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TITLE

Complementary roles of the rat prefrontal cortex and striatum in reward-based learning and shifting navigation
strategies.

ABSTRACT

Many mammals can behave according to different navigation behaviors, defined as « strategies » which,
although not systematically requiring conscious processes, depend on the specific task they are required to solve.
In certain cases, if a visual cue marks the goal location, the agent can rely on a simple stimulus-response (S-R)
strategy. In contrast, other tasks require the animal to be endowed with a representation of space that allows it to
locate itself and to locate goals in the environment. In order to efficiently navigate, the animal not only should be
able to learn and exhibit these types of strategies, but it should also be able to select which strategy is the most
appropriate to a given task conditions in order to shift from one strategy to the other to optimize outcomes.

The present work employs a multidisciplinary approach (e.g. behavior, neurophysiology, computational
neuroscience and autonomous robotics) to study the roles of the rat prefrontal cortex and striatum in learning and
shifting navigation strategies, and their possible application to robotics. It aims more particularly at investigating
the respective roles of the medial prefrontal cortex (mPFC) and of different parts of the striatum
(DLS :dorsolateral ; VS: ventral) in these processes, and the nature of their interactions.

The experimental work presented here consisted in :

(1) studying the role of the striatum in S-R learning by : (a) analyzing electrophysiological data recorded in
the VS of rats performing a reward-seeking task in a plus-maze; (b) designing an Actor-Critic model of S-R
learning where VS is the Critic which drives learning, whereas DLS is the Actor which memorizes S-R
associations. This model is applied to robotics simulations, and compared with existing models in a virtual plus-
maze;

(2) studying the role of mPFC in strategy shifting by means of electrophysiological recordings in the mPFC
of rat performing a task requiring such kind of shifts.

The principal results of this work suggest that :

(1) In the S-R framework: (a) as in primates, the rat VS shows a reward anticipation activity coherent with
the Actor-Critic theory; (b) these reward anticipations can be combined with self-organizing maps in an Actor-
Critic model that gives a better performance than previous models in a virtual plus-maze, and that shows
generalization abilities potentially applicable for the field of autonomous robotics;

(2) the rat mPFC seems to play a role when the animal's current strategy has poor reward yields, prompting
learning of another strategy. Moreover, population activity in mPFC changes rapidly in correspondence with shifts
in the animal’s task-solving strategy, possibly underlying the contribution of this brain area to flexible selection of
behavioral strategies.

In conclusion the results are discussed in the framework of previous behavioral, physiological and modeling
studies. We propose a new architecture of the rat prefronto-striatal system, where sub-territories of the striatum
learn concurrent navigation strategies, and where the medial prefrontal cortex helps decide at any given moment
which strategy dominates for behavior.

Keywords: prefrontal cortex; striatum; navigation strategies; learning; shifting; TD-learning; reward; Actor-Critic
model.
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TITRE

Roles complémentaires du cortex préfrontal et du striatum dans l'apprentissage et le changement de stratégies de
navigation basées sur la récompense chez le rat.

RESUME

Les mammiferes ont la capacité de suivre différents comportements de navigation, définis comme des
« stratégies » ne faisant pas forcément appel a des processus conscients, suivant la tiche spécifique qu'ils ont a résoudre.
Dans certains cas ol un indice visuel indique le but, ils peuvent suivre une simple stratégie stimulus-réponse (S-R). A
I'opposé, d'autres tiches nécessitent que I'animal mette en oeuvre une stratégie plus complexe basée sur I'élaboration
d'une certaine représentation de I'espace lui permettant de se localiser et de localiser le but dans 1'environnement. De
maniere a se comporter de facon efficace, les animaux doivent non seulement étre capables d'apprendre chacune de ces
stratégies, mais ils doivent aussi pouvoir passer d'une stratégie a l'autre lorsque les exigences de 1'environnement
changent.

La these présentée ici adopte une approche pluridisciplinaire — comportement, neurophysiologie, neurosciences
computationnelles et robotique autonome — de 1'étude du role du striatum et du cortex préfrontal dans l'apprentissage et
I'alternance de ces stratégies de navigation chez le rat, et leur application possible a la robotique. Elle vise notamment a
préciser les roles respectifs du cortex préfrontal médian (mPFC) et de différentes parties du striatum
(DLS :dorsolateral ; VS : ventral) dans I’ensemble de ces processus, ainsi que la nature de leurs interactions.

Le travail expérimental effectué a consisté a :

(1) étudier le rdle du striatum dans l'apprentissage S-R en : (a) analysant des données électrophysiologiques
enregistrées dans le VS chez le rat pendant une tiche de recherche de récompense dans un labyrinthe en croix ; (b)
élaborant un modele Actor-Critic de l'apprentissage S-R ou le VS est le Critic qui guide l'apprentissage, tandis que le
DLS est I'Actor qui mémorise les associations S-R. Ce modele est étendu a la simulation robotique et ses performances
sont comparées avec des modeles Actor-Critic existants dans un labyrinthe en croix virtuel ;

(2) Dans un deuxieme temps, le role du striatum dans 1'apprentissage de stratégies de type localisation étant
supposé connu, nous nous sommes focalisés sur 1'étude du rdle du mPFC dans l'alternance entre stratégies de
navigation, en effectuant des enregistrements électrophysiologiques dans le mPFC du rat lors d'une tache requiérant ce
type d'alternance.

Les principaux résultats de ce travail suggerent que :

(1) dans le cadre S-R : (a) comme chez le singe, le VS du rat élabore des anticipations de récompense cohérentes
avec la théorie Actor-Critic ; (b) ces anticipations de récompense peuvent €tre combinées avec des cartes auto-
organisatrices dans un modele Actor-Critic obtenant de meilleures performances que des modeles existants dans un
labyrinthe en croix virtuel, et disposant de capacités de généralisation intéressantes pour la robotique autonome ;

(2) le mPFC semble avoir un role important lorsque la performance de 1'animal est basse et qu'il faut apprendre
une nouvelle stratégie. D'autre part, 1'activité de population dans le mPFC change rapidement, en correspondance avec
les transitions de stratégies dans le comportement du rat, suggérant une contribution de cette partie du cerveau dans la
sélection flexible des stratégies comportementales.

Nous concluons ce manuscrit par une discussion de nos résultats dans le cadre de travaux précédents en
comportement, électrophysiologie et modélisation. Nous proposons une nouvelle architecture du systeme préfronto-
striatal chez le rat dans laquelle des sous-parties du striatum apprennent différentes stratégies de navigation, et ou le
cortex préfrontal médian décide a chaque instant quelle stratégie devra régir le comportement du rat.

Mots clés : Cortex préfrontal ; striatum ; stratégies de navigation ; apprentissage ; alternance ; TD-learning ;
récompense ; modele Actor-Critic.
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INTRODUCTION : A PLURIDISCIPLINARY APPROACH IN THE
FRAME OF COGNITIVE SCIENCES

This work is anchored in the field of Cognitive Science, a scientific domain defined by the meeting
of an ensemble of disciplines bringing very different tools, methods of investigation, and languages.
But they have in common the aim to better understand mechanisms of human, animal or artificial
brain and thought, and more generally of any cognitive system, i.e. any information processing
complex system able to acquire, to maintain and to transmit knowledges. These disciplines include
Neuroscience, Psychology, Philosophy, Artificial Intelligence, Linguistics, Anthropology and
others.

More practically, a cognitive science approach often takes the form of the interaction between some
of the above-mentioned disciplines to study one particular cognitive function such as perception,
learning, navigation, language, reasoning or even consciousness.

In the case of the PhD work presented here, the disciplines at stake include Neuroscience and
Artificial Intelligence, and our investigations focused particularly on methods such as Behavior
study, Neuropsychology, Neurophysiology, Computational Modeling and Autonomous Robotics to
address the issue of reward-based navigation and related learning processes.

Behavioral Neurophysiology Computational Modelling Autonomous Robotics

Figure 0.1: Scheme of the pluridisciplinary approach adopted in this work.

Why adopt a pluri-disciplinary approach ?

Studying brain functions such as navigation require complementary contributions from different
fields (figure 0.1).

® Behavior analyses help understand the perimeter and limits of capacities of a given species:
e.g., rodents can learn to reach a goal cued by a landmark by means of stimulus-response
associations (S-R learning ),

® Neuropsychology, including lesion studies or transient inactivation of a small part of the
brain, investigate the neural substrate of the function by identifying which brain areas are
necessary to subserve this function: e.g., lesions of certain parts of the striatum — one of the
subcortical nuclei called the basal ganglia —, impair S-R learning;

e Neurophysiology, using electrodes, brain imaging or other techniques, permits to investigate
how variables describing parts of the function are encoded and merged within a network of
neural units: e.g., in the previous S-R learning, dopaminergic neurons projecting to the
striatum have an enhanced activation when an unexpected reward occurs, and a weaker
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response when a predicted reward is omitted;

o Computational Modeling aims at designing computational models to formalize and
synthesize large quantities of empirical data related to the studied function, distilling them to
a few simple notions. Furthermore, it can help establishing quantitative relationships
between individual observations to generate predictions that can serve to validate current
and future experiments (Nature Neuroscience Editorial, 2005): e.g., a machine learning
algorithm called temporal-difference (TD) learning, based on the comparison of two
consecutive reward estimations for associating a sequence of actions leading to a given
reward, seems to appropriately reproduce the error signal concerning rewards observed in
dopaminergic neurons;

e Finally, Simulated Robotics can provide further insights on models of a given function by
studying their behavior while integrated with models of other brain functions, and while
embedded within a simulated or physical body interacting with a realistic and natural
environment. For example, integrating a model of reinforcement learning: e.g. integrating
the previous learning algorithm within a robotics platform, together with a model of vision
providing inputs, can allow a robot to reproduce a S-R reward-seeking task in a simulated
maze. However, the duration of the learning process and perceptual aliasing issues require
more information from the above disciplines.

Learning the methodologies and languages of several of these disciplines permits us to be at the
interface of them, and to contribute in rendering the interaction fertile. Training pursued during this
PhD training period aimed at learning to contribute to this interface.

What function is being studied here ?

The issue at stake here concerns navigation functions. Cognitive Neuroscience defines navigation as
a capacity of determining and performing a path from a current position towards a desired location
(Gallistel, 1990; Etienne and Jeffery, 2004). Navigation can be seen as a particular case of goal-
directed behavior, that is a class of behaviors where decision of the action to perform is based on
one’s current motivational state and goal (one can be hungry and look for food, or one may be
thirsty and look for water), one’s knowledge about the consequences of candidate actions and
whether or not this activity may bring one closer to attain the goal (Dickinson, 1980). However, as
we will see later in the manuscript, there exist some navigational situations where a goal is not
explicitly selected, and where navigation can be qualified as reactive or habitual (for example when
one follows the same daily pathway to go to work). So many further efforts are needed to better
characterize and understand rat behavior in the framework of restricted navigation paradigms.
Several successive attempts have been made to classify different navigation behaviors strategies
particularly in rodents and in biomimetic robots (Trullier et al., 1997; Redish, 1999; Franz and
Mallot, 2000; Arleo and Rondi-Reig, 2007). These classifications will be discussed in this
manuscript, and adapted to the work presented here.

Moreover, different brain pathways are called into action depending on the cues, signal processing
and actions engaged to reach a resource — in other words, on how different navigation strategies are
being performed. This is true in humans (Berthoz, 2003b; Berthoz et al., 2003; Hartley and Burgess,
2005) and in rodents (O'Keefe and Nadel, 1978; Redish, 1999). But the precise neural system that is
engaged in each navigation strategy is not yet completely elaborated, and the way the brain learns,
controls and coordinates these strategies is poorly understood. Notably, it is still an open question
whether different brain structures are responsible for learning navigation strategies or for shifting
from one to another, or whether the same structures can subserve these two functions (Devan and
White, 1999). These are the kind of questions that we will address in the neurophysiological studies
presented in this manuscript. More precisely, we will study the roles of two brain structures in the
rat, the ventral striatum and the medial prefrontal cortex, which are assumed to be involved in these
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learning and/or shifting processes.

Finally, an ensemble of bio-inspired models of navigation have been proposed to describe the
involvement of particular brain areas in different strategies during navigation tasks (Burgess et al.,
1994; Trullier and Meyer, 1997; Guazelli et al., 1998; Redish and Touretsky, 1998; Foster et al.,
2000; Gaussier et al., 2002; Arleo et al., 2004; Banquet et al., 2005; Hasselmo, 2005; see Girard,
2003 or Chavarriaga, 2005 for reviews). These models propose contradictory solutions to describe
the brain's involvement in navigation, and they can be improved both on the side of biological
resemblance and computational efficiency. Results that will be presented in this thesis do not
pretend to bring definitive solutions to the coordination of navigation strategies in these models.
However, the approach employed participates in a collaborative manner to such models, and some
Modelling work done during the PhD period contributes to the improvement of efficiency and
biological plausibility in these types of rodent brain-inspired navigation systems.

Why study navigation in the rat ?

First, the rat is a good experimental model because it has many navigation abilities found in humans
(Hartley and Burgess, 2005). They are able to learn different ways to reach a goal location in the
environment as will be detailed and discussed below. These will include recognition of a place
based on a configuration of objects, and building of a mental representation of the relative locations
within the environment, that is a « cognitive map » (Tolman, 1948) which allows animal to plan
detours and shortcuts. These diverse capacities give rise to discussion of navigation strategies in
rats, bearing in mind that this does not systematically require conscious processes.

Furthermore, studying the rat brain and behavior in the framework of navigation can give clues
towards the understanding of the same functions in humans. For instance, electrophysiological
techniques enabled researchers to find the bases of a cognitive map in rodents by finding neurons
called place cells that respond specifically when the animal occupies a particular location in space
(O'Keefe and Dostrovsky, 1971; Muller et al., 1999). These results served as a basis for the later
finding of such place cells in the human brain (Ekstrom et al., 2003).

Finally, the use of rats in laboratory experiments since 1856 has provided a huge database on their
brain and behavior (Grobéty, 1990) which requires synthesis. Integrative neuroscience projects
combining neurophysiology and robotics constitute a good tool to start this synthesis. One of these
projects is the European Integrated Project ICEA (Integrating Cognition Emotion and Autonomy)
(2006-2009), in the framework of which this PhD was pursued.

The ICEA project.

The ICEA project aims at designing an artificial rat, that is, a robot whose morphology, behavior
and control architecture are as much as possible inspired by its natural counterpart. This project
engages the animat approach, whose objective is to understand mechanisms of autonomy and
adaptation in animals, and to import these mechanisms in bioinspired artefacts called animats
(Meyer and Guillot, 1991; Wilson, 1991; Guillot and Meyer, 1994; Meyer, 1996; Ziemke, 2005,
2007), which in turn should be able to adapt to dynamic unpredictable environments. On the one
hand, such a project provides an integrative approach to bring further insights into brain
mechanisms, particularly by integrating models that have usually been tested separately. On the
other hand, it aims at providing new brain-inspired algorithms to improve autonomy and adaptivity
in autonomous robots, which is one of the potential fields of application of this kind of research.

Previous work on the topic topic started in 2002 as a national project called « Psikharpax » (Filliat
et al., 2004; Meyer et al., 2005), supported by the LIP6 and the CNRS/Robea interdisciplinary
program, and involving a collaboration between the AnimatLab team at the Laboratoire
d'Informatique de Paris 6 and the Laboratoire de Physiologie de la Perception et de 1'Action at the
College de France. A PhD thesis prepared by Benoit Girard within the framework of this project
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proposed a first architecture of brain-inspired action selection integrating several navigation
strategies, yet without reinforcement learning capabilities (Girard, 2003).

This project extended to the international level by involving eight European research teams and two
private companies. It took the name of ICEA and received the financial support of the European
Commission running through 2009. Within this new project, my PhD work particularly aims at
recording and analysing new neurophysiological data about brain learning mechanisms involved in
navigation behavior (experimental designs, animal training and data analysis at the LPPA), and at
improving the existing architecture of action selection and navigation based on these results (at the
AnimatLab/LIP6/ISIR).

What are the possible applications ?

On the one hand, such integrative neuroscience researches can contribute to our comprehension of
human brain mechanisms in navigation: How do we solve navigation tasks ? What makes us feel
disoriented ? How do we learn to adapt to novel environments ?

On the other hand, such researches can contribute to the field of autonomous robots and agents, by
bringing complementary contributions to classical Artificial Intelligence approaches (Brooks, 1991,
1998; Guillot and Meyer, 2003). Until today, the nature has produced the best autonomous agents in
terms of adaptation, flexibility, precision, robustness to noise or to damage to part of the system,
energy saving and generalization to novel situations (Guillot and Meyer, 2001; Webb and Consi,
2001; Doya, 2001). So it is worthwhile taking inspiration from the natural brain to design
autonomous artefacts. In the future, autonomous robots could be useful to perform tasks dangerous
for humans, to explore space or the submarine world. They can also serve as interactive toys or for
helping people in everyday tasks (Bidaud, 2000; Arleo, 2005; Meyer and Guillot, In press).

Roadmap of this manuscript

This thesis dissertation presents our contributions to the understanding of the rat striatum and
medial prefrontal cortex (mPFC) in navigation strategies learning and shifting. For this purpose,
experiments were designed, where:

* rats had to learn different reward-seeking tasks and to encode various sensorimotor
associations to achieve them — i.e. to perform different strategies for navigating towards goals: go
towards a light, turn left, reach a particular position in space...

* rats had to detect changes in the task rule imposed without any explicit signal. This
requires to recall which previously learned strategy is the best for the new situation, or, if none is
appropriate, to proceed with a new learning process.

More precisely, investigations in these experiments consisted in:
(1) studying the role of the striatum in Stimulus-Response (S-R) learning in a plus-maze by:
(a) analyzing electrophysiological data recorded in the Ventral Striatum (VS) of rats
performing a reward-seeking task;
(b) designing a bioinspired computational model of S-R learning where VS drives
learning, whereas the DorsoLateral Striatum (DLS) memorizes S-R associations. This model
1s applied to robotics simulations, and compared with existing models in a virtual plus-maze;
(2) studying the role of mPFC in strategy shifting by means of electrophysiological recordings
in the mPFC of rats performing a Y-maze task requiring such kind of shifts.

The manuscript is organized in four chapters:

(i) the state of the art introducing navigation strategies and their selection in rodents: behavioral
evidence, the neural substrates for their support, and the corresponding bioinspired computational

Page : 14/ 196



models;

(i1) a presentation of our work for studying the role of the striatum in learning navigation strategies,
using electrophysiological, computational modeling and simulated robotics techniques;

(iii) a presentation of our work for studying the role of the medial prefrontal cortex in navigation
strategies shifting, using electrophysiological and behavior modeling techniques;

(iv) a discussion synthesizing these results into a framework integrating the scientific background,
trying to sketch an integrated architecture involving both the striatum and the mPFC in the
coordination of navigation strategies.

Each chapter begins with a short introduction that outlines the content of the chapter, and provides a
self-contained description of the theoretical and experimental concepts related to its main topic.
Some of them include full papers already published or submitted.
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CHAPTER 1 : BEHAVIORAL, NEURAL AND COMPUTATIONAL
MODELS OF NAVIGATION STRATEGIES IN RODENTS

In this chapter, we review the main scientific background concerning the possible involvements of
the medial prefrontal cortex (mPFC) and the striatum in reward-based learning and shifting
navigation strategies. In the first section, we will present the behavioral evidence for the existence of
different navigation strategies in the rat and the latter's capacity of shifting between them. Then, we
will present the neuropsychological and neurophysiological literature concerning the involvement of
the mPFC and striatum in these strategies. Finally, we will present recent contributions from
computational modeling for the understanding of the role of the prefronto-striatal system in learning
and shifting strategies.

To do so, we first have to provide a few points of emphasis:

1) Within the framework of navigation, here we are more interested by action selection mechanisms,
and the learning mechanisms used to adapt action selection, rather than by the mechanisms of
elaboration of spatial information employed in navigation — mainly because the mPFC and striatum
may play a critical role in the former, while the hippocampal system is more implicated in the latter
as we will see in the neurophysiological section.

2) As we will try to stress in the first section, while existing classifications of navigation strategies
in the rat rely upon distinctions of the different types of information that are used in each strategy
(simple sensory cues, spatial maps of the environment, etc...), they have some discrepancies
concerning the types of action selection mechanisms at stake, and this bears upon the behavioral
flexibility which these mechanisms manifest. We will see that certain strategies which have been
categorized separately could indeed rely on similar action selection mechanisms, while certain
strategies regrouped in a single category appear to be distinguishable by different action selection
mechanisms.

3) Moreover, whereas part of the neurobiological data on the mPFC and striatum that we will review
comes from the navigation community, another part comes from the instrumental conditioning
community, which has its own classification of behavioral strategies. Indeed, there are similarities
between both kinds of strategies. They distinguish so-called « goal-directed behaviors » which are
flexible and rely on the use of a representation of the possible consequences of actions — e.g.
Action-Outcome (A-O) associations — and « habits » which are slow to acquire and are assumed not
to rely on A-O associations (Dickinson, 1980; Dickinson and Balleine, 1994).

4) Finally, some computational work modelling the roles of the mPFC and striatum in action
selection and reward-based learning is grounded on the Reinforcement Learning framework (Sutton
and Barto, 1998), and proposes a dichotomy of learning algorithms which has been recently shown
to parallel the goal-directed behaviors | habits dichotomy made in the instrumental conditioning
community (Daw et al., 2005, 2006; Samejima and Doya, 2007). Indeed, they distinguish model-
based reinforcement learning, which relies on a model of the transition function providing the
information concerning the consequences of actions; and model-free (or direct) reinforcement
learning where this transition function is neither learned nor used (Sutton, 1990; Sutton et al., 1992;
see Kaelbling et al., 1996; Atkeson and Santamaria, 1997 for reviews).

As a consequence, in order to integrate the different scientific backgrounds addressed in this thesis,
we will start by reviewing existing classifications of navigation strategies, trying to reconcile them
with the model-based | model-free dichotomy. A few precautions before starting: This attempt will
be simplified for the understanding of this thesis, and would require more work before possibly
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bringing some contribution to the navigation community. Moreover, the word « model » will be
used as a terminology, and does not mean that rodents necessarily have a « model » in their brain.
Finally, the strategies that we will consider as « model-free » just assume that their action selection
mechanism is model-free, while not addressing the way they elaborate spatial representations.

1. Behavioral evidence for navigation strategies in the rat

In the following sections, we will first list the main categories employed in usual classifications of
navigation strategies in rodents (section 1.1). Descriptions of each strategy constituting these
categories will be accompanied with explanations of possible ambiguities on terminology and
classification concerning action selection mechanisms. Then, we will try to bring some elements of
clarification from the field of instrumental conditioning, and propose a synthetic classification that
will help explain the motivation for the navigation strategies in the current experimental designs
(section 1.2). The section will finish by a presentation of the different modes of alternation (or
shifts) between strategies a rat can perform, accompanied with behavioral evidence for such shifts
(section 1.3).

1.1 Classifications of navigation strategies

Evidence for different navigation strategies in the rat comes from behavioral studies showing that
they are able to rely on different information to localize themselves in the environment, and to use
this information in different manners to reach a certain location in space (Krech, 1932; Restle, 1957;
O'Keefe and Nadel, 1978).

Different classifications of navigation strategies have been proposed (O'Keefe and Nadel, 1978;
Gallistel, 1990; Trullier et al., 1997; Redish, 1999; Franz and Mallot, 2000; Arleo and Rondi-Reig,
In press). These classifications usually point out a series of criteria, some of them overlapping, to
differentiate navigation strategies:

o the type of information required (sensory, proprioceptive, internal, ...). A distinction is
usually made between idiothetic cues (internal information such as vestibular,
proprioceptive, kinesthesic cues or efferent copies of motor commands) versus allothetic
cues (external information provided by the environment such as visual, auditory, olfactive
cues). In addition, some authors refer to the dimension of the stimulus that triggers a certain
strategy, discriminating different sensorial modalities of stimuli or configuration of stimuli
such as places in the environment — i.e. precise localizations encoded by the animal
independently from its body orientation (Birrell and Brown, 2000; Colacicco et al., 2002;
Raggozino et al., 2003);

o the reference frame: egocentric, centered on the subject; versus allocentric, centered on
point(s) in the environment (single points, places, cue configurations, or place plus other
contextual cues).

e the type of memory at stake (procedural memory, that is, memory of how to do; versus
declarative memory, that is, memory of what to do), which is tightly related to:

* the kind of action selection that is involved, which has an impact on learning
mechanisms. One of the main distinctions is between reactive choices of a behavioral
response versus planned responses. The precise difference will be explained later.

* the time necessary to acquire each strategy. Some require a gradual or incremental
learning process while others support a rapid one-trial learning process, the former being
assumed to be less flexible than the latter (Sherry and Schacter, 1987).
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Figure 1.1.1: Synthesis of classical taxonomies of navigation strategies. Modified from Arleo and
Rondi-Reig (In Press). As explained in the text, strategies can be regrouped in two main
categories: egocentric Map-free (Praxic and Cue-guided), and allocentric Map-based or locale
(Place recognition-triggered response, topological map and metric map). We will also refer to the
versus Map-based dichotomy. Whether or not the place recognition-triggered strategy should be
considered as map-free — acquired though a procedural process based on Stimulus-Response (S-
R) associations — or map-based — acquired by a declarative process based on Stimulus-Response-
Stimulus (S-R-S) associations — is one of the main ambiguities within the existing classifications.

map-free strategies ! map-based or locale strategies

1
1
|
1
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1
1
1
1

: Cue-guided strategies

1

These criteria lead to the following simplified overview of existing categories of strategies — which
will be more precisely defined below (figure 1.1.1):

L.

Cue-guided strategies, where a reactive action selection process depends on an external
stimulus such as a visual cue. This category includes rarget-approaching, guidance, taxon
navigation, and can be further elaborated in the form of a sequence or chaining of Stimulus-
Response (S-R) associations when new cues result from the previous displacement.

Praxic strategies, where the animal executes a fixed motor program (example: « go straight
for a certain distance, then turn right... »). These strategies can also be viewed as S-R
associations.

Map-based or locale strategies, which rely on a spatial localization process, and can be
either reactive behaviors depending on place recognition (e.g. place recognition-triggered
response), or can imply a topological or metric map of the environment — the term map
being defined by Gallistel (1990) as « a record in the central nervous system of macroscopic
geometric relations among surfaces in the environment used to plan movements through the
environment ».

The next sections provide a more detailed description at the behavioral level of each strategy.

1.2 Cue-guided strategies

Within the framework of the behaviorist theory, the animal's behavior is considered as limited to
stereotyped Stimulus-Response (S-R) associations (Thorndike, 1911; Watson, 1913). In the case of
navigation, this can be the case when the goal place is visible, or when it is signalled by a single
prominent cue, sometimes named a beacon in the literature (Leonard and McNaughton, 1990). In
such a case, the Stimulus-Response type of association performed by the animal is referred to as
target-approaching or beacon-approaching (Trullier, 1998). Some authors also refer to it as taxon
navigation which consists in identifying a cue and moving towards it (Morris, 1981; Redish, 1999).
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Biegler and Morris (1993) showed that rats are able to perform this kind of S-R strategy by learning
to discriminate between relevant and irrelevant landmarks in a given environment. They further
showed that this type of discrimination required landmark stability, stressing the lack of flexibility
of S-R strategies.

Maintaining « a certain egocentric relationship [with respect to a] particular landmark or object »
is what O'Keefe and Nadel (1978) call guidance, sometimes named view-based navigation (Steck
and Mallot, 2000). It is a more elaborate situation of S-R association that is considered when the
goal is neither visible nor signalled by a beacon. In this case, the animal can use the spatial
distribution of landmarks, that is, a configuration of landmarks, relatively to its proper orientation.
At the goal, the animal memorizes the spatial relationship between itself and the landmark
configuration. Later on, it will attempt to return so as to replicate this view.

As Trullier and colleagues (1997) stressed, « the memorization of a specific spatial relationship
with respect to a landmark-configuration does not necessarily require high-level information such
as the identities of landmarks, their positions or the distances to them. ». In other words, this
navigation strategy does not require the processing of an internal spatial representation, nor the use
of declarative memory. Indeed, the animal can memorize the raw sensory information associated to
the landmark distribution, and later on, can select an appropriate behavior in order to minimize the
mismatch between the perceived configuration of landmark and the memorized one.

Target-approach, beacon approach, taxon navigation and guidance can be considered as Cue-based
strategies. They are considered by authors as S-R associations since the selected response is not
based on a representation of the consequence of the action, but rather triggered by a stimulus (Yin
and Knowlton, 2006). They are generally described as slow to acquire, that 1s, rats need several trials
before getting a good performance in a task that requires such strategies (O'Keefe and Nadel, 1978;
Packard and McGaugh, 1992; Redish, 1999; Yin and Knowlton, 2006).

1.3 Praxic or response strategies

The praxic strategy refers to the case where the animal always executes the same chaining of
movements. Some authors refer to this strategy as a response behavior (Ragozzino et al., 2002; Yin
and Knowlton, 2006). For instance, as shown by Packard and McGaugh (1996), animals perform a
praxic strategy in a plus-maze by consistently executing the same body turn (i.e. 90° left) at the
center of the maze (figure 1.1.2). This type of response is adapted when the spatial relationship
between the departure point and the goal is constant'. As a consequence, the praxic strategy is not
considered as a flexible strategy but rather exemplifies automatic or habitual behaviors (Chang and
Gold, 2003). While some authors assume that the praxic strategy requires many trials for its
acquisition (Honzik, 1936: O'Keefe and Nadel, 1978; Packard and McGaugh, 1996; Redish, 1999),
several authors have reported rapidly learned praxic strategies (Pych et al., 2005; see Willingham,
1998; Hartley and Burgess, 2005 for reviews including rodent data).

1 However, Wiener and Schenk (2005) have shown that, if the departure points are few, rats are able to memorize the
direction and distance of the goal from each of these points.
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Training Probe test

Goal Praxic Place

Start

Figure 1.1.2: Plus-maze setup representing a classical test to discriminate a praxic strategy from
a locale strategy (Tolman, 1948; Packard and McGaugh, 1996; Chang and Gold, 2003). Adapted
from Yin and Knowlton (2006). Left: Training setup. Both the starting position (south) and the
baited arm (east) remain fixed. Right: Testing setup. During the training phase, access to the arm
opposite to the start location remains blocked (white arm) to form a T-maze. Animals are trained
to enter a consistently baited arm — here, the right arm. Then the configuration is rotated by 180°,
the starting point is changed to the north arm and the access to the south arm is now blocked.
Animals expressing a praxic strategy perform the same body turn than during training at the
intersection of the maze: a right turn which results in entering the western arm. In contrast,
animals entering the east arm are considered to have memorized the east location in an allocentric
representation. As a consequence, they are considered to be performing a place response as
described in paragraph 1.4.

1.4 Map-based or locale strategies

Navigation strategies requiring a localization process can be regrouped into a single category named
map-based strategies (Arleo and Rondi-Reig, in press) or locale strategies (Redish, 1999;
Chavarriaga, 2005). They rely on the use of place information, distinguishable from map-free
information in the plus maze mentioned above (figure 1.1.2). They are generally assumed to be
faster acquired than cue-based or praxic strategies (O'Keefe and Nadel, 1978; Packard and
McGaugh, 1992, 1996; Redish, 1999; Yin and Knowlton, 2006) — when a quick exploration of the
environment enables animals to build a spatial representation based on latent learning (Blodget,
1929). However, it is important to expose the different strategies constituting this category since
they are grounded on different computational principles, are characterized with different levels of
complexity and flexibility, and are supposed to differentially involve the prefronto-striatal system, as
we will see later on.

Moreover, there is an ambiguity between different usages of the term locale. Some authors employ
this term to refer to the whole category of map-based strategies (O'Keefe, 1990; Prescott, 1996;
Redish, 1999), whereas more and more computational models consider that locale navigation refers
to a subset where the decision of the behavioral response to perform is based on local spatial
information (e.g. a place recognition triggered response, Trullier and Meyer, 1997; Arleo and
Gerstner, 2000).

Thus we will briefly present each of the so-called map-based strategies in this section.
1.4.1 The place recognition-triggered response strategy

The place recognition-triggered response strategy is the process of choosing an action based on the
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recognition of places in the environment. Instead of guidance (view-based), place recognition is
independent from the observer's orientation and viewing direction (Poucet, 1993). This recognition
can be based on allothetic cues — external information provided by the environment such as visual,
auditory, olfactive or haptic cues — or on idiothetic cues — the animal's internal information such as
vestibular, proprioceptive, kinesthesic cues or efferent copies that enable an animal to perform path
integration.

Experiments in the Morris water maze have demonstrated rodents' ability to localize themselves
based on allothetic information (Morris, 1981). The maze, a circular pool filled with opaque water
(figure 1.1.3), is situated in a room with several extramaze landmarks. To escape, the animal has to
find a hidden platform immersed in the water. Animals can learn to take a direct path towards the
hidden platform location even when starting from several random departure points, preventing the
use of a unique trajectory that could have been memorized based on self-body movements
(idiothetic information). The animal is rather presumed to exploit invariant information in the
environment as a compass — preferentially using distal rather than proximal cues.

mu re
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'i-.-—’

Hidden platform

*
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Figure 1.1.3: The Morris water maze (Morris, 1981). Adapted from Burguiere (2006). In this
device, a circular pool is filled of opaque water. Animals have to find a particular location in
space, materialized by a platform which enables them to rest without needing to swim. Left: Place
strategy: The platform is emerged under the water. Animals have to find it using extramaze cues
(not represented) while starting from different locations from trial to trial. Right: Taxon strategy:
The platform is signalled by a visible cue (beacon). Animals have to reach it without being
provided with extramaze cues.

Because of its allocentric reference frame, and because it is also considered as more flexible than
view-based navigation — probably due to the sparse and coarse information provided by the
decomposition of the environment in several places, (Arleo, 2000) —, this strategy is considered by
some authors as belonging to the map-based category (O'Keefe and Nadel, 1978; Redish, 1999;
Arleo and Rondi-Reig, In press; Yin and Knowlton, 2006). However, some other authors consider it
as map-free, since it does not require the geometrical relationships between memorized locations in
the environment that characterize a map (Trullier et al., 1997; Franz and Mallot, 2000).
Consequently, learning processes involved are assumed to be different: Stimulus-Stimulus
associations (and particularly, Place-Place associations) for map-based and S-R associations for
map-free (Balkenius, 1994; Trullier, 1998), and thus respectively fast and slow to acquire. So this
strategy appears more difficult to classify than others, and Trullier et al. (1997) « question the
necessity [for distinguishing a] difference between guidance and place recognition-triggered
response ».
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1.4.2 The route strategy

O'Keefe and Nadel (1978) call route strategy a chain of Stimulus-Response-Stimulus associations.
Some authors refer to the general case of chaining sequences of visually-guided, praxic or place
recognition-triggered substrategies (Redish, 1999; Arleo and Rondi-Reig, In press). However, this
strategy is classified within the map-based category when it is applied to the case where the
considered stimuli represent places, making some author view the route strategy as a combination
or alternation between place recognition-triggered and guidance strategies (Trullier et al., 1997;
Wiener and Schenk, 2005). Redish (1999) mainly applies the route strategy to cases requiring a
localization process, and defines it as « an association between positions and vectors (directions of
intended motion) ».

Figure 1.1.4 describes the difference between the route strategy and topological mapping with a
schema. While performing a route strategy from a stimulus S1 to another stimulus S2, an animal
starts by selecting a response associated to S1. This response is also related to the stimulus S2 that
the animal is supposed to reach. As a consequence, the animal can adapt its trajectory before
reaching S2, thanks to the guidance strategy applied to the approach of S2. However, this process
does not provide a bidirectional link between stimuli S1 and S2, and routes S1-R1-S2 and S2-R2-S1
are considered as different and independent. Moreover, this strategy does not take into account the
fact that two different routes may pass through the same places, and thus does not imply a
topological representation.

(a) collection of routes to goals G| and G2 (b) topological representation derived from the routes

O place

BN direction of movement to reach the corresponding goal
~._direction of travel between two "adjacent” places

<, new obstacle

Figure 1.1.4: Comparison of route and topological map-based strategies. Adapted from Trullier
et al., 1997. (a) With the place recognition-triggered response strategy there can be an ensemble
of intersecting routes. The animal is able to go from S1 to G1, from S2 to G2, and from S3 to GI1.
However, if there is a new obstacle on the way from S1 to G1, as on this figure, the animal is lost
because the route from S1 to G1 is unique. (b) In contrast, if the animal merges its representations
of routes into a topological representation, then it can go back to place A, take the sub-route
between places A and B, and take the sub-route from place B to goal G1. The resulting path is the
concatenation of three sub-sequences, derived from three different routes.

1.4.3 Topological mapping strategy

A topological representation can be expressed in mathematical terms as a graph, where nodes
represent places and edges represent adjacency, or direct connectivity. Then, two nodes are linked if
there is a previously visited direct path which leads from one corresponding place to the other
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corresponding place, without going through a third intermediate known place.

A topological representation of the environment can be obtained during exploration by merging
place-action-place associations derived from a collection of routes. Such a topological map provides
a goal-independent and structured representation of places. Because this process provides a
bidirectional link between places, it is more flexible than the route strategy (figure 1.1.4): when an
obstacle is encountered, alternative intersecting paths can be taken.

path 3

Start path 1 p2 Goal

|- -

--- A & B: barriers

Figure 1.1.5: Tolman and Honzik's detour problem. Adapted from Tolman, 1948. After
exploration of the entire maze, the path usually taken by the rats is path 1, but when the barrier A
is put in place, the rat shifts its choice to path 2, shorter than path 3. If barrier B is put in place
instead of barrier A while the rat is performing path 1, then the rat reacts by choosing path 3,
without trying path 2.

Behavioral experiments have provided evidence that a strategy based on a topological representation
of the environment can be employed by rodents (Tolman, 1948; Thinus-Blanc, 1996; Poucet and
Hermann, 2001) or cats (Poucet, 1984). Tolman and Honzik's detour problem is such a case (figure
1.1.5). In this experiment, a rat is required to select one of three paths leading to a reward. It first
learns to use the shortest one, that is, path 1. When path 1 is blocked with a barrier, after several
trials, the rat chooses path 2, which is the second shortest path. However, if a barrier is put at the
end of path 1 while the rat is performing this path (barrier B on figure 1.1.5), then the rat shifts its
choice to path 3 without trying path 2. The authors' interpretation was that the rat has the « insight »
that both path 1 and path 2 are blocked by barrier B. Such an « insight » does not necessarily require
a metric representation of the environment because it can be solved by simply suppressing the link
between places pl and p2 in a topological representation of the experimental setup. Moreover,
taking the shortest available path (for instance taking path 2 when path 1 is obstructed), can be
explained using a topological map without metric representation. Indeed, the number of consecutive
places or nodes required to encode path 2 within the map is supposed to be smaller than for path 3.

1.4.3 Strategies based on a metric map

As explained in the previous paragraph, in some cases, a topological map can provide some distance
information without using any metric representation. However, this is possible only for known paths
and cannot be applied for planning detours and shortcuts in paths never explored before.

Figure 1.1.6 illustrates two situations that cannot be solved with a topological map. In the first
example, the animal starts from position A and finds an obstacle B on the path it already
experienced to reach E. In such a case, the animal has to make a detour through an unknown region.
Choosing the shortest inexperienced detour requires an estimation of the size of the unknown region
within an incomplete map of the environment. In the second example, the animal is traversing a
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familiar path from A to C. It is assumed that C cannot be perceived from B because there is a forest
between them. Knowing that a path goes round the forest, the animal can deduce the direction of a
shortcut though the forest towards point C.

Several experiments report the ability of animals to rely on metric information for navigation, such
as execution of paths in the dark (Collett et al., 1986), shortcuts (Gallistel, 1990; Roberts et al.,
2007), or the planning of paths from unexplored areas in a Morris water maze (Matthews et al.,
1999). However, it is not always clear whether rodents perform metric navigation using a
computational procedure that subsumes topological mapping as proposed by (Trullier et al., 1997),
which view has been criticized by some authors on the ground that animals can solve certain tasks
requiring limited metric information by simply using a simple praxic strategy (Foster et al., 2000).

detour

new wall D
s | C

A

A

region never traversed before

(a) (b)

known path
but too long

Figure 1.1.6: Adapted from Trullier et al., 1997. (a): Metric detour and (b): Metric shortcut
behaviors provided by a strategy based on a metric map. In both cases, the animal takes a path
never experienced before, without being able to use familiar landmarks (the new wall is assumed
to be tall and the forest is assumed to be dense).

1.5 Discussion of the classifications

As we tried to point out, there are some inconsistencies between existing classifications of
navigation strategies. These reveal some ambiguities in the terminology adopted and on the
distinctions between categories.

Indeed, it appears to some authors that these classifications lend too much importance to the issue
of involvement of a spatial localization process for the categorization of navigation strategies
(Trullier et al., 1997; Sutherland and Hamilton, 2004). Flexible, rapidly acquired, declarative and, as
we will see later, hippocampus-dependent strategies, have often been assimilated with spatial
(allocentric), map-based strategies. In constrast, inflexible, slowly acquired, procedural and, as we
will see later, striatum-dependent strategies like the praxic and cue-guided strategies, have been
regrouped in map-free Stimulus-Response strategies.

However, as we have seen above, on the one hand, certain strategies relying on allocentric
representations of space such as the place recognition-triggered response do not require a map and
are inflexible, while on the other hand, there are cases where a praxic or a cue-guided strategy can
be rapidly acquired. The latter case has been extensively described in the field of instrumental
conditioning, where an animal introduced in a novel environment, can quickly learn to associate
responses to external cues (such as a light or a tone), and can remain in a flexible behavior — called
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goal-directed, in opposition to habitual behavior — until extensive training has been undertaken
(Dickinson and Balleine, 1994; see Cardinal et al., 2002; Yin and Knowlton, 2006 for reviews). This
type of flexible cue-guided behaviors have been recently described as relying on a world model, not
necessarily a map since this term has an allocentric connotation, but still using a structured
representation of transitions between task states (Sutton and Barto, 1998; Doya, 1999; Kawato,
1999; Daw et al., 2005; Samejima and Doya, 2007). This model of the environment can be viewed
as echoing the term “cognitive graph” (Muller et al., 1991; Trullier, 1998). The latter was proposed
to counterbalance the “cognitive map” term by getting rid of the assumption of existence of a neural
metric representation, which too strongly resembles the “map in the head” assumption deplored by
some authors (Kuipers, 1982).

Then a distinction between model-free and model-based behavioral strategies appears to be
interesting for disambiguating certain navigation strategies. Thus, in the next section, we will first
explain the difference between model-based and model-free behaviors (or strategies), using an
example taken from an instrumental conditioning task. Then we will attempt to characterize the
navigation strategies described above within this framework. Yet, there was not have enough time in
the presently described work to extensively discuss the possible contribution of this attempt. We
will rather propose an attempt to reconcile some of the inconsistencies described above, while over-
simplifying other aspects of these classifications. Further investigations will be indeed required to
evaluate this proposition (for example by proposing a behavioral protocol where the model-
free/model-based dichotomy might be more appropriate than previous navigation strategies to
describe the mode of acquisition of animals' behaviors). However, as stated at the beginning of this
chapter, it is still a proposition which, in the framework of this thesis, will help us make the link
between navigation strategies, neurophysiological data and computational models.

1.6 Model-based versus model-free strategies

These terms, coming from the Computational Modeling community, refers to models implementing
learning processes that employ a world model, that is, a representation of the transition from one
state to another that results from a behavioral response (Sutton and Barto, 1998; Doya, 1999;
Kawato, 1999; Daw et al., 2005, 2006; Doya, 2007). In other words, this transition information
provides Action-Outcome (A-O) associations (Dickinson and Balleine, 1994). This representation of
the estimated consequences of actions can be used in the action selection process, making it more
flexible than model-free behaviors. This world model can either implement allocentric positions
within the environment or, more generally, states of a given task.

The model-based versus model-free dichotomy has recently been applied successfully to replicating
rats' ability to alternate between a flexible visually-guided behavior and a reactive visually-guided
behavior. In the field of instrumental conditioning, each of them refer to distinct learning processes,
named goal-directed learning and habit learning (Dickinson, 1980; Dayan and Balleine, 2002; Daw
et al., 2005, 2006). According to Colwill and Rescorla (1986) and Dickinson (1980), the former is
controlled by the anticipation of the outcome and its performance is flexible since it is sensitive to
reward devaluation, whereas the latter is controlled by antecedent stimuli, its performance being
inflexible because insensitive to the manipulation of the outcome.
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Figure 1.1.7: Example of Model-free / Model-based system. Adapted from Daw et al. (2005). a:
model-based controller, b: model-free controller. The former has a representation of expected
consequences of actions, and use it for action selection, whereas the latter has not. In the model-
based controller, SO and S/ are two different states that do however correspond to a unique
location in the environment.

In the task employed by Daw et al. (2005), rats have to learn to press a lever in response to an
external cue, and then to enter a magazine in order to get a food reward. Figure 1.1.7 describes the
task in a schema where different states (e.g. possible situations within the task) are represented by
leaves in a tree-graph, whereas arrows represent possible transitions from one state to another. After
training, when rats have learned the task, a reinforcer devaluation is imposed to rats. This can be
done, for example, by feeding the animal until satiation, or by pairing the food reward with illness to
induce aversion (see Dickinson and Balleine, 2002 for a review). After that, animals are tested to see
whether they will continue to perform the actions previously associated with the newly devalued
outcome. Strikingly, while after moderate pretraining rats stop performing the task that leads to food
reward, after extensive pretraining rats persist in pressing the lever even if the outcome had been
devaluated. In the former case, the animal's behavioral is said to be sensitive to outcome devaluation
(e.g. goal-directed), whereas in the latter case, the extensive training has built a habit, insensitive to
devaluation.

Daw et al. (2005) could reproduce these two situations by implementing two different models: one
using a representation of the consequences of actions — a world model or tree; the other learning
simple Stimulus-Response associations (figure 1.1.7). The former is called a model-based controller,
requires more computations and memory — for A-O associations — is quickly learned and remains
flexible in order to adapt to new environments or to changing tasks. The latter is called a model-free
controller, is simpler and less computationally expensive. Because of the absence of representation
of A-O associations, it is slower to acquire — hence requiring extensive training —, and is less
flexible to task changes. The precise computational reason for this will be explained in the modeling
section at the end of this chapter.

The model-free/model-based dichotomy strongly resembles the one previously defined by authors
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between flexible map-based strategies and automatic map-free ones — such as cue-based and praxic
strategies. However, in this dichotomy, the main difference between behavioral strategies does not
rely on spatial versus non spatial information, but rather on the type of learned associations,
respectively A-O and S-R, which result in providing different degrees of flexibility. Indeed, Daw et
al. (2005)'s model-based controller, the world model, contains un-necessarily allocentric states, as
shown on figure 1.1.7. In their graph, states SO and S1 correspond to two different states within the
task — before and after lever-pressing — but to the same position in space.

Thus, A-O associations can also be learned within an egocentric framework. This gives an argument
for the existence of rapid, flexible and “declarative” (because relying on A-O associations) cue-
guided or praxic strategies, whose action selection mechanism corresponds to a similar graph than
the one displayed on figure 1.1.7 (left part), representing a subject's estimated states in prediction of
the performance of a sequence of egocentric movements. This assumption is indeed to be checked
with experiments in which an outcome devaluation procedure would be imposed to animals.

Symmetrically, the previously mentioned place recognition-triggered strategy, which used to be
included in map-based strategies but is considered by some authors as relying on S-R associations
only, would have the same action selection mechanisms as the model-free part of Daw et al. (2005)'s
system (right part of figure 1.1.7).

Extending this dichotomy to navigation, we will consider two main categories: model-based versus
model-free strategies. Within these two main groups, strategy differentiation relies on the
dimension, defined by their reference frame and modality of processed stimuli:

« egocentric reference frame, relying on idiothetic (praxic), or allothetic (cue-guided) stimuli;
- allocentric reference frame, relying idiothetic and/or allothetic stimuli (place).
Thus we will adopt the following notation for the rest of the manuscript:

Model-free strategies: Praxic model-free (idiothetic egocentric S-R), cue-guided model-free
(allothetic egocentric S-R), and place model-free (place allocentric S-R) respectively correspond to
praxic, cue-guided and place recognition-triggered (PTR) strategies in the previous classification.

As mentioned in the introduction of this chapter, assuming that the place recognition-triggered
strategy is « model-free » does not mean that no model is used at the level of place recognition
processes. It only considers that the action selection process is reactive and relies on S-R
associations.

Model-based strategies: Praxic model-based strategy (idiothetic egocentric A-O), cue-guided
model-based strategy (allothetic egocentric A-O), together with strategies based on a spatial
topological map that will be noted place model-based strategies (place allocentric A-O).

Figure 1.1.8 summarizes the resulting taxonomy.
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Figure 1.1.8: Model-free | Model-based taxonomy applied to navigation strategies. Inside the two
main groups, strategy differentiation relies on the dimension, referring to the sensory modality of
processed stimuli (idiothetic, allothetic and both: place) and on the reference frame (egocentric
versus allocentric). MB: model-based; Topo: Topological. Model-free are considered as slower to
acquire and less flexible than model-based strategies. PTR: Place recognition-triggered response.

It would be interesting to study if this way to classify navigation strategies, despite being very
simplistic and schematic, can help explain some contradictory results found in the literature. For
instance, some authors have reported a more rapid acquisition of the praxic strategy than the locale
strategy (Pych et al., 2005). These results appear to be in contradiction with previous observations
that praxic strategies should be slower to acquire than locale strategies (Packard and McGaugh,
1996). It could be the case that rats in the experiment of Pych et al. (2005) indeed were using a
praxic model-based strategy, which is assumed to be more flexible than the place recognition-
triggered response strategy in the model-based/model-free classification.

Furthermore, it would be interesting to see whether postulating that different brain regions subserve
model-based visually-guided versus model-free visually-guided strategies can help explain the
differential impairments of visually-guided behaviors resulting from lesions of different brain areas.
Indeed, without getting into much details on the neurobiology here (see next sections), it is worthy
of note here that lesions of the dorsal striatum are found to impair the navigation towards a visible
platform in the Morris water maze (Packard and McGaugh, 1992), whereas after extensive training,
lesions of the same brain region only impaired the flexibility of visually-guided behaviors, while
still enabling rats to find the visible platform (McDonald and White, 1994). Indeed, it could be that
lesions of the dorsal striatum only impaired one of the two visually-guided strategies postulated in
the model-free/model-based dichotomy, while sparing the other one, and thus still enabling some
visually-guided behaviors.

However, much more work is needed to rigorously analyse the above mentioned experiments in the
light of the model-based/model-free dichotomy, to see whether it can or cannot bring
complementary contributions to the previous classifications of navigation strategies.

As we will see, this dichotomy between model-free and model-based strategies will help us bring
together neurobiological and computational data on the rat prefrontal cortex and striatum reported
by different scientific disciplines. The classification into different dimensions will have a direct
implication on the consideration of behavioral shifting between navigation strategies, as described
below.

Page : 29/ 196



1.7 Strategy shifts

Rats' ability to shift from one navigation strategy to another has been strongly supported by the
seminal work of Krech (1932). In Krech's experiments, rats were trained in a maze that had four
choice points. The experimenter changed the layout of the maze after each trial, and varied the
stimuli that were relevant (left-right, light-dark), so that the problem was objectively unsolvable.
Krech discovered that his rats did not respond randomly, but instead responded systematically first
to one set of stimuli for a few trials, then to another, and so on. These results were taken to suggest
that the rats were "trying out hypotheses", and that their learning was guided by confirmation or
rejection of strategies, rather than by kinesthetic stimuli.

Pursuing the investigation, Krech argued that the rat attends to only one dimension of the
discrimination problem at a time — e.g. spatial position (left or right) and not brightness of the goal
box (light or dark) —, instead of gradually learning how to solve the task. In this view, the rat would
try different hypotheses, and only learn about the value of left over right when it hit upon the correct
hypothesis. Thus, Krech's theory considered learning to be noncontinuous and insightful — a distinct
shift in attention from one dimension to another.

In this manuscript, the simplification that we adopt considers two different conditions for shifting,
and two types of shifts.

The two conditions are: 1) stability of the task; versus 2) a change in the task.

Within the case of a task change, the two types of shifts considered are: intradimensional shifts
(within the same modality); versus extradimensional shifts (e.g. praxis/cue-guided, or cue-
guided/place, ...).

1.7.1 Two conditions for shifting

Separating strategy shifts in response to a change in the task from strategy shifts in a situation of
task stability was originally justified by Sherry and Schacter (1987)'s suggestion that different brain
systems should subserve these two conditions. According to them, « preservation of variance across
episodes » and « detection and preservation of invariances across episodes » are two mutually
incompatible encoding processes.

The first condition considered (task stability) refer to the case when the animal is getting familiar
with an unchanging task. In such a case, the animal can progressively abandon a flexible but
cognitively expensive strategy, and rather shift to a more reactive model-free strategy, which is less
flexible, but to which the environment's invariance let the time to be learned. This kind of shift
precisely refers to the shift from a goal-directed behavior to a habit described above. So this shift
will be simplistically considered as a shift from a model-based strategy to a model-free strategy, as
modeled in the case of a lever-press task (Daw et al., 2005).
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Cue Responders Place Responders

Figure 1.1.10: Adapted from Devan and White, 1999. Representative swimming paths of rats
using a visually-guided strategy (cue responder) versus rats using a place recognition-triggered
strategy (place responder) in the competition trial of a Morris water task. Before the competition
trial, rats learned to reach a visible platform located in a particular location in the maze (dashed
square). During the competition trial, the platform is moved towards a new location (filled
square). A: Animals exhibiting cue response swam directly to the visible platform. B: Some
animals first swam towards the initial location of the platform (exhibiting a place response),
before going towards the visible cue, revealing a shift to a visually-guided strategy. Duration of
each trajectory is displayed in seconds.

Several studies have reported a progressive shift from one strategy to another after extensive training
in an unchanging task (Dickinson, 1980; Packard and McGaugh, 1996; Pearce et al., 1998; Chang
and Gold, 2003). In most navigation tasks, the observed shift is from a locale (i.e. model-based
place strategy) strategy to a model-free visually-guided or praxic strategy. For instance, Packard and
McGaugh (1996) trained rats in the plus-maze task displayed on figure 1.1.2. During this training
phase, rats started from the south arm and had to learn to go to the east arm (turn right to find a
reward. After sixteen trials, the maze was rotated so that the animals now started from the north
arm. Rats had to spontaneously make a single choice and predominantly chose to turn left, that is go
to the same east location than during training. Then, the maze was rotated for a second time and
sixteen more trials of training were given to the animals. After a final location, starting from the
north arm, rats predominantly turned right, that is, they made the same body turn than during
training. The generally accepted interpretation is a shift from locale (model-based) to praxic
(model-free) under stable task conditions, rats having an initial preference for a spatial strategy
(Gallup and Diamon, 1960).

The second condition considered (change in the task) can either be a change in the reward
position — for instance if the experimenter translates the hidden platform towards a new location in
the Morris water maze; or it can take the shape of a change in the landmark cues that signal the
presence of the reward (for example if a green tree used to indicate the reward location while now,
the leaves fall let the tree brown). It can also be the disappearance of a food source in a familiar
area; or it can be the appearance of an obstacle across a familiar path. In these cases, an animal
needs to shift its navigation strategy in order to further explore, or in order to build a behavior
associated to another cue present near the reward location, or even so as to invoke its mental model
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and plan a path that can replace the usual reactive model-free behavior that the rat was relying on.

Observations of rats ability to shift their navigation strategy in response to a change in the task have
been previously described (Packard and McGaugh, 1996; Packard, 1999; MclIntyre et al., 2003;
Hamilton et al., 2004). Figure 1.1.9 displays an example of such a strategy shift observed in a Morris
water maze task (Devan and White, 1999). In this task, rats first learned to reach a visible platform
located in a particular location in the maze (dashed square). Then, a competition trial is imposed
where the platform is moved towards a new location (filled square). Animals exhibiting a visually-
guided strategy swam directly to the visible platform. Some animals first swam towards the initial
location of the platform (exhibiting a place strategy), before going towards the visible cue, revealing
a shift to a visually-guided strategy.

Moreover, several studies show an enhanced learning of one strategy in response to a task change
produced by the inactivation of another strategy (McDonald and White, 1995; Matthews et al., 1999;
Ferbinteanu and McDonald, 2001; Chang and Gold, 2003; Poldrack and Packard, 2003; Canal et al.,
2005). This suggests that such kind of shifts can result from a competition between different brain
pathways mediating alternative navigation strategies.

1.7.2 Two types of shifts in response to task change

We will distinguish here between two types of shifts — extradimensional (ED) and intradimensional
(ID) shifts. Considering an initial condition where an animal has learned the association between a
stimulus S1 and a behavioral response (S1-R), an ID shift refers to a shift to an association S2-R
where S2 shares the same dimension than S1 — e.g. both are visual, or both are places in the
environment, etc... — whereas an ED shift implies an association S2'-R where S2' has a different
dimension than S1 (e.g. from cue-guided to place).

ID shifts were found to be easier to learn for rats than ED shifts (Trobalon et al., 2003; Block et al.,
2007).

It is very important to note that here the envisaged decomposition of conditions and types of shift is
simplified and limited. Indeed, there are other possible conditions for shifting, and there are many
factors that are supposed to influence the recrutement of one strategy or another, such as
physiological states, characteristics of experimental settings, training stage, individual preference,
sex differences (d'Hooge and Dedeyn, 2001). However, the different cases of shifts considered here
already provide a richness and variety of behaviors. Application to robotics of such a system of
learning and shifting different navigation strategies could provide robots with interesting flexible
behaviors and abilities to adapt to unexpected changes in the environment. There already exist such
enterprises both in biomimetic robotics (Guazelli et al., 1998; Gaussier et al., 2000; Banquet et al.,
2005; Chavarriaga et al., 2005b; Girard et al., 2005; Doya and Uchibe, 2005) and in classical
robotics.

The next section, titled « Neural systems involved in learning and shifting among navigation
strategies », will present the neurophysiological background.
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2. Neural systems involved in learning and shifting among
navigation strategies

Two of the principal brain structures examined here, the medial prefrontal cortex (mPFC) and the
striatum, are globally considered to be involved in action selection and decision-making, including
in the spatial domain (Pennartz et al., 1994; Fuster, 1997; Graybiel, 1998; Redgrave et al. 1999a;
Granon and Poucet, 2000; Cardinal et al., 2002; Berthoz, 2003a; Wiener et al., 2003; Kesner and
Rogers, 2004; Balleine et al., 2007; Samejima and Doya, 2007; Prescott and Humphries, 2007). On
the one hand, the striatum, and the basal ganglia in general — a set of subcortical nuclei whose main
entry point is the striatum — are considered to be globally involved in reactive, automatic and
habitual action selection (Mink, 1996; Prescott et al., 1999; Redgrave et al., 1999a; see Greenberg,
2001 for a review), and in learning to adapt this action selection based on reward (Graybiel and
Kimura, 1995; Houk et al., 1995; Wickens and Rétter, 1995; Kelley et al., 1997). On the other hand,
the rat mPFC, having functional homologies with the primate dorsolateral PFC (Kolb, 1990;
Uylings et al., 2003; Voorn et al., 2004; Vertes, 2006), is considered to have a role in high-level
cognitive processes, usually referred to as executive functions, that is “complex cognitive processes
required to perform flexible and voluntary goal-directed behaviors based on stored information in
accordance with the context” (Granon and Poucet, 2000).
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Figure 1.2.1: Schematic representation of circuits mediating hippocampal spatial and other
contextual information through the prefrontal cortex and striatum. Adapted from (Thierry et al.,
2000). Dashed lines represent excitatory projections. Solid lines with filled arrows represent
inhibitory projections. Solid lines with empty arrows represent dopaminergic neuromodulations.
CA1 - Hippocampus; Nacc — Nucleus Accumbens; Thal — Mediodorsal thalamic n.; PFC —
Prefrontal Cortex; SN(C&R) — Substantia Nigra (pars compacta & reticulata); STN —
Subthalamic nucleus; VP — Ventral pallidum (lateral & medial).

Both mPFC and the striatum are strongly interconnected with a system emitting a neuromodulator
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called dopamine which can play a role in reward-based learning (Robbins and Everitt, 1992; Schultz
et al., 1997; Berridge and Robinson, 1998), and thus can participate in the adaptation of action
selection. However, the precise interaction and complementarity of mPFC and the striatum in
learning and shifting particular navigation strategies is not yet precisely understood.

The prefrontal cortex and striatum are anatomically organized in parallel loops receiving different
information (figure 1.2.3), and some of which are innervated by key structures in different types of
navigation: the hippocampal system, as well as sensorimotor and parietal cortices (Thierry et al.,
2000; Tierney et al., 2004). The hippocampus is of particular interest for understanding the neural
basis of cognitive function since it is involved in the elaboration of abstract cue-invariant
representations of the environment (Wiener, 1996). The hippocampal system is considered to play
an important role in the elaboration of spatial information that are required for learning certain
navigation strategies (O'Keefe and Nadel, 1978; Poucet and Hermann, 1990; Muller et al., 1999;
Poucet et al., 2003); Indeed, the present studies are part of a long term research program (for review,
see Wiener et al., 2003) of how hippocampal representations are exploited for behavior, and the
striatum and prefrontal cortex were selected since they are of its principal output destinations that
are in turn connected to premotor systems (figure 1.2.1) (Pennartz et al., 1994; Thierry et al., 2000;
Battaglia et al., 2004b; Voorn et al., 2004).

So this chapter will first briefly present the hippocampus, then examine the anatomical loops
characterizing the prefronto-striatal system. We will present the basis for a theoretical framework
wherein the striatum is involved in learning of several navigation strategies, and describe how
dopamine signals can participate in these learning processes. Finally, we will see the foundations in
the literature for the hypothesis that the prefrontal cortex could be involved in shifting among
strategies.

2.1 The hippocampus and the elaboration of spatial information

A key finding in the rodent hippocampus is the so-called place cells. In a freely moving animal, the
electrophysiological response of these hippocampal pyramidal neurons show a remarkable
correlation to the location of the animal (O'Keefe and Dostrovsky, 1971; Battaglia et al., 2004a).
Each of these neurons responds when the animal occupies a particular place in the environment, and
at the level of the neuronal population, the entire surface of an experimental surface is represented,
as shown in figure 1.2.2 adapted from Jung, Wiener and McNaughton (1994). These results led to
the theory that the hippocampus participates in the storage of an allocentric spatial map for
navigation (O'Keefe and Nadel, 1978), the cognitive map whose existence in the brain was
postulated by Tolman (1948).

Moreover, lesions of the hippocampus impair learning of /ocale navigation strategies while sparing
taxon, praxic and guidance strategies (Morris, 1981; Devan and White, 1999; Pearce et al., 1998).
Translated into the terminology adopted in the previous chapter, this means that hippocampal
lesions impair navigation strategies based on the place dimension, while sparing strategies based on
single visual or idiothetic dimensions. This suggests that the hippocampus is crucial for the
acquisition of place dimension strategies. However, it is generally admitted that the hippocampus
does not participate in the control of such navigation strategies, but rather sends spatial information
to other brain structures involved in decision-making, such as the prefrontal cortex and striatum
(Pennartz et al., 1994; Devan and White, 1999; Thierry et al., 2000; Voorn et al., 2004).

Apparently inconsistent with this view are the findings of several correlates of hippocampal neurons
with decision-making parameters. These include behavioral correlates (Wiener et al., 1989),
movement correlates (Fukuda et al., 1997; Yeshenko et al., 2004), reward correlates (Dayawansa et
al., 2006) and goal correlates (Hok et al., 2007). However, the consequence of these results on the
interpretation of hippocampal function will not be discussed here. For such topic, we invite the
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reader to refer to some review articles (Wiener, 1996; Mizumori et al., 2004; Poucet et al., 2004).

As a last point concerning the elaboration of spatial information in the hippocampal neural system,
it is important to mention the existence of head-direction (HD) cells and grid cells. The former are
neurons that we had the occasion to study as an initiation to electrophysiological techniques at the
beginning of the PhD period (see Zugaro et al., 2004; Arleo et al., 2004 in appendix).
Characteristically, the activity of these neurons reflects the animal's current head direction,
independent of its position in the environment (Ranck, 1984). HD cells have a single preferred
direction at which they fire maximally, and their firing rates decrease monotonically as the animals'
orientation moves progressively farther away from the preferred direction. Because a cell's preferred
direction does not change over the space of an environment (Taube et al., 1990a,1990b), the cell
cannot be encoding egocentric bearing to a landmark; it must be encoding allocentric bearing to a
reference direction. HD cells were found in a number of structures tightly interconnected with the
hippocampal system, such as the postsubiculum (Ranck, 1984), the anterodorsal thalamic nucleus
(Blair and Sharp, 1995; Knierim et al., 1995; Taube, 1995; Zugaro et al., 2001), entorhinal cortex
and even a small population in the hippocampus itself (Leutgeb et al., 2000). HD cells are required
for hippocampal place cell stability (Calton et al., 2003; Degris et al., 2004) and thus could
participate in navigation strategies requiring an allocentric orientation process.

—

/
—

()

Figure 1.2.2: Coding of an ensemble of locations in a given environment by a population of
hippocampal places cells. Adapted from (Jung et al., 1994). (a) The rat was introduced into a
cubic arena. (b) Electrophysiological response of a set of hippocampal neurons as a function of
place. The squares correspond to responses of individual dorsal hippocampal neurons in overhead
views of the arena. Dark blue zones correspond to no activity, while the neurons fired maximally
in red zones (generally about 1-40 impulses per second depending upon the neuron).

A second recently discovered neural substrate for spatial navigation are the grid cells in a part of the
hippocampal system named the entorhinal cortex (Fyhn et al., 2004; Hafting et al., 2005; Sargolini
et al., 2006). These cells are active when the rat occupies a set of regularly spaced places, tesselating
the environment in a hexagonal pattern. This activity can be interpreted as a basis for a self-motion
or path integration based map of the spatial environment (McNaughton et al., 2005), and are likely
to be essential for the elaboration of the hippocampal spatial responses (Hafting et al., 2005).
Consistent with this hypothesis are behavioral results showing that lesions of the entorhinal cortex
impair spatial navigation based on distal cues in a Morris water maze (Parron et al., 2004), distal
cues being crucial for the control of place cells activity (Cressant et al., 1997), and thus for
navigation based on a cognitive map (Pearce et al., 1998).
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Figure 1.2.3 (previous page): Prefronto-striatal loops presented in two different schemas. A
motor loop, B associative loop, C loop limbicl core, D loop limbic2 shell, adapted from Uylings
et al. (2003); E reference for orientation in A-D; F parallel cortico-striatal loops (with midline
nuclei) in the rat are indicated by color code adapted from Voorn et al. (2004); G reference for
orientation in F, adapted from Popolon (2007). List of abbreviations ... ACd, dorsal anterior
cingulate area; ACv, ventral anterior cingulate area; Ald, dorsal agranular insular area; Alyv,
ventral agranular insular area; DLS, dorsolateral striatum; DMS, dorsomedial striatum; DStr,
dorsal striatum; FR2, frontal cortical area 2; GPe, globus pallidus, external segment; GPi, globus
pallidus, internal segment; IL, infralimbic cortical area; IMD, intermediodorsal thalamic nucleus;
MC, motor cortex; MDI, mediodorsal thalamic nucleus, lateral segment; MDm, mediodorsal
thalamic nucleus, medial segment; MDm(a), anterior part of MDm; MDm(p), posterior part of
MDm; MO, medial orbital cortical area; PC, paracentral thalamic nucleus; PFC, prefrontal
cortex; PFCmed, medial prefrontal cortex; PL, prelimbic cortical area; PLd, dorsal PL; PLy,
ventral PL; rs, rhinal sulcus; SMC, sensorimotor cortex; SNc, substantia nigra pars compacta;
SNr, substantia nigra reticulata; SNrdm, dorsomedial part of SNr; STh, subthalamic nucleus; VA,
ventral anterior thalamic nucleus; VL, ventral lateral thalamic nucleus; VM, ventral medial
thalamic nucleus; VMm, medial part of VM; VP, ventral pallidum; VStr, ventral striatum.

2.2 Prefronto-striatal anatomical loops

In mammals, the frontal cortex and striatum are anatomically organized in parallel loops engaging
different cognitive functions such as motor, associative, limbic and oculomotor (Alexander and
Crutcher, 1990; Alexander et al., 1990). Within these loops, cortical information enter the basal
ganglia via the striatum. Information processed within the basal ganglia by a disinhibitory process is
then sent back to cortical areas in the frontal lobe — which include prefrontal, premotor and motor
cortices — through the mediodorsal thalamic nucleus (Chevalier and Deniau, 1990).

In the rat, four principal loops can be distinguished, which correspond to different territories of the
striatum as shown on figure 1.2.3 (Uylings et al., 2003). To broadly summarize, all of the neuron
groups in a given territory can be characterized by the regions they receive input from:

A) In the motor loop, the dorsolateral striatum (DLS) is related to the sensorimotor cortex;

B) In the associative loop, the dorsomedial striatum (DMS) is linked to the dorsomedial prefrontal
cortex — including the prelimbic area (PL) — and the premotor cortex;

C) In loop limbic 1, the accumbens “core” — belonging to the ventral striatum — is related to the
dorsomedial prefrontal cortex — including PL — and the amygdala;

D) In loop limbic 2, the accumbens “shell” — belonging to the ventral striatum — is connected with
the hippocampus, the amygdala, the ventromedial prefrontal cortex — including PL and IL
(infralimbic area) —, the orbitofrontal cortex and the agranular insular cortex.

2.2.1 Feature 1: similar anatomical organization between loops

A first important feature of these loops is the similar anatomical organization from one loop to the
other — for this reason they are referred to as parallel. Indeed, as shown in figures 1.2.3F and 1.2.4,
within each loop, a given cortical subterritory projects to an associated striatal territory, which in
turn sends projections through a series of basal ganglia nuclei that are similarly organized in all
loops (Mink, 1996; Wickens, 1997; Maurice et al., 1997, 1999); these nuclei will not be described
here. Then from an output nucleus of the basal ganglia — either the Substantia Nigra Reticulata
(SNr) or the Entopeduncular nucleus (EP) —, projections are sent back to the Cortex via the
mediodorsal thalamic nucleus (Deniau et al., 1994).

The loops are similarly characterized by a set of patterns that can be roughly enumerated as:

1) the existence of a direct/indirect dissociation between pathways through the basal ganglia (Albin
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et al., 1989);

2) the existence of a dissociation between striatal neurons' D1/D2 receptors (Parent and Hazrati,
1995a,b), which makes them differently sensible to the neuromodulator dopamine;

3) the existence, in each loop, of subdivisions of striatal territories into the Striosomes which project
towards dopaminergic neurons and thus have an influence on dopamine release, and Matrisomes
which do not (Gerfen, 1984,1992; Gerfen and Wilson, 1996; Desban and Kemel, 1993; Graybiel and
Kimura, 1995). However, the shell differs from this, as explained in paragraph 2.2.2

As a consequence of this first feature, computationally similar signal processing can be

subserved by each of these loops (Houk et al., 1995), which is also true in the monkey (Hikosaka

et al., 1999).
Hippocam
pus

Dopaminergic Neurons

Figure 1.2.4: Prefronto-striatal loops. This scheme represent three major cortico-basal ganglia
loops, involving different striatal territories: respectively the dorso-lateral striatum, the dorso-
medial striatum and the ventral striatum. Solid lines with filled arrows represent inhibitory
connections. Dashed lines represent dopaminergic neuromodulation. SNc, substantia nigra pars
compacta; VTA, ventral tegmental area.

2.2.2 Feature 2: interaction between loops through the dopaminergic system

The loop associated with the shell zone of the ventral striatum differs substantially from the above
mentioned stereotyped parallel organization. Indeed, the shell, and particularly the medial shell
where we have recorded neurons (see chapter 2), is endowed with some unique anatomical and
neurophysiological characteristics which distinguish it functionally (Voorn et al., 2004). The
principal difference to be evoked here is a stronger influence on the dopaminergic system than is
exerted by striosomes that are located in other striatal regions (Groenewegen et al., 1996; Joel and
Weiner, 2000; Thierry et al., 2000; J.-M. Deniau et al., unpublished but cited in Voorn et al., 2004).
This puts the shell in control of dopaminergic input to other loops, evoking the spiral dopaminergic
modulation of the cortico-striatal loops reported in primates (Haber et al., 2000). The spiral refers to
the crossover in the parallel loops for both MD projections to cortex and for striatal projections to
the dopaminergic VTA and SNc wherein there is overlapping from the limbic loop to associational
zones and from the associational loop to sensorimotor zones. As we will see later, this puts the
shell at the top of a hierarchy where it can potentially modulate learning processes in the other
loops.

2.2.3 Feature 3: diverse input for each loop

A third important feature is the difference in the input information received by each loop. It is
informative to contrast the dorsolateral striatum (motor loop) which primarily receives sensorimotor
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inputs (McGeorge and Faull, 1989), the dorsomedial striatum (associative loop), which also receives
hippocampal system inputs (Groenewegen et al., 1987; McGeorge and Faull, 1989), and has
allocentric spatial responses in the form of head direction cells (Wiener, 1993), and their counterpart
the nucleus accumbens (limbic loops) which receives hippocampal, prefrontal, amygdalar and
entorhinal inputs. The latter permit access to signals concerning place, motivation, reward signals,
head direction and path integration information (Pennartz et al., 1994; Groenewegen et al., 1996;
Pennartz et al., 2000).

We can already see that based on these anatomical data, different loops might be engaged in
learning of action selection based on different stimulus information, while the loop associated
to the shell would exert an overall dopaminergic influence on other loops, and while
striosomes within each loop could participate in the modulation of dopamine release.

In the next section, we review lesion and electrophysiological results which relate each loop with a
particular navigation strategy.

2.3 Different striatal regions involved in different navigation strategies

2.3.1 Lesion studies

Initially, the striatum was considered as globally involved in egocentric navigation strategies, in
contrast to the hippocampus which was assumed to participate in allocentric strategies. Indeed,
whereas lesions of the hippocampus impaired locale strategies (Morris, 1981; Devan and White,
1999), lesions of the striatum were found to impair both praxic (Potegal, 1969; Cook and Kesner,
1988; Colombo et al., 1989; Kesner et al., 1993) and raxon strategies while sparing locale strategies
(Whishaw and Mittleman, 1986; Packard et al., 1989; Brasted et al., 1997; DeCoteau and Kesner,
2000; Adams et al., 2001; Ragozzino and Kesner, 2001; Packard and Knowlton, 2002).

However, some recent studies of lesions restricted to striatal territories corresponding to a single
loop reveal their specific roles in particular navigation strategies. In the variation of the Morris
water maze task presented on Figure 1.1.10 (Devan and White, 1999), after learning to reach a
visible platform at a particular position, rats were exposed to a competition trial were the platform
was visible but moved. On the one hand, rats with DLS lesions moved towards the uncued first
location, thus expressing a spatial strategy. On the other hand, rats with DMS lesions preferred the
visible platform at the new location, thus expressing a cue-based strategy. Devan and White (1999)
interpret these results as revealing an involvement of DMS in place learning. These results are
consistent with the anatomical organization reported in the previous section that DMS had afferents
from the hippocampal system (Groenewegen et al., 1987; McGeorge and Faull, 1989).

In line with this DMS/DLS dichotomy, in a lever-press task, DLS lesions impair procedural S-R
learning based on a visual stimulus (Yin et al., 2004), whereas lesions of DMS do not affect rats'
performance in a T-maze task requiring a praxic strategy, but rather alters choice behavior based on
the flexible use of place cues (Yin and Knowlton, 2004). Furthermore, lesion of DMS affect flexible
place reversal learning — change in the place associated with reward — in a plus-maze (Ragozzino
and Choi, 2003).

This suggests that DLS can be involved in cue-based and praxic navigation strategies, whereas
DMS can subserve place strategies.

DMS also appears to be involved in goal-directed behaviors, since lesions of the posterior part of
DMS impair learning and expression of the contingency between instrumental actions and their
outcomes (Yin et al., 2005a,b), which, as we have seen in the first chapter, is one of the necessary
memory components for model-based strategies.

This suggests that DMS could also participate in the acquisition and expression of goal-
directed behaviors (Balleine, 2005), thus playing a role in model-based strategies.

The precise role of the ventral striatum (VS) in particular navigation strategies is less clear. Lesions
of VS impair spatial learning, thus suggesting its involvement in place strategies (Sutherland and
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Rodriguez, 1989; Ploeger et al., 1994; Setlow and McGaugh, 1998; Albertin et al., 2000). For
instance, lesions of the rat accumbens medial shell — corresponding to the region we have recorded
— impair the rat in learning and recalling sites providing larger rewards (Albertin et al., 2000), which
conveys an alteration of the reward-place associations.

More recent studies even reveal that VS function is not restricted to strategies based on the place
dimension but can also participate in others. For instance, DelLeonibus et al. (2005) report that
lesions of VS impair the acquisition of both allocentric and egocentric strategies in a task requiring
the detection of a spatial change in the configuration of four objects placed in an arena.

Furthermore, it appears that different subdivisions of VS may subserve different behavioral
functions and thus can be considered separately. In this manuscript, we will distinguish the
accumbens «core» and accumbens «shell » (Zahm and Brog, 1992). Shell lesions and
pharmacological manipulations within the shell impair various forms of instrumental conditioning
(Corbit et al., 2001; Fenu et al., 2001; Phillips et al., 2003), thus suggesting a role of the shell in
reward-based learning of S-R associations.

Moreover, the shell appears not to be required for knowledge of the contingency between
instrumental actions and their outcomes (Balleine and Killcross, 1994; Dickinson and Balleine,
1994; Corbit et al., 2001; see Cardinal et al., 2002 for a review), which, as we have seen in the first
chapter, is one of the necessary memory components for model-based strategies.

However, it should be clear that the core/shell segregation of VS is oversimplified, since certain
results suggest a finer subdivision (Heimer et al., 1997; Ikemoto, 2002), and other results reveal
overlapping behavioral functions, thus stressing a continuum between core and shell (see Voorn et
al., 2004 for a review).

So, following the terminology that we have adopted in the section concerning navigation strategies,
it seems that the shell could possibly be important for learning model-free strategies in any
reference frame (egocentric or allocentric), and thus for any stimulus type (place, simple allothetic
or idiothetic), whereas storage and expression of these model-free strategies would require motor
and associative loops.

In contrast, accumbens core lesions do not impair conditioned reinforcement (Parkinson et al., 1999;
Hall et al., 2001; see Cardinal et al., 2002 for a review), but rather impair the animal's sensitivity to
outcome devaluation (Corbit et al., 2001), and the acquisition of action-outcome contingencies
(Kelley et al., 1997). Thus, the core could be assumed not to be involved in learning of model-
free strategies, but rather could be important in goal-directed behaviors (Dayan and Balleine,
2002), thus playing a role in model-based strategies.

However, these hypotheses are simplified, and a rigorous investigation of the functional roles of the
core and shell should data from the fields of classifical conditioning (see Cardinal et al., 2002), drug
addiction (Robbins and Everitt, 1992; Berridge and Robinson, 1998), and lesion studies concerning
their role in unlearned behaviors (Kelley, 1999) and motivational processes (Kelley et al., 1997;
Aberman and Salamone, 1999; Cardinal et al., 2001).

2.3.2 Electrophysiological studies

Consistent with lesion studies, electrophysiological recordings show that each of the parameters
required for storage and learning of the respective navigation strategies (i.e. stimuli, behaviors,
space, rewards) are encoded in zones of the rodent striatum.

Cues and movements correlates: More precisely, in the dorsal striatum (without distinction of
DMS/DLS subdivisions), neurons were found which respond to movements, turning movements,
grooming movements, head direction, auditory cues, visual cues and olfactory cues (Gardiner and
Kitai, 1992; Callaway and Henriksen, 1992; Wiener, 1993; Lavoie and Mizumori, 1994; Carelli et
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al., 1997; Aldridge and Berridge, 1998; Jog et al., 1999; Ragozzino et al., 2001; Daw et al., 2002;
Setlow et al., 2003; Nicola et al., 2004; Yeshenko et al., 2004; Barnes et al., 2005; Wilson and
Bowman, 2005). For example, among the results of Setlow et al. (2003), neurons were found to
encode specific combinations of cues and associated motor responses in a « go / no-go » olfactory
discrimination learning and reversal task. In this task, rats had first to learn to associate an odor with
a positive reward (sucrose) and another one with an aversive gustatory stimulus (quinine). Then rats
were exposed to reversal learning where the odor-outcome contingencies were changed.

Several studies have reported the specificity of ventral striatal responses to cues and movements,
showing that neurons that are responsive during a task would not be responsive outside the task
(Gardiner and Kitai, 1992; Carelli et al., 1997; Aldridge and Berridge, 1998). These results suggest
that the dorsal striatum can store part of learned S-R associations.

Similar encoding of stimulus and movement information are found in the monkey striatum (Rolls et
al., 1983; Kimura, 1986,1990,1995; Kermadi et al., 1993; Kermadi and Joseph, 1995; Miyachi et al.,
1997; Hikosaka et al., 1998; Kawagoe et al., 1998; Shidara et al., 1998; Shidara and Richmond,
2004; Ravel et al., 1999,2003; Hikosaka et al., 2000; Lauwereyns et al., 2002a,b; Itoh et al., 2003;
Watanabe et al., 2007). Several studies have also reported spatial correlates in monkey ventral
striatal and caudate (equivalent to rat DMS) neurons (Hassani et al., 2001; Takikawa et al., 2002;
Cromwell and Schultz, 2003; Ravel et al., 2006). However, the latter spatial aspect is not strictly
comparable to place encoding in the rat, since it corresponds to selectivity to areas on a screen
displaying stimuli.

Spatial correlates: Interestingly, in rodents, neurons with spatial correlates were found both in
DMS and VS (Wiener, 1993; Lavoie and Mizumori, 1994; Martin and Ono, 2000; Shibata et al.,
2001; Chang et al., 2002; Mulder et al., 2004; Schmitzer-Torbert and Redish, 2004; Yeshenko et al.,
2004). To the best of our knowledge, none or few neurons from DLS are selective to spatial
positions. Synchronized ensemble activity between hippocampus and VS (including core and shell)
during behavior (Tabuchi et al., 2000) and during memory consolidation phase in sleep were also
reported (Pennartz et al., 2004). This supports the hypothesis that the hippocampus and ventral
striatum interact with each other in relation with learning spatial tasks.

These findings of spatial modulation in DMS and VS neurons activity suggest that the limbic
and associative loops can store place navigation strategies.

Learning correlates: Change in striatal neurons activity during learning were also reported in
rodents (Graybiel, 1995; Jog et al., 1999; Setlow et al., 2003; Barnes et al., 2005), as well as in the
monkey (Aosaki et al., 1994a,b; Tremblay et al., 1998; Pasupathy and Miller, 2005). These results
confirm that the striatum can be instrumental for learning of navigation strategies.

Reward correlates: Finally, reward information is signalled in ventral striatal neuronal activity. VS
neurons respond to reinforcements including food, drink, drugs of abuse, and intracranial electrical
stimulations (in the rat: Lavoie and Mizumori, 1994; Bowman et al., 1996; Carelli and Deadwyler,
1997; Chang et al., 1997; Martin and Ono, 2000; Shibata et al., 2001; Carelli, 2002; Janak et al.,
2004; Nicola et al., 2004; Wilson and Bowman, 2005; in the monkey: Hikosaka, 1989; Apicella et
al., 1991a,b, 1992, 1998; Schultz et al., 1992; Hollerman et al., 2000; Cromwell and Schultz, 2003).

Several studies report reward expectations responses in monkey VS (Hollerman et al., 1998; Hassani
et al., 2001; Cromwell and Schultz, 2003; Kawagoe et al., 1998,2003) and combinations of reward
and action information in monkey caudate nucleus (Samejima et al., 2005). In the rat, strict reward
expectations are less clearly discriminated, mainly because in freely-moving rats, many
experimental designs fail to dissociate reward information from other behavioral components.
Nicola et al. (2004) show VS neurons encoding the motivational significance of stimuli predicting
rewards. VS neurons also encode predictive information concerning the type of reward (food vs.
drink) that the animal receives (Miyazaki et al., 1998,2004; Daw et al., 2002) or concerning the
reward value (positive or aversive) (Setlow et al., 2003). However, none of these studies report
purely behavior-independent reward expectation, distinguishing between behaviors leading up to
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rewards, and the rewards proper. The aim of the experiment presented in chapter 2 is to clarify this
ambiguity and discriminate reward anticipations from other behavioral parameters. In summary,
these reward correlates suggest that VS can subserve reward-based learning of navigation
strategies.

Overall, these data are consistent with a role of the striatum in learning model-free navigation
strategies. However, it should also be noted that a few studies cite the striatum's involvement in
shifts in task rules. A set of striatal neurons change their activity in response to a change in the task
rule — from place to visual, place to praxic, and vice versa (Shibata et al., 2001; Eschenko and
Mizumori, 2007). Shifts from a praxic task to a visual task are impaired by lesions of either the
accumbens core (Floresco et al., 2006) or DMS (Ragozzino et al., 2002). Lesions of DMS also
impair reversal learning (Shirakawa and Ichitani, 2004). However, the medial prefrontal (presented
in section 2.5) rather than the striatum (which receives prefrontal inputs) is generally considered as
playing a key role in strategy selection. Above, we alluded to a hypothetical mechanism subserving
reward-based learning of navigation strategies within the striatum. This mechanism is generally
considered to rely on dopamine. The particular patterns of dopamine release have strong
computational consequences for the models elaborated in this PhD thesis (chapter 2).

Mo prediction Reward predicted Reward predicted
Reward occurs Reward occurs MNo reward occurs

i

1
(no R)

Figure 1.2.6 : Monkey dopaminergic neurons activity during three task conditions. Adapted from
(Schultz, 2001). Black dots represent action potentials of measured neurons. These action
potentials are plotted across successive trials (y-axis) and synchronised with the occurrence of
certain task events — CS: Conditioned stimulus (a tone), R: Reward. Top histograms cumulated
action potentials across trials.

2.4 Dopamine mediated reward-based learning of navigation strategies in the
striatum

A possible mechanism underlying learning of navigation strategies within the striatum could be the
reinforcement of stimulus-response associations that lead to reward, i.e. instrumental conditioning.
In the framework where different striatal territories store S-R associations based on different types
of stimuli and responses, such a learning mechanism would require the appropriate release, in these
respective territories, of reinforcement signals depending on the behavioral context and occurrence
or absence of rewards.

Indeed, such reinforcement could involve dopaminergic (DAergic) signals (Robbins and Everitt,
1992; Schultz et al., 1997; Berridge and Robinson, 1998; Satoh et al., 2003; Nakahara et al., 2004;
Cheng and Feenstra, 2006). Dopamine (DA) is a neuromodulator emitted by a set of dopaminergic
neurons. Of particular interest here are two DAergic brainstem nuclei: the ventral tegmental area
(VTA) and substantia nigra pars compacta (SNc). Schultz and colleagues (1992, 1995, 1998)
performed electrophysiological recordings of DAergic neurons during a task where monkeys learned
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to respond to a stimulus (such as a tone) in order to earn a juice reward. They found a set of
dopaminergic neurons which respond to unexpected rewards, i.e. prior to learning the Stimulus-
Reward association (figure 1.2.6). This activity vanishes as the reward becomes predictable, roughly
tracking improved performance (Mirenowicz and Schultz, 1994; Hollerman and Schultz, 1998;
Fiorillo et al., 2003). Meanwhile, the activity of the same dopaminergic neurons gradually begins to
respond to stimuli predictive of reward — the latter becoming a conditioned stimuli (CS). Finally,
when a reward predicted by a CS fails to arrive, a number of DA neurons exhibit a momentary pause
in their background firing, timed to the moment the reward was expected. These findings support
the idea that DAergic neurons signal errors in reward prediction, these signals being crucial for
reward-based learning (Houk et al., 1995; Schultz et al., 1997). These responses are summarized
in figure 1.2.6.

VTA and SNc are known to send projections to the prefrontal cortex and the striatum (Joel and
Wiener, 2000; Thierry et al., 2000). Long-term modifications — in the form of Long Term
Potentiation (LTP) or Long Term Depression (LTD) — have been observed at corticostriatal synapses
after exposure to dopamine (Centonze et al., 2001; Reynolds et al., 2001). This supports the
hypothesis that these signals are implicated in learning processes of S-R associations taking place in
the striatum (Houk et al., 1995). Moreover, whereas all territories receive DAergic inputs, the
accumbens shell's singular status as a major source of afferences to VTA/SNc (Joel and Wiener,
2000; Thierry et al., 2000) makes it a good candidate for influencing dopamine release within other
striatal territories, and thus for driving dopamine-based reinforcement learning in the striatum
(Dayan, 2001; Daw et al., 2006; Deniau et al., 2007). Consistently, the incidence of reward-
responsive cells is greater in the accumbens than in the dorsal striatum (Apicella et al., 1991a;
Schultz et al., 1992; Williams et al., 1993; Lavoie and Mizumori, 1994; Carelli and Deadwyler,
1994; see Pennartz et al., 2000 for a discussion of this point). Finally, the ratio of DA concentrations
in monkey striatum / amygdala / premotor cortex / hippocampus was estimated to be 411/9.4/2.7/1
(Brown et al., 1979; see Pennartz, 1996 for a discussion of this point), supporting the view that the
striatum is a main targets of DAergic reinforcement signals.

However, the theory of dopamine as a prediction error signal is criticized by some authors, and
several points challenging this theory can be listed:

1) Latency of DA responses. Redgrave et al. (1999b) observe that DA neurons respond to a visual
event well before a visual saccade to it, and therefore, identification of the reward-predicting
properties of the stimulus or assessment of reward itself. A visual saccade has a latency of 180-200
ms or 80-110 ms for express saccades (Moschovakis et al., 1996) whereas the latency of
dopaminergic neurons' responses reported by Schultz and colleagues is around 70-100 ms in
overtrained animals.

Redgrave et al. (1999b; Redgrave and Gurney, 2006) suggest instead that dopamine signals are
elicited by projections from the superior colliculus (SC) — whose functions include orientation of
ocular saccades towards stimuli capturing the animal's attention. According to Redgrave and Gurney
(2006), SC is the most likely source of visual input to DA neurons (Coizet et al., 2003; Comoli et
al., 2003; Overton et al., 2005). In contrast, a study in monkey states that early visual responses in
the striatum occur about the same time or after phasic DA signalling (Hikosaka et al., 1989). Thus,
Redgrave et al. (1999b) propose the alternative hypothesis that short latency DA, triggered by SC,
signals salient events that cause a shift in animals' behavior. In line with this view is Horvitz
(2000)'s attentional hypothesis of dopamine. Moreover, several studies report DAergic excitation to
novel neutral stimuli (Ljungberg et al., 1992; Horvitz et al., 1997).

2) Influence on synaptic plasticity. Several studies appear to contradict the possibility that DA can
exert an influence on corticostriatal synaptic plasticity (see Pennartz, 1996 for a review). For
instance, Pennartz et al. (1993) report an absence of DAergic modulation on LTP for the prefrontal-
ventral striatal loop in vitro, as indicated by a lack of effect of both DA and of a mixture of D1 and
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D2 antagonists in intra- and extra-cellular recordings.

3) DA interference with pre- and post-synaptic activity. Finally, DA release in the striatum exerts
some immediate effects on signal transmission which are not expected by the reward prediction
error theory, and which could interfere with expected long term learning effects (see Pennartz, 1996
for a review). Instead, the immediate DA effect on the striatum can be interpreted as an influence on
the control of action selection and movement initiation (Gurney et al., 2001a,b; Humphries, 2003).
These discrepancies lead some authors to propose an alternative hypothesis of reinforcement
learning in the cortico-striatal loops, which does not involve dopamine but rather relies on a
glutamatergic signal (Pennartz, 1997; Pennartz et al., 2000).

In parallel, other work has been undertaken to examine possible resolutions to these discrepancies.
For instance, Kakade and Dayan (2002) show that models of DA's role in reinforcement learning
based on reward prediction errors can account for DAergic neurons' responses to novelty. Moreover,
these models envision positive errors to cues predicting reward only probabilistically (see Daw,
2003 for a discussion of this issue), which would explain the possibility of short latency prediction
error signals in response to yet unidentified task-related stimuli.

In addition, certain components of dopamine responses relative to uncertainty-based attentional
processes (Fiorillo et al., 2003) can be modeled as emerging features of DA's involvement in reward
prediction error (Niv et al., 2005).

A final intriguing element is the existence of several different DA signals within the striatum. Grace
(1991) distinguishes a fonic dopamine signal — persistent and long-lasting —, from a phasic DA
signal — i.e. transient. These two signals may have different effects on corticostriatal plasticity and
on corticostriatal neurotransmission, with different roles in different loops, and thus could subserve
different functions, leaving the field free for several theories of the functional role of DA. For
instance, Wickens et al. (2007a,b) propose that these interloop variations can be understood in terms
of the temporal structure of activity in the inputs sent to different striatal territories, and the
requirements of different learning operations. In this perspective, they suggest that DLS may be
subject to “brief, precisely timed pulsed of dopamine [corresponding to] reinforcement of habits”,
whereas ventromedial striatal regions integrate “dopamine signals over a longer time course
[corresponding to] incentive processes that are sensitive to the value of expected rewards”. Some
recent models have captured the differential effects of these different DA signals on reinforcement
learning processes and modulation of action selection (McClure et al., 2003; Niv et al., 2007),
whereas another model proposes an integrative theory of tonic and phasic dopamine signals' effects
on decision making (Dreher and Burnod, 2002).

Interestingly, the interzone dissociation of DA effects finds some echo in the drug addiction
literature. Di Chiara (2002) reviews differences in effects between the shell and core regions of the
ventral striatum. He notes that repetitive, non-decremental stimulation of DA transmission by drugs
in the shell abnormally strengthens stimulus-drug associations, while stimulation of DA
transmission in the core appears to have an effect on instrumental performance.

In conclusion, the precise relation between DA release and reward prediction error is still
unresolved. Further investigations will be necessary to determine whether short latency DA signals
facilitate reinforcement learning, whether DA's influence on synaptic plasticity is consistent with
learning related processes, and whether behavioral effects of DA manipulations are consistent with
the reward prediction error theory.

2.5 Summary of the hypothetized roles of the striatum in learning

We have seen in this chapter the striatum and the cortex are organized in four principal anatomical
loops, associating corresponding territories.

Within each loop, the involved striatal and cortical territories are proposed to interact and work
together to perform action selection (Redgrave et al., 1999a; Gurney et al., 2001a,b) and DA-
mediated reward-based reinforcement learning (Schultz et al., 1997; Satoh et al., 2003). Besides, the
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hippocampus is assumed to elaborate and sends contextual and allocentrically based spatial
information, to the associative and limbic2 loops, respectively via DMS and the shell.
A number of lesion studies and electrophysiological data, taken together, suggest a respective role
within these loops of:

1. DLS in the storage and expression of praxic and cue-guided model-free strategies;

2. DMS in the storage and expression of place model-free and model-based strategies;

3. the shell in the learning of model-free strategies via the dopaminergic system (VTA/SNc);

4. the core in the storage and expression of model-based strategies.
Figure 1.2.7 summarizes the functional architecture resulting from these reports. One of the key
pending questions within this architecture is the following: Which brain structure can subserve the
role of « strategy shifter » presented in this figure ? That is, which part of the central nervous
system can detect when current behavior is not adequate, and can create new rules, or select, among
existing strategies, the one to perform ? In the next section, we review anatomical, lesion and
electrophysiological data supporting the medial prefrontal cortex (mPFC) as subserving such a
function. The mPFC is considered to play an important role in flexible executive functions, it is
strongly interconnected with the accumbens core, and is implicated in goal-directed behaviors. We
will thus present the data suggesting its interaction with the core in model-based strategy, and its
possible role in strategy shifting.

Associative
Cortex

Dopaminergic Neurons

Cue-guided strategy

Place and model-huased strategies

Strategy shifting ?

Figure 1.2.7 : Possible functional architecture of the striatum where different territories of the
striatum subserve different navigation strategies. One of the key pending questions within this
architecture is the following: Which brain structure can subserve the role of « strategy shifter »
presented in this figure ? That is, which part of the central nervous system can detect when
current behavior is not adequate, and can create new rules, or select, among existing strategies,
the one to perform ? VS : Ventral Striatum ; DMS : Dorsomedial Striatum ; DLS : Dorsolateral
Striatum ; VTA : Ventral Tegmental Area ; SNc : Substantia Nigra pars compacta.

2.6 The prefrontal cortex and flexible strategy shifting

Throughout evolution, the cortical mantle is the neural structure that has developed the most in
mammals in comparison to other brain components (Northcutt and Kaas, 1995). The prefrontal
cortex (PFC) was originally defined in humans and non human primates (NHPs) as the most rostral
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portion of the frontal lobe lying rostrally adjacent to the premotor cortex and motor cortices (figure
1.2.8). With respect to all other cortical areas, it is particularly developed in primates and in humans
and has come to represent nearly a third of the cortex (Brodmann, 1895).

Functionally, PFC is considered as a critical component of the ‘“generator of planned behavior”,
according to Dickinson (1980). In humans, it is considered as a key structure for cognitive control,
that is to say, the ability to coordinate thoughts and actions in relation with internal goals (Miller
and Cohen, 2001; Koechlin et al., 2003). There exist different concurrent theories of the primate
prefrontal cortex emphasizing respectively (see Koechlin and Summerfield, 2007 for a review):
working-memory — characterized by the temporary storage of information required for its internal
manipulation — (Goldman-Rakic, 1987; Petrides et al., 1993; D'Esposito et al., 1995; Petrides, 1996;
Dreher et al., 2002; Guigon et al., 2002), representation of events of varying durations (Grafman,
2002), inhibition of irrelevant information (Fuster, 1997), attentional control (Shallice, 1988;
Desimone and Duncan, 1995), executive processes (Shallice, 1996), voluntary action selection based
on reward (Shima and Tanji, 1998a,b), control of the balance between planning and automaticity
(Posner and Snyder, 1975; Shiffrin and Schneider, 1984), or control of the balance between
cognition and emotion (Bechara et al., 2000).

Generally, it is admitted that the prefrontal cortex plays an important role in flexible behavior
planning. Patients with prefrontal cortex damage show impaired performance in rule-shifting tasks
and tend to persist in applying the previously relevant rule even after it becomes inappropriate
(Milner, 1963; Drewe, 1974; Goldstein et al., 2004). Moreover, prefrontal cortical neurons show
correlates with a set of parameters required for action sequencing, such as correlates with the
relevant rule of a given task (Sakagami and Niki, 1994), with action-reward combinations
(Matsumoto et al., 2003), and with the temporal organization of action sequences (Tanji and Shima,
1994; Carpenter et al., 1999; Procyk et al., 2000; Tanji and Hoshi, 2001; Mushiake et al., 2006).
Besides, other PFC neurons show correlates with learning-related parameters such as reward
expectation (Watanabe, 1996; Schultz et al., 1998) and error detection (Amiez et al., 2005). Finally,
lateral prefrontal neurons encode context-dependent switching behaviors (Konishi et al., 1998;
Nakahara et al., 2002; Amemori and Sawaguchi, 2006). These functions are found to be distributed
over distinct regions of the prefrontal cortex, namely dorsolateral, anterior cingulate, medial and
orbitofrontal regions (Fuster, 1997).

Non-Human Primate

Figure 1.2.8 : Adapted from Tierney (2006). The PFC in the rat, NHP and human occupies the
rostral portion of the frontal lobe.

In rodents, the prefrontal cortex is much less differentiated in terms of anatomy and function, and
there are discrepancies between anatomical and functional homologies with regions of the primate
PFC (Preuss, 1995; Granon and Poucet, 2000; Uylings et al., 2003). However, the rat prefrontal
cortex can also be divided in the medial prefrontal cortex, which itself can be divided in the
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ventromedial prefrontal cortex — comprising the Prelimbic and Infralimbic regions (PL/IL) and
the medial orbitofrontal (MO) —, the dorsomedial prefrontal cortex — comprising the frontal area
2 (Fr2) and the dorsal anterior cingulate (ACd) —, the agranular insular (Al), and the lateral
orbitofrontal areas (Uylings et al., 2003; Vertes, 2006).

Of particular interest here is the medial prefrontal cortex, and more specificially the prelimbic area,
which shows strong functional homologies with the primate dorsolateral cortex, that is the region

that is mostly implicated in flexible and attentional behavior planning and shifting (Granon and
Poucet, 2000; Uylings et al., 2003).

2.6.1 Lesion studies

2.6.1.1 Rat mPFC is not a pure working-memory system

Early behavioral experiments suggested that the rat mPFC is involved in working-memory (see

Kolb, 1990 for a review). Originally defined in humans, the concept of working memory combines,

within a single model:

(a) a system for temporary storage and

(b) a mechanism for online manipulation of information that occurs during a wide variety of

cognitive activities (Baddeley, 1996).

In lower vertebrates (rodents and birds), working memory was originally defined in a similar way

(Honig, 1978; Olton et al., 1979) but was rapidly restricted to refer to a memory buffer that

maintains information on-line in order to perform the task correctly.

Recent lesion studies suggest that mPFC is not involved in the on-line maintenance of information,

and thus is not a pure working-memory system (see Granon and Poucet, 2000; Gisquet-Verrier and

Delatour, 2006 for reviews). More precisely, whereas some studies report that mPFC damage

produce a delay-dependent memory deficits in spatial delayed alternation tasks in a Y-maze or a T-

maze (Van Haaren et al., 1985; Brito and Brito, 1990; de Brabander et al., 1991; Delatour and

Gisquet-Verrier, 1999), in a « go / no-go » task, Delatour and Gisquet-Verrier (1996) reported no

detrimental effects of increasing the delay in rats with PL lesions.

Granon and Poucet (2000) propose an explanation of these apparently inconsistent results by noting

that the latter experiment requiring a simple runaway from the animal, it might engage less effortful

processing than spatial delayed alternation tasks. Thus, they propose that working-memory

processes should be affected by mPFC lesions only when combined with other factors such as:

- the difficulty of the task — which, for example, is increased when selection of the correct
response must operate on a greater number of alternatives;

- the requirement for attentional mechanisms;

- the requirement for flexible behavior.

In line with this view, whereas lesions of mPFC do not impair the performance in a pure attentional

task where rats have to detect spatial changes in their environment (Granon et al., 1996), and mPFC

damage does not impair the performance in a task requiring the rats to pay attention to only two

possible positions (Granon et al., 1998), lesions of mPFC impair the performance in a task where

rats have to pay attention to a brief visual stimulus (a light) that could randomly occur in one of five

possible positions (Muir et al., 1996).

Moreover, several studies show that mPFC lesions lead to attentional deficits (Birrell and Brown,

2000; Delatour and Gisquet-Verrier, 2000), to behavioral inflexibility (Burns et al., 1996; Delatour

and Gisquet-Verrier, 2000; Dias and Aggleton, 2000), to impaired retrieval processes (Botreau et al.,

2004)

2.6.1.2 PL is not a pure spatial system but appears instead to be involved in model-based (goal-

directed) behavior

Moreover, within working memory, PL function appears to be better characterized by its

involvement in a certain type of information processing (e.g., the type of associations: Stimulus-

Response (S-R) or Action-Outcome (A-O) stored and manipulated) than by its involvement in
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processing certain types of information (e.g. spatial vs. non spatial information) (see Granon and
Poucet, 2000 for a review of this issue). Indeed, PL neurons fail to show spatial responses similar to
hippocampal place neurons (Poucet, 1997; Jung et al., 1998; Pratt and Mizumori, 2001; Battaglia et
al., In press). Consistent with this, rats with PL lesions are neither impaired in short-term memory
of a spatial movement (Poucet, 1989; Granon et al., 1996), nor in place navigation (de Bruin et al.,
1994; Granon and Poucet, 1995; Delatour and Gisquet-Verrier, 2000), nor in spatial discrimination
(Ragozzino et al., 1999a,b; Hannesson et al., 2004).

Furthermore, Balleine and Dickinson (1998) found that prelimbic lesions impair action-outcome
contingencies while sparing learning of S-R associations. In their task, rats were trained to perform
two actions concurrently for two different food rewards. In addition, one of those reinforcers was
delivered non-contingently with respect to the animal's behavior, thus resulting in a selective A-O
contingency degradation. PL lesions rendered the rats insensitive to this contingency manipulation,
suggesting that such rats might truly be “creatures of habit” (see Cardinal et al., 2002; Dalley et al.,
2004 for reviews).

Other lesion studies confirm an involvement of PL in goal-directed behaviors (Corbit and Balleine,
2003; Killcross and Coutureau, 2003; Dalley et al., 2004; Ostlund and Balleine, 2005; see Cardinal
et al., 2002 for a review). In contrast, IL lesions appear to affect habitual behavior following
overtraining (Quirk et al., 2000; Morgan et al., 2003; Dalley et al., 2004; Coutureau and Killcross,
2003).

Interestingly, in the Y maze experiment of Delatour and Gisquet-Verrier (1996), rats with PL lesions
were initially impaired during acquisition but eventually recovered with extensive training. These
results are consistent with the hypothesis that PL lesions impair the goal-directed behavior system
while sparing the habit system. The extensive training in this study may have enabled the latter to
eventually mediate learning of the task. Similarly, Fritts et al. (1998) found that the impairment in a
radial arm maze task induced by PL lesions was mainly due to a difficulty during the acquisition
phase, and did not last more than eight days.

- model-based strategies model-free strategies
(controlled by A-O associations) (controlled by S-R associations)

Impaired by

mPFC lesions Spared by mPFC lesions

A S N
' N =
0 Time
\ Beginning of a new task \ Behavioral shift following
(Early experiment or extensive training.

Task change, e.g. reversal).

Figure 1.2.9 : A possible role of the mPFC in the acquisition of goal-directed behaviors (GDB,
i.e. model-based strategies), but not in the expression of GDB. The schema sketches three
different stages of learning, starting from the beginning of a new task. Extensive training within
the same task — which remains constant — enables shifting to habitual behavior (model-free
strategies), as described in section 1.7. As mentioned in the previous section, the expression of
GDB could involve DMS or the core (Yin et al., 2005), while habitual behavior could be
controlled by DLS (Yin et al., 2004).

Following our terminology, these results suggest that PL lesions could impair model-based
strategies while leaving intact model-free strategies.
However, a recent study reports that only pre-training lesions of PL impair the animal's sensitivity to
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outcome devaluation, while post-training lesions spare it (Ostlund and Balleine, 2005). The authors
interpret these results as suggesting that the rat PL is more crucial for the acquisition of goal-
directed behavior rather than for its expression.

In other words, PL seems to be important at the early stage of learning at the beginning of a task, or
after a reversal, when a change in the task rule requires the animal to flexibly shift its behavior
(Salazar et al., 2004). Figure 1.2.9 summarizes this hypothesis.

2.6.1.3 PL as a detector of task rule changes

Indeed, it seems that the rat PL plays a important role in attention focusing on the detection of
external events indicating when the learning rule countradicts either spontaneously engaged or
previously learned strategies. Rodents with mPFC lesions are unable to learn new task
contingencies and continue applying the previously learned rule despite no longer being consistently
rewarded for it (Delatour and Gisquet-Verrier, 2000; Dias and Aggleton, 2000). Attentional set-
shifting or rule shifting depend on the mPFC (de Bruin et al., 1994; Birrell and Brown, 2000;
Colacicco et al., 2002; McAlonan and Brown, 2003; Lapiz and Morilak, 2006). Moreover, PL
damage-induced impairment is significantly increased when the task requires shifting from one
strategy to another, whether the initial strategy has been learned (Granon and Poucet, 1995;
Ragozzino et al., 1999a,b) or is spontaneously used by the animal (Granon et al., 1994).

More precisely, a particular subset of strategy shifts are impaired by PL lesions, refering to the
different types of shifts we defined in the first section. Whereas lesions of the orbitofrontal cortex
are found to impair intradimensional shifts (Kim and Ragozzino, 2005), lesions of PL-IL impair
extradimensional shifts but intradimensional shifts are spared (Joel et al., 1997; Birrell and Brown,
2000; Ragozzino et al., 2003).

2.6.4 Electrophysiological data on mPFC

Electrophysiological studies in the rat confirm that the medial prefrontal cortex can integrate
movement, motivational, reward and spatial information required for flexible model-based
strategies. Cells recorded in mPFC have correlates with movement (Poucet, 1997), with reward,
sometimes in an anticipatory manner (Pratt and Mizumori, 2001; Bouret and Sara, 2004), are
selective to a lesser extent than VS for the type of reward the animal receives (Miyazaki et al.,
2004). Activity in mPFC show a working-memory component (Baeg et al., 2003), correlates with
spatial goals (Hok et al., 2005) and with action-outcome contingencies (Mulder et al., 2003 ; Kargo
et al., 2007). Medial prefrontal neurons also show encoding of some spatial information. Even if
spatial selectivity is less important than in the hippocampus (Poucet, 1997; Jung et al., 1998; Pratt
and Mizumori, 2001), some mPFC neurons show spatial correlates (Pratt and Mizumori, 2001; Hok
et al., 2005) or correlates with combined movement and location (Jung et al., 1998).

More recently, a study showed that mPFC neural activity could react to a behavioral shift. Notably,
the functional connectivity between neurons within the mPFC was found to be the highest at the
early stage of a new learning phase following a reversal (Baeg et al., 2007).

These results suggest that mPFC could play a important role in detecting a need to shift behavior
after a change in the environment or in the task contingencies. One could predict from this evidence
that neurons could be found in mPFC detecting changes in the task rule, for example by showing
transitions of activity in response to such changes. Another prediction, in addition to the detection
of task rule changes, is that mPFC's possible participation in the selection of the new strategy to
perform after the change could take the form of neurons being selective to the ongoing strategy
spontaneously performed by the animal.
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3. Neuromimetic models of rodent navigation

In this closing-section of the introduction, we review some computational models of strategy
learning and of strategy shifting. We restrict here to neuromimetic models, and more precisely to
models involving the prefrontal cortex or the striatum, or including one or several prefronto-striatal
loops. As a consequence, the models presented here are based on neural networks.

These networks correspond to control architectures for animats whose function is to deal with the
coordination of captors and actuators in order to efficiently reach resources within a given
environment.

In the review of computational models presenting here, we will restrict to a particular situation
where an animal or an artificial agent has to learn to perform a sequence of actions leading to
reward (figure 1.3.0). The main questions that these models will help us to solve are: how to choose
which actions to reinforce when getting a reward ? And when to reinforce these actions ? For
example, in figure 1.3.0, action 2 was inappropriate for reaching reward, and thus shall not be
positively reinforced. As we will try to highlight in this section, one of the main difference between
considered groups of models relies in the type of representation that they use. On the one hand,
model-based systems memorize the whole sequence of actions and use a representation of the
respective consequence of each action within the sequence. As a consequence, the system can
quickly update the sequence when the environment changes because it can estimate the respective
contribution of each action to the reward. However, such model-based systems are computationally
expensive.

On the other hand, model-free systems reinforce each action individually, as soon as one action has
been performed, and without taking into account the global sequence of actions. As a consequence,
each action is learned independently from preceding and succeeding actions. Thus, model-free
systems are computationally very simple. However, they are much slower to learn.

|[=]

Visual perceptions

reward ( )

reward

Figure 1.3.0 : Navigation paradigm considered in this review of computational models. In this
example environment, a virtual agent is located in a plus-maze, and perceives visual information
from this environment. The agent has to learn to associate actions to the visual information that it
perceives at particular moment. We suppose here that the agent has performed a sequence of 5
consecutive actions and eventually got a reward. The issue at stake is to decide which actions
were appropriate and should be reinforced.

3.0 Overview
A biomimetic navigation model aims at improving the autonomy of animats in the processing of
available sensory information (allothetic, idiothetic, both), and the selection of the ones that are
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relevant according to the context; in the association of these informations with behavioral responses
that will enable the animat to maximize reward achieving by reaching the resources; in the
evaluation of the efficiency of the animat's responses in order to change them as soon as they
become inappropriate.

For this purpose, several types of learning techniques can be used:

1. Unsupervised learning, a correlation-based form of learning that does not consider the result
of the output, i.e. which does not need any explicit target outputs or environmental
evaluations associated with each input (Dayan, 1999);

2. reinforcement learning, which processes sensorimotor associations by trial-and-error with a
scalar reward feedback from its environment. Here the feedback signal is only evaluative, not
instructive;

3. and supervised learning, which differs from reinforcement learning in that the feedback
provides the motor output solution is instructive, and must be given by some external
“teacher”.

Interestingly, this difference between computational learning mechanisms finds some echo within
the brain, since the cerebral cortex, the basal ganglia and the cerebellum appear to respectively rely
on unsupervised, reinforcement and supervised learning mechanisms (Doya, 1999, 2000b).

Here, we will not address supervised learning, but we will rather focus on two kinds of
reinforcement learning: model-free and model-based. As we will see, the former is used in most
systems implementing navigation strategies in which the basal ganglia - at the core of the
computational model we have designed during this thesis - are involved. The latter, or algorithms
mathematically equivalent to the latter, are mostly used to implement behavioral or navigation
strategies involving the prefrontal cortex.

We will also describe some examples of unsupervised learning, which can be used to learn the
structure of the environment on the basis of allothetic and/or idiothetic inputs, or to build graphs of
possible movement transitions used in model-based navigation. In our case, we used unsupervised
learning to categorize visual perceptions with a method called self-organizing maps (Kohonen,
1995), and employed it for the coordination of several model-free reinforcement learning modules
(see chapter 2).

3.1 Basic notions on neural networks

Within the neural networks used by the reviewed models, a formal neuron has an associated stored
vector of real values, representing a memory of the strength (or weight) of « synaptic » connections
with afferent neurons. Each neuron is also provided with a fixed threshold — defining how much
input activity is required to trigger a response from the neuron —, and a filtering function defining
how the neuron output is affected by its inputs (Churchland and Sejnowski, 1995). Most often,
neurons within the models presented in this section are rate coding neurons, that is neurons whose
activity represents a rate averaged over time, in contrary to spiking neurons where spike timing
information is represented (Gerstner and Kistler, 2002; Dayan and Abbott, 2005).

Finally, learning within these models is represented by a modification of the synaptic weights of
concerned neurons, thus changing the way information is processed through the networks, and
altering the way in which perceptions of an artificial agent or animat are associated with behavior.

3.2 Unsupervised Learning in neural networks

In the late 1940s, Donald Hebb made one of the first hypotheses for a mechanism of neural
plasticity (i.e. learning), Hebbian Learning (Hebb, 1949), that states that the connection between
two neurons is strengthened if the neurons fire simultaneously, or within a time interval. Hebbian
learning is considered to be a 'typical' unsupervised learning rule and it (and variants of it) was an
early model for Long-Term Potentiation and Long-Term Depression (resp. increase and decrease of
synaptic efficiencies) observed in biology (Ito and Kano, 1982; Bear et al., 1987).

Unsupervised Hebbian learning can be employed to allow an agent to build its allocentric spatial
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map of the environment based on its own experience (Burgess et al., 1994; Trullier and Meyer, 1997;
Gaussier et al., 1998; Arleo and Gerstner, 2000). For exemple, in the model of Gaussier et al.

(1998), the synaptic weight @;; of the link between two successively visited places j and i is

increased by Hebbian learning. Thus, @,;=0 when there is no path from j to i, whereas
O<w,; ;<1 when i is directly reachable from j. A scheme illustrating the architecture of this model,
and more information about it are provided in section 3.8.1.

Another possible use of unsupervised Hebbian learning is for the implementation of self-organizing
maps (Kohonen, 1995), which we employed for the coordination of Stimulus-Response learning
modules in our model (see chapter 2, section 4). Despite the word « map », this algorithm does not
necessarily apply to the building of an allocentric map of the environment. It is an artificial neural
network trained to produce low dimensional representation of the training samples — e.g. a set of
visual inputs perceived by an agent in an environment — while preserving the topological properties
of the input space (Ritter et al., 1992). For exemple, an agent introduced into a continuous
environment containing two different cues — cuel and cue2 — will receive an ensemble of
continuous visual inputs between « perceiving cuel only », «perceiving cuel and cue2 »,
« perceiving cue2 only », and a set of intermediary visual perceptions. In this case, the goal of
learning in the self-organizing can be to associate certain neurons (or nodes) in the map with certain
input patterns in order to build a discrete approximation of the distribution of visual perceptions.
Learning will lead to bring closer and to cluster neurons in the map which respond similarly to a
given visual input, while moving away and separating neurons which respond differently. Thus, after
learning, such a map will « represent » approximate categories within the visual input space. This is
partly motivated by how visual, auditory and other sensory information is handled in separate parts
of the cerebral cortex in the brain (Haykin and Simon, 1999).

3.3 Reinforcement Learning in neural networks

While methods presented in the previous section can provide algorithms to build representations of
an agent's perceptions, reinforcement learning provide a tool to adapt the agent's actions to the
environment.

3.3.1 Markovian decision processes

Within a community with intuitions from animal learning theory, researchers have provided a
theoretical framework for Reinforcement Learning in order to have an agent learn by trial-and-error
to adapt its actions in a given environment so as to maximize some notion of long-term reward (see
Sutton and Barto, 1998). This theoretical framework is grounded on Markov Decision Processes
(MDP), in which it is assumed that the agent state at a given moment only depends on two factors:
its state at the previous instant, and the action it has just performed (Bellman, 1957). This provides a
deterministic framework in which one can prove conditions for learning convergence.

The agent's behavior is identified as its policy, a function IISX A—IT|A| which indicates, for each
state s € S, the probability distribution that the agent chooses each action a € A it this state. The
agent's state can refer to various parameters such as its perceptions, internal metabolic state, or
location within the environment. Usually, the probability to perform action a in state s is noted as
IT (s,a) . Once the action is chosen, a certain transition function 7" determines for each (state,action)
couple the probability distribution that the agent can reach each possible state based on the action it
has just performed in the former state.

In model-free reinforcement learning, the transition function is unknown and cannot be learned by
the agent (Sutton et al., 1992).

In model-based reinforcement learning, the agent can learn and use the transition function. Thus
the agent is provided with a world model enabling it to choose its actions based on an estimation of
their consequences (i.e. in which final state they will lead) (e.g., Sutton, 1990; Barto et al., 1995,
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Kaelbling et al., 1996).

3.3.2 Learning based on reward

In a given environment, there can be a state s where performance of action a by the agent can lead
to a reward: R(s,a) . The main objective for the agent is to adopt a policy which enables it to
maximise the frequency and the value of these rewards. Thus, the agent shall proceed with a certain
learning to adapt its policy.

Formally, in reinforcement learning, in order to evaluate the agent's policy 17, a value function
VH(S) associates to each state s an estimation of the cumulated reward the agent will get if it

performs this policy starting from state s. The cumulated reward consists in the sum of all future
reinforcement signals and can be written as:

RH(Z):rt+y.rt+1+)/2.rz+2+... (E.1)
where 0<yp<1 is a discount factor which limits the capacity to take into account rewards in the far
future and prevents this sum from being infinite. Equation E.1 can be written as:

Rlt)=X yr, (E.2)
i=1

Then, the value function is defined as the expected (or predicted) reward return starting from state S
and following policy 11, and can be written as :

VH(S): ; II(s,al|R(s,a)+y Z:S T(s,a)(s’)VH(s’) (E.3)
where T'(s,alls’] denotes the probability, based on the transition function 7, to reach state s’ after
performing action a in state s. Equation E.3 is called Bellman equation for policy 11. This equation
plays a fundamental role at the core of optimisation methods which permit to define reinforcement
learning algorithms.

There exist three main classes of algorithms permitting to an agent facing an MDP to discover an
optimal policy — a policy by which the agent can get a maximal cumulated long-term reward:

1. Monte Carlo methods, which do not require any a priori knowledge of the environment
(model-free), and have the lack not to rely on an incremental estimation of an optimal
policy;

2. Temporal Difference methods, which are also model-free, and rely on an incremental
estimation of an optimal policy;

3. Dynamic Programming algorithms, which are used when the agent is provided with a world
model (model-based), that is when both transitions and reward functions are known.
Examples of such algorithms are Dyna-Q, prospective planning or Tree-search;

In this manuscript, we will not explain the first class which is reviewed in (Sutton and Barto, 1998;
Cornuéjols and Miclet, 2002; Sigaud, 2004).

We will first focus on Temporal Difference methods, which are widely used in the field of
Reinforcement Learning because they gather interesting properties from the two other classes: like
Dynamic Programming algorithms, they are incremental (the estimated value V(s) in the current
state s is updated based on the estimated value V(s’) in the forthcoming state s"); like Monte Carlo
methods, they do not require any model of the environment.

However, Temporal Difference methods are slow to learn and suffer from inflexibility. Thus we will
also present a few examples of model-based Dynamic Programming methods, which have a high
computational cost and degree of complexity due to the manipulation of the world model, but which
are more flexible than model-free algorithms.

3.3.3 The model-free Temporal Difference (TD) algorithm

The method consist in comparing two consecutive reward estimations (or predictions) V,_, (s) and

V,(S') , the agent having performed an action a between state s and s'. For simplicity, we note these

reward estimations V,_, and V, , following the demonstration of Barto (1995):
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_ 2
V. _=r+y.r +y.r ,+t.. (E.4)

V=r +y.r, +yr .. (E.5)
Notice that equation E.4 can be reformulated as:

V, _(Zr+Yr  tP.r "t (E.6)
Which, combined with equation E.5, gives:

Vio=r+y.V, (E.7)

This is the consistency condition that is satisfied by the correct predictions. The error by which any
two adjacent predictions fail to satisfy this condition is called the femporal difference error (TD
error) by Sutton (1988) and is computed as: 7,+y.V,=V,_, .

Then learning does not consist in waiting for a long term reinforcement signal, but rather in
modifying at each timestep the value function VH(S) as a function of the TD error between two
consecutive reward estimations:

TD error

Vlslevglslen [r,+y.v,=v,_| (E.8)

where 1> 0 is the learning rate. In the same manner, the policy of the agent can be updated by
modifying the probability to perform again the same action a in the same state s:

TD error

H(s,a)<—]_[(s,a)+n.[rt+y.Vt—thJ (E.9)
This learning procedure leads to progressively translate reinforcement signals from the time of
reward occurrence to environmental contexts (i.e. states) that precede the reward, and further to
states preceding states preceding reward, ... as described with the example in BOX1.

In this example, a stimulus S/ preceding reward has its value reinforced. Then, the perception of S/
becomes reinforcing, and enables to increase the value of a stimulus S2 preceding S1. Barto
describes this method with the expression: « It is [...] like the blind being led by the slightly less
blind » (Barto, 1995). Dayan and Sejnowski (1994) proved that this method converges with
probability 1. This method can enable an agent to find an optimal behavior within a discretized
environment (see Sutton and Barto, 1998 for a review) or a continuous one (Doya, 1999, 2000a; Tani
et al., 2007).

A widely used architecture for the implementation of the Temporal Difference learning method is
the Actor-Critic architecture as described by Barto (1995) and displayed on figure 1.3.1. On the
one hand, the Actor is the memory zone which stores the agent policy and performs action selection
depending on the agent's state within the environment. On the other hand, the Critic evaluates the
value function at each timestep. To do so, it makes a reward prediction. Then at the next timestep, it
computes its reward prediction error based on actual feedback from the environment (the primary
reward which can be positive, negative or null), and according to the TD error. If the primary reward
is better than expected (respectively worst than expected), the Critic sends a positive (respectively
negative) reinforcement to the Actor, thus permitting the Actor to adapt action selection. Besides,
the same reinforcement signal is also used by the Critic in order to precise its reward predictions.

In the field of model-free reinforcement learning, other methods have derived from Temporal
Difference Learning. We briefly mention methods such as SARSA and Q-learning, which similarly
to the TD algorithm, are employed in some models of rodent navigation or in models of
reinforcement learning within the cortico-striatal system. In contrast to the TD method which
estimates a value function VI—_,(S) of a state s (i.e. a reward prediction computed in state s), the
SARSA algorithm works with the guality of the (state,action) couple — also called the action value
function —, written as Q(s,a) . As a consequence, SARSA is required to predict one step further
which action a’ the agent will perform at the next timestep. SARSA is updated according to the
following equation adapted from E.8:
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Q(s,a)HQ(s,a)+n.[rt+y. Q(s',a')—Q(s,a” (E.10)

BOXI1: Example of an agent learning a sequence of stimulus-action associations.
action Al

S1 /\reward
I o
t—1 t time
Let's reduce the state to
the information concerning a single salient stimulus S1 in the environment. At time t-1, the agent
performs action Al in response to stimulus S1. This leads the agent to reach, at time t, a reward.
Thus, based on equation E.8, the reward value associated to stimulus S1 is increased, building a
stimulus-reward association S1-reward:
>0

Vg |S1)<V(SI+n.[1+y.0-0]
On the same occasion, the policy associated to stimulus S1 is modified, thus building a stimulus-
action association SI-Al:

>0
—_—

I1(S1,AI|IT(SLAI|+1.[1+p.0—0]
Then, let's consider that some time later, the agent experiences a new stimulus S2, selects
randomly an action A2 in response to S2, which results in putting the agent in front of the known

stimulus S1.
Some time later...

action A2

SZ /—\ S 1 reward
| | |
| | —

t—1 t time

Stimulus S1 having been associated with reward, can itself become a source of reinforcement
thanks to TD learning, thus increasing the value of stimulus S2 according to the following

equation:
>0

VlS2| <V gls2+n.0+y.vylsi]-0]

On the same occasion, the stimulus-action association S1-Al is increased:
>0

I1(52,A2) —IT(52,A2+ 1.0 +y.V ;[81]-0|

As a consequence, the agent has learned a sequence S2-A2 — S1-Al to reach the reward.

Improving the SARSA algorithm, Q-learning does not need to predict the action performed at the
next timestep, since it updates the quality function based on the estimated optimal action at the next
timestep:

Q(s,a)<—Q(s,a)+77.[rt+y.maxaQ(s’,a —Q(s,a” (E.11)
The term Q|s'a’ i in equation E.10 has been replaced by max Q(s',a) in equation E.11. This could
appear equivalent when the agent always chooses the action that maximizes reward (in this case,
a'=argmax ,Q s\a) ). However, the necessity to realize an exploration/exploitation trade-off makes
this equality generally false. Thus, it appears that the SARSA algorithm processes its updating as a
function of actions actually performed, whereas Q-learning processes it updating as a function of

optimal actions, which makes it easier and more efficient (Watkins, 1989). Formal proofs of
convergence of the Q-learning algorithm have been produced (Watkins and Dayan, 1992).
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Figure 1.3.1 : Actor-Critic architecture. Adapted from Barto (1995). a) Global schema describing
interactions between the Actor, the Critic and the environment. At each new timestep, the Critic
sends to the Actor a reinforcement signal (which can be null) computed out of the TD error. b)
Barto's canonical neural network implementation of the Actor (left) and the Critic (right). Each
possible action is represented by a neural unit in the Actor part. A neural unit computes reward
predictions in the Critic. Consecutive reward predictions are combined with a primary
reinforcement (the actual reward received at time #) within a neural unit computing the TD error.
The resulting effective reinforcement learning is used to reinforce synaptic weights of both the
Actor and the Critic.

It is important to notice that, due to the property of TD learning to incrementally transferring reward
information from reward itself to stimuli that precede it, this model-free method is slow to learn
and suffers from inflexibility (Samejima and Doya, 2007).

It is slow to learn, because if the agent randomly performs a sequence of actions A1-A2-A3 which
lead to reward, only action A3 is reinforced the first time. Then the agent has to perform the
sequence again so that action A2 is reinforced, and so on. It is inflexible, because when the
condition of the reward is changed (e.g. in case of a reversal), the agent has to experience many
failures to depreciate action A3, then action A2, then action Al. It is only when action A1 has been
depreciated that the agent can perform a new action sequence A4-A5-A6.

3.3.4 Model-based reinforcement learning algorithms

In order to improve the learning speed and the flexibility, researchers developed model-based
reinforcement learning (Sutton and Barto, 1998), in which the consequences of actions is learned
and used under the form of the transition function:

T:sXs'Xa— Proba(s'ls,a) (E.12)
This function gives the probability to reach state s’ after having performed action a in state s.

As explained in the first chapter of the introduction, if the states represent positions in a given
environment, then this function can consist in an allocentric graph linking places together and
providing transitions from one place to another. If the states represent visual stimuli, or any other
external cues, then this function can consist in a graph which is not necessarily allocentric. In any
case, building the model of transitions does not require reward information, and thus can be learned
through unsupervised learning, simply by associating temporally consecutive states and actions.

For example, in the model of Gaussier et al. (2002), while building an association in the map
between two successively visited places j and i, the model can also learn to associate the action a
that was performed to enable the agent to reach place i starting from place j.

Then, the reinforcement learning part of the method consists in associating reward or goals with
certain states in the model (e.g. associating certain places with the presence of a reward, Gaussier et
al., 2002). Provided with such information, the action selection process can take into account
estimated consequences of action and can be done with several algorithms. An example is
prospective planning or tree-search, or look-ahead planning, in which the agent can anticipate
several actions in advance without actually performing them, and thus can predict a hypothetical
outcoming state (Baldassarre, 2002b,2003; Gaussier, 2002; Butz et al., 2003; Daw et al., 2005;
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Hasselmo, 2005; Degris et al., 2006).

Model-based reinforcement learning can also be used to disambiguate noisy or missing sensory
inputs, in a form called « belief states » (Samejima and Doya, 2007). For instance, when an animat
navigating in the environment experiences two visually similar states, by combining the world
model and history of the past actions stored in working-memory, the animat can estimate which of
the two possible states is the most reliable. An efficient method to combine noisy observation and
dynamic prediction based on a world model is the framework of Bayesian inference (Doya et al.,
2007).

Model-based reinforcement learning algorithms have the advantage to provide rapid learning since
the world model permits to “try” actions and evaluate their consequence without actually
performing them, rather simply by simulating the performance of these actions within the world
model (Sutton and Barto, 1998; Coulom, 2002; Degris, 2007). Moreover, these algorithms provide
more flexibility than model-free methods, since the devaluation of a reward or the change in the
reward position can be taken into account by changing the states with which reward is associated.
Then, planning within the latter adapted world model can provide a one-trial adaptation of the
behavior to perform by the agent (Daw et al., 2005).

However, model-free methods such as TD learning have the advantage not to require the storage of
such a world model (only stimulus-reward and stimulus-action associations are stored, respectively
by the value function and the policy function). Moreover, action selection does not rely on a
complex and computationally expensive exploration of a world model. Rather, the perception of a
stimulus is enough to trigger an action.

Thus, model-free and model-based learning methods appear to have complementary advantages that
are appropriate in different situations (Sutton and Barto, 1998; Uchibe and Doya, 2004). Model-
based methods are particularly suited when facing novelty (e.g. a task rule change), whereas model-
free methods are adapted when the task is stable.

Note that certain authors have proposed to combine model-based methods with TD-learning (Sutton
and Barto, 1998; Doya et al., 2002).

In the next section, we present the analogy between model-free / model-based methods and some
neurobiological data. It turns out that the TD learning algorithm and the Actor-Critic architecture
within which it is anchored show a strong resemblance with the way dopamine is released within the
basal ganglia.

Besides, models of transition within the environment, planning and belief states were found to
accurately describe prefrontal activity during certain tasks.

3.4 Analogy between the TD error and dopamine signals within the basal
ganglia

As we have seen in section 2.4, electrophysiological data recorded in the monkey suggest that
dopaminergic neurons respond to unexpected rewards, or to conditioned stimuli predicting reward,
whereas they do not respond to predicted rewards (Schultz, 1998; Schultz, 2001). This pattern of
response is very similar to the Temporal Difference error, and thus to the reinforcement signal
described in the previous section.

Indeed, when considering the reinforcement based on the TD error equation: 7,=r,+y.P,—P,_,
where 7, is the effective reinforcement at time 7 used by Barto (1995) as shown on figure 1.3.1,

assuming the usual case where ) is close to 1 (e.g. y=0,98 such as in the model of Suri and
Schultz, 1998,2001), we can see that:

1. At the occurrence of an unexpected reward, we have r,=+1,P,=0,P,_ =0  thus 7,=+1

2. At the time of a reward predicting stimulus S,we have 7,=0,P,~+1,P,_ =0 | thus 7,~+1
3. At the time of the reward predicted by S, we have r,=+1,P,=0,P,_ ~+1 | thus 7,~0

4. When an expected reward does not occur, we have r,=0,P,=0,P,_ ~+1  thus 7,~—1,
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which results in an interruption of activity in « dopaminergic neurons » having a baseline

activity within models (Suri and Schultz, 1998).
These various cases describe quite accurately the different situations where dopaminergic neurons
were recorded as shown on figure 1.3.6. This report gave birth to the hypothesis that dopamine
could encode the temporal difference error (Barto, 1995; Houk et al., 1995; Montague et al., 1996;
Schultz et al., 1997). Moreover, the two-compartmental structure of the Actor-Critic architecture
implementing TD-learning was found to reflect the anatomical dissociation between striatal
territories which project to dopaminergic neurons — thus able to drive reinforcement learning —, and
striatal territories which do not — only subject to RL. As described in section 3.2, this dichotomy can
be either considered between striosomes (Critic) and matrisomes (Actor) (Gerfen, 1984,1992) or
between the shell (Critic) versus other parts of the striatum (Thierry et al., 2000; Voorn et al., 2004).

stimulus 1 stimulus 2
L] (IJ E: (’}

temporal temporal

representation representation
. X\ X1z 5 = =r*2\ *a2| *2
learning
2 Wim Xim WZM“"I
m -
prediction o . prediction
presentation
winner- P (1) resat Py (1)
take-all
temporal
action 1 action 2 difference,
r(t) Al
N ]
Effective Reinforcement primary
Signal reinforcement
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Figure 1.3.2 : Actor-Critic model using a temporal representation of stimuli. Adapted from Suri
and Schultz (1999). The model consists of an Actor component (left) and a Critic component

(right). Actor and Critic receive input stimuli 1 and 2 which are coded as functions of time, e, (t )
and ez(t) , respectively. The Critic computes the Effective Reinforcement Signal r(z) which

serves to modify the weights v,, of the Actor and the weights w,, of the Critic at the adaptive
synapses (heavy dots). Within the Actor, a winner-takes-all rule prevents the Actor from
performing two actions at the same time. Within the Critic, every stimuus / is represented as a
series of components X, of different durations. Each of these components influences the reward
prediction signal according to its own adaptive weight w, . This form of temporal stimulus
representation allows the Critic to learn the correct duration each stimulus-reward interval.
Computation of the Temporal Difference error and adaptation of synaptic weights are subserved
in a similar manner as described in figure 1.3.1.
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3.5 Computational model-free systems in the basal ganglia

Starting from the resemblance between TD-learning and dopaminergic neurons activity, a number
of Actor-Critic computational models were developed to represent the functional role of the basal
ganglia in action selection and reinforcement learning (see Joel et al., 2002; Gurney et al., 2004 for
reviews; and Khamassi et al., 2005 for a more recent comparison). Until recently, these models
individually focused on the modelling of reinforcement learning of a single behavioral or
navigational strategy, starting from the hypothesis that the basal ganglia were dedicated to habitual
S-R learning (Graybiel and Kimura, 1995; Houk et al., 1995). In most cases, the modeled strategy
was one of the two following: a model-free allothetic dimension or a model-free place dimension
Strategy.

3.5.1 Models associating cues with actions

Indeed, an important subset of these models focused on the reproduction of the precise temporal
patterns of response of dopaminergic neurons in Schultz's task involving an association between an
external cue (tone or light) and a reward, thus able to provide cue-based learning strategies (Houk et
al., 1995; Montague et al., 1996; Suri and Schultz, 1998, 1999, 2001; Suri, 2002; Perez-Uribe, 2001;
Sporns and Alexander, 2002).

For example, in the model of Suri and Schultz (1999), displayed in figure 1.3.2, the Actor-Critic
employs a temporal representation of stimuli providing precise durations of stimulus-reward
intervals. This temporal representation is called a “complete serial compound stimulus” (Montague
et al.,, 1996) and varying, time after time, the values x,; representing stimuli. For instance, if the
Actor-Critic model gets an input X, ,=1 , it means that stimulusl was perceived 2 ms ago. If it gets
an input X,5=1, it means that stimulus2 was perceived 5 ms ago. Using such a representation, the
Actor-Critic model is able to predict the precise moment when the reward usually occurs. If a
predicted reward does not occur, the model is able to produce a negative signal similar to
dopaminergic neurons' response in the same situation (Schultz, 1998).

In the article presented in chapter 2, section 2.2, we adapted this component to reproduce reward
anticipatory activities recorded in the ventral striatum.

Moreover, Suri and Schultz (1999)'s model employs an ad hoc association between different stimuli
and different Actor-Critic modules (see figure 1.3.2), thus preventing any interference the modules'
responses to different stimuli. The latter feature is not satisfying for navigation in autonomous
animats facing changing environments, since the experimenter cannot manually add a new Actor-
Critic module each time the animat is facing a new stimulus.

Some Actor-Critic models were design to solve this issue by implementing a mixture of Actor-Critic
experts (Baldassarre, 2002; Doya et al., 2002). The mixture of experts algorithm was proposed as a
formal architecture to coordinate different experts competing and learning a given task (Jacobs et
al., 1991). It mathematically parametrizes how experts “share” learning signals. Moreover, both
Baldassarre (2002) and Doya et al. (2002) combine the mixture of experts with a certain rule
controlling the latter parameters, that is, deciding which experts should but trained at each given
moment. In both models, each expert has a component which learns to predict future states. Then,
the expert which has the best performance in computing accurate predictions in a given state will be
trained. As a consequence, each expert becomes specialized in a particular subset of a given task.
Note that in Doya et al. (2002)'s model, the components predicting future states are model-based
systems. However, these components are used to coordinate reinforcement learning modules which
subserve a model-free action selection (without engaging a planning procedure). This is why we
mentioned this model in this section. These combinations of TD-learning and mixture of experts are
particularly suitable in robotics reinforcement learning tasks with an important number of states
(Baldassarre, 2002; Doya and Uchibe, 2005).

Finally, let's mention that other groups of Actor-Critic models have been proposed, notably focusing
on the basal ganglia's ability to generate sequences of actions in response to sequences of external
cues, these sequences being either immediately performed by an agent or stored in a cortical
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working memory buffer (Berns and Sejnowski, 1996,1998; Beiser and Houk, 1998; Doya,
1999,2000; Hikosaka et al., 1999; Frank et al., 2001; Nakahara et al., 2001; Brown et al., 2004,
O'Reilly and Frank, 2006).

A final group of models focused on the way basal ganglia anatomy could play a Critic-like role in
generating temporal difference errors (Brown et al., 1999; Contreras-Vidal and Schultz, 1999; Doya,
1999,2000; Bar-Gad et al., 2000; Suri et al., 2001; see Daw and Doya, 2006 for a review).

3.5.2 Models associating places with actions

Another group of Actor-Critic models were more specifically dedicated to navigation and studied
how hippocampal spatial input to the basal ganglia combined with a TD-learning algorithm could
subserve a place recognition-triggered strategy (Brown and Sharp, 1995; Arleo and Gerstner, 2000;
Foster et al., 2000).

As we did not implement a model for learning locale navigation, we will not precisely describe
these models here. However, the important thing to note is that, in contrast to the model of Suri and
Schultz (1999) presented in the previous section, models of locale navigation roughly consist in
replacing input stimuli sent the Actor-Critic system by input places computed by localization
system. Then, both reinforcement learning and action selection methods are similar to the models
presented in the previous section.

It is interesting to mention that several models implementing reinforcement learning within the
basal ganglia have replaced the TD-learning system by a Q-learning system (Strosslin and Gerstner,
2003; Chavarriaga et al., 2005a,b; Daw et al., 2005; Sheynikhovich et al., 2005; Hadj-Bouziane et
al., 2006; Haruno and Kawato, 2006). As mentioned earlier, whereas TD-learning separately learns
the value function and the policy, respectively within the Critic and the Actor, Q-learning systems
combine the two in a quality function (or action-value function).

Whereas section 3.4 presented evidence that the dopaminergic neurons can encode a TD-learning
signal, Samejima et al. (2005) have shown that part of the striatum could subserve Q-learning. They
indeed showed in a free choice task in monkey that many striatal neurons represent action-specific
reward prediction, which can be related to the guality function used in the Q-learning algorithm.

3.6 Computational model-based systems in the rat prefrontal cortex

During this PhD thesis, we did not systematically review computational models implementing
decision making within the prefrontal cortex, such as the one proposed by Daw et al. (2005).
However, in order to prepare the section concerning models of the prefronto-striatal system's role in
navigation, we will describe the model of Hasselmo (2005) which is particulartly dedicated to the
model-based locale strategy.

Hasselmo proposed a model of cortical organisation based on minicolumns that he tested on a very
simple navigation task in a discrete environment. The model creates a topological representation of
the environment with three types of minicolumns: state, action and goal columns. State columns are
associated to the possible states of the world. Action columns are associated to the action that can be
performed in this world. Goal columns are associated to the reward the agent can get.

Before the task starts, all minicolumns that might be necessary are created and connections between
them are initialised. All these minicolumns have the same architecture (Fig. 1.3.3): they are
composed of 5 populations of cells in which each cell is a representation of a minicolumn of the
network (hence there are as many cells in a population as the total number of minicolumns). Two of
these populations, gi and go, form the upper division of a minicolumn and two others, Ci and Co
form the lower division. A fifth population @ codes for inputs that represent the agent situation
(only the column corresponding to the current situation will have its @ population activated). Figure
1.3.3 shows how a network of columns can use an algorithm close to activation-diffusion planning
in order to trigger an action.
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Motivation

a Action triggered

Figure 1.3.3: A model of planning, adapted from Hasselmo (2005). A. Populations of cells in
Hasselmo’s minicolumn. go, goal output cells; gi, goal input cells; co, state output cells; ci, state
input cells; a, action cells. B. Functioning of a minicolumn network in Hasselmo’s model. The
upper divisions perform back-propagation and the lower division triggers an action. This model
builds sequences of action-outcome associations. Then, the system can propagate both
information concerning the position of the agent (here state 1) and it's the goal (i.e. its
motivation) to deduce a path from the current position to the goal.

This phase is called the * retrieval phase ”: a motivational signal is fed to the goal minicolumn
(number 6 in the figure) and is back-propagated in the network until it reaches the minicolumn
associated with the current state which @ population is active (number 1 in the figure), an action is
then triggered. It is important to notice that the signal goes through inter and intra-column
connections. Inter-column connections learn the temporal relationships between two situations, and
intra-column connections learn a short temporal sequence indicating which situations can precede
and follow the current one (e.g. in minicolumn 3, there is a connection between cell 2 of go and cell
4 of gi, it indicates that minicolumns 2,3 and 4 where activated sequentially).

These connections are reinforced during an encoding phase. At each time step, the network
performs a retrieval phase to determine its next movement (decided randomly when none is
triggered) and an encoding phase to refresh its connections.

Such a system can perform planning by propagating both information concerning the position of the
agent and it's the goal to deduce a path from the current position to the goal. When the goal is
changed, the system can plan a path towards the new goal without needing to re-learn action-
outcome associations encoded in the model. Thus, this model enable flexible behaviors, similarly to
other model-based system inspired by the prefrontal cortex (Dehaene and Changeux, 1997, 2000;
Daw et al., 2005).

3.7 Analogy between model-based decision making and prefrontal activity

As mentioned in section 2.6, the prefrontal cortex shows an activity that can be related to goal-
directed behaviors in general, and flexible action planning, both in the monkey (Sakagami and Niki,
1994; Tanji and Shima, 1994; Watanabe, 1996; Schultz et al., 1998; Carpenter et al., 1999; Procyk et
al., 2000; Tanji and Hoshi, 2001; Matsumoto et al., 2003), and in rodents (Baeg et al., 2003; Mulder
et al., 2003; Hok et al., 2005; Kargo et al., 2007). More specifically some parameters of model-
based learning and decision making could be encoded in the prefrontal cortex, such as planned
future actions (Mushiake et al., 2006), stored sequences of actions (Averbeck and Lee, 2007), goals
(Hok et al., 2005; Genovesio et al., 2006), action-outcome associations (Matsumoto et al., 2003 ;
Mulder et al., 2003; Kargo et al., 2007), and working-memory components (Baeg et al., 2003).
Based on these data, some authors have recently postulated that the prefrontal cortex can realize
model-based reinforcement learning (Samejima and Doya, 2007). However, the precise algorithmic
mechanisms that could be processed within the prefrontal cortex are not yet clear. Still, several
models have been proposed to represent how the prefrontal cortex could learn a world model and
plan actions based on expected consequences.

In the next section, we review several models implementing at least two navigation strategies in an
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architecture inspired by the prefronto-striatal system. In mots cases, one of the navigation strategy is
assumed by its authors as a model-based strategy and relies on the prefrontal cortical network,
whereas the other strategy is model-free and relies on the striatum. These models coordinate
strategies in two different manners: a set of models implement strategy fusion, where decision of
the action to be performed by the agent is the result of a sum of candidate actions proposed by each
strategy. Thus, these models do not require any strategy shifting mechanism since strategies are
cooperating in decision-making.

The other set of models reviewed here implement a strategy competition mechanism to decide
which strategy controls the agent's actions at any given moment. The latter models enable strategy
shifting, as described below.
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Figure 1.3.5 : Model of Banquet et al. (2005). The left part of the figure represent the
hippocampal system implementing place recognition and associating places visited successively
through transition prediction. CA1-CA3, brain regions forming the hippocampus proper; DG,
dentate gyrus; EC, entorhinal cortex. The right part displays the decision making system. Top:
cortical map employed for planning. Bottom: striatal movement selector. After recognizing that
the agent can go from place B to place D, and from place B to place C, and after learning that
place C is associated by goal G/ satisfying the current motivation of the agent, the planning
system selects transition BC and triggers a “turn right” movement. When the cortical planning
map is disabled, transition recognition can directly trigger movements if a certain reinforcement
learning process has been performed.

3.8 Computational models of navigation strategies in the cortico-striatal

system

In this section, we review several recent models implementing different navigation strategies within
different subparts of the cortico-striatal system. These models will capture our interest since they
distinguish several navigation strategies, since they propose different roles of the cortico-striatal
loops in the learning of these strategies, and since they incorporate mechanisms than enable ED
strategy shifts mostly between place and cue-guided dimensions.

3.8.1 Models of strategy fusion

Gaussier et al. (1998, 2002), Banquet et al. (2005)

In this model, the implemented strategies are: 1) a place model-based strategy (« planning »); 2) a
place model-free strategy.

The former involves a brain network including the hippocampal system and the prefrontal cortex.
Within the hippocampal system, places are recognized and are associated though unsupervised
Hebbian learning in order to build representations of transitions from places to places (figure 1.3.5).
Then a cortical map enables the model to perform planning based on the agent's motivation.
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Besides, the model-free strategy is computed within the striatum. The system does not implement
place-recognition triggered responses but rather transition recognition-triggered responses.

The method for coordinating the two strategies is classified as “strategy fusion” since the planning
network directly influences the model-free system. Movements performed by the agent are based on
the sum of expected rewards computed by each strategy. Moreover, the system is able to deal with
several motivations (hunger, thirst). This model was successfully applied to navigation within a T-
maze and in robotics survival tasks.

Note that whereas the model implement a detailed architecture inspired by the hippocampal system,
the basal ganglia part (including the striatum) is simplified.
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Figure 1.3.6 : Model with two cortico-striatal loops. Adapted from Girard et al. (2005). The
model implements two basal ganglia loops, each one based on a biologically plausible model of
the basal ganglia (i.e. the GPR model, Gurney et al., 2001b). The “dorsal loop” is responsible for
triggering consumatory behaviors (ReloadE for reloading energy, ReloadEp for reloading
potential energy). The “ventral loop” selects locomotor actions based on propositions subserved
by two different navigation strategies. Both loops include several computational modules such as
a selection module, a control module, and a thalamo-cortical feedback (TCF). The first strategy
implemented is a hippocampo-prefrontal topological planning system. It systematically propose
propositions of action based on three different motivations: plan a path towards a given goal;
explore; back to a known area (BKA). The second strategy is a “target approach” equivalent to a
visual model-free system, and is subserved by direct sensory and motivational inputs to the
“salience computations” module. Decisions made by each strategy system are merged within the
ventral loop to subserve strategy fusion. Loops coordination relies on the subthalamic nucleus
(STN) which prevents from selecting locomotor actions when the agent is consuming a reward.

Girard (2003); Girard et al. (2004, 2005)

In this model, the implemented strategies are: 1) a place model-based place strategy (« topological
navigation »); 2) a visual model-free strategy (“target approach”). Similarly to Banquet et al.
(2005)'s model, the former strategy is assumed to rely on the hippocampo-prefrontal system,
whereas the former is implemented in the striatum (more precisely in the ventral striatum). In
contrast with the previous model, Girard et al. (2005) implemented a detailed biologically plausible
model of the basal ganglia (Gurney et al., 2001a,b; Humphries and Gurney, 2002; Girard et al.,
2002, 2003), whereas the hippocampo-prefrontal system is much less detailed.

Interestingly, different cortico-striatal loops implemented in the model do not represent different
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navigation strategies, but rather distinguish locomotor actions (resulting from all navigation
strategies) from non-locomotor actions which enable the robot to stop at resources and to consume
rewards (figure 1.3.6).

Similarly to the previous model, the system implement a strategy fusion mechanism. The model was
successfully applied to a T-maze task, to reproduce opportunistic behavior, danger avoidance, and to
a robotics survival task.

The system can also deal with several motivations. However, no learning mechanism is
implemented at the level of striatal action selection. Rather, hand-tuned synaptic weights determine
how stimuli influence action selection. One of the goals of the modelling work presented in chapter
2 section 3 is to solve this issue by using Temporal-Difference Learning to autonomously adapt the
cortico-striatal synaptic weights.

Guazelli et al. (1998)

In this model, implemented strategies are: 1) a place model-based strategy (« world graph »); 2) a
visual model-free strategy (“taxon navigation”). The former involves the parietal and prefrontal
cortices. The latter involves the basal ganglia.

In contrast to the two previous models, decisions taken by prefrontal model-based system are not
executed by the striatum. Rather, they are combined within the premotor cortex with decisions taken
by the basal ganglia model-free system (figure 1.3.7). Action selection is based on the sum of
expected rewards computed by each strategy, thus also implementing strategy fusion.

The model was used to simulate gradual/sudden choice changes in a T-maze reversal task in fornix
lesion experiments (O'Keefe, 1983).
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Figure 1.3.7 : Model combining a world graph (model-based) strategy and a visual model-free
strategy. Adapted from Guazelli et al. (1998). The yellow boxes represent neural networks
inspired by several brain structures. The hippocampo-parieto-prefrontal system implements
model-based navigation by planning within a “world graph”. The basal ganglia implements
model-free reinforcement learning. Action selection is subserved within the premotor cortex
based on a fusion of decisions taken by different strategies.
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3.8.2 Models of strategy competition

Chavarriaga (2005); Chavarriaga et al. (2005a,b)

In this model, the implemented strategies are: 1) a place model-free strategy (« locale »); 2) a visual
model-free strategy (“taxon”). The former involves the hippocampo-ventral striatal system, whereas
the latter is subserved by the dorsolateral striatum (figure 1.3.8).

In contrast to the previous models, this system implement a strategy selection mechanism, that is, at
any given moment, decisions relies on only one navigation strategy. The system learns to associate a
strategy to a given context based on the reward prediction by each strategy. As a consequence, the
shifting mechanism depends on the animat's perceptions and on reward expectations. A persistence
mechanism decreases the probability to perform two strategy shifts in less than 100 trials.
Interestingly, among the models reviewed here, it is the only one where strategies employ the same
learning mechanism based on dopaminergic TD-learning.

Cue-response Place-response F

igure 1.3.8 : Model involving two cortico-striatal
PC loops for locale and taxon navigation. Adapted from
N Chavarriaga et al. (2005a). The two loops have the
ACP§ same structure and involve the same learning
bt mechanism: @ dopamine-based TD-learning. The
difference between the two loops relies on the input
information triggering actions. On the left, visual cues
constitute the input, thus performing faxon navigation.
On the right, place information constitute the input,
thus performing locale navigation. In the center, a
gating network decides which strategy controls the
agent's behavior at any given moment based on the
{ reward predicted by each strategy, and on a memory of

Motor command (@) which strategy was previously associated to the current

context.

Action Selection

The model manages to produce intra-trial strategy shifts in response to a task change in a Morris
water maze task (Devan and White, 1999), which task was described in section 1.7, as well as
progressive shift from place to visual within a constant task in another Morris water maze task
(Pearce et al., 1998). It also well reproduces rats' bias towards one strategy when either the
hippocampus or DLS are lesioned (Pearce et al., 1998; Packard and Knowlton, 1992).

Daw et al. (2005)

As we already described this model in section 1.6, we will only mention here important features that
contrast with models above. Daw et al. (2005)'s model also implements strategy selection. However,
in contrast to Chavarriaga et al. (2005a), one of the two strategies implemented is a model-based
one. It implements: 1) a visual model-based strategy (« tree-search »); 2) a visual model-free
strategy. The former involves the prefrontal cortex, the accumbens core (ventral striatum) and the
dorsomedial striatum (DMS). The latter involves the dorsolateral striatum (DLS) and the accumbens
shell (ventral striatum).

The system implements a strategy shifting mechanism: the most reliable strategy (based on a
measure of Bayesian uncertainty) selects actions to be performed by the agent. The model
successfully reproduced devaluation effects on extinction in a lever-pressing task.

3.8.3 Conclusion
The models described above all consider the prefronto-striatal system and implement different
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behavioral strategies. Interestingly, they have in common to involve part of the striatum in model-
free strategies. Moreover, most of them involve the prefrontal cortex in high-level decision making
relying on model-based learning processes. They differ on the role of the ventral striatum which is
in some case responsible for strategy fusion (Banquet et al., 2005; Girard et al., 2005), in another
case for model-free navigation (Chavarriaga et al., 2005a), and in a last one for subserving model-
free reinforcement learning (Guazelli et al., 1998; Daw et al., 2005). None involve an explicit
prefrontal mechanism for strategy shifting.

Finally, let's briefly mention that several other models were proposed which involve different
prefronto-striatal loops in different behavioral strategies, not necessarily for navigation, yet in
primates. Some of these models were proposed for saccade generation (Dominey and Arbib, 1992;
Arbib and Dominey, 1995; Brown et al., 2004), for the generation of visuo-motor sequences
(Nakahara et al., 2001), or for advantageous stimulus-action-reward performance such as button-
push in response to visual stimuli (Haruno and Kawato, 2006).

The experimental work that will be described in the following chapters will contribute to:

1) (Chapter 2) clarifying the role of the ventral striatum in model-free learning by:

(a) (section 2) analysing electrophysiological data recorded in the VS of rats performing a reward-
seeking task in a plus-maze (Khamassi et al., paper submitted to J Neurophysiol, in revision);

(b) (sections 3 and 4) designing an Actor-Critic model of S-R learning where VS is the Critic which
drives learning, whereas DLS is the Actor which memorizes S-R associations. This model is applied
to robotics simulations, and compared with existing models in a virtual plus-maze; (Khamassi et al.
2005 Adaptive Behavior, 2006 SAB06);

2) (Chapter 3) studying the role of mPFC in strategy shifting by means of electrophysiological
recordings in the mPFC of rat performing a task requiring such kind of shifts. (Khamassi et al.,
paper in preparation)

Following hypotheses emerging from the neurobiological literature, we aim at finding reward
anticipatory activity in VS, that could confirm the involvement of VS in a Critic subserving TD-
learning for model-free strategies. Moreover, we expect to find neurons in the mPFC detecting task
changes and other neurons showing correlates with the current strategy performed by the animal.
These neurons could participate in a strategy shifting mechanism.
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CHAPTER 2 : ROLE OF THE VENTRAL STRIATUM IN
LEARNING CUE-GUIDED MODEL-FREE STRATEGIES

1. Introduction

The objectives of the experimental work presented in this chapter are: 1) to better understand
neuronal activity of the ventral striatum in reward-based learning; 2) to study the efficiency of
models of reinforcement learning inspired by the striatum in a simulated robotics task; 3) to benefit
from the pluridisciplinary approach of the subject. That is, on the one hand, to improve models
based on our neurophysiological data, on the other hand, to make predictions on functional
mechanisms to biology based on our models' simulations.

Three different studies are presented here:

e The first is an electrophysiological study of the rat ventral striatum in a reward-seeking task
in a plus-maze. The aim of the study is to test if neuronal activity in the rat ventral striatum
demonstrates reward anticipations compatible with the Actor-Critic theory for learning a
cue-guided navigation strategy (corresponding to a cue-guided model-free strategy explained
in the previous chapter).

e The second compares the efficiency of computational principles extracted from several
Actor-Critic models in a simulated robotics version of the plus-maze task. On the one hand,
the aim is to reproduce rats behavioral performance in solving the task. On the other hand,
the study analyses how these principles can integrate within a biologically plausible model
of the basal ganglia.

e The last proposes a new method to improve the performance of Actor-Critic models in
simulated robotics that consist in combining self-organizing maps with a mixture of experts
in order to automatically adapt several Actor-Critic submodules, each module being an
expert trained in a particular subset of the task.

Each of these three works will be presented in the form of articles that are published or submitted,
and will be preceded with a short presentation and summary of methods and results:

e Khamassi, M., Mulder, A.B., Tabuchi, E., Douchamps, V., and Wiener, S.I. Actor-Critic
models of reward prediction signals in the rat ventral striatum require multiple input
modules. Submitted to Journal of Neurophysiology, in revision.

e Khamassi, M., Lacheéze, L., Girard, B., Berthoz, A., and Guillot, A. (2005). Actor-critic
models of reinforcement learning in the basal ganglia: From natural to artificial rats.
Adaptive Behavior, Special Issue Towards Artificial Rodents, 13(2):131-148.

e Khamassi, M., Martinet, L.E., and Guillot, A. (2006). Combining self-organizing maps with
mixture of experts: Application to an Actor-Critic model of reinforcement learning in the
basal ganglia. In Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J., Marocco, D., Meyer,
J.A., Miglino, O., Parisi, D. (Eds), Proceeding of the Ninth International Conference on the
Simulation of Adaptive Behavior, SAB06, Lecture Notes in Artificial Intelligence, pp. 394-
405, Springer-Verlag.

Related works done during this thesis (in appendix) consist in: a preliminary comparison of Actor-
Critic models in a simulated robotics task (Khamassi et al., 2004); two articles concerning the
Psikharpax project, the artificial rat whose control architecture integrates our Actor-Critic models
with other models (Filliat et al., 2004; Meyer et al., 2005); a poster presenting a model coordinating
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two competing navigation strategies controlled by two cortico-striatal loops in a water maze task
(Doll€ et al., 2006)

2. Critic-like reward anticipation in the rat VS

Khamassi, Mulder, Tabuchi, Douchamps and Wiener (submitted to Journal of Neurophysiology).

2.1 Summary of objectives

The aim of this study is to test if neuronal activity in the rat ventral striatum could be involved in
reward anticipation activity compatible with the Actor-Critic theory. As mentioned in the previous
chapter, there is now strong evidence in primates that the ventral striatum can subserve the role of a
Critic by anticipating reward, and using reward expectations to modulate the release of dopamine
reinforcement signal in the striatum (Cromwell and Schultz, 2003; O'Doherty et al., 2004). This
mechanism is assumed to rely on the Temporal Difference Learning algorithm, in which temporally
consecutive reward predictions are compared in order to enable learning based on reward in the far
future (Schultz et al., 1997). Figure 2.2.1 summarizes this hypothesis.

Figure 2.2.1 : Schematic representation of the
Dorsdl hypothesized role of the dorsal and ventral
| striatum | striatum in reinforcement learning, based on
O'Doherty et al. (2004)'s data. VTA: Ventral
Tegmental Area; SNc: Substantia Nigra Pars
Compacta.

CRITIC |

Motor acts

\ /7
l \ 4

However, in the rat, it is less clear if the ventral striatal activity can be similar to a Critic since, in
previous protocols, anticipatory responses are difficult to discriminate from spatial or behavioral
correlates (Lavoie and Mizumori, 1994; Chang et al., 1997; Miyazaki et al., 1998; Martin and Ono,
2000; Setlow et al., 2003; Nicola et al., 2004; Wilson and Bowman, 2005). So we used a novel
experimental design that can dissociate these different types of activity.

2.2 Summary of methods

Seven rats implanted with electrodes in the ventral striatum (ventromedial caudate, medial
accumbens core and dorsomedial accumbens shell) were recorded while searching for different
volumes of reward at the respective arms of a plus-maze. Multiple rewards were provided at 1 s
intervals while the rat remained immobile. Neuronal responses were analysed during a window
starting 1 second before deliverey of the first droplet reward until 1 second after the last.

2.3 Summary of results

We found neurons discharging phasically prior to each droplet of water, both when the rat
approached or was immobile at the goal, demonstrating that this activity is predictive. Strikingly,
this activity often reappeared after the final droplet was delivered, while the rat was still immobile,
as if in anticipation of yet another reward.
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We replicated these neuronal activities by simulating a multiple-module Actor-Critic model whose
originality resides in providing different input information to each module. Four modules
independently process the same TD-learning algorithm based upon a different mix of spatial and
temporal inputs. The spatial information corresponds to the position (i.e., location of the respective
maze arms relative to one another and the room) and the available sensory cues, such as cue lights
at reward sites. The temporal information corresponds to the addition or suppression of the
‘complete serial compound stimulus' component proposed by Montague et al. (1996).

The co-existence of cells' responses corresponding to different modules in the model suggests a
multiple-input model of the rat ventral striatum.

Interestingly, whereas Schultz and colleagues reported similar stereotyped activity in all
dopaminergic neurons recorded (Schultz, 1998), one of the predictions of our model is that different
sub-groups of brainstem dopaminergic neurons would be anatomically connected to respective TD-
learning modules, and would, in the same plus-maze task, exhibit differential responses to reward
(see figure 9 in the paper): a set of dopamine neurons responses to reward should vanish as in the
seminal study of Schultz et al. (1997); another set of dopamine neurons related to the TD-learning
module which erroneously anticipates an additional droplet of water in our model should have
negative responses. In the latter case, the model's prediction constitutes an interesting situation
where the negative response to reward could have been intuitively interpreted as contradictory to the
TD-learning theory, whereas indeed, this response is predicted by the slightly different version of
the TD-learning model proposed here.

2.4 Discussion

We found phasic responses that anticipates a sequence of consecutive water rewards, independently
from the rat behavior. These results agree with the hypothesis that neurons of the rat ventral
striatum could participate in the role of a Critic in the framework of the TD-learning theory.
Furthermore, the regular timing of these anticipatory reward responses in the absence of any explicit
trigger stimulus suggests that these neurons have access to some kind of internal clock signals.
However, our experimental design was not conceived to precisely study this timing mechanism.

Interestingly, the reward expectation information reported here could be provided to the ventral
striatum by the orbitofrontal cortex (OPFC). The latter has been suggested to code the motivational
value of environmental stimuli, and OPFC neurons were recently found to code reward expectancy,
regardless of reward magnitudes, in an olfactory discrimination « go / no-go » task (van Duuren et
al., 2007).

Another interesting point to note is that anticipatory responses to reward are not the only type of
responses that we found in the rat ventral striatum. Previous results recorded in the same experiment
show goal-approach neurons (Khamassi, 2003; Mulder et al., 2004). The latter constitute a
population of cells whose activity cut the behavioral sequence performed by the rat in subparts such
as « from departure to maze center », « from maze center to goal », « from half of departure arm to
goal », ...etc. Moreover, 25% of these neurons were spatially modulated, which means for example
that one neuron would respond from departure to maze center only when the rat started from arm #2
or #3.

The coexistence within the ventral striatum of goal-approach neurons and reward anticipation
neurons would be consistent with previous results from the literature (see section 1.2.3). As
discussed before, the former is consistent with the hypothesis that the core participates in goal-
directed learning (Dayan and Balleine, 2002; Cardinal et al., 2002) — corresponding to model-based
strategies explained in the previous chapter; whereas the latter is consistent with the hypothesis that
the shell mediates learning of reactive and procedural navigation strategies (Dayan, 2001; Corbit et
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al., 2001) — corresponding to model-free strategies. However, we did not find consistent differences
between shell and core neurons. Both kinds of correlates (goal-approach and reward anticipation)
were found in shell and in the core. Thus this is rather consistent with data stressing an anatomical
and functional continuum between core and shell (Heimer et al., 1997; Ikemoto, 2002; see Voorn et
al., 2004 for a review)

Finally, our task was not designed to distinguish different navigation strategies. Indeed, in our task,
rats had to perform a mix between visually-guided and spatial strategies: they had to memorize
different volumes of reward located in space, and simultaneously, they had to recall that only
rewards signalled by a light cue were available. Thus, we cannot study whether different groups of
reward anticipation neurons — like those we reported — are responsible for different navigation
strategies within the ventral striatum. Further investigations will be required to answer this question.
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Abstract

The striatum is proposed to play a vital role in learning to select appropriate actions
optimizing rewards according to the principles of ‘Actor-Critic’ models of trial-and-error learning.
The ventral striatum (VS), as Critic, would employ a Temporal-Difference (TD) learning algorithm
to predict rewards and drive dopaminergic brainstem neurons. In previous studies reporting
anticipatory responses in the rat VS, the experimental protocols did not control for possible
confounds with spatial or behavioral correlates; thus these data fail to provide strong support for
Actor-Critic models. Hence here we used a novel experimental design where, in rats searching for
different volumes of reward at the respective arms of a plus-maze, multiple rewards were provided
at 1 s intervals while the rat remained immobile. Neurons discharged phasically prior to each droplet
of water, both when the rat approached or was immobile at the goal, demonstrating that this activity
is predictive. In different neurons, the anticipatory activity commenced from 800-200 msec prior to
rewards and this activity could be greater for early, middle or late droplets in the sequence.
Strikingly, this activity often reappeared after the final droplet was delivered, as if in anticipation of
yet another reward. Basic TD learning models cannot replicate this rich variety of anticipatory
responses. Thus we developed a new model with multiple modules, the originality of which resides
in modules processing different mixes of input information with different ‘discount factors’
(accounting for future rewards). This TD learning variant thus constitutes a more biologically
plausible neural substrate for reinforcement learning.

Keywords: Accumbens, TD learning, caudate, reinforcement learning, dopamine
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Introduction

The prefrontal cortex-basal ganglia loop has been identified as instrumental for orchestrating
behavior by linking past events and anticipating future events (Fuster, 1997; Otani, 2004). It is
proposed to enable learning mechanisms for goal-directed behaviors, particularly those requiring
chaining of sequences of behaviors orders of magnitude greater than the time scale of postsynaptic
events (Joel et al. 2002).

For example the striatum is hypothesized to organize action sequences leading to habit
formation (Graybiel, 1998). Indeed some striatal neurons are selectively active in the successive
actions comprising goal directed behaviors (e.g., Kawagoe et al.. 1998; Itoh et al. 2003; Mulder et
al. 2004; Schmitzer-Torbert and Redish 2004), and yet others fire in relation to reinforcements
including food, drink, habit-forming drugs, and intracranial electrical stimulation (Hikosaka et al.
1989; Schultz et al. 1992; Wiener 1993; Lavoie and Mizumori 1994; Miyazaki et al. 1998; Martin
and Ono 2000; Shibata et al. 2001; Daw et al. 2002; Cromwell and Schultz. 2003; Takikawa et al.
2002; Nicola et al. 2004; Wilson and Bowman 2005). By virtue of their projections to brainstem
dopaminergic (DA) neurons (Houk et al. 1995; Schultz et al. 1997) the latter signals could help
resolve the classic ‘credit assignment problem’, namely, how to strengthen connections which were
active thousands of milliseconds prior to when the reward was received and thus outside the time
window of conventional synaptic plasticity mechanisms.

Temporal difference (TD) learning (Sutton and Barto, 1998) models of these reinforcement
learning mechanisms engage an ‘Actor’ and a ‘Critic’. As Sutton (1997) explains: “Actor-critic
methods are TD methods that have a separate memory structure to explicitly represent the policy
independent of the value function. The policy structure is known as the actor, because it is used to
select actions, and the estimated value function is known as the critic, because it criticizes the
actions made by the actor.”” Numerous studies have attempted to identify the brain areas
corresponding to these roles. Whereas neurons coding actions, for example in the dorsal striatum,
would play the role of the Actor, the identity of the Critic is controversial (Joel et al. 2002).
Candidates include dorsal striatal striosomes, ventral striatum, and prefrontal cortex, all with
neurons with apparently anticipatory activity and sending projections to DA neurons, which would
then transmit the error prediction signal.

Although there are now numerous data in monkey (Schultz) and in human (O'Doherty et al. 2004)
supporting the hypothesis that the ventral striatum show Critic-like reward anticipation activity,
there is a lack of evidence in the rat striatal recording literature since, in the experimental designs
employed until now, anticipatory neural responses could be confounded with activity associated
with reward-directed behaviors. Thus we recorded ventral striatal neurons in rats as they approached
goals and also rested immobile awaiting successive rewards presented at 1 s intervals. This revealed
anticipatory responses, some selective early, middle, late parts of the reward sequence. Strikingly,
these neurons also discharged in anticipation of yet another reward after the final one. We
demonstrate that these responses are indeed compatible with the TD learning model but only when
endowed with a novel capacity to engage multiple modules which process temporal or spatial inputs
with differing weights.

Materials and methods

Animals and apparatus

Seven Long-Evans male adult rats (220 to 240 g) were purchased (from the Centre
d'Elevage René Janvier, Le Genest-St-Isle, France) and kept in clear plastic cages bedded with wood
shavings. The rats were housed in pairs while habituating to the animal facility environment. They
were weighed and handled each work day. Prior to training they were placed in separate cages and
access to water was restricted to maintain body weight at not less than 85% of normal values (as
calculated for animals of the same age provided ad libitum food and water). The rats were examined
daily for their state of health and were rehydrated at the end of each work week. This level of
dehydration was necessary to motivate performance in the behavioral tasks, and the rats showed

Page : 72/ 196



neither obvious signs of distress (excessive or insufficient grooming, hyper- or hypo-activity,
aggressiveness) nor health problems. The rats were kept in an approved (City of Paris Veterinary
Services) animal care facility in accordance with institutional (CNRS Comité Opérationnel pour
I'Ethique dans les Sciences de la Vie), national (French Ministere de 1'Agriculture, de 1la Péche et de
I'Alimentation No. 7186) and international (US National Institutes of Health) guidelines. A 12 hr/12
hr light/dark cycle was applied.

1m

Figure 1. The experimental apparatus. The rat performed the behavioral task on a 180 cm diameter
platform with a low border. Barriers placed on the platform (dashed lines) restricted the movements
of the rats to four alleys. Four reward boxes (30 x 30 x 30 cm) were attached to the edge of the
platform and were equally spaced and oriented toward the corners of the experimental room. Each
box contained identical, highly contrasted polyhedrons suspended in front of a striped background.
Each reward box could be illuminated independently under computer control. The main sources of
illumination in the experimental room were the lamps directed towards the salient cues in the
reward boxes, the overhead lamp and two miniature lamps on the headstage of the rat. (Adapted
from Tabuchi et al., 2000).

Training and experiments took place in a four arm ‘plus’ maze. The arms were 70 cm long
and 30 cm wide with 40 cm high sloped black walls while the center was a 30 x 30 cm square. This
was placed in a darkened square room (3 x 3 m) bordered by opaque black curtains (Figure 1). At
the end of each of the four arms was an alcove (30 x 30 x 30 cm) containing a water reservoir and a
large highly contrasted, three-dimensional visual cue. The cues were identical in each of the boxes
but could be illuminated independently. Room cues included a wide inverted-T shaped white poster
board (185 x 60 cm) as well as a white rectangular box (56 x 25 cm), each mounted 70 cm from the
platform on walls respectively opposite or adjacent to the entrance of the curtained area. The poster
board was spotlit by a ceiling-mounted incandescent lamp (60 W) during both training and
recording sessions.
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Figure 2. The experimental task. First the rats performed a series of training trials where the
correct choice was guided by the lit cue lamp in the appropriate reward box. Each trial comprised a
sequence of visits to the four reward boxes providing 7, 5, 3 and 1 droplets of water. During recall
trials all cue lamps were lit, then were turned off one by one as the rat visited the reward boxes in
the same order of descending reward value. Reward values were then re-assigned for the second
half of the session, and were also changed daily. (Adapted from Tabuchi, et al., 2000).

Each reward box was equipped with automated water delivery and infrared photo-
emitter/detector systems. At the entry of each reward alcove stood a short (3 cm high) cylindrical
block (the 'water reservoir'). Tubing transported water from elevated bottles to computer-controlled
solenoid valves that in turn led to each water reservoir. When the rat arrived at the water trough and
blocked the photobeam, the computer triggered release of the water reward(s) there. The volume of
the water droplets was calibrated to 30 ul by regulating the time that the solenoid valves remained
open. Multiple droplets of water were provided at 1 s intervals. The solenoid valves made an audible
click when opening and closing. The times of the photobeam occlusions as well as solenoid valve
openings were recorded as event flags in the data file. Photodetectors also registered when the rat
arrived at the center of the maze.

The differentially rewarded plus maze task (Figure 2)

Details of the task and training protocols may be found in Tabuchi et al (2000, 2003). In each
session the rats were exposed to a novel distribution of different reward volumes at the four
respective arms of the maze and then were required to recall the sequence in order of decreasing
volume. After this, the reward distribution was changed and a second series of trials were run while
recording the same cells.

In the training phase, reward availability was signaled by cue lamps in the reward boxes. The
rat was thus cued to go in order to the respective boxes that provided 7, 5, 3, or 1 droplets of water.
For the multiple rewards, the successive droplets of water were delivered at 1 s intervals while the
cue lamp remained lit. After the rat consumed the water it returned to the center of the maze and the
lamp on the next arm was then lit automatically.

In the recall phase, all reward alcoves were illuminated, and turned off successively as the
rats visited them in order of descending reward value. The task design exploited the tendency for
rats to prefer locations with greater rewards (e.g., Albertin et al. 2000). If the rat entered an arm out
of sequence, all cue lamps were turned off and the same lamps were lit again when the rat returned
to the maze center. The rats only very rarely continued to the end of the arm in these cases, and thus
there was insufficient data to analyse error trials.

Electrode implantation and recordings
Electrodes were surgically implanted ater the performance level exceeded 70% correct
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(rewarded) visits (usually after 4 to 6 weeks of training). The rat was returned to ad lib water,
tranquillized with 0.1 ml of 2% xylazine (i.m.) and anesthetized with 40 mg/kg pentobarbital
intraperitoneally. Two bundles of eight 25 um formvar-insulated nichrome wires with gold plated
tips (impedance 200-500 kQ)) were stereotaxically implanted. Each bundle was installed in a guide
tube (a 30 gauge stainless steel cannula) and mounted on one of two independently advanceable
assemblies on a single headstage (Wiener, 1993). A ground screw was installed in the cranial bone.
One group of electrodes was placed above either the ventrolateral shell region of Acb (AP 10.7 to
11.2, ML 1.7 to 2.2), or the medial shell of Acb (AP 11.2 to 11.6, ML 0.7 to 0.9). The second bundle
was placed above the hippocampus (data reported in Tabuchi et al. 2000, 2003). About one week
later, after complete recovery from the surgery, water restriction and training were resumed. The
screws of the advanceable electrode drivers were gradually rotated daily until neurons were isolated
(the drivers advanced 400 um for each full rotation); then multiple single units were recorded as the
rat performed the tasks. The electrodes were advanced at least 3 hr prior to recording sessions to
promote stability.

Electrode signals passed through FETs (field effect transistors), then were differentially
amplified (10,000 x) and filtered (300 Hz to 5 kHz, notch at 50 Hz). Single unit activity was
discriminated post-hoc with DataWave software, where single unit isolation was performed using 8
waveform parameters (positive, negative and entire spike amplitude, spike duration, amplitude
windows immediately prior to and after the initial negative-going peak, and time until maximums of
positive and negative peaks) on the filtered waveform signals. Isolation was confirmed in interspike
interval histograms which had, on average, only 0.3% occupancy of the first 3 ms bins
corresponding to the refractory period. Waveforms are presented in Supplementary Figure 1 and as
insets to raster and histogram figures. Putative fiber responses were identified by extremely short
spike durations (on the order of 0.1 ms) and by distinctive waveform characteristics - these were
discarded from analyses.

Two small lamps (10 cm separation) were mounted 10 cm above the headstage. Reflectors
were attached to the rostral lamp to aid the tracking system in distinguishing it from the caudal
lamp. The two lamps were detected with a video camera mounted above the platform and
transmitted to a video tracking system (DataWave, Longmont, CO, USA) and a video monitor. All
of the action potential (digitized waveforms and timing) and behavioral (position of the animal,
photobeam crossings, water delivery) data were simultaneously acquired on a personal computer
with software operating under DOS (DataWave, Longmont, CO, USA).

In preparation for recording sessions, the rat was placed in a cage with transparent plastic
walls (and no wood shavings) then brought into the experimental room. The recording cable was
attached to the headstage and the rat was placed in a cubic cardboard box (with sides ~40 cm). Then
the electrode recording channels were examined for signs of discriminable neuronal activity. If this
was successful, the data acquisition system was initialized and the lamp assembly was attached. The
rat was then placed in the experimental apparatus where the lamp at the first reward box was already
lit. No attempts were made to disorient the rat, and the lengthy training period assured that the
environment was familiar. The rats always immediately started performing the task.

The neuronal discharge data are described strictly in terms of their synchronization with
reward deliveries. Thus no error trials are included in analyses since no rewards were delivered then.
Sessions usually lasted about 20 minutes.

Figure 3 (next page). Reconstruction of recording sites on the basis of histological preparations.
Animal identification numbers appear above respective electrode tracks. Recording sites are
marked by cross bars and numbers. Neurons are identified according to the following code: A -
anticipatory responses for individual droplets of water, E - uniform increase in firing rate during
drinking, I - inhibition during drinking, + - excitatory response for first droplet only, + - Excitation
and inhibition during first droplet, L — lesion site. Multiple single neurons recorded at the same site
are separated by commas. Histological analyses showed tracks in animal 6-2 were indeed in
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ventral striatum but sites could not be reconstructed with precision (data not shown). (Figure

templates adapted from Paxinos and Watson 1998 with permission)
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Data analysis

Data from all recorded neurons with average firing rates greater than 0.1 Hz during the
experiment were submitted to statistical analyses. The synchronization point for analyses of cell
activity was selected as the instant that the computer triggered the first droplet of water after the tip
of the rat’s muzzle blocked the photobeam at the reward boxes. In this experimental design, analysis
of variance (ANOVA) was selected for determining the correlations of spatial position, behavior,
reward and task phase with the firing rate of the neurons. In order to better approximate a gaussian
distribution, spike count data were first transformed to the sum of the square root of the count
summed with the square root of the count incremented by one (Winer, 1971). ANOVA has been
shown to be robust even in cases where the underlying distribution is not perfectly gaussian
(Lindman, 1974).

Two different analyses of variance (ANOVAs) tested for the first two or all of the following
three factors: 1) behavioral correlates - comparisons of firing rates during reward site approach,
arrival and water consumption (two 0.5 s periods prior to and after delivery of the first droplet of
water); 2) position correlates - differences in firing rate when the rat occupied the different maze
arms, and 3) comparisons between phases of the experiment (training versus recall phases and after
changes in the reward distribution). Data were also recombined from recordings on different arms
that provided the same reward volume during the course of a session (e.g., as shown in Figure 4).
Statistical results were considered significant at p<0.05. The Student-Newman-Keuls test was
employed for post-hoc analyses. ANOVAs and post-hoc tests were performed with Statistica®
(Statsoft, Tulsa, OK, USA) and other tests performed with Microsoft Excel®.

Histology

After experiments were completed the rat was rehydrated for at least a day, and then deeply
anesthetized with pentobarbital. A small electrolytic lesion was made by passing DC current (20
pA, 10 s) through one of the recording electrodes to mark the location of the electrode tip.
Intracardial perfusion with saline was followed by 10% formalin in 0.1M phosphate buffer (pH 7.4).
Serial frozen sections (50 um thickness) were stained with cresyl violet. Recording sites were
reconstructed by detecting the small electrolytic lesion and the track left by the guide tube, then
taking into account the distance that the microelectrode driver had been advanced from the point of
stereotaxic placement of the electrodes. The recording sites were calculated by interpolation along
the electrode track between the lesion site and the implantation site.

Results
Task performance levels

These data were recorded in 35 experimental sessions in 8 rats. In all cases performance was
nearly perfect on light-cued training trials. Consistent with our goal of studying the neural bases of
Actor-Critic modes of learning by trial-and-error, in recall trials rats sometimes incorrectly entered
maze arms that did not provide the greatest of the remaining rewards. The mean percentage of
correct visits was 79+8% and the range was from 60 to 92%. The number of completely correct
trials, that is, four visits in sequence of descending reward quantity, was 37 + 14% (standard error of
the mean) and ranged from O to 83% in individual sessions. (Note that the probability of correctly
performing a complete trial by chance is less than 4%, that is 0.25x0.33x0.50).

Cell localization

Electrode placements were intentionally made in different parts of the ventral striatum in
order to explore diverse sub-regions for possible reward-associated responses. Figure 3 shows that
recording sites were distributed in the core of the nucleus accumbens, the medial shell of the
nucleus accumbens, and the ventromedial part of the caudate nucleus. There was no anatomical
segregation of different response types (chi-square, p>0.05).

Cell activity profiles

The ANOVAs revealed significant behavioral correlates in about 75% of the neurons

recorded in the nucleus accumbens core (33 of 43), accumbens shell (60 of 81), and ventromedial
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part of the caudate nucleus (53 of 68). The present study focuses on those cells that showed

significant changes in firing rate when rewards were delivered (n=46; other neurons are reported in
Mulder et al. 2004).
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Figure 4. Phasic excitatory activity predicting reward delivery in a nucleus accumbens core
neuron. Raster displays and corresponding histograms (50 ms binwidth) are synchronized with the
onset of reward delivery (arrows above). Since the reward value distribution was changed in the
middle of the session, data have been regrouped from the cups to combine data corresponding to I,
3, 5 and 7 droplets of water respectively. Arrows at the left in the raster displays separate data
acquired at the respective cups. The discharge activity began as early as 800 msec prior to the
reward delivery. Note in the lower left panel, there is a fourth peak in the histogram at time 3 s, even
though no fourth reward was delivered then. The same inaccurate predictive activity also appears in
the right panels corresponding to 5 and 7 droplets. Activity at the right border of the panels
corresponds to arrivals at the next reward site. Waveform average is displayed in inset above (scales
50V, I msec). (rat 6-5, session 2409, unit 0-1).

Among these 46 cells showing reward related activity, we distinguish phasic neurons and
tonically active neurons (TANs). As in previous work (Mulder et al. 2005) TANs were identified
principally by /) the absence of ‘silent’ periods (when the firing rate went below 1 imp/s) of 2 s or
longer along the course of a trial, and 2) a significant decrease or increase firing (relative to
baseline) during a task event. In contrast, phasic neurons had silent periods interspersed with brief
bouts of behaviorally correlated activity. This pattern of phasic activity superimposed upon
negligible background activity is consistent with identification as a medium spiny principal neuron
(see Mulder et al. 2005). While only 14 of the total 66 (21%) phasic neurons with significant
behavioral correlates fired during reward delivery, 32 of the 80 statistically significant tonic neurons
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(41%) had these properties. Other neurons had average firing rates of less than 0.1 imp/s (n=11) -
since such data are unsuitable for the statistical analyses planned in the experimental design they
were not considered further.
Overview of cell response types

Three principal categories of reward-related responses were distinguished to classify the cell
activity profiles that we found. First, phasic firing rate increases prior to and during delivery of the
successive droplets of water (n=14). These anticipatory neurons had the striking property of
discharging after the final reward was delivered and the light in the reward arm was turned off. The
second group showed a firing rate increase (n=14) or mixed excitation and inhibition (n=7) during
delivery of only the first droplet of water. These responses do not anticipate later rewards at the
same site and thus a more closely correlated with reward approach behaviors. Finally, a group with
tonic firing rate increases (n=5) or decreases (n=6) throughout the period when multiple droplets of
water were delivered. These cells correspond most closely to well-documented tonically active
neurons (TANs) and some show very regular spike timing that could provide a possible mechanism
for the elaboration of the regular anticipation times of the first group of neurons. Note that these
groups could easily be confounded with one another in experimental protocols providing only single
rewards. Examples of each of these response types will be presented first. Then their relevance to
validation of the TD learning algorithm will be evaluated and a novel modified Actor-Critic model
will be presented accounting for observed inconsistencies.

Reward anticipatory responses. Figure 4 shows data from a nucleus accumbens core neuron that
started to discharge above baseline about 600-800 msec prior to each reward release, with peak
activity on average 100 msec before each droplet. The greatest responses occur for the first and last
drops of water. Although the activity preceding the first drop of water could be associated with
sensory or motor events (the looming image of the lit cue in the reward box, deceleration, assuming
an immobile stance and initial licking), this is not plausible for the subsequent responses for the
subsequent droplets since the rats invariably remained stably positioned at the water trough. In this
cell the activity precedes the subsequent rewards (indicated by arrows above the rasters) by 300 to
700 msec with a peak in the interval 200 msec prior to and following the reward trigger.
Interestingly, this same activity occurred in the same time window one second after the final droplet
was delivered. This is consistent with prediction of a final reward that was never provided. This
anticipatory activity occurred on both visually-guided and memory-guided trials (data from the
entire session are shown in the Figures.) This activity is surprising since it occurred after the lamp
signalling cue availability had been turned off. Recall that in training trials the rats reliably used
these same lights to locate the baited reward site. Note that in the present case this ‘erroneously
predictive’ activity occurred on less than half of the trials, yielding smaller histogram peaks than
observed for the preceding rewards.

Thus there was no clear correlation between the appearance of this activity on a given trial and
whether there were errors on that trial. There was also no relation between the overall performance
level of the rat and the incidence of erroneously predictive activity — the latter appeared in sessions
where the rat made 90% correct visits. Furthermore, this activity always occurred while the animal
still blocked the photobeam at the reward trough and only irregularly coincided with licking. Thus it
is parsimonious to consider this activity to be associated with the episodic anticipation of another
droplet of water rather than motor preparation of the subsequent departure (since movement timing
was the same on trials with and without the predictive activity). Activity in these neurons was not
correlated with departures (not shown).
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Figure 5. A tonically active ventromedial caudate neuron with phasic excitatory activity predicting
and following rewards. The response is greatest for the first droplet of water, lower for the final
droplets, while the weakest responses are found for intermediate droplets. Moderately high activity
also appears one second after the final droplet was delivered. The neuron discharged from about
200 ms prior to reward trigger until 300 ms afterwards. Only data from the first half of the session
are shown here — the remaining data show similar properties. Average waveform is displayed at the
top center. Scales are the same as Figure 4.

Lower panel) Data from all reward sites for the entire session are displayed at an expanded time
scale to demonstrate the fine structure of the activity during delivery of the first droplet of water.
Four peaks appear centered on —180, 0, 200 and 520 msec relative to the release of the first droplet
of water. In contrast, such fine structure for later droplets of water was not discernible in data in the
upper panels where the activity is a broad peak centered about the water delivery. Waveform
average is shown at top, same scale as Figure 4. (rat 6-2, session 1609, unit 2-2).
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Figure 5 demonstrates another variation of this type of response in a ventromedial caudate

neuron with a higher firing rate, a tonically active neuron. This neuron started to fire above
background rate at 200 ms prior to the first reward trigger and continued until 300-500 ms
afterwards. Similar to Figure 4, maximal responses occur at the first reward but, in contrast, there is
also a second major peak for the erroneous reward prediction at the end. The anticipatory activity
also is more robust here, occurring on virtually all trials for all droplets as well as the erroneous
prediction. The similarity of this final response to the others demonstrates that the persistence of
this activity in the 300-500 msec following the reward is independent of the presence or absence of
reward. In the histograms the later peaks appear to be narrower and clearly defined, with a trough of
reduced activity prior to the reward-predictive increases in activity.
All fourteen neurons with anticipatory activity also showed this ‘erroneously predictive’ activity
(see Supplementary Figure 2 for more examples). Of these, eight neurons were tonically active (like
in Figure 5), while the remaining six were phasic (as shown in Figure 4). These neurons were found
with similar incidence in the accumbens core (n=5) and shell (n=9; p=0.28, chi-square test).
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Figure 6. Phasic excitatory activity anticipating reward delivery in a nucleus accumbens core
neuron. This neuron discharged little for the first two droplets of water. The activity was greatest for
the final droplet of water and for the corresponding period one second after the final droplet
(corresponding to inappropriate anticipation of another reward). This neuron was distinguished
from others in this group by a rather low firing rate. Discharges started during the 800 ms
preceding water rewards. Waveform average is shown above, scales as in Figure 4. (Rat 6-5, session

1709, unit 0-1)

Neurons in this group had particular preferential selectivities for the order of presentation of
water droplets: early, midway or late in the sequence. For example, the neuron of Figure 4 had larger
responses for the first and last rewards. Figure 6 is an example of a phasic neuron in this group that
had only minor responses for the first and second droplets of water, but peak activity for the final
reward (except when there was only one water droplet). This variability demonstrates an uncoupling
between presumed level of anticipation or expectation and the activity of the individual neurons.
The first drop of water should have been anticipated with a very high degree of certainty, yet there is
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little such anticipatory activity in the neuron of Fig. 6. Yet other neurons had different order
preferences, for example two neurons fired maximally prior to and during delivery of the fourth
droplet of water (rows 4 and 5 in Supplemental Figure 2) exceeding the responses for the first or last
droplets. As detailed in the computational modeling section below, these characteristics will require
an adaptation of Actor-Critic models for TD learning so that they are constituted of multiple
modules, with the particularity that each module processes a different information concerning the
task.

Figure 7. This ventromedial caudate neuron

discharged prior to and after delivery of the first

droplet of water, but had no response to any

other successive droplets. At least two peaks are

discernible here centered on 100 and 350 ms

following reward delivery. This neuron was

exceptional in that it showed an increase in firing S e
rate to about 8 Hz prior to and during departures ' )
from the water troughs (shown below). Average
waveform is shown on top; scales are same as
Figure 4. Bin width = 20 ms. (Rat 6-2, session
0809, unit 1-1.)

16Hz

0 3 4
Time (sec)

Activity increase during release of only the first droplet of water. In the neurons of Figure 7 (top),
the firing rate started to increase at 100 msec prior to when the rat blocked the photodetector at the
water trough and the activity peaked at about 150 msec afterwards. No further activity was observed
for the following droplets of water at the same site (data are shown for all trials of the session).
While neurons in this group varied in the onset time (from 1 s prior to arrival until slightly after
arrival) and the offset time, the activity was only observed for the first droplet of water. These
neurons thus would not provide a reliable signal for reward anticipation.
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Figure 8. Inhibition during rewards in a tonically active neuron. The tonic activity at about 8 Hz
diminishes to about 3 Hz while the rat is at the reward trough consuming and waiting for more
water droplets. Unlike the neurons described above, the activity resumed during the second
following the final droplet of water and there was no prolongation for an additional second. Below,
the interspike interval histogram has a peak at 0.2 sec, corresponding to regular firing at 5 Hz.
Waveform average appears at top, scales as in Figure 4. (Rat 6-1,session 1209, unit 0-1).

Uniform increase or decrease of firing rate while multiple droplets of water were delivered. Figure 8
is taken from a tonically active neuron with inhibition during the period that the rat consumed water
rewards. This response profile strikingly resembles tonically active neurons reported in the monkey
striatum (see e.g., Apicella et al. 1991a). In contrast with neurons of the first group above, here
inhibition persisted during only 1 s after the final droplet was delivered and did not continue for an
additional ‘erroneous’ second. While this suggests that the response is correlated with the actual
presence of reward, it must be noted that the onset of the inhibition began the instant the reward
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delivery was triggered, immediately prior to when reward would have entered the rat’s mouth.

The autocorrelation analysis of this neuron’s activity at the bottom of Figure 8 demonstrates
a strikingly regular timing. Note that the principal peak occurs at 0.2 s, corresponding to a
frequency of 5 Hz. While all of the neurons in this group were tonically active, several instead had
irregularly timed and bursty activity as shown in Figure 5. Tonically active neurons with reward
responses were found in the medial shell of the nucleus accumbens, the ventromedial caudate and,
in one case, at the junction of medial shell and ventral pallidum.
Ventral striatal neurons as Critic in TD-learning: the need for multiple input modules

This study aimed to determine if rat ventral striatal activity is compatible with the role of
this structure in the temporal difference (TD) learning model developed by Sutton and Barto (1998;
see Annex I) as a means for reward signals to reinforce neural circuits mediating goal directed
behavior. While existing models were effective for cases of single rewards, multiple rewards are
more challenging since in the models the striatal reward prediction signal drops to zero the instant
the first reward arrives (Barto 1995; Foster et al. 2000; Baldassarre 2003). The few models that were
tested with a temporally prolonged, but single, reward (Montague et al. 1996; Suri and Schultz.
2001) hold that reward prediction signals should decrease while consuming successive rewards in or
and finally disappearing at the final reward (similar to the black trace in Figure 9A). These models
cannot account for the variety of neural responses observed here, such as, reward anticipation
signals that were greater for either early, middle or later rewards, and the anticipation of an extra
droplet of water which was never provided or variations in the timing of the predictive activity. We
were inspired by previous approaches employing multiple modules TD-learning (MMTD) models
where each module produces a particular response in a given task (Baldassarre. 2002; Doya et al.
2002; Khamassi et al. 2006). In these models, the differences among modules lies in the
‘responsibility’ signal that gates their output: the modules share the same input signal, but vary with
respect to the task component for which they are responsible. Here, we extended the MMTD
framework to enable each module to process different information inputs, thus permitting the model
to better emulate the neurophysiological data.

The present TD-learning model has four Actor-Critic modules. Each module
independently processes the same TD-learning algorithm based upon a different mix of spatial and
temporal inputs. The spatial information here, that is, the state S of the animal, consists of spatial
position (i.e., location of the respective maze arms relative to one another and the room) and
sensory cues such as cue lights at reward sites. For temporal information, we tested the different
responses of the modules by adding or suppressing the 'complete serial compound stimulus'
component proposed by Montague et al. (1996). This component gives temporal information about a
given stimulus, and enables this model to "count" the number of droplets of reward already received
at a given moment. All model variants had full access to signals concerning position along the path
between the maze center and the ends of the arms. The modules of the model also varied in the
value of the discount factor y, which indicates the capacity to take future rewards into account (cf.
Annex I). The four TD learning modules of the model could be considered as embodied in four
different zones within the striatum each receiving different information about the state of the
animal, perhaps due to local variations in the composition of convergent populations of afferent
cortical and hippocampal inputs as well as locally specialized signal processing.

We simulated each module on 25 trials where the rats visited each of the four maze arms.
For each trial, the TD-learning algorithm was computed once every 250 ms, starting 5 seconds
before the first droplet reward and ending 2 seconds after the last. We did not study how the Actor
part of the model should learn to build appropriate behavior for task resolution, since this was done
in a previous robotics simulation (Khamassi et al. 2006). The goal here was only to study if and how
the Critic could learn to anticipate rewards in a manner similar to ventral striatal neurons, in
conditions like those faced by the rats in our task: facing the reservoir and waiting for successive
rewards while a light stimulus was maintained on until the last droplet of water. Since this happened
only during correct trials in the real experiment (error trials were aborted to enforce the trial-and-
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error learning), in the simulations, the Actor part of the model had a fixed repetitive behavior.
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Figure 9. Simulations of cell activity in four compartments of the TD learning model with varied
inputs concerning state (spatial and sensory information), temporal inputs, as well as discount
factor (related to how far in the future predictions are made). The ordinate indicates average firing
rate and the abscissa is time. The vertical dashed gray lines indicate the onset of rewards and the
displays show successive visits to reward sites on the four arms in order of descending reward
volume. A) These parameters permit the model to replicate the results of Suri and Schultz (2001). B,
C, D) Reducing the discount factor and changing state and temporal inputs reproduces several of
the activation patterns recorded in ventral striatal neurons.

Figure 9A shows the results from the model's first module which has explicit and precise inputs
concerning state S as well as temporal information and a discount factor y of 0.85. This result
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resembles that of Suri and Schultz (2001). The long lead in initial reward predictive activity is due
to the elevated discount factor and the gradual reduction of response strength results from the
accurate temporal input signals. The model's second module (Figure 9B) has no temporal inputs but
has precise state information. The discount factor is 0.40 here. While the initial onset of predictive
activity starts later, there is still no prediction of a droplet of water after the final one. The latter
only emerges in the third module (Figure 9C), where there is highly ambiguous state information
(for example, this module would not receive information about the light going off in the reward box)
as well as poor temporal information. The discount factor here is 0.50. (Interestingly, in our
recordings, ‘post-final droplet’ anticipatory activity only occurred on a fraction of trials suggesting
that such inputs could be subject to gating or other modulation). Finally Figure 9D demonstrates
how variations in selective activity during early, middle or late droplets can appear by varying
inputs. In this module, there is partially ambiguous state information but no temporal inputs (again
discount factor y = 0.50).

Discussion

Here rats received experimental multiple rewards at 1 s intervals on the respective arms of a
plus-maze. This experimental design aimed to disambiguate activity associated with reward-
directed behaviors from actual anticipatory activity predicted by Actor-Critic models of TD
learning. We found the latter in the form of phasic increases in firing rate anticipating and
accompanying delivery of individual droplets of water, a novel finding in the rat striatum. This
contrasted with other responses more likely associated with reward site approach behaviors and
associated sensations, which took the form of phasic increases (sometimes coupled with decreases)
in firing rate for the first droplet of water only.

The anticipatory lag varied among individual neurons, commencing from 800 to 200 msec
prior to the reward. Previous studies have generally shown accumbens responses that begin
immediately after reward delivery (Lavoie and Mizumori 1994; Miyazaki et al. 1998; Martin and
Ono 2000; Wilson and Bowman 2004), but in some cases precede rewards by 300 to 500 msec
(Nicola et al. 2004; Taha and Fields 2005), and even as much as 1-2 s (Tremblay et al. 1998; Schultz
et al. 1992; Shibata et al. 2001; Janak et al. 2004). However since only single rewards were provided
in those experiments it is not clear whether this activity in rats might be associated with sensory
cues or behaviors preceding reward acquisition or rather are actually associated with reward
anticipation. In the immobile awake monkey preparation (Cromwell and Schultz 2003) and in
humans (O’Doherty et al. 2004), however, it has been easier to reduce the risk of such confounds.

The regular timing of these anticipatory reward responses in the absence of any explicit
trigger stimulus suggests that these neurons have access to some kind of internal clock signals. One
possible source for this would be TANs such as the one shown in Figure 8. The highly regular 5 Hz
discharges could provide a reliable basis for such timing. Although these neurons fired at a lower
firing rate during the reward period, this appeared to be due to spikes dropping out while the
remaining activity maintained the regular timing. Interestingly, three of the peaks observed for the
first droplet of water in the neuron of Figure 5 (bottom) also had 200 msec intervals (5 Hz) between
them.

Implications for models of reinforcement learning. The present results bear on recent theories and
models of mechanisms of goal-directed rewarded learning engaging basal ganglia activity (Schultz
et al. 1997; Graybiel, 1998). The TD learning algorithm (Sutton and Barto 1998) has been
successfully employed in Actor-Critic architectures to endow robots with reinforcement learning
capacities (see Khamassi et al. 2005 for a review). In the original formulation, the striatum makes
successive predictions of reward, whose accuracy is used to compute an error prediction signal at
the level of striatal-afferent dopaminergic neurons (Houk et al. 1995). This prediction error,
combined with signals of the presence or absence of reward would then enable dopaminergic
neurons to emit reinforcement signals that in turn modify cortico-striatal synaptic plasticity. Such
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modifications would lead to learning by increasing the probability of selecting an action that
previously led to a reward. Modification of behavior following TD-learning rules has already been
observed in rats (see Daw et al. 2005 for a review) and monkeys (Samejima et al. 2005) during
reward-based habit-learning tasks. The present results extend this by demonstrating that the
diversity of striatal responses anticipating multiple consecutive rewards is coherent with TD-
learning. The striatal responses ‘erroneously’ predicting another droplet of water after the last one
can be accounted for in the simulations as reflecting weak levels of temporal information input
while state information varies from somewhat to highly ambiguous. When state information is more
precise, such activity ceases. As a consequence, ventral striatal activity is consistent with parallel
TD-learning systems processing varying input signals, analogous to the multiple module approach
recently employed to model spatial navigation in rodents (Chavarriaga et al. 2005a). The notion that
different neurons receive different mixes of input information of varying levels of accuracy is
consistent with known patterns of input projections to the ventral striatum. Moreover, discount
factors of 0.4 to 0.5 provided the anticipatory activity on the time scales observed here. Higher
discount factors gave longer lead times for the anticipatory activity corresponding to more gradual
buildup of activity prior to rewards, as found in other neurons here and elsewhere (Suri and Schultz
2001). Interestingly in a recent brain imaging study of humans performing a reward motivated task,
different striatal subregions were selectively active according to the discount factor that best
modeled the subjects’ strategy concerning short or long term gain (Tanaka et al. 2004). Recent
imaging studies in humans by O'Doherty et al. 2004) are also consistent with the ventral striatum
being engaged in Critic-like functions.

The present simulations only concern activity in the striatum prior to and during rewards
while the animals were immobile at the end of maze arms, and thus can be interpreted as a
reinforcement signal. Furthermore, the areas where these neurons were recorded send projections to
brainstem dopaminergic areas: the substantia nigra pars compacta (SNpc) is principally afferented
by the dorsal striatum and accumbens core, while the ventral tegmental area (VTA) is more
influenced by the accumbens shell (Haber et al. 2000; Ikemoto 2002). These zones then send
dopaminergic projections to respective striatal areas which would then modulate learning processes
specific to their functional modalities (such as motor sequencing, habit, or goal-directed behaviors).
A prediction of our model is that sub-groups of brainstem dopaminergic neurons would be
associated with different TD-learning modules, and would, in the same plus-maze task, exhibit
differential responses to reward (see figure 9): some dopamine neurons responses to reward should
vanish as in the seminal study of Schultz et al. (1997) Other dopamine neurons related to the TD-
learning module which erroroneously anticipates an additional droplet of water should then have
negative responses.

Daw et al. (2005) have recently argued that anticipatory activity for motivated behavior in
rats cannot be completely explained with TD-learning models. Thus their model employs a TD
module to drive habitual behavior, and this competes with a higher level tree-search module
dedicated to goal-directed behavior. The present work shows that a TD-learning based mechanism is
computationally sufficient to model the diverse anticipatory responses. However, other ventral
striatal neurons recorded in the present protocols (reported in Mulder et al. 2004) which were active
from initiation to completion of goal approach behaviors could be an embodiment of the tree-search
model since they ‘chunk’ (see Graybiel 1998) the behavioral sequence until the outcome. The
dichotomy in reward anticipation and goal approach correlates is consistent with the hypothesis that
functionally distinct groups of the rat nucleus accumbens could be differentially involved in TD-
learning or in goal-directed behavior (Dayan 2001).

The reward-related activity observed here could serve as a Critic signal to help establish
functional circuits (by a loop through VTA) for sequencing the activity of the goal appproach
neurons (Mulder et al. 2004), first orchestrating then automatizing the sequence of successive steps
to satisfy task exigencies. The neurons selective for goal-directed behavior would also affect
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dopaminergic neurons which would then transmit Critic signals to more dorsal striatal regions
implicated in habit learning. Selection among alternative goal choices or even among cognitive
strategies would thus be carried out in associative and limbic regions situated more ventrally in the
striatum. This could lead to a hierarchy of behavioral control which might lead to cognitive
correlates, for example, context or reward-dependence in the more dorsal basal ganglia responses
(Hikosaka et al. 1989).
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3. Comparison of Actor-Critic models in simulated robotics
Khamassi, Lacheze, Girard, Berthoz, Guillot (2005). Adaptive Behavior.

3.1 Summary of objectives

The objective of the work presented here is to integrate an efficient Actor-Critic model with an
existing biologically plausible model of action selection inspired by the rat basal ganglia, and to
simulate the system in a visual cue-guided reward-seeking task in a virtual plus-maze.

As described in section 4.4, numerous Actor-Critic models inspired by the basal ganglia have been
developed since 1995. These models were tested on different tasks, and it is therefore difficult to
compare their performance. Moreover, whereas a few models were tested in complex conditions
incorporating a continuous environment (Doya et al., 2002; Strosslin and Gerstner, 2003), most were
simulated in tasks involving a small number of finite states (Houk et al., 1995; Montague et al.,
1996; Berns and Sejnowski, 1998; Suri and Schultz, 1999; Suri et al., 2001; Frank et al., 2001;
Brown et al., 2004).

Besides, if an important proportion of these models focused on timing mechanisms, it is because
inspiring studies in monkeys employed fixed temporal bins (generally 2 seconds) between the
stimulus and the reward, thus allowing temporally calibrated responses of dopaminergic neurons
(Montague et al., 1996; Suri and Schultz 2001). However, in more natural situations where a rodent
or an animat needs to find reward for its survival, temporal characteristics of the tasks are rarely
fixed, but rather depend on the agent's behavior and on change in the environment.

To deal with more complex tasks, several authors proposed to coordinate several Actor-Critic
modules within a mixture of experts architecture (Baldassarre, 2002; Doya et al., 2002). The
mixture of experts architecture was proposed by Jacobs et al. (1991, see previous chapter) and, for
each subset of a given task, consist in specializing the module that gives the best performance. Both
Baldassarre (2002)'s model and Doya et al. (2002)'s model used the experts' performance in
predicting future states of the animat in the environment for this specialization process. The former
model was combined successfully with Actor-Critic models in a task where a simulated animat
learns to navigate towards three goals (Baldassarre, 2002). The latter model was applied
successfully in swinging up an inverted pendulum (Doya et al., 2002).

Finally, in their review, Joel et al. (2002) report that Actor-Critic models of reinforcement learning
do not take into account known anatomy and physiology of the basal ganglia. For instance, they
usually implement a simple winner-takes-all mechanism for action selection (the best action is
selected regardless of the value of other actions), whereas evidence suggest that an interaction of
selection and control pathways (depending on other actions' value) within the basal ganglia subserve
action selection (Gurney et al., 2001a). The latter authors proposed a model named GPR solving this
issue, and showing interesting energy saving properties for robotics (Montez-Gonzalez et al., 2000;
Gurney et al., 2001b; Girard et al., 2002,2003). However, the model was not yet provided with
reinforcement learning capabilities, and « strengths » of stimulus-response association employed in
the model were hand-tuned.

The following section will present our work consisting in comparing several principles taken from
previous Actor-Critic models within a common architecture using the GPR model, and on a
common continuous state-space version of the plus-maze task. Four Actor-Critic frameworks were
compared : a single-component Critic; several Critic modules controlled by a gating network within
a mixture of experts architecture; several Critic modules a priori associated with different subparts
of the task and connected to a single Actor ; a similar combination of several Critic modules, but
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implementing several Actor components.

3.2 Summary of methods

Two virtual versions of the plus-maze task are simulated: one in a simple 2D environment; the other
in a 3D simulator working in real time and implementing physical dynamics. The task employed
mimics the training phase of the article presented in the previous section of this chapter. At each
trial, one of the maze's arm is randomly chosen to deliver reward. The associated wall is colored in
white whereas walls at the three other extremities are dark gray. The animat has to learn that
selecting the action drinking when it is near the white wall (distance < 30 cm) and faces it (angle <
45 degrees) gives it a reward. Here we assume that reward = 1 for n iterations (n = 2), without
considering how the hedonic value of this reward is determined.

The animat is equipped with a linear panoramic camera providing the color of the nearest perceived
segment every 10°. This results in a 36 color table that constitute the animat’s visual perception. At
each timestep, this 36 color vector is sent to a primitive visual system that estimates the importance
of each color on the agent's “retina”, the angle between each color and the center of the “retina”.
This provides a 13 dimension state space (including 9 continuous variables and 4 binary variables)
that constitutes the input information to the Actor-Critic model.

We expect the animat to learn a sequence of context-specific behaviors, so that it can reach the
reward site from any starting point in the maze:
o When the white wall is not visible, orient towards the center of the maze and move forward.
e Upon arriving at the center (the white wall is visible), turn towards the white stimulus.
e Move forward until close enough to reward location.
e Drink.

The trial ends when the reward is consumed: the color of the wall at reward location is changed to
dark gray, and a new arm extremity is randomly chosen to provide the next reward. The animat then
has to perform the learned behavioral sequence again. Note that there is no delay between two
consecutive trials: trials follow each other successively.

The more efficiently and fluidly the animat performs the above-described behavioral sequence, the
less time it will take to reach the reward. As a consequence, the criterion chosen to validate the
models is the time to goal, plotted along the course of the experiment as the learning curve.

3.3 Summary of results

We find that a multiple modules Actor-Critic system is required to solve the task. Moreover, the
classical method used to coordinate Actor-Critic modules — e.g. the mixture of experts proposed by
Jacobs et al. (1991, see previous chapter) which, for each subset of a given task, specializes the
module that gives the best performance — does not provide a satisfying specialization of modules in
our task: in some cases the specialization is unstable, in others only one module is trained. We
propose a new way to coordinate modules independently from their performances, in partitioning
the environment into several sub-regions in which each expert is at work. This method gives good
results in the two simulated environment.

3.4 Discussion

We find that a biologically plausible implementation of an Actor-Critic model can provide good
results in a simulated robotics task involving a visual cue-guided strategy. We show that multiple
modules are necessary to solve a continuous state space task like this one. However, existing
methods to coordinate modules did not achieve good results in our task. We propose a new method
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which is more adapted to the task and yields better performance. However, this method lacks
autonomy as well as generalization abilities. Moreover, we did not study the precise influence of our
biologically detailed architecture on the specialization process used in this method.

In the fourth part of this chapter, we present an improvement of the autonomy of our method by
combining it with self-organizing maps (Kohonen, 1995).
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Since 1995, numerous Actor-Critic architectures for reinforcement learning have been proposed as models of
dopamine-like reinforcement learning mechanisms in the rat’s basal ganglia. However, these models were
usually tested in different tasks, and it is then difficult to compare their efficiency for an autonomous animat.
We present here the comparison of four architectures in an animat as it performs the same reward-seeking
task. This will illustrate the consequences of different hypotheses about the management of different Actor
sub-modules and Critic units, and their more or less autonomously determined coordination. We show that
the classical method of coordination of modules by mixture of experts, depending on each module's
performance, did not allow solving the task. Then we address the question of which principle should be
applied to efficiently combine these units. Improvements for Critic modeling and accuracy of Actor-critic
models for a natural task are finally discussed in the perspective of our Psikharpax project — an artificial rat
having to survive autonomously in unpredictable environments.

Keywords animat approach - TD learning - Actor-Critic model - S-R task - taxon navigation
1. Introduction

This work aims at adding learning capabilities in the architecture of action selection introduced by Girard e?
al. in this issue. This architecture will be implemented in the artificial rat Psikharpax, a robot that will exhibit
at least some of the capacities of autonomy and adaptation that characterize its natural counterpart (Filliat et
al., 2004). This learning process capitalizes on Actor-Critic architectures, which have been proposed as
models of dopamine-like reinforcement learning mechanisms in the rat’s basal ganglia (Houk ez al., 1995). In
such models, an Actor network learns to select actions in order to maximize the weighted sum of future
rewards, as computed on line by another network, a Critic. The Critic predicts this sum by comparing its
estimation of the reward with the actual one by means of a Temporal Difference (TD) learning rule, in which
the error between two successive predictions is used to update the synaptic weights (Sutton and Barto, 1998).
A recent review of numerous computational models, built on this principle since 1995, highlighted several
issues raised by the inconsistency of the detailed implementation of Actor and Critic modules with known
basal ganglia anatomy and physiology (Joel et al., 2002). In the first section of this paper, we will consider
some of the main issues, updated with anatomical and neurophysiological knowledge. In the second section,
we will illustrate the consequences of alternative hypotheses concerning the various Actor-Critic designs by
comparing animats that perform the same classical instrumental learning (S-R task). During the test, the
animat freely moves in a plus-maze with a reward placed at the end of one arm. The reward site is chosen
randomly at the beginning of each trial and it refers to site-specific local stimuli. The animat has to
autonomously learn to associate continuous sensory information with certain values of reward and to select
sequences of behaviors that enable it to reach the goal from any place in the maze. This experiment is more
realistic than others used to validate Actor-Critic models, often characterized by an a priori fixed temporal
interval between a stimulus and a reward (e.g., Suri and Schultz, 1998), by an unchanged reward location over
trials (e.g., Strosslin, 2004), or by a discrete state space (e.g., Baldassarre, 2002).

We will compare, in this task, four different principles inspired by Actor-Critic models trying to tackle the
issues evocated in the first section. The first one is the seminal model proposed by Houk ez al. (1995), which
uses one Actor and a single prediction unit (Model AC — one Actor, one Critic), which is supposed to induce
learning in the whole environment. The second principle implements one Actor with several Critics (Model
AMCI - one Actor, Multiple Critics). The Critics are combined by a mixture of experts where a gating
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network is used to decide which expert — which Critic — is used in each region of the environment, depending
on its performance in that region. The principle of mixture of experts is inspired from several existing models
(Jacobs et al., 1991; Baldassarre, 2002; Doya et al., 2002). The third one is inspired by Suri and Schultz
(2001) and uses also one Actor with several Critic experts. However, the decision of which expert should
work in each sub-zone of the environment is independent from the experts’ performances, but rather depends
on a partition of the sensory space perceived by the animat (Model AMC2 — one Actor, Multiple Critics). The
fourth one (Model MAMC2 — Multiple Actors, Multiple Critics) proposes the same principle as the previous
Critic, combined with several Actors, which latter principle is one of the features of Doya et al.’s model
(2002), particularly designed for continuous tasks, and is also a feature of Baldassarre’s model (2002). Here
we will implement these principles in four models using the same design for each Actor component. Their
comparison will be made on the learning speed and on their ability to extend learning to the whole
experimental environment.

The last section of the paper will discuss the results on the basis of acquired knowledge in reinforcement
learning tasks in artificial and natural rodents.

Figure 1 Schematic illustration of the correspondence
between the modular organization of the basal ganglia CEREBRAL GORTEX
including both striosomes and matrix modules and the Actor-
Critic architecture in the model proposed by Houk et al,
(1995). F, columns in the frontal cortex; C, other cortical
columns; SPs, spiny neurons striosomal compartments of the
striatum; SPm, spiny neurons in matrix modules; ST,
subthalamic sideloop; DA, dopamine neurons in the
substantia nigra pars compacta; PD, pallidal neurons; T,
thalamic neurons. (adapted from Houk et al., 1995).
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2. Actor-Critic designs: the issues

The two main principles of Actor-Critic models that lead to consider them as a good representation of the
role of the basal ganglia in reinforcement learning of motor behaviors are (i): the implementation of a
Temporal Difference (TD) learning rule which leads to translate progressively reinforcement signals from the
time of reward occurrence to environmental contexts that precede the reward.; (ii): the separation of the
model in two distinct parts, one for the selection of motor behaviors (actions) depending on the current
sensory inputs (the Actor), and the other for the driving of the learning process via dopamine signals (the
Critic).

Schultz’s work on the electrophysiology of dopamine neurons in monkeys showed that dopamine patterns of
release are similar to the TD learning rule (see Schultz, 1998 for a review). Besides, the basal ganglia are a
major input to dopamine neurons, and are also a privileged target of reinforcement signals sent by these
neurons (Gerfen et al., 1987). Moreover, the basal ganglia appears to be constituted of two distinct sub-
systems, related to two different parts of the striatum — the major input nucleus of the basal ganglia —, one
projecting to motor areas in the thalamus, the other projecting to dopamine neurons, influencing the firing
patterns of these neurons at least to some extent (Joel and Weiner, 2000).

These properties lead the first Actor-Critic model of the basal ganglia to propose the matrisomes of the
striatum to constitute the Actor, and the striosomes of this very structure to be the Critic (Houk et al., 1995,
figure 1). The classical segregation of ‘direct’ and ‘indirect’ pathways from the striatum to the dopaminergic
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system (SNc, substantia nigra pars compacta, and VTA, ventral tegmental area; Albin et al., 1989) was used
in the model to explain the timing characteristics of dopamine neurons’ discharges.

Numerous models were proposed to improve and complete the model of Houk ef al. However, most of these
computational models have neurobiological inconsistencies and lacks concerning recent anatomical
hypotheses on the basal ganglia (Joel et al., 2002).

An important drawback is that the Actor part of these models is often simplistic compared to the known
anatomy of the basal ganglia and does not take into account important anatomical and physiological
characteristics of the striatum. For example, recent works showed a distinction between neurons in the
striatum having different dopamine receptors (D1-receptors or D2-receptors; Aizman et al., 2000). This
implies at least two different pathways in the Actor, on which tonic dopamine has opposite effects, going
beyond the classical functional segregation of ‘direct’ and ‘indirect’ pathways in the striatum (Gurney et al.,
2001).

Likewise, some constraints deriving from striatal anatomy restrict the possible architectures for the Critic
network. In particular, the striatum is constituted of only one layer of medium spiny neurons — completed
with 5% of interneurons (Houk et al., 1995). As a consequence, Critic models cannot be constituted of
complex multilayer networks for reward prediction computation. This anatomical constraint lead several
authors to model the Critic as a single-neuron (Houk et al., 1995; Montague et al., 1996), which works well
in relatively simple tasks. For more complicated tasks, several models assign one single Critic neuron to each
subpart of the task. These models differ in the computational mechanism used to coordinate these neurons.
Baldassarre (2002) and Doya et al. (2002) propose to coordinate Critic modules with a mixture of experts
method: the module that has the best performance at a certain time during the task becomes expert in the
learning process of this subpart of the task. Another model proposes an affectation of experts to subparts of
the task (such as stimuli or events) in an a priori manner, independently from each expert’s performance (Suri
and Schultz, 2001). It remains to assess the efficiency of each principle, as they have been at work in
heterogeneous tasks (e.g. Wisconsin Card Sorting Test, Discrete Navigation Task, Instrumental
Conditioning).

These models also question the functional segregation of the basal ganglia in ‘direct’ and ‘indirect’ pathways
(see Joel et al., 2002 for a review). These objections are built on electrophysiological data (for review see
Bunney et al., 1991) and anatomical data (Joel and Weiner, 2000) which show that these two pathways are
unable to produce the temporal dynamics necessary to explain dopamine neurons patterns of discharge.
These findings lead to question the localization of the Critic in the striosomes of the dorsal striatum, and
several models capitalized on its implementation in the ventral striatum (Brown et al., 1999; Daw, 2003).
These works are supported by recent fMRI data in humans, showing a functional dissociation between dorsal
striatum as the Actor and ventral striatum as the Critic (O’Doherty et al., 2004), but they may be
controversial for the rat, as electrophysiological data (Thierry et al., 2000) showed that an important part of
the ventral striatum (the nucleus accumbens core) does not project extensively to the dopamine system in the
rat brain.

We can conclude that the precise implementation of the Critic remains an open question, if one takes also
into account a recent model assuming that a new functional distinction of striosomes in the dorsal striatum —
based on differential projections to GABA-A and GABA-B receptors in dopamine neurons — can explain the
temporal dynamics expected (Frank et al., 2001).

Besides these neurobiological inconsistencies, some computational requirements on which numerous Actor-
Critic models have focused seem unnecessary for a natural reward-seeking task. For example, as Houk et al.’s
model could not account for temporal characteristics of dopamine neurons firing patterns, most of the
alternative models focused on the simulation of the depression of dopamine at the precise time where the
reward is expected when it eventually does not occur. To this purpose, they concentrated on the
implementation of a temporal component for stimulus description — which is computed outside of the model
and is sent as an input to the model via cortical projections (Montague et al., 1996; Schultz et al., 1997).
These models were tested in the same tasks chosen by Schultz e al. (1993) to record dopamine neurons in
the monkey, using a fixed temporal bin between a stimulus and a reward. However, in natural situations
where a rodent needs to find food or any other type of reward, temporal characteristics of the task are rarely
fixed but rather depend on the animal’s behavior and on the environment’s changes/evolution.
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Figure 2 Left: the robot in the plus maze environment. A

white arm extremity indicates the reward location. Other
arm extremities do not deliver any reward and are shown
in black. Upper right: the robot’s visual perceptions.

i Lower right: activation level of different channels in the
model.
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3. Method

The objective of this work is to evaluate the efficiency of the main principles on which current Actor-Critic
models inspired by the basal ganglia are designed, when they are implemented in the same autonomous
artificial system. The main addressed issues are:

5. The implementation of a detailed Actor, whose structure would be closer to the anatomy of the dorsal
striatum, assessing whether reinforcement learning is still possible within this architecture.

6. The comparison of the function of one Critic unit, versus several alternative ways to coordinate different
Critic modules for solving a complex task where a single-neuron is not enough.

7. The test of the models in a natural task involving taxon navigation where events are not predetermined by
fixed temporal bins. Instead, the animat perceives a continuous sensory flow during its movements, and
has to reactively switch its actions so as to reach a reward.

3.1 The simulated environment and task

Figure 2 shows the experimental setup simulated, consisting in a simple 2D plus-maze. The dimensions are
equivalent to a Sm * 5m environment with 1m large corridors. In this environment, walls are made of
segments colored on a 256 grayscale. The effects of lighting conditions are not simulated. Every wall of the
maze is colored in black (luminance = 0), except walls at the end of each arm and at the center of the maze,
which are represented by specific colors: the cross at the center is gray (191), three of the arm extremities’
walls are dark gray (127) and the fourth is white (255), indicating the reward location (equivalent to a water
trough delivering two drops — non instantaneous reward — not a priori known by the animat).
The plus-maze task mimics the neurobiological and behavioral studies that will serve as future validation for
the model (Albertin et al., 2000). In this task, at the beginning of each trial, one arm extremity is randomly
chosen to deliver reward. The associated wall is colored in white whereas walls at the three other extremities
are dark gray. The animat has to learn that selecting the action drinking when it is near the white wall
(distance < 30 cm) and faces it (angle < 45 degrees) gives it a reward. Here we assume that reward = 1 for n
iterations (n = 2), without considering how the hedonic value of this reward is determined.
We expect the animat to learn a sequence of context-specific behaviors, so that it can reach the reward site
from any starting point in the maze:

4. When not seeing the white wall, face the center of the maze and move forward.

5. Assoon as arriving at the center (the animat can see the white wall), turn to the white stimulus.

6. Move forward until being close enough to reward location.

7. Drink.

The trial ends when reward is consumed: the color of the wall at reward location is changed to dark gray, and
a new arm extremity is chosen randomly to deliver reward. The animat has then to perform again the learned
behavioral sequence. Note that there is no break between two consecutive trials: trials follow each other
successively.

The more efficiently and fluently the animat performs the above described behavioral sequence, the less time
it will take to reach the reward. As a consequence, the criterion chosen to validate the models is the time to
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goal, plotted along the experiment as the learning curve of the model.
3.2 The animat

The animat is represented by a circle (30 cm diameter). Its translation and rotation speeds are 40 cm.s™ and
10°.s". Its simulated sensors are:
® An omnidirectional linear camera providing every 10° the color of the nearest perceived segment.
This results in a 36 colors table that constitute the animat’s visual perception (see figure 2),
® FEight sonars with a Sm range, an incertitude of +5 degrees concerning the pointed direction and an
additional +10 cm measurement error,

The sonars are used by a low level obstacle avoidance reflex which overrides any decision taken by the Actor-
Critic model when the animat comes too close to obstacles.

The animat is provided with a visual system that computes 12 input variables (Vie[1;12],0 <var <1 )

out of the 36 colors table at each time step. These sensory variables constitute the state space of the Actor-

Critic and so will be taken as input to both the Actor and the Critic parts of the model (figure 3). Variables

are computed as following:

1. seeWhite(resp. seeGray, seeDarkGray) = 1 if the color table contains the value 255 (resp. 191, 127), else
0.

2. angleWhite, angleGray, angleDarkGray = (number of boxes in the color table between the animat’s head
direction and the desired color) / 18.

3. distanceWhite,distanceGray, distanceDarkGray = (maximum number of consecutive boxes in the color
table containing the desired color) / 18.

4. nearWhite (resp. nearGray, nearDarkGray) = 1 — distanceWhite (resp. distanceGray,
distanceDarkGray).

Representing the environment with such continuous variables will imply for the model to permanently
receive a flow of sensory information and having to learn autonomously the events (sensory contexts) that
can be relevant for the task resolution.

The animat has a repertoire of 6 actions: drinking, moving forward, turning to white perception, turning to
gray perception, turning to dark gray perception, and waiting. These actions constitute the output of the
Actor model (described below) and the input to a low-level model that translates it into appropriate orders to
the animat’s engines.

3.3 The model: description of the Actor part

The Actor-Critic model is inspired by the rat basal ganglia. As mentioned in section 2, the Actor can be
hypothesized as implemented in the matrix part of the basal ganglia, while striosomes in the dorsal striatum
are considered as the anatomical counterpart for the Critic. The Critic produces dopamine-like reinforcement
signals that help it learn to predict reward during the task, and that make the Actor learn to select appropriate
behaviors in every sensory context experienced during the task.

The architecture implemented in the Actor is a recent model proposed by Gurney, Prescott and Redgrave
(2001a,b) — henceforth called GPR model - that replaces the simple winner-takes-all which usually
constitutes Actor models and is supposed to be more biologically plausible.

Like other Actors, the GPR is constituted of a series of parallel channels, each one representing an action (in
our implementation, we used 6 channels corresponding to the 6 actions used for the task). This architecture
constitutes an alternative view to the prevailing functional segregation of the basal ganglia into ‘direct’” and
‘indirect’ pathways discussed in section 1 (Gurney et al., 2001). All these channels are composed by two
different circuits through dorsal striatum: the first is the ‘selection’ pathway, implementing action selection
properly via a feed-forward off-center on-surround network, and mediated by cells in the dorsal striatum with
D1-type receptors. The second is the ‘control’ pathway, mediated by cells with D2-type receptors in the same
area. Its role is to regulate the selection by enhancing the selectivity inter-channels, and to control the global
activity within the Actor. Moreover, a cortex-basal ganglia-thalamus loop in the model allows it to take into
account each channel’s persistence in the process of selection (see Gurney et al., 2001, for detailed
description and mathematical implementation of the model). The latter characteristic showed some
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interesting properties that prevented a robot from performing behavioral oscillations (Montes-Gonzalez et al.,
2000; Girard et al., 2003).

In our implementation, the input values of the Actor model are saliences — i.e. the strength of a given action
— that are computed out of the 12 sensory variables, a constant implementing a bias, and a persistence factor
— equal to 1 for the action that was selected at previous timestep (figure 3). At each timestep t (timesteps
being separated by a 1 sec bin in our simulations), the action that has the highest salience is selected to be
performed by the animat, the salience of action i being:

13
sali(t)z Z Varj(t)-wl.’j(t) +persistl.(t)~wl.’l4(t) (1)
i—1

where Var13(t)=1, Yt , and the Wi,j(t) are the synaptic weights representing, for each action i, the
association  strength ~ with  input variable j. These weights are initiated randomly
(Vij,—0.02<w,; (#=0 )<0 .02) and the objective of the learning process will be to find a set of
weights allowing the animat to perform the task efficiently.
An exploration function is added that would allow the animat to try an action in a given context even if the
weights of the Actor do not give a sufficient tendency to perform this action in the considered context.
To do so, we introduce a clock that triggers exploration in two different cases:
1. When the animat has been stuck for a large number of timesteps (time superior to a fixed threshold
@) in a situation that is evaluated negative by the model (when the prediction P(t) of reward
computed by the Critic is inferior to a fixed threshold).
2. When the animat has remained for a long time in a situation where P(t) is high but this prediction
doesn’t increase that much (IP(r+n) — P(f)| < €) and no reward occurs.
If one of these two conditions is true, exploration is triggered: one of the 6 actions is chosen randomly. Its
salience is being set to 1 (Note that: when exploration = false, sal l.(t)<1, Vi,t,wi)j(t) ) and is being

maintained to 1 for a duration of 15 timesteps (time necessary for the animat to make a 180° turn or to run
from the center of the maze until the end of one arm).

3.4 The model: description of the Critic part

For the Critic part of the model, different principles based on existing techniques are tested. The idea is to
test the hypothesis of one single Critic unit first, but also to provide the Critic with enough computational
capacities so that it can correctly estimate the value function over the whole environment of the task. In other
words, the Critic will have to deal with several different sensory contexts — corridors, maze center, extremity
of arms, etc. equivalent to different stimuli —, and will have to associate a correct reward prediction to these
contexts.
One obvious possibility would be a multilayer perceptron with several hidden layers but, as mentioned before
in section 2, there are anatomical constraints which prevent us from adopting this choice: our Critic is
supposed to be situated in the striosomes of dorsal striatum, which structure is constituted of only one layer
of medium spiny neurons (Houk et al., 1995). Thus we need a more general method that combines several
Critic modules, each one being constituted of a single neuron and dealing with a particular part of the
problem space.
The method adopted here is the mixture of experts, which was proposed to divide a non-linearly separable
problem into a set of linearly separable problems, and to affect a different expert to each considered sub-
problem (Jacobs et al., 1991).
The Ceritics tested in this work differ mainly in two following manners:
® The first (Model AMC1) implements a mixture of experts in which a gating network is used to decide
which expert is used in each region.
® The second (Model AMC2) implements a mixture of experts in which a hand-determined partition of
the environment based on a categorization of visual perceptions is used to decide which expert works
in each sub-zone.
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Figure 3 General scheme of the models tested in this work. The Actor is a group of GPR modules with saliences as
inputs and actions as outputs. The Critic (involving striosomes in the dorsal striatum, and the substantia nigra compacta
(SNc) ) propagates towards the Actor an estimate f of the instantaneous reinforcement triggered by the selected action.
The particularity of this scheme is to combine several modules for both Actor and Critic, and to weight the Critic
experts’ predictions and the Actor modules’ decisions with credibilities. These credibilities can be either computed by a
gating network (Model AMC1) or in a context-dependent manner (Models AMC2 and MAMC?2).

Moreover, since the animat has to solve a task in continuous state space, there could be interferences between
reinforcement signals sent by different Critic experts to the same single Actor. In this way, whereas one
model will employ only one Actor (Model AMC?2), another one will use one Actor module associated to each
expert (Model MAMC?2). Figure 3 shows the general scheme with different modules employed as suggested
by the models presented here.

Performances of Models AMCI, AMC2 and MAMC?2 will be compared, together with the one of the seminal
Actor-Critic model inspired by the basal ganglia, proposed by Houk, Adams and Barto (1995), and using a
single cell Critic with a single Actor (Model AC).

We will start by the description of the simplest Critic, the one belonging to Model AC.

3.4.1 Model AC

In this model, at each timestep, the Critic is a single linear cell that computes a prediction of reward based on
the same input variables than the Actor, except the persistence variable:

ZZ varj(tj-w’j(t) (2)

where W' j( t) are the synaptic weights of the Critic.

This prediction is then used to calculate the reinforcement signal by means of the TD-rule:
Fle)=rlt)+gPlt|=Plt—1| (3)
where r(f) is the actual reward received by the animat, and g is the discount factor (0 < g < 1) which
determines how far in the future expected rewards are taken into account in the sum of future rewards.
Finally, this reinforcement signal is used to update both Actor’s and Critic’s synaptic weights according to the
following equations respectively:

w..(t)<—wi’j(t—1 )+n-?(t)~varj(t—l ) (4)

i,j
w'j(t)<—w’j(t—1 )+n~?(t)-varj(t—1 ) (5)
where 10 1is the learning rate.

3.4.2 Model AMC1

As this Critic implements N experts, each expert k computes its own prediction of reward at timestep #:
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Pk(f)zzw'k,j(f)'Vafj(f) (6)
=1

where the w' k) (t) are the synaptic weights of expert k.
Then the global prediction of the Critic is a weighted sum of experts’ predictions:

P(I)ZZN:credk(t)-pk(t) (7)

where cred k(t ) is the credibility of expert k at timestep t. These credibilities are computed by a gating

network which learns to associate, in each sensory context, the best credibility to the expert that makes the
smaller prediction error. Following Baldassarre’s description (2002), the gating network is constituted of N
linear cells which receive the same input variables than the experts and compute an output function out of it:

ok(t)zz w"k,j(t)-varj(t) (8)

where w" k j(t ) are the synaptic weights of gating cell k.

The credibility of expert k is then computed as the softmax activation function of the outputs o, (t) :

Ok(t)

N

9
Zof(t) ~
=

Concerning learning rules, whereas equation (3) is used to determine the global reinforcement signal sent to
the Actor, each Critic’s expert has a specific reinforcement signal based on its own prediction error:

Fltl=rlt)+gPlt]—p,lt—1] (10)

credk(t) =

The synaptic weights of each expert k are updated according to the following formula:
w"ltlew e=1 03 (t)-var [t=1 |-k, (1] (11)
where h, (t) is the contribution of expert & to the global prediction error of the Critic, and is defined as:

credk(t—l )-corrk(t)

h \t|=
tl=— (12)
J; credf(t—l )-corrf(t)
where corr, (t) is a measure of the « correctness » of the expert k defined as:
A2
—V'k(f)
corr, 1| =exp - (13)

where O is a scaling parameter depending on the average error of the experts (see parameters table in the
appendix section).

Finally, to update the weights of the gating network, we use the following equation:

w" ltlew e=1 ) +m-diff [¢]-var [t—1 | (14)
with diﬁ‘(t)=hk(t)—credk(t—1 ) (15)

where m is a learning rate specific to the gating network.

So the credibility of expert & in a given sensory context depends on its performance in this context.

3.4.3 Model AMC2

The Critic also implements N experts. However, it differs from Model AMCI in the way the credibility of
each expert is computed.

The principle we wanted to bring about here is to dissociate credibilities of experts from their performance.
Instead, experts would be assigned to different subregions of the environment — these regions being
computed as windows in the perceptual space —, would remain enchained to their associate region forever,
and would progressively learn to accurate their performance along the experiment. This principle is declined
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from Houk et al. (1995) for the improvement of their model, assuming that different striosomes may be
specialized in dealing with different behavioral tasks. This proposition was implemented by Suri and Schultz
(2001) in using several TD models, each one computing predictions for only one event (stimulus or reward)
that occurs in the simulated paradigm.

To test this principle, we replaced the gating network by a hand-determined partition of the environment (e.g.
a coarse representation of the sensory space): At timestep ¢, the current zone 3 depends on the 12 sensory
variables computed by the visual system. Example: if (seeWhite = I and angleWhite < 0.2 and distanceWhite

> 0.8) then zone = 4 (e.g. p=4).Then cred, (t)=1 , cred k(t)ZO for all other experts, and expert 8 has

then to compute a prediction of reward out of the 12 continuous sensory variables. Predictions and
reinforcement signals of the experts are determined by the same equations than Critic of Model AMCI.

This was done as a first step in the test of the considered principle. Indeed, we assume that another brain
region such as the parietal cortex or the hippocampus would determine the zone (sensory configuration)
depending on the current sensory perception (McNaughton, 1989; Burgess ef al., 1999), and would send it to
the Actor-Critic model of the basal ganglia. Here, the environment was partitioned into N=30 zones, an
expert being associated to each zone. The main difference between this scheme and the one used by Suri and
Schultz is that, in their work, training of experts in each sub-zone was done in separated sessions, and the
global model was tested on the whole task only after training of all experts. Here, experts will be trained
simultaneously in a single experiment.

Finally, one should note that this method is different from applying a coarse coding of the state space that
constitutes the input to the Actor and the Critic (Arleo and Gerstner, 2000). Here, we implemented a coarse
coding of the credibility space so as to determine which expert is the most credible in a given sensory
configuration, and kept the 12 continuous sensory variables, plus a constant described above, as the state
space for the reinforcement learning process. This means that within a given zone, the concerned expert has
to learn to approximate a continuous reward value function, based on the varying input variables.

3.4.4 Model MAMC2

The Critic of this Model is the same as in Model AMC2 and only differs from its associated Actor.

Instead of using one single Actor, we implemented N different Actor modules. Each Actor module has the
same structure than the simple Actor described in section 3.4 and is constituted of 6 channels representing
the 6 possible actions for the task. The difference resides in the fact that only actions of the Actor associated
with the zone in which the animat is currently are competing to determine the animat’s current action.

As a consequence, if the animat was in zone 8 at time ¢ and performed action i, the reinforcement signal
ff(t+ 1 ) computed by the Critic at next timestep will be used to update only weights of action i from the
Actor B according to the following equation:

Wk,i,j(t)‘_wk,,-,j(t_l )+n-f*(t)~varj(t—l ) (16)
Other equations are the same than those used for Critic of Model AMC2. As mentioned above, this principle
— using a specific controller or a specific Actor for each module of the Actor-Critic model — is inspired by the

work of Doya et al., (2002).
4. Results

In order to compare the learning curves of the four simulated models, and so as to evaluate which models
manage to solve the task efficiently, we adopt the following criterion: after 50 trials of training (out of 100 for
each experiments), the animat has to achieve an equivalent performance to a hand-crafted model that can
already solve the task (Table 1). To do so, we simulated the GPR action selection model with appropriate
hand-determined synaptic weights and without any learning process, so that the animat can solve the task as
if it had already learned it. With this model, the animat performed a 50 trials experiment with an average
performance of 142 iterations per trial. Since each iteration lasted approximately 1 sec, as mentioned above, it
took a little bit more than 2 min per trials to this hand-craft animat to reach the reward.

Table 1. Performances of each model.

Model GPR | AC | AMCI | AMC2 | MAMC2
Performance | 142 | 587 | 623 3240 97
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Table 1 shows the performance of each model, measured as the average number of iterations per trial after
trial #50. Figure 4 illustrates results to the four experiments performed in the 2D environment, one per
model. The x-axis represents the successive trials along the experiments. For each trial, y-axis shows the
number of iterations needed for the animat to reach the reward and consume it. Figure 4.a shows the learning
curve of Model AC. We can first notice that the model increased rapidly its performance until trial 7, and
stabilized it at trial 25. However, after trial 50, the average duration of a trial is still 587 iterations, which is
nearly 4 times higher than the chosen criterion. We can explain this limitation by the fact that Model AC is
constituted of only one single neuron in the Critic, which can only solve linearly separable problems. As a
consequence, the model could learn only a part of the task — in the area near the reward location —, but it was
unable to extend learning to the rest of the maze. So the animat has learned to select appropriate behaviors in
the reward area, but it still performs random behaviors in the rest of the environment.

Model AMCI is designed to mitigate the computational limitations of Model AC, as it implies several Critic
units controlled by a gating network. Figure 4.b shows its learning curve after simulation in the plus-maze
task. The model has also managed to decrease its running time per trial at the beginning of the experiment.
However, we can notice that the learning process is more unstable than the previous one. Furthermore, after
the 50™ trial, the model has a performance of 623 iterations, which is not better than Model AC. Indeed, the
model couldn’t extend learning to the whole maze either. We can explain this failure by the fact that the
gating network did not manage to specialize different experts in different subparts of the task. As an example,
figure 5 shows the reward prediction computed by each Critic’s expert during the last trial of the experiment.
It can be noticed that the first expert (dark curve) has the highest prediction throughout the whole trial. This
is due to the fact that it is the only one the gating network has learned to consider as credible — its credibility
remains above 90% during the whole experiment. As a consequence, only one expert is involved in the
learning process and the model becomes computationally equivalent to Model AC: it cannot extend learning
to the whole maze, which is confirmed by the absence of any reward prediction before the perception of the
reward site (stimulus occurrence) in Figure 5.

Figure 4.c shows the learning curve of Model AMC2 which implements another principle for experts
coordination. This model cannot suffer from the same limitations than Model AMC1, since each expert was a
priori assigned to a specific area of the environment. As a consequence, it quickly managed to extend
learning to the whole maze. However, the consequence of this process is to produce interferences in the
Actor’s computations: the same Actor receives all experts’ teaching signals, and it remains unable to switch
properly between reinforced behaviors. For example, when the action ‘drinking’ is reinforced, the Actor starts
selecting this action permanently, even when the animat is far from reward location. These interferences
explain the very bad performances obtained with Model AMC?2.

The last simulated model (Model MAMC?2) performed best. Its learning curve is shown on figure 4.d. This
model implements several Actor modules (an Actor module connected to each Critic expert). As a
consequence, it avoids interferences in the learning process and rapidly converged to a performance of 97
iterations per trial. This good performance cannot been reached with the multi-Actor only, since we tried to
combined several Actor modules to model AMCI and got a performance of 576 iterations per trial. So the
achievement of the task implies the combination of a multi-Actor and a good specialization of experts.

For checking the ability of Model MAMC? to learn the same task in more realistic conditions, we simulated it
a 3D environment, working in real time and implementing physical dynamics (Figure 7). This experiment
constituted an intermediary step favoring the implementation into an actual Pekee robot (Wany Robotics).
The animat is still able to learn the task in this environment and gets good performances after 35 trials
(Figure 6; corresponding average performance of the animat between trials 35 and 65: 284 iterations per
trial).
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Figure 5 Reward prediction computed by each Critic’s
expert of Model AMCI during trial #100 of the
experiment. Time 0 indicates the beginning of the trial. S:
perception of the stimulus (the white wall) by the animat.
R: beginning of reward delivery. The dark curve
represents the prediction of expert 1. The other experts’
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Figure 4 Learning curves of the four modelsy_uyis: trials. Y-axis: number of iterations per trial.

simulated in the 2D plus-maze task over 100 trials

experiments. X-axis: trials. Y-axis: number of
iterations per trial (truncated to 10000 it. for better
readability). a) Model AC. b) Model AMCI. c)
Model AMC2. d) Model MAMC?2.

Figure 7 Simulation of the plus-maze task in a 3D environment. Like the 2D environment, one random arm extremity
is white and delivers reward. The animat has to perform taxon navigation so as to find and consume this reward. Gray
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stripes arising from the animat’s body represent its sonar sensors used by its low level obstacle avoidance reflex.

5. Discussion and future work

In this work, we compared learning capabilities on a S-R task of several Actor-Critic models of the basal
ganglia based on distinct principles. Results of simulations with models AC, AMCI, AMC2 and MAMC2
demonstrated that:

® A single-component Critic cannot solve the task (Model AC);

® Several Critic modules controlled by a gating network (Model AMCI) cannot provide good
specialization, and the task remains unsolved.

o Several Critic modules a priori associated with different subparts of the task (Model AMC2) and
connected to a single Actor (an Actor component being composed of a 6 channels GPR) allow
learning to extend to areas that are distant from reward location, but still suffer from interferences
between signals sent by the different Critic to the same single Actor.

Model MAMC?2, combining several Critic modules with the principle of Model AMC2, and implementing
several Actor components produces better results in the task at matter, spreading learning in the whole maze
and reducing the learning duration. However, there are a few questions that have to be raised concerning the
biological plausibility and the generalization ability of this model.

5.1 Biological plausibility of the proposed model

When using a single GPR Actor, each action is represented in only one channel — an Actor module being
constituted of one channel per action (Gurney ef al., 2001) — and the structural credit assignment problem —
which action to reinforce when getting a reward — can be simply solved: the action that has the highest
salience inhibits its neighbors via local recurrent inhibitory circuits within D1 striatum (Brown and Sharp,
1995). As a consequence, only one channel in the Actor will have enough pre- and post-synaptic activity to
be eligible for reinforcement.
When using several Actor modules, this property is not true anymore: even if only one channel per Actor
module may be activated at a given time, each Actor module will have its own activated channel, and several
concurring synapses would be eligible for reinforcement within the global Actor. To solve this problem, we
considered in our work that only one channel in the entire Actor is eligible at a given time. However, this
implies for the basal ganglia to have one of the two following characteristics: it should either exist non-local
inhibition between Actor modules within the striatum, or there should be some kind of selectivity in the
dopamine reinforcement signals so that even if several channels are activated, only those located in the target
module receives dopamine signals.
To the best of our knowledge, these characteristics were not found in the basal ganglia, and a few studies tend
to refute the dopamine selectivity (Pennartz, 1996).

5.2 Computational issues

Several computational issues need also to be addressed. First, the results presented here show that the
learning process was not perturbed by the fact to use an Actor detailing the action selection process in the
basal ganglia. This Actor has the property to take into account some persistence provided by the cortex-basal
ganglia-thalamus-cortex loops. The way this persistence precisely influence the learning process in the
different principles compared in this work was not thoroughly studied here. However we suspect that
persistence could probably challenge the way different Actors interact with Critic’s experts, as switching
between actions does not exactly follow switches in sensorimotor contexts with this model. This issue should
be examined in a future work.

Generalization ability of the multi-module Actor: Another issue that needs to be addressed here is the
generalization ability of the multi-module Actor model used in this experiment. Indeed, Model MAMC2
avoids interferences in the Actor because hand-determined subzones of the maze are absolutely disjoint. In
other words, learned stimulus-response associations in a given zone cannot be performed in another zone,
and do not interfere with the learning process is this second zone even if visual contexts associated to each of
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them are very similar. However, this leads also to an inability to generalize from one zone to the other: even if
the distinction we made between two zones seemed relevant for the plus-maze task, if these two zones are
similar and would imply similar motor responses in another task, the animat would have to learn twice the
same sensorimotor association — one time in each zone. As a consequence, the partition we set in this work is
task-dependent.

Instead, the model would need a partitioning method that autonomously classifies sensory contexts
independently from the task, can detect similarities between two different contexts and can generalize learned
behaviors in the first experienced context to the second one.

About the precise time of reward delivery:

In the work presented here, the time of reward delivery depends exclusively on the animat’s behavior, which
differs from several other S-R tasks used to validate Actor-Critic models of the basal ganglia. In these tasks,
there is a constant duration between a stimulus and a reward, and several Actor-Critic models were designed
so as to describe the precise temporal dynamics of dopaminergic neurons in this type of task (Montague et
al., 1996). As a consequence, numerous Actor-Critic models focused on the implementation of a time
component for stimulus representation, and several works capitalized on this temporal representation for the
application of Actor-Critic models of reinforcement learning in the basal ganglia to robotics (Perez-
Uribe, 2001; Sporns and Alexander, 2002). Will we need to add such a component to our model to be able to
apply it to certain type of natural tasks, or survival tasks?

In the experiments presented here, we didn’t need such a temporal representation of stimuli because there
was sufficient information in the continuous sensory flow perceived by the animat during its moves, so that
the model can dynamically adapt its reward predictions, as observed also in another work (Baldassarre and
Parisi, 2000). For example, when the animat is at the center of the maze, perceives the white wall (stimulus
predicting reward) and moves towards reward location, the latter stimulus becomes bigger in the visual field
of the animat, and the model can learn to increase its reward prediction, as shown in figure 8. We didn’t aim
at explaining the depression of dopamine neurons’ firing rates when a reward doesn’t occur, nevertheless we
were able to observe this phenomenon in cases where the animat was approaching the reward site, was about
to consume it, but finally turned away from it (R events in figure 8).
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Figure 8 Reward prediction (light curve) and dopamine reinforcement signal (dark curve) computed by Critic of Model MAMC?2 in
the 3D environment. X-axis: time. Y-axis: Critic’s signals. S : perception of the stimulus (white wall) by the animat; R: Reward
missed by the animat.

Using Critics dependent or independent from the performance: In our experiments, Model AMCI,
implementing a gating network for experts’ credibilities computation, did not solve the task. We saw in
section 2 that, during the simulations, one expert became rapidly the most credible, which forced the model
to use only one neuron to solve the task. The use of gating networks in the frame of mixture of experts
methods has already being criticized (Tang ef al., 2002). According to these authors, this approach works
well on problems composed of disjoint regions but does not generalize well, suffering from effects on
boundaries of regions.

In our case, we explain the failure in the experts’ specialization with Model AMC1 by the observation that
until the model has started to learn the task, and so can propagate teaching signals to the rest of the maze,
only reward location has a value. As a consequence, it is the only area where the gating network tries to train
an expert, and the latter rapidly reaches a high credibility. Then, as reward value starts to be extended to a
new zone, this same expert still has the best credibility while getting bad performances. Other experts do not
have significantly better performances — since they were not trained yet and since the new area and the first
one are not disjoint. As a consequence, they remain non credible and the model starts having bad
performances.
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In his work, Baldassarre managed to obtain a good specialization of experts (Baldassarre, 2002). This may be
partly explained by the fact that his task involved three different rewards located in three different sensory
contexts. The simulated robot had to visit all rewards alternatively since the very beginning of the task. This
may have helped the gating network to attribute good credibilities to several experts. However, reward
locations in Baldassarre’s task are not perfectly disjoint, which result in a difficult specialization: one of the
experts is the most credible for two of the three rewards (see Baldassarre, 2002).

Another model (Tani and Nolfi, 1999) proposes a different mixture of experts where the gating network is
replaced with a dynamical computation of experts’ credibilities. Their model managed to categorize the
sensori-motor flow perceived by a simulated robot during its movements. However, their method does not use
any memory of associations between experts’ credibilities and different contexts experienced during the task.
As a consequence, experts’ specialization is even more dependent to each expert’s performance than
Baldassarre’s gating network, and suffers from the same limitation when applied to reinforcement learning in
our plus-maze task - as we experimented in unpublished work.

Combining self-organizing maps with mixture of expert: To test the principle of dissociating the experts
credibility from their performance, we partitioned the environment into several sub-regions. Yet, this method
is ad hoc, lacks autonomy, and suffers generalization abilities if the environment is changed or becomes more
complex. We are currently implementing Self-Organizing Maps (SOM) as a method of autonomous
clustering of the different sensory contexts will be used to determine these zones. Note that this proposition
differs from the traditional use of SOM to cluster the state space input to experts or to Actor-Critic models
(Smith, 2002; Lee et al., 2003). It is rather a clustering of the credibility space, which was recently proposed
by Tang et al. (2002). We also would like to compare the use of SOM with the use of place cells. Indeed
models of hippocampal place cells have already been used for coarse coding of the input state space to the
Actor and the Critic (Arleo and Gerstner, 2000; Foster et al., 2000; Strosslin, 2004) but, in our case, we
would like to use place cells to determine experts’ credibilities.

As often mentioned in the literature, and as confirmed in this work, the application of Actor-Critic
architectures to continuous tasks is more difficult than their use in discrete tasks. Several other works have
been done on the subject (Doya, 2000). However, these architectures still have to be improved so as to
decrease their learning time:

Particularly, the learning performance of our animat seems still far from the learning speed that real rat can
reach in the same task (Albertin et al., 2000), even if the high time constant that we used in our model does
not allow a rigorous comparison yet (cf. parameters table in the appendix). This could be at least partly
explained by the fact that we implemented only S-R learning (or habit learning), whereas it has recently been
known that rats are endowed with two distinct learning systems related to different cortex-basal ganglia-
thalamus loops: a habit learning system and a goal-directed learning one (Ikemoto and Panksepp, 1999;
Cardinal et al., 2002). The latter would be fast, used at the early stages of learning, and implying an explicit
representation of rewarding goals or an internal representation of action-outcome contingencies. The former
would be very slow and takes advantage of the latter when the animat reaches good performances and
becomes able to solve the task with a reactive strategy (S-R) (Killcross and Coutureau, 2003; Yin et al.,
2004).

Some theoretical work has already been started to extend Actor-Critic models to this functional distinction
(Dayan, 2001). In the practical case of our artificial rat, both such systems could be useful in two different
manners.

First, it could be useful to upgrade the exploration function. This function could have an explicit
representation of different places of the environment, and particularly of the reward site. Then, when the
animat gets reward for the first time, the exploration function would guide it trying behaviors that can allow it
to reach the explicitly memorized reward location. The function could also remember which behaviors have
already been tried unsuccessfully in the different areas, so that untried behaviors are selected instead of
random behaviors in the case of exploration. This would strengthen the exploration process and is expected to
increase the animat’s learning speed.

The second possible use of a goal-directed behavior component is to represent the type of reward the animat
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is working for. This can be useful when an animat has to deal with different rewards (food, drink) so as to
satisfy different motivations (hunger, thirst). In this case, a component that chooses explicitly the current
reward the animat takes as an objective can select sub-modules of the Actor that are dedicated to the
sequence of behaviors that leads to the considered reward. This improvement would serve as a more realistic
validation of the artificial rat Psikharpax when it has to survive in more natural environments, satisfying
concurrent motivations.
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Appendix : Parameters Table

Symbol | Value Description

t 1 sec. Time constant — time between two successive iterations of the model.
a 40 iter. Time threshold to trigger the exploration function.

g 0.98 Discount factor of the Temporal Difference learning rule.

n 0.01 Learning rate of the Actor and Critic modules.

N 30 Number of experts in the Critic of Models AMC1, AMC2 and MAMC?2.
o 2 Scaling parameter in the mixture of experts of Model AMC1.

m 0.1 Learning rate of the gating network in Model AMC]I.
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4. An Actor-Critic model for robotics combining SOM with mixtures of
experts

Khamassi, Martinet, Guillot (2006). SAB06.

4.1 Summary of objectives

The last work of this chapter follows through on the previous one presented. In the latter, we
presented a method to coordinate Actor-Critic modules which performed well in our simulated plus-
maze task, but which lacks autonomy and generalization abilities.

Here we improved the method by combining self-organizing maps with a mixture of experts. This
method aims at autonomously growing the number of Actor-Critic modules, and to automatically
adapt the specialization between these latter modules. The method had been proposed in the field of
data clustering (Tang et al., 2002), but yet had not been applied to reinforcement learning.

4.2 Summary of methods

The test environment was the same 2D virtual plus-maze described in the previous section. Three
different kinds of self-organizing maps are connected to the mixture of Actor-Critic experts and
tested during 11 simulations each. One is the classical Kohonen maps which has a fixed number of
modules (Kohonen, 1995). The second is the Growing Neural Gas which adds a new module every
100 iterations depending on a global error in the map (Fritzke, 1995). The last is the Growing When
Required which adds new modules more adaptively than the previous method, only depending on
local errors in the map (Marsland et al., 2002).

In our simulations, we separated the exploration phase from the reinforcement learning phase.
During the forme, the animat moves randomly in the maze while the map is being trained. During
the latter, the map 1is stabilized and the animat learns the task by trial-and-error. Note that the so-
called “map” corresponds to a set of independent categorizations of visual inputs without any
transitional links between them.

4.3 Summary of results

The three methods give comparably good results in the task, respectively 548, 404 and 460
iterations per trial to reach the reward after learning. This is much better than the average of 30000
iterations per trial needed by a random agent, and also outperforms the classical mixture of experts
discussed in the previous section which, in our task, reaches a performance of 3500 iterations per
trial after learning.

4.4 Discussion

We proposed a new autonomous and adaptive method for the coordination of reinforcement learning
modules. The model can solve the task and the performance obtained after learning is good.
However, the performance is not yet as good as the hand-tuned method we used in the previous
paper. The latter was proposed as a principle to coordinate experts. Indeed, this hand-tuned method
gives a performance of 94 iterations per trial after learning, which is almost optimal: it
approximately corresponds to the time needed for the agent to go straight from one arm extremity to
the reward located at the next arm extremity.

The not yet optimal performance can be explained by the high variability produced by the self-
organizing maps. Indeed this method could create some maps with very good performance (less
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than 100 iterations per trial after learning), but also made some rather bad maps (around 1000
iterations per trial).

The variability of the method comes from the strong dependence of the map training phase on the
way the agent has explored the environment: if the animat spends a great amount of time near the
reward location during the exploration phase, then the map will specialize several experts dedicated
to the reward location (this corresponds to the familiarization phase used with real rats in this task).
The reward location being more crucial for the task than other places, this gives better performance
during the reinforcement learning phase.

A proposition to improve our method, is to slightly adapt the map near the reward location after a
first stage of reinforcement learning has been reached. This adaptation could be triggered by a
threshold that blocks the reinforcement learning process in order to allow a new exploration phase.
This post-training adaptation of the map coordinating Actor-Critic modules could be interestingly
related to neural activity in the striatum. Jog et al. (1999) and Barnes et al. (2005) report a
redistribution of spatial selectivity of striatal neurons among the maze with extensive training.

In our method, we chose to separate the exploration phase from the reinforcement learning phase.
This prevents interferences between the adaptation of the map and reinforcement learning.

In order to enable the model to adapt to a more complex robotics task, the system can give the
priority back to the map training when it detects that the map's performance drops. For example, if
our agent is well habituated to the plus-maze, and if an experimenter opens a door, giving access to
a new corridor, then the map's classification error should increase sharply, providing a signal to
another neural system that transiently blocks the current reinforcement learning and launches a new
phase of map adaptation.
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Abstract. In a reward-seeking task performed in a continuous environment, our previous work compared several
Actor-Critic (AC) architectures implementing dopamine-like reinforcement learning mechanisms in the rat’s basal
ganglia. The task complexity imposes the coordination of several AC submodules, each module being an expert
trained in a particular subset of the task. We showed that the classical method where the choice of the expert to train
at a given time depends on each expert’s performance suffered from strong limitations. We rather proposed to cluster
the continuous state space by an ad hoc method that lacked autonomy and generalization abilities. In the present work
we have combined the mixture of experts with self-organizing maps in order to cluster autonomously the experts'
responsibility space. On the one hand, we find that classical Kohonen maps give very variable results: some task
decompositions provide very good and stable reinforcement learning performances, whereas some others are
unadapted to the task. Moreover, they require the number of experts to be set a priori. On the other hand, algorithms
like Growing Neural Gas or Growing When Required have the property to choose autonomously and incrementally
the number of experts to train. They lead to good performances, even if they are still weaker than our hand-tuned task
decomposition and than the best Kohonen maps that we got. We finally discuss on propositions about what
information to add to these algorithms, such as knowledge of current behavior, in order to make the task
decomposition appropriate to the reinforcement learning process.

1 Introduction

In the frame of the Psikharpax project, which aims at building an artificial rat having to survive in
complex and changing environments, and having to satisfy different needs and motivations [5][14],
our work consists in providing a simulated robot with habit learning capabilities, in order to make it
able to associate efficient behaviors to relevant stimuli located in an unknown environment.

The control architecture of Psikharpax is expected to be as close as possible to known anatomy and
physiology of the rat brain, in order to unable comparison between functioning of the model with
electrophysiological and behavioral recordings. As a consequence, our model of reinforcement
learning is based on an Actor-Critic architecture inspired from basal ganglia circuits, following well
established hypotheses asserting that this structure of the mammalian brain is responsible for
driving action selection [16] and reinforcement learning of behaviors to select via substantia nigra
dopaminergic neurons [17].

At this stage of the work, our model runs in 2D-simulation with a single need and a single
motivation. However the issue at stake already has a certain complexity: it corresponds to a
continuous state-space environment; the perceptions have non monotonic changes; an obstacle-
avoidance reflex can interfere with actions selected by the model; the reward location provides a non
instantaneous reward. In a previous paper [11], we demonstrated that this task complexity requires
the use of multiple Actor-Critic modules, where each module is an expert trained in a particular
subset of the environment. We compared different hypotheses concerning the management of such
modules, concerning there more or less autonomously determined coordination, and found that the
classical mixture of experts method - where the choice of the expert to train at a given time depends
on each expert's performance [3][4] — cannot train more than one single expert in our reinforcement
learning task. We rather proposed to cluster the continuous state space and to link each expert to a
cluster by an ad hoc method that could indeed solve the task, but that lacked autonomy and
generalization abilities.
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The objective of the present work is to provide an autonomous categorization of the state space by
combining the mixture of experts with self-organizing maps (SOM). This combination has already
been implemented by Tang et al. [20] - these authors having criticized the undesirable effects of
classical mixture of experts on boundaries of non disjoint regions. However, they did not test the
method in a reinforcement learning task. When they were used in such tasks [18][13] - yet without
mixture of experts —, SOM were applied to the discretization of the input space to the reinforcement
learning model, which method suffers from generalization abilities. Moreover, the method has
limited performance in high-dimensional spaces and remains to be tested robustly on delayed reward
tasks.

In our case, we propose that the SOM algorithms have to produce a clustering of the responsibility
space of the experts, in order to decide which Actor-Critic expert has to work in a given zone of the
perceptual state space. In addition, the selected Actor-Critic expert of our model will receive the
entire state space, in order to produce a non constant reward prediction inside the given zone.

After describing the task in the following section, we will report the test of three self-organizing
maps combined with the mixture of Actor-Critic experts, for the comparison of their usefulness for
a complex reinforcement learning task. It concerns the classical Kohonen algorithm [12], which
requires the number of experts to be a priori set; the Growing Neural Gas algorithm [6], improved
by [9], which adds a new expert when an existing expert has a important error of classification; and
the Growing When Required algorithm [15], which creates a new expert when habituation of the
map to visual inputs produces a too weak output signal when facing new visual data.

In the last section of the paper, we will discuss the possible modifications that could improve the
performance of the model.

2 The task

Figure 1 shows the simulated experimental setup, a simple 2D plus-maze. The dimensions are
equivalent to a Sm * 5m environment with 1m large corridors. In this environment, walls are made
of segments colored on a 256 grayscale. The effects of lighting conditions are not simulated. Every
wall of the maze is colored in black (luminance = 0), except walls at the end of each arm and at the
center of the maze, which are represented by specific colors: the cross at the center is gray (191),
three of the arm ends are dark gray (127) and the fourth is white (255), indicating the reward
location equivalent to a water trough delivering two drops (non instantaneous reward) — not a priori
known by the animat.

Xaupllots [EEE

Quit

Fig. 1. Left: the robot in the plus-maze environment. Upper right:
the robot’s visual perceptions. Lower right: activation level of
different channels in the model.

The plus-maze task reproduces the neurobiological and behavioral experiments that will serve as
future validation for the model [1]. At the beginning of each trial, one arm end is randomly chosen
to deliver reward. The associated wall becomes white whereas the other arm ends become dark gray.
The animat has to learn that selecting the action drinking when it is near the white wall (distance <
30 cm) and faces it (angle < 45°) gives it two drops of water. Here we assume that reward = 1 for n
iterations (n = 2) during which the action drinking is being executed. However, the robot's vision
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does not change between these two moments, since the robot is then facing the white wall. As visual
information is the only sensory modality that will constitute the input space of the Actor-Critic
model, this makes the problem to solve a Partially Observable Markov Decision Process [19]. This
characteristic was set in order to fit the multiple consecutive rewards that are given to rats in the
neurobiological plus-maze, enabling comparison between our algorithm with the learning process
that takes place in the rat brain during the experiments.

We expect the animat to learn a sequence of context-specific behaviors, so that it can reach the
reward site from any starting point in the maze:

When not seeing the white wall, face the center of the maze and move forward

As soon as arriving at the center (the animat can see the white wall), turn to the white stimulus
Move forward until being close enough to reward location

Drink

The trial ends when reward is consumed: the color of the wall at reward location is changed to dark
gray, and a new arm end is randomly chosen to deliver reward. The animat has then to perform
another trial from the current location. The criterion chosen to validate the model is the time —
number of iterations of the algorithm - to goal, plotted along the experiment as the learning curve of
the model.

3 The animat

The animat is represented by a circle (30 cm diameter). Its translation and rotation speeds are 40
cm.s™ and 10°.s™".
Its simulated sensors are:

4. Eight sonars with a Sm range, an incertitude of +5 degrees concerning the pointed direction
and an additional +10 cm measurement error. The sonars are used by a low level obstacle
avoidance reflex which overrides any decision taken by the Actor-Critic model when the
animat comes too close to obstacles.

5. An omnidirectional linear camera providing every 10° the color of the nearest perceived
segment. This results in a 36 colors table that constitute the animat’s visual perception (see
figure 1).

The animat is provided with a visual system that computes 12 input variables and a constant equal
to 1 (Vi€[1;13],0<var,<1) out of the 36 colors table at each time step. These sensory
variables constitute the state space of the Actor-Critic and so will be taken as input to both the Actor
and the Critic parts of the model (figure 3). Variables are computed as following:

4. seeWhite (resp. seeGray, seeDarkGray) = 1 if the color table contains the value 255 (resp.
191, 127), else O.

5. angleWhite, angleGray, angleDarkGray = (number of boxes in the color table between the
animat’s head direction and the desired color) / 18.

6. distanceWhite, distanceGray, distanceDarkGray = (maximum number of consecutive boxes
in the color table containing the desired color) / 18.

7. nearWhite (resp. nearGray, nearDarkGray) = 1 — distanceWhite (resp. distanceGray,
distanceDarkGray).

The model permanently receives a flow of sensory information and has to learn autonomously the
sensory contexts that can be relevant for the task resolution.

The animat has a repertoire of 6 actions: drinking, moving forward, turning to white perception,
turning to gray perception, turning to dark gray perception, and waiting. These actions constitute
the output of the Actor model (described below) and the input to a low-level model that translates it
into appropriate orders to the animat’s engines.

4 The Model

4.1 The multi-module Actor-Critic
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The model tested in this work has the same general scheme than described in [11]. It has two main
components, an Actor which selects an action depending on the visual perceptions described above;
and a Critic, having to compute predictions of reward based on these same perceptions (figure 2).
Each of these two components is composed of N submodules or experts. At a given time, each
submodule k (ke{l ;N I) has a responsibility ¢, (t) that determines its weight in the output of the
overall model. In the context of this work, we restrict to the case where only one expert k has its
responsibility equal to 1 at a given moment, and V j#k, ¢ j (1)=10.

Fig. 2. General scheme of the
model tested in this work. The
Actor is a group of “GPR”
modules [8] with saliences as
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Inside the Critic component, each submodule is a single linear neuron that computes its own
prediction of reward:
13
t):; w’k,j(t)-varj(t) (1)

where w' k,j(t) is the synaptic weight of expert k representing the association strength with input
variable j. Then the global prediction of the Critic is a weighted sum of experts’ predictions:

(r)=kZN1 c.ltl-p,lt] (2)

Concerning the learning rule, derived from the Temporal-Difference Learning algorithm [19], each
expert has a specific reinforcement signal based on its own prediction error:

P ltl=rlt) +gPlt]=p,lt—1] (3)
The synaptic weights of each expert k are updated according to the following formula:
wltlew' le=1)+n-7 [t]var [t=1]-c [¢] (4)

Actor submodules also have synaptic weights w; j(t) that determine, inside each submodule %, the
salience — i e. the strength — of each action i according to the following equation:

Z Var

The actlon selected by the Actor to be performed by the animat corresponds to the strongest output
of the submodule with responsibility 1. If a reinforcement signal occurs, the synaptic weights of the

sal [t ( )| +persist (t)-w. (1)

)
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latter submodule are updated following equation (4).

An exploration function is added that would allow the animat to try an action in a given context
even if the weights of the Actor do not give a sufficient tendency to perform this action in the
considered context.

To do so, we introduce a clock that triggers exploration in two different cases:

8. When the animat has been stuck for a large number of timesteps (time superior to a fixed
threshold @) in a situation that is evaluated negative by the model (when the prediction P(t)
of reward computed by the Critic is inferior to a fixed threshold).

9. When the animat has remained for a long time in a situation where P(t) is high but this
prediction doesn’t increase that much (IP(z+n) — P()l < €) and no reward occurs.

If one of these two conditions is true, exploration is triggered: one of the 6 actions is chosen
randomly.Its salience is being set to 1 (Note that: when exploration = false, sal,(t)<1, Vi,t,w i,j(t ))
and is being maintained to 1 for a duration of 15 timesteps (time necessary for the animat to make a
180° turn or to run from the center of the maze until the end of one arm).

4.2 The self-organizing maps

In our previous work [11], we showed that the classical method used to determine the experts’
responsibilities — a gating network, giving the highest responsibility to the expert that approximates
the best the future reward value [3][4] — was not appropriate for the resolution of our reinforcement
learning task. Indeed, we found that the method could only train one expert which would remain the
more responsible in the entire state space without having a good performance. As our task is
complex, we rather need the region of the state space where a given expert is the most responsible to
be restricted, in order to have only limited information to learn there. As a consequence, we propose
that the state space should be clustered independently from the performance of the model in
learning the reward value function.

oowertare du neurono 22 cowerture du newrane 30 cowerture du nowane 41
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Fig. 3. Examples of clusterings found by the GWR self-organizing map. The pictures show, for three

different AC experts, the positions of the robot for which the expert has the highest responsibility —
thus, positions where the Actor-Critic expert is involved in the learning process.

In this work, the responsibility space of the Actor-Critic experts is determined by one of the
following self-organizing maps (SOMs): the Kohonen Algorithm, the Growing Neural Gas, or the
Growing When Required. We will describe here only essential aspects necessary for the
comprehension of the method maps. Each map has a certain number of nodes, receives as an input
the state space constituted of the same perception variables than the Actor-Critic model, and will

autonomously try to categorize this state space. Training of the SOMs is processed as following:
Begin
Initialize a fixed number of nodes (for the Kohonen
Map) or 2 nodes for GNG and GWR algorithms;
While (iteration < 50000)
Move the robot randomly; //Actor-Critic disabled
Try to categorize the current robot’s perception;
If (GNG or GWR) and (classification-error > threshold)
Add a new node to the map;
End if;
Adapt the map;
End;
// After that, the SOM won’t be adapted anymore
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While (trial < 600)
Move the robot with the Actor-Critic (AC) model;
Get the current robot’s perception;
Find the SOM closest node (k) to this perception;
Set expert k responsibility to 1 and others to 0;
Compute the learning rule and adapt synaptic weights of the AC;
End;
End;

Parameters used for the three SOM algorithms are given in the appendix table. Figure 3 shows some
examples of categorization of the state space obtained with a GWR algorithm. Each category
corresponds to a small region in the plus-maze, where its associated Actor-Critic expert will have to
learn. Notice that we set the parameters so that regions are small enough to train at least several
experts, and large enough to require that some experts learn to select different actions successively
inside the region.

5 Results

The results correspond to several experiments of 600 trials for each of the three different methods
(11 with GWR, 11 with GNG, and 11 with Kohonen maps). Each experiment is run following the
algorithmic procedure described in the previous section.

Table 1. Summarized performances of the methods applied to reinforcement learning.

Method Average performance during Standard Best map's average
second half of the experiment error performance

(nb iterations per trials)
Hand-tuned map 93.71 N/A N/A
KOH (n=11) 548.30 307.11 87.87
GWR (n=11) 459.72 189.07 301.76
GNG (n=11) 403.73 162.92 193.39

Figure 4 shows the evolution with time of the learning process of each method. In each case, the
smallest number of iterations occurs around the 250th trial and remains stabilized. Table 1
summarizes the global performances averaged over the second half of the experiment — e.g. after
trial #300. Performances of the three methods are comparable (Kruskall-Wallis test reveals no
significant differences: p > 0.10). When looking at the maps' categorizations precisely and
independently from the reinforcement learning process, measure of the maps' errors of
categorization highlights that Kohonen maps provide a slightly worst result in general, even while
using more neurons than the GWR and GNG algorithms. However, this doesn't seem to have
consequences on the reinforcement learning process, since performances are similar. So, the
Kohonen algorithm, whose number of experts is a priori set, is not better than the two others which
recruit new experts autonomously.

Performances with GNG and GWR algorithms are not very different either. In their study, Marsland
et al. [15] conclude that GWR is slightly better than the GNG algorithm in its original version. Here,
we used a modified version of GNG [9]. In our simulations, the GNG recruited on average less
experts than the GWR but had a classification error a little bigger. However, when applied to
reinforcement learning, the categorizations provided by the two algorithms did not show major
differences.
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Qualitatively, the three algorithms have provided the multi-module Actor-Critic with quite good
experts' responsibility space clustering, and the animat managed to learn an appropriate sequence of
actions to the reward location. However, performances are still not as good as a version of the model
with hand-tuned synaptic weights. The latter has an average performance of 93.71 iterations per
trial, which is characterized by a nearly “optimal” behavior where the robot goes systematically
straight to the reward location, without loosing any time (except the regular trajectory deviation
produced by the exploration function of the algorithm). Some of the best Kohonen maps and GNG
maps reached similar nearly optimal behavior. As shown in table 1, the best Kohonen map got an
average performance of 87.87 iterations per trial. Indeed, it seems that the categorization process
can produce very variable reinforcement learning depending on the map built during the first part of
the experiment.

6 Discussion

In this work, we have combined three different self-organizing maps with a mixture of Actor-Critic
experts. The method was designed to provide an Actor-Critic model with autonomous abilities to
recruit new expert modules for the learning of a reward-seeking task in continuous state space.
Provided with such a control architecture, the simulated robot can learn to perform a sequence of
actions in order to reach the reward. Moreover, gating Actor-Critic experts with our method strongly
ressembles neural activity observed in the striatum — e.g. the input structure of the basal ganglia — in
rat performing habit learning tasks in an experimental maze [10]. Indeed, the latter study shows
striatal neurons' responses that are restricted to localized chunks of the trajectory performed by the
rat in the maze. This is comparable with the clusters of experts' responsibilities shown in figure 3.
However, the performance of the model presented here remains weaker than a hand-tuned behavior.
Indeed, the method produces very variables results, from maps with nearly optimal performance to
maps providing unsatisfying robotics behavior.

Analysis of the maps created with our method shows that some of them are more appropriate to the
task than others, particularly when the boundaries between two experts' receptive fields corresponds
to a region of the maze where the robot should switch from one action to another in order to get the
reward. As an example, we noticed that the majority of the maps obtained in this work had their
expert closer to the reward location with a too large field of responsibility. As a consequence, the
trunk of the global value function that this expert has to approximate is more complex, and the
behavior to learn is more variable. This results in selecting inappropriate behavior in the field of this
expert — for example, the robot selects the action “drinking” too far from reward location to get a
reward. Notice however that this is not a problem with selecting several different actions in the same
region of the maze, since some experts managed to learn to alternate between two actions in their
responsibility zone, for example in the area close to the center of the plus-maze. A given expert
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having limited computational capacities, its limitations occur when its region of responsibility is too
large.

To improve the performance, one could suggest setting parameters of the SOM in order to increase
the number of experts in the model. However, this would result in smaller experts' receptive field
than those presented in figure 3. As a consequence, each expert would receive a nearly constant
input signal inside its respective zone, and would need only to select one action. This would be
computationally equivalent to the use of small fields place cells for the clustering of the state space
of an Actor-Critic, which has been criticized by several authors [2], and would not be different than
other algorithms where the winning node of a self-organizing map produces a discretization of the
input space to a reinforcement learning process [18].

One could also propose to increase each expert-module's computational capacity. For instance, one
could use a more complex neural network than the single linear neuron that we implemented for
each expert. However, one cannot a priori know the task complexity, and no matter the number of
neurons an expert possesses, there could still exist too complex situations.Moreover, “smart” experts
having a small responsibility region could overlearn the data with poor generalization ability [7].

7 Perspective

In future work, we rather propose to enable the experts' gating to adapt slightly to the behavior of
the robot. The management of experts should not be mainly dependent on the experts' performances
in controlling behavior and estimating the reward value, as we have shown in previous work [11].
However, considering the categorization of the visual space as the main source of experts’
specialization, it could be useful to add information about the behavior in order for boundaries
between two experts' responsibility regions to flexibly adapt to areas where the animat needs to
switch its behavior. In [21], the robot's behavior is a priori set and stabilized, and constitutes one of
the inputs to a mixture of experts having to categorize the sensory-motor flow perceived by a robot.
In our case, at the beginning of the reinforcement learning process, when behavior is not yet stable,
visual information could be the main source of experts’ specialization. Then, when the model starts
to learn an appropriate sequence of actions, behavioral information could help adjusting the
specialization. This would be similar to electrophysiological recordings of the striatum showing
that, after extensive training of the rats, striatal neurons' responses tend to translate to particular
“meaningful” portions of the behavioral sequences, such as the starting point and the goal location
[10].
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Appendix: Parameters table

Symbol Value Description

t 1 sec. Time between two successive iterations of the model.
a [50;100] Time threshold to trigger the exploration function.

g 0.98 Discount factor of the Temporal Difference learning rule.
n 0.05/0.01 Learning rate of the Critic and the Actor respectively.
N 36 Number of nodes in Kohonen Maps.

n-koh 0.05 Learning rate in Kohonen Maps.

g 3 Neighborhood radius in Kohonen Maps.

Ew, En 0.5,0.005/0.1,0.001 Learning rates in the GNG and GWR respectively.
a-max 100 Max. age in the GNG and GWR.

S Threshold for nodes recruitment in the GNG.

a-gng, 3-gng 0.5, 0.0005 Error reduction factors in the GNG.

A 1 Window size for nodes incrementation in the GNG.
a-T 0.8 Activity threshold in the GWR

h-T 0.05 Habituation threshold in the GWR.
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5. Conclusion on the role of the rat striatum in learning

In this chapter, we presented different results concerning the study of the role of the striatum in
reward-based learning of the visual cue-guided strategy. Our electrophysiological results, recorded
from the rat ventral striatum, show anticipatory responses consistent with the Critic part of an
Actor-Critic model in the TD-learning theory. By designing a simple computational Actor-Critic
model with varying input information (different levels of temporal, spatial and visual information)
we reproduce several different electrophysiological responses recorded. This extends the classical
Actor-Critic model of the striatum where the system was particularly designed to reproduce
temporal properties of dopaminergic neurons (Khamassi et al., in revision).

Since TD-learning is a model-free reinforcement learning algorithm, our results are consistent with
the hypothesis that part of the ventral striatum (including the shell) participates in the learning of
the visual cue-guided model-free strategy — that is, procedural Stimulus-Response behaviors
(Dayan, 2001).

Then we combined this Critic-like activity with a biological plausible Actor model of the basal
ganglia, assumed to be anchored in the dorsolateral striatum.

This architecture provides a good performance in a simulated robotics version of the plus-maze task
(Khamassi et al., 2005). We finally proposed an autonomous method for the coordination of Actor-
Critic modules. This method combines self-organizing maps and a mixture of experts, and show
some interesing generalization ability for robotics (Khamassi et al., 2006).

Assuming the architecture where different striatal territories learn different navigation strategies,
whereas the prefrontal cortex is assumed to detect task changes that require a strategy shift, the next
chapter presents our investigation of prefrontal neuronal activity during a changing rule Y-maze
task. Our hypothesis is that a set of prefrontal neurons should detect changes in the task rule
imposed by the experimenter without any external cue. Moreover, a set of prefrontal neurons should
correlate with the current strategy, thus showing a possible involvement of the PFC in strategy
selection following task rule changes.

Page : 123/ 196



Page : 124 / 196



CHAPTER 3 : BEHAVIORAL AND NEURONAL ENSEMBLE
RECORDING OF THE MEDIAL PREFRONTAL CORTEX IN RATS
LEARNING AND SHIFTING STRATEGIES

1. Introduction
In this chapter, we present a synopsis of results of initial analyses of data from our study of the
prefrontal cortical neural ensemble activity in rats learning new task contingency rules in a Y-maze,
during strategy shifting and sleep prior and after learning. This project captured most of the efforts
done during this PhD period: from building, programming and configuring the Ymaze setup,
training rats in a first version of the task, building electrodes and surgical implants; to doing the
experiments, processing the recorded data (video tracking, spike sorting), and analysing the data.

Based on the literature presented in the first chapter, our hypothesis is that the rat medial prefrontal
cortex (mPFC) participates in the detection of extradimensional rule changes on the basis of a low
incidence of rewards. Moreover, mPFC could participate in strategy selection following such reward
contingency changes, in order to facilitate learning of a new strategy when the previously engaged
one is no longer optimal.

Thus, we recorded prefrontal neurons in rats learning a binary choice task in a Y-maze, where
reward delivery is governed by task rules that may change without any external cue signal. The task
contingencies imposed on the rats are, in sequence: go to the right arm, go to the lit arm, go to the
left arm, go to the dark arm.

Since prefrontal cortical damage impairs extradimensional strategy shifts, we expected to find a set
of prefrontal neurons whose change in activity would reflect detection of changes in the task rule, a
possible mechanism in order to trigger extinction of the former rule and learning of a new one.
Moreover, we anticipated that some neurons in mPFC would show a modulation in activity
correlated with spontaneous learning of new strategies made by the rat in order to optimize rewards.
Some of this work has been presented at international meeting, and the manuscript of this work is
still in preparation (Khamassi, et al.) for submission to the Journal of Neuroscience. So these
results are presented in the form of a full chapter.
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2. Electrophysiological recordings in PFC
Khamassi et al. (in preparation) PFC and strategy shifting
INTRODUCTION

Decision is a key phase in the generation of behavior (Berthoz, 2003a). By decision in studies of
rats and robots, we mean the cognitive processing for action selection. The mechanism leading to
choosing an action can be seen as the combination of two quite different processes: the first can be
named teleological (Dickinson, 1980), or goal-directed because it selects actions based on the
animal’s (or animat's) current motivational state and goal (the animal can be hungry and hence look
for food, or it may be thirsty and look for water), the animal’s “knowledge” about the consequences
of candidate actions and whether or not this activity may bring it closer to attain the goal. The
second process is called habit: an automatic, learned, or species-specific stimulus-response
association that occurs at least partially independently of the animal’s established goal. Learning of
a goal-directed behavior involves examining the data available, both from past experiences and from
the current state of the environment, then selecting, or if necessary, devising a strategy well-suited
to attain that goal.

To learn a new strategy, the subject has often to go through a trial-and-error process, where
various possibilities are explored, while keeping track of the reward value of each of them. Any type
of agent, natural or artificial, surviving and operating in a complex, changing environment, has an
increased chance of survival if it is capable of goal-directed behavior: the Artificial Intelligence and
robotics communities face this precise problem when trying to design devices capable of
performing a task without supervision in a situation in which not all the circumstances, potential
outcomes, and the required responses can be predicted in advance.

This project studies the neural basis of reinforcement-based navigation strategy learning and
shifting. Our working hypothesis is that the brain solves these kinds of problems in a network of
high-order structures, which are highly interconnected and hierarchical arranged, including the
hippocampus, the prefrontal cortex and the striatum (see Granon and Poucet, 2000; Thierry et al.,
2000; Uylings et al., 2003; Voorn et al., 2004; Vertes, 2006 for reviews). As reviewed in the first
chapter, there is now a convergence in the literature suggesting that, while the striatum could
participate in learning specific navigation strategies, the medial prefrontal cortex could be involved
in the detection of task changes prompting for a shift in the current strategy. Moreover, the medial
prefrontal cortex could participate in the selection of the new strategy to perform, based on the
storage of information concerning the consecutive successes and errors the animal has made during
the past trials.

Indeed, the rat mPFC, and particularly the prelimbic area (PL) show some functional
homologies with the primate dorsolateral prefrontal cortex (see Uylings et al., 2003 for a review),
which plays a role in flexible goal-directed behaviors (see Granon and Poucet, 2000; Cardinal et al.,
2002 for reviews). The mPFC is involved in attentional processes (Muir et al., 1996; Birrell and
Brown, 2000; Delatour and Gisquet-Verrier, 2000), in working-memory (Van Haaren et al., 1985;
Brito and Brito, 1990; Kolb, 1990; de Brabander et al., 1991; Delatour and Gisquet-Verrier, 1996,
1999) and in the registering of the consequences of actions (Corbit and Balleine, 2003; Killcross
and Coutureau, 2003; Dalley et al., 2004; Ostlund and Balleine, 2005; see Cardinal et al., 2002 for a
review). Moreover, it seems that PL is not involved in simple tasks requiring only one of these three
processes, but rather in complex tasks requiring the combination of several of these processes to
promote flexible behavior (see Granon and Poucet, 2000; Gisquet-Verrier and Delatour, 2006 for
reviews).

PL lesions impair behavioral flexibility in response to a change in the task rule (de Bruin et al.,
1994; Birrell and Brown, 2000; Colacicco et al., 2002; McAlonan and Brown, 2003; Salazar et al.,
2004; Lapiz and Morilak, 2006). Moreover, PL damage-induced impairment is significantly
increased when the task requires shifting from one strategy to another, whether the initial strategy
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has been learned (Granon and Poucet, 1995; Ragozzino et al., 1999a,b) or is spontaneously used by
the animal (Granon et al., 1994).

Furthermore, a particular category of strategy shifts is impaired by mPFC lesions (referring to
the different types of shifts defined in the first chapter). Whereas lesions of the orbitofrontal cortex
are found to impair intradimensional shifts — for example when the stimuli associated with reward
before and after the task rule change have the same modality (either visual, olfactive, spatial) (Kim
and Ragozzino, 2005), lesions of mPFC impair extradimensional shifts while intradimensional
shifts are spared (Joel et al., 1997; Birrell and Brown, 2000; Ragozzino et al., 2003).

Several electrophysiological studies have reported prefrontal neural activity reflecting some
crucial parameters underlying flexible goal-directed behaviors, such as movement (Poucet, 1997;
Jung et al., 1998), reward (Pratt and Mizumori, 2001; Miyazaki et al., 2004), working-memory
(Baeg et al., 2003), spatial goals (Hok et al., 2005) and action-outcome contingencies (Mulder et al.,
2003 ; Kargo et al., 2007). A recent study showed that functional connectivity between neurons
within the mPFC was found to be highest at the early stage of a new learning phase following a task
rule change (Baeg et al., 2007). However, no individual prefrontal neurons have yet been shown to
reflect task rule changes or spontenous shifts in the strategy, hallmarks of prefrontal function.

Spatial orienting "RIGHT" (and "LEFT") Visually-guided "LIGHT" Visually-guided "DARK"

Correct

Correct

Error Correct

Figure 3.2.1: Examples of different task strategies on the Y-maze. (Left) The rat has always to
choose the arm to its right .(Center) The rat has to run to the illuminated arm. (Right) The rat
has to go to the dark arm. The first case can be solved either by a praxic or a place strategy: the
rewarded direction is always the same with respect to the rat’s body, while the rewarded arm is
always at the same spatial position. A light will also be present in this situation, acting as a
confound. The two other cases are examples of visually guided navigation: there is a visual cue
that is spatial in nature, since its position coincides with the rewarded location. D is an example
of association between non-spatial stimuli (the sound and the light are presented in location
between the choice arms) and a spatial response.

Thus we have recorded ensembles of neurons from the medial prefrontal cortex, while the rat
experiences extradimensional task rule changes unsignalled by external cues and must learn
different task rules governing reward delivery in a Y-maze. The rat had a binary choice (“go left” or
“go right”), and only one of these actions was rewarded. To infer the correct response, the rat had to
take into account some external cues, and devise a mutable rule, or strategy (which could then
change). The rule had to be discovered by a trial and error procedure. The external cues forming the
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context of the choice appeared at various delays prior to choice, so that they had to be kept in the
working memory buffer.

Our main hypotheses were that: First at a behavioral level, rats would successively try different
strategies during learning, and then spontaneously shift their strategy when no longer consistently
achieving rewards. Second, at the electrophysiological level, some neurons should detect changes in
the task rule prompting learning of a new strategy. These neurons would show a transient change in
activity in response to task rule changes, or would show transitions in activity synchronizes with
these changes. Finally, some prefrontal neurons would show activity correlates with particular
strategies, and thus show transitions in their activity when the animal shifts between strategies.

METHODS

The apparatus The Y-maze was formed by three arms separated by 120 degrees, with a cylindrical
barrier at the center. The task to be performed by rats in this Y-maze is analogous to the Wisconsin
Card Sorting Test, used for diagnosing neurological patients for prefrontal cortical damage (Berg,
1948 ; Grant et al., 1949 ; Heaton, 1993 ; Mansouri et al., 2006). This requires self-generated
extradimensional strategy shifts. The present version of the test is a decision-making task where
different rules govern the delivery of reward during consecutive blocks of trials. No clue was given
to indicate the switch from one rule to another. In each block, rats had to learn by trial-and-error to
adapt their behavior to the current rule in order to maximize the amount of reward received.
Strategies involved The rules were chosen to involve different memory systems relying on different
categories of navigation strategies: on the one hand, a visually-guided strategy where a light cue
indicates the presence or the absence of reward; on the other hand, a spatial orienting strategy
where a certain position in space is associated with the presence of reward. The latter can either
refer to a place or a praxic strategy, because we did not aim at disambiguating between the two:
during the whole set of experiments, rats always started from the same departure arm. Thus, a left
turn was always leading to the same position in space. However, neither praxic nor place strategies
can engage the randomly positioned intramaze light cue used for the visually-guided strategy, thus
permitting to test extradimensional shifts with this setup (e.g. from visually-guided to spatial
orienting, and vice versa).

The task Rats started all trials from the departure arm (see figure 3.2.1), and after the central
barrier was lowered, they had to select one of the two choice arms, then go to the end to receive a
chocolate milk reward. As the barrier was lowered, a light went on in one of the two arms, randomly
selected for each trial (figure 3.2.1). For each trial, the reward was available on only one arm. The
baited arm was determined based on one of four possible contingency rules: 1) the right arm was
always baited (right rule / praxic-place strategy), 2) the left arm was always baited (left rule /
praxic-place strategy), 3) reward was available on the illuminated arm (light rule / visually-guided
strategy), 4) reward was available on the non-illuminated arm (dark rule / visually-guided strategy);
figure 1). After the rat faced the outcome of the trial (reward or nothing), he had to return back to
the departure arm for next trial.

Once the rat has acquired the current rule (i.e., performance reached a criterion level of 10
consecutive rewarded trials, or 90% rewarded trials in the last 12 trials), the rule was then changed.
As mentioned above, the change was not explicitly signalled to the rat in any way, so that it had to
be inferred by the pattern of unrewarded trials.

Sessions Rats were trained in daily sessions. Each session consisted of 10 to 60 consecutive trials,
stopping when the rat was no longer working. Since it happened that several daily sessions were
required to learn certain task rules, there were sessions were no shift in the task rule was imposed.
Thus, we will distinguish shift-sessions (e.g. sessions where a shift in the task rule occurred) from
non-shift-sessions, and we will consider pre-shift and post-shift phases of a shift-session.
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Figure 7

—
N

Bregma 3.70 mm

Ratl5 Ratl18 Rat19 Rar20

Figure 3.2.2: Placement of prefrontal recording array and histological analyses of tetrode
implantations with the Neurolucida system (thanks to N Quenech'du and Prof. D Hopkins). Top:
Left: horizontal section showing the shape and placement of the array of guide tubes, with
respect to the targeted cortical areas (PrL = Prelimbic). Right: Example of the expected
trajectory of the electrodes through the prefrontal cortex. Bottom: Histological analyses of
tetrode placements in four rats.

Rats

Five Long-Evans male adult rats (225 to 275 g) were purchased (from the Centre d'Elevage René
Janvier, Le Genest-St-Isle, France) and kept in clear plastic cages bedded with wood shavings. The
rats were housed in pairs while habituating to the animal facility environment. They were weighed
and handled each work day. Prior to training they were placed in separate cages and access to food
was restricted to one daily feeding, between 2 to 4 hours after daily session, to maintain body weight
at not less than 85% of normal values (as calculated for animals of the same age provided ad libitum
food and water). The rats were examined daily for their state of health and were fed to satiation at
the end of each work week. This level of food deprivation was necessary to motivate performance in
the behavioral tasks, and the rats showed neither obvious signs of distress (excessive or insufficient
grooming, hyper- or hypo-activity, aggressiveness) nor health problems. The rats were kept in an
approved (City of Paris Veterinary Services) animal care facility in accordance with institutional
(CNRS Comité Opérationnel pour I'Ethique dans les Sciences de la Vie), national (French Ministere
de I'Agriculture, de la Péche et de 1'Alimentation No. 7186) and international (US National Institutes
of Health) guidelines. A 12 hr/12 hr light/dark cycle was applied.

The data-acquisition technologies
Multiple single units were recorded simultaneously with an array of up to nine tetrodes — bundles of
4 insulated micro-wires (McNaughton et al., 1983; Recce and O'Keefe, 1989). Nine tetrodes were
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placed in the right mPFC and three simple electrodes in the right ventral hippocampus (figure
3.2.2), using standard electrophysiological techniques. Spike waveforms were filtered between 600
and 6000 Hz, digitized using the Spike2 software and the Power 1401 device (Cambridge Electronic
Device, UK) at 25 kHz and time-stamped. For spike recording, 32 samples at 32 kHz (1 ms total)
were recorded whenever the signal exceeded a manually-set threshold (8 pre-trigger and 24 post-
trigger samples). This being processed for the four wires of tetrodes, each recorded neural spike was
stored as an ensemble of 128 (32 * 4) voltage values.

The signal recorded from the same tetrodes was also passed into a low-band filter (between 0 and
475 Hz) in order to extract Local Field Potentials (LFPs). The time-stamps of the behavioral events
were integrated with the spike data on line. A video camera was synchronized with the data-
acquisition software and monitored the consecutive positions of the animal during the experiment.

Figure 3.2.3: The surgical implant for single-unit and EEG recording in the prefrontal cortex
and the hippocampus. The system is composed of 2 separately implanted devices. The first (left)
allows the positioning of 9 tetrodes in the prefrontal cortex, the second (right) drives two tetrodes
in the ventral hippocampal region for EEG recording.

At the end of experiments, a small electrolytic lesion was made through one lead of each tetrode (25
microA for 10 s.). Lesion sites were determined in Nissl-stained cryosections of formaldehyde (4%)
perfused brains. Positions of recorded neurons are currently being determined with respect to the
lesion site taking the distance travelled into account.

Signal processing

The digitized waveform signals are analysed after each session for action potential spike
discrimination. This discrimination is made possible by the presence of four wires in each tetrode,
which is similar to the use of several microphones in a room with several speakers for distinguishing
off-line the relative positions of voices (see figure 3.2.4 for an illustration).

We first process the data with a custom python script for Principal Component Analysis in order
to reduce the 128 dimensions space to 12 dimensions — three per tetrode wire: the first principal
component for each wire corresponds roughly to the amplitude of electrical pulses captured by this
wire. Then, we use the Klustakwik software using the Expectation-Maximization algorithm (Celeux
and Govaert, 1992) as developed by Ken Harris (Harris et al., 2000) to do the spike-sorting — that is,
to cut the 12-dimensional “cloud” of spikes into clusters of pulses emitted by single neurons (figure
3.2.5). Because of the limits of this method, it will always ultimately be necessary to revise the
classification manually in a time-consuming procedure. Parameters of the EM algorithm were
intentionally chosen to extract a high number of clusters (typically from 15 to 60) so that we then
manually merge clusters that are likely to belong to the same cell. This method of spike-sorting
provided an identification of 4 cells on average per tetrode per day.
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In this thesis we did not distinguish pyramidal cells from interneuron. We rather systematically
perform each statistical analysis on the ensemble of prefrontal neurons.

Tetrlode

n= 1100

700

rV

700 0 uV 700

Figure 3.2.4: Spike sorting problem for tetrode recordings (from Buzsaki, 2004). A. shows the
volume of hippocampal tissue with cells that can be discriminated by the tetrode (purple). The
light blue volume denotes the cells whose signal can be received by the tetrode, but with an
insufficient signal-to-noise ratio for discrimination, thus contributing to background noise. B:
shows the scattergram of waveform peak amplitudes with three projections showing each 2
tetrode channels. 10 cells could be discriminated, and are color-coded light blue.

Automated behavior analysis

In order to correlate cell activity with various task events, the latter had to be extracted from the
acquired data. The video tracking data of the instantaneous position of the animal were acquired
using the MaxTRAQ software. Using this position information, we extracted the animal's instant of
trial initiation, identified as ‘START’, defined as the last acceleration in the departure arm. We also
extracted the ‘OUTCOME’ event which was defined as the instant when the animal reached the
reservoir of the chosen arm. Once the animal entered an arm it was not permitted to turn back.
Other events such as the ‘Light Onset’ and ‘Light Offset’ of each trial were directly registered by the
Spike2 software that generated them.

For the analyses presented here neuronal activity was examined from four trial periods based on
these events: preStart, earlyTrial, lateTrial, postOutcome, corresponding respectively to the
following time windows: [START — 2.5 sec; START], [START; START + 2.5 sec], [OUTCOME — 2.5
sec; OUTCOME], [OUTCOME; OUTCOME + 1.25 sec]. Note that, in the postOutcome period, the
animal's behavior was not consistently the same for all trials: during correct trials, animals stayed
for several seconds at the maze arm extremity in order to consume reward. In contrast, during error
trials, animals quickly exited the reward zone, in order to go back to the departure arm and start a
new trial. Thus, there is a risk of confound with motor correlates when analysing correlations
between prefrontal neural activity and this task parameter.

The postOutcome period was hence restricted to a duration of 1.25 seconds, since in 96.39% of all
trials recorded in the five animals (including error trials), rats remained at least for 1.25 sec at the
reward location. Nonetheless any putative post-outcome variations of cell activity must be examined
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closely for this potential confound.

Figure 3.2.5: Example of spike sorting from one of our recorded tetrodes. The amplitude and
waveform recorded on the four channels of a tetrode may be used to discriminate spikes from
several cells. In this example, we recorded units from the pyramidal layer of CAl. In the top part
of the figure, the amplitude of all spikes recorded on three of channels are plotted pairwise. The
different colors refer to the putative single units (“clusters”) identified by the cluster
discrimination program, and confirmed by the experimenter. This identification was based on
PCA of these projection plots, as well as other projection plots involving the spike amplitude and
other waveform parameters on the four channels. We identified 10 or 11 single cells from this
recording (some uncertainty remains about two clusters (which ones?) with similar waveforms
that may actually refer to the same cell). The bottom part of the figure shows the average
waveforms on the four channels of the respective identified putative units.

For the analyses each trial was characterized by variables such as the current task contingency
(right, light, left or dark), the position of the light (right or left), the arm chosen by the animal (right
or left), and the outcome of the trial (correct or error).

To systematically categorize the animal’s behavior in term of “strategy” followed during blocks of N
consecutive trials (for instance N=6), we used the following step-by-step method :
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Let's consider the behavioral data of the first recording session

Rat20/201219
#Trial Task LightPosition Animal’s choice Correct/Error
1 R R R C
2 R R L E
3 R L R C
4 R L L E
5 R L R C
6 R R R C
7 R L L E
8 R L R C
9 R R R C
10 R L R C
11 R L L E
12 R R R C
13 R L R cC
14 R L R C
15 R R R C
16 R R R C
17 R R R C

where “R” means right, “L”” means left, “C” means correct, and “E” means error.
STEP A : For each trial, possible strategies for the categorization of the rat current behavior are
listed. In the case of session “Rat20/201219”, this gives the following matrix :

# Right Left Light Dark Altern
1 1 _ 1 _ _
2 _ 1 _ 1 1
3 1 _ _ 1 1
4 _ 1 1 _ 1
5 1 _ _ 1 1
6 1 _ 1 _ _
7 _ 1 1 _ 1
8 1 _ _ 1 1
9 1 _ 1 _ _
10 1 _ _ 1 _
11 _ 1 1 _ 1
12 1 _ 1 _ 1
13 1 _ _ 1 _
14 1 _ _ 1 _
15 1 _ 1 _ —
16 1 _ 1 _ _
17 1 _ 1 _ _
where “1” means that a strategy is possible at a given trial, and “_” means that a strategy is not

possible at a given trial.

STEP B : Then we count from bottom to top the number of trials in each block. This produces the
following matrix :
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STEP C : Then we look from top to bottom and keep only blocks whose size is bigger than N (here,
N=6). If a “6” is found in the matrix, following trials are kept until a

following matrix :
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is found. This gives the

Altern

Thus in this case there was no detectable str;tegy in trials 1-11, then the ‘Right’ strat;gy for trials

12-17.

STEP D (not shown) : Finally, if two different blocks are overlapping, we need to decide which of
the two strategies best describes the animal’s behavior. Two cases are possible: 1) if one block is
“included” in the other (i.e. if the latter block starts first and ends last), then the former block is
deleted; 2) if the two blocks have non overlapping trials (i.e. if one block starts first and the other
ends last), then the two blocks are kept, which means that 2 different strategies are simultaneously

possible during the overlapping trials.

Table 3.1 computes the probability of the rat executing a block of N consecutive trials at a single
strategy by chance. We decided to consider that the rat is indeed following a certain strategy if it is
so during a block of at least 6 consecutive trials, since arriving at consecutive rewarded trials by
chance has a p<0.05. For the rest of the manuscript, only blocks of at least 6 consecutive trials
following a given strategy will be considered.
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blocks' min. size 3 trials 4 trials 5 trials 6 trials 7 trials 8 trials
prob. to get a block by chance 25 A25 0625  .0312  .0156  .0078
Table 3.1: summary of the probabilities to find a block of N consecutive trials with the same
strategy by chance. N = 3, 4, ... or 8 consecutive trials.

Electrophysiological data analysis

One-way ANOVA was used to determine behavioral correlates. ANOVA results were considered
significant at p < 0.05. The Student—Newman—Keuls test was employed for post hoc analyses.

The Wilcoxon-Mann Whitney test was used to determine the contributions of task parameters (the
trial correctness, the light position, the animal's choice or the task contingency rule) on variations in
the firing rate of the neurons. Using a Bonferonni correction, we considered a neuron as being
significantly modulated by a given task parameter if the Wilcoxon-Mann Whitney test gave a p <
0.01 in one of the four task periods (preStart; earlyTrial; lateTrial; postOutcome).

Finally, the Wilcoxon-Mann Whitney test was used to determine the contributions of the possible
behavioral strategies engaged by the animal on variations in the firing rate of the neurons. Using a
Bonferroni correction we considered a neuron as being significantly modulated by behavioral
strategies if the Wilcoxon-Mann Whitney test gave a p < 0.002 for one of the possible strategies
(Right; Left; Light; Dark; Alternation) in one of the four task periods (preStart; earlyTrial; lateTrial;
postOutcome).

BEHAVIORAL RESULTS

A total of 3322 trials were performed by 5 rats over 108 sessions. Sessions' length was comprised
between 7 and 68 trials, with an average of 31 trials.
Rats were exposed at least to three different consecutive rules:

e 2 rats were exposed to two changes in task rules (from the right rule to the light rule, then

from the light rule to the left rule);

e 2 rats were exposed to three changes in task rules;

e 1 rat was exposed to 17 changes in task rules.
On average rats took 3.8 experimental sessions, corresponding to 116 trials, to acquire a given task
rule.

ELECTROPHYSIOLOGICAL RESULTS

Behavioral correlates

We recorded 2413 cells from the prefrontal cortex in these sessions. After excluding cells with an
average rate of discharges during trial inferior to 0.3 Hz, we considered 1894 prefrontal neurons for
statistical analyses. Within this ensemble of cells, an important subset showed a significant
behavioral correlate: 70.41% showed activity that was significantly different in one of the trial
periods (preStart, earlyTrial, lateTrial, postOutcome) using an ANOVA test p < .05 (Note that in
this and subsequent tallies, the possibility that the same neuron was recorded from one day to the
next is not taken into account, since this proved quite difficult to verify). This proportion of cells is
comparable with previous results (50 % : Pratt and Mizumori, 2001; 68 % : Mulder et al., 2003).
Figures 3.2.6 and 3.2.7 show examples of such neurons. The former has an activity which phasically
increases around the time of the outcome. The latter shows a tonic activity with an inhibition around
the time of the outcome.
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Figure 3.2.6: Peri-event time histogram and raster display of a prefrontal neuron showing
activity correlated with the trial outcome. Activity of this neuron is synchronised with the time of
the trial OUTCOME, that is, the time when the animal reaches the reward location. A window of
15 sec of activity is displayed (x-axis). The y-axis corresponds to consecutive trials through the
session (from bottom to top). For each trial, a red dot represents the START time , and short black
vertical traces represent action potentials emitted by the neuron. The upper part of the figure
displays the histogram of activity of this neuron cumulated on all trials.

Interestingly, subsets of cells showed significant modulations of behaviorally correlated activity as
functions of different task parameters: 14.41% were correlated with the choice of the animal (right
or left), 10.82% were correlated with the reward, and 7.76% were correlated with the position of the
light (Wilcoxon Mann-Whitney test, p < .01 with Bonferroni correction in one of the four trial
periods: preStart, earlyTrial, lateTrial, postOutcome).

Figures 3.2.8 and 3.2.9 respectively show examples of a neuron with activity modulated by reward
and another neuron correlated with the left-right choice of the animal. Both cases have a peri-
outcome phasic response. In the former neuron, this response appears only during error trials, no
matter which arm was chosen (the task rule was Light). In the latter neuron, the response appears
only when the right arm is chosen, no matter if the choice was correct or not (task rule was Light).
Table 3.2 summarizes these results for each rat. Overall these responses demonstrate that the
prefrontal cortex encodes the main parameters required to solve the task.
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Figure 3.2.7: Peri-event time histogram and raster display of a prefrontal neuron showing

activity synchronised with the time of the trial outcome. Same format as previous figure. The

decreases around the time of the outcome.

displayed neuron has an activity which transiently

671

205

6
TOTAL Rat12 Rat15 Rat18 Rat19 Rat20

55

379

83

1894

number of cells

87.33%
19.23%

70.91% 50.60% 68.60% 69.78%  32.68%
22.65%
11.03%

10.82%
14.41%

behavioral correlates (1 test,p<0.05)

5.37%
4.39%
5.37%

5.94%
11.69%
7.01%

7.92%

12.14%

2.41%
1.20%
6.02%

reward correlates (4 tests,p<.01)

choice correlates (4 tests,p<.01)

4.75%

7.76%

light correlates (4 tests,p<.01)

Table 3.2 : Summary of the percentages of cells in each category. p values were adjusted for

Bonferroni corrections. Cells with behavioral correlates showed activity that was significantly
different in one of the trial periods (preStart, earlyTrial, lateTrial, postOutcome) using an

Cells with reward correlates showed significant modulations of

behaviorally correlated activity as functions of the trial correctness (rewarded or not) in at least of

ANOVA test p < .05.

the four task periods (One Wilcoxon-Mann Whitney test per task period, p < .0l. The same

method was used to determine neurons with choice correlates (modulation by the arm chosen:

right/left), and cells with light correlates (modulation by the position of light: right/left).
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Figure 3.2.8: Cell with an activity modulated by the presence or absence of reward (reward

correlates). Same format as figure 3.2.6. Left : correct trials; Right : errors. This cell showed an
increase in activity starting before the trial outcome only during unrewarded trials. Since the cell
was recorded during a session were the task rule was Light, unrewarded trials included both visits
to left and right arms.

o— o°

L
-100m Em

ﬂww mh TRy |
. [l [T [}
| ] L4 | [ 11 | (I
| [N e | | T
mr it | * | | g | | 4
[ | | | |
[ Il [N ] (1LY N | 11y
. ] [T TN
[} | . | [N [T ]
|® | (Nl |
A || [ | » | 4 up | | . 11 | 4
| . | 1] 1 e | | LI T}
oF LI . | I | i ef I . 11 I 1 [ J
| 11 1] | 1 | ([} | . Iy
[ | nmn e | | (NI Wl Il | | | ® 111 I 1
[ RN | 1] . |11 111 I
(I . [T | [l ! J b [} A4 [ TR (R
e |11 Il I » [T i
| L S 11/ A B 1Y | 4 SHITIE T 1 I b ] [/}
| | | I Miinre 11l
A NI | °| | J AN | I nl o 110 I |
| | | | L (Al [ I 111 | ® | | |
A ®| ] M | e |1l | || |
| 11 1 ® | 11 | (] | il 1 1 AT T T
Trial outcome Trial outcome

Figure 3.2.9: Cell with an activity modulated by the chosen arm (choice correlate). Same format
as figure 3.2.6. Left : left trials; Right : right trials. This cell showed an increase in activity
starting before the trial outcome only during visits to the right arm. Since the cell was recorded
during a session were the task rule was Light, visits to the right arm included both rewarded and
unrewarded trials.

Transitions in activity related to shifts in the task rule or in the behavioral strategy

A subset of prefrontal neurons showed abrupt changes in firing rate during the course of a recording
session. This kind of transition was found in 12.25% of the prefrontal cells (i.e. 232 neurons). These
changes included disappearance or appearance of a behavioral correlate, and change in magnitude in
behaviorally correlated activity. In 133 cells these transitions in cell activity corresponded to
strategy shifts spontaneously made by the animal. In 99 cells, these transitions corresponded to
changes in the task rule. In addition, in 25 cells the activity was modulated by both changes in the
task rule and by changes in the behavioral strategy. In most cases, there was only one apparent
transition and the statistical effect was due to the proximity between the two events within the
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session.

For the tests of cell activity modulations by a change in the task rule, only cells recorded during a
shift-session could be evaluated. Among the 1894 initial active prefrontal cells, this leaves a total of
423 neurons recorded in 24 sessions. A cell was considered as significantly modulated by the task
rule if its activity during one of the four trial periods (preStart, earlyTrial, lateTrial, postOutcome)
was significantly different in trials before the switch compared to trials after the switch.

For tests of cell activity changes associated with a shift in the behavioral strategy, only cells
recorded during sessions with blocks of at least 6 consecutive trials of at least one strategy were
taken into account. Among the 1894 initial prefrontal cells, this leaves a total of 1365 neurons
recorded in 76 sessions. A cell was considered as significantly modulated by the behavioral strategy
if its activity was found as significantly modulated by one of the five possible strategies (Right; Left;
Light; Dark; Alternation) during one of the four trial periods (preStart, earlyTrial, lateTrial,
postOutcome), as compared with activity during the remainder of the session.

As a result, 26.48% of cells recorded during a shift-session were significantly modulated by a shift
in the the task rule. In contrast, 11.58% of cells recorded during a session with blocks of at least 6
consecutive trials of the same strategy were significantly modulated by the behavioral strategy
engaged by the animal.

Figures 3.2.10 to 3.2.12 show examples of raster displays and histograms of cells recorded in the
same session that show such transitions in activity. These neurons display transitions correlated
either with the change in the task rule (figures 3.2.12 and 3.2.13) or with the spontaneous change in
the animal’s strategy (figure 3.2.14). In this session, the rat started by performing a light strategy
that he had started to learn during the previous session. At trial #11, the criterion being passed, the
left task rule was imposed. The rat continued to perform the light strategy for about 12 trials. Then
for 6 trials, the strategy was indeterminable. Finally, for the last 9 trials of the session, the animal
performed a left strategy.

Strategy shifts could be divided in three different cases: 1) a shift from a strategy A to a strategy B;
2) a shift from a strategy A to an indeterminable strategy; or 3) a shift from an indeterminable
strategy to a strategy A. Interestingly, among the 11.58% of neurons with a change in activity in
relation to a shift in the animal's strategy, 70 cells were found during shifts where either strategy A
or B was the alternation strategy. In contrast, respectively 46, 52, 39 and 9 neurons were found
during shifts where either strategy A or B was the right, light, left and dark strategy. This suggests
that the alternation strategy, which was not rewarded in our task, was encoded by more prefrontal
neurons than other strategies. Moreover, the dark strategy was only poorly represented within the
mPFC network that we recorded, which is consistent with the observation that the dark rule was the
hardest to learn by our rats. However, we cannot exclude the possibility that the difference in these
proportions is the consequence of a sampling effect, having only recorded a very small subpart of
mPFC neurons.

Finally, the ensemble of transitions in cell activity were found to correspond to two different
patterns. In one case, the activity was found to be higher after the shift than before, thus
corresponding to an increase in the neuron's activity. In the other case, it was lower, thus
corresponding to a decrease of activity.

Both cells with an increase and a decrease in activity were found. Figures 3.2.13 and 3.2.14 — which
show two groups of 50 cells showing such kind of transitions in activity. The activity of the first 50
cells are synchronised with the change in the task rule (figure 3.2.13). The activity of the 50 other
cells are synchronised with a shift in the animal’s behavior (figure 3.2.14). In each figure, the upper
part displays neurons with an decrease in activity following a shift, and the bottom part shows
neurons with an increase in activity.

Strikingly, some cells which did not respond before the shift, started to fire during the trials
following the shift. Symmetrically, some cells which used to respond before the shift almost stopped
their activity after. The other cells showed a modulation of activity before compared to after the
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shift.

These results suggest that the prefrontal cortex can detect changes in the strategy rule. Moreover,
the prefrontal cortex encodes information concerning spontaneous strategy shifts performed by
animals. As a consequence, the prefrontal cortex could possibly contribute to the selection of the
strategy to perform at a given moment. We will see below that these elements are also crucial for
neurocomputational models.
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Figure 3.2.10: Raster of a cell showing a transition in activity related to the change in task
contingency. Same format as figure 3.2.6. In the session presented here (session #181024), which
is also used in figures 3.2.11 and 3.2.12, the rat started by performing a light strategy that he had
started to learn during the previous session. At trial #11, the criterion being passed, the left task
rule was imposed. The rat continued to perform the light strategy for about 12 trials. Then for 6
trials, the strategy was indeterminable. Finally, for the last 9 trials of the session, the animal
performed a left strategy. The activity is synchronised with the time of the trial OUTCOME, that
is, the time when the animal arrives at the reward location. This neuron showed a greater activity
during the postOutcome period after the task rule change rather than before.
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Figure 3.2.11: Raster of a cell showing a transition in activity related to the change in task
contingency. Same format and same displayed session as figure 3.2.10. This neuron show a
greater activity around the time of trial START before the task rule change rather than after.
Interestingly, the neuron continued to burst around the START for three trials after the task rule
change, as if late detecting the task rule change.

Page : 141 /196



181024_T16_c6

9
o 5F
-
a
w
0 |
-5000
v T
L
| |
| B
n @ | orer g I I
® [ [ [ VTR T
I | L1 o
hd - | 1] I| 1||||I : ||
®
I L INLE L iy
I ® | | I 11 I 1 11
s | Ll T |
204 i e @ T
L] I |
| ® |
o I
| | 11 @ Il
| ® | | | I
| | L |
L
! I|| ! .l | | 1.1 1.1.1]
}10 1 < !
| L]
| *® I | |
| & I
L | LI I L | Il
L]
| | | L ni |
I | | ®
ol e | |
5 . ] 111 3y
-10 -5 arrival at cup 5sec

Figure 3.2.12: Raster of cell showing a transition in activity related to the spontaneous change in
the rat behavioral strategy. Same format and same displayed session as figure 3.2.10. This neuron

show a lower activity around the time of trial OUTCOME during trials when the light strategy
was performed by the animal rather than after.

Figure 3.2.13 (next page): 50 cells recorded in 4 rats showing a transition in activity correlated
with a shift in the task rule. Each row corresponds to one neuron. As the cells were not recorded
from the same sessions, they were all synchronised on the trial where the task rule shift occurred.
Black areas are displayed when there was less than 10 trials before or after the shift.
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Figure 3.2.14 (previous page): 50 cells recorded in 4 rats showing a transition in activity
correlated with the animal’s behavioral strategy shift. Each row corresponds to one neuron. As
the cells were not recorded from the same sessions, they were all synchronised on the trial where
the strategy shift occurred Black areas are displayed when there was less than 10 trials before or
after the shift.

Discussion

Our results show prefrontal cells with behavioral correlates, and correlates with the main task
parameters (reward, choice, cue). These results are in line with previous electrophysiological
recordings from the rat medial prefrontal cortex showing movements, reward and stimulus correlates
(Poucet, 1997; Jung et al., 1998; Pratt and Mizumori, 2001; Mulder et al., 2003).

Moreover, we found cells with a transition in activity related to extradimensional changes in the
environment's conditions for reward delivery and to changes in the animal's behavioral strategy. The
former results confirm that mPFC can participate in the detection of extradimensional shifts (Birrell
and Brown, 2000; Ragozzino et al., 2003). However, since we did not use intradimensional task rule
shifts in our experimental design, we cannot conclude anything concerning the role of mPFC in
intradimensional shifts, which the latter authors report as unimpaired by mPFC lesions. Moreover,
further analyses should be done on our data to see whether more cells with a transition in activity in
response to a shift in the animal's spontaneous strategy are found during extradimensional
spontaneous shifts than during intradimensional ones.

Besides, the cell activity transitions we found in relation to task rule changes suggest that the
prefrontal cortex could contribute to attentional processes such as the detection of such changes.
This is consistent with the neuropsychological literature stating that lesions of medial prefrontal
cortex result in attentional deficits in tasks where rats have to detect the change in task rules, and in
impair strategy shifting in response to such changes (de Bruin et al., 1994; Granon et al., 1994;
Granon and Poucet, 1995; Muir et al., 1996; Joel et al., 1997; Ragozzino et al., 1999a,b; Birrell and
Brown, 2000; Delatour and Gisquet-Verrier, 2000; Colacicco et al., 2002; McAlonan and Brown,
2003; Ragozzino et al., 2003; Salazar et al., 2004; Lapiz and Morilak, 2006).

However, the latter lesion results leave at least two interpretations opened: 1) rats with mPFC lesion
are impaired in the detection of rule changes requiring strategy shifts; 2) rats with mPFC lesions
can detect rule changes, but are impaired in the acquisition or selection of the appropriate strategy
in response to such changes.

Our results suggest that both could be possible. Indeed, a neural network model having to select and
shift behavioral strategies could work in a similar manner than a model of action selection: 1)
several groups of neurons would represent each of the possible strategies; 2) the neurons would
receive input information concerning the task context and events; 3) an output network would
receive a convergence of input from the first group, and would select the strategy with the highest
associated neural activity — for example, see the gating network used for strategy selection in the
model of Chavarriaga and colleagues (Chavarriaga et al., 2005a; Dollé, Khamassi, Guillot and
Chavarriaga, 2006). The cells we recorded could be characterized by either the first and the third
groups, whereas further investigation are necessary to distinguish between the two.

However, the proportion of cells with an activity correlated to task rule changes being higher than
the cells correlated with the animal's strategy (respectively 26.48% and 11.58%), it is possible that
the mPFC is more involved in the defection than in the selection. The basal ganglia is indeed a
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possible candidate for subserving this function in interaction with mPFC, since it is considered as a
central brain structure for action selection (Redgrave et al., 1999a).

Moreover, having assumed in previous chapters that the striatum could participate in learning of
different navigation strategies, it could be possible that information about new strategy learning
comes from the striatum to mPFC through prefronto-striatal loops.

However, more investigations will be required to determine if the prefrontal cortex can really
subserve strategy selection, or if strategy-related activity is only an emerging property related to
goal selection. Indeed, a previous study has reported spatial goal encoding in mPFC (Hok et al.,
2005). In experimental designs where a particular strategy is appropriate to reach a particular goal
in the environment, goal correlates and strategy correlates cannot be discriminated. So it would be
interesting to design a task protocol where different strategies can lead to a same goal, and different
goals can be reached using a same strategy. Recorded neural activity in mPFC during such a task
would help understand the role of mPFC in this ensemble of goal-directed behaviors.

The different functions discussed here can coexist within mPFC. Inside the medial prefrontal cortex,
there could be different segregated networks that subserve different functions related to goal-
directed behavior. And previous activities reported in the mPFC could reflect functions that coexist
with strategy selection. Notably, it has been shown that neighboring cells in the mPFC have very
heterogeneous behavioral correlates and show a weak synchrony, suggesting that these neighboring
cells process largely independent information (Jung et al., 2000).

Finally, understanding how different contributions to goal-directed behavior can be subserved by
different brain areas can constitute a major intuition towards the design of autonomous robots.
Indeed, autonomy, flexibility and adaptation in existing robots is much weaker than rats' cognitive
capacities (Meyer and Guillot, In press). Taking inspiration from the way the brain separates or
merges goal selection, strategy selection, action planning and habit learning can help design
efficient neural network architectures for the control of autonomous robots.

3. Towards a model for strategy shifting

To reproduce the way in which animals learned the consecutive shifting rules of the task, we used a
Markovian-like model for strategy learning. Hidden-Markov models provide a Bayesian framework
to learn to represent dynamic phenomena where the situation changes with time (Dayan and Yu,
2001). In such models, at any given state, the decision taken is strictly depending on the previous
State.
In our case, the states will correspond to strategies that can be performed to solve the Y-maze task
described in the previous section. The model will learn to select the appropriate strategy based on
the history of previous trials. The model will be trained on real behavioral data performed by the
rats in these experiments. That is, while replaying the sequence of trials performed by real rats and
their outcomes, the model will make a proposition (or prediction) of the strategy to perform. This
proposition will be stored in order to be compared with the choice of the animal. Then, the model
will not be trained on its own errors, but rather on the errors made by the animal. As a consequence,
at any given moment during the simulation, the model will have the same ‘“experience” as the
animal. This way, we can tune parameters from the model so that the model learns at a speed
comparable to the animal's performance. If the model can reach a similar performance and can
perform strategy shifts at similar task phases as the animal, then we can use the model in two
different manners:

e First, the model would be considered as a good representation of the way the animal learned

the task, and of the way the animal could decide to shift its own strategy;
e Second, parameters in the model could be compared to neuronal activity measured in the rat
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prefrontal cortex, in order to see if there is any correlation.
This was the objective we intended by this modeling work. Yet, this work is underway, and we will
present the preliminary results of this project.

METHODS

We implemented 5 states corresponding to the 5 identified possible strategies engaged by rats in our
experiment. Let's note S as the ensemble of strategies. S = {Right; Left; Light; Dark; Alternation}.
Each strategy was assigned with a confidence value C k(t) (with k € {1;5} and ¢ corresponding to
the trial number), initialised to zero: V' & C,[0/=0 .

The probability of transition from any state to the state with the current highest confidence is always
equal to 1. In other words, when a strategy has the highest confidence value, it is systematically
chosen to be performed by the model, without any stochasticity. When two states have the maximum
confidence, they both have a probability of 0.5 to be chosen randomly, independently from the past
history.

At each trial, the model makes a prediction simply based on the appropriate action corresponding to
the current strategy with the maximal confidence. For example, if the strategy Right has the highest
confidence, then model predicts a Right move.

Prediction : P|t+ 1|=appropriateAction (argmax k[C k(t)])

Then the model is adapted based on the behavior of the rat during the current trial.

Learning : V keS.C,[t+1)=C, [t]+n.[1-Er+1]]

where S’ is the ensemble of possible strategies at trial ¢, computed in the following manner: if the rat
went to the right while the light was also on the right, then S’ = {Right;Light}.

where E(t+1) is equal to 1 if the animal made an error at trial t+1, and where 1 is the learning speed
of the model .

Figure 3.2.6 shows a an example of progress of the procedure on 5 consecutive trials.
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REAL DATA STRATEGIES

Trial Light Choice  C/E RIGHT LEFT LIGHT DARK ALTERN
0 0 0 0 0
-1 l +0 l

1 L L E 0 1 A 0 0

2 R L E 0 2 A 1 0

+1 l +1 l

3 R R C 1 2 0 1 1

-1 l

4 R L E 1 3 0 2 0
+1 l

5 L R C 2 3 0 1 1

fime

Figure 3.2.6: Example of unfolding of the Confidence model on 5 consecutive trials. The left part
of the figure describes the task parameters of each trial during the real experiment. The right part
describes the evolution of the strategies confidences in the model. Confidences are initiated to 0.
Then each arrow describes a learning process targeting strategies that are consistent with the
animal behavior at the current trial. The value marked near each arrow corresponds to the
increment applied to the strategy confidence, depending on the correctness of the trial made by
real animals.
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RESULTS
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Table 3.2.7: Sample of temporal evolution of the confidence value within the model. The figure
shows the simulation of the model on 12 consecutive sessions recorded in rat #19. The x-axis
represents the consecutive trials. Vertical dashed lines separate data from different sessions. The
y-axis represents the confidence values of the model (see inset). Each curve represents the
confidence value of one strategy. Vertical yellow lines represent shifts in the task rule that
occurred during the experiment with real rats.

Figure 3.2.7 displays a sample of results for simulation of the model with a certain set of
parameters. The curves represent the temporal evolution of the confidence values associated to each
strategy in the model. The latter was simulated on 12 consecutive sessions recorded in rat #19. In
this version of the model, the appropriate strategy is learned more rapidly than the real rat. As
shown on the figure, the curve representing the right strategy increases sharply before the task rule
shift. Later, during sessions 0301, 0302 and 0303, the model has already learned the left strategy
whereas the real rat, yet, did not: the orange curve has risen above other curves. Because there is a
factor of forgetfulness in the model, even the confidence value of the appropriate strategy can
decrease when the real animal has not performed it for long time. For example, this can been seen
on figure 3.2.7 during session 0303 where the orange curve decreases.

In order to evaluate the performance of the model, we display the rat's behavior in a slightly
different way than in the previous section: instead of representing the consecutive arm choices
(Right/Left) made by animal at each trial, all possible strategies that the rat could be following at a
given moment are displayed. If, on a given trial, the rat went to the right whereas the light was on
the left, we assume that the rat could have been following two different strategies at this trial: the
Right strategy or the Dark strategy. The process that translates the rat's behavior into successive
possible strategies is the one described in STEP A in the behavioral analysis of the previous section.
Figure 3.2.17 shows such a representation for the behavioral data of rat #18. On the figure, the
density of strategy blocks correspond to the consistency with which the animal has indeed
performed each strategy. Interestingly, the figure shows clearly the density of the left strategy block
remains high after the task rule had changed from left to dark. This means that the rat had persisted
in performing the left strategy after the task rule change. Moreover, figure 3.2.17 displays moments
when there is no clear dominant strategy in the rat behavior: for example between trials #90 and
#120.
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Rat18 — observed behavior
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Figure 3.2.17: Behavior of rat #18 observed during all sessions performed. x-axis displays
successive trials while y-axis labels the different « strategies » followed by the rat.

The matrix representation of the rat behavior can then be compared to the maximal confidences of
the basic model at each trial. Figure 3.2.18 displays the latter simulated on the data recorded in rat
#18. Although this plot and the rat behavior presented in the previous figure coincide only for 60%
of trials, the two matrices look strikingly similar: Both matrices show denser strategy blocks around
corresponding task rule changes compared to other periods. Furthermore, figure 3.2.18 show the
same absence of clear dominant strategy between trials #90 and #120 as in figure 3.2.17.

Moreover, the basic model got a reward in 58% of the trials, which is very close to the average
percentage of rewards got by real rats (58.3%). The similarities in the strategy-matrices and in the
percentage of reward obtained demonstrate the quality of performance of the model in mimicking

Rat18 — behavior prediction from the model of strategies confidences
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Figure 3.2.18: behavior predicted by the basic model is 60% similar to the rat observed
behavior.

In order to compare these performances with a different case, figure 3.2.19 displays the maximal
confidences in the “optimal” model. The latter matrix is about 50% similar to the real rats behavior.
The figure shows well how the “optimal” model quickly learned the different consecutive tasks. The
percentage of trials where the “optimal” model got a reward is about 98%, which is far different
from the average of 58% of trials where real rats got a reward.
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Rat18 - behavior prediction of «optimal» model of strategies confidences
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Figure 3.2.19: By tuning parameters in the model, we obtain a model less similar to the rat
actual behavior, but showing a more “optimal” behavior in the task resolution.

In contrast, when tuning parameters in the model so that it learns to maximize reward, we obtain a
model which displays a nearly optimal performance in that it quickly learns the strategy
corresponding to the current task rule, and gets reward in a percentage of about 98% of the trials.
Even if such « optimal » model is far from mimicking the animals' behavior, it will be interesting for
us to see whether parameters of this « optimal » model are more correlated to prefrontal activity
compared to the model which is closer to the rats behavior. So we will briefly describe the results
concerning the « optimal » model.

Figure 3.2.19 displays the result of the simulation of this model. Clearly, only a few trials after each
task rule shift, the « optimal » model can select the appropriate strategy. This results in strategy
blocks with only little discontinuities.

Table 3.4 summarizes the percentage of resemblance and the percentage of reward obtained by each
model with each rat's data. The “optimal” model got an average of 50.50% resemblance with the
rats' choices while being very good at solving the task. In a certain manner, this “confirms” the
observation that rats are not optimal at solving the previously described task.

MODEL Real « Optimal » model Basic model
Rats
nbTri rewar similarity reward similarity reward
als d
RAT20 1817 56,58 50,15 98,57 59,26 53,33
RAT15 570 53,51 49,05 98,42 55,16 57,89
RAT18 394 62,18 48,53 97,97 61,62 57,36
RAT19 252 66,27 53,65 97,62 60,63 63,1
RAT12 289 66,09 51,14 98,62 58,41 58,48
AVERAGE 3322 58,29 50,50 98,24 59,02 58,03

Table 3.4: Behavioral results of the models. That is, for each version of the model, the table
shows the percentage of total trials where the model predicted the same behavior than what the
animal actually did (displayed as “SIMILARITY”), and the percentage of total trials where the
model would have got a reward if it had been performing the task (i.e. the percentage of trials

were the model’s prediction was an appropriate behavior for the task resolution, displayed as
“REWARD”).

In order to study if one of the two versions of the model could also describe part of the evolution of
information coding in the mPFC during the task, we statistically tested prefrontal cell correlations
with the model. The method employed is the same as the one described for analyses of cells
showing a transition in activity correlated with a shift in behavioral strategies: a cell was considered
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as significantly correlated with the model if its activity was correlated with the confidence of one
the five strategies in the model during one of the four trial periods. A cell was considered as
correlated with the confidence in a strategy if its activity was significantly higher or lower during
trials were the strategy had a higher value than other strategies in the model, compared to trials were
it has not. We used the Wilcoxon-Mann Whitney test with a Bonferroni correction, p < .002.

Table 3.5 summarizes the results of this statistical test. We found that a proportion of 2.01% cells
showed an activity which was correlated with the strategy with optimal confidence in the basic
model. Besides, 4.86% cells were correlated with the optimal model. These percentages are lower
than the 11.58% cells reported in the previous section as correlated with strategies followed by the
rats. Further analyses are required to see whether there were some cells correlated with the model
which did not correlate with the strategies followed by real rats, nor with any other parameter of the
task.

nb cells 1894 83 379 556 205 671

TOTAL Rat12 Rat15 Rat18 Rat19 Rat20
Basic model (45 tests < 0.002) 2,01 2,41 1,32 1,08 0,49 3,58
Optimal model (4*5 tests < 0.002) 4,86 0 264 3,06 0,98 9,39

Table 3.5: Electrophysiological results of the models. That is, the % of cells correlated to the
state of each version of the model. More precisely, a cell is considered to be correlated with the
state of a model if it’s activity, considered in a given trial period, is significantly different at trials
where the model is in the state “Strategy A” compared with trials where the model is in a
different state (e.g. state “Strategy B” or state “No strategy”).

DISCUSSION

The results of our model are yet preliminary. They show that rats' behavior observed in our Y-maze
experiment can be approximated in simulation. This seems to argue in favor of the hypothesis that
rats behavior could be, at least partially, modeled using bayesian inferences. In line with this idea,
evidence is accumulating suggesting that the primate cortical network can implement Bayesian
inference (Deneve et al., 2001; Deneve and Pouget, 2004; Doya et al., 2007; Samejima and Doya;
2007).

Moreover, it could be worth pursuing in improving the model and testing its correlation with
prefrontal activity. Principally because several theories of the prefrontal cortex-basal ganglia system
suggest that the prefrontal cortex could learn to perform a given task and propose appropriate
actions to perform, whereas the basal ganglia would bias these decisions through a more stochastic
action selection process (Gurney et al., 2001b). In contrast, other theories suggest that the basal
ganglia adapt its activity in relation to a given task faster than the prefrontal cortex, and then would
gate the latter in order to provide it with appropriate decisions (Frank et al., 2001; Pasupathy and
Miller, 2005). So it remains an open question whether the prefrontal cortex and the basal ganglia is
a quicker encoder of « optimal » task parameters. So it will be interesting to continue to investigate
this issue by desiging « optimal » models in opposition to models similar to the animal behavior,
and to study whether a difference between prefrontal and striatal activity could be in the model they
are the most correlated to.

4. Other collaborative work in the frame of this project
Other analyses of our data are now been processed by other members of the research team.
Some of the main issues addressed by their analyses concerns the interaction between the prefrontal
cortex and the hippocampus during the task, and the processes of memory consolidation during
sleep following the task.
Several abstracts presenting some results of these analyses are given in the appendix of this
document. These abstracts will be presented at the SfN meeting this year.
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CHAPTER 4 : GENERAL DISCUSSION

This thesis presented our contribution to the understanding of the roles of the rat striatum and
medial prefrontal cortex (mPFC) in action selection, decision making and other cognitive processes
for navigation strategies learning and shifting. For this purpose, experiments were designed in

which:

rats had to learn different reward-seeking tasks and to encode various sensorimotor
associations to achieve them — i.e. to perform different strategies for navigating towards
goals.

* In the plus-maze task, rats had to learn to localize different amounts of rewards in
different arms of the maze, and to recall that only lit arms provided reward. Reward
distributions were changed within each session and were explicitly trained in learning trials
(which were recorded along with recall trials).

* In the Y-magze task, always starting from the same departure arm, rats had to learn different
rules employing cues of different stimulus dimensions along consecutive blocks: reward was
located on the right (or left) arm; reward was located at the lit (or dark) arm.

rats had to detect changes in the task rule imposed without any explicit signal. This required
recall of the previously learned strategy best for the new situation, or, if none is appropriate,
to proceed with a new learning process.

* In the Y-magze task, each time rats passed a performance criterion, the task rule was
changed. Rats had to detect such changes based on a lower incidence of reward obtained, and
to learn the new task rule.

Based on these experimental designs, our objectives were :

to better understand the complementarity of the mPFC and the striatal activity in relation to
these behavioral processes;

to evaluate this activity in terms of a better understanding of the prefronto-striatal system's
involvement in navigation;

to apply this toward developping biomimetic models for action selection in navigation
systems for robotics;

to further the dialog between experimental and computational neurosciences.

The following sections recall our results and discuss each of these points while 4.0 summarizes our
contribution.

1. Principal novel observations and interpretations
1.1 Within the framework of the plus-maze task:

by analysing electrophysiological data recorded in the Ventral Striatum (VS), we found
neurons with activity anticipating rewards — discharging phasically prior to each element
in a successive series of rewards, both when the rat approached and was immobile at the
goal. These neurons were found in a network including the medial shell and core of nucleus
accumbens as well as, the ventromedial caudate, zones receiving PFC and/or hippocampal
inputs;

by reproducing the different patterns of this reward anticipation activity observed in different
VS neurons with an Actor-Critic model, we showed that this activity was consistent with the
hypothesis that part of VS can play the role of a Critic — i.e. a driver of reward-based
learning of Stimulus-Response (S-R) associations within the striatum.

we interpreted the VS reward anticipatory neurons recorded as not precisely encoding
temporal information concerning stimuli — which would permit a precise timing of
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dopaminergic neurons' responses to the absence of a predicted reward. We rather propose
that different groups of striatal neurons constitute different Actor-Critic modules with
access to different cue, contextual and temporal information. We predict that
dopaminergic neurons recorded in tasks such as the plus-maze task should reflect this
modularity, some of them by marking a pause in activity in relation to the animal's
erroneous expectancy of an extra reward after the last one.

e in a robotics simulation, after restricting the plus-maze task to a "purely" S-R task —
suppressing the requirement for localizing different amounts of reward — we designed an
Actor-Critic model where VS (together with dorsal striatal striosomes) is the Critic which
drives learning, whereas matrisomes in the Dorsolateral Striatum (DLS) constitute the Actor
which memorizes S-R associations as habits. With this model, the kind of reward
anticipation activity mentioned above enables the animat to learn a behavioral sequence
that lead to the reward, yet using different Actor-Critic submodules which are specialized
in different parts of the task.

e Dby using a machine learning method (namely growing self-organizing maps) to automatically
categorize the animat's visual perceptions in the plus-maze task, and by combining this
method with a multi-module Actor-Critic system, we have shown that this striatum-inspired
architecture for S-R learning can have interesting generalization abilities potentially
applicable for the field of navigation in autonomous robots.

These results strengthen the hypothesis that part of VS could contribute to the
acquisition of procedural navigation strategies (here a cue-guided strategy) and could be
segregated into learning modules which apply to different parts of the environment.

Since VS reward anticipatory activity could be reproduced with a Temporal Difference learning
model — which is a model-free reinforcement learning algorithm (Sutton and Barto, 1998) found to
be suitable for describing S-R strategies (Daw et al., 2005) —, the involvement of VS could be
dedicated to learning model-free cue-guided strategies (cue-guided and possibly others) — i.e.,
without building a world model, as defined in chapter 1.

Associative
Cortex

Cue-guided strateqgy Doparninergic Neurons

- Strateqy shifting
Figure 4.0 : Summarized contributions. Our main contributions consisted in 1)
electrophysiologically confirming the role of the ventral striatum in cue-guided strategy learning

and 2) the role of medial prefrontal cortex in strategy shifting; 3) modelling the roles of the
dorsolateral and ventral striatum in cue-guided strategy learning.
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1.2 Within the framework of the Y-maze task:

e from neuronal ensemble recordings of the medial prefrontal cortex (mPFC) in rats learning
and shifting navigation strategies, we found:

* a set of neurons with transitions in activity in response to extradimensional changes in
the task rule, thus likely to participate in the detection of task rule changes;

* another set of neurons with activity transitions associated with the current strategy
spontaneously performed by the animal, which could participate in strategy selection.
These activities were recorded during periods where behavioral automatization was avoided
by changing the task rule as soon as rats had learned a given rule. Hence, the neural
activities reported could be associated with goal-directed behavior, rats having to
continuously relearn action-outcome contingencies.

e by modelling, at the behavioral level, the way rats learned to perform appropriate strategies
and to shift them, we found that part of the animal's behavior could be described by a
Markovian model, and we proposed a preliminary contribution to the understanding of
which formal rules govern strategy shifting processes in the rat;

e Moreover, we found a small subset of prefrontal neurons whose activity was correlated
with the state of the latter model, hence suggesting that prefrontal neural activity could
participate in such strategy selection.

These results strengthen the hypothesis that the mPFC could contribute to attentional
processes required to detect extradimensional task rule changes (here, between cue-
guided and spatial orientation strategies) and could also contribute to flexible strategy
selections following such task changes.

In our Y-maze experiments, since we deliberately tried to prevent habituation of newly learned
strategies and rapidly imposed new rules (in 27 cases), after these rule changes, the number of trials
required for the animals to abandon the previously learned strategy was most often very low. Except
in the case of one task rule change after which the animal persisted in performing the previous
strategy for 268 trials (and thus could be interpreted as habitual), in the other cases, it always took
less than 30 trials, with an average of 10 trials necessary to abandon the previous strategy. As a
consequence, it appears reasonable to think that the acquired rule-following behavior of the animals
recorded in our Y-maze task was globally goal-directed (i.e. model-based). Thus prefrontal cellular
activity reflecting behavioral strategy shifting could indeed reflect extradimensional shifts between
model-based cue-guided and spatial orienting strategies rather than model-free ones. This is
consistent with previous proposals that the mPFC is involved in goal-directed decisions and flexible
behavior planning (see Granon and Poucet, 2000; Cardinal et al., 2002; Killcross and Coutureau,
2003; Uylings et al., 2003; Balleine et al., 2007 for reviews).

2. Implications for the prefronto-striatal system

These results are consistent with the functional architecture presented in the first chapter (figure
4.1). More precisely, our results demonstrate and validate neural mechanisms within this
architecture.

2.1 Ventral Striatum

These results do not exclude the possibility that VS could also participate in learning of strategies
other than procedural navigation, as suggested by the report that VS lesions impair both egocentric
and allocentric strategies (DeLeonibus et al., 2005). However, the correspondence between the VS
neurons that we recorded and a cue-guided Critic model (with neither spatial nor temporal
correlates) only permits us to support the contention that VS could participate in learning of cue-
guided strategies.
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These results do not exclude the possibility that VS could also participate in model-based strategies,
or more generally in goal-directed behaviors. Indeed, other neurons previously recorded in the plus-
maze task show goal-approach correlates which could participate in such a function (Mulder et al.,
2004). Similarly to reward anticipatory neurons reported in this thesis, goal-approach cells were
found to be distributed over the medial shell, the ventromedial caudate and the core. As a
consequence, this does not permit us to find a sharp and clear functional distinction between core
and shell neurons, which is in accord with the suggestion of a finer subdivision of VS suggested by
some authors (Heimer et al., 1997; Ikemoto, 2002).

Theses results do not exclude the possibility that other parts of the striatum (or more generally, other
brain areas) also participate in the expression of the Critic function. Indeed, as described in the first
chapter, some authors have previously postulated that striosomes within the dorsal striatum could
participate in this (Houk et al., 1995; see Joel et al., 2002 for a review). Moreover, the closely
associated orbitofrontal cortex is another candidate for participation in the Critic function, since
reward anticipatory activity has also been found in the rat orbitofrontal cortex (Schoenbaum et al.,
2003; Roesch et al., 2006; van Duuren et al., 2007).

In order to better understand the precise complementary roles of different striatal territories in
navigation, it would be of interest to record simultaneously in DLS, DMS, shell and core during
learning and shifting different navigation strategies, as is programmed by our team in the immediate
future.

2.2 Medial Prefrontal Cortex

Concerning the medial prefrontal cortex, while our results support the notion that mPFC could
participate in extradimensional (ED) shifts, this does not exclude the possibility that mPFC also
subserve intradimensional (ID) shifts. However, previous studies have reported that mPFC lesions
do not impair ID shifts, but only alter ED shifts (Birrell and Brown, 2000; Ragozzino et al., 2003).
Complementarily, orbitofrontal cortex (OFC) lesions are found to impair ID shifts (McAlonan and
Brown, 2003; Kim and Ragozzino, 2005). Interestingly, the firing of OFC neurons is also thought to
represent the current behavioral strategy, particularly when the outcome predicted by a stimulus is
altered or reversed (Schoenbaum et al., 2000). Taken together with our finding of both task change
and behavioral strategy responsive neurons in mPFC, this suggests that, both in OFC and mPFC,
task shifting and behavioral strategy elaboration are two functions that seem to be tightly related.
Moreover, our results do not exclude that parts of the ventral striatum receiving PFC inputs could
also participate in strategy shifting, which is indeed supported by a previous report of task selective
neurons from our team (Shibata et al., 2001).

Finally, our results do not exclude that the mPFC could also participate in learning of goal-directed
behaviors (e.g. model-based strategies). Indeed, correlates of spatial goals (Hok et al., 2005), and of
action-outcome contingencies (Mulder et al., 2003; Kargo et al., 2007) in mPFC neurons support
this role. However, the post-training expression of goal-directed behaviors relying on such
components does not appear to depend on the mPFC (Ostlund and Balleine, 2005). Thus, there
remains further work to be done to help understand the way these functions integrate within the
mPFC. Further analyses of our data on the mPFC are underway: we are studying the evolution of
neural activity with learning, and comparing the coherence between local field potentials in the
mPFC and in the hippocampus at different task phases. Moreover, we are analysing how the
communication between the prefrontal cortex and the hippocampus during sleep recorded after
daily sessions can reflect performance-dependent memory consolidation.
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Conclusion: implications for neuromimetic models of
navigation to be used in the EC ICEA integrated project

In this thesis, we pursued a pluridisciplinary work which required both an analytic approach
(behavioral and neurophysiological studies) and a synthetic one (computational modeling and
simulated robotics). Our contribution to the European Comunnity funded ICEA (Integrating
Cognition, Emotion and Autonomy) project came within the context of this integrative framework.
One of the goals of this project is to design a bioinspired integrated architecture combining several
navigation strategies for improving the decision autonomy of artificial systems evolving in unknown
environments. Our work have some implications for such an architecture inspired by the prefronto-
striatal system.

Actions Actions Actions

4 F 3 »

Strategy shifters
mPFC|OFC|others?

Striatum : VS DMS DLS

model-based place model- idiothetic and cue-guided
- strategies - free strategies - model-free strategies

Figure 4.1 : Schematic hypothesized functional architecture of part of the prefronto-striatal
system. Different territories of the striatum (receiving their respective cortical inputs) would
subserve different types of navigation strategies. Striosomes within each striatal territory are
assumed to play the role of a Critic driving reinforcement learning, whereas matrisomes play the
Actor controlling action selection. Within this architecture dopaminergic neurons are assumed to
encode reinforcement learning signals based on reward prediction errors. The dorsomedial
striatum, not studied here, could either be involved in model-free strategies, in model-based ones,
or in both. Our results are consistent with the identification of the shell as a Critic for model-free
strategies. Moreover, we showed that the mPFC could participate in the detection of task changes
and could subserve strategy shifting following such changes. VS, Ventral Striatum; DMS,
Dorsomedial Striatum; DLS, Dorsolateral Striatum; mPFC, medial prefrontal cortex; VTA,
Ventral Tegmental Area; SNc, Substantia Nigra pars compacta.

First, parallel learning processes could be simultaneously engaged in motor, associative and limbic
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cortico-striatal loops for the model-based and model-free performance of praxic, cue-guided and
place navigation strategies, depending on available allothetic or idiothetic data.

We have proposed a computational model of cue-guided model-free strategy based on a
reinforcement learning Actor-Critic framework, involving both motor and limbic loops.

Whereas some Actor-Critic models involve VS as a Critic, others do not (see Joel et al., 2002 for a
review). Our results showing activity anticipating reward suggest that VS could indeed contribute to
such a function. For the control architecture employed in ICEA, it would be worthwhile to integrate
such a reinforcement learning function of the ventral striatum within the existing model of the basal
ganglia (Humphries et al., 2006). However, our robotics model of reinforcement learning inspired by
the striatum still has some performance limitations and would require improvement before being
able to deal with complex robotics tasks. In this purpose, it would be worthwhile to take inspiration
from reinforcement learning theoretical work coordinating different learning modules: such as
hierarchical reinforcement learning (Morimoto and Doya, 1998, 2001; Barto and Mahadevan, 2003;
Elfwing et al., 2003; Barto et al., 2004; Haruno and Kawato, 2006), and macro-actions (McGovern
et al., 1998; Precup and Sutton, 1998; DePisapia and Goddard, 2003). Moreover, it would be
valuable to take into account work done to apply reinforcement learning to the case where an agent
has to deal with several motivations (Kaplan and Oudeyer, 2003; Oudeyer et al., 2005; Konidaris
and Barto, 2006).

Then, the ICEA architecture will have also to be provided with learning mechanisms for model-
based strategies. This is indeed an ongoing collaboration between our team and other members of
the ICEA consortium, on the one hand, bymodeling of more biologically plausible models building
hippocampal and prefrontal representations and, on the other hand, by precisely modeling limbic
loops and their interaction with the others — taking inspiration from our hypothesized architecture of
figure 4.1 (http://www.iceaproject.eu/).

Whereas our results on the prefrontal cortex provide a first clue to how to implement biologically
plausible extradimensional (ED) strategy shifting mechanisms for the ICEA project — by means of a
markovian decision process —, there remains to study how the rodent brain performs
intradimensional (ID) strategy shifts, extending the current approach to studies of the orbitofrontal
cortex.

Finally, in all existing bioinspired computational models, spontaneous alternations between different
strategies that we observed in our experiments are never taken into account. However there could be
an adaptive mechanism playing an important role in such a decision process. Investigating which
dynamics in the navigation architecture could produce such behavioral variabilities may be an
interesting perspective for enhancing the adaptability of artificial systems facing unknown
environments.
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Battaglia and Peyrache and Khamassi and Wiener (In press) Spatial decisions and neuronal activity in hippocampal
projection zones in prefrontal cortex and striatum. In Mizumori S (Ed.) Hippocampal Place Fields: Relevance to
Learning and Memory.

2. Other abstracts

Arleo et al. (2004) Head-Direction cells

Arleo, Déjean, Boucheny, Khamassi, Zugaro and Wiener (2004). Optic field flow signals update the activity of head
direction cells in the rat anterodorsal thalamus. Society for Neuroscience Abstracts, San Diego, USA.
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Dollé, Khamassi, Guillot and Chavarriaga (2006). Coordination of learning modules for competing navigation strategies
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Benchenane et al. (2007) PFC/HIP coherence

SfN Abstract 2007

Control/Tracking Number: 2007-A-43388-SfN
Activity: Scientific Abstract

Current Date/Time: 5/15/2007 12:04:21 PM

Increased firing rate and theta modulation in medial prefrontal neurons during episodes of
high coherence in the theta band of hippocampal/prefrontal local field potentials (LFP) in
behaving rats.

*K. BENCHENANE!, A. PEYRACHE!, M. KHAMASSI!*2, P. TIERNEY?, V. DOUCHAMPS,
F. P. BATTAGLIA%, S. 1. WIENER;

1LPPA, Col. de France - CNRS, Paris, France; 2Inst. des Systemes Intelligeants et Robotiques,
Univ. Pierre et Marie Curie, Paris VI, Paris, France; 3Inselrm u667, Col. de France, Paris, France;
4SILS—APCN, Univ. van Amsterdam, Amsterdam, The Netherlands

Abstract: The functional linkage of hippocampus and prefrontal cortex (PFC) has been shown as,
for instance, phase locking of PFC neurons to the hippocampal theta rhythm. Moreover, coherence
in the theta band between hippocampal and prefrontal local field potentials (LFPs) was found to be
increased in correct trials in a spatial working memory task. In these studies, rats were over-trained
and performed a simple spatial task. As PFC is strongly implicated in learning and behavioral
flexibility, we designed a task to elucidate the interaction between hippocampus and PFC in
learning and cross-modal strategy shifts.
Hippocampal LFP and medial prefrontal neurons and LFP were recorded and analyzed in three rats
learning four successive reward contingencies on a Y maze: go to the arm on the right, go to the lit
arm, go left, then go to the dark arm (one maze arm was randomly selected to be lit on each trial).
Rats returned to the start arm after each trial.
A robust theta rhythm at 6-8 Hz was observed in the PFC LFP. During learning, high hippocampal-
PFC coherence (values>0.7) in the theta band (5-10 Hz) was observed. This occurred principally at
the decision point in the maze, suggesting heightened communication between hippocampus and
PFC at the moment of behavioural choice.
Over all sessions, 776 PFC neurons were recorded. Statistical significance of theta modulation was
analysed by the Rayleigh test. The strength of modulation of PFC neurons by theta (modRatio) was
defined as the ratio between the magnitude of the sine-wave fitting the spikes' phase histograms and
its baseline. According to this method, 273 PFC neurons (35%) were found to be significantly
modulated by hippocampal theta (Rayleigh test, p<0.05), with a mean modRatio of 7.74/-0.079
percent.

Interestingly, the PFC neuronal firing rates were increased by 71% on average during periods of
high hippocampal-PFC theta coherence (t-test, p<0.0001). Moreover, the magnitude of the
modRatio increased by 32% (9.8+/-0.099 percent, t-test p<0.001) during these periods.
These data show that coherence in the theta band between hippocampus and PFC is related to the
rat’s behavior. Furthermore the hippocampal-prefrontal coherence selectively activates a
subpopulation of cells in the PFC. This provides evidence of selective control of hippocampal-PFC
functional binding at the level of LFP rhythms and at the level of single cell activity. This could be
important in the timely transmission of signals from hippocampus to PFC for learning and
consolidation.

Page : 160/ 196



Peyrache et al. (2007) PFC sleep and memory consolidation

SfN Abstract 2007

Control/Tracking Number: 2007-A-42327-SfN
Activity: Scientific Abstract

Current Date/Time: 5/15/2007 10:28:00 AM

Rat medial prefrontal cortex neurons are modulated by both hippocampal theta rhythm and
sharp wave-ripple events.

A.PEYRACHE!, K. BENCHENANE!, M. KHAMASSI!2, V. DOUCHAMPS !, P. L.
TIERNEY?, F. P. BATTAGLIA®, #S. I. WIENER>;

1LPPA, CNRS-College de France, Paris, France; 2Inst. des Systemes Intelligents et Robotiques,
Univ. Pierre et Marie Curie, Paris VI, Paris, France; 3Inselrm u667, Col. de France, Paris, France;

4SILS—APCN, Univ. van Amsterdam, Amsterdam, The Netherlands; 5 LPPA, CNRS-College De
France LPPA, 75005 Paris, France

Abstract: Mnemonic functions are attributed to hippocampus and to one of its principal projection
zones, the prefrontal cortex. In order to elucidate the functional neural processing in this pathway
medial prefrontal cortex neurons and local field potentials (LFP) and hippocampal LFP were
recorded simultaneously in five freely moving rats during 98 recording sessions in a Y maze and in
previous and subsequent sessions of quiet repose. In 35% of the 2230 cells analysed, action
potentials were significantly phase modulated by hippocampal theta during task performance
(Rayleigh test, p<0.05) as shown previously. (Modulation by theta was defined as the ratio between
the magnitude of the sine-wave fitting the phase histograms and its baseline.)
Furthermore, in 21%, firing rates increased (11%) or decreased (10%) during hippocampal ripples
occuring during previous and subsequent resting periods (t-test, p<0.05). (Modulation by sharp
waves is taken as the logarithm of the ratio between mean firing rate of a cell in a window
surrounding (+/- 25 ms) ripples’ peak and the mean firing rate of the cell in a window lasting from 1
s to 50 ms before ripples’ peak.) In 10% of the cells there was significant modulation by both theta
and ripples, and the amplitude of these respective modulations was significantly correlated
(Pearson's correlation test, p<0.05). This correlation may correspond to the strength of hippocampal
afferences to the respective neurons and their local circuits, suggesting that the
hippocampal/prefrontal interaction is mediated by the same population of prefrontal cells both
during sleep and active behavior.
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SfN Abstract 2007

Control/Tracking Number: 2007-A-110087-SfN
Activity: Scientific Abstract

Current Date/Time: 5/15/2007 10:03:51 AM

Time course of reactivation of memory-related cell ensembles in the rat medial prefrontal
cortex during sleep.

*F. P. BATTAGLIA!, A. PEYRACHEZ, K. BENCHENANEZ, M. KHAMASSIZ=, V.
DOUCHAMPSZ, P. L. TIERNEY?, S. I. WIENER?;

ISILS—APCN, Univ. van Amsterdam, Amsterdam, The Netherlands; 2LPPA, CNRS Col. de France,
Paris, France; 3Ins‘[. des Systemes Intelligents et Robotiques, Univ. Pierre et Marie Curie, Paris VI,

Paris, France; 4Inserm u667, Col. de France, Paris, France

Abstract: The prefrontal cortex is implicated in the flexible learning of stimulus-outcome
associations, which are consolidated in memory during offline periods. Reactivation of memory
traces, in the form of the reinstatement of experience-related activity in prefrontal cell assemblies
during sleep could be the basis for such a consolidation process. To study this, we developed a novel
analysis which allows to follow the time course of task-related reactivation in simultaneously
recorded cell ensembles. The correlation matrix of binned spike trains from multiple cells is
decomposed in its principal components, the largest of which represents groups of cells whose
activity was highly correlated during the reference recording period. The instantaneous cell pair co-
activation matrix during sleep, weighted by the coefficients in a given principal component, and
averaged over all cell pairs, can then be taken as a measure of the reactivation of the cell assembly
corresponding to that principal component at a given time.
We analyzed medial prefrontal ensembles from five rats while learning a set-switching task on a Y-
maze, and in rest sessions preceding and following the task. In 62 out of 86 sessions, cell assembly
reactivation was significantly greater (p<0.05) during slow wave sleep (SWS) after the session than
in SWS before. There was a significant correlation (Pearson's correlation test, p<0.05) between the
eigenvalues associated with the principal components during task performance (indicating the
strength of the encoding) and the increased re-activation in post-task SWS (compared to pre-task
SWS). Moreover, in 67 out of 86 sessions, co-activation was correlated (p<0.05) with the power of
both delta and spindle cortical oscillations, and it was much weaker during rest periods that were
classified as non-sleep. The increased co-activation in the post-experience sleep was attributable to
discrete bouts of activation, typically 2-5 seconds in duration. This new technique permits to
precisely follow the time course of neural ensemble re-activation. These data demonstrate that theta,
ripple-sharp waves and spindles are important for prefrontal post-task SWS reactivation, a possible
neural ensemble basis for memory consolidation.
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3. Supplemental material of the VS-reward article

(Annex I)

The Temporal-Difference (TD) learning algorithm was developed in the field of optimal
control theory and provides an efficient method for an embedded agent (animat, robot or other
artifact) to learn to assemble a sequence of actions enabling it to optimize reinforcement (e,g.,
reward) in a given environment (Sutton and Barto. 1998). This approach addressed the problem that
rewards may arrive considerably later than the initial neural activity, too late to modify the
appropriate synapses (the 'credit assignment problem'). TD learning has since been successfully
used to describe reinforcement learning mechanisms in basal ganglia networks, but mainly for single
rewards. It has been implemented in simulations where dopaminergic neurons compute
reinforcement signals (Schultz et al. 1997), while striatal neurons compute reward anticipation (Suri
and Schultz 2001). A given task is represented as a discretized series of timesteps. At each timestep,
the agent occupies a particular position (or state) in the environment, perceives a set of signals (e.g.,
internal signals about motivation, or visual information about the environment), and selects an
action. When the agent reaches a reward location and selects an appropriate action, it receives a
reward and strengthens the neural connections leading to this state.

Instead of requiring memorization of a lengthy sequence of actions to eventually be
reinforced when a reward is achieved — which is costly in terms of numbers of computations and
memory requirements — the TD algorithm proposes an efficient and elegant method to reinforce
appropriate state and signal prompted actions towards a reward. The reinforcement signal is
computed on the basis of the difference between the value of the states at two consecutive timesteps
(hence the name ‘temporal-difference learning’). The value of a given state S is considered to be the
value of reward which is expected (or predicted) to be received in the future, starting from this state,
and is noted V(S). If the action A, is performed in state S, , and then at time ¢, the expected

reward value V in state S, is higher than that of S, — (thatis Vt(S,) >Vt_1(St_1) ) —, then action

A, is reinforced, and the value of state S, is increased. The effective reinforcement signal that

drives this learning process is given by the following equation:

f‘tzrt+]).VI(SI)—VI_1(St_1) (D
where 7, is the reward achieved at time #, and Y is adiscount factor (0 <p<1 ) which limits the
capacity to take into account rewards in the far future. At each time step ¢, this reinforcement signal
is used to update the probability of choosing action A in state S, and to update the amount of reward
that state S “predicts” according to the following equations :

PlA|S|+= 7, and V|[S|+= 7, (2) and (3)
where += means “is incremented by”.

It remains to be verified whether an algorithm of this type is actually implemented in the
vertebrate brain. Nevertheless it provides an initial intelligible framework to understand a possible
way to learn a sequence of actions towards a reward. Its simplicity and efficiency support its

compatibility with the constraints of natural selection.
(END OF ANNEX 1)
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Supplemental figures
Supplemental Figure 1.
Average waveforms for
each of the neurons
described here. Error

bars are standard error
of the mean.
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Supplemental Figure 2. Further examples of neurons with reward anticipatory activity. Each row
shows the activity histogram for a single neuron. Time zero corresponds to delivery of the first drop
of water (also indicated by a continuous vertical bar). The dashed vertical bar corresponds to 1 s
after delivery of the final drop of water, thus the respective columns correspond to 7, 5, 3 and 1
drops of water. Cell identifiers are inset in the first column.
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