
HAL Id: tel-00688388
https://theses.hal.science/tel-00688388v1

Submitted on 17 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient computation with structured matrices and
arithmetic expressions

Christophe Mouilleron

To cite this version:
Christophe Mouilleron. Efficient computation with structured matrices and arithmetic expressions.
Other [cs.OH]. Ecole normale supérieure de lyon - ENS LYON, 2011. English. �NNT : 2011ENSL0652�.
�tel-00688388�

https://theses.hal.science/tel-00688388v1
https://hal.archives-ouvertes.fr

École Normale Supérieure de Lyon

Laboratoire de l'Informatique du Parallélisme

THÈSE

Christophe Mouilleron

pour l'obtention du grade de

Docteur de l'Université de Lyon � École Normale Supérieure de Lyon
spécialité : Informatique

au titre de l'École Doctorale de mathématiques et d'informatique fondamentale de Lyon

E�cient computation with structured matrices

and arithmetic expressions

Directeur de thèse : Gilles Villard
Co-directeur de thèse : Claude-Pierre Jeannerod

Après avis de : Markus Püschel
Lihong Zhi

Devant la commission d'examen formée de :

Dario Bini Membre
Claude-Pierre Jeannerod Membre
Bernard Mourrain Membre
Markus Püschel Membre/Rapporteur
Gilles Villard Membre
Lihong Zhi Membre/Rapporteur

Contents

Introduction

I Improving computations with structured matrices 7

1 Computing with structured matrices 9
1.1 Preliminaries on dense matrices . 9

1.1.1 Notation . 9
1.1.2 Matrix multiplication . 10
1.1.3 Matrix inversion using block Gaussian elimination 10

1.2 Special matrices and fast polynomial arithmetic 11
1.2.1 Toeplitz matrices and polynomial multiplication 11
1.2.2 Vandermonde matrices, multipoint evaluation and interpolation . 13
1.2.3 Other links between special matrices and polynomials 14

1.3 Matrices with displacement structure . 15
1.3.1 Displacement operators and displacement rank 16
1.3.2 Main examples . 16

1.4 Basic properties of structured matrices 18
1.4.1 Recovering a structured matrix from its generators 18
1.4.2 Basic computations with structured matrices 20
1.4.3 Inversion of a structured matrix 24

1.5 Contributions of this thesis . 26
1.5.1 Compression-free approach for structured matrix inversion 26
1.5.2 Fast multiplication of a structured matrix by a matrix 28
1.5.3 Software development . 30

2 Compression-free inversion of structured matrices 31
2.1 Techniques to avoid compression stages 31

2.1.1 Generation of the Schur complement without compression 32
2.1.2 Cardinal's algorithm for Cauchy-like matrix inversion 33
2.1.3 Formulas for the generator of a Cauchy-like matrix inverse 34

2.2 Computations with speci�ed generators 35
2.2.1 Recursive factorization formula 36
2.2.2 Reduction to M and NT lower triangular, and A strongly regular . 37

2.3 Compression-free structured matrix inversion 40
2.3.1 Algorithms for lower triangular operator matrices M and NT. . . . 40
2.3.2 Application to Cauchy-like matrices 43

iv Contents

2.3.3 Application to Vandermonde-like matrices 44
2.3.4 Extension to Hankel-like matrices 45

2.4 Experimental results and concluding remarks 47
2.4.1 Experimental results . 47
2.4.2 Concluding remarks on our new approach 52

3 Fast multiplication of a structured matrix by a matrix 53
3.1 Preliminaries . 53
3.2 Polynomial expressions for structured matrix reconstruction 55

3.2.1 Polynomial expression for products with displacement matrices and
their associated Krylov matrices 55

3.2.2 Polynomial expression of AB for Sylvester's displacement 58
3.3 Computing the row vector R = UT (VWT mod P) 61

3.3.1 Case where P = xn − ψ . 62
3.3.2 Case where P =

∏
1≤i≤n(x− yi) 63

3.4 Fast multiplication by a matrix and application to inversion 67
3.4.1 Fast multiplication by a matrix 67
3.4.2 Application to structured matrix inversion 70

Conclusions and perspectives for Part I

II Analyzing the implementations of arithmetic expressions 77

4 On the evaluation of arithmetic expressions 79
4.1 Issues underlying the evaluation of arithmetic expressions 79

4.1.1 Issues in algebraic complexity . 79
4.1.2 Issues in combinatorics . 80
4.1.3 Issues in compilation and code generation 80
4.1.4 Issues in numerical analysis . 81

4.2 Context and motivation . 82
4.2.1 Floating-point arithmetic support for integer processors 82
4.2.2 Generating fast and accurate-enough code for polynomial evaluation 84
4.2.3 Motivation . 87

4.3 Contributions of this thesis . 87
4.3.1 Algorithms introduced in the following chapters 87
4.3.2 Other contributions . 90

5 How to model and analyze implementations of arithmetic expressions 93
5.1 Modelling implementations with the concept of evaluation scheme 93

5.1.1 Evaluation of arithmetic expressions 93
5.1.2 Going from evaluation trees to evaluation schemes 96
5.1.3 Decompositions and subexpressions for an arithmetic expression . 97

5.2 Algorithmic analysis of the set of evaluation schemes 99
5.2.1 Requirements for a family of arithmetic expressions 99
5.2.2 Examples of arithmetic expression families 100

Contents v

5.2.3 Practical considerations . 102
5.3 Exhaustive generation of the evaluation schemes 104
5.4 How to model an optimization criterion 106

5.4.1 Modelling an optimization criterion with a measure 106
5.4.2 Examples of measures . 107
5.4.3 Generation under constraints . 111

6 On the combinatorics of evaluation schemes 117
6.1 Counting evaluation schemes . 117
6.2 Application examples . 119

6.2.1 Retrieving three already known sequences 119
6.2.2 On the number of schemes for evaluating polynomials 120
6.2.3 Summary . 123

6.3 Asymptotics of counting sequences . 124
6.3.1 Preliminary remarks . 124
6.3.2 Asymptotic equivalence for sequences A001190 and A085748 . . . 125
6.3.3 Lower and upper bounds on the number of evaluation schemes for

polynomials . 127
6.4 Counting evaluation schemes with respect to a given measure 133

6.4.1 A �ner-grained adaptation of the generation algorithm 133
6.4.2 Number of evaluation schemes for polynomials with respect to the

number of multiplications . 136
6.4.3 Number of evaluation schemes for polynomials with respect to the

latency . 138
6.4.4 Counting only nearly optimal schemes 139

7 Optimization 143
7.1 Adapting the generation algorithm for optimization 143

7.1.1 Optimizing the latency on unbounded parallelism 143
7.1.2 Generalization to recursively computable measures 145
7.1.3 Some remarks about this approach and its limitation 146

7.2 Global optimization . 148
7.2.1 Detour via the optimization of sets of expressions 149
7.2.2 Algorithms GlobalOptimizer and GlobalOptimizerWithHint . . 151

7.3 Multicriteria optimization . 154
7.3.1 How monocriterion optimization may help in a multicriteria context 154
7.3.2 Search for a trade-o� . 156
7.3.3 Application to polynomial evaluation 160

8 Application examples 165
8.1 New design for CGPE . 165

8.1.1 The initial design for the tool and its limitations 165
8.1.2 Adding more constraints within the �scheme set computation� step 169
8.1.3 Experimental results . 171

8.2 Evaluation of a polynomial at a matrix point 173
8.2.1 Motivation and underlying issues 173

vi Contents

8.2.2 Modelling with CGPE and experimental results 176

Conclusions and perspectives for Part II

Final words

List of Figures

2.1 General compression-free approach for structured matrix inversion. . . . 37
2.2 Cost (in seconds) of Cauchy-like matrix inversion for α = 10 and increasing

values of n. 49
2.3 Cost (in seconds) of Hankel-like matrix inversion using GenInvHL, for n =

400 and increasing values of α. 51

3.1 Example of subproduct tree Ty, where y ∈ R4 is such that yi = i. 64
3.2 General approach for the multiplication of an m× n structured matrix of

displacement rank α by an n× α matrix. 67
3.3 Speed-up obtained by replacing the naive �Cauchy-like matrix × vectors�

multiplication with the fast multiplication of a Cauchy-like matrix by a
matrix from Figure 3.2. 72

4.1 Classical rules for degree-3 univariate polynomial evaluation. 85

5.1 Example of SLP for evaluating a15 and its corresponding DAG and binary
tree. 94

5.2 The set of all the evaluation schemes (represented as dashed boxes) for
a0 + a1 + a2. 97

5.3 Example of C++ interface for a class implementing a family of arithmetic
expressions. 103

5.4 Example of a C++ interface for a class implementing a measure. 108
5.5 The number of multiplications in evaluation schemes is not recursively

computable. 110

6.1 How to insert multiplications in order to turn a scheme for
∑n

i=0 ai into a
scheme for

∑n
i=0 ai x

i. 129
6.2 Log-lin graph of the di�erent functions mentioned during the asymptotic

study of A169608(n). 133
6.3 Log-lin graph of the di�erent functions mentioned during the asymptotic

study of A173157(n). 134
6.4 Distribution of the evaluation schemes for p(x) with deg p = 18 according

to the latency on unbounded parallelism when C+ = 1 and C× = 3. 138

7.1 Evaluation schemes with a minimal depth for a9 can be formed with a
non-optimal evaluation scheme for a4. 147

viii List of Figures

7.2 Evaluation schemes obtained by optimizing �rst the latency and then the
accuracy. 156

7.3 Distribution of the evaluation schemes for a degree-5 polynomial according
to their latency and number of multiplications. 157

7.4 How the routine insert works. 159
7.5 List of trade-o�s between latency and accuracy for a degree-10 approxi-

mant polynomial for exp (1+x)
1+x

on [0, 0.99999988079071044921875]. 163

8.1 Evolution in the architecture of the tool CGPE. 167
8.2 Example of scheme that passes the early schedulability test, but fails to

achieve the same latency on unbounded parallelism and on the ST231
processor. 171

8.3 Set of values for ϕ(s), where s is a scheme for a degree-7 polynomial with
the minimum number of non-scalar multiplications. 179

List of Tables

1.1 Costs of matrix-vector multiplication and linear system solving for several
types of matrix. 15

1.2 Structure for ∇[M,N] when M,N are diagonal or unit circulant matrices. 18
1.3 Structure for ∆[M,N] when M,N are diagonal or unit circulant matrices. 18

2.1 Dominant cost in our implementation of the MBA algorithm. 50

3.1 De�nition of PM, UM, VM, and WM for a given displacement matrix M. . . 58

4.1 Main algorithms introduced in the next chapters. 90

5.1 Values of sequences A003313(n), A186435(n), A186437(n) and A186520(n)
for n ∈ {1, . . . , 120}. 115

6.1 Number A169608(n) of evaluation schemes for p(x) with deg p = n. . . . 121
6.2 Example of encodings for some bivariate polynomials. 122
6.3 Number A173157(n) of evaluation schemes for q(x, y) = α + y · p(x) with

deg p = n. 123
6.4 Summary of the sequences computed with algorithm Count along with the

corresponding complexities. 124
6.5 Numbers of evaluation schemes for several arithmetic expressions. 124
6.6 Distribution of the evaluation schemes for a degree-7 polynomial and a

degree-8 polynomial according to the number of multiplications. 137
6.7 Number of evaluation schemes for p(x) with deg p = 18 with a latency at

most 20 on unbounded parallelism when C+ = 1 and C× = 3. 139

7.1 Timings for the computation of A003313(n) with our three approaches for
global optimization. 153

7.2 Minimum latency on unbounded parallelism for the evaluation of q(x, y) =
α + y · p(x) with respect to deg(p) and the delay D for y. 162

8.1 Timings for the initial design of CGPE. 168
8.2 Timings for the new design of CGPE. 172
8.3 Comparison between the initial version of CGPE and our new design. . . 173
8.4 Analysis of the evaluations schemes for p(A). 178
8.5 Minimal number µd of non-scalar multiplications for evaluating peven(A)

and podd(A) when deg(p) = d (heuristic for d ≥ 8). 181

x List of Tables

List of Algorithms

1.1 Sketch of the Morf/Bitmead-Anderson (MBA) algorithm for divide-and-conquer
inversion of Toeplitz-like matrices [Mor80, BA80]. 25

2.1 GenSchur (from [Car00]) . 33
2.2 Invert (from [Car00]) . 34
2.3 GenInvLT . 41
2.4 GenInvHL . 46
3.1 mpx (modulo of power of x) . 62
3.2 ComputeRx . 63
3.3 mpy (modulo polynomial Py) . 65
3.4 ComputeRy . 66
5.1 Generate . 104
5.2 GenerateWithHint . 112
6.1 Count . 118
6.2 CountPerMeasure . 135
6.3 CountWithHint . 140
7.1 MinLat . 144
7.2 Optimizer . 146
7.3 OptimizerSet . 150
7.4 GlobalOptimizer . 152
7.5 GlobalOptimizerWithHint . 153
7.6 insert (subroutine for BiOptimizer) . 158
7.7 BiOptimizer . 160
8.1 Sketch of the approach in [Hig08, �10.3] for the evaluation of exp (A). . . . 175

Introduction

Today, computers are heavily used to carry out all sorts of computations. The question
of designing e�cient code is thus crucial, and it occurs at several levels. First, it is impor-
tant to design e�cient algorithms, relying on the appropriate data structures. Second,
one needs to turn algorithms into programs, which typically implies to make several im-
plementation choices, that may strongly impact the running time in practice. Third, the
compiler should provide further optimizations, depending on the target architecture.

This thesis addresses two situations where we aim at e�cient code. First, we will focus
on computations involving dense structured matrices. Such matrices appear frequently
in computer algebra, in coding theory for error correction, and in signal and image pro-
cessing. In this case, the structure implies that the matrices, while being dense, can be
stored more e�ciently than an arbitrary dense matrix. This allows for the design of fast
algorithms, like those that we will present in Part I. Second, we present some work on the
evaluation of arithmetic expressions in Part II. Implementing e�ciently the evaluation
of a given arithmetic expression on a target architecture may be quite di�cult, all the
more as the architectures tend to become more complex. Optimization of one or several
criteria (like latency or numerical accuracy) may require to explore a set of possible im-
plementations in order to extract the relevant ones. Part II presents a general framework
that allows for such a search process, as well as other analyses that can be used to gain
some insight into the properties of the set of implementations.

Part I � Improving computations with structured matrices

In many cases, the structure of a matrix A, when there is one, can be exposed by applying
an appropriate linear map L to it so that the rank α of the resulting matrix L(A) is
small, in a sense that depends on the context. Then, A can be represented by two
matrices G and H having only α columns and such that L(A) = GHT . Classical choices
for displacement operator L are Sylvester's operator ∇[M,N] : A 7→ MA−AN and Stein's
operator ∆[M,N] : A 7→ A − MAN. By taking M and N among diagonal matrices, and
unit ϕ-circulant matrices and their transposes, several well-known types of matrices are
covered: Toeplitz, Hankel, Vandermonde, and Cauchy matrices. Moreover, using this
displacement technique, generalizations of these matrices are easily de�ned. The main
point with these structured matrices is that, since the generator (G,H) of A has only
α(m + n) elements instead of mn, one can achieve several operations faster than with
dense, unstructured matrices, like multiplication by a vector, transposition, addition
or multiplication of structured matrices, and inversion. Note that, for all the above
operations whose result is a matrix, it is known that this matrix is structured, and so it

2 Introduction

is also represented using a generator.
In Part I, we �rst focus on the problem of inverting a structured matrix: given a

generator (G,H) for a regular matrix A, compute e�ciently a generator (Y,Z) for A−1.
Subsequently, since fast inversion algorithms rely on the problem of multiplying a struc-
tured matrix of displacement rank α by α vectors, we also consider the slightly more
general problem of computing the multiplication of a structured matrix by a matrix.

Main contributions

Compression-free algorithms for inversion. One issue with the classical divide-
and-conquer algorithm for structured matrix inversion lies in the need to control the
size of the generators for intermediate quantities. This is usually achieved thanks to
so-called compression steps, whose purpose is to reduce the size of computed generators
having a larger size than expected. We propose in this thesis a general, compression-
free algorithm for inversion, that extends the algorithm presented in [Car99, Car00] for
Cauchy-like matrices. Here, the control of the size of the generators is achieved thanks to
explicit recursive formulas, which give already compressed generators. Then, we deduce
an algorithm for Cauchy- and Vandermonde-like matrices, that we extend to cover Hankel-
like matrices. Even if suppressing compression steps does not yield a better asymptotic
cost, this leads to small dominant terms and thus allows for speed-ups up to a factor of
about 7 compared to the classical approach, both in theory and in practice.

Algorithms for fast multiplication of a structured matrix by a matrix. An
algorithm for the fast multiplication of an n × n Toeplitz-like matrix A of displacement
rank α by an n × α matrix B is proposed in [Bos10, page 210] as an improvement of
[BJS07, BJS08]. In this thesis, we extend this approach to Toeplitz-, Cauchy-, and
Vandermonde-like matrices in the rectangular case m×n. Moreover, we analyze the cost
of this approach in the case where B has β columns, for some arbitrary positive integer β.

Outline of Part I

The �rst part of this document is organized into three chapters as follows.

Chapter 1 � Computing with structured matrices. This chapter serves as an
introduction for this part. It starts with a short reminder on matrix arithmetic, before
introducing several types fo matrices for which basic operations like multiplication by
a vector can be carried out in quasi-linear time using polynomial arithmetic. Then,
we present the basics of the displacement rank approach, which aims at providing a
general framework that covers many matrices like for instance Toeplitz, Vandermonde,
and Cauchy matrices. Next, we list the main properties of these structured matrices, and,
in particular, issues related to structured matrix inversion are discussed. We conclude
this �rst chapter with the detailed list of our contributions to the domain of structured
matrices.

Chapter 2 � Compression-free inversion of structured matrices. This chapter
presents an extension of an algorithm for Cauchy-like matrix inversion by Cardinal [Car99,

Introduction 3

Car00] to a broader class of structured matrices. Two new inversion algorithms are
introduced, one covering both the Cauchy-like and Vandermonde-like structures, and one
dedicated to the Hankel-like structure. A detailed cost analysis is provided for these
three cases. Finally, experimental results con�rm this analysis and show that our new
approach is up to 6.7 times faster than the classical inversion algorithm in practice.

Chapter 3 � Fast multiplication of a structured matrix by a matrix. In this
chapter, we tackle the problem of multiplying a structured matrix A by an matrix B. A
recent work in [Bos10, page 210] proposes an asymptotically fast algorithm in the case of
square Toeplitz-like matrices, that we extend here to several other structures. Thus, we
give a general polynomial interpretation for the product AB, and we show how to solve
e�ciently the polynomial problem that appears from this interpretation by extending
the algorithm of [Bos10, page 210]. Finally, we obtain an asymptotically fast, general
algorithm for the multiplication of a structured matrix by a matrix, that we can use
together with the material from the previous chapter to obtain fast inversion algorithms
in practice.

Part II � Analyzing the implementations of arithmetic expressions

Arithmetic expressions are formulas made of sums and products of variables. Implement-
ing e�ciently such expressions for a given architecture raises several questions. When
parallelism is available, one should use a mathematical writing of the expression which ex-
poses as much parallelism as possible. On the other hand, when computations are carried
out using �nite-precision arithmetic, one may want to analyze the numerical properties
of the computed result, and to show that the error entailed by the successive roundings
is below some given bound. One example of a situation where both questions arise is the
design of e�cient code for the evaluation of a polynomial approximation within a library
of mathematical functions (libm). One may also come with more theoretical questions,
like counting the number of implementations or determining the minimum number of op-
erations required to evaluate some arithmetic expression in a given computational model.
The main challenge addressed by Part II is to design and implement a general framework
allowing to provide answers to such questions.

Main contributions

Framework for analyzing the implementations of a given arithmetic expres-
sion. Generalizing the generation algorithm in [Rev09, �6.1], we propose to model im-
plementations by the notion of evaluation scheme. Provided we have an algorithmic way
to deduce how a given arithmetic expression can split into smaller ones, we can analyze
in a divide-and-conquer manner the set of all its evaluation schemes. This approach
yields three types of analyses depending on the problem we want to tackle: generation,
counting, and optimization.

Applications to code generation for polynomial evaluation. The aforementioned
framework is used in two situations involving polynomial evaluations. First, it allows us to

4 Introduction

signi�cantly improve a code generator for fast and accurate-enough polynomial evaluation
on VLIW architectures, that is used in the context of a libm. In particular, we measure an
average gain of about 50% in the overall generation time. Second, we address the issue
of evaluating a polynomial with scalar coe�cients at a matrix point with a minimum
number of matrix-matrix multiplications. The explorative aspect of our framework is
then used to study the set of optimal schemes, and to deduce the optimality of some
known schemes for small polynomial degrees.

Outline of Part II

The second part of this document is organized into �ve chapters as follows.

Chapter 4 � On the evaluation of arithmetic expressions. This chapter serves
as an introduction to our work on the evaluation of arithmetic expressions. The im-
plementation of a given arithmetic expression raises several questions in various �elds
of computer science. Our initial context, that is, the implementation of �oating-point
operators for integer VLIW processors based on polynomial approximation, also provides
several questions, some of them being classical, while others are more speci�c. We �rst
present these issues along with some background material. Then we conclude this fourth
chapter with the detailed list of our contributions to the domain of arithmetic expression
evaluation.

Chapter 5 � How to model and analyze implementations of arithmetic expres-
sions. This chapter introduces a way to model and analyze the di�erent implementa-
tions of an arithmetic expression using evaluation schemes and decompositions. Together,
they allow for the design of divide-and-conquer analysis algorithms. This approach is �rst
illustrated with the description of an exhaustive generator of evaluation schemes. Fur-
thermore, a way to model optimization criteria is discussed, and the previous generator
is extended so that only the schemes achieving a value below a given threshold for some
criterion are generated.

Chapter 6 � On the combinatorics of evaluation schemes. This chapter focuses
on combinatorics issues related to sets of evaluation schemes. We will see how to count
the total number of schemes, and how to get the distribution of these schemes according
to some given criterion. Furthermore, we will present an asymptotic study of several
sequences that appear when counting the number of schemes for some parameterized
families of expressions.

Chapter 7 � Optimization. This chapter is dedicated to optimization issues. We
�rst introduce a simple optimization algorithm that works well with some criteria like
the latency on unbounded parallelism. Then, several more complex algorithms are given
in order to tackle more optimization problems, like the minimization of the number of
multiplications. Finally, we address the question of multicriteria optimization and, in
particular, we propose an algorithm that computes the best trade-o�s between two given
criteria, like latency and accuracy.

Introduction 5

Chapter 8 � Application examples. Finally, we detail here two concrete situations
that bene�t from the material presented so far in this second part of the thesis. First,
our approach leads us to review the architecture of CGPE, a software tool for generating
fast and accurate-enough codes for polynomial evaluation on a VLIW architecture. By
adding more constraints within the computation of the schemes to be further analyzed by
the tool, we obtain signi�cant speed-ups for the whole code generation. Second, we tackle
the issue of minimizing the number of matrix-matrix multiplication in the evaluation of
p(A) where p is a univariate polynomial and A is an n × n matrix. In this case, our
approach allows us both to automatically retrieve known schemes due to Paterson and
Stockmeyer [PS73] and, in the context of the matrix exponential, due to Higham [Hig08,
�10], and to prove their optimality for small degrees of p.

6 Introduction

Part I

Improving computations with

structured matrices

Chapter 1

Computing with structured matrices

This chapter serves as an introduction for the �rst part of this document. After a short
reminder on matrix arithmetic in Section 1.1, we examine in Section 1.2 several special
matrices, for which the problems of multiplication by a vector and linear system solving
can be solved in quasi-linear time using polynomial arithmetic. Then, we introduce in
Section 1.3 the basics of the structured matrix theory, which is a general framework that
covers all the special matrices listed in Section 1.2, along with generalizations of them.
Next, we explain in Section 1.4 how to perform basic operations on structured matrices,
like multiplication by a vector, transposition, addition or multiplication, and inversion.
Most of the material presented in these �rst four sections is taken from [vzGG03] and
[BP94, Pan01]. Finally, in Section 1.5, we discuss issues on structured matrix inver-
sion and on the multiplication of a structured matrix by a matrix, and we detail our
contributions to this domain.

1.1 Preliminaries on dense matrices

This section aims at recalling a few results about dense matrix multiplication and block
Gaussian elimination. Matrices considered in this �rst part of the document will have
coe�cients in a �eld K, and the set of the m× n matrices with coe�cients in K will be
denoted by Km×n.

1.1.1 Notation

Here and hereafter, In is the identity matrix of order n, and Jn is the re�exion matrix of
order n, whose (i, j) entry is 1 if i+ j = n+ 1, and 0 otherwise:

In =

1
. . .

1

 and Jn =

 1

. .
.

1

 .
We will also write en,i for the ith unit vector of Kn, and en for the vector of Kn whose all
entries are equal to 1. Moreover, for any matrix A, we denote its (i, j) entry by aij and
its jth column by aj.

10 Chapter 1. Computing with structured matrices

Furthermore, when A ∈ Km×n and when m1, m2, n1, and n2 are positive integers such
that

m = m1 +m2 and n = n1 + n2,

we can partition the matrix A into blocks as

A =

[
A11 A12

A21 A22

]
, where Aij ∈ Kmi×nj . (1.1)

1.1.2 Matrix multiplication

Given two matrices A and B in Kn×n, the naive way to compute the product matrix
AB takes n3 multiplications and n3 − n2 additions in K. Yet, one can perform this
operation asymptotically faster than O(n3). The �rst algorithm that achieves a subcubic
cost for matrix multiplication is due to Strassen. He proposes in [Str69] an algorithm in
O(nlog2 7), where the exponent is log2 7 ≈ 2.807. Several variants of Strassen's algorithm
were designed to decrease this exponent (see [vzGG03, Note 12.1] and the references
therein), and the most powerful variant up to now is one by Coppersmith and Winograd
[CW87], which achieves a complexity in O(n2.376).

In this document, we shall write O(nω) for the cost of the multiplication of two n×n
matrices. Coppersmith and Winograd's method shows that one can achieve ω ≤ 2.376.
While it is not known yet whether the multiplication of two n×nmatrices can be achieved
in quasi-quadratic time with respect to n, we will assume in this document that ω > 2.

Matrix multiplication is at the heart of algorithms in linear algebra. As a consequence,
many other problems involving n × n matrices over a �eld (including matrix inversion,
solving a linear system, and computing the determinant or the rank) can be solved at the
same asymptotic cost O(nω) as matrix multiplication [IMH82].

1.1.3 Matrix inversion using block Gaussian elimination

Matrix inversion can be achieved thanks to Gaussian elimination with pivoting. We
recall here a block version of Gaussian elimination without pivoting, which relies on
matrix multiplication and thus achieves a cost in O(nω) provided all the matrices that
need to be inverted are nonsingular.

Let A ∈ Kn×n be a nonsingular matrix, partitioned as in (1.1) with m1 = n1 so that
A11 is in turn a square matrix. Supposing that A11 is also nonsingular, we can de�ne the
Schur complement of A11 in A, which we shall denote by S:

S = A22 − A21A
−1
11 A12.

Let also E and F be the block matrices de�ned by

E =

[
In1

−A21A
−1
11 In2

]
and F =

[
In1 −A−111 A12

In2

]
.

By noting that E and F are nonsingular, and that EAF =
[
A11

S

]
, we see that S

is nonsingular if A11 and A are nonsingular. Hence, we deduce the following classical

1.2. Special matrices and fast polynomial arithmetic 11

recursive factorization of the inverse of A [Pan01, p. 157]:

A−1 = F

[
A−111

S−1

]
E. (1.2)

If we want to compute the inverse of A recursively using the above formula, we need
the upper-left blocks of A11 and S to be in turn invertible, and so forth. The correct
hypothesis on A is to assume that it is strongly regular,1 that is, all the square upper-left
blocks of A have to be nonsingular. If A is strongly regular then so are A11 and S, and
(1.2) gives a recursive algorithm to compute A−1 whose cost C(n) satis�es

C(n) = 2 · C
(n

2

)
+O(nω),

which leads to C(n) ∈ O(nω).
Note that not all nonsingular matrices are strongly regular. In order to invert any

nonsingular matrix in O(nω), one can use an inversion algorithm based on LUP decompo-
sition [BH74]. Yet, matrix inversion using block Gaussian elimination plays an important
role in our context since it serves as a basis for the inversion of structured matrices (see
Section 1.4.3).

1.2 Special matrices and fast polynomial arithmetic

1.2.1 Toeplitz matrices and polynomial multiplication

Consider the following matrix-vector product:
a0
a1 a0
a2 a1 a0

a2 a1
a2

 ·
b0b1
b2

 =

a0b0
a0b1 + a1b0
a0b2 + a1b1 + a2b0

a1b2 + a2b1
a2b2

 . (1.3)

Let a(x) =
∑2

i=0 ai · xi and b(x) =
∑2

i=0 bi · xj. One can see that the resulting vector is
made of the coe�cients of the polynomial c = a · b. Using naive matrix-vector product,
we get the coe�cients of c in O(n2). Yet, supposing that K = C for instance, we can
compute c using O(n log n) operations in C thanks to the FFT (Fast Fourier Transform)
algorithm. Actually, not all �elds K support the FFT. However, the multiplication of
two polynomials with degree less than n can still be achieved using O(n log n log log n)
operations in K [vzGG03, Theorem 8.22]. This remains asymptotically better than the
naive matrix-vector product.

The gain obtained in the previous example re�ects the fact that we have a very
speci�c matrix in the matrix-vector product. In fact, this matrix is a special case of
Toeplitz matrix:

1We may also equally say strongly nonsingular.

12 Chapter 1. Computing with structured matrices

De�nition 1.1. Let m and n be two positive integers, and v ∈ Km+n−1 be a vector indexed
from 1 − n to m − 1. The Toeplitz matrix T(v,m, n) is the m × n matrix whose entry
(i, j) is vi−j. In particular, when m = n, we have the following square Toeplitz matrix

T(v) = T(v, n, n) =

v0 v−1 . . . v1−n

v1 v0
. . .

...
...

. . .
. . . v−1

vn−1 . . . v1 v0

 .
Similarly, given a vector v ∈ Kn, one can de�ne the n × n lower-triangular Toeplitz
matrix L(v) and the n× n upper-triangular Toeplitz matrix U(v) by

L(v) =

v0
v1 v0
...

. . .
. . .

vn−1 . . . v1 v0

 and U(v) =

v0 v1 . . . vn−1

v0
. . .

...
. . . v1

v0

 .
One noticeable property of these triangular Toeplitz matrices is that multiplying one

of them by a vector can be achieved using a product of two polynomials. Let u, v ∈ Kn,
u(x) =

∑n−1
i=0 ui · xi, ũ(x) =

∑n−1
i=0 un−1−i · xi, and v(x) =

∑n−1
i=0 vi · xi. We can indeed

deduce by looking at (1.3) that:

• the ith entry of the vector L(u)v is the coe�cient of xi−1 in u(x)v(x),

• the ith entry of the vector U(u)v is the coe�cient of xn−2+i in ũ(x)v(x).

Similarly, if we now have u ∈ Km+n−1 and u(x) =
∑m+n−2

i=0 ui+1−n · xi then the ith entry
of T(u, n, n)v is the coe�cient of xn−2+i in u(x)v(x).

Cost of polynomial multiplication and of �(Toeplitz matrix) × vector� product

Following [vzGG03, p. 242], we write M(n) for the cost of multiplying two polynomials
over K[x] with degree less than n, and we assume that:

• M(n) is �superlinear,� that is, the function n 7→ M(n)/n is nondecreasing;

• M(n) is at most quadratic, that is, for all n,m ∈ N>0, we have M(mn) ≤ m2M(n).

Moreover, the superlinearity property implies that, for all n,m ∈ N>0:

M(mn) ≥ m ·M(n), M(m+ n) ≥ M(m) + M(n), and M(n) ≥ n. (1.4)

We can now sum up our previous remark:

Property 1.1. Given u, v ∈ Kn, one can compute L(u)v and U(u)v using M(n) operations
in K. In addition, given u ∈ Km+n−1 and v ∈ Kn, one can compute T(u,m, n)v using
M(m+ n) operations in K. If m = n then it becomes M(2n) ∈ O(M(n)) operations in K.

Note that, using the techniques in [Mul00], one can actually avoid to compute all the
polynomial products mentioned above, thus saving some work. Yet, all the costs remain
in O(M(n)).

1.2. Special matrices and fast polynomial arithmetic 13

Linear systems involving Toeplitz matrices

We have just seen that the product of a square Toeplitz matrix by a vector can be achieved
faster than in O(n2) using polynomial multiplication. In fact, a similar conclusion holds
for solving linear systems that involve Toeplitz matrices [Pan01, �2.5 and �2.11]:

Property 1.2. Let n ∈ N>0 and u, v ∈ Kn with u0 6= 0. Matrices L(u) and U(u) are then
nonsingular, and L(u)−1v and U(u)−1v can be computed using O(M(n)) operations in K.

Moreover, let n ∈ N>0, u ∈ K2n−1, and v ∈ Kn. If T(u) is nonsingular then the
computation of T(u)−1v can be achieved using O(M(n) log n) operations in K.

1.2.2 Vandermonde matrices, multipoint evaluation and interpo-

lation

Multipoint evaluation

The problem of multipoint evaluation is the following: Given x ∈ Kn and p ∈ K[x]
with deg(p) = m, compute p(xi) for 1 ≤ i ≤ n. As stated in [vzGG03, Corollary 10.8],
this problem can be solved using O(M(n) log n) in K when m < n. Like for polynomial
multiplication, we can rewrite this problem into a product of a special matrix by a vector.

De�nition 1.2. Let x ∈ Km. The Vandermonde matrix V(x, n) is the m × n matrix
whose entry (i, j) is equal to x

(j−1)
i :

V(x, n) =

1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12
...

...
...

...
1 xm x2m . . . xn−1m

 .
Moreover, when m = n, we shall write V(x) instead of V(x, n).

If x ∈ Km, p is a polynomial of degree less than n, and v ∈ Kn denotes the vector
whose ith entry is the coe�cient of xi−1 in p then the problem of multipoint evalua-
tion is equivalent to computing the product V(x, n)v. As a consequence, we deduce for
m = n that multiplying a square Vandermonde matrix by a vector can be achieved in
O(M(n) log n) operations in K.

Interpolation

The problem of interpolation is the opposite of multipoint evaluation: Given a repetition-
free vector of points x ∈ Kn (that is, xi 6= xj for all i 6= j) and a vector of values y ∈ Kn,
�nd the unique polynomial p ∈ K[x] of degree less than n such that p(xi) = yi for all
1 ≤ i ≤ n. The matricial form for this problem is to �nd the vector v such that

V(x)v = y.

Since xi 6= xj for i 6= j, we have that the Vandermonde matrix V(x) is invertible, so the
solution for the interpolation problem is v = V(x)−1y.

Solving this linear system using one of the usual methods for dense matrices would
yield a cost in O(nω) operations in K. Yet, interpolation can be achieved in O(M(n) log n)
operations in K (see for instance [vzGG03, Corollary 10.12]).

14 Chapter 1. Computing with structured matrices

Summary

We can sum up the two facts mentioned above with the following property by:

Property 1.3. Let x, y ∈ Kn. One can compute V(x)y using O(M(n) log n) operations in
K. Moreover, when x is repetition-free, V(x) is invertible and one can compute V(x)−1y
using O(M(n) log n) operations in K.

1.2.3 Other links between special matrices and polynomials

There exist several other special matrices for which some linear algebra operations can
be achieved asymptotically faster than for general dense matrices. We cite here two of
them: Hankel and Cauchy matrices.

Hankel matrix

De�nition 1.3. Let m and n be two positive integers, and v ∈ Km+n−1 be a vector indexed
from 1−n to m−1. The Hankel matrix H(v,m, n) is the m×n matrix whose entry (i, j)
is vi+j−1−n. In particular, when m = n, we have the following square Hankel matrix:

H(v, n, n) =

v1−n . . . v−1 v0
... . .

.
v0 v1

v−1 . .
.

. .
. ...

v0 v1 . . . vn−1

 .

Since H(v,m, n) = T(v,m, n)Jn, linear algebra operations involving Hankel matrices
will essentially have the same cost as their Toeplitz counterpart.

Cauchy matrix

De�nition 1.4. Let m and n be two positive integers, and let x ∈ Km and y ∈ Kn be
such that xi 6= yj for all (i, j). The Cauchy matrix C(x, y) is the m × n matrix whose
entry (i, j) is equal to 1

xi−yj :

C(x, y) =

1

x1 − y1
1

x1 − y2
. . .

1

x1 − yn
1

x2 − y1
1

x2 − y2
. . .

1

x2 − yn
...

...
...

1

xm − y1
1

xm − y2
. . .

1

xm − yn

.

1.3. Matrices with displacement structure 15

Multiplication of the Cauchy matrix C(x, y) by a vector v is related to the multipoint

evaluation of the rational function
∑n

j=1

vj
x− yj

at x1, . . . , xm, and it can be achieved

when m = n using O(M(n) log n) operations in K [Pan01, page 88]. Moreover, if x and
y are two repetition-free vectors of size n then C(x, y) is nonsingular and C(x, y)−1v can
also be computed using O(M(n) log n) operations in K [Pan01, page 92].

Summary

To conclude this section, we present in Table 1.1 a summary of all the costs of matrix-
vector multiplication and linear system solving for all the special matrices we have
mentioned so far. We add to it the Vandermonde transposed matrix, for which the
costs of multiplication by a vector and linear system solving are also in O(M(n) log n)
(see [vzGS92, Theorem 10.4] and [Pan89, �10]). Notice that we do not need to con-
sider the transpose for the other matrices since we have L(u)T = U(u), T(u,m, n)T =
T(Jm+n−1u, n,m), H(u,m, n)T = H(u, n,m), and C(x, y)T = −C(y, x).

Table 1.1: Costs of matrix-vector multiplication and linear system solving for several
types of matrix.

A Av A−1v
dense, unstructured O(n2) O(nω)
triangular Toeplitz O(M(n)) O(M(n))
Toeplitz O(M(n)) O(M(n) log n)
Hankel O(M(n)) O(M(n) log n)
Vandermonde O(M(n) log n) O(M(n) log n)
Vandermonde transposed O(M(n) log n) O(M(n) log n)
Cauchy O(M(n) log n) O(M(n) log n)

Except for the dense matrix case, all the costs mentioned in Table 1.1 are quasi-linear
in n. In the sequel, we will use the notation O (̃n), which means O(n logk n) for some
constant k ∈ N. In other words, we add a tilde in Landau's �Big-O� notation to indicate
that logarithmic factors have been dropped. The conclusion is therefore that, for all the
special matrices mentioned in this section, multiplication by a vector can be achieved in
O (̃n) instead of O(n2) and linear system solving can be achieved in O (̃n) instead of
O(nω).

1.3 Matrices with displacement structure

In the previous section, we have seen several types of matrices for which the costs of
multiplication by a vector and linear system solving can be achieved in quasi-linear time
with respect to the dimension n. All these matrices share the particularity that only
O(n) coe�cients are needed to represent them. In this section, we present an approach
that was introduced by [KKM79] in order to put these matrices together in the same
framework.

16 Chapter 1. Computing with structured matrices

1.3.1 Displacement operators and displacement rank

Toeplitz, Hankel, Vandermonde, and Cauchy matrices of size n ×m can be represented
by O(n + m) elements in K. Therefore, there exist strong relations between the mn
coe�cients in these matrices. Let A be one of such matrices. The idea is to exploit
these relations in order to compress A. More precisely, by applying an appropriate linear
operator L : Km×n → Km×n called displacement operator, we aim at turning A into a
matrix of low rank L(A) [KKM79]. Two families of displacement operators are commonly
used:

De�nition 1.5. Let M ∈ Km×m and N ∈ Kn×n. The linear operator

∇[M,N] : Km×n → Km×n

A 7→ MA− AN,

is called Sylvester's displacement operator associated to M and N, and the linear
operator

∆[M,N] : Km×n → Km×n

A 7→ A−MAN,

is called Stein's displacement operator associated to M and N.

Let us introduce a few more de�nitions before giving examples:

De�nition 1.6. Let L : Km×n → Km×n and A ∈ Km×n. We will call hereafter displace-
ment rank of A with respect to operator L the rank of the matrix L(A). If this rank is
α then for any β ≥ α there exist pairs of matrices (G,H) such that

G ∈ Km×β, H ∈ Kn×β, L(A) = GHT .

Any such pair will be called a generator of length β for A with respect to operator L.

A given matrix A is considered to be structured when its displacement rank α with
respect to some displacement operator L is �small� (in a sense that depends on the
context) compared to m and n. Indeed, (G,H) contains only α(m + n) elements instead
of mn for A. So, when α is small, (G,H) can thus be viewed as a compressed form the
structured matrix A.

1.3.2 Main examples

Toeplitz and Hankel structures

The structure in Toeplitz and Hankel matrices comes from the repetition of coe�cients
along the diagonals. The idea to obtain a low displacement rank is to subtract the given
matrix by a shifted version of it in order to produce lots of zeros. For this purpose, we
introduce the family of so-called unit ϕ-circulant matrices Zn,ϕ ∈ Kn×n, where n ∈ N>0,
ϕ ∈ K and the (i, j) entry of Zn,ϕ is ϕ in position (1, n), ones in positions (i + 1, i), and
zeros everywhere else:

Zn,ϕ =

[
ϕ

1
. . .

1

]
.

1.3. Matrices with displacement structure 17

When ϕ = 0 the matrix Zn,0 is called a shift matrix.
One can easily check that, for instance:

∆[Zm,0,ZTn,0] (T(v,m, n)) =

[v0 v−1 ... v1−n
v1
...

vm−1

]
=

[
v0 1
v1
...

vm−1

]
·

[
1
v−1

...
v1−n

]T
,

so that a Toeplitz matrix has a displacement rank at most equal to 2 for operator
∆[Zm,0,ZTn,0]. The same result holds for operators ∆[Zm,ϕ,ZTn,ψ], ∆[ZTm,ϕ,Zn,ψ],∇[Zm,ϕ,Zn,ψ]
and ∇[ZTm,ϕ,ZTn,ψ], where ϕ and ψ are any elements of K.

Similarly, a Hankel matrix has a displacement rank at most equal to 2 for operators
∆[Zm,ϕ,Zn,ψ], ∆[ZTm,ϕ,ZTn,ψ], ∇[Zm,ϕ,ZTn,ψ] and ∇[ZTm,ϕ,Zn,ψ], where ϕ and ψ are any
elements of K.

Vandermonde structure

In a Vandermonde matrix, a given column is equal to the previous column pre-multiplied
by the diagonal matrix D(x) de�ned by

D(x) =

[
x1

x2
. . .

xm

]
.

We have for instance

∇[D(x),Zn,0]

 1 x1 x21 ... xn−1
1

1 x2 x22 ... xn−1
2

...
...

...
...

1 xm x2m ... xn−1
m

 =

 xn1
xn2
...
xnm

 =

 xn1
xn2
...
xnm

 ·

1

T ,
so that V(x, n) has a displacement rank of 1 (assuming x 6= 0) for the displacement
operator ∇[D(x),Zn,0].

Cauchy structure

For Cauchy matrices, we will use two diagonal matrices for the displacement operator.
Let x ∈ Km and y ∈ Kn. We have

∇[D(x),D(y)] (C(x, y)) =

1 . . . 1
...

...
1 . . . 1

 = em · eTn ,

so that C(x, y) has a displacement rank of 1 for the displacement operator ∇[D(x),D(y)].

Generalization

Here and hereafter, we will restrict ourselves to displacement operators ∇[M,N] and
∆[M,N] with displacement matrices M and N such that

M ∈ {D(x), Zm,ϕ, ZTm,ϕ}, x ∈ Km, ϕ ∈ K;
N ∈ {D(y), Zn,ψ, ZTn,ψ}, y ∈ Kn, ψ ∈ K. (1.5)

18 Chapter 1. Computing with structured matrices

As we have seen above, this covers all the special matrices mentioned in Section 1.2.
In addition, each time we encounter a matrix A whose displacement rank α according

to ∇[M,N] or ∆[M,N] is small, we will say that this matrix A is �like� the special matrix
that also has a small displacement rank for this operator. This generalization is important
because of observations like the following one: the product of two Toeplitz matrices is
not a Toeplitz matrix in general, but it is always a Toeplitz-like matrix. Tables 1.2 and
1.3 sum up all the structures that we shall consider in the following of this part.

Table 1.2: Structure for ∇[M,N] when M,N are diagonal or unit circulant matrices.

HH
HHHHM

N D(y) Zn,ψ ZTn,ψ
D(x) Cauchy-like Vandermonde-like Vandermonde-like
Zm,ϕ Vandermonde-transposed-like Toeplitz-like Hankel-like
ZTm,ϕ Vandermonde-transposed-like Hankel-like Toeplitz-like

Table 1.3: Structure for ∆[M,N] when M,N are diagonal or unit circulant matrices.

HH
HHHHM

N D(y) Zn,ψ ZTn,ψ
D(x) Cauchy-like Vandermonde-like Vandermonde-like
Zm,ϕ Vandermonde-transposed-like Hankel-like Toeplitz-like
ZTm,ϕ Vandermonde-transposed-like Toeplitz-like Hankel-like

1.4 Basic properties of structured matrices

1.4.1 Recovering a structured matrix from its generators

One may wonder whether it is possible to explicitly build a structured matrix A given
some generator (G,H) for it. To answer this question, a study of the invertibility of the
operators ∇[M,N] and ∆[M,N] has been carried out in [Pan01, Theorem 4.3.2].

We present here several cases where the displacement operator is indeed invertible,
and where we have formulas to achieve the recovery of A from (G,H). First, we recall two
well-known formulas for the Cauchy-like structure. Then, we present two general recon-
struction formulas that we illustrate on two examples that we will reuse in Section 2.3:
Vandermonde-like and Hankel-like structures.

Reconstruction for Cauchy-like structure

For x ∈ Km and y ∈ Kn, assume

M = D(x), N = D(y), xi 6= yj for all (i, j). (1.6a)

1.4. Basic properties of structured matrices 19

Then ∇[M,N] is invertible and it is known [GO94a] (see also [Pan01, page 8]) that
∇[M,N](A) = GHT is equivalent to

A =
∑α

j=1D(gj)C(x, y)D(hj). (1.6b)

Similarly, assuming now that xiyj 6= 1 for all (i, j), ∆[M,N] is invertible and ∆[M,N](A) =
GHT is equivalent to

A =
∑α

j=1D(gj) C̃(x, y)D(hj),

with C̃(x, y) the m by n matrix [1/(1− xi · yj)]i,j (see [Pan01, Example 4.4.7]).

General reconstruction formulas

For the other structures mentioned in Section 1.3.2, we will rely on two general reconstruc-
tion formulas (one for Sylvester's displacement operator, and one for Stein's displacement
operator). These formulas involve Krylov matrices:

De�nition 1.7. For M ∈ Km×m, u ∈ Km, and ` ∈ N>0, the Krylov matrix K`(M, u) is
the m× ` matrix whose jth column equals Mj−1u.

Lemma 1.1 (see [PW02]). If ∆[M,N](A) = GHT then for any positive integer `, we have

A−M`AN` =
∑
j≤α

K`(M, gj)K`(NT , hj)T .

The special shape of Krylov matrices implies, whenM is invertible, thatK`(M−1,M−1u) =
M−`K`(M, u)J`. Using this identity, an analog for Sylvester's displacement of the previous
lemma follows easily:

Lemma 1.2. If ∇[M,N](A) and if (detM, detN) 6= (0, 0) then

M`A− AN` =
∑
j≤α

K`(M, gj)J`K`(NT , hj)T

for any positive integer `.

Since we have already dealt with the Cauchy-like structure, we have that either M or
N is a shift matrix Z∗,∗ or ZT∗,∗. Using an appropriate value of `, we thus obtain either
M` = λIm or N` = λIn, so that we can deduce from the above lemmas a formula for A.

Example of the Vandermonde-like structure (operator ∇[D(x),ZTn,0])

For x ∈ Km, assume now

M = D(x), N = ZTn,0, xi 6= 0 for all i. (1.7a)

Then detM 6= 0 and Lemma 1.2 with ` = n tells us that A can be recovered as follows:

A = D(x)−n
α∑
j=1

Kn(D(x), gj)JnKn(Zn,0, hj)T .

20 Chapter 1. Computing with structured matrices

Now, Kn(D(x), u) = D(u)V(x, n) and Kn(Zn,0, u) = L(u) for all x ∈ Km and u ∈ Kn.
Hence, noticing that D(x)−nV(x, n)Jn = D(x)−1V(x−1, n), we get

A = D(x)−1
α∑
j=1

D(gj)V(x−1, n)U(hj). (1.7b)

Example of the Hankel-like structure (operator ∇[Zm,1,ZTn,0])

Assume that
M = Zm,1, N = ZTn,0. (1.8a)

Since detM 6= 0 = detN, Lemma 1.2 with ` = n tells us that ∇[M,N] is invertible and
that we can recover A as follows:

A = Z−nm,1
α∑
j=1

Kn(Zm,1, gj)JnKn(Zn,0, hj)T

=
α∑
j=1

Kn(Z−1m,1,Z−1m,1gj)Kn(Zn,0, hj)T .

Now, Kn(Zn,0, u) = L(u) and L(u)T = JnL(u)Jn for all u ∈ Kn. Moreover, if g̃j ∈ Km+n−1

denotes the vector in Km+n−1 whose `th entry is equal to gj,1+(` mod m), we have [JM10a,
Appendix A] that Kn(Z−1m,1,Z−1m,1gj) = T(g̃j,m, n)Jn. Therefore, we obtain

A =
α∑
j=1

T(g̃j,m, n)L(hj) Jn. (1.8b)

Remarks

For the other structures mentioned in Section 1.3.2, we refer to [Pan01, �4.4] and [PW02],
where several reconstruction formulas (and their hypotheses) resulting from the two afore-
mentioned lemmas are given. Now, let A ∈ Km×n be a structured matrix according to
L = ∆[M,N] or ∇[M,N] with M and N as in (1.5). Given a length-α generator (G,H)
for A, and assuming that the hypotheses for the reconstruction formula associated to L
holds, we have that A is equal to a sum of α products involving a constant number of
special matrices from Section 1.2. Therefore, given a vector b ∈ Kn, we can compute Ab
from G, H, and b in O (̃α(m+ n)): First, we distribute b in the sum; Then we compute
each of the α terms within this sum in O (̃n) as seen in Table 1.1; And �nally we perform
the sum in O(αm).

1.4.2 Basic computations with structured matrices

Let us now review a few rules that allow one to carry out basic operations involving
structured matrices. The main point here is to show that the concept of structured
matrix is preserved in some way when adding, transposing, multiplying, and extracting
structured matrices. Therefore, these operations can be performed by computations on

1.4. Basic properties of structured matrices 21

generators, so that the structured matrices are never built explicitly. This o�ers the
advantage that quasi-linear algorithms with respect to the dimensions of the involved
matrices can be derived for all these operations.

The following properties are extracted from [Pan01, �1.5]. One can �nd the corre-
sponding proofs therein.

Addition of two structured matrices

If two matrices share the same structure, we can add them and obtain another matrix,
which also has this structure. This actually comes from the choice of a linear operator
as the displacement operator L:

Property 1.4. Let A,B ∈ Km×n, GA ∈ Km×α, HA ∈ Kn×α, GB ∈ Km×β, and HB ∈ Kn×β.
If L(A) = GAH

T
A and L(B) = GBH

T
B then

L(A + B) = GHT ,

where G = [GA|GB] and H = [HA|HB].

First, note that computing the generator (G,H) for A+B described above requires no
arithmetic operations in K. Next, notice that, if A and B have respectively a displacement
rank of α and β, we deduce that the displacement rank of A+B is at most α+ β. While
it is easy to �nd cases where A + B has actually a displacement rank equal to α + β, it
may happen that this displacement rank is smaller. For instance, think of the case where
B = −A, where the displacement rank will drop to zero.

Transposition of a structured matrix

Property 1.5. Let A,G,H be such that ∇[M,N](A) = GHT . By transposing the identity
MA− AN = GHT , we obtain

∇[NT ,MT](AT) = −HGT ,

so that the pair (−H,G) is a ∇[NT ,MT]-generator for AT .
Similarly, let A,G,H be such that ∆[M,N](A) = GHT . By transposing the identity

A−MAN = GHT , we obtain

∆[NT ,MT](AT) = HGT ,

so that the pair (H,G) is a ∆[NT ,MT]-generator for AT .

In the second case, computing the proposed generator for AT requires no operations
in K. For the �rst case, we need to compute the opposite of all the elements in H, so
αn ∈ O(α(m+ n)) operations in K are needed.

22 Chapter 1. Computing with structured matrices

Multiplication of two structured matrices

Property 1.6. Let A ∈ Km×p and B ∈ Kp×n. One has the following equality:

∇[M,N](AB) = ∇[M,P](A)B + A∇[P,N](B).

Moreover, if (GA,HA) is a length-α generator of A for operator ∇[M,P] and if (GB,HB)
is a length-β generator of B for operator ∇[P,N], we get

∇[M,N](AB) = GHT ,

where G = [GA|AGB] ∈ Km×(α+β) and H = [BTHA|HB] ∈ Kn×(α+β). Therefore, the dis-
placement rank of AB is at most α + β.

The multiplication rule for Stein-type displacement operators is a bit more compli-
cated. The equivalent of the �rst formula in Property 1.6 is

∆[M,N](AB) = ∆[M,P](A)B + MA∇[P,N](B).

In order to obtain a formula with Stein-type displacement operators only, we need to
make some extra assumption. For instance, if P is invertible, we deduce that

∆[M,N](AB) = ∆[M,P](A)B + MAP∆[P−1,N](B).

In this case, given a ∆[M,P]-generator (GA,HA) of length α for A and a ∆[P−1,N]-
generator (GB,HB) of length β for B, the matrices G = [GA|MAPGB] and H = [BTHA|HB]
form a ∆[M,N]-generator of length α+ β for AB. We refer to [Pan01, Theorem 1.5.4] for
a more complete result, and to [Kal94, Proposition 2] for the product of two Toeplitz-like
matrices (operator ∆[Zn,0,ZTn,0]), where the length achieved is2 α + β + 1.

Computing the proposed generator for AB requires that we compute the products like
AGB, that is, products of the form �structured matrix × vectors�. A naive way to perform
these products is to successively multiply the structured matrix by each vector like in
Section 1.4.1. This yields a cost of O (̃αβ(m+ p+ n)) operations in K. When β ∈ O(α)
and m, p ∈ O(n), this amounts to O (̃α2n).

Extraction of a submatrix

Given positive integers n1 and n2 such that n1 + n2 = n, we partition A, G, H, M, N into
ni × nj or ni × α blocks as

A =

[
A11 A12

A21 A22

]
, G =

[
G1

G2

]
, H =

[
H1

H2

]
,

M =

[
M11 M12

M21 M22

]
, N =

[
N11 N12

N21 N22

]
.

(1.9)

2In this case, P = ZT
n,0 is not invertible, so the previous reasoning leading to a generator of length

α+ β does not hold.

1.4. Basic properties of structured matrices 23

We shall write µ and ν for the rank of, respectively, M12 and N21. Consequently, those
two matrices can be written

M12 = U1V
T
2 , N21 = U2V

T
1 (1.10)

for some full column rank matrices U1 ∈ Kn1×µ, V2 ∈ Kn2×µ, U2 ∈ Kn2×ν , and V1 ∈ Kn1×ν .
Similarly, let us write µ̃ and ν̃ for the rank of, respectively, M21 and N12 so that

M21 = Ũ2Ṽ
T
1 , N12 = Ũ1Ṽ

T
2

for some full column rank matrices U2 ∈ Kn2×µ̃, V1 ∈ Kn1×µ̃, U1 ∈ Kn1×ν̃ , and V2 ∈ Kn2×ν̃ .

Property 1.7. From ∇[M,N](A) = GHT and the partitioning into blocks we deduce that,
for i, j ∈ {1, 2}, submatrix Aij satis�es the following matrix equation

∇[Mij,Nij](Aij) = GijH
T
ij,

where (see for example [Pan00, Proposition 4.4]):

G11 =
[
G1 −U1 A12U2

]
∈ Kn1×(α+µ+ν), (1.11a)

H11 =
[
H1 AT21V2 V1

]
∈ Kn1×(α+µ+ν), (1.11b)

G12 =
[
G1 −U1 A11Ũ1

]
∈ Kn1×(α+µ+ν̃),

H12 =
[
H2 AT22V2 Ṽ2

]
∈ Kn2×(α+µ+ν̃),

G21 =
[
G2 −Ũ2 A22U2

]
∈ Kn2×(α+µ̃+ν),

H21 =
[
H1 AT11Ṽ1 V1

]
∈ Kn1×(α+µ̃+ν),

G22 =
[
G2 −Ũ2 A21Ũ1

]
∈ Kn2×(α+µ̃+ν̃),

H22 =
[
H2 AT12Ṽ1 Ṽ2

]
∈ Kn2×(α+µ̃+ν̃).

It should be noted that, for all the structures mentioned in Section 1.3.2, the ranks
µ, ν, µ̃ and ν̃ are always at most 1. Consequently, the property above tells us that a
submatrix of a structured matrix is almost as structured as the initial matrix, for any
structure of interest here.

In order to e�ectively compute Gij and Hij as above, we need to perform products
like A12U2, where the matrix on the left is a submatrix of A. We do not know yet a
generator for A12, but we can use the ones of A instead and compute A ·

[
0
U2

]
, from which

we extract the �rst n1 rows. Using successive �structured matrix × vector� products,
the computation of A12U2 can then be achieved using O (̃α(m+ n)ν) operations in K.
Assuming that µ, ν, µ̃ and ν̃ are small constants, and using the same method for the other
products appearing in the above de�nitions of Gij and Hij, we conclude that generators
for Aij can be deduced from the length-α generator (G,H) of A using O (̃α(m+ n))
operations in K.

24 Chapter 1. Computing with structured matrices

1.4.3 Inversion of a structured matrix

One of the most important properties of structured matrices is that the inverse of a
structured matrix is also structured. This is summarized by the following theorem [Pan01,
Theorem 1.5.3]:

Property 1.8. If A ∈ Kn×n is nonsingular and ∇[M,N](A) = GHT with G,H ∈ Kn×α

then
∇[N,M](A−1) = −A−1 ∇[M,N](A) A−1 = YZT ,

where Y := −A−1G and Z := A−TH.
Moreover, let A ∈ Kn×n be nonsingular and ∆[M,N](A) = GHT with G,H ∈ Kn×α:

• if M is invertible then

∆[N,M](A−1) = A−1M−1 ∆[M,N](A) A−1M = YZT ,

where Y := A−1M−1G and Z := MTA−TH;

• if N is invertible then

∆[N,M](A−1) = NA−1 ∆[M,N](A) N−1A−1 = YZT ,

where Y := NA−1G and Z := A−TN−TH.

Like for the multiplication, the situation is simpler with a Sylverster-type displacement
operator ∇[M,N]. In this case, we can conclude without any assumption on M or N that
the ∇[N,M]-displacement rank of A−1 is equal to the ∇[M,N]-displacement rank of A.
This is also true for Stein-type operators given the invertibility of M or N, or in some
special cases like the Toeplitz-like structure (see [KKM79, Theorem 1]).

Therefore, each time we consider the inverse A−1 of a structured matrix A, we will
assume that A−1 is actually represented by a generator (Y,Z). For instance, suppose we
want to solve a structured linear system, that is, to compute A−1b for some structured
matrix A and some input vector b. This computation will be carried out by �rst computing
a generator for A−1 from the one of A, and then applying the reconstruction formula
corresponding to the displacement operator associated to A−1 in order to compute the
product A−1 · b.

One classical algorithm to compute a generator for A−1, given a generator (G,H)
for the Toeplitz-like matrix A, was introduced independently by Morf [Mor80], and Bit-
mead and Anderson [BA80]. Their recursive approach, sketched in Algorithm 1.1, can be
viewed as a structured version of the matrix inversion using block Gaussian elimination
mentioned in Section 1.1.2. Indeed, instead of manipulating matrices themselves, MBA
produces generators for the involved matrices using the rules on addition and multiplica-
tion of structured matrices mentioned in Section 1.4.2. Thus, a generator for the Schur
complement S is computed at line 3, for instance.

One technical issue with this approach lies in the growth in length of the intermediate
generators, resulting from the successive additions and multiplications of structured ma-
trices. In order to achieve a cost of O (̃α2 n) with this approach, where α and n are the
dimensions of matrices at input, one must ensure that both the generator (GS,HS) used

1.4. Basic properties of structured matrices 25

Algorithm 1.1: Sketch of the Morf/Bitmead-Anderson (MBA) algorithm for divide-
and-conquer inversion of Toeplitz-like matrices [Mor80, BA80].

Input : G,H ∈ Kn×α such that ∆[Zn,0,ZTn,0](A) = GHT .
Assumption: A is strongly regular.
Output : Y and Z such that ∆[ZTn,0,Zn,0](A−1) = YZT .

Compute a length-α generator (G11,H11) for A111

(Y11,Z11)← MBA(G11,H11)2

Compute a generator (G̃S, H̃S) for S = A22 − A21A
−1
11 A123

Deduce from (G̃S, H̃S) a length-α generator (GS,HS) for S4

(YS,ZS)← MBA(GS,HS)5

Compute generators for −A−111 A12S
−1, −S−1A21A

−1
11 and A−111 + A−111 A12S

−1A21A
−1
116

Deduce a generator (Ỹ, Z̃) for A−1 =
[
A−1
11 +A−1

11 A12S−1A21A
−1
11 −A

−1
11 A12S−1

−S−1A21A
−1
11 S−1

]
7

Deduce from (Ỹ, Z̃) a length-α generator (Y,Z) for A−18

return Y and Z9

for the recursive call and the output generator (Y,Z) are of length α. We have already
discussed the size of a generator for the inverse when commenting Property 1.8 above,
and seen that size α is to be expected. In fact, the same conclusion holds for the Schur
complement, which was one of the main contributions from [Mor80] and [BA80]. Yet, the
arithmetic on structured matrices provides larger generator matrices. To cope with this
length issue, one uses a generator compression stage3 which, given matrices G,H ∈ Kn×β

such that GHT has rank α ≤ β, computes matrices Gc,Hc that satisfy GcH
T
c = GHT but

now have exactly α columns. We refer to [Pan92b, Pan92a, Pan93] and [Pan01, �4.6] for
more details about this compression stage, and to [Kal94] for a complete study of the
length of intermediate generators in MBA and a proof that it can be implemented so as to
achieve a total cost in O (̃α2 n).

Since its �rst statement in 1980, MBA has been improved in several ways. Kaltofen
[Kal94, Kal95] proposed to add a probabilistic preconditioning in order to get rid of the
strong-regularity assumption on A. Pan and Zheng [PZ00] gave a version of MBA for
Cauchy-like matrices (with Sylvester-type operator ∇[D(x),D(y)]). Moreover, using an
explicit formula for a generator of the Schur complement pointed out in [GO94b, Theo-
rem 2.3], they managed to avoid the compression stage (line 4 in Algorithm 1.1) preceding
the second recursive call. Cardinal [Car99, Car00] presented an algorithm, again for the
Cauchy-like structure, where both compression stages are avoided. One version of MBA for
Vandermonde-like matrices can be found in [OS03]. Finally, a uniform approach covering
all the structures mentioned in Section 1.3.2 is described in [Pan01, �5]. Furthermore,
more recent works [BJS07, BJS08] show that it is possible to use polynomial matrix
multiplication in order to speed-up the multiplications of type "Toeplitz-like matrix ×
matrix". Then, a cost of O (̃αω−1 n) for inversion of Toeplitz-like matrices, as well as for
the other structures via a reduction to the Toeplitz-like case.

To conclude, let us mention a few alternatives to MBA for the problem of structured

3This stage is explicitly written in Algorithm 1.1 (see lines 4 and 8).

26 Chapter 1. Computing with structured matrices

matrix inversion. First, several iterative algorithms [GO94b, GKO95], [KS99, �1.10] that
can be viewed as the structured version of Gaussian elimination or LU decomposition
have been developed. These algorithms are usually called fast algorithms since they
achieve a complexity in O(αn2), which is asymptotically faster than O(n3) for naive
dense matrix inversion, but for small α asymptotically slower than the complexity in
O (̃α2 n) achieved by superfast algorithms like MBA. The main advantage of these fast
algorithms lies in the usage of pivoting, so that the assumption on the strong regularity
of the matrix in input is no more needed, and the numerical quality can be improved
(see for instance [GKO95]). Second, more speci�c algorithms have been designed for
particular structures. For instance, one can cite the works in [LCC90, LBC95] where the
inversion of mosaic Hankel matrices4 is achieved through matrix-Padé approximations.
This gives a deterministic algorithm whose complexity for block Hankel matrices is in
O (̃αω−1 n), using the complexity announced in [GJV03] for matrix-Padé approximation.
Furthermore, it may happen that the generator of a structured matrix is also structured.
This occurs for instance with a block Toeplitz matrix where the blocks themselves are
Toeplitz matrices. In this special cases, algorithms that are faster than MBA can be
designed [Kha08, �4 and 5].

While all these alternatives of MBA are interesting, we aim at asymptotically fast
inversion for all the structures mentioned in Section 1.3.2. Therefore, we will focus on
variations of MBA in the next chapters.

1.5 Contributions of this thesis

In this work, we will focus on structured matrices as in Table 1.2, thus considering only
Sylvester's displacement operators. However, the results presented in Chapter 3 have
been adapted to Stein's displacement operators [BJMS11].

The contributions to this �rst part of the document are;

• a general, compression-free approach for structured matrix inversion, extending the
algorithm for Cauchy-like matrices in [Car99, Car00];

• a new approach for the fast computation of multiplications of the form �structured
matrix × matrix�, extending the approach for Toeplitz-like matrices (with Stein's
displacement operator) presented in [Bos10, page 210];

• some software developments, and experimental results.

Let us now detail these three points.

1.5.1 Compression-free approach for structured matrix inversion

As mentioned in Section 1.4.3, a technical issue in Algorithm MBA and most of its variants
lies in the control of the length of the intermediate generators, that is usually achieved
through compression steps. In Chapter 2, we present a general, compression-free approach

4This is a variant of the block Hankel structure, where the blocks can have di�erent sizes.

1.5. Contributions of this thesis 27

for structured matrix inversion. While suppressing the compression steps leaves the
asymptotic cost of structured matrix inversion unchanged, it yields smaller dominant
terms in the overall cost.

Reviewing Cardinal's algorithm

A compression-free algorithm for the Cauchy-like structure was introduced by Cardinal
[Car99, Car00]. The key point in his algorithm is to compute recursively the speci�ed
generator for A−1:

Y = −A−1G, Z = A−TH.

By analyzing Cardinal's algorithms, we deduce in Section 2.1.3 the following recur-
sive formulas that express the speci�ed generator for A−1 from the speci�ed generators
(Y11,Z11) and (YS,ZS) of A−111 and S−1, respectively:

Y = F

[
Y11

YS

]
and Z = ET

[
Z11

ZS

]
,

where E =
[

In1

−A21A
−1
11 In2

]
and F =

[
In1 −A

−1
11 A12

In2

]
.

In fact, this formula holds for all the structures de�ned by an operator ∇[M,N] with
M and NT lower triangular. This fact is a consequence of a general formula, holding for
∇[M,N] with arbitrary matrices M and N, that we shall prove in Section 2.2.1.

Algorithm GenInvLT

Combining the formula in [GO94b, Theorem 2.3] for a compression-free generation of
the Schur complement S and the aforementioned recursive formula for a compression-free
generation of A−1, we obtain when M and NT are lower triangular an inversion algorithm
without compression, that we call GenInvLT (see Section 2.3.1).

Cost for the Cauchy-like structure. In Section 2.3.2, we prove that GenInvLT for
the Cauchy-like structure as de�ned in (1.6a) requires at most

3 log(n)MMC(α, n) +O(αn log(n))

�eld operations, where MMC(α, n) denotes the cost of a product �Cauchy-like matrix ×
vectors� where the displacement rank of the Cauchy-like matrix and the number of vectors
are both equal to α. Moreover, assuming in addition that x and y are repetition free, we
can use a simpli�cation pointed out by Cardinal, leading to a cost of at most

2 log(n)MMC(α, n) +O(αn log(n))

�eld operations.

28 Chapter 1. Computing with structured matrices

Cost for the Vandermonde-like structure. In Section 2.3.3, we prove that GenInvLT
for the Vandermonde-like structure as de�ned in (1.7a) requires at most

3 log(n)MMV(α, n) +O(αM(n) log2(n))

�eld operations, where MMV(α, n) denotes the cost of a product �Vandermonde-like ma-
trix × vectors� where the displacement rank of the Vandermonde-like matrix and the
number of vectors are both equal to α. Moreover, assuming in addition that x is repeti-
tion free, we can extend Cardinal's simpli�cation for the Cauchy-like case, leading to a
cost of at most

2 log(n)MMV(α, n) +O(αM(n) log2(n)).

�eld operations.

Algorithm GenInvHL

For the Hankel-like structure, we want to consider the displacement operator ∇[Zn,0,ZTn,0]
in order to have M = N = Zn,0 lower triangular. However, the operator is not invertible,
meaning that the matrix A cannot be recovered from its generator (G,H) only. To cope
with this di�culty, we need to deal with additional data called the irregularity set [Pan01,
p. 136]. In Section 2.3.4, we explain how to extend Algorithm GenInvLT in order to
handle the Hankel-like structure with its irregularity set. This yields Algorithm GenInvHL.
Moreover, we show that inverting a Hankel-like matrix using GenInvHL requires at most

2 log(n)MMH(α, n) +O(αM(n) log(n)).

�eld operations, where MMH(α, n) is the counterpart of MMC(α, n) and MMV(α, n) for
Hankel-like matrices.

Comparison with the classical MBA algorithm

Finally, a study of the cost of the classical MBA approach yields a cost dominated by
14 log(n)MM∗(α, n) with ∗ ∈ {C,V,H} depending on the structure. Therefore, we con-
clude that our approach leads to a theoretical speed-up of 14/3 ≈ 4.67 in general, and of
14/2 = 7 in some situations.

1.5.2 Fast multiplication of a structured matrix by a matrix

The other part of our work on structured matrices, which is presented in Chapter 3, deals
with the multiplication of a structured matrix by a matrix. Given an m × n structured
matrix A with a displacement rank α and an n× β matrix B, the problem is to compute
e�ciently the product AB.

Extension of the approach in [Bos10, page 210]

For α = β and for square Toeplitz-like matrices (with Stein's displacement operator), the
approach in [Bos10, page 210] gives a multiplication by a matrix that can be achieved in
O (̃αω−1 n) �eld operations using fast multiplication of polynomial matrices. We extend
it in this thesis to all the structures in Table 1.2, and to the rectangular case.

1.5. Contributions of this thesis 29

Polynomial expression of AB. In Section 3.2, we propose a polynomial expression
for the matrix product AB, generalizing the one proposed in [Bos10, page 210] for the
Toeplitz-like case. This points out the problem of computing the polynomial row vector
R = UT (VWT mod P) given U ∈ K[x]α×1m , V ∈ K[x]α×1n , and W ∈ K[x]β×1n , and where P
is either xn − ψ or

∏n
i=1 (x− yi).

Computation of R = UT (VWT mod P). In Section 3.3, we provide two algorithms
for the computation of R, assuming that β = α. First, we explain how one can use the
material in [Bos10, page 210] in order to solve the case where P = xn − ψ. This yields
Algorithm ComputeRx, for which we prove that it requires at most O (̃αω−1(n+m)) �eld
operations (see Theorem 3.2 for a more precise result). Then, we propose an extension
of the material in [Bos10, page 210] so as to deal with the case where P =

∏n
i=1 (x− xi).

This yields Algorithm ComputeRy, whose cost is also in O (̃αω−1(n+m)) (see Theorem 3.4
for a more precise result).

Resulting costs for the multiplication of a structured matrix by a matrix.
Combining the two previous points, we obtain a general algorithm for the multiplication
�structured matrix × vectors,� in the case where α = β. In Section 3.4.1, we obtain the
following costs, depending on the structure and the �eld in use, and for N = m+ n:

arbitrary �eld
�eld of characteristic zero, or
�nite �eld of cardinality at
least 2N

Toeplitz-like or
Hankel-like O(αω−1M(N)) O(αω−1N + α logαM(N))

Vandermonde-like or
Cauchy-like O(αω−1M(N) + αM(N) logN) O(αω−1N + αM(N) logN)

Application to structured matrix inversion

Using the aforementioned costs for the functions MM∗ yields the following costs for our
inversion algorithms introduced in Chapter 2 depending on the structure and the �eld in
use:

arbitrary �eld
�eld of characteristic zero, or
�nite �eld of cardinality at
least 4n

Hankel-like O(αω−1M(n) log n) O(αω−1 n log n+ α logαM(n) log n)

Vandermonde-
or Cauchy-like

O(αω−1M(n) log n+ αM(n) log2 n) O(αω−1 n log n+ αM(n) log2 n)

Combining [BJS08] and [Bos10, page 210] leads to a slightly better cost for the Cauchy-
and Vandermonde-like structures. Nevertheless, our approach has the advantage to be
direct for these two structures, contrary to the approach in [BJS08] which reduces them
to the Toeplitz-like case.

30 Chapter 1. Computing with structured matrices

1.5.3 Software development

In addition to our theoretical results above, we have implemented the algorithms intro-
duced in Chapters 2 and 3 within the C++ library SLA5 (Structured Linear Algebra).
This library already provided general support for Stein's displacement operator, as well
as a compression routine. We have added to it about 3000 lines of code, o�ering the
following features:

• some support for the Cauchy-like structure (operator∇[D(x),D(y)]) and the Hankel-
like structure (operator ∇[Zm,0,ZTn,0]);

• an implementation for �ve inversion algorithms (three variants of MBA, GenInvLT
from Section 2.3.1, and GenInvHL from Section 2.3.4);

• extra support for polynomial matrices;

• an implementation of Algorithms mpx, mpy, and ComputeRy (see Section 3.3).

This code is used for three kinds of experiments:

• First, we compare for the Cauchy-like structure (with a naive implementation of
the multiplication �Cauchy-like matrix × vectors�) the costs of the various inversion
algorithms implemented. The theoretical speed-ups announced above

• Second, we measure the time spent on irregularity-set handling within Algorithm
GenInvHL, so as to con�rm experimentally that, compared to the overall cost, it is
negligible in practice.

• Third, we measure the impact of using a fast multiplication �Cauchy-like matrix ×
vectors� in GenInvLT. This yields signi�cant speed-ups.

5https://gforge.inria.fr/projects/sla/

https://gforge.inria.fr/projects/sla/

Chapter 2

Compression-free inversion of

structured matrices

The goal of this chapter is to extend a compression-free algorithm by Cardinal [Car99,
Car00] for Cauchy-like matrix inversion to a broader class of structured matrices. In a �rst
section, we will discuss the idea underlying Cardinal's approach, that is, the computation
of a speci�ed generator for the inverse of a Cauchy-like matrix, rather than just an
arbitrary one of length α. Then, we will show in a second section that, using speci�ed
generators, we can design a general compression-free version of MBA, and that we only need
to deal with three structures that are Cauchy-, Vandermonde-, and Hankel-like in order
to obtain a speci�ed generator for any invertible matrix with one of the nine structures
mentioned in Table 1.2. Next, we introduce in a third section two new compression-
free algorithms: GenInvLT for the inversion of Cauchy- and Vandermonde-like matrices,
and GenInvHL which is a slight extension of the previous algorithm in order to cover
the Hankel-like case. A detailed cost analysis will be provided for each of these three
cases. Finally, experimental results are reported in a fourth section. For the Cauchy-
like structure, for instance, the speed-ups compared to MBA are by a factor from 4.6 to
6.7. This suggests that our extension of Cardinal's compression-free approach may yield
algorithms that are not only simpler but also signi�cantly faster in practice.

Most of the work presented in this chapter has been published in [JM10b].

2.1 Techniques to avoid compression stages

As mentioned in Section 1.4.3, classical algorithms for structured matrix inversion are
often based on two compression stages to cope with a growth in length of the inter-
mediate generators. We review here two techniques that make it possible to avoid this
compression:

1. When the displacement operator is ∇[M,N], and when M and NT are lower trian-
gular, one can use an explicit formula in order to obtain a generator for the Schur
complement that has already the expected length. Thus, the �rst compression stage
can be avoided;

32 Chapter 2. Compression-free inversion of structured matrices

2. For the Cauchy-like case with displacement operator ∇[D(x),D(y)], an algorithm
by Cardinal managed to also suppress the second compression stage.

2.1.1 Generation of the Schur complement without compression

Let us partition A, M, N, G, and H as in Section 1.4.2. The authors of [GO94b, Theo-
rem 2.3] (see also [OP98, Lemma 3.1] and [Pan01, �5.4]) remarked that, when M12 = 0
and N21 = 0, one can perform the block Gauss elimination described in Section 1.1.2
directly on the generator. More precisely, starting with MA − AN = GHT , we may pre-

multiply by E =
[

In1

−A21A
−1
11 In2

]
, postmultiply by F =

[
In1 −A

−1
11 A12

In2

]
, and then look at the

bottom-right blocks in order to obtain the following property:

Property 2.1. Let A ∈ Kn×n be such that its top-left block A11 ∈ Kn1×n1 is invertible,
and let (G,H) be a ∇[M,N]-generator for A. If M12 and N21 are zero matrices then one
has

M22S− SN22 = GSH
T
S ,

where GS = G2 − A21A
−1
11 G1 and HS = H2 − AT12A

−T
11 H1.

Therefore, using the last two equations and given any generators for A−111 , A12 and A21,
one can compute a ∇[M22,N22]-generator for the Schur complement S whose length is α.
As it is the expected length for a generator of S in MBA, the compression stage before
the recursive call on the Schur complement is no more needed. Notice that, since we
perform recursive calls, we may want to suppress the aforementioned compression stage
for each of these calls. This can be achieved if M11, M22, NT11 and NT22 are also block lower
triangular, and if their respective diagonal blocks are in turn lower triangular, and so on
recursively. As a consequence, the correct assumption for a complete suppression of the
�rst compression stage becomes that M and NT are lower triangular.

More general formulas

In fact, one does not need to assume that M12 and N21 are zero matrices in order to get a
direct formula for GS and HS. Indeed, let µ and ν be the rank ofM12 and N21, respectively.
Hence, as already mentioned in (1.10), we can write M12 = U1V

T
2 and N21 = U2V

T
1 with

U1 ∈ Kn1×µ, V2 ∈ Kn2×µ, U2 ∈ Kn2×ν , and V1 ∈ Kn1×ν . Then, [Pan00, Proposition 4.5]
gives us the following general description of the structure of the Schur complement S of
A11 in A:

∇[M22,N22](S) = GSH
T
S ,

with GS and HS the two matrices in Kn2×(α+µ+ν) given by

GS =
[
G2 − A21A

−1
11 G1 A21A

−1
11 U1 −SU2

]
, (2.1a)

HS =
[
H2 − AT12A

−T
11 H1 STV2 AT12A

−T
11 V1

]
. (2.1b)

Notice that the displacement rank of S for operator ∇[M22,N22] is not equal to α in all
generality. Yet, the previous equations tell us that it is at most α + µ+ ν.

2.1. Techniques to avoid compression stages 33

2.1.2 Cardinal's algorithm for Cauchy-like matrix inversion

When the displacement operator considered is ∇[D(x),D(y)], that is, when consider-
ing Cauchy-like matrices, Cardinal [Car99, Car00] proposed an inversion algorithm that
completely avoids the compression stages of MBA (yet, the asymptotic cost remains un-
changed). His approach is based on two mutually-recursive routines (see Algorithms 2.1
and 2.2):

• GenSchur returns the generator for the Schur complement as in Property 2.1, along
with a generator for the submatrix A−111 ;

• Invert returns the generator for A−1 as de�ned in Property 1.8, that is, Y = −A−1G
and Z = A−TH, where (G,H) is the generator provided as input for A.

Algorithm 2.1: GenSchur (from [Car00])

Input : x, y ∈ Kn and G,H ∈ Kn×α such that ∇[D(x),D(y)](A) = GHT , and
two positive integers n1 and n2 such that n1 + n2 = n.

Assumption: A is strongly regular, and x1, . . . , xn, y1, . . . , yn are pairwise distinct.
Output : Y11 = −A−111 G1, Z11 = A−T11 H1, GS = G2 − A21A

−1
11 G1, and

HS = H2 − AT12A
−T
11 H1.[

G1
G2

]
← G with Gi ∈ Kni×α;

[
H1
H2

]
← H with Hi ∈ Kni×α

1

[x1x2]← x with xi ∈ Kni ; [y1y2]← y with yi ∈ Kni
2

if n1 ≤ α then3

Evaluate G1H
T
1 and deduce the matrix A4

Y11 ← −A−111 G1; Z11 ← A−T11 H15

else6

(Y11, Z11)← Invert(x1, y1,G1,H1)7

GS ← G2 + A21Y11; HS ← H2 − AT12Z118

return Y11, Z11, GS, and HS9

The key point for this approach to work lies in the precise speci�cation of the output
for Invert. Instead of computing any length-α generator for A−1, we get a speci�c one
that is precisely related to the input of the routine. This has several consequences:

• First, the formulas from Property 2.1 can be simpli�ed as shown at line 8 in Algo-
rithm 2.1, since we know that Y11 = −A−111 G1 and Z11 = A−T11 H1;

• Second, it can be checked (see [Car00, Proposition 6]) that the pair (G̃, H̃) computed
at line 4 in Invert satis�es

∇[D(x̃),D(ỹ)](Ã) = G̃H̃T , where Ã =

[
S A21A

−1
11

−A−111 A12 A−111

]
,

so that it can be viewed as a generator for the speci�c Cauchy-like matrix Ã;

34 Chapter 2. Compression-free inversion of structured matrices

Algorithm 2.2: Invert (from [Car00])

Input : x, y ∈ Kn and G,H ∈ Kn×α such that ∇[D(x),D(y)](A) = GHT .
Assumption: A is strongly regular, and x1, . . . , xn, y1, . . . , yn are pairwise distinct.
Output : Y = −A−1G and Z = A−TH, so that ∇[D(y),D(x)](A−1) = YZT .

Choose two positive integers n1 and n2 such that n = n1 + n21

Y11, Z11, GS, HS ← GenSchur(x, y,G,H, n1, n2)2

[x1x2]← x with xi ∈ Kni ; [y1y2]← y with yi ∈ Kni
3

G̃←
[

GS
Y11

]
; H̃←

[
HS
Z11

]
; x̃← [x2y1]; ỹ← [y2x1]4

Ỹ11, Z̃11, G̃S, H̃S ← GenSchur(x̃, ỹ, G̃, H̃, n2, n1)5

Y ←
[

G̃S

Ỹ11

]
; Z←

[
H̃S

Z̃11

]
6

return Y and Z7

• Third, using the same reasoning as in the second point, we can prove that the pair
(Y,Z) computed at the end of Invert is actually a generator for A−1.

Notice that, while the minimal assumption for Cauchy-like matrix reconstruction (for
Sylvester's displacement operator) is that xi 6= yj for all 1 ≤ i, j ≤ n, Cardinal's approach
also asks that xi 6= xj and yi 6= yj for i 6= j. This unusual assumption is a consequence of
the entries of x and y being mixed in the de�nitions of x̃ and ỹ. A way to get rid of this
stronger assumption, along with the gain we can obtain when it holds, will be discussed
in Section 2.3.2.

2.1.3 Formulas for the generator of a Cauchy-like matrix inverse

The precise speci�cation of the output plays a central role in Cardinal's algorithm. There-
fore, let us introduce the following de�nition:

De�nition 2.1. Let A ∈ Kn×n be invertible, and (G,H) be a ∇[M,N]-generator for A of
length α. We will call speci�ed generator of A−1 associated to (G,H) the pair (Y,Z)
de�ned by

Y = −A−1G and Z = A−TH.

In particular, (Y,Z) is a ∇[N,M]-generator for A−1 of length α, and we will usually refer
to it as the speci�ed generator for A−1 when G and H can be determined by the context.

It should be noted that this formula, which is a straightforward consequence of a re-
mark in [HR84], was explicitly stated in [Pan89]. Yet, superfast algorithms for structured
matrix inversion did not really exploit it, except Cardinal's one.

Our goal in the sequel of this chapter will be to use speci�ed generators as much
as possible, and to design algorithms similar to MBA but, following Cardinal's approach,
without the compression stages. To achieve this, let us �rst reconsider this approach
so as to deduce more explicit formulas for the generator (Y,Z) returned by the routine
Invert.

The �rst call to GenSchur gives us the speci�ed generator (Y11,Z11) for A−111 and a
generator (GS,HS) for the Schur complement S. Similarly, the second call to GenSchur

2.2. Computations with speci�ed generators 35

gives us the speci�ed generator (Ỹ11, Z̃11) for Ã11

−1
= S−1, which we shall denote by

(YS,ZS) hereafter for consistency. Moreover, we obtain

G̃S = G̃2 − Ã21Ã
−1
11 G̃1

= Y11 + A−111 A12S
−1GS

= Y11 − A−111 A12YS

and

Z̃S = H̃2 − ÃT12Ã
−T
11 H̃1

= Z11 − A−T11 AT21S
−THS

= Z11 − A−T11 AT21ZS.

Therefore, we deduce the following new formulas for Y and Z:

Y =

[
Y11 − A−111 A12YS

YS

]
and Z =

[
Z11 − A−T11 AT21ZS

ZS

]
.

Using the matrices E =
[

In1

−A21A
−1
11 In2

]
and F =

[
In1 −A

−1
11 A12

In2

]
, we can rewrite the last

two equations as:

Y = F

[
Y11

YS

]
and Z = ET

[
Z11

ZS

]
.

As a consequence, the absence of compression for the generator of A−1 in Cardinal's
approach appears to be an opposite process of the one from Property 2.1: In order to
avoid the need for compression before the second recursive call in MBA, we performed an
elimination on the generator; Here, the compression stage following the second recursive
call is suppressed by some kind of recursive reconstruction formulas.

2.2 Computations with speci�ed generators

This section presents two results involving the concept of speci�ed generators:

• First, we formalize and generalize the analysis performed in the previous section.
We then obtain a new, compression-free formulation of the MBA algorithm;

• Second, we recall some classical reductions that we will use to restrict our future
analysis to only three structures, and we show that, as soon as these three structures
are handled correctly, we can compute speci�ed generators for all the nine structures
mentioned in Section 1.3.2.

Before we start, let us just introduce a useful notation:

Notation 2.1. For X ∈ Km×n and α ≤ n, we write X7→α for the matrix [x1| · · · |xα] ∈
Km×α made of the �rst α columns of X.

36 Chapter 2. Compression-free inversion of structured matrices

2.2.1 Recursive factorization formula

At the end of Section 2.1.3, we have deduced from Cardinal's approach two recursive
formulas for the speci�ed generator of a Cauchy-like matrix inverse. Yet, the Cauchy-like
structure did not play a major role in the reasoning, and the formulas can actually be
proved for any structure de�ned by a displacement operator ∇[M,N] where M and N are
such that M12 and N21 are zero matrices. In fact, like for Property 2.1, the condition on
M and N is not mandatory, and a more general result can be stated without it. This
yields the following theorem:

Theorem 2.1. Let A ∈ Kn×n be nonsingular and (G,H) be a ∇[M,N]-generator for A.
Assume that A11 is nonsingular as well, that it is generated by G11 and H11 as in (1.11),
and let

Y11 = −A−111 G11, Z11 = A−T11 H11.

Assume further that the Schur complement S of A11 in A is generated by GS and HS as
in (2.1), and let

YS = −S−1GS, ZS = S−THS.

Then the matrices Y and Z of the speci�ed generator of A−1 satisfy

Y = F

[
Y 7→α11

Y 7→αS

]
, Z = ET

[
Z7→α11

Z7→αS

]
,

where E =
[

In1

−A21A
−1
11 In2

]
and F =

[
In1 −A

−1
11 A12

In2

]
are the classical block Gaussian elimina-

tion matrices.

Proof. Since A−1 = F
[
A−1
11

S−1

]
E, we obtain

−A−1G = F

[
−A−111 G1

−S−1(G2 − A21A
−1
11 G1)

]
.

It follows from (1.11a) and (2.1a) that G1 = G7→α11 and that G2 − A21A
−1
11 G1 = G7→αS . The

expression claimed for Y = −A−1G then follows from applying the rule A(B7→α) = (AB)7→α

twice, and from the de�nitions of Y11 and YS. The expression for Z can be obtained in a
similar way, using (1.11b) and (2.1b).

A �rst consequence of this theorem is a �compressed� analogue of the classical recursive
factorization formula (1.2):

Y ZT = F

[
Y 7→α11

Y 7→αS

][
Z7→α11

Z7→αS

]T
E.

Indeed, this recursive formula allows to factor a speci�ed generator of the inverse for A in
terms of speci�ed generators for the inverse of its upper-left block A11 and for the inverse
of the Schur complement of A11 in A.

A second consequence of Theorem 2.1 is that, for A strongly regular, we immediately
get a recursive algorithm à la MBA whose key steps are the computation of generators

2.2. Computations with speci�ed generators 37

Figure 2.1: General compression-free approach for structured matrix inversion.

Given a generator (G,H) of length α for A,

1. Compute a generator (G11,H11) for A11 using (1.11);

2. Recursively, compute (Y11,Z11) = (−A−111 G11,A
−T
11 H11);

3. Compute a generator (GS,HS) for S using (2.1);

4. Recursively, compute (YS,ZS) = (−S−1GS, S
−THS);

5. Compute (−A−1G,A−TH) from the �rst α columns of Y11, YS, Z11, and ZS

using Theorem 2.1.

(G11,H11) and (GS,HS), and their associated speci�ed generators. This approach is illus-
trated in Figure 2.1.

Since we have replaced arithmetic on structured matrices with explicit formulas to
compute intermediate generators, our approach is �compression-free.� Yet, we have seen
in Section 1.4.3 that in order to achieve an asymptotic cost of O (̃α2 n) with this approach,
we need to ensure that recursive calls are performed on generators of length α, which is
guaranteed by neither (1.11) nor (2.1) in general. However, this holds when M and NT

are lower triangular. Therefore, our next step will be to see how we can come down to
this situation.

2.2.2 Reduction to M and NT lower triangular, and A strongly

regular

We want to compute speci�ed generators for any invertible matrix A structured with re-
spect to the displacement operator∇[M,N] whereM,N ∈ {D(x),Zn,ϕ,ZTn,ψ}. The purpose
of this section is:

1. to prove that we can come down to the three following types of structure:

(M,N) ∈
{

(D(x),D(y)), (D(x),Zn,0), (Zn,0,ZTn,0)
}
, (2.2)

that is, to Cauchy-, Vandermonde- and Hankel-like structures;

2. to show that the classical technique used to ensure the strong regularity of the
matrix in input is compatible with the concept of speci�ed generator.

We will see that, in both cases, the initial matrix A we want to invert will be replaced
with a matrix Ã ∈ {AT ,P1AP2}, where P1 and P2 are two n × n matrices. Therefore,
let us �rst see how one can deduce the speci�ed generator for A−1 given the speci�ed
generator for Ã−1.

38 Chapter 2. Compression-free inversion of structured matrices

Recovery after matrix transformations

Applying twice the rule for the product of two structured matrices mentioned in Prop-
erty 1.6, we can straightforwardly deduce explicit formulas for generating products of
three matrices:

Lemma 2.1. Let A,G,H be such that ∇[M,P](A) = GHT and, for two matrices P1 and
P2, let Ã = P1AP2. If ∇[M̃,M](P1) = GP1

HTP1
and ∇[N, Ñ](P2) = GP2

HTP2
then

∇[M̃, Ñ](Ã) = G̃H̃T ,

where G = [P1G|GP1
|P1AGP2

] and H = [PT2H|PT2 ATHP1
|HP2

].

As an example, let us mention three special cases which we will use later: assuming
M,N ∈ {Zn,ϕ,ZTn,ϕ}, let �rst

(P1,P2) = (In, Jn) and (M̃, Ñ) = (M,NT).

Then obviously∇[M̃,M](P1) is zero and, using the facts that J2n = In and JnZn,ϕJn = ZTn,ϕ
(see [Pan01, p. 24]), we deduce that ∇[N, Ñ](P2) is zero as well. Consequently, since Jn
is symmetric, applying Lemma 2.1 above yields

∇[M,NT](A Jn) = G(JnH)T . (2.3a)

Similarly, exchanging the roles of P1 and P2 yields

∇[MT ,N](JnA) = (JnG)HT , (2.3b)

while taking P1 = P2 = Jn gives

∇[MT ,NT](JnA Jn) = (JnG)(JnH)T . (2.3c)

Property 1.5 in Section 1.4.2 and Lemma 2.1 above provide formulas for generating
the matrix Ã ∈ {AT ,P1AP2} from some generators of the matrix A. Conversely, we give
in the theorem below some formulas for recovering speci�ed generators of the inverse of
A from speci�ed generators of the inverse of Ã.

Theorem 2.2. Let A ∈ Kn×n be invertible, (G,H) be a ∇[M,N]-generator of length α for
A, and (Y,Z) be the speci�ed generator for A−1 associated to (G,H). Let Ã ∈ Kn×n be
invertible and, for G̃, H̃ ∈ Kn×β, β ≥ α, de�ne

Ỹ = −Ã−1G̃, Z̃ = Ã−T H̃.

Then

• for Ã = AT and (G̃, H̃) = (−H,G), one has

Y = −Z̃, Z = Ỹ;

2.2. Computations with speci�ed generators 39

• for Ã = P1AP2 with P1,P2 ∈ Kn×n invertible, and for G̃, H̃ as in Lemma 2.1, one
has

Y = P2Ỹ
7→α, Z = PT1 Z̃

7→α.

Proof. In the �rst case, Ỹ =−(A−T)(−H) = A−TH = Z and Z̃ = (AT)−TG = A−1G =−Y.
Now, in the case where Ã = P1AP2 Lemma 2.1 implies that the �rst α columns of Ỹ
are Ỹ 7→α = −(P1AP2)

−1P1G = P−12 Y. Similarly, the �rst α columns of Z̃ are Z̃7→α =
(P1AP2)

−TPT2H=P−T1 Z.

For example, when P1,P2 ∈ {In, Jn}, it follows from Lemma 2.1 that β = α. Conse-
quently, Theorem 2.2 yields

(Y, Z) = (JnỸ, Z̃) if Ã = A Jn, (2.4a)

(Y, Z) = (Ỹ, JnZ̃) if Ã = JnA, (2.4b)

(Y, Z) = (JnỸ, JnZ̃) if Ã = JnA Jn. (2.4c)

Reduction to basic displacements

A �rst consequence of Theorem 2.2, when it comes to computing speci�ed inverse gener-
ators, is that the nine possible displacements de�ned in (1.5) can be reduced to the three
basic ones in (2.2).

First, it follows from (2.3a) and (2.4a) that the case N = Zn,ψ reduces to the case
N = ZTn,ψ. Similarly, (2.3b) and (2.4b) imply that the case M = ZTn,ϕ reduces to the case
M = Zn,ϕ. We thus are left with the four cases de�ned by

M ∈ {D(x),Zn,ϕ} and N ∈ {D(y),ZTn,ψ}.

Using the transposition rule from Property 1.5 allows to further reduce the case where
M = Zn,ϕ and N = D(y) to the case where M = D(y) and N = ZTn,ϕ. Due to the nature of
the transformations applied to the n×α generators (sign changes, permutations), the three
reductions done so far imply an extra cost of only O(αn) operations in K. To reach (2.2)
it remains to zero out the scalars ϕ and ψ. This can be done without transforming A,
but only its displacement: for example, by combining the obvious identity

Zn,ϕ = Zn,0 + ϕ en,1 e
T
n,n, (2.5)

with ∇[D(x),ZTn,ψ](A) = GHT and ∇[Zn,ϕ,ZTn,ψ](A) = GHT , we arrive at, respectively,

∇[D(x),ZTn,0](A) = G̃H̃T (i)

with G̃ = [G|Aen,n] and H̃ = [H|ψ en,1], and

∇[Zn,0,ZTn,0](A) = G̃H̃T (ii)

with G̃ = [G| − ϕ en,1|Aen,n] and H̃ = [H|AT en,n|ψen,1]. The last column or row of A
needed to set up the matrices G̃ and H̃ can be computed in O(αM(n) log(n)) �case
(i)� or O(αM(n)) �case (ii)� �eld operations from the explicit bilinear expressions
of A given in [Pan01, Examples 4.4.4 and 4.4.6(d)]. Due to the shape of G̃, H̃ above,
extracting the �rst α columns of Ỹ = A−1G̃ and Z̃ = A−T H̃ in time O(αn) then yields
the desired speci�ed inverse generator (Y,Z).

40 Chapter 2. Compression-free inversion of structured matrices

Probabilistic reduction to strong regularity

Theorem 2.2 further allows to restrict to matrices that are not only invertible but strongly
regular. Strong regularity, which is needed to apply Theorem 2.1 recursively, is classically
obtained by preconditioning A into Ã = P1AP2 with two random structured matrices P1

and P2 (see [Pan01, �5.6]). Thus, one may generate Ã as in Lemma 2.1, then compute an
associated speci�ed generator (Ỹ, Z̃) of its inverse, and �nally recover via Theorem 2.2 a
speci�ed generator (Y,Z) of the inverse of A.

Let r1 and r2 be two random vectors in Kn and whose �rst entry equals 1. Then,
applying the rules of [Pan01, p. 167], possible preconditioners for each of the three basic
displacements of (2.2) are as follows (with x̃, ỹ in Kn and such that x̃i 6= xi and ỹi 6= yi
for all i):

M,N P1 P2

D(x), D(y) C(x̃, x)D(r1) C(y, ỹ)D(r2)

D(x), ZTn,0 C(x̃, x)D(r1) L(r2)

Zn,0, ZTn,0 U(r1) L(r2)

For all these cases, one may check that the structure of A, P1, and P2 allows to pre-
pare (G̃, H̃) in Lemma 2.1 and to recover (Y,Z) in Theorem 2.2 in time O(αM(n)) or
O(αM(n) log(n)).

2.3 Compression-free structured matrix inversion

In order to cover simultaneously the three displacements in (2.2) to which we have previ-
ously reduced, we assume in this section that both operator matrices M and NT are lower
triangular.

2.3.1 Algorithms for lower triangular operator matrices M and

NT

Since M and NT are lower triangular, we have in particular that the blocks M12 and N21

are zero, so that their respective ranks µ and ν satisfy µ = ν = 0. From (1.11) it then
follows that the submatrix A11 satis�es

∇[M11,N11](A11) = G1H
T
1 . (2.6)

Thus, some generators of length at most α for A11 can be read o� the �rst n1 rows of
some generators of length at most α for A.

Assuming that A11 is invertible, consider now the associated speci�ed generator of
A−111 , that is,

Y11 = −A−111 G1, Z11 = A−T11 H1. (2.7)

Combining the two identities in (2.7) with the explicit Schur complement generation
formulas from Property 2.1 yields

∇[M22,N22](S) = (G2 + A21Y11)(H2 − AT12Z11)
T . (2.8)

2.3. Compression-free structured matrix inversion 41

In other words, the precise speci�cation of the above generator of the inverse of A11 can
be exploited to simplify even further the generator of the Schur complement. In [Car99,
Proposition 1], Cardinal had already noted this formula but only for the Cauchy-like
structure (M and N diagonal).

Now, assuming further that A is strongly regular (which, if randomization is allowed,
makes sense in view of the probabilistic reductions to strong regularity shown in Sec-
tion 2.2.2), we obtain Algorithm 2.3.

Algorithm 2.3: GenInvLT

Input : M,N ∈ Kn×n and G,H ∈ Kn×α such that M and NT are lower
triangular, and ∇[M,N](A) = GHT .

Assumption: A is strongly regular, and mii 6= njj for all (i, j).
Output : Y = −A−1G and Z = A−TH, so that ∇[N,M](A−1) = YZT .

if n = 1 then1

Evaluate the dot product GHT2

Deduce the scalar A3

Y ← −A−1G; Z← A−TH4

else5

n1 ← dn2 e; n2 ← bn2 c6

G11 ← G1; H11 ← H17

(Y11,Z11)← GenInvLT(M11,N11,G11,H11)8

GS ← G2 + A21Y11; HS ← H2 − AT12Z119

(YS,ZS)← GenInvLT(M22,N22,GS,HS)10

Y ←
[
Y11−A−1

11 A12YS

YS

]
; Z←

[
Z11−A−T

11 AT
21ZS

ZS

]
11

return Y and Z12

Theorem 2.3. Algorithm GenInvLT is correct.

Proof. When n = 1, the assumption on M and N implies that A is the scalar

∑α
i=1 g1ih1i

m11 − n11

.

Correctness then follows immediately in this case. Assume now that n > 1 and, in order
to proceed by induction, assume correctness for n′ < n. The matrix A11 is strongly regular
(since A is) and it satis�es (2.6), where, by assumption M11 and NT11 are both lower trian-
gular and with disjoint diagonals. Since n1 < n, the induction assumption then implies
that the pair (Y11,Z11) returned by the �rst recursive call is precisely (−A−111 G1,A

−T
11 H1).

Therefore, the computed pair (GS,HS) satis�es (2.8), where, by assumption, S is strongly
regular (since A is) and where M22 and NT22 are both lower triangular and have disjoint
diagonals. Since n2 < n, the induction assumption implies that the pair (YS,ZS) returned
by the second recursive call is exactly (−S−1GS, S

−THS). The conclusion then follows from
Theorem 2.1.

To implement Algorithm GenInvLT and bound its cost, all we need is to be able to
evaluate the four matrix products

A21Y11, AT12Z11, A−111 A12YS, A−T11 AT21ZS. (2.9)

42 Chapter 2. Compression-free inversion of structured matrices

In the next subsections, we study the evaluation of those expressions for each of three
basic structures of the Cauchy, Vandermonde, and Hankel types. That requires in each
case a detailed analysis of the structure of the matrices A−111 , A12, A21, and their transposes.
Since in (2.9) there are two ways of parenthesizing the products of three matrices, we will
also study the structure of A−111 A12 and (A21A

−1
11)T . The parenthesizations (A−111 A12)YS and

(A21A
−1
11)TZS will be referred to as �Cardinal's trick � later on, as they have been initially

used in [Car99] for the Cauchy-like case.

Cost functions

Algorithm GenInvLT essentially requires the ability to e�ciently evaluate products of
the form AB and ATB, where A is a structured matrix, and B consists of one or several
vectors. In order to precisely describe its cost in the case of Cauchy-, Vandermonde-,
and Hankel-like structures, we introduce the following functions. For the Cauchy-like
structure (1.6a), let MMC : N>0×N>0×N>0 → R≥0 be such that, for A ∈ Kn×n given by
the right-hand side of (1.6b) and B ∈ Kn×β, the products AB and ATB can be computed
using at most MMC(α, n, β) operations in K. We de�ne the functions MMV and MMH in
a similar way for, respectively, the Vandermonde-like and Hankel-like structures. Also,
when β = α we shall simply write MM∗(α, n), for ∗ = C,V,H.

As mentioned in Table 1.1, we have that multiplying C(x, y)T = −C(y, x), C(x, y),
V(x, n), or V(x, n)T by a vector can be done in time O(M(n) log(n)). Hence by a straight-
forward application of the summation formulas (1.6b), (1.7b), and (1.8b), one has

MM∗(α, n, 1) ∈ O(αM(n) log(n)) for ∗ = C,V,

MMH(α, n, 1) ∈ O(αM(n)).

We shall also use the three properties given below:

Lemma 2.2. Let k, ` ∈ O(1). Then

MMV(α + k, n, α) ∈ MMV(α, n) +O(αM(n) log(n)), (2.10a)

MMH(α + k, n, α) ∈ MMH(α, n) +O(αM(n)), (2.10b)

and, for ∗ = C,V,H,

MM∗(kα, n, `α) ∈ k`MM∗(α, n) +O(αn). (2.11)

Proof. To get (2.10) note that, for all ∗,MM∗(α+k, n, α) is inMM∗(α, n, α)+MM∗(k, n, α)+
O(αn). Indeed, one can evaluate our sum of α + k products by adding the �rst α terms
and the last k terms separately, and then combining the two intermediate results. Since
moreover MM∗(k, n, α) ≤ αMM∗(k, n, 1), (2.10a) and (2.10b) follow from the complexities
of MMV(α, n) and MMH(α, n) mentioned above. To establish (2.11), notice that a sum of
kα terms for `α vectors can be evaluated via k sums of α terms for α vectors plus a �nal
sum in O(αn), repeated ` times.

Finally, we assume as for M(n) that the functions MM∗(·, n) are superlinear. This
assumption will allow us to simplify the cost bounds of the algorithms of Section 2.3.1
and can be easily supported by �naive� implementations in O (̃α2n) as those used in
Section 2.4.1.

2.3. Compression-free structured matrix inversion 43

2.3.2 Application to Cauchy-like matrices

We consider here the specialization of Algorithm GenInvLT to the Cauchy-like structure
de�ned in (1.6a). Partitioning the two vectors x and y conformally with A yields

x =

[
x1

x2

]
, y =

[
y1

y2

]
, x1, y1 ∈ Kn1 , x2, y2 ∈ Kn2 . (2.12)

Lemma 2.3. Let the matrices A,G,H,Y11,Z11,GS,HS be as in Algorithm GenInvLT. Then

• ∇[D(xi),D(yj)](Aij) = GiH
T
j for 1 ≤ i, j ≤ 2,

• ∇[D(y1),D(x1)](A
−1
11) = Y11Z

T
11,

• ∇[D(y1),D(y2)](A
−1
11 A12) = −Y11H

T
S ,

• ∇[D(x2),D(x1)](A21A
−1
11) = GSZ

T
11.

Proof. Since D(x) and D(y) are diagonal matrices, their o�-diagonal blocks are zero, and
the �rst identity follows from Property 1.7. To obtain the second identity, it su�ces to
pre- and postmultiply by A−111 both sides of the �rst identity for (i, j) = (1, 1), and then
to use the speci�cation of Y11 and Z11. Using the multiplication rule from Property 1.6,
we deduce further from the �rst identity for (i, j) = (1, 2) and from the second one that

∇[D(y1),D(y2)](A
−1
11 A12) = Y11Z

T
11A12 + A−111 G1H

T
2

= Y11(Z
T
11A12 − HT2),

which by de�nition of HS equals −Y11H
T
S . Similarly,

∇[D(x2),D(x1)](A21A
−1
11) = G2 H

T
1 A
−1
11 + A21Y11Z

T
11

= (G2 + A21Y11)Z
T
11,

which by de�nition of GS equals GS Z
T
11.

Theorem 2.4. Let n be a power of two and M,N ∈ Kn×n be as in (1.6a). Then Algo-
rithm GenInvLT requires at most

3 log(n)MMC(α, n) +O(αn log(n))

�eld operations. If the set {x1, . . . , xn, y1, . . . , yn} has cardinality 2n then this bound drops
to

2 log(n)MMC(α, n) +O(αn log(n)).

Proof. When n = 1, A = (
∑α

i=1 g1ih1i)/(m11 − n11). Hence A−1 can be computed using
2α + 1 operations in K, and the cost for n = 1 is C(α, 1) := 4α + 2. Consider now
the case n ≥ 2. Using Lemma 2.3 together with Property 1.5, we see that the matrices
A−111 , A12, A21, and their transposes are all of the Cauchy-like structure de�ned in (1.6a).
Furthermore, for each of them a generator of length at most α can deduced in time O(αn)
from the quantities computed by Algorithm GenInvLT. Consequently, one can compute

44 Chapter 2. Compression-free inversion of structured matrices

A21Y11, AT12Z11, A
−1
11 (A12YS), and A−T11 (AT21ZS) via six applications, in dimension n/2, of

the reconstruction formula (1.6b) to α vectors in Kn/2. Finally, Algorithm GenInvLT uses
2αn additions to deduce GS, HS, and the upper parts of Y and Z. Overall, the cost for
n ≥ 2 thus satis�es

C(α, n) ≤ 2C(α, n/2) + 6MMC(α, n/2) + k α n

for some constant k. The superlinearity of MMC(·, n) then yields our �rst bound.
Assume now that the xi and yi are 2n pairwise distinct values. From Lemma 2.3 the

reconstruction formula (1.6b) can then be applied directly to A−111 A12 and to the transpose
of A21A

−1
11 , in order to compute (A−111 A12)YS and (A21A

−1
11)TZS. This reduces the number

of reconstructions from six to four, whence the second cost bound.

2.3.3 Application to Vandermonde-like matrices

Let us now focus on the cost of Algorithm GenInvLT when M and N correspond to the
Vandermonde-like structure de�ned in (1.7a). We assume x to be partitioned as in (2.12).

Lemma 2.4. Let the matrices A,G,H,Y11,Z11,GS,HS be as in Algorithm GenInvLT. Let
also w11 be the last column of A11 and vT12 be the �rst row of A−111 A12. Then

• ∇[D(x1),ZTn2,0
](A12) = G1H

T
2 + w11 e

T
n2,1

,

• ∇[D(x2),ZTn1,0
](A21) = G2H

T
1 ,

• ∇[ZTn1,0
,D(x1)](A

−1
11) = Y11Z

T
11,

• ∇[D(x2),D(x1)](A21A
−1
11) = GSZ

T
11,

• ∇[ZTn1,1
,ZTn2,0

](A−111 A12) = −Y11H
T
S + en1,n1(en2,1 + v12)

T .

Proof. In this case, the upper-right block of N satis�es N12 = en1,n1e
T
n2,1

. Hence we
deduce from ∇[M,N](A) = GHT that ∇[D(x1),ZTn2,0

](A12) = G1H
T
2 +A11en1,n1e

T
n2,1

and the
�rst identity follows from the de�nition of vector w11. The second to fourth identities
are obtained in the same way as in the proof of Lemma 2.3. Let us now verify the
last identity, which displays the structure of the product A−111 A12. First, applying the
techniques of Lemma 2.3, we deduce that

∇[ZTn1,0
,ZTn2,0

](A−111 A12) = −Y11H
T
S + en1,n1e

T
n2,1

.

Then, using (2.5) with (ϕ, n) = (1, n1) together with the de�nition of v12 yields the
announced expression.

Theorem 2.5. Let n be a power of two and M,N ∈ Kn×n be as in (1.7a). Then Algo-
rithm GenInvLT requires at most

3 log(n)MMV(α, n) +O(αM(n) log2(n))

�eld operations. If, in addition, the set {x1, . . . , xn} has cardinality n then this bound
drops to

2 log(n)MMV(α, n) +O(αM(n) log2(n)).

2.3. Compression-free structured matrix inversion 45

Proof. When n = 1, A−1 = x1/(
∑α

i=1 g1ih1i), so that the cost is C(α, 1) := 4α + 1.
Assume now that n ≥ 2. Lemma 2.4 implies that A12, A21, and A−T11 share the same
Vandermonde-like structure (1.7a) as A and A11. However, A12 has displacement rank
bounded by α+ 1 and computing its generator can be done at cost O(αM(n) log(n)) by
applying (1.7b) to A11. Hence, for n ≥ 2,

C(α, n) ≤ 2C(α, n/2) + 4MMV(α, n/2)

+ 2MMV(α + 1, n/2, α) + k αM(n) log(n),

for some constant k. From (2.10a), and the superlinearity of M(n) and MMV(·, n), we
then deduce the �rst cost bound.

If all the xi are distinct then, for A21A
−1
11 , we proceed as for the Cauchy-like case. For

A−111 A12, note that Jn1A
−1
11 A12 is Hankel-like in the sense of (1.8a). Hence, one may �rst

generate the latter matrix in time O(αM(n) log(n)) by obtaining the vector v12 after two
applications of (1.7b), then multiply by YS using (1.8b), and re-apply a re�exion. Thus,

C(α, n) ≤ 2C(α, n/2) + MMV(α, n/2)

+MMV(α + 1, n/2, α) + MMC(α, n/2)

+MMH(α + 1, n/2, α) + k αM(n) log(n),

for some constant k, and the conclusion follows as before.

Note that unlike for the Cauchy-like case, if α is small enough then in the cost bounds
of Theorem 2.5 both summands have the same order of magnitude.

2.3.4 Extension to Hankel-like matrices

Let us now consider the Hankel-like structure de�ned by M = Zn,0 and N = ZTn,0. Al-
though M and NT are lower triangular, Algorithm GenInvLT cannot be used directly in
this case as the operator ∇[Zn,0,ZTn,0] is not invertible. Covering such a structure, how-
ever, is interesting in particular as it yields an immediate extension to some Toeplitz-like
matrices (see [Pan01, Remark 5.4.4] and our Section 2.2.2).

To cope with the singularity of the displacement operator, some additional data, called
irregularity set in [Pan01, p. 136], are needed, which typically consist in �a few� entries of
A. An irregularity set for∇[Zn,0,ZTn,0] is given by the last row of A. Indeed, for uT = eTn,nA
we see that ∇[Zn,0,ZTn,0](A) = GHT and (2.5) imply

∇[Zn,1,ZTn,0](A) = [G | en,1] [H | u]T , (2.13)

so that the matrix A is Hankel-like in the sense of (1.8a), with displacement rank α + 1.
Consequently, the reconstruction formula (1.8b) can be used.

We need to exhibit an irregularity set for ∇[ZTn,0,Zn,0] too, because we shall multiply
with inverses of Hankel-like matrices. A suitable choice here is vT = eTn,1A

−1, the �rst row
of the inverse of A: indeed, if ∇[ZTn,0,Zn,0](A−1) = YZT then, recalling (2.3c), we may
check that JnA−1Jn satis�es an identity similar to (2.13); it is thus fully determined by,
up to re�exions, Y, Z, and its last row vTJn.

The resulting adaptation of Algorithm GenInvLT to the Hankel-like operator∇[Zn,0,ZTn,0]
is as follows:

46 Chapter 2. Compression-free inversion of structured matrices

Algorithm 2.4: GenInvHL

Input : G,H ∈ Kn×α such that ∇[Zn,0,ZTn,0](A) = GHT , and u = AT en,n (the
last row of A).

Assumption: A is strongly regular.
Output : Y = −A−1G, Z = A−TH, and v = A−T en,1 (the �rst row of A−1).

if n = 1 then1

Y ← −u−1G; Z← u−1H; v← u−12

else3

n1 ← dn2 e; n2 ← bn2 c4

[u11u12]← AT en,n1 ; [u21u22]← u5

(Y11,Z11, v11)← GenInvHL(G1,H1, u11)6

GS ← G2 + A21Y11; HS ← H2 − AT12Z117

uS ← u22 − AT12A
−T
11 u218

(YS,ZS, vS)← GenInvHL(GS,HS, uS)9

Y ←
[
Y11−(A−1

11 A12)YS

YS

]
; Z←

[
Z11−(A−T

11 AT
21)ZS

ZS

]
10

w← −S−TAT12v11; v←
[
v11−A−T

11 AT
21w

w

]
11

return Y, Z, and v12

Theorem 2.6. Algorithm GenInvHL is correct.

Proof. When n = 1, both A and u are reduced to the scalar a1,1 and correctness is then
straightforward. Assume now that n > 1 and, in order to proceed by induction, assume
correctness for n′ < n. The vector u is split into u21 ∈ Kn1 and u22 ∈ Kn2 . Similarly,
the vector of coe�cients of row n1 of A is split into u11 ∈ Kn1 and u12 ∈ Kn2 . Hence u11
equals AT11en1,n1 (that is, the vector of coe�cients of the last row of A11), u22 = AT22en2,n2 ,
and u21 = AT21en2,n2 . Recalling that S = A22 − A21A

−1
11 A12, we deduce that the vector

uS computed by Algorithm GenInvHL satis�es uS = ST en2,n2 and thus is the vector of
coe�cients of the last row of S. Since the computation of Y and Z is unchanged in
comparison to Algorithm GenInvLT, we still have Y = −A−1G and Z = A−TH. All that
remains is to prove that v is actually the vector of coe�cients of the �rst row of A−1. By
induction, vT11 and vTS correspond to the �rst rows of A−111 and S−1, respectively. Using the
factorization of A−1 seen in (1.2) and letting wT = −vT11A12S

−1, we get:

eTn,1A
−1 =

[
eTn1,1

−eTn1,1
A−111 A12

] [A−111

S−1

]
E

=
[
vT11 wT

]
E

=
[
vT11 − wTA21A

−1
11 wT

]
,

which is exactly the way the vector v is computed.

Lemma 2.5. Let A,G,H,Y11,Z11,GS,HS, u11 be as in Algorithm GenInvHL. Recall that
u11 is the last row of the matrix A11 and let w11 be its last column. Then

2.4. Experimental results and concluding remarks 47

• ∇[Z,n10,ZTn2,0
](A12) = G1H

T
2 + w11 e

T
n2,1

,

• ∇[Zn2,0,ZTn1,0
](A21) = G2H

T
1 − en2,1 u

T
11,

• ∇[ZTn1,0
,Zn1,0](A

−1
11) = Y11Z

T
11,

• ∇[ZTn1,0
,ZTn2,0

](A−111 A12) = −Y11H
T
S + en1,n1e

T
n2,1

,

• ∇[Zn2,0,Zn1,0](A21A
−1
11) = GSZ

T
11 − en2,1 e

T
n1,n1

.

Proof. Proceed as for Lemma 2.3 and Lemma 2.4.

Theorem 2.7. Let n be a power of two and M,N ∈ Kn×n be as in (1.8a). Then Algo-
rithm GenInvHL requires at most

2 log(n)MMH(α, n) +O(αM(n) log(n)).

�eld operations.

Proof. When n = 1, u is a scalar and the algorithm has cost C(α, 1) := 2α + 2. Assume
now n ≥ 2. Given G, H, and u, one has (2.13) and thus (1.8b) yields [uT11, u

T
12] in time

O(αM(n)). From Lemma 2.5, all the blocks involved have the same structure as A, up to
transposition and row/column re�exion, and with sometimes a displacement rank α + 1
instead of α. Generating theses blocks requires the knowledge of the vectors u11 (already
computed) and w11 (computable as u11), which has cost O(αM(n)). Now, one may check
that the irregularity sets of A12, A21, Jn1A

−1
11 Jn1 , Jn1A

−1
11 A12, A21A

−1
11 Jn1 , and Jn2S

−1Jn2

are, respectively, u12, u21, v11, vT11A12, u21A
−1
11 Jn1 , and vS. The vector u12 has already been

computed, u21 is part of the input, v11 and vS are computed recursively, and the two
remaining vectors can be recovered in time O(αM(n)) from u21, v11, and the generators
of A−111 and A12. Consequently, all the products that appear in Algorithm GenInvHL can
be produced by applications of (1.8b). Finally, Algorithm GenInvHL still uses O(αn)
additions, so that the total cost bound is given by

C(α, n) ≤ 2C(α, n/2) + 4MMH(α + 1, n/2, α) + k αM(n),

for some constant k. The conclusion follows from (2.10b) and the superlinearity assump-
tions.

2.4 Experimental results and concluding remarks

2.4.1 Experimental results

For our experiments, we have implemented several algorithms and structures within the
C++ library SLA1 (Structured Linear Algebra). This library already provided, among
other features, some general support for Stein's displacement operator, a routine for gen-
erator compression, one implementation of MBA for the Toeplitz-like structure (operator
∆[Zm,ϕ,ZTn,ψ]) and a framework for testing and timing purpose. We have added to it:

1Available at https://gforge.inria.fr/projects/sla/.

https://gforge.inria.fr/projects/sla/

48 Chapter 2. Compression-free inversion of structured matrices

• some support for the Cauchy-like structure (operator ∇[D(x),D(y)]);

• some support for the Hankel-like structure (operator ∇[Zm,0,ZTn,0]);

• an implementation of Pan and Zheng's algorithm [PZ00];

• an implementation of GenInvLT and GenInvHL;

• and �nally, two implementations of MBA, the �rst one being based on the descrip-
tion of MBA in [Kal94], and the second one being a slight variation with additional
compression stages.

We estimate the size of the code produced to be around 2000 lines.
For all our experiments, we take for K the �nite �eld Fp with p = 999999937 elements.

For basic operations in K, we use the library NTL2 developed by Shoup, which also
provides fast, FFT-based polynomial arithmetic over K[x]. Since operations in K are
achieved in constant time, we are thus able to measure and compare the algebraic costs
for the di�erent algorithms. All the computations are carried out on a desktop machine
with an Intel R© CoreTM 2 Duo processor at 2.66 GHz.

Comparison of the di�erent approaches for the Cauchy-like structure

As a �rst experiment, we measure the algebraic costs of several algorithms for the Cauchy-
like structure. Generators (G,H) in input are picked randomly, while operator matrices
D(x), D(y) are chosen in order to satisfy all the assumptions made on the algorithms.
Figure 2.2 shows computing times for inverting Cauchy-like matrices of displacement
rank α = 10 when n increases.

First, we can remark in Figure 2.2(a) that we obtain a computing time that is quasi-
linear with respect to n for each method, as expected. Moreover, as shown by Fig-
ure 2.2(b), the time spent in the compression routine for the two variants of MBA, and for
Pan and Zheng's algorithm con�rms that compression is really negligible in practice, com-
pared to the total cost. Yet, compression-free algorithms perform better than algorithms
using compression. The main di�erence explaining the various performances lies in the
number and the size of products of the form �Cauchy-like matrix × vectors.� We have
already seen in Theorem 2.4 that the choice in the parenthesizations leads to one variant
in 3 log(n)MMC(α, n) and, up to stronger conditions on the input, to another variant
in 2 log(n)MMC(α, n). Let us now estimate this cost for the three other algorithms in
Figure 2.2(a).

From Property 1.6, we deduce that multiplying an n × n Cauchy-like matrix of dis-
placement rank α with another n × n Cauchy-like matrix of displacement rank β costs
essentially MMC(α, n, β) + MMC(β, n, α). Such multiplications are used in MBA in order

to compute generators for the Schur complement S and the inverse A−1 =
[

B11 −B12

−B21 S−1

]
,

where B11 = A−111 + A−111 A12S
−1A21A

−1
11 , B12 = A−111 A12S

−1, and B21 = S−1A21A
−1
11 . The

parenthesization we have chosen for our implementation, along with the dominant cost
for each operation and the length of intermediate generators, are presented in Table 2.1.

2See http://www.shoup.net/ntl/.

http://www.shoup.net/ntl/

2.4. Experimental results and concluding remarks 49

Figure 2.2: Cost (in seconds) of Cauchy-like matrix inversion for α = 10 and increasing
values of n.

(a) Total time.

(b) Compression time only.

Counting the costs of all these products using (2.11) and the superlinearity of MMC(·, n)
leads to a bound of 14MMC(α, n) in the recurrence equation for the cost of MBA, which
gives a total cost dominated by 14 log(n)MMC(α, n). In Figure 2.2(a), we observe a
speed-up around 4.6 ≈ 14/3 between MBA and our �rst variant of GenInvLT, and around

50 Chapter 2. Compression-free inversion of structured matrices

6.7 ≈ 14/2 between MBA and GenInvLT using Cardinal's trick, which is in agreement with
our analysis above.

Table 2.1: Dominant cost in our implementation of the MBA algorithm.

operation
resulting gen-
erator length dominant cost

S
X1 = A−111 A12 2α 2MMC(α, n

2
)

S = A22 − A21X1 4α MMC(α, n
2
, 2α) + MMC(2α, n

2
, α)

A−1

X2 = A21A
−1
11 2α 2MMC(α, n

2
)

B12 = X1S
−1 3α MMC(2α, n

2
, α) + MMC(α, n

2
, 2α)

B21 = S−1X2 3α MMC(α, n
2
, 2α) + MMC(2α, n

2
, α)

B11 = A−111 + B12X2 6α MMC(3α, n
2
, 2α) + MMC(2α, n

2
, 3α)

The Pan-Zheng variant of MBA replaces structured matrix multiplications for the gen-
eration of S with the direct application of the formulas GS = G2 − A21

(
A−111 G1

)
and

HS = H2 − AT12
(
A−T11 H1

)
from Property 2.1. Thus, they avoid compression for the com-

putation of a generator for S. The pair (GS,HS) is obtained in 4MMC(α, n
2
). Later, the

generator for A−1 is deduced by generating successively X1, X2, B12, B21, and B11, as
in Table 2.1. Again, using (2.11) and the superlinearity of MMC(·, n) yields a bound of
14MMC(α, n) in the recurrence equation for the cost of Pan-Zheng, so that the total cost
is also dominated by 14 log(n)MMC(α, n) for this method. Therefore, suppressing the
compression stage for the Schur complement is not enough to decrease the constant in
the dominating part of the cost, and this is re�ected in practice by Figure 2.2(a), where
the costs of the MBA and Pan-Zheng algorithms are overlaid.

In fact, the main factor to achieve speed-ups lies in keeping intermediate generator
lengths as small as possible, so as to reduce the costs of the products of the form �Cauchy-
like matrix × vectors.� This motivates for a second implementation of MBA, where a
compression stage is systematically added after each generator computation involving an
addition or a multiplication of Cauchy-like matrices. Indeed, we have seen in Lemma 2.3
that at least X1 and X2 in Table 2.1 possess length-α generators. It appears in practice
that it also holds for B12 and B21. Hence, with additional compression stages, we obtain
a variant of MBA where each dominant cost from Table 2.1 drops to 2MMC(α, n

2
). This

yields an overall cost for this new method in 6 log(n)MMC(α, n) + O(αn log(n)), which
is 14/6 times faster than the original MBA, but still 3 times slower than the fastest version
of GenInvLT.

To conclude with this experiment, the main part of the cost in MBA and its variations
comes from the products �Cauchy-like matrix × vectors.� Completely avoiding compres-
sion implies that generators for these Cauchy-like matrices is always kept as small as
possible, which in turn allows us to obtain speed-ups up to ≈ 6.7 in practice. Finally, it
should be noted that all the approaches based on compression are using as intermediate
quantities the matrices X1 and X2. As remarked in Section 2.3.2, computation with these
two matrices can only be carried out under the assumption that {x1, . . . , xn, y1, . . . , yn}

2.4. Experimental results and concluding remarks 51

has cardinality 2n. Therefore, the �rst variant of GenInvLT, which is the second fastest
method, is also the only one which works under the weaker assumption than xi 6= yj for
all 1 ≤ i, j ≤ n. This was also made possible thanks to the usage of direct formulas for
the generation of S and A−1 in order to suppress the compression stages.

Estimation of the cost for GenInvHL

As a second experiment, we measure the computation time of GenInvHL, along with:

• the time spent to compute the irregularity sets of all intermediate quantities, that
is, additional rows that where needed in order to use the reconstruction formula
(1.8b) for the Hankel-like structure;

• the additional time due to subblocks having displacement rank α + 1 instead of α
like in the Cauchy-like case.

The matrices G and H in input are again picked randomly, and we set n = 400 and take
increasing values of α. Figure 2.3 shows the result of our experimentation.

Figure 2.3: Cost (in seconds) of Hankel-like matrix inversion using GenInvHL, for n = 400
and increasing values of α.

First, we can see that the overall cost of GenInvLT is quadratic with respect to α,
which is in agreement with the cost announced in Theorem 2.7 and the fact that we
used a routine for the products �Hankel-like matrix × vectors� such that MMH(α, n) ∈
O(α2M(n)). Second, the cost of the additional computations for the Hankel-like structure
compared to Cauchy-like appears to be negligible. Indeed, the two sources of this extra
work have a cost which is linear in α, while we just have seen that the overall cost grows
like α2. In fact, the linear shape of the curve for the cost related to irregularity set issues
con�rms what we have said in the proof of Theorem 2.7, while the linear shape of the cost

52 Chapter 2. Compression-free inversion of structured matrices

due to extra displacement rank for some subblocks was predicted by Equation (2.10b)
from Lemma 2.2.

2.4.2 Concluding remarks on our new approach

Let us conclude this chapter with three remarks on our new approach for structured
matrix inversion:

1. We have presented in this chapter a general compression-free approach that we
have specialized to three structures (Cauchy-, Vandermonde-, and Hankel-like).
Yet, some reductions exist among these three structures, see for instance [Pan00,
�6]. Therefore, it would be interesting to compare our approach for the three
aforementioned structures, and see whether a reduction to the best specialization
can improve performance for the two other structures.

2. At the end of Section 2.2.1, we have introduced a general version (see Figure 2.1) of
our new approach. We have then remarked that having M and NT lower triangular
is preferable, and so brought down to this situation in Section 2.2.2. However, the
reductions we propose therein do not work for the (Toeplitz+Hankel)-like structure,
which corresponds to the displacement operator ∇[M,N] with M = N = Zn,0 +ZTn,0.
In this case, we can still apply the general approach in Figure 2.1. Indeed, Since
the displacement ranks for A11 and S are at most α + 2 (see (1.11) and (2.1),
respectively), we obtain the recursive equation cost

C(α, n) ≤ 2C(α + 2, n/2) +O(MMT+H(α, n/2)).

Assuming that C(·, n) is increasing, and that the product of an n×n (Toeplitz+Hankel)-
like matrix of displacement rank α by an n×αmatrix can be done inMMT+H(α, n) ∈
O (̃α2 n), this yields a total cost in O(MMT+H(α+2 log2(n), n) log2(n)) ∈ O (̃α2 n).

3. When analyzing the cost of our new approach for the Cauchy-, Vandermonde-,
and Hankel-like structures, it appears that what dominates is the cost of products
�structured matrix × vectors,� where the number of vectors is of the order of α, the
displacement rank of the structured matrix. Moreover, this was con�rmed by our
experiments. Until now, we have assumed that the cost for this operation satis�es
MM∗(α, n) ∈ O (̃α2 n) for each structure. Yet, a better asymptotic of O (̃αω−1 n)
was achieved in [BJS07, BJS08, Bos10] for the Toeplitz-like structure. The next
chapter will extend this result to the other structures.

Chapter 3

Fast multiplication of a structured

matrix by a matrix

In this chapter, we study the problem of multiplying an m × n structured matrix A by
an n × β matrix B. In the case of square Toeplitz-like matrices (with Stein's operator),
recent works in [BJS07, BJS08] and [Bos10, page 210] have shown that, when β is equal
to the displacement rank α of the structured matrix, the product AB can be computed
using O (̃αω−1 n) �eld operations. We aim here at generalizing this result to all the
structures mentioned in Table 1.2, and for rectangular matrices. After some preliminaries
in Section 3.1, we introduce in Section 3.2 a general polynomial expression for the product
AB, which generalizes the one proposed in [BJS07, BJS08] for the Toeplitz-like structure.
The evaluation of the polynomial expression obtained requires to compute the polynomial
row vector R = UT (VWT mod P), for some U ∈ K[x]α×1m , V ∈ K[x]α×1n , and W ∈ K[x]β×1n ,
and where P is either xn − ψ or

∏n
i=1 (x− yi). When α = β and P = xn, an e�cient

way to compute R is provided by [Bos10, page 210]. We extend this work in Section 3.3
to the case of P = xn − ψ and P =

∏n
i=1 (x− yi). Next, we propose in Section 3.4

a new algorithm for the computation of AB. We show that its cost when α = β is in
O (̃αω−1 (n+m)), and propose a cost for the general case α 6= β. Finally, we study
the impact of this fast �structured matrix × matrix� routine on the inversion algorithms
presented in the previous chapter.

While we focus here on Sylvester's displacement operator, we refer to [BJMS11] for
an adaptation to Stein's displacement operator.

3.1 Preliminaries

In this �rst section, we introduce some material that we will use in the sequel of this
chapter.

Multiplication of polynomial matrices

Let us �rst recall the cost of the multiplication of polynomial matrices.

54 Chapter 3. Fast multiplication of a structured matrix by a matrix

Property 3.1. Let MM : N>0×N>0 → R>0 be such that two matrices in K[x]n×nd can be
multiplied using at most MM(n, d) operations in K. By [CK91], one has

MM(n, d) ∈ O
(
nωM(d)

)
. (3.1a)

If K is a �eld of characteristic zero, or a �nite �eld of cardinality at least 2d then it was
shown in [BS05] that

MM(n, d) ∈ O
(
nωd+ n2M(d)

)
. (3.1b)

Cost function fK

The next function is introduced in order to make the intermediate complexity results
concise. Let fK : N>0 × N>0 → R>0 be de�ned as follows: if K is a �eld of characteristic
zero, or a �nite �eld of cardinality at least 2d then

fK(n, d) = nω−1d+ n log nM(d), (3.2a)

otherwise,

fK(n, d) = nω−1M(d). (3.2b)

The operators Pol and rev

Now, let us introduce two operators that we will heavily use when presenting polynomial
expressions for the matrix product AB, where A is a structured matrix.

For m ∈ N>0 and a = [a1| · · · |am]T ∈ Km, we write Polm(a) for the polynomial∑
0≤i<m ai+1x

i ∈ K[x]m. Conversely, given a ∈ K[x]m, the vector of its m coe�cients in
the monomial basis will be written Pol−1m (a).

We shall also use reversals of polynomials [vzGG03, page 254]: for n ∈ N>0 and
a ∈ K[x]n, we write revn(a) for the polynomial in K[x]n given by revn(a) = xn−1a(1/x).
Three properties will be useful in the sequel: For a ∈ Kn,

Poln(Jna) = revn(Poln(a)). (3.3a)

Second, one may check that for a ∈ K[x]m and b ∈ K[x]n,

a revn(b) = revm+n−1(revm(a) b). (3.3b)

Third, one may check that for a, b ∈ K[x]n, the quotient in the division of ab by xn

satis�es

ab div xn = revn(x revn(a) revn(b) mod xn). (3.3c)

The operators Polm, Pol
−1
m , and revn are linear maps. Also, most of the time we will

apply them in a componentwise fashion to sets of vectors or polynomials: for example,
for A = [a1| · · · |an] ∈ Km×n with jth column aj we write Polm(A) to denote the polynomial
row vector [Polm(a1)| · · · |Polm(an)] in K[x]1×nm .

3.2. Polynomial expressions for structured matrix reconstruction 55

Polynomial Px and matrix W(x)

For x ∈ Kn, let Px denote the monic polynomial of degree n

Px(x) =
n∏
i=1

(x− xi).

Let P ′x denote the �rst derivative of Px. If x is repetition free then P ′x(xi) is nonzero for
all i, and we de�ne

W(x) = D(P ′x(x))
−1V(x).

Displacement matrices considered in this chapter

For this chapter, we will assume that:

M ∈ {D(x), Zm,ϕ, ZTm,ϕ}, N ∈ {D(y), Zn,ψ, ZTn,ψ}
with ϕ, ψ ∈ K, and x, y ∈ Kn two repetition-free vectors.

(3.4)

Assuming that the vector x encountered in diagonal displacement matrices is repetition-
free will allow us to use the matrices V(x)−1 and W(x).

3.2 Polynomial expressions for structured matrix re-

construction

Let A be an m × n matrix such that ∇[M,N](A) = GHT with (M,N) as in (1.5). Our
goal in this section is, given an n × β matrix B, to express the product AB in terms of
operations on polynomial matrices. Recall from Lemma 1.2 that one formula to recover
A from G and H involves a sum of matrix products involving Krylov matrices and their
transposes. Therefore, we start with several formulas involving the operator Pol∗, and the
displacement matrices M, N, and their associated Krylov matrices. Then, we use them
in order to prove a general expression for AB.

3.2.1 Polynomial expression for products with displacement ma-

trices and their associated Krylov matrices

When applying operator Pol∗ to the reconstruction formula of a structured matrix, the
main issue becomes to transform expressions with the following shape: Polm(Xu), where
X is eitherM, N, a Krylov matrix, or a slight variation of one of the previous matrices. We
list here all the formulas that we will need in order to prove Theorem 3.1 in Section 3.2.2.

Case of Zm,ϕ, Kn(Zm,ϕ, u), and Kn(Zn,ψ, u)T

Lemma 3.1. For any positive integer n, one has

Polm
(
Znm,ϕu

)
= xnPolm(u) mod (xm − ϕ).

This implies that

56 Chapter 3. Fast multiplication of a structured matrix by a matrix

• for any ψ ∈ K,

Polm
(
(Znm,ϕ − ψIm)u

)
= (xn − ψ)Polm(u) mod (xm − ϕ); (3.5)

• for v ∈ Kn,

Polm
(
Kn(Zm,ϕ, u)v

)
= Polm(u)Poln(v) mod (xm − ϕ). (3.6)

Proof. The �rst equality, which is well-known [Pan01, �2.6], tells us that applying n times
the shift matrix on vector umeans multiplying the polynomial u(x) by xn modulo (xm−ϕ).
It can be easily proved by induction over n ∈ N>0 by noticing that Polm(Zm,ϕu) =
xPolm(u) mod (xm − ϕ). The second and third equations then come from the �rst point
and the linearity of Polm. For the third one, we may consider the relation Kn(Zm,ϕ, u)v =∑n−1

i=0 vi Zim,ϕu.

In the following, we will also encounter products of type Kn(Zn,ψ, u)T v. It is easy to
check that, for any u ∈ Kn, one has

Kn(Zn,ψ, u)T = JnKn(Zn,ψ, u)Jn. (3.7)

Hence, a polynomial interpretation can be deduced from the previous lemma and poly-
nomial reversals.

Case of D(u) and Km(D(y), u)

Lemma 3.2. Let x, u, v ∈ Km and assume x is repetition free. Then

Polm
(
V(x)−1D(u)v

)
= Polm

(
V(x)−1u

)
Polm

(
V(x)−1v

)
mod Px. (3.8)

Moreover, the three following identities hold:

• For any n ∈ N>0 and ψ ∈ K,

Polm
(
V(x)−1D(xn − ψem)v

)
= (xn − ψ)Polm

(
V(x)−1v

)
mod Px; (3.9)

• For any n ∈ N>0 and w ∈ Kn,

Polm
(
V(x)−1V(x, n)w

)
= Poln(w) mod Px; (3.10)

• For any n ∈ N>0 and w ∈ Kn,

Polm
(
V(x)−1Kn(D(x), u)w

)
= Polm

(
V(x)−1u

)
Poln(w) mod Px. (3.11)

Proof. The �rst identity tells us that scaling and then interpolating a vector v is the
same as interpolating both v and the scaling vector u, and taking the product of the
resulting polynomials modulo Px =

∏m
i=1 (x− xi). Indeed, in both cases, we end up with

a polynomial of degree less than m whose value in xi is uivi.

3.2. Polynomial expressions for structured matrix reconstruction 57

The second identity comes from the fact that Polm(V(x)−1u) = (xn−ψ) mod Px when
the vector u satis�es ui = xni − ψ.

The third identity says that evaluating a polynomial w ∈ K[x]n at the xi's for 1 ≤ i ≤
m and then interpolating at these same xi's is the same as taking w modulo Px. To prove
it, remark that the polynomials on both sides of the equality are of degree less than m,
and since they coincide at x = xi for 1 ≤ i ≤ m, they are thus equal.

Finally, the fourth identity is obtained by combining the fact that, by de�nition of
Krylov matrices, K(D(x), u) = D(u)V(x, n) with (3.8) and (3.10).

Case of Km(D(y), u)T

Finally, let us see a more technical formula that will be used when proving Theorem 3.1
for the Vandermonde-like structure.

Lemma 3.3. Let y ∈ Kn be repetition free, and let m ∈ N>0 and ϕ ∈ K be such that
ϕ 6= ymi for i = 1, . . . , n. Then for u, v ∈ Kn, one has

Polm
(
JmKm(D(y), u)TD(ϕen − ym)−1v

)
= P−1y Poln

(
W(y)−1D(u)v

)
mod (xm − ϕ).

Proof. First, by de�nition of Krylov matrices, one has Km(D(y), u) = D(u)V(y,m), so
that

JmKm(D(y), u)TD(ϕen − ym)−1v = JmV(y,m)TD(u)D(ϕen − ym)−1v.

Furthermore, for any w ∈ Kn, the following equation holds [BLS03, �6.2]:

Polm
(
V(y,m)Tw

)
=

n∑
j=1

wjZj, where Zj = (1− yjx)−1 mod xm.

Then, for w = D(u)D(ϕen − ym)−1v and because of (3.3a), we obtain

Polm
(
JmV(y,m)Tw

)
= revm

(
n∑
j=1

wjZj

)
=

n∑
j=1

uj vj
ϕ− ymj

revm(Zj). (3.12)

From the de�nition of Zj, we deduce that Zj =
∑m−1

i=0 (yjx)i so that revm(Zj) =
∑m−1

i=0 yijx
m−1−i.

Thus, (x− yj)revm(Zj) equals xm− ymj , and since (xm− ymj) mod (xm−ϕ) = ϕ− ymj 6= 0
and x− yj is invertible modulo xm − ϕ by assumption, we get

(ϕ− ymj)−1revm(Zj) = (x− yj)−1 mod (xm − ϕ). (3.13)

By combining (3.12) and (3.13), and since Py =
∏n

j=1 (x− yj) is invertible modulo xm−ϕ,
we obtain

Polm
(
JmV(y,m)Tw

)
= P−1y

n∑
j=1

ujvjPy,j mod (xm − ϕ),

where Py,j =
Py

x− yj
∈ K[x]n for j = 1, . . . , n. We can then conclude by applying the

following formula from [Pan01, p. 90]:
n∑
j=1

xjPy,j = Poln
(
W(y)−1x

)
with x = D(u)v.

58 Chapter 3. Fast multiplication of a structured matrix by a matrix

Notation

For the sequel of this chapter, we will associate one polynomial PM and three matrices UM,
VM, and WM to the displacement matrix M. Their de�nitions are presented in Table 3.1.
Similarly, we associate PN, UN, VN, and WN to the displacement matrix N.

Table 3.1: De�nition of PM, UM, VM, and WM for a given displacement matrix M.

M PM UM VM WM

Zm,ϕ xm − ϕ Im Jm Im
ZTm,ϕ xm − ϕ Jm Im Jm
D(x) Px V(x) V(x) W(x)

We can formulate a few remarks on these de�nitions:

• Since we assume x to be repetition-free when M = D(x), matrices UM, VM, and WM

are always invertible;

• PM is the characteristic polynomial of M;

• UM was chosen so that a simple polynomial interpretation for the product U−1M Kn(M, u)v
holds (see (3.6) and (3.11) for instance).

Notice that, since we assume x to be repetition-free when M = D(x), matrices UM,
VM, and WM are always invertible.

3.2.2 Polynomial expression of AB for Sylvester's displacement

Theorem 3.1. Let A ∈ Km×n be such that ∇[M,N](A) = GHT with M and N as in (3.4),
let B ∈ Kn×β, and let UT = Polm(U−1M G), VT = Poln(V−1N H), and WT = Poln(W−1N B). If
gcd(PM, PN) = 1 then the matrix product AB is given by

AB = UM Pol−1m

(
P−1N R mod PM

)
,

with
R = UT

(
VWT mod PN

)
.

In order to prove Theorem 3.1, we have to cover nine cases. In fact, we will split them
into three classes:

1. the Toeplitz-like class,1 covering the four cases where M and N are both unit circu-
lant matrices;

2. the Vandermonde-like class,2 covering the four cases where either M or N is a diag-
onal matrix, the other being a unit circulant matrix;

1The Toeplitz-like class actually covers all the Toeplitz-like and Hankel-like structures from Table 1.2.
2The Vandermonde-like class actually covers all the Vandermonde-like and Vandermonde-transposed-

like structures from Table 1.2.

3.2. Polynomial expressions for structured matrix reconstruction 59

3. the Cauchy-like class, covering the last case where M and N are both diagonal
matrices.

Notice that, in all cases, the assumption gcd(PM, PN) = 1 implies that (detM, detN) 6=
(0, 0). Indeed, suppose both detM and detN were zeros, then x would divide both the
characteristic polynomials PM and PN of M and N, which contradicts gcd(PM, PN) = 1.
Therefore, Lemma 1.2 can be applied for the �rst two classes.

Proof of Theorem 3.1 for the Toeplitz-like class

In this case (M,N) ∈ {Zm,ϕ,ZTm,ϕ}×{Zn,ψ,ZTn,ψ}, and thus PM = xm−ϕ and PN = xn−ψ.
Consider �rst the subcase where (M,N) = (Zm,ϕ,ZTn,ψ). By applying Lemma 1.2 with
` = n, and since Znn,ψ = ψIn and Kn(Zn,ψ, u)T = JnKn(Zn,ψ, u)Jn for any u ∈ Kn, we
obtain

Znm,ϕA− ψA =
∑
j≤α

Kn(Zm,ϕ, gj)Kn(Zn,ψ, hj)Jn.

By multiplying both sides of this equality by B, applying the linear operator Polm to
every column, and using (3.5) and (3.6), we deduce that

PN Polm(AB) ≡
∑
j≤α

Polm(gj)Poln
(
Kn(Zn,ψ, hj)JnB

)
mod PM.

Since PN is invertible modulo PM and since Polm(AB) has degree less than m, we deduce
that

Polm(AB) = P−1N

∑
j≤α

Polm(gj)Poln
(
Kn(Zn,ψ, hj)JnB

)
mod PM.

From (3.6) it follows that the right-hand side of the previous identity equals

P−1N

∑
j≤α

Polm(gj)
(
Poln(hj)Poln(JnB) mod PN

)
mod PM,

which can be rewritten in matrix form as

P−1N Polm(G)
(
Poln(H)TPoln(JnB) mod PN

)
mod PM.

The desired expression for AB then follows from the fact that (UM,VN,WN) = (Im, In, Jn)
when (M,N) = (Zm,ϕ,ZTn,ψ).

The other three subcases (M,NT), (MT ,N), (MT ,NT) can be reduced to the previous
one by using (2.3a), (2.3b) and (2.3c), respectively.

Proof of Theorem 3.1 for the Vandermonde-like case

In this case the four possibilities for (M,N) are (D(x),ZTn,ψ), (D(x),Zn,ψ), (Zm,ϕ,D(y)),
and (ZTm,ϕ,D(y)). It su�ces to prove the theorem for the �rst and third subcases, and
then to deduce the second and fourth subcases from (2.3a) and (2.3b).

60 Chapter 3. Fast multiplication of a structured matrix by a matrix

Let (M,N) = (D(x),ZTn,ψ). Then PM = Px and PN = xn−ψ. We deduce from Lemma 1.2
with ` = n, Znn,ψ = ψIn, and Kn(Zn,ψ, u)T = JnKn(Zn,ψ, u)Jn that

D(x)nA− ψA =
∑
j≤α

Kn(D(x), gj)Kn(Zn,ψ, hj)Jn.

Recalling that x is repetition free, we can pre- and post-multiply both sides of the identity
above by V(x)−1 and B:

V(x)−1D(xn − ψem)AB =
∑
j≤α

V(x)−1Kn(D(x), gj)Kn(Zn,ψ, hj)JnB.

By applying Polm, using (3.9) and (3.11), and since PN is invertible modulo PM and the
entries of Polm(V(x)−1AB) have a degree less than m, we obtain

Polm(V(x)−1AB) = P−1N

∑
j≤α

Polm
(
V(x)−1gj

)
Poln

(
Kn(Zn,ψ, hj)JnB

)
mod PM.

As for the Toeplitz-like case, we deduce from (3.6) that the right-hand side of the identity
above can be written in matrix form as

P−1N Polm
(
V(x)−1G

)(
Poln(H)TPoln(JnB) mod PN

)
mod PM.

The assertion follows from the fact that (UM,VN,WN) = (V(x), In, Jn) when (M,N) =
(D(x),ZTn,ψ).

Let us now consider the case where (M,N) = (Zm,ϕ,D(y)). Using Lemma 1.2 with
` = m and Zmm,ϕ = ϕIm,

AD(ϕen − ym) =
∑
j≤α

Km(Zm,ϕ, gj)JmKm(D(y), hj)
T .

On the other hand, PM = xm − ϕ, PN = Py, and it follows that the diagonal matrix
multiplying A in the above identity is invertible.3 Consequently, the product AB is given
by

AB =
∑
j≤α

Km(Zm,ϕ, gj)JmKm(D(y), hj)
TD(ϕen − ym)−1B.

Applying Polm, and then (3.6) and Lemma 3.3, we obtain

Polm(AB) = P−1N

∑
j≤α

Polm(gj)Poln
(
W(y)−1D(hj)B

)
mod PM.

Since W(y)−1D(hj) = V(y)−1D(hj)D(P ′y(y)), using (3.8) shows that the right-hand side of
the above identity is

P−1N Polm(G)
(
Poln

(
V(y)−1H

)T
Poln

(
W(y)−1B

)
mod PN

)
mod PM.

Observing that (UM,VN,WN) = (Im,V(y),W(y)) when (M,N) = (Zm,ϕ,D(y)) concludes
the proof in this case.

3Otherwise, we would have ymj = ϕ for some index j. In this case, yj would be a root of both xm−ϕ
and Py =

∏
1≤i≤n (x− yi), which contradicts the coprimeness assumption.

3.3. Computing the row vector R = UT (VWT mod P) 61

Proof of Theorem 3.1 for the Cauchy-like case

In this case (M,N) = (D(x),D(y)), so that PM = Px and PN = Py. Furthermore, the
assumption gcd(PM, PN) = 1 implies that xi 6= yj for all (i, j) and a recovery formula for
A is given by (1.6b):

A =
∑
j≤α

D(gj)C(x, y)D(hj).

Now pre-multiply by V(x)−1, post-multiply by B, and then apply Polm and (3.8). It
follows that

Polm
(
V(x)−1AB

)
=
∑
j≤α

Polm
(
V(x)−1gj

)
Polm

(
V(x)−1C(x, y)D(hj)B

)
mod PM.

One has C(x, y) = D(Py(x))
−1V(x, n)W(y)−1, which is simply the rectangular version

of Equation (3.6.5) in [Pan01, p. 90] and can be shown in the same way. Using (3.8)
and (3.10) together with the invertibility of Py = PN modulo PM, it follows that for any
v ∈ Kn,

Polm
(
V(x)−1C(x, y)v

)
= P−1y Poln

(
W(y)−1v

)
mod Px.

Thus, proceeding as for the second Vandermonde-like case, we deduce that

Polm(V(x)−1AB) = P−1N Polm
(
V(x)−1G

)(
Poln

(
V(y)−1H

)T
Poln

(
W(y)−1B

)
mod PN

)
mod PM.

The conclusion follows from the fact that (UM,VN,WN) = (V(x),V(y),W(y)) when (M,N) =
(D(x),D(y)).

3.3 Computing the row vector R = UT (VWT mod P)

The previous section has shown that computing the product AB relies on the following
problem:

Given three polynomial vectors U ∈ K[x]α×1m , V ∈ K[x]α×1n , and W ∈ K[x]β×1n , to-
gether with a polynomial P in K[x] of degree exactly n, compute the polynomial
row vector R ∈ K[x]1×βm+n−1 such that R = UT (VWT mod P).

In this section, we shall study how to compute the polynomial row vector R in the
case where β = α. Note �rst that with no loss of generality n can be assumed to
be an integer power of two: de�ning n̄ = 2dlogne and δ = n̄ − n, one may check that
a mod b = x−δ

(
(xδa) mod (xδb)

)
for any a and nonzero b in K[x]; applying this identity

componentwise to the de�nition of R gives

R = x−δUT
(
V(xδW)T mod (xδP)

)
, (3.14)

where now xδW has degree less than n̄ and xδP has degree n̄.
We have also seen in the previous section that P is either xn − ψ or

∏
1≤i≤n(x − yi)

for some given y1, . . . , yn, ψ in K. Let us study these two cases separately.

62 Chapter 3. Fast multiplication of a structured matrix by a matrix

3.3.1 Case where P = xn − ψ
Algorithm for ψ = 0

A method for computing R = UT (VWT mod xn) when U,V,W are three column vectors
in K[x]α×1n is proposed in [Bos10, page 210]. The idea is to split the polynomials within
U, V, and W into their low and high parts, while doubling the number of columns for
these three matrices. Thus, starting from column vectors, we eventually obtain (nearly)
square matrices, where we can apply the fast polynomial matrix multiplication mentioned
in Property 3.1. We present in Algorithm 3.1 a slight generalization of this approach,
where we allow U to be in K[x]α×1m for some integer m independent of n.

Algorithm 3.1: mpx (modulo of power of x)

Input: U ∈ K[x]α×1m , V,W ∈ K[x]α×βd .
Assumption: β and d are powers of two, α ≤ βd = n, β ≤ α := 2blogαc.
Output: R ∈ K[x]α×1m+d−1 such that R = UT

(
VWT mod xd

)
.

if β = α then R← UT
(
VWT mod xn

)
1

else2

V0 ← V mod xd/2; V1 ← V div xd/2; V′ ← [V0 V1]3

W0 ← W mod xd/2; W1 ← W div xd/2; W′ ← [W1 W0]4

R′ ← mpx(U,V′,W′)5

R← UTV0W
T
0 + xd/2 R′6

return R7

Assume for now that Algorithm mpx is correct and uses O(fK(α, n + m)) operations
in K, where fK is the cost function de�ned in (3.2). We will present in Section 3.3.2 a
generalization of mpx for which we shall prove the correctness and show that it also runs
using O(fK(α, n+m)) �eld operations. Before that, let us see how mpx allows us to cover
the case of xn − ψ for all n ∈ N>0 and ψ ∈ K.

Algorithm for ψ 6= 0

Let us now consider P = xn − ψ with ψ 6= 0. We can reduce to the case of xn thanks to
the following lemma.

Lemma 3.4. Let Ũ = revm(U), Ṽ = x revn(V), and W̃ = revn(W). Then R can be written

R = R1 + ψ revm+n−1(R2),

where R1 = UT (VWT mod xn) and R2 = ŨT
(
ṼW̃T mod xn

)
.

Proof. Note �rst that a mod (xn − ψ) = a mod xn + ψ(a div xn) for any a ∈ K[x] of
degree less than 2n. Applying this identity componentwise to the matrix VWT gives R =
R1 + ψ R′2, where R1 = UT (VWT mod xn) as wanted, and where R′2 = UT (VWT div xn).
The desired expression for R̃2 then follows by (3.3c) and then (3.3b).

3.3. Computing the row vector R = UT (VWT mod P) 63

Now, using the transformation described in (3.14) so as to deal with any value of n,
and calling mpx twice for the computation of R1 and R2 as in Lemma 3.4, respectively, we
obtain Algorithm 3.2.

Algorithm 3.2: ComputeRx

Input: U ∈ K[x]α×1m , V,W ∈ K[x]α×1n , ψ ∈ K.
Assumption: α ≤ n.
Output: R ∈ K[x]1×αm+n−1 such that R = UT (VWT mod (xn − ψ)).

δ ← 2dlogne − n1

R1 ← x−δ mpx(U,V, xδW, n+ δ)2

Ũ← revm(U); Ṽ← x revn(V); W̃← revn(W)3

R2 ← x−δ mpx(Ũ, Ṽ, xδ W̃, n+ δ)4

R← R1 + ψ revm+n−1(R2)5

return R6

Theorem 3.2. Let N = m+n. Algorithm ComputeRx works correctly and uses O(fK(α,N))
operations in K.

Proof. Correctness follows from Lemma 3.4. The two calls to the routine mpx cost
O(fK(α,N)) �eld operations, while the multiplications/additions involving the scalar
ψ, the shifts by powers of x, and the four reversals imply an overhead in O(αN). The
conclusion follows from the de�nition of the cost function fK.

3.3.2 Case where P =
∏

1≤i≤n(x− yi)
To deal with the case where P =

∏
1≤i≤n(x−yi), we propose to generalize Algorithm mpx.

Notice that xn actually corresponds to the special case where yi = 0 for all i. While mpx
relies on splittings of polynomials into their low and high parts, we use here splittings
based on Euclidean division, as described in the following lemma:

Lemma 3.5. For α, β, n ∈ N>0, let V,W ∈ K[x]α×βn and let P ∈ K[x] of degree n.
Let P1, P2 ∈ K[x] be such that P = P1P2, and let V0 = V mod P1, V1 = V div P1,
W0 = W mod P1, W1 = W div P1, and W2 = W mod P2. If the degrees n1, n2 of P1, P2

satisfy n1 ≤ n2 then

VWT mod P = V0W
T
0 + P1

(
[V0 V1][W1 W2]

T mod P2

)
and the matrices [V0 V1] and [W1 W2] are in K[x]α×2βn2

.

Proof. By de�nition, V = V0 + P1V1, so that VWT = V0W
T + P1V1W

T . On the other
hand, depending on whether we use P1 or P2, we can rewrite W in two di�erent ways,
leading to

VWT = V0(W0 + P1W1)
T + P1V1(W2 + P2X)T

with X denoting W div P2. Since P = P1P2, we deduce that

VWT mod P = (V0W
T
0 mod P) + P1((V0W

T
1 + V1W

T
2) mod P2).

64 Chapter 3. Fast multiplication of a structured matrix by a matrix

The entries of V0 and W0 have degree less than n1, those of W2 have degree less than n2,
and those of V1 and W1 have degree less than n− n1 = n2. From n1 ≤ n2 it then follows
that the entries of [V0 V1] and [W1 W2] have degree less than n2. This implies also that
the entries of V0W

T
0 have degree less than the degree n of P , so that V0W

T
0 mod P equals

V0W
T
0 .

Note that, when n is a even, applying Lemma 3.5 with P = xn and n1 = n2 = n/2
yields the recursive formula used for R at line 6 in Algorithm mpx. Now, if we apply
Lemma 3.5 with P = Py =

∏n
i=1 (x− yi) and n1 = n2 = n/2, we see that we need to

know the coe�cients of polynomials P1 =
∏n/2

i=1 (x− yi) and P2 =
∏n

i=n/2+1 (x− yi) in
order to be able to carry out the computations. For now, we will assume that n is an
integer power of two, and consider a subproduct tree Ty for y ∈ Kn. This subproduct
tree, like the one Figure 3.1, will contain all the polynomials needed recursively, and can
be computed using O(M(n) log n) operations in K [vzGG03, Algorithm 10.3]. Supposing
that this tree Ty has already been computed, we can retrieve Py (the label at the root of
Ty), and P1 and P2 (the label at the left and right children of the root, respectively) in
constant time. Then, we can use P1 and P2 to perform the Euclidean divisions within
the de�nitions of V0, V1, W0, W1, and W2 in O(M(n)) [vzGG03, Theorem 9.6]. Now, we
can introduce Algorithm 3.3.

Figure 3.1: Example of subproduct tree Ty, where y ∈ R4 is such that yi = i.

x4 − 10x3 + 35x2 − 50x+ 24

x2 − 3x+ 2

x− 1 x− 2

x2 − 7x+ 12

x− 3 x− 4

Theorem 3.3. Let n = βd and N = m + n. Algorithm mpy works correctly and uses
O(fK(α,N)) operations in K, where fK is the cost function de�ned in (3.2).

Proof. Let k ∈ N be such that β = α /2k and let us prove correctness by induction on k.
(Here only β and d depend on k ∈ {0, 1, . . . , blogαc}, while α, m, and the product n = βd
are �xed.) If k = 0 then β = α and the algorithm returns the correct result. If k ≥ 1 then
the computed matrices V′ andW′ are in K[x]α×2βd/2 and T ′ is the subproduct tree associated
to the vector [yd/2+1, . . . , yd]

T of length d/2. Since 2β = α /2k−1 and d/2 = n/α · 2k−1,
the induction hypothesis gives R′ = UT (V′W′T mod P2). Thus the matrix R returned by
the algorithm when k ≥ 1 is UT (V0W

T
0 + (V′W′T mod P2)P1) which, since P1P2 = Py and

n1 = n2 = d/2, is by Lemma 3.5 equal to the desired result UT (VWT mod Py).
Let C(k) denote the cost of the algorithm for a given value of k. If k = 0 then V

and W are in K[x]α×αd . Since α is at most α, we may augment V and W with α− α zero
columns, perform the multiplication, and then read VWT , all this using MM(α, d) �eld
operations. Then, given VWT in K[x]α×α2d together with Py in K[x] of degree d, the cost of

3.3. Computing the row vector R = UT (VWT mod P) 65

Algorithm 3.3: mpy (modulo polynomial Py)

Input: U ∈ K[x]α×1m , V,W ∈ K[x]α×βd , subproduct tree Ty for some y ∈ Kd.
Assumption: β and d are powers of two, α ≤ βd = n, β ≤ α := 2blogαe.
Output: R ∈ K[x]1×αm+d−1 such that R = UT (VWT mod Py).

if β = α then1

Py ← the polynomial at the root of Ty2

R′ ← VWT mod Py3

R← UTR′4

else5

P1 ← the polynomial at the root of the left subtree of Ty6

T ′ ← the right subtree of Ty7

P2 ← the polynomial at the root of T ′8

V0 ← V mod P1; V1 ← V div P19

W0 ← W mod P1; W1 ← W div P1; W2 ← W mod P210

V′ ← [V0 V1]; W′ ← [W1 W2]11

R′ ← mpy(U,V′,W′, T ′)12

R← UTV0W
T
0 + P1 R

′
13

return R14

computing R′ is in O(α2M(d)). Finally, given U in K[x]α×1m and R′ in K[x]α×αd , we set up
R in two steps as follows: rewriting UT in the form UT = [1, xc, x2c, . . . , x(α−1)c]U′T with
c = dm/αe and U′ ∈ K[x]α×αc , we compute �rst Q = U′TR′ using MM(α,max{c, d}) �eld
operations, and then deduce R from Q using O(α(m+ d)) �eld operations. In summary,

C(0) = 2MM(α, d) + MM(α,max{c, d}) +O(α2M(d) + αm).

Now, since k = 0, we have d = n/α < 2n/α ≤ 2N/α. On the other hand, c < m/α + 1
and α ≤ n, so that c < N/α. Using these bounds on c and d together with the properties
of the cost functions M and MM allows us to conclude for the case k = 0.

Let us now bound C(k) when k ≥ 1. Given V,W ∈ K[x]α×βd and P1, P2 in K[x] of
degree d/2, we can compute the Vi's and the Wi's using c1αβM(d) �eld operations for
some constant c1 independent of k. Then R′ is computed recursively using C(k− 1) �eld
operations, and it remains to bound the cost of producing the result as R = Q + Q′ with
Q = (UTV0)W

T
0 and Q′ = P1R

′.
For now let us write D(k) for the cost of Q. Given R′ in K[x]1×αm+d/2−1 and P1 in K[x] of

degree d/2, we get Q′ using αM(m+ d) �eld operations and, since both Q and Q′ are in
K[x]1×αm+d−1, we can add them together using α(m+d) �eld operations. Since d = n/β ≤ n
and N = m + n, we deduce that C(k) ≤ (c1 + 2)αM(N) + C(k − 1) + D(k) for k ≥ 1.
Since k ≤ logα, this implies

C(k) ≤ (c1 + 2)α logαM(N) + C(0) +D(1) + · · ·+D(k).

In order to bound D(k) let us rewrite UT as UT = [1, xc, x2c, . . . , x(β−1)c]U′T with c =
dm/βe and U′ ∈ K[x]α×βc The product U′TV0W

T
0 involves three polynomial matrices of

66 Chapter 3. Fast multiplication of a structured matrix by a matrix

respective dimensions β × α, α × β, β × α, and whose entries have degree less than
max{c, d/2} ≤ dN/βe =: δ. Following [BJS08, Lemma 7] one may check that such a
product has cost bounded by c2αβω−1M(δ) for some constant c2 independent of k; if the
�eld K has characteristic zero or is a �nite �eld of cardinality at least 2δ, this bound
becomes c′2αβ

ω−1δ+ c′′2αβM(δ) with c′2 and c
′′
2 two constants independent of k. Using the

fact that δ < 2N/β and bounding by αN the number of additions used when multiplying
by [1, xc, x2c, . . . , x(β−1)c], we obtain

D(k) ≤ c′1αβ
ω−2M(N),

or, if K has characteristic zero or is a �nite �eld of cardinality at least 2N ,

D(k) ≤ c′′1αβ
ω−2N + c′′′1 αM(N);

here, c′1, c
′′
1, c

′′′
1 denote some constants independent of k. Since

∑
1≤j≤k(α /2

j)ω−2 is in
O(αω−2) for ω > 2 and α ≤ α, we deduce that D(1)+· · ·+D(k) is either in O(αω−1M(N))
or in O(αω−1N + α logαM(N)), depending on K. (Note that ω = 2 would imply the
replacement of αω−1 by α logα.) Hence C(k) is bounded as wanted, and the conclusion
follows.

As in Section 3.3.1, let us conclude this section with an algorithm, Algorithm 3.4, that
allows us to compute R given U ∈ K[x]α×1m , V,W ∈ K[x]α×1n , and y ∈ Kn, and without
assuming that n is an integer power of two.

Algorithm 3.4: ComputeRy

Input: U ∈ K[x]α×1m , V,W ∈ K[x]α×1n , y ∈ Kn.
Assumption: α ≤ n.
Output: R ∈ K[x]1×αm+n−1 such that R = UT (VWT mod Py).

δ ← 2dlogne − n1

W← xδW; y← y augmented with δ zeros2

Ty ← the subproduct tree associated to vector y3

R← mpy(U,V,W, Ty)4

R← x−δ R5

return R6

Theorem 3.4. Let N = m+n. Algorithm ComputeRy works correctly and uses O(fK(α,N)+
M(N) logN) operations in K.

Proof. Correctness follows from the identity in (3.14) and the claim of correctness in
Theorem 3.3. For the cost, it follows from n + δ < 2N that the subproduct tree can
be deduced from y using O(M(N) logN) operations in K. The conclusion follows from
bounding the overhead due to scaling by powers of x by O(αN), from the cost bound
given in Theorem 3.3, and from the de�nition of the cost function fK.

3.4. Fast multiplication by a matrix and application to inversion 67

3.4 Fast multiplication by a matrix and application to

inversion

Let A ∈ Km×n be a matrix structured according to operator∇[M,N] withM,N as in (3.4),
and let B ∈ Kn×β. Suppose gcd(PM, PN) = 1. We have seen in Section 3.2 how to express
the multiplication AB as a function of R = UT (VWT mod PN) for some U ∈ K[x]α×1m ,
V ∈ K[x]α×1n , W ∈ K[x]β×1n , and PN de�ned from a length-α generator for A. Next, we
have seen in Section 3.3 e�cient algorithms for the computation of R when the number
of columns of B is equal to the displacement rank of A, that is, when β = α. What
remains is to deduce the overall cost for the computation of AB. Section 3.4.1 is devoted
to this task, starting with the case β = α and then dealing with any value of β. Then,
we review the costs for structured matrix inversion proposed in Section 2.3 and present
some experimental results.

3.4.1 Fast multiplication by a matrix

Let us �rst consider the case where the number of columns of B is equal to the displace-
ment rank of A. Using Theorem 3.1 and the algorithms ComputeRx and ComputeRy from
Section 3.3, we obtain the algorithm to compute AB described in Figure 3.2.

Figure 3.2: General approach for the multiplication of an m × n structured matrix of
displacement rank α by an n× α matrix.

Given a length-α generator (G,H) for A ∈ Km×n, and B ∈ Kn×α,

1. Compute U, V, W, PM, and PN as de�ned in Theorem 3.1;

2. Using ComputeRx when PN = xn − ψ or ComputeRy when
PN =

∏n
i=1 (x− yi), compute R = UT (VWT mod PN);

3. Deduce AB = UM Pol−1m

(
P−1N R mod PM

)
.

Theorem 3.5. Let M,N be as in (3.4) and such that gcd(PM, PN) = 1, and let A ∈ Km×n

be given by a ∇[M,N]-generator (G,H) of length α. Let also B ∈ Kn×α. One can compute
the matrix product AB from G, H, and B using O (̃αω−1N) operations in K, where N =
m+ n.

More precisely, depending on the structure of matrix A and on the �eld K, one can
achieve a cost as presented in the following table.

68 Chapter 3. Fast multiplication of a structured matrix by a matrix

arbitrary �eld
�eld of characteristic zero, or
�nite �eld of cardinality at
least 2N

Toeplitz-like O(αω−1M(N)) O(αω−1N + α logαM(N))

Vandermonde-like
or Cauchy-like O(αω−1M(N) + αM(N) logN) O(αω−1N + αM(N) logN)

Proof. It su�ces to prove the four costs announced in the table. For this, we have to
analyze the cost for each of the three steps in Figure 3.2. First, let us detail the cost of
Step 1:

• For the Toeplitz-like class, PM = xm − ϕ and PN = xn − ψ and the matrices UM,
VN, and WN are either the identity or the re�exion matrix. Hence, no operation in
K is needed for this case.

• For the Vandermonde-like and Cauchy-like classes, at least one of UM and VN is a
Vandermonde matrix, so that we can get U and V using O(αM(N) logN) operations
in K.
It remains to check that this bound also covers the cost of computing W. This is
clear if N is (the transpose of) Zn,ψ, since then WN is either In or Jn. If N = D(y)
then W−1N B = V(y)−1D(P ′y(y))B. Given y and B, one can compute the coe�cients
of Py using O(M(n) log n) �eld operations, then deduce those of P ′y using O(n)
�eld operations, and produce the vector of values P ′y(y) using O(M(n) log n) �eld
operations. Scaling B ∈ Kn×α into B′ = D(P ′y(y))B has cost O(αn) and the product
V(y)−1B′ can be done using O(αM(n) log n) �eld operations. Hence, if N = D(y)
then W can be obtained using O(αM(N) logN) operations in K.
Thus, in either case, the cost of Step 1 is in O(αM(N) logN).

The cost for Step 2 in Figure 3.2 are given by Theorems 3.2 and 3.4. For the Toeplitz-
like class, the matrix N is always a unit circulant matrix, so we can get R using O(fK(α, n))
operations in K. As for the Vandermonde-like and Cauchy-like classes, we can always
bound the cost to compute R by the cost of Algorithm ComputeRy, which is inO(fK(α, n)+
N logN).

Now, let us look at the cost of Step 3 in Figure 3.2:

• For the Toeplitz-like class, PM = xm − ϕ and PN = xn − ψ. The cost of getting
b := P−1N mod PM ∈ K[x]m is in O(N) according to [BJMS11]. In addition, c :=
R mod PM ∈ K[x]1×αm can be computed using O(αN) �eld operations. Then the
product bc mod PM is obtained using O(αM(m)) �eld operations and, since in this
case UM is either the identity or the re�exion matrix, we conclude that the total
cost for Step 3 is in O(αM(N)).

• For the Vandermonde-like and Cauchy-like classes, we get PM and PN inO(M(N) logN)
using subproduct trees. Then a := PN mod PM and c = R mod PM can be de-
duced using O(M(N)) and O(αM(N)) �eld operations, respectively (see [vzGG03,
Exercise 9.16(i)]). On the other hand, the cost for the inverse b = a−1 mod PM

3.4. Fast multiplication by a matrix and application to inversion 69

is in O(M(m) logm) while the cost for the product bc mod PM is in O(αM(m))
(see [vzGG03, Corollary 11.8]). Finally, applying UM costs in this caseO(αM(m) logm),
from which we conclude that, for Vandermonde-like and Cauchy-like classes, the to-
tal cost of Step 3 is in O(αM(N) logN).

We can summarize the costs of the three steps for the di�erent classes as follow:

Toeplitz-like class Vandermonde-like and
Cauchy-like classes

Step 1 O(αM(N) logN)

Step 2 O(fK(α,N)) O(fK(αN) + M(N) logN)

Step 3 O(αM(N)) O(αM(N) logN)

Using the de�nition of the cost function fK(α,N) in (3.2a) or (3.2b) depending on K,
adding the costs within each column of the table above, and recalling that α ≤ n ≤ N
allows us to conclude.

Remarks

Let us comment on the costs mentioned in Theorem 3.5. When α is a small constant,
and for all �eld K, the cost for the Toeplitz-like class when m = n becomes O(M(n)),
which corresponds to the product �matrix Toeplitz × vector�, as expected. The same
remark holds for the Vandermonde-like and Cauchy-like classes where the cost becomes
O(M(n) log n).

Now, consider the unstructured case where α = n, and assume that K is either a �eld
of characteristic zero or a �nite �eld of cardinality at least 2n. When ω > 2, we have
n log n ∈ o(nω−1) and we obtain that, for all the structures, the product of an n × n
(un)structured matrix by an n × n matrix is achieved in O(nω). Thus, this extends the
approach for Toeplitz-like matrices in [Bos10, page 210] to the case of the Vandermonde-
like and Cauchy-like classes.

Extension to β columns

Let us denote by SMM(α,N) an upper bound on the cost to multiply a structured matrix
A ∈ Km×n, given by a generator of length α, by a matrix B ∈ Kn×α.

So far we have considered products AB for which the matrix B has exactly α columns.
Let us now give a cost analysis in the general case where B has any number β of columns.

Theorem 3.6. Let A ∈ Km×n be a structured matrix according to ∇[M,N] with M,N as
in (3.4) and given by a length-α generator (G,H). Suppose that gcd(PM, PN) = 1, and let
B ∈ Kn×β. Let also α = min{α, β} and ᾱ = max{α, β}. Then the product AB can be
deduced from G, H, and B using ᾱN + 2ᾱ/α · SMM(α,N) �eld operations.

Proof. Assume �rst that α < β. De�ning k = dβ/αe and β′ = kα, let us augment B with
zero columns into the n × β′ matrix B′ = [B|0]. This matrix can be partitioned into k
blocks B′1, . . . ,B

′
k, each having exactly α columns, so that the product AB can be read

o� the k products AB′1, . . . ,AB
′
k. The cost of getting all these products is bounded by

k SMM(α,N), and the conclusion follows from the fact that k < β/α + 1 < 2β/α.

70 Chapter 3. Fast multiplication of a structured matrix by a matrix

Assume now that α ≥ β. De�ning k = dα/βe and α′ = kβ, we augment the matrices
G and H into, respectively, the m×α′ matrix G′ = [G|0] and the n×α′ matrix H′ = [H|0].
Furthermore, we partition G′ and H′ as G′ = [G′1| · · · |G′k] and H′ = [H′1| · · · |H′k], each
block G′j or H′j having β columns. Hence ∇[M,N](A) =

∑
j≤k G

′
j(H

′
j)
T . On the other

hand, the invertibility of ∇[M,N] implies that for each j, there is a unique matrix Aj in
Km×n such that ∇[M,N](Aj) = G′j(H

′
j)
T . Since ∇[M,N] is linear and invertible, we deduce

that A =
∑

j≤k Aj. To obtain AB from G,H,B in this case it thus su�ces to set up the
blocks G′j and H′j, to compute the k products AjB, and to add those products together.
The multiplication step has cost k SMM(β,N) and the addition step has cost (k− 1)mβ.
Noting that k < α/β + 1 ≤ 2α/β allows us to conclude.

3.4.2 Application to structured matrix inversion

New cost for structured matrix inversion

Recall from Section 2.3.1 the cost functionsMM∗ for ∗ ∈ {C,V,H} that we have introduced
for the cost analyses of algorithms GenInvLT and GenInvHT. The quantity MM∗(α, n)
(∗ ∈ {C,V,H}) denotes the cost of the multiplication of an n × n structured (Cauchy-,
Vandermonde-, and Hankel-like, respectively) matrix, given by a length-α generator, by
an n × β matrix. In Section 2.4.1, we have assumed a cost in O (̃α2 n) for these three
functions. Yet, Theorem 3.5 above gives us new achievable costs forMM∗(α, n) that are in
O (̃αω−1 n). Using these new costs for MM∗(α, n), and remarking that we can still assume
the superlinearity of MM∗(·, n) in this case, we can deduce new costs for the inversion
of Cauchy-like, Vandermonde-like, and Hankel-like matrices from Theorems 2.4, 2.5, and
2.7, respectively.

Corollary 3.1. Let n be a power of two and let A be strongly regular and structured
as in (1.6a) (Cauchy-like), (1.7a) (Vandermonde-like), or (1.8a) (Hankel-like). Then
we can compute the inverse of A using either Algorithm GenInvLT (for Cauchy- and
Vandermonde-like structures) or Algorithm GenInvLT (for Hankel-like structure) using
at most O (̃αω−1n) �eld operations.

More precisely, depending on the structure of the matrix A and on the �eld K, one
can achieve a cost as presented in the following table.

arbitrary �eld
�eld of characteristic zero, or
�nite �eld of cardinality at
least 4n

Hankel-like O(αω−1M(n) log n) O(αω−1 n log n+ α logαM(n) log n)

Vandermonde-
or Cauchy-like

O(αω−1M(n) log n+ αM(n) log2 n) O(αω−1 n log n+ αM(n) log2 n)

Inversion of structured matrices in O (̃αω−1 n) was already obtained for the Toeplitz-
like structure (operator ∆[Zn,0,ZTn,0]) in [BJS07, BJS08]. In addition, we can �nd in
[BJS07, BJS08] reductions from the Vandermonde-like and Cauchy-like structures to
the Toeplitz-like one. Using these reductions and the cost proposed in [Bos10, page

3.4. Fast multiplication by a matrix and application to inversion 71

210] for the multiplication of Toeplitz-like matrices yields a cost of O(αω−1M(n) log n)
or O(αω−1 n log n + α logαM(n) log n) for inversion, depending on the �eld K. Here,
we propose a cost for the inversion of Vandermonde-like and Cauchy-like matrices that
is slightly worse. Yet, our approach has the advantage that it provides direct (that is,
without reduction to another structure) inversion algorithms, which can be interesting for
practical reasons. First, our approach requires fewer e�orts to be implemented when one
only needs to deal with a structure other than Hankel- or Toeplitz-like. Indeed, support
for this particular structure su�ces with our approach, while support for two structures
and one reduction among them is needed with the approach in [BJS07, BJS08]. Second,
as soon as α is large enough, namely when α ≥ (log n)1/(ω−2), the cost of our approach
for Vandermonde-like and Cauchy-like is dominated by O(αω−1M(n) log n) which is the
asymptotic cost for the Hankel-like structure. Finally, the reductions in [BJS07, BJS08]
have the same asymptotic cost that Toeplitz-like matrix inversion, so that the overhead
they imply may impact the overall cost in practice.

Experimental results

Let us conclude this section with some experiments. As we did for Chapter 2, we have
implemented the algorithms introduced in this chapter within the library SLA, along
with some extra support for polynomial matrix multiplication. This has yielded about
1000 additional lines of code in SLA.

Our goal is to illustrate the impact of using the fast multiplication of a structured
matrix by a matrix introduced in Figure 3.2 on our algorithms for structured matrix inver-
sion. For this purpose, we compare, for the Cauchy-like structure, Algorithm GenInvLT

with a naive multiplication �Cauchy-like matrix × vectors� in O(α2M(n) log n), as in
Section 2.4.1, to Algorithm GenInvLT with the fast multiplication �Cauchy-like matrix ×
vectors� in O (̃αω−1 n), as described in this chapter. Note that, since we use a matrix
multiplication based on Strassen's algorithm, and without any assumption on the �eld K,
we actually have here a cost in O(α1.81M(n) + αM(n) log n) according to Theorem 3.5.

As in Section 2.4.1, computations are carried out on a desktop machine with an
Intel R© CoreTM 2 Duo processor at 2.66 GHz. We work with the �nite �eld Fp with
p = 999999937, and the generator matrices G and H are picked randomly. In addi-
tion, we �x the values of x and y de�ning the displacement operator ∇[D(x),D(y)] so
that {x1, . . . , xn, y1, . . . , yn} has cardinality 2n. Thus, we can use the fastest version of
GenInvLT, that is, the one relying on �Cardinal's trick�.

Figure 3.3 illustrates the speed-up that we obtain when using the fast multiplication of
a Cauchy-like matrix by a matrix, instead of the naive multiplication �Cauchy-like matrix
× vectors�. The displacement rank α ranges from 10 to 100, while the dimension n ranges
from 100 to 1000. As one can see on the �gure, the version with fast multiplication is up
to 8.5 times faster than the one using naive multiplication.

Moreover, the speed-up around 3 for α < 32 is quite noticeable. Indeed, such values
of α do not allow to use Strassen's algorithm for polynomial matrix multiplication. Yet, a
signi�cant speed-up is already achieved, so that using matrices of polynomials in order to
perform a multiplication of the form �Cauchy-like matrix × vectors� seems intrinsically
better than computing successively all the products �Cauchy-like matrix × one vector�.

72 Chapter 3. Fast multiplication of a structured matrix by a matrix

Figure 3.3: Speed-up obtained by replacing the naive �Cauchy-like matrix × vectors�
multiplication with the fast multiplication of a Cauchy-like matrix by a matrix from
Figure 3.2.

Now, let us �x α and look at the behavior of the speed-up with respect to the dimen-
sion n. As mentioned earlier, both the naive and the fast routines for �Cauchy-like matrix
× vectors� multiplication are in O(M(n) log n) (α is a �xed constant). Therefore, they
both lead to a cost in O(M(n) log2 n) for inversion. Yet, we can observe a slow increase
of the speed-up with respect to n. For instance, when α = 100, the speed-up goes from
≈ 5.2 for n = 100 to ≈ 8.5 for n = 1000. The fact that the speed-up actually decreases
just after a power of two (see n = 300 and n = 600) lets us imagine that the overall
increase might be due to threshold e�ects within the library NTL.

Finally, if we �x n and look at the behavior of the speed-up with respect to the
dimension α, we observe a clean increase. For instance, when n = 1000, the speed-up
varies from ≈ 2.8 when α = 10 to ≈ 8.5 when α = 100. This can be partially explained
since the fast version uses Strassen's algorithm, which leads to a cost in O(α1.81) instead
of O(α2) (n being constant here). In addition, by looking at the behavior in the range
10 ≤ α ≤ 32, where Strassen's algorithm is not used, we also think that part of the
speed-up's increase is due to another factor.

To conclude, note that this is a �rst experiment, and that the speed-up we obtain
here is not completely understood. Nevertheless, using fast multiplication of a structured
matrix by a matrix appears to be very promising in practice.

Conclusions and perspectives for Part I

Conclusions

Structured matrices of size m × n and displacement rank α are matrices that can be
represented by a generator having only α(m + n) coe�cients instead of mn. Many
operations like transposition, multiplication by a vector, addition or multiplication of
structured matrices, and inversion, can be performed using generators, which yields a
sizeable gain when α is small. In particular, when α is a small constant, we obtain quasi-
linear costs with respect to n (assuming m ∈ O(n)), whereas the corresponding costs for
dense, unstructured matrices are in O(n2) or in O(nω). In this �rst part of the document,
we have focused on the most common structures that are Cauchy-like, Vandermonde-,
Toeplitz- and Hankel-like structures, and we have worked on two problems related to
these structures: inversion and multiplication by a matrix.

Superfast algorithms for inverting a structured matrix are known since the apparition
of the MBA algorithm in 1980 [Mor80, BA80]. A major issue with this approach is to
control the size of the generators for intermediate quantities so as to ensure a �nal cost
in O (̃α2 n) for inversion. This control is usually achieved with so-called compression
steps. A noticeable variant of MBA due to Cardinal [Car99, Car00] proposes to cope with
this di�culty, in the case of Cauchy-like matrices, by computing speci�ed generators
for the intermediate quantities and the inverse, that have already an appropriate size.
Following this idea, we have designed a general, compression-free algorithm relying on a
new, recursive formula for the speci�ed generator of the inverse. We have studied in detail
the cost of this new approach for three structures: Cauchy-, Vandermonde- and Hankel-
like matrices. Each cost was expressed as a function of MM∗(n, α) with ∗ ∈ {C,V,H},
which is the cost for the multiplication of an n× n structured (Cauchy-, Vandermonde-,
and Hankel-like, respectively) matrix A by α vectors, where α is the length of the generator
provided for A. Comparing with several variants of MBA, it has appeared that removing
the two compression steps within MBA, while keeping the asymptotic cost unchanged,
leads to a signi�cant decrease in size for the intermediate generators, and so to smaller
products of the form �structured matrix × vectors�. This yields theoretical speed-ups up
to a factor of 7, which were indeed observed in practice in our experiments.

As a consequence of our work on structured matrix inversion, we have obtained that
this operation heavily relies on a single basic block, which is the multiplication �structured
matrix × vectors,� where the displacement rank of the structured matrix and the number
of vectors are of the same order. Recent works in [BJS07, BJS08] and [Bos10, page 210]
show that, in the case of Toeplitz-like matrices (with Stein's displacement operator), such
a multiplication can be achieved in O (̃αω−1 n) �eld operations using fast multiplication of

74

polynomial matrices. This thesis extends this idea to all the aforementioned structures for
Sylvester's displacement operator. First, we have introduced a polynomial expression of
the matrix product AB, where A is anm×n structured matrix of displacement rank α and
B ∈ K[x]n×β. This has pointed out the problem of computing the polynomial row vector
R = UT (VWT mod P) given U ∈ K[x]α×1m , V ∈ K[x]α×1n , and W ∈ K[x]β×1n , and where P
is either xn − ψ or

∏n
i=1 (x− yi). Second, we have proposed algorithms to compute R in

the case where α = β, that are in fact generalizations of the approach in [Bos10, page
210] for the case where P = xn and m = n. Finally, combining the two previous points
has led to a general algorithm for the multiplication �structured matrix × vectors� in
O (̃αω−1 (m+ n)) when the number of vectors is α. In addition, for each structure, the
cost obtained matches with the one of the underlying special matrix (Cauchy for Cauchy-
like structure, and so on) when α is a small constant. These costs also match with the
cost O(nω) for dense, unstructured matrix multiplication when m = n = α, assuming
that the �eld K is either of characteristic zero or a �nite �eld with 4n. Finally, using the
new costs for the multiplications �structured matrix × vectors,� we have deduced new
costs in O (̃αω−1 n) for our inversion algorithms in Chapter 2. Compare to the asymptotic
costs obtained with [BJS08] and [Bos10, page 210], our approach for inversion is slightly
worse for Cauchy- and Vandermonde-like. Yet, it yields direct inversion algorithms for
these two structures, contrary to the approach in [BJS08] which reduces them to the
Toeplitz-like case. Furthermore, a �rst experiment with Cauchy-like matrices has shown
that using our fast algorithm for the multiplications of the form �Cauchy-like matrix ×
vectors� within our inversion algorithm leads to signi�cant speed-ups in practice.

Perspectives

As we have seen, our direct approach for the inversion of Cauchy- and Vandermonde-like
matrices does not achieve the best known asymptotic costs to solve these two problems.
One question is then to see whether it can be improved so as to compete with the best
known algorithms that use a reduction to Toeplitz-like matrix inversion. If we look
closely at the overall inversion algorithm, we can see that some intermediate quantities
are computed several times within the routine for fast �structured matrix × vectors�
multiplication. By identifying them and factorizing their computation, we may be able
to solve this issue.

The implementation of the various algorithms presented in this �rst part of the thesis
have also raised several questions. First, it would be interesting to estimate the quan-
tity of extra-memory needed by our algorithms, and to see whether in-place versions
can be designed for some of them. Second, adding some support for a given structure
implies to code several routines like the multiplication by a vector. Such routines may
be implemented in several ways, depending on the formula in use. To choose a formula
involving a minimum number of memory operations like copying or reverting of vectors
is a very di�cult and tedious task. Therefore, it would be interesting to see if we can
model the formulas using the language proposed in [FMMP09] and thus use the SPIRAL
project [PMJ+05, PFV11] in order to tune the code for these routines. Finally, we have
mentioned that inversion of a given structured matrix can be achieved either by a direct
approach, or by reducing the problem to the inversion of a matrix having another struc-
ture. We think that the various alternatives implied by the di�erent reductions deserve

75

investigation. However, this may take quite some time if done by hand. Again, it would
be interesting to see how general frameworks for automatic code optimization such as
SPIRAL can help us to speed up the exploration process.

76

Part II

Analyzing the implementations of

arithmetic expressions

Chapter 4

On the evaluation of arithmetic

expressions

This chapter serves as an introduction to our work on the evaluation of arithmetic ex-
pressions. First, we give an overview of some of the common issues arising when one is to
implement a given arithmetic expression. Then, we focus on the initial context that has
led us to this work, that is, the generation of polynomial evaluation codes for a library
providing software support of �oating-point numbers on integer processors. We also ex-
plain how this context has motivated us to design a general framework for analyzing the
implementations of arithmetic expressions. Finally, we summarize our contributions to
this domain.

4.1 Issues underlying the evaluation of arithmetic ex-

pressions

Arithmetic expressions are expressions made of sums and products of variables. While
the order of the terms and the implicit parenthesization do not matter when we look at
the mathematical object, they become an issue when one wants a good implementation
of it on some architecture. Indeed, nowadays' architectures usually provide only binary
operations, so that choices have to be made in order to go from the mathematical object
to one concrete implementation. This raises several questions in various �elds of computer
science.

4.1.1 Issues in algebraic complexity

In this �eld, the main concern is to estimate the number of arithmetic operations needed
to evaluate a given expression. This could mean �nding the exact minimum number
of operations, obtaining a relevant lower bound of this number and/or designing an
algorithm with as few operations as possible.

Answers to these questions are quite sensitive to the computation model considered
(see the discussion in [BCS97, �1]). The model of straight-line programs (SLP) [BCS97,
�4.1] has been successfully used to derive some interesting results. In this model, an

80 Chapter 4. On the evaluation of arithmetic expressions

evaluation consists in a sequence of binary operations whose operands are taken among
the input variables and the already computed quantities.

Among the main results of this �eld, one can cite the works on the minimum number
of multiplications in order to evaluate an (also known as the problem of shortest addi-
tion chains for n) which are reviewed in [Knu98, �4.6.3]. Similarly, people have worked
on the minimum number of multiplications in order to evaluate a degree-n, univariate
polynomial. Pan showed in [Pan66] that, as thought since long, this minimum number is
n, which is achieved by Horner's rule. Paterson and Stockmeyer went further and distin-
guished between scalar and non-scalar multiplications. They gave in [PS73] an algorithm
to evaluate p(x) (where the coe�cients are considered as scalars, and x as non-scalar)
with only O(

√
n) non-scalar multiplications. When non-scalar multiplications are more

costly then scalar ones, like when we evaluate a polynomial p(x) with scalar coe�cients
at a matrix point, this approach becomes very interesting. Moreover, [PS73] also showed
that roughly

√
n non-scalar multiplications are necessary to evaluate p(x) upon several

computation models based on SLPs.
Finally, we can cite the technique of preconditioning, that is, a "free" pre-computation

that aims to turn the initial evaluation problem into a simpler one. This may be relevant
when the underlying evaluation has to be performed with lots of di�erent values for the
inputs, so that the cost for the pre-computation does not matter much. Indeed, it has
been intensively studied for that case of polynomial evaluation: [Knu62, Eve64] showed
that this evaluation for polynomials in C[X] can be performed in n additions and only
dn+3

2
e multiplications; [PS73] introduced another approach more suitable for polynomials

in R[X], with n + O(log n) multiplications; and [Pan78] discusses optimality issues for
polynomials over the reals and the complex numbers with respect to the degree.

4.1.2 Issues in combinatorics

In the SLP model without division, it has been proved that there exists a one-to-one
correspondence between implementations for an and the set of binary rooted trees with
exactly n leaves. The number of such trees, and so the number of implementations for
an, is the nth number of the Wedderburn-Etherington sequence [Wed22, Eth37]. While
we do not know any closed-form formula for this sequence, it is easy to compute the
values for small values of n through a recurrence formula. Moreover, [Ott48] gives the
asymptotic behavior of this sequence when n tends to in�nity, showing that the number
of implementations for an grows roughly exponentially with respect to n.

This kind of correspondence can be established for other simple arithmetic expressions,
as soon as the set of implementations can be described within a theory called the species
theory [FS09]. When it is the case, this theory provides useful tools to compute the
number of objects of size n e�ciently [Piv08, PSS08], and to describe the asymptotic
behavior when n grows to in�nity [FS09, �6]. In our context, this helps to get precise
information about the number of implementations for simple arithmetic expressions.

4.1.3 Issues in compilation and code generation

We have already mentioned the question of minimizing the number of operations, which
leads to e�cient evaluations on a purely sequential architecture. However, architectures

4.1. Issues underlying the evaluation of arithmetic expressions 81

o�ering some kind of parallelism have been available since decades [Kuc77]. In our con-
text, we may want to exploit instruction level parallelism (ILP). This type of parallelism
can be either MIMD (multiple instruction multiple data) parallelism, where we assume
to have p processors available that can perform any kind of instruction, or SIMD (single
instruction multiple data) where we impose moreover that each processor performs the
same instruction at each cycle.

In the MIMD model, the latency for evaluating an arithmetic expression (possibly
with divisions) involving n variables (each appearing only once) has been well studied.
Assuming that binary + and × have a unit cost, it is remarked in [KM74] that this
latency is at least dlog2 ne, and that one can use associativity and commutativity in order
to perform the evaluation in at most dlog2 ne+2d+1 cycles, where d is the maximum level
of nested parentheses. Moreover, the authors show that this evaluation can be carried
out using at most dn−2d

2
e processors. This result is extended in [Bre74], where the author

proves that, using also distributivity, and regardless of the depth of parenthesization, one
can achieve a latency of 4 log2 n + 10(n−1)

p
cycles, where p is the number of processors

in use. We can also cite [BKM73], which deals with expressions without divisions, and
[KM75] were sharper bounds are provided in several cases.

While these results are e�ective (that is, we can deduce from the proofs algorithms
to achieve the announced bound for a given expression), they have several limitations:
�rst, even though the upper bounds are close to the lower bound dlog2 ne, one can always
hope to �nd a better solution for a special case; second, SIMD parallelism is not directly
handled and, while one can simulate an MIMD architecture with a SIMD one and apply
the techniques for the MIMD case, this multiplies the latency by a constant as noted in
[Kuc77], and again, one may hope for a faster evaluation; third, the main criterion on
pipelined architectures is throughput, and not latency; fourth, the usage of operators like
the fused multiply-add (FMA), which maps (a, b, c) to a · b + c and is now a standard
operator in �oating-point arithmetic [IEE08], is not addressed.

Another approach in order to �nd a fast way to evaluate an expression on a given
architecture is to write a program that will look at many possibilities and generate the
code for the fastest evaluation encountered. This approach, which becomes more usable
as computer power increases, is embraced for instance in [Gre02], and in [HKST99], where
the authors describe a heuristic search for fast evaluation of univariate polynomials on
the Itanium R© processor using only the FMA operator.

4.1.4 Issues in numerical analysis

When one wants to perform a computation involving real or complex numbers, this
computation is usually performed with some �nite precision arithmetic instead. In this
case, evaluations are subject to some rounding errors, and it becomes an issue to control
these errors, or at least to have a good insight into their impact. Indeed, the way we
perform some evaluation can greatly a�ect the numerical quality of the result. See for
instance [Hig02, �4.2] which discusses the impact of ordering when performing a sum of
n terms in �oating-point arithmetic.

As soon as one uses �xed-point arithmetic (see [Yat09] for a good introduction on
this topic) or �oating-point arithmetic as de�ned in the IEEE-754 standard [IEE08],

82 Chapter 4. On the evaluation of arithmetic expressions

the behavior of operators + and × is well speci�ed and models like the ones in [Hig02,
�2.2] can be used to bound the errors occurring during the evaluation of an arithmetic
expression. It thus becomes possible to deduce a priori error bounds, that is, bounds
on the evaluation error that are functions of the precision and the actual values of the
input variables. These a priori bounds may be pessimistic in practice for the evaluation
of a univariate polynomial [Rev06], and one may prefer to compute a tighter error bound
alongside with the actual computation (see the concept of running error in [Hig02, �3.3]).
Another approach to obtain a tight error bound is embraced by the tool Gappa [Mel06].
This tools aims at certifying a given error bound1 on the evaluation of an arithmetic
expression by means of rewriting rules and bisection of the intervals where the variables
range.

Another issue lies in improving the numerical quality. The software tool Fluctuat
[PGM04] has been developed in order to analyze the sources of numerical errors and to
indicate the places in C code that cause much of them. Moreover, Martel has designed
some techniques described in [Mar07, Mar09a, Mar09b] in order to turn a code for an
arithmetic expression into a mathematically equivalent but more accurate one. Other
techniques can be used to improve numerical quality. For instance, the rounding error
due to a sum of two �oating-point numbers is also a �oating-point number and it can
be computed exactly [Knu98, Theorem B, page 236]. Thus, this computed error can be
injected again later, in order to reduce the �nal evaluation error. This idea has led to the
compensation technique [Kah65, Bab69], which was extensively used by Ogita, Rump,
and Oishi in order to compute sums of n variables accurately [ORO05, Rum09].

Finally, we can cite the recent work in [LMT10], where the authors analyze the di�er-
ent possible implementations for a sum of 10 terms in order to �nd a trade-o� between
the latency and rounding errors.

4.2 Context and motivation

In this section, we present the initial context that have led us to study the evaluation of
arithmetic expressions. It lies in the development of a software tool named CGPE2 (Code
Generation for Polynomial Evaluation). This tool is used to generate part of the code
within the library FLIP3 (Floating-point Library for Integer Processors), whose goal is to
provide software single-precision support for integer processors. We �rst give an overview
of FLIP. Then, we focus more especially on CGPE. Finally, we conclude this section by
motivating our choice to design a general approach for analyzing the evaluation of a given
arithmetic expression.

4.2.1 Floating-point arithmetic support for integer processors

Embedded systems are nowadays ubiquitous. Because embedded processors need to be
small, some of them still do not have a �oating-point unit, so that they can only perform
computations on (�nite-size) integers. In order to run codes relying on �oating-point

1 It can also �nd out one if none was provided.
2See http://cgpe.gforge.inria.fr/, [Rev09, MR11], as well as Section 8.1.1.
3http://flip.gforge.inria.fr/

http://cgpe.gforge.inria.fr/
http://flip.gforge.inria.fr/

4.2. Context and motivation 83

arithmetic on these so-called integer processors, one needs a library that emulates �oating-
point numbers using the integer type available in hardware. FLIP is one of such libraries.
It can provide single-precision �oating-point support for any 32-bit integer processor, and
has been especially optimized for VLIW (Very Long Instruction Word) architectures as
implemented by the ST231 processor from STMicroelectronics's ST200 family [FFY05].

Implementation of �oating-point operators in FLIP

E�cient implementations of a �oating-point operator usually rely on the evaluation of
a polynomial approximating this operator on a small interval. This is the approach
embraced by FLIP to provide a software support for single precision on integer processors.
Apart from the basic operators (+,−,×, and the FMA), the generic path of the other
operators (elementary functions such as division, square root, trigonometric functions,
exponential, logarithms, . . .) is or will be implemented according to the following classical
process (see [Mul06, �3] and [MBdD+10, �11]):

1. Range reduction: Evaluation of operator f at point x is replaced with the evalu-
ation of f̃(x̃) by use of mathematical properties on f (symmetries, algebraic iden-
tities). This is done so that all the possible values for x̃ lie in a small interval
I.

2. Polynomial approximation: One computes some polynomial approximation of
f̃ on I. In practice, the software tool Sollya [Che09] is used in order to get an
approximation polynomial p(x) of minimum degree, given some bound on the ap-
proximation error.

3. Polynomial evaluation: One chooses an implementation for the evaluation of
p(x̃). This implementation should take advantage of the features of the target
architecture as much as possible. However, as already mentioned in the previous
section, this choice may impact the numerical quality of the result.

4. Final routine: One looks at the value resulting from the evaluation of p(x̃) in
order to deduce the correct rounding for f(x), or a result accurate for all but the
last bit.

Note that, since the processor only provides integers, the evaluation at step 3 will be
carried out using �xed-point arithmetic [Yat09]. This means that we use integer instruc-
tions, but that we read the result as if there were a radix point within the encoding of
integers at a position determined in advance.

Furthermore, note that we only give here a general view of the whole process used
within FLIP. Steps 1 and 4 are usually speci�c to each operator. Moreover, one needs to
decode the input, handle special cases, and compute the sign and exponent in addition
to p(x̃) in order to encode the result after step 4. All this work should be done as much
as possible in parallel of the four aforementioned steps. We refer to [JMM+10] for more
details on this topic.

84 Chapter 4. On the evaluation of arithmetic expressions

Example: implementation of
√
x

The example presented here comes from [JKMR11]. Suppose we have an integer processor
and we want to provide to it support for the square root operator in single precision
and with correct rounding, as speci�ed by the IEEE 754-2008 standard of �oating-point
arithmetic. Excluding special inputs (like negative numbers, in�nities, or subnormals),
we have a �oating-point number x = m · 2e, where m ∈ [1, 2) has binary expansion
(1.m1 . . .m23) and where −126 ≤ e ≤ 127, and we need to compute RN(

√
x), that is,

the single precision �oating-point number the nearest to the real number
√
x. Range

reduction can be achieved by remarking that

√
x =
√
m 2δ︸ ︷︷ ︸
`

· 2be/2c with δ = e− 2 · be/2c ∈ {0, 1}.

Now, we have m 2δ ∈ [1, 4) and we may use a polynomial approximation of
√
· on this

interval to deduce a su�ciently precise approximation v of ` and then deduce the correct
mantissa for RN(

√
x), the correct exponent being be/2c.

In fact, one of the contributions of [JKMR11] is to provide a clever way to obtain such
a v. Their idea is to evaluate the special bivariate polynomial

q(x, y) = 2−25 + y · p(x),

where p is a polynomial approximant of
√

1 + · on [0, 1), at point

(x, y) = (m− 1, 2δ).

If ‖p−
√

1 + ·‖∞,[0,1) and the error entailed by the computation of q(m− 1, 2δ) are small
enough (see [JKMR11, Lemma 1] for the complete result) then the value v obtained will
be accurate enough to deduce RN(

√
x). The introduction of such a bivariate polynomial

is motivated by the fact that it allows for more parallelism. Indeed, we can distribute y
inside the evaluation of p(x) and thus reduce the latency.

As mentioned above, the question of �nding a good polynomial approximant can be
solved by using the software tool Sollya. Therefore, what remains is to �nd an accurate-
enough way to evaluate our special bivariate polynomial q(x, y) on [0, 1)×{1,

√
2}. Several

tools to check the accuracy of a given code exist, like Fluctuat [PGM04] or Gappa [Mel06].
Yet, one has �rst to generate a code before calling one of these tools.

4.2.2 Generating fast and accurate-enough code for polynomial

evaluation

The choice of the way to implement the polynomial evaluation at step 3 of the aforemen-
tioned process is a major issue. As we have said, the implementation should be accurate
enough, in the sense that the error entailed by the usage of �xed-point arithmetic is no
greater than a given bound. Moreover, the polynomial evaluation is typically the largest
part of the code for an operator, and thus, we really need to do it as fast as possible.

4.2. Context and motivation 85

Classical schemes for polynomial evaluation

Several rules have been coined for the evaluation of a univariate polynomial [Knu98,
�4.6.4]. Figure 4.1 presents three of them:

1. Horner's rule. It consists in n multiplications and n additions as shown in Fig-
ure 4.1(a). This is in fact one of the most commonly used schemes for evaluat-
ing polynomials in implementations of �oating-point operators (see for instance
[CLM+05, LV09] and [Lau08, �6.2]). Its interest lies in its good numerical stabil-
ity, especially when x is not too close to a zero of a(x) [Bol04, �9]. However, this
sequential scheme does not expose any instruction-level parallelism (ILP) and thus
gets ine�cient as soon as parallelism is available.

2. Second-order Horner's rule. This second rule extends Horner's rule in order
to expose some ILP. It consists in splitting up the polynomial into its odd and
even parts, evaluating both parts using Horner's rule, and �nally combining both
intermediate results using a last Horner's iteration [Knu98, �4.6.4]. It requires
exactly n + 1 multiplications, as shown in Figure 4.1(b). Remark that it uses at
most two ways of the architecture, and gets ine�cient as soon as more parallelism
is available, like for the ST231 processor which has 4 ways.

3. Estrin's rule. This last rule is based on the divide-and-conquer paradigm, and
consists in splitting up the polynomial into its low and high parts. Then, both
parts are evaluated in a recursive way, until getting degree-1 polynomials, as shown
in Figure 4.1(c). Its implementation tends to expose more ILP than the previous
rules, but to the detriment of an increase of the number of multiplications, since it
requires about n+ log(n+ 1)− 1 multiplications.

Figure 4.1: Classical rules for degree-3 univariate polynomial evaluation.
+

a0 ×

x +

a1 ×

x +

a2 ×

x a3

(a) Horner's rule.

+

+

a0 ×

×

x x

a2

×

x +

a1 ×

×

x x

a3

(b) Second-order Horner's rule.

+

+

a0 ×

x a1

×

×

x x

+

a2 ×

x a3

(c) Estrin's rule.

Generation of polynomial evaluation codes for FLIP with CGPE

The classical schemes mentioned above can be adapted for evaluating bivariate polynomi-
als, as shown for example in [CK04, PS00] for Horner's rule. Yet, none of them appears
to be appropriate for our context:

86 Chapter 4. On the evaluation of arithmetic expressions

• As already mentioned, Horner's rule fails to expose ILP. On the contrary, Estrin's
rule requires more multiplications, and thus may be harder to schedule on an ar-
chitecture with limited parallelism;

• The numerical properties of these rules for a given polynomial are, to the best of
our knowledge, not completely understood, especially for the special bivariate case;

• Finally, recall from the example of the square root operator that we need to deduce
the values of x and y from the encoding of the �oating-point number at input. In
practice, the value of x is known before the one of y, and this has to be taken into
account for the latency. In this situation, we will speak about the delay of y, that is,
the number of cycles between the availability of the value of x and the availability
of the value of y. Classical rules for bivariate polynomials were designed with the
assumption that the values of x and y are known at the same time (thus, assuming
a delay of 0 cycle). Therefore, they may not be adapted when the delay is larger,
like in the case of the square root of FLIP, where it is of 3 cycles.

For all these reasons, we needed a tool to explore the possible implementations of
polynomial evaluation, and this is why a �rst version of CGPE has been introduced in
[Rev09]. Given:

• the coe�cients of a polynomial p(x) or q(x, y) = α + y · p(x),

• a small interval for each variable x and y,

• a maximal evaluation error bound ε,

• information about the target architecture (cost of operators + and ×, available
parallelism),

• possibly a delay on variable y,

CGPE returns a C code for the evaluation of p(x) or q(x, y), which is as fast as possible on
the target architecture, and whose evaluation error due to the use of �xed-point arithmetic
is guaranteed (through calls to Gappa) to be no greater than the bound ε. CGPE was
mainly used in order to generate code for the ST231 processor, which is a 4-issue VLIW
integer processor. This processor can perform four additions in parallel, but is limited
to two multiplications in parallel. Moreover, while the addition is done in 1 cycle, one
has to wait 3 cycles in order to get the result of a multiplication. Yet, multiplication is
pipelined, so that we can launch two of them per cycle.

Other context requiring polynomial evaluation: matrix function evaluation

The context of libm design presented in Section 4.2.1 is not the only one that leads to
the need of �nding a good way to evaluate a polynomial p. For instance, e�cient code
for the evaluation of f(A) where f is an elementary function and A is an n × n matrix
may also rely on polynomial approximation. We refer to [Hig08, �10�13] for examples of
algorithms based on Padé approximants to evaluate f(A) where f ∈ {exp, log, sin, cos}.

4.3. Contributions of this thesis 87

In this context, the matter lies in the number of matrix-matrix multiplications, rather
than the latency like in FLIP. Indeed, these operations are more costly than addition of
matrices and scalar-matrix multiplications, so their cost dominates the total evaluation
time. Again, the rules illustrated in Figure 4.1 fail to provide a good evaluation for p(A),
and better algorithms like the one in [PS73, Algorithm B] has to be preferred, as noted
in [Hig08, �4.2].

4.2.3 Motivation

As we have seen in the previous section, polynomial evaluation raises several questions:

1. How to generate implementations for polynomial evaluation? What rules should
we consider to deduce implementations from the mathematical expression of the
polynomial?

2. How many ways are there to evaluation a polynomial?

3. Given some measure (the latency, the number of matrix-matrix multiplications,. . .)
on the implementations, what is the minimum value that one can achieve?

4. How many of these implementations do achieve this minimum value?

5. Can we generate e�ciently these optimal implementations?

Note that these questions may arise in a context di�erent from polynomial evaluation.
Indeed, several of them have already been mentioned (and sometimes answered) in Sec-
tion 4.1 for the particular case of powers an.

What we aim at is a uniform approach to answer these questions. Inspired by the
generation algorithm from [Rev09, �6.1], we propose to adopt an inductive view on the
arithmetic expressions. Using the concepts of evaluation schemes (the model we will use
for implementations, see Section 5.1.2) and decompositions (see Section 5.1.3), we will
describe a general framework for the analysis of arithmetic expressions in Section 5.2.
This will serve as a basis for the development of speci�c algorithms for purposes like
counting the number of implementations or optimizing according to a given measure (our
model for optimization criteria, introduced in Section 5.4).

4.3 Contributions of this thesis

4.3.1 Algorithms introduced in the following chapters

The generic approach mentioned previously, and explained in details in Chapter 5, will
be applied to tackle three categories of issues:

Generation issues

Recall that one of our goals is to generate code for the evaluation of an arithmetic
expression. We propose in Section 5.3 a �rst algorithm, called Generate, whose purpose

88 Chapter 4. On the evaluation of arithmetic expressions

is to compute all the evaluation schemes of a given arithmetic expression. This algorithm
is the �rst example to illustrate our approach, and is mainly for theoretical purpose.

However, allowing the user to provide some constraints that will be used in the genera-
tion process leads to an e�ective algorithm named GenerateWithHint (see Section 5.4.3).
It computes, given a measure on the evaluation schemes, all the schemes for an expression
whose measure is less than a given threshold. This algorithm is used:

1. at the end of Chapter 5, in order to study the number of squarings lying in the
evaluation schemes for an with a minimum number of multiplications;

2. in Section 8.2, in order to generate evaluation schemes for polynomials which achieve
a minimum number of non-scalar multiplications.

Counting issues

We propose three counting algorithms. The �rst one, Algorithm Count (see Section 6.1),
allows us to compute the number of evaluation schemes for a given arithmetic expression.
This algorithm is used in Section 6.2.1 to retrieve several known sequences (like the
number of schemes for an when n ∈ N). Moreover, by applying it in Section 6.2.2 to
univariate polynomials p(x) and then to special bivariate polynomials q(x, y) = α+y ·p(x)
with deg(p) = n, we deduce two new sequences, A169608(n) and A173157(n).

In the previous algorithm, we have associated only one value to the given arithmetic
expression: its number of schemes. Instead of considering the set of schemes as a whole, we
can consider a partition of it with respect to some measure. Algorithm CountPerMes relies
on this idea to compute recursively the distribution of the evaluation schemes for a given
arithmetic expression according to a measure. We apply this algorithm in Sections 6.4.2
and 6.4.3 to deduce the distribution of the evaluation schemes for a univariate polynomial
according to �rst the number of multiplications, and second the latency. In particular,
we obtain a Gaussian-like shape for the latency, which con�rms the intuition that there
are only few optimal and nearly optimal schemes according to this measure.

In addition, as we did for generation, we design in Section 6.4.4 a counting algorithm,
extending the previous one by adding a threshold at input that is used in order to re-
duce the number of schemes considered during the computation. This yields Algorithm
CountWithHint that we use:

1. to compute faster than with CountPerMes the number of schemes for univariate
polynomials having an optimal or nearly optimal latency;

2. to compute the number of schemes achieving the minimum number of matrix-matrix
multiplications for p(A) (see Section 8.2.2).

Optimization issues

In Section 7.1.2, we introduce a �rst optimization algorithm named Optimizer. While
this algorithm is fast, its correctness requires the measure we want to optimize to be such
that optimizing the subexpressions can lead to the optimal value for the initial expression.
This is satis�ed by the latency, but not by the number of multiplications, for instance.
We illustrate this algorithm with three examples:

4.3. Contributions of this thesis 89

1. the computation of the minimum latency for polynomial evaluation schemes (see
Section 8.1.2);

2. the heuristic computation of the minimum number of multiplications needed to
compute an (see Section 7.1.3);

3. the heuristic optimization of �rst the latency, and second the accuracy, for a poly-
nomial (see Section 7.3.1).

For measures that do not satisfy the requirement for the correctness of Optimizer,
we propose three alternatives: OptimizerSet (see Section 7.2.1), which is a variation of
Optimizer that optimizes a criteria for a set of expressions rather than a single expression;
GlobalOptimizer (see Section 7.2.2) that, like CountPerMes, computes recursively all the
achievable measures, so that the minimum can be extracted at the end of the process; and
GlobalOptimizerWithHint (see Section 7.2.2) that is a variation of GlobalOptimizer
with additional constraints. These three approaches are compared for the minimization
of the number of multiplications for an, showing that OptimizerSet is faster for small
values of n, while GlobalOptimizerWithHint is faster for large values of n. Moreover:

1. GlobalOptimizerWithHint is used in Section 7.3.1 in the context of polynomial
approximation in order to optimize �rst the latency, and then the accuracy;

2. GlobalOptimizerWithHint is used in Section 8.2.2 in order to determine the min-
imum number of matrix-matrix multiplications for the evaluation of p(A);

3. OptimizerSet is used in Section 8.2.2 to determine the minimum number of matrix-
matrix multiplications for the simultaneous evaluation of the odd and even parts of
p(A).

Finally, we introduce Algorithm BiOptimizer whose purpose is to compute, given
two criteria, the best trade-o�s that can be achieved. We present two applications for
this last algorithm:

1. the search of a trade-o� between a minimum latency and a maximal delay for the
evaluation of special bivariate polynomials on the ST231 processor;

2. a case study of the trade-o� between latency and accuracy for a polynomial.

Summary

A summary of the di�erent algorithms that will be introduced in the next chapters is
provided by Table 4.1. These algorithms, along with support for the arithmetic expres-
sions and the measures we used for the di�erent applications mentioned above, have been
implemented in a C++ library. The total size of the code is around 3000 lines.

All the results and timings presented in the following chapters have been obtained us-
ing this library. Except for examples involving numerical accuracy issues (Sections 7.3.1,
7.3.3 and 8.1), computations were carried out on a server with two Quad-Core AMD
OpteronTM running at 2.4GHz, and 80Go of RAM. When dealing with numerical accu-
racy, we used a desktop machine with an Intel R© CoreTM 2 Duo processor at 2.66 GHz

90 Chapter 4. On the evaluation of arithmetic expressions

Table 4.1: Main algorithms introduced in the next chapters.

Algorithms
Type of analysis

Generation Counting Optimization

Count
Optimizer

BiOptimizer

OptimizerSet

abstraction of the
set of evaluation
schemes by one
value

Generate CountPerMes GlobalOptimizer

abstraction of the
set of evaluation
schemes by its im-
age according to a
given measure

GenerateWithHint CountWithHint GlobalOptimizerWithHint

abstraction of the
set of evaluation
schemes by its im-
age according to a
given measure and
limitation using a
given threshold

and 2Go of RAM. In fact, this machine provided newer versions of the libraries MPFR4

and MPFI5 that we used in order to compute error bounds.
Finally, notice that the examples we present in the following chapters take mainly

place in the context of CGPE and the generation of C code for the ST231 processor. In
particular, for the computation of the latency, we will always consider a cost of 1 and 3
cycles for + and ×, respectively.

4.3.2 Other contributions

In addition to the algorithms listed above, this second part of the thesis o�ers three other
contributions.

Asymptotic study of several sequences

Section 6.3 is dedicated to the study of several sequences that appear in the experiments
using Algorithm Count. More precisely:

1. following [FS09, Proposition VII.5] which gives the asymptotics for the number of
schemes for an, we obtain the asymptotics for the number of schemes for a · bn;

2. using the asymptotics for the case of a · bn, we prove that the logarithm of the
sequence A169608(n) is in Ω(n2) and in O(n3);

4http://www.mpfr.org/
5http://perso.ens-lyon.fr/nathalie.revol/software.html

http://www.mpfr.org/
http://perso.ens-lyon.fr/nathalie.revol/software.html

4.3. Contributions of this thesis 91

3. we deduce the same result for the sequence log
(
A173157(n)

)
by comparing it to

log
(
A169608(n)

)
.

Improvement of the software tool CGPE

Thanks to the library we have developed, we were able to partially rewrite the soft-
ware tool CGPE. First, The resulting new design of CGPE di�ers from the previous
one in two points: First, we added a precomputation with Optimizer to determine the
minimum latency for the evaluation of the polynomial at input, and how to achieve it;
Second, inspired by GenerateWithHint, we strengthen the constraints in the step pro-
ducing schemes by adding systematically numerical and schedule checkings within this
step. We refer to Section 8.1 for the details. This rewriting of CGPE has two main
consequences:

1. on average, a signi�cant speed-up in the overall generation process is achieved.
Indeed, we observe on average a relative gain of about 50% in the generation time;

2. the usage of the pre-computation with Optimizer increases the relevance of schemes
computed in the �rst step of CGPE, while demanding fewer parameters to be pro-
vided by the user.

Optimality of the evaluation of p(A) and exp(A) for small polynomial degrees

The experiments involving polynomial matrices, mentioned previously and detailed in
Section 8.2, lead us to three interesting conclusions:

1. Paterson and Stockmeyer's algorithm [PS73, Algorithm B] is optimal in terms of
the number of matrix-matrix multiplications for an evaluation of p(A) only based on
additions and multiplications (without preconditioning), at least for deg(p) ≤ 15;

2. the evaluation schemes for p(A) achieving the minimum number of non-scalar mul-
tiplications can be classi�ed into three categories (one of them being the variants
of Paterson and Stockmeyer's algorithm);

3. Higham's approach for the simultaneous evaluation of the odd and even parts of a
given polynomial p (problem arising for the evaluation of exp(A)) is shown to be
optimal, at least for deg(p) ≤ 7.

92 Chapter 4. On the evaluation of arithmetic expressions

Chapter 5

How to model and analyze

implementations of arithmetic

expressions

In this chapter, we present a way to model and analyze the di�erent ways of evaluating
some arithmetic expression thanks to the concept of evaluation scheme. The �rst section
deals with the formal de�nition of evaluation schemes, while the second section shows
how one can manipulate them algorithmically in order to perform some analysis. Then,
a third section illustrates how to generate the evaluation schemes exhaustively. Finally,
we will discuss how to model an optimization criterion in a fourth section and propose
an algorithm for generating all the evaluation schemes that satisfy an optimization con-
straint.

5.1 Modelling implementations with the concept of eval-

uation scheme

5.1.1 Evaluation of arithmetic expressions

An arithmetic expression is basically a mathematical object made of constants in some
commutative ring R and one or several variables, that are linked together by additions1

and multiplications. Evaluating this expression means computing its value in R when one
gives some values for all the variables. Without loss of generality, we can replace every
constant in our expression with symbolic variables (whose value will always be the same
for all evaluations) and only consider arithmetic expressions without constants.

The evaluation can then be performed as follows: we start with the actual values for
each variable, then we take two already known values and we add or multiply them in
order to create a new value, �nally we go on until we get the value corresponding to our
arithmetic expression. This corresponds to the concept of straight-line program [BCS97,
�4.1]:

1Subtraction can be considered as a special case of addition, as noticed in [Bre74].

94 Chapter 5. How to model and analyze implementations of arithmetic expressions

De�nition 5.1. A straight-line program (SLP) is a �nite sequence (a1−k, . . . , a−1, a0, a1, . . . , ar)
such that:

• for all 1 ≤ j ≤ k, a1−j represents a value in R for the jth variable;

• for all 1 ≤ i ≤ r, ai = am � an with � ∈ {+,×} and m,n < i.

We will say that a given SLP evaluates an arithmetic expression if the �nal result
ar for this SLP is indeed the value corresponding to our expression, whatever the values
we choose for the variables. For instance, Figure 5.1(a) shows an SLP for the evaluation
of a15. As noticed in [BCS97, page 105], such a sequence of binary operations can also
be represented as a direct acyclic multigraph2 (DAG) where all the nodes have an outer
degree of 0 or 2. The DAG corresponding to the SLP in Figure 5.1(a) is given in Fig-
ure 5.1(b). Alternatively, one may consider ordered binary trees, like in Figure 5.1(c),
instead of DAGs.

Figure 5.1: Example of SLP for evaluating a15 and its corresponding DAG and binary
tree.

a0 = a

a1 = a0 × a0 // a2

a2 = a1 × a0 // a3

a3 = a1 × a2 // a5

a4 = a3 × a3 // a10

a5 = a4 × a3 // a15

(a) SLP for evaluating a15.

a

×

×

×

×

×

(b) Corresponding DAG.

×

×

×

×

a a

×

×

a a

a

×

×

a a

×

×

a a

a

×

×

a a

×

×

a a

a

(c) Corresponding ordered binary tree.

Given such a tree, we can get back to the corresponding DAG by merging the internal
node corresponding to the same subexpression. It is also straightforward to retrieve the
corresponding arithmetic expression. Going from an arithmetic expression to an ordered
binary tree is not as direct since one may perform some choices like the order of the
di�erent terms or the way to perform a sum/product of more than two terms with binary
operations only. These choices are usually dictated by conventions like left to right
summation.

The di�erent ways to evaluate a given arithmetic expression come from how we read
this mathematical object. Moreover, one can replace the expression with a mathemati-
cally equivalent one by using some algebraic identity before performing the evaluation.
While this transformation can be quite sophisticated, like when preconditioning a poly-
nomial [Knu62, Eve64] in order to evaluate it with as few multiplications as possible, we
will restrict ourselves, as in [Bre74] and [Kuc77], to the basic algebraic identities inferred

2When one binary operation uses the same operand twice, there will be two edges from the node
labelled with this binary operation to the node corresponding to the operand. Hence, the appropriate
structure is a multigraph. Nevertheless, this fact does not matter much in the sequel, so we will simply
say graph instead of multigraph.

5.1. Modelling implementations with the concept of evaluation scheme 95

from the commutative ring structure, that is, commutativity, associativity, and distribu-
tivity. Let us list these rules exhaustively, and illustrate their e�ect on a given internal
node within an ordered binary tree:

r1 [commutativity of +]

+

a b →

+

b a

r2 [commutativity of ×]

×

a b →

×

b a

r3 [associativity of +]

+

+

a b

c

→

+

a +

b c

r4 [associativity of ×]

×

×

a b

c

→

×

a ×

b c

r5 [distributivity of × over +]

×

a +

b c →

+

×

a b

×

a c

r6 [factorization]

+

×

a b

×

a c →

×

a +

b c

Notice that each rule is reversible, in the sense that we can go from the right hand side
back to the left hand side using only the listed rules (for rules r3 and r4, use commutativity
on both nodes, then associativity, and again commutativity on both nodes).

Previous works [KM74, Bre74, Kuc77] essentially used these rules in order to turn an
ordered binary tree into another one with a smaller depth or with much more instruction
level parallelism. This has yielded several bounds on the time needed to evaluate an
arithmetic expression depending on the number of variables, the level of nested paren-
theses, and the number of processors available. Here, we intend to focus more on the set
of all the trees that we could obtain by applying these rules successively. We de�ne this
set as follows:

De�nition 5.2. Let f be some arithmetic expression, and t be the ordered binary tree
for evaluating f that is deduced from reading f using some implicit rules to cope with
ambiguity. We will denote by P(f) the closure of {t} under the rules r1 to r6, and we
will call it the set of the parenthesizations of f hereafter.

In order for this de�nition to be correct, we need to ensure that the set P(f) is the
same regardless of the way we read f to deduce the �rst tree t. This holds since the
variations in the reading of f can be handled using commutativity and associativity only.
The motivation in adding distributivity (and so factorization) to the set of rules lies in

96 Chapter 5. How to model and analyze implementations of arithmetic expressions

the fact that this rule is the key to increase parallelism in some arithmetic expressions,
like when moving from Horner's rule to Estrin's rule [Kuc77].

Now, one can think that this set of rules is quite restrictive. Indeed, adding new vari-
ables or changing the set of variables by some precomputation is not possible. Moreover,
simple algebraic identities like a2 − b2 = (a + b) · (a − b) or a − a = 0 are not covered.
Nevertheless, our choice is motivated by two reasons:

1. Given an arithmetic expression f , the diversity in the set of the possible parenthe-
sizations P(f) already allows to derive interesting results.

2. We want the set P(f) to be �nite, so that an exhaustive analysis of it makes sense.
To handle an identity like a − a = 0, we need a rule in order to go from 0 to
a − a. But this kind of rule can be used anywhere in order to make the size of an
evaluation tree arbitrary large, and thus P(f) would be in�nite. In our simple set
of rules, only distributivity increases the size of a tree, but it also pushes down the
multiplications so that we cannot use this rule endlessly.

Finally, we have not considered the case of other operators here. When working
within a �eld K, we may want to use division. We could have added a few rules for
this operation, like one to go from (a + b)/c to a/c + b/c and vice versa. However, we
have mainly worked on mathematical objects de�ned without divisions, like powers of a
and polynomials. In this context, division may help (we can evaluate a15 as a16/a for
instance) but the relevant identity is a/a = 1, which would give us an in�nite set for
P(f). Another operator of interest is the fused multiply-add (FMA) which maps (a, b, c)
to a · b+ c. Again, it is possible to add speci�c rules to handle it, but its ternary nature
would make things more di�cult, and we have not investigated this for now.

5.1.2 Going from evaluation trees to evaluation schemes

Typically, computations will be carried out using a standard �xed-point or �oating-point
arithmetic. In this context, the only rules that still hold among the rewriting rules
mentioned above are the commutativity of + and the commutativity of × [MBdD+10,
�2.4]. Applying any other rule may lead to a di�erent numerical result.

We are actually interested in the potentially numerically distinct evaluations of a given
arithmetic expression f . For u, v ∈ P(f), let us note u ≡ v when one can go from u to v
only by applying commutativity of + and ×. Then, what we want to consider is the set of
equivalence classes for the relation ≡ in P(f), which we will denote by S(f) = P(f)/≡.

The e�ect of commutativity on an ordered binary tree is to swap the two children of
a given internal node. Thus, considering equality modulo ≡ means that the order of the
children in our trees does not matter. Therefore, one way to deduce S(f) from P(f) is
to turn all the ordered binary trees in P(f) into unordered binary trees and to keep only
one occurrence of each tree obtained. Notice that, in terms of SLPs, going from P(f) to
S(f) means that we do not mind about the order of the operands for each operation in
the sequence forming the SLP.

Figure 5.2 illustrates how to go from the arithmetic expression a0 + a1 + a2 to all its
evaluation schemes. If we read this expression with left-associativity for + in mind, we
will obtain a �rst ordered binary tree for the evaluation a0 + a1 + a2, which is drawn in

5.1. Modelling implementations with the concept of evaluation scheme 97

blue in the �gure. Then, we apply commutativity of + (rule r1) and associativity of +
(rule r3) as much as we can, so as to get a set of ordered binary trees closed by these
rules3, that is, the set P(a0 + a1 + a2) of all parenthesizations for a0 + a1 + a2. Then, we
compute the equivalence classes in P(a0 + a1 + a2)/≡ = S(a0 + a1 + a2). We obtain the
three classes represented in dashed boxes, that is, the three evaluation schemes for our
expression a0 + a1 + a2.

Figure 5.2: The set of all the evaluation schemes (represented as dashed boxes) for
a0 + a1 + a2.

+

+

a0 a1

a2

+

a2 +

a0 a1

+

+

a1 a0

a2

+

a2 +

a1 a0

r1

r1

r1 r1

+

a0 +

a1 a2

+

a0 +

a2 a1

+

+

a1 a2

a0

+

+

a2 a1

a0

r1

r1

r1 r1

+

+

a0 a2

a1

+

a1 +

a0 a2

+

+

a2 a0

a1

+

a1 +

a2 a0

r1

r1

r1 r1

r3

r3

r3 r3

r3r3

Note that it was important to allow commutativity for + in a �rst step before reducing
modulo ≡. Indeed, we would never have gone from the initial ordered tree in blue to
the dashed box in red at Figure 5.2 using only associativity. Therefore, we would have
missed the evaluation scheme corresponding to this box.

5.1.3 Decompositions and subexpressions for an arithmetic ex-

pression

One advantage of representing evaluation schemes as binary trees lies in the fact that the
inductive nature of trees helps to think in a divide-and-conquer way. Thus, a complex

3There is no multiplication, so that the other rules could never be applied.

98 Chapter 5. How to model and analyze implementations of arithmetic expressions

scheme can be viewed as a binary operation on two simpler schemes, and so on until
we arrive at a leaf corresponding to one of the variables within the initial arithmetic
expression. This is summarized by the following characterization of evaluation schemes:

De�nition 5.3. Given an arithmetic expression f , an evaluation scheme s for f is:

• either a single leaf. In this case, f is a variable and s is therefore its unique
evaluation scheme. In the following, we will call such a scheme a trivial scheme,
and we will usually speak about the variable itself instead of its scheme;

• or an unordered binary tree with a root labelled with an operator � ∈ {+,×} and two
(potentially equal) sons s1 and s2. In this case, we will speak about a non-trivial
scheme.

Moreover, in the second case, we can completely de�ne s by the pair (�, {s1, s2}). In the
sequel, such a pair will be referred to as the decomposition of the scheme s.

Notice that we used a set of schemes in this de�nition of decomposition. Indeed,
evaluation schemes are unordered binary trees, and using a set helps to have no order
between s1 and s2 since {s1, s2} = {s2, s1}.

Now, let us generalize this concept of decomposition to arithmetic expressions. A
given evaluation scheme s being an unordered binary tree with operators at its internal
nodes and variables at its leaves, we can associate a mathematical expression to it. More
precisely, we can de�ne inductively the semantic ν(s) of the scheme s by:

• if s is a leaf, then ν(s) = x where x is the variable labelling the leaf;

• otherwise, s = (�, {s1, s2}) and ν(s) := ν(s1) � ν(s2).

Thus, this function ν allows us to go back from an evaluation scheme to the underlying
arithmetic expression. With it, we can extend the concept of decomposition to arithmetic
expression in the following way:

De�nition 5.4. Let f be an arithmetic expression not reduced to a single variable. For ev-
ery evaluation scheme s = (�, {s1, s2}) for f , we can associate the pair (�, {ν(s1), ν(s2)}).
Such a pair will be called thereafter a decomposition of f , and we will denote the set
of all the decompositions for f by

D(f) :=
{

(�, {ν(s1), ν(s2)}), (�, {s1, s2}) = s ∈ S(f)
}
.

Moreover, whenever f is a variable, we de�ne D(f) := ∅ and we say that f is trivial.

If we consider the example of Figure 5.2, the decomposition associated to the scheme

corresponding to the yellow box for instance is
(

+,
{

a2 ,

+

a0 a1

})
. Thus, we deduce

the decomposition (+, {a2, a0 + a1}) for a0 + a1 + a2. By proceeding in the same way
with the two other evaluation schemes for a0 + a1 + a2, we obtain all its decompositions:

D(a0 + a1 + a2) =
{(

+, {a2, a0 + a1}
)
,
(
+, {a1, a0 + a2}

)
,
(
+, {a0, a1 + a2}

)}
.

5.2. Algorithmic analysis of the set of evaluation schemes 99

Note that the number of decomposition for an arithmetic expression is always smaller
than its number of evaluation schemes, because of the semantic abstraction performed
with ν.

The set of decompositions for a given arithmetic formula f will play an important role
in the sequel. Indeed, this is the key that will allow us to perform a divide-and-conquer
analysis of the set of evaluation schemes S(f), since it turns a formula f into one operand
with two smaller formulas as operands. These formulas can be analyzed recursively in
order to deduce some relevant information of S(f). Because of the fact that f usually
has several decompositions, and because of the successive recursive calls we may perform,
many formulas are analyzed when we want some information on S(f). This leads us to
introduce the following de�nition:

De�nition 5.5. Let f be an arithmetic expression. An arithmetic expression g is a
subexpression of f if there exists an unordered binary tree s such that ν(s) = g and s
is a strict subtree of at least one element of S(f).

For instance, if we go back to the example of a0 + a1 + a2 from Figure 5.2 and look at
all the arithmetic expressions that we can form from the strict subtrees of the 3 evaluation
schemes, we obtain the following list of subexpressions: a0, a1, a2, a0+a1, a0+a2, a1+a2.

Roughly speaking, the subexpressions of an expression f are all the arithmetic expres-
sions that are computed as intermediate quantities in the evaluation schemes in S(f).
Thus, we may need to consider all of them to analyze S(f). Note that, because we only
consider strict subtrees, f cannot be a subexpression of itself. Moreover, a variable has
no subexpression since its only scheme is a leaf, which has no strict subtree.

5.2 Algorithmic analysis of the set of evaluation schemes

Now that we have delimited the set S(f) of all evaluation schemes for a given arithmetic
expression f , we intend to address issues like counting the number of schemes in S(f),
or �nding an optimal scheme according to a given criteria. Our approach will consist in
elaborating for each problem some generic algorithm, implementing it in C++, and testing
it on one or several expressions.

As we have seen in the previous section, the concept of decomposition allows us to
adopt a divide-and-conquer point of view, and thus to design divide-and-conquer analysis
algorithms. The analysis of S(f) can then be summarized as going through all the
decompositions of f , doing recursive calls, and deducing some result from what has
been computed recursively. Since we have to deal with several arithmetic expressions
recursively, our algorithm should be designed so as it can handle a family of arithmetic
expressions F . This section discusses the properties that must be satis�ed by F , presents
several examples of families of arithmetic expressions, and ends up with some practical
considerations.

5.2.1 Requirements for a family of arithmetic expressions

In order for a divide-and-conquer analysis of S(f) to work for any f ∈ F , the family of
arithmetic expressions F should however satisfy a few properties:

100 Chapter 5. How to model and analyze implementations of arithmetic expressions

1. We have to guarantee that any subexpression g of f ∈ F is also in F in order to
have a correct input while doing a recursive call.

2. We need a partial order ≺F such that for each f, g ∈ F , g is a subexpression of f
implies g ≺F f . This is crucial to ensure the termination of the analysis: we need
to perform recursive call on "smaller" objects. Notice that one cannot construct
an in�nite decreasing sequence for ≺F because subexpressions come from strict
subtrees and, as we start with �nite trees, we will end up in �nite time with a leaf
(that is, a tree without subtrees).

3. In fact, the partial order of the previous point is not su�cient. Storing e�ciently
the results of all the recursive calls requires that we provide a total order <F on
F . As before, we can see that (F , <F) has a minimum. Notice also that one can
de�ne the equality =F from <F (f =F g ⇔ ¬(f <F g) and ¬(g <F f)). This was
not possible with the partial order ≺F because of incomparable elements.

4. Finally, this approach can be applied only if we have a way to compute the set D(f)
of all the decompositions for a given f ∈ F . Therefore, we must suppose that we
have a mapping, named decompose thereafter, that returns for every f ∈ F the list
of all the decomposition for f .

Note that, if we have a total order <F as in point 3, we can lighten the notation for
the decompositions of an expression f . In the sequel, we will write such decompositions
(�, f1, f2) instead of (�, {f1, f2}), with the implicit hypothesis that f1 ≤F f2.

5.2.2 Examples of arithmetic expression families

Let us see a few families of arithmetic expressions which satisfy the requirements stated
in the previous section.

Powers of a

One easy example is the family of the powers of some variable a, that is, F = {an, n ∈
N>0}:

• Any element an of F can be represented e�ciently since the whole information lies
in its exponent n.

• We can naturally extend the natural order < on N>0 to F by saying that xi <F xj

if and only if i < j,

• Given n ∈ N>1, the decompositions for xn will all have the form (×, xi, xj), where
1 ≤ i ≤ j ≤ n− 1 and i+ j = n. Hence, we can easily generate D(xn).

• Finally, we can deduce from the decompositions of xn that its subexpression set is
{xi, 1 ≤ i ≤ n− 1}, which is formed by all the expressions less than xn.

Therefore, F = {an, n ∈ N>0} is a suitable family of arithmetic expressions. In a same
way, if we are interested in a particular power aN with N > 1, we can also consider the
family {an, 1 ≤ i ≤ N} with the encoding and total order as above.

5.2. Algorithmic analysis of the set of evaluation schemes 101

Sums of n+ 1 variables

Suppose that we have a sequence (ai)i∈N of variables and that we want to evaluate
∑n

i=0 ai
for some n ∈ N. Subexpressions for this sum will be of the form

∑
i∈I ai with I some

subset of {0, . . . , n}. Thus, let us consider the family F = {
∑

i∈I ai, I ⊂ N �nite}.

• An element f ∈ F can be represented by its support (the set of indices for all the
variables that appear in f). This support I can in turn be encoded as a non-negative
integer σ(I) =

∑
i∈I 2i.

• We can use the natural order in N to de�ne the order <F . Note that the subexpres-
sions of f =

∑
i∈I ai for a given �nite I ⊂ N are the sums with a support J (I,

which are less than f with respect to <F since σ(J) < σ(I).

• The decompositions for f =
∑

i∈I ai will all be of the form (+,
∑

j∈J aj,
∑

k∈K ak)

with4 J t K = I and σ(J) < σ(K) (we cannot have equality here because each
variable in f will only appear on one side of the + operator). If we denote by iM
the largest number in I and let I ′ := I \ {iM}, we can generate all the pairs (J,K)
corresponding to decompositions for f by enumerating all the bipartitions (J,K ′)
of I ′ with J 6= ∅ and setting K = K ′ ∪ {iM}. Indeed, iM being the largest number
in I, it has to belong to K to ensure that σ(J) < σ(K), and then J can be any
non-empty subset of I ′.

Therefore, F = {
∑

i∈I ai, I ⊂ N �nite} is a suitable family of arithmetic expressions.

Univariate polynomials

Finally, let us consider the case of univariate polynomials, which is a bit more sophis-
ticated. The main mathematical object of interest is p(x) =

∑n
i=0 ai x

i. Among the
subexpressions of p(x), we have, like for the sums of variables, expressions of the form∑

i∈I ai x
i where I ({0, . . . , n}. Moreover, we can �nd two other types of subexpressions

for p(x):

• all the powers xi with 1 ≤ i ≤ n,

• sums
∑

i∈I ai+k · xi with I ({0, . . . , n} and 1 ≤ k ≤ n−maxi∈I i.

These subexpressions appear when we apply factorization (rule r6 page 95) to binary
trees for the evaluation of p(x).

Therefore, the family to consider in this case is F = {xn, n ∈ N>0}∪{
∑

i∈I ai+k · xi, I ⊂
N �nite, k ∈ N}.

• We can encode some f ∈ F with a pair of non-negative integers (mf , nf):

1. mf will represent the support for the sum. Having mf = 0 will mean that f
is actually a positive power of x. Otherwise, f =

∑
i∈I ai+k · xi for some �nite

set I and we de�ne mf := σ(I) =
∑

i∈I 2i.

4Here and hereafter, the symbol t is to indicate a union of disjoint sets.

102 Chapter 5. How to model and analyze implementations of arithmetic expressions

2. nf will be either the positive exponent n of f = xn when mf = 0, or the
non-negative integer k used to shift the indices in a sum (or, equivalently, the
power of x which has already been factored out of f).

• Then, we can de�ne <F such that g <F f if and only if (mg, ng) <lex (mf , nf), where
<lex is the lexicographical order on N2. Let us check that this order is compatible
with the subexpressions:

* Subexpressions for xn are xi with 1 ≤ i ≤ n−1. This case is handled correctly
since (0, i) <lex (0, n).

* A power xi is always smaller than a monomial or a sum of monomials since
(0, ·) <lex (σ, ·) when σ > 0. This covers the case of powers being subexpres-
sions of sums.

* Finally, g =
∑

i∈I ai+k · xi is a subexpression of f =
∑

j∈J aj+k′ · xj when:
1. k ≥ k′ (we may have factored by some power of x),

and

2. I + (k − k′) := {i + k − k′, i ∈ I} ⊆ J (we may have removed some
monomials).

Note that we cannot have both equalities here, since this would imply g = f
and f is not a subexpression of itself.

This implies that mg = σ(I) < σ(J) = mf since, either k > k′ and σ(I) ≤
2k
′−kσ(J) < σ(J), or k = k′ and we cannot have the equality in the second

part so that I (J , hence σ(I) < σ(J). Therefore, g <F f since (mg, k) <lex

(mf , k
′).

• It remains to see how one can compute the set of decompositions for all f ∈ F .
We have already dealt with the case where f = xn in the �rst example (even if we
need to adjust the encoding for this example). As for f =

∑
i∈I ai+k · xi, we get

two types of decompositions:

* First, we can split the sum into two parts as in the second example. Such
decompositions are of the form (+, q(x), r(x)) where every monomial from
p(x) ends up either in q(x), or in r(x), except aiM xiM which has to be in r(x)
to ensure that q(x) <F r(x). Generating these decompositions can be done in
the same way as we did for sums in the previous example.

* Second, we can factor by some power xr with 1 ≤ r ≤ mini∈I i. The corre-
sponding decompositions are (×, xr,

∑
i∈I−r ai+(k+r) · xi with I−r := {i−r, i ∈

I}, and their generation is not an issue.

5.2.3 Practical considerations

Let us �rst introduce a useful notation:

Notation 5.1. Given a �nite set X, we will denote the subsets of X of size 1 or 2 by
P2(X) := {S ⊂ X, 1 ≤ |S| ≤ 2}, where |S| denotes as usual the cardinality of the set S.

5.2. Algorithmic analysis of the set of evaluation schemes 103

This notation allows us to be more precise on the nature of the decompositions for a
non-trivial arithmetic expression f ∈ F . Indeed, since we suppose that any subexpression
g of f has to be in F , all the decompositions (�, {f1, f2}) (or (�, f1, f2) with f1 ≤F f2)
for f are mathematical objects belonging to the set {+,×} × P2(F).

We can then summarized the requirements pointed out in Section 5.2.1 as follow:

Assumption 5.1. In the sequel, each time we speak about a family of arithmetic expres-
sions F , we will assume that we have at our disposal:

• a reasonable way to encode the elements of F ,

• a total order <F on F ,

• a map decompose : F → P
(
{+,×} × P2(F)

)
such that:

1. For all f ∈ F and subexpression g of f , g is also in F and g <F f . In other
words, F is closed with respect to the concept of subexpression, and any expression
is always greater than any of its subexpressions.

2. For all f ∈ F , decompose(f) is the set of all the decompositions for f and can be
computed algorithmically.

In practice, the family F is given in the form of a class providing two methods <
and decompose. Elements of F will then be instances of this class. An example of C++
interface for such a class is shown in Figure 5.3.

Figure 5.3: Example of C++ interface for a class implementing a family of arithmetic
expressions.

class F

{

private:

// some internal variable(s)

public:

// some relevant constructor(s)

~F();

bool operator<(const F) const;

std::list<decomp<F> > decompose() const;

void print() const;

// some other useful methods

};

Here, decomp<F> is a structure encoding objects in D(F) = {+, ×} × P2(F).

104 Chapter 5. How to model and analyze implementations of arithmetic expressions

In the sequel, we will introduce several algorithms to generate schemes in S(f), count
them or �nd optimal schemes according to a given criteria. The input of one such al-
gorithm will always contain some value f ∈ F . In practice, our C++ implementation of
these algorithms are parameterized by a class F using the template mechanism, so that
they may be used for any family of arithmetic expressions F as in Assumption 5.1, as
soon as one provides a C++ class F for it.

5.3 Exhaustive generation of the evaluation schemes

The �rst thing we may want to do with evaluation schemes is to generate them. In this
section, we will present a generalized version of the algorithm introduced in [Rev09, �6.1]
to compute the evaluation schemes for univariate and bivariate polynomials. Contrary to
the original version which was based on dynamic programming [CLRS09, �15], we present
here a divide-and-conquer algorithm (Algorithm 5.1) using the memoization technique
[Mic68]. With memoization, we do not need to have some extra knowledge on the pattern
of the successive recursive calls, as it is the case for dynamic programming. Therefore, it
is more suited to deal with families of arithmetic expressions in all generality.

Algorithm 5.1: Generate

Input : f ∈ F
Output : S = set of all the evaluation schemes for f
Parameter: a hash table h : F → S(F), initially empty, where the results

obtained during recursive calls will be stored

if h[f] is de�ned then return h[f] // the result was already computed1

`← decompose(f)2

if ` = ∅ then S ← {f} // f is a variable3

else S ← ∅4

foreach (�, f1, f2) ∈ ` do5

S1 ← Generate(f1)6

if f1 = f2 then7

for {s1, s2} ∈ P2(S1) do S ← S ∪
{ �

s1 s2

}
8

// for any set in P2(S1) of size 1, we set s1 = s2.

else9

S2 ← Generate(f2)10

for (s1, s2) ∈ S1 × S2 do S ← S ∪
{ �

s1 s2

}
11

h[f]← S12

return S13

Theorem 5.1. Algorithm 5.1 computes the set of all the evaluation schemes for the
arithmetic expression f ∈ F given as input. Moreover, each time the algorithm adds a
new element in S, this element is a new evaluation scheme for f .

5.3. Exhaustive generation of the evaluation schemes 105

Proof. Let us prove the correctness of Algorithm 5.1 by complete induction on f ∈ F .
When f admits no decomposition (in particular, when f is the minimum for (F , <F)),
f is a variable. In this case, the only evaluation scheme for f is the leaf labelled with f
and the algorithm is correct.

Let f ∈ F be a non-trivial arithmetic formula such that Generate(g) is correct for
all g <F f . Since f is non-trivial, all its evaluation schemes have the shape (�, {s1, s2})
where each si, i ∈ {1, 2}, is a scheme for some subexpression fi = ν(si) of f . We may
assume without loss of generality that f1 ≤F f2, so that the corresponding decomposition
for f of the scheme (�, {s1, s2}) can be written (�, f1, f2) ∈ D(f). Therefore, the set of
evaluation schemes we are aiming at is:

S(f) =
⊔

(�,f1,f2)∈D(f)

{ �

s1 s2
∈ S(f), ν(s1) = f1 and ν(s2) = f2

}
=

⊔
(�,f1,f2)∈D(f)

{ �

s1 s2
∈ S(f), s1 ∈ S(f1) and s2 ∈ S(f2)

}
=

⊔
(�, f1, f2) ∈ D(f)

f1 =F f2

{ �

s1 s2
∈ S(f), s1 ∈ S(f1) and s2 ∈ S(f1)

}

t
⊔

(�, f1, f2) ∈ D(f)
f1 <F f2

{ �

s1 s2
∈ S(f), s1 ∈ S(f1) and s2 ∈ S(f2)

}
.

Algorithm 5.1 considers all the decompositions for f with its foreach loop, and then
adds evaluations schemes to the variable S depending on the equality of f1 and f2. This
approach matches the last part of the aforementioned equation. What remains is to show
that, in both cases, the algorithm computes accurately and without redundancy the set
of evaluation schemes corresponding to the current decomposition for f .

Let us �x a decomposition (�, f1, f2) for f with f1 <F f2. Because fi <F f for
i ∈ {1, 2}, the inductive hypothesis implies that Si is actually S(fi). What we have to
prove in this case is that

γ : S(f1)× S(f2) →
{ �

s1 s2
∈ S(f), s1 ∈ S(f1) and s2 ∈ S(f2)

}

(s1, s2) 7→
�

s1 s2

is bijective. This function is obviously surjective. Suppose now that5 γ(x, y) ≡ γ(x′, y′).
Because f1 6=F f2, we cannot have x ≡ y′. Hence, we deduce that x ≡ x′ and y ≡ y′

so that (x, y) and (x′, y′) correspond to the same element in S(f1)× S(f2). Therefore, γ

5Remember from Section 5.1.2 that evaluation schemes are equivalence classes for the relation ≡, that
is, equality modulo commutativity.

106 Chapter 5. How to model and analyze implementations of arithmetic expressions

is also injective, so it is bijective and we can conclude that Algorithm 5.1 is correct and
without redundancy in this case.

Suppose now that we have a decomposition (�, f1, f2) for f where f1 =F f2. This
time, we know by induction that S1, which is the result of the unique recursive call, is
equal to S(f1), and we have to show that

γ′ : P2(S(f1)) →
{ �

s1 s2
∈ S(f), s1 ∈ S(f1) and s2 ∈ S(f1)

}

{s1, s2} 7→
�

s1 s2

is bijective. As we consider all singletons and all pairs of schemes for f1 within P2(S(f1)),
γ′ is surjective. Next, let us assume that γ′({x, y}) ≡ γ′({x′, y′}) for some x, y, x′, y′. We
have either x ≡ x′ and y ≡ y′, or x ≡ y′ and y ≡ x′, so we deduce that x, y ∈ {x′, y′}
(that is, {x, y} ⊂ {x′, y′}) and that x′, y′ ∈ {x, y} (that is, {x′, y′} ⊂ {x, y}). Therefore,
{x, y} = {x′, y′}, so that γ′ is also injective, and Algorithm 5.1 is correct and without
redundancy in this case too.

The cost of this algorithm highly depends on the �nal number of evaluation schemes,
and we will see in the next chapter that this number can be quite large even for relatively
small expressions like a degree-6 polynomial (see Section 6.2.2). Therefore, Generate is
usually not a practical algorithm. However, it plays a signi�cant theoretical role since
algorithms that we will introduce in the sequel are heavily based on this one and share its
skeleton. Moreover, algorithm correctness proofs in Chapters 6 and 7 will be much simpler
because we will be able to reuse the work we have done here to show that Generate(f)
actually returns all the evaluation schemes for f and that each scheme was only considered
once.

Remark also that we presented here a complete version of the algorithm, with explicit
memoization through the use of the hash table h as a parameter. For the sake of simplicity,
the following algorithms will be written without the extra lines due to memoization.
However, this technique will still be used implicitly and when we will discuss the costs of
our algorithms.

5.4 How to model an optimization criterion

The main issue with the evaluation of some arithmetic expression is to �nd out one or
several good evaluation schemes to perform it. Of course, the preferred schemes depend
heavily on the context. We may want the scheme to be fast on some architecture with
parallelism, or very accurate, or even with as few operations as possible. This section
introduces a way to tackle these goals through the concept of measure.

5.4.1 Modelling an optimization criterion with a measure

The basic idea in order to compare schemes and to choose the best ones is to associate
to every scheme some value, which will re�ect its quality. This leads us to the following
de�nition:

5.4. How to model an optimization criterion 107

De�nition 5.6. Given a family of arithmetic expressions F , we will call measure any
function ϕ : S(F)→ T , where (T,<T) is a totally ordered set.

Here, we choose to allow any return type T for a measure as soon as we have a
total order on T , which is mandatory in order to be able to compare the quality of
schemes. While (N, <) is a usual choice for T , it can be more relevant to consider more
sophisticated sets for two reasons: �rst, to �t better with what we want to model (see
Example 2 below); second, for e�ciency (see Example 3 below).

While a measure as in the above de�nition is su�cient in order to compare schemes,
it does not �t well with our idea of analyzing schemes in a divide-and-conquer way. For
this purpose, we need to express the measure of a non-trivial scheme s = (�, {s1, s2}) as a
function of � and the measures for s1 and s2. Thus, we introduce the following de�nition:

De�nition 5.7. We say that a measure ϕ : S(F) → T is recursively computable
when there exists a function ρ : {+,×} × T × T → T such that for every non-trivial
scheme s = (�, {s1, s2}), we have:

ϕ(s) = ρ(�, ϕ(s1), ϕ(s2)).

Notice that ρ(a, b, c) must be symmetric with respect to b and c since we can swap s1
and s2 in the decomposition of s.

Not all measures are recursively computable, as we will see in the next section. How-
ever, whenever it is the case, the measure ϕ is completely determined as soon as we have
its values on variables and the corresponding function ρ. Figure 5.4 shows what a C++

interface for a recursively computable measure may look like. Notice that, in addition to
ρ (method rho) and the values on variables (available through the method phi), we also
export the return type T along with a total order for it (available through M::Compare()).
These elements are indeed part of the de�nition of our measure.

5.4.2 Examples of measures

Let us see three examples of measures that we will use to illustrate some of the algorithms
in the next chapters.

Latency on unbounded parallelism

Given an arithmetic expression f , one of the most simple criteria we may want to optimize
is the depth of an evaluation scheme for f . This depth is de�ned as the length of the
longest past from the root to any leaf in the DAG corresponding to the evaluation scheme.
Actually, operators + and×may have di�erent costs (like in the ST231 processor). Hence,
instead of the length, it becomes more relevant to consider the sum of the costs related
to the internal nodes from the root to a leaf. The maximum sum then corresponds to the
latency6 of the evaluation scheme, and our goal is to �nd the minimal feasible latency

6We place ourselves in a situation with unbounded parallelism here, so that an operation can be
executed as soon as the values of its operands are known.

108 Chapter 5. How to model and analyze implementations of arithmetic expressions

Figure 5.4: Example of a C++ interface for a class implementing a measure.

class M

{

public:

// some useful constructor(s)

~Measure();

// definition of T through typedef

struct Compare {

bool operator() (const T& lhs, const T& rhs) const;

};

T phi(VARIABLE);

T rho(OPERATOR, const T&, const T&);

private:

// some useful internal variables

};

among all the evaluation schemes for f . Notice that depth is handled as the special case
where the costs for + and × are both equal to 1.

Let us denote by L(s) the latency for the scheme s and by C� the cost for operator
� ∈ {+,×}, and show that latency is a recursively computable measure. This is a
consequence of the following facts:

• L(
�

s1 s2
) ≤ max{C� + L(s1), C� + L(s2)}.

Indeed, a path from � to a leaf is either � followed by a path in s1, whose cost is at
most C� + L(s1), or � followed by a path in s2, whose cost is at most C� + L(s2).

• L(
�

s1 s2
) ≥ C� + L(si) for i ∈ {1, 2}.

There exists for i ∈ {1, 2} a path pi in si whose cost is L(si), and putting � in front
of pi makes a path in s of cost C� + L(si).

Therefore, we can conclude that:

L(
�

s1 s2
) = C� + max{L(s1), L(s2)}. (5.1)

This last equation tells us that ρ(�, a, b) := C�+ max{a, b} is an appropriate function
to compute L(·) recursively.

Accuracy

Another interesting property for an evaluation scheme is its accuracy. The true accuracy,
de�ned as the maximum absolute or relative error entailed by the evaluation among all
the possible inputs, is usually out of reach. A classical way to tackle accuracy issues
is then to use abstractions in order to get a (possibly pessimistic) bound on the error.

5.4. How to model an optimization criterion 109

We can cite a recent work of Martel [Mar09a, Mar09b], where interval arithmetic [Hig02,
�26.4] is used to achieve this abstraction. Any arithmetic expression, evaluated using
�oating-point arithmetic with rounding to nearest (RN), is associated to two intervals
(one to bound the possible values at execution, and one to bound the corresponding
error). These pairs of intervals (denoted in bold font hereafter) are computed inductively
using the following rules [Mar09a, Figure 2]:

• For each variable, the interval of values has to be provided by the user, and the
corresponding error is set to 0 = [0, 0].

• We associate (
v1 + v2, ε1 ⊕ ε2 ⊕

1

2
ulp(v1 + v2)

)
to f = f1 + f2, where:

* (vi, εi) is the pair of intervals associated to fi for i ∈ {1, 2};
* operator + indicates that computations are carried out with rounding to near-
est, while operator ⊕ is used for computations with rounding down and up so
as to ensure that the inclusion property holds:

∀a ∈ a := [a, a], b ∈ b := [b, b], a+ b ∈ a⊕ b;

* ulp([x, x]) bounds the actual error due to rounding and is de�ned by [−y, y]
with y = max{ulp(|x|), ulp(|x|)} and ulp(x) standing for the unit in the last
place, that is, the weight of the least signi�cant bit of x.

Notice that it is mandatory to use operator ⊕ (and not +) for the error part in
order to get a correct bound.

• Similarly, we associate to f = f1 × f2 the pair(
v1 × v2, ε1 ⊗ v2 ⊕ v1 ⊗ ε2 ⊕ ε1 ⊗ ε2 ⊕

1

2
ulp(v1 × v2)

)
,

where (vi, εi) is again the pair of intervals associated to fi for i ∈ {1, 2}, and ⊗ is
de�ned so that the corresponding inclusion property holds.

Note that this way of measuring accuracy actually corresponds to a recursively com-
putable measure in our model. Indeed, each expression f is associated to an object
ϕ(s) ∈ T , where T is the set of pairs of intervals. Moreover, the inductive rules for + and
× mentioned above allow us to compute ϕ(f) recursively. Finally, a relevant total order
for <T can be de�ned by looking at the magnitudes and widths of the error and value
parts. We will present with more details in Section 8.1.2 a model to analyze accuracy,
which is an adaptation of the one mentioned here to �t with the �xed-point arithmetic
available on the ST231 processor.

Number of multiplications

In this last example, we consider the number of multiplications as our optimization cri-
terion. We can easily de�ne ϕ : S(f)→ N such that ϕ(s) returns the number of internal
nodes labelled with operator × in the DAG7 associated to s. However, this de�nition is

7This DAG is obtained by getting rid of the common subexpressions in the unordered binary tree s.

110 Chapter 5. How to model and analyze implementations of arithmetic expressions

a typical example of a measure not having the property of recursive computability. A
counterexample is illustrated in Figure 5.5. Looking at the scheme in Figure 5.4(a), we
want to set ρ(×, 2, 2) := 3, since the left and right subschemes have both two multipli-
cations, and the whole scheme has three multiplications (the red, blue, and black ones).
However, Figure 5.4(b) tells us that we should have ρ(×, 2, 2) = 4 instead, which con�icts
with what we have for Figure 5.4(a).

×

×

a ×

a a

×

a ×

a a

(a) Example where 2 multiplications on
the left and 2 multiplications on the right
give 3 multiplications overall.

×

×

a ×

a a

×

×

a a

×

a a

(b) Example where 2 multiplications on
the left and 2 multiplications on the right
give 4 multiplications overall.

Figure 5.5: The number of multiplications in evaluation schemes is not recursively com-
putable.

In this case, a solution is to ask for a more precise measure. Indeed, if we de�ne
T := P

(
S(F)

)
and ϕ : S(F)→ T such that ϕ(s) returns the set of all the multiplications

(given as the schemes below each internal node labelled with ×), we can easily cope with
the issue of common subexpressions.

Then, if we de�ne ρ as:

ρ : S(F)× {+,×} × T × T → T

(s,+, a, b) 7→ a ∪ b
(s,×, a, b) 7→ {s} ∪ a ∪ b

we can compute ϕ recursively, from which the number of multiplications can be deduced.
Let us make a few remarks about this solution:

1. First, function ρ needs to have access to the current scheme s = (�, {s1, s2}) in
addition to �, ϕ(s1), and ϕ(s2). While this is slightly more complicated than in the
de�nition of recursive computability, it is not a real issue in practice.

2. Second, manipulating sets of schemes is more costly than working with integers.
Hence, using this new measure will yield slower algorithms than if we used the
measure for latency or accuracy mentioned in the previous two examples.

3. Third, we ask for a total order for T = P
(
S(F)

)
, but the only natural order on

T , which is the inclusion, is a partial order. To get a total order compatible with
the number of multiplications, we have to compare the cardinalities, but we still
need to add some arbitrary order on sets which share the same cardinality (this can
always be done since these are �nite sets).

While the situation is not as nice as for latency or accuracy, we will be able to derive
interesting results with this measure in Chapter 7. Furthermore, a variation of this
measure will be used successfully in Sections 6.4.2 and 8.2.

5.4. How to model an optimization criterion 111

5.4.3 Generation under constraints

Now that we have a way to evaluate the quality of evaluation schemes, let us see a variant
of the generation algorithm introduced in Section 5.3, where we generate only schemes
whose measure achieves a certain bound provided by the user.

Here, we �x some family of arithmetic expressions F and a measure ϕ : S(F) → T .
We assume that the total order <T on T is chosen so that a lower value according to
<T means a better quality. The problem is therefore to generate all the schemes s such
that ϕ(s) is less than or equal to some bound B ∈ T . This bound B is therefore a
new input to our algorithm, and we will need to update it appropriately before each
recursive call. Such an update requires that we have a good insight into the evolution
of the measure when we decompose a formula, and it will be represented by a function
update: D(F) × T → T . For instance, supposing we are interested in the number of
multiplications, we can de�ne:

update : D(F)× T → T

(+, f1, f2), b 7→ b

(×, f1, f2), b 7→ b− 1

meaning that, whenever the operator within the decomposition is ×, we consume one
multiplication. This function update, which will be a parameter to our algorithm, has
also to be provided by the user.

The result for this approach is Algorithm 5.2. The name GenerateWithHint refers to
the fact that we use the measure ϕ (along with adaptive bounds) as a hint about which
scheme is worth generating.

Theorem 5.2. Provided that for all evaluation scheme s = (�, s1, s2) where s1 and s2
are schemes for f1 and f2, respectively, and for all b ∈ T , we have

ϕ(s) ≤T b ⇒ ϕ(s1) ≤T b′ ∧ ϕ(s2) ≤T b′,

where b′ := update((�, f1, f2), b), Algorithm 5.2 generates all the evaluation schemes s
for f such that ϕ(s) ≤T B. Moreover, each time it tries to add an evaluation scheme to
the set r, this scheme is actually a new one for f (that is, unions at lines 10 and 14 are
disjoint).

Proof. Let us prove by complete induction on f ∈ F that for all B ∈ T , a call to
GenerateWithHint(f, B) returns the set of all the evaluation schemes s for f such that
ϕ(s) ≤T B.

When f admits no decomposition (in particular, when f is the minimum for (F , <F)),
f is a variable. In this case, the only evaluation scheme for f is f itself, and the algorithm
correctly returns, for any B, the singleton {f} if ϕ(f) ≤T B and an empty set otherwise.

Let f ∈ F be a non-trivial arithmetic expression, B ∈ T be some bound, and suppose
that the induction hypothesis holds for all g <F f . As f is non-trivial, any scheme s for
f must have the following shape: (�, s1, s2) where � is some operator, and s1 (resp. s2)
is a scheme for f1 <F f (resp. f2 <F f).

112 Chapter 5. How to model and analyze implementations of arithmetic expressions

Algorithm 5.2: GenerateWithHint

Input : f ∈ F , and a bound B ∈ T .
Parameter: A recursively computable measure ϕ : S(F)→ (T,<T), and a

function update: D(F)× T → T to adjust the bound before the
recursive calls.

Output : The set r of all the evaluation schemes s for f such that ϕ(s) ≤T B.
`← decompose(f)1

r ← ∅2

if ` = ∅ and ϕ(f) ≤T B then r ←
{
f
}

3

else4

foreach (�, f1, f2) ∈ ` do5

B′ ← update((�, f1, f2), B)6

r1 ← GenerateWithHint(f1, B
′)7

if f1 = f2 then8

for {s1, s2} ∈ P2(r1) do9

if ϕ
(�

s1 s2

)
≤T B then r ← r ∪

{ �

s1 s2

}
10

else11

r2 ← GenerateWithHint(f2, B
′)12

for (t1, t2) ∈ r1 × r2 do13

if ϕ
(�

s1 s2

)
≤T B then r ← r ∪

{ �

s1 s2

}
14

return r15

The set we want to generate is:

{s ∈ S(f), ϕ(s) ≤T B} =⊔
(�, f1, f2)
f1 =F f2

{
s ∈ S(f), s =

�

s1 s2
with {s1, s2} ∈ P2(S(f1)) such that ϕ(s) ≤T B

}

⊔
⊔

(�, f1, f2)
f1 <F f2

{
s ∈ S(f), s =

�

s1 s2
with (s1, s2) ∈ S(f1)× S(f2) such that ϕ(s) ≤T B

}
.

The hypothesis in our theorem tells us that any s = (�, {s1, s2}) such that ϕ(s) ≤T B,
s1 and s2 must satisfy ϕ(s1) ≤T B′ and ϕ(s2) ≤T B′. That is to say, if we seek for a
scheme s whose value according to ϕ is less than B, we only need to look at subschemes
s1 and s2 whose values by ϕ are less than or equal to B′. But the induction hypothesis

5.4. How to model an optimization criterion 113

applied on fi (i ∈ {1, 2}) and for B′ tells us that ri is the set of schemes for fi whose
value by ϕ is less than or equal to B′, so that we can restrict ourselves to ri instead of
S(fi) in the unions above. What we obtain is then exactly what Algorithm 5.2 computes
in r, which ends the proof for correctness.

The second part of the theorem is easy to prove. Indeed, the output of the algorithm
GenerateWithHint for a given f ∈ F and B ∈ T is included (because of the additional
constraint) in the output of Generate for the same f . Otherwise, both algorithms perform
the same way by going through the decomposition for f and using the results of recursive
calls to �ll the current set of schemes. Since the unions in the inner loops were already
disjoint unions in Algorithm 5.1, so are they for Algorithm 5.2 which manipulates a
smaller data set.

We can express a few remarks on this new algorithm:

• Its cost is usually hard to determine. If the bound B is too small, then the algorithm
will quickly return an empty set. On the opposite, if B is so large that any scheme
for f meets this bound, then the computation time will be approximately the same
as for Generate. In this case, GenerateWithHint will not be useful in practice.
Therefore, B should be chosen with great care.

• If we get a non-empty set at the end of the algorithm, then we know that the
minimum of ϕ(s) when s ∈ S(f) is smaller than B. Moreover, as we obtain all the
schemes whose measure is smaller than B, we can compare their respective measures
and deduce the minimum achievable value for ϕ(s). Namely, GenerateWithHint
allows us to answer optimization questions.

• Actually, if we want to �nd out the optimal value for ϕ(s), one solution is to set B
to the minimum value of (T, <T), and then run GenerateWithHint several times
with increasing values of B until we �nally get a non-empty set of schemes.

• In the actual implementation, we also propose to replace the comparison with the
bound B with a predicate parameter that the user can provide. This slightly more
general approach makes things easier at least for the case of the number of mul-
tiplications, where the bound B would be a set whereas we only want to perform
cardinality checks.

Let us conclude this chapter with one example illustrating the usage of Algorithm
GenerateWithHint. We have used this algorithm in order to generate all the evaluation
schemes for an that have a minimum number of multiplications, for n ranging from 1
to 120. This was achieved by successive incrementation of the bound until we get some
schemes, as noted above. Then, we have looked over at the set of schemes obtained in
order to analyze the number of squarings in these schemes. This is motivated by the fact
that squaring may be performed more e�ciently than a true multiplication. It happens
in several contexts where we can use the symmetry underlying the squaring operation to
improve its implementation, like in hardware (see [Mat09] and the references therein), in
the software support of �oating-point arithmetic [JJLMR11], and in exact linear algebra
[Bod10].

114 Chapter 5. How to model and analyze implementations of arithmetic expressions

Table 5.1 provides a summary of this study. The �rst terms of four sequences are
presented. While the minimal number of multiplications in order to evaluate an was
already known (see [Knu98, �4.6.3] and the references therein) and appears in the On-
Line Encyclopedia of Integer Sequences8 as sequence A003313, the three other sequences
are new ones that we have added to the encyclopedia:

• A186435(n) gives the number of schemes achieving the minimal number of multi-
plications.

• A186437(n) is the maximal number of squarings that we can extract from an eval-
uation scheme for an with a minimal number of multiplications. This sequence
coincides with blog2(n)c for many values of n. Nevertheless, there are values were
A186437(n) is one less than blog2(n)c, the �rst ones being n = 23, 39, 43, 46, 75,

• Finally, A186520(n) gives the number of evaluation schemes for an that achieve
both the minimal number of multiplications and the maximal number of squarings
therein. It can be noted that the proportion of such schemes among the schemes
with a minimal number of multiplications (that is, the ratio between A186520(n)
and A186435(n)) varies a lot. Obviously, it is equal to 1 when n is a power of 2,
but it may become quite small, as we can see with n = 79, where we get a ratio
of 1/330 ≈ 0.003. In this case, choosing an evaluation scheme for a79 that only
minimizes the number of multiplications will likely be non-optimal in a context
where squaring is faster than a general multiplication.

8This encyclopedia, initiated by Sloane, and maintained by the OEIS Foundation Inc., is available at
http://oeis.org/.

http://oeis.org/

5.4. How to model an optimization criterion 115

Table 5.1: Values of sequences A003313(n), A186435(n), A186437(n) and A186520(n) for
n ∈ {1, . . . , 120}.

n A003313 A186435 A186437 A186520 timings

1 0 1 0 1 0s
2 1 1 1 1 0s
3 2 1 1 1 0s
4 2 1 2 1 0s
5 3 2 2 1 0s
6 3 2 2 2 0s
7 4 6 2 4 0s
8 3 1 3 1 0s
9 4 3 3 1 0s
10 4 4 3 2 0s
11 5 19 3 4 0s
12 4 3 3 3 0s
13 5 10 3 5 0s
14 5 16 3 10 0s
15 5 4 3 2 0s
16 4 1 4 1 0s
17 5 2 4 1 0s
18 5 7 4 2 0s
19 6 37 4 4 0s
20 5 6 4 3 0s
21 6 31 4 5 0s
22 6 48 4 10 0s
23 6 4 3 2 0s
24 5 4 4 4 0s
25 6 14 4 7 0s
26 6 24 4 12 0s
27 6 5 4 2 0s
28 6 26 4 16 0s
29 7 152 4 47 1s
30 6 12 4 6 1s
31 7 80 4 22 1s
32 5 1 5 1 1s
33 6 2 5 1 1s
34 6 4 5 2 1s
35 7 51 5 4 1s
36 6 12 5 3 1s
37 7 39 5 5 1s
38 7 100 5 10 2s
39 7 20 4 10 2s
40 6 8 5 4 2s
41 7 23 5 6 2s
42 7 90 5 12 2s
43 7 4 4 2 2s
44 7 81 5 18 2s
45 7 14 5 2 2s
46 7 8 4 4 3s
47 8 242 5 10 21s
48 6 5 5 5 21s
49 7 12 5 7 21s
50 7 36 5 17 21s
51 7 4 5 2 21s
52 7 38 5 19 21s
53 8 215 5 55 33s
54 7 16 5 6 33s
55 8 172 5 28 43s
56 7 36 5 22 43s
57 8 190 5 49 52s
58 8 395 5 120 62s
59 8 40 5 8 70s
60 7 24 5 12 70s

n A003313 A186435 A186437 A186520 timings

61 8 91 5 28 76s
62 8 239 5 68 84s
63 8 94 5 18 90s
64 6 1 6 1 90s
65 7 2 6 1 90s
66 7 4 6 2 90s
67 8 27 6 4 94s
68 7 6 6 3 94s
69 8 29 6 5 98s
70 8 154 6 10 102s
71 9 1485 6 28 1518s
72 7 18 6 4 1518s
73 8 49 6 6 1521s
74 8 104 6 12 1524s
75 8 32 5 15 1527s
76 8 173 6 18 1529s
77 8 4 5 2 1531s
78 8 68 5 34 1534s
79 9 660 6 2 2279s
80 7 10 6 5 2279s
81 8 36 6 8 2280s
82 8 54 6 14 2282s
83 8 4 5 2 2283s
84 8 173 6 21 2285s
85 8 8 6 2 2286s
86 8 8 5 4 2287s
87 9 571 6 8 2786s
88 8 114 6 26 2787s
89 9 523 6 65 3234s
90 8 48 6 6 3235s
91 9 388 6 16 3637s
92 8 12 5 6 3638s
93 9 319 6 8 4000s
94 9 694 6 34 4422s
95 9 199 6 8 4744s
96 7 6 6 6 4744s
97 8 14 6 8 4745s
98 8 28 6 16 4745s
99 8 4 6 2 4746s
100 8 62 6 28 4746s
101 9 280 6 72 4983s
102 8 12 6 6 4983s
103 9 99 6 20 5194s
104 8 52 6 26 5195s
105 9 352 6 64 5385s
106 9 553 6 140 5627s
107 9 30 6 6 5793s
108 8 34 6 12 5793s
109 9 125 6 26 5943s
110 9 579 6 92 6139s
111 9 88 6 10 6269s
112 8 46 6 28 6270s
113 9 146 6 48 6387s
114 9 557 6 126 6549s
115 9 44 6 8 6654s
116 9 688 6 212 6803s
117 9 86 6 14 6900s
118 9 102 6 24 7036s
119 9 24 6 8 7120s
120 8 40 6 20 7120s

116 Chapter 5. How to model and analyze implementations of arithmetic expressions

Chapter 6

On the combinatorics of evaluation

schemes

In this chapter, we will focus on combinatorics issues. First, we explain how to adapt the
generation algorithm, introduced in the previous chapter, in order to count the number of
evaluation schemes for a given arithmetic expression. This gives us a counting algorithm
that we apply to various classes of arithmetic expressions. Thus, we discover two new
sequences that we have added to the On-Line Encyclopedia of Integer Sequences. Then,
we present some asymptotic results, and more precisely we give asymptotic bounds on
the number of schemes for polynomials. Finally, we discuss how, given an additional
measure ϕ, we can perform a �ner counting. For that purpose, we introduce two new
algorithms: the �rst one allows us to count the number of schemes with respect to ϕ; and
the second one focuses on counting the number of schemes whose value by ϕ is below a
given threshold.

6.1 Counting evaluation schemes

Suppose that we have a class F satisfying the requirements exposed in Section 5.2.3. The
problem is then to design an algorithm that returns for every f ∈ F the corresponding
number of evaluation schemes. The idea is to proceed as in Algorithm 5.1, but we settle
here for counting how many schemes we encounter instead of actually creating and adding
them in a set. What results is Algorithm 6.1.

Before we prove the correctness of Algorithm 6.1, let us state a simple property on
P2(X) that will be useful for the sequel:

Property 6.1. If X is �nite then |P2(X)| = |X| · (|X|+ 1)

2
.

Proof. If X is �nite, it admits |X| subsets of size 1, and

(
|X|
2

)
=
|X| · (|X| − 1)

2
subsets

of size 2. Adding these two terms gives the result.

We can now tackle the issue of correctness:

Theorem 6.1. Algorithm 6.1 is correct.

118 Chapter 6. On the combinatorics of evaluation schemes

Algorithm 6.1: Count

Input : f ∈ F
Output: n = number of evaluation schemes for f

`← decompose(f)1

if ` = ∅ then n← 12

else3

n← 04

foreach (�, f1, f2) ∈ ` do5

if f1 = f2 then n← n+
Count(f1) · (Count(f1) + 1)

26

else n← n+ Count(f1) · Count(f2)7

return n8

Proof. Let us proceed by complete induction on f ∈ F . If f admits no decomposition
(in particular when f is the minimum for (F , <F)), it is a variable. Hence, there is one
way to evaluate f , and Algorithm 6.1 is correct.

Suppose now that f is not a variable, and that for all g < f , Count(g) is the number
of evaluation schemes for g. We have seen in Theorem 5.1 that we encountered each
scheme for f exactly once during Algorithm 5.1.

Here, instead of combining evaluation schemes with some loop like in Algorithm 5.1,
Algorithm 6.1 just adds the number of schemes that would have been produced. This
number for a given decomposition δ = (�, f1, f2) depends on the equality of the two
subexpressions f1 and f2:

• When f1 6= f2, there is a bijection between S(f1) × S(f2) and the schemes of
S(f) corresponding to δ. Therefore, we have to add |S(f1)| · |S(f2)| = Count(f1) ·
Count(f2) by induction (each fi is smaller than f).

• When f1 = f2, there is a bijection between P2(S(f1)) and the schemes of S(f)
corresponding to δ. By induction, |S(f1)| = Count(f1) and thus, we must add
Count(f1) · (Count(f1) + 1)

2
by Property 6.1.

Let us conclude this section with a remark about the cost of Algorithm 6.1. While
not explicitly written, we also use memoization in the actual implementation in order
to avoid redundancy in the successive recursive calls. Thus, as the arithmetic cost in
the main loop is constant,1 the overall cost is bounded by the product of the number
of distinct recursive calls by the maximum size of a decomposition `. Concrete costs for
di�erent families of arithmetic expressions will be presented in the next section. Notice
that we consider here the number of arithmetic operations and comparisons in F as the

1We assume that elements in F can be stored e�ciently, so that the comparisons <F , and as a
consequence =F , can be done in constant time.

6.2. Application examples 119

cost of Count. Yet, core operations consist in basic operations on big integers. Therefore,
the binary cost may be higher depending on how big these integers get.

6.2 Application examples

We have implemented the algorithm mentioned in the previous section within CGPE.
By �xing one class F satisfying the constraints mentioned in Section 5.2.3, we obtain an
instance of our algorithm for this class. We can then compute the number of evaluation
schemes for each f ∈ F . Usually, we are more interested in a sequence (fi)i∈N>0 of
arithmetic expressions in F . In this case, we obtain an integer sequence made of the
number of schemes for the fis. In this section, we will �rst see how our approach allows
us to retrieve some known OEIS sequences, before dealing with new sequences.

6.2.1 Retrieving three already known sequences

For testing purpose, we have computed the �rst terms of the following sequences of the
OEIS:

• A001147(n) = number of ways to sum n+ 1 variables,

• A001190(n) = number of ways to evaluate an with a commutative non-associative
multiplication,

• A085748(n) = number of ways to evaluate a ·bn with a commutative non-associative
multiplication.

For the sum of variables
∑n

i=0 ai, there actually exists a closed formula for the number
of evaluation schemes (see Property 6.2 in Section 6.3). Therefore, it was easy to validate
our implementation using this case. Yet, the cost for our approach is not so good, since it
is in O(4n) instead of O(n) for the closed formula. Indeed, the number of recursive calls is
in O(2n) since we have to consider all the sums

∑
i∈I ai for I ⊂ {0, . . . , n}. Moreover, the

number of decompositions for a given sum is also exponential in the number of variables
in this sum, which is bounded by n + 1. So it is in O(2n). One should note that our
algorithm fails to make use of the fact that the number of evaluation schemes for a sum
only depends on the number of variables (and not on the name of the variables). If we can
forget all the indexes, and group together all the decompositions with the same number
of variables at each side of the operator +, we obtain a more reasonable cost of O(n2)
(O(n) recursive calls, with O(n) groups of decompositions, and a cost of O(1) per group).
We will reuse this remark for the case of polynomials in the next section.

For sequence A001190(n) (case of an), it turns out that our algorithm reduces to
computing the successive terms using the classical recursive formula [Eth37, page 37]
along with the technique of memoization. We get O(n) recursive calls, each of them with
a cost in O(n), giving us an overall cost in O(n2). In practice, we are able to compute the
6000 �rst terms of these sequences in about 1 minute on a desktop machine. However,
one can be even more e�cient. Indeed, evaluation schemes for an are objects that �t into

120 Chapter 6. On the combinatorics of evaluation schemes

the theory of combinatorial species.2 In this theory, the sequence corresponding to the
number un of objects of size n is associated with a so-called generating function, which is
basically a series whose coe�cients are the un's. Pivoteau, Salvy, and Soria [PSS08, Piv08]
have shown how to use Newton iterations in order to get the �rst coe�cients of the series
in O(n log n) arithmetic operations.

The results for A085748(n) are similar to the ones for A001190(n). We still have
O(n) recursive calls (a · bi for 0 ≤ i ≤ n, and bi for 1 ≤ i ≤ n), each involving O(n)
decompositions. So our algorithm runs in O(n2). In practice, we obtain the �rst 4000
terms of A085748(n) in about one minute. Yet, the technique based on Newton iteration
described above can also be applied in this case so as to get an asymptotic cost of
O(n log n) arithmetic operations.

6.2.2 On the number of schemes for evaluating polynomials

Our initial motivation for counting evaluation schemes lies in the polynomial case [JMM+10].
We want to generate e�cient code for evaluating polynomials, and thus we are interested
in the growth of the number of evaluation schemes with respect to the degree of the poly-
nomial. This information actually gives us a clue about how scalable the other algorithms
applied on polynomials may be, and about the necessity to restrict ourselves by using
strong heuristics. In fact, we will study here two types of polynomials: �rst, univariate
polynomials; and second, special bivariate polynomials q(x, y) = α + y · p(x), where α is
a constant and p is a univariate polynomial.

Univariate case

Table 6.1 shows the number of evaluation schemes for a univariate polynomial with respect
to the degree. This sequence, added in the OEIS as A169608, can be obtained by applying
Algorithm 6.1 parameterized with the class of univariate polynomials as described at
Section 5.2.2. We can easily provide an asymptotic bound on the asymptotic arithmetic
cost by noting that:

• the number of recursive calls is equal to

n

number of

powers of x

+
n∑
i=0

(i+ 1)

number of possi-

ble factorizations

· 2n−i

number of poly-

nomials with a

valuation equal to i

= 2n+2 − 3,

• the cost for each recursive call is bounded by O(2n), since we can do at most n
factorizations by a power of x, and at most 2n support splittings.

2See [FS09] for a general introduction to this theory, as well as the study in Section 6.3.2.

6.2. Application examples 121

Hence, the arithmetic cost is in3 O(4n). Notice that the indices do not matter here in
the sense that, for instance, the number of schemes for a1 + a2 · x is the same as the one
for a0 + a1 · x. Therefore, it is better to use a slightly modi�ed version of the class of
univariate polynomials F introduced in Section 5.2.2, where this behavior is taken into
account. We achieve this by rede�ning the order <F in the following way:

• (0, b) <F (0, d)⇔ b < d,

• if a, c ∈ N, (a, c) 6= (0, 0) then (a, b) <F (c, d)⇔ a < c.

With this new de�nition, two polynomials will only be compared through their supports,
so that a1 + a2 ·x and a0 + a1 ·x will be seen as equal. The new number of recursive calls
is then:

n +
n∑
i=0

2n−i = 2n+1 + n− 1,

which is asymptotically half of the previous number.

Table 6.1: Number A169608(n) of evaluation schemes for p(x) with deg p = n.

0 1

1 1

2 7

3 163

4 11602

5 2334244

6 1304066578

7 1972869433837

8 8012682343669366

9 86298937651093314877

10 2449381767217281163362301

11 181946042281864335296699104207

12 35214642830352768473736504891079096

13 17679950080993134310891203597070333311130

14 22949757304967067003110681455541422272014085754

15 76785653012153687095082012207894031948677316414249517

16 660540179458536479946190871277257414784783199736666825008687

17 14576296180923225062225536944551003951936206481743538633380388885044

18 823527733662852414003779291170387870424274811249262438593723335345572925211

19 118912764383373778483239032470394556964632754977476858805545876597866138902807545506

20 43815217447980619517384340909119437904825169188466343660040369661961437018207159467054414458

21 41139424563719124303308971600900790503169908493013011218714101190911828512176192086142942490918929666

22 98306274678792418958407003311891661330085568650718791880371716010534604164335259978285452114558560737182707190

23 597167132160350916374463047269632852142604453612573458534675223786369128352593603859027880740427478752916941197389662649

24 9211905096084970437001158092396260745826915516783761256182607855008023462016541985217669532198776877098993859462172197958883078113

25 360517987734096702705591354595085593601157571179725269984759541321703981558852376110617902415559288049329744309234423108734250571338828849529

In practice, the terms A169608(n) for n ≤ 20 were obtained in about 105 minutes
with our C++ implementation using the new order mentioned above. As we wanted a few
more terms, we have also implemented an optimized C version, specialized for univariate
polynomials, where:

• powers of x are handled separately,

3This bound is slightly pessimistic, and we may actually obtain the sharper bound of O(3n) by noting
that expressions with a support of size i have only O(2i) decompositions (instead of O(2n)). Yet, the
main conclusion still remains that the cost is exponential with respect to n.

122 Chapter 6. On the combinatorics of evaluation schemes

• univariate polynomials can therefore be represented by a unique integer for its
support (instead of a class encapsulating two integers),

• we use dynamic programming and store the results in a pre-allocated array.

This version gives us the 20th �rst terms in about 15 minutes, and we were able to
compute the values of A169608(n) for n ≤ 25 in about 4.5 days.

Special bivariate case: q(x, y) = α + y · p(x)

Another useful class of arithmetic expressions for the implementation of �oating-point op-
erators through polynomial approximation is the class of bivariate polynomials of the form
q(x, y) = α+y ·p(x) where α is a constant and p(x) is a univariate polynomial [JKMR08].

We can de�ne this class of arithmetic expressions in our framework in the following
way:

• We consider the family F = {xi, i ∈ N} ∪ {y · xi, i ∈ N0} ∪ {
∑

i∈I ai+k x
i, k ∈

N and I �nite} ∪ {
∑

i∈I ai+k y x
i, k ∈ N and I �nite} ∪ {α+

∑
i∈I ai y x

i, I �nite}.

• We encode an element f ∈ F with:

* one boolean b which indicates whether the expression is bivariate (that is,
whether y or α is present) or not,

* one integer s representing the support of the sum (the lowest bit of s corre-
sponding to α, and its (i + 1)st bit corresponding to the presence of i in I).
The special case s = 0 means that the expression is either xn or y xn,

* one integer k for the power of x when s = 0 or the shift in the indices when
s 6= 0.

Table 6.2 illustrates the encoding for some expressions. Notice that some encodings
are forbidden: (f, 0, 0) (x0 is not in F), (f, s, ·) with s an odd number (the presence
of α implies that the expression is bivariate), and (t, s, k) with s an odd number
and k ∈ N>0 (the presence of α implies that the shift must be 0).

• We use the lexicographical order for <F (true being larger than false).

• Finally, we can compute the decomposition for f ∈ F in a way similar to what we
did for univariate polynomials. Indeed, we only need to add factorizations by y for
bivariate expressions.

Table 6.2: Example of encodings for some bivariate polynomials.
Here, booleans are represented by t (true) and f (false).

Expression x3 y y x2 a1 x+ a2 x
2 a1 + a2 x α + a2 y x

2

Encoding (f, 0, 3) (t, 0, 0) (t, 0, 2) (f, 12, 0) (f, 6, 1) (t, 9, 0)

6.2. Application examples 123

We have applied Algorithm 6.1 to this new family of arithmetic expressions, and
deduced a new sequence added into the OEIS as A173157. Table 6.3 shows the �rst
21 terms, that were obtained in 12.5 hours. While the encoding here is a bit more
complicated than for univariate polynomials, the orders for the number of recursive calls
and for the cost per call are the same. So, this algorithm also runs in O(4n).

Table 6.3: Number A173157(n) of evaluation schemes for q(x, y) = α + y · p(x) with
deg p = n.

0 1

1 10

2 481

3 88384

4 57363910

5 122657263474

6 829129658616013

7 17125741272619781635

8 1055157310305502607244946

9 190070917121184028045719056344

10 98543690848554380947490522591191672

11 145116280500705029382538760693673579842113

12 600389262260332475581344592426808202086238189757

13 6913679873559110751999558552753066871243850857297843450

14 219818569723083678610243316929195180335704885852763713503976272

15 19162926142068679602438699174852128697491376005582403369119017353063265

16 4552448454789529967485885941331752172203695897453674329533365668776502212569642

17 2931311231540228910575194831264088989654650737483864389059778916867287798067599170920710

18 5091204464543963879691003133701407685542313277599147121851105778554620100305242128889458969346627

19 23749006382789593005844142225233063744306003198014730722303614726659027968689731888694435043822418450563784

20 296379085578725515136571356176087132773942459824021302148422623559448996578176684852299047816041306257212599991533184

Concluding remarks

The results for these two experiments suggest that exhaustive search among the evaluation
schemes for polynomials becomes out of reach as soon as the total degree is greater than
5. Typical degrees for polynomial approximants for binary32 (single precision) function
being around 10 (see for instance Table 5.3 in [Rev09]), we will have to use heuristics in
order to reduce the number of evaluation schemes considered when we seek for a fast and
accurate enough way to evaluate such polynomials. Moreover, the fast growth within the
two sequences tells us that these heuristics must be drastic if we want our approach to
be even slightly scalable.

6.2.3 Summary

All the sequences mentioned in the previous two sections are listed in Table 6.4. This
table also gives, for each sequence, the corresponding complexity when using Count, and
the best known complexity. Recall that we consider here arithmetic complexity, so that
we do not take the size of integers involved into account. Even if arithmetic complexity
does not re�ect the real cost, it is still a relevant indicator to compare the performance
between our algorithm and other works. While our general approach fails to achieve a
reasonable complexity in the case of sums of variables, where a closed formula exists, we
obtain a satisfactory complexity for the two other classical sequences. Better complexity

124 Chapter 6. On the combinatorics of evaluation schemes

may be achieved through techniques from the theory of combinatorial species. However,
this is advanced material, quite di�erent from our approach, and it is not clear to us
whether it can cover the polynomial cases that we handle here.

Table 6.4: Summary of the sequences computed with algorithm Count along with the
corresponding complexities.

expression
complexity

entry in the OEIS
with Count best known∑n

i=0 ai O(4n) O(n) A001147

an O(n2) O(n log n) A001190 classical

a · bn O(n2) O(n log n) A085748∑n
i=0 ai · xi O(4n) � A169608

new
α + y ·

∑n
i=0 ai · xi O(4n) � A173157

6.3 Asymptotics of counting sequences

Several sequences have been mentioned in Section 6.2. Table 6.5 shows the �rst terms
of each of these sequences side by side. It gives us a �rst idea about how fast these
various sequences grow. Our goal in this section is to discuss the asymptotic behavior of
A169608(n). To achieve this, let us �rst review some already known results.

Table 6.5: Numbers of evaluation schemes for several arithmetic expressions.

an a · bn
∑n

i=0 ai p(x) with deg p = n α+ y · p(x) with deg p = n

n A001190(n) A085748(n) A001147(n) A169608(n) A173157(n)

0 1 1 1 1 1

1 1 1 1 1 10

2 1 2 3 7 481

3 1 4 15 163 88384

4 2 9 105 11602 57363910

5 3 20 945 2334244 122657263474

6 6 46 10395 1304066578 829129658616013

7 11 106 135135 1972869433837 17125741272619781635

8 23 248 2027025 8012682343669366 1055157310305502607244946

9 46 582 34459425 86298937651093314877 190070917121184028045719056344

10 98 1376 654729075 2449381767217281163362301 98543690848554380947490522591191672

6.3.1 Preliminary remarks

We have already mentioned the existence of a closed formula for the number of evaluation
schemes for

∑n
i=0 ai. Here is the precise result along with a proof.

6.3. Asymptotics of counting sequences 125

Property 6.2. Let A001147(n) be the number of evaluation schemes for
∑n

i=0 ai. We
have

A001147(n) =
n−1∏
i=1

(2i+ 1) =
(2n)!

2n · n!
∼n→+∞

√
2

(
2n

e

)n
.

Proof. The main idea is �rst to count the di�erent parenthesizations for
∑n

i=0 ai, and then
to notice that each class modulo commutativity has the same cardinality. Hence, we can
easily deduce the number of evaluation schemes from the number of parenthesizations.

A parenthesization for the arithmetic expression
∑n

i=0 ai can be viewed as a binary
tree with + at its internal nodes and the ai's in some order at its leaves. One has (n+ 1)!
possible permutations for the ai's, and the number of binary trees with exactly n + 1

leaves is the nth Catalan number4 Cn =

(
2n
n

)
n+ 1

=
(2n)!

n! · (n+ 1)!
. Therefore, we deduce

that the number of parenthesizations for
∑n

i=0 ai is actually
(2n)!

n!
.

Now, let us take a look at what commutativity is in this case. Changing the order of
the two operands for a given + corresponds to swapping the two sons of the corresponding
internal node in the binary tree. As we have exactly n internal nodes, we can apply
commutativity to any subset of these n nodes to obtain an equivalent binary tree modulo
commutativity. Moreover, this process allows us to cover all the equivalence classes of a
given tree, which has thus a cardinality of 2n.

Therefore, all the equivalence classes modulo commutativity have the same cardinality
2n, and the number of evaluation schemes for

∑n
i=0 ai is the number of parenthesizations

divided by 2n, that is,

A001147(n) =
(2n)!

2n · n!
.

The �rst equality in Property 6.2 is easily deduced by unfolding the de�nition of
the factorial at the numerator and denominator, and simplifying all the even numbers.
Finally, the asymptotic equivalent is a consequence of Stirling's formula5 about the equiv-
alence for n!.

The asymptotic study of sequence A001147(n) is fairly simple because all the equiva-
lence classes modulo commutativity share the same cardinality, so that we can go easily
from the number of parenthesizations to the number of schemes. Unfortunately, this does
not hold for the other sequences we are interested in, which may explain why the results
in the next two sections (6.3.2 and 6.3.3) will be less strong than the previous one.

6.3.2 Asymptotic equivalence for sequences A001190 and A085748

The number of evaluation schemes for xn corresponds to the number of weakly binary
trees. This sequence, called Wedderburn-Etherington sequence, has been well studied,
and despite the lack of closed formula, we have the following result [Ott48] about the
asymptotic behavior of the sequence:

4E. Catalan introduced these numbers, which have many interpretations, in 1838. See for instance
Example 5.3.12 in [Sta99] for the interpretation mentioned here.

5J. Stirling proved in 1730 that n! ∼n→+∞

(n
e

)n√
2πn.

126 Chapter 6. On the combinatorics of evaluation schemes

Property 6.3. Let an be the nth term of the Wedderburn-Ethernington sequence, that
is, the number of evaluation schemes for an. We have

an ∼n→∞
η ξn

n3/2
with ξ ≈ 2.48325 and η ≈ 0.31877.

Proof. Here, we will only summarize with our notations the main steps of the proof of
Proposition VII.5 in [FS09] (see also [Fin94, �5.6] for a similar proof).

First, we consider the set A of all the evaluation schemes for an when n ∈ N>0. For
all n ∈ N>0, A contains exactly an evaluation schemes for an, and we associate to it the
series A(z) :=

∑+∞
i=1 ai z

i. Notice that we could prove that the convergence radius for
A(z) is at least 1/4 by comparing an with the nth Catalan number.

Now, if we look at the inductive nature of A, we can see that each of its elements
is either a or s1 × s2, where {s1, s2} ∈ P2(A). We can use this information in order to
derive a functional equation satis�ed by A(z):

A

A(z)

=

=

{a}

z

1 scheme

for a1

t

+

{ ×

s1 s1

n∑
i=1

ai z
2i

︸ ︷︷ ︸
A(z2)

an schemes

for a2n

, s1 ∈ A
}
t

+

{ ×

s1 s2

1

2

(
A(z)2 − A(z2)

)
number of schemes for n=i+j:

ai · aj minus an/2 (case of s1 = s2) divided

by 2 because of the symmetry of s1 and s2

, {s1, s2} ⊂ A, s1 6= s2

}

So, we have

A(z) = z +
1

2

(
A(z)2 + A(z2)

)
.

We can then study this function equation in order to show that

A(z) ∼z→1/ξ 1− 2
√
π η
√

1− ξ z,

where η and ξ are constants that can be e�ciently approximated by adapting the approach
in [Wed22]. This equivalence allows us to conclude. Indeed, it is known (see [FS09,
Corollary VI.1]) that the coe�cient an of A(z) is equivalent to its counterpart in the
series on the right-hand side, for which we can easily see that it is itself equivalent to
η ξn

n3/2 .

Sequences A001190 and A085748 are closely related due to the similarity between an

and a ·bn. In fact, one evaluation scheme for a ·bn is made of a multiplied by some scheme
for bi1 , the resulting product a · bi1 being in turn multiplied by a scheme for bi2 , and so on
until bir , for some sequence (i1, . . . , ir) such that i1 + i2 + · · ·+ ir = n. Let us denote by
B the set of all the evaluation schemes for a · bn when n ∈ N. What the previous remark
tells us is that there is a natural bijection between B and the �nite sequences of elements
in A. This is summarized by the following equation

B = SEQ(A), (6.1)

6.3. Asymptotics of counting sequences 127

using the notation from [FS09, �I.2]. This equation is the key to transpose Property 6.3
to A085748:

Theorem 6.2. Let bn be the number of evaluation schemes for a · bn. We have

bn ∼n→∞
ξn

2π η
√
n

with ξ, η as in Property 6.3.

Proof. Like for A, we can associate to B the series B(z) :=
∑+∞

i=0 biz
i. The link between

A and B expressed in Equation (6.1) implies the following relation for the corresponding
series:

B(z) =
1

1− A(z)
. (6.2)

One can think of the similarity between 1
1−x =

∑
i≤0 x

i and a sequence of elements of X
which is either the empty sequence, or an element of X i with i ≥ 1. A formal explanation
of this fact can be found in [FS09, Theorem I.1].

Now, we can use Equation (6.2) and the asymptotic equivalent for A(z) mentioned
before to deduce the following asymptotic equivalent for B(z):

B(z) ∼z→1/ξ
1

2
√
π η

(1− ξ z)−1/2. (6.3)

All that remains is to express the right-hand side as an in�nite series, and deduce some
asymptotic equivalence for its nth coe�cient, which will also hold for bn. Since

1

(1− z)1/2
=

+∞∑
n=0

(
n− 1/2

n

)
zn with

(
r

n

)
=
r(r − 1) . . . (r − n+ 1)

n!

=
+∞∑
n=0

(2n)!

4n (n!)2
zn,

we deduce that
1

2
√
π η

(1− ξ z)−1/2 =
+∞∑
n=0

ξn

2
√
π η

(2n)!

4n (n!)2
zn,

so that the nth coe�cient of the series is equivalent to
ξn

2πη
√
n
, which ends the proof.

6.3.3 Lower and upper bounds on the number of evaluation schemes

for polynomials

In this section, we aim at estimating how fast the sequences A169608(n) and A173157(n)
grow when n tends to in�nity. Let us focus on univariate polynomials to begin with. The
approach mentioned previously for an and a · bn does not seem to �t for this case. In fact,
the family F of arithmetic expressions from which we have deduce A169608(n) contains
sparse polynomials, which are best represented by sets of integers rather than integers.

128 Chapter 6. On the combinatorics of evaluation schemes

This makes it di�cult to de�ne properly a series corresponding to the set S(F). Moreover,
we cannot adopt a labelled point of view where we �x an unordered tree and then put
the ai's in any order at the di�erent leaves. This covers the case of

∑n
i=0 ai, where the

variables play the same role, but we do not have such a symmetry in a polynomial.
Therefore, given n ∈ N, we propose to �nd two sets of schemes Sn and S ′n satisfying

Sn ⊂ S(
n∑
i=0

ai x
i) ⊂ S ′n

and such that we could easily express their cardinalities as a function of the sequences
from the previous section. Then, asymptotics for log |Sn| and log |S ′n| will give us a lower
and an upper bound, respectively, for the asymptotics of log A169608(n), that is, a precise
information about the growth of A169608(n).

Lower bound for A169608(n)

In order to get a good lower bound, we need to consider a signi�cant part of the schemes
in S(

∑n
i=0 ai x

i). We choose here to consider the set Sn of all schemes corresponding to
a parallel evaluation of all the monomials ai · xi for 0 ≤ i ≤ n followed by a sum of the
n+1 resulting quantities. Actually, Sn is what we would obtain if we remove factorization
(rule r6) from our set of rules in Section 5.1.1. As we only remove one rule, we hope that
Sn will be close to S(

∑n
i=0 ai x

i). The number of schemes in Sn satis�es:

|Sn| = A001147(n)

number of ways to add

the n + 1 monomials

·
n∏
i=0

bi

number of ways

to evaluate ai · xi

so that

log |Sn| = log A001147(n)︸ ︷︷ ︸
∼

n→+∞
n logn

+
n∑
i=0

log bi︸ ︷︷ ︸
∼

i→+∞
i log ξ

. (6.4)

Indeed, the asymptotics for log A001147(n) is straightforward given the closed formula
from Property 6.2 and Stirling's formula, and the asymptotics for log bi can be veri�ed
as follows:

log bi
i log ξ

=
log bi

i log ξ − 1
2

log i
·
i log ξ − 1

2
log i

i log ξ
=
(

1 +
log(bi ·

√
i/ξi)

log(ξi/
√
i)︸ ︷︷ ︸

→
i→+∞

−log(2πη)/+∞=0

)
· (1 + o(1)) →

i→+∞
1.

Now, since i log ξ is non-negative for all i ∈ N and
∑
i log ξ diverges, we deduce that

n∑
i=0

log bi ∼n→+∞
n(n+ 1)

2
log ξ ∼n→+∞ n2 log

√
ξ.

6.3. Asymptotics of counting sequences 129

Figure 6.1: How to insert multiplications in order to turn a scheme for
∑n

i=0 ai into a
scheme for

∑n
i=0 ai x

i.

For each edge in the scheme for
∑n

i=0 ai (the green one here), we choose a scheme for a · bi with
0 ≤ i ≤ n (here, we choose the blue scheme corresponding to i = 2), and we insert this scheme

alongside the edge.

+

×

×

a b

b

=

+

×

×

x

x

Therefore, the sum in Equation (6.4) is predominant over log A001147(n), and we can
conclude that log |Sn| ∼n→+∞ n2 log

√
ξ.

Since log A169608(n) ≥ log |Sn|, this tells us that the asymptotic growth of the log-
arithm of the number of schemes for univariate polynomials is at least quadratic. If we
look at the overall shape of the numbers of schemes in Table 6.1, we can indeed see that
the curve made of the leading digits looks like a parabola.

Upper bound for A169608(n)

In order to get an upper bound, we will consider all the unordered binary trees of the
following form:

• First, we start from an evaluation scheme for
∑n

i=0 ai. We have thus an unordered
binary tree with 2n edges.

• Second, we choose for each edge one evaluation scheme for a · bi with 0 ≤ i ≤ n and
we insert it at the level of the edge as illustrated in Figure 6.1.

This gives us a new set S ′n. We can �rst notice that, if we only allow the insertions
at edges connecting an internal node to a leaf then we would have obtained the set Sn
introduced for the lower bound. Now, by allowing insertions everywhere, we are able to
restore all the chains of multiplications within a given evaluation scheme for

∑n
i=0 ai x

i

given its skeleton (that is, the unordered binary tree where we have removed all the
internal nodes labelled with a multiplication). Of course, this construction creates many
unordered binary trees whose underlying mathematical expression is not

∑n
i=0 ai x

i. In
fact, we obtain

∑n
i=0 ai x

ei for some non-negative integers (e0, . . . , en) depending on how
we have inserted schemes.

Remark that we limit ourselves to insert schemes for a · bi with 0 ≤ i ≤ n since the
maximum power of x in

∑n
i=0 ai x

i is xn, and that we allow the trivial scheme for a ·b0 = a
so that we can leave some edges untouched.

130 Chapter 6. On the combinatorics of evaluation schemes

The number of unordered binary trees in S ′n is:

|S ′n| = A001147(n)

number of

possible skeletons

·

(
n∏
i=0

bi

)
2n

number of edges

in the skeleton

number of schemes

for evaluating a · bi
with 0 ≤ i ≤ n

Now, we can proceed as for the lower bound. First we apply the logarithm to both sides
of the previous identity:

log |S ′n| = log A001147(n)︸ ︷︷ ︸
∼

n→+∞
n logn

+ 2n ·
n∑
i=0

log bi︸ ︷︷ ︸
∼

i→+∞
i log ξ

.

The same argument holds for the asymptotics of log bi, and the one of
∑n

i=0 log bi. So
we conclude that log |S ′n| ∼n→+∞ n3 log ξ. While this does not match the lower bound
mentioned earlier, it is not too far from it. Moreover, this upper bound proves that the
number of evaluation schemes for p(x) is not doubly exponential.

Bounds for A173157(n)

We can formulate of few remarks concerning A173157(n):

• Obviously, any scheme for p(x) gives us a scheme for q(x, y) = α+ y · p(x), so that
A173157(n) ≥ A169608(n).

• Actually, we even have A173157(n) ≥ A169608(n+1). Indeed, replacing y with x in
a scheme for q(x, y) gives us a scheme for evaluating a degree-(n+1) polynomial, and
this mapping is surjective. We can move y before evaluating y ·xi using associativity
and commutativity, which becomes impossible when y is turned into x.

• Finally, we can take a scheme for a degree-(n + 1) univariate polynomial, which
will have at most (n+1)(n+2)

2
leaves labelled with x, and decide for each of those

leaves to turn the x into a y. This is kind of the opposite of the process mentioned
in the previous point. It allows us to get back, among others, all the schemes for
q(x, y) = α + y · p(x) (with deg p = n). Therefore, using this idea, we can deduce
the identity

A173157(n) ≤ (n+ 2)2n+3 · A169608(n+ 1),

which is actually a consequence of Property 6.4 below.

Property 6.4. Let (m, k) ∈ N2, p(x) be the univariate polynomial whose encoding is
(m, k + 1), and q(x, y) be the special bivariate polynomial whose encoding is (true,m, k).
Then, for all s ∈ S(q(x, y)), there exists s′ ∈ S(p(x)) such that changing at most
max{|m|, 1} instances of x by y in s′ gives (modulo a renaming of the coe�cients) s,
where |m| is the number of bits with a value of 1 in m.

6.3. Asymptotics of counting sequences 131

Proof. We proceed by strong induction on (m, k) ∈ (N2, <lex):

• For (0, 0), we have q(x, y) = y, p(x) = x, |m| = 0, and the result holds since we
need to replace 1 = max{|m|, 1} instance of x in the sole scheme for x in order to
get the sole scheme for y.

• For (m, k) = (1, 0), we have q(x, y) = α, and we do not need to change anything in
the sole scheme s′ ∈ S(a1) to obtain the sole scheme s of q(x, y).

• Otherwise, (m, k) is such that the bivariate polynomial q(x, y), whose encoding is
(true,m, k), is non-trivial. Indeed, either |m| > 1 and we can (at least) split the
monomials in q(x, y) to form a sum of two new polynomials, or m is even6 and we
can (at least) factor by some power of x.

So, let s := (�, {s1, s2}) ∈ S(q(x, y)). We need to �nd s′ ∈ S(p(x)) satisfying the
statement in our property. Let q1(x, y) and q2(x, y) be such that si ∈ S(qi(x, y))
and the encoding for qi(x, y) is (mi, ki), for i ∈ {1, 2}. Let us distinguish between
four cases:

* If � = +, we have |m| > 1 and |m| > |mi| ≥ 1 for i ∈ {1, 2}. We can
apply the induction hypothesis on s1 and s2 in order to get s′1 and s′2, and
de�ne s′ = (�, {s′1, s′2}). Since we can go from s′i to si by turning at most
|mi| instances of x into y, for i ∈ {1, 2}, we can go from s′ to s in at most
|m1|+ |m2| = |m| = max{|m|, 1} changes;

* If � = ×, m 6= 0, and, say, q1(x, y) = xj for some positive integer j, we have
(m2, k2) = (m/2j, k+j) <lex (m, k) and we conclude by applying the induction
hypothesis on s2. Indeed, we then obtain a scheme s′2, so that we can de�ne
s′ = (�, {s1, s′2}) which is a scheme of p(x), and from which we can to s in at
most |m2| = |m| changes (in s′2);

* Finally, if � = × and, say, q1(x, y) = y · xj for some non-negative integer j, we
have (m1, k1) = (0, j) <lex (m, k) (either m > 0, or m = 0 and q(x, y) = y · xk
with k > j). In the case, we conclude by applying the induction hypothesis
on s1. We then obtain s′1, so that we can de�ne s′ = (�, {s′1, s2}) which is a
scheme of p(x) and from which we can go to s in at most max{|m1|, 1} = 1 ≤
max{|m|, 1} changes (in s′1).

6Recall from page 122 that k > 0 implies that m must be even, and notice that, for k = 0, |m| = 1
with m an odd integer only happens for (m, k) = (1, 0), which we have already considered.

132 Chapter 6. On the combinatorics of evaluation schemes

With this property, we can conclude that

A173157(n) ≤

bound on the number of ways to turn

at most n + 1 instances of x into y in a

scheme for p(x) with deg(p) = n+ 1︷ ︸︸ ︷
n+1∑
k=0

(
(n+ 1)(n+ 2)/2

k

)
· A169608(n+ 1)

≤
n+1∑
k=0

(
(n+ 2)2

k

)
· A169608(n+ 1) ≤

n+1∑
k=0

(n+ 2)2k · A169608(n+ 1)

≤
n+1∑
k=0

(n+ 2)2n+2 · A169608(n+ 1) ≤ (n+ 2)2n+3 · A169608(n+ 1).

Therefore, we have

log
(
A169608(n+ 1)

)
≤ log

(
A173157(n)

)
≤ log

(
A169608(n+ 1)

)
+ (2n+ 3) log(n+ 2),

and it is straightforward to conclude that:

• log
(
A173157(n)

)
∈ Θ

(
log
(
A169608(n+ 1)

))
,

• log
(
A173157(n)

)
∈ Ω(n2),

• log
(
A173157(n)

)
∈ O(n3).

Summary of the di�erent bounds

Let us summarize the di�erent bounds that we have obtained in this section:

Theorem 6.3. We have log
(
A169608(n)

)
∈ Ω(n2) and log

(
A169608(n)

)
∈ O(n3).

Furthermore, we have the following inequalities:

A169608(n+ 1) ≤ A173157(n) ≤ (n+ 2)2n+3A169608(n+ 1)

so that log
(
A173157(n)

)
∈ Θ(log

(
A169608(n+ 1)

)
).

As a consequence, we also have log
(
A173157(n)

)
∈ Ω(n2) and log

(
A173157(n)

)
∈ O(n3).

To conclude this asymptotic study, let us see graphically how the di�erent sequences
and bounds mentioned in this section compare. For the univariate case, we can see in
Figure 6.2 that the lower bound log |Sn| for log

(
A169608(n)

)
is quite sharp compared to

the upper bound log |S ′n|. Indeed the curves for log |Sn| and log
(
A169608(n)

)
are overlaid

in the �gure. Therefore, we speculate that log
(
A169608(n)

)
is actually in Θ(n2).

Finally, Figure 6.3 illustrates how the sequence log
(
A173157(n)

)
is located in rela-

tion with its lower and upper bounds. As we have said, the asymptotic behavior of
log
(
A173157(n)

)
coincides with the one of log

(
A169608(n + 1)

)
. Again, by comparing

with the curves of the asymptotics found for the lower and upper bounds in the univariate
case, it is more likely that the order of magnitude for log

(
A169608(n)

)
is Θ(n2).

6.4. Counting evaluation schemes with respect to a given measure 133

Figure 6.2: Log-lin graph of the di�erent functions mentioned during the asymptotic
study of A169608(n).

6.4 Counting evaluation schemes with respect to a given

measure

One question that may arise when trying to optimize some criterion is to �nd the number
of optimal schemes. More generally, when we have some measure de�ned on the evaluation
schemes, we may want to know how the di�erent evaluation schemes split up according
to this measure. After introducing a new algorithm for this purpose in Section 6.4.1,
we will discuss the number of multiplications and the latency of evaluation schemes for
univariate polynomials in Sections 6.4.2 and 6.4.3, respectively. Finally, we will discuss
how to restrict ourselves to nearly optimal schemes, and what we gain by doing so in
Section 6.4.4.

6.4.1 A �ner-grained adaptation of the generation algorithm

Let us assume that we have a recursively computable measure ϕ : S(F)→ T . Hence, we
have the values associated to all the trivial schemes, plus a function ρ : {+,×}×T×T → T
allowing us to compute the measure of a non-trivial scheme. While we have focused on the
cardinality of S(f) for f ∈ F in Algorithm 6.1, we propose here to consider the partition
of S(f) according to ϕ and thus to propagate recursively the distribution of the number

134 Chapter 6. On the combinatorics of evaluation schemes

Figure 6.3: Log-lin graph of the di�erent functions mentioned during the asymptotic
study of A173157(n).

of schemes for f according to ϕ, represented as mapping r : T → N. This approach is
presented in Algorithm 6.2. Note that, in this algorithm, we assume that each time we
try to access a value r(t) which was not previously de�ned, the corresponding value is 0.

Theorem 6.4. Algorithm 6.2 is correct.

Proof. Let us proceed by complete induction on f ∈ F . If f admits no decomposition
(in particular when f is the minimum for (F , <F)), it is a variable. Hence, f has only
one evaluation scheme which is f itself, and Algorithm 6.2 returns r : ϕ(f) → 1, which
is correct.

Suppose now that f is not a variable, and that for all g < f , CountPerMeasure(g) is
correct and gives us the distribution of the evaluation schemes for g with respect to the
measure ϕ.

As we have seen in Theorem 5.1, we encountered each scheme for f exactly once
during Algorithm 5.1.

Let s := (�, {s1, s2}) be such a scheme. Each si is thus a scheme for some arithmetic
expression fi <F f . Moreover, f1 ≤F f2. We then have two cases:

• Either f1 <F f2. In this case, the schemes s := (�, {s1, s2}) for f corresponding to

6.4. Counting evaluation schemes with respect to a given measure 135

Algorithm 6.2: CountPerMeasure

Input : f ∈ F , and a measure function ϕ : schemes 7→ T
Output: a partial map r : T → N which gives for every t ∈ Dom(r) the number of

evaluation schemes s for f such that ϕ(s) = t

`← decompose(f)1

if ` = ∅ then de�ne r with r(ϕ(f))← 12

else3

foreach (�, f1, f2) ∈ ` do4

r1 ← CountPerMeasure(f1)5

if f1 = f2 then6

for {t1, t2} ∈ P2(Dom(r1)) do7

t← ρ(�, t1, t2)8

if t1 = t2 then r(t)← r(t) +
r1(t1) · (r1(t1) + 1)

29

else r(t)← r(t) + r1(t1) · r1(t2)10

else11

r2 ← CountPerMeasure(f2)12

for (t1, t2) ∈ Dom(r1)×Dom(r2) do13

t← ρ(�, t1, t2)14

r(t)← r(t) + r1(t1) · r2(t2)15

return r16

the decomposition (�, f1, f2) are in bijection with

S(f1)× S(f2) =
⊔

t1∈Dom(r1)

⊔
t2∈Dom(r2)

S(f1)|t1 × S(f2)|t2 ,

where S(fi)|ti := {s ∈ S(fi), ϕ(s) = ti}. By assumption, ϕ(s) only depends on �,
ϕ(s1) and ϕ(s2), so that all (s1, s2) ∈ S(f1)|t1 ×S(f2)|t2 lead to schemes s with the
same value t := ϕ(s) = ρ(�, t1, t2). Algorithm 6.2 thus considers each pair (t1, t2)
and adds to r(t) the corresponding number of schemes, that is, r1(t1) · r2(t2).

• Or f1 =F f2. In this case, the schemes s := (�, {s1, s2}) for f corresponding to the
decomposition (�, f1, f1) are in bijection with

P2(S(f1)) =
⊔

t1∈Dom(r1)

P2(S(f1)|t1) t
⊔

t1, t2 ∈ Dom(r1)

t1 <T t2

S(f1)|t1 × S(f1)|t2 .

Indeed, if s1, s2 ∈ S(f1), we have to consider {s1, s2} only once, and:

* either ϕ(s1) 6=T ϕ(s2), and the scheme is taken into account once in the disjoint
union on the right side,

136 Chapter 6. On the combinatorics of evaluation schemes

* or ϕ(s1) = ϕ(s2) and the scheme is taken into account once in the disjoint
union on the left side because of P2(·).

Then, again, each set of the union is constant with respect to ϕ, and Algorithm 6.2
adds the corresponding cardinalities correctly.

Remark that Algorithm CountPerMeasure may be quite signi�cantly costly than Al-
gorithm Count, especially when there are a lot of possible values for ϕ(s) when s ∈ S(f).
After illustrating this problem on two examples, we will see how to get good performance
if we are only interested in nearly optimal schemes.

6.4.2 Number of evaluation schemes for polynomials with respect

to the number of multiplications

We can apply Algorithm 6.2 on univariate polynomials in order to deduce the distribution
of schemes according to the number of multiplications. For this purpose, we will use for ϕ
a variant of the measure we introduced at the end of Section 5.4.2. In fact, we do not need
to keep trace of all the multiplications in schemes as before, since only multiplications of
type xi × xj may occur more than once.7 Therefore, we propose to do the following:

• First, we precompute all the evaluation schemes for xi where 1 ≤ i ≤ n and we
number them.

• Then, we de�ne T := N×P(N2) and ϕ : S(F)→ T . The integer will correspond to
the number of multiplications involving at least one coe�cient ai, and the set will
list all the multiplications of the type xi × xj, represented as pairs (i+ j, σ) where
i + j is the corresponding power of x and where σ indicates the actual scheme in
use for xi+j.

• Trivial schemes have no multiplication, so we set their measure to (0, {}). We also
de�ne the following function ρ in order to recursively compute ϕ:

ρ(+, (a1, b1), (a2, b2)) = (a1 + a2, b1 ∪ b2),
ρ(×, (a1, b1), (a2, b2)) = (a1 + a2 + 1, b1 ∪ b2) when f1 or f2 is not a power of x,

ρ(×, (0, b1), (0, b2)) =
(
0, b1 ∪ b2 ∪ {(i+ j, σ)}

)
when f1 = xi, f2 = xj,

and the scheme used for xi+j is the σth one.

Notice that, in the last case, we only have multiplications between powers of x, so
the �rst component is always 0.

• Finally, we need to provide a total order on T = N × P(N2), which has to be
consistent with the total number of multiplications. We will say that (a1, b1) <T

(a2, b2) when:

7Each coe�cient ai can only appear once in an evaluation scheme for
∑

i∈I ai+k x
i.

6.4. Counting evaluation schemes with respect to a given measure 137

Table 6.6: Distribution of the evaluation schemes for a degree-7 polynomial and a degree-8
polynomial according to the number of multiplications.

multiplications number of schemes

7 1

8 585

9 28545

10 724188

11 12066156

12 142484691

13 1210062345

14 7184777823

15 30029531607

16 89724191454

17 195479643387

18 318178508025

19 395160692850

20 379752728565

21 284251875780

22 165437390460

23 74023293645

24 24939084240

25 6146417970

26 1066285080

27 121943745

28 7702695

multiplications number of schemes

8 1

9 1572

10 116280

11 4245072

12 100901301

13 1737792846

14 22606907520

15 224473674759

16 1679317135200

17 9419838853410

18 39810790839105

19 128418624743772

20 321614460141702

21 636563506187631

22 1012043941159125

23 1310128238636700

24 1395753710386005

25 1233103860578010

26 907475440807200

27 556919177973840

28 284254828903080

29 119811812319675

30 41193779294115

31 11346619224150

32 2444441312880

33 399502303200

34 47528694675

35 3828239415

36 172297125

* a1 + |b1| < a2 + |b2| (there are fewer multiplications on the left-hand side),

* a1 + |b1| = a2 + |b2| and a1 < a2 (the number of multiplications is the same
on both sides, but the left-hand side has fewer multiplications that are not8

between two powers of x),

* or b1 < b2, that is, assuming bi = {(n(k)
i , σ

(k)
i)} sorted according to the lexi-

cographical order <lex, there exists k0 such that (n
(k0)
1 , σ

(k0)
1) <lex (n

(k0)
2 , σ

(k0)
2)

and for all k < k0, (n
(k)
1 , σ

(k)
1) =lex (n

(k)
2 , σ

(k)
2).

Because of the complexity in the choice for type T , the analysis will be more costly
than the one in the previous section. Moreover, we get a more re�ned result than what
we were aiming for, so that we need to perform a post-treatment to actually deduce the
number of multiplications from the di�erent t ∈ T . Table 6.6 shows the distribution of
the evaluation schemes for a degree-7 and a degree-8 polynomial according to the number

8We choose to give priority to schemes with more multiplications between powers of x since they are
more likely to bring more common subexpressions in the sequel.

138 Chapter 6. On the combinatorics of evaluation schemes

of multiplications. This number can range from n, which is known to be optimal [Pan66]
and uniquely achieved [Bor71] by Horner's rule, to n(n+1)

2
, which corresponds to naive

schemes where we compute ai · x, (ai · x) · x, (ai · x2) · x, . . . , (ai · xi−1) · x for all 1 ≤ i ≤ n.
The computation takes about 86 seconds for n = 7 and 1.5 hours for n = 8.

6.4.3 Number of evaluation schemes for polynomials with respect

to the latency

We have also tested Algorithm CountPerMeasure on univariate polynomials using la-
tency as the measure. Figure 6.4 illustrates how the evaluation schemes for a degree-18
polynomial split up with respect to the latency on unbounded parallelism, assuming that
addition and multiplication cost 1 and 3 cycles, respectively. This �gure was generated
from the results obtained after about 69 hours of computation. The latency ranges from
16 cycles, which is 1 cycle less than the classical Estrin scheme, to 72 which is the latency
for Horner's rule. The distribution looks like a Gaussian, while slightly more concentrated
on the left, and it is actually centered around 40 cycles which is a bit less than 44 = 72+16

2
.

Figure 6.4: Distribution of the evaluation schemes for p(x) with deg p = 18 according to
the latency on unbounded parallelism when C+ = 1 and C× = 3.

What interests us here more particularly in Figure 6.4 is the part near the optimal
latency, shown in Table 6.7. As one can see, the number of nearly optimal schemes
is quite small in comparison to the total number of schemes. Nevertheless, even the
number of schemes with the optimal latency of 16 cycles is too large (> 1024) to think
about exhaustive generation. On the other hand, having so many optimal schemes lets

6.4. Counting evaluation schemes with respect to a given measure 139

us hope that, when we aim at a fast and accurate-enough scheme, restricting the search
to optimal (or nearly optimal) schemes should be enough. This is actually the point of
view we embrace in the software CGPE [MR11].

Table 6.7: Number of evaluation schemes for p(x) with deg p = 18 with a latency at most
20 on unbounded parallelism when C+ = 1 and C× = 3.

latency ` number of schemes n` log10 n`

16 8358152077260267744786057 24.92

17 1472070576061528900246619602065309 33.17

18 22240147119728481951968575944076920440734990 43.35

19 768600347405960200312345740633767165234208387412527 50.89

20 5782427313764344437576581286875140118439932677073357566 54.76

6.4.4 Counting only nearly optimal schemes

Deducing the results shown in Table 6.7 via Algorithm CountPerMeasure is quite costly
since we actually compute all the distribution of schemes according to the latency, as
presented in Figure 6.4. Algorithm 6.3 allows us to focus only on the part where nearly
optimal schemes lies, so that we can deduce Table 6.7 directly. One can see that this al-
gorithm is actually a mix between CountPerMeasure and GenerateWithHint introduced
in the previous chapter.

Theorem 6.5. Provided that for all evaluation scheme s = (�, s1, s2) where s1 and s2
are schemes for f1 and f2, respectively, and for all b ∈ T , we have

ϕ(s) ≤T b ⇒ ϕ(s1) ≤T b′ ∧ ϕ(s2) ≤T b′

where b′ := update((�, f1, f2), b), Algorithm 6.3 is correct.

Proof. The proof can easily be derived from the proofs of correctness for GenerateWithHint,
since what CountWithHint does is to keep the cardinalities instead of the sets manipu-
lated within GenerateWithHint.

We still proceed by complete induction on f ∈ F , and the case where f admits no
decomposition is correct since the algorithm returns r(ϕ(f)) = 1 if the measure for the
sole scheme of f is less than or equal to B, and nothing (that is, 0 scheme) otherwise.

Suppose now that f is not a variable and that for all g < f , CountWithHint(g, B′)
is correct and gives us the distribution with respect to the measure ϕ of the evaluation
schemes s ∈ S(g) such that ϕ(s) ≤T B′.

As we have seen in Theorem 5.2, each scheme s ∈ S(f) such that ϕ(s) ≤T B is
encountered exactly once during Algorithm 5.2. What we need here is therefore to count
the exact number of schemes involved in each case:

140 Chapter 6. On the combinatorics of evaluation schemes

Algorithm 6.3: CountWithHint

Input : f ∈ F and a bound B ∈ T .
Parameter: A recursively computable measure ϕ : S(F)→ (T,<T), and a

function update: D(F)× T → T to adjust the bound before the
recursive calls.

Output : The distribution according to ϕ of all the evaluation schemes s for f
such that ϕ(s) ≤T B.

`← decompose(f)1

if ` = ∅ and ϕ(f) ≤T B then r(ϕ(f))← 12

else3

foreach (�, f1, f2) ∈ ` do4

B′ ← update((�, f1, f2), B)5

r1 ← CountWithHint(f1, B
′)6

if f1 = f2 then7

for {t1, t2} ∈ P2(Dom(r1)) do8

t← ρ(�, t1, t2)9

if t ≤T B then10

if t1 = t2 then r(t)← r(t) +
r1(t1) · (r1(t1) + 1)

211

else r(t)← r(t) + r1(t1) · r1(t2)12

else13

r2 ← CountWithHint(f2, B
′)14

for (t1, t2) ∈ Dom(r1)×Dom(r2) do15

t← ρ(�, t1, t2)16

if t ≤T B then r(t)← r(t) + r1(t1) · r2(t2)17

return r18

• When f1 <F f2, the schemes involved are

{
s ∈ S(f), s =

�

s1 s2
with (s1, s2) ∈ S(f1)× S(f2) and ϕ(s) ≤T B

}
=

⊔
t1 ∈ Dom(r1)

t2 ∈ Dom(r2)

{
s ∈ S(f), s =

�

s1 s2
with (s1, s2) ∈ S(f1)|t1 × S(f2)|t2 and ϕ(s) ≤T B

}

and each inner set of schemes contains either r1(t1) · r2(t2) schemes (case when
ρ(�, t1, t2) =: t ≤T B), or is empty.

• When f1 =F f2, we have to take care of avoiding redundancy. This time, the set of

6.4. Counting evaluation schemes with respect to a given measure 141

schemes involved is, like in the proof of Theorem 6.4,{
s ∈ S(f), s =

�

s1 s2
with {s1, s2} ∈ P2(S(f1)) and ϕ(s) ≤T B

}
=

⊔
t1∈Dom(r1)

{
s ∈ S(f), s =

�

s1 s2
with {s1, s2} ∈ P2(S(f1)|t1) and ϕ(s) ≤T B

}
⊔

⊔
{t1, t2} ∈ P2(Dom(r1))

t1 <T t2

{
s ∈ S(f), s =

�

s1 s2
with (s1, s2) ∈ S(f1)|t1 × S(f1)|t2 and ϕ(s) ≤T B

}

So, if t1 =T t2 and ρ(�, t1, t2) ≤T B, we get r1(t1)·(r1(t1)+1)
2

schemes by Property 6.1.
Otherwise, we have t1 <T t2 and the corresponding number of schemes is r1(t1) ·
r1(t2).

In all cases, Algorithm 6.3 actually adds in r(t) the correct number of schemes. Hence
it is correct.

Implementation results

We have implemented CountWithHint and tested it on univariate polynomials with the
latency as a measure in order to generate Table 6.7 again. The function in use to update
the bound before recursive calls was de�ned by:

update : D(F)× T → T

(�, f1, f2), b 7→ max{b− C�, 0}.

The computation time was around 8 hours, which means that the speed-up achieved with
this approach is approximately 8.6.

Moreover, suppose that we only want the number of optimal schemes with respect to
the latency. What we can do is to initialize B with 0, run CountWithHint, see if we get
a positive number of evaluation schemes, and start again after increasing B by 1 if it is
not the case. At the end of this process, we will obtain the minimal latency, along with
the number of schemes achieving it. Doing this for a degree-18 polynomial allows us to
�nd the �rst row of Table 6.7 in about 3 hours, which is 23 times faster than computing
the complete distribution of schemes according to the latency.

142 Chapter 6. On the combinatorics of evaluation schemes

Chapter 7

Optimization

We have seen so far how to generate, for a given arithmetic expression f , all its evaluation
schemes and how to count them. For practical purposes, we are more concerned with
�nding, among all the evaluation schemes, some relevant subset which contains only
optimal or nearly optimal schemes according to a given measure. The �rst section deals
with a direct adaptation of the �rst generation algorithm mentioned in Section 5.3 in order
to tackle optimization issues. Unfortunately, this simple approach fails to �nd the optimal
value for some of the measures we are interested in, like the minimization of the number
of multiplications. Therefore, we will present in a second section several other algorithms
that handle all the recursively computable measures, and compare them. Finally, a third
section will discuss multicriteria optimization. Furthermore, we will address the issue of
�nding a good trade-o� between two measures and see a couple of situations where we
can quickly �nd relevant information about the possible trade-o�s.

7.1 Adapting the generation algorithm for optimiza-

tion

7.1.1 Optimizing the latency on unbounded parallelism

We can naively optimize the latency on unbounded parallelism1 by �rst generating all
the schemes and then checking their latencies to deduce its minimum feasible value, but
this is absolutely not e�cient. In fact, minimum latency is a property attached to an
arithmetic expression, and the idea is therefore to abstract the set of evaluation schemes
with the best latency achieved among them. Hence, we can manipulate only latencies
and forget about the underlying schemes, as shown in Algorithm 7.1.

Theorem 7.1. Algorithm 7.1 is correct.

Proof. If the arithmetic expression f in input is a variable, then no computation is needed
and Algorithm 7.1 correctly outputs a latency of 0 cycle.

Otherwise, the minimal latency for f is by de�nition the minimal latency L(s) among
all the evaluation schemes s for f :

1See Section 5.4.2.

144 Chapter 7. Optimization

Algorithm 7.1: MinLat

Input : f ∈ F .
Parameter: The costs C+ and C× for operators + and × respectively.
Output : the minimum feasible latency r for f .

`← decompose(f)1

if ` = ∅ then r ← 02

else3

r ←∞4

foreach (�, f1, f2) ∈ ` do5

r1 ← MinLat(f1)6

if f1 = f2 then r ← min{r, C� + r1 }7

else8

r2 ← MinLat(f2)9

r ← min
{
r, C� + max{r1, r2}

}
10

return r11

min
s∈S(f)

L(s) = min
(�,f1,f2)∈D(f)

min
s1 ∈ S(f1)

s2 ∈ S(f2)

L(
�

s1 s2
). (7.1)

Note that we do not bother to avoid redundancy in the inner minimum on the right
hand side, since it does not change the value for this minimum. Hence we can handle
both cases from the test at line 7 in one shot.

Moreover, recall that latency is recursively computable as we have seen in Section 5.4.2,
and that we have:

L(
�

s1 s2
) = C� + max{L(s1), L(s2)}. (7.2)

In addition:

• max{L(s1), L(s2)} ≥ L(si) ≥ min
s′∈S(fi)

L(s′) for i ∈ {1, 2},

so for all s1 ∈ S(f1), s2 ∈ S(f2) we have

max{L(s1), L(s2)} ≥ max{ min
s1∈S(f1)

L(s1), min
s2∈S(f2)

L(s2)}

and we can take the minimum over (s1, s2) ∈ S(f1)× S(f2) to deduce that

min
s1 ∈ S(f1)

s2 ∈ S(f2)

max{L(s1), L(s2)} ≥ max{ min
s1∈S(f1)

L(s1), min
s2∈S(f2)

L(s2)}.

• The left-hand side of this last inequality is also not larger than the right-hand side,
as we can see by taking for si some scheme minimizing L(si) for i ∈ {1, 2}.

7.1. Adapting the generation algorithm for optimization 145

Therefore, the following equality holds:

min
s1 ∈ S(f1)

s2 ∈ S(f2)

max{L(s1), L(s2)} = max{ min
s1∈S(f1)

L(s1), min
s2∈S(f2)

L(s2)}. (7.3)

Putting Equations (7.1), (7.2), and (7.3) together, we deduce that:

min
s∈S(f)

L(s) = min
(�,f1,f2)∈D(f)

min
s1 ∈ S(f1)

s2 ∈ S(f2)

L(
�

s1 s2
)

= min
(�,f1,f2)∈D(f)

min
s1 ∈ S(f1)

s2 ∈ S(f2)

{
C� + max{L(s1), L(s2)}

}

= min
(�,f1,f2)∈D(f)

{
C� + min

s1 ∈ S(f1)

s2 ∈ S(f2)

max{L(s1), L(s2)}
}

= min
(�,f1,f2)∈D(f)

{
C� + max{ min

s1∈S(f1)
L(s1), min

s2∈S(f2)
L(s2)

}
.

By induction, we know that r1 = mins1∈S(f1) L(s1) and r2 = mins2∈S(f2) L(s2), and Algo-
rithm 7.1 correctly computes r = min(�,f1,f2)∈D(f)

{
C�+max{r1, r2}

}
= mins∈S(f) L(s).

7.1.2 Generalization to recursively computable measures

Algorithm 7.1 can actually be generalized so that we obtain an optimization algorithm
that works for di�erent measures. As in Section 6.4, we ask the user to provide as input
a measure ϕ satisfying the recursive computability hypothesis. Thus, ϕ is given by its
values on atoms and a function ρ for recursive computation. With this input, we can
still go through all the decompositions for f , compute the corresponding values, and
take the minimum, as we did in Algorithm 7.1. What results from this generalization is
Algorithm 7.2.

Theorem 7.2. If ρ(�, x, y) is non-decreasing with respect to x and with respect to y for
all � then Algorithm 7.2 is correct.

Proof. The case of f being a variable is obviously handled correctly. What remains is to
generalize the reasoning in the proof of Theorem 7.1 when f is non-trivial.

The key points were Equations (7.1) to (7.3). The �rst one (along with the remark
about the redundancy we did not take care of) still holds when we replace L with ϕ.
Equation (7.2) actually illustrates the fact that the function (�, x, y) 7→ C� + max{x, y}
is the appropriate function ρ in order to compute the latency recursively. In the present
case, it is automatically deduced from the de�nition of ρ (which is a consequence of the
recursive computability for ϕ). As for the third equation, we need to generalize it, and
this is where the non-decreasing hypothesis will play an important role.

146 Chapter 7. Optimization

Algorithm 7.2: Optimizer

Input : f ∈ F .
Parameter: a recursively computable measure ϕ : S(F)→ (T,<T) de�ned by its

values on variables and by ρ : {+,×} × T × T → T .
Output : the optimal value for f according to ϕ.

`← decompose(f)1

if ` = ∅ then r ← ϕ(f)2

else3

r ←∞<T
4

foreach (�, f1, f2) ∈ ` do5

r1 ← optim(f1)6

if f1 = f2 then r ← min<T

{
r, ρ

(
�, r1, r1)

}
7

else8

r2 ← optim(f2)9

r ← min<T

{
r, ρ(�, r1, r2)

}
10

return r11

What we want to prove now is the following equation:

min
s1 ∈ S(f1)

s2 ∈ S(f2)

ρ
(
�, ϕ(s1), ϕ(s2)

)
= ρ
(
�, min

s1∈S(f1)
ϕ(s1), min

s2∈S(f2)
ϕ(s2)

)
. (7.4)

Since ρ is non-decreasing with respect to its second and third variables, we have for
all (s1, s2) ∈ S(f1)× S(f2) that

ρ
(
�, ϕ(s1), ϕ(s2)

)
≥ ρ
(
�, min

s1∈S(f1)
ϕ(s1), min

s2∈S(f2)
ϕ(s2)

)
and, taking the minimum over (s1, s2) ∈ S(f1)×S(f2), we deduce that the left-hand side
in Equation (7.4) is greater than or equal to the right-hand side. The other inequality can
be obtained by considering schemes si such that ϕ(si) = minsi∈S(fi) ϕ(si), for i ∈ {1, 2},
as we did before.

We can then conclude as we did in the proof of Theorem 7.1 by saying that ri =
minsi∈S(fi) ϕ(si) for i ∈ {1, 2} by induction hypothesis, so that the computed value r =
min(�,f1,f2)∈D(f) ρ(�, r1, r2) is actually equal to the minimal value of ϕ over all the schemes
for f by Equations 7.2 and 7.4.

7.1.3 Some remarks about this approach and its limitation

Let us comment on some aspects of the algorithm introduced in the previous section:

1. Similarly to Algorithm Count from Section 6.1, the cost for Optimizer is bounded
by the product of the number of recursive calls, the maximum number of iterations

7.1. Adapting the generation algorithm for optimization 147

in the foreach loop, and the cost for each step in this loop. Moreover, elements
of F and T are often simple enough so that the last cost is constant (think of the
example with latency in Section 7.1.1).

2. Instead of computing the minimum according to <T in the foreach loop, one can
also keep one or several decompositions that achieve this minimum. By doing so,
it becomes straightforward to rebuild one optimal scheme afterwards.

Comparison with GenerateWithHint and CountWithHint

As already mentioned, we can deduce information about the optimality according to a
given measure by using either GenerateWithHint or CountWithHint. However, whenever
one wants to get only the optimal value, along with a few schemes achieving it, Optimizer
is far more e�cient. For instance, if we come back to the example of the minimum
latency for a univariate polynomial with C+ = 1 and C× = 3, we have seen in Table 6.7
that the optimal latency is 16 and is achieved by ≈ 8.36 × 1024 schemes. Getting this
results took about 3 hours with CountWithHint, and generating all these schemes with
GenerateWithHint is totally out of reach. Yet, using Optimizer, we can get one optimal
scheme in only 22 minutes. This e�ciency is explained by the two following reasons:

• First, Optimizer manipulates only decompositions and elements in T , while algo-
rithms CountWithHint and GenerateWithHint have also to deal with huge integers
and sets of schemes, respectively.

• Second, Optimizer focuses on recursively optimal schemes, that is, optimal schemes
that are only made of optimal subschemes. The existence of such recursively optimal
schemes is implied by the fact that ρ is non-decreasing, which tells us that improving
a subscheme will never give a worse �nal result. However, not all the optimal
schemes are recursively optimal, as illustrated by Figure 7.1. Therefore, contrary
to CountWithHint and GenerateWithHint that take all the optimal schemes into
account, Optimizer is not suitable for an exhaustive study of the optimal schemes.

Figure 7.1: Evaluation schemes with a minimal depth for a9 can be formed with a non-
optimal evaluation scheme for a4.

×

×

×

a a

×

a a

×

×

a a

×

a ×

a a

(a) The evaluation scheme for a4 (part in
blue) has depth 2.

×

×

a ×

a ×

a a

×

×

a a

×

a ×

a a

(b) The evaluation scheme for a4 (part in
red) has depth 3, which is not optimal.

148 Chapter 7. Optimization

Limitation of this approach: the case of the number of multiplications

Minimizing the number of multiplications needed in order to evaluate an arithmetic ex-
pression like an is a di�cult problem, see the discussion about conjecture failures in
[Knu98, page 477]. In our context, this case provides an example of optimal scheme
s = (�, {s1, s2}) where neither s1 nor s2 is optimal. Indeed, consider the following opti-
mal2 scheme for a29:

a2 = a× a a3 = a× a2 a5 = a2 × a3 a6 = a× a5

a12 = a6 × a6 a17 = a5 × a12 a29 = a12 × a17 (7.5)

At the end of this sequence, we multiply a12 obtained after 5 operations with a17 obtained
after 6 operations. But optimal evaluation schemes for a12 and a17 have only 4 and 5
operations, respectively (refer to [Knu98, Figure 15 in �4.6.3] or Section 7.2.1).

Recall that we can measure the number of multiplications for a given scheme using
ϕ : S(F)→ P(S(F)) de�ned in Section 5.4.2. This is a recursively computable measure,
but the example mentioned above points out that the corresponding function ρ is not
non-decreasing. Indeed, we may have used the following scheme in order to evaluate a12:

a2 = a× a a4 = a2 × a2 a8 = a4 × a4 a12 = a4 × a8.

This scheme s′1 is better than the scheme s1 that can be extracted from Equation (7.5)
since there is one less multiplication. However, if we try to evaluate a29 using s′1 in addition
to the scheme s2 for a17 that we deduce from Equation (7.5), we will have fewer common
subexpressions (a12 is computed in two di�erent ways), so that ρ(×, ϕ(s′1), ϕ(s2)) will
contain more schemes than ρ(×, ϕ(s1), ϕ(s2)).

Nevertheless, it is still possible to use Optimizer so as to minimize heuristically the
number of multiplications required to evaluate an. Namely, we can run the algorithm
while forgetting about the hypothesis on ρ, and hope that the �nal result will not be too
far from the optimal one. We have tested it and compared the result with the table given
in the On-Line Encyclopedia of Integer Sequences3. For 1 ≤ n ≤ 10001, our algorithm
answers in 2 minutes and 55 seconds, and gives the optimal number of multiplications,
along with an optimal scheme, for ≈ 87.3% of the inputs n. The �rst values of n where
our algorithm fails to �nd an optimal scheme are n = 77, 154, 229, 233, 294, In
this case, we obtain each time a scheme with only 1 extra multiplication compared to the
optimal. Therefore, despite the lack of correctness, Optimizer still produces a reasonable
result in this case. Furthermore, it should be noted that, among the values of n for which
Optimizer is not correct, we �nd several cases that are known to be di�cult ones. For
instance, Knuth's power tree method fails for n = 77, 154, 233, . . . [Knu98, page 464].

7.2 Global optimization

In order to tackle the limitation of the algorithm Optimizer introduced in the previous
section, we propose three other algorithms:

2n = 29 is the �rst number such that evaluating an requires at least 7 multiplications, as noticed in
[Knu98, Figure 15 in �4.6.3].

3http://oeis.org/A003313/b003313.txt

http://oeis.org/A003313/b003313.txt

7.2. Global optimization 149

1. OptimizerSet, which is a generalization of Optimizer in order to optimize a crite-
rion for a set of arithmetic expressions rather than for a single expression;

2. GlobalOptimizer, which is the counterpart of CountPerMeasure for optimization;

3. GlobalOptimizerWithHint, which is the counterpart of GenerateWithHint and
CountWithHint.

In practice, the third algorithm performs better than the other two. Yet the �rst
algorithm may be useful when one wants to optimize the evaluation of two quantities in
the same time. This may happen for instance when using a rational function instead of
a polynomial to approximate a mathematical function. As for the second algorithm, it is
presented for the sake of completeness.

7.2.1 Detour via the optimization of sets of expressions

So far, each time one of our algorithms has to deal with a decomposition (�, {f1, f2}),
it performs two recursive calls on f1 and f2. By doing so, it becomes harder to handle
properly the common subexpressions in f1 and f2. One idea, suggested in [Knu69, �4.6.3,
Problem 32] for the question of minimizing the number of multiplications for evaluating
an, consists in generalizing the optimization problem for f ∈ F to sets of elements in F .
Thus, instead of the two recursive calls mentioned above, one can make a recursive call
on the set {f1, f2}.

Actually, [DLS81] answers [Knu69, �4.6.3, Problem 32] by showing that the generalized
problem is NP-complete. Nevertheless, we think that this approach deserves investigation.
Indeed, we do not know the complexity of the initial problem, and, as already mentioned,
there are situations where we really want to deal with several expressions at the same
time.

In order to embrace this approach, let us generalize for this section only some of the
concepts introduced in Chapter 5:

• We still ask for a family of arithmetic expressions as in Section 5.2.3;

• A measure will be a function ϕ : P(S(F))→ T , where T has a total order <T ;

• The problem of optimization we consider here is to �nd, given a set of arithmetic
expressions F = {f1, . . . , fr}, the quantity

min
(si ∈ S(fi))1≤i≤r

ϕ({s1, . . . , sr}) ;

• We will assume that all the measures ϕ will be recursively computable in the fol-
lowing sense: there exists ρ : {+,×} × T → T such that for all set of schemes
S = {s1, . . . , sr} and for all i such that si = (�, s`, sr), we have

ϕ(S) = ρ
(
�, ϕ

(
{s1, . . . , si−1, si+1, . . . , sr} ∪ {s`, sr}

))
.

150 Chapter 7. Optimization

In particular, for a non-trivial scheme s = (�, s`, sr), the following holds:

ϕ({s}) = ρ
(
�, ϕ({s`, sr})

)
.

Note the di�erence between this and De�nition 5.7, where s` and sr were separated;

• Finally, we de�ne the set of decompositions for F = {f1, . . . , fr} by

D(F) =
⋃

1≤i≤r

{(
�, {f1, . . . , fi−1, fi+1, . . . , fr} ∪ {f `i , f ri }

)
, (�, f `i , f ri) ∈ D(fi)

}
.

With these new de�nitions, we can derive from Optimizer a new algorithm, Algo-
rithm 7.3, which optimizes a criterion for a given set of arithmetic expressions.

Algorithm 7.3: OptimizerSet

Input : F ∈ P(F), F 6= ∅.
Parameter: ϕ : P(S(F)) 7→ (T,<T) de�ned on sets of variables and by

ρ : {+,×} × T → T .
Output : the optimal value for F according to ϕ.

`← decompose(F)1

if ` = ∅ then r ← ϕ(F)2

else3

r ←∞<T
4

foreach (�, F ′) ∈ ` do5

r ← min
{
r, ρ

(
�, OptimizerSet(F')

)}
6

return r7

Theorem 7.3. If ρ(�, ·) is non-decreasing for all � then Algorithm 7.3 is correct.

Proof. First, notice that we can compare two elements F1 and F2 of P(F) by sorting
each Fi (i ∈ {1, 2}) according to >F and using the lexicographical order on the sorted
sequences. This gives us a total order ≺ on P(F) \ ∅.

Now, we can show the theorem by complete induction. If F is a set made of trivial
expressions only (and in particular when it is the singleton containing the minimum
of (F , <F), which is the minimum for order ≺), F is its own and only scheme, and
Algorithm 7.3 is correct.

Suppose now that F contains one non-trivial expression and that the algorithm's
correctness holds for all set G ≺ F . In this case D(F) is not empty, so that:

min
s∈S(F)

ϕ({s1, . . . , sr}) = min
(�, F ′)∈D(F)

min
s′∈S(F ′)

ρ
(
�, ϕ(s′)

)
= min

(�, F ′)∈D(F)

{
ρ
(
�, min

s′∈S(F ′)
ϕ(s′)

)}
, (7.6)

7.2. Global optimization 151

where F = {f1, . . . , fr}, F ′ = {f ′1, . . . , f ′k}, and S(F) = S(f1)× · · · × S(fr) is the set of
of evaluation schemes for F . The �rst equality comes from the de�nition of ρ, and the
second equality holds since we have supposed that ρ(�, ·) is non-decreasing.

Now, it is easy to see that for all (�, F ′) ∈ D(F), we have F ′ ≺ F (F ′ is obtained
by replacing one element of F with 0, 1, or 2 smaller elements). Hence the induction
hypothesis tells us that OptimizerSet(F ′) = mins′∈S(F ′) ϕ(s′). Therefore, our algorithm
actually computes the right part of Equation (7.6) and thus it is correct.

We have tested OptimizerSet in order to compute the �rst terms of the sequence
A003313 in the On-Line Encyclopedia of Integer Sequences, whose nth term is the minimal
number of multiplications for evaluating an. The main advantage of OptimizerSet is that
we can use directly the number of multiplications for the measure, instead of computing
sets of schemes. The corresponding function ρ is then de�ned by:

ρ : {+,×} × N → N
(+, i) 7→ i

(×, i) 7→ 1 + i,

and, as ρ(+, ·) and ρ(×, ·) are non-decreasing, the hypothesis of Theorem 7.3 is satis�ed.
Furthermore, the cost of OptimizerSet for an can be bounded by 2n+O(logn) as follows:

• As ai is represented by i, the sets of arithmetic expressions encountered recursively
will be subsets of {1, . . . , n}. Hence, we have at most O(2n) recursive calls;

• These sets have a size in O(n), and are composed of arithmetic expressions having
O(n) decompositions each, so they have O(n2) decompositions. Moreover, com-
puting each corresponding F ′ may cost O(n) (or O(log n) if we use an appropriate
data structure to represent sets like red-black trees [CLRS09, �13]). So, the call to
decompose costs O(n3);

• Finally, the cost at each step of the foreach loop is constant.

This bound on the cost of our approach is fair considering that the problem solved here is
NP-complete. For 1 ≤ n ≤ 100, we obtain a computation time of about 35 minutes, the
important point being that, contrary to Optimizer, we get the correct value for n = 77.

If one really wants the optimal number of multiplications in order to evaluate an, we
suggest to look at [Knu98, �4.6.3] and the references therein for a more practical approach,
especially if n is a �xed constant. Yet, our approach instantiated for this issue performs
reasonably well, and its generality enables to tackle other problems. See for instance the
last paragraph of Section 8.2.2, where we use OptimizerSet to minimize the number of
non-scalar multiplications for the simultaneous evaluation of two polynomials.

7.2.2 Algorithms GlobalOptimizer and GlobalOptimizerWithHint

Instead of considering sets of arithmetic expressions like in the previous section, we can,
as in CountPerMeasure, return for each subexpression the set of all achievable values
according to the given measure. Then, it is easy to deduce the optimal value since we

152 Chapter 7. Optimization

Algorithm 7.4: GlobalOptimizer

Input : f ∈ F .
Parameter: A recursively computable measure ϕ : S(F)→ (T,<T) de�ned by its

values on variables and by ρ : {+,×} × T × T → T .
Output : r = ϕ(S(f)) ∈ P(T)

`← decompose(f)1

if ` = ∅ then r ←
{
ϕ(f)

}
2

else3

r ← ∅4

foreach (�, f1, f2) ∈ ` do5

r1 ← GlobalOptimizer(f1)6

if f1 = f2 then7

for t1 ∈ r1 do r ← r ∪ {ρ(�, t1, t1)}8

else9

r2 ← GlobalOptimizer(f2)10

for (t1, t2) ∈ r1 × r2 do r ← r ∪ {ρ(�, t1, t2)}11

return r12

just have to take the minimum among these achievable values. This approach is illustrated
in Algorithm 7.4.

The correction for this algorithm can be shown similarly to the proof of Theorem 6.4.
Notice that we do not need to have a non-decreasing function ρ here, since we consider
its whole image at each step and only extract the optimal value after the last step. As
for the cost, Algorithm GlobalOptimizer su�ers, like CountWithHint, from the slowness
implied by the large sets that have to be manipulated all along the algorithm. To cope
with this di�culty, we can ask for an additional bound in order to limit the search space,
as in GenerateWithHint and CountWithHint. This yields Algorithm 7.5.

Theorem 7.4. Provided that for all s = (�, s1, s2) with s1 ∈ S(f1) and s2 ∈ S(f2),
and for all B ∈ T , we have ϕ(s) ≤T B ⇒ ϕ(s1) ≤T B′ ∧ ϕ(s2) ≤T B′ with B′ :=
update((�, f1, f2), B), Algorithm 7.5 is correct.

The only di�erence with CountWithHint is that, here, we only keep trace of the achiev-
able values which are better than the bound B instead of also counting the corresponding
number of schemes. Adapting accordingly the proof of Theorem 6.5 hence yields a proof
for Theorem 7.4.

In order to compare the three approaches, we have computed the �rst terms of the
sequence A003313. The resulting timings are presented in Table 7.1. As already men-
tioned, GlobalOptimizer is quite slow compared to the other algorithms. Moreover, its
memory consumption is so large that we are not able to exceed n = 28. For small values
of n, OptimizerSet is the fastest. This can be explained by the simplicity of the measure
in use. However, the number of sets of expressions to consider recursively grows quickly
with respect to n, so that GlobalOptimizerWithHint ends up being more e�cient. Note

7.2. Global optimization 153

Algorithm 7.5: GlobalOptimizerWithHint

Input : f ∈ F , and a bound B ∈ T .
Parameter: A recursively computable measure ϕ : S(F)→ (T,<T) de�ned by its

values on variables and by ρ : {+,×} × T × T → T , and a function
update: D(F)× T → T to adjust the bound before the recursive
calls.

Output : r = {ϕ(s), s ∈ S(f) and ϕ(s) ≤T B} ∈ P(T).

`← decompose(f)1

r ← ∅2

if ` = ∅ and ϕ(f) ≤T B then r ←
{
ϕ(f)

}
3

else4

foreach (�, f1, f2) ∈ ` do5

B′ ← update((�, f1, f2), B)6

r1 ← GlobalOptimizerWithHint(f1, B
′)7

if f1 = f2 then8

for t1 ∈ r1 do9

t← ρ(�, t1, t1)10

if t ≤T B then r ← r ∪ {t}11

else12

r2 ← GlobalOptimizerWithHint(f2, B
′)13

for (t1, t2) ∈ r1 × r2 do14

t← ρ(�, t1, t2)15

if t ≤T B then r ← r ∪ {t}16

return r17

that the cost of GlobalOptimizerWithHint is not very smooth with respect to n. In fact,
computing recursively A003313(n) implies that all the values A003313(i) for i ≤ n are
computed, and since we use increasing bounds within GlobalOptimizerWithHint until
we get a result, the cost for A003313(i) when it is a local maximum is signi�cantly larger.
Noting that i = 79 achieves such a local maximum thus explains the di�erence between
the costs for n = 60 and n = 80.

Table 7.1: Timings for the computation of A003313(n) with our three approaches for
global optimization.

n 20 28 40 60 80 100 120 140

OptimizerSet 0.01s 0.04s 0.54s 13.51s 3.32m 34m 4.58h 31.5h

GlobalOptimizer 1.96s 26m � � � � � �

GlobalOptimizerWithHint 0.01s 0.08s 0.37s 9.45s 3.58m 7.31m 11.1m 2.64h

Finally, recall that the �rst values for A003313(n) were already computed with Algo-

154 Chapter 7. Optimization

rithm GenerateWithHint and presented in Table 5.1. However, the approach consisting
in generating and then deducing the optimal value is more costly than the optimization
algorithms mentioned in this section, as we can see by comparing4 the timings from Ta-
bles 5.1 and 7.1. Therefore, when one wants one optimal scheme rather than to perform
an exhaustive study, OptimizerSet and GlobalOptimizerWithHint are more e�cient.

7.3 Multicriteria optimization

Up to now, we have discussed the optimization of a single criterion. Yet one may want
to optimize more than one aspect of the evaluation. Typically, one may aim at some
evaluation scheme that is both as fast as possible and very accurate. However, this is
usually not possible to optimize several criteria at the same time, so that trade-o�s have
to be made. This section will �rst describe several solutions, based on the optimization
algorithms already mentioned, in order to �nd relevant evaluation schemes in a context
of multicriteria optimization. Then, we will introduce a new algorithm to tackle the issue
of trade-o�s.

7.3.1 How monocriterion optimization may help in a multicrite-

ria context

It often happens that, among a set of criteria to be considered, one outclasses the others.
If we come back to the example of speed and accuracy, some applications like image
processing for video games ask for a very fast evaluation with a few bits of accuracy,
whereas the implementation of an e�cient �oating-point operator with correct rounding
as recommended by the IEEE 754-2008 standard requires �rst guarantees on the accuracy.
Whenever the main motivation lies in only one criteria, we can use the algorithms already
mentioned in this chapter in order to try to �nd satisfactory evaluation schemes. We
propose three ways to achieve this:

• First, we can call GenerateWithHint in order to get optimal or nearly optimal
evaluation schemes according to the main criterion. Then, an exhaustive search
among the set of schemes generated allows us to �nd the one that �ts the most with
the other criteria. This was the approach embraced by CGPE, where evaluation
schemes of optimal latency for polynomials are generated and then kept or discarded
depending on their numerical properties [MR11]. Because of the possibly large
number of optimal schemes, it may take a very long time to generate and analyze
all the schemes. Setting a maximum number (typically, 50 in CGPE) of generated
schemes for each subexpression helps to cope with this.

• Second, suppose we have a set of r criteria sorted in decreasing order of importance,
and whose corresponding measures ϕi : S(F) → Ti for 1 ≤ i ≤ r are recursively

4It should be noted that the cost due to the computation of the other sequences in Table 5.1 is small
compared to the overall computation time.

7.3. Multicriteria optimization 155

computable. Then we can de�ne the new measure

ϕ : S(F) → T

s 7→
(
ϕ1(s), . . . , ϕr(s)

) ,
where T := T1 × · · · × Tr. It is in turn a recursively computable measure, since we
can de�ne:

ρ : {+,×} × T × T → T(
�, (a1, . . . , ar), (b1, . . . , br)

)
7→

(
ϕ1(�, a1, b1), . . . , ϕr(�, ar, br)

) .
Then, using the lexicographical order on T , we can call Optimizer and eventually
get a satisfactory scheme. If the �rst measure ϕ1 satis�es the hypothesis of Theo-
rem 7.2, that is, if ρ1 is non-decreasing with respect to its second and third variables
respectively, we will at least get an optimal scheme according to this measure. In-
deed, the lexicographical order on T implies that the order on the �rst component
prevails over the other.

Unfortunately, even though all the ρi are non-decreasing with respect to their second
and third variables, we have no guarantee to get an optimal result in the sense
of <lex (that is, a result where the ith component is best possible after we have
optimized the (i− 1)st �rst components). Think of an optimization of latency and
then accuracy for f = (�, f1, f2). We may have to choose between a fast but highly
inaccurate scheme for f1, and a slightly slower but very accurate one. Then, if the
fastest scheme for f2 is slow enough, it is best to choose the accurate scheme for
f1 since we get the same speed but a greater accuracy. However, Optimizer will
choose the faster scheme for f1.

• Third, it is possible to cope with the non-optimality in Algorithm Optimizer by
using GlobalOptimizerWithHint instead. Indeed, as soon as we have a good insight
on how the behavior of ϕ1 when we decompose an expression, we can derive a
function update that we can use within GlobalOptimizerWithHint. Notice that
information on ϕ1 is enough since we can restrict ourselves to bounds B in T =
T1× · · · × Tr of type (x,∞2, . . . ,∞r). This technique allows us to greatly limit the
search space, and thus to deduce the optimal achievable value according to <lex,
along with one or a few optimal schemes.

We have tried the last two approaches on a concrete example. Suppose we want to
evaluate the polynomial

p(x) = 2.71828185208141803741455078125 + 0.00000143982470035552978515625 x

+ 1.35907874070107936859130859375 x2 − 0.905038728378713130950927734375 x3

+ 1.010036041028797626495361328125 x4 − 0.94749634526669979095458984375 x5

+ 0.831820450723171234130859375 x6 − 0.6024215556681156158447265625 x7

+ 0.321694311685860157012939453125 x8 − 0.108315038494765758514404296875 x9

+ 0.016886915080249309539794921875 x10,

156 Chapter 7. Optimization

Figure 7.2: Evaluation schemes obtained by optimizing �rst the latency and then the
accuracy.

((((x).((x).(x))).(((x).(x)).((x).(x)))).((((x).(x)).(((x).(a10)) + (a9))) + (((x).(a8)) +

(a7)))) + (((((x).(x)).((x).(x))).((x).(((x).(a6)) + (a5)))) + ((((x).((x).(x))).(((x).(a4)) +

(a3))) + (((x).((x).(a2))) + (((x).(a1)) + (a0)))))

(a) Scheme returned by Optimizer.

((((x).((x).(x))).(((x).(x)).((x).(x)))).(((((x).(x)).((x).(a10)))+((x).(((x).(a9))+(a8))))+

(a7))) + (((((x).((x).(x))).(((x).(x)).(((x).(a6)) + (a5)))) + ((((x).((x).(x))).(((x).(a4)) +

(a3))) + (((x).((x).(a2))) + ((x).(a1))))) + (a0))

(b) Scheme returned by GlobalOptimizerWithHint.

which is a good approximant of exp (1+x)
1+x

on the interval [0, 0.99999988079071044921875],
using double-precision �oating-point arithmetic. We use the model described in Sec-
tion 5.4.2 to measure the accuracy, except that we choose to consider a 1-ulp error for +
and × (instead of 1

2
-ulp errors) so that it covers every rounding mode of the IEEE-754

standard. The resulting schemes are shown in Figure 7.2: On the one hand, Optimizer
gives us in 1 second the scheme of Figure 7.2(a) which has a latency of 13 cycles and an
error bound of 4.45862214951341271429 × 10−15 according to our model; On the other
hand, GlobalOptimizerWithHint returns after 72 seconds the scheme of Figure 7.2(b)
which has also a minimal latency of 13 cycles, but a slightly smaller error bound of
3.64884386153025096137 × 10−15. Thus, as we can see on this example, Optimizer is
able to quickly optimize the latency and give a scheme with a reasonable error bound,
while GlobalOptimizerWithHint takes more time to optimize �rst the latency and then
the error bound.

Even if we have not tried the �rst approach based on GenerateWithHint, we can
claim that it would have taken much more time than the two others. Indeed, gener-
ating all the 48151536 evaluation schemes with the optimal latency of 13 already takes
around 11 minutes. In addition, while limiting the number of evaluation schemes gen-
erated at each step would decrease the computation time, there is no reason that the
best error bound among the remaining schemes would be as good as the one provided by
GlobalOptimizerWithHint. In this situation, GlobalOptimizerWithHint should there-
fore be preferred over GenerateWithHint.

7.3.2 Search for a trade-o�

Let us see now a last algorithm for this chapter, designed in order to address the issue of
trade-o� for a set of criteria. We will actually restrict ourselves to the case of two criteria
for the sake of simplicity, and in order to avoid prohibitive computation time. However,
the ideas presented here can be extended to more criteria.

Figure 7.3 illustrates how the evaluation schemes for a degree-5 polynomial split up
according to their latency (assuming a cost of 1 cycle for addition and of 3 cycles for
multiplication) and their number of multiplications. All the evaluation schemes, repre-

7.3. Multicriteria optimization 157

sented with crosses, lie in the red array. If we want to minimize both the latency and the
number of multiplications, the more at bottom-left we are, the better it is. Therefore,
the possible best choices in this case are the corners of the red area represented with blue
dots, that is, schemes with a latency of 10 and 7 multiplications, or with a latency of 12
and 6 multiplications, or with a latency of 20 but only 5 multiplications.5 All the other
schemes will have either a larger latency, or a larger number of multiplications (or both)
than the schemes at the blue dots.

Figure 7.3: Distribution of the evaluation schemes for a degree-5 polynomial according
to their latency and number of multiplications.

+
+
+

+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+

•
•

•

0 5 10 15 2010 12 20 latency
(cycles)

5

10

15

5
6
7

number of
multiplications

Our purpose here is to design an algorithm that will compute the set of blue dots, so
that one can easily decide a good choice when facing a trade-o� issue. In fact, what we
propose is a mix between algorithms Optimizer and GlobalOptimizer, that we will call
BiOptimizer. Like in GlobalOptimizer, we will compute a set of achievable trade-o�s
at each step (the crosses in Figure 7.3), but then we will select only the optimal ones (the
blue dots) like when we only keep the optimal value in Optimizer. What we compute
recursively is therefore the list of optimal trade-o�s for each subexpression.

Let 4T1×T2 be the partial order on T1 × T2 de�ned by:

∀(a1, a2) ∈ T1, (b1, b2) ∈ T2, (a1, a2) 4T1×T2 (b1, b2)⇔ a1 ≤T1 b1 and a2 ≤T2 b2.

5In fact, Horner's rule is the only scheme that achieves this last trade-o�, as we have already seen in
Section 6.4.2.

158 Chapter 7. Optimization

The optimal trade-o�s are the minimal pairs for this order, and we can store all of them
in a list sorted such that the �rst components of pairs are decreasing with respect to
<T1 and the second components of pairs are increasing with respect to <T2 . In order
to maintain this structure when adding a new trade-o�, we will use the routine insert

described in Algorithm 7.6. The idea is to determine the position i where the new pair x
should be inserted according to its �rst component. Then, we have two cases illustrated
in Figure 7.4: Either `(i−1) 4T1×T2 x and we do not need to keep x (see Figure 7.4(a)); Or
x2 <T2 `

(i−1)
2 so we keep it and eventually remove elements `(n) of ` such that x 4T1×T2 `

(n)

(see Figure 7.4(b)).

Algorithm 7.6: insert (subroutine for BiOptimizer)

Input : A pair x := (x1, x2) ∈ T1 × T2 and a list of pairs in T1 × T2
` = [(`

(1)
1 , `

(1)
2), . . . , (`

(k)
1 , `

(k)
2)] such that for all i < j, `(i)1 <T1 `

(j)
1 and

`
(i)
2 >T2 `

(j)
2 .

Output: A new list ˜̀= [(˜̀(1)
1 , ˜̀(1)

2), . . . , (˜̀(r)
1 , ˜̀(r)

2)] such that:

• for all i < j, ˜̀(i)
1 <T1

˜̀(j)
1 and ˜̀(i)

2 >T2
˜̀(j)
2 ;

• for all y ∈ ` ∪ {x}, there exists i ∈ {1, . . . , r} such that ˜̀(i) 4T1×T2 y.

i← 11

while i ≤ k and x1 >T1 `
(i)
1 do i← i+ 12

if x2 ≥T2 `
(i−1)
2 then ˜̀← `3

else4

j ← i5

while j ≤ k and x2 ≤T2 `
(j)
2 do j ← j + 16

˜̀←
[
`(1), . . . , `(i−1), x, `(j), . . . , `(k)

]
7

return ˜̀
8

Thanks to insert, it is possible to compute the list of all the optimal trade-o�s among
a given list of achievable values. Indeed, we just need to start with an empty list and
then "add" the achieved trade-o�s one by one using insert. We can now write down the
algorithm that computes the optimal trade-o�s when given an arithmetic expression and
two recursively computable measures. This yields Algorithm 7.7.

Theorem 7.5. If ρ1 and ρ2 are non-decreasing with respect to their second and third vari-
ables then Algorithm 7.7 computes the list of the optimal trade-o�s for a given arithmetic
expression f ∈ F according to the measures ϕ1 and ϕ2.

Proof. Let us proceed by complete induction on f ∈ F . The case of f being a variable is
straightforward, so let us �x a non-trivial f ∈ F and suppose that the theorem holds for
any g <F f . If BiOptimizer(f) returns the list r, we have to prove two facts:

1. All the points in r are achieved by some scheme of S(f);

7.3. Multicriteria optimization 159

Figure 7.4: How the routine insert works.

•
•
•
•

•

x

`(i−1)

`(i)

(a) First case: there exists an i such that
`(i−1) 4T1×T2

x so we do not need to keep x.

•
•
•
•

•
x

`(i−1)

`(j)

(b) Second case: x is an optimal trade-o�, so we
insert it and remove all the `(n) such that i− 1 <
n < j since x 4T1×T2 `

(n).

2. For every scheme s ∈ S(f), there exists an index n such that r(n) 4T1×T2
(
ϕ1(s), ϕ2(s)

)
.

In other words, there should exist at least one trade-o� in r that is not worse than
what we obtain with s for both measures.

The �rst fact is a simple consequence of the fact that each point added in r is achievable
by construction. Consider now a scheme s = (�, {s1, s2}) for f with s1 ∈ S(f1) and
s2 ∈ S(f2). Since fi <F f for i ∈ {1, 2}, the induction hypothesis tells us that there
exists r(ni)

i ∈ ri such that r(ni)
i 4T1×T2 (ϕ1(si), ϕ2(si)). Hence, with (a1, a2) := r

(n1)
1 ,

(b1, b2) := r
(n2)
2 , and x :=

(
ρ1(�, a1, b1), ρ2(�, a2, b2)

)
, we deduce that

xi = ρi(�, ai, bi) ≤Ti ρi(�, ϕi(s1), ϕi(s2)) = ϕi(s)

for i ∈ {1, 2} since ρi is non-decreasing by assumption, and ai ≤Ti ϕi(s1) and bi ≤Ti ϕi(s2)
by de�nition of 4T1×T2 .

Therefore, x 4T1×T2
(
ϕ1(s), ϕ2(s)

)
. Moreover, since this x is eventually taken into

account in one of the inner loops of the algorithm, and thanks to the behavior of the
routine insert, we will always have some element y ∈ r such that y 4T1×T2 x after the
call to insert(x, r). Let r(n) be such an element of r at the end of the foreach loop.
By transitivity, we have r(n) 4T1×T2 x 4T1×T2

(
ϕ1(s), ϕ2(s)

)
, which proves the second

fact.

We can make a few remarks on this new algorithm:

• Let us comment on the expected cost of BiOptimizer. On one hand, it will be
higher than when we use Optimizer, since we propagate lists of achievable values
instead of only one optimal value. On the other hand, we can hope that the list of
optimal trade-o�s will be signi�cantly smaller than the set of all the values achieved
by the di�erent evaluation schemes. In this case, BiOptimizer will run much faster
than GlobalOptimizer or even than GlobalOptimizerWithHint.

• Like for all the previous optimization algorithms, we can always keep trace of the
decompositions achieving a given value, so that we can get back one or several
schemes corresponding to it.

160 Chapter 7. Optimization

Algorithm 7.7: BiOptimizer

Input : f ∈ F .
Parameter: Two recursively computable measures ϕi : S(F)→ (Ti, <Ti) for

i ∈ {1, 2}.
Output : The list of all the optimal achievable trade-o�s (represented by pairs

in T1 × T2) sorted by lexicographical order.

`← decompose(f)1

if ` = ∅ then r ←
[(
ϕ1(f), ϕ2(f)

)]
2

else3

r ← []4

foreach (�, f1, f2) ∈ ` do5

r1 ← bioptim(f1)6

if f1 = f2 then7

for {(a1, a2), (b1, b2)} ∈ P2(r1) do8

x←
(
ρ1(�, a1, b1), ρ2(�, a2, b2)

)
9

insert(x, r)10

else11

r2 ← bioptim(f2)12

for (a1, a2), (b1, b2) ∈ r1 × r2 do13

x←
(
ρ1(�, a1, b1), ρ2(�, a2, b2)

)
14

insert(x, r)15

return r16

• The choice underlying the trade-o� may be linked to variables. In practice, we
handle this case by allowing the user to set her/his own optimal lists of trade-o�s
for the variables. See the �rst example of the next section for an illustration of this
aspect.

• We may still have relevant results when the ρi's are not non-decreasing, as we will
see in the second example of the next section. However, we lose the guarantee of
optimality.

7.3.3 Application to polynomial evaluation

Let us see two applications of the algorithm introduced in the previous section.

Trade-o� between latency and delay for special bivariate polynomials

The �rst example directly comes from the implementation of �oating-point operators
for VLIW integer processors, like the ST231 processor, in the framework of the FLIP
software library (see Section 4.2.1). Recall that for some operators, the polynomial to
evaluate is of the form q(x, y) = α+ y · p(x) where p(x) =

∑n
i=0 ai · xi is some univariate

7.3. Multicriteria optimization 161

polynomial of degree-n [JKMR08]. In this case, the actual values for x and y have to be
deduced from the encoding of the �oating-point number in input. This is done with a
few instructions designed by hand, and minimizing the latency for this part is tedious.
However, the value of x is usually known before the value of y. This was modelled in
the software CGPE by a parameter called the delay D, that represents the number of
cycles we have to wait for before we can access the value of y when evaluating q(x, y).
A natural question is then to see the impact of this delay on the minimum latency for
the evaluation. Indeed, it may be hard and time-consuming to gain even 1 cycle in the
sequence of instructions for the computation of the value of y, and doing so gives no a
priori guarantee that the overall latency will also decrease.

We propose here to use BiOptimizer in order to get more information about the
impact of the delay D on the minimum latency. The two measures we will use are �rst
the latency (with C+ = 1 and C× = 3 as it stands for the ST231 processor), and a new
measure for the delay de�ned as follows:

• the delay for x, α, and any ai is ∞;

• the delay for y is some parameter D;

• the delay for a non-trivial expression f = (�, f1, f2) is the minimum of the delays for
f1 and f2, meaning that we use (�, x, y) 7→ min{x, y} for the recursive computation
of the delay.

In fact, the measure of scheme s can be thought of as being the maximum allowed delay
for an evaluation of s, which will be linked to the minimum latency we try to achieve.
The order we use is therefore > since a greater allowed delay means less e�ort on the
design of the sequence of instructions to get the value of y. Now, in order to compute
the trade-o� between the minimum latency and the maximum delay, what we do is to
�x for y the following list of optimal trade-o�s: [(0, 0), (1, 1), . . . , (M,M)], where M is
some maximal bound for the delay. This tells us that y can be evaluated in i cycles when
the delay is at most i, for 0 ≤ i ≤ M . Now, we can use BiOptimizer to propagate this
information and obtain the list of optimal trade-o�s for q(x, y), which is what we were
looking for.

We have �xedM = 12 and run BiOptimizer for q(x, y) with a degree for p(x) ranging
from 0 to 12. The corresponding result, obtained in about 7 seconds, is illustrated at
Table 7.2, where each row corresponds to one degree for p(x), each column to one value
for the delay D, and each entry to the corresponding latency. With this table, we can
conclude for instance that, for deg(p) = 8, one cannot hope to decrease the latency by
decreasing the delay D if D is already at most 3. On the contrary, it is worth trying to
get a delay of 3 cycles instead of 4 in this case, since it allows us to save 1 cycle for the
evaluation scheme.

Trade-o� between latency and accuracy

As a second illustration of BiOptimizer, let us come back to the example mentioned
at the end of Section 7.3.1, where we wanted to evaluate a degree-10 polynomial p(x)

162 Chapter 7. Optimization

Table 7.2: Minimum latency on unbounded parallelism for the evaluation of q(x, y) =
α + y · p(x) with respect to deg(p) and the delay D for y.

PPPPPPPPPdeg(p)
D

0 1 2 3 4 5 6 7 8 9 10 11 12

5 11 12 13 14 15 16

6 11 12 13 14 15 16

7 13 14 15 16

8 13 14 15 16 17

9 13 14 15 16 17

10 13 14 15 16 17

11 14 15 16 17

12 14 15 16 17

approximating exp (1+x)
1+x

on the interval [0, 0.99999988079071044921875]. The list of trade-
o�s obtained using the latency and accuracy as �rst and second measures respectively is
shown in Figure 7.5.

The conclusion is similar to the one from Section 7.1.3. We used here as the sec-
ond measure the accuracy, whose corresponding function ρ is not non-decreasing in all
generality. Therefore, one hypothesis of Theorem 7.5 is not satis�ed, and we have thus
no guarantee to get optimal trade-o�s with BiOptimizer. Yet, using this algorithm
yields relevant results. Indeed, for the optimal latency of 13, we �nd the maximum error
bound 3.72775790717401075969×10−15, which is only slightly worse than the best achiev-
able bound 3.64884386153025096137×10−15 pointed out by GlobalOptimizerWithHint.
However, the computation time for this new approach is 12 times smaller (6 seconds in-
stead of 72). Moreover, we get the behavior of the error bound (according to our model)
with respect to the latency achieved. Notice also that, compared to Optimizer whose
computation time was around 1 second, we manage to get a better accuracy for the opti-
mal latency along with more information on the trade-o� between latency and accuracy
at a reasonable extra cost.

Finally, one interesting issue about the latency-accuracy trade-o� lies in the behavior
of the minimum error bound when one increases the acceptable latency. For sums of
variables, this issue was addressed in [LMT10], where the authors conclude that relaxing
slightly the time constraints for evaluating the sum helps to strongly improve accuracy.
Here, we are able with our general approach to show experimentally that the same con-
clusion holds for some univariate polynomials. Indeed, if we accept to use a scheme of
16 cycles instead of 13 in the example of Figure 7.5, we obtain an error bound three
times closer to the best one. Note that the same outcome was observed on several other
univariate polynomials.

7.3. Multicriteria optimization 163

Figure 7.5: List of trade-o�s between latency and accuracy for a degree-10 approximant
polynomial for exp (1+x)

1+x
on [0, 0.99999988079071044921875].

latency corresponding error bound

13 3.72775790717401075969× 10−15

14 3.15490087180916402536× 10−15

15 2.88800877566542230613× 10−15

16 2.74574380811116173023× 10−15

17 2.71702017475887173616× 10−15

18 2.61807325236003336294× 10−15

20 2.57029342444246858722× 10−15

21 2.49926275603996578948× 10−15

22 2.48760573017377085851× 10−15

25 2.39243078716182357609× 10−15

26 2.36607232433974726910× 10−15

28 2.30360836551992626475× 10−15

29 2.23846786224949313284× 10−15

32 2.22644280989158904673× 10−15

33 2.17642785364488461850× 10−15

37 2.16595520235060421263× 10−15

(a) Table summarizing the list of trade-o�s.

•

•

•
••
• •••

•• •• •• •

13 17 21 25 29 33 37

latency (cycles)

2.25× 10−15

2.5× 10−15

2.75× 10−15

3× 10−15

3.25× 10−15

3.5× 10−15

3.75× 10−15

error
bound

(b) Graphical representation.

164 Chapter 7. Optimization

Chapter 8

Application examples

In this last chapter, we present two more advanced examples, where we have successfully
used the material introduced in the second part of this thesis in order to derive interesting
results. First, we have partially rewritten the software tool CGPE. The new design, which
heavily relies on the addition of constraints within the generation of the set of schemes
to be analyzed, allows us to �nd out fast and accurate-enough schemes for polynomial
evaluation signi�cantly faster. Second, we study the case of evaluating a polynomial at a
matrix point. Such an evaluation, which appears for instance when one has to compute
some function of matrices, raises the issue of minimizing the number of matrix-matrix
multiplications. We will see how to address this issue with our methods, and how we were
able to show that Paterson and Stockmeyer's algorithm [PS73, Algorithm B] is optimal for
a degree d ≤ 15. Further investigation allows us to categorize optimal schemes for small
degrees in up to three classes, depending on the degree. Finally, we discuss the evaluation
of a rational approximation for exp(A), and explain how CGPE can �nd automatically
schemes similar to the one crafted by hand by Higham [Hig08, page 244].

8.1 New design for CGPE

8.1.1 The initial design for the tool and its limitations

The software tool CGPE was initially designed by Revy in order to address the issue of
generating e�ciently C codes for polynomial evaluation [Rev09, �6]. The main goals were
to:

1. optimize the latency for a given VLIW architecture,

2. add systematically numerical accuracy tests in order to prove that the error entailed
by the computation in �xed-point arithmetic will be less than a given error bound,

3. have a tool with a low computation time, that could eventually be used at compile
time.

166 Chapter 8. Application examples

Design of CGPE's initial version

Details about the approach embraced by this tool are provided in [MR11], and illustrated
in Figure 8.1(a). The user has to provide a univariate or bivariate polynomial (the values
of the coe�cients and some intervals for the variables), information about her/his target
architecture (degree of parallelism, number of multipliers, cost of + and ×), and a set of
criteria (delay for the second variable y, evaluation error bound, bound on the latency).
Then, the tool proceeds in two steps. First, it creates a set of schemes whose latency,
on unbounded parallelism and using the provided costs for + and ×, is no more than
the given bound. Actually, if the user omits to provide a bound then the tool optimizes
the latency on unbounded parallelism. Second, each scheme from the computed set goes
through a sequence of �lters whose purpose is to verify several properties, like the latency
on the real architecture and the evaluation error bound. Finally, a C code and an accuracy
certi�cate are generated for each scheme that passes all the �lters.

To cope with the fast growth for the number of schemes mentioned in Section 6.2.2,
several heuristics have been introduced within the �scheme set computation� step:

• The main goal of this step lies in the generation of schemes with low latency. This
is achieved by using a target latency (either a bound provided by the user or some
estimation of the minimum latency on unbounded parallelism) in order to decide
which schemes have a possibly low latency on the target architecture, and drop the
others.

• If the support of the input polynomial p is larger than a �xed parameter, the tool
performs a non-exhaustive generation. Namely, instead of considering all the possi-
ble decompositions for p, it only takes into account decompositions corresponding
to a split into its low and high parts.

• Finally, one can decide to keep only a �xed number of schemes for each subexpres-
sion.

As we can see, the �scheme set computation� step relies on several parameters that may
be set by the user through the command line interface of CGPE.

As for the �scheme selection� step, it is made of three successive �lters:

• The �rst �lter, called �arithmetic operator choice�, was designed in order to en-
sure that a given scheme can be evaluated in unsigned �xed-point arithmetic, and
without the need to add shifters for mantissa alignment.

• Then, a scheduler tries to check if the latency on the target architecture will meet
with the one on unbounded parallelism,

• Finally, the third �lter checks that additions never cause an over�ow, and that
the error entailed by the evaluation in unsigned �xed-point arithmetic is less than
the error bound at input. This is done by calling the software tool Gappa1 on a
script generated on purpose. In fact, this script will serve as the accuracy certi�cate
returned as output.

1See http://gappa.gforge.inria.fr/ and [Mel06].

8.1. New design for CGPE 167

Figure 8.1: Evolution in the architecture of the tool CGPE.

computation using heuristics

or

C code
Accuracy
certificate

arithmetic operator choice

numerical accuracy checking

Architectural constraints

Polynomial description

Set of criteria

schedule checking

schedule checking

scheme set computation

For each selected scheme

scheme set computation

Sorting schemes by increasing latency

and number of multiplications

exhaustive computation

generation of optimal schemes

computation of the minimum

with respect to latency

numerical properties checking

latency on unbounded parallelism

scheme selection

scheme selection

(a) Architecture of the initial version of
the tool.

(b) New design proposed.

Illustration and limitations of this approach

In order to get a good insight into the performance of the approach described previously,
we have considered the implementation of various functions for the ST231 processor. For
each function, we have computed a polynomial approximant and a certi�ed evaluation
error bound using the software tool Sollya2 and the framework presented in [Rev09, �6.4].
Then, we have used CGPE to handle the generation of the code for polynomial evaluation.
Table 8.1 shows the computation time for the di�erent steps, along with the number of
schemes at the end of each step represented in square brackets.

2http://sollya.gforge.inria.fr/

http://sollya.gforge.inria.fr/

168 Chapter 8. Application examples

Table 8.1: Timings for the initial design of CGPE.

x1/2 x−1/2 x1/3 x−1/3 log2(1 + x) 1√
1+x2

exp(1+x)
1+x

sin(1+x)
1+x

+1 exp(cos(1 + x))

Degree (dx,dy) (8,1) (9,1) (8,1) (9,1) (6,0) (7,0) (10,0) (5,0) (8,0)

Delay on y 2 3 9 9 � � � � �

Approximation interval {1, 21/2}×[0, 1] {1, 21/3, 22/3}×[0, 1] [0.5, 1] [0, 0.5] [0, 1] [0, 1] [0, 1]

Initial target latency 13 13 16 16 10 10 13 10 13

Final target latency 13 13 16 16 11 11 13 10 13

Achieved latency 13 14 16 16 11 11 13 10 13

Scheme computation 183ms 81ms 25s 26s 8ms 5ms 43ms 1ms 123ms

[50] [50] [50] [50] [50] [50] [50] [12] [50]

Arithmetic operator choice 3ms 3ms 5ms 5ms 1ms 2ms 3ms 1ms 2ms

[36] [28] [30] [26] [2] [12] [28] [8] [16]

Scheduling checking 22s 1m57s 35ms 423ms 2ms 63ms 1m7s 1ms 88ms

[9] [1] [30] [24] [1] [5] [5] [8] [15]

Certi�cation (Gappa) 8s 871ms 23s 22s 204ms 1.3s 6.5s 1.3s 8.4s

[9] [1] [30] [24] [1] [5] [4] [8] [13]

Total time (≈) 30s 1m59s 49s 49s 0.2s 1.4s 1m14s 1.3s 8.6s

While the timings are quite good, we can still point out a few issues:

• A bound on the latency is never provided, so the target latency in use came from a
heuristic estimation of the minimum latency on unbounded parallelism. Unfortu-
nately, this estimation was 1 cycle below the actual value for two cases.

• Numerical aspects are only taken into account after the �scheme set computation�
step. Therefore, one numerically bad subscheme could end up in several of the �nal
sets of schemes, which will have to be invalidated individually despite the common
source of error. This is what happens for instance with function log2(1 + x) in
Table 8.1.

• What dominates the generation cost is the last two �lters. In particular, the sched-
uler is very slow when given an invalid scheme (see the timings for functions x−1/2

and exp(1+x)
1+x

in Table 8.1, for instance), and Gappa may lose some time in analyzing
several times the same subscheme for the reason mentioned in the previous point.

In addition, setting properly all the parameters for the scheme computation step required
us to acquire some good knowledge on the combinatorics of evaluation schemes. In
particular, the decision to limit exhaustive generation to polynomials with a support of
size no more than 5 was motivated by the values in Tables 6.1 and 6.3. Moreover, the
study on the distribution of schemes according to latency of Section 6.4, which tells us for
instance that there are 69, 384, 330 optimal schemes for a degree-8 univariate polynomial,
con�rms the need for other heuristics. Thus, a user unfamiliar with these issues may have
di�culties to use CGPE e�ciently. Finally, the choice to consider only decompositions
into low part plus high part for polynomials with large supports can be motivated by
noting that this should lead, in the manner of Estrin's rule, to schemes with low latency.
Nevertheless, this still remains a somewhat arbitrary choice.

8.1. New design for CGPE 169

8.1.2 Adding more constraints within the �scheme set computa-

tion� step

In the design of CGPE introduced in the previous section, the approach of the �scheme
set computation� step is very similar to our algorithm GenerateWithHint used with the
measure corresponding to latency. The lesson learnt from the previous chapters is that
we can really improve some recursive analysis of the set of evaluation schemes, both in
terms of speed and result's relevance, by adding more constraints. Thus, we propose here
three ideas, detailed below, to improve CGPE (the �rst two being already mentioned in
[MR11]). This yields the new design shown in Figure 8.1(b).

Optimizing the latency in a precomputation

As we have seen in Section 7.1.1, minimizing the latency can be achieved e�ciently using
Optimizer. Therefore, we propose to call this algorithm before we start the �scheme set
computation� step. The motivation for this precomputation is twofold:

• Recall that the initial design of CGPE relies on a heuristic estimation of the mini-
mum latency on unbounded parallelism. Instead of starting with a possibly under-
estimated value, it is better to actually compute the exact value.

• We can keep trace of all the decompositions leading to optimal schemes. Then,
instead of restricting ourselves to decompositions of the type �low part plus high
part� as explained before, we would rather use the set of decompositions pointed
out by Optimizer, at least as long as we generate subschemes on a critical path.

It should also be noted that using Optimizer beforehand results in a simpli�cation
of the user interface. Indeed, several of the technical parameters for the �scheme set
computation� step were introduced in order to lead the recursive generation of schemes.
With our precomputation, a more relevant information is automatically deduced, so that
the user now only has to state the number of schemes to be kept for each subexpression.

Inserting numerical constraints during the computation of schemes

The second improvement lies in the introduction of a systematic veri�cation of the nu-
merical properties as soon as a scheme is generated. Then, we can discard on the �y
schemes that may not be evaluated with unsigned �xed-point arithmetic or the one with
over�owing additions. This way, we can avoid the situation where one good subscheme
according to latency, but not suitable numerically speaking, ends up in many of the �nal
schemes, invalidating them all.

To perform this veri�cation, we propose to adapt the model of accuracy of [Mar09a]
and presented in Section 5.4.2. Thus, we will attach two intervals to each generated
scheme s: a �rst interval value(s) enclosing all the possible values at execution time;
and a second interval error(s) enclosing the di�erence between the real mathematical
value and the result actually obtained on the architecture. Checking the constant-sign
constraint reduces therefore to see whether 0 belongs to the interior of value(s) or not,
and the absence of over�ow for an addition can be proved whenever all the values in
value(s) �t in the chosen �xed-point format.

170 Chapter 8. Application examples

For any trivial scheme s, thus corresponding to a coe�cient or a variable, value(s)
is an input of our problem, and we set error(s) = [0, 0] since coe�cients and variables
are supposed to be exactly representable. Otherwise, we have s = (�, {s1, s2}). The
quantity value(s) is obtained directly by using multiple precision �oating-point interval
arithmetic [Moo66, AH83] as provided by the library MPFI,3 and error(s) can be deduced
as follows:

• If � = + then s1 and s2 have to be in the same �xed-point format. Moreover,
value(s) must have a constant sign and ensure that no over�ow occurs. When it
is the case, the addition entails no error and thus we de�ne

error(s) = error(s1) + error(s2).

Otherwise, the current scheme is not suitable for our purpose, and so we discard it;

• If � = ×, we �rst check whether the �xed-point numbers in value(s) can be stored
with no more than f bits for the integer part, where f is the integer part size
chosen for the current subexpression. If not, s is not suitable and thus discarded.
Otherwise, its error bound is computed as follows:

error(s) = errormul + error(s1) · error(s2)
+ error(s1) · value(s2)

+ value(s1) · error(s2),

where errormul is the error entailed by the unsigned multiplication itself. On the
ST231 processor, we have a truncated multiplication so that errormul = [0, 2f−32].

Notice that, with this veri�cation, both the �rst and third �lters mentioned in the
previous section become useless. Indeed, generated schemes will pass the �rst �lter by
construction, and it is straightforward to check, for each scheme s in the �nal set, whether
error(s) has a magnitude less than the maximum error bound provided by the user.
Therefore, we can avoid the calls to Gappa.

Finally, it should be noted that interval arithmetic can also be used to bound values
and errors for a polynomial evaluation in �oating-point arithmetic, thanks to models like
the one in [Mar09a]. Therefore, while we have focused here on �xed-point arithmetic,
one can design a similar numerical constraint in order to check, for instance, the absence
of over�ow and under�ow in an evaluation using �oating-point arithmetic.

Early schedulability checking

As a third improvement, we propose to add a simple test of schedulability on the target
architecture for each generated scheme. The main motivation for this is to avoid dealing
with schemes that will obviously not have the same latency on the target architecture
as on unbounded parallelism. As a consequence, we hope to increase the proportion of
schemes that will pass the schedule checking in the selection step.

3See http://gforge.inria.fr/projects/mpfi/ and [RR05].

http://gforge.inria.fr/projects/mpfi/

8.1. New design for CGPE 171

Figure 8.2: Example of scheme that passes the early schedulability test, but fails to
achieve the same latency on unbounded parallelism and on the ST231 processor.

+

×

×

×

x x

×

x x

×

×

x x

a6

×

×

×

x x

x

×

×

x x

a5

The test we have implemented is based on the following remark. If we encounter a
scheme with several critical paths (that is, with several paths having a cost equal to the
latency on unbounded parallelism), we will need to launch many operations during the
�rst cycles. However, we usually have only a few issues available, like for the ST231
processor which has 4 issues and only 2 multipliers. Hence, we may not have enough
resources to launch all the operations in the critical paths.

Therefore, each time we create a new scheme, we compute for each cycle the number
of operations and the number of multiplications that should be launched before this cycle.
Then, we check that, at any time, the number of operations (resp. multiplications) to
be launched is no more than the maximal number of operations (resp. multiplications)
that can be launched on our architecture. Consider for instance the scheme of p(x) =
a6 · x6 + a5 · x5 from Figure 8.2, whose latency on unbounded parallelism (using ST321
processor's costs of + and ×) is 10 cycles. This scheme will pass our test since there
are 1 ≤ 2 multiplication (x × x) to be launched at cycle 0 (before cycle 1), 5 ≤ 2 × 4
multiplications to be launched before cycle 4, 7 ≤ 2 × 7 multiplications to be launched
before cycle 7, and �nally 7 ≤ 2 × 10 multiplications and 8 ≤ 4 × 10 operations to be
launched before cycle 10.

Notice that we completely forget about dependency between the operations here, so a
scheme that passes our test may still have no good scheduling on the target architecture.
Actually, the scheme presented in Figure 8.2 is not schedulable in 10 cycles on the ST231
processor. Indeed, operations x × x2, x2 × x2, x2 × a6 and x2 × a5 cannot be launched
before cycle 3, since the value of x2 is needed. And, as they all are on critical paths, we
have four multiplications to schedule on cycle 3, which exceeds the number of available
multipliers on the ST231 processor. Nevertheless, we observe in practice that this simple
test already removes thousands of unschedulable schemes for several of the functions
considered in Table 8.2.

8.1.3 Experimental results

In order to compare this new design of CGPE to the previous one, we have redone the
experiments from Table 8.1. The new timings are shown in Table 8.2. Before commenting
the new results in detail, it should be noted that the naive usage of interval arithmetic
presented in Section 8.1.2 is a fast but rough way to bound the actual values and errors.
Therefore, using it within the �scheme set computation� step may lead us to drop many
valid schemes. Actually, there were two cases, log2(1 + x) and exp(1+x)

1+x
, where we ended

172 Chapter 8. Application examples

up with no scheme left at the end of this step. When this situation happens, we run
again the scheme computation step without the numerical checking that is postponed to
an additional �lter, based on a call to Gappa, within the �scheme selection� step. In fact,
Gappa makes a more clever use of interval arithmetic, so that it usually provides better
bounds than naive interval arithmetic. Yet, it is also slower, and we prefer to avoid it
when naive interval arithmetic is su�cient.

As we can see in Figure 8.2, the precomputation of the minimal latency on unbounded
parallelism is merely free. Moreover, the restriction in the decompositions resulting from
this precomputation allows us to quickly compute a set of optimal schemes with respect
to the latency. This is particularly true for x1/3 and x−1/3 where we do not su�er from a
slow computation step due to the large target latency anymore.

The �scheme selection� step is also greatly improved by the new design. As remarked
earlier, the numerical checking applied during the �scheme set computation� step renders
two of the three �lters obsolete. Thus, for 7 of the 9 functions, we can avoid costly
calls to Gappa. Moreover, we are able (except for one function) to exhibit more schemes
that can be evaluated in unsigned �xed-point arithmetic, as we can see by comparing
the number of schemes left after the �scheme set computation� step in Table 8.2 to the
number of schemes left after the arithmetic operator choice �lter in Table 8.1. As for
the two remaining cases (that is, log2(1 + x) and exp(1+x)

1+x
), the �rst scheme computation

with numerical checking is actually quite fast,4 so it does not entail a large overhead.
In addition, we can still bene�t from the other additional constraints during the second
scheme computation. For instance, in the case of exp(1+x)

1+x
, we obtain thanks to our

schedulability test 23 schedulable schemes instead of 5. Since our scheduler usually runs
faster on schedulable schemes, this saves a lot of work later in the scheduling checking.
In practice, the cost for this �lter indeed drops from 67 to 3 seconds.

Table 8.2: Timings for the new design of CGPE.

x1/2 x−1/2 x1/3 x−1/3 log2(1 + x) 1√
1+x2

exp(1+x)
1+x

sin(1+x)
1+x

+1 exp(cos(1 + x))

Degree (dx,dy) (8,1) (9,1) (8,1) (9,1) (6,0) (7,0) (10,0) (5,0) (8,0)

Delay on y 2 3 9 9 � � � � �

Approximation interval {1, 21/2}×[0, 1] {1, 21/3, 22/3}×[0, 1] [0.5, 1] [0, 0.5] [0, 1] [0, 1] [0, 1]

Minimum latency 13 13 16 16 11 11 13 10 13

Achieved latency 13 14 16 16 11 11 13 10 13

Latency optimization 49ms 141ms 60ms 193ms 2ms 5ms 127ms 1ms 15ms

Scheme computation 29ms 51ms 4.5s 2.4s 3ms 2ms 123ms 1ms 47ms

[50] [50] [50] [50] [13] [50] [50] [21] [50]

Scheduling checking 23s 1m38s 74ms 349ms 49ms 766ms 3s 3ms 812ms

[11] [1] [50] [47] [1] [5] [23] [21] [4]

Additional numerical � � � � 236ms � 29s � �

checking [1] [18]

Total time (≈) 23s 1m38s 5.3s 3.3s 0.3s 0.8s 32s 60ms 1s

4In fact, we arrive soon at a point where many subexpressions have no valid scheme, so that the tool
has no work to do after the corresponding recursive calls.

8.2. Evaluation of a polynomial at a matrix point 173

We draw up a summary of the results and total computation times for both approaches
in Table 8.3. As we can see, our new design usually produces at least as many schemes as
the previous approach, and with a smaller amount of time. It only fails once to achieve
as many schemes, but in exchange for a sizeable speed-up. Moreover, it is slower than the
previous design only once. Finally, while it is delicate to draw quantitative conclusions
since the computation time for both approaches is very sensitive to several aspects (like
the inherent di�culty of the polynomial evaluation and the number of schemes left after
each step), we observe for our small set of examples an average gain of ≈ 50% in the
total generation time. This, in addition to the decrease in the number of parameters to
be �xed by the user, allows us to conclude that the new design performs better and that
its underlying approach is promising.

Table 8.3: Comparison between the initial version of CGPE and our new design.

Function x1/2 x−1/2 x1/3 x−1/3 log2(1 + x) 1√
1+x2

exp(1+x)
1+x

sin(1+x)
1+x

+1 exp(cos(1 + x))

�nal number
of schemes

version 1 9 1 30 24 1 5 4 8 13

new design 11 1 50 47 1 5 18 21 4

computation
time

version 1 30s 1m59s 49s 49s 0.2s 1.4s 1m14s 1.3s 8.6s

new design 23s 1m38s 5.3s 3.3s 0.3s 0.8s 32s 60ms 1s

gain in the
computation
time

told − tnew 7s 19s 43.7s 45s -0.1s 0.6s 52s 1.2s 7.6s

told − tnew
told

23% 17.6% 89% 93% -50% 43% 62% 95% 88%

8.2 Evaluation of a polynomial at a matrix point

Up to now, we have only addressed the issue of evaluating polynomials at a scalar point.
Yet the framework introduced in the previous chapters is suitable for the study of evalu-
ation schemes for p(A) where p is a degree-d polynomial with coe�cients in K = R or C,
and A is a matrix in Kn×n.

8.2.1 Motivation and underlying issues

Context and motivation

One can extend the de�nition of functions from K to K like sines, logarithms or expo-
nentials in order to get a new function taking a matrix as input and returning another
matrix. Evaluating such matrix functions is of great interest. In particular, we can �nd
exponentials of matrices in the solutions of linear ordinary di�erential equations, which
in turn appear in control theory and in simulations in physics. We refer to [Hig08, �1.1
� �1.4] for more details.

Higham proposes in [Hig08] algorithms for evaluating f(A) with f ∈ {exp, log, sin, cos}
based on rational approximants for these functions. To be more precise, these algorithms
use a (d, d′)-Padé approximant of the corresponding power series f(x) =

∑
i≥0 fi x

i, that
is, a pair of polynomials (p, q) such that:

174 Chapter 8. Application examples

• deg p ≤ d and deg q ≤ d′,

• q(x) · f(x)− p(x) = O(xd+d
′+1).

The problem of evaluating f(A) reduces then to the evaluation of two polynomials p and
q at a matrix point, followed by the computation of D−1N or ND−1 where N = p(A) is
the matrix numerator and D = q(A) is the matrix denominator.

How to evaluate p(A)

The evaluation of p(A) can be achieved in three ways:

1. In a context where transforming the polynomial or the matrix at input is not al-
lowed, the evaluation will correspond to a straight-line program starting with A
and the coe�cients of p and using only matrix additions, scalar-matrix multipli-
cations, and matrix-matrix multiplications. The e�ciency will depend essentially
on the number of matrix-matrix multiplications in the scheme, since this operation
costs O(n3) or O(nω), while the others are in O(n2). The question of minimiz-
ing the number of non-scalar multiplications in a polynomial evaluation scheme is
addressed by [PS73], where the authors give an algorithm (Algorithm B in their
article) for evaluating p(A) with about 2

√
d non-scalar multiplications, which leads

to a cost of 2MM(n)
√
d+ o(MM(n)

√
d) arithmetic operations on K;

2. The authors of [PS73] also proposed one algorithm (Algorithm C in their article)
mixing their preconditioning techniques [PS73, Algorithm A] for polynomial eval-
uations with their previous approach to minimize further the number of non-scalar
multiplications. Thus, they manage to decrease the number of non-scalar multipli-
cations to

√
2d+O(log d), which gives an overall cost of MM(n)

√
2d+o(MM(n)

√
d);

3. Finally, one can compute a suitable decomposition for the matrix A, so that the
problem of computing p(A) becomes easier. In [Gie95] for instance, the author uses
the decomposition underlying the Frobenius normal form in order to achieve a cost
of O (̃MM(n) + d) for the evaluation of p(A).

In the current context, the more relevant way to evaluate p(A) seems to be the �rst
one, for the two following reasons:

• First, the degree of the polynomial coming from the Padé approximants (typically,
d ≤ 13) mentioned before are too small for the polynomial preconditioning tech-
niques to become better than the approach without preconditioning. Recall indeed
the extra O(log d) in the number of non-scalar multiplications achieved, which is
not compensated for by the gain of

√
2d non-scalar multiplications for small values

of d;

• Second, we want to consider only simple algorithms, using + and × only and
without any preconditioning, so that the error bound on the polynomial evaluation
described in [Hig08, Theorem 4.5] remains valid. This way, we can change the
polynomial evaluation without compromising the numerical properties of the whole
approach.

8.2. Evaluation of a polynomial at a matrix point 175

Therefore, the reference for the evaluation of p(A) will be here the �rst algorithm of
[PS73] mentioned above. It should be noted that the authors give a lower bound5 of√
d non-scalar multiplications for this evaluation. On the other hand, and that a careful

analysis of their algorithm shows that it uses

⌊
d− 1

k

⌋
+ k− 1 non-scalar multiplications,

where k is a parameter typically �xed to b
√
dc of d

√
de in order to get a �nal value of

roughly 2
√
d.

The special case of exp(A)

Algorithm 8.1 illustrates Higham's approach for the case of exp(A). To ensure a good
numerical result, the matrix A is �rst pre-scaled so that exp(A) is computed through(

exp(Ã)
)(2s)

, where Ã := A/2s. Then, as Ã has a small norm, the exponential is replaced
with a (d, d)-Padé approximant.

Algorithm 8.1: Sketch of the approach in [Hig08, �10.3] for the evaluation of
exp (A).

Input : A ∈ Cn×n.
Parameter: a number s used for scaling purpose, and a degree d for the Padé

approximant.
Output : exp(A).

Ã← A/2s1

compute a (d, d)-Padé approximant
p(x)

q(x)
for exp(x)2

// in the case of exp(x), we have q(x) = p(−x) = peven(x)− podd(x),
// where peven and podd are the even and odd parts of p,
// respectively

U← peven(Ã) ; V← podd(Ã)3

R̃← (U− V)−1 (U + V)4

compute R = R̃(2s) by s successive squarings5

return R6

What is really interesting in this example is the link between the two polynomials
involved in this Padé approximation, which actually re�ects the fact that e−x = 1/ex.
This rises the question of evaluating simultaneously both the even and odd parts of a
given polynomial at a matrix point in an e�cient way.

We do not insist on the choices for parameters s and d, see the discussion in [Hig08,
�10.3] for the details. The conclusion is that a trade-o� between the degree d for the
approximation and the scaling factor 2s (and so the number s of �nal squarings) has
to be found, that this trade-o� depends on the number of matrix-matrix multiplications
involved in the polynomial evaluations, and that the interesting range for d is 1 ≤ d ≤ 13.
What we aim at here is to study the polynomial evaluation step itself, and to automati-
cally retrieve or improve the evaluation scheme proposed in [Hig08, Equation 10.34].

5Division is not allowed in their model.

176 Chapter 8. Application examples

Summary of the issues we want to tackle using CGPE

In the next section, we will focus on the following problems:

1. Determine the minimum number of matrix-matrix multiplications in an evaluation
scheme for p(A), and see how it compares to the lower and upper bounds from
[PS73];

2. Count the number of optimal schemes for small values of d and generate them, in
order to look at the possible improvements (like minimizing the memory usage) for
the evaluation;

3. Investigate the case of the simultaneous evaluation of peven and podd appearing for
exp(A), and more generally the simultaneous evaluation of two polynomials, which
is the situation brought by the Padé-approximation approach for evaluating f(A).

8.2.2 Modelling with CGPE and experimental results

Relevance of evaluation schemes for the evaluation of p(A)

First of all, let us see why the concept of evaluation scheme remains suitable to study
the evaluation of a polynomial at a matrix point. In Sections 5.1.1 and 5.1.2, we have
successively introduced for a given arithmetic expression f the set of parenthesizations
P(f) (that were obtained by considering the closure of the natural parenthesizations over
the basic set of rules listed on page 95), and the set of evaluation schemes S(f) := P(f)/ ≡
where ≡ stands for the syntactic equality modulo commutativity.

Here, we have to deal with matrices and scalars (the coe�cients ai of polynomial
p). For consistency, we will regard a scalar ai as the matrix aiIn when applying one of
the rules used to de�ne parenthesizations. Yet, multiplying by ai will remain a scalar-
matrix multiplication. Now, we have to look at the validity of these rules: the set of
n× n matrices over a �eld K has a non-commutative ring structure, and as we will only
encounter matrices that are polynomials in the given matrix A, commutativity of × will
also be satis�ed. Therefore, the set of parenthesizations P(p(A)) still corresponds to a
set of ways to evaluate p(A).

When introducing the concept of evaluation scheme in Section 5.1.2, we motivated
the choice of considering the quotient set P(f)/ ≡ rather than P(f) itself by noting
that the commutativity of + and × is still satis�ed when computing in �nite-precision
arithmetic. Unfortunately, this argument falls down here, since we may have A ·B 6= B ·A
in �nite-precision arithmetic even though the mathematical equality holds. Nevertheless,
we have seen in the previous section that the main issue will be to minimize the number
of non-scalar multiplications. These multiplications are all of the form X · Y, where X
and Y are either two powers of A, or one power and one polynomial of A, and thus their
number does remain unchanged when applying the commutativity of ×. Moreover, as
soon as the numerical analysis is carried out using matrix norms, the error bound on the
evaluation of A · B becomes symmetric in A and B, like in [Hig02, page 71]:

‖AB− ÂB‖p ≤ γn‖A‖p‖B‖p, p = 1,∞, F.

8.2. Evaluation of a polynomial at a matrix point 177

So we will not be able to distinguish between A · B and B · A anyway. Therefore, the set
S(p(A)) remains relevant as a model for the di�erent ways to evaluate p(A) on a machine
with �nite-precision arithmetic.

Minimizing the number of non-scalar multiplications

In order to minimize the number of non-scalar multiplications in an evaluation scheme
for p(A), we will use a new measure mainly based on the one described in Section 6.4.2.
Actually, the only di�erence with the previous measure lies in the fact that we have to
avoid counting multiplications of type ai ·Aj since they are scalar-matrix ones. Thus, we
will use here the measure ϕ : S(F)→ T := N× P(N2) such that:

• For a given scheme s, ϕ(s) returns both the number of matrix-matrix multiplications
involving at least one coe�cient ai and the set of powers of A computed within the
scheme;

• For any trivial scheme s (that is, a single leaf), we set ϕ(s) := (0, {});

• For any non-trivial scheme, ϕ can be computed recursively using the function ρ
de�ned by:

ρ(+, (a1, b1), (a2, b2)) = (a1 + a2, b1 ∪ b2),
ρ(×, (a1, b1), (a2, b2)) = (a1 + a2, b1 ∪ b2) when f1 or f2 is reduced to ai,

ρ(×, (a1, b1), (a2, b2)) = (a1 + a2 + 1, b1 ∪ b2) when f1 or f2 is not a power of A,

ρ(×, (0, b1), (0, b2)) =
(
0, b1 ∪ b2 ∪ {(i+ j, σ)}

)
when f1 = Ai, f2 = Aj,

and the scheme in use for Ai+j is the σth one.

The total order for T will be the same as in Section 6.4.2, that is: Fewer multiplications
is better; Then, the more Ai's computed, the better (since this increases the potential of
common subexpressions); Finally, the sets of schemes for the Ais are compared.

Now that we have an appropriate measure, we can use some of the algorithms intro-
duced in the previous chapters in order to study the set of evaluations schemes for p(A)
with a minimum number of matrix-matrix multiplications. The result of our study is
presented in Table 8.4:

• Using GlobalOptimizerWithHint, we can �rst determine this minimum number of
matrix-matrix multiplications, and produce one scheme that is optimal with this
respect. The main conclusion we can draw here is that, for d ≤ 15, this minimum
number coincides with the value achieved through Paterson and Stockmeyer's al-
gorithm [PS73]. Hence, even though the best known lower bound is smaller, their
approach is optimal.

• The number of optimal schemes can be determined with CountWithHint. Compar-
ing with the total number of evaluation schemes shown in Table 6.1, we can see
that only a few schemes are optimal in this context. In fact, their number is even
small enough to think of an exhaustive search. Notice also that, as CountWithHint
has only to deal with small-size numbers, its computing time is only slightly larger
that the one for GlobalOptimizerWithHint.

178 Chapter 8. Application examples

• Finally, we have used GenerateWithHint �rst in order to con�rm the results of the
previous two algorithms, and second to look at the shape of the optimal evaluation
schemes. As one can see, the generation time is quite low for d ≤ 9, so that a �ne
tuning through exhaustive analysis is possible even at compile time. Also, one can
go through the exhaustive study for d ≤ 12 within a reasonable amount of time.

Table 8.4: Analysis of the evaluations schemes for p(A).

GlobalOptimizerWithHint CountWithHint GenerateWithHint

deg(p)
minimum num-
ber of non-scalar
multiplications

optimization
time

number of op-
timal schemes

counting
time

generation time

0 0 0s 1 0s 0s

1 0 0s 1 0s 0s

2 1 0s 7 0s 0s

3 2 0s 67 0s 0s

4 2 0s 24 0s 0s

5 3 0s 1056 0s 0s

6 3 0s 702 1s 1s

7 4 1s 74412 1s 1s

8 4 2s 71766 2s 5s

9 4 3s 17550 3s 14s

10 5 159s 15094908 161s 1606s

11 5 360s 9593100 369s ≈ 2.4h

12 5 793s 11820600 819s ≈ 7.8h

13 6 ≈ 22h 6558513300 ≈ 23.5h �

14 6 ≈ 50h 11623313700 ≈ 54h �

15 6 ≈ 98h 18470713500 ≈ 100h �

While Paterson and Stockmeyer's algorithm appears to be optimal in our computa-
tion model for d ≤ 15, there is still room for further investigation. First, let us dis-
cuss a classi�cation of optimal schemes for small degrees. By looking at the output of
GenerateWithHint for 0 ≤ d ≤ 12, we were able to distinguish between three classes of
optimal schemes:

1. First, we have several variations of Paterson and Stockmeyer's algorithm. Namely,
a sequence A, A2, . . . ,Ak is computed for some k, then chunks of size k are formed,
and the �nal result is deduced by using Horner's rule with Ak and these chunks.
The di�erences between these variations come from the associativity of + within
the chunks, and the way these chunks are formed (a`k ·A`k may be placed either as
a`k · Ak in the (`− 1)st chunk, or as a`k · In in the `th chunk).

8.2. Evaluation of a polynomial at a matrix point 179

2. Second, we �nd schemes based on the sequence A,A2,A4, . . . , performing the eval-
uation in an even/odd way. These schemes are actually variations of the mod-
ular splitting algorithm presented in [BZ09, �4.4], which has usually a few more
non-scalar multiplications than Paterson and Stockmeyer's algorithm. However,
modular splitting appears to be competitive for d ∈ {5, 7, 10};

3. Third, we were able to extract, for d = 7, some exotic schemes (in the sense they
do not seem to look like known schemes) such as(

(a0 · In + a1 · A) + (a4 · A4 + a5 · A5)
)

+
(
A2×

(
a2 · In + (a3 · A + a6 · A4)

))
,

where

• A2 = A×A,
• A4 = A2×A2 = (A× A)× (A× A),

• A5 = A×A4 = A×
(
(A× A)× (A× A)

)
.

As implied by the optimality of Paterson and Stockmeyer's algorithm, we are able to
�nd, for every degree d ≤ 15, many schemes that belong to the �rst class. On the
contrary, optimal schemes from the second and third classes only exist for some degrees.
By looking at the complete output of GlobalOptimizerWithHint for 13 ≤ d ≤ 15, we
have determined that modular splitting can be optimal only for d ∈ {5, 7, 10, 13, 14}, and
we have exposed exotic schemes only for n ∈ {7, 13, 14}.

Figure 8.3: Set of values for ϕ(s), where s is a scheme for a degree-7 polynomial with the
minimum number of non-scalar multiplications.

(
1, {

×

A A ,

×

A ×

A A ,

×

×

A A

×

A A }
) (

1, {

×

A A ,

×

A ×

A A ,

×

A ×

A ×

A A }
)

(
1, {

×

A A ,

×

×

A A

×

A A ,

×

×

A A

×

A ×

A A }
) (

1, {

×

A A ,

×

×

A A

×

A A ,

×

×

A A

×

×

A A

×

A A }
)

(
2, {

×

A A ,

×

A ×

A A }
) (

2, {

×

A A ,

×

×

A A

×

A A }
)

(
3, {

×

A A }
)

We have represented here the schemes for each Ai, but they are actually stored as a pair of

integers in the implementation.

Such a diversity in the optimal schemes lets us think that improvements of the par-
allelism, the memory usage, or the numerical quality may be achieved by exhaustive or

180 Chapter 8. Application examples

heuristics search. Yet, what is the most interesting here is the variable number of powers
of A computed as intermediate quantities. Indeed, recall that our problem was to evaluate
two polynomials at the same time. If we maximize the number of powers of A computed
in the �rst polynomial evaluation, then we will potentially have more operations for free
when performing the second evaluation. Think for instance of the case of a (7, 7)-Padé
approximation (p, q). Figure 8.3 illustrates for a degree-7 polynomial all the values for
ϕ(s) where s has the minimum number of matrix-matrix multiplications, that is, four.
Suppose we use schemes for p and q whose value by ϕ is the top-left one in Figure 8.3.
Then, evaluating p(A) will cost 1 + 3 = 4 matrix-matrix multiplications, but since we
have also computed A2, A3 = A× A2, and A4 = A2 × A2, evaluating q(A) will only cost 1
matrix multiplication. Therefore, the total number of matrix-matrix multiplications is 5.
Supposing now that we choose for p or q a scheme s where ϕ(s) is the value at bottom of
Figure 8.3, the only intermediate quantity that we can reuse is A, and so we get a number
of matrix-matrix multiplications of 3 + 1 + 3 = 7, which is two more compared to the
previous choice. This illustrates that, in our context, all schemes minimizing the number
of non-scalar multiplications are not even, and that it is important to look deeply into
the structure of the scheme in order to make an appropriate choice.

Case of exp(A)

Finally, let us discuss the case of exp(A). Recall that the problem in this case is to
evaluate simultaneously the even and odd parts of a polynomial p with a minimum
number of matrix-matrix multiplications. Assuming that

p(A) = q(A2) + A · r(A2) so that peven(A) = q(A2) and podd(A) = A · r(A2), (8.1)

we can evaluate the odd and even parts of p by �rst computing A2, then evaluating
simultaneously r and q at the matrix point A2, and �nally performing one extra addition
to retrieve the podd(A) from r(A2). For the simultaneous evaluation of r and q, we can
apply the remark formulated at the end of the previous paragraph. For instance, when
deg(A) = 12, one can evaluate the degree-5 polynomial r with 3 non-scalar multiplications
(A2 = A× A, A3 = A× A2, and 1 additional non-scalar multiplication), and the degree-6
polynomial q with 3 non-scalar multiplications (again, A2 = A × A, A3 = A × A2, and
1 additional non-scalar multiplication). Therefore, the simultaneous evaluation will cost
6− 2 = 4 non-scalar multiplications, since we can reuse the values of A2 and A3, and the
�nal cost for {peven(A), podd(A)} is 1 + 4 + 1 = 6 matrix-matrix multiplications, which
matches the value proposed by Higham [Hig08, Table 10.3].

In fact, the previous reasoning allows us to quickly retrieve fully parenthesized variants
of the scheme proposed on [Hig08, page 244] for d = 12, along with several other schemes
achieving the same number (6) of matrix-matrix multiplications. Indeed, all we need is
to generate schemes minimizing the number of non-scalar multiplications for a degree-5
polynomial and then for a degree-6 polynomial, and to consider pairs of schemes which
maximize the number of common powers of A. According to Table 8.4, this takes around
1 second.

Yet, one may wonder if there exist better schemes. To answer this question, we use
algorithm OptimizerSet, along with a variation of the measure described in Section 7.2.1

8.2. Evaluation of a polynomial at a matrix point 181

where non-scalar multiplications are not taken into account. As a �rst experiment, we
ask for the minimal number of non-scalar multiplications for the evaluation of the set{ ∑

0 ≤ i ≤ d,
i even

aix
i,

∑
0 ≤ i ≤ d,
i odd

aix
i
}
,

which is the exact form of our current problem. Thus, we were able to obtain the minimum
number of non-scalar multiplications needed to evaluate simultaneously the even and odd
parts of a degree-d polynomial when d ≤ 7. These numbers, along with the computation
time, are presented in Table 8.5. Since they match the ones from [Hig08, Table 10.3],
we are able to conclude that, for d ≤ 7, one cannot hope to perform the simultaneous
evaluation of the odd and even parts of p faster than what Higham proposes.

Table 8.5: Minimal number µd of non-scalar multiplications for evaluating peven(A) and
podd(A) when deg(p) = d (heuristic for d ≥ 8).

exhaustive search heuristic search

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13

µd 0 0 1 2 3 3 4 4 5 5 6 6 6 6

computation time 0s 0s 0s 0s 0s 1s 22s 694s 0s 1s 8s 132s 824s ≈ 1h

For d ≥ 8, an exhaustive search with OptimizerSet is impossible because of a too
large memory consumption. To cope with this problem, we propose a second experiment
where we compute with OptimizerSet the minimum number of non-scalar multiplications
in order to evaluate {q, r} as in Equation (8.1), and add 2 to the result in order to take
into account the multiplications A× A and A× r(A2). Since we put some constraints on
the way of evaluating the odd and even parts of p, this second experiment is actually a
heuristic optimization, and thus it only gives an upper bound on the minimal number of
non-scalar multiplications. Results are presented in Table 8.5, and again, they match with
the one from Table [Hig08, Table 10.3]. This proves that, if we impose the evaluation of
the odd and even parts of p to be performed as in Equation (8.1) then Higham's approach
is optimal, at least for d ≤ 13.

182 Chapter 8. Application examples

Conclusions and perspectives for Part II

The implementation of an given arithmetic expression f rises several issues. People
from algebraic complexity try to determine the minimum number of operations in an
evaluation scheme for f . The set S(f) of all the evaluation schemes for f is an interesting
combinatorial object by itself. Moreover, an e�cient implementation of f on a given
architecture requires that we use as much as possible the available parallelism, or that
we control the evaluation error due to the computations carried out in �nite-precision
artihmetic. Sometimes, a trade-o� between speed and accuracy must be found, like in
the context of CGPE.

The purpose of the second part of this document was to provide a general framework
that helps us to tackle several of the aforementioned issues. The main idea lies in the
recursive expression of the set of evaluation schemes S(f) that is achieved thanks to the
concept of decomposition. Analyzing the set S(f) can then be summarized as considering
successively all the decompositions for f , analyzing recursively all the corresponding
subexpressions, and deducing the �nal result. This approach was mainly used for three
purposes: generation, counting, and optimization.

Generation of evaluation schemes is usually too costly when done exhaustively. How-
ever, we have seen that adding su�ciently strong constraints can make it relevant. Thus,
by generating all the schemes for an with a minimum number of multiplications, we were
able to study the number of squarings that can be extracted from the multiplications.

Counting the number of evaluation schemes gives a good insight into the cost of other
analyses and the strength of the heuristics we may need in order to render these analyses
e�cient. Thus, we have studied in detail the numbers of schemes for the polynomials ap-
pearing as input of CGPE, that is, univariate polynomials p(x) and bivariate polynomials
of the form q(x, y) = α+ y · p(x). This gave us two new sequences that we have added to
the On-Line Encyclopedia of Integer Sequences. We have then proved that the logarithm
of the number of schemes for both p(x) and q(x, y) grows in Ω(n2) and in O(n3) with
respect to n = deg p, which explains the fast growth observed in practice. Moreover, we
have looked at the distribution of the evaluation schemes according to some measure. In
particular, we have seen that only a small proportion of schemes for polynomials achieves
a minimum latency, and concluded that it is interesting as a �rst heuristic to focus on
those schemes inside CGPE. Yet, schemes with a minimum latency are too many, and we
still need additional heuristics to reduce the search space further.

Optimization according to some criterion like the latency can be easily achieved
through the aforementioned divide-and-conquer approach. Yet, some measures like the
number of multiplications are more di�cult to optimize. For them, we have proposed
and compared several solutions: a fast heuristic optimization (Optimizer), a general-

184

ization of the optimization problem to sets of expressions (OptimizerSet), and a global
optimization relying on additionnal constraints (GlobalOptimizerWithHint). We have
also seen how using prioritization within a set of criteria allows us to reuse monocriterion
optimization for the purpose of multicriteria optimization. Finally, we have proposed an
algorithm aiming at �nding good trade-o�s given two criteria, that we have applied �rst
to solve a question about latency and delay raised by the design of the FLIP library, and
second to study the trade-o� between latency and accuracy for polynomial approxima-
tion. This last experiment leads us to the conclusion that relaxing slightly the constraint
on optimal latency may lead to far more accurate schemes.

Moreover, the material introduced in this part has been used in two more advanced
contexts. First, our general framework allowed us to partially rewrite CGPE. By adding
more constraints within the step that computes schemes, we were able to signi�cantly
decrease the overall generation time for several functions. Second, we have reviewed
the evaluation of a univariate polynomial at a matrix point, and shown that, in the
absence of preconditionning, Paterson and Stockmeyer's algorithm achieves the minimal
number of matrix-matrix multiplications, at least up to degree 15. A similar study for the
computation of exp(A) with Padé approximants also proved the optimality of Higham's
approach [Hig08, �10.3] in terms of the number of matrix-matrix multiplications.

Last but not least, we have developed a C++ library that contains all the algorithms
mentioned in Chapters 5 to 7 (≈ 1200 lines of code), several families of arithmetic ex-
pressions (≈ 1500 lines of code), and several measures (≈ 400 lines of code). This library
was used to develop the example codes (33 of them, for a total of ≈ 3200 lines of code)
that lead to the results presented all along this part of the document, and we are eager to
test it for other types of arithmetic expressions, or with other optimization criteria, like
the memory usage for software implementation, and the area usage for hardware. For
the case of polynomial matrices, we still need to design a model for the numerical error
analysis so as to obtain a complete code generator that really exploits the values of the
coe�cients of p in order to produce a sharp error bound. Finally, a generalization of our
approach in order to handle 3-ary operators would allow us to analyze implementations
relying on the FMA operator, which is nowadays heavily used for accurate �oating-point
implementations.

Final words

The design of e�cient code is a very di�cult task. At the algorithmic level, signi�cant
improvements can be achieved, that either lead to a better asymptotic cost, or to a
cost with a better constant hidden within the �big-O� expression. Yet, considering the
algorithm with the best known asymptotic complexity does not mean having an e�cient
code. First, one has to actually implement this algorithm. This usually implies to make
implementation choices, which may impact the actual performance of the algorithm.
Second, asymptotically fast algorithms are usually slower than more naive ones for small
inputs. Thus, one may need to implement several algorithms and switch from one to
another depending on the size of the input. Again, choices for the set of algorithms and
the ranges associated to each of them have to be made. Third, the produced code will be
compiled and run on a given architecture, usually o�ering parallelism and �nite-precision
arithmetic for computation involving real or complex numbers. Using at most the features
of the architecture within the compiler is then yet another issue.

The main lesson learnt from this work is that, given the increasing complexity of both
the algorithms and the architectures on which they are intended to run, designing tools to
automatically analyze and optimize code becomes more and more an issue. For structured
matrices, we managed to design asymptotically fast algorithms. Nevertheless, despite the
time we spent on their implementation, we are convinced that better performance would
be achieved if only we could ask a computer to generate the code. As for the evaluation
of arithmetic expressions, our framework for automatic analysis of the set of evaluation
schemes really helped us to produce e�cient code both for the FLIP library and for the
evaluation of a polynomial at a matrix point. Thus, in both cases, the solution in order
to produce e�cient code seems to lie in the automatic generation of optimized code.

186

List of notation

N set of natural integers
N>0 set of positive integers
R set of real numbers
R>0 set of positive real numbers
C set of complex numbers
K arbitrary �eld
Fq �nite �eld of cardinality q
Km×n set of m× n matrices with coe�cients in K
K[x] set of polynomials with coe�cients in K
K[x]d set of polynomials with coe�cients in K and degree less than d
K[x]m×nd set of m× n matrices with coe�cients in K[x]d
a div b, a mod b quotient and remainder in the division of a ∈ K[x] by b ∈ K[x], b 6= 0

In identity matrix of order n . 9
Jn re�exion matrix of order n . 9
en,i ith unit vector of Kn . 9
en vector of Kn whose all entries are equal to 1 . 9
T(x) square Toeplitz matrix de�ned by the vector x ∈ K2n−1 12
T(x,m, n) m× n Toeplitz matrix de�ned by the vector x ∈ Km+n−1 12
L(x) lower-triangular Toeplitz matrix de�ned by the vector x ∈ Kn 12
U(x) upper-triangular Toeplitz matrix de�ned by the vector x ∈ Kn 12
V(x) square Vandermonde matrix de�ned by the vector x ∈ Kn 13
V(x, n) m× n Vandermonde matrix de�ned by the vector x ∈ Km 13
H(x,m, n) m× n Hankel matrix de�ned by the vector x ∈ Km+n−1 14
C(x, y) m× n Cauchy matrix de�ned by vectors x ∈ Km and y ∈ Kn 14
Zn,ϕ unit ϕ-circulant matrix of order n . 16
D(x) diagonal matrix with xi as diagonal elements . 17
K`(M, u) m× ` Krylov matrix de�ned by M ∈ Km×n and u ∈ Kn 19
X7→α matrix made of the �rst α columns of X . 35
Px polynomial

∏n
i=1 (x− xi) . 55

W(x) matrix D(P ′x(x))
−1V(x) . 55

ω exponent in the cost of matrix multiplication . 10
M(n) cost function for the multiplication of two degree-n polynomials 12
O (̃f(n)) Landau's �Big-O� notation, where logarithmic factors have been dropped 15

188

MM(n, d) cost function for the multiplication of two matrices in K[X]n×nd 54
fK(n, d) cost function introduced for the cost analyses in Chapter 3 54
SMM(α,m+ n) cost function for the multiplication �structured matrix × matrix� 69

P(f) set of all the parenthesizations for expression f . 95
S(f) set of all the evaluation schemes for expression f . 96
ν(t) arithmetic expression associated to the tree t . 98
D(f) set of all the decompostitions for expression f . 98
t disjoint union . 101
P2(X) set of all singletons and all pairs included in set X . 102

Bibliography

[AH83] G. Alefeld and J. Herzberger. Introduction to Interval Analysis. Academic
Press, 1983. [170]

[BA80] R. R. Bitmead and B. D. O. Anderson. Asymptotically fast solution of
Toeplitz and related systems of linear equations. Linear Algebra Appl.,
34:103�116, 1980. [xi, 24, 25, 73]

[Bab69] I. Babuska. Numerical stability in mathematical analysis. In Proceedings of
the 1968 IFIP Congress, volume 1, pages 11�23, 1969. [82]

[BCS97] B. Bürgisser, C. Clausen, and M.A. Shokrollahi. Algebraic Complexity
Theory, volume 315 of Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, 1997. [79, 93, 94]

[BH74] James R. Bunch and John E. Hopcroft. Triangular factorization and inver-
sion by fast matrix multiplication. Mathematics of Computation, 28:231�236,
1974. [11]

[BJMS11] Alin Bostan, Claude-Pierre Jeannerod, Christophe Mouilleron, and Éric
Schost. Fast simultaneous multiplication of a structured matrix by vectors,
2011. Draft, available upon request. [26, 53, 68]

[BJS07] Alin Bostan, Claude-Pierre Jeannerod, and Éric Schost. Solving Toeplitz-
and Vandermonde-like linear systems with large displacement rank. In IS-
SAC'07, pages 33�40. ACM, 2007. [2, 25, 52, 53, 70, 71, 73]

[BJS08] Alin Bostan, Claude-Pierre Jeannerod, and Éric Schost. Solving structured
linear systems with large displacement rank. Theoretical Computer Science,
407(1:3):155�181, 2008. [2, 25, 29, 52, 53, 66, 70, 71, 73, 74]

[BKM73] R. Brent, D. Kuck, and K. Maruyama. The parallel evaluation of arith-
metic expressions without division. Computers, IEEE Transactions on, C-
22(5):532 � 534, may 1973. [81]

[BLS03] Alin Bostan, Gregoire Lecerf, and Éric Schost. Tellegen's principle into
practice. In ISSAC'03 proceedings, pages 37�44, New York, NY, USA, 2003.
ACM. [57]

190 Bibliography

[Bod10] Marco Bodrato. A Strassen-like matrix multiplication suited for squaring
and higher power computation. In Proceedings of the 2010 International
Symposium on Symbolic and Algebraic Computation, ISSAC '10, pages 273�
280, New York, NY, USA, 2010. ACM. [113]

[Bol04] Sylvie Boldo. Preuves formelles en arithmétiques à virgule �ottante. PhD
thesis, ÉNS Lyon, November 2004. [85]

[Bor71] Allan Borodin. Horner's rule is uniquely optimal. Theory of machines and
computations, pages 45�58, 1971. [138]

[Bos10] Alin Bostan. Algorithmes rapides pour les polynômes, séries formelles et
matrices. In Les cours du C.I.R.M., volume 1, pages 75�262, 2010. [2, 3, 26,
28, 29, 52, 53, 62, 69, 70, 73, 74]

[BP94] Dario Bini and Victor Y. Pan. Polynomial and Matrix Computations, volume
1: Fundamental Algorithms. Birkhäuser, 1994. [9]

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expressions.
J. ACM, 21:201�206, April 1974. [81, 93, 94, 95]

[BS05] Alin Bostan and Éric Schost. Polynomial evaluation and interpolation on
special sets of points. Journal of Complexity, 21:420�446, 2005. [54]

[BZ09] Richard Brent and Paul Zimmermann. Modern Computer Arithmetic. March
2009. Version 0.2.1. Available at http://www.loria.fr/~zimmerma/mca/

mca-0.2.1.pdf. [179]

[Car99] Jean-Paul Cardinal. On a property of Cauchy-like matrices. C. R. Acad. Sci.
Paris - Série I - Analyse numérique/Numerical Analysis, 328:1089�1093,
1999. [2, 25, 26, 27, 31, 33, 41, 42, 73]

[Car00] Jean-Paul Cardinal. A divide and conquer method to solve Cauchy-like
systems. Technical report, The FRISCO Consortium, 2000. [xi, 2, 3, 25, 26,
27, 31, 33, 34, 73]

[Che09] Sylvain Chevillard. Évaluation e�cace de fonctions numériques - Outils et
exemples. PhD thesis, Université de Lyon - École Normale Supérieure de
Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France, 2009. [83]

[CK91] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Informatica, 28(7):693�701, 1991. [54]

[CK04] Martine Ceberio and Vladik Kreinovich. Greedy algorithms for optimizing
multivariate Horner schemes. SIGSAM Bulletin, 38(1):8�15, 2004. [85]

[CLM+05] Ray C. C. Cheung, Dong-U Lee, Oskar Mencer, Wayne Luk, and Peter Y. K.
Cheung. Automating custom-precision function evaluation for embedded
processors. In CASES '05: Proceedings of the 2005 international conference
on Compilers, architectures and synthesis for embedded systems, pages 22�
31, New York, NY, USA, 2005. ACM. [85]

http://www.loria.fr/~zimmerma/mca/mca-0.2.1.pdf
http://www.loria.fr/~zimmerma/mca/mca-0.2.1.pdf

Bibliography 191

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009. [104, 151]

[CW87] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing, STOC '87, pages 1�6, New York, NY, USA, 1987.
ACM. [10]

[DLS81] Peter J. Downey, Benton L. Leong, and Ravi Sethi. Computing sequences
with addition chains. SIAM Journal on Computing, pages 638�646, 1981.
[149]

[Eth37] Ivor M. H. Etherington. Non-associate powers and a functional equation.
The Mathematical Gazette, 21(242):36�39, 1937. [80, 119]

[Eve64] James Eve. The evaluation of polynomials. Numerische Mathematik, (6):17�
21, 1964. [80, 94]

[FFY05] J.A. Fisher, P. Faraboschi, and C. Young. Embedded Computing: A VLIW
Approach to Architecture, Compilers and Tools. Morgan Kaufmann, 2005.
[83]

[Fin94] Steven R. Finch. Mathematical Constants. Cambridge University press,
1994. [126]

[FMMP09] Franz Franchetti, Frédéric Mesmay, Daniel Mcfarlin, and Markus Püschel.
Operator language: A program generation framework for fast kernels. In
Proceedings of the IFIP TC 2 Working Conference on Domain-Speci�c Lan-
guages, DSL '09, pages 385�409, Berlin, Heidelberg, 2009. Springer-Verlag.
[74]

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Princeton
University, 2009. [80, 90, 120, 126, 127]

[Gie95] Mark Giesbrecht. Nearly optimal algorithms for canonical matrix forms,
1995. [174]

[GJV03] Pascal Giorgi, Claude-Pierre Jeannerod, and Gilles Villard. On the complex-
ity of polynomial matrix computations. In Proceedings of the 2003 Interna-
tional Symposium on Symbolic and Algebraic Computation, pages 135�142.
ACM Press, 2003. [26]

[GKO95] I. Gohberg, T. Kailath, and V. Olshevsky. Fast Gaussian elimination with
partial pivoting for matrices with displacement structure. Math. of Comp.,
64(212):1557�1576, 1995. [26]

[GO94a] I. Gohberg and V. Olshevsky. Complexity of multiplication with vectors for
structured matrices. Linear Algebra Appl., 202:163�192, 1994. [19]

192 Bibliography

[GO94b] I. Gohberg and V. Olshevsky. Fast state space algorithms for matrix Nehari
and Nehari-Takagi interpolation problems. Integral Equations and Operator
Theory, 20:44�83, 1994. [25, 26, 27, 32]

[Gre02] Robin Green. Faster Math Functions. Tutorial at Game Developers Con-
ference, 2002. [81]

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, second
edition, 2002. [81, 82, 109, 176]

[Hig08] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
[xi, 5, 86, 87, 165, 173, 174, 175, 180, 181, 184]

[HKST99] John Harrison, Ted Kubaska, Shane Story, and Peter Tang. The computa-
tion of transcendental functions on the IA-64 architecture. Intel Technology
Journal, 1999-Q4:1�7, 1999. [81]

[HR84] Georg Heinig and Karla Rost. Algebraic methods for Toeplitz-like matrices
and operators. Akademie-Verlag, 1984. [34]

[IEE08] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. Au-
gust 2008. [81]

[IMH82] O.H. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix
decomposition algorithm and applications. Journal of Algorithms, 3:45�56,
1982. [10]

[JJLMR11] Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, Christophe Monat, and Guil-
laume Revy. How to square �oats accurately and e�ciently on the ST231 in-
teger processor. In Elisardo Antelo, David Hough, and Paulo Ienne, editors,
Proc. of the 20th IEEE Symposium on Computer Arithmetic (ARITH'20),
pages 77�81, Tübingen, Germany, July 2011. IEEE Computer Society. [113]

[JKMR08] Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, and Guillaume
Revy. Computing �oating-point square roots via bivariate polynomial eval-
uation. Technical Report RR2008-38, LIP, 2008. [122, 161]

[JKMR11] Claude-Pierre Jeannerod, Herve Knochel, Christophe Monat, and Guillaume
Revy. Computing �oating-point square roots via bivariate polynomial eval-
uation. IEEE Transactions on Computers, 60:214�227, 2011. [84]

[JM10a] Claude-Pierre Jeannerod and Christophe Mouilleron. Computing speci-
�ed generators of structured matrix inverses, 2010. LIP research report
RR2010-04, available at http://hal-ens-lyon.archives-ouvertes.fr/

ensl-00450272/en/. [20]

http://hal-ens-lyon.archives-ouvertes.fr/ensl-00450272/en/
http://hal-ens-lyon.archives-ouvertes.fr/ensl-00450272/en/

Bibliography 193

[JM10b] Claude-Pierre Jeannerod and Christophe Mouilleron. Computing speci�ed
generators of structured matrix inverses. In Proceedings of the 2010 Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC '10,
pages 281�288, New York, NY, USA, 2010. ACM. [31]

[JMM+10] Claude-Pierre Jeannerod, Christophe Mouilleron, Jean-Michel Muller, Guil-
laume Revy, Christian Bertin, Jingyan Jourdan-Lu, Hervé Knochel, and
Christophe Monat. Techniques and tools for implementing IEEE 754
�oating-point arithmetic on VLIW integer processors. In Proc. of the 4th In-
ternational Workshop on Parallel and Symbolic Comp. (PASCO '10), pages
1�9, New York, NY, USA, 2010. ACM. [83, 120]

[Kah65] William Kahan. Pracniques: further remarks on reducing truncation errors.
Commun. ACM, 8(1):40, 1965. [82]

[Kal94] Erich Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear
systems. In ISSAC'94, pages 297�304. ACM, 1994. [22, 25, 48]

[Kal95] Erich Kaltofen. Analysis of Coppersmith's block Wiedemann algorithm for
the parallel solution of sparse linear systems. Mathematics of Computation,
64(210):777�806, 1995. [25]

[Kha08] Houssam Khalil. Matrices structurées et matrices de Toeplitz par blocs de
Toeplitz en calcul numérique et formel. PhD thesis, Université Claude-
Bernard Lyon 1, July 2008. [26]

[KKM79] T. Kailath, S. Y. Kung, and M. Morf. Displacement ranks of matrices and
linear equations. J. Math. Anal. Appl., 68(2):395�407, 1979. [15, 16, 24]

[KM74] David J. Kuck and Yoichi Muraoka. Bounds on the parallel evaluation of
arithmetic expressions using associativity and commutativity. Acta Inf.,
pages 203�216, 1974. [81, 95]

[KM75] David J. Kuck and Kiyoshi Maruyama. Time bounds on the parallel evalu-
ation of arithmetic expressions, 1975. [81]

[Knu62] Donald E. Knuth. Evaluation of polynomials by computers. Communications
of the ACM, 5(12):595�599, 1962. [80, 94]

[Knu69] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Com-
puter Programming. Addison-Wesley, 1969. [149]

[Knu98] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Com-
puter Programming. Addison-Wesley, Third edition, 1998. [80, 82, 85, 114,
148, 151]

[KS99] T. Kailath and A. H. Sayed, editors. Fast reliable algorithms for matrices
with structure. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 1999. [26]

194 Bibliography

[Kuc77] David J. Kuck. A survey of parallel machine organization and programming.
ACM Comput. Surv., 9:29�59, March 1977. [81, 94, 95, 96]

[Lau08] Christoph Lauter. Arrondi correct de fonctions mathématiques - fonctions
univariées et bivariées, certi�cation et automatisation. PhD thesis, Univ. de
Lyon - ÉNS Lyon, October 2008. [85]

[LBC95] G. Labahn, B. Bechermann, and S. Cabay. Inversion of Mosaic Hankel Ma-
trices via Matrix Polynomial Systems. Linear Algebra and its Applications,
(221): 253�280, 1995. [26]

[LCC90] G. Labahn, D. K. Choi, and S. Cabay. The Inverses of Block Hankel and
Block Toeplitz Matrices. SIAM J. of Computing, (19): 98�123, 1990. [26]

[LMT10] Philippe Langlois, Matthieu Martel, and Laurent Thévenoux. Accuracy ver-
sus time: a case study with summation algorithms. In Proc. of the 4th In-
ternational Workshop on Parallel and Symbolic Computation (PASCO '10),
pages 121�130, New York, NY, USA, 2010. ACM. [82, 162]

[LV09] Dong-U Lee and John D. Villasenor. Optimized Custom Precision Function
Evaluation for Embedded Processors. IEEE Transactions on Computers,
58(1):46�59, 2009. [85]

[Mar07] Matthieu Martel. Semantics-based transformation of arithmetic expressions.
In SAS'07, volume 4634 of Lecture Notes in Computer Science. Springer-
Verlag, 2007. [82]

[Mar09a] Matthieu Martel. Enhancing the Implementation of Mathematical Formu-
las for Fixed-Point and Floating-Point Arithmetics. In Journal of Formal
Methods in System Design, volume 35, pages 265�278. Springer, 2009. [82,
109, 169, 170]

[Mar09b] Matthieu Martel. Program transformation for numerical precision. In
PEPM'09. ACM Press, 2009. [82, 109]

[Mat09] David Matula. Higher radix squaring operations employing left-to-right dual
recoding. In Computer Arithmetic, 2009. ARITH 2009. 19th IEEE Sympo-
sium on, pages 39 �47, june 2009. [113]

[MBdD+10] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre
Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien
Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser
Boston, 2010. [83, 96]

[Mel06] Guillaume Melquiond. De l'arithmétique d'intervalles à la certi�cation de
programmes. PhD thesis, ÉNS Lyon, November 2006. [82, 84, 166]

[Mic68] Donald Michie. �memo� functions and machine learning. Nature, 218:19�22,
1968. [104]

Bibliography 195

[Moo66] Ramon E. Moore. Interval Analysis. Prentice-Hall, 1966. [170]

[Mor80] M. Morf. Doubling algorithms for Toeplitz and related equations. IEEE Con-
ference on Acoustics, Speech, and Signal Processing, pages 954�959, 1980.
[xi, 24, 25, 73]

[MR11] Christophe Mouilleron and Guillaume Revy. Automatic generation of fast
and certi�ed code for polynomial evaluation. In Elisardo Antelo, David
Hough, and Paulo Ienne, editors, Proc. of the 20th IEEE Symposium on
Computer Arithmetic (ARITH'20), pages 233�242, Tübingen, Germany,
July 2011. IEEE Computer Society. [82, 139, 154, 166, 169]

[Mul00] Thom Mulders. On short multiplications and divisions. Applicable Al-
gebra in Engineering, Communication and Computing, 11:69�88, 2000.
10.1007/s002000000037. [12]

[Mul06] Jean-Michel Muller. Elementary Functions, Algorithms and Implementation.
Birkhäuser Boston, MA, 2nd edition, 2006. [83]

[OP98] Vadim Olshevsky and Victor Y. Pan. A uni�ed superfast algorithm for
boundary rational tangential interpolation problems and for inversion and
factorization of dense structured matrices. In Proc. 39th IEEE FOCS, pages
192�201, 1998. [32]

[ORO05] Takeshi Ogita, Siegfried M. Rump, and Shin'ichi Oishi. Accurate sum and
dot product. SIAM J. Sci. Comput., 26:1955�1988, June 2005. [82]

[OS03] V. Olshevsky and M. Amin Shokrollahi. A displacement approach to decod-
ing algebraic codes. In Contemporary mathematics: theory and applications,
pages 265�292, Boston, MA, USA, 2003. AMS. [25]

[Ott48] Richard Otter. The number of trees. The Annals of Mathematics, 49(3):pp.
583�599, 1948. [80, 125]

[Pan66] Victor Y. Pan. Methods of Computing Values of Polynomials. Russian
Mathematical Surveys, 21(1):105�136, 1966. [80, 138]

[Pan78] Victor Y. Pan. Strassen's algorithm is not optimal: trilinear technique of
aggregating, uniting and canceling for constructing fast algorithms for ma-
trix operations. In Foundations of Computer Science, 1978., 19th Annual
Symposium on, pages 166 �176, oct. 1978. [80]

[Pan89] Victor Y. Pan. On some computations with dense structured matrices. In
Proceedings of the ACM-SIGSAM 1989 international symposium on Sym-
bolic and algebraic computation, ISSAC '89, pages 34�42, New York, NY,
USA, 1989. ACM. [15, 34]

[Pan92a] Victor Y. Pan. Parallel solution of Toeplitz-like linear systems. Journal of
Complexity, 8(1):1�21, 1992. [25]

196 Bibliography

[Pan92b] Victor Y. Pan. Parametrization of Newton's iteration for computations with
structured matrices and applications. Computers Math. Applic., 24(3):61�
75, 1992. [25]

[Pan93] Victor Y. Pan. Decreasing the displacement rank of a matrix. SIAM J.
Matrix Anal. Appl., 14(1):118�121, 1993. [25]

[Pan00] Victor Y. Pan. Nearly optimal computations with structured matrices. In
SODA'00, pages 953�962. ACM, 2000. [23, 32, 52]

[Pan01] Victor Y. Pan. Structured Matrices and Polynomials. Birkhäuser Boston
Inc., 2001. [9, 11, 13, 15, 18, 19, 20, 21, 22, 24, 25, 28, 32, 38, 39, 40, 45, 56,
57, 61]

[PFV11] Markus Püschel, Franz Franchetti, and Yevgen Voronenko. Encyclopedia of
Parallel Computing, chapter Spiral. Springer, 2011. [74]

[PGM04] Sylvie Putot, Eric Goubault, and Matthieu Martel. Static analysis-based
validation of �oating-point computations. In Novel Approaches to Veri�-
cation, volume 2991 of Lecture Notes in Computer Science, pages 295�312,
2004. [82, 84]

[Piv08] Carine Pivoteau. Génération aléatoire de structures combinatoires : méthode
de Boltzmann e�ective. PhD thesis, LIP6, December 2008. [80, 120]

[PMJ+05] M. Puschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W.
Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W.
Johnson, and N. Rizzolo. Spiral: Code generation for dsp transforms. Pro-
ceedings of the IEEE, 93(2):232 �275, feb. 2005. [74]

[PS73] Mike S. Paterson and Larry J. Stockmeyer. On the number of nonscalar
multiplications necessary to evalutate polynomials. SIAM Journal on Com-
puting, 2(1):60�66, 1973. [5, 80, 87, 91, 165, 174, 175, 176, 177]

[PS00] Juan Manuel Peña and Thomas Sauer. On the multivariate Horner scheme.
SIAM Journal on Num. Analysis, 37(4):1186�1197, 2000. [85]

[PSS08] Carine Pivoteau, Bruno Salvy, and Michèle Soria. Boltzmann oracle for
combinatorial systems. In Algorithms, Trees, Combinatorics and Probabili-
ties, page 475�488. Discrete Mathematics and Theoretical Computer Science,
2008. Proceedings of the Fifth Colloquium on Mathematics and Computer
Science. Blaubeuren, Germany. September 22-26, 2008. [80, 120]

[PW02] Victor Y. Pan and Xinmao Wang. Inversion of displacement operators.
SIAM J. Matrix Anal. Appl., 24:660�677, March 2002. [19, 20]

[PZ00] Victor Y. Pan and Ailong Zheng. Superfast algorithms for Cauchy-like ma-
trix computations and extensions. Linear Algebra Appl., 310:83�108, 2000.
[25, 48]

Bibliography 197

[Rev06] Guillaume Revy. Analyse et implantation d'algorithmes rapides pour
l'évaluation polynomiale sur les nombres �ottants. Master's thesis, École
normale supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France,
2006. [82]

[Rev09] Guillaume Revy. Implementation of binary �oating-point arithmetic on em-
bedded integer processors - Polynomial evaluation-based algorithms and cer-
ti�ed code generation. PhD thesis, Univ. de Lyon - ÉNS Lyon, December
2009. [3, 82, 86, 87, 104, 123, 165, 167]

[RR05] Nathalie Revol and Fabrice Rouillier. Motivations for an arbitrary precision
interval arithmetic and the MPFI library. Reliable Computing, 11(4):275�
290, 2005. [170]

[Rum09] Siegfried M. Rump. Ultimately fast accurate summation. SIAM J. Sci.
Comput., 31(5):3466�3502, 2009. [82]

[Sta99] Richard P. Stanley. Enumerative Combinatorics, volume 2. Cambridge Uni-
versity press, 1999. [125]

[Str69] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354�356,
1969. [10]

[vzGG03] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, second edition, 2003. [9, 10, 11, 12, 13, 54, 64, 68, 69]

[vzGS92] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring
polynomials. Comput. Complexity, 2(3):187�224, 1992. [15]

[Wed22] Joseph Wedderburn. The functional equation g(x2) = 2αx + [g(x)]2. The
Annals of Mathematics, 24(2):121�140, 1922. [80, 126]

[Yat09] Randy Yates. Fixed-Point Arithmetic: An Introduction. Digital Signal Labs,
2009. [81, 83]

198 Bibliography

Bibliography 199

Abstract

Designing e�cient code in practice for a given computation is a hard task. In this thesis, we tackle
this issue in two di�erent situations.

The �rst part of the thesis introduces some algorithmic improvements in structured linear algebra.
We �rst show how to extend an algorithm by Cardinal for inverting Cauchy-like matrices to the other
common structures. This approach, which mainly relies on products of the type �structured matrix ×
matrix�, leads to a theoretical speed-up of a factor up to 7 that we also observe in practice. Then,
we extend some works on Toeplitz-like matrices and prove that, for any of the common structures, the
product of an n× n structured matrix of displacement rank α by an n× α matrix can be computed in
O
(̃
αω−1). This leads to direct inversion algorithms in O

(̃
αω−1), that do not rely on a reduction to the

Toeplitz-like case.
The second part of the thesis deals with the implementation of arithmetic expressions. This topic

raises sereval issues like �nding the minimum number of operations, and maximizing the speed or the
accuracy when using some �nite-precision arithmetic. Making use of the inductive nature of arithmetic
expressions enables the design of algorithms that help to answer such questions. We thus present a set
of algorithms for generating evaluation schemes, counting them, and optimizing them according to one
or several criteria. These algorithms are part of a library that we have developed and used, among other
things, in order to decrease the running time of a code generator for a mathematical library, and to study
optimality issues about the evaluation of a small degree polynomial with scalar coe�cients at a matrix
point.

Keywords: structured linear algebra, matrix product, matrix inversion, arithmetic expressions, code

generation, combinatorics and optimization of evaluation schemes.

Résumé

Le développement de code e�cace en pratique pour e�ectuer un calcul donné est un problème di�cile.
Cette thèse présente deux situations où nous avons été confronté à ce problème.

La première partie de la thèse propose des améliorations au niveau algorithmique dans le cadre de
l'algèbre linéaire structurée. Nous montrons d'abord comment étendre un algorithme de Cardinal pour
l'inversion de matrices de type Cauchy a�n de traiter les autres structures classiques. Cette approche,
qui repose essentiellement sur des produits de type � matrice structurée × matrice �, conduit à une
accélération d'un facteur allant jusqu'à 7 en théorie et constaté en pratique. Ensuite, nous généralisons
des travaux sur les matrices de type Toeplitz a�n de montrer comment, pour les structures classiques,
calculer le produit d'une matrice structurée n × n et de rang de déplacement α par une matrice n × α
en O

(̃
αω−1n

)
. Cela conduit à des algorithmes en O

(̃
αω−1n

)
pour l'inversion de matrices structurées,

sans avoir à passer par des matrices de type Toeplitz.
La deuxième partie de la thèse traite de l'implantation d'expressions arithmétiques. Ce sujet soulève

de nombreuses questions comme le nombre d'opérations minimum, la vitesse, ou encore la précision des
calculs en arithmétique approchée. En exploitant la nature inductive des expressions arithmétiques, il
est possible de développer des algorithmes aidant à répondre à ces questions. Nous présentons ainsi
plusieurs algorithmes de génération de schémas d'évaluation, de comptage et d'optimisation selon un ou
plusieurs critères. Ces algorithmes ont été implanté dans une librairie qui a en autre été utilisée pour
accélérer un logiciel de génération de code pour une librairie mathématique, et pour étudier des questions
d'optimalité pour le problème de l'évaluation d'un polynôme à coe�cients scalaires de petit degré en une
matrice.

Mots-clés : algèbre linéaire structurée, produit de matrices, inversion de matrices, expressions arithmé-

tiques, génération de code, combinatoire et optimisation des schémas d'évaluation.

	I Improving computations with structured matrices
	Computing with structured matrices
	Preliminaries on dense matrices
	Notation
	Matrix multiplication
	Matrix inversion using block Gaussian elimination

	Special matrices and fast polynomial arithmetic
	Toeplitz matrices and polynomial multiplication
	Vandermonde matrices, multipoint evaluation and interpolation
	Other links between special matrices and polynomials

	Matrices with displacement structure
	Displacement operators and displacement rank
	Main examples

	Basic properties of structured matrices
	Recovering a structured matrix from its generators
	Basic computations with structured matrices
	Inversion of a structured matrix

	Contributions of this thesis
	Compression-free approach for structured matrix inversion
	Fast multiplication of a structured matrix by a matrix
	Software development

	Compression-free inversion of structured matrices
	Techniques to avoid compression stages
	Generation of the Schur complement without compression
	Cardinal's algorithm for Cauchy-like matrix inversion
	Formulas for the generator of a Cauchy-like matrix inverse

	Computations with specified generators
	Recursive factorization formula
	Reduction to M and NT lower triangular, and A strongly regular

	Compression-free structured matrix inversion
	Algorithms for lower triangular operator matrices M and NT
	Application to Cauchy-like matrices
	Application to Vandermonde-like matrices
	Extension to Hankel-like matrices

	Experimental results and concluding remarks
	Experimental results
	Concluding remarks on our new approach

	Fast multiplication of a structured matrix by a matrix
	Preliminaries
	Polynomial expressions for structured matrix reconstruction
	Polynomial expression for products with displacement matrices and their associated Krylov matrices
	Polynomial expression of AB for Sylvester's displacement

	Computing the row vector R= UT (VWT-5mumod5mu-P)
	Case where P = xn-
	Case where P = 1 i n(x-yi)

	Fast multiplication by a matrix and application to inversion
	Fast multiplication by a matrix
	Application to structured matrix inversion

	II Analyzing the implementations of arithmetic expressions
	On the evaluation of arithmetic expressions
	Issues underlying the evaluation of arithmetic expressions
	Issues in algebraic complexity
	Issues in combinatorics
	Issues in compilation and code generation
	Issues in numerical analysis

	Context and motivation
	Floating-point arithmetic support for integer processors
	Generating fast and accurate-enough code for polynomial evaluation
	Motivation

	Contributions of this thesis
	Algorithms introduced in the following chapters
	Other contributions

	How to model and analyze implementations of arithmetic expressions
	Modelling implementations with the concept of evaluation scheme
	Evaluation of arithmetic expressions
	Going from evaluation trees to evaluation schemes
	Decompositions and subexpressions for an arithmetic expression

	Algorithmic analysis of the set of evaluation schemes
	Requirements for a family of arithmetic expressions
	Examples of arithmetic expression families
	Practical considerations

	Exhaustive generation of the evaluation schemes
	How to model an optimization criterion
	Modelling an optimization criterion with a measure
	Examples of measures
	Generation under constraints

	On the combinatorics of evaluation schemes
	Counting evaluation schemes
	Application examples
	Retrieving three already known sequences
	On the number of schemes for evaluating polynomials
	Summary

	Asymptotics of counting sequences
	Preliminary remarks
	Asymptotic equivalence for sequences A001190 and A085748
	Lower and upper bounds on the number of evaluation schemes for polynomials

	Counting evaluation schemes with respect to a given measure
	A finer-grained adaptation of the generation algorithm
	Number of evaluation schemes for polynomials with respect to the number of multiplications
	Number of evaluation schemes for polynomials with respect to the latency
	Counting only nearly optimal schemes

	Optimization
	Adapting the generation algorithm for optimization
	Optimizing the latency on unbounded parallelism
	Generalization to recursively computable measures
	Some remarks about this approach and its limitation

	Global optimization
	Detour via the optimization of sets of expressions
	Algorithms GlobalOptimizer and GlobalOptimizerWithHint

	Multicriteria optimization
	How monocriterion optimization may help in a multicriteria context
	Search for a trade-off
	Application to polynomial evaluation

	Application examples
	New design for CGPE
	The initial design for the tool and its limitations
	Adding more constraints within the ``scheme set computation'' step
	Experimental results

	Evaluation of a polynomial at a matrix point
	Motivation and underlying issues
	Modelling with CGPE and experimental results

