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Introduction

The control of quantum systems has become a major issue of modern physics.
Physicists are now able to isolate simple quantum systems such as a few single
atoms or ion chains, and to manipulate them with unprecedented precision [1–
6]. These investigations have led to the development of the first quantum simu-
lators [7–9], and may eventually see the birth of quantum computers [6, 10, 11].
In the past decades other systems such as electronic circuits [12] or mechani-
cal resonators [13] — hitherto well described by classical physics — have been
brought to the quantum level by various means, involving their cooling and
the control of noise sources [14]. To be useful to practical applications such as
quantum information processing or quantum simulation, one must be able to
control these systems precisely and without inducing a decay of their coher-
ence. This requires both a good understanding of the fundamental physics at
play, and practical tools, methods, and algorithms to control their quantum
state.

Within the past 15 years, ultracold gases have become model quantum
objects that can be used to study a variety of effects. They have proven their
ability to reproduce model systems of condensed matter physics [7, 15–17].
Ultracold gases are ideal tools to study quantum control: they are versatile,
they can either be degenerate or not, they can be placed in a variety of po-
tentials, dissipation can easily be added by using light, interactions can be
tuned at will, etc. For instance, it has recently become possible to measure
and control each atom of a degenerate ensemble individually [2–5].

An important parameter characterizing a given physical system in thermo-
dynamical equilibrium is its entropy. For “isolated” systems containing a lot
of particles that can be described by a time-dependent (Hermitian) Hamilto-
nian, the second principle of thermodynamics states that the entropy cannot
decrease. If the system is initially in thermodynamical equilibrium, quantum
adiabatic transformations are known to conserve the thermodynamical entropy
when the final state is also an equilibrium state [18]. To that respect, such
adiabatic transformations are thus “the best” one can achieve when bringing
a system from an initial equilibrium state to a final one. Nevertheless these
transformations generally have to be slow in order to be adiabatic, which can
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be a real limit to their practical use. Indeed decoherence [14] or finite lifetimes
of quantum systems are major issues of e.g. quantum computing.

In this thesis we have experimentally demonstrated transformations of a
gas equivalent to quantum adiabatic transformations with respect to the initial
and final states they connect, but which are not adiabatic. A consequence is
that they can be performed much faster than their adiabatic counterparts.
Such transformations have been named “shortcuts to adiabaticity” by Chen
et al. [19] and this is the term we have kept for the title of this thesis.

This thesis
Three major themes can be found in this thesis. The first one is the practical
implementation of the Bose-Einstein condensation (BEC) of a Rubidium-87
(87Rb) gas. When I arrived at the Nonlinear Institute of Nice1 (INLN) in
October 2008, the Bose-Einstein condensate experiment, so far constructed
by Guillaume Labeyrie alone, was not functional yet, and a lot of effort has
been dedicated to obtaining our first BECs 11 months after my arrival. We
were three people working on the experiment: Guillaume Labeyrie, Xiao-Li
Song who worked with us as a postdoc for two years and had arrived one month
earlier in the group, and I. We were helped by the electronic technicians of the
laboratory Arnaud Dusaucy and Jean-Claude Bernard, and by the mechanical
engineer Jean-Charles Bery. Such experiments have become standard in the
past few years, and many groups around the world are now able to produce
BECs. Nevertheless they are still quite challenging from an experimental point
of view, especially because nobody of our group had had experience on a BEC
setup. Since more than half of my time at INLN was dedicated to make it
work, details on its construction are naturally included in this thesis. They are
also there to stay as a reference for future researchers working on the setup.

During the construction of the experiment, I also worked on theoretical
aspects with Patrizia Vignolo in order to prepare the experiments we had in
mind. We wanted to study multiple scattering of matter waves in random
potentials. I thus worked on a simple model of correlated disorder responsi-
ble for the partial breakdown of Anderson localization in a one-dimensional
geometry.

When we were finally able to make the apparatus work, we could start
investigate new physics. The study of shortcuts to adiabaticity arose from
a very technical consideration: the transfer of the cloud from the magneto-
optical trap to the quadrupole trap induces heating (and actually a decrease
of phase-space density), and I wanted to try to optimize this transfer. I had
seen the article of Chen et al. [19] on the arXiv and I thought I could find

1Institut non linéaire de Nice, UMR6618, CNRS, Université de Nice-Sophia Antipolis.
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useful references in it. I realized we could also simply do the experiment if
we were able to adapt it with gravity, which was not included in the original
treatment of Chen et al. [19]. This was the beginning of a team work with
Patrizia Vignolo — and later Pablo Capuzzi — on the theoretical side, and
Guillaume and Xiao-Li on the experimental side.

Outline
This thesis is divided into four chapters: the first one contains the background
needed to address the physics of Bose-Einstein condensates of neutral atoms,
both from the theoretical and experimental point of view. Its first section gives
a remainder of basic statistical physics. The stress is put on the results provid-
ing experimental tools. The basic equations useful to the description of BECs
in various geometries are introduced. The most important techniques used to
produce BECs are presented: laser cooling and radio-frequency evaporative
cooling in a magnetic trap.

The second chapter details the construction of the experiment and its
performances for the production of BECs. It is designed to provide a snapshot
of the experiment at the moment of writing this thesis, and to stay as a
reference for future people working on the setup. Since this is the first thesis
concerning the INLN BEC experiment, and for the sake of completeness, some
parts describe the work previously done by Guillaume Labeyrie before I joined
him (design of the vacuum system, electronics for the lasers, etc.). I hope these
considerations will be useful to future researchers working on the experiment.

Chapter 3 contains our study of shortcuts to adiabaticity with both a very
dilute normal gas, which can be considered ideal, and a dense interacting
Bose-Einstein condensate. This work is both theoretical and experimental.
We believes such techniques may find a broad range of applications for the
control of classical and quantum systems.

The last chapter is concerned with the initial project of the team: the
study of matter wave transport with BECs. It is a theoretical work performed
with Patrizia Vignolo on the effect of a particular model of correlations on
one-dimensional Anderson localization.





Chapter 1

Theoretical basics and
experimental techniques

The purpose of this chapter is twofold. On the one hand, it gives the basic the-
oretical ingredients needed to describe and analyze the objects we are going to
work with: trapped cold gases of neutral atoms, either classical or degenerate.
On the other hand, it gives an overview of the main experimental techniques
used to produce such ultracold gases, with a stress on the fundamental limits
of each of them, justifying their complementary use. The discussion will often
be illustrated by examples involving the 87Rb atom, which is the species I
worked with during my thesis.

1.1 Bose-Einstein condensation

The indistinguishability of identical particles, which is the fact that the mea-
surable quantities should not change when the positions of any two particles
are swapped, together with the laws of quantum mechanics lead to the striking
fact that quantum particles can be divided into two main categories: bosons,
for which the many-body wave function is unchanged by the exchange of two
particles, and fermions, for which the wave function changes sign.

The spin-statistics theorem [20, 21] states that particles with half-integer
spins (in units of the reduced Planck constant ~ = h/2π ' 1.05 × 10−34 J.s)
are fermions, whereas particles with an integer spin are bosons.

This property of fundamental particles extends to composite particles such
as neutrons, protons, nuclei, neutral atoms, ions, molecules, etc., under the
condition that they are not distinguishable from one another, i.e. only when
they are in the same internal state.

In simple words, and using a classical picture, a consequence is that two
identical neutral atoms whose nuclei have an even number of neutrons (such
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that they are bosons) can be put at the same position in space and with the
same velocity, pointing in the same direction (same state). On the contrary,
neutral atoms with odd number of neutrons follow Pauli’s exclusion principle:
they cannot be in the same state, just like two electrons cannot be on the same
orbital around their nucleus in an atom.

Now let us now be a little more precise on what “being in the same state”
means in quantum mechanics. In classical physics, the state of a point particle
is simply given by its position and momentum, i.e. by six real numbers in a
given set of axes. This six-dimensional space is often called the phase space of
the system (here just one particle). In quantum physics, the components of
the position qi and momentum pi in a given direction i ∈ {x, y, z} follow the
fundamental Heisenberg uncertainty principle√

〈q2
i 〉 − 〈qi〉2 ×

√
〈p2
i 〉 − 〈pi〉2 ≥

~
2 , (1.1)

where the brackets 〈A〉 denote the average of A over, e.g., many identical
experiments. The word “uncertainty” is somewhat misleading: these inequal-
ities state that there is a certain spread in position and velocity. In a way,
the particles are not points anymore. Consequently, phase space can be seen
as divided into unit cells of volume h3. The uncertainty principle (1.1) states
that particles cannot occupy a volume of phase space less than this elemen-
tary volume. This truly revolutionary idea that phase space is divided into
such unit cells was first introduced by Bose [22] in 1924 for photons. With
it, he could recover the properties of a gas of photons in thermal equilibrium
(black body radiation). The difference between bosons and fermions is that
many bosons can be put in the same unit cell of phase space, whereas only
one fermion is allowed in each unit cell.

This quantum nature will thus play an important role when there is a
good chance that particles want to stand in the same place, with the same
velocity. In this case they have the same energy and the system is said to
be degenerate1. For instance, for air at room temperature and atmospheric
pressure, the density is on the order of2 n0 ∼ 1019 molecules/cm3, and the
width of the velocity distribution is ∆v ∼ 100 m/s. This corresponds to a
typical number of atoms per unit cell of phase space (this is called the phase-
space density) D = (h/∆x∆p)3 = h3n0/(m∆v)3 ∼ 10−6. In these conditions,
whether particles can or cannot be in the same state will not play any role,
because the system is too dilute. Consequently, the gas is well described
by classical mechanics. On the contrary, if the same reasoning is applied to
electrons in a piece of metal at room temperature, one gets D ∼ 1. This means

1This is obviously not possible for fermions, but in this case, one talks about degeneracy
when a large number of adjacent energy levels are occupied by exactly one fermion.

2“on the order of” will often be abbreviated by the symbol ∼.
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that even at room temperature the electrons of a metal are behaving quantum
mechanically.

On the way to Bose-Einstein condensation, the gas we manipulate is classi-
cal most of the time. For instance, we start at room temperature and very low
pressure (on the order of 10−12 bar). The corresponding phase-space density
is D ∼ 10−18. Thus, it is worth first recalling a few basic results on non-
degenerate gases. For this purpose we need to use the methods of equilibrium
statistical mechanics.

1.1.1 Statistical description of the gas

This section recalls the standard description, and usual results of equilibrium
statistical mechanics, which can be found in many textbooks (for instance
Refs. [23–26]). It is strongly based on the course of Georges and Mézard [26].

In classical mechanics, a system of N particles is characterized by its
Hamiltonian H({ql, pl}), containing the coordinates ql and momenta pl of the
particles (l ∈ {1, · · · , 3N}), and the dynamics is governed by 6N canonical
Hamilton equations.

In equilibrium statistical mechanics, instead of describing the system with
these 6N degrees of freedom, the phase space (the 6N dimensional space in
which {ql, pl} is a point) is assumed to be randomly populated with a given
probability density function D({ql, pl}). The macroscopic observables are sub-
sequently calculated as averages over this density function.

The microcanonical ensemble

For instance, in the microcanonical ensemble (isolated system with a fixed
total energy E), this probability density function is chosen to be

D({ql, pl}) = C δ[H({ql, pl})− E], (1.2)

C being a normalization constant. It means that all the possible states having
a total energy E are assumed to have the same probability. This assumption
is known as the postulate of equiprobability.

In quantum mechanics, the 6N conjugate momenta and Hamilton equa-
tions of classical physics are replaced by a many-body wave function Ψ({ql})
and a single Schrödinger equation governing its evolution. In trapped systems,
the spectrum is discrete and if one fixes the total energy E, it is likely that no
eigenstate of H will have an energy En = E. It is thus more practical to use
the constraint

E ≤ En ≤ E + δE (1.3)
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on the eigenstates of energies En that can be populated, where δE is small
compared to the macroscopic energies, but large compared to the level spac-
ings. For the probability pn of finding a particle in a state of energy En, the
postulate of equiprobability simply becomes

pn = 1
W (E, δE) , (1.4)

where W (E, δE) is the number of states satisfying the constraint (1.3).
The classical equivalent of (1.3) is

E ≤ H({ql, pl}) ≤ E + δE, (1.5)

and the probability density function that follows is

D({ql, pl}) = 1
V(E, δE) , (1.6)

where V is the volume of the fraction of phase space accessible to the system

V(E, δE) ≡
∫
E<H({ql,pl})<E+δE

∏
l

dqldpl. (1.7)

There is actually no satisfactory classical theory of statistical mechanics
because such theories lead to contradictions with thermodynamics. A striking
example is the Gibbs paradox: with a classical approach the free energy and
the entropy are found not to be extensive quantities.

For N indistinguishable particles, a prescription that solves this problem
and enables us to still use the classical formalism is the following: the classical
limit is obtained by replacing the number of states W (E, δE) by

W (E, δE)→ V(E, δE)
h3NN ! . (1.8)

The terms h3N corresponds to the elementary phase-space volume of a system
of N particles and accounts for the finite resolution of phase space discussed
above. The term N ! accounts for the indistinguishability of the particles: for
instance when N = 2, a situation with the two particles at different positions
is counted twice by the integral (1.7), whereas it corresponds to a unique
physical situation.

It can be shown that this approach, together with Boltzmann’s definition
of entropy

S = kB lnW, (1.9)

is sufficient to recover all the results of standard thermodynamics (kB ' 1.38×
10−23 J/K is the Boltzmann constant).
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The canonical ensemble

An alternative to the microcanonical ensemble is the canonical ensemble. In
this picture, the system under study (say system 1, N1 particles, energy E1)
can exchange energy with another one, much bigger (system 2, N2 � N1
particles, energy E2). The total energy is fixed E = E1 + E2.

The probability that system 1 is in a state of energy E1 is

p(E1) = W2(E − E1)∑
E′1
W1(E′1)W2(E − E′1) . (1.10)

Writing the entropy as in Eq. (1.9), developing at first order using the fact
that E � E1, and identifying ∂ES2 = 1/T2 one obtains the probability of a
state of system 1 as

p = 1
Z(T )e

−E1/kBT , (1.11)

where Z(T ) is called the partition function of system 1 and is

Z(T ) =
∑
n

e−E
(n)
1 /kBT , (1.12)

where the sum is on all the states of system 1, whose energies are E(n)
1 .

The quantum mechanical expressions of these two quantities are

D = 1
Z
e−H/kBT , (1.13)

Z = tr e−H/kBT , (1.14)

and the classical, continuous version is

Z = 1
h3NN !

∫ ∏
l

dqldpl e−βH({ql,pl}). (1.15)

The internal energy, the entropy and the free energy are given by

U = 〈H〉 = kBT
2∂ lnZ
∂T

, (1.16)

S = kB lnZ + kBT
∂ lnZ
∂T

, (1.17)

F = −kBT lnZ. (1.18)
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The grand canonical ensemble

In the grand canonical description, the system under study (system 1, N1
particles, energy E1) can exchange energy and particles with another, which
is much bigger (system 2, N2 � N1 particles, energy E2). The total energy
and particle number are fixed E = E1 + E2, Ntot = N1 +N2.

The probability that system 1 is in a state of energy E1 with N1 particles
is

p(E1, N1) = W2(E − E1, Ntot −N1)∑
E′1,N

′
1
W1(E′1, N ′1)W2(E − E′1, Ntot −N ′1) . (1.19)

When writing the entropy of system 2, the temperature emerges as in the
canonical ensemble. The chemical potential appears as

µ = −T ∂S2
∂N

. (1.20)

It plays, for the exchange of particles, a role similar to the temperature for
the exchange of energy. In the microcanonical and canonical descriptions, the
chemical potential is interpreted as the work one has to give to the system
in order to add a particle. In the following, we will use the usual notations
β ≡ 1/kBT and α ≡ βµ.

The probability of a state of system 1 is

p = 1
ZG(α, β)e

−βE1+αN1 , (1.21)

where ZG(α, β) is the grand canonical partition function of system 1,

ZG(α, β) =
∑
n

e−βE
(n)
1 +αN(n)

1 , (1.22)

and where the sum is on all the possible values of N1, and for each of them,
on all the states of system 1 whose energies are E(n)

1 . Writing ZN (β) the
canonical partition function when there are N particles, we have

ZG(α, β) =
∞∑
N=0

eαNZN (β). (1.23)

The number of particles, the internal energy and the entropy are given by

N = 〈N1〉 = ∂ lnZG
∂α

, (1.24)

U = 〈H〉 = −∂ lnZG
∂β

, (1.25)

S = kB (lnZG + βU − αN) . (1.26)
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1.1.2 The classical gas
In a trap, the Hamiltonian reads

H =
N∑
j=1

[
p2
j

2m + U(qj)
]

+ V (q1, · · · ,qN ), (1.27)

where U is any trapping potential (lim|q|→∞ U(q) = +∞), and V represents
the interactions between the particles.

In the canonical ensemble, the probability of finding a particle in a region of
phase space of infinitesimal volume about the point (q1, · · · ,qN ,p1, · · · ,pN )
is

1
Z

exp [−βH]
∏
j

dqjdpj . (1.28)

Performing the integration on all the position variables and all the momenta
but one, we obtain the single-particle velocity distribution

g(v) =
(

2πkBT
m

)−3/2
exp

[
− mv2

2kBT

]
. (1.29)

This is the Maxwell-Boltzmann distribution. In particular, it does not depend
on the interaction term, nor on the shape of the trap.

This provides us with a first experimental tool: for a classical gas the
temperature is related to the root-mean-square (rms) width σv of the velocity
distribution along any axis by

σv =

√
kBT

m
. (1.30)

It is interesting to notice that this is a universal property of a classical
ensemble of particles (when it can be described by such an H) which comes
from the fact that exp[−β×(kinetic energy)] and exp[−β×(potential energy)]
commute. It means that non-Gaussian velocity distributions in the trap will
be signatures of quantum behaviors.

The ideal gas

Throughout the experimental cycle, the density and the temperature vary by
orders of magnitude, but the gas is always very dilute (cf. Sec. 1.1.4). This
condition, together with being far from degeneracy, allows the gas to be well
described by the ideal gas model, upon which interactions are added in a
somewhat ad hoc fashion. For an ideal gas, the interaction term is removed

V (q1, · · · ,qN ) = 0. (1.31)
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A direct consequence is that the density profile, obtained by integrating (1.28)
over all momenta and all positions but one (and normalizing the obtained
density function to N instead of 1), directly reflects the shape of the trapping
potential:

n(q) = n0 exp
[
−U(q)
kBT

]
. (1.32)

For instance, for a harmonic confinement (angular frequency ωtrap), the density
is Gaussian with a rms width

σq =
√

kBT

mω2
trap

. (1.33)

For a linear trap (i.e. U(q) ∝ |q|, or U(q) = fx|x|+fy|y|+fz|z|), the width σq
scales as T . Once again, the width in situ (in the trap) gives a measurement
of the temperature.

The density at the center of a three-dimensional (3D) harmonic trap is
given by the fact that the integral of (1.32) is the number of atoms. As a
function of N and T , which are experimentally accessible quantities, it reads

n0 =
(
mω̄2

2πkB

)3/2

NT−3/2, (1.34)

where ω̄ = (ωxωyωz)1/3 is the geometrical average of the angular frequencies
of the harmonic trap. This expression can also be written as

n0λ
3
dB =

( ~ω̄
kBT

)3
, (1.35)

where the thermal de Broglie wavelength λdB =
√

2π~2/mkBT has been intro-
duced. It can be seen as a measure of the typical spatial extent of the atomic
wave packets due to the thermal motion of particles. The right hand side of
Eq. (1.35) is thus a dimensionless number measuring the ratio of the volume
occupied by the atomic wave packets, to the volume in which one atom is
found. It is actually the phase-space density D = n0λ

3
dB, and classically, it

is seen to be close to 1 when T ∼ ~ω̄/kB. In Sec. 1.1.3 we will see that the
quantum nature of particles dramatically modifies this and that the system
can actually be degenerate below a critical temperature Tc � ~ω̄/kB.

Time of flight of an ideal gas

We have seen that the width of the cloud in situ is a measurement of the
temperature. Nevertheless, it is sometimes difficult to measure, either because
the cloud is too small to be resolved, or because of other effects such as the
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presence of a magnetic field. It is thus often more convenient to release the
cloud from the trap and monitor its expansion. This technique is called the
time of flight. In the experiments, we are able to manipulate the trapping
potential and in particular, to turn it off abruptly. In a freely falling frame of
reference, the cloud has a ballistic expansion. If the trap is harmonic, after a
time tf of free expansion, the density is the convolution of the initial Gaussian
density, with the initial Gaussian velocity distribution. Consequently, it keeps
a Gaussian profile with a rms width

σtof(tf ) =

√
σ2
q + kBT

m
t2f . (1.36)

Fitting this curve yields the temperature. If the trap is not harmonic, in the
limit σtof(tf ) � σtof(0), the slope of the curve σ2

tof(tf ) vs t2f is σ2
v = kBT/m

which still yields the temperature.

1.1.3 Bose-Einstein condensation in harmonic traps
In this section, we consider N indistinguishable non-interacting bosons in a
harmonic trap. Bose-Einstein statistics is recalled [22] together with its strik-
ing consequence discovered by Einstein [27]: the accumulation of most of the
particles in the ground state when the temperature is decreased below a critical
temperature Tc � ~ω̄/kB.

Bose-Einstein statistics

For N bosons at sufficiently low phase-space density such that degeneracy can
be neglected, the particles all have single-particle wave functions (SPW) ϕk
(1 ≤ k ≤ N) orthogonal to each other, and the many-body wave function can
be written as

Ψ(q1, · · · ,qN ) = 1√
N !

∑
P

ϕ1(qP (1))× · · · × ϕN (qP (N)), (1.37)

where the sum is over all the permutations P of {1, · · · , N} and is here to
guarantee that Ψ is symmetric with respect to the exchange of particles. There
are N ! permutations which explains the normalization factor. This shows that,
because the particles are indistinguishable, the number of accessible states is
dramatically reduced, by a factor of N !. Of course, any linear combinations
of such Ψ would also be valid.

This expression also underlines how tricky writing wave functions can be-
come. Indeed when a few particles are described by the same SPW, the nor-
malization becomes much more complicated. An alternative to representing
the system with its wave function is to use the Schrödinger field formalism (also
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called second quantization formalism, see e.g. Ref. [28, Chap. 14] or Ref. [29]).
In this case, the state is given by the number of particles nk in each eigenstate
ψk (k ∈ N) of the single-particle Hamiltonian. In the microcanonical ensemble,
the constraints satisfied by this sequence are

∑
k nk = N and

∑
k nkεk = E

(the εk’s are the eigenenergies associated to the ψk). These two constraints
are not convenient to work with and it is actually simpler to work in the grand
canonical ensemble instead of the microcanonical one.

A grand canonical partition function can be derived when µ < ε0, ε0 being
the energy of the single-particle ground state. It is then given by (1.23) and
reads

lnZG = −
∞∑
k=0

ln [1− exp(α− βεk)] . (1.38)

The corresponding probability to find a particle in the kth eigenstate (the
occupation factor) is obtained as

fk = 1
eβ(εk−µ) − 1

. (1.39)

This constitutes the Bose-Einstein statistics. It is indeed positive for all k
because µ < ε0.

Continuous limit, density of states

It is sometimes convenient to use continuous functions instead of discrete en-
ergy levels. This can be done by introducing the density of states N (ε) (DOS),
defined such that

∫
E1<ε<E2

N (ε)dε coincides with the number of single-particle
eigenstates ψk of energies E1 < εk < E2 as soon as E2−E1 is sufficiently large
compared to the level spacing. In this case, discrete sums are replaces by
integrals.

For instance, the average number of particles becomes

N =
∑
k

fk '
∫
N (ε)f(ε)dε, (1.40)

where f(ε) is a continuous version of (1.39):

f(ε) = 1
eβ(ε−µ) − 1

. (1.41)

For instance, the DOS of a 3D harmonic trap is [29]

N (ε) = ε2

2(~ω̄)3 . (1.42)
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Bose-Einstein condensation: saturation of the excited states

The maximal possible number of atoms in the excited states Nmax = max[N−
N0] (we defineN0 ≡ n0 the occupation factor of the single-particle ground state
ψ0) can be calculated by using the continuous approximation. It is reached
when the chemical potential has the same value as the ground state energy
µ = ε0. This yields [30]

Nmax = ζ(3)
(
kBT

~ω̄

)3
, (1.43)

ζ being the Riemann zeta function3, ζ(3) ' 1.202. This number is seen to be
finite, and to depend only on the temperature and trap geometry. It means
that if the temperature is fixed and particles are added one after another, at
some point all the added particles will not be able to be in either of the excited
states. At this point, the excited states are saturated, and the consequence
is that any additional particle has to be added to the lowest energy state.
This saturation corresponds to the Bose-Einstein condensation of the gas4.
Obviously, this also applies if N is fixed and T (initially high) is decreased:
when Nmax reaches N (from above), N −Nmax(T ) particles have to gather in
the single-particle ground state.

The relationship between the total number of atoms Nc and the tempera-
ture Tc when this starts to happen is simply obtained by setting Nc = Nmax
(N0 = 0) and T = Tc in Eq. (1.43). This yields the critical temperature

Tc = ~ω̄N1/3
c

kBζ(3)1/3 ' 0.94~ω̄
kB
N1/3
c . (1.44)

For instance, for N ∼ 106 atoms, we have kBTc/~ω̄ ∼ 100. It is seen that
contrary to the classical case in which D was found to approach unity when
kBTc/~ω̄ ∼ 1 [cf. Eq. (1.35)], this happens for much higher values of T . In the
following chapters we will see that the typical number of atoms is N ∼ 106,
and the trap frequency is ω̄ = 2π × 100 rad/s. This corresponds to critical
temperatures in the range Tc ∼ 100 nK.

The proportion of atoms in the ground state is often called the condensate
or condensed fraction. It is obtained from Eqs. (1.43) and (1.44) as

N0
N

= 1−
(
T

Tc

)3
, (1.45)

3The Riemann zeta function is defined by ζ(s) ≡
∑∞

m=1 1/ms.
4Notice that Nmax is finite for a 3D harmonic trap, but could a priori be infinite with

other trap geometries (i.e. different density of states). For instance, this is the case for
strictly 2D box potentials and 1D harmonic traps because in both cases the density of state
is a constant [29]. Condensation cannot occur in such traps.
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for T ≤ Tc, N0/N = 0 otherwise.
Another instructive quantity to calculate is the density at the trap center.

The number of atoms is given by Eq. (1.40) and reads

N =
(
kBT

~ω̄

)3
g3(z), (1.46)

where z = exp[βµ] is called the fugacity, and g3 is the Bose function5. When
the system is far from degeneracy, the central density is simply
n0 = N/(

√
2πσ̄)3, where σ̄ is the geometrical average of the rms widths of

the cloud along the three axes, given by Eq. (1.33). This gives

n0λ
3
dB = g3(z). (1.47)

where the thermal de Broglie wavelength λdB was introduced in Sec. 1.1.2.
Here n0 is the central density only when the system is far from degeneracy.
The gas condenses when z → 1, i.e. when n0λ

3
dB → g3(1) ' 1.202. One

thus sees that condensation occurs when the typical inter-atomic distance is
comparable to the extent of the atomic wave packets, i.e. when the wave packets
start to overlap.

1.1.4 Interactions
In practice, there are collisions, hence a cold and trapped 87Rb gas is not an
ideal gas. This is even an essential ingredient of condensation experiments
because collisions are needed during evaporative cooling to bring the cloud
back to equilibrium (cf. Sec. 1.4.2).

“Real potential” and pseudopotential

The interaction potential between two identical atoms has the typically shape
of Fig. 1.1. It is strongly repulsive at short distances, because the electron
clouds repel each other, attractive around a typical distance r0 (bound states of
this potential well correspond to molecules), and attractive for large distances
r � r0, with a 1/r6 dependence arising from induced dipole-dipole interactions
(van der Waals potential).

In Sec. 1.4 we will see that we magnetically trap the atoms in the |F =
2,mF = +2〉 sublevel of the ground state. The appropriate potential is thus
the curve marked with “2 + 2” in the inset of Fig. 1.1. In the following
discussion, we assume that the colliding atoms stay in the same internal states
during the collision, which simplifies the collision problem.

5Also called Bose-Einstein integral, or polylogarithm function (by mathematicians), it
is defined by gu(z) ≡ 1

Γ(u)

∫∞
0

xu−1

z−1ex−1 dx =
∑∞

m=1 z
m/mu. Γ(u) =

∫∞
0 tu−1e−t dt is the

gamma function. In z = 1 the Bose function takes the value of the Riemann zeta function
gu(1) = ζ(u).
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Figure 1.1: Figure of Weiner and Julienne [31] showing the “real” interaction
potential of two 87Rb atoms. The horizontal scale is the distance r between
the two atoms in units of the Bohr radius a0 ' 0.53 Å. The vertical one is
the potential divided by kB in K. The inset shows the potentials for large
distances when the two atoms are either in the same hyperfine state F = 1
(curve marked “1 + 1”) or F = 2 (curve “2 + 2”), or when there is one atom
in each state (curve “1 + 2”).

Scattering theory In quantum mechanics, collisions between particles are
properly described by scattering theory [32]. One considers incoming wave
packets scattered by the interatomic potential of Fig. 1.1. One defines the dif-
ferential cross-section σ(θ, ϕ) of the collision by the relation dn = FIσ(θ, ϕ)dΩ,
counting the number dn of particles scattered per unit time in a given direc-
tion of space6 characterized by the two angles (θ, ϕ) and a solid angle dΩ,
FI being the incident flux. The scattering cross-section is then obtained by
integrating σ(θ, ϕ) over 4π steradians: σ =

∫
σ(θ, ϕ)dΩ.

As often, it is more convenient to work in Fourier space. Far from the
scatterer (r � r0), the scattered wave function is [32]

vscatk (r) ∼r→∞ eikz + fk(θ, ϕ)e
ikr

r
, (1.48)

where the eikz is the incoming plane wave, and the second term is the scat-
tered wave which propagates radially. The problem is to find the scattering
amplitude fk(θ, ϕ) characterizing the process. The differential scattering cross-
section for a given energy (given k) is simply σ(θ, ϕ) = |fk(θ, ϕ)|2.

6Of course the particles which are still in the incident mode after the collision are not
counted in dn.
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The scattering problem is simplified by the fact that the potential is central
because this leads to the conservation of the orbital angular momentum L
(quantum numbers l andm) during a collision. A consequence is that the wave
functions can be decomposed as a linear combination of products of spherical
harmonics and radial wave functions, and that the scattering amplitude is
independent of ϕ [32]. One can show that it reads [33]

fk(θ) = 1
2ik

∞∑
l=0

(2l + 1)
(
e2iδl − 1

)
Pl(cos θ), (1.49)

where the phase shifts δl(k) (defined modulo π) have been introduced, and the
Pl’s are the Legendre polynomials.

If the two colliding atoms are identical bosons, the wave functions have
to be symmetric with respect to the exchange of positions. This restricts the
acceptable solutions to even values of l and modifies the expression of the
differential scattering cross-section: σ(θ) = |fk(θ) + fk(π − θ)|2 [33].

Another simplification comes from the fact that collisions occur at low
energy k → 0. The terms corresponding to l 6= 0 in (1.49) become negligible
compared to the term l = 0, that is, the scattering becomes isotropic7. In
this case one speaks about “s-wave scattering” because the only partial wave
contributing to scattering is the s-wave (l = 0). The scattering cross-section
then becomes

σ = 8πa2
s, (1.50)

where the zero-energy scattering length as is

as ≡ − lim
k→0

tan δ0(k)
k

= −
[dδ0(k)

dk

]
k=0

. (1.51)

For 87Rb, the temperature below which only s-wave scattering occurs has
been measured to be about 300 µK [34–36]. We will see that the temperature
is below this value during most of the experimental cycle.

Pseudopotential Since the real potential V (r) may be complicated (or even
unknown) it is modeled by an effective potential Veff yielding the same physics,
i.e. the same scattering length for a given range of energy (in our case E =
kBT → 0). The simpler pseudopotential one can think of is a “point scatterer”
of the form

Veff(r) = g3Dδ(r), (1.52)

where g3D is called the interaction coupling constant. Mathematical difficulties
can arise from the use of a δ function (see e.g. Ref. [37]), in which case any

7Cf. e.g. Ref. [33] for a discussion of the validity of this statement, in particular the fact
that only s-wave scattering occurs at low energy is not true for all central potentials.
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other potential resulting in the same scattering length can be used, for instance
Huang’s pseudopotential Ṽeff(r) = g3Dδ(r)∂r(r·) [38] (see also Ref. [33] for a
discussion on these pseudopotentials).

For this approach to be consistent, the expression of g3D must be [33]

g3D = 4π~2as
m

, (1.53)

where as is the measured scattering length, and σ is still given by (1.50).
Of course, this approximation only reproduces the physics partially: it is

only valid about k ' 0 (the relevant criterion being kas � 1), short-range
correlations are not properly accounted for by this effective potential, other
effects such as Efimov physics (three-body interaction) are not described by
this effective theory, etc. In an instructive set of lectures, Lepage [39] shows
how more sophisticated effective theories can be constructed to reproduce the
experimental results.

It is remarkable that, depending on the details of the real potential, the
zero-energy interaction coupling constant g3D can either be positive or neg-
ative, depending on the sign of the scattering length. This means that the
effective interaction potential (1.52) can either be attractive (as < 0), repul-
sive (as > 0), or even vanishing (as = 0). This is exploited in Feshbach
resonances: the potential can be deformed with external fields (often a static
magnetic field) resulting in the modification of the phase shifts and of the
scattering length.

In this thesis, we have worked with 87Rb spin polarized in the |52S1/2, F =
2,mF = +2〉 state, for which the s-wave scattering length was measured to be
as ' 110 a0 [34, 36, 40].

Collision rate

For a non-degenerate homogeneous gas with a density n0, the elastic collision
rate is [41]

γel = n0σv̄
√

2, (1.54)

where v̄ =
√

8kBT/πm is the average thermal velocity. v̄
√

2 is the average
relative velocity between atoms. σ is the zero-energy s-wave scattering cross-
section introduced above. In a trap, this gives the collision rate at the center,
where the density is n0. To obtain the cloud-averaged collision rate, one has
to replace n0 by the average density n̄ =

∫
n2(q) dq/N . For instance, for a

harmonic trap, the result is n̄ = n0/2
√

2.
For 87Rb in the |F = 2,mF = +2〉 state at T = 1 µK, γel = 1 s−1 for

n0 ' 5× 1010 atoms/cm3.
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Influence of interactions

In the following chapters we will see that we work in the dilute regime8 char-
acterized by n0|as|3 � 1. In this regime, interactions can sometimes be ne-
glected. For instance, the critical temperature is just reduced by a few percents
when the interaction is repulsive [30, 42]. On the contrary, in the following sec-
tion we will see that interactions strongly affect the shape and the expansion
of condensates released from the trap. They are also essential to superfluid-
ity [43].

The results of Sec. 1.1.2 concerning the expansion from the trap during a
time of flight were derived assuming no interactions, and indeed, interactions
also modify the expansion, even when the cloud is non-degenerate. We ob-
served such deviations which we generally neglected. They were studied in
detail by Gerbier [44].

1.2 Mean field description of Bose-Einstein condensates

In principle, the state of N trapped bosons is fully described by the many-
body wave function Ψ(q1, · · · ,qN ), which must be symmetric with respect to
the exchange of any two particles. In the absence of interactions, the ground
state is

Ψ(q1, · · · ,qN ) =
N∏
j=1

ψ0(qj) (1.55)

which is indeed symmetric. Here, ψ0 is the single-particle ground state. Under
these conditions (T = 0, no interactions), the system is thus trivial because
it is equivalent to a single particle. The wave nature is thus preserved, but
quantum fluctuations are neglected and the system is somehow just like a
classical field [the wave equation being the Schrödinger equation on ψ0(qj)].

This approach can be generalized to the dilute case, as presented in the
following section.

1.2.1 The Gross-Pitaevskii equation

For the reasons explained in Sec. 1.1.4, the interactions can be modeled by a
pseudopotential

V (q1, · · · ,qN ) =
∑
j<k

g3Dδ(qk − qj), (1.56)

where g3D = 4π~2as/m is the interaction coupling constant, expressed in terms
of the atomic mass m and the zero-energy scattering length as.

8Also called “weakly interacting regime”.
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Taking the non-interacting case as a guide, the wave function is written
as in (1.55), but this time, ψ0 is not the single-particle ground state, but is
left unknown (Hartree approximation). We will thus write it ψ instead of ψ0.
At this point, the expected value of the energy E = 〈Ψ|H|Ψ〉 is considered as
a functional of this unknown function ψ. The state of this form having the
lowest energy is found by minimizing this functional under the constraint that
ψ is normalized:

∫
|ψ(q)|2dq = 1 (see for instance [45]). The Euler-Lagrange

equation satisfied by ψ is called the Gross-Pitaevskii equation (GPE):

µψ(q) =
[
− ~2

2m∆ + U(q) + g3DN |ψ(q)|2
]
ψ(q). (1.57)

The energy µ is the Lagrange multiplier of this minimization problem. To
obtain (1.57), the approximation N−1 ' N has been used. It is valid because
we always deal with large clouds containing at least N ∼ 104 atoms.

This approach can be generalized to the time-dependent problems to obtain
a time-dependent version which reads [46]

i~
∂ψ(q, t)
∂t

=
[
− ~2

2m∆ + U(q) + g3DN |ψ(q, t)|2
]
ψ(q, t). (1.58)

The effective particle described by ψ(q, t) is seen to satisfy Schrödinger-
like equations [Eqs. (1.57) and (1.58)], containing the usual kinetic energy
term (second derivative with respect to the position) and trapping potential,
but with an additional nonlinear term, which looks like a potential energy
involving the density (N |ψ(q, t)|2). It accounts for the mean field interaction
with the other particles.

1.2.2 Thomas-Fermi approximation
From Eq. (1.57) it is seen that the energy of the trapped gas can be split into
three terms:

1. the kinetic energy of the cloud

Ek = N
~2

2m

∫
|∇ψ|2dq, (1.59)

2. its trapping energy
Etrap = N

∫
U |ψ|2dq, (1.60)

3. and its interaction energy

Eint = N

2

∫
g3DN |ψ|4dq. (1.61)
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From the assumption that the interactions do not dramatically modify the
wave function (it is thus expected to be close to a Gaussian with a typical
width āho =

√
~/mω̄) one can evaluate the ratio of the interaction energy to

the kinetic energy as [30]
Eint
Ek
∝ N |as|

āho
. (1.62)

In our experiments, this is generally very large (for the experiments presented
in this thesis this is always > 103) and despite the fact that the gas is dilute9
(n0|as|3 � 1), interactions are dominant in the trap.

In this limit of negligible kinetic energy, known as the Thomas-Fermi (TF)
limit, there is a simple solution for the stationary GPE (1.57):

ψ(q) =
(
µ− U(q)
g3DN

)1/2
, (1.63)

where µ ≥ U , and ψ = 0 otherwise.

A few useful formulas in the case of harmonic traps

For a harmonic trap with angular frequencies ωx, ωy, ωz (geometric average
ω̄), the density is [q = (x, y, z)]:

n(q) = N |ψ(q)|2 = n0

[
1−

(
x

Rx

)2
−
(
y

Ry

)2
−
(
z

Rz

)2]
, (1.64)

where this is positive, and n(q) = 0 otherwise. The condensate thus assumes
the shape of an inverted parabola. The Ri’s are called the TF radii of the
condensate. Their expressions in terms of the number of atoms and the trap
frequencies are

∀i ∈ {x, y, z}, Ri =
(

15N as~2ω̄3

m2ω5
i

)1/5

. (1.65)

The chemical potential µ is obtained from the normalization of the wave func-
tion and reads

µ = 1
2~ω̄

(
15Nas

√
mω̄

~

)2/5

. (1.66)

In experiments, we actually measure the column density [integration of n(q)
along one of the eigenaxes]

ñ(x, y) =
∫
N |ψ(x, y, z)|2dz = 4

3n0Rz

[
1−

(
x

Rx

)2
−
(
y

Ry

)2]3/2

. (1.67)

9I recall that the term “weakly interacting” is also commonly used.
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The density profile obtained can be fitted by this 2D function. As a function
of the fitting parameters ñ0 = 4n0Rz/3, Rx and Ry, the number of atoms is

N = 2π
5 ñ0RxRy. (1.68)

It is sometimes more convenient to numerically integrate Eq. (1.67) before
fitting (in practice this corresponds to summing the absorption images in one
dimension) to obtain the twice integrated density

n1D(x) =
∫
N |ψ(x, y, z)|2dydz = π

2n0RyRz

[
1−

(
x

Rx

)2]2

. (1.69)

In this case the fitting parameters are n1D(0) = πn0RyRz/2 and Rx, and N
reads

N = 16
15n1D(0)Rx. (1.70)

Finally, a last integration yields the number of atoms as a function of the
central density and the TF radii

N = 8π
15n0RxRyRz. (1.71)

As a function of the trap frequencies and N , the central density reads

n0 = 1
π

( 15
128
√

2

)2/5
(
N
m3ω̄3

~3a
3/2
s

)2/5

. (1.72)

The relation between the rms width of the density profile σi and the TF radius
Ri (i ∈ {x, y, z}) is Ri/σi =

√
7.

1.2.3 Collective excitations
The collectives excitations of the gas resulting from an abrupt modification or
a controlled modulation of a parameter can give some insight of the system.
The simplest parameter that can be changed is the trapping potential which
is generally harmonic. This has been the subject of intense studies very soon
after the realization of the first BECs in 1995, both in theory [47–50] and
in experiments [51–54]. For instance, the so called scissors mode was used to
“probe the superfluidity” of BECs [55–57]. More recently the scattering length
of a BEC was modulated to study the resulting collective modes [58], and the
breathing mode of a unitary Fermi gas with imbalanced spin populations was
used as a weighing scales to measure the effective mass of the Fermi polaron, a
quasi-particle of the system [59]. Finally, it is worth mentioning that collective
modes occur in a variety of physical systems, ranging from colloidal particles,
to astrophysical systems [60].

In this section we only address the dipole, breathing, and scissors modes
which are studied and revisited in the third chapter of this thesis.
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Kohn’s theorem and the dipole mode

We will only deal with harmonic potentials, which greatly simplifies the analy-
sis. Indeed, in such traps the motion of the center of mass and of the “internal”
degrees of freedom are not coupled, regardless of the binary interaction. This
remarkable feature of harmonic confinements was discovered by Kohn [61] in
the context of the cyclotron frequency of electrons in metals, and is commonly
named Kohn’s theorem. The Hamiltonian has the form10

H =
N∑
j=1

[
p2
j

2m + U(qj , t)
]

+
∑
j<l

V (qj − ql), (1.73)

where V is any interaction between two particles. U is a time-dependent
harmonic potential, that is, any second order polynomial in q. For instance

U(q, t) = 1
2m

[
ω2
⊥(t)

(
x2 + z2

)
+ ω2

‖(t)y
2
]

+mgz. (1.74)

Kohn’s theorem states that the system is equivalent to two independent sys-
tems:

1. a single particle in the potential U(q, t),

2. a system of N − 1 interacting particles in a time-dependent harmonic
potential whose center is not moving.

This result is obtained by defining the center of mass position and momentum
operators Q =

∑
j qj/N and P =

∑
j pj and by a canonical transformation

using the Jacobi coordinates (%%%j ,πππj), j ∈ [1, N − 1], constructed from the qj ’s
and pj ’s (cf. e.g. Ref. [62] or Ref. [63] in which a similar treatment is directly
performed on the GPE). The Hamiltonian of the center of mass is

Hcm = P2

2Nm +NU(Q, t), (1.75)

and the relative motion Hamiltonian is

Hrel =
N−1∑
j=1

{
j + 1
j

πππ2
j

2m + j

j + 1
m

2
[
ω2
⊥(t)

(
%x

2
j + %z

2
j

)
+ ω2

‖(t)%y
2
j

]}

+
∑
j<l

V (%%%j − %%%l) .
(1.76)

10The Hamiltonian (1.73) is often sufficient to describe our trapped atoms, but the theorem
actually holds as long as the non-interacting part of (1.73) is a second order polynomial in
the variables ql, pl, l ∈ [1, 3N ], the coefficients of the polynomial being time-dependent.
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Note that the linear terms of the potential are still present in the center-of-mass
Hamiltonian (indeed such terms are needed for the oscillation of the center to
be possible), but not in the relative Hamiltonian. These two Hamiltonians
satisfy H = Hcm + Hrel and commute [Hcm, Hrel] = 0, i.e. no energy can be
transfered from the center of mass to the relative motion or vice versa. The
full wave function can thus be written as a superposition of wave functions of
the form

ϕ(%%%1, . . . , %%%N−1,R, t) = ψcm(R, t)ψ(%%%1, . . . , %%%N−1, t), (1.77)

where ψcm(R, t) is the center-of-mass wave function, and ψ(%%%1, . . . , %%%N−1) is
the wave function associated with the internal degrees of freedom. Notice that
this is not an approximation, it is exact.

From this discussion, one sees that simply displacing a harmonic trap (i.e.
having a time-dependent linear term α(t)q in U , but a constant curvature of
the potential) does not change the dynamics in the frame of reference of the
center of mass and simply excites the center-of-mass motion. The oscillation
of the center of mass is often referred to as the dipole mode, and its frequency
along each trap eigenaxis equals the trap frequency.

Similarly, when the harmonic trap is switched off and the cloud is in free
fall, the acceleration of gravity does not modify the expansion in the acceler-
ated frame of reference of the center of mass11.

Breathing modes

We now focus on the internal degrees of freedom. We will see in Chap. 3 that
the motion is simply governed, to some extent, by scaling equations for the
widths of the cloud.

Breathing of a non-interacting gas For a non-interacting gas (normal, BEC,
Fermi gas, etc.), this statement is exact (no approximations of any kind) when
the harmonic trap does not rotate [e.g. the Hamiltonian (1.74)] and the scaling
equation governing the cloud width is (cf. Chap. 3)

b̈+ ω2(t)b = ω2
0/b

3. (1.78)

For instance, if the cloud was initially at equilibrium with a width σ(0) in
a trap with a frequency ω(0) = ω0, the time-dependent cloud width is given
by σ(t) = b(t)σ(0). The fact that a constant ω0 appears in the equation
is a matter of convention, as can be seen from doing the change of variable
b(t)→ Cb(t), which just turns the ω0 into ω0/C

2 in Eq. (1.78).
11This is true as long as the measurement is unable to “resolve” the curvature and inho-

mogeneity of the gravity field at the surface of the earth.
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Figure 1.2: Breathing mode of a
non-interacting gas [Eq. (1.79)] for
ω0/ω1 = 1 and increasing amplitude
A = 0, A = 0.2, A = 1, A = 2, and
A = 3. The frequency is twice the trap
frequency.

When the angular frequency of the trap is constant [ω(t) = ω1] the general
solution of Eq. (1.78) is found by multiplying it by ḃ and integrating, and is

b(t) =
[√

A2 + ω2
0
ω2

1
−A+ 2A cos2 (ω1t+ φ)

]1/2

, (1.79)

which is a periodic oscillating function with an angular frequency 2ω1. A plays
the role of an amplitude. This is called the breathing mode or quadrupole mode,
and for a non-interacting gas, it is at twice the trap frequency. This function
is plotted in Fig. 1.2. For small amplitudes A � ω0/ω1 it reduces to a sine
function with an average value

√
ω0/ω1, while for large amplitudes A� ω0/ω1

it reduces to b(t) '
√

2A| cos(ω1t+ φ)|.

Breathing of interacting BECs Since the scaling equations describing the
evolution of BECs in time-dependent traps are derived in Chap. 3 and App. C,
we just give here the frequencies of the various low-energy modes previously
studied (cf. Refs. [51–53]). The breathing modes of interacting BECs are
similar to the non-interacting case discussed above, but modified by the non-
linearity which induces a modification of their frequencies. Since the axes are
coupled by the interaction, the frequency of the breathing in one direction
depends on the trap frequencies in the other directions. Theses modes can be
obtained either from the scaling equations of App. C, from the collisionless
hydrodynamic equations, or by a Bogoliubov approach [30].

In a cylindrically symmetric trap with an axis having an axial (angular)
frequency ω‖ and the other two axes a radial frequency ω⊥ > ω‖ [as the
potential (1.74) but static], one finds a surface mode with a frequency [64]
Ω0 =

√
2ω⊥ and the two frequencies

Ω2
± =

{
2 + 3λ2/2±

[(
2 + 3λ2/2

)2
− 10λ2

]1/2
}
ω2
⊥, (1.80)



1.2. Mean field description of Bose-Einstein condensates 27

corresponding to a radial (+ sign) and an axial (− sign) breathing mode
respectively. λ is the ratio ω‖/ω⊥. For very elongated traps, λ � 1, they
simplify to Ω+ = 2ω⊥ and Ω− =

√
5/2ω‖.

Scissors modes

Scissors modes correspond to an angular oscillation of the cloud in the trap
and can be excited if the trap is anisotropic and slightly rotated, e.g., around
one of its eigenaxes. They were first investigated theoretically by Guéry-
Odelin and Stringari [65] who underlined the difference between the scissors
mode of a superfluid BEC (for which interactions are needed) and the one oc-
curring in non-interacting systems (either strictly non-interacting or thermal
non-condensed at high temperatures). This mode is derived in the limit of
T → 0 for interacting BECs in App. C. Note that all the modes discussed here
are obtained in the limit of small perturbations of the cloud, and can actu-
ally be coupled when they have sizable amplitudes (for instance the scissors
and breathing modes are coupled). They were investigated experimentally
in details by Maragò et al. [55, 56] in both the T → 0 limit and at nonzero
temperatures.

Assuming we rotate the trap (1.74) around the z axis, an interacting BEC
would display an angular oscillation in the x-y plane (scissors mode) whose
angular frequency is given by

ω2
sc =

(
1 + λ2

)
ω2
⊥, (1.81)

this mode being undamped. Differently, a thermal gas in the collisionless
regime would display undamped oscillations at the two frequencies ω± =
(1± λ)ω⊥. In the presence of collisions, these two modes are damped [65].

1.2.4 Reduction of dimensionality

In Chap. 4, we will consider condensates trapped in very elongated geometries,
where the interesting physics happens in the long direction. In very flat or
elongated traps, one can be interested in the dynamics happening in the two
or one less confined directions only. In this case the system is considered as an
effective two- or one-dimensional system. Effective 2D or 1D equations where
the transverse dynamics has been “integrated out” can be derived from the
3D GPE12 [70].

12This kind of approach is not always valid: an example is the case of a very strong
transverse confinement and small number of atoms which is a realization of a Tonks gas, not
described by a GPE [37, 66–69].
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Effective one-dimensional equation

The trap is assumed to be harmonic in the radial directions (x-y plane) with
an angular frequency ω⊥. The wave function is written as a product of radial
and axial components

ψ(q, t) = φ(x, y, t;σ(z, t))ϕ(z, t), (1.82)

and a Gaussian ansatz is used for φ(x, y, t;σ(z, t)), σ(z, t) being its position
dependent (transverse) rms width. We use the usual normalization conven-
tions

∫
|φ|2dxdy = 1 and

∫
|ϕ|2dz = 1. We will not go into the details of

the different regimes which depend on the density and the ratio between the
typical transverse size and the scattering length. We only consider the regime
characterized by (

as
a⊥

)2
� n1D|as| � 1, (1.83)

where n1D ≡ N |ϕ|2 is the linear atomic density and a⊥ ≡
√
~/mω⊥ is the

transverse harmonic oscillator length. The first inequality excludes the Tonks
limit which has proven to be very difficult to reach in actual experiments with
ultracold gases [37, 66–69]. Under these conditions, the transverse width can
be considered constant and is approximately the harmonic oscillator length
σ(z, t) = a⊥. Then the dynamics in the longitudinal direction is also well
described by the 1D nonlinear Schrödinger equation [70]

i~
∂ϕ

∂t
=
[
− ~2

2m
∂2

∂z2 + U(z) + g1DN |ϕ|2
]
ϕ. (1.84)

The potential is assumed to be invariant by translation in the x-y plane. Note
that the interaction coupling constant has been renormalized

g1D ≡ g3D
∫
|φ|4dxdy = g3D

2πa2
⊥

= 2~ω⊥as. (1.85)

1.3 Laser cooling and trapping of neutral atoms
The second half of the 20th century has seen the development of amazing
techniques, in which light is used to control both the internal and external
degrees of freedom of neutral atoms, ions, molecules, etc. One of the pioneers
was Frisch [71] who first demonstrated that shining light on an atomic beam
could deflect it. This is an experimental proof that light carries momentum.
Later, Kastler [72] showed that the internal state of atoms could be controlled
by shining polarized light on atomic beams (optical pumping).

More generally, these techniques are based on the fact that, just like mas-
sive objects, light carries energy, momentum, and angular momentum, and can
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interact strongly with matter. In any process theses quantities are conserved:
they can be exchanged between the field and the matter. As a consequence, a
good control of the light translates into a good control of the dynamics of the
atoms.

The control of the polarization can be easily done with natural materials,
such as mica sheets and other crystals. In the 60’s, the invention of lasers,
which provide intense and directional sources of monochromatic light, has
made the control of the pulsation ω of the light very precise (and consequently,
the control of its energy ~ω and its momentum ~ω/c).

In this section, some basics are given concerning the experimental tech-
niques to control the dynamics of the atoms using light.

1.3.1 Atom-field interaction
An important notion to have in mind is the behavior of a two-level atom
illuminated by the light of a laser. The two levels have an energy separation
~ω0. The excited state is unstable, and decays back into the ground state with
a time constant τ = 1/Γ. Γ is called the linewidth of the atomic transition.
The laser is assumed to emit light with a pulsation ω. The difference δ = ω−ω0
is called the laser detuning with respect to the atomic transition. On the scale
of the atomic wave packet, the light intensity I is supposed constant.

The number of scattered photons per unit time is [73]

Γsc = Γ
2

s

1 + s
, (1.86)

where 0 ≤ s <∞ is the saturation parameter:

s = I/Isat
1 + 4(δ/Γ)2 , (1.87)

Isat = 2π2c

3λ3 ~Γ. (1.88)

The saturation intensity is an important parameter. Indeed, s = 1 sepa-
rates two different regimes of light scattering by the atom: for s � 1 (linear
regime), light scattering is essentially elastic. On the contrary, for s > 1 (non-
linear regime), the scattered light spectrum exhibits several lines centered at
frequencies different from that of the laser, known as the Mollow triplet [74].
When the atom is saturated, it spends on average half its time in the excited
state, while for s� 1 the population of the excited state stays low.

The radiation pressure force

Every time a photon is absorbed (respectively emitted) by an atom, its mo-
mentum ~k (k is the light wave vector) is transfered to (or subtracted from)
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the atom. The transferred velocity is called the recoil velocity

vr = ~k
m
. (1.89)

For instance, for the D2 line of 87Rb, vr ' 5.88 mm/s.
Since spontaneous emission occurs with the same probability in two op-

posite directions, the transfer of momentum averaged over a large number of
absorption-emission cycles (duration ∆t � 1/Γsc) is ∆P = Γsc∆t ~k. This
corresponds to a force

F ≡ ∆P
∆t = Γsc~k (1.90)

called the radiation pressure force. Obviously, it is always repulsive. A similar
force appears when light is reflected by a mirror: this transfers 2~k to the
mirror and pushes it away from the source.

The corresponding acceleration can be important: for instance, at reso-
nance, for a strongly saturated 87Rb atom (Γsc = Γ/2) this yields an acceler-
ation a = F/m ∼ 105 m/s2.

The dipole force

Another force appears when an atom is illuminated. In a classical picture, it
comes from the interaction of the dipole induced by the electric field p ∝ E
with the electric field itself. Since the energy of this interaction is −p ·E, the
corresponding potential is seen to be proportional to |E|2, i.e. to the intensity
of the radiation13. The quantum mechanical expression of the dipole potential
(also called the ac-Stark shift) is [75]

Udip(r) = ~δ
2 ln [1 + s(r)] , (1.91)

where the spatial dependence of s comes from the fact that the light field may
be inhomogeneous. A remarkable aspect is that the dipole potential is positive
when ω > ω0: it means that the atoms will be repelled from high intensity
regions. In this case, the light is said to be blue detuned from the transition.
On the contrary, when the light is red detuned (δ < 0), the regions of higher
intensity attract the atoms. The corresponding force is the gradient of this
potential, and contrary to the radiation pressure force, it is not oriented in the
direction of k.

In the limit of low saturation, a remarkable relationship between the scat-
tering rate and the dipole potential is

Udip(r) = δ

Γ~Γsc = ~δ
2

I(r)/Isat
1 + 4(δ/Γ)2 . (1.92)

13This classical and linear interpretation is valid only in the linear regime, i.e. when s(r)�
1. Indeed Eq. (1.91) gives a dipole potential linear in the intensity in this limit.
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It shows that, given a desired dipole potential, the scattering rate can be
rendered negligible by using larger detunings. This can be done at the cost
of increasing the intensity in the same proportion as the detuning (I/δ =
constant in the limit of large detunings δ � Γ).

In this regime, the dipole force is commonly employed to realize conser-
vative traps for cold atoms, with various geometries obtained by tailoring the
light intensity distribution (cf. Ref. [76] and references therein).

The dipole force on real atoms

For real, multi-level atoms such as 87Rb and other alkali atoms, an expres-
sion of the dipole force can be obtained in the experimentally relevant limit
of unresolved hyperfine splitting, for which the atoms are assumed to be in
the state |52S1/2, F 〉, and the detunings δ1 with respect to the center of the
hyperfine split of the D1 line and δ2 with respect to the center of the hyperfine
split of the D2 line are large compared to the excited state’s hyperfine splitting
(δ1, δ2 � ∆′HFS). In this case, the dipole potential is given by [76]

Udip(r) = ~Γ2

24

(2 + PgFmF

δ2
+ 1− PgFmF

δ1

)
I(r)
Isat

, (1.93)

where P characterizes the light polarization (P = 0,±1 for linearly and σ±

polarized light respectively). gF is the Landé g-factor of the hyperfine manifold
|52S1/2, F 〉, and mF is the quantum number associated with the projection of
the atomic angular momentum F on the light’s wave vector. For instance,
for the state |F = 2,mF = +2〉 and σ+ polarized light, a two-level system
is isolated (|F = 2,mF = +2〉 ↔ |F ′ = 3,m′F = +3〉) and, as expected, one
recovers the two-level expression (1.92) taken in the limit δ/Γ� 1.

1.3.2 Doppler cooling
From everyday experience, the fact that light can be used to cool, and not
to heat matter is not intuitive. Indeed in nature, light is generally absorbed
by matter, non-radiative processes convert this energy into heat before radia-
tive processes can occur once again (black body radiation for instance). The
difference with isolated atoms is that they are simpler than most materials:
unlike for instance molecules in which ro-vibrational states can be excited,
with single atoms, only radiative processes can occur. A photon absorbed will
always be re-emitted at some point.

Doppler cooling is based on two ingredients: a resonance of the form dis-
cussed in Sec. 1.3.1, and the Doppler effect [78], i.e. the fact that in the frame
of reference of an atom moving with a velocity v, the pulsation of the light is
shifted by

∆ω = −k · v. (1.94)
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Figure 1.3: Figure of Metcalf and
van der Straten [77] showing how the
force depends on the velocity in op-
tical molasses. The dotted lines are
the forces of each beams, the solid line
is their sum. The straight line shows
how this force mimics a pure damping
force over a restricted velocity range.

If the laser is red detuned and does not saturate the transition, it is seen
that, because of the Doppler effect, the atoms moving towards the source
scatter more photons than the ones moving away from the source. By using
two counterpropagating red-detuned lasers, the force exerted by the light is
thus strongly velocity dependent (cf. Fig. 1.3). It mimics friction (F = −αv)
and thus tends to slow the atoms, i.e. to cool the ensemble. This idea was
proposed independently by Hänsch et al. [79] for neutral atoms, and Wineland
and Dehmelt [80] for trapped ions.

Since the Doppler force is F = −αv, one would expect the atoms to slow
down until v = 0, i.e. until the temperature has reached absolute zero. But this
is actually true only for the average velocity (averaged on many absorption
emission cycles). Since the atoms continuously absorb photons and re-emit
them in random directions, they perform a random walk in momentum space,
which leads to diffusion of the momentum distribution of the cloud. This
corresponds to heating. A precise analysis [46, 81–84] shows that the steady-
state temperature (when the cooling and heating effects cancel each other) is
the smallest if one chooses the detuning δ = −Γ/2, and is

TD = ~Γ
2kB

. (1.95)

This is called the Doppler temperature. It is the fundamental limit on tem-
perature that can be achieved with this mechanism. For the D2 line of 87Rb
which we use, this limit is TD ' 146 µK.

A set of pairs of counterpropagating red-detuned beams (either one, two
or three) used to Doppler cool a sample is often called an optical molasses.
Because of the spatial diffusion, the cloud gets more and more dilute and is
lost once all the atoms have escaped the region where the lasers cross.

1.3.3 The magneto-optical trap
The invention of the magneto-optical trap (MOT) was motivated by the fact
that the cold samples produced by optical molasses were quickly lost. The idea
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Figure 1.4: Figures of Raab et al. [85] and Chu [86] explaining the principle of
a magneto-optical trap, and showing the actual magnetic sublevel structure of
the transition used in this thesis. Two counterpropagating red-detuned laser
beams with the same circular polarization (with respect to their wave vector)
respectively drive σ+ and σ− transitions. A static magnetic field with a linear
dependence on the position (a gradient) shifts some Zeeman sublevels (left:
mS = ±1, right: mF 6= 0). This cools and traps the atoms about the center
where B = 0 (see text).

is to make an optical molasses, but to render the velocity-dependent force also
position-dependent in order to trap the cloud. For this, one takes advantage of
the Zeeman substructure of the atomic transition and of the Zeeman effect: the
fact that these levels are shifted by a static magnetic field. An inhomogeneous
static magnetic field is thus added to bring the atoms closer to resonance
with the laser that tends to push them towards the center, thus increasing
the radiation pressure force, when they are far from the trap center. Since
two Zeeman sublevels with opposite mF number are shifted equally, but with
opposite signs, the light is circularly polarized to address only the transition
which is closer from resonance with the laser. The idea of adding a magnetic
field to an optical molasses was proposed by Dalibard14 to Raab et al. [85] who
did the first experimental realization. This principle is illustrated in Fig. 1.4.

Since the cooling mechanism is just Doppler cooling, the expected funda-
mental limit on T is still the Doppler temperature (1.95).

Sub-Doppler cooling

In experiments, it was soon realized that optical molasses could produce much
lower temperatures than the Doppler limit [88] (40 µK instead of the expected
TD = 240 µK for Na). It was a real surprise to the community and directly
attracted a lot of attention [86]. The accepted mechanism accounting for such
low temperature is called Sisyphus cooling or polarization gradient cooling.

14This is reported in Refs. [85] and [86].
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Figure 1.5: Figure of Cohen-Tannoudji [87] explaining the principle of the
“Sisyphus cooling” mechanism. Laser configuration formed by two counter-
propagating plane waves along the z axis with orthogonal linear polarizations
(a). The polarization of the resulting electric field is spatially modulated with
a period λ/2. Every λ/4, it changes from σ+ to σ− and vice versa. For an
atom with two ground state Zeeman sublevels Mg = ±1/2, the spatial modu-
lation of the laser polarization results in correlated spatial modulations of the
light shifts of these two sublevels and of the optical pumping rates between
them (b). Because of these correlations, a moving atom runs up potential hills
more frequently than down [double arrows of (b)].

The interference of the counterpropagating beams with identical circular
polarizations produces a periodic structure of the polarization along the propa-
gation axis. This is illustrated in Fig. 1.5 for the simpler case of two orthogonal
linear polarizations. A simple explanation of the mechanism can be found in
Cohen-Tannoudji [87]. It relies on the correlation between the probability of
optical pumping between the light-shifted Zeeman sublevels, and the spatial
periodicity of the light-shifts: an atom climbing uphill is losing kinetic energy
and then pumped to another sublevel having a lower energy, where the process
starts over (cf. Fig. 1.5). The theory is detailed in Refs. [89–92].

In this process, the atoms are continuously scattering photons, and the sub-
sequent limit on temperature is a few times the recoil energy Er = ~2k2/2m,
the energy gained by an atom at rest when it absorbs a photon. The corre-
sponding limit on the temperature is thus related to the recoil temperature15
Tr = 2Er/kB. For 87Rb, this is Tr ' 362 nK. In practice, the coldest tempera-
tures achieved are on the order of a few tens of recoils, i.e. a few µK for 87Rb.
For large MOTs such as employed in this thesis, the typical temperature is
even higher, on the order of a few tens of µK.

15Sometimes defined without the factor 2. The definition used in this thesis is Tr =
~2k2/mkB .
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Limit on the density and big magneto-optical traps

We have seen the temperature limits of the two laser cooling mechanisms we
are going to use in Chap. 2 as the first stage of cooling. But the important
parameters for Bose-Einstein condensation is not the temperature, but the
peak phase-space density D = n0λ

3
dB introduced in Sec. 1.1.2. The natural

question arising is thus: “What limits the density of MOTs?”.
The two dominant effects which must be considered are:

1. the “attenuation force” FA [93] resulting from the depletion of the beams
by the cloud. This cannot be neglected when the optical thickness b(δ)
is not � 1,

2. the repulsive force FR induced by emission and reabsorption of photons
by different atoms of the cloud (multiple scattering). It is negligible
when only single scattering events are likely to happen, namely when
b(δ)� 1.

The attenuation force is given by [94]

∇ · FA = −6σ2
LnI∞/c, (1.96)

while the repulsive force for two atoms separated by a distance r is

|FR| =
σRσLnI

4πcr2 . (1.97)

Here, σL is the absorption cross-section of atoms for the trapping light, I∞ is
the intensity outside the cloud (not attenuated yet), n the density and σR is
the absorption cross-section for the scattered light, which is different from σL
because of the change of polarization. Note that the repulsive force resembles
the well known gravitational and Coulomb interactions. This opens the possi-
bility to study gravitational or charged plasma physics with sufficiently large
MOTs [94–99].

A consequence of the interplay of these two forces with the trapping force
−kMr of the MOT is that the density is limited to [94]

nmax = ckM
2σL(σR − σL)I∞

. (1.98)

This simple model is in good agreement with the experiments (cf. Refs. [94,
100]) and can be used to measure the ratio σR/σL. When the MOT loads,
once the density has reached nmax, the MOT size keeps increasing as L ∼ N1/3

(i.e. constant density). This behavior is different from the one of an ideal gas
maintained at a constant temperature in a harmonic trap in which the density
would keep increasing when atoms are added (cf. Sec. 1.1.2).
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For MOTs with large number of atoms, the interplay between these forces
can also lead to MOT instabilities [94, 95, 101], which translate into large
fluctuations of the density.

Since we work with large MOTs, in which the atom number can reach
1011, and the optical density b0 ≡ b(δ = 0) = 300, we use larger detunings (i.e.
smaller σL) than the optimal value for Doppler cooling (δ ' −3.5 Γ instead of
−0.5 Γ). With our parameters (cf. Sec. 2.2.1), the typical limit on the density
is ∼ 1010 atoms/cm3.

1.4 Magnetic trapping and evaporative cooling
AMOT can simply be loaded from a room temperature vapor at a low pressure
of typically 10−12 bar. The phase-space density of such a vapor is n0λ

3
dB ∼

10−18. In Sec. 1.3 we have seen how laser cooling techniques suffer from
fundamental limits on both the attainable temperatures and densities. The
corresponding limit on the phase-space density is n0λ

3
dB . 10−4 which is 14

orders of magnitude higher than that of the initial gas, but still far from
n0λ

3
dB ∼ 1 required for Bose-Einstein condensation to occur16. For this reason,

the pioneers of Bose-Einstein condensates [102–107] had the idea to use laser
techniques only as a first stage to collect, pre-cool, and isolate the system from
the hot environment, followed by a second stage of trapping in a conservative
trap in which evaporative cooling could be performed. Evaporation implies
losing most of the atoms, but at the same time the temperature decreases,
and with an appropriate choice of the trap geometry, the density can increase.
Consequently, the phase-space density of the remaining ensemble can be made
to increase. In this section, we give an idea of how magnetic trapping and
evaporative cooling work.

1.4.1 Magnetic trapping

Neutral atoms with nonzero permanent magnetic moments µ can be trapped
by an inhomogeneous static magnetic field B(r) via the interaction with the
field

U(r) = −µ ·B(r). (1.99)

In the weak field limit (i.e. when the Larmor frequency νL = U(r)/h is much
smaller than the fine and hyperfine splittings [108]) this interaction leads to a
shift of the atomic energy levels linear in B known as the Zeeman shift:

U(r) = gFmFµB|B(r)|, (1.100)
16Note that this phase-space density is just 2 orders of magnitude larger than that of a

gas at room temperature and atmospheric pressure.
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where µB is the Bohr magneton (µB/h ' 1.4 MHz/G), gF is the Landé g-
factor of the hyperfine manifold characterized by the number F , and mF is
the quantum number associated to the projection Fz of the atomic angular
momentum F on the static field. The trapping potential will thus have the
form given by Eq. (1.100) if the atom stays in a given mF state. This occurs
when the Larmor frequency is much bigger than the rate of change of the
magnetic field axis: in this case the orientation of the atomic spin follows
adiabatically the field orientation.

In a vacuum, Maxwell’s equations do not allow |B| to have a local maxi-
mum (Wing’s theorem [109]). Thus, static magnetic traps can only be formed
by a field configuration exhibiting a local minimum of |B|. It follows that
only the Zeeman states for which the product gFmF > 0 can be trapped. An
important consequence is that neutral atoms cannot be trapped in their fun-
damental internal state (because the high-field-seeking state |F,−mF 〉 has a
lower energy than the trapped, weak-field-seeking |F,mF 〉). This means that
magnetically trapped neutral atoms are intrinsically in a metastable state.

In the ground state |52S1/2〉 of 87Rb, three such states can be found: |F =
1,mF = −1〉 (because g1 ' −1/2) and the two states |F = 2,mF = +1〉 and
|F = 2,mF = +2〉 (g2 ' +1/2).

Majorana losses

The first cause of losses in magnetic traps is Majorana spin flips17 that oc-
cur when the adiabaticity criterion discussed above is not fulfilled. This is
inevitable in quadrupole traps because the magnetic field has a zero in the
center. This motivated experimentalists to move to harmonic traps with a
non vanishing field minimum [103] or to prevent the atoms from reaching the
low-field region [107]. In a quadrupole, the dependence of the losses on the
temperature is not trivial, because although higher temperatures correspond
to higher velocities which allow spin flips to be more likely, the density is lower
about the field minimum than that at lower temperatures. Nevertheless, sim-
ple arguments show that the loss rate γflip scales as [103]

γflip ∝ T−2. (1.101)

Even if these losses are small at the beginning of the evaporation, they become
significant as the temperature decreases. This prevents condensation in static
quadrupole traps.
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Figure 1.6: Three traps with a finite depth εt and a different shape are rep-
resented (the vertical axis is the potential, the horizontal one the position).
In a box potential (a) the volume L3 is independent of T and the density
n0 = N/L3 scales as N . In a harmonic trap (b) L ∝

√
T and n0 ∝ NT−3/2.

In a linear trap (c) L ∝ T and n0 ∝ NT−3. These different scaling laws
illustrate the importance of the trap shape for evaporative cooling.

1.4.2 Forced radio-frequency evaporative cooling

Forced evaporative cooling is the truly magical step in BEC experiments,
because it permits to gain the 6 missing orders of magnitude18 in the phase-
space density. Surprisingly, except for the outcoupling mechanism (radio-
frequency induced spin flips) this process is completely classical.

Principle

The principle is in fact straightforward: the gas is held close to equilibrium in
a trap of finite depth19 εt. In the tails of the velocity distribution, some atoms
have an energy higher than this trap depth, and subsequently escape from the
trap. Their energy is thus removed from the cloud. Since it is higher than the
average energy per particle, this process induces a reduction of the average
energy per (remaining) particles, i.e. the cooling of the remaining cloud.

Scaling laws

Now let us suppose that the trap is a simple box potential with a volume L3

as in Fig. 1.6a, the walls being “reflecting” below a certain kinetic energy εt
and “transparent” above. The corresponding density N/L3 can only decrease
during the evaporation. Since T also decreases (i.e. λdB increases), it is not
clear yet how the phase-space density will evolve. On the contrary, if the trap

17Also called “Majorana flops” [104].
18Recall that D ∼ 10−4 at best in a MOT, but the imperfect transfer to a magnetic trap

generally reduces D.
19This statement seems paradoxical because strictly speaking, no equilibrium is possible

in a trap of finite depth. Nevertheless, when kBT � εt, there is a quasi-equilibrium [110],
and T is the effective temperature of this quasi-equilibrium.
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Parameter Scaling Scaling with N , T

Box Harmonic Linear

Width L 1 T 1/2 T

Velocity v T 1/2 T 1/2 T 1/2 T 1/2

Density n0 N/L3 N NT−3/2 NT−3

Collision rate γel n0v NT 1/2 NT−1 NT−5/2

Phase-space density D n0λ
3
dB NT−3/2 NT−3 NT−9/2

(α−1)max 3/2 3 9/2

Table 1.1: This table shows how the different parameters characterizing the
cloud scale with the number of atoms N and the temperature T . The three
traps considered are 3D box, harmonic, and linear potentials (as in Fig. 1.6 but
in 3D). The cloud is assumed to be at equilibrium, which is strictly speaking
not possible if the depth εt is finite. Nevertheless, it is a good approximation
when η = εt/kBT � 1, T being the effective temperature.

has a different shape, say it is harmonic (Fig. 1.6b) or linear (U(r) ∝ |r|,
Fig. 1.6c) we have seen that the cloud width is related to the temperature
[cf. Eq. (1.33)]. Consequently, the density can in principle increase during the
evaporation. It is thus important to understand how the parameters describing
the cloud scale with N and T 20. This is summarized in Tab. 1.1 for the three
traps of Fig. 1.6.

In the (hypothetical) absence of other losses than the “evaporated atoms”,
the considerations of Tab. 1.1 are sufficient to implement efficient evaporative
cooling. Indeed, the only thing needed is to increase phase-space density. From
the scaling laws of Tab. 1.1, it is seen that starting from a cloud at equilibrium
with N atoms and a temperature T , a small loss of dN atoms leading to a new
equilibrium with a reduction of the temperature by dT will correspond to an
increase of D if d logD/d log T < 0 (notice that d log T < 0). From the scaling
of D with respect to N and T (Tab. 1.1), one can express this condition as

d logN
d log T < (α−1)max (1.102)

where (α−1)max depends on the trap shape and is given in Tab. 1.1 (we use
the same notation as Refs. [41] and [111]: α ≡ d log T/d logN).

The ingredients of evaporative cooling are thus the following:

1. a way to selectively remove the most energetic atoms,
20We express them with N and T and not (N,D), (D,T ), (n0, T ), etc. because these are

the quantities that we can directly measure.
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2. enough collisions for the cloud to reach a new equilibrium after some
atoms have been removed.

We will see that other loss mechanisms also play an important role.

Radio-frequency outcoupling

In magnetic traps, one can take advantage of the Zeeman substructure to
selectively remove the most energetic atoms. Indeed the Zeeman shift be-
tween adjacent Zeeman sublevels of a given hyperfine manifold F was given
in Sec. 1.4.1 and is ∆E(r) = gFµB|B(r)|. With the magnetic fields needed to
trap the atoms, this corresponds to radio-frequencies (rf) νrf = ∆E/h in the
range 1 ≤ νrf ≤ 50 MHz. If one shines such rf on the magnetically trapped
atoms, on the surface defined by

S(νrf) = {r such that ∆E(r) = hνrf}, (1.103)

the rf is resonant with the transitions |F,mF 〉 → |F,m′F = mF ± 1〉. For
instance, if the atoms are trapped in |F = 2,mF = +2〉, they can emit (stimu-
lated emmission) a resonant rf photon and be transfered to the |F = 2,mF =
+1〉 state. For magnetic traps as discussed in Sec. 1.4.1 the surface S is exactly
an isopotential surface (in the absence of gravity) and looks like a “bubble”
surrounding the trapped atoms. Only the atoms with an energy higher than
mFhνrf can cross this surface and be transfered to another Zeeman substate.
Strictly speaking the selection is spatial and not energetic, but still, only a
subset of the most energetic atoms can reach S and be evaporated. This pro-
vides a way to selectively remove the atoms which have more energy than the
average energy per particle.

The resonance condition mentioned above is actually not sufficient because
if the oscillating rf field has the same orientation as the static magnetic field,
then it cannot drive the transitionsmF → mF±1. In Ioffe-Pritchard magnetic
traps, for large distances from the center, the field is oriented in all directions
and evaporation occurs preferentially around an “equator”. On the contrary,
close from the potential minimum, the magnetic field is preferentially oriented
along the direction of the field at the trap minimum. Thus the rf radiation
should have its magnetic field generated perpendicular to this direction to be
efficient at all energies.

Collisions and losses

Collisions are needed for the cloud to reach a new equilibrium. The relevant
corresponding timescale for equilibrium is thus τ = 1/γel, where γel is the
elastic collision rate. In practice, magnetic traps exhibit losses, mainly due
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to collisions with the background gas. The number of magnetically trapped
atoms thus decreases exponentially with a time constant τtrap. Since these
losses are not energy dependent, they do not contribute to cooling. They tend
to decrease the phase-space density D (because D ∝ N). Thus there is a
competition between the “good” (elastic) collisions and the “bad” (inelastic)
collisions with the background gas. Evaporative cooling will be all the more
efficient if there are a lot of good collisions for one bad collision, i.e. if the ratio
τtrap/τ � 1. This is the difficult criterion to fulfill because it requires a lot
of atoms to be trapped in a place where the vacuum is good (cf. Sec. 2.2 for
values), and a sufficiently large cross-section for elastic collisions.

Runaway evaporation

One talks about runaway evaporation when both the phase-space density and
the collision rate increase during the evaporation. From Tab. 1.1, one sees that
this is not possible in a box potential, but it is with other traps such as linear or
harmonic traps. It is also important to note that, since γel ∝ DT 2 ∝ NT 2−α−1

(cf. Tab. 1.1), the condition for runaway evaporation is

d logN
d log T ≤ (α−1)max − 2, (1.104)

which is more constraining than the criterion (1.102) for an increasing phase-
space density. This shows that the elastic collision rate can remain constant
during evaporation while the phase-space density can increase by orders of
magnitude.

Kinetics and forced evaporative cooling

Because evaporation relies on the exponential wings of the velocity distribu-
tion, the rate of evaporation depends exponentially on the truncation parame-
ter η = εt/kBT (εt is the trap depth). It can be shown that if η is not too close
to 1 (η ∼ 10), the velocity distribution inside the trap is well approximated
by a truncated Maxwell-Boltzmann distribution [110]. The evaporation rate
has a complex expression proportional to the elastic collision rate and to e−η.
Evaporation with a constant depth εt is thus slower and slower as the tem-
perature decreases. Since the inelastic losses have a constant rate 1/τtrap, at
some point the phase-space density starts to decrease. Moreover, even in the
absence of inelastic losses, the time to reach BEC would have to be exponen-
tially long. Evaporation must thus be forced, i.e. the trap depth εt is decreased
as the temperature decreases, keeping η more or less constant.

The full dynamics of forced evaporative cooling is treated in Ref. [111]. A
set of coupled differential equations is derived for the evolution of the internal
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energy, the number of atoms and the effective temperature of the gas. This
analysis relies on the strong assumption that the evaporation process is en-
ergy dependent and not spatially dependent, i.e. that any atom reaching an
energy εt is instantaneously lost. This is obviously not the case for the out-
coupling mechanism discusses above, because atoms colliding near the trap
center can gain high energies without being removed. Despite the fact that
this assumption is too strong to predict the correct times needed for evapora-
tion21, the model is instructive. It greatly simplifies when η is supposed to be
constant, since most of the parameters such as the density, the energy lost per
particle, etc., have a nonlinear dependence on η through uneasy incomplete
gamma functions. In this case, quantitative criteria on the ratio τtrap/τ can
be derived, and an optimal value of η can be determined, which is typically
5 < η < 10.

Evaporative cooling in practice

In practice, the considerations of Tab. 1.1 are sufficient in the laboratory. The
goal is to have D increase while keeping a significant elastic collision rate. At
the same time, the peak density should not be too large in order to prevent
losses such as three-body losses. The upper bound on n0 is of course strongly
dependent on the atom considered (its collisional properties). For 87Rb, three-
body losses become non-negligible for densities22 n0 ∼ 1014 atoms/cm3.

The optimization of the rf ramps (frequency and amplitude) can thus be
performed step by step by maximizing D under the constraint that the density
stays below a certain threshold, imposed by three-body losses. As noted above,
when the trap is static23, maximizing D is the same as maximizing the elastic
collision rate γel while decreasing both N and T .

1.5 Conclusion
This chapter has given a minimal “toolbox” to attack the problem of designing
a setup for the Bose-Einstein condensation of a neutral gas. Elements of theory
concerning trapped classical and degenerate Bose gases have been recalled,

21One can readily check that this model predicts durations smaller than a fraction of
second for situations where experimentalists report much longer times, on the order of a few
seconds or even a minute.

22For instance, if the lifetime in the trap is 60 s, the rate of three-body losses equals the
rate of background gas induced losses when n0 ' 6.5× 1013 atoms/cm3 (cf. Ref. [112]).

23This assumption is implicit in this discussion, but is not satisfied for optical traps, which
have to be decompressed to reduce εt [for a single Gaussian beam, the potential must be
scaled by a factor εt(t)/εt(0), consequently reducing the trap oscillation frequency by the
square root of this factor (harmonic approximation)]. In this case, one should include the
scaling with the trap geometry in Tab. 1.1.
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with a focus on the ones providing practical experimental methods. The main
experimental techniques used in this thesis, namely the laser manipulation
of the cloud, magnetic trapping, and evaporative cooling, have been briefly
presented. The reasons why each of these various techniques is not sufficient,
and why they are needed together has been underlined.

Many important aspects, not investigated within the duration of this the-
sis, have been omitted. For instance, Bose-Einstein condensates exhibit amaz-
ing coherence properties arising from the fact that all the atoms are described
by the same wave function. Bloch et al. [113] showed experimentally how
first order coherence emerges when the phase transition is crossed. They also
demonstrated that this coherence extends over the whole BEC. Higher order
correlations have not been discussed either, for example, the density-density
correlation function of BECs is different from that of a non-degenerate gas.
This was investigated e.g. by Schellekens et al. [114]. Neither the thermody-
namical properties of Bose gases, nor the fact that Bose-Einstein condensation
is a phase transition have been discussed. The question of the dynamics of the
formation of the BEC when the phase transition is crossed has also attracted
attention. It was first predicted to be so slow that BECs would never have
time to form [115, 116], before Stoof [117] showed that this time is actually
small. Experiments confirmed this prediction. Recently, Weiler et al. [118]
observed the spontaneous formation of vortices during condensation. Effects
that cannot be understood with the mean-field theory are also subjects of
intense studies.

The following chapter presents the construction of an experiment for the
condensation of 87Rb. Both the design of the apparatus and the achievement
of Bose-Einstein condensation are guided by the contents of this first chapter.





Chapter 2

Bose-Einstein condensation of
Rubidium-87

This chapter details the key points involved in the production of Bose-Einstein
condensates (BECs). It is divided in two parts: the first part gives an overview
of the apparatus which was (partially) constructed during this thesis, with
technical details. Its main elements are the vacuum system, in which the
physics takes place, the lasers used for the first stage of cooling, for imaging,
and to apply various forces on the atoms, and the magnetic trap in which
the BECs are produced. Some details on the radio-frequency source used for
evaporative cooling are also given.

The second part is dedicated to the various steps that bring a very dilute
gas of Rubidium at room temperature (density n0 ∼ 107 atoms/cm3) to a
87Rb BEC containing 5× 105 atoms at a peak density of 5× 1014 atoms/cm3.
This involves laser cooling, optical pumping, magnetic trapping, and radio-
frequency induced evaporative cooling in the magnetic trap.

2.1 The experimental setup

The first atomic BECs where produced in 1995 by three American groups:
Anderson et al. [105] first condensed 87Rb, then Bradley et al. [106] condensed
7Li, and Davis et al. [107] condensed 23Na. The three setups had a lot in com-
mon: they all used a first stage of laser cooling followed by magnetic trapping
and radio-frequency or microwave evaporative cooling in the magnetic trap.
They used three different chemical elements, which were all alkali metals. This
is because alkali metals have a broad cycling transition, making them particu-
larly suitable to laser cooling. There were important differences though. First,
the magnetic trap of Anderson et al. [105] was not static (time-averaged, or-
biting potential [103]), Davis et al. [107] used a hybrid trap combining a static
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magnetic field and a repulsive dipole laser beam (a “plug”), while Bradley
et al. [106] used permanent magnets in a Ioffe-Pritchard configuration [102]
(instead of electro-magnets for the others). This latter strategy proved to be
inconvenient because the time of flight technique could not be used. The meth-
ods to prepare the cloud for evaporative cooling were also distinct: two used
a Zeeman slower [119] to load a magneto-optical trap (MOT), while Anderson
et al. [105] directly loaded the MOT from the room temperature, low pressure
vapor (vapor-loaded MOT, first realized by Monroe et al. [120]). Because of
the low loss rate needed to evaporate, they had to work at very low pressure,
and consequently the loading time of the MOT had to be long (5 minutes).

Nowadays, most of the existing Bose-Einstein condensation apparatus in
the world are refinements of these original setups1. To date only two groups
were able to produce atomic BECs with other strategies, i.e. without a first
stage of laser cooling [121, 122], and in both cases they also used evaporative
cooling in a magnetic trap in the end.

Nevertheless, since 1995, experimental techniques have been improved, and
new techniques have emerged. The improvements are of various aspects: re-
duction of the duty cycle (which makes a real difference in the laboratory for
practical purposes), condensation of many new species [121, 123–132], cool-
ing of fermions to degeneracy (see e.g. Refs. [133–135]), ability to load the
BECs into various trap geometries to explore the analogy with laser physics
[113, 136–138], or more recently, to simulate condensed-matter physics [2–
5, 7, 43, 69, 139–145].

Some remarkable evolutions of the experimental techniques are the devel-
opment of a variety of magnetic traps [146–151] and the possibility to dress
them with a radio-frequency field [152–154], the loading of BECs in optical
traps of various geometries [155], the production of BECs with all-optical tech-
niques [156] (the magnetic trap is replaced by a dipole force trap), or the use
of novel cooling schemes [157]. An important technique which has become
commonly used in the past few years is the possibility of changing the scatter-
ing length through Feshbach resonances (see e.g. Refs. [158–160]). This allows
one to tune the interactions between the atoms from the strongly interacting
regime to the weakly, or even, non-interacting regime, the interaction being
either attractive or repulsive. The existence and the properties of Feshbach
resonances depends on the species considered and, unfortunately, no conve-
nient resonance has been found in 87Rb so far.

Due to the lack of experience of the INLN group with BECs, the choice
was made to use 87Rb, by far the most documented species for Bose-Einstein
condensation. This sections describes the experimental setup constructed dur-
ing this thesis, and is followed by one that details the experimental sequence

1This is also true for experiments on degenerate Fermi gases.
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used to produce BECs.
When I arrived in the group the two MOTs were operating. I had to de-

velop the magnetic trap and its control electronics, to set up the hardware
and develop the softwares for the computer control of the experiment and the
imaging. With our team of three, it took us 11 months to produce our first
BEC. The various sources of instabilities which often affect such complex ex-
periments were then continuously identified and fixed. The experiment is now
very stable and fully operational to study the physics. This section includes
technical details aimed at giving other research groups elements to guide them
in the production of BECs, in the manner of Ref. [161] which we found useful
as a basis. Some are reported in App. B which contains the list of the key
elements of the experiment.

2.1.1 The vacuum system

To take advantage of the group’s experience with big MOTs, it was decided
to use a double MOT setup, similar to the one introduced by Myatt et al.
[162] (but without magnetic guiding). This is a way to bring together a fast
loading of a MOT and a good vacuum needed for evaporative cooling. A first
vapor-loaded MOT (MOT1) is produced in a chamber with a relatively high
Rubidium pressure (i.e. too high to perform evaporative cooling) P1 ∼ 10−9

Torr (1 Torr ∼ 1 mbar ∼ 100 Pa). The captured atoms are then transfered to a
second MOT (MOT2) located in another chamber where the pressure is lower,
typically P2 ∼ 10−11 Torr, which is sufficient to ensure long lifetimes of the
atomic sample, on the order of the minute. MOT1 is a 3D MOT. This choice
was made to still be able to explore the interesting physics of large MOTs,
which is the historical research subject of the group (long range interactions
in MOTs, instabilities, light propagation and localization in MOTs, cf. e.g.
Refs. [95–97, 100, 163–173]).

The two chambers are connected by a thin long tube. In this very low
pressure regime, the typical time needed for the pressure to equilibrate be-
tween both parts is long, typically tens of minutes or hours, and since the two
chambers are independently pumped, the system remains out of equilibrium.
When the geometry of the tube and the pumping rates are well chosen, the
steady state corresponds to the above mentioned pressure imbalance. With a
laser beam going through the two MOTs and the differential pumping tube,
the atoms of MOT1 are pushed and recollected by MOT2. Once MOT2 is
loaded with enough atoms, all the remaining steps are performed in the sec-
ond chamber. The design is sketched in Fig. 2.1.
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Figure 2.1: Schematic representation of the apparatus with the two magneto-
optical trap chambers, the differential pumping tube, and the magnetic trap
coils. The red arrows represent collimated laser beams.

Steel chamber

The upper chamber is made of ultra-high vacuum compatible 316L stain-
less steel and was assembled by the company Meca2000. A precise technical
drawing of this part is given in App. A. The viewports have a broadband anti-
reflecting coating on both sides, reducing the reflection below 1% on typically
100 nm around the specified wavelegth (780 nm). Six 100 CF viewports are
used for the large MOT1 beams2, and three 38 CF viewports are used for
the vertical pushing beam and two additionnal ports for imaging and probe
beams. One of the ports is connected to a 27 L/s ion pump, a valve separating
the chamber from a copper tube containing solid Rubidium, and a valve to
connect the turbo pump used during the bake-out procedure. There is also a
bypass tube, generally closed by a valve, connecting the upper chamber to the
lower one through the lower ion pump. This is opened only during bake-out
to equally pump the two chambers.

2The references of the key components of the setup are listed in App. B.
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Figure 2.2: Photographs of the two sides of the vacuum system before any
optical elements were placed.

Hellma glass cell

The lower chamber is a Vycor glass cell constructed by the company Hellma.
Vycor is a glass with high temperature and thermal shock resistance, which
can be baked without risks of breaking. It has an anti-reflecting coating on
the outer surface (R < 0.5%) but not on the inside. The lower part of the cell,
in which the MOT and BEC are created, is made of 3 mm thick walls and
has an outer square section of 30 mm. The choice of this size is the result of
a compromise: on the one hand, we need enough space for the MOT beams,
additionnal optical access for other elements such as dipole trap beams or
probe beams, on the other hand, the magnetic trap coils need to be close to
the atoms if we want them to be of reasonable sizes and carry low currents.
For simplicity, we chose to have no elements (such as coils) inside the vacuum
chamber. A technical drawing of the cell is given in App. A.

Differential pumping

The lower part of the upper chamber is closed by a welded piece of metal
holding the differential pumping tube (length 10 cm, inner diameter 5 mm).
This tube has a low conductance for gases which allow the two chambers to
have different pressures when pumped by the two ion pumps. A pipe connected
to a 40 L/s ion pump and a Titanium sublimation pump (TSP) is connected
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below this separation, and the Hellma cell is connected below by a 35 CF
flange.

For pressures below typically 10−3 Torr, the mean free path for molecular
(atomic) collisions is bigger than the size of the apparatus, and the gas is in the
so called molecular flow regime. The conductance of the differential pumping
tube is then defined by [174]

U = Q

P1 − P2
, (2.1)

where Q is the gas flow, homogeneous to a power. The pumping speed S
is defined by the same equation: S = Q/P , where P is the pressure of the
pumped region. Pumping speeds and conductances are homogeneous to a
volume per unit time and are often given in L/s. For a cylindrical tube with
a radius r and a length l� r, the conductance is [174]

U = 8π
3
r3

l

√
kBT

2πm, (2.2)

where m is the molecular mass and T the temperature. For instance, for
Nitrogen gas, whose pumping speed is given by the pump constructors, and
for our tube, we obtain U ' 0.2 L/s at room temperature. The pressure
difference is given by the fact that, in a stationary regime, the flow through
the second pump is the same as the flow through the tube. This yields

P1
P2
' S2
U
. (2.3)

For our lower pump, S2 ' 45 L/s (pressure between 10−11 and 10−9 Torr) and
the corresponding differential pumping is thus P1/P2 ' 200. We will keep in
mind that this tube leads to a drop of the pressure by two orders of magnitude.

Bake-out

When I arrived in the group we soon realized that the lower ion pump was
dysfunctional. The pressure was thus much too high in the glass cell. The
vacuum had to be broken and the experiment baked again (most of the optical
elements had to be removed for that). The whole vacuum system was baked
for one week at 250◦C with a turbo pump connected to both chambers, while
the ion pumps were off. When the turbo was connected, the inner pressure and
gas composition could be monitored with a mass spectrometer. The turbo was
then isolated from the chambers by a valve, the ion pumps were switched on
and the TSP was used. When it was first switched on, the pressure increased
dramatically, as indicated by the current increase of the ion pump, probably
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due to the presence of dirt on the Titanium filament, which was cold during
bake-out (it would have been better to heat them during bake-out to avoid
this problem). After repeatedly switching the TSP on and off to clean the
filament, and waiting for the dirt to be pumped, we could use it for 70 s with
a moderate increase of the pressure. The use of the TSP clearly reduced the
background gas pressure, as indicated by a subsequent increase of the lifetime
of magnetically trapped atoms from a few seconds to more than 30 s. Since
this initial use of the TSP, we never had to switch it on again.

Pressure

There is no pressure gauge on the apparatus, but the pressure (or at least the
pressure variations) can be inferred from the evolution of the currents of the ion
pumps and, most importantly, from the lifetime of the magnetically trapped
samples. Another way to have an insight on the pressure, or to diagnose
dysfunctional pumps is to look at how the MOTs load. Indeed the loading
of a MOT from a room-temperature vapor can be simply modeled by a rate
equation for the number N of trapped atoms [120]

dN

dt
= R−N/τ, (2.4)

where R is the loading rate and depends on the MOT parameters (detuning,
intensity, alignment, etc.), the gas temperature, and is proportional to the
Rubidium pressure PRb, and τ is the loading time, which depends on both
PRb and the background gas pressure Pbg. The steady-state number of atoms
is obviously N∞ = τR. When Pbg � PRb, the loss rate from the trap 1/τ
is also proportional to PRb, and N∞ is thus independent of PRb. On the
contrary, when Pbg cannot be neglected, N∞ increases with an increasing PRb.
In practice, these considerations were used to detect a dysfunctional pump by
monitoring both τ and N∞ while switching the pumps on and off, or closing
and opening the Rubidium valve (i.e. changing PRb). Comparison of τ and
N∞ before and after using the TSP also gave some insight on the efficiency of
the process.

We have seen that the pressure in the lower chamber is at least 100 times
smaller than that in the upper one. From the MOT loading considerations, we
know that the partial pressures of gases other than Rubidium are negligible
(because the steady state number of atoms N∞ is independent of PRb). At
room temperature (20◦C), the Rubidium contained in the chamber is mainly
solid. At equilibrium with the solid phase, the vapor pressure is on the or-
der of 10−7 Torr [108], which is too high. The upper Rubidium pressure is
thus adjusted by measuring the loading time of MOT1. If it is too long, the
Rubidium valve is opened, if it is too short, the valve is closed. After a few
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days of adjustment, the MOT loading time converges to a value which allies
sufficiently fast loading of MOT1, while the pressure in the glass cell is kept
low enough.

2.1.2 The lasers

At least two frequencies are needed to laser cool 87Rb. The first one is slightly
red-detuned from the |52S1/2, F = 2〉 → |52P3/2, F

′ = 3〉 cycling transition
(cooling light), whereas the second one is tuned to the |52S1/2, F = 1〉 →
|52P3/2, F

′ = 2〉 transition (repumping light) and prevents atoms from ac-
cumulating in the lowest energy state |52S1/2, F = 1〉 which is dark to the
cooling light. These two transitions are part of the 780 nm D2 line, and have
a frequency difference of 6.567 GHz (mainly due to the hyperfine splitting of
the ground state ∆HFS/2π = 6.835 GHz). Such a difference is out of reach
of acousto-optic modulators but could be obtained with electro-optic modu-
lators [175] or by direct current modulation. For simplicity, we employ two
separate diodes described in the following.

The DFB diode lasers

The light is thus provided by two distributed feedback (DFB) diode lasers. The
gain region of DFBs is periodically structured as a Bragg mirror, providing
feedback for a given frequency. This results in a narrow, monomode laser.
The diodes are specified for 780 nm, and have a typical linewidth of 2 MHz,
which is smaller but comparable to the linewidth of the D2 line of 87Rb,
Γ/2π = 6.067 MHz.

Many groups use external cavity diode lasers (ECDLs, cf. e.g. Ref. [176]
and the end of this section). Compared to them, DFBs have the advantage of
being much more simple to build and to use (no grating and almost no settings
needed, this is obvious from the comparison of Figs. 2.3 and 2.7). Contrary
to ECDLs, DFBs do not exhibit mode hopping. Their main drawbacks are
their great sensitivity to feedback, which is handled by a proper use of optical
isolators, but more importantly, their linewidth is larger (typically 2 MHz for
the ones we use, compared to 0.1 MHz for ECDLs). The consequences are
discussed in more details in Sec. 2.1.7.

The output frequency can be tuned by playing on both the tempera-
ture and the current. The typical frequency variations are 1.5 MHz/µA and
30 GHz/◦C. In order to maintain the laser frequency on the atomic transitions,
both the temperatures and the current have to be precisely controlled. For
this purpose, the diodes are mounted in homemade holders shown in Fig. 2.3.
The setup is very simple: the diode is held in a small mounting containing
a collimation lens, which is placed in a metal holder. The temperature of
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Figure 2.3: Photograph of a DFB diode laser. Two such lasers are used for
the production of the BEC and imaging.

the whole thing is measured by a thermocouple positioned close to the diode,
and controlled by a Peltier element which is under the mounting. The two
lasers typically output 75 mW when maintained around room temperature
and operating currents of 130 mA.

Saturated absorption, temperature and frequency stabilization

The temperature is servo-controlled to a constant value with a proportional-
integral-derivative (PID) controller. The error signal is the subtraction of a
constant set point from the output of the thermocouple, and the feedback is
provided by heating or cooling the diode with the Peltier element.

The frequency stabilization is realized by modulating directly the diode’s
current (typical frequency 20 kHz, amplitude in the µA range) and using
a lock-in amplifier taking the saturated absorption photodiode signal as an
input, to obtain an error signal proportional to the derivative of the curve
absorption vs current (the curves of Fig. 2.4). This error signal is maintained
to 0 by a PID controller acting on the diode’s current. This system can thus
lock the laser on any sufficiently intense absorption line. Figure 2.4 shows the
absorption signals used to lock the two lasers.

These techniques have been commonly used for decades, and the circuits
we use, which are made by the laboratory’s electronics engineers, are not given
in this thesis. For instance Ref. [177, p. 46] contains a basic explanation of
saturated absorption signals, and more information about the use of diode
lasers for atomic physics can be found in Refs. [176, 178] (including electronic
circuits). Reference [179] also contains detailed electronic circuits of PID con-
trollers and interesting considerations on diode lasers stabilization.
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Figure 2.4: Saturated absorption signals used to lock the two lasers. In both
cases the six lines corresponding to the three transitions F → F ′ = F , F →
F ′ = F ± 1 and the three crossovers are visible. DFB1 and 2 are respectively
locked on the F = 2 → (F ′ = 2, F ′ = 3) and F = 1 → (F ′ = 1, F ′ = 2)
crossovers of 87Rb.

Required frequencies

In addition to the cooling and repumping light, many frequencies are needed
throughout the experimental cycle: a detuned pushing beam is needed to
transfer the atoms from MOT1 to MOT2, optical pumping between the Zee-
man states of the |52S1/2, F = 2〉 → |52P3/2, F

′ = 2〉 transition requires a
pump and a repumper, and a beam is needed to image the atoms. All the
laser frequencies corresponding to these beams, together with the structure of
the D2 line of 87Rb are represented in Fig. 2.5. They are obtained by frequency
shifting the light of the two DFBs with AOMs, as shown in Fig. 2.6.

As indicated in Fig. 2.4, the lasers (DFB1 and DFB2) are respectively
locked on the F = 2 → (F ′ = 2, F ′ = 3) and F = 1 → (F ′ = 1, F ′ = 2)
crossovers of 87Rb.

Laser setup

A schematic of the laser setup used to produce all these frequencies is given
in Fig. 2.6. The power needed for the two MOTs is obtained by injecting both
the cooling and repumping light into a single 1.4 W tapered amplifier (TA).
The beam is then split in two, one for each MOT.

The laser system sketched in Fig. 2.6 is on the same optical table as the
vacuum system. To prevent stray light from illuminating the atoms, a black
cardboard box covers all the optical elements. Obviously most of them are
not shown in Fig. 2.6 (mirrors, lenses, etc.). All the beams are finally injected
into single-mode polarization-maintaining fibers. Because magnetic trapping
is very sensitive to resonant stray light (which induces losses of atoms), the
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Figure 2.5: Rubidium-87 D2 line structure and laser frequencies used on the
BEC setup. All the frequencies are produced from two DFB diode lasers
locked on the indicated crossovers. The detunings with respect to the closest
lines (defined as ωlaser − ωline) are given in units of the natural linewidth
Γ = 2π × 6.067× 106 rad/s.

fibers input couplers are preceded by telescopes with homemade mechanical
shutters positioned at the focal points. This allows complete extinction of the
light. The shutters typically have delays around 10 ms, which are calibrated
and compensated in the control program, and jitters of 0.1 to 0.5 ms. Precise
and fast switching is thus provided by the single pass AOMs, while the shutters
provide a complete extinction (with a delay).

For each MOT the light is delivered by six polarization-maintaining optical
fibers, ensuring a good long-term stability of the alignment. We used to split
the beam into six with five half-wave plates followed by cubes. The resulting
six beams were then injected into six independent fibers. This setup worked
well and was used for almost all the data presented in this thesis, but it
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Figure 2.6: Schematic representation of the laser system. Acousto-optic modu-
lators (AOMs) are used in double pass (dp) or single pass (sp) configuration to
control the laser frequencies and amplitudes. The frequency shifts, indicated
above, are given in MHz. The order 0 of two AOMs in double pass configu-
ration are “recycled” for the Zeeman optical pumping beams. A single 1.4 W
tapered amplifier (TA) is used to provide enough power for the two MOTs.
All the beams are finally injected into single-mode polarization maintaining
fibers (FI), or fibered splitters.

was quite sensitive to day-to-day fluctuations (probably room temperature
fluctuations) and had to be checked, and the power balanced, everyday (we
had one photodiode per fiber output to check the power balance). Only two
mirrors positioned before the splitting of the beam into six were used to inject
the six fibers, and it was sometimes tricky to get the full power back after it
had dropped. The total coupling efficiency of the splitting was between 50 and
60% at best, mainly because of the poor output beam profile of the TA and
also because of the limited degrees of freedom we had to inject the six fibers.

An important improvement of the experiment consisted of replacing these
homemade splitters by commercial one-to-six fibered splitters. Since only
one input fiber has to be injected, it is much easier to set. The day-to-day
stability is also better. A drawback is that the balance cannot be adjusted
(the difference between the two most imbalanced beams is 20%).
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Figure 2.7: Photograph of an ECDL used for the blue detuned dipole trap.
The temperature of the whole copper part is regulated by a Peltier element
(not visible).

Finally, the outputs of the MOT fibers are simply positioned at the focal
points of collimation lenses. For MOT1, they have a diameter of 10 cm and fo-
cal length of 30 cm. The collimated beams have a resulting waist (1/e2 radius)
of 2.7 cm inside the steel chamber. Because of this large size, the quarter-wave
plates of this MOT are positioned directly after the fibers outputs, where the
beams are not collimated. More details on the MOTs are given in Sec. 2.2.1.

Blue-detuned laser for dipole potentials

The external cavity diode laser (ECDL) shown in Fig. 2.7 was constructed
and used for dipole potential experiments. The output surface of the diode is
coated to reduce the reflectivity so that the diode itself does not behave as a
cavity. The laser cavity is formed by the diode’s back face and the diffraction
grating, used in Littrow configuration. This means that one of the first-order
diffracted beams is sent back to the chip, while the zeroth-order reflected
beam is the output beam. In order to stabilize such lasers, the temperature
is regulated (diode and cavity) with a single Peltier element. For frequency
stabilization, a fast servo loop acts on the current while a slower one acts on
the grating’s angle. In practice, we use this ECDL 15 nm away in the blue
of the D2 transition (i.e. the detuning is δ/2π ∼ +103 GHz) and since the
frequency variations are less than 1 GHz, there is no need to lock this laser
when we use it as a dipole trap (only the temperature is stabilized).

By changing the grating angle with the adjustment screw, the laser can
be tuned as far as 20 nm away from the maximum of the gain curve with
still a reasonable output power. We use a diode specified for 780 nm which
is pulled to 765 nm. Stabilized around room temperature, the laser has an
output power of 26 mW for a current of 68 mA. It is then amplified by a TA
specified for 770 nm. It can output up to 1.5 W when injected with 24 mW.
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In addition to the intense narrow peak at 765 nm, the output beam spec-
trum also contains a broad, much less intense component reflecting the gain
curve of the TA diode (pedestal). It typically contains 1% of the total power
with a FWHM of ∼ 15 nm. It thus contains a non-negligible quantity of
resonant light (780 nm) which can have dramatic effects on the atoms when
they are trapped in the dipole potential, since absorption/spontaneous emis-
sion cycles induce heating and losses from the trap. We use an interferometric
band-stop filter to block this resonant light. The wavelengths between 767
and 800 nm are reflected (optical density > 6) while the rest of the spectrum
is well transmitted (T > 93% between 400 and 1600 nm). The edges at 767
and 800 nm are sharp (the transmission drops from 90% to 10% on ∼ 1 nm).

2.1.3 The magnetic trap

As we have seen in Sec. 1.4, magnetic trapping is an essential step in the
preparation of BECs. We have built the trap ourselves, with the help of the
group mechanical engineer Jean-Charles Bery. The key features of a magnetic
trap are its depth, its volume and the fact that its minimum has a non-
vanishing magnetic field. The trap shape (harmonic, linear, etc.) also plays an
important role during evaporative cooling, as presented in Sec. 1.4.2. Another
important practical consideration is the optical access left by the trap coils to
add other laser beams for imaging, optical trapping and so on.

Requirements

The trap was designed for 87Rb atoms in the |52S1/2, F = 2,mF = +2〉 states.
Two other levels can be trapped magnetically (|F = 2,mF = +1〉 and |F =
1,mF = −1〉) but their Zeeman shift is twice smaller, and thus, twice higher
fields would be required to obtain the same potential. For this state, the
Zeeman shift is 1 Bohr magneton µB/h = 1.4 MHz/G ' 70 µK/G × (kB/h)
(1 G = 10−4 T). In order to hold the atoms against gravity, the vertical
magnetic field gradient must be greater than mg/µ = 15.3 G/cm. Since
the atoms are first cooled in a MOT (T ∼ 100 µK), a typical trap depth of
1 mK is sufficient to trap the atoms without “spontaneous” evaporation, which
corresponds to a magnetic depth of ∼ 15 G. Moreover, the minimal field value
must not be too small (∼ 1 G) in order to prevent non-adiabatic spin flips [103].
In practice, most of the macroscopic magnetic traps used for neutral atoms
have higher peak values than those imposed by the requirements mentioned
above (on the order of 500 G). This is because the trap volume must be small
in order to obtain the large densities required for evaporative cooling (that is
high gradients or trap frequencies).
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The QUIC trap

The trap we have built is a quadrupole-Ioffe-configuration trap (QUIC), very
similar to the original version introduced by Esslinger et al. [149]. It is com-
posed of two coils in anti-Helmholtz configuration (quadrupole coils) which
generate a spherical quadrupole field, plus a smaller additional coil (the Ioffe
coil) which almost cancels the quadrupole field close to its tip, to produce a
non-zero field minimum. Because the coils are made of a lot of turns of wire
and are positioned quite close to each other, it requires a low current (less
than 30 A). The consumed electrical power is low (below 1 kW), and the asso-
ciated thermal problems are reduced. The price to pay for using lots of turns
is the high trap inductance (on the order of 0.1 mH) which complicates fast
switching.

The main idea of this trap is to first use the spherical quadrupole to cap-
ture the atoms of the MOT (at this point there is no current in the Ioffe coil),
and then to convert this quadrupole into a Ioffe-Pritchard-like trap (harmonic
with non-vanishing magnetic minimum) by ramping the current in the Ioffe
coil. After capturing the cloud in the quadrupole, the temperatures is too high
for non-adiabatic spin flips to be consequent, and the corresponding losses are
negligible. Because the final Ioffe-Pritchard trap has a non-vanishing min-
imum, it is appropriate for evaporative cooling. Since the atoms are first
trapped in a quadrupole, the same coils can be used before for the MOT, and
the two traps are automatically superimposed, which simplifies the transfer.
Figure 2.8 shows the arrangement of the three coils and the corresponding
magnetic field when the Ioffe coil current is gradually increased.

Design and construction

A top view of the three coils and their position with respect to the glass cell is
shown in Fig. 2.9. Each quadrupole coil is made up of 180 turns of 1.7 mm thick
enameled copper wire, wound and glued on water cooled copper mountings.
The glue is an aluminum-filled epoxy that is highly heat conducting to improve
heat transport to the water-cooled mountings. The Ioffe coil is made up of
the same materials, and is conical to allow access to the MOT beams. Its
176 turns create a field opposed to the quadrupole (on the y axis) and more
intense. This yields a minimum at a distance of 8 mm from the quadrupole
center (on the y axis). Around this trap minimum, the projection of B on
y is quadratic (∂yBy = 0, ∂yyBy 6= 0) and the projections on x and z are
linear with position, with the same gradient (because ∇ ·B = 0). At the trap
minimum, the field is aligned in the y direction and its value is B0 ' 1 G.
The design of the trap (coil size, number of turns, etc.) was achieved using
a numerical calculation of the field. Cuts of the field magnitude along three
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Figure 2.8: Both figures are from
Esslinger et al. [149]. (Left) Sketch
of the three coils of the QUIC trap.
The arrows indicate the direction
of the current flowing through the
coils. (Right) Absolute values of
the magnetic field along the y axis
(left column) and in the y-z plane
(right column) are shown, calcu-
lated for a fixed current of 25 A in
the quadrupole coils and increasing
currents in the Ioffe coil [(a) 0 A to
(d) 25 A]. Each contour in the right
column corresponds to an increase
of 15 G of the field magnitude.

orthogonal planes are represented in Fig. 2.10.
Because of the difficulty of accurately winding conical coils, the actual coils

were slightly different from the design, resulting in a double minimum such as
in Fig. 2.8c. This was solved by adding a few turns to the Ioffe coil.

Field measurement and expression

Once the coil assembly was completed, the trap parameters were directly mea-
sured with Hall probes. The figures are given in Tab. 2.1.

As seen on Fig. 2.8 and 2.10, the potential does not have a simple shape
(not simply harmonic or linear). When kBT � µB0, the potential is some-
how linear in the z-x plane and harmonic on the y axis. Nevertheless, for
kBT � µB0, which is the case close to degeneracy (cf. Sec. 2.1.5), the trap
is a three-dimensional harmonic potential, whose frequencies are obtained by
expanding the field magnitude about its minimum. It is important to know
these frequencies because they determine the quantum level spacings, enter the
transition temperature, and so on. The expression of the IP field magnitude
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Figure 2.9: Top view of the magnetic trap (cut through the coil centers).

in the neighborhood of the minimum is [180]

B(x, y, z) = B0 + 1
2

(
B′2

B0
− B′′

2

)(
x2 + z2

)
+ 1

2B
′′y2, (2.5)

and the trap frequencies are given by

ν2
x = ν2

z = µ

(2π)2m

(
B′2

B0
− B′′

2

)
, (2.6)

ν2
y = µ

(2π)2m
B′′. (2.7)

The second term in (2.6) can often be neglected (with our parameters,
B0B

′′/2B′2 ' 0.6%). With the measured values of Tab. 2.1, this yields a
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Figure 2.10: Contour plots of the magnetic field magnitude in the IP config-
uration for a current I = 26.7 A (numerical calculation): cut through z = 0,
x = 0 and y = 8 mm. Each contour corresponds to an increase of 15 G. The
origin (x = 0, y = 0, z = 0) is the quadrupole center.

radial frequency νr ≡ νx,z = 177 Hz and an axial one νy = 19 Hz. These
values are smaller (by 30% and 12% for νr and νy respectively) than those
directly measured using the oscillations of the trapped atoms (see Sec. 2.2.2).
The finite size of the Hall detectors, which yields a convolution of the mea-
sured profiles may have something to do with this mismatch. Nevertheless, it is
mainly due to the fact that B0 is overestimated by these direct measurements
(a more precise value of B0 . 1.7 G was measured by evaporating the atoms)
and the great sensitivity of νr to a small reduction of B0. For instance, taking
the same values, but B0 = 1 G gives νr = 245 Hz. Also these expressions do
not take into account gravity. If the magnetic field were perfectly harmonic,
gravity would not change the oscillation frequency, but here, the influence of
the anharmonicity on the vertical frequency cannot be neglected.

Power supply and control electronics

On the one hand, in order to convert the quadrupole into a IP trap, one must
be able to set the Ioffe current independently of the quadrupole current. On
the other hand, in the final configuration (IP), the three coils must be in series
in order for the field fluctuations to be correlated3. The three coils of the QUIC
trap are thus powered by a single stable 48V/50A generator connected to a
homemade analog current control box. A sketch of the electronics is given in
Fig. 2.11.

The quadrupole coils are in series with the Ioffe coil, but the latter is also
in parallel with a shunt in which all the current can be transfered. The current

3When the three coils are powered by independent generators, the current noises are not
correlated and lead to a fluctuation of the trap center position and shape. This generally
leads to high heating rates even with stable generators (∆I/Ī ∼ 10−3).
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Configuration Parameter Value (G/cm/A) Value @ 26.7 A (G/cm)

Quadrupole
∂zBz 5.2 139
∂xBx 10.4 278
∂yBy 5.2 139

IP

B0 0.072 G/A 1.9 G
B′ ≡ ∂zBz 7.28 194
∂xBx ' B′ 7.12 190
B′′ ≡ ∂yyBy 8.24 G/cm2/A 220 G/cm2

Table 2.1: Measured parameters of the quadrupole and Ioffe-Pritchard (IP)
traps. The quadrupole is characterized by its gradients along the three axes
around the trap center (point where B = 0). The IP is characterized by
two gradients and one curvature around the field minimum (point where B =
B0uy). The units are G/cm/A and G/cm unless specified. The center of the
IP is positioned 8.1 mm away from the quadrupole center on the y axis.

in the three arms can be controlled independently by three servo loops, with
the obvious constraint IIoffe + Ishunt = IQuad. The main issues in designing
the circuit of Fig. 2.11 were: (i) making the the servo loops stable on a wide
range of set points (from 0 to 30 A), because of the non-linearity of the feed-
back loops (due to the response of the transistors), (ii) properly handling heat
dissipation in the power transistors (which would burn after some time of use,
this was fixed by using several in parallel for the control of IQuad), (iii) having
a fast switch-off. In the current setup, it is still quite long, on the order of
1 ms. The design of this circuit is not detailed in this thesis.

2.1.4 Other coils
The coils of MOT1 are made of hundreds of turns of 1.7 mm thick enameled
wire positioned around two opposite viewports of the steel chamber. They are
powered by a 30V/20A generator connected to a homemade switch (controlled
by a TTL signal). They produce of a gradient of 7.8 G/cm/A (tighter axis).

In order to compensate the residual magnetic field (important for the opti-
cal molasses), or to slightly displace MOT2, three orthogonal pairs of compen-
sation coils in Helmholtz configuration are present in MOT2 (not in MOT1).
They are made up of approximately 20 turns of 1.7 mm thick wire and can be
powered with a few amperes of current. They are large (tens of centimeters
of diameter) to produce homogeneous fields on the order of 1 G/A and not
to reduce optical access. The resulting field does not change by more than a
few percents on 1 cm. They are powered by stable 30V/3A power supplies
connected to homemade two-value boxes or, for one of the pairs (on the y
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Figure 2.11: Sketch of the QUIC trap current control electronics. The currents
in the three arms are controlled by servo loops consisting of Hall current
sensing elements (CS) and power field-effect transistors (M). The set points of
the servo loops (i.e. the currents) are set by control voltages (CV) generated
by the computer. Transient voltage suppression diodes (T) are used for fast
current cut off and to protect the transistors from high voltages.

axis), an analog current control electronic circuit. The pair aligned on the y
axis can be used to change B0 independently of the gradient and curvature of
the magnetic trap.

2.1.5 The radio-frequency source
Let us first recall a few important values: the recoil velocity is the change of
velocity when absorbing or emitting a resonant photon

vr = ~k
m
' 5.88 mm/s (2.8)

for the D2 line of 87Rb. The kinetic energy of an atom with a velocity vr is
called the recoil energy:

Er = ~ωr = 1
2mv

2
r = ~2k2

2m , ωr/2π ' 3.77 kHz. (2.9)

The corresponding temperature is the recoil temperature:

Tr = mv2
r

kB
= ~2k2

mkB
' 362 nK. (2.10)

It is sometimes defined with an additional factor 1/2. We use the definition
(2.10) such that during a time of flight, the temperature of a cloud whose rms
width expands with a velocity vr is Tr.
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The typical temperature of the cloud just before starting the evaporation
is about 400 µK ' 103 × Tr. This means that the atoms typically explore
the region of the trap where their potential energy varies between 0 (at the
trap center) and 103 ×Er ' h× (4 MHz). Since the atoms are trapped in the
|F = 2,mF = +2〉 state, two rf photons of the same energy are required to
drive the transitions |F = 2,mF = +2〉 → |F = 2,mF = +1〉 → |F = 2,mF =
0〉 and expel them. The rf frequency needed to evaporate the atoms is thus
typically 4/2 = 2 MHz. As we have seen in Sec. 1.4.2, evaporative cooling is
most efficient when the parameter η = (trap depth)/kBT is on the order of
10. The initial frequency needed is thus about 20 MHz. In this discussion, we
have neglected the additional ∼ 0.7 MHz, which comes from the fact that the
trap minimum has a nonzero magnetic field, on the order of 1 G.

Efficient evaporation leads to the formation of a BEC when the critical
temperature is reached. For N ∼ 106 atoms and our trap parameters, this
temperature is about 500 nK ' Tr. Evaporation of such a cold cloud with
η = 10 requires a final frequency νstop ' 10×3.77/2+700 kHz. The first term
corresponds to the trap depth 10 kBT (assuming T = Tr), while the second
one is the offset due to the bias field B0 = 1 G. From this expression it is
clear that B0, which can be neglected at the beginning of the evaporation, is
dominant at the end.

To illustrate the role of the rf frequency stability, let us assume that
∆νstop/νstop = 1%. This leads to a fluctuation of η by almost 40%. The
same argument applies if νstop is stable but B0 is fluctuating.

This underlines the requirements for a good rf source:

• ability to perform frequency ramps between 20 and 1 MHz within seconds
or tens of seconds,

• the possibility to choose the absolute value of the final frequency to
better than a few kHz,

• relative frequency fluctuations in the 10−3 range.

Moreover, the optimization of evaporative cooling requires the ability to ma-
nipulate the shape of the frequency ramp and the rf amplitude during the
ramp.

In the experiment, the rf is produced by a digital function generator which
meets the above requirements. In the “3D mode”, arbitrary ramps can be used
to control the amplitude, frequency and phase vs time, without degrading the
quality of the spectrum. It is followed by a 25 W amplifier which has a
relatively flat gain curve on the range used to evaporate, and has been chosen
to be completely tolerant to impedance mismatch between its output and the
antenna. The antenna is a 4 cm square loop of 1.7 mm-thick copper wire with
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5 turns. It is positioned at the bottom of the Hellma cell, with its symmetry
axis aligned vertically (the coil center is thus 5 cm away from the quadrupole
center). In this way, the magnetic field created by the coil is perpendicular
to the magnetic trap bias field. Since the symmetry axis of the rf antenna
is perpendicular to the axes of the magnetic trap coils, the induction of rf in
these coils is reduced.

2.1.6 Computer control
As it will be presented in Sec. 2.2, the production of BECs involves a variety
of experimental steps which have to follow each other with precise timing.
Moreover, the timescales involved vary between the full sequence time on the
order of the minute (thermal effects can have even longer characteristic times),
down to times related to the atomic response (the lifetime of the excited state
52P3/2 of 87Rb is 26.2 ns). This requires an efficient control of the experiment
with computers and fast electronics.

Hardware

The computer control is based on a single cheap National Instrument (NI)
analog output card inserted in a standard personal computer running Windows
Vista. This card has 32 analog outputs, and 8 digital (TTL) outputs, which
are not currently used. The analog outputs are directly accessible through a
series of BNC connectors. The output voltage is between −10 and +10 V,
and is encoded on 13 bits (resolution of 2.4 µV). The card has its own internal
clock and the sample rate can be adjusted on a wide range, which depends
on the number of outputs used. We use all the outputs, and a sample rate
of 10 kS/s (i.e. a time step of 100 µs). This choice corresponds to a trade-off
between the short time step needed for some operations (the shortest event is
the imaging pulse) and the relatively important quantity of data which results
from the sampling of 32 analog channels when the total cycle duration is on
the order of 30 s. From this point of view, using only analog outputs is not
optimal.

Software

The NI card is controlled by Matlab via the Data Acquisition Toolbox, which
considerably simplifies the programming of the card (only a few matlab func-
tions are needed to talk to the card). A Matlab graphical user interface (GUI)
was developed to easily program the signals. The GUI programming is object
oriented, and its class structure was designed in a way which makes adding
other devices (such as function generators or other similar cards) relatively
easy.
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The main features of this user interface are the following: various devices
(corresponding to physical output cards or function generators) can be config-
ured by selecting the channels to be used, giving them names, physical units,
and calibration functions (to convert the physical values entered by the user
into voltages). The main object is a sequence, which corresponds to a given
experiment, for instance the production of a BEC. The default behavior is to
loop identical sequences. A sequence is made of a series of events which follow
each other. For instance, a first event is used to load the two MOTs, another
one for the compressed MOT, and so on. For each event, the user chooses what
channels are going to be used, and defines the signals by entering a series of
times and values, or functions to be output. Each channel has its “default
signal” which is used by default when the channel is not used in an event.

Instead of real numbers, the boxes in which the times and values are given
can contain words, defining variables, or parameters. In the main panel of the
GUI, these parameters can be given values. They can also contain vectors
instead of single values, so that scans can be done. In this case, each time a
sequence is completed, the parameters take the next value in the vector, and
the sequence is started again with new values. “Multi-dimensional” scans can
be done, and priorities can be attributed to the parameters to define the order
in which they will be changed.

This software has been developed from scratch during the three years of
my thesis. Most of the experiments presented in this thesis were done before
automated scans could be performed. At this time, the setup was stopped for
a few seconds (all the channel’s voltages went to 0 V) every time a parameter
was changed. When adding the “scan” feature, the program was also modified
to suppress this dead time between two sequences. This dramatically improved
the reproducibility and stability of the experiment, probably because, with the
new system, the AOMs are never stopped. Indeed, when an AOM is stopped
(the frequency control voltages were set to 0 V which induced a jump of the
detunings), its temperature changes, and the output polarization turns, which
leads to laser intensity fluctuations from shot to shot.

2.1.7 Detection and imaging

Various probes are used to set the experiment and to monitor what is hap-
pening when it runs: photodiodes to measure laser intensities, Hall probes to
monitor the magnetic fields, thermocouples to check the temperatures of the
coils, CCD cameras for imaging, etc. Most of these detectors are standard.
We give here a few details on the imaging techniques, and on the cameras
used.

We use different models of CCD cameras for imaging and to look at laser
beam profiles. They are controlled via a homemade matlab software. A library
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Figure 2.12: Principle of fluorescence and absorption imaging. For absorption
imaging, a Gaussian probe beam (red) is sent on the optical axis and the
shadow of the cloud is imaged onto a CCD. For fluorescence imaging, this
probe is not used, but the cloud is illuminated by the MOT beams (blue) and
the scattered photons are captured by the same imaging system. The lenses
are positioned in a 4f configuration such that both the geometrical image and
the image waist of the probe laser are positioned on the CCD.

of functions coded in C and compiled in a way that makes them accessible to
matlab (so called “MEX-files” in matlab’s jargon) was developed to talk to
the cameras (set the shutter, gain, binning, retrieve the images, etc.). They
are always triggered with an external TTL signal.

The main ways to measure the atomic cloud we have used are absorp-
tion and fluorescence imaging. A sketch illustrating these two techniques is
presented in Fig. 2.12.

Fluorescence imaging

The principle of fluorescence imaging is to shine a near resonant laser beam on
the cloud and to image the scattered photons (the fluorescence) on a CCD. The
resulting image will reflect the atomic density integrated along the direction
perpendicular to the CCD plane if all the atoms scatter on average the same
number of photons, and that these photons reach equally the CCD. This can be
achieved in two distinct regimes: (i) in the linear regime, when the cloud is not
optically thick, depletion of the pump beam and multiple scattering effects are
avoided, or (ii) in the opposite regime of strong saturation where the cloud has
become transparent to the pump light and all the atoms scatter the maximum
number of photons (i.e. with a rate Γ/2). This requires a saturation parameter
s� b, where b is the optical thickness of the cloud. We always operate in the
first regime. The pump beams we use are directly the beams of the MOTs, and
the optical thickness can be reduced by detuning by a few linewidths on either
side of the atomic transition. A major drawback of quantitative fluorescence
imaging (in the linear regime) is that it requires a careful calibration of the
detection (including CCD, detection solid angle, light intensity).
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In practice we always take two images: the first one captures the fluores-
cence and the second is a background image taken some time after the cloud
has fallen. It is subtracted to the first one to get rid of stray light. Examples
of fluorescence images can be found in Fig. 2.18.

Absorption imaging

Absorption imaging is the technique commonly used to image the cloud at
the end of evaporation, and the BEC. It consists in measuring the shadow
cast by the cloud on a laser beam. Three images are taken: the shadow, the
probe beam without atoms and a background image (no probe beam), which
is subtracted to the two others (to remove stray light). The ratio of the two
resulting images give the spatially resolved transmission T (x, y). The optical
thickness b(x, y) (also called optical depth, optical density or absorbance) is
defined by the Beer-Lambert law

T (x, y) = exp [−b(x, y)] . (2.11)

This expression is valid for a purely monochromatic probe laser. The optical
density is directly related to the cloud’s column density ñ(x, y) =

∫
dz n(x, y, z),

by [181]
b(x, y) = σ0

1 + 4 δ2 ñ(x, y), (2.12)

where σ0 is the resonant scattering cross-section and δ is the laser detuning
with respect to the transition in units of the linewidth Γ.

We image the atoms on the |52S1/2, F = 2〉 → |52P3/2, F
′ = 3〉 transition,

in the absence of a significant magnetic field. For such an atomic transition
with a Zeeman substructure, the resonant scattering cross-section is

σ0 = g
3λ2

2π (2.13)

where g depends on the Zeeman substate and the laser polarization. For in-
stance, if the atoms are in mF = +2 (with respect to the light propagation
axis) and only σ+ transitions are driven (clean circular polarization) the sys-
tem is a two-level atom (|F = 2,mF = +2〉 → |F ′ = 3,mF ′ = +3〉) and
g = 1. Since we do not control the field during imaging, we do not know the
population in the different Zeeman sublevels. We assume g = 7/15 which is
the appropriate value when the Zeeman substates are equally populated and
these populations are stationary (no optical pumping), and is independent of
the light polarization. This is a crude assumption, and, since the measured
number of atoms is proportional to g, our number measurement is not abso-
lute.
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 Figure 2.13: Indirect measurement
of the imaging probe linewidth. A
cloud of resonant optical thickness
b0 ' 0.8 is prepared and the opti-
cal thickness b is measured vs the
laser detuning. The resulting curve
is close to a Lorentzian (fitted line)
with a width Γm = 1.4 Γ. This
broadening is attributed to a laser
linewidth of a fraction of Γ, consis-
tent with the diode’s specifications
(typical value ΓL/2π = 2 MHz).

Effect of the probe’s linewidth

We assume the probe beam is centered on the atomic transition (angular
frequency ω0) and has a Lorentzian spectrum with a linewidth ΓL:

SL(ω) = 2
πΓL

1

1 + 4
(
ω−ω0

ΓL

)2 . (2.14)

The measured transmission is thus the average

T =
∫

dω e−b(ω)SL(ω), (2.15)

where b(ω) is given by Eq. 2.12. At first order in b [b(ω0) � 1], this yields a
measured, effective optical thickness

beff ' 1− T ' b0
1 + ΓL/Γ

. (2.16)

As expected, for a very broad laser, the cloud is completely transparent, while
for a narrow one (ΓL � Γ), beff = b0.

This underlines the kind of error made on N when the probe’s linewidth
is not negligible compared to the atomic linewidth. When beff & 1, multiple
scattering and cooperative effects may play a role, and the problem becomes
more complicated (cf. e.g. Ref. [182]).

Calibration

For both techniques, the system is focused by looking at the fluorescence of
a small object and minimizing the image size. The calibration of the sizes
measured in the object plane is done either by placing a mirror on the optical
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path and imaging a ruler or, whenever possible, by doing a time of flight of
a small freely falling thermal cloud. Knowing the value for the gravity of
Earth g = 9.81 m/s2, and fitting the 2D trajectory with a parabola gives a
precise calibration, together with a measurement of the angle with respect to
the vertical axis.

Other considerations for imaging

For absorption imaging saturation should be avoided, which gives an upper
bound on the laser intensity.

All the atoms must be measured without being sent off resonance, that is
the Doppler shift induced by the probe’s pushing must be small compared to
the atomic linewidth:

Np kvr � Γ (2.17)

where Np is the number of photons absorbed by each atom, k the probe’s
wave vector, and vr the recoil velocity. This gives N � 800 for the cycling
transition of 87Rb. This number is comparable to the number of photons
needed to escape from the cycling transition and populate |52S1/2, F = 1〉.
There is no repumper in the imaging beam, so this should be avoided. These
two conditions give the same constraint on the total energy of the imaging
pulse.

The cloud does not just absorb the probe light, it also shifts its phase. This
is exploited in other imaging techniques such as phase contrast imaging [181].
Thus, a small and dense cloud acts like a lens and can focus or defocus the
probe beam. This phase shift is proportional to the detuning, therefore this
effect can be avoided by using resonant light.

2.2 Bose-Einstein condensation in a QUIC trap
This section describes the steps involved in the production of BECs. In simple
words it can be summarized as: (i) collect a lot of atoms in a region where the
vacuum is good enough, (ii) increase the density and collision rate, (iii) bring
the atoms into an internal state which can be held in a conservative trap (no
dissipation) preventing exchange of heat with the outside world, (iv) cool the
cloud while increasing its density.

2.2.1 The two magneto-optical traps
To avoid MOT instabilities that can occur in large MOTs with retro-reflected
beams [101], both MOTs are produced using six independent beams. The
total laser powers in MOT1 and 2 are 360 mW and 73 mW respectively, and
the beam waists are 2.7 cm and 6.7 mm. The peak intensity of each MOT
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Figure 2.14: Temporal diagram of the pulsed loading of MOT2 from MOT1
(2 periods).

beam is respectively I1 = 3 Isat and I2 = 10 Isat, Isat = 1.67 mW/cm2 being
the saturation intensity of the |F = 2,mF = ±2〉 → |F = 3,mF = ±3〉
cycling transition of 87Rb. The magnetic field gradients of MOT1 and 2 are
respectively B′1 = 11 G/cm and B′2 = 14.6 G/cm (gradient along the tighter
axes of the quadrupoles). The two MOTs almost have the same detunings
δ = −3.5 Γ, which results in respective saturation parameters s1 = 0.06 and
s2 = 0.20. When running continuously without the pushing beam, MOT1 can
contain up to a few 1011 atoms with a peak density of a few 1010 atoms/cm3.

While MOT2 is continuously on, MOT1 is operated in a pulsed regime,
as shown on the temporal diagram of Fig. 2.14. First, the trapping light and
magnetic field are on and MOT1 loads from the surrounding Rubidium vapor.
After 100 ms of such loading, MOT1’s size has reached the differential pumping
tube’s diameter, and the light is switched off. At this point the blue-detuned
pushing laser beam, aligned on the vertical axis linking the two MOTs and
passing through the tube, is turned on for 6 ms. Its waist is 1.6 mm and its
peak intensity 596 Isat. Its detuning is +21.2 Γ and the saturation parameter is
spush = 0.33. Because of the radiation pressure force, this light pulse transfers
the atoms captured by MOT1 to MOT2 within 15 ms. The force exerted
by the pushing beam is not strong enough to overcome the trapping force of
MOT2 and thus does not induce atom losses. After a few seconds of such
loading, MOT2 contains ∼ 1010 atoms and MOT1 is then switched off (light
and magnetic field). Figure 2.15 shows the fluorescence signals of the two
MOTs during the loading.
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Figure 2.15: Fluorescence signals of (a) MOT1 and (b) MOT2 during the
pulsed loading.

Compressed magneto-optical trap

The cloud is then compressed by a compressed MOT phase (CMOT, also
called temporal dark MOT): the cooling light detuning is changed from δ =
−3.5 Γ to δ = −8 Γ and the magnetic field gradient is increased to B′2 =
65.5 G/cm. The change of detuning reduces the multiple-scattering-induced
repulsive interaction between atoms, while increasing the gradient increases
the trap spring constant. This causes the cloud to shrink, thus increasing
the density and collision rate by a factor of 3. This phase also gives the
MOT a nicer, more symmetric shape. By playing on the compensation fields,
the CMOT position can be precisely adjusted to optimize the transfer to the
magnetic trap.

Molasses

The cloud is then further cooled to 80 µK by a 3-ms-long optical molasses phase
(the magnetic field is turned off, and the detuning changed to δ = −10 Γ).
This temperature is rather high compared to the Sisyphus limit and could
probably be further reduced.
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Figure 2.16: Photograph of the lower magneto-optical trap (MOT2). The thin
coils are the compensation coils. The gray parts are the coils of the magnetic
trap. The MOT is visible (the bright purple spot) in the center of the glass
cell. When seen with the naked eye, it appears less intense than on this picture
and dark red instead of purple.
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Figure 2.17: Influence of the Zeeman optical pumping stage (ZP) on the num-
ber of trapped atoms. The number of atoms is measured after transfer to the
magnetic trap and adiabatic compression as a function of the “catch value”
(initial vertical gradient). Without ZP, atoms in |F = 2,mF = +2〉 are first
trapped when the gradient compensates gravity (first vertical dashed line at
∂zBz = mg/µB = 15.3 G/cm). For ∂zBz = 30.6 G/cm (second dashed line)
atoms in |F = 2,mF = +1〉 and |F = 1,mF = −1〉 with a magnetic dipole
moment twice smaller are also captured.

Optical pumping

For magnetic trapping, the atoms are optically pumped to the |52S1/2, F =
2,mF = 2〉 Zeeman substate by a circularly polarized beam, detuned by δZP =
+3.2 Γ from the |52S1/2, F = 2〉 → |52P3/2, F = 2〉 transition. When atoms
end up in the |F = 2,mF = +2〉 state, they do not interact anymore with
the pumping laser (dark state). Since the pumping transition is not cycling,
a superimposed repumper beam is used, detuned by δZP rep. = −3 Γ from
the |52S1/2, F = 1〉 → |52P3/2, F = 2〉 transition. The lasers are detuned
to reduce multiple scattering. A homogeneous magnetic field of ∼ 0.5 G is
aligned with the light wave vector to define the quantization axis. This optical
pumping stage lasts 300 µs. Using optical pumping increases the number of
atoms captured by the magnetic trap by a factor of 4 (slightly smaller than
the expected factor of 5), as illustrated by Fig. 2.17. The present setup uses a
single Zeeman pumping beam (not retro-reflected), which results in a velocity
of 3.6 vr along the beam direction, consistent with the fact that just a few
photons are needed to bring the atoms into the |F = 2,mF = +2〉 dark state.
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2.2.2 Magnetic trapping

Finally, all the light is turned off and the quadrupole magnetic field is abruptly
turned on to trap the cloud. The initial value of the gradient is ∂xBx =
54.1 G/cm which corresponds to a vertical gradient (twice smaller) large
enough to compensate gravity only for atoms in the |52S1/2, F = 2,mF = +2〉
state (cf. Fig. 2.17). This value is kept constant for 100 ms to let the atoms
in the other states fall (|F = 2,mF = +1〉 and |F = 1,mF = −1〉). This
is followed by an adiabatic compression of the cloud, performed by linearly
increasing the magnetic gradient to 278 G/cm within 500 ms. Without de-
creasing the phase-space density, this compression stage increases the elastic
collision, an important ingredient of evaporative cooling (cf. Sec. 1.4). At this
point, the number of atoms is N ' 5× 109, and the temperature T ' 400 µK.
Figures 2.18c and 2.18d show how the cloud looks before and after the adia-
batic compression.

Transfer to the Ioffe-Pritchard trap

In order to suppress Majorana losses, which become important for cold clouds
[103], the quadrupole magnetic trap is converted into a Ioffe-Pritchard trap by
ramping the current in the Ioffe coil within 500 ms. In the final configuration,
the three coils are in series and have the same current. During this process,
the cloud center shifts horizontally by 8 mm towards the Ioffe coil. The center
of the cloud is thus 4 mm away from the cell wall. Figure 2.19 shows how the
cloud is displaced during this transfer.

If the atoms are too hot, or the magnetic field not steep enough on the side
of the Ioffe coil, the tail of the atomic cloud can touch the glass cell, which
leads to evaporative cooling and subsequent losses. This is what happens
with our trap because of the relatively high temperature after compression
(400 µK). Figure 2.20 displays the corresponding effective sample lifetime to-
gether with the evolution of the cloud width after time of flight (temperature
measurement). The number of atoms decay is clearly not exponential, and has
a shape typical of evaporation at constant trap depth (the loss rate decreases
as the temperature lowers). Because of this, the number of atoms is reduced
by a factor of 10 in the Ioffe-Pritchard trap, compared to the quadrupole trap.
These losses are not that tragic because the cloud also cools. The efficiency of
this contact evaporative cooling has not been investigated.

Lifetime in the magnetic trap

The lifetime of the magnetically trapped atoms is an important parameter,
because it is the ultimate limit on the duration of the experiments. More
importantly, it is also an essential ingredient for efficient evaporative cooling
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Figure 2.18: Fluorescence pictures of the trapped cloud (a) during the loading
of MOT2, (b) after the compressed MOT, (c) after the cloud has been caught
in the magnetic trap and (d) after the adiabatic compression. The spatial and
color scales remain the same throughout the 4 pictures.
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Figure 2.19: Absorption images of the transfer from the quadrupole to the
Ioffe-Pritchard trap (after a small time of flight of 3 ms) when the Ioffe current
is gradually increased. The numbers in percentage are the ratios of the Ioffe
current to the quadrupole current IIoffe/Iquad. The vertical field of view is
about 9.5 mm. The cloud has first been precooled to T ' 100 µK to be able
to pinpoint the magnetic field minimum. The y axis is actually horizontal in
the laboratory and the z axis vertical. During the transfer, the cloud center
moves by 8 mm towards the Ioffe coil (inset).

(cf. Sec. 1.4.2). It is simply measured by monitoring the decay of the number
of atoms when the cloud is held in the trap. Figure 2.21 shows these decays in
the compressed quadrupole and in the Ioffe-Pritchard trap. For the latter, the
cloud has first been rf cooled to a temperature where evaporation on one of the
cell walls has become negligible. The measurement in the quadrupole trap is
performed at T ' 400 µK, where Majorana losses can safely be neglected [103].
In both cases the lifetime is about 30 s.

Trap frequencies

The trap frequencies are measured by monitoring the center-of-mass oscilla-
tions after a small displacement of the trap center. For the x and z axis, along
which the projections of B are linear with position, the displacement is simply
induced by adding a homogeneous field with the compensation coils. On the
y axis, along which the gradient cancels about the trap center, adding a ho-
mogeneous field does not shift the position of the center. A displacement can
instead be induced by slightly decreasing the Ioffe current. Figure 2.22 shows
an example of such measurement of the vertical frequency of the compressed
trap (in which the BEC is produced) and of a “decompressed trap” (the QUIC
current has been reduced by a factor of 6 and the bias decreased from 2 G to
7.8 G with the compensation coils). Some damping is observed which is at-
tributed to the trap anharmonicity, and subsequent transfer of energy between
the 3 dimensions.
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Figure 2.20: Evaporation on the cell wall. After complete conversion of the
quadrupole trap into a Ioffe-Pritchard (t = 0), (a) the number of atoms and
(b) the temperature (given by the cloud size after a 4.5 ms time of flight)
are seen to decrease. An exponential fit to N(t) (dashed line) shows that the
decay is not exponential, and yields a time constant of 10 s, which is 3 times
smaller than the trap lifetime. The error bars are ±rms of 10 realizations.

2.2.3 Evaporative cooling and condensation

Once the cloud is in the Ioffe-Pritchard trap, rf evaporative cooling is per-
formed by ramping the rf frequency from νstart = 20 MHz to νstop = 1.2–
1.4 MHz (depending on the precise value of B0 which can be adjusted) within
typically 10 s. Most of the experiments presented in this thesis were done with
linear frequency ramps followed by 100 or 200 ms of evaporation at a constant
frequency νstop. The rf amplitude is kept constant on the generator, but since
the coupling to the antenna may be frequency dependent, we do not know the
precise amplitude sent onto the atoms.

The influence of the stability of the rf frequency, as discussed in Sec. 2.1.5,
is easily seen in the production of BECs. We initially employed an analog
Tabor generator in VCO mode (an external voltage is used to control the
frequency), with which no BEC could be obtained (in this mode, a small noise
on the control voltage yields large fluctuations of the frequency, cf. Sec. 2.1.5).
Switching to the internal sweep mode yielded BECs, but only after using a final
evaporation stage at constant frequency. During this final stage, the fact that
the rf spectrum was broad was compensated by evaporating at constant trap
depth (i.e. using a larger η). Using either a Tabor or Agilent DDS generator,
we can obtain BECs without this final stage, either with linear or exponential
frequency ramps.

We noticed that with our initial conditions, exponential ramps always give
bigger BECs (up to 60%), but so far, no systematic optimization of the fre-
quency and amplitude ramps have been performed. During the redaction of
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Figure 2.21: Number of atoms in (a) the quadrupole and (b) Ioffe-Pritchard
magnetic traps vs holding time (semi-log scale). The lines are exponential fits
and yield the decay time constants τquad = 33 s and τIP = 25 s. The error
bars are ±rms of 10 realizations.

this thesis, the cycle time has been reduced (from 35 s to 15.3 s), and identical
BECs can now be prepared with only 4 s of evaporation using a nearly expo-
nential frequency ramp. A precise optimization of the ramps, together with a
decompression of the trap during evaporation (to reduce the density and the
possible three-body losses [112, 155, 183–186]) could still be done to improve
both the duty cycle and the atom number in the condensate.

We routinely produce “pure” BECs (no discernible thermal fraction with
our absorption imaging) in the fully compressed magnetic trap, containing
5× 105 atoms. Figure 2.23 shows how the cloud parameters evolve during the
last 2 seconds of a 10 s-long evaporation ramp. The temperature is inferred
from the width of the thermal fraction after a single 20 ms time-of-flight image.
The number of atoms is directly obtained from the same absorption images,
and all the other parameters are calculated assuming that the trap is harmonic
(the trap frequencies are known from the measurements of Sec. 2.2.2). On the
images corresponding to the last 3 points of these curves, a clear bump appears
in the center of the density profile, as in Fig. 2.24. Condensation occurs at
the expected critical phase space density n0λ

3
dB ' 1.2 (indicated by the blue

horizontal line in the last graph).
Figure 2.24 shows absorption images of the cloud after the rf ramp and a

30 ms time of flight, for different values of the final rf frequency νstop. Above
νstop = 1.43 MHz, the density is well fitted by a Gaussian, whereas for νstop ≤
1.42 MHz, the distribution is clearly bimodal. It is well fitted by the sum of
a Gaussian and a Thomas-Fermi profile despite the fact that T/Tc is not that
small (in principle the TF profile is valid in the limit T → 0). The fact that
the density still follows a TF profile after the 30 ms of expansion is not trivial,
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Figure 2.22: Measurement of the trap frequencies. A small magnetic field offset
is slowly applied, and abruptly switched off. The cloud position is measured
after a variable time of free evolution in the trap plus a constant time of flight
(here 27 ms). Vertical trap frequency of (a) the fully compressed trap in which
the BEC is produced, (b) a decompressed trap. The lines are exponentially
damped sine fits yielding (a) νz = 237 Hz and (b) νz = 23.7 Hz.

and is discussed in Sec. 2.2.4.

Efficiency of evaporative cooling

The efficiency of evaporative cooling is directly measured by interrupting the
evaporation at various times and plotting N vs T in log-log scale (Fig. 2.25
shows this plot for the last 2 seconds of a 10-s-long evaporation ramp). As
explained in Sec. 1.4.2, the slope of this curve is a direct measurement of the
efficiency of evaporative cooling. Indeed, in a harmonic trap, the phase space
density scales as n0λ

3
dB ∝ NT−3, it thus increases when d logN/d log T <

3. The condition for runaway evaporative cooling is even more stringent:
d logN/d log T < 1 (cf. Sec. 1.4.2). If it is met, the phase-space density is
assured to increase by at least 2 orders of magnitude when the temperature
decreases by 1 order of magnitude. Typical experimental values characterizing
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Figure 2.23: Evolution of the number of atoms N , the temperature T , the
truncation parameter η, the peak density n0, the peak elastic collision rate
γel, and the peak phase-space density n0λ

3
dB during the last 2 seconds of evap-

oration. The blue horizontal line in the last graph corresponds to the critical
phase-space density of 1.2 for which condensation is expected to occur (cf.
Sec. 1.1.3). The collision rate is calculated from the density and temperature
of the thermal fraction, which is why the curve decreases after condensation.
The error bars are ±rms of 6 realizations.
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a)

N=1.2x106, N0/N=0
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Figure 2.24: Bose-Einstein condensation when the final rf frequency is reduced.
(a) νstop = 1.44 MHz, (b) νstop = 1.42 MHz, (c) νstop = 1.40 MHz, (d)
νstop = 1.39 MHz. These absorption images are taken after 30 ms of time of
flight. The field of view of each image is 1.65× 1.65 mm. The profiles are the
integrals of the column density along the two axes. They are fitted (red lines)
with a bimodal distribution which is the sum of a Gaussian component (dashed
line) and a Thomas-Fermi component [expression (1.69)]. In (c) are also shown
cuts of the image through the center, fitted with the expression (1.67) (blue
lines).
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Figure 2.25: The efficiency of evaporative cooling is given by the slope of the
curve N vs T in log-log scale. The numbers are the slopes obtained from fits
to the first 7 points (on the right) and the last 4 points (on the left). The
concavity of the curve seems to indicate that the efficiency decreases during
evaporation (see text). The solid blue line corresponds to the phase transition
[Eq. (1.44)]. The errors bars are ±rms of 6 realizations.

efficient evaporation are thus less than 1. As seen in Fig. 2.25, the efficiency
seems to decrease during the process. These measurements were done with
a constant time of flight (20 ms) and because of the increase of the optical
thickness throughout evaporation to high values (up to 3), the number of atoms
may be underestimated in the BEC. Also, the density reaches high values after
condensation, and three-body losses may be consequent. This effect could be
suppressed by decompressing the magnetic trap at the end of the rf ramp.

2.2.4 Inversion of the aspect ratio

A striking signature of condensation is the sudden growth of this bump in the
center of the density profile (cf. Fig. 2.24). It is a direct observation of the
population of the single-particle ground state, which starts to be macroscopi-
cally populated at the phase transition. In a harmonic trap and in the absence
of interactions, this peak is expected to have a Gaussian shape (harmonic os-
cillator ground state), with different rms widths along the three axes, related
to the harmonic oscillator lengths. For instance, ∆z = aho,z/

√
2 =

√
~/2mωz.

The rms width of the momentum distribution along the same axis is ∆pz =√
~mωz/2, such that the Heisenberg inequality is saturated: ∆z∆pz = ~/2,

as expected for the HO ground state. Measuring the aspect ratio, that is the
ratio of two widths (for instance ∆y/∆z) of this peak in situ (inside the trap)
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Figure 2.26: Inversion of the aspect ratio of a pure BEC during time of flight.
The absorption images correspond to the points indicated by the arrows. The
field of view is 359× 359 µm. The errors bars are ±rms of 5 realizations. The
continuous line corresponds to the model of Ref. [49] [Eq. (2.19)] without any
fitting parameter. For small times the optical thickness is too high to properly
measure the widths, which explains the observed discrepancy.

would thus lead to the value
√
ωz/ωy. On the contrary, if the trap is switched

off and the wave packet is first left to expand freely before the measurement,
the density profile after an asymptotically long evolution reflects the initial
velocity distribution and the value of the aspect ratio is ∆py/∆pz =

√
ωy/ωz,

the inverse of the in situ value. This shows how the aspect ratio of a non-
interacting BEC inverts during a time of flight.

Interactions quantitatively modify the expansion but the behavior is qual-
itatively the same. For instance, in the TF limit and at zero temperature, the
width in the direction j ∈ {x, y, z} is enlarged by the repulsive interactions by
a factor

∆rTFj
∆ridealj

= Rj/
√

7
aho,j/

√
2

= 151/5
√

2
7

(
ma2

s ω̄
6

~ω5
j

)1/10

N
1/5
0 . (2.18)

The numerator and denominator are respectively the rms widths of the density
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profiles of a TF BEC (TF radius Rj) and of a non-interacting BEC. as is the
scattering length, ω̄ = (ωxωyωz)1/3, and N0 is the number of atoms in the
BEC. For our trap frequencies, and with N0 = 105 atoms, this factor is about
2 in the radial directions, and 7 on the long axis. The expansion itself is
modified by the interactions. During a time of flight, the density keeps a TF
shape (inverted parabola) but the TF radii are rescaled by time-dependent
increasing factors (see Ref. [49] and Chap. 3). For short times, the aspects
ratio of a cylindrically symmetric BEC evolves as [49]

∆y
∆z '

1 + ε2
[
τ arctan(τ)− ln

√
1 + τ2

]
ε
√

1 + τ2
(2.19)

where ε = ωy/ω⊥ and τ = ω⊥ t. This shows that the aspect ratio of an
interacting BEC also inverts during a time of flight. A measure of this effect
is shown in Fig. 2.26.

Despite the seemingly quantum nature of this inversion in the non-
interacting case, this behavior is not a signature of the presence of a BEC
when there are interactions. Indeed non-degenerate systems can exhibit the
same kind of behaviors in the hydrodynamic regime, i.e. when collisions are
predominant [187].

2.2.5 Condensate heating and lifetime

Many effects can lead to a heating of the atomic sample. For instance, random
fluctuations of the magnetic field can shake the atoms and heat them. An
interesting quantitative study of this effect is presented in Ref. [188]. It shows
that the most dramatic effect is parametric heating, i.e. heating due to trap
fluctuations at twice the oscillation frequency. For this reason, trap current
fluctuations should be kept as low as possible.

Other possible sources of heating are collisions with the background gas,
collisions with a dilute cloud of hot atoms which have not been evaporated
(sometimes called the “Oort cloud”, cf. Ref. [189, Chap. 8] for a study of this
effect), three-body losses which release some energy that can be transfered to
the trapped atoms, etc.

In practice, heating in magnetic traps is not well understood [190], proba-
bly because of the variety of possible sources. For instance, the simple model
of Ref. [188] predicts an exponential increase of the temperature, while we have
always observed temperature dependent heating rates, that decrease when the
temperature increases (at more or less constant total number of atoms). This
heating may be due to three-body losses which are expected to be important
at these high densities of 5 × 1014 atoms/cm3. To avoid this effect the cloud
should be decompressed at the end of the evaporation.
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Figure 2.27: Melting of the BEC held in the compressed IP trap. On (a) the
condensate (N0) and normal (Nt) fractions and the total number of atoms
(N = Nt+N0) are plotted vs the time spent in the trap. On (b) the tempera-
ture is plotted. The BEC completely melts within 200 ms. The initial increase
of N (for 0 ≤ t . 100 ms) is attributed to the fact that N is underestimated
when the optical thickness is large.
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Figure 2.28: Condensed fraction vs rescaled temperature. Most of the error
bars (± rms of 5 realizations) are smaller than the points. The dashed line
corresponds to the theory of the non-interacting gas in the thermodynamic
limit, while the solid blue line is a result of the semiclassical two-fluid model
of Ref. [191]. This model takes into account the interactions, the finite number
of atoms and its variation during the evaporation.
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Figure 2.29: Evolution of the total number of atoms N , condensate number
N0 and condensed fraction when the experiment is turned on with the param-
eters for the production of pure BECs. The points correspond to successive
realizations of the experiment (cycles). At the time these data were taken,
each cycle was about 35 s.

The fact that the BEC is not at equilibrium just after the evaporation,
probably because of this high heating rate, is also observable in Fig. 2.28
displaying the condensate fraction vs the temperature [the expected curve is
Eq. (1.45)]. The measured critical temperature is lower than the one expected
taking into account finite size effects and interactions. Since atoms are lost
during the evaporation, the horizontal scale has to be rescaled by Tc(N), where
N is the absolute atom number. We have seen that our number measurement
is not absolute, but even if we assume an error on N , this does not account
for the strange shape of the measured curve.

2.2.6 Reproducibility

Since our measurement technique (time of flight followed by absorption imag-
ing) is destructive, every study involves the repetition of the same experiment
while varying at least one parameter. Ideally, the shots should be as identical
as possible. In practice, this is not an easy thing to do, because the produc-
tion of BECs involves many steps which are chained, and the fluctuations of
all steps are added to each other.
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Figure 2.30: Evolution of the
number of atoms N0 of pure BECs
in steady state. The curve corre-
sponds to 145 shots, each cycle tak-
ing 15.3 s.

Turn-on behavior

When the experiment is turned on, a transient regime lasts for the first 30
repetitions of the experiment (cycles). This is shown in Fig. 2.29 which was
taken soon after we could produce our first BECs. At this time the rf source
was an unstable analog function generator which was then changed for the one
of App. B, the one-to-six splitters had not been installed yet, and the cycle
duration was longer (35 s, instead of the current 15.3 s). This transient regime
was mainly due to the fact that the magnetic trap coils have to reach their
steady state temperature of 55–60◦C, and that the bias B0 depends strongly
on the coils’ temperature (probably due to a dilatation of the coils). This is
the reason why N and N0 fluctuate so much. Because of the various sources
of instability (MOT power, final rf frequency, coils temperature and value of
the bias), the experiment never really reached a steady state at this time. It
is seen that the turn-on behavior lasted approximately half an hour.

Reproducibility

With the improvements made continuously during this thesis, it still takes a
few cycles to stabilize, but the experiment is much more reproducible in steady
state. This is illustrated in Fig. 2.30, where the fluctuations of the number of
atoms of pure BECs are recorded over 145 successive shots.

Finally it is also worth pointing out that the day-to-day fluctuations are
low. It takes a few minutes to turn the experiment on, and with the same
parameters as the day before, we are in steady state (Fig. 2.30) after less than
half an hour.
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2.3 Outlook
This chapter has presented the experiment constructed during this thesis and
its performance to produce BECs. Some improvements could still be made.
For instance the absorption imaging does not give an absolute number of atoms
for three reasons: (i) the population of the various Zeeman substates and the
orientation of the magnetic field during the imaging pulse are not controlled.
This results in an uncertainty in the absorption cross-section. This could be
improved by controlling the rotation of the magnetic field during switch off
to orient it along the imaging axis, and checking that only the |F = 2,mF =
+2〉 substate is populated with a Stern-Gerlach separation. (ii) The probe is
spectrally large and the number of atoms is probably underestimated. This
should be fixed by using another laser for imaging. (iii) The optical thickness
is often too large. The probe cannot be detuned because of lensing effects,
and the solution is thus to increase the time of flight (this cannot be done
simply with the current imaging beam). These improvements are currently
being implemented. The trap should be decompressed during the evaporation
to reduce three-body losses. Another problem is the switching off of the fully
compressed magnetic trap. On the one hand it is too long, on the order of
1 ms, which must deform the cloud. On the other hand, the three coils were
measured to switch off with different time constants, which kicks the cloud
giving it a velocity of a few recoils. This may not be a problem if the BEC
is produced in a looser trap (the switch off time constant was measured to be
lower in a decompressed trap).

In addition to the improvements discussed above, the blue-detuned laser
is currently being used to trap the atoms in a two-dimensional geometry and
study matter wave transport in disordered potentials. In the following chapter
we present some experiments performed in the magnetic trap only (no dipole
trap).



Chapter 3

Shortcuts to adiabaticity for
trapped ultracold gases

In quantummechanics, the evolution of a system described by a time-dependent
Hamiltonian H(t) is adiabatic when the transition probabilities between the
time-dependent eigenstates of H are negligible. This happens when H is ei-
ther time-independent, or when its rate of change is slow compared to the
typical time-scales involved [192–194]. Nevertheless, thinking in terms of in-
stantaneous eigenstates is often much easier than looking for the solutions of
time-dependent problems. In the field of atomic physics, going from the semi-
classical approach of atom-field interaction to the celebrated dressed state
picture [73] illustrates the convenience of such adiabatic representations.

For this reason, many adiabatic schemes to prepare interesting quantum
states were proposed. For instance, non-classical states [195, 196], or new
strongly correlated states [197] can be prepared by adiabatic passage. Quan-
tum adiabatic computation has recently been demonstrated [11]. Yet adia-
batic techniques are typically slow [194], while experimentalists are often con-
strained by finite lifetimes or coherence times of their samples. This motivated
the search for fast schemes reproducing or approaching adiabatic transforma-
tions. Some methods use minimization techniques to optimize the transition
to a target state [198–201], whereas others yield the exact same state that
would have been reached after an adiabatic transformation [19, 202]. The
latter are referred to as shortcuts to adiabaticity.

In this chapter, we detail how such methods can be used on the motional
degrees of freedom of ultracold gases confined in time-dependent harmonic
traps, and experimentally demonstrate the validity of the approach. Two
direct applications of the procedure are the fast cooling of atomic samples,
and the suppression (or reduction) of any parasitic excitations which occur in
experiments on ultracold gases when the trap geometry or the interactions are
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modified. Since the method is not restricted to equilibrium states, it could be
used in a variety of situations as discussed at the end of the chapter.

The first part is theoretical and recalls how harmonically confined gases
react to the variation of the trap. Both the one-dimensional non-interacting
gas, and the three-dimensional Bose-Einstein condensate with repulsive con-
tact interaction between particles are treated. In the second part, the method
to realize shortcuts to adiabaticity are detailed for theses two systems, and
examples are given. The third part focuses on the experimental realization
of these methods. Rapid decompressions have been performed on both a
non-interacting gas and a Bose-Einstein condensate. The practical limitations
which degrade the performances are discussed. In the last part, we attempt
to generalize the problem to an arbitrary variation of the three-dimensional
harmonic potential and give other examples of shortcuts which may be of
experimental relevance. For clarity, some details concerning the calculations
have been moved to App. C.

3.1 Quantum adiabatic transformations
The term adiabatic is a confusing one in physics because it has different mean-
ings. The word itself has a Greek root and means “not passing through” [194].
In the context of thermodynamics, it is the heat that is not passing through
the walls of the container: this word describes a process in which no heat is
exchanged. In that sense, thermodynamical adiabatic transformations need
by no means be slow.

In quantum mechanics, the meaning is different: a process is adiabatic
when the probabilities for the system to make transitions between the time-
dependent (or “instantaneous”) eigenstates of the Hamiltonian are negligible.
This condition may be very constraining and can be weakened if one assumes
that the system is initially in a given instantaneous eigenstate |λ; t〉 of the
Hamiltonian (the λ’s denote all the necessary quantum numbers). The evolu-
tion will then be said adiabatic in the time interval t ∈ [0, tf ] if the populations
of all the other time-dependent eigenstates stay low during this interval.

In the next sections, we recall the adiabatic theorem of quantum mechanics
and give a few useful criteria for particular transformations to be adiabatic.
They will be useful as a reference in the rest of the chapter.

3.1.1 The adiabatic theorem
The precise formulation of the adiabatic theorem was first given by Born
and Fock [192], and later refined by others (see e.g. Refs. [193, 203, 204]).
Suppose we have a varying Hamiltonian H(t) of which {|λ; t〉} is a basis of
time-dependent eigenstates (the spectrum is written {~ωλ(t)}). The adiabatic
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theorem states that if this Hamiltonian is slowed down — mathematically, this
is achieved by evolving the system with the new one Hε(t) ≡ H(εt) with ε < 1
— then the solutions |Ψε; t〉 of the Schrödinger equation associated to Hε(t)
satisfy

|Ψε; t〉 − exp
{
−i
∫ t

0

[
ωλε(t′)− i〈λε; t′|

∂

∂t′
|λε; t′〉

]
dt′
}
|λε; t〉 = O(ε), (3.1)

where we have written {|λε; t〉} a basis of instantaneous eigenstates of Hε(t)
and {~ωλε(t)} its spectrum. This means that when the evolution is infinitely
slow (ε→ 0) the instantaneous eigenstates, chosen with this appropriate phase,
coincide with the solutions of the Schrödinger equation. This is quite intuitive.

3.1.2 Criteria for adiabaticity
One sees that the adiabatic theorem is not often relevant to practical problems,
because it is just valid in the limit ε → 0. For instance, if one wants to use
it in a problem involving a two-level atom interacting with a classical field
oscillating with a pulsation ω, the theorem can only be applied in the limit
ω′ ≡ εω → 0, which is not very useful since it corresponds to a static field.

Nevertheless, one can calculate the criteria on the rate of evolution for the
transformation to be nearly adiabatic. If the initial state is |λ; t = 0〉 and the
spectrum is discrete, the criteria often used is∑

λ′ 6=λ

∣∣∣∣ 〈λ′; t|∂t|λ; t〉
ωλ(t)− ωλ′(t)

∣∣∣∣� 1, (3.2)

where the sum is over all the instantaneous eigenstates other than |λ; t〉. It
is important to remember that this condition is generally neither necessary
nor sufficient for adiabaticity, as explained in Ref. [194]. Nevertheless, for the
problem we will consider in this chapter, i.e. the decompression of a harmonic
potential with a monotonously decreasing frequency ω(t), condition (3.2) is
sufficient for the transformation to be adiabatic.

Criterion for the decompression of a harmonic potential

We first consider a 1D harmonic potential whose center is not moving. The
Hamiltonian is thus H(q, p, t) = p2/2m + mω2(t)q2/2. We assume that the
particle is initially in the ground state |0; t = 0〉. The eigenstates {|n; t〉, n ∈ N}
are the usual orbitals of the harmonic oscillator (HO), but the frequency which
is usually constant is now time-dependent. The calculation of the left-hand
side of Eq. (3.2) gives the criterion∣∣∣∣ 1

4
√

2
ω̇

ω2

∣∣∣∣� 1. (3.3)
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For instance, if one uses what we will call in the rest of the chapter a “linear
decompression”, i.e., a decompression of the form1 ω2(t) = ω2(0) − [ω2(0) −
ω2(tf )]t/tf , where tf is the duration of the decompression and ω(tf ) < ω(0),
the criterion (3.3) is more constraining at the end of the decompression when
ω is smaller and thus becomes, expressed on tf ,

tf �
1

8
√

2ω(tf )

[
ω2(0)
ω2(tf ) − 1

]
. (3.4)

As underlined in Ref. [19], a more efficient strategy to perform an adia-
batic decompression (or compression) is to distribute ω̇/ω2 uniformly along
the trajectory, i.e., to impose ω̇/ω2 = c, where c is a constant. This yields the
trajectory

ω(t) = ω(0)
1 + t

tf

(
ω(0)
ω(tf ) − 1

) , (3.5)

and the condition (3.3) becomes

tf �
1

4
√

2

∣∣∣∣∣ 1
ω(tf ) −

1
ω(0)

∣∣∣∣∣ . (3.6)

These conditions will be useful in Sec. 3.3 where we will see that our shortcuts
can in principle lead to the same final state as obtained after an adiabatic
decompression, but still strongly violate these criteria.

3.2 Scaling properties of harmonically confined ultra-
cold gases: two examples

In this section, we recall how the density and velocity distributions of a one-
dimensional (1D) non-interacting gas are affected by a change of the harmonic
confinement. In 1D, the harmonic trap is fully described by its time-dependent
angular frequency ω(t), and minimum position q0(t). We show that the dy-
namics is fully described by two scaling functions, one associated to the size
of the cloud, the other to its center-of-mass position, and exhibit the exact
solutions of the Schrödinger equation. This will be used in the rest of the
chapter to realize shortcuts to adiabaticity (cf. Sec. 3.3). Similar scaling prop-
erties are also recalled for Bose-Einstein condensates (BECs) with interactions
strong enough to be well described by the Thomas-Fermi regime. The analogy
between the invariant method used for the non-interacting gas [205], and the
scaling often used for BECs [48–50] is underlined.

1We call this a “linear decompression” because in the experiment, it corresponds to de-
creasing the current I of the magnetic trap linearly with time, since ω2(t) ∝ U(q, t) ∝
|B(q, t)| ∝ I(t).
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3.2.1 The non-interacting gas
We consider a 1D non-interacting gas confined in the most general time-
dependent harmonic potential, described by the one-particle Hamiltonian

H(q, p, t) = p2

2m + 1
2mω2(t) [q − q0(t)]2 , (3.7)

where q and p are conjugate variables, and m is the mass of a particle. We
first recall how dynamical invariants can be used to find the general solutions
of the Schrödinger equation.

Definition and properties of dynamical invariants

In 1969 Lewis and Riesenfeld [205] generalized the concept of invariant of
motion to the case of explicitly time-dependent Hamiltonians H(q, p, t). Such
Lewis invariants (also called dynamical invariants, or first integrals) can be
used to solve the Schrödinger equation

i~
∂|t〉
∂t

= H(q, p, t)|t〉. (3.8)

Given a time-dependent Hamiltonian H(q, p, t), a time-dependent hermi-
tian operator I(q, p, t) is a dynamical invariant of the system described by H
if it is constant under Hamiltonian evolution, that is if

dI
dt ≡

∂I

∂t
+ 1
i~

[I,H] = 0 . (3.9)

In this case, the following properties hold [205]:

1. if |t〉 is a solution of (3.8), then I|t〉 is also a solution of (3.8),

2. the eigenvalues λ(t) and associated eigenvectors |λ; t〉 of I are a priori
time-dependent. We assume they form a complete set. It turns out that
the eigenvalues are actually constant: λ(t) = λ. They are real because
I is hermitian.

3. The eigenvectors of I satisfy

for all λ, λ′ such that λ 6= λ′, 〈λ′; t|i~ ∂
∂t
|λ; t〉 = 〈λ′; t|H|λ; t〉. (3.10)

4. If we assume that I does not contain the operator ∂/∂t, then the set of
vectors {eiαλ(t)|λ; t〉, αλ(t) ∈ R(t)} is also a complete set of eigenvectors
of I. If these functions are chosen to solve the equations

dαλ
dt = 〈λ; t|i ∂

∂t
− H

~
|λ; t〉, (3.11)
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equation (3.10) also holds for λ′ = λ. Using the fact that the set is com-
plete, this gives the general solutions of the time-dependent Schrödinger
equation as

|t〉 =
∑
λ

cλ e
iαλ(t)|λ; t〉 , (3.12)

where the cλ’s are constant complex numbers.
The solutions of the Schrödinger equation are thus given by the knowledge
of an invariant I(q, p, t), any set of its time-dependent eigenvectors, and the
phases αλ(t) which must solve Eqs. (3.11).

Derivation of a dynamical invariant

In this section, we give a simple derivation of the invariants of a 1D time-
dependent HO described by (3.7). We use the classical formalism to derive
the invariant, which is also an invariant of the corresponding quantum system.

The canonical Hamilton equations of motion associated with the Hamilto-
nian (3.7) are

dq
dt = {q,H} = p

m
, (3.13a)

dp
dt = {p,H} = −mω2(t)[q − q0(t)], (3.13b)

where {A,B} ≡ ∂A
∂q

∂B
∂p −

∂A
∂p

∂B
∂q are the Poisson brackets of two observables A

and B.
When the angular frequency ω(t) and trap center q0(t) vary, one expects

the cloud to be displaced and to change its size, thus one can introduce a
canonical change of variables

Q = q − qcm(t)
b(t) , P = P (q, p, t), τ = τ(t), (3.14)

leading to a new Hamiltonian H ′. One has to derive conditions on the real
dimensionless function b, and the displacement function qcm such that the
transformation is canonical. For this, we look for a new Hamiltonian of the
form

H ′ = P 2

2m + 1
2mω2

0 Q
2 + f(τ), (3.15)

where ω0 is a constant angular frequency. The Hamiltonian explicitly depends
on time only through the function f(τ) (which does not contain the variables
Q and P ). The transformation (3.14) is canonical if

dQ
dτ = {Q,H ′}, (3.16a)

dP
dτ = {P,H ′}. (3.16b)
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From Eq. (3.16a) one deduces that

dτ = b−2 dt (3.17)

and that
P = b(p−mq̇cm)−mḃ(q − qcm), (3.18)

where the dot denotes the derivation with respect to time t. From Eq. (3.16b),
one finds that the functions b and qcm must obey the two differential equations

b̈+ ω2(t) b = ω2
0
b3
, (3.19)

q̈cm + ω2(t)[qcm(t)− q0(t)] = 0. (3.20)

When these two equations are satisfied, the quantity

I = P 2

2m + 1
2mω2

0 Q
2, (3.21)

which appears in the new Hamiltonian is a Lewis invariant. This can be proved
directly by checking that Eq. (3.9) is verified.

The choice of the function f(τ) in H ′ is irrelevant for the dynamics, since
doing the change of Hamiltonian

H ′ → H ′ − f(τ) = I (3.22)

corresponds to a gauge transformation which changes the phase of the wave
function in the following manner:

ψH′(Q, τ)→ ψI(Q, τ) = e
i
~F (τ)ψH′(Q, τ), (3.23)

where F is a primitive of f .

Classical generating function of the transformation

Canonical transformations modify the Lagrangian and the action. If the least
action principle is

LH(q + δ, q̇ + δ̇, t)− LH(q, q̇, t) ' δ
∫

(pdq −Hdt) = 0, (3.24)

with the initial Hamiltonian, δ being the function giving the distance between
the actual trajectory and a neighbor one, it reads

LH′(Q+ δ′,
•
Q+

•
δ′, τ)− LH′(Q,

•
Q, τ) ' δ′

∫ (
PdQ−H ′dτ

)
= 0, (3.25)
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with the new Hamiltonian H ′. The operator •· is the differentiation with
respect to the new time τ . The two terms under the integrals are the exact
differentials of the actions dSH and dSH′ . These two least action principles
correspond to the same dynamics (i.e. the transformation is canonical) if the
least actions of any trajectory differ by a constant in the two formulations, i.e.
if the actions are the same up to an exact differential of a function G of the
canonical variables [206]. Such a function is called the generating function of
the canonical transformation. As explained above, it is defined by

dG = dSH′ − dSH . (3.26)

A canonical transformation is thus not fully specified by its corresponding
canonical change of variables [of the kind of Eqs. (3.14)]. For instance, it does
not say how the time-dependent origin of the energy is chosen in the new
Hamiltonian (if H ′ is admissible, then any H ′ + f(τ) is also admissible). In
classical physics, this is not a problem because such a time-dependent factor
does not change the trajectories, but in quantum mechanics, the phase of the
wave function changes if such a term is added to H ′.

We look for a generating function expressed with the variables q, P , and
t. It thus satisfies

∂G

∂q
= p,

∂G

∂P
= Q,

∂G

∂t
= H ′

dτ
dt −H. (3.27)

From these identities and Eq. (3.17), we obtain the generating function up to
a time-dependent function g(t)

G(q, P, t) =
(
q − qcm

b

)
P + mḃ

2b q
2 +m

(
ḃqcm + bq̇cm

)
q + g(t). (3.28)

At this point, the new Hamiltonian is H ′(t) = I/b2 +α(t). By fixing g(t), α(t)
will be fixed. We impose α(t) = 0, which gives the following form for g:

g(t) = −m2

∫ t

0

[(
ḃqcm + bq̇cm

)2
− ω2

0
b2
q2
cm

]
dt′

b2
. (3.29)

We have chosen α = 0 such that the eigenstates of I transformed by G are
directly the time-dependent solutions of the initial Hamiltonian, with the ap-
propriate phase.

Wave functions

Once an invariant has been found, the results of Sec. 3.2.1 can be used to
calculate the wave functions of the time-dependent HO (3.7). We use Dirac’s
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method to calculate the wave function of the time-independent HO (3.21). We
define dimensionless variables

ξ =
√
mω0
~

Q, π = 1√
m~ω0

P, (3.30)

satisfying the commutation relation [ξ, π] = i, and introduce the lowering and
raising operators

a = 1√
2

(ξ + iπ), a† = 1√
2

(ξ − iπ), (3.31)

satisfying [a, a†] = 1. The invariant reads

I = ~ω0(a†a+ 1/2). (3.32)

The eigenstates |n〉 of the number operator n̂ ≡ a†a are the eigenstates of I
and satisfy

a|n〉 =
√
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉, n ∈ N, (3.33)

and a|0〉 = 0. The eigenvalues of I are

λn =
(
n+ 1

2

)
~ω0, n ∈ N. (3.34)

The wave function ψ0(q, t) ≡ 〈q|0〉 is calculated by solving the equation

a|0〉 = 0 (3.35)

in |q〉 representation. The expression of π is obtained from p = −i~ ∂q,
Eqs. (3.14) and (3.30), and reads

π = −i ∂
∂ξ
− bḃ

ω0
ξ −

√
m

~ω0
b q̇cm. (3.36)

Imposing the normalization condition
∫

dq |ψ0(q, t)|2 = 1, and calculating the
time-dependent phase corresponding to the initial Hamiltonian (3.7), we ob-
tain the wave function

ψ0(q, t) = π−1/4
√
ahob

exp
[
−1

2

(
q − qcm
ahob

)2
]
e−

i
~F (t)eiφ(q,t)e−

i
~λ0
∫ t

0 dt′/b2 , (3.37)

where

φ(q, t) = m

~

[
ḃ

2bq
2 + 1

b

(
q̇cmb− qcmḃ

)
q

]
, (3.38)

F (t) = m

2

∫ t

0
dt′
[

1
b2

(
q̇cmb− qcmḃ

)2
− ω2

0
q2
cm
b4

+ ω2(t′)q2
0

]
, (3.39)
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and q0, b, qcm, and their derivatives are functions of t (t′ when they are under
an integral symbol) and are linked by Eqs. (3.19) and (3.20). aho =

√
~/mω0

is the HO length of I.
From this expression, we see the physical meaning of the two scaling func-

tions: qcm(t) is the center of the wave function (center of mass of a cloud which
was initially at equilibrium), and ahob is the width of the wave function.

The wave function associated to the eigenvalue λn of I is expressed in
terms of the nth Hermite polynomial Hn as

ψn(q, t) = 1√
2nn!

ψ0(q, t)Hn

(
q − qcm
ahob

)
e−

i
~ (λn−λ0)

∫ t
0 dt′/b2 . (3.40)

3.2.2 The case of an interacting Bose-Einstein condensate
For the corresponding three-dimensional (3D) interacting system of N parti-
cles, the Hamiltonian is

H =
N∑
i=1

[
p2
i

2m + U(ri, t)
]

+
∑
i<j

V (rj − ri). (3.41)

The potential U is supposed to be a time-dependent 3D HO, and the rotation
of this harmonic confinement is excluded for the moment (the trap keeps the
same eigenaxes):

U(r, t) =
∑

i∈{x,y,z}

1
2mω2

i (t)
[
ri − r0

i (t)
]2
, (3.42)

V is the interaction potential between two particles, which is well approxi-
mated by a delta function (cf. Sec. 1.1.4).

The procedure described in Sec. 3.2.1 cannot be easily adapted, because
it would require the knowledge of an invariant of this many-body system.
However, when dealing with a BEC, as we have seen in Sec. 1.2, the dynamics
is well described by a single-particle wave function whose evolution obeys the
Gross-Pitaevskii equation (GPE).

Scaling approach

Let us consider a quantum system described by the wave function ψ(r, t),
whose time evolution is given by the GPE

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m∆ + U(r, t) + g3DN |ψ(r, t)|2
]
ψ(r, t), (3.43)

with m being the mass of the particles, N the number of particles, and g3D
the interaction coupling constant. Analogously to the non-interacting case,



3.2. Scaling properties of harmonically confined ultracold gases: two examples101

we wish to write the solution of the time-dependent GPE as a function of the
solution of a time-independent one expressed in a suitable frame of reference.
Following this line, a strategy to solve Eq. (3.43) is to find a change of variables
ρ(r, {bi(t)}, {rcmi (t)}) where the bi’s and the rcmi ’s are scaling and translation
functions such that Eq. (3.43) can be written as a time-independent equation
(i.e. a GPE with a time-independent potential) on the wave function χ(ρ, τ),
defined by the relation

ψ(r, t) = A(t)χ(ρ, τ)eiφ(r,t), (3.44)

where A(t) is a time-dependent normalization factor and φ(r, t) a space- and
time-dependent phase. All the dynamics induced by the time-dependent po-
tential is transferred to the functions {bi(t)} and {rcmi (t)}, and the differential
equations they have to satisfy (similar to Eqs. (3.19) and (3.20)). If one
can solve the new time-independent equation on χ, one solves Eq. (3.43) and
knows the wave function ψ(r, t).

Equation (3.43) is invariant under the transformation

∀i ∈ {x, y, z}, ρi = ri − rcmi (t)
bi(t)

(3.45)

in any of the following cases:

1. in the non-interacting limit [48, 207]: in this case the system is equivalent
to three independent HO of the kind treated in Sec. 3.2.1,

2. for a suitable driving of the interaction term g3D [207], that is, assuming
one can control g3D(t) at will (this can be done using Feshbach reso-
nances),

3. in the TF limit [49].

This third case, which is detailed in the following section, is used in the rest
of this chapter.

Condensate wave function in the Thomas-Fermi approximation

Given a time-dependent GPE, the TF approximation consists in neglecting the
kinetic-energy-like term in the ρ-frame of reference, i.e.
−~2/(2m)

∑
i b
−2
i ∂2χ/∂ρ2

i , supposed to be small compared to the interaction
term [49, 50]. In this regime, provided that A(t) = (Πibi)−1/2 and that

φ(r, t) = m

~

{∑
i

[
r2
i

2
ḃi
bi

+ ri
bi

(
ṙcmi bi − rcmi ḃi

)]}
+ φ0(t), (3.46)
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with

φ0(t) = −m2~
∑
i

∫ t

0
dt′
{

1
b2i

(
ṙcmi bi − rcmi ḃi

)2
− ω2

i (0)(rcmi )2

b4i
+
[
ωi(t′)r0

i (t′)
]2}

,

(3.47)
where the scaling and translation functions are solutions of

∀i ∈ {x, y, z}, b̈i + ω2
i (t)bi = ω2

i (0)
bibxbybz

, (3.48)

r̈cmi + ω2
i (t)

[
rcmi − r0

i (t)
]

= 0, (3.49)

one gets the following equation on χ:

i~
∂

∂τ
χ(ρ, τ) =

[
U(ρ, 0) + g3DN |χ(ρ, τ)|2

]
χ(ρ, τ), (3.50)

where we defined a rescaled time

τ(t) =
∫ t

0

dt′

Πibi(t′)
. (3.51)

If at t = 0 the condensate is at equilibrium, the solution of Eq. (3.50) is

χ(ρ, τ) =
[
µ− U(ρ, 0)
g3DN

]1/2
e−i

µ
~ τ , (3.52)

where µ is the chemical potential. This gives the typical inverted parabola
density profile whose sizes evolve in time as Ri(t) = Ri(0)bi(t), where the
Ri(0) =

√
2µ0/mω2

i (0) are the initial TF radii.

3.3 Shortcuts to adiabaticity
In this section, the definition of a shortcut to adiabaticity is given, and the
results of Sec. 3.2 are used to derive angular frequency trajectories realizing
such shortcuts, for both non-interacting gases and interacting BECs confined
in time-dependent harmonic traps.

3.3.1 Shortcut to adiabaticity based on an invariant of motion
For a system described by a Hamiltonian H(t), a shortcut to adiabaticity is
realized when another Hamiltonian H ′(t) can be found, such that the state
obtained after a finite time of evolution with H ′(t) is identical (up to a global
phase factor) to the final state of the adiabatic evolution with H(t). Shortcuts
to adiabaticity are generally not adiabatic; only the final state is identical to
that obtained after an adiabatic evolution.



3.3. Shortcuts to adiabaticity 103

The possibility of such shortcuts has been known for a long time. Indeed,
in the case of a HO with a time-dependent frequency Ω(t) treated by Lewis
and Riesenfeld [205], when discussing the transition probability Psm between
two instantaneous eigenstates |s〉 and |m〉 after a given time of evolution with
H(t), the authors noticed:

“[Assuming some conditions on Ω(t)] yields

Psm = δsm,

which also is the result given by the adiabatic approximation. We
conclude that the rigorous transition probability coincides with
the adiabatic transition probability [...]. It is clear that only a
restricted class of Ω(t) functions will produce such a result, but the
members of this class need by no means satisfy any adiabaticity
requirement. The time evolution of such systems [...] will in general
be non-adiabatic.”

Such shortcuts to adiabaticiy can thus be realized by simply engineering the
time-dependent parameters of the Hamiltonian (in this case, the angular fre-
quency).

A practical method to find a class of appropriate ω(t) was detailed by Chen
et al. [19]. In this case, the Hamiltonian is chosen to be time-independent (but
with different frequencies) outside the time interval t ∈ [0, tf ]. An invariant is
engineered to commute with the Hamiltonian outside this interval. This yields
a specific ω(t) for which all the eigenstates of H(t ≤ 0) are exactly mapped to
the corresponding ones of H(t ≥ tf ) after the evolution for t ∈ [0, tf ]. Up to
a global phase and a rescaling of the energies and lengths, the final state (at
time t = tf ) is identical to the initial one (t = 0), i.e. if the initial state is

|ψ ; t ≤ 0〉 =
∑
n

cn|n ; t = 0〉e−iωn(0)t, (3.53)

where {|n ; t〉, n ∈ N} is a basis of instantaneous eigenstates of H(t), with
{~ωn(t)} the corresponding eigenvalues, and

∑
n |cn|2 = 1, the final state is

|ψ ; t ≥ tf 〉 = eiΦ
∑
n

cn|n ; tf 〉e−iωn(tf )t−iδn , (3.54)

where δn = λn/~
∫ tf

0 dt′/b2. This is true even if the initial state is not an
equilibrium state.

Frequency trajectory for a non-interacting gas

The Hamiltonian is assumed to have the form

H = p2

2m + 1
2mω2(t)q2 +mgq, (3.55)
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ħω(0)

ω(0) ω(tf)

Figure 3.1: Schematic representation of the trap decompression. The po-
tential (plain blue line) is the sum of the gravitational potential (dashed
black line) and the harmonic magnetic potential (dashed red line). When
the trap frequency is changed from ω(0) to ω(tf ), the lengths are multiplied
by γ =

√
ω(0)/ω(tf ), and the energies divided by γ2. Because of gravity, the

trap center shifts vertically by ∆q = −g
[
1/ω2(tf )− 1/ω2(0)

]
.

which is identical to (3.7), with the additional constraint q0(t) = −g/ω2(t)
(and a gauge transformation consisting in adding −mω2(t) q2

0(t)/2 to H). It
describes a single particle in a harmonic trap subject to a constant force, which,
in the experiments presented in Sec. 3.4, comes from gravity. The angular
frequency ω(t) is assumed to be constant outside the interval t ∈ [0, tf ]. During
this interval, the problem is to find the appropriate frequency trajectory ω(t),
connecting the initial trap of initial frequency ω(0) to a final trap of frequency
ω(tf ), for the decompression [or compression if ω(0) < ω(tf )] to implement
a shortcut to adiabaticity. Figure 3.1 shows the initial and final situations
assuming a decompression [ω(tf ) < ω(0)].

We used the strategy introduced by Chen et al. [19]. If the invariant
commutes with the Hamiltonian

[I,H] = 0 (3.56)

for t ≤ 0 and t ≥ tf , and provided that the functions b and qcm are suffi-
ciently continuous, the stationary states of H(t ≤ 0) will be transferred to the
corresponding ones of H(t ≥ tf ).

It is convenient to use the dimensionless function

c(t) = −ω
2
0
g

qcm(t)
b(t) (3.57)
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instead of qcm, and to rewrite Eq. (3.20) using the rescaled time τ [Eq. (3.17)].
Equation (3.20) becomes

d2c/dτ2 + ω2
0 c = ω2

0 b
3. (3.58)

If one chooses to set ω0 = ω(0), and the conditions

b(0) = 1, ḃ(0) = 0, (3.59a)
c(0) = 1, ċ(0) = 0, (3.59b)

then I(0) = H(t ≤ 0), and if

b(tf ) = γ, ḃ(tf ) = 0, (3.59c)
c(tf ) = γ3, ċ(tf ) = 0, (3.59d)

where γ ≡
√
ω0/ωf , then I(tf ) = γ2H(t ≥ tf ) + h(t), where h is a func-

tion of time only. These boundary conditions thus fulfil the condition (3.56).
Since the functions b and c must be solutions of Eqs. (3.19) and (3.58), four
additional boundary conditions must be satisfied:

b̈(0) = 0, b̈(tf ) = 0, (3.59e)
c̈(0) = 0, c̈(tf ) = 0. (3.59f)

Polynomial ansatz In order to construct the functions b and c satisfying
these boundary conditions and the two differential equations (3.19) and (3.58),
it is convenient to write all the boundary conditions on the function c and
its derivatives with respect to the rescaled time τ . Using Eqs. (3.17) and
(3.19), and differentiating Eq. (3.58) twice with respect to τ , one finds the ten
conditions

c(0) = 1, (3.60a)
c(τf ) = γ3, (3.60b)

and, for all k ∈ {1, 2, 3, 4},

dkc
dτk (0) = 0, (3.60c)

dkc
dτk (τf ) = 0, (3.60d)

which are sufficient for the twelve boundary conditions (3.59). τf is the
rescaled time corresponding to tf : τf =

∫ tf
0 b−2(t′) dt′.
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Under this form, the boundary conditions are well suited to use a poly-
nomial ansatz for c(τ), deduce b(τ) with Eq. (3.58), compute τ(t) by numer-
ically integrating Eq. (3.17), and obtain b(t). The final step consists in using
Eq. (3.19) to obtain the time-dependent trap frequency as ω2(t) = ω2

0/b
4− b̈/b.

An example of this procedure is given in Fig. 3.2 for particular values of the
initial and final frequencies. The final rescaled time τf can be chosen at will, it
can be arbitrarily small, but one important constraint on the function c is that
it must not lead to vanishing values of b which give infinite ω2(t). Additional
constraints on c arise from experimental requirements, such as positive ω2(t)
(attractive potentials), the maximal and minimal frequencies attainable with a
given setup, the rate at which ω(t) can be varied etc. Since all these depend on
a particular experimental setup, no mathematical analysis of the best ansatz
to use was done.

For the experiments presented in Sec. 3.4 and in Refs. [208, 209], a poly-
nomial of order fifteen was used,

c(τ) =
15∑
k=0

ck

(
τ

τf

)k
. (3.61)

The first coefficient is fixed to 1 by Eq. (3.60a) and c1, · · · , c4 are fixed to 0
by Eqs. (3.60c). We arbitrarily impose c5 = c6 = · · · = c10 = 0, which leaves
five coefficients which are uniquely determined by the remaining boundary
conditions (3.60b) and (3.60d). The calculation of these remaining coefficient
is done by inverting the linear system corresponding to these five equations.

In principle, since there are ten boundary conditions, a 9th order polyno-
mial can be used, which yields a unique solution for the ten coefficients of c.
Nevertheless, the obtained trajectory was not well behaved enough to be re-
alized experimentally (the frequency was decreasing too fast in the beginning
compared to what could be achieved by the apparatus). This is the reason
why a higher order polynomial was used and six coefficients were fixed to 0.

Since the polynomial can be of any order greater than 9, and the boundary
conditions only impose a linear relation between ten of its coefficients, there
is obviously an infinity of different solutions connecting two given initial and
final states. Moreover, other functions than polynomials could be used for c,
as long as they provide enough free parameters.

The obtained nonzero coefficients of (3.61) are given in Tab. 3.1.

Example

In this section we determine the trajectory used in Sec. 3.4.2 and in Ref. [208].
The parameters are given in Tab. 3.2. Figure 3.2 shows the functions c(τ),
b(τ), t(τ) and ω(t)/2π corresponding to this decompression.
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Table 3.1: Nonzero coefficients of the polynomial ansatz c(τ) calculated from
the boundary conditions (3.60).
c0 c11 c12 c13 c14 c15

1 1365(γ3 − 1) 5005(γ3 − 1) 6930(γ3 − 1) 4290(γ3 − 1) 1001(γ3 − 1)

Table 3.2: Parameters of the 1D decompression of a non-interacting thermal
gas.

Initial frequency ω(0)/2π 235.8 Hz
Final frequency ω(tf )/2π 15.67 Hz
Final rescaled time τf 5.65 ms
Corresponding duration tf 35.0 ms

Since the exact wave functions are known, all the properties of the atomic
cloud during the decompression can be calculated. For instance, Fig. 3.3 dis-
plays the size and center-of-mass position of a cloud initially at equilibrium
in the compressed trap. These are compared to the same values if the de-
compression were done very slowly as in the adiabatic theorem. The clear
difference between the solid and dashed curves illustrates the fact that the
decompression is not adiabatic.

3.3.2 Shortcut to adiabaticity for an interacting Bose-Einstein con-
densate in the Thomas-Fermi limit

Let us suppose that ψ(r, t ≤ 0) is a stationary state of Eq. (3.43). We can
engineer the parameters of the potential U(r, t) such that ψ(r, tf ) is also a
stationary state for t ≥ tf . This implies that χ(ρ, τ ≥ τf ), with τf = τ(tf ),
must be a stationary state of Eq. (3.50) and that ∇rφ(r, tf ) = 0. If these
two conditions hold, ψ(r, t) can evolve between two stationary states during
the time interval [0, tf ], even if it is strongly different from the “adiabatic
stationary state” during the evolution. In our experiment, the time-dependent
trapping potential has a cylindrical symmetry of the form

U(r, t) = 1
2mω2

⊥(t)
(
r2
x + r2

z

)
+ 1

2mω2
‖(t)r

2
y +mgrz , (3.62)

with initial and final angular frequencies ω⊥,‖(0) and ω⊥,‖(tf ) = ω⊥,‖(0)/γ2
⊥,‖

respectively. This case corresponds to fixing ∀ t, r0
x,y(t) = 0 in Eq. (3.42) and

r0
z(t) = −g/ω2

⊥(t). By introducing the dimensionless function

c(t) = −ω
2
⊥(0)
g

rcmz (t)
b⊥(t) , (3.63)
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Figure 3.2: Determination of the frequency trajectory when the trap is decom-
pressed from ω(t = 0)/2π = 235.8 Hz to ω(tf )/2π = 15.67 Hz within 35 ms
(cf. parameters of Tab. 3.2). (a) A fifteenth order polynomial ansatz is used
for the displacement function c(τ), which gives (b) the scaling function b(τ)
through Eq. (3.58); (c) real time t(τ) is calculated by numerically integrating
Eq. (3.17); (d) Eq. (3.19) is used to determine the time-dependent frequency
ω(t)/2π (note the logarithmic scale).

the differential equations (3.48) and (3.49) take the form

b̈⊥(t) + b⊥(t)ω2
⊥(t) = ω2

⊥(0)/[b3⊥(t)b‖(t)], (3.64)
b̈‖(t) + b‖(t)ω2

‖(t) = ω2
‖(0)/[b2‖(t)b

2
⊥(t)], (3.65)

b4⊥(t)b‖(t)c̈(t) + 2b3⊥(t)b‖(t)ḃ⊥(t)ċ(t) + ω2
⊥(0)c(t)− ω2

⊥(0)b3⊥(t)b‖(t) = 0.
(3.66)

The final state is an equilibrium state if (i) the final TF radii satisfy that
R⊥,‖(tf )/R⊥,‖(0) = γ2

⊥,‖, (ii) the vertical center-of-mass position fulfills the
condition rcmz (tf )/rcmz (0) = γ4

⊥, and (iii) the condensate flow is null, namely
∇φ = 0. These constraints yield the boundary conditions ċ(0) = ċ(tf ) =
ḃ⊥,‖(0) = ḃ(tf )⊥,‖ = 0 and c(0) = 1, c(tf ) = γ

14/5
⊥ γ

2/5
‖ , b⊥,‖(0) = 1, b⊥(tf ) =

γ
6/5
⊥ γ

−2/5
‖ and b‖(tf ) = γ

−4/5
⊥ γ

8/5
‖ . These latter imply that b̈⊥,‖(0) = b̈⊥,‖(tf ) =
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Figure 3.3: Expected (a) center-of-mass position and (b) cloud size during a
fast decompression (same parameters as Tab. 3.2 and Fig. 3.2). The dashed
curves correspond to the same values in the adiabatic limit tf → ∞. The
adiabatic center-of-mass position is the trap minimum qad.(t) = −g/ω2(t),
and the adiabatic size is σad.(t) =

√
ω0/ω(t)σ(0).

0 must hold as well, giving sixteen independent boundary conditions.
Our procedure to engineer ω⊥,‖(t) is to reduce the dimensionality of the

problem by only considering the trajectories that lead to a constant axial size.
This corresponds to keeping b‖(t) = b‖(0) for any t, fixing a trap decompression
with γ⊥ = γ2

‖ . This choice simplifies the determination of the trajectories, but
it does not reflect a restriction of the range of application of the method. In
this case, Eqs. (3.64)–(3.66) reduce to

b̈⊥(t) + b⊥(t)ω2
⊥(t) = ω2

⊥(0)/b3⊥(t), (3.67)
ω‖(t) = ω‖(0)/b⊥(t), (3.68)

b4⊥(t)c̈(t) + 2b3⊥(t)ḃ⊥(t)ċ(t) + ω2
⊥(0)c(t)− ω2

⊥(0)b3⊥(t) = 0. (3.69)

Equation (3.67) is identical to Eq. (3.19) and Eq. (3.69) is nothing but Eq. (3.58)
expressed in terms of the real time t [the rescaled time being given by Eq. (3.51)
instead of Eq. (3.17)]. Thus we can exploit for b⊥(t) and c(t) the solutions ob-
tained for the non-interacting gas, provided that the axial frequency is varied
according to Eq. (3.68).

Example

As an example of the procedure described above, we determine the trajectories
used in Sec. 3.4.3 and in Ref. [209]. The decompression parameters are given
in Tab. 3.3. The radial frequency is reduced by a factor of 9, and the axial
frequency by a factor of 3. The obtained trajectories are represented in Fig. 3.4.
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Table 3.3: Parameters of the 3D decompression of an interacting Bose-Einstein
condensate.

Initial radial frequency ω⊥(0)/2π 235.8 Hz
Final radial frequency ω⊥(tf )/2π 26.2 Hz
Initial axial frequency ω‖(0)/2π 22.2 Hz
Final axial frequency ω‖(tf )/2π 7.4 Hz
Final rescaled time τf 11.555 ms
Corresponding duration tf 30.0 ms
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Figure 3.4: (a) Radial and (b) axial trap frequencies for the shortcut decom-
pression of a BEC in tf = 30 ms.

Validity of the Thomas-Fermi approximation

To check the validity of the Thomas-Fermi approximation that led to the
trajectories of Fig. 3.4, three-dimensional Gross-Pitaevskii simulations have
been performed and compared with the analytical results of Sec. 3.3.2. In the
numerical solution we use a split step operator in time combined with a fast
Fourier transformation in space. The results are presented in Fig. 3.5 and
show that this approximation is well justified for our experimental parameters
(decompression of Fig. 3.4, number of atoms N ∼ 105, scattering length of
87Rb of as ' 110 a0, a0 being the Bohr radius).

3.4 Experimental realization of shortcuts to adiabaticity

The procedure described above was tested experimentally by quickly decom-
pressing a trapped ultracold gas of 87Rb atoms. In this section, we describe
the experimental sequence, how the decompression is controlled, monitored,
and compared to simpler (non-optimal) schemes.
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Figure 3.5: Comparison between the GPE simulations (dashed red lines) and
the scaling solutions given by the Thomas-Fermi approximation (solid black
lines) showing its validity. (a) Center-of-mass position; (b) axial and radial
sizes. The peak relative difference between the scaling solution and the GPE
simulations are respectively 0.3 % and 0.2 % for the axial and radial sizes. The
decompression occurs during the first 30 ms, after which the cloud evolves in
the static final trap.

3.4.1 Control of the trapping frequencies

As we have seen in Chap. 2, the trap is well approximated by a 3D harmonic
potential for sufficiently low temperatures T � µBB0/kB. This temperature
is approximately 100 µK for our typical bias of 1.5 G. In the initial compressed
trap , the frequencies are measured to be ωx(0)/2π = 228.1 Hz, ωy(0)/2π =
22.2 Hz and ωz(0)/2π = 235.8 Hz, the z axis being the vertical one.

Implementing shortcuts to adiabaticity requires a precise control of the
trapping frequencies, in a dynamical fashion. In our QUIC magnetic trap,
this can be achieved by varying the current iQ running through the three
coils, and the current iB0 running through an additional pair of Helmoltz coils
positioned along the axial dimension of the trap (compensation coils). The
resulting potential is

U(x, y, z) = µ|B| ' µ
[
B0 + 1

2
B′2

B0

(
x2 + z2

)
+ 1

2B
′′y2
]
, (3.70)

where µ/h = 1.4 MHz/G for atoms in |52S1/2, F = 2,mF = +2〉. B′ is the
radial magnetic field gradient while B′′ corresponds to its curvature along y.
We recall that the radial and axial angular frequencies are

ω⊥ ≡ ωz ' ωx '
√
µ

m

B′(iQ)√
B0(iQ, iB0)

, ω‖ ≡ ωy =
√
µ

m

√
B′′(iQ). (3.71)
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Figure 3.6: Vertical trap frequency
calibration. The solid line is the
theoretical shortcut decompression
trajectory, the circles are the mea-
sured frequencies. The parameters
of the decompression are given in
Tab. 3.2.

These expressions show that the radial and axial frequencies can be controlled
independently to some extent. The experimental realization of the shortcut
trajectories requires a careful preliminary calibration of the frequencies versus
currents, which is achieved by monitoring the cloud’s center-of-mass oscilla-
tions after a small excitation (cf. Sec 2.2.2). Due to the finite time response of
the control circuit, it is also necessary to check the behavior of the frequency
during an actual trajectory. This is illustrated in Fig. 3.6, where we com-
pare the theoretical decompression trajectory of Fig. 3.2 (line) to measured
experimental values (circles). In this example, the deviation is below 5%.

3.4.2 Shortcut to adiabaticity for a non-interacting gas
In order to produce an ultracold thermal cloud sufficiently dilute for collisions
to be negligible, the loading time of MOT2 is reduced. Then an evaporation
ramp similar to the one used to obtain BECs is applied. This produces a dilute
thermal gas, with a low elastic collision rate. It contains N ' 105 atoms at
a temperature of T0 = 1.6 µK. This corresponds to an average collision rate
per particle of γel ' 8 Hz, and a collision time of 125 ms. This is 30 times
the oscillation period, and more than 3 times the decompression time, which
justifies the non-interacting approximation. The 3 dimensions of the trap are
thus not coupled and the system is equivalent to N simultaneous realizations
of 3 independent HOs.

We use here the decompression trajectory discussed in Sec. 3.3.1, adapted
to the vertical axis (Oz), with the parameters of Tab. 3.2. To maximize the
decompression factor γ2 = ωz(0)/ωz(tf ), the compensation coils current iB0 is
increased from iB0(t = 0) ' 0 A to iB0(tf ) = 3.0 A, while the QUIC current
is decreased from iQ(t = 0) = 26.7 A to iQ(tf ) = 3.6 A (see the resulting
trajectory in Fig. 3.6). The decompression duration is tf = 35 ms.

In theory, starting from a gas at equilibrium and temperature T0 in the
compressed trap, a shortcut to adiabaticity should lead to an equilibrium state
in the final trap, with a temperature Tf = T0 ω(tf )/ω(0). This corresponds
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Figure 3.7: A cloud is first prepared in the compressed trap (frequency ω0),
which is then decompressed within a time tf by simultaneously decreasing
the QUIC current iQ and increasing the compensation coils current iB0 in a
controlled way. The cloud then freely evolves in the decompressed trap for a
variable amount of time thold before a time of flight measurement is performed
(TOF).

to a situation where entropy has not increased. On the contrary, for a non-
optimal decompression, one expects to observe oscillations of the cloud’s size
and center of mass in the decompressed trap, once the decompression is com-
pleted.

To evaluate the efficiency of our shortcut, we thus perform the fast decom-
pression, and hold the cloud in the decompressed trap for a variable amount of
time. The trap is then abruptly switched off, and an absorption image is taken
after a constant time of free expansion (6 ms). This is illustrated in Fig. 3.7.
The amplitude of the dipole (oscillation of the center of mass) and breathing
modes (oscillation of the size) give access to the excess energy provided to
the cloud, as compared to an adiabatic modification of the potential. If the
cloud is reasonably at equilibrium after decompression, one can also directly
measure the final temperature by measuring the evolution of the size during
a free expansion.

In the following, we compare four decompression trajectories:

1. the shortcut, given in Figs. 3.2d and 3.6,

2. a linear decompression of the same duration (35 ms),

3. an abrupt decompression, which, somehow, corresponds to a worst case
scenario (in practice, the decompression time is 0.1 ms and ω(t) is not
controlled, and is imposed by the response of the magnetic trap control
electronics),

4. a 6-s-long linear decompression, which can be considered nearly adia-
batic.
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Figure 3.8: Temperature measure-
ments before (circles) and after de-
compression (squares). The lines
are linear fits. The initial tem-
perature is measured to be T0 =
1.63 µK, and the final tempera-
ture Tf = 130 nK, which is a fac-
tor of 12.5, close to the expected
ωz(0)/ωz(tf ) = 15 (the measure-
ment is done after the 6-s-long lin-
ear decompression).

What is referred to as “linear decompression” corresponds to both control cur-
rents being varied linearly with time. The corresponding frequency trajectory
is not linear2.

The experimental results are summarized on Fig. 3.9. In the case of the
6-s-long linear ramp (filled squares), very little residual excitation is observed
(although the residual dipole mode is still measurable), and the temperature
directly measured by time of flight is close to the expected value for an adi-
abatic decompression (cf. Fig. 3.8). In the shortcut case (open circles), clear
oscillations of the cloud width and center-of-mass position are seen, but they
are much reduced compared to the fast linear ramp (diamonds) and abrupt
decompression (open squares).

Compared to the linear decompression in 35 ms, the shortcut reduces the
amplitude of the dipole mode by a factor of 7.2 (obtained from the sine fits)
and the amplitude of the breathing mode by a factor of 3 (comparison of
the standard deviations of the two sets of data). The excess energy, which is
dominated by the center-of-mass energy, is thus reduced by a factor of ∼ 52.
In the case of the 6-s-long ramp, we measured a final temperature of the cloud
of 130 nK, a factor 12.5 below the initial one. This is consistent with the
expected value of 15. The small difference may arise from a small heating rate
due to the fluctuations of the magnetic trap.

The fact that the shortcut decompression still produces sizeable excitations
is due to experimental imperfections. Several possible causes can be invoked.
Firstly, as seen on Fig. 3.6, there are still small deviations from the ideal
trajectory. These may have an impact, especially in the last phase of the
trajectory where the cloud is subject to a large acceleration (see Fig. 3.3).
Second, as can be seen again in Fig. 3.3, during the trajectory the cloud

2Cf. the expressions of the trap frequencies (3.71) knowing that the magnetic fields are
proportional to the currents



3.4. Experimental realization of shortcuts to adiabaticity 115

0 4 0 8 0 1 2 0 1 6 0 2 0 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5 b )

�	
���

	��

�

��
���

��
����

���


�

T i m e  i n  d e c o m p r e s s e d  t r a p  ( m s )

�

 
a )

0 4 0 8 0 1 2 0 1 6 0 2 0 0

5 0

1 0 0

1 5 0

��
���

���
���

��	
���

�

T i m e  i n  d e c o m p r e s s e d  t r a p  ( m s )

�

 

Figure 3.9: Comparison between different trap decompression schemes (along
the vertical axis). Open red circles: shortcut decompression in 35 ms; black
diamonds: linear decompression in 35 ms; solid blue squares: linear decom-
pression in 6 s; open black squares: abrupt decompression. The decompression
is performed, and then, the cloud is held in the decompressed trap for a vari-
able time. We monitor (a) the vertical center-of-mass position (dipole mode)
and (b) the cloud size (breathing mode), after 6 ms time of flight. In (a), the
solid lines are sine fits, in (b) they just connect the points to guide the eye.

wanders quite far (several hundred µm) from the trap center and feels the
non-harmonic region of the potential. This effect is difficult to quantify since
our knowledge of the potential shape is not sufficiently accurate (however, the
anharmonicity could be inferred from variations of the oscillation frequency
with amplitude).

Fig. 3.10 shows the behavior of the axial size of the cloud in the conditions
of Fig. 3.9b. Since the shortcut trajectory was designed only for the radial
dimensions, the resulting axial breathing mode is of the same magnitude as
for the linear decompression.

We compare in Fig. 3.11 the results of the shortcut decompression to linear
ramps of various durations. The vertical axis in this figure represents ampli-
tudes of oscillations after trap decompression, either of the center-of-mass
position (filled symbols) or of the cloud radius (open symbols), scaled by their
values for an abrupt decompression (tf ∼ 0.1 ms). The horizontal axis is the
duration of the decompression tf (notice the logarithmic scale). The circles
correspond to linear decompressions while the stars are the shortcut results.
As can be seen, fulfilling the adiabaticity criterion is easier for the breathing
mode (size oscillation) than for the dipole mode (center-of-mass oscillation):
the oscillation amplitude is reduced by a factor of 2 for tf = 20 ms for the
earlier, and for tf ' 150 ms for the latter. Using the amplitude of the dipole
mode as a criterion to compare the linear and shortcut schemes, one sees that
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Figure 3.10: Impact of the vertical
decompression schemes on the axial
size (y direction). The same colors
and symbols as in Fig. 3.9 are used.
The amplitude of the axial breath-
ing mode is not affected by the use
of a shortcut trajectory adapted to
the radial dimensions.

the decompression time is reduced by a factor of 37.

3.4.3 Shortcut to adiabaticity for an interacting condensate
As opposed to the previous case of non-interacting atoms, the decompression of
a BEC is an intrinsically 3D problem because of the interactions. As a result,
both the radial and axial frequencies have to be varied following Eqs. (3.67)
and (3.68) in order to realize a shortcut to adiabaticity. In the present section,
we describe a decompression experiment based on the trajectories discussed
in Sec. 3.3.2 and represented in Fig. 3.4. In this scheme, the radial frequency
is decreased by a factor of 9, while the axial frequency is adjusted to maintain
the axial size of the BEC fixed during the whole trajectory. Accordingly, the
axial frequency is decreased by a factor of 3.

We start from an initial BEC containing 1.3× 105 atoms in the condensed
fraction, and 7 × 104 non-condensed atoms at a temperature of 130 nK. The
experimental scheme is similar to that employed for the thermal cloud. Here,
we use a longer time of flight of 28 ms to characterize the various excita-
tions generated by rapid decompressions. Three decompression schemes are
compared:

1. the shortcut to adiabaticity in 30 ms,

2. the linear decompression in 30 ms,

3. an abrupt decompression.

Contrary to the previous case of a thermal cloud, the BEC cannot be held
for more than 150 ms in the compressed magnetic trap because of a relatively
high heating rate. Thus, we cannot compare our scheme to the adiabatic limit
corresponding to a slow linear decompression in this case.

Figure 3.12 shows the temporal behaviour of the cloud following the linear
and shortcut decompressions. These absorption images are taken in the (y, z)
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Figure 3.11: Comparison between linear and shortcut decompression schemes.
We plot the scaled oscillation amplitudes of the breathing (cloud size, open
symbols) and dipole (center-of-mass position) modes versus the decompression
time tf . The circles and stars correspond to linear and shortcut decompres-
sions, respectively.

plane, after a certain holding time in the decompressed trap (indicated in the
figure) plus a 28-ms-long time of flight. The field of view is 545µm× 545µm.
The center-of-mass motion has been subtracted from these data for better
clarity. In the linear case the BEC (yellow central part) undergoes large de-
formations and oscillations of its aspect ratio, whereas in the shortcut case
it remains nearly perfectly stationary. Surprisingly, in the case of the lin-
ear decompression the BEC also oscillates angularly. We attribute this to
an uncontrolled tilt of the trap axes during the decompression. This will be
discussed in more details later. The nearly isotropic aspect of the BEC after
the shortcut decompression is due to the value of the time of flight, which is
close to the critical time of inversion of the aspect ratio. The thermal compo-
nent surrounding the BEC (red halo) is also visible. Its temporal evolution is
discussed at the end of the section.

Analysis of the absorption images

To provide a more quantitative analysis, the column densities obtained from
the absorption images were fitted with a 2D bimodal distribution of the form

ñ(y, z) = ñth(Y1, Z1) + ñbec(Y2, Z2), (3.72)

where the first term accounts for the thermal fraction and is assumed Gaussian

ñth(Y1, Z1) = ñth(0, 0) exp
[
− Y 2

1
2σ2

Y

− Z2
1

2σ2
Z

]
, (3.73)



118 Chapter 3. Shortcuts to adiabaticity for trapped ultracold gases

20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 80 ms 90 ms

100 ms 110 ms 120 ms 130 ms 140 ms 150 ms 160 ms 170 ms

a)

20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 80 ms 90 ms

100 ms 110 ms 120 ms 130 ms 140 ms 150 ms 160 ms 170 ms

b)

3

1

0.1

0.01

O
p

ti
ca

l d
en

si
ty

Figure 3.12: Comparison of linear and shortcut BEC decompressions. We
compare the time evolution of the BEC after two different decompression
schemes: (a) a 30-ms-long linear ramp and (b) the shortcut trajectory (see
text). The center-of-mass motion has been subtracted from these time-of-
flight images for clarity. On each image, the region where the optical density
is highest (yellow and white) correspond to the condensate, while the red halo
is the thermal component.

and the second term is the 2D TF profile given by Eq. (1.67). The y and z
axes have been rotated differently for the two components by the angles α1
and α2 to account for a rotation of the clouds: for i ∈ {1, 2}

[
Yi
Zi

]
=
(

cosαi sinαi
− sinαi cosαi

)[
y − yc
z − zc

]
. (3.74)

The fitting parameters are the cloud center (yc, zc), the two angles α1, α2,
the rms widths of the thermal component σY , σZ , the two TF radii of the
BEC RY , RZ , and the amplitudes of the two components (number of atoms
in each).

Because of the large number of fitting parameters the fit is performed in
four steps: first the whole image is fitted with a Gaussian to find a guess of
the center, then the central region is excluded and the cloud is fitted with a
Gaussian, then this result is subtracted from the data and the remaining peak
is fitted with a pure TF profile. Finally the full absorption image is fitted with
the bimodal distribution discussed above, using the results of the previous fits
as guesses to start the optimization routine.
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Figure 3.13: Decompression-induced excitations of the BEC. We report the
temporal evolution of (a) the center-of-mass position and (b) the aspect ratio
of the BEC after three different decompression schemes: an abrupt decom-
pression (black squares); a 30 ms linear ramp (black diamonds); the 30 ms
shortcut trajectory (red circles). All measurement are performed after 28 ms
of time of flight.

Results

Figure 3.13a shows the center-of-mass oscillations (dipole mode) for the abrupt
(squares), linear (diamonds) and shortcut (circles). Figure 3.13b shows the
oscillations of the BEC’s aspect ratio (breathing mode). All measurements are
performed after a 28 ms time of flight. As in the case of the non-interacting
cloud, the shortcut scheme reduces the amplitude of the dipole mode compared
to a standard linear decompression, here by a factor of 4.3. For our relatively
long time of flight, the measured positions reflect the atomic velocities. Thus,
using the shortcut scheme reduces the kinetic energy associated with the dipole
mode by a factor of 18.5 compared to the linear one (and 36 compared to the
abrupt decompression). The residual energy after the shortcut decompression
is 580 nK. As can be seen in Fig. 3.13b, both non-optimal schemes induce
very large oscillations of the BEC’s aspect ratio, with a rather complicated
dynamics. A Fourier analysis reveals a main oscillation frequency of 47 Hz,
consistent with a radial breathing mode at 2ω⊥ (cf. Sec. 1.2.3). A smaller
contribution at 12.5 Hz corresponds to the axial breathing mode at

√
5/2ω‖

(cf. Sec. 1.2.3). The shortcut scheme suppresses strikingly these breathing
oscillations, yielding a BEC close to the targeted equilibrium state.

Behavior of the thermal component

As emphasized in Sec. 3.3.2, the shortcut trajectory employed in this exper-
iment is also valid for the thermal fraction, in the radial dimensions only.
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Figure 3.14: BEC versus thermal cloud decompression. We plot the sizes
of (a) the BEC and (b) thermal component versus the time spend in the
decompressed trap for the shortcut trajectory. The filled and empty symbols
correspond to the radial (vertical) and axial directions respectively. The line
is a sine fit to the axial size of the thermal fraction.

This is demonstrated in Fig. 3.14, where we compare the oscillations of the
radial (open symbols) and axial (filled symbols) sizes of (a) the BEC, and
(b) the thermal fraction, after the shortcut decompression. The BEC’s TF
radius is stationary with an average value of 46.8 µm close to the theoretical
value (43µm). As can be observed in Fig. 3.14b, the radial size of the thermal
fraction is also quite stationary as expected from a shortcut trajectory. Thus,
this experiment demonstrates that both a non-interacting thermal gas and
an interacting BEC can be decompressed simultaneously using an appropri-
ate shortcut trajectory. The observed behavior is also qualitatively consistent
with our initial assumption that the BEC and thermal fraction are indepen-
dent. However, we expect that ultimately the validity of this approach will
be limited by the interaction between the condensed and non-condensed frac-
tions. The temperature inferred from the radial size of the thermal component
is 22 nK, a factor of 6 below the initial one. This factor is smaller than the ex-
pected one [ω⊥(0)/ω⊥(tf ) = 9], and even if we had improved the experimental
setup to realize the ideal frequency trajectory we would probably be limited by
the transfer of energy from the axial breathing mode via the interaction with
the condensate. Indeed, the axial size of the thermal fraction presents clear
breathing oscillations, reflecting the fact that the shortcut trajectory ω‖(t) is
not valid in this case, as expected.

Scissors mode

A striking feature in Fig. 3.12a is the large angular oscillation of the BEC after
the linear decompression. This unexpected effect is due to a slight tilt of the
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Figure 3.15: Experimental observation of a scissors mode excitation following
the linear decompression (diamonds). The red line is a GPE simulation. The
oscillation is not quantitatively reproduced because it depends on the precise
way the trap is rotated during decompression, which is not known for the whole
trajectory. Only the final tilt of 3◦ was measured. For the GPE simulation, the
trap angle was assumed to be proportional to the trap bottom displacement
from its original position.

QUIC trap eigenaxes (3◦) in the (y, z) plane as the trap center moves down-
wards due to gravity. Because of this, an angular momentum is imparted to
the atoms during the decompression, exciting a scissors mode (see Sec. 1.2.3).
Our nearly critical time of flight then results in a magnification and a defor-
mation of the scissors oscillations [210, 211]. Figure 3.15 shows an example of
these oscillations, together with a GPE simulation (red line).

3.5 Other possible applications

In this section, we attempt to generalize the shortcut decompression of Bose-
Einstein condensates to other situations which may find applications in ex-
periments where a fast and large modification of the width of the velocity
distribution or of the chemical potential is required.

3.5.1 Arbitrary variation of a harmonic potential

Let us consider the time evolution of a condensate in the time-dependent
harmonic potential of the form

U(r, t) = 1
2m rtW (t)r + rtu(t) (3.75)
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where the symmetric matrixW (t) = R−1(t)W̃ (t)R(t) represents the harmonic
potential of stiffness

W̃ =

 ω2
x(t) 0 0
0 ω2

y(t) 0
0 0 ω2

z(t)

 , (3.76)

rotated by a rotation matrix R(t). The column vectors r and u respectively
represent the position and a spatially homogeneous force which may depend
on time. The superscript t indicates the transpose of vectors or matrices.

To solve Eq. (3.43) we look for a linear change of variables
ρ(r, {bij(t)}, {rcmi (t)}) where the bij ’s are scaling and rotation functions for
the ri’s. Let B be a 3×3 matrix whose elements are the functions bij . The
transformation is

ρ = B−1(t) (r− rcm(t)) = B−1(t)r + a(t). (3.77)

In the TF limit, and if the matrix ḂB−1 is symmetric, Eq. (3.43) is invariant
under this transformation. The full derivation is given in C.1, but we give
here the key elements.

The TF approximation consists in neglecting the kinetic-energy-like term

∑
i,j,k

[B−1]ij [B−1]kj
∂2χ

∂ρi∂ρk
, (3.78)

with χ(ρ, τ) being defined as in Eq. (3.44). In this regime, the condensate
wave function χ(ρ, τ) satisfies the equation of motion Eq. (3.50), under the
action of the time-independent potential

U(ρ, 0) = 1
2mρ

tW (0)ρ, (3.79)

if the generic scaling functions satisfy

B̈tB +BtWB = W (0)
detB , (3.80)

r̈cm +W (t)rcm − 1
m
u = 0. (3.81)

It is worthwhile recalling that, as shown by the above equations, the evolution
of B is decoupled from the center-of-mass motion which evolves with the net
external force. The phase of the wave function is chosen as

φ(r, t) = m

~

{1
2rtḂB−1r− rtBȧ

}
+ φ0(t), (3.82)
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with
φ0 = −m2~

∫ t

0
dt′
(
ȧtBtBȧ− at W

0

detBa
)
. (3.83)

The wave function normalization is

A = (detB)−1/2, (3.84)

and the time τ is defined by

dτ
dt = 1

detB . (3.85)

The derivation of the scaling equations (C.1) relies on the particular choice of
the above phase φ which verifies

∇rφ = −m
~
B
∂ρ

∂t
or v(r) = ḂB−1 r− ḂB−1 rcm +B−1ṙcm, (3.86)

v(r) being the velocity field of the condensate, and on the assumption that
the matrix ḂB−1 is symmetric. The first condition imposes that there are
no terms linear in momentum in the GPE in the ρ-coordinate frame; once
the first condition is fulfilled the second imposes that the velocity field is
irrotational, namely, the condensate is a superfluid everywhere. This implies
that our scaling ansatz does not take into account the presence of quantized
vortices and thus can describe the dynamics of a rotated condensate only below
the critical angular velocity α̇c ' 0.7ωx for a slightly anisotropic confinement
[212], or in general, for a metastable configuration [213]. It is possible to relax
the first condition and allow for terms in the GPE that contain for instance
the angular momentum components. These extensions are deferred for future
studies.

Equations (3.80) and (3.81) can be used to determine the dipolar, com-
pressional and scissors modes for a harmonically-trapped superfluid conden-
sate (see C.2). Replacing detB with (detB)β in Eq. (3.80), the same equation
describes the compression and the scissors dynamics of a superfluid character-
ized by an equation of state µ(n) ∝ nβ, as it has been already shown for the
quadrupolar modes [214], and as it can be easily deduced from Eq. (C.8) of
App. C. In the following, we present three possible shortcut trajectories based
on these scaling equations and adapted to compress or decompress and rotate
a BEC in the absence and in the presence of gravity.

3.5.2 Uniform decompression or compression of a condensate
We now consider the particular case of u = 0 and W diagonal. If one wants
to compress or decompress the condensate without modifying the condensate
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aspect ratio, the condition ωi(tf ) = ωi(0)/γ2 must hold for any i. The bound-
ary conditions for the shortcut solution are: ḃii(0) = ḃii(tf ) = 0, bii(0) = 1,
bii(tf ) = γ4/5 and b̈ii(0) = b̈ii(tf ) = 0. One possible solution is to set all bii(t)’s
equal to a unique function

b(t) =
5∑

k=0
ck

(
t

tf

)k
, (3.87)

with c0 = 1, c1 = c2 = 0, c3 = 10(γ4/5−1), c4 = −15(γ4/5−1), c5 = 6(γ4/5−1).
The time evolution of the trap frequencies ωi(t) will be given by the equation

ω2
i (t) = ω2

i (0)
b5
− b̈

b
. (3.88)

If the kinetic energy is negligible during the whole decompression, the final
state is a BEC at equilibrium with a chemical potential that has been divided
by a factor of γ16/5 [because µ ∝ (Πiωi)2/5].

3.5.3 General compression or decompression in the presence of
gravity

We now consider the case where W (t) is diagonal with ωx(t) = ωz(t) = ω⊥(t),
ωy(t) = ω‖(t), and uz = mg. A general compression or decompression of
a condensate confined in this axially-symmetric trap (3.62) can be realized
in two steps: (i) in the first step (t ∈ [0, t̄ ]), b‖ is kept fixed as outlined in
Sec. 3.3.2, while the desired final value of b⊥ = b⊥(tf ) is reached; (ii) then
(t ∈ [t̄, tf ]) b⊥ is fixed and b‖ evolves according to the set of equations:

ω2
⊥(t) = ω2

⊥(t̄)
b‖(t)

, (3.89)

b̈‖(t) + b‖(t)ω2
‖(t) =

ω2
‖(t̄)
b2‖(t)

, (3.90)

b‖(t)c̈(t) = ω2
⊥(t̄)

[
c(t)− b‖(t)

]
, (3.91)

where c(t) = −ω2
⊥(t̄)rcmz (t)/[gb⊥(t)] as in Eq. (3.63). Also in this case, one

can write the function c(t) as a polynomial of order ≥ 9 [see Eq. (3.61)] with
the first coefficient fixed to one and the following four coefficients fixed to zero.
The other coefficients are fixed by the boundary conditions at the time tf of
the function c(t) and of the function b‖(t), that from Eq. (3.91) can be written
as

b‖(t) = − ω2
⊥(t̄)c(t)

c̈(t)− ω2
⊥(t̄)

, (3.92)

and by the boundary conditions of their derivatives at the same time tf .
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3.5.4 Rotation of the BEC in the presence of gravity
Now we propose a shortcut trajectory to rotate an axially-symmetric BEC of
an angle ᾱ, in the presence of the gravity. In this case

W (0) =

 ω2
⊥(0) 0 0
0 ω2

‖(0) 0
0 0 ω2

⊥(0)

 , (3.93)

and W (tf ) = R−1
ᾱ W (0)Rᾱ, with

Rᾱ =

 1 0 0
0 cos ᾱ sin ᾱ
0 − sin ᾱ cos ᾱ

 . (3.94)

Let us suppose, for instance, ω⊥(0) < ω‖(0), with ω‖(0) = λω⊥(0). The tilted
ground-state for the potential W (tf ) can be obtained in two steps: (i) during
a time t̄, fixing b‖, decompressing the BEC in the radial direction up to the
value b⊥(t̄) = λ−1. At t = t̄ the trap is spherical with frequency ω̃ = λω‖(0)
and the BEC is spherical with a TF radius equals to R‖(0). (ii) Fixing b‖
along the direction y′, compressing in the direction x′ and z′, where the axis
r′ are defined by r′ = Rᾱr. Using the new coordinate reference frame, and
setting cz(t) = −ω̃2rcmz (t)/[gb⊥(t) cos ᾱ], and cy(t) = −ω̃2rcmy (t)/[g sin ᾱ], we
obtain the set of equations

b̈⊥(t) + b⊥(t)ω2
⊥(t) = ω̃2/b3⊥(t), (3.95)

ω‖(t) = ω̃/b⊥(t), (3.96)

b4⊥(t)c̈z(t) + 2b3⊥(t)ḃ⊥(t)ċz(t) + ω̃2
[
cz(t)− b3⊥(t)

]
= 0, (3.97)

b2⊥(t)c̈y(t) + ω̃2
[
cy(t)− b2⊥(t)

]
= 0, (3.98)

the latter describing the center-of-mass motion in the y′ direction. The bound-
ary conditions for such a problem are: b⊥(t̄) = cz(t̄) = cy(t̄) = 1, b⊥(tf ) = λ,
cz(tf ) = λ3, cy(tf ) = λ2, and all the first and second derivatives with respect
to time are null at t = t̄ and tf . In this case a finite-order polynomial ansatz
in τ for ci was found to be inadequate as a solution of the scaling equations
due to the coupling of cy and cz. A full numerical solution of the dynamical
equation using, e.g., a shooting method [215] may be needed to find a shortcut
trajectory.

3.6 Conclusion
We have experimentally demonstrated the controlled transfer of trapped ul-
tracold atoms between two stationary states using processes which strongly
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violate the criteria for adiabaticity. This has enabled us to greatly reduce
the transfer time compared to more commonly used adiabatic methods. The
transfer is achieved by engineering specific trajectories of the external trapping
frequencies that take explicitly into account the spatial shift introduced by
gravity. This scheme was successfully applied to both a thermal gas with neg-
ligible interactions and an interacting Bose-Einstein condensate. The scheme
used is flexible enough to be adapted to both situations even though, in the
thermal gas, interactions do not play a significant role while the Bose-Einstein
condensate is strongly affected by the s-wave repulsion between atoms. The
residual excitations observed after the shortcut decompressions in the present
demonstration experiments are due to our imperfect control over the time-
varying magnetic trapping potential, and could be substantially reduced in
future realizations.

Theoretically, the design of the transfer process was based on the invariant
of motion and scaling equations techniques which turned out to be possible
thanks to the harmonic shape of the external potential. In our scheme, the
invariant of motion technique (for non-interacting particles) and the scaling
equations technique (valid for both the non-interacting and the interacting gas)
are tightly connected. The invariant of motion we used is a time-independent
HO Hamiltonian that can be obtained by a time-dependent canonical trans-
formation of the initial Hamiltonian. In the scaling equations technique, we
looked for a transformation involving both a scaling and a displacement of the
coordinates that allowed the equations of motion of the system to be time-
independent. In both cases the whole dynamics is included in the new set of
coordinates, that depend on the trap frequencies. We also showed that these
techniques can be generalized to include the rotation of the eigenaxes.

In experiments with ultracold gases, samples are often prepared by trans-
ferring atoms from some confinement to another, e.g., from a magneto-optical
trap to a magnetic quadrupole, from a quadrupole trap to a Ioffe-Pritchard
trap, from a harmonic confinement to an optical lattice, etc. the major limi-
tation being that, for short transfer times, parasitic excitations may show up.
The main application of our scheme is thus to guide this transfer in order to
prepare a very cold sample in a very short time with the desired geometry and
without undesired excitations. The shortcut-to-adiabaticity scheme proposed
here could be applied to non-interacting particles such as cold gases or ul-
tracold spin-polarized fermions, to normal or superfluid (bosonic or fermionic
as well) gases in the hydrodynamic regimes, and to strongly correlated sys-
tems such as the Tonks gas. In this chapter we focused on explicit solutions
to transfer atoms between two stable states, but the same strategy could be
applied to control the generation of metastable states, vortex states, or some
exotic out-of-equilibrium states. We plan to explore these possibilities in fu-
ture studies.
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Finally, we believe that such methods are not restricted to this field and
could find applications in many different physical systems. For instance, the
exact same method — demonstrated here on the thermal gas — was pro-
posed for the fast cooling of a mechanical resonator to its ground state [216].
Recently, similar methods have been proposed for atoms interacting with elec-
tromagnetic fields [217] and for non-hermitian Hamiltonians [218]. The recent
surge of interest in the field of quantum control and the development of opti-
mization methods (see e.g. Refs. [198–201, 219–224]) which could be combined
to such exact solutions suggest that these techniques will play a central role
in the future.





Chapter 4

Towards matter waves transport
experiments

The INLN BEC experiment was initially constructed to study matter wave
transport in disordered potentials. This was a natural evolution for the group
which had studied the propagation and weak localization of light in disordered
atomic media, namely in laser cooled clouds of Rubidium and Strontium atoms
(cf. e.g. Refs. [170, 225]). These studies led to the first observations of coherent
backscattering in such media [163, 225].

In this chapter, we present a theoretical work related to these topics, more
precisely, to Anderson localization (AL) in one-dimensional (1D) systems. We
have studied a particular model of correlations leading to the partial delocal-
ization of some eigenstates, which is not expected in standard disordered 1D
systems. We show that ultracold mixtures are particularly relevant to study
such effects by evaluating the transport properties in a realistic experimental
scenario.

4.1 Weak and strong localization of waves
The propagation of waves in complex random media is often well described
by diffusion, that is, the particles constituting these waves (photons for light,
phonons for sound, etc.) can be seen as performing a random walk in the
medium. In such a description, assuming an initially localized ensemble of
particles, and for sufficiently long times, the distribution becomes Gaussian
with a mean square position increasing as

〈r2〉 ∼ Dt, (4.1)

where D is called the diffusion coefficient or diffusion constant. This is true
when the probability law of the lengths X of the steps of the random walk
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has a finite variance. When this is not the case, diffusion is modified. For
instance, the broad class of Lévy flights [226, 227] is characterized by X having
a law pX(x) decreasing as 1/xα, with α < 3 for x → ∞. This leads to
a so called superdiffusive transport characterized by 〈r2〉 ∼ D′tβ, with β >
1. Such models [226–231] were shown to accurately reproduce experimental
observations in various situations [226, 232–234].

Since the energy of the wave is proportional to the density of particles, the
transport of energy is diffusive or superdiffusive. In the context of electronic
transport, a consequence is that the medium is conducting because the current
carriers can move from one side of the medium to the other. Another important
consequence of the diffusive behavior of electrons in solids is the electrical
resistance of conductors given by Ohm’s law.

What about interferences?

Surprisingly the underlying wave nature is often not visible in such processes
and the particle picture is sufficient to account for the observations. There can
be many causes [235]: coherent effects are often averaged to zero by the disor-
der, decoherence can be present in the medium, and the waves cannot interfere
anymore after a few scattering events. This is for instance the case if the scat-
tering is inelastic and leads to frequency redistribution (e.g. the Doppler effect
in a hot gas; for electrons, decoherence is induced by the interaction with the
underlying lattice which has a nonzero temperature).

Nevertheless the wave nature can sometimes dramatically modify the trans-
port properties. In the following, we introduce two such effects, in which disor-
der and phase coherence either slow down or completely inhibit the transport.

4.1.1 Coherent backscattering and weak localization

Coherent backscattering (CBS) is the first, and probably the most robust effect
arising from coherence (cf. Ref. [236] and references therein). When a wave is
sent onto a disordered medium, it is scattered in all directions. If the scattering
is sufficiently isotropic, or if a sufficient number of scattering events occur, the
direction of propagation is redistributed in 4π steradians. The interference of
the scattered waves, which is expected to look like a speckle, gives the same
value 〈I〉 in all the directions after the configuration average. Nevertheless, in
the backward direction, the interference between the outgoing scattered waves
is always constructive and the result is an angular cone of “backscattered” light
having a peak intensity 2〈I〉. The medium can be seen as an interferometer
which is automatically aligned in the backward direction. The factor of 2 is
the ratio between the peak intensity 2〈I〉 of a two-wave interference pattern
to the spatial average of the fringes intensity 〈I〉 (see Fig. 4.1).
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Figure 4.1: (Left) In the backward direction (i.e. when k̂f = −k̂i) two scat-
tering paths followed in opposite directions have exactly the same length,
leading to a constructive interference. On the contrary in other directions,
interferences can either be constructive or destructive, which results in no en-
hancement after configuration averaging over the disorder. (Right) Coherent
backscattering cone on a cold cloud of 85Rb atoms. The enhancement factor
is not 2 because of a breakdown of time-reversal symmetry induced by the
multi-level structure of the atoms. Figures from Akkermans et al. [236] (left)
and Labeyrie et al. [168] (right).

Similar interference effects can slow down the propagation of waves and
e.g. lead to a reduction of the diffusion constant D. Indeed, from the CBS
effect, one can see that interferences tend to increase the return probability
compared to the diffusive case.

4.1.2 Anderson localization
It was first realized by Anderson [237] in the context of electronic transport
that disorder could actually completely inhibit transport. With a simple
model, he showed that even a small amount of disorder could turn a con-
ductor into an insulator. This phenomenon is called strong localization or
Anderson localization, from the name of its discoverer. It took some time for
physicists to realize that the only ingredients needed for AL were waves and
disorder, and that AL could actually occur with any wave, be it quantum or
classical [238].

Localization is often studied in two distinct regimes: the tight-binding
(TB) regime which is most suited to describe the propagation of electrons in
crystals and can be reduced to a discretized Schrödinger equation (that is the
Anderson model used in the following sections), and continuous models in a
regime of weak disorder, described by a standard Schrödinger equation.

In the TB regime, the ordered system is a periodic potential in which the
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particles can travel thanks to quantum tunneling. Anderson localization was
first introduced with this description [237]. It is well known from condensed
matter physics that the eigenstates of such a problem are Bloch waves, which
are delocalized on the whole system. Disorder is induced by imperfections of
the crystal which shift the energies of the sites and/or the hopping probabili-
ties.

In the continuous description and in the absence of disorder, the particles
are propagating in free space (no potential energy term) and the eigenstates
are plane waves. Disorder is induced by adding a random potential U(r).
The counter intuitive result of AL is that, even if the typical amplitude1 of
U(r) is negligible compared to the kinetic energy of the particle, disorder
and interferences can lead to the spatial localization of the wave. This is
in complete opposition with the result of classical mechanics, in which the
velocity of the particle would only fluctuate with time about its mean value
and the particle would propagate. This happens because, with waves, even a
small modification of the potential results in a partial reflection (counterpart
of tunneling). As we will see, AL is generally characterized by an exponential
decay of the envelopes of the eigenstates.

4.1.3 Correlations
The meaning of “random” needs to be clarified. Indeed a rigorous way to
define a random medium2 is to say that the potential U(r) is a stochastic
process of the space variable r.

Consequently the system under study is not just a single realization of
U(r) (each realization would indeed give different physical results), but many
realizations of U(r) characterized by a unique probability law. The typical
properties of such a system are thus obtained by performing configuration
averages over many realizations obtained from the same probability law.

To that respect, a simple example of an acceptable stochastic process is

U(r) = U0, (4.2)

where U0 is a random variable described by a given law. This is indeed ran-
dom, but not “disordered”, and of course, such a potential does not induce
localization.

This underlines the importance of correlations in the random potential, i.e.
conditional probabilities between different points. The system is disordered if
the conditional probabilities of the potential at two different positions r1 6= r2

1The typical amplitude of U(r) is, e.g. the rms value
√
〈U2(r)〉 − 〈U(r)〉2, assumed to be

independent of the position r, where the brackets 〈·〉 denote the ensemble average.
2We will only consider static (i.e. time-independent) media, sometimes called “quenched”

media [230].
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are not trivial, unlike that in the example above. In principle, higher order
correlations (involving more points) can also play a role.

In standard localization problems [237], the disorder is assumed to be delta-
correlated, i.e. the two-point correlation function satisfies

〈U(r1)U(r2)〉 = C +Aδ(r2 − r1), (4.3)

where C and A are constants and 〈·〉 is the ensemble average [i.e. average over
the joint probability law of the stochastic processes U(r1) and U(r2)]. For
instance, this is the case if the two random variables U(r1) and U(r2) are
independent as soon as r1 6= r2.

Since the delta-correlated case (4.3) does not seem very physical, at least
when the system is continuous (r ∈ R3), and because a lot of natural systems
exhibit strong correlations, a sensible question is: “Can AL survive the pres-
ence of correlations?”. This is the subject of Secs. 4.3 and 4.4 of this chapter.

4.1.4 One-dimensional Anderson localization

The physics of wave transport and AL has been studied extensively during the
past 60 years. The book of Akkermans and Montambaux [235] is a reference
in this domain. The recent lectures of Müller and Delande [239] give a good
introduction to this subject. The theoretical theses of Lemarié [240] and Lu-
gan [241] also contain a lot of references and give an overview of the current
developments of this field. In this section, we just recall the basic elements
needed for 1D AL.

The length scales involved in the transport are represented below (inspired
by Ref. [239]).

ζ λ l ξloc

L L L
size

At short distances, there is the wavelength λ and the correlation length of the
disorder ζ. The latter is the typical width of the correlation function (4.3),
which may not be a delta function (in which case ζ = 0) and which is assumed
to have a finite support for simplicity3. The potential is well approximated
by a delta-correlated one when ζ � λ. At larger scales there is the transport
mean free path l, the localization length ξloc and the size of the system L.

The transport mean free path l is the average length traveled by a particle
before one scattering event occurs. For a given disorder it is generally energy

3Long-range correlated disorders have also been studied but are not discussed for the
moment (see e.g. Ref. [242]).
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dependent. In the 1D diffusive regime, it is related to the diffusion constant
by D = vl, with v being the velocity of the particle. A simple model of
randomly positioned identical point scatterers (see e.g. Ref. [239]) can be used
to show that, in 1D, the density of particles n1D(z) (for light that would be
the transmission coefficient T of the energy) decreases exponentially at large
distances as

exp〈ln [n1D(z)]〉 ∼|z|→∞ e−2γ|z|. (4.4)

Since the density is the modulus square of the wave function n1D(z) = |ϕ(z)|2,
the latter decreases on a typical length ξloc = 1/γ, called the localization
length. Its inverse γ is called the Lyapunov exponent.

A remarkable feature of 1D AL is that the localization length is essentially
the transport mean free path:

ξloc = 4l. (4.5)

One can show that with delta-correlated disorders, all the eigenstates are
localized, independently of their energy. In the following sections we will
see that correlations can modify this behavior.

4.1.5 Why matter waves?
Coherent effects and AL in complex media have been studied with a variety
of waves such as ultrasounds [243], microwaves [244, 245], infra-red or visible
light in various media [246–255].

Most of these systems suffer from two main issues:

1. absorption is difficult to cancel, and results in exponential decays (Beer-
Lambert law). Thus it has been difficult to differentiate the two effects
and to obtain clear signatures of AL.

2. The propagation media are solid material which have to be engineered
in order to contain a controlled amount of disorder. This can be difficult
to realize in practice.

Recently, atomic matter waves coming from either Bose-Einstein conden-
sates or magneto-optical traps have been used to demonstrate AL in 1D
[142, 143] and 3D [145, 256–258]. Robert-de-Saint-Vincent et al. [259] are
also approaching the 2D Anderson regime. As we have seen in Chap. 1, light
can be used to produce potentials for cold atoms. Two interfering counter-
propagating lasers produce a lattice in which atoms can tunnel, reproducing
in an almost perfect fashion the periodic potential of a crystal. Random light
distribution can easily be produced with laser speckle [260] or with spatial
light modulators, enabling an almost total control of the statistics and cor-
relations of the disorder, with the ultimate limit being diffraction. Feshbach
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Figure 4.2: Schematic representation of the Hamiltonian (4.6).

resonances can be used to span a large range of interaction regimes, from the
ideal gas to the strongly correlated regime. Finally, there is no absorption
in such potentials. By controlling the spontaneous emission, or adding other
perturbations (time-dependent potentials, breaking time-reversal symmetry,
etc.) one could imagine to also tune the decoherence to study its effects on
AL. Another advantage compared to other waves is the possibility to directly
measure the density of particles, i.e. the modulus of the wave function. The
phase may be accessible via interference with a reference wave. Moreover, cor-
relations measurement can easily be performed. Finally, the time-dynamics is
also accessible. For all these reasons, we believe that ultracold atoms are well
adapted to the study of such effects.

4.2 One-dimensional Anderson localization in the tight-
binding regime

4.2.1 A toy model for one-dimensional Anderson localization

Probably the most simple Hamiltonian describing a 1D system in which AL
can occur is Anderson’s TB Hamiltonian:

H =
Ns∑
n=1

εn|n〉〈n|+
Ns−1∑
n=1

tn (|n〉〈n+ 1|+ |n+ 1〉〈n|) . (4.6)

This Hamiltonian can be considered as describing a single particle traveling
through a lattice, whose sites are indexed by n, and have energies εn. More-
over, the particle can only hop to nearest-neighbor sites. Each site has one
orbital |n〉. In the basis of the lattice site’s orbitals {|n〉, n ∈ [1, Ns]}, this
Hamiltonian is tridiagonal. This kind of Hamiltonian can be represented in
the way of Fig. 4.2.

4.2.2 The Green’s function operator

There are various ways to analyze such a physical problem. For instance, in
Anderson’s original paper [237], he considered the time dynamics of a particle
initially localized on one site, and showed that the particle could not propagate



136 Chapter 4. Towards matter waves transport experiments

to large distances, even in the limit t→∞. An alternative is to directly look
at the spectral properties of the Hamiltonian, together with the average spatial
properties of its eigenstates. We use this second strategy. For this purpose,
we use the Green’s function operator formalism, which is introduced below.

The Green’s function operator, also called resolvent, associated with the
Hamiltonian H is defined by

G(E) ≡ (E · 1−H)−1 , E ∈ C . (4.7)

The symbol 1 is the identity operator of the Hilbert space H. As we will
see, the fact that the Hamiltonian is tridiagonal makes the use of the Green’s
function operator particularly relevant. Most of the properties describing the
system have simple expressions involving only a few matrix elements of this
operator.

Density of states

The density of states (DOS) of a system is the function N (E) such that for
all energies ε1 < ε2, the quantity

∫ ε2
ε1
N (E)dE is the number of eigenstates

of energies E ∈ [ε1, ε2]. For instance, if {εn, n ∈ N} is the spectrum of a
Hamiltonian which is not degenerate, N (E) =

∑
n δ(E − εn).

The DOS is calculated as a function of the Green’s function operator as

N (E) = − 1
π

lim
ε→0+

Im {tr [G (E + iε)]} , (4.8)

where E is now a real number. This can be shown by starting from Eq. (4.8)
and writing the trace in a basis where H is diagonal. One gets N (E) =∑
n limε→0+

1
π

ε
(E−εn)2+ε2 . The limit then turns the Lorentzian functions into

the delta functions δ(E−εn). In the following, limits of the kind limε→0+ f(iε)
will be written f(i0+).

Another expression of the DOS, valid for tridiagonal Hamiltonians with
non-vanishing hoppings was given by Kirkman and Pendry [261]:

N (E) = 1
π
Im
[
∂ lnG1,Ns(E + i0+)

∂E

]
(4.9)

where Gm,p(E) ≡ 〈m|G(E)|p〉.

Lyapunov exponent

The Lyapunov exponent of a 1D disordered system can be calculated, in the
limit of an infinite system, as a function of two matrix elements of the Green’s
operator [262]:

γ(E) = lim
n→+∞

1
n

ln
∣∣∣∣∣Gn,n(E + i0+)
G1,n(E + i0+)

∣∣∣∣∣ . (4.10)
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Figure 4.3: Computation of the transmission coefficient. (a) To compute the
transmission coefficient, the system under study (here the three sites 1, 2, 3) is
connected to two semi-infinite perfect lattices playing the role of electrodes. (b)
This new system is formally decomposed into a perfect lattice + a perturbation
responsible for scattering the incoming “plane waves” (Bloch waves).

Transmission coefficient

A natural quantity to address when discussing localization effects is to evaluate
the conductance, or transmission coefficient of the sample. To measure this,
an experimentalist dealing with electronic transport would have to connect
the sample to electrodes and add an electrical potential. In optics, light would
be sent on the sample, and the transmitted light would be measured. In this
case, one has to take care of impedance mismatch problems on the interfaces,
which tend to modify the measured transmitted signal.

We do exactly the same to calculate the transmission coefficient. A finite
size system (say with Ns sites) is extended by connecting it to perfect lattices
on both sides. They play the role of good conductors in electrical systems, or
free space in optical systems. The Hamiltonian (4.6) is thus extended with
identical sites (same on-site and hopping energies) of indices ranging from −∞
to +∞, as illustrated in Fig. 4.3a.

The Hamiltonian obtained is decomposed in the following manner

(Sample + electrodes)︸ ︷︷ ︸
H

= (Perfect lattice)︸ ︷︷ ︸
H0

+ (Scatterers)︸ ︷︷ ︸
HI

(4.11)

as illustrated in Fig. 4.3b. For example, for the situation of Fig. 4.3

HI = (ε1 − ε)|1〉〈1|+ (ε2 − ε)|2〉〈2|+ (ε3 − ε)|3〉〈3|
+ (t1 − t)(|1〉〈2|+ |2〉〈1|) + (t2 − t)(|2〉〈3|+ |3〉〈2|).

(4.12)
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The transmission or reflection coefficient are then given by standard scat-
tering theory. If one considers an incoming plane wave |k〉 having a (dimen-
sionless) wave vector k (i.e. an eigenstate of H0) of the form

∀n, 〈n|k〉 = eikn, (4.13)

the scattering of this state by the scatterer described by HI yields the wave
function

|ϕ〉 =
(
1 +G0T

)
|k〉, (4.14)

G0 being the Green’s function operator associated to H0, and T the matrix
defined by

T = HI
(
1−G0HI

)−1
. (4.15)

Transmission and reflection coefficients

Any chain containing an arbitrary number of sites Ns can actually be reduced
to an effective dimer, i.e. a chain with two sites Ns = 2 (cf. Sec. 4.2.3 and
App. D). The calculation of the transmission of this chain is thus reduced to
the calculation of the transmission through this effective dimer.

We thus need to evaluate the transmission and reflection coefficients of the
amplitude for such a dimer. We assume it is positioned on the sites indexed
by 0 and 1. HI and T are thus 2× 2 matrices. From the expression (4.14) of
the wave function, and from the form of the Green’s function G0 of a perfect
lattice given in App. D, the wave function takes the form 〈n|ϕ〉 = τe+ikn in
the forward direction (n > Ns − 1), where τ is the transmission coefficient

τ = 1 +G0
0,0T0,0 +G0

1,0T0,1 +G0
0,1T1,0e

−2ik +G0
1,1T1,1. (4.16)

Similarly, in the backward direction (n < 0) 〈n|ϕ〉 = e+ikn + ρe−ikn, ρ being
the reflection coefficient

ρ = G0
0,0T0,0 +G0

1,0T0,1 +G0
0,1T1,0 +G0

1,1T1,1e
+2ik. (4.17)

When the scatterer is longer than a simple dimer, it is first renormalized
and reduced to a dimer (cf. App. D). Then these expressions can be used
to calculate the reflection and transmission coefficients of the full chain. In
this case, the indices 1 in (4.16) and (4.17) correspond to the last site of the
renormalized scatterer, i.e. the last site (index Ns − 1) of the initial scatterer.
The exponents +2ik and −2ik are replaced by +2ik(Ns−1) and −2ik(Ns−1)
respectively. Naturally the probability of transmission is T = |τ |2.
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4.2.3 Practical computation

In practice, the computation of the matrix elements entering the DOS, the
Lyapunov exponent, and the transmission coefficient is performed using the
renormalization and decimation procedures detailed in App. D. Schematically,
it consists in recursively reducing the full lattice into a smaller, effective one
(for instance with just two sites), whose Green’s operator matrix elements are
“selected elements” (i.e. a subset) of the original lattice’s Green’s operator
matrix elements. This procedure is particularly efficient because the Hamilto-
nians considered are tridiagonal.

4.3 Correlation-induced delocalization in the dual ran-
dom dimer model

Anderson localization is a single-particle effect, its two ingredients being a
random medium and a wave governed by a linear equation trying to prop-
agate in it. We saw in Sec. 4.1.3 that the important parameter is actually
the correlations of the disordered medium. AL is often studied with delta-
correlated potentials, and a natural question arising is: “How does AL survive
the modification of the correlations?”.

In this chapter, we address this problem on a simple model in which cor-
relations are responsible for delocalization. We show that this interesting
situation can be realized with an ultracold mixture of the kind discussed in
Sec. 4.4.1.

4.3.1 The random dimer model and its “dual”

In 1D disordered systems, AL is known to occur at any energy when the dis-
order is delta-correlated [237, 263]. Nevertheless, if one introduces particular
correlations, delocalization of a significant subset of the eigenstates can ap-
pear. This happens in the random-dimer model (RDM) [264], in which the
sites of a lattice are assigned energies εa or εb at random, with the additional
constraint that sites of energy εb always appear in pairs, or dimers. The same
occurs in its dual counterpart (DRDM) [264], in which two lattice sites with
energy εb never appear as neighbors. In these models, extended states arise
from resonant modes of the (dual) dimers which present vanishing backscat-
tering at an energy Eres. In the thermodynamic limit, the ratio

√
Ns/Ns

between the number of delocalized states and the total number of states van-
ishes, and there is no mobility edge separating extended and localized energy
eigenstates [264–266]. However, in finite size systems, thus in real systems, a
localization-delocalization transition can be induced by driving Eres inside the
spectrum.
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Figure 4.4: (a) In the random dimer model, the on-site energies εb always
appear as pairs. (b) In the dual random dimer model, the on-site energies εb
are forbidden to appear as pairs, and consequently the hoppings tab always
appear as pairs.

This model was proposed to be the possible mechanism which leads to
the insulator-metal transition in a wide class of conducting polymers such as
polyaniline and heavily doped polyacetylene [267], and in some bio-polymers
such as DNA [268]. The evidence of delocalized electronic states was ex-
perimentally demonstrated in a random-dimer GaAs-AlGaAs superlattices
[269], while for photons, a RDM dielectric system was used [252]. Recently a
RDM set-up has been proposed to demonstrate the delocalization of acoustic
waves [270]. For polymers, semiconductor lattices, photonic crystals and elas-
tic chains, the dimer resonant energies cannot be modified without changing
the sample itself. Thus the localization-delocalization transition for a (D)RDM
chain as a function of the relative position of the resonant modes with respect
to the band modes cannot easily be studied using these physical systems. In
this section, we show that ultracold mixtures are well suited to study the in-
terplay between disorder and correlations, and we propose a realistic setup to
study the DRDM.

The RDM was first introduced by Dunlap et al. [264]. It is a single-
particle TB model describes by the Hamiltonian (4.6). The simplest example
of disorder with this model consists in randomly attributing one of the two
values εa or εb to the on-site energies, and to give the same value t for all the
hopping energies, i.e. the probability law is

∀n ∈ Z,


P (εn = εa) = p,

P (εn = εb) = 1− p,
P (tn = t) = 1,

(4.18)

where 0 < p < 1 and P (X = x) is the probability of the random variable X
to take on the value x. In other words, the on-site energies are simple random
variables following a Bernoulli law. This does not give any information on
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the conditional probabilities, i.e. on the correlations. This disorder is delta-
correlated if, e.g., for all n,m such that n 6= m the random variables εn and
εm are independent and have the same law.

Random dimer correlations

The RDM consists in taking the same single-site law (4.18) but also impose
the following correlations: one of the two energies, say εb, always appears as
pairs, or dimers, i.e. the joint probability laws satisfy

∀n ∈ Z, ∀ odd m
P [(εn, εn+1, · · · , εn+m, εn+m+1) = (εa, εb, · · · , εb︸ ︷︷ ︸

m times εb

, εa)] = 0. (4.19)

It is important to specify this law precisely, because there seem to be confu-
sion in the literature on what the RDM is. These correlations are the ones
introduced by Dunlap et al. [264]. Other authors have used the term “random
dimer model” but with other correlations (for instance, the two impurities
always appear as dimers) [242, 265, 266].

The dual random dimer model

In real systems, it is generally rare to have the same hopping energies while
the on-site energies are different. For instance, for the situation discussed in
Sec. 4.4.1, changing the depth of a single well would also have a small effect
on the energy needed to hop to neighbor sites. That is, generally there are
correlations between the diagonal and off-diagonal terms of the Hamiltonian.
For the simple situation of two possible values of the on-site energy, there
can be three possible values for the hoppings: taa between two sites of energy
εa, tbb between two sites of energy εb and tab between two sites of different
energies. The system is still disordered, and we will see that these additional
correlations (between the ε’s and the t’s) are not sufficient to break AL.

The dual random dimer model (DRDM) consists in imposing that the εb’s
never appear as pairs (that is, never in succession), and consequently, the
hoppings never take on the value tbb. In this case, the correlation (4.19) are
on the hoppings instead of being on the on-site energies [the εn’s of (4.19) are
replaced by tn’s, the εb’s by tab’s, and the εa’s by taa’s]. Examples of RDM
and DRDM lattices are represented in Fig. 4.4.

4.3.2 Properties of a single dimer in a perfect lattice
In this section, we use the Green’s function operator formalism introduced in
Sec. 4.2.2 to calculate the properties of a single (dual) dimer . . . εa

tab_ εb
tab_ εa . . .
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positioned in an otherwise perfect, infinite lattice (on-site energies εa, hopping
energies taa). The index of the only site having an energy εb is n = 0.

The Hamiltonian of the scatterer is

HI = (εb − εa)|0〉〈0|+ (tab − taa) {| − 1〉〈0|+ |0〉〈1|+ h.c.} . (4.20)

The site n = 0 is removed by renormalizing the lattice. As explained in
App. D, one has to separately renormalize H and H0, obtaining the effective
Hamilonians H̃ and H̃0, in order to obtain the Hamiltonian of the new scatterer
H̃I ≡ H̃ − H̃0. Using the following notations for H

H = . . . εa
taa_ εa

tab_ εb
tab_ εa

taa_ εa . . .

Renormalization
⇓

H̃ = . . . εa
taa_ ε̃

t̃
_ ε̃

taa_ εa . . .

we obtain

ε̃ = εa + t2ab
E − εb

, (4.21)

t̃ = t2ab
E − εb

, (4.22)

after renormalization, and for H0

H0 = . . . εa
taa_ εa

taa_ εa
taa_ εa

taa_ εa . . .

Renormalization
⇓

H̃0 = . . . εa
taa_ ε̃0

t̃0_ ε̃0
taa_ εa . . .

the renormalization yields

ε̃0 = εa + t2aa
E − εa

, (4.23)

t̃0 = t2aa
E − εa

. (4.24)

It follows that the value of H̃I = H̃−H̃0 on the subspace {|−1〉, |1〉} is simply

H̃I = α

(
1 1
1 1

)
, (4.25)

with α = t2ab
E − εb

− t2aa
E − εa

. (4.26)
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This simple expression shows that there is a resonant energy Eres for which
the dimer is transparent to incident waves (it does not scatter them because
H̃I = 0). This resonance is obtained for α = 0 and is

Eres = εat
2
ab − εbt2aa
t2ab − t2aa

. (4.27)

4.3.3 What happens with many dimers?
The situation described above can be transposed to optics. In free space (i.e.
without the dimer), the eigenstates are plane waves that propagate freely.
The dimer discussed above is similar to a Fabry-Pérot cavity having a single
resonant mode for which it is transparent. Adding many dimers to the under-
lying perfect lattice corresponds to aligning many such Fabry-Pérot cavities.
Obviously, if the light is resonant with the first one, it will go through them
all.

We now assume that there are few dimers in the lattice. If the disorder
is not strong enough to significantly change the spectrum of the Hamiltonian,
the lattice still exhibits a single band of allowed energies εa − 2|taa| . E .
εa+2|taa|, and some states are expected to be delocalized if the resonant energy
is inside this band, i.e.

εa − 2|taa| ≤ Eres ≤ εa + 2|taa|. (4.28)

We introduce the dimensionless energy ∆ε ≡ (εb − εa)/taa and hopping t ≡
tab/taa characterizing this problem. The delocalization condition is obtained
by combining (4.27) and (4.28) and is∣∣∣∣ ∆ε

t2 − 1

∣∣∣∣ ≤ 2. (4.29)

This expression gives a kind of phase diagram of the DRDM in the limit of low
disorder. It is not a phase diagram in the sense of statistical physics because
it has been obtained from a single-dimer argument. Moreover, the transition
from localization to delocalization is known not to be a phase transition. This
phase diagram is represented in Fig. 4.5. The condition (4.29) for delocaliza-
tion was already present in Ref. [264] despite the fact that the authors did not
exhibit the resonance (4.27).

4.4 The dual random dimer model with an ultracold
mixture

In this section, we show that an ultracold mixture is well suited to study this
model. Indeed, with ultracold atoms, experimentalist have a good control on
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Figure 4.5: “Phase diagram” of the
DRDM in the plane (t,∆ε) (see
text). The red line is Eq. (4.29)
and separates the existence of ei-
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region), or of a few extended states
(delocalized region).

many parameters. In our case, we will see that the DRDM can be studied in
a unique way: the correlations can keep the same form (DRDM correlations)
while the hopping and on-site energies can be tuned by playing on either the
lattice depth, the transverse confinement, or the interspecies interaction. This
enables us to cross the localization-delocalization transition of the DRDM. In
the following, we will just give the example in which the transition is crossed
by changing the interspecies interaction.

4.4.1 Anderson localization of matter waves with atomic impurities

After the first experiments on ultracold gases in optical lattices were realized [7,
271, 272], the idea of considering a mixture of two atomic species to study
localization effects rapidly emerged [273, 274]. The idea is to use at least two
species, i.e. either the same isotope in two different spin states, or two different
kinds of atoms. By appropriately choosing either the polarization, and/or the
laser frequency with respect to the atomic transitions, a single optical lattice
can be deep for one species (species Bd) and relatively shallow for the other
(species Bf ). The first one can thus be seen as classically trapped in the
potential wells (negligible tunneling) while the second is free to tunnel from
site to site. The mutual interaction between the species locally modifies the
potential landscape seen by Bf . If one is able to position Bd randomly in the
lattice, this induces disorder for the “flying” species Bf . This is illustrated in
Fig. 4.6.

In the following, we will illustrate the discussion taking 87Rb as the “dis-
order species” Bd, and 41K as the “flying species” Bf . These two atoms are
bosons, and the mixture has been experimentally brought to degeneracy [275].
Because of a Feshbach resonance, the mutual interaction can be tuned by ap-
plying an external magnetic field [276]. This means that the scattering length
can be changed from essentially −∞ to +∞. The gas can thus have attractive
interactions (as < 0), be non-interacting (as ' 0), or have repulsive interac-
tions (as > 0). This opens the possibility to continuously go from a situation
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Bd

Bf

optical latticeinteraction

Figure 4.6: An atomic mixture in an optical lattice can be used to study local-
ization effects [273]. A first species Bd is classically trapped in the potential
wells, and interacts with a second one Bf , which can tunnel through the lat-
tice. If Bd is randomly positioned, this is a realization of a disordered crystal
in which species Bf play the role of electrons. With an appropriate choice of
the mixture, the strength of the mutual interaction can even be continuously
tuned from zero to infinity, and be attractive or repulsive.

of perfect order (as ' 0), to the disordered case (as 6= 0).

Reduction to a single-particle Hamiltonian

The properties of this system close to equilibrium can be studied in the fol-
lowing manner: since the impurities are classically trapped, we only take into
account their mean-field repulsion (or attraction) with Bf and assume they do
not tunnel through the lattice. An effective 1D single-particle Hamiltonian of
the form (4.6) — describing the system close to a stationary state — can then
be derived for the species Bf . This is done by using the procedures outlined in
Sec. 1.2.4 for both species. We consider a situation with many Bf atoms per
site such that a mean field treatment is appropriate for Bf . Additionally, in
the longitudinal direction, the potential is a lattice sufficiently deep for a TB
description to be valid (more precise conditions will be given in the following).

Evaluation of the on-site and hopping energies

The effective Hamiltonian (4.6) is thus obtained by a 1D reduction of the sys-
tem Hamiltonian by introducing the transverse widths σ⊥,Bf of the condensate
and σ⊥,Bd of the impurities wave functions in a cylindrical trap (cf. Ref. [70]
and Sec. 1.2.4). We introduce the Wannier functions φn(z) approximated by
the Gaussian functions

φn(z) = φn(0)
π1/4σ

1/2
z,Bf

exp
[
−(z − zn)2

2σ2
z,Bf

]
, (4.30)

where |φn(0)|2 is the number of bosons Bf in the nth lattice well. Simi-
larly, the density of the impurities is nBd ∝

∑
n′ exp[−(z − zn′)2/σ2

z,Bd
]. The
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determination of the widths σ⊥,Bf , σ⊥,Bd , σz,Bf , and σz,Bd is carried out varia-
tionally [70, 273] assuming the system is at equilibrium. An orthonormalizing
process similar to the Gram-Schmidt process is applied to this basis to obtain
the new basis {φ̃n(z)} satisfying

∫
φ̃m(z)φ̃n(z) = δmn [277].

We can now evaluate the parameters entering the effective Hamiltonian (4.6).
The on-site energies are given by

εn =
∫

dz φ̃n(z)
[
− ~2∇2

2mBf

+ UBf (z)

+ 1
2g|φn(z)|2 + g′nBd(z)

]
φ̃n(z),

(4.31)

where mBf is the mass of Bf , UBf (z) is the lattice potential seen by Bf ,
and the parameters g and g′ are the strengths of the 1D BfBf and BfBd
interactions, which are given by (cf. Sec. 1.2.4)

g = 2~2a

mBfσ
2
⊥Bf

, (4.32)

g′ = 2~2a′

mr(σ2
⊥Bf + σ2

⊥Bd)
, (4.33)

a and a′ being respectively the BfBf and BfBd scattering lengths, and mr

the BfBd reduced mass. The hopping energies tn are given by

tn =
∫

dz φ̃n(z)
[
− ~2∇2

2mBf

+ UBf (z)
]
φ̃n+1(z). (4.34)

This completes the determination of the effective 1D Hamiltonian for bosons
Bf .

4.4.2 Proposed setup
As explained in Sec. 4.4.1 the two-boson mixture Bd =87Rb–Bf =41K is well
suited to study localization effects because of the experimentally accessible
interspecies Feshbach resonance. We will thus illustrate the following with
this example. We assume the mixture is first brought to degeneracy in an
optical trap, and that an external magnetic field can be applied to tune the
interspecies interaction, as is Ref. [276].

General considerations

We propose to load the mixture in a 2D transverse lattice similar to the one
of Paredes et al. [69]. This confines the atoms in a square array of parallel
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Figure 4.7: Experimental scheme to generate the correlated disorder. (a)
Impurities are trapped in a lattice of step 3d. (b) A second lattice of step d
is switched on, and the first one turned off. In the final configuration (c), the
impurities follow a DRDM distribution. The red arrows symbolize the laser
beams of the lattices.

1D “tubes”. By using far off-resonance lasers and playing on the power, the
transverse confinement can be changed from 0 to high values in the range of
a few tens of kHz. If the laser waists are sufficiently large, the longitudinal
confinement can be low, ultimately limited by the underlying dipole force trap.
In each 1D trap, the system is well described by the TB description if a third,
much shallower optical lattice is added along the third, longitudinal direction
(as in Ref. [69]).

Generation of the DRDM correlations

In order to arrange the 87Rb disorder bosons such that two of them never
stand in neighboring sites, one can first prepare a very dilute system in a
first lattice of spacing 3d with less than one atom per site on average [69]. A
second lattice with a spacing d is then adiabatically superimposed onto the
first one. Finally, the first lattice is adiabatically turned off. This procedure is
illustrated in Fig. 4.7. The two lattices can be created with the same laser by
using an angle θ1 = arccos(1/3) ' 70.5◦ between the two beams of the first,
while for the second the beams are counterpropagating (θ2 = 180◦). The two
pairs must not interfere with each other or with the transverse lattice. This
can be done by introducing a detuning between them (a few tens of MHz [7]).

Experimental parameters

The atomic properties of 87Rb and 41K (and other isotopes) can be found
respectively in Refs. [108] and [278–280].

The wavelengths of the two species are quite close to each other (the D1
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and D2 lines of Rb are respectively at 795.0 nm and 780.2 nm, while for K
they are at 769.9 and 766.9 nm). Their D2 lines have the same linewidths
ΓRb/2π ' 6.06 MHz and ΓK/2π ' 6.03 MHz. Their saturation intensities are
also the same IRbsat ' 1.67 mW/cm2 and IKsat ' 1.75 mW/cm2.

We use λ = 800 nm for the longitudinal lattice, and a lattice potential
depth U0,in

Rb ' 30ERb, with ERb = ~2k2/2mRb being the recoil energy for
Rb, and k is the magnitude of the lattice’s wave vector. This wavelength
is sufficiently detuned from the atomic transitions to cause low spontaneous
emission, and perform experiments that can last ∼ 1 s.

The condition on the number of atoms needed to avoid double occupancy
will depend on the external confinement. For instance, for an axial confinement
of 60 Hz [69], double occupancy can be avoided if NRb ≤ 20 [281]. The number
of impurities can be increased by increasing the lattice potential depth or by
relaxing the axial confinement. In the rest, we neglect the effect of the axial
confinement, and thus assume the system to be homogeneous. The influence
of the axial confinement is currently being investigated in the group.

The potential depth U0
Rb of the final lattice URb,K(z) = U0

Rb,K sin2(πz/d)
must be large compared to ERb to neglect the impurity mobility during the
duration of the experiment (typically less than 1 second [142, 143]). This
condition can be fulfilled at U0

Rb = 18ERb in the presence of attractive inter-
actions with K. Differently, the depth U0

K for the species K must be & 2 EK,
the recoil energy for K, to guarantee the validity of the TB description. With
U0
Rb = 18ERb, the wavelength chosen, and linearly polarized lattice beams we

have U0
K = 2.5EK. The tunneling time of the 87Rb impurities is on the order

of 1 s for all the points A to E in Fig. 4.8.
For the evaluation of the on-site and hopping energies, we consider a system

of NK = 1.3 × 104 41K atoms distributed in 200 wells, 10% of which are
occupied by a 87Rb atom. The effect of the mean-field interactions is enhanced
by a tight radial confinement ω⊥K/2π = 60 kHz (cf. Sec. 1.2.4).

4.4.3 Localization-delocalization transition

The influence of the various parameters (lattice depth, interaction, radial con-
finement) on the values of ∆ε and t, which are the two dimensions of the
(single-dimer) phase diagram, is not trivial. We thus use the numerical method
described in Sec. 4.4.1 to evaluate the on-site and hopping energies. Of course,
we make sure that the TB approximation is valid on the range of parameters
explored.

For such a system, the phase diagram can be explored just by varying the
K–Rb scattering length a′ (lines in Fig. 4.8). The point (1,0) corresponds to
a′ = 0, in this case K atoms do not interact with the impurities, thus neither
the on-site nor the hopping energies are modified by the presence of Rb atoms
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Figure 4.8: Calculated trajectories in the phase diagram for different number of
atoms NK obtained by varying the interspecies scattering length a′. Dashed
line: NK = 1.6 × 104, a′ ∈ [0,−87 a0]. Continuous line: NK = 1.3 × 104,
a′ ∈ [0,−380 a0]. Dotted line: NK = 1.0×104, a′ ∈ [0,−570 a0]. With 1.3×104

atoms, the localization-delocalization transition occurs for a′ = −346 a0 (point
C). Other points correspond to a′ = −316 a0 (A), −331 a0 (B), −361 a0 (D)
and −376 a0 (E) respectively, a0 ' 0.53 Å being the Bohr radius.

and the lattice is not disordered. Higher points of the curve correspond to
greater and greater attractive K–Rb interactions. Remember that this “phase
diagram” actually corresponds to the presence of a single dimer in a perfect
chain, and not to a full disordered chain.

To make sure that the single-dimer argument is sufficient to understand
the physics, we numerically calculate the spectrum across the transition by
evaluating the Lyapunov exponent, the transmission probability, and the DOS.
This latter quantity is calculated to check that the localization observed is not
a trivial effect such as that related to the opening of a band gap4.

For this numerical calculation of the Lyapunov exponent γ(E), we use the
asymptotic expression (4.10) with Ns = 1000 lattice sites. The behavior of the
Lyapunov exponent through the transition is shown in Fig. 4.9. The different
lines, which correspond to the crosses in Fig. 4.8, show that the localization
length is greater than the system size for points C, D, E, as expected from the
single-dimer prediction. The location of the minima corresponds to the posi-
tion of the resonance energy Eres, which moves inside the band for increasing
values of |a′|. The non-zero value of γ in the delocalization regime is due to

4This is an important point. The DRDM correlations constraint the proportion of disor-
dered sites (sites with an energy εb) to be ≤ 50%, but if this limit is reached, the system is
actually not random anymore because one site over two is occupied by a 87Rb atom. In this
case, a band gap appears in the center of the spectrum.
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Figure 4.9: Lyapunov exponent γ in units of 1/L, with L = Nsd being the
lattice length, as a function of the energy of the K atoms. The dot-dashed
green line corresponds to point A in Fig. 4.8, the short-dashed blue line to
point B, the long-dashed magenta line to point C, the dotted black line to
point D and the solid red line to point E. The inset shows the corresponding
behavior of the transmission probability T .

the finite value of the number of sites in the computation.
The transmission probability T = |τ |2, defined as the modulus square

of the transmission coefficient, is calculated for different values of a′ and is
shown in the inset of Fig. 4.9. For a′ = −346 a0 the resonance fits in the
band-edge, and the corresponding transmission peak arises. For a′ = −361 a0
and a′ = −376 a0 the peak moves towards the center of the band in agreement
with the position of the minimum of γ. The width of the peak decreases by
increasing the system size, as the percentage of delocalized states scales as√
Ns/Ns.

4.4.4 Effect of the additional correlations

Both the Lyapunov exponent and the transmission probability respectively
show some small peaks and dips. These structures are due to an underlying
order present in the procedure illustrated in Fig. 4.7. In fact, even if our
proposition allows the distance between two subsequent impurities to be any
integer > 1, still every three site is definitely without an impurity by con-
struction. The evidence that this underlying order does not affect the DRDM
physical effect is shown in Fig. 4.10. The transmission probability peak for the
proposed DRDM pattern (Fig. 4.7) is in correspondence with the transmission
probability peak of a genuine DRDM. Such a disorder pattern (i.e. without
these supplementary correlations) could be generated by using a dipolar gas
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Figure 4.10: Transmission probability T for NK = 1.3×104 and a′ = −361 a0,
and different disorder patterns: a genuine DRDM lattice (dashed-blue line), a
DRDM lattice generated with the procedure illustrated in Fig. 4.7 (continuous-
red line), and an uncorrelated lattice (dotted-black line). The inset shows the
corresponding density of states.

for which repulsive interactions may avoid next-neighboring occupation [282].
However, at the moment, no dipolar gases have yet been cooled down to de-
generacy in a mixture. For completeness of our analysis we compare the two
DRDM models with a lattice where the position of impurities εb are delta-
correlated [283], i.e. with a real Anderson model. In this case the transmission
probability drops (Fig. 4.10), and becomes vanishing for longer chains. The
residual peak is a signature of the presence of a few dual dimers, and we
checked that it vanishes in an ordinary disorder model with uncorrelated on-
site and hopping energies.

Finally, it is worth pointing out that the impurity distribution deeply mod-
ifies the nature of the states, but not the spectrum itself at this low impurity
concentration. Indeed, the DOS is essentially the same for the three cases as
shown in the inset of Fig. 4.10. When the percentage of impurities is increased,
the underlying periodicity, which is different in the three models, leads to frag-
mentation of the DOS in either three, two or one bands. The DOS N (E) has
been evaluated by using the Kirkman-Pendry relation introduced in Sec. 4.2.2.

4.4.5 Discussion
How to probe these properties in a real experiment?

Since the condensate energy corresponds to the lowest allowed energy (quasi-
momentum k = 0, energy (E− εa)/|taa| = −2 in the figures above), the region
in the vicinity of the resonance is not directly probed by a BEC at equilibrium.
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It could be explored by preparing Bloch states with an initial quasimomen-
tum k 6= 0 by introducing a constant frequency shift between the two waves
generating the lattice [284]. In the localized regime, we expect that for any
k ∈ [−π, π], the whole condensate stays at rest in the frame of reference of the
moving lattice, while in the delocalized regime, at k = k(Eres), the conden-
sate stays at rest in the frame of reference of the laboratory. This should be
done without dramatically changing the local densities such that the on-site
and hopping energies (which are calculated at equilibrium and depend on the
density) are not significantly modified.

What about the underlying confinement?

So far we have assumed the system to be finite (Ns = 200 sites) but with
no longitudinal confinement. This can be done experimentally by using a
box-like potential on top of the lattices (a box potential was done e.g. by
Meyrath [179]). Nevertheless this is rarely the case in experiments because
harmonic traps are easier to implement. The effect of the inhomogeneity is
expected to be non-negligible because the on-site and hopping energies have
a spatial deterministic dependence. For instance, the mean-field interaction
of K with itself is smaller on the sides, where the density is lower than that
in the middle of the trap. This issue is the object of current studies by our
group. It is addressed by simulating the dynamics by a numerical integration
of a 1D GPE.

4.5 Outlook
In this theoretical chapter we have addressed the problems of studying lo-
calization effects with ultracold gases. More precisely, we have assessed the
feasibility of an experiment performed in the tight-binding regime (that is in
a relatively deep lattice), and in which one atomic species is used to induce
disorder for another through mutual interactions. We studied in details the
dual random dimer model in which a localization-delocalization transition can
be driven by tuning the mutual interaction. Our conclusion is that this tran-
sition should be observable in a 87Rb–41K mixture with realistic experimental
parameters. Nevertheless, it is not yet clear what the most appropriate way
to probe the system is, and this question is still the subject of current investi-
gations involving the simulation of the dynamics with a numerical integration
of the time-dependent Gross-Pitaevskii equation.

The recent success in studying such localization effects with ultracold
atoms, performed in a variety of regimes — non-interacting bosons in a 1D
tight-binding regime [143], bosons in a weak 1D disorder [142], non-interacting
fermions in a weak 3D disorder [145], experiments in 2D [259], interplay with
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superfluidity [285, 286] — suggest that these themes will keep developing in
the near future. The very interesting regime of controlled correlations and
controlled interactions will soon be accessible in experiments.





Conclusion

This dissertation has presented the work of three years at the Nonlinear Insti-
tute of Nice. I have taken part in the construction of the INLN BEC experi-
ment, which is now up and running. This has been the subject of the first two
chapters of this dissertation.

In the third chapter, we have focused on the realization of shortcuts to
adiabaticity for quadratic Hamiltonians in two distinct limits: the 1D non-
interacting case at finite temperature connecting two equilibrium states, and
the 3D interacting BEC at T = 0 connecting two equilibrium states. We have
seen that the performances of our method is limited by the trap anharmonicity
and by the imperfect control we have over the fast dynamics of the time-
dependent potential.

In the non-interacting case, it is clear that the methods should work equally
to any initial state, i.e. even for non-equilibrium states. It may be useful
to other fields of physics where adiabatic schemes are used. In the case of
the BEC, it would be interesting to investigate the possibility of producing
final states other than equilibrium states, by a modification of the methods
presented in Chap. 3.

The possibility of performing shortcuts seems to be tightly connected to
the existence of invariants of motions and it would be interesting to investi-
gate the existence of such invariants for more complicated systems, such as
other potentials, interacting systems, etc. This seems to be closely related to
the integrability of the system. Since the classical definition of integrability
is not easily extended to quantum systems — the quantum sense of “integra-
bility” is not yet agreed upon — one may expect quantum systems to exhibit
fundamentally different behaviors compared to their classical counterparts.

In the final chapter we have seen that a localization-delocalization transi-
tion can be crossed in a realistic experiment involving a mixture of ultracold
gases loaded in optical lattices. One of the species is used as a source of dis-
order for the other which behaves like a wave in a disordered crystal. Since
the disorder is synthetic, its correlation function can be engineered. We have
proposed a realistic experimental scheme to create a correlated disorder which
exhibits strong deviations from the standard AL. In particular, delocalization
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can occur in this mixture. We have shown that this transition can be crossed
by varying an external magnetic field to tune the interspecies collision cross-
section through a Feshbach resonance without modifying the correlation of the
disorder.



Appendix A

Technical drawings

This appendix gives the technical drawings of the main steel chamber, the
Hellma glass cell and the magnetic trap.
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Figure A.1: Main steel chamber.
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Appendix B

Equipment

This appendix lists the key elements of the experiment. Standard electronics
and optical elements such as the optical table, the lenses, the mirrors, the
mountings, the cables, the oscilloscopes etc. are not listed.

Description Constructor Part number (Model)

Upper chamber 100 CF
viewports (MOT1)

Torr Scientific VPZ100BBAR

Upper chamber 38 CF
viewports

Torr Scientific VPZ38BBAR

Upper chamber ion pump Varian 9191115 (VacIon Plus 20)
Lower chamber ion pump Varian 9191213 (VacIon Plus 40)
Titanium sublimation

pump
Varian 9160050

Mass spectrometer Pfeiffer
vacuum

Prisma 80, QMS 200

DFB 780 nm diodes Eagleyard
photonics

EYP-DFB-0780-00080-
1500-SOT02-0000

DFB mounting and
collimation lens

Thorlabs LT230P-B

Tapered amplifier 780 nm
(MOTs)

Sacher
lasertechnik

group

TEC-400-0780-2000

Individual polarization
maintaining fibers (MOTs

version 1)

OZ Optics LPC-08-780-5/125-P-2.2-
11AS-40-3A-3-3
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One-to-six fibered splitters
(MOTs version 2)

OZ Optics FOBS-16P-1111111-5/125-
P-780-16.66%-40-

1AHPC,3A-3-1,3+LPC-
08-P-2.2-11AS-40-1AHPC-

3-1
ECDL diode (780 nm,
pulled to 765 nm)

Eagleyard
photonics

EYP-RWE-0780-02000-
1300-SOT12-0000

Tapered amplifier 770 nm
(dipole trap)

Sacher
lasertechnik

group

TEC-400-0770-1500

Band-stop filter
767-800 nm (dipole trap)
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Appendix C

Scaling of Bose-Einstein
condensates in harmonic traps

In this appendix, we first derived Eqs. (3.80)–(3.85), and then show that the
general scaling equations obtained can be used to recover — by a perturbative
approach — the dipole, quadrupole, and scissors modes discussed in Secs. 1.2.3
and 3.2.

C.1 Scaling
The starting point is the GPE (3.43) for the general harmonic potential (3.75).
We look for a solution of the form

ψ(r, t) = A(t)χ(ρ, τ)eiφ(r,t) (C.1)

with
ρ = B−1r + a. (C.2)

Equation (3.43) then takes the form

i~
[
Ȧ
A
χ+∇ρχ ·

∂ρ(B,a)
∂t

+ ∂χ

∂τ

∂τ

∂t
+ iχφ̇

]
=

− ~2

2m

∑
i,j,k

[B−1]ij [B−1]kj
∂2χ

∂ρi∂ρk
+ 2i(B−1∇rφ) · ∇ρχ+ i(∇2

rφ)χ− (∇r)2 χ


+ 1

2m
{

[B(ρ− a)]tW [B(ρ− a)]
}
χ+ utB(ρ− a)χ+ g3D|A|2|χ|2χ. (C.3)

We look for the conditions that A, B, and a have to satisfy in order to simplify
Eq. (C.3) to the form

i~
∂

∂τ
χ(ρ, τ) =

[
U(ρ, 0) + g3DN |χ(ρ, τ)|2

]
χ(ρ, τ) (C.4)
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in the TF limit, namely, neglecting the kinetic term given by (3.78). We
deduce immediately that (i) the second term of Eq. (C.3) has to be equal to
the sixth, and (ii) the first to the seventh. Condition (i) leads to

∇rφ = −m
~
B
{

˙[B−1]r + ȧ
}
, (C.5)

which has a solution if the matrix B ˙[B−1] = −ḂB−1 is symmetric1. If this
condition holds, we get Eq. (3.82) for the phase φ. Condition (ii) can be
written as

ȦA−1 = −1
2tr(ḂB−1). (C.6)

Using the invariance of the trace and determinant, the evolution of A can be
written in term of the eigenvalues βi of the matrix B as

d
dt lnA = ȦA−1 = −1

2
∑
i

β̇i
βi

= −1
2

d
dt ln detB,

that is A = C (detB)−1/2 with C ∈ R+.

(C.7)

If, e.g., at t = 0 we have B = 1 and A = 1, equation (C.7) yields Eq. (3.84).
Moreover from the comparison between the third term in Eq. (C.3) and

the nonlinear term [condition (iii)], we deduce Eq. (3.85). Taking into account
(i)–(iii), Eq. (C.3) reduces to

i~
∂χ

∂τ
= ~detB∂φ0

∂t

+ detB
{
m

2

[(
ḂB−1r−Bȧ

)2
+ rtB̈B−1r + rtḂ ˙[B−1]r

]
+ m

2
{

[B(ρ− a)]tW [B(ρ− a)]
}

−mrtḂȧ−mrtBä+ utB(ρ− a)
}
χ

+ g3D|χ|2χ.

(C.8)

By imposing the quadratic term in ρ to be equal to 1
2mρ

tW 0ρ, we get con-
dition (iv), i.e., Eq. (3.80); the fifth condition is that the linear term in ρ
vanishes and thus leads to (3.81); finally by requiring that the ρ-independent
term be null, we get (3.83) for φ0.

1In a general case the matrix ḂB−1 can be split into a symmetric and an antisymmetric
part. In the ρ-frame of reference, the antisymmetric part gives rise to a rotational term
proportional to the angular momentum and only the symmetric part of ḂB−1 contributes
to the phase of the wave function. The rotational term can be neglected for nearly-isotropic
traps or for small angular velocities of the trap.
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C.2 Low-lying modes
Equation (3.81) describes the dipole mode for the center of mass and Eq. (3.80)
the quadrupole and the scissors modes. The low-lying eigenfrequencies of these
latter modes can be obtained by solving the equation of motion for the matrix
B for the case of a tilt of the trap of a small angle α. At t > 0, the matrix W
is constant and can be written as

W =

 ω2
⊥ 0 0
0 ω2

‖ α(ω2
‖ − ω

2
⊥)

0 α(ω2
‖ − ω

2
⊥) ω2

⊥

 = W 0 + δW, (C.9)

where

W 0 =

 ω2
⊥ 0 0
0 ω2

‖ 0
0 0 ω2

⊥

 , (C.10)

and

δW =

 0 0 0
0 0 α(ω2

‖ − ω
2
⊥)

0 α(ω2
‖ − ω

2
⊥) 0

 . (C.11)

We look for solutions of the form Bt = 1 + δ. Equation (3.80) takes the form:

δ̈ ' −W 0δ − δtW 0 − (Trδ)W 0 + δW, (C.12)

up to the first order in δ. For the diagonal terms, we have

δ̈ii = −2ω2
i δii − (Trδ)ω2

i . (C.13)

Setting δii = ∆ie
iΩt, we obtain the following coupled equations

−Ω2∆x = −2ω2
⊥∆x − (∆x + ∆y + ∆z)ω2

⊥,

−Ω2∆y = −2ω2
‖∆y − (∆x + ∆y + ∆z)ω2

‖,

−Ω2∆z = −2ω2
⊥∆z − (∆x + ∆y + ∆z)ω2

⊥,

(C.14)

whose solutions are the surface mode Ω =
√

2ω⊥ for any values of ω⊥ and ω‖,
and the breathing modes Ω ' 2ω⊥ and Ω '

√
5/2ω‖ in the cigar-shape regime

ω‖ � ω⊥.
For the off-diagonal terms δij ({i, j} = {2, 3} or {3, 2}), Eq. (C.12) gives

δ̈ij = −ω2
i δij − ω2

j δji + α(ω2
‖ − ω

2
⊥), (C.15)

namely
δ̈ij + δ̈ji = −(ω2

i + ω2
j )(δij + δji) + 2α(ω2

‖ − ω
2
⊥), (C.16)
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which has the solution

δ23 = δ32 = α
(ω2
‖ − ω

2
⊥)

Ω2
s

[1− cos(Ωt)], (C.17)

with Ωs = (ω2
⊥+ω2

‖)
1/2. This is a scissors mode with initial conditions δ̇ij(t =

0) = 0 and δij(t = 0) = 0.



Appendix D

Renormalization

This appendix details the renormalization procedure used to calculate the
density of states, the Lyapunov exponent, and the transmission coefficient in
the case of one-dimensional tight-binding Hamiltonians (cf. Secs. 4.2 and 4.3).
In the case of simple tridiagonal Hamiltonians, it provides a practical way to
perform efficient numerical calculations. The procedure is illustrated with the
example of a perfect lattice. The algorithm used to numerically calculate these
quantities are also explained.

D.1 Renormalization
The Hamiltonian is assumed to be a sum of two terms, for instance a kinetic
term and an interaction term

H = H0 +HI . (D.1)

D.1.1 The Dyson equation
In the following, we will use the Dyson equation [287] which relates the Green’s
function operator G0(E) ≡

(
E · 1−H0)−1 of H0 to that of H, G = (E · 1 −

H)−1, by the relation
G = G0 +G0HIG. (D.2)

The proof is a simple exercise of linear algebra.

D.1.2 The procedure
The idea of renormalization is to obtain an effective Hamiltonian describing
the physics happening in a subspace A of the original Hilbert space H. For
this, H is decomposed into a direct sum of two subspaces A and B:

H = A⊕ B. (D.3)



170 Appendix D. Renormalization

The projectors on these subspaces are written A and B, such that A+B = 1.
The Hamiltonian is split into a sum of four terms

H = (A+B)H(A+B) = AHA︸ ︷︷ ︸
HAA

+BHB︸ ︷︷ ︸
HBB

+AHB︸ ︷︷ ︸
HAB

+BHA︸ ︷︷ ︸
HBA

, (D.4)

which are grouped by two:

H = H0 +HI , (D.5)
with H0 = HAA +HBB, and HI = HAB +HBA, (D.6)

such that the image of A (respectively B) by H0 is in A (respectively B), while
the image of A (respectively B) by HI is in B (respectively A).

The idea of renormalization is to eliminate one of the two subspaces, and
describe the physics in the remaining subspace by a new, effective, Hamil-
tonian. The cost of this procedure is that the new Hamiltonian is energy
dependent. This is done by calculating the projection of the Green’s operator
on one of the subspaces:

GAA ≡ AGA = [E · 1−HA(E)]−1 , (D.7)

where HA(E) is the effective Hamiltonian on the remaining subspace, defined
by

HA(E) = HAA +HABG
0
BB(E)HBA. (D.8)

The proof makes use of the Dyson equation and is straightforward algebra.

D.2 An example: the perfect lattice
Let us illustrate the use of renormalization to calculate the Green’s function
of a perfect lattice described by the Hamiltonian

H =
∑
n∈Z

{
ε|n〉〈n|+ t (|n〉〈n+ 1|+ |n+ 1〉〈n|)

}
. (D.9)

To this purpose, we first need to calculate the expression of the Green’s func-
tion of a semi-infinite lattice.

D.2.1 Green’s function of a semi-infinite lattice

The Hamiltonian reads

H =
∞∑
n=0

{
ε|n〉〈n|+ t

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

)}
. (D.10)
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It is renormalized using the subspaces A = span{|0〉} and B = H−A, i.e. the
Hamiltonian is split in the following manner:

H = ε|0〉〈0|︸ ︷︷ ︸
HAA

+ t (|0〉〈1|+ |1〉〈0|)︸ ︷︷ ︸
HAB+HBA

+
∞∑
n=1

{
ε|n〉〈n|+ t

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

)}
︸ ︷︷ ︸

HBB

.
(D.11)

The renormalization yields the equation

t

2g
2
0,0 − (Ẽ + ie)g0,0 + 1

2t = 0 (D.12)

for g0,0 = 〈0|G(E + iδ)|0〉, where Ẽ = (E − ε)/2t and e = δ/2t. For |Ẽ| < 1,
which defines the band of allowed energies, one defines the dimensionless wave
vector k by cos k ≡ Ẽ. This is the dispersion relation of this lattice. The
solution of Eq. (D.12) is

g0,0(E + i0+) = 1
t

{
Ẽ − i

√
1− Ẽ2

}
= e−i|k|

t
for t > 0, (D.13)

and g0,0(E + i0+) = 1
t

{
Ẽ + i

√
1− Ẽ2

}
= ei|k|

t
for t < 0. (D.14)

The sign of the root of (D.12) has been chosen such that the projected DOS

N (E) = − 1
π

lim
δ→0+

Img0,0 (D.15)

is positive in the band.

D.2.2 Green’s function of the infinite perfect lattice

The Hamiltaonian is given by (D.9). We want to calculate the matrix elements
of the Green’s function operator G0 of this perfect lattice.

Diagonal matrix elements

The renormalization with A = span{|n〉} leads to

G0
n,n = 1

2t

(
1

Ẽ + ie− tg0,0

)
(D.16)
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for G0
n,n = 〈n|G0(E + iδ)|n〉, where g0,0 is the diagonal matrix element of the

Green’s function of a semi-infinite lattice on site 0. In the band (|Ẽ| < 1),
using (D.16) and (D.14), one gets

G0
n,n(E + i0+) = − i

2|t|
1√

1− Ẽ2
= − i

2|t| sin |k| , (D.17)

with the dispersion relation cos k ≡ Ẽ. The density of states is obtained from
(4.8),

N (E) = 1
2π|t|

1√
1−

(
E−ε
2t

)2
(D.18)

in the band, and N (E) = 0 elsewhere.

Off-Diagonal matrix elements

By mathematical induction, one can show that

G0
0,n ≡ 〈0|G0|n〉 = (tg0,0)|n|G0

0,0. (D.19)

In the band this gives

G0
0,n(Ẽ + i0+) =− i

2t

[
Ẽ − i

√
1− Ẽ2

]|n| 1√
1− Ẽ2

, (D.20)

=− i

2|t|
e−i|nk|

sin |k| for t > 0, (D.21)

and G0
0,n(Ẽ + i0+) =− i

2|t|
ei|nk|

sin |k| for t < 0. (D.22)

D.3 Numerical calculation of G for arbitrary chains: the
decimation technique

This section gives the algorithm used to calculate the matrix elements of G
entering the DOS, Lypunov exponent and transmission coefficient for a ran-
dom chain, i.e. a chain in which the on-site and hopping energies have been
randomly chosen.

D.3.1 Removal of one site

We now consider a lattice with a finite number of sites |n〉, n ∈ [0, Ns − 1].
We will often use the renormalization procedure on tridiagonal Hamiltonians
of the form (D.9), using a single site of the lattice as the subspace B, in
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order to reduce the dimensionality of the problem by 1. When removing one
site, say the second site |1〉, the effective energy of the neighboring sites after
renormalization are respectively

ε̃0 ≡ 〈0|HA(E)|0〉 = ε0 + t0t1
E − ε1

, (D.23)

and ε̃2 ≡ 〈2|HA(E)|2〉 = ε2 + t1t2
E − ε1

, (D.24)

and the hopping energy between these two sites is

t̃0,2 ≡ 〈0|HA(E)|2〉 = t0t1
E − ε1

. (D.25)

D.3.2 Calculation of 〈0|G|Ns − 1〉

A renormalization removing the second site can be performed recursively to
obtain partial information on a d-dimensional problem by reducing it to an
effective 2D problem. The lattice is thus turned into an effective dimer (2
sites). This procedure is called “decimation” and was first described by Far-
chioni et al. [262] for solid-state physics. It can be sketched in the following
way:

H = ε0
t0_ ε1

t1_ ε2
t2_ ε3

t3_ · · · tNs−2
_ εNs−1

Renormalization, removal of the second site
⇓

H̃ = H(1) = ε̃0
t̃0,2
_ ε̃2

t2_ ε3
t3_ · · · tNs−2

_ εNs−1

Idem (Ns − 3) times
⇓

H(Ns−2) = ε̄0
t̃0,Ns−1
_ ε̄Ns−1

The elements finally obtained are related to the Green’s function matrix ele-
ments by 〈0|G|Ns − 1〉 = 1/(E − ε̄0), 〈Ns − 1|G|0〉 = 1/(E − ε̄Ns−1).

D.3.3 First and last diagonal matrix element

In order to compute the first and last diagonal matrix elements, one can simply
renormalize the chain using A = span{|0〉}, and B = H−A. In this case HI

simply is HI = t0(|0〉〈1|+ |1〉〈0|). This yields

G0,0 = 1
E − ε0 + t20〈1|GBB|1〉

. (D.26)
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Note that 〈1|GBB|1〉 is the first diagonal element of the Green’s function of
a new semi-infinite lattice. By applying the same renormalization recursively,
we thus obtain G0,0 as the continued fraction

G0,0 =
1

E − ε0 +
t20

E − ε1 +
t21

E − ε2 + · · ·

. (D.27)

The simplicity comes from the fact that the Hamiltonian is tridiagonal. This
algorithm for the calculation of the first diagonal matrix element of G is seen
to be linear in the number of sites, it is thus efficient. Obviously, the same
algorithm can be used for the last diagonal element GNs−1,Ns−1.
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Shortcuts to adiabaticity for ultracold gases

In this thesis I explore the possibility of accelerating adiabatic processes for quantum sys-
tems. Experiments are performed with a trapped ultracold gas of Rubidium-87 atoms in two
distinct regimes: with a one-dimensional thermal gas that can be considered non-interacting,
and with a three-dimensional Bose-Einstein condensate for which interactions are dominant.

In the first chapter, I recall some aspects of the theoretical description and important
properties of such gases. The second chapter describes the Bose-Einstein condensation ap-
paratus, mainly composed of two magneto-optical traps and a magnetic trap.

In the third chapter, this setup is used to demonstrate that adiabatic processes — in our
case, the slow decompression and displacement of the gas — can be dramatically accelerated
by using a proper design of the time-dependent parameters of the system. The theoretical
treatment is detailed and is not restricted to trapped gases. It may be applied to other
physical systems described by either a linear or nonlinear Schrödinger equation containing
a time-dependent harmonic potential.

The final chapter is theoretical and not directly related to the others. In it I investigate
the effect of disorder correlations on one-dimensional Anderson localization. I show that
a degenerate mixture of Rubidium-87 and Potassium-41 atoms is well suited to study the
localization-delocalization transition predicted by existing models of correlated disorder.

Keywords: degenerate ultracold gas, Bose-Einstein condensate, adiabatic transformation,
harmonic oscillator, Lewis invariant, Anderson localization, random dimer model, delocal-
ization.

Raccourcis aux transformations adiabatiques de gaz ultrafroids

Dans ce mémoire, j’étudie la possibilité d’accélérer les transformations adiabatiques de sys-
tèmes quantiques. Les expériences ont été réalisées avec un gaz ultrafroid de Rubidium-87
dans deux régimes différents : d’une part avec un nuage thermique uni-dimensionnel dans
lequel les interactions sont négligeables, et d’autre part avec un condensat de Bose-Einstein
tri-dimensionnel pour lequel les interactions sont prépondérantes.

Le premier chapitre de la thèse rappelle certains aspects théoriques ainsi que les prin-
cipales propriétés des gaz ultrafroids. Le second chapitre décrit l’appareil expérimental de
condensation de Bose-Einstein, principalement constitué de deux pièges magnéto-optiques
et d’un piège magnétique.

Dans le troisième chapitre, cet appareil est utilisé afin de prouver que les transformations
adiabatiques, dans notre cas, une décompression accompagnée d’un déplacement du gaz,
peuvent être considérablement accélérées si les paramètres dépendant du temps du système
suivent une trajectoire particulière. Le traitement théorique qui est détaillé n’est pas limité
aux gaz froids, mais est également applicable à tout système décrit par une équation de
Schrödinger, aussi bien linéaire que non linéaire, dans laquelle le potentiel dépendant du
temps est harmonique.

Le dernier chapitre est théorique et quelque peu éloigné du reste du manuscrit. J’y
étudie les effets des corrélations sur les systèmes désordonnés à une dimension dans lesquels
la localisation d’Anderson est attendue. Je montre qu’un mélange dégénéré de Rubidium-87
et de Potassium-41 est adapté à l’observation de délocalisation induite par les corrélations
du potentiel aléatoire.

Mots-clés : gaz ultrafroid dégénéré, condensat de Bose-Einstein, transformation adiaba-
tique, oscillateur harmonique, invariant de Lewis, localisation d’Anderson, modèle aléatoire
de dimères, délocalisation.
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