a 6 )) + (a 5 )))) + ((((x).((x).(x))).(((x).(a 4 )) + (a 3 ))) + (((x).((x).(a 2 ))) + (((x).(a 1 )) + (a 0 ))))) (a) Scheme returned by Optimizer.
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 73 Figure 7.3: Distribution of the evaluation schemes for a degree-5 polynomial according to their latency and number of multiplications.
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 74 Figure 7.4: How the routine insert works.
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 75 Figure 7.5: List of trade-os between latency and accuracy for a degree-10 approximant polynomial for exp (1+x) 1+x on [0, 0.99999988079071044921875].
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 81 Figure 8.1: Evolution in the architecture of the tool CGPE.

Figure 8 . 2 :

 82 Figure 8.2: Example of scheme that passes the early schedulability test, but fails to achieve the same latency on unbounded parallelism and on the ST231 processor.

  cations, and matrix-matrix multiplications. The eciency will depend essentially on the number of matrix-matrix multiplications in the scheme, since this operation costs O(n 3 ) or O(n ω ), while the others are in O(n 2 ). The question of minimizing the number of non-scalar multiplications in a polynomial evaluation scheme is addressed by [PS73], where the authors give an algorithm (Algorithm B in their article) for evaluating p(A) with about 2 √ d non-scalar multiplications, which leads to a cost of 2MM(n) √ d + o(MM(n) √ d) arithmetic operations on K; 2. The authors of [PS73] also proposed one algorithm (Algorithm C in their article) mixing their preconditioning techniques [PS73, Algorithm A] for polynomial evaluations with their previous approach to minimize further the number of non-scalar multiplications. Thus, they manage to decrease the number of non-scalar multiplications to √ 2d+O(log d), which gives an overall cost of MM(n) √ 2d+o(MM(n) √ d);

[

  PS73] mentioned above. It should be noted that the authors give a lower bound 5 of √ d non-scalar multiplications for this evaluation. On the other hand, and that a careful analysis of their algorithm shows that it uses d -1 k + k -1 non-scalar multiplications, where k is a parameter typically xed to √ d of √ d in order to get a nal value of roughly 2 √ d.

Input: 3 R

 3 A ∈ C n×n . Parameter: a number s used for scaling purpose, and a degree d for the Padé approximant.Output: exp(A). Ã ← A/2 s 1 compute a (d, d)-Padé approximant p(x) q(x) for exp(x)2 // in the case of exp(x), we have q(x) = p(-x) = p even (x) -p odd (x), // where p even and p odd are the even and odd parts of p, // respectivelyU ← p even ( Ã) ; V ← p odd ( Ã) ← (U -V) -1 (U + V) 4 compute R = R(2 s) by s successive squarings 5 return R 6

  , (a 1 , b 1 ), (a 2 , b 2 )) = (a 1 + a 2 , b 1 ∪ b 2 ), ρ(×, (a 1 , b 1 ), (a 2 , b 2 )) = (a 1 + a 2 , b 1 ∪ b 2 ) when f 1 or f 2 is reduced to a i , ρ(×, (a 1 , b 1 ), (a 2 , b 2 )) = (a 1 + a 2 + 1, b 1 ∪ b 2 ) when f 1 or f 2 is not a power of A, ρ(×, (0, b 1 ), (0, b 2 )) = 0, b 1 ∪ b 2 ∪ {(i + j, σ)} when f 1 = A i , f 2 = A j ,and the scheme in use for A i+j is the σth one.

Figure 8 . 3 :

 83 Figure 8.3: Set of values for ϕ(s), where s is a scheme for a degree-7 polynomial with the minimum number of non-scalar multiplications.

Table 1 .

 1 2: Structure for ∇[M, N] when M, N are diagonal or unit circulant matrices.

	H H M	H	H H H N	D(y)	Z n,ψ	Z T n,ψ
	D(x)	Cauchy-like	Vandermonde-like	Vandermonde-like
	Z m,ϕ	Vandermonde-transposed-like	Toeplitz-like	Hankel-like
	Z T m,ϕ	Vandermonde-transposed-like	Hankel-like	Toeplitz-like

Table 1 .

 1 

3: Structure for ∆[M, N] when M, N are diagonal or unit circulant matrices.

  inversion. First, several iterative algorithms [GO94b, GKO95], [KS99, 1.10] that can be viewed as the structured version of Gaussian elimination or LU decomposition have been developed. These algorithms are usually called fast algorithms since they achieve a complexity in O(α n 2 ), which is asymptotically faster than O(n 3 ) for naive dense matrix inversion, but for small α asymptotically slower than the complexity in O˜(α 2 n) achieved by superfast algorithms like MBA. The main advantage of these fast algorithms lies in the usage of pivoting, so that the assumption on the strong regularity of the matrix in input is no more needed, and the numerical quality can be improved

	(see for instance [GKO95]). Second, more specic algorithms have been designed for
	particular structures. For instance, one can cite the works in [LCC90, LBC95] where the
	inversion of mosaic Hankel matrices	4 is achieved through matrix-Padé approximations.

This stage is explicitly written in Algorithm 1.1 (see lines 4 and 8).

matrix

Table 1

 1 

.2, thus considering only Sylvester's displacement operators. However, the results presented in Chapter 3 have been adapted to Stein's displacement operators [BJMS11].

  By analyzing Cardinal's algorithms, we deduce in Section 2.1.3 the following recur-

sive formulas that express the specied generator for A -1 from the specied generators (Y 11 , Z 11 ) and (Y S , Z S ) of A -1 11 and S -1 , respectively:

12 Z 11 8 return Y 11 , Z 11 , G S , and H S 9

  

  The rst call to GenSchur gives us the specied generator (Y 11 , Z 11 ) for A -1 S , H S ) for the Schur complement S. Similarly, the second call to GenSchur gives us the specied generator ( Y 11 , Z 11 ) for A 11 S , Z S ) hereafter for consistency. Moreover, we obtain

	generator (G -1 (Y	11 and a = S -1 , which we shall denote by

  Assume further that the Schur complement S of A 11 in A is generated by G S and H S as in (2.1), and let

	3, we have deduced from Cardinal's approach two recursive
	formulas for the specied generator of a Cauchy-like matrix inverse. Yet, the Cauchy-like
	structure did not play a major role in the reasoning, and the formulas can actually be
	proved for any structure dened by a displacement operator ∇[M, N] where M and N are
	such that M 12 and N 21 are zero matrices. In fact, like for Property 2.1, the condition on
	M and N is not mandatory, and a more general result can be stated without it. This
	yields the following theorem:	
	Theorem 2.1. Let A ∈ K n×n be nonsingular and (G, H) be a ∇[M, N]-generator for A.
	Assume that A 11 is nonsingular as well, that it is generated by G 11 and H 11 as in (1.11),
	and let	
	Y 11 = -A -1 11 G 11 ,	Z 11 = A -T 11 H 11 .

  G, A -T H) from the rst α columns of Y 11 , Y S , Z 11 , and Z S G 11 , H 11 ) and (G S , H S ), and their associated specied generators. This approach is illus-

	. Compute a generator (G 11 , H 11 ) for A 11 using (1.11);
	2. Recursively, compute (Y 11 , Z 11 ) = (-A -1 11 G 11 , A -T 11 H 11 );
	3. Compute a generator (G S , H S ) for S using (2.1);
	4. Recursively, compute (Y S , Z S ) = (-S -1 G S , S -T H S );
	5. Compute (-A -1 using Theorem 2.1.
	trated in Figure 2.1.
	Since we have replaced arithmetic on structured matrices with explicit formulas to
	compute intermediate generators, our approach is compression-free. Yet, we have seen
	in Section 1.4.3 that in order to achieve an asymptotic cost of O˜(α 2 n) with this approach,
	we need to ensure that recursive calls are performed on generators of length α, which is
	guaranteed by neither (1.11) nor (2.1) in general. However, this holds when M and N T
	are lower triangular. Therefore, our next step will be to see how we can come down to
	this situation.
	2.2.2 Reduction to M and N T lower triangular, and A strongly
	regular
	We want to compute specied generators for any invertible matrix A structured with re-
	spect to the displacement operator ∇[M, N] where M, N ∈ {D(x), Z n,ϕ , Z T n,ψ }. The purpose
	of this section is:

(

  [START_REF] Victor | Structured Matrices and Polynomials[END_REF] p. 24]), we deduce that ∇[N, N](P 2 ) is zero as well. Consequently, since J n

	is symmetric, applying Lemma 2.1 above yields

  1 |Ae n,n ] and H = [H|A T e n,n |ψe n,1 ]. The last column or row of A Due to the shape of G, H above, extracting the rst α columns of Y = A -1 G and Z = A -T H in time O(α n) then yields the desired specied inverse generator (Y, Z). in K n and such that x i = x i and y i = y i for all i):

	needed to set up the matrices G and H can be computed in O(α M(n) log(n)) case (i) or O(α M(n)) case (ii) eld operations from the explicit bilinear expressions Theorem 2.2 further allows to restrict to matrices that are not only invertible but strongly regular. Strong regularity, which is needed to apply Theorem 2.1 recursively, is classically obtained by preconditioning A into A = P 1 AP 2 with two random structured matrices P 1 and P 2 (see [Pan01, 5.6]). Thus, one may generate A as in Lemma 2.1, then compute an associated specied generator ( Y, Z) of its inverse, and nally recover via Theorem 2.2 a specied generator (Y, Z) of the inverse of A. Let r 1 and r 2 be two random vectors in K n and whose rst entry equals 1. Then, applying the rules of [Pan01, p. 167], possible preconditioners for each of the three basic of A given in [Pan01, Examples 4.4.4 and 4.4.6(d)]. Probabilistic reduction to strong regularity displacements of (2.2) are as follows (with x, y

  Consequently, one can compute A 21 Y 11 , A T 12 Z 11 , A -1 11 (A 12 Y S ), and A -T 11 (A T 21 Z S ) via six applications, in dimension n/2, of the reconstruction formula (1.6b) to α vectors in K n/2 . Finally, Algorithm GenInvLT uses 2 α n additions to deduce G S , H S , and the upper parts of Y and Z. Overall, the cost for n ≥ 2 thus satises

	C(α, n) ≤ 2 C(α, n/2) + 6 MM C (α, n/2) + k α n
	for some constant k. The superlinearity of MM C (•, n) then yields our rst bound.
	Assume now that the x i and y i are 2n pairwise distinct values. From Lemma 2.3 the
	reconstruction formula (1.6b) can then be applied directly to A -1 11 A 12 and to the transpose of A 21 A -1 11 , in order to compute (A -1 11 A 12 )Y S and (A 21 A -1 11 ) T Z S . This reduces the number
	of reconstructions from six to four, whence the second cost bound.

Table 2 .

 2 1: Dominant cost in our implementation of the MBA algorithm.

	operation	resulting gen-erator length	dominant cost

  Assume now that α ≥ β. Dening k = α/β and α = kβ, we augment the matrices G and H into, respectively, the m × α matrix G = [G|0] and the n × α matrix H = [H|0]. Furthermore, we partition G and H as

  6.3]. Similarly, people have worked on the minimum number of multiplications in order to evaluate a degree-n, univariate polynomial. Pan showed in [Pan66] that, as thought since long, this minimum number is n, which is achieved by Horner's rule. Paterson and Stockmeyer went further and distinguished between scalar and non-scalar multiplications. They gave in [PS73] an algorithm to evaluate p(x) (where the coecients are considered as scalars, and x as non-scalar) with only O( √ n) non-scalar multiplications. When non-scalar multiplications are more costly then scalar ones, like when we evaluate a polynomial p(x) with scalar coecients at a matrix point, this approach becomes very interesting. Moreover, [PS73] also showed that roughly

√

n non-scalar multiplications are necessary to evaluate p(x) upon several computation models based on SLPs.

  with correct rounding, as specied by the IEEE 754-2008 standard of oating-point arithmetic. Excluding special inputs (like negative numbers, innities, or subnormals), we have a oating-point number x = m • 2 e , where m ∈ [1, 2) has binary expansion (1.m 1 . . . m 23 ) and where -126 ≤ e ≤ 127, and we need to compute RN( Now, we have m 2 δ ∈ [1, 4) and we may use a polynomial approximation of√• on this interval to deduce a suciently precise approximation v of and then deduce the correct mantissa for RN(

	√ x), that is, the single precision oating-point number the nearest to the real number √ x. Range
	reduction can be achieved by remarking that
	√ x =	√ m 2 δ • 2 e/2	with δ = e -2 • e/2 ∈ {0, 1}.

  Several rules have been coined for the evaluation of a univariate polynomial[START_REF] Knuth | of The Art of Computer Programming[END_REF] 4.6.4]. Figure4.1 presents three of them:1. Horner's rule. It consists in n multiplications and n additions as shown in Figure 4.1(a). This is in fact one of the most commonly used schemes for evaluating polynomials in implementations of oating-point operators (see for instance [CLM + 05, LV09] and [Lau08, 6.2]). Its interest lies in its good numerical stabil- ity, especially when x is not too close to a zero of a(x) [Bol04, 9]. However, this sequential scheme does not expose any instruction-level parallelism (ILP) and thus gets inecient as soon as parallelism is available. 2. Second-order Horner's rule. This second rule extends Horner's rule in order to expose some ILP. It consists in splitting up the polynomial into its odd and even parts, evaluating both parts using Horner's rule, and nally combining both intermediate results using a last Horner's iteration [Knu98, 4.6.4]. It requires exactly n + 1 multiplications, as shown in Figure 4.1(b). Remark that it uses at most two ways of the architecture, and gets inecient as soon as more parallelism is available, like for the ST231 processor which has 4 ways.

  .3.

	Figure 5.3: Example of C++ interface for a class implementing a family of arithmetic
	expressions.
	class F
	{
	private:
	// some internal variable(s)
	public:
	// some relevant constructor(s)
	~F();
	bool operator<(const F) const;
	std::list<decomp<F> > decompose() const;
	void print() const;
	// some other useful methods
	};

Table 5 .

 5 1: Values of sequences A003313(n), A186435(n), A186437(n) and A186520(n) for n ∈ {1, . . . , 120}.

	n A003313 A186435 A186437 A186520 timings	n	A003313 A186435 A186437 A186520 timings
	1	0	1	0	1	0s	61	8	91	5	76s
	2	1	1	1	1	0s	62	8	239	5	84s
	3	2	1	1	1	0s	63	8	94	5	90s
	4	2	1	2	1	0s	64	6	1	6	90s
	5	3	2	2	1	0s	65	7	2	6	90s
	6	3	2	2	2	0s	66	7	4	6	90s
	7	4	6	2	4	0s	67	8	27	6	94s
	8	3	1	3	1	0s	68	7	6	6	94s
	9	4	3	3	1	0s	69	8	29	6	98s
	10	4	4	3	2	0s	70	8	154	6	102s
	11	5	19	3	4	0s	71	9	1485	6	1518s
	12	4	3	3	3	0s	72	7	18	6	1518s
	13	5	10	3	5	0s	73	8	49	6	1521s
	14	5	16	3	10	0s	74	8	104	6	1524s
	15	5	4	3	2	0s	75	8	32	5	1527s
	16	4	1	4	1	0s	76	8	173	6	1529s
	17	5	2	4	1	0s	77	8	4	5	1531s
	18	5	7	4	2	0s	78	8	68	5	1534s
	19	6	37	4	4	0s	79	9	660	6	2279s
	20	5	6	4	3	0s	80	7	10	6	2279s
	21	6	31	4	5	0s	81	8	36	6	2280s
	22	6	48	4	10	0s	82	8	54	6	2282s
	23	6	4	3	2	0s	83	8	4	5	2283s
	24	5	4	4	4	0s	84	8	173	6	2285s
	25	6	14	4	7	0s	85	8	8	6	2286s
	26	6	24	4	12	0s	86	8	8	5	2287s
	27	6	5	4	2	0s	87	9	571	6	2786s
	28	6	26	4	16	0s	88	8	114	6	2787s
	29	7	152	4	47	1s	89	9	523	6	3234s
	30	6	12	4	6	1s	90	8	48	6	3235s
	31	7	80	4	22	1s	91	9	388	6	3637s
	32	5	1	5	1	1s	92	8	12	5	3638s
	33	6	2	5	1	1s	93	9	319	6	4000s
	34	6	4	5	2	1s	94	9	694	6	4422s
	35	7	51	5	4	1s	95	9	199	6	4744s
	36	6	12	5	3	1s	96	7	6	6	4744s
	37	7	39	5	5	1s	97	8	14	6	4745s
	38	7	100	5	10	2s	98	8	28	6	4745s
	39	7	20	4	10	2s	99	8	4	6	4746s
	40	6	8	5	4	2s	100	8	62	6	4746s
	41	7	23	5	6	2s	101	9	280	6	4983s
	42	7	90	5	12	2s	102	8	12	6	4983s
	43	7	4	4	2	2s	103	9	99	6	5194s
	44	7	81	5	18	2s	104	8	52	6	5195s
	45	7	14	5	2	2s	105	9	352	6	5385s
	46	7	8	4	4	3s	106	9	553	6	5627s
	47	8	242	5	10	21s	107	9	30	6	5793s
	48	6	5	5	5	21s	108	8	34	6	5793s
	49	7	12	5	7	21s	109	9	125	6	5943s
	50	7	36	5	17	21s	110	9	579	6	6139s
	51	7	4	5	2	21s	111	9	88	6	6269s
	52	7	38	5	19	21s	112	8	46	6	6270s
	53	8	215	5	55	33s	113	9	146	6	6387s
	54	7	16	5	6	33s	114	9	557	6	6549s
	55	8	172	5	28	43s	115	9	44	6	6654s
	56	7	36	5	22	43s	116	9	688	6	6803s
	57	8	190	5	49	52s	117	9	86	6	6900s
	58	8	395	5	120	62s	118	9	102	6	7036s
	59	8	40	5	8	70s	119	9	24	6	7120s
	60	7	24	5	12	70s	120	8			
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 6 1: Number A169608(n) of evaluation schemes for p(x) with deg p = n.
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 6 3: Number A173157(n) of evaluation schemes for q(x, y) = α + y • p(x) with deg p = n.
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	.4: Summary of the sequences computed with algorithm Count along with the
	corresponding complexities.	
		complexity	
	expression	with Count best known	entry in the OEIS

Table 6 .

 6 6: Distribution of the evaluation schemes for a degree-7 polynomial and a degree-8 polynomial according to the number of multiplications. a 1 + |b 1 | < a 2 + |b 2 | (there are fewer multiplications on the left-hand side), * a 1 + |b 1 | = a 2 + |b 2 | and a 1 < a 2 (the number of multiplications is the same on both sides, but the left-hand side has fewer multiplications that are not

		multiplications number of schemes
		8
		9
	multiplications number of schemes 7 1 8 585 9 28545 10 724188 11 12066156 12 142484691 13 1210062345 14 7184777823 15 30029531607 16 89724191454 17 195479643387 18 318178508025 19 395160692850 20 379752728565 21 284251875780 22 165437390460 23 74023293645 24 24939084240 25 6146417970 26 1066285080 27 121943745 28 7702695	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
		34
		35
		36
		8
	between two powers of x),	

*

Table 6 .

 6 7: Number of evaluation schemes for p(x) with deg p = 18 with a latency at most 20 on unbounded parallelism when C + = 1 and C × = 3.Deducing the results shown in Table6.7 via Algorithm CountPerMeasure is quite costly since we actually compute all the distribution of schemes according to the latency, as presented in Figure6.4. Algorithm 6.3 allows us to focus only on the part where nearly optimal schemes lies, so that we can deduce Table6.7 directly. One can see that this algorithm is actually a mix between CountPerMeasure and GenerateWithHint introduced in the previous chapter.

	latency

  Theorem 7.1. Algorithm 7.1 is correct. Proof. If the arithmetic expression f in input is a variable, then no computation is needed and Algorithm 7.1 correctly outputs a latency of 0 cycle.Otherwise, the minimal latency for f is by denition the minimal latency L(s) among all the evaluation schemes s for f : : The costs C + and C × for operators + and × respectively.

	Algorithm 7.1: MinLat
	Input	: f ∈ F.
	1 See Section 5.4.2.

Parameter

  Hence, we have at most O(2 n ) recursive calls;

• These sets have a size in O(n), and are composed of arithmetic expressions having O(n) decompositions each, so they have O(n 2 ) decompositions. Moreover, computing each corresponding F may cost O(n) (or O(log n) if we use an appropriate data structure to represent sets like red-black trees [CLRS09, 13]). So, the call to decompose costs O(n 3 );

Table 7 .

 7 1: Timings for the computation of A003313(n) with our three approaches for

	global optimization.								
	n	20	28	40	60	80	100	120	140
	OptimizerSet	0.01s 0.04s	0.54s	13.51s	3.32m	34m	4.58h	31.5h
	GlobalOptimizer	1.96s	26m						
	GlobalOptimizerWithHint 0.01s 0.08s 0.37s 9.45s 3.58m 7.31m 11.1m 2.64h
	Finally, recall that the rst values for A003313(n) were already computed with Algo-

where T := T 1 × • • • × T r . It is in turn a recursively computable measure, since we can dene:

Table 7 .

 7 2: Minimum latency on unbounded parallelism for the evaluation of q(x, y) = α + y • p(x) with respect to deg(p) and the delay D for y.

	P deg(p) P P P	P P	P	P P D	0	1	2	3	4	5	6	7	8	9	10	11	12
			5				11			12			13			14	15	16
			6			11		12		13			14		15		16
			7						13				14			15		16
			8				13				14		15		16		17
			9				13				14		15		16		17
		10			13			14				15			16		17
		11				14					15			16		17
		12				14			15			16				17
	approximating	exp (1+x) 1+x													

  Table summarizing the list of trade-os.

	latency	corresponding error bound
		3.72775790717401075969 × 10 -15
		3.15490087180916402536 × 10 -15
		2.88800877566542230613 × 10 -15
		2.74574380811116173023 × 10 -15
		2.71702017475887173616 × 10 -15
		2.61807325236003336294 × 10 -15
		2.57029342444246858722 × 10 -15
		2.49926275603996578948 × 10 -15
		2.48760573017377085851 × 10 -15
		2.39243078716182357609 × 10 -15
		2.36607232433974726910 × 10 -15
		2.30360836551992626475 × 10 -15
		2.23846786224949313284 × 10 -15
		2.22644280989158904673 × 10 -15
		2.17642785364488461850 × 10 -15
		2.16595520235060421263 × 10 -15
	(a)	

Table 8 .

 8 1: Timings for the initial design of CGPE.

  1]

	Initial target latency	13	13	16	16	10	10	13	10	13
	Final target latency	13	13	16	16	11	11	13	10	13
	Achieved latency	13	14	16	16	11	11	13	10	13
	Scheme computation	183ms	81ms	25s	26s	8ms	5ms	43ms	1ms	123ms
		[50]	[50]	[50]	[50]	[50]	[50]	[50]	[12]	[50]
	Arithmetic operator choice	3ms	3ms	5ms	5ms	1ms	2ms	3ms	1ms	2ms
		[36]	[28]	[30]	[26]	[2]	[12]	[28]	[8]	[16]
	Scheduling checking	22s	1m57s 35ms	423ms	2ms	63ms	1m7s	1ms	88ms
		[9]	[1]	[30]	[24]	[1]	[5]	[5]	[8]	[15]
	Certication (Gappa)	8s	871ms	23s	22s	204ms	1.3s	6.5s	1.3s	8.4s
		[9]	[1]	[30]	[24]	[1]	[5]	[4]	[8]	[13]
	Total time (≈)	30s	1m59s	49s	49s	0.2s	1.4s	1m14s	1.3s	8.6s

While the timings are quite good, we can still point out a few issues:

Table 8 .

 8 3: Comparison between the initial version of CGPE and our new design.

		Function	x 1/2	x -1/2	x 1/3	x -1/3	log 2 (1 + x)	√	1 1+x 2	exp(1+x) 1+x	sin(1+x) 1+x	+1 exp(cos(1 + x))
	nal number	version 1	9	1	30	24	1		5	4	8	13
	of schemes	new design	11	1	50	47	1		5	18	21	4
	computation	version 1	30s	1m59s	49s	49s	0.2s	1.4s	1m14s	1.3s	8.6s
	time	new design	23s	1m38s	5.3s	3.3s	0.3s	0.8s	32s	60ms	1s
	gain in the computation time	t old -tnew t old -tnew t old	7s 23%	19s 17.6%	43.7s 89%	45s 93%	-0.1s -50%	0.6s 43%	52s 62%	1.2s 95%	7.6s 88%

Table 8 .

 8 4: Analysis of the evaluations schemes for p(A).

		GlobalOptimizerWithHint	CountWithHint	GenerateWithHint
	deg(p)	minimum num-ber of non-scalar	optimization	number of op-	counting	generation time
		multiplications	time	timal schemes	time	
		0	0s	1	0s	0s
		0	0s	1	0s	0s
		1	0s	7	0s	0s
		2	0s	67	0s	0s
		2	0s	24	0s	0s
		3	0s	1056	0s	0s
		3	0s	702	1s	1s
		4	1s	74412	1s	1s
		4	2s	71766	2s	5s
		4	3s	17550	3s	14s
	10	5	159s	15094908	161s	1606s
	11	5	360s	9593100	369s	≈ 2.4h
	12	5	793s	11820600	819s	≈ 7.8h
	13	6	≈ 22h	6558513300	≈ 23.5h	
	14	6	≈ 50h 11623313700	≈ 54h	
	15	6	≈ 98h 18470713500 ≈ 100h	

Table 8 .

 8 5: Minimal number µ d of non-scalar multiplications for evaluating p even (A) and p odd (A) when deg(p) = d (heuristic for d ≥ 8).

		exhaustive search			heuristic search	
	d	0 1 2 3 4 5	6	7	8 9 10 11	12	13
	µ d	0 0 1 2 3 3	4	4	5 5 6	6	6	6
	computation time	0s 0s 0s 0s 0s 1s 22s 694s 0s 1s 8s 132s 824s ≈ 1h

For d ≥ 8, an exhaustive search with OptimizerSet is impossible because of a too large memory consumption. To cope with this problem, we propose a second experiment

By noting that E and F are nonsingular, and that EAF = A 11 S , we see that S is nonsingular if A 11 and A are nonsingular. Hence, we deduce the following classical

x 1 -y 1 1 x 1 -y

. . . 1 x 1 -y n 1 x 2 -y 1 1 x 2 -y 2 . . . 1 x 2 -y n . . . . . . . . .

https://gforge.inria.fr/projects/sla/

log(n) MM V (α, n) + O(α M(n) log 2 (n)).

Available at https://gforge.inria.fr/projects/sla/.

See http://www.shoup.net/ntl/.

Otherwise, we would have y m j = ϕ for some index j. In this case, y j would be a root of both x m -ϕ and P y = 1≤i≤n (x -y i ), which contradicts the coprimeness assumption.

http://www.mpfr.org/

http://perso.ens-lyon.fr/nathalie.revol/software.html

When one binary operation uses the same operand twice, there will be two edges from the node labelled with this binary operation to the node corresponding to the operand. Hence, the appropriate structure is a multigraph. Nevertheless, this fact does not matter much in the sequel, so we will simply say graph instead of multigraph.

Here and hereafter, the symbol is to indicate a union of disjoint sets.

We place ourselves in a situation with unbounded parallelism here, so that an operation can be executed as soon as the values of its operands are known.

This DAG is obtained by getting rid of the common subexpressions in the unordered binary tree s.

This encyclopedia, initiated by Sloane, and maintained by the OEIS Foundation Inc., is available at http://oeis.org/.

7120s

See [FS09] for a general introduction to this theory, as well as the study in Section 6.3.2.

This bound is slightly pessimistic, and we may actually obtain the sharper bound of O(3 n ) by noting that expressions with a support of size i have only O(2 i ) decompositions (instead of O(2 n )). Yet, the main conclusion still remains that the cost is exponential with respect to n.

Recall from page 122 that k > 0 implies that m must be even, and notice that, for k = 0, |m| = 1 with m an odd integer only happens for (m, k) = (1, 0), which we have already considered.

Each coecient a i can only appear once in an evaluation scheme for i∈I a i+k x i .

n = 29 is the rst number such that evaluating a n requires at least 7 multiplications, as noticed in[START_REF] Knuth | of The Art of Computer Programming[END_REF] Figure 15 in 4.6.3].

http://oeis.org/A003313/b003313.txt

It should be noted that the cost due to the computation of the other sequences in Table

5.1 is small compared to the overall computation time.

In fact, Horner's rule is the only scheme that achieves this last trade-o, as we have already seen in Section

6.4.2.

http://sollya.gforge.inria.fr/

In fact, we arrive soon at a point where many subexpressions have no valid scheme, so that the tool has no work to do after the corresponding recursive calls.

In this context, the matter lies in the number of matrix-matrix multiplications, rather than the latency like in FLIP. Indeed, these operations are more costly than addition of matrices and scalar-matrix multiplications, so their cost dominates the total evaluation time. Again, the rules illustrated in Figure 4.1 fail to provide a good evaluation for p(A), and better algorithms like the one in [PS73, Algorithm B] has to be preferred, as noted in [START_REF] Nicholas | Functions of Matrices: Theory and Computation[END_REF]4.2].

Motivation

As we have seen in the previous section, polynomial evaluation raises several questions:

1. How to generate implementations for polynomial evaluation? What rules should we consider to deduce implementations from the mathematical expression of the polynomial? 2. How many ways are there to evaluation a polynomial? 3. Given some measure (the latency, the number of matrix-matrix multiplications,. . . ) on the implementations, what is the minimum value that one can achieve? 4. How many of these implementations do achieve this minimum value? 5. Can we generate eciently these optimal implementations? Note that these questions may arise in a context dierent from polynomial evaluation. Indeed, several of them have already been mentioned (and sometimes answered) in Section 4.1 for the particular case of powers a n .

What we aim at is a uniform approach to answer these questions. Inspired by the generation algorithm from [Rev09, 6.1], we propose to adopt an inductive view on the arithmetic expressions. Using the concepts of evaluation schemes (the model we will use for implementations, see Section 5.1.2) and decompositions (see Section 5.1.3), we will describe a general framework for the analysis of arithmetic expressions in Section 5.2. This will serve as a basis for the development of specic algorithms for purposes like counting the number of implementations or optimizing according to a given measure (our model for optimization criteria, introduced in Section 5.4).

Contributions of this thesis 4.3.1 Algorithms introduced in the following chapters

The generic approach mentioned previously, and explained in details in Chapter 5, will be applied to tackle three categories of issues:

Generation issues

Recall that one of our goals is to generate code for the evaluation of an arithmetic expression. We propose in Section 5.3 a rst algorithm, called Generate, whose purpose 1. the computation of the minimum latency for polynomial evaluation schemes (see Section 8.1.2); 2. the heuristic computation of the minimum number of multiplications needed to compute a n (see Section 7.1.3); 3. the heuristic optimization of rst the latency, and second the accuracy, for a polynomial (see Section 7.3.1).

For measures that do not satisfy the requirement for the correctness of Optimizer, we propose three alternatives: OptimizerSet (see Section 7.2.1), which is a variation of Optimizer that optimizes a criteria for a set of expressions rather than a single expression; GlobalOptimizer (see Section 7.2.2) that, like CountPerMes, computes recursively all the achievable measures, so that the minimum can be extracted at the end of the process; and GlobalOptimizerWithHint (see Section 7.2.2) that is a variation of GlobalOptimizer with additional constraints. These three approaches are compared for the minimization of the number of multiplications for a n , showing that OptimizerSet is faster for small values of n, while GlobalOptimizerWithHint is faster for large values of n. Moreover:

1. GlobalOptimizerWithHint is used in Section 7. 3.1 in the context of polynomial approximation in order to optimize rst the latency, and then the accuracy; 2. GlobalOptimizerWithHint is used in Section 8.2.2 in order to determine the minimum number of matrix-matrix multiplications for the evaluation of p(A);

3. OptimizerSet is used in Section 8.2.2 to determine the minimum number of matrixmatrix multiplications for the simultaneous evaluation of the odd and even parts of p(A).

Finally, we introduce Algorithm BiOptimizer whose purpose is to compute, given two criteria, the best trade-os that can be achieved. We present two applications for this last algorithm:

1. the search of a trade-o between a minimum latency and a maximal delay for the evaluation of special bivariate polynomials on the ST231 processor;

2. a case study of the trade-o between latency and accuracy for a polynomial.

Summary

A summary of the dierent algorithms that will be introduced in the next chapters is provided by Table 4.1. These algorithms, along with support for the arithmetic expressions and the measures we used for the dierent applications mentioned above, have been implemented in a C++ library. The total size of the code is around 3000 lines.

All the results and timings presented in the following chapters have been obtained using this library. Except for examples involving numerical accuracy issues (Sections 7. and MPFI 5 that we used in order to compute error bounds.

Finally, notice that the examples we present in the following chapters take mainly place in the context of CGPE and the generation of C code for the ST231 processor. In particular, for the computation of the latency, we will always consider a cost of 1 and 3 cycles for + and ×, respectively.

Other contributions

In addition to the algorithms listed above, this second part of the thesis oers three other contributions.

Asymptotic study of several sequences Section 6.3 is dedicated to the study of several sequences that appear in the experiments using Algorithm Count. More precisely:

1. following [FS09, Proposition VII.5] which gives the asymptotics for the number of schemes for a n , we obtain the asymptotics for the number of schemes for a • b n ; 2. using the asymptotics for the case of a • b n , we prove that the logarithm of the sequence A169608(n) is in Ω(n 2 ) and in O(n 3 ); applied on f i (i ∈ {1, 2}) and for B tells us that r i is the set of schemes for f i whose value by ϕ is less than or equal to B , so that we can restrict ourselves to r i instead of S(f i ) in the unions above. What we obtain is then exactly what Algorithm 5.2 computes in r, which ends the proof for correctness.

The second part of the theorem is easy to prove. Indeed, the output of the algorithm GenerateWithHint for a given f ∈ F and B ∈ T is included (because of the additional constraint) in the output of Generate for the same f . Otherwise, both algorithms perform the same way by going through the decomposition for f and using the results of recursive calls to ll the current set of schemes. Since the unions in the inner loops were already disjoint unions in Algorithm 5.1, so are they for Algorithm 5.2 which manipulates a smaller data set.

We can express a few remarks on this new algorithm:

• Its cost is usually hard to determine. If the bound B is too small, then the algorithm will quickly return an empty set. On the opposite, if B is so large that any scheme for f meets this bound, then the computation time will be approximately the same as for Generate. In this case, GenerateWithHint will not be useful in practice. Therefore, B should be chosen with great care.

• If we get a non-empty set at the end of the algorithm, then we know that the minimum of ϕ(s) when s ∈ S(f ) is smaller than B. Moreover, as we obtain all the schemes whose measure is smaller than B, we can compare their respective measures and deduce the minimum achievable value for ϕ(s). Namely, GenerateWithHint

allows us to answer optimization questions.

• Actually, if we want to nd out the optimal value for ϕ(s), one solution is to set B to the minimum value of (T, < T ), and then run GenerateWithHint several times with increasing values of B until we nally get a non-empty set of schemes.

• In the actual implementation, we also propose to replace the comparison with the bound B with a predicate parameter that the user can provide. This slightly more general approach makes things easier at least for the case of the number of multiplications, where the bound B would be a set whereas we only want to perform cardinality checks.

Let us conclude this chapter with one example illustrating the usage of Algorithm GenerateWithHint. We have used this algorithm in order to generate all the evaluation schemes for a n that have a minimum number of multiplications, for n ranging from 1 to 120. This was achieved by successive incrementation of the bound until we get some schemes, as noted above. Then, we have looked over at the set of schemes obtained in order to analyze the number of squarings in these schemes. This is motivated by the fact that squaring may be performed more eciently than a true multiplication. It happens in several contexts where we can use the symmetry underlying the squaring operation to improve its implementation, like in hardware (see [START_REF] Matula | Higher radix squaring operations employing left-to-right dual recoding[END_REF] and the references therein), in the software support of oating-point arithmetic [JJLMR11], and in exact linear algebra Output : The distribution according to ϕ of all the evaluation schemes s for f such that ϕ(s)

and each inner set of schemes contains either r 1 (t 1 ) • r 2 (t 2 ) schemes (case when ρ( , t 1 , t 2 ) =: t ≤ T B), or is empty.

• When f 1 = F f 2 , we have to take care of avoiding redundancy. This time, the set of Algorithm 7.2: Optimizer Input : f ∈ F. Parameter: a recursively computable measure ϕ : S(F) → (T, < T ) dened by its values on variables and by ρ : {+, ×} × T × T → T .

Output

: the optimal value for f according to ϕ.

What we want to prove now is the following equation:

Since ρ is non-decreasing with respect to its second and third variables, we have for all (s 1 , s 2 ) ∈ S(f 1 ) × S(f 2 ) that ρ , ϕ(s 1 ), ϕ(s 2 ) ≥ ρ , min

and, taking the minimum over (s 1 , s 2 ) ∈ S(f 1 ) × S(f 2 ), we deduce that the left-hand side in Equation (7.4) is greater than or equal to the right-hand side. The other inequality can be obtained by considering schemes s i such that ϕ(s

as we did before.

We can then conclude as we did in the proof of Theorem 7.1 by saying that r i = min s i ∈S(f i ) ϕ(s i ) for i ∈ {1, 2} by induction hypothesis, so that the computed value r = min ( ,f 1 ,f 2 )∈D(f ) ρ( , r 1 , r 2 ) is actually equal to the minimal value of ϕ over all the schemes for f by Equations 7.2 and 7.4.

Some remarks about this approach and its limitation

Let us comment on some aspects of the algorithm introduced in the previous section:

1. Similarly to Algorithm Count from Section 6.1, the cost for Optimizer is bounded by the product of the number of recursive calls, the maximum number of iterations In particular, for a non-trivial scheme s = ( , s , s r ), the following holds:

Note the dierence between this and Denition 5.7, where s and s r were separated;

• Finally, we dene the set of decompositions for F = {f 1 , . . . , f r } by

With these new denitions, we can derive from Optimizer a new algorithm, Algorithm 7.3, which optimizes a criterion for a given set of arithmetic expressions.

Algorithm 7.3: OptimizerSet Input : F ∈ P(F), F = ∅. Parameter: ϕ : P(S(F)) → (T, < T ) dened on sets of variables and by ρ : {+, ×} × T → T .

Output

: the optimal value for F according to ϕ. •) is non-decreasing for all then Algorithm 7.3 is correct. Proof. First, notice that we can compare two elements F 1 and F 2 of P(F) by sorting each F i (i ∈ {1, 2}) according to > F and using the lexicographical order on the sorted sequences. This gives us a total order ≺ on P(F) \ ∅. Now, we can show the theorem by complete induction. If F is a set made of trivial expressions only (and in particular when it is the singleton containing the minimum of (F, < F ), which is the minimum for order ≺), F is its own and only scheme, and Algorithm 7.3 is correct.

Suppose now that F contains one non-trivial expression and that the algorithm's correctness holds for all set G ≺ F . In this case D(F ) is not empty, so that:

Algorithm 7.4: GlobalOptimizer Input : f ∈ F. Parameter: A recursively computable measure ϕ : S(F) → (T, < T ) dened by its values on variables and by ρ :

12 just have to take the minimum among these achievable values. This approach is illustrated in Algorithm 7.4.

The correction for this algorithm can be shown similarly to the proof of Theorem 6.4. Notice that we do not need to have a non-decreasing function ρ here, since we consider its whole image at each step and only extract the optimal value after the last step. As for the cost, Algorithm GlobalOptimizer suers, like CountWithHint, from the slowness implied by the large sets that have to be manipulated all along the algorithm. To cope with this diculty, we can ask for an additional bound in order to limit the search space, as in GenerateWithHint and CountWithHint. This yields Algorithm 7.5. Theorem 7.4. Provided that for all s = ( , s 1 , s 2 ) with s 1 ∈ S(f 1 ) and s 2 ∈ S(f 2 ), and for all B ∈ T , we have ϕ(s)

The only dierence with CountWithHint is that, here, we only keep trace of the achievable values which are better than the bound B instead of also counting the corresponding number of schemes. Adapting accordingly the proof of Theorem 6.5 hence yields a proof for Theorem 7.4.

In order to compare the three approaches, we have computed the rst terms of the sequence A003313. The resulting timings are presented in Table 7.1. As already mentioned, GlobalOptimizer is quite slow compared to the other algorithms. Moreover, its memory consumption is so large that we are not able to exceed n = 28. For small values of n, OptimizerSet is the fastest. This can be explained by the simplicity of the measure in use. However, the number of sets of expressions to consider recursively grows quickly with respect to n, so that GlobalOptimizerWithHint ends up being more ecient. Note Chapter 7. Optimization rithm GenerateWithHint and presented in Table 5.1. However, the approach consisting in generating and then deducing the optimal value is more costly than the optimization algorithms mentioned in this section, as we can see by comparing 4 the timings from Ta- bles 5.1 and 7.1. Therefore, when one wants one optimal scheme rather than to perform an exhaustive study, OptimizerSet and GlobalOptimizerWithHint are more ecient.

Multicriteria optimization

Up to now, we have discussed the optimization of a single criterion. Yet one may want to optimize more than one aspect of the evaluation. Typically, one may aim at some evaluation scheme that is both as fast as possible and very accurate. However, this is usually not possible to optimize several criteria at the same time, so that trade-os have to be made. This section will rst describe several solutions, based on the optimization algorithms already mentioned, in order to nd relevant evaluation schemes in a context of multicriteria optimization. Then, we will introduce a new algorithm to tackle the issue of trade-os.

How monocriterion optimization may help in a multicriteria context

It often happens that, among a set of criteria to be considered, one outclasses the others.

If we come back to the example of speed and accuracy, some applications like image processing for video games ask for a very fast evaluation with a few bits of accuracy, whereas the implementation of an ecient oating-point operator with correct rounding as recommended by the IEEE 754-2008 standard requires rst guarantees on the accuracy.

Whenever the main motivation lies in only one criteria, we can use the algorithms already mentioned in this chapter in order to try to nd satisfactory evaluation schemes. We propose three ways to achieve this:

• First, we can call GenerateWithHint in order to get optimal or nearly optimal evaluation schemes according to the main criterion. Then, an exhaustive search among the set of schemes generated allows us to nd the one that ts the most with the other criteria. This was the approach embraced by CGPE, where evaluation schemes of optimal latency for polynomials are generated and then kept or discarded depending on their numerical properties [START_REF] Mouilleron | Automatic generation of fast and certied code for polynomial evaluation[END_REF]. Because of the possibly large number of optimal schemes, it may take a very long time to generate and analyze all the schemes. Setting a maximum number (typically, 50 in CGPE) of generated schemes for each subexpression helps to cope with this.

• Second, suppose we have a set of r criteria sorted in decreasing order of importance, and whose corresponding measures ϕ i : S(F) → T i for 1 ≤ i ≤ r are recursively Chapter 7. Optimization

The optimal trade-os are the minimal pairs for this order, and we can store all of them in a list sorted such that the rst components of pairs are decreasing with respect to < T 1 and the second components of pairs are increasing with respect to < T 2 . In order to maintain this structure when adding a new trade-o, we will use the routine insert described in Algorithm 7.6. The idea is to determine the position i where the new pair x should be inserted according to its rst component. Then, we have two cases illustrated in Figure 7.4: Either (i-1)

T 1 ×T 2 x and we do not need to keep x (see Figure 7.4(a)); Or x 2 < T 2 (i-1) 2 so we keep it and eventually remove elements

(see Figure 7.4(b)).

Algorithm 7.6: insert (subroutine for BiOptimizer)

(1)

2 ), . . . , (

2 ) ] such that for all i < j,

2 ) ] such that:

• for all y ∈ ∪ {x}, there exists i ∈ {1, . . . , r} such that ˜ (i)

2 do j ← j + 1 6 ˜ ← (1) , . . . , (i-1) , x, (j) , . . . , (k) 7 return ˜ 8 Thanks to insert, it is possible to compute the list of all the optimal trade-os among a given list of achievable values. Indeed, we just need to start with an empty list and then "add" the achieved trade-os one by one using insert. We can now write down the algorithm that computes the optimal trade-os when given an arithmetic expression and two recursively computable measures. This yields Algorithm 7.7.

Theorem 7.5. If ρ 1 and ρ 2 are non-decreasing with respect to their second and third variables then Algorithm 7.7 computes the list of the optimal trade-os for a given arithmetic expression f ∈ F according to the measures ϕ 1 and ϕ 2 .

Proof. Let us proceed by complete induction on f ∈ F. The case of f being a variable is straightforward, so let us x a non-trivial f ∈ F and suppose that the theorem holds for any g < F f . If BiOptimizer(f ) returns the list r, we have to prove two facts:

1. All the points in r are achieved by some scheme of S(f );

Chapter 8 Application examples

In this last chapter, we present two more advanced examples, where we have successfully used the material introduced in the second part of this thesis in order to derive interesting results. First, we have partially rewritten the software tool CGPE. The new design, which heavily relies on the addition of constraints within the generation of the set of schemes to be analyzed, allows us to nd out fast and accurate-enough schemes for polynomial evaluation signicantly faster. Second, we study the case of evaluating a polynomial at a matrix point. Such an evaluation, which appears for instance when one has to compute some function of matrices, raises the issue of minimizing the number of matrix-matrix multiplications. We will see how to address this issue with our methods, and how we were 1. optimize the latency for a given VLIW architecture, 2. add systematically numerical accuracy tests in order to prove that the error entailed by the computation in xed-point arithmetic will be less than a given error bound, 3. have a tool with a low computation time, that could eventually be used at compile time.

Design of CGPE's initial version

Details about the approach embraced by this tool are provided in [START_REF] Mouilleron | Automatic generation of fast and certied code for polynomial evaluation[END_REF], and illustrated in Figure 8.1(a). The user has to provide a univariate or bivariate polynomial (the values of the coecients and some intervals for the variables), information about her/his target architecture (degree of parallelism, number of multipliers, cost of + and ×), and a set of criteria (delay for the second variable y, evaluation error bound, bound on the latency).

Then, the tool proceeds in two steps. First, it creates a set of schemes whose latency, on unbounded parallelism and using the provided costs for + and ×, is no more than the given bound. Actually, if the user omits to provide a bound then the tool optimizes the latency on unbounded parallelism. Second, each scheme from the computed set goes through a sequence of lters whose purpose is to verify several properties, like the latency on the real architecture and the evaluation error bound. Finally, a C code and an accuracy certicate are generated for each scheme that passes all the lters.

To cope with the fast growth for the number of schemes mentioned in Section 6.2.2, several heuristics have been introduced within the scheme set computation step:

• The main goal of this step lies in the generation of schemes with low latency. This is achieved by using a target latency (either a bound provided by the user or some estimation of the minimum latency on unbounded parallelism) in order to decide which schemes have a possibly low latency on the target architecture, and drop the others.

• If the support of the input polynomial p is larger than a xed parameter, the tool performs a non-exhaustive generation. Namely, instead of considering all the possible decompositions for p, it only takes into account decompositions corresponding to a split into its low and high parts.

• Finally, one can decide to keep only a xed number of schemes for each subexpression.

As we can see, the scheme set computation step relies on several parameters that may be set by the user through the command line interface of CGPE.

As for the scheme selection step, it is made of three successive lters:

• The rst lter, called arithmetic operator choice, was designed in order to ensure that a given scheme can be evaluated in unsigned xed-point arithmetic, and without the need to add shifters for mantissa alignment.

• Then, a scheduler tries to check if the latency on the target architecture will meet with the one on unbounded parallelism,

• Finally, the third lter checks that additions never cause an overow, and that the error entailed by the evaluation in unsigned xed-point arithmetic is less than the error bound at input. This is done by calling the software tool Gappa 1 on a script generated on purpose. In fact, this script will serve as the accuracy certicate returned as output.

1 See http://gappa.gforge.inria.fr/ and [START_REF] Melquiond | De l'arithmétique d'intervalles à la certication de programmes[END_REF].

Architectural constraints

Polynomial description

Set of criteria schedule checking schedule checking scheme set computation 

Illustration and limitations of this approach

In order to get a good insight into the performance of the approach described previously, we have considered the implementation of various functions for the ST231 processor. For each function, we have computed a polynomial approximant and a certied evaluation error bound using the software tool Sollya 2 and the framework presented in [Rev09, 6.4].

Then, we have used CGPE to handle the generation of the code for polynomial evaluation.

Table 8.1 shows the computation time for the dierent steps, along with the number of schemes at the end of each step represented in square brackets.

Summary of the issues we want to tackle using CGPE

In the next section, we will focus on the following problems:

1. Determine the minimum number of matrix-matrix multiplications in an evaluation scheme for p(A), and see how it compares to the lower and upper bounds from

2. Count the number of optimal schemes for small values of d and generate them, in order to look at the possible improvements (like minimizing the memory usage) for the evaluation;

3. Investigate the case of the simultaneous evaluation of p even and p odd appearing for exp(A), and more generally the simultaneous evaluation of two polynomials, which is the situation brought by the Padé-approximation approach for evaluating f (A).

Modelling with CGPE and experimental results

Relevance of evaluation schemes for the evaluation of p(A)

First of all, let us see why the concept of evaluation scheme remains suitable to study the evaluation of a polynomial at a matrix point. In Sections 5.1.1 and 5.1.2, we have successively introduced for a given arithmetic expression f the set of parenthesizations P(f ) (that were obtained by considering the closure of the natural parenthesizations over the basic set of rules listed on page 95), and the set of evaluation schemes S(f ) := P(f )/ ≡ where ≡ stands for the syntactic equality modulo commutativity.

Here, we have to deal with matrices and scalars (the coecients a i of polynomial p). For consistency, we will regard a scalar a i as the matrix a i I n when applying one of the rules used to dene parenthesizations. Yet, multiplying by a i will remain a scalarmatrix multiplication. Now, we have to look at the validity of these rules: the set of n × n matrices over a eld K has a non-commutative ring structure, and as we will only encounter matrices that are polynomials in the given matrix A, commutativity of × will also be satised. Therefore, the set of parenthesizations P(p(A)) still corresponds to a set of ways to evaluate p(A).

When introducing the concept of evaluation scheme in Section 5.1.2, we motivated the choice of considering the quotient set P(f )/ ≡ rather than P(f ) itself by noting that the commutativity of + and × is still satised when computing in nite-precision arithmetic. Unfortunately, this argument falls down here, since we may have A • B = B • A in nite-precision arithmetic even though the mathematical equality holds. Nevertheless, we have seen in the previous section that the main issue will be to minimize the number of non-scalar multiplications. These multiplications are all of the form X • Y, where X and Y are either two powers of A, or one power and one polynomial of A, and thus their number does remain unchanged when applying the commutativity of ×. Moreover, as soon as the numerical analysis is carried out using matrix norms, the error bound on the evaluation of A • B becomes symmetric in A and B, like in [Hig02, page 71]:

Chapter 8. Application examples heuristics search. Yet, what is the most interesting here is the variable number of powers of A computed as intermediate quantities. Indeed, recall that our problem was to evaluate two polynomials at the same time. If we maximize the number of powers of A computed in the rst polynomial evaluation, then we will potentially have more operations for free when performing the second evaluation. Think for instance of the case of a (7, 7)-Padé approximation (p, q). Figure 8.3 illustrates for a degree-7 polynomial all the values for ϕ(s) where s has the minimum number of matrix-matrix multiplications, that is, four. Suppose we use schemes for p and q whose value by ϕ is the top-left one in Figure 8.3. Then, evaluating p(A) will cost 1 + 3 = 4 matrix-matrix multiplications, but since we have also computed A 2 , A 3 = A × A 2 , and A 4 = A 2 × A 2 , evaluating q(A) will only cost 1 matrix multiplication. Therefore, the total number of matrix-matrix multiplications is 5.

Supposing now that we choose for p or q a scheme s where ϕ(s) is the value at bottom of Figure 8.3, the only intermediate quantity that we can reuse is A, and so we get a number of matrix-matrix multiplications of 3 + 1 + 3 = 7, which is two more compared to the previous choice. This illustrates that, in our context, all schemes minimizing the number of non-scalar multiplications are not even, and that it is important to look deeply into the structure of the scheme in order to make an appropriate choice.

Case of exp(A)

Finally, let us discuss the case of exp(A). Recall that the problem in this case is to evaluate simultaneously the even and odd parts of a polynomial p with a minimum number of matrix-matrix multiplications. Assuming that p(A) = q(A 2 ) + A • r(A 2 ) so that p even (A) = q(A 2 ) and p odd (A) = A • r(A 2 ), (8.1)

we can evaluate the odd and even parts of p by rst computing A 2 , then evaluating simultaneously r and q at the matrix point A 2 , and nally performing one extra addition to retrieve the p odd (A) from r(A 2 ). For the simultaneous evaluation of r and q, we can apply the remark formulated at the end of the previous paragraph. For instance, when deg(A) = 12, one can evaluate the degree-5 polynomial r with 3 non-scalar multiplications

, and 1 additional non-scalar multiplication), and the degree-6 polynomial q with 3 non-scalar multiplications (again, A 2 = A × A, A 3 = A × A 2 , and 1 additional non-scalar multiplication). Therefore, the simultaneous evaluation will cost 6 -2 = 4 non-scalar multiplications, since we can reuse the values of A 2 and A 3 , and the nal cost for {p even (A), p odd (A)} is 1 + 4 + 1 = 6 matrix-matrix multiplications, which matches the value proposed by Higham [Hig08, Table 10.3].

In fact, the previous reasoning allows us to quickly retrieve fully parenthesized variants of the scheme proposed on [Hig08, page 244] for d = 12, along with several other schemes achieving the same number (6) of matrix-matrix multiplications. Indeed, all we need is to generate schemes minimizing the number of non-scalar multiplications for a degree-5 polynomial and then for a degree-6 polynomial, and to consider pairs of schemes which maximize the number of common powers of A. According to Table 8.4, this takes around 1 second.

Yet, one may wonder if there exist better schemes. To answer this question, we use algorithm OptimizerSet, along with a variation of the measure described in Section 7.2.1

Conclusions and perspectives for Part II

The implementation of an given arithmetic expression f rises several issues. People from algebraic complexity try to determine the minimum number of operations in an evaluation scheme for f . The set S(f ) of all the evaluation schemes for f is an interesting combinatorial object by itself. Moreover, an ecient implementation of f on a given architecture requires that we use as much as possible the available parallelism, or that we control the evaluation error due to the computations carried out in nite-precision artihmetic. Sometimes, a trade-o between speed and accuracy must be found, like in the context of CGPE.

The purpose of the second part of this document was to provide a general framework that helps us to tackle several of the aforementioned issues. The main idea lies in the recursive expression of the set of evaluation schemes S(f ) that is achieved thanks to the concept of decomposition. Analyzing the set S(f ) can then be summarized as considering successively all the decompositions for f , analyzing recursively all the corresponding subexpressions, and deducing the nal result. This approach was mainly used for three purposes: generation, counting, and optimization.

Generation of evaluation schemes is usually too costly when done exhaustively. However, we have seen that adding suciently strong constraints can make it relevant. Thus, by generating all the schemes for a n with a minimum number of multiplications, we were able to study the number of squarings that can be extracted from the multiplications.

Counting the number of evaluation schemes gives a good insight into the cost of other analyses and the strength of the heuristics we may need in order to render these analyses ecient. Thus, we have studied in detail the numbers of schemes for the polynomials appearing as input of CGPE, that is, univariate polynomials p(x) and bivariate polynomials of the form q(x, y) = α + y • p(x). This gave us two new sequences that we have added to the On-Line Encyclopedia of Integer Sequences. We have then proved that the logarithm of the number of schemes for both p(x) and q(x, y) grows in Ω(n 2 ) and in O(n 3 ) with respect to n = deg p, which explains the fast growth observed in practice. Moreover, we have looked at the distribution of the evaluation schemes according to some measure. In particular, we have seen that only a small proportion of schemes for polynomials achieves a minimum latency, and concluded that it is interesting as a rst heuristic to focus on those schemes inside CGPE. Yet, schemes with a minimum latency are too many, and we still need additional heuristics to reduce the search space further.

Optimization according to some criterion like the latency can be easily achieved through the aforementioned divide-and-conquer approach. Yet, some measures like the number of multiplications are more dicult to optimize. For them, we have proposed and compared several solutions: a fast heuristic optimization (Optimizer), a general-

Final words

The design of ecient code is a very dicult task. At the algorithmic level, signicant improvements can be achieved, that either lead to a better asymptotic cost, or to a cost with a better constant hidden within the big-O expression. Yet, considering the algorithm with the best known asymptotic complexity does not mean having an ecient code. First, one has to actually implement this algorithm. This usually implies to make implementation choices, which may impact the actual performance of the algorithm.

Second, asymptotically fast algorithms are usually slower than more naive ones for small inputs. Thus, one may need to implement several algorithms and switch from one to another depending on the size of the input. Again, choices for the set of algorithms and the ranges associated to each of them have to be made. Third, the produced code will be compiled and run on a given architecture, usually oering parallelism and nite-precision arithmetic for computation involving real or complex numbers. Using at most the features of the architecture within the compiler is then yet another issue.

The main lesson learnt from this work is that, given the increasing complexity of both the algorithms and the architectures on which they are intended to run, designing tools to automatically analyze and optimize code becomes more and more an issue. For structured matrices, we managed to design asymptotically fast algorithms. Nevertheless, despite the time we spent on their implementation, we are convinced that better performance would be achieved if only we could ask a computer to generate the code. As for the evaluation of arithmetic expressions, our framework for automatic analysis of the set of evaluation schemes really helped us to produce ecient code both for the FLIP library and for the evaluation of a polynomial at a matrix point. Thus, in both cases, the solution in order to produce ecient code seems to lie in the automatic generation of optimized code. 
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