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Introduction 

Since humans have domesticated and cultivated the plant species that were necessary for 

their own or cattle feedings or for their material needs, they have been confronted to 

numerous plant development harmful events. Those events are abiotic stresses such as 

drought or soil salinity as well as biotic stresses like devastating insects or diseases. In 

order to face these constraints, several cultural practices aiming at correcting the 

environment such as irrigation, fertilizer supplies, or phytosanitary treatments were 

developed. At the same time, knowledge in plant genetics and especially cereals that have 

dramatically increased since the beginning of the 20th century, have been extensively 

exploited in order to genetically improve cultivated crops (Green Revolution during the 

sixties). Especially, criteria that are the most largely taken into account in genetic breeding 

are yield, environment adaptation (earliness, drought resistance…) and disease resistances. 

Until now, the cereals world production has covered the human needs, even outpacing 

population growth leading to surpluses in the past twenty years. However, the demographic 

increase that is estimated for the next 50 years will induce a simultaneous increase in the 

world cereal demand for feeding. If cultivating more and more lands has been the 

traditional answer to address the growing needs of the population, this will no longer be the 

case because of the decrease of agricultural land areas, especially in the developing 

countries, leading thus probably to stock depletions. 

In addition, agriculture has also now to face ecological constraints. Intensive agriculture 

has induced huge modifications of the environment (deforestation, suppression of the 

hedges and ditches…) leading in soil degradation and in flooding. Also, intensive use of 

fertilizers, herbicides, insecticides and fungal treatments has conducted simultaneously to 

deplete the animal as well as floral genetic variability, to pollute phreatic water and to 

contribute to the eutrophy of lakes and rivers. 

Thus, improvement of cereal yield in the context of sustainable agriculture has to be 

reached in the next decades to meet human needs by 2050. Significant advances in the 

understanding of the plant biology as well as in the management and exploitation of 

genetic resources must be achieved to face this challenge. Concerning this latter point, 

genetic variability in cereals and especially in wheat is extremely extended but remains 

largely underexploited. This is due: (1) to the poor knowledge of the capacities of these 
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resources in terms of biotic and abiotic resistances as well as their potential for bread 

making quality or yield performances; (2) to the fact that they are bearing many traits of 

low agronomical interest such as plant height, lodging susceptibility, free threshing, hulled 

kernels… Because of this, low attentions have been paid on the study of wheat related 

species especially in genomic areas while genomics has exploded in wheat in the last five 

years leading to better marker-assisted selection and to the positional cloning of a number 

of genes of agronomic interest. 

The first aim of the thesis was to develop efficient genomic tools to study a wide range of 

wheat related species. Especially, we decided to focus our efforts in the development of 

molecular markers that can be used on wheat as well as on a large range of wild and 

cultivated wheat-related species that can be of interest for wheat genetic improvement. 

These markers would further be used to follow introgressions of genes of agronomical 

interest issued from these species, and to reduce the linkage drag of unfavourable alleles 

that they carry. The second aim was to use these markers to study the genetic variability 

existing within these species in comparison to wheat, in order to see whether they can be 

used as source of new alleles. We also assessed the relationships between and within these 

species. All this work will support the research towards the improvement of wheat and a 

better understanding of the organisation, function and evolution of the wheat genome. 
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Tab 1-1. World wheat production (million tonnes)  

 

 
Fig1-1. Wheat production worldwide compared with the area sown to wheat from 
1961 to 2000. 
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Chapter I: Bibliography 

1. Hexaploid wheat 

Small grain cereals offer the decisive advantage of constituting supplies that can be stored 

as grains, which have a high nutritional value due to their starch as well as protein contents. 

In addition, they can be easily transformed by cooking under numerous forms. First 

archeological evidences of cereal harvests date about 10,000 years ago and were found in 

the Middle-East, in the “Fertile Crescent” (Feldman, 1976) where einkorn (T. boeoticum) 

and wild durum species (T. dicoccoides) were subjected to gathering. Among the cereals, 

bread wheat (Triticum aestivum L.) occupies arguably the most important place. It 

appeared in the same region about 8,000 years ago and was one of the first domesticated 

crops. Then it was dispersed all over the world from Greece and Europe and has served as 

staple food for the major civilizations in Europe, West Asia and North Africa. At the 

present time, wheat remains the most important food source for humans and one of the 

most important merchandise for economical exchanges. 

1.1 Economical importance of wheat 

Wheat is grown as a commercial crop in 120 countries on an area of 217 million hectares 

in 2004 (FAO source) which represents about one third of the total cereal-cultivated areas. 

Wheat is also the most productive among the cereals and the combined harvests in 2004 

were 627 million metric tonnes. The major producers in 2004 were China, European Union 

(25 countries), India, U.S.A., Russian Federation, Canada and Australia. The world wheat 

production in 2005 is expected to be 612 million tonnes, 15 million tonnes lower than the 

record in 2004 but still well above than the average of the past five years (Tab. 1-1) (FAO; 

http://www.fao.org/). 

Improvement of cultural practices and genetic breeding since the beginning of the 20th 

century largely contributed to increase the world yields from 0.9 t/ha in 1900 to 2.9 t/ha in 

2004. For example, since the early 1960s there has been little increase in the area sown 

with wheat, but over the same period, yields have increased almost 3-fold (Fig. 1-1). 

However, yields remain very different among the countries and if they can reach a mean of 

7.8 t/ha in the Netherlands, they are only of 0.34 t/ha in Somalia.  

Wheat also takes the first place in the international agricultural trade of cereal productions. 



Fig 1-2. Wheat import by region                 Fig 1-3. Wheat export price  

(US No.2 Hard Winter, Gulf) 

  

 

Fig 1-4: Close and wild related species of T. aestivum 
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World trade in wheat in the current 2004/2005 marketing year is now forecast to reach 103 

million tonnes (FAO; http://www.fao.org/). Fig. 1-2 and 1-3 indicate the situation of wheat 

import of each region in the whole world and the price of wheat export in 2004 and 2005, 

respectively. 

Wheat is primarily grown for its grain which is mainly used in bakery but it has other uses 

in the livestock feed and industry. Bread wheat can be roughly classified into several types, 

based on the growth habit (spring vs winter) and the hardness of the kernel endosperms 

(hard vs soft). The hard types of bread wheat often show high protein contents, especially 

gliadins and glutenins. They are mainly utilized for the production of a large variety of 

leavened and flat breads. The high level of these protein fractions in the flour imparts 

elasticity to bread dough and allow it to expand during leavening and baking. On the 

contrary, soft wheats are generally low in protein content, and are thus mostly milled into 

flour for use in a wide variety of bakery products such as cakes, pastries, and unleavened 

breads. 

1.2 Classification of the hexaploid wheat 

Botanically, wheat (Triticum aestivum L. em Thell) belongs to the sub-family of the 

Pooideae within the grass family (Poaceae) which also includes the sub-families of the 

Bambusoideae that comprises rice (Oryza sativa) and of the Panicoideae that comprises 

maize (Zea mays), sorghum (Sorghum bicolor) and sugar cane (Saccharum officinarum). 

Within the Pooideae sub-family, wheat belongs to the Triticodeae super-tribe and to the 

Triticeae tribe. This latter tribe includes three important sub-tribes: the Triticineae with the 

Triticum and Aegilops species, the Secalineae with rye (Secale cereale) and the Hordineae 

with barley (Hordeum vulgare). Over two dozen individual species have been 

characterized as members of the genus Triticum among which only T. monococcum L., T. 

turgidum L., T. aestivum L. are widely cultivated and only the two latter are common. 

Relationships between T. aestivum and its close and wild relatives are listed in Fig. 1-4. 

It was early demonstrated that wheats formed polyploid series (Sakamura, 1918). The 

diploid species contain eight distinct genomes that were given a letter as names often 

followed by an additional letter representing the sub-species: A (T. monococcum ssp. 

boeoticum, Ab; ssp. monococcum, Am; ssp. urartu, Au), C, D, M, N, S (Sitopsis section: Ae. 

speltoides, Ss; Ae. bicornis, Sb; Ae. longissima, Sl; Ae. sharonensis Ssh), T and U. Two of 

the genomes found in polyploid wheats were given new names, B and G, because their 



Fig. 1-5: Phylogenetic relationship of T. aestivum 

 

 

Fig 1-6: Chromosome structure of T. aestivum  
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diploid progenitors were not known. Some of the diploid species contributed to the 

genomes of polyploid species. The Triticum and Aegilops species gather diploid as well as 

polyploid species among which hexaploid bread wheat (Triticum aestivum) occupies the 

most important place of the Triticeae tribe. 

1.3 Origins of bread wheat 

Hexaploid bread wheat (Triticum aestivum L.em.Thell. 2n = 6x = 42) is an allopolyploid 

species which arose under cultivation 8,000 years ago from hybridization, followed by 

spontaneous chromosome doubling, between T. turgidum ssp. dicoccum and the diploid 

goatgrass Aegilops tauschii ssp. strangulate (2n= 6x =14, DD-genome; McFadden et al. 

1946; Jaaska 1980). Early cytogenetic studies suggested that the A genomes of the 

polyploids were contributed by T. monococcum (Sax 1922; Lilienfeld and Kihara 1934) but 

more recent studies evidenced that T. urartu was the real donor of the A genome (Natarajan 

et al. 1974; Huang et al. 2002). The origins of the B genome remain uncertain and 

controversial (Kerby and Kuspira, 1987). At least six different diploid Aegilops species 

from the Sitopsis section were proposed as possible source of the B genome. Other studies 

suggest a possible polyphyletic origin of the B genome. Two different allotetraploids with a 

common A genome (AAXX and AAYY) could have hybridized and within their descent, 

the X and Y genomes could have rearranged and gave rise to the actual B genome. 

However, Ae. speltoides is at the present time the most likely living relative of an extinct or 

yet to be discovered B genome donor species (Fig. 1-5, Sarkar and Stebbins 1956; Riley et 

al. 1958; Rees and Walters 1965; Natarajan and Sharma 1974; Chen et al. 1975; Jaaska 

1980; Hassan and Gustafson 1996, Maestra and Naranjo 1998). 

1.4 Genetic specificity of bread wheat 

The wheat genome is hexaploid and is made by the juxtaposition of three simple genomes 

named A, B and D also called homoeologues. DNA is organized into 21 pairs of 

chromosomes (Fig. 1-6), seven pairs belonging to each of the A, B and D genomes (Sears 

1954; Okamoto 1962). Within each diploid genome, the chromosomes are designated from 

1 to 7. The size of each diploid genome varies between 4,500 and 6,000 mega bases (Mb, 

Bennet and Leitch, 1995) depending on the species. The bread wheat genome size was thus 

estimated to be 16,974 Mb (1C, Bennet and Smith, 1991) which represents 4, 40 and 130 

times more than the human, rice and Arabidopsis thaliana genomes respectively. Wheat 
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genome is very complex and consists of unique or low-copy sequences surrounded by 

regions of highly repetitive DNA which represents about 70-80% of the genome (Flavell et 

al., 1977; Vedel and Delseny, 1987; Wicker et al., 2003). Although early studies indicated 

gene clustering in gene-rich islands located in distal parts of the chromosomes (telomeres), 

it is now believed that the islands are dispersed throughout the whole length of the 

chromosomes (Akhunov et al., 2003). Repetitive DNA mainly consists of transposable 

elements (e.g. Fatima, Caspar and Angela, Sabot et al., 2005) but Simple Sequence 

Repeats (SSRs) located in non-coding as well as in coding sequences are also frequent. 

 



 

 

 

Fig 1-7: Examples of different types of SSRs 

a. Perfect repeats without interruptions  

GAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA 

b. Imperfect repeats with one or more interruptions 

GAGAGAGAGAGAGAGCGAGAGAGAGAGAGAGA 

c. Compound repeats with adjacent tandem simple repeats of a different repeat: 

Perfect compound repeats: GAGAGAGAGAGAGAGAGTGTGTGTGGTGTGTGTG 

Imperfect compound repeats: GAGAGAGAGAGAGAGGGGTGTGTGGTGTGTGT 
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2 Simple Sequence Repeats (SSRs)  

2.1  Definition and classification 

Microsatellites, also referred to as Simple Sequence Repeats (SSRs), Variable Number of 

Tandem Repeats (VNTRs) or Variable Simple Sequence Motif (VSSM), were first 

described in eukaryotes in the early eighties (Hamada et al. 1982). They are defined as 

stretches of DNA, which consist of only one or a few (maximum of six) tandemly, repeated 

nucleotides, such as poly (A/T) or poly (GT/CA) of less than 100 bp in length with a 

minimal length of 12 bp (Tautz and Rentz, 1984; Tautz 1993). These types of simple 

sequence were shown to be repetitive and interspersed in many eukaryotic genomes (Tautz 

et al. 1986). Several other types were found by sequencing eukaryotic DNA. They were 

reported in the genome of diverse species (Hamada et al. 1982; Tautz and Rentz 1984; 

Greaves and Patient 1985; Dover and Tautz 1986) and have been implicated in a range of 

functions including gene regulation (Wang et al. 1979; Weintraub and Groudine 1976; 

Hentschel 1982; Shen et al. 1981), signals for gene conversion and recombination (Shen et al. 

1981; Goodman 1996; Jeffreys et al. 1985), and the replication of telomeres (Blackburn and 

Szostak, 1984). 

SSRs are divided into different categories according to their composition (Fig 1-7; Weber 

1990): perfect, imperfect or compound repeats. They are also classified into two classes 

based on their origins. Some are developed from enriched genomic DNA libraries 

(Edwards et al. 1996; Ostrander et al. 1992) and are thus named genomic SSRs (g-SSRs). 

Most of them have neither genic function nor close linkage to coding regions (Metzgar et 

al. 2000), and their developing process is very tedious and expensive. The second class of 

SSRs is derived from EST sequences originating from the expressed regions of the genome 

and is named EST-SSRs. In general, EST-SSR markers produce high quality patterns, but 

give a lower level of polymorphism compared to that from genomic SSRs (Holton et al. 

2000; Thiel et al. 2003). An important feature of the EST-SSR markers is that they can be 

rapidly developed from the EST databases at low cost, and due to their existence in 

expressed regions, this will increase the efficiency of selecting genes of interest through 

marker assisted selection (MAS). 

2.2  Advantages of SSRs compared to other markers 

The numerous advantages of the microsatellites have been well-documented (Morgante 
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and Olivieri 1993; Rafalski and Tingey 1993; Powell et al. 1996). One of the main 

advantages of the microsatellites compared with other markers is their highly polymorphic 

rate due to the variability of the number of repeats at a given locus (Poulsen et al. 1993; 

Schmidt et al. 1993; Thomas and Scott 1993; Senior and Heun 1993; Becker and Heun 

1995; Rongwen et al. 1995). However, they remain sufficiently stable to avoid somatic 

variations (Barret 1993). The polymorphism can be evaluated through the polymorphism 

information content value (PIC value), a criterion that was first introduced by Nei et al. 

(1973) in human genetics. These are also mainly co-dominant markers with a Mendelian 

inheritance, which can reveal homozygous as well as heterozygous lines and which can be 

used on a wide range of segregating population (Morgante and Olivieri 1993). In addition, 

they show a high reproducibility compared to other markers such as RAPDs. When 

polyploid plants like rapeseed and wheat are considered, microsatellites are also frequently 

specific of the genome and give a single signal compared to RFLPs (Poulsen et al. 1993; 

Röder et al. 1995). Finally, they can be easily automated and used on high throughput 

genotyping platforms (Nicot et al. 2004). 

2.3  SSRs within genomes 

2.3.1 Abundance in genomes 

Abundance and polymorphism of the SSRs, especially of the dinucleotides (TG)n, (AC)n 

and (AT)n was demonstrated in human and other eukaryotes (Weber and May 1989; Tautz 

1989; Litt and Luty 1989). In general, plants have a lower proportion of sequences that 

account for SSRs than do vertebrates but a higher proportion compared with invertebrates 

and fungi. The range for plants is between 0.85% (Arabidopsis) and 0.37% (maize) of the 

genome (Morgante et al. 2002), whereas estimates for the fish species Tetraodon 

nigroviridis and Fugu rubipres are respectively 3.21% (Crollius et al. 2000) and 2.12% 

(Elgar et al. 1999), 1.07% for human chromosome 22, 0.21% for Caenorhabditis elegans 

and 0.30% for Saccharomyces cerevisiae (Toth et al. 2000). Within higher plants, Morgante 

and Olivieri (1993) estimated that the frequency of the microsatellites was one every 50 kb 

which contrasts with what is observed in human, with an estimated average density of one 

SSR every 6 kb (Beckman and Weber. 1992). Only few SSRs were detected within the 

organellar genome (Wang et al. 1994). The different types of SSRs exist in different 

density throughout the genome with slight variations according to the species. In primates, 

mononucleotides (mainly, poly (A/T) tracts) are the most copious classes of SSRs (Toth et 
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al. 2000; Wren et al. 2000). Dinucleotide (AT)n motifs were found to be rare within animal 

genomes while (CA)n were the most common SSRs (Moore et al. 1991). Most of the SSRs 

(48-67%) found in plant species are dinucleotide repeats while mono- and tetranucleotide 

repeats are the least common (Wang et al. 1994; Schug et al. 1998). A mean of one SSR 

every 64.6 kb and 21.2 kb was detected for monocotyledons and dicotyledons species 

respectively. However, frequency can vary from one every 3 kb in barley (Becker and 

Heun 1995) to one every 80 kb in rice (Panaud et al. 1995). At the centimorgan level, the 

SSRs provide thus an important source of markers for genetic mapping in eukaryotes. The 

utilization of microsatellites as genetic markers for a global approach of the genetic 

mapping in eukaryotes was proposed (Beckman and Soller 1990) and they have been thus 

extensively used to elaborate genetic maps in human (Weissenbach et al. 1992), pig 

(Rohrer et al. 1994) and other mammals and plants. 

 

2.3.2 Dispersion within genomes 

Microsatellites were found to be widely and randomly distributed in coding as well as non 

coding regions of the genome. A high proportion of SSRs is associated to Alu and SINE 

elements in primates and human (Arcot et al. 1995; Nadir et al. 1996) and thus forms a 

rather large portion of non-coding DNA regions. It was also demonstrated that they are 

frequently associated with retro-transposons and other dispersed repetitive elements in 

barley (Ramsay et al. 1999) as well as in other plant species (Wang et al. 1994). Di- and 

tetranucleotide SSRs are more frequent in non coding regions compared with trinucleotides. 

Dinucleotides are about 20 times more frequent in random genomic clones of Norway 

spruce (Picea abies, Scotti et al. 2000) compared to expressed sequences while Morgante 

et al. (2002) reported that all SSR types except tri- and hexa-nucleotides are significantly 

more frequent in the non coding fraction of six plant species compare to 25,762 predicted 

protein-coding sequences. In some cases, it was suggested that they could be clustered in 

some region of the genome (Condit and Hubbel 1991; Panaud et al. 1995; Arens et al. 

1995). 

Other evidences show that dinucleotide motifs seem to be located closer to the coding 

regions, in the 5’ UTRs or in the introns while one third of the trinucleotide motifs are 

located in the coding fraction of the genes (Morgante and Olivieri 1993). Introns have a 

similar repeat-unit profile to genomic DNA with various biases depending on species and 



Tab 1-2: Various types of microsatellites (from Jin et al. 1994) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Mononucleotide motif (2):      
A C       
        
Dinucleotide motif (4):      
AC AG AT CG     
        
Trinucleotide motif (10):      
AAC  AAG AAT ACC ACG ACT AGC AGG 
ATC CCG       
        
Tetranucleotide motif (33):      
AAAC AAAG AAAT AACC AACG AACT AAGC AAGG 
AAGT AATC AATG AATT ACAG ACAT ACCC ACCG 
ACCT ACGC ACGG ACGT ACTC ACTG AGAT AGCC 
AGCG AGCT AGGC AGGG ATCC ATCG ATGC CCCG 
CCGG        
        
Pentanucleotide motif (102):     
AAAAC AAAAG AAAAT AAACC AAACG AAACT AAAGC AAAGG 
AAAGT AAATC AAATG AAATT AACAC AACAG AACAT AACCC 
AACCG AACCT AACGC AACGG AACGT AACTC AACTG AACTT 
AAGAC AAGAG AAGAT AAGCC AAGCG AAGCT AAGGC AAGGG 
AAGGT AAGTC AAGTG AATAC AATAG AATAT AATCC AATCG 
AATCT AATGC AATGG AATGT AATTC ACACC ACACG ACACT 
ACAGC ACAGG ACAGT ACATC ACATG ACCAG ACCAT ACCCC 
ACCCG ACCCT ACCGC ACCGG ACCGT ACCTC ACCTG ACGAG 
ACGAT ACGCC ACGCG ACGCT ACGGC ACGGG ACGTC ACTAG 
ACTAT ACTCC ACTCG ACTCT ACTGC ACTGG AGAGC AGAGG 
AGATC AGATG AGCAT AGCCC AGCCG AGCCT AGCGC AGCGG 
AGCTC AGGAT AGGCC AGGCG AGGGC AGGGG ATATC ATCCC 
ATCCG ATCGC ATGCC CCCCG CCCGG CCGCG   
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motifs (Toth et al. 2000). Despite the fact that numerous SSRs exist in the open reading 

frames (ORFs) of higher eukaryotes including Drosophila, Caenorhabditis elegans, 

mammals, humans, plants and yeast (Toth et al. 2000; Katti et al. 2001; Kantety et al. 2002; 

Morgante et al. 2002), their occurrence in coding regions seems to be limited by 

non-perturbation of ORFs (Metzgar et al. 2000). In human cDNA databases, more than 

92% of the predicted SSR polymorphisms within coding sequences have repeat-unit sizes 

that are a multiple of three (Wren et al. 2000). Thus, in many species, exons contain rare 

dinucleotide and tetranucleotide SSRs, but have many more trinucleotide and 

hexanucleotide SSRs than other repeats. Trinucleotide repeats show approximately a two 

fold greater frequency in exonic regions than in intronic and intergenic regions in all 

human chromosomes except the Y chromosome (Subramanian et al. 2003). 

Within transcribed regions, UTRs harbor more SSRs than the coding regions themselves 

(Wren et al. 2000; Morgante et al. 2002). In Arabidopsis, the 5’-UTRs, exhibit a strong 

bias toward AG/CT contrary to human where 3’-UTRs show a bias toward AC/GT. Also, 

the 5’-UTRs contained more trinucleotide repeats than the 3’-UTRs in humans (31.1% vs. 

4.6%; Stallings 1994; Wren et al. 2000) as well as in barley (67% vs. 26%; Thiel et al. 

2003). 

2.3.3 Composition 

Because of permutations that give complementary repeats, only 501 different types of SSR 

motifs can be encountered from the mono- to hexa-nucleotides (Tab 1-2 derived from Jin et 

al. 1994). For example, the (AAC)n motif includes AAC, ACA and CAA repeats for the 

forward sense and GGT, TGT and TTG repeats for the reverse sense. There are thus two 

mono-, four di-, 10 tri-, 31 tetra-, 98 penta- and 356 hexa-nucleotide motifs. 

Contrary to plants, mononucleotides are the most frequent in primate genomes (Toth et al. 

2000) and there is a prevalence of A/T repeats (11.8%) compared with G/C repeats (0.7%) 

in human coding regions (Olivero et al. 2003). However, the majority of SSRs (48 – 67%) 

found in many species are dinucleotides (Wang et al. 1994; Schug et al. 1998). Compared 

with animals, it was noticed that in higher plants, there is a lack of (CA)n repeats while 

(AT)n are the most frequent SSRs (Akkaya et al. 1992; Morgante and Olivieri 1993; 

Lagerkrantz et al. 1993; Bell and Ecker 1994). This pattern may be related to higher 

frequencies of certain amino acids in plants than in animal (Toth et al. 2000). The motif 

(GC)n was only slightly detected in plants (Becker and Heun 1995; Morgante and Olivieri 
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1993). On the contrary, the (GA)n repeats are more abundant than the (CA)n repeats which 

seems to be characteristic of the plant genomes (Condit and Hubbel 1991). Exons and 

ESTs show higher frequency for GA/CT repeat than for AT repeat in Arabidopsis thaliana 

and cereals (Morgante et al. 2002; Kantety et al. 2002). However, the proportion of the 

different types of microsatellites depends on the species. For example, in Arabidopsis, 

frequencies of the (CA)n and (GA)n repeats are lower compared to what is estimated in 

other plants (Bell and Ecker 1994). In rice, microsatellites (GA)n are the most frequent 

(Panaud et al. 1995). The proportion of dinucleotide repeats was greater among genomic 

DNA than among EST, and this proportion increased with longer SSRs (La Rota et al. 

2004). 

Concerning the trinucleotide motifs, microsatellites (TAT)n are the most frequently 

detected in animals as well as in plants (27.5%) followed by (TCT)n motif (25%; Morgante 

and Olivieri 1993). However, similarly to the dinucleotides, frequency varies among the 

species. In barley, the (AGC)n and (CCT)n motifs are the most frequent (Becker and Heun 

1995) while in rice, it is the (TTG)n motif (Panaud et al. 1995). Trinucleotide repeats are 

significantly more abundant in EST sequences compared to genomic sequences. In the 

animals, (AGC)n repeat is the most common motif (40.9% - 60.9%) while in plants, 

monocotyledons are richer in GC-rich trinucleotide repeats compared to dicotyledons 

(Cordeiro et al. 2001; Varshney et al. 2002; Thiel et al. 2003; Gupta et al. 2003). The most 

frequent trinucleotide motif in A. thaliana, grape and endophytes is AAG (28.3% - 42.1%). 

Abundance of CCG repeats in monocot genomes may be due to their increased GC content 

(Morgante et al. 2002). The AAT motifs were the least common (<1%) in monocot species 

and in other species ranging from 17.4% in S. cerevisiae to 0 in primates (Cordeiro et al. 

2002; Varshney et al. 2002). This may be explained by the fact that TAA-based variants 

code for stop codons that have a direct effect in protein synthesis in eukaryotes. 

Other types of motifs (tetra-, penta- and hexa-nucleotides) are less studied. However, they 

can sometime be very frequent such as tetranucleotide repeats which exceed trinucleotide 

repeats in vertebrate introns and intergenic regions. Poly (A/T) motifs are the most 

abundant especially in plants but tetranucleotides are rare in ESTs (Toth et al. 2000; Gupta 

et al. 2004). Similarly the most frequent pentanucleotide motifs are A/T rich in vertebrates 

but are under-represented in coding regions (Toth et al. 2000). Hexanucleotide repeats 

constitute the second most frequent type after trinucleotide repeats in exons (Toth et al. 
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2000), whereas they are less frequent (<1%) in the whole genome of plants (Varshney et al. 

2002; Cardle L. 2000), a dominance of (A+T)-rich repeats in introns and intergenic regions 

being observed in most of the species (Toth et al. 2000). 

2.3.4 Number of repeats 

The number of repeats is characteristic of an allelic variant at a given locus. This number 

depends on the type and of the size of the motif. A minimum number of six repeats is 

generally considered as appropriate for dinucleotides (Tautz 1993). In rice genome 72% of 

SSRs longer than 30 bp were of the dinucleotide type. In human, most of dinucleotide 

repeats had between 12 and 15 units (Weber et al. 1990). In general, g-SSRs have more 

repeats than EST-SSRs. For example, the mean number of units for rice g-SSRs is 16.5 

while the mean number for EST-SSRs is 15.3 indicating that longer SSRs are mainly 

located in non coding regions (La Rota et al. 2005). 

Similarly, in cereal ESTs, the frequency of SSRs decreases with increasing repeat length 

for all the species and every class of SSRs. In maize, the six repeat unit SSRs represent 

56.9% of the total number of dinucleotide repeats SSRs and among the trinucleotide repeat 

SSRs, five repeat units share as much as 64.5% of total class. If all EST-SSRs of different 

types are classified into categories of <10 and >10 repeat units, the category of >10 repeats 

contributes only as much as 25% to the total number of SSRs. In the tetra- to 

hexanucleotide repeats SSR classes, all the EST-SSRs (100%) fall into the category of <10 

repeat units (Varshney et al 2002). 

 

2.4  SSRs within cereals 

During the last decade, SSR markers were developed and investigated in a large number of 

plants including major cereal species such as barley (Thiel et al. 2003), maize (Chin 1996; 

Yu et al. 2001), oats (Li et al. 2000), rice (Gao et al. 2003), rye (Saal and Wricke, 1999), 

Sorghum (Bhattramakki et al. 2000) and wheat (Röder et al. 1998; Varshney et al. 2000; 

Guyomarc’h et al. 2002a, b; Gupta et al. 2002). In the majority of these, the two most 

common SSRs, whose density in the genome were determined while screening genomic 

libraries included GA and GT. The density of GA (38% to 59%) and GT (20% to 34%) in 

these different species ranged from one SSR every 212 kb to 704 kb (Varshney et al. 2002). 

Estimates of the total number of SSRs at the genome level were also performed in several 
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crops. The frequencies per haploid genome were one SSR each 3.6 X 104 bp for (GA)n and 

for 2.3 X 104 bp for (GT)n in bread wheat (Röder et al. 1995), and were estimated to be 

one SSR each 1.36 X 103 bp for (GA)n and for 1.23 X 103 bp for (GT)n in rice (Panaud et 

al. 1995). 

In a recent survey of EST and genomic sequences, densities of SSRs were higher in the 

coding regions compared to non-coding regions of the genomes (Morgante et al. 2002). In 

EST sequences of several cereal species, it was estimated that the frequency ranged from 

one SSR every 3.9 kb in rice to one SSR every 7.5 kb in maize (Varshney et al. 2002). In 

wheat, the same authors mentioned one SSR every 6.2 kb while Gupta et al. (2003) 

reported one SSR each 9.2 kb.  

Overall, an average of one SSR every 6-7 kb seems to be a good estimate for SSR 

frequency in the whole genome of plants (Cardle et al. 2000). 

2.5 Level of polymorphism of SSRs 

2.5.1 Definition of SSR polymorphism 

SSR polymorphism can be defined as the difference in the number of DNA repeats at a 

given locus, and can be easily analyzed through electrophoresis after PCR amplification. 

The level of polymorphism is generally evaluated through the Polymorphism Information 

Content (PIC) value (Nei et al. 1973) or diversity index (Akagi et al. 1998). However, it 

must be noticed that these values mostly depend on the sample studied (size and variability) 

and just allow comparison within the samples but not among different studies. 

The sequences flanking specific SSR loci in a genome are supposed to be highly conserved 

within a species, but also in some cases across species, within a genus and rarely across 

related genera. These conserved sequences are therefore used to design primers for 

individual SSR loci. In human and various animals, SSRs have high mutation rates, 

ranging from 10-3 to 10-6, which is superior to that of other regions in the genome 

(Bachtrog et al. 1999). In plants, the mutation rate at microsatellite loci is even higher than 

in animals, with the range of 10-2 to 10-3 in chickpea (Cicer arietinum, Udupa et al. 2001), 

or 10-3 to 10-4 in durum wheat (Triticum turgidum, Thuillet et al. 2002). SSR mutation rates 

are influenced by several factors, including motif type, perfection and number of repeats, 

among which the repeat number was best characterized (Schlötterer et al. 1998; Thuillet et 

al. 2004). In a variety of organisms, it was demonstrated that SSR mutation rates are 



Figure 1-8  Model of SSR mutation by replication slippage (slipped-stand mispairing) 
 

 

Repeat units are denoted by arrows. Numbers refer to the repeat unit number within 
each strand. (a) When the repetitive region is being synthesized the two strands can 
dissociate. Sometimes the strands are misaligned upon reassociation; that is, the 
nascent strand might incorrectly realign with repeat units downstream on the template 
strand. In such cases, a loop is formed on the nascent strand, and when synthesis of 
the new strand is initiated again it will become one repeat unit longer than the 
template strand. (b) As in (a), but the incorrect alignment occurs upstream on the 
template strand, and the new strand will therefore become one repeat unit shorter than 
the template strand. 
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positively correlated with repeat numbers and that the most polymorphic SSRs are the 

longest ones (Sia et al. 1997; Schlötterer et al. 1998; Thuillet et al. 2004). Weber (1990) 

reported that SSRs with 12 or fewer repeats were monomorphic in human (PIC = 0) and 

that the PIC value increased simultaneously to the average number of repeats, especially in 

the range of about 11 – 17 repeats.  

2.5.2 Mutational mechanisms of SSRs 

Two hypotheses are currently admitted to explain the variability of SSRs. The first one 

involves unequal crossing over between sister chromatides either during mitosis or after 

homologous pairing of chromosomes at meiosis (Wolf et al. 1989; Harding et al. 1992). 

However, they are most likely thought to accumulate by DNA slippage (Wells et al. 1965; 

Streisinger et al. 1966; Morgan et al. 1974; Efstratiadis et al. 1980; Drake et al. 1983; 

Levinson and Gutman 1987) and mispairing during replication and recombination or 

extension of single-strand ends (Tautz and Rentz 1984; Dover and Tautz 1986; Jeffreys et al. 

1985; Wells et al. 1965).  

2.5.2.1 Replication slippage 

A model for SSR mutation based on replication slippage was formulated by Levinson and 

Gutman (1987). Replication slippage or slipped strand mispairing refers to the 

out-of-register alignment of the two DNA strands following dissociation at the time when 

the DNA polymerase traverses the repetitive region. This slippage implies the formation of 

a single-strand loop during DNA synthesis and addition (or suppression depending on the 

strand concerned with the loop) of a motif. If the most 3’ repeat unit of the nascent strand 

re-hybridizes with a complementary repeat unit downstream along the template strand, a 

loop will be formed in the nascent strand and the new sequence will become longer than 

the template sequence upon elongation (Fig1-8a). On the contrary, if the incorrect 

alignment occurs upstream along the template strand, the new strand will become shorter 

than the template sequence (Fig1-8b). Most of these primary mutations are corrected by the 

mismatch repaired system, and only the small fraction that was not repaired ends up as 

microsatellite mutation events (Schlotterer and Tautz 1992).  

2.5.2.2 Unequal recombination 

Recombination could potentially change the SSR length by unequal crossing over or by 

gene conversion, which introduce mutation in the satellite sequence. In the version of the 



Figure 1-9.  Model of SSR mutation by recombination 

 

 

The open rectangles represent individual repeat units. (A) Homologous recombination 
between misaligned arrays of 10 repeats results in one DNA molecule with a repeated 
tract one repeat unit longer than the original tract and one molecule that is one repeat 
unit shorter than the original tract. (B) A double strand break occurs within the 
repeated tract. This break is followed by exonuclease degradation that exposes 
complementary single-stranded regions. Hybridization of these regions followed by 
DNA synthesis and religation results in a reduction in repeat units. Alternatively, the 
broken ends could invade an array on another DNA molecule leading to an expansion 
in the tract. 
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recombination model shown in Fig1-9A, simple repeats located on different DNA 

molecules pair in a misaligned configuration and a crossover occurs, resulting in arrays 

with reciprocal additions and deletions. Other recombination models in which the additions 

or deletions are not reciprocal are also possible (Fig1-9B). There is little evidence that 

recombination would also contribute to microsatellite mutation. Genomic SSR 

distributions are associated with sites of recombination, most probably as a consequence of 

repetitive sequences being involved in recombination rather than being a consequence of it 

(Treco and Arnheim 1986; Majewski and Ott 2000) 

2.5.2.3 Interaction between replication slippage and recombination 

Other possible SSR mutation model was proposed by Li et al. (2002). When studying SSR 

diversity in wild emmer wheat, they found a strong interaction between mean repeat length 

and SSR locus distance from centromere. This interaction has an effect on the number of 

alleles and variance in repeat size at SSR loci. SSR mutation might thus be the result from 

the possible influence of replication slippage during recombination-dependent DNA repair. 

In fact, strand exchange between two homologous chromosomes should create a 

four-stranded configuration, called a Holliday structure, associated with mismatched 

(heteroduplex) DNA region. These regions undergo replication-dependent correction. 

Hence, a slippage mechanism may also work in recombination tracts involving SSR arrays 

(Gendral et al. 2000; Li et al 2002) 

2.5.3 Polymorphism of g-SSRs 

Numerous studies demonstrated that g-SSRs show a high level of polymorphism compared 

to other types of molecular markers. Kölliker et al. (2001) reported that SSR markers 

developed from white clover were highly polymorphic, 88% detecting polymorphism 

across seven genotypes with an average allele number of 4.8. In maize, PIC values ranged 

between 0.06 and 0.91 with a mean of 0.62 (Smith et al. 1997) which was similar to what 

is mentioned for RFLPs (Senior and Heun 1993). In barley, it was demonstrated that even 

if SSRs show lower diversity index compared to AFLP (0.521 and 0.937 respectively), 

they reveal a high number of allele at each locus making them very effective to study 

genetic relationships (Russell et al. 1997). In cultivated spelt wheat, Bertin et al. (2001) 

found that the mean PIC value was 0.64 while in common wheat; it was assessed to be 

0.71. Even if lower PIC value (0.57) are also reported for common wheat (Stachel et al. 

2000), this is twice higher than what is revealed by RFLPs (Chao et al. 1989; Cadalen et al. 
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1997). 

2.5.4 Polymorphism of EST-SSRs 

Assessments of polymorphism of EST-SSRs have been carried out in rice (Cho et al. 2000), 

grape (Scott et al. 2000), sugarcane (Grivet et al. 2003), tomato (Areshchenkova and Ganal, 

2002), Alpine Lady-fern (Woodhead et al. 2003), pasture grass endophytes (Jong et al. 

2002), barley (Thiel et al. 2003) and rye (Hackauf and Wehling 2002). In common wheat, 

EST-SSRs give better profiles compared to the g-SSRs (Holton et al. 2002) but the 

polymorphism level among EST-SSRs ranged from 7% to 55% (Holton et al. 2002; Eujayl 

et al. 2002; Gupta et al. 2003; Leigh et al. 2003; Nicot et al. 2004) which was lower 

compared to g-SSRs (61%, Sourdille et al. 2001; 100% Prasad et al. 2000). However, 

despite the fact that EST-SSRs show less polymorphism than g-SSRs, they are still 

informative for assessing genetic relationships (Eujayl et al. 2001, 2002; Gupta et al. 

2003). 

2.6  Role and function of the SSRs 

2.6.1 DNA conformation 

Alternations of purins and pyrimidins such as in (CG)n or (CA)n microsatellites favour the 

formation of Z-DNA (Bull et al. 1999). Z-DNA formed a double left-turned helix, which is 

more condensed compare to B-DNA because it contains 12 bp at each turn instead of 10.4 

bp (for reviews see Loridon et al. 1998). Z-DNA is involved in recombination, gene 

expression regulation during transcription. On the contrary, homopurin and homopyrimidin 

sequences form H-DNA. Negative super-coiling of the DNA allows the formation of a 

triple helix resulting from the addition of a third DNA strand within the large groove of the 

double helix (Loridon et al. 1998). Other microsatellites may confer a hairpin loop 

structure and can thus play a role in the replication, the transcription, the translation and 

the interactions between DNA and proteins. 

2.6.2 Promoter regulation  

Microsatellites are frequently associated with regulatory elements (Levinson and Gutman 

1987; Barrier et al. 2000). Hot spots for microsatellite formation within development 

homeotic genes such as the antennapedia and dorsal genes in Drosophila and apetala gene 

involved in floral regulation in plants can be identified (Barrier et al. 2000). Also, nuclear 

proteins specifically bind to repeated sequences such as (CCG)n which are frequently 
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encountered in the 5’URTs of the genes and which have thus an effect on mRNA 

transcription (Debrauwere et al. 1997). 

2.6.3 Meiosis and mitosis 

Microsatellites may also be involved in chromosome pairing at meiosis (Samadi et al. 1998) 

and in the centromere function (Levinson and Gutman 1987). It was also demonstrated that 

the tetranucleotide repeats (GACA)n were tightly linked to the nucleoli organizer in 

primates (Arens et al. 1995). Moreover, (GT)n SSRs have no effect on simple crossing 

over but increase multiple crossing over (Gendrel et al. 2000). The microsatellites inhibit 

Strand exchanges, which are promoted by RecA. 

2.6.4 Coding function 

Most of the microsatellites are distributed in euchromatin in coding as well non coding 

regions. Trinucleotide repeats locating in ORFs are coding for tandemly repeated amino 

acids that interfere with the protein function (Richard and Dujon, 1997). They can thus 

form proteic domains that are enriched in specific amino acids (Gortner et al, 1996). The 

most frequent codons are those coding for glutamine, asparagine and glycin. 

In wheat, five microsatellites were initially identified in genes (Devos et al. 1995). 

Similarly, four genes bearing a microsatellite were reported in barley (Saghai-Maroof et al. 

1994) and 27 in rice (Cho et al. 2000). With the rapid increase of ESTs in the databases 

(http://www.ncbi.nlm.nih.gov/dbEST), it is now well known that about 10% of the genes 

contain a microsatellite motif (Morgante et al. 2002, Nicot et al. 2004). 

2.7 Application of SSRs to plant genetic studies 

2.7.1 Genetic mapping 

Breeding and genomics research efforts can make use of genetic maps to facilitate plant 

selection and to position BAC clones along physical maps of the genomes. In both cases, 

high throughput accurate marker technology is essential to avoid errors in genotyping and 

to enable processing of hundred or thousands of DNA samples in a short time. 

Microsatellites offer an easy tool and an abundant source of genetic markers. Consequently, 

SSR linkage maps have become available for a variety of plant genomes including rice 

(Wu and Tanksley 1993), barley (Saghai-Maroof et al. 1994), maize (Senior and Heun 

1993) and wheat (Röder et al 1998; Somers et al. 2004). All these maps were proven to be 



Tab1-3: Genome mapping using EST-SSR markers 

a
 Abbreviations: BC1, backcross population; DHs, doubled haploids; RILs, recombinant inbred lines. 

Plant species 
Number of genic 

SSR loci mapped 
Mapping population used Refs 

Barley 185 3 DHs
a
 (Igri×Franka, Steptoe×Morex, OWBDom×OWBRec) Thiel et al.2003  

 39 F2s (Lerche×BGR41936), DHs (Igri×Franka), wheat–barley addition lines Pillen et al. 2000 

Cotton 111 BC1
b
 lines (TM1×Hai7124)×TM1) Han et al. 2004 

Kiwifruit 138 Intraspecific cross Fraser et al. 2004 

Raspberry 8 Full-sib family (Glen Moy×Latham) Graham et al. 2004 

Rice 91 
DHs (IR64×Azucena), RILs

c
 (Milyang 23×Gihobyeo, Lemont×Teqing, BS125×WL0Genome 

mapping using EST-SSRs 2) 
Temnykh et al. 2000 

Rye 39 
4 mapping populations derived from reciprocal crosses (P87×P105, N6×N2, N7×N2, 

N7×N6) 
Khlestkina et al. 2004 

Ryegrass 91 Three-generation population (Floregon×Manhattan) Warnke et al. 2004 

Tall fescue 

(Festuca spp.) 
91 Pseudo-test cross-population (HD28–56×R43–64) Saha et al. 2004 

Wheat 149 RILs (W7984×Opata85) Yu et al.2004 

 126 RILs (W7984×Opata85) Nicot et al. 2004 

 101 RILs (W7984×Opata85, Wenmai 6×Shanhongmai), DHs (Lumai14×Hanxuan 10) Gao et al. 2004 

White clover 449 Pseudotest cross-population (6525/5×364/7) Barrett et al. 2004 
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useful for QTL detection of numerous traits of agronomic interest and positional cloning of 

genes underlying these QTLs. Recently, the EST-SSR loci have been integrated for a wide 

range of species (Tab 1-3). Contrary to g-SSRs, EST-SSRs were not clustered around the 

centromere but, as expected, were concentrated in gene-rich regions (Thiel et al. 2003; Yu 

et al. 2004; Gao et al 2004). It is believed that the distribution of EST-SSRs in the genetic 

maps mirrors the distribution of genes along the genetic map. Moreover, EST-SSRs may 

affect the genes’ function and thus constitute gene-targeted markers with the potential of 

representing functional markers in those cases where polymorphisms in the repeat motifs 

affect the function of the gene in which they reside (Anderson et al. 2003). They can 

contribute to ‘direct allele selection’, when completely associated or even responsible for a 

targeted trait (Sorrells et al. 1997). Recently, for example, a Dof homolog (DAG1) gene 

that showed a strong effect on seed germination in Arabidopsis has been mapped on 

chromosome 1B of wheat by using wheat EST-SSR primers (Gao et al. 2004). Similarly, 

Yu et al. (2004) identified two EST-SSR markers linked to the photoperiod response gene 

(ppd) in wheat. In both cases, these may constitute candidate genes or this may help in 

positional cloning of the gene because of the likely existence of gene rich islands where 

several genes are clustered. Finally, mapping EST-SSRs can facilitate genome alignment 

across distantly related species (Yu et al. 2004; Varshney et al 2005) as classical RFLP 

markers are currently less used for that. 

2.7.2 Genetic diversity 

Characterization of genetic variation within natural populations and among breeding lines 

is crucial for effective conservation and exploitation of genetic resources for crop 

improvement programs. SSRs have proven to be useful for assessment of genetic variation 

in germplasm collections of various species (Brown et al. 1996; Struss et al. 1998; Djè et al. 

2000; Ghebru et al. 2002; Matsuoka et al. 2002; Ni et al. 2002; Sjakste et al. 2002; 

Chebotar et al. 2003; Russell et al. 2003; Yu et al. 2003; Zhou et al, 2003; Tarter et al 2004; 

Casa et al. 2005; Clerc et al. 2005; Menkir et al. 2005; Mohammadi et al. 2005). However 

most of the markers derived from genomic DNA assay polymorphisms potentially carried 

by non-coding regions of the genome and are poorly conserved among species (Brown et 

al. 2001). Therefore, these markers overestimate the “useful” genetic diversity available in 

the gene pool. In contrast, EST-SSRs generally assay polymorphism potentially carried by 

the coding regions of the genome and can detect the “true functional genetic diversity” 
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(Maestri et al. 2002; Yamanaka et al. 2003; Gupta et al. 2003). In recent years, EST-SSRs 

have also been used for diversity estimations in several plant systems including durum 

wheat (Eujayl et al. 2001), Pisum sp. (Burstin et al. 2001), barley (Thiel et al. 2003; Holton 

et al. 2002), bread wheat (Holton et al. 2002; Gupta et al. 2003; Gao et al. 2003), rye 

(Hackauf and Wehling 2002). In comparison to genomic SSRs, EST-SSRs revealed less 

polymorphism in germplasm characterization and genetic diversity studies (Scott et al. 

2000; Thiel et al. 2003; Cho et al. 2000, Russell et al 2004). Therefore, evaluation of 

germplasm with EST-SSRs enhance the role of genetic markers by assaying the variation 

in transcribed regions, although there is a higher probability of bias owing to selection. 

Thereby, the genetic diversity presented by combining two types of markers might be 

representative of the entire genome. In addition, EST-SSRs also provide opportunities to 

examine functional diversity in relation to adaptive variation (Eujayl et al 2001; Russell et 

al 2004).  

2.7.3 Comparative mapping 

Numerous studies demonstrated that g-SSRs are frequently locus specific without 

corresponding homoeoloci on the other related genomes (Bryan et al. 1997; Stephenson et 

al. 1998; Röder et al. 1998). Thus, they appeared to have a limited transferability to related 

species (Sourdille et al. 2001; Varshney et al. 2000) suggesting that they are of limited 

utility, when used for comparative mapping. On the contrary, numerous studies revealed 

that EST-SSRs showed a high level of transferability to close and wild relatives because 

they are derived from conserved coding regions (Holton et al. 2002; Gupta et al. 2003; 

Eujayl et al. 2001, 2002; Bandopadhyay et al. 2004). Recently, the potential use of 

EST-SSRs developed for barley and wheat has been demonstrated for comparative 

mapping in wheat, rye and rice (Yu et al. 2004; Varshney et al 2005). These studies 

suggested that EST-SSR markers could be used in related plant species for which little 

information is available on SSRs or ESTs. In addition, the EST-SSRs are good candidates 

for the development of conserved orthologous markers for genetic analysis and breeding of 

different species. For example, a set of 12 barley EST-SSR markers was identified that 

showed significant homology with the ESTs of four monocotyledonous species (wheat, 

maize, sorghum and rice) and two dicotyledonous species (Arabidopsis and Medicago) and 

could potentially be used across these species (Varshney et al 2005). 

Similarly, orthology can only be determined by comparing both similarity of amplicon 
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sequences and genome location across species (Yu et al. 2004; Varshney et al 2005). For 

example, Saha et al. (2004) who sequenced the products of one EST-SSR primer pair for 

three fescue species, ryegrass, rice and wheat reported that sequences were >85% similar. 

Sequence-based comparison of mapped barley EST-SSRs with genetically and/or 

physically mapped markers in wheat, rye and rice revealed several markers that showed an 

orthologous relationship between examined cereal species (Varshney et al 2005). 

Comparison of genome locations of polymorphic EST-SSR markers mapped in both wheat 

and rice also confirmed previously known genome relationships with most of the markers 

examined (Yu et al. 2004). However, the assessment of colinearity was complicated by the 

detection of multiple polymorphic loci in either wheat or rice for 85% of the primer pairs 

suggesting sequence divergence or differential gene duplication. 

2.7.4 Phylogenetic studies 

Genomic SSRs were extensively explored in plant evolutionary studies because of their 

high polymorphism level, their co-dominant inheritance, and their reproducibility 

(Plaschke et al. 1995; Prasad et al. 2000; Manifesto et al. 2001; Ben Amer et al. 2001; 

Leisova and Ovesna 2001; Zhang et al. 2002). However, interspecific phylogenetic studies 

in using SSRs were often restricted because of the limited transferability of genomic SSRs 

to related species (Lelley et al. 2000) and the high mutation rate. Because being highly 

transferable to distantly related species, EST-SSRs are thought to be more suitable for this 

purpose. EST-SSRs had been used to investigate their potential in providing useful 

information for phylogeny (Rossetto et al. 2002). Three EST-derived microsatellite loci 

from Vitis vinifera were amplified and sequenced across eight species of Vitaceae from 

four different genera. Phylogenetic analysis of the microsatellite's flanking regions 

produced informative results in congruence with previous studies. Based on EST-SSRs 

allelic polymorphism among 18 species of Triticum-Aegilops complex using 64 common 

wheat EST-SSRs, Bandopadhyay et al. (2004) were able to construct a dendrogram 

separating the diploid and tetraploid species. 

2.7.5 Marker Assisted Selection (MAS) 

Application of MAS has been shown to increase selection efficiency, particularly for traits 

with low heritability (Bernardo et al. 2001). It will be increasingly applied to accelerate 

selection of traits that are difficult to manage via phenotype, owing to low penetrance 

and/or complex inheritance. It will also serve to maintain recessive alleles in backcrossing 
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pedigrees, to pyramid disease-resistance genes and to aid in the choice of parents in 

crossing programs, to ensure minimal levels of duplication of alleles across sets of genes 

targeted for selection, and to promote fixation. 

Recently, increasing numbers of agronomically significant genes have been tagged with 

linked SSR assays (Huang et al. 2000; Raupp et al. 2001; Bariana et al. 2001). Most of 

these are resistance genes because single-gene control of this class of character is 

widespread. For example, Hurtado et al. (2002) demonstrated that SSRs tightly linked to 

sharka resistance facilitated MAS in breeding for resistance in apricot. 

However, most traits of agronomical interest are under polygenic control such as the 

resistance to fusarium head blight (FHB), which is a major objective for many private as 

well as public laboratories in the world. For practical reasons, FHB is a difficult disease to 

handle by conventional pathology testing, and genetic analysis of the primary sources of 

resistance has shown that a significant proportion of the effect can be attributed to three 

QTL, mapping to different chromosomes, with each of the relevant genomic sites tagged 

with the genomic SSR locus (Anderson et al. 2001). Similarly in rice, numerous g-SSRs 

were found to be closely associated with low glutelin content and their effectiveness in 

MAS breeding was illustrated (Wang et al. 2002). EST-SSRs are more likely to exhibit 

perfect marker-trait association, provided that the gene containing SSR is the QTL itself. 

This perfect marker-trait association must be assessed by fine association mapping (linkage 

disequilibrium = LD) prior to MAS. Through marker-trait association, these so-called 

“perfect markers” can be developed for a variety of traits in a large number of plant 

systems, once candidate genes have been found.  
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3 Organization of genetic resources 

3.1 History 

Agricultural practices prior to the eighteenth century were completely dependent on crop 

landraces and mixtures of these landraces. The Industrial Revolution was followed by a 

simultaneous population explosion that transformed the subsistence nature of agriculture 

and its farming systems forever. In the mid nineteenth century, Mendel (and other 

pioneering plant geneticists such as Vilmorin) provided knowledge of plant genetics that 

made it possible to dramatically increase the production potential of agriculture. 

Undeniably, the wonders of crop improvement have resulted in the erosion of genetic 

diversity of many crops in farmers’ fields, including wheat, due to the replacement of many, 

heterogenous landraces and farmers’ old cultivars by fewer modern high-yielding varieties. 

3.2 Definition and classification 

Genetic resources are genetic material with an effective or potential value, which 

encompass the diversity of genetic material both in traditional varieties and modern 

cultivars, as well as crop wild relatives and other wild plant species. Besides, they are 

fundamental to sustain global production now and especially in the future. 

Genetic resources include a wide range of genetic diversity that is critical to enhance and 

maintain the yield potential and to provide new sources of resistance and tolerance to biotic 

as well as abiotic stresses. Modern high-yielding cultivars are an assembly of genes or 

gene-combinations pyramided by breeders using, in most cases, well-adapted cultivars 

from their regions. International agriculture research has enormously expanded the 

availability of widely adapted germplasm that is genetically diverse (i.e. descended from 

more sources). Genetic resources are also a reservoir of genetic adaptability to buffer 

against potentially harmful environmental and economic changes. However, introgression 

of additional variation found in genetic resources is necessary to increase yield stability 

and further improvement. 

Genetic resources were categorized by Frankel (1977) and the Food and Agriculture 

Organization of the United Nations Commission on Plant Genetic Resources (FAO, 1983), 

though this categorization is not followed by all centers involved in genetic resource 

conservation and utilization. These categories are: 
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• modern cultivars in current use; 

• obsolete cultivars, often the elite cultivars of the past and often found in the 

pedigrees of modern cultivars; 

• landraces; 

• wild relatives of crop species in the Triticeae tribe; 

• genetic and cytogenetic stocks; 

• breeding lines. 

These genetic resources constitute the gene pool available for breeders and other scientists, 

and in the Triticeae tribe several pools are recognized (Bothmer et al., 1992). The primary 

gene pool consists of the biological species, including cultivated, wild and weedy forms of 

crop species. Gene transfer in the primary gene pool is considered to be easy. In the 

secondary gene pool are the coenospecies from which gene transfer is possible but difficult, 

while the tertiary gene pool is composed of species from which gene transfer is very 

difficult or almost impossible. 

3.3 Collections 

3.3.1 Landraces 

Landraces refers to the particular kind of old seed strains and varieties that are 

farmer-selected in areas where local subsistence agriculture has long prevailed. Landraces 

are highly adapted to specific locales or groups. The term is usually applied to varieties of 

wheat, corn, squash, and beans that were domesticated by native farmers, and further 

modified by native and also immigrant farmers. 

Nicolai Vavilov initiated works in the context of landraces in 1926. He firstly engaged in 

studying the geographical situation of landraces and investigated the origins of these 

landraces. His studies approved the concepts of “the origin center” and “the diversity 

center” for landraces, referring to some cultivars in certain region showing a very strong 

diversity, which made it feasible to well understand their diversity and to well collect 

genetic resources. 

In order to manage these genetic resources, CGIAR (Consultative Group on International 

Agricultural Research) was created in 1971. CGIAR is a strategic alliance of countries, 



 
Tab 1-4: Number of accession available in wheat collections around the world 

(Source: Information collared from IBPGR, 1990) 

 
Type of wheat Number of accessions 

Hexaploid 266 589 

Tetraploid 78 726 

Diploid 11 314 

Unspecified Triticum 252 530 

Aegilops ssp 17 748 

Triticale 23 659 

Total 650 566 
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international and regional organizations, and private foundations supporting 15 

international agricultural Centers (list in annex 1), which work with national agricultural 

research systems and civil society organizations including the private sector. In CGIAR’s 

gene banks, about 640 000 accessions of Triticum ssp., Aegilops ssp. and X Triticosecale 

can be found for global wheat genetic resources (Tab. 1-4). In order to collect these genetic 

resources, many missions were carried out with regard to Triticum genus. For example, a 

collection was completed in Albanie Mountain in 1995 (Hammer et al. 2000). One hundred 

and twenty accessions of landraces and wild species were collected, including some 

traditional species, such as Triticum monococcum. In the same year, another task was also 

performed in southern Sardinia and 80 samples were gathered in 22 different sites, 

principally with focus on cereals (including Triticum genus), leguminous and vegetables. 

Some genetic erosion was observed for these accessions. 

3.3.2 Wild species 

Wild species refers to plants growing in the wild that have not been subject to 

domesticating to alter them from their native state.  

In order to conserve wild species, an organization – Botanic Gardens Conservation 

International (BGCI) – was founded in United Kingdom in 1987. To date, more than 500 

members from 112 different countries work in BGCI to efficiently conserve these genetic 

resources. There are botanic gardens and arboreta in 148 countries worldwide and they 

maintain more than 4 million living plant collections. Amongst their collections are 

representatives of more than 80,000 species, almost one third of the known vascular plant 

species of the world. There are a total of 142 million herbarium specimens in botanic 

garden herbaria and 6.13 million accessions in their living collections. Over 500 botanic 

gardens occur in Western Europe, more than 350 in North America and over 200 in East 

and Southeast Asia, of which the majority are in China. Most of the southern Asian botanic 

gardens are found in India. There are seven research centers, distributed in USA, Canada, 

China, Brazil, Japan, India and Russia. The main objectives of this organization include a) 

Understanding and documenting plant diversity; 2) Conserving plant diversity; 3) Using it 

sustainably; 4) Promoting education and awareness about plant diversity; 5) Building 

capacity for its conservation. 
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3.4 Evaluation of genetic resources 

Evaluation should be a major activity of germplasm banks to identify useful genetic 

variation and make it available to breeders. There are many methods for depicting and 

evaluating diversity of genetic resources (Lefort-Buson et al. 1988). Several descriptive 

levels exist: agronomical level, technological level, biochemical level and molecular level. 

Information from each level is specific, and shows some advantages and drawbacks. In the 

following part, these methods will be presented one by one, and compared. Because 

numerous studies on genetic diversity have been made on plant species, we will focus our 

presentation on grass species only and mainly on wheat. 

3.4.1 Agronomical and morphological data 

The morphological traits were the first descriptive markers used. They are simple and easy 

to obtain. The information derived from morphological character was an important 

characteristic for classification and systematics of the studied material. With regard to 

grass species, many researches based on morphological data were performed. In 2000, 

Nieto-Lopez identified significant intra- and inter-population diversity within a collection 

of wild populations in Elymus and Thinopyrum genus by using 22 morphological and 

agronomical traits. Several similar studies were achieved for Poaceae species, such as 

maize (Malosetti et al, 2001) and wheat (Jardat, 2001; Brandolini et al, 2002; DeLacy et al, 

2000, Grenier et al, 2001). For wheat landraces, 465 individual spikes of bread wheat were 

collected from 24 sites in three states of Mexico in 1992. They were examined for 15 

morphological, agronomic and grain quality attributes as part of the routine regeneration 

process conducted by the CIMMYT Wheat Genetic Resources Program in unreplicated hill 

plots in a screen house. A pattern analysis (combined use of classification and ordination 

methods) of the data showed a good description of the accessions and the collection sites, 

suggesting that the analysis for economically useful attributes could provide relevant 

information for users and the germplasm curators (DeLacy et al. 2000). 

3.4.2 Isozymes data 

Isozymes were first described by Hunter and Markert (1957) who defined them as different 

variants of the same enzyme having identical functions and present in the same individual. 

This definition encompasses (1) enzyme variants that are the product of different genes and 

thus represent different loci (described as isozymes) and (2) enzymes that are the product 



 



Bibliography – Organization of genetic resources 

- 26 - 
 

of different alleles of the same gene (described as allozymes). Isozymes constitute a 

powerful tool for genetic diversity study within and among population of plants and 

animals. Isozymes may be almost identical in function but may differ in other ways. In 

particular, amino acid substitutions that change the electric charge of the enzyme (such as 

replacing aspartic acid with glutamic acid) are simple to identify by gel electrophoresis, 

and this forms the basis for the use of isozymes as molecular markers.  

Isozymes have been the most widely used molecular markers to identify genetic variation 

within and between populations. Genetic diversity in 79 European accessions of the Barley 

Core Collections was surveyed using isozyme electrophoresis. Results on a total of 26 

alleles observed at ten isozyme loci demonstrated that 6-rowed barley contained larger 

diversity than 2-rowed barley and that winter type contained larger diversity than spring 

type (Liu et al. 2000). Also for barley, Kaneko et al. (2002) investigated the polymorphism 

and geographical distribution of β-amylase isozymes by isoelectric-focusing (IEF) analysis 

in a sample of world barley. The isozyme pattern of high thermostability type A and low 

thermostability type C varieties was restricted in isozyme type II. However, the isozyme 

pattern of the middle thermostability type B varieties was polymorphic. 

Concerning wheat, a large amount of studies focused on wheat endosperm storage proteins: 

gliadins and glutenins, because they play an important role in dough properties and in 

bread making quality in various wheat varieties. Therefore, many researches were 

performed in order to survey genetic diversity of genes coding these proteins (Metakovski 

and Branlard 1998; Branlard et al. 2001; Ruiz 2002). For example, by using SDS - PAGE, 

the different alleles encoded at the 6 glutenin loci and at 3 ω-gliadin loci were identified 

from a set of 200 hexaploid wheat cultivars grown primarily in France (Branlard et al. 

2003), and some associations were revealed due to pedigree relatedness between some 

French wheat cultivars. These studies allowed to better understanding genetic diversity of 

protein-coding genes, which can be useful for future genetic and technological wheat 

improvement. 

3.4.3 NIRS data 

With increases in the processing speed of PCs, and in the capabilities of the softwares, 

Near Infrared Spectroscopy (NIRS) data have been used to analyze and measure the 

concentration of a number of compounds simultaneously in more complex mixtures. For 

cereals, NIRS method has been used to investigate diversity in rice varieties (Krzanowski 
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et al. 1995) in order to identify differences between Basmati and other rices. Moreover, 

Roussel et al (2005) studied wheat components (proteins, minerals, fatty acids and 

carbohydrates) in a set of 539 French bread wheat accessions released and cultivated 

during the last two centuries in France. Results showed that whole NIRS spectra provided 

a useful tool for describing the global evolution of the chemical composition of the grain of 

French wheat. 

3.4.4 Molecular data 

3.4.4.1 RFLP 

Restriction Fragment Length Polymorphism (RFLP) is a technique that uses restriction 

endonucleases (RE) to cut DNA at specific 4-6 bp recognition sites and resulting fragments 

are separated according to their molecular size using gel electrophoresis. Presence and 

absence of fragments resulting from changes in recognition sites are used identifying 

species or populations. Because RFLPs were the first molecular markers developed, they 

have been widely used for diversity analyses in numerous plant species. Only selected 

results on wheat will be presented here. 

Genetic diversity in a set of 11 red and 11 white wheat lines from the Eastern U.S. soft 

wheat germplasm pool was measured using restriction fragment length polymorphism 

(RFLP) assay (Kim and Ward 1997). It revealed that the frequency of polymorphism in the 

Eastern U.S. soft white winter (SWW) wheat gene pool was much lower than that observed 

in the Eastern U.S. soft red winter (SRW) wheat gene pool. In another study, genetic 

diversities were investigated in landraces of T. aestivum from China (38) and Southwest 

Asia (55) by RFLP analysis (Ward et al. 1998). A total of 368 bands were found for 39 

Chinese hexaploid wheat accessions with 63 RFLP probe-HindIII combinations. Results 

showed that the individual Chinese landrace wheat groups revealed less variation than 

those from Afghanistan, Iran, and Turkey. Also, a narrow genetic variability was revealed 

among 17 populations of wild emmer wheats sampled from South-eastern Turkey, by 

using eleven RFLP clones and 4 restriction enzymes (Tanyolac et al. 2003). All the 

published works demonstrated that RFLPs were an effective marker to study genetic 

diversity. 

3.4.4.2 RAPD 

Random Amplified Polymorphic DNA (RAPD) analysis described by Williams et al. 
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(1990) was a commonly used molecular marker in genetic diversity studies. The principle 

involved in generating RAPDs is that, a single, short oligonucleotide primer, which binds 

to many different loci, is used to amplify random sequences from a complex DNA 

template. This means that the amplified fragments generated by PCR depend on the length 

and size of both the primer and the target genome. The assumption is made that a given 

DNA sequence (complementary to that of the primer) will occur in the genome, on 

opposite DNA strands, in opposite orientation within a distance that is readily amplifiable 

by PCR. These amplified products (of up to 3.0 kb) are usually separated on agarose gels 

and visualised by ethidium bromide staining. The use of a single 10-mer oligonucleotide 

promotes the generation of several discrete DNA products and these are considered to 

originate from different genetic loci. Polymorphisms result from mutations or 

rearrangements either at or between the primer binding sites and are detected as the 

presence or absence of a particular RAPD band. This means that RAPDs are dominant 

markers and therefore cannot be used to identify heterozygotes. 

RAPDs have been largely exploited in genetic diversity researches. A set of 86 RAPD 

markers was used to characterize the USDA Poa pratensis collection (Johnson et al. 2002), 

and illustrating that RAPD was a very useful tool in species identification and diversity 

estimation within accessions. In order to study genetic diversity among Croatian wheat 

cultivars, 36 RAPD primers were screened and the 14 most polymorphic ones yielded 341 

polymorphic bands. RAPD markers showed a high level of polymorphism among the 

cultivars examined and the breeding lines. (Maric et al. 2004). 

3.4.4.3 AFLP 

The AFLP (Amplified Fragment Length Polymorphism) technique was described by Vos et 

al. (1995) and is based on the selective PCR amplification of restriction fragments from a 

total digest of genomic DNA. The technique involves three steps: (i) restriction of the DNA 

and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction 

fragments, and (iii) gel analysis of the amplified fragments. PCR amplification of 

restriction fragments is achieved by using the adapter and restriction site sequence as target 

sites for primer annealing. The selective amplification is obtained by the use of primers 

that extend into the restriction fragments, amplifying only those fragments in which the 

primer extensions match the nucleotides flanking the restriction sites. Using this method, 

sets of restriction fragments may be visualized by PCR without knowledge of nucleotide 



 



Bibliography – Organization of genetic resources 

- 29 - 
 

sequence. 

AFLP has been wildly used in genetic diversity analysis. Genetic diversity was estimated 

within and between populations of perennial ryegrass (Lolium perenne L., Guthridge et al. 

2001). Cluster analysis of AFLP data from bulked samples produced a phenogram showing 

relationships consistent with the results of individual analysis. These results suggested that 

AFLP profiling provides an important tool for the detection and quantification of genetic 

variation in perennial ryegrass. A study of the genetic variability in 94 genotypes from ten 

populations of wild barley, Hordeum spontaneum (C. Koch) Thell., originating from ten 

ecologically and geographically different locations in Israel, was performed (Turpeinen et 

al, 2004). It revealed that genetic diversity was larger within (69%) than among (31%) 

populations. 

For wheat, Roy et al (2004) performed a comparison between AFLP-based genetic 

diversity with diversity based on SSR, SAMPL, or phenotypic traits in 55 elite and exotic 

bread wheat lines. Results showed that AFLP was superior for estimation of genetic 

diversity for landraces to other molecular markers. Moreover, a group of 54 synthetic 

hexaploid wheats derived from crosses between emmer wheat (Triticum dicoccum, source 

of the A and B genomes) and goat grass (Aegilops tauschii, D genome donor) were 

investigated for genetic diversity. Based on data from four AFLP primer pairs, 

dendrograms revealed clear grouping according to geographical origin for the T. dicoccum 

parents but no clear groups for the Ae. tauschii parents (Lage et al. 2003). This study also 

suggests that synthetic hexaploid wheats can be used to introduce new genetic diversity 

into the bread wheat gene pool. In 2002, a substantial amount of between- and 

within-cultivar genetic variation was detected in all the 13 registered modern Canadian 

durum wheat (Triticum turgidum L. ssp. durum (Desf.) Husn.) cultivars based on AFLP. 

Among the approximately 950 detected AFLP markers, only 89 (average of 8.9 

polymorphic loci per primer pair) were polymorphic, 41 showing polymorphism between 

cultivars whereas the remaining 48 showed polymorphism within at least one cultivar. 

Otherwise, the level of genetic variation among individuals within a cultivar at the 

breeders' seed level was estimated based on an inter-haplotypic distance matrix derived 

from the AFLP data. Results show that the level of genetic variation within the 

most-developed cultivars is fairly substantial despite rigorous selection pressure aimed at 

cultivar purity in breeding programs (Soleimani et al. 2002). 
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3.4.4.4 Microsatellites 

Numerous works were carried out in cereals like rice (Ni et al. 2002; Yu et al. 2003; Zhou 

et al, 2003), maize (Matsuoka et al. 2002; Tarter et al 2004, Clerc et al. 2005; Menkir et al. 

2005), sorghum (Brown et al. 1996; Djè et al. 2000; Ghebru et al. 2002; Casa et al. 2005), 

barley (Struss et al. 1998; Sjakste et al. 2002; Russell et al. 2003), and rye (Chebotar et al. 

2003). In the case of wheat, this type of marker was also largely used to study genetic 

diversity among European varieties (Röder et al, 2000), in European bread wheat varieties 

released from 1840 to 2000 (Roussel et al 2005), among European cultivated spelt (Bertin 

et al. 2001), among old and modern Siberian varieties (Khlestkina et al, 2004), in natural 

populations of wild emmer wheat, Triticum dicoccoides, in Israel (Fahima et al. 2002). 

Through these studies, we are able to better understand the diversity in these species, as 

well as their evolution.  

3.4.4.5 Inter- Simple Sequence Repeat (ISSR) 

Inter-simple sequence repeat or ISSR is an efficient DNA fingerprinting method that do 

not require prior knowledge of the nucleotide sequence to be analyzed. One single ISSR 

reaction can simultaneously identify multiple polymorphisms at various loci throughout the 

genome, depending on the amount of variation between the cultivars studied. ISSR 

techniques were firstly described by Zietkiewicz et al. (1994) and are used to detected 

polymorphisms for a short DNA sequence between two SSR in the genome, by designing 

primers from microsatellite regions. ISSR has been widely used for genetic diversity 

studies in barley (Tanyolac et al. 2003), Lolium perenne (Ghariani et al. 2003), rice (Bao et 

al. 2006). For example, Ghariani et al (2003) examined the genetic diversity in Tunisian 

perennial ryegrass (Lolium perenne) by using inter-simple sequence repeats (ISSR). One 

hundred and thrity six polymorphic ISSR markers (average of 12.6 polymorphic 

bands/primer) were used to estimate the genetic distance among eighteen accessions, to 

draw phylogenetic trees, and to provide evidence of a high degree of genetic diversity in 

Tunisian ryegrass. 

3.4.4.6 Sequence Tagged Site (STS) 

Sequence tagged site or STS is a short unique genomic sequence that is amplified by using 

allele-specific oligonucleotides as PCR primer. When mapped RFLP or gene sequence 
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information is available, it can be used to design PCR-based STS primers. To date, STS 

has been used to analyze the genetic diversity for several agricultural crops, such as in 

Hordeum (Chen et al. 2005). To assess the genetic diversity among China’s cultivated 

barley, sequence tagged site (STS) marker analysis was carried out to characterize 109 

morphologically distinctive accessions originating from five Chinese eco-geographical 

zones. Fourteen polymorphic STS markers representing at least one on each chromosome 

were chosen for the analysis. They revealed a total of 47 alleles, with an average of 3.36 

alleles per locus (range 2–8). The result suggested that the STS diversity in different zones 

was quite different from the morphology diversity, and indicated that the STS variation 

was partitioned into 17% among the zone and 83% within the zone (Chen et al. 2005). 

3.4.4.7 Single Nucleotide Polymorphisms (SNPs) 

Single Nucleotide Polymorphism or SNP is a DNA sequence variation, occurring when a 

single nucleotide (adenine (A), thymine (T), cytosine (C) or guanine (G)) is altered in the 

genome (i. e. substituted, deleted or added). It is estimated that there is probably one SNP 

locus every 500 to 1,000 bp between two individuals randomly sampled in the same 

species. This large abundance suggests that SNPs markers can be useful for numerous 

genetic applications. For example, SNPs were approved as an effective mean of 

characterizing the range of DNA variation at a genomic scale in Arabidopsis thaliana and 

to build up a core collection (McKhann et al. 2004). Since SNPs appeared recently, only 

few studies used this method for genetic diversity estimation in cereals and they were 

focused on genes of interest. For example, in 2003, Yanagisawa et al. investigated a single 

nucleotide polymorphism (SNP) in the Wx-D1 gene of wheat by using a derived cleaved 

amplified polymorphic sequence (dCAPS) marker, and showed that the SNP in the Wx-D1 

gene was responsible for the waxy character. Furthermore, this type of marker was also 

demonstrated to be a very useful tool to study linkage disequilibrium in common wheat 

(Ravel et al. 2005) as well as in barley (Potokina et al. 2006).  

3.4.4.8 Expressed Sequence Tag (EST) 

An Expressed Sequence Tag or EST is a short sub-sequence of a transcribed 

protein-coding or non-protein-coding DNA sequence. ESTs can be derived in PCR-based 

markers, which can detect length and sequence polymorphisms carried by the expressed 

regions of plant genomes. This involves the designing of primers separated by an 



Tab 1-5: Comparison of different molecular markers 
 

Markers Advantages  Disadvantages 
Morphological Easy monitor Affected by the enviroment 
markers  Limited number of avaible markers 
  Sometime difficult to score 
   
Allozymes Cheap Limited number of avaible markers 
 Samlp being  prepared easily Some loci show protein instability 
 Standard statistical procedure Potentially direct target of selection 
   
   
RFLPs Co-dominant inheritance Low infornation content 
 Reproductibility Pollution of isotope 
 Highly tansferable across distant relatives Requirement of a huge quantity of DNA 
  Impossible to automate 
   
RAPDs Cheap  
 Relatively high information content  Low reproducibility 
 Requirement neither DNA probe nor sequence information Dominant inheritance 
 Technique quick and simple   
 Requirement of small amounts of DNA   
 Automation  
   
AFLPs  High information content  Expensive 
 Reproductibility Dominant inheritance 
 Genome-specific  
 Automation  
   

SSRs Abundant dispersion on the whole genome High mutation rate 
 High information content  Complex mutation behaviour 
 Co-dominant inheritance  
 Reproductibility  
 Locus specificity for g-SSRs  
 Highly tansferable across distant relatives for EST-SSRs  
 Automation  
   
ISSRs High information content                 High mutation rate 
 Co-dominante  
 Reproductibility  
 No requirement of sequence information  
 Technique quick and simple   
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amplifiable EST segment, and use of these primers for PCR amplication of gDNA. The 

growing numbers of ESTs in databsaes has provided a valuable resource for EST markers. 

They have been successfully used in several species of Pinus (Harry et al. 1998) and Picea 

(Brown et al. 2001) to serve as links between the maps of different species. Moreover, 

several EST-derived molecular markers have been widely exploited for phylogenetic 

studies, such as EST-SNPs ( McKhann et al. 2004) or EST-SSRs (Eujayl et al. 2001; 

Burstin et al. 2001; Thiel et al. 2003; Holton et al. 2002; Gupta et al. 2003; Gao et al. 2003; 

Hackauf and Wehling 2002). 

3.4.4.9 Comparison between the different types of markers for diversity analyses 

Advantages and drawbacks of the different types of markers are given in Tab. 1-5. It is well 

known that morphological data are the less reliable markers because of their strong 

interactions with environment. They are in a limited number, and sometime difficult to 

score. This is why molecular markers were primarily developed. Compared with other 

markers, isozymes are relatively inexpensive. Large samples can be processed with far less 

training and time per sample, and standard statistical procedures can be used for fine and 

broad scale genetic variation studies. However, their number is also limited (about 40) and 

only few alleles exist at each locus. In recent years, there has been an explosion in the 

number of different types of DNA markers available, which provide the same type of 

information as isozymes, but allow clearer resolution of genetic differences and which can 

be found in an almost unlimited number. In the past decades, RAPDs have been widely 

used because they require neither DNA probe nor sequence information. In addition, the 

procedure involves no blotting or hybridization steps leading therefore the technique quick, 

simple and efficient. RAPDs also require only small amounts of DNA (about 10 ng per 

reaction) and the procedure can be automated. However, RAPDs are known to be only 

poorly reliable and reproducible between the laboratories. Moreover, these markers are 

mainly dominants and heterozygotes cannot be detected. Concerning AFLPs, the method 

allows the specific co-amplification of a high number of fragments. Typically 50-100 

fragments are amplified and detected on denaturing polyacrylamide gels. The AFLP 

technique provides a novel and very powerful DNA fingerprinting technique for DNAs of 

any origin or complexity. However, like RAPDs, these are mostly dominant markers and 

only two alleles are observed at each locus (presence/absence of a band). RFLPs are 

mainly codominant markers which show a quite high level of polymorphism and several 



 

STSs Locus specificity Requirement for sequence information 
 Reproductibility  
 Co-dominate  
   

SNPs Low mutation rate Substaintial rate heterogeneity among sites 
 High abundance Expensive to isolate 
 East to type Low information content of single SNP 

 New analytical approches are being developed at 
present  

   
ESTs Cheap Low information content 
  Association with phenotypes   
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alleles at each locus (mean ~3). In addition, they often detect homoeologous copies and 

can thus be used in comparative studies. However, they require a huge quantity of DNA 

(several µg) and are also impossible to automate. Thus, only few samples can be run 

simultaneously. SSRs exhibit all the advantages of the other markers. They are codominant, 

highly reproducible and polymorphic (twice more than RFLPs), they can be easily 

automated and are mainly genome-specific in wheat. However, due to this latter point, they 

cannot be used in comparative studies and in addition; they are very expensive to develop 

because of the high number of sequences that must be made prior to have a useful marker. 

Despite this, they constitute the marker of choice for genetic studies in wheat. 
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3.5 Aims of the thesis 

3.5.1 Scientific question 

As previously described, the Triticeae species show a high genetic variability that can be 

useful for wheat genetic improvement. They can constitute a huge reservoir of new alleles 

for biotic and abiotic resistances as well as for quality or development traits. However, 

introducing wild genotypes into the classical breeding programs may have some 

advantages but also many drawbacks. Especially, these species carry numerous traits that 

are not compatible with modern agricultural practices such as plant height, poor lodging 

resistance, free threshing, etc. At the present time, new genomic tools that have been 

extensively developed for wheat genetics can be used in breeding programs for marker 

assisted selection, QTL detection or positional gene cloning. Nevertheless, these tools are 

not adapted to the study, exploration and exploitation of wild genetic resources, because of 

the low transferability of g-SSR markers. Because of the cost, almost no effort is made to 

develop genomic tools necessary for each species. The aims of the thesis were thus 1) to 

develop a set of markers useful for a large number of wild wheat-related species and 2) to 

use this set for phylogenetic studies. 

3.5.2 Methodology 

As demonstrated above, the SSRs are the marker of choice for wheat genetic studies but 

they are expensive to develop. According to this, it was concluded that developing a 

specific representative set for each species was prohibitive. In addition, the g-SSRs are 

only poorly transferable to related species and the markers developed from wild species 

will be useful neither on wheat nor on the other species. Concerning this latter point, 

sequences that are likely to be more transferable are the coding sequences because they are 

known to be well conserved even between divergent species. It was also demonstrated that 

a significant proportion (about 10%) of the genes contain a microsatellite motif. It was thus 

decided to develop a set of microsatellites issued from wheat coding sequences. At the 

present time, there are more than 600,000 wheat ESTs in the international data bases 

(http://www.ncbi.nlm.nih.gov/dbEST/) representing nearly 50,000 unique contigs 

suggesting that about 5,000 EST-SSRs can be developed. We also decided to use the 

available rice sequence (http://www.tigr.org/tdb/e2k1/osa1/pseudomolecules/info.shtml) to 

develop EST-SSRs from the rice coding regions. We decided to focus on rice chromosome 
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1 because the syntenic relationships are known to be well conserved with wheat group 3 

chromosomes. This homoeologous group is of main interest for the UMR since the 

physical map of the chromosome 3B is currently under elaboration in the team. Moreover, 

this chromosome is the largest in physical size, and a number of important traits are known 

to be controlled by loci on this chromosome. Because we would like to have together 

transferable markers to a large range of related species and showing the highest possible 

variability, our EST-SSRs were tested on a set of more than 30 species and on about five 

accessions for each species. 

3.5.3 Deliverables 

According to the aims, the results will be presented into three parts: 

-the development of the set of markers. From the experience of the lab, it was decided to 

start with a set of 300 ESTs containing a microsatellite motif. It was expected to have 

about 80% of the primer pairs giving an amplification product and about 40% giving 

polymorphism on wheat. 

-the study of the transferability of the EST-SSRs to wheat-related species. This part was 

made following a two-steps procedure. Transferability was first evaluated on a set of eight 

different species. Then, the most transferable markers were used on the total set of the 

lines. 

-the evaluation of genetic diversity within and between the species. Genetic diversity was 

estimated in terms on number of new alleles compared to wheat. Phylogenetic 

relationships between the species were then evaluated using either separated sets of 

markers (according to their chromosomal assignment) or the whole set but only between 

species with similar levels of ploidy. 
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Chapter II: Material and Methods 

 
1 Plant material and DNA extraction 

1.1 Hexaploid wheats for polymorphism evaluation 

In a first phase, eight hexaploid wheat lines corresponding to the parents of five mapping 

populations were used for polymorphism screening of the microsatellites: W7984 

(synthetic wheat, Van Deynze et al. 1995) and cultivars Opata, Courtot, Chinese Spring, 

Eurêka, Renan, Arche, and Récital. Twenty-two additional wheat cultivars (Annex 2) were 

further analysed in order to evaluated polymorphism information content (PIC) values and 

for phylogenetic studies. These lines were selected according to Roussel et al. (2005) in 

order to maximize the variability. They are issued from a larger core-collection of 372 lines 

which represents nearly the whole variability (98%) existing in the total collection 

available in Clermont-Ferrand (F Balfourier, personal communication). For each accession, 

ten seeds from self-pollinated ears were sown for further DNA extraction. 

1.2 Grass species for transferability studies 

Eight accessions of cultivated or wild species including polyploid as well as diploid 

species were primarily used to study the transferability of EST-SSRs to close and wild 

relatives of wheat: T. durum, T. monococcum, Ae. speltoides, Ae. tauschii, rye (Secale 

cereale), barley (H. vulgare), Agropyron elongatum, and rice (Oryza sativa). In a second 

step, a larger number of wheat-related species or sub-species was evaluated. In order to 

facilitate the comparison, similar numbers of accessions (between two and six) for each 

species were randomly chosen among our collection except for T. durum and Triticale 

where respectively 23 and 8 varieties were selected. Overall, 182 accessions representing 

33 species or sub-species of the grass family and 17 genomes were used (Annex 2). Seeds 

were mainly obtained from the Centre of Biological Resources on Cereal Crops 

(INRA-Clermont-Ferrand), and from Jacques David (INRA Montpellier, tetraploid and 

Aegilops species), Nathalie Chantret (INRA-CIRAD Montpellier, rice species) and 

Philippe Barre (INRA Lusignan, Lolium species). Similarly as for wheat, for each species, 

between five and ten seeds from self-pollinated ears, (when available or possible) except 

for rye and Ae. speltoides were sown for further DNA extraction. 



Table 2-1: List of the 19 nulli-tetrasomic (NT) and three ditelosomic (DT) lines used 

for chromosomal assignment of the EST-SSRs. 

  Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

A genome N1AT1B 2AS N3AT3B N4AT4B N5AT5B N6AT6B N7AT7B 

B genome N1BT1A N2BT2A N3BT3A 4BS/4BL N5BT5D N6BT6D N7BT7A 

C genome N1DT1A N2DT2A N3DT3A N4DT4B N5DT5A N6DT6A N7DT7A
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1.3 Aneuploid lines 

Hexaploid wheat tolerates the loss of a certain level of its genetic patrimony because this 

can generally be balanced by the other homoeologous chromosomes. Thus, stocks of 

aneuploid lines were developed from Chinese Spring by Sears (1954, 1966) and were 

kindly provided to us by Dr Steve Reader (John Innes Centre, United Kingdom) for 

chromosomal assignment of EST-SSR markers. The complete set of nulli-tetrasomic (19 

NT, Table 2-1) lines except nulli 2A (N2A) and nulli 4B (N4B) supplemented with three 

ditelosomic (DT) lines (DT2AS, DT4BS, DT4BL) was used to assign marker to wheat 

chromosomes or chromosome arms. 

1.4 Segregating populations 

Two segregating populations extensively used in the laboratory and for which 

well-saturated genetic maps were previously elaborated, were used for genetic mapping of 

the polymorphic EST-SSRs. 

1.4.1 ITMI population 

The ITMI (International Triticeae Mapping Initiative) population is recognized as the 

international reference for genetic mapping. It was developed from the cross between the 

Mexican spring wheat cultivar Opata 85 and the Synthetic wheat W7984. This latter was 

obtained from a cross between the diploid D genome ancestor of cultivated wheat, 

Aegilops tauschii (Coss.) Schmal. and the CIMMYT (Centro International de Mejoramento 

de Maize Y Trigo) T. durum (AABB) variety ‘Altar 84’, using the T. durum line as the 

female parent. Crossing between these two species was followed by embryo excision and 

culture and colchicine treatment of seedlings in order to generate fertile amphihexaploid 

plants. Pollen from one of these was used to pollinate the variety ‘Opata 85’. The F1 

progeny was grown in Ciudad Obregon, Mexico, and the F2 seeds were cultivated and 

advanced by single-seed descent to the F7-8 generation in Cornell University (New York, 

USA). A set of 114 lines was randomly selected and widely distributed in various labs all 

over the world for genetic mapping leading now to more than 3,000 loci mapped. In our 

case, we selected 90 lines for genotyping in order to integrate our EST-SSRs to ITMI 

reference map. 

1.4.2 Courtot x Chinese Spring population 

The population consisted in 217 doubled-haploid (DH) lines and was produced through 



 



Material and Methods 

- 38 - 
 

anther culture from Courtot (Ct) x Chinese Spring (CS) F1-hybrids (Félix et al., 1996; 

Cadalen et al., 1997) according to the procedure described in Martinez et al. (1994). 

Contrary to Chinese Spring, Courtot is a semi-dwarf variety with a good productivity and a 

good bread-making quality. However the former represents the international reference in 

wheat genetics with numerous series of specific material (Sears 1954, 1966; Law et al. 

1988; Gale and Miller 1988; Endo and Gill 1996) and a lot of Expressed Sequence Tags 

(ESTs) and full-length cDNA libraries (Ogihara et al. 2004). Moreover, these two cultivars 

presented a high level of polymorphism (60%, Cadalen et al. 1997) as well as many 

differences for several agronomic traits (for a review see Sourdille et al. 2003). One 

hundred and six lines were genotyped for most markers and an additional set of 81 DH 

lines were genotyped only for anchor loci. The genetic map now includes 824 loci and 

covers 3,685 cM (Sourdille et al. unpublished results). Ninety-four DH lines were screened 

in our study to integrate our EST-SSRs into the CT x CS genetic map. 

1.5 DNA extractions 

DNA extraction was performed according to a CTAB protocol as described by Murigneux 

et al. (1993). The detailed protocol is presented in Annex 6. About 3g of fresh young leaves 

of each individual were cut from 3- to 4-weeks-old seedlings and were ground in liquid 

nitrogen. The quality of each DNA sample was estimated after migration on 0.8% agarose 

gel and their concentrations were quantified using spectrophotometry at OD260 nm 

(Eppendorf, BioPhotometer, Germany). 

2 Wheat and rice EST-SSRs 

2.1 Analysis of the wheat ESTs 

The clustering was done from 170,746 wheat EST sequences originating from public and 

Génoplante databases (92,387 and 78,359 ESTs, respectively). The sequences were 

previously masked for vectors and repeats. The minimal overlapping length was fixed at 80 

bp with 96% identity for an alignment length between 80 bp and 200 bp and 90% identity 

for an alignment length greater than 200 bp. The CAP3 program (Huang et al. 1999) was 

used for EST assembly with default parameters on unmasked sequences. This resulted in 

19,191 contigs containing a range of 2–395 sequences and 27,319 singletons (Nicot et al. 

2004). The 46,510 consensus sequences ranged from 93 to 7,497 bp in length and were 

screened for the presence of SSRs using either REPEATMASKER (Smit AFA and Green P, 
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http://ftp.genome.washington.edu/RM/RepeatMasker.html) SSRSEARCH 

(ftp://ftp.gramene.org/pub/gramene/software/scripts/ssr.pl) or TRF (Benson 1999) programs. 

A microsatellite was considered when the sequence contained a minimum of three repeats 

of a motif comprising from one to six nucleotides, with a total length of at least 12 

nucleotides. ESTs containing SSRs were then extracted from the pool of 46,510 contigs. 

For our study we randomly selected about 1,000 EST sequences containing a microsatellite 

which were further used for primer design. 

2.2 Primer design 

Primers were designed using Primer software (version 0.5, Whitehead Institute for 

Biomedical Research, Cambridge, Mass.) based on the following criteria: primer length 

ranging from 18-22 bp with 20 bp as the optimum; product size ranging from 100-400 bp; 

melting temperature (Tm) between 57-63°C with 60°C as optimum; GC% content between 

20-80%; maximum acceptable primer self-complementarity of 5 bases; maximum 

acceptable 3’ end primer self-complementarity of 3 bases. Primers were selected when they 

contained as few as possible of repeated sequence, and when the 3’-end of the two primers 

ended with C or G when possible. Primer sequences were subjected to BLAST analysis 

against an in-house database to avoid redundancy with those that already exist. On this 

basis, 301 primer pairs were selected, and designated as CFE (primer sequences available 

on Graingenes: http://wheat.pw.usda.gov/index.shtml). Each forward primer was 

M13-tailed (M13: 5’CACGACGTTGTAAAACGAC3’, synthesis MWG (Germany)) for 

easier automation on capillary electrophoresis system (see further). 

2.3 Rice EST-SSRs 

Synteny relationships between rice and grass species using a circle as a model were already 

described by Moore et al. (1995) and colinearity between wheat group 3 chromosomes and 

rice (Oryza sativa L.) chromosome 1 was even shown earlier (Devos et al. 1992; Ahn et al. 

1993; Kurata et al. 1994; Van Deynze et al. 1995) and precised recently (Sorrells et al. 

2003; La Rota and Sorrells 2004, Munkvold et al. 2004). We thus decided to develop SSRs 

from rice chromosome 1 and test for their transferability on wheat group 3 chromosomes. 

From TIGR rice pseudo-molecules, (The Institute for Genomic Research; 

http://www.tigr.org/，version V02 ) 6,852 unigene sequences from rice chromosome 1 

(including exons, introns and upstream/downstream untranslated region) were screened for 

the presence of perfect and imperfect SSRs using either SSRSearch or TRF programs 



Figure2-1. M13-tailed primer strategy 
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according to the same criteria as described above (3.1). More than 4,000 gene sequences 

located on rice chromosome 1 contained at least one SSR. Based on the ARTEMIS viewer, 

we selected 200 rice genes bearing SSRs, half of them being collinear to the wheat 

3BL7-0.63-1.00 long arm distal deletion bin and the remaining 100 genes corresponding to 

the bin 3BL2-0.22-0.50. These two regions are known to show a better level of 

conservation with wheat homoeologous group 3 (Munkvold et al. 2004). The sequences 

were then analyzed using Vector NTI (version 7) software to identify the location of the 

SSR in CDS or in intron and only those where SSRs located in CDS were retained in order 

to maximize the probability of conservation and thus transferability between rice and 

wheat. Primers were designed using the following criteria: Tm ranging from 40 to 50oC, 

GC% from 35 – 60 %; primer length from 20 – 25bp; maximum nucleotide repeats of 4; 

maximum palindromes of 8; stem length of hairpin loop ≥ 3 and permitted dG ≥ -1.0; the 

different Tm between forward and reverse primer ≤ 5oC; the different GC% content ≤ 10; 

permitted dimers with dG ≥ -15 kcal / mol and permitted primer-primer 3’end 

complementarities with dG ≥ -3 15 kcal / mol. Primers were selected when forward and 

reverse primer showed as similar as possible Tm and GC% and formed as few as possible 

dimers, and when the 3’-end of the two primers ended with C or G whenever possible. On 

this basis, 106 primer pairs were selected, and designated as CFR. Like for wheat 

EST-SSRs, each forward primer was M13-tailed. 

2.4 EST-SSR detection 

2.4.1 Principle of the M13-tailed primer method 

For automation of the SSR detection on the ABI3100 capillary electrophoresis system 

(Applied Biosystems), DNA fragments must be labeled with specific fluorescent dyes. 

Because labeling all the primers individually would prohibitively increase the cost of 

genotyping projects, which involve many SSR markers, an alternative and cost-effective 

method was used. This technique employed a two-part primer in which a standard “tail” 

corresponding to a universal M13 primer is added to the 5’ end of the forward primer 

sequence. The amplification of SSRs is thus performed with three primers: the forward 

primer with the M13 tail, the reverse non-tailed primer and the fluorescently labeled M13 

primer (Boutin-Ganache et al 2001; Zhang et al. 2003; Fig 2-1). 

2.4.2 PCR reaction and detection 

PCR reactions were performed in two types of plate (96- or 384-wells plates). For the 



Figure2-2: Example of chromosomal assignment for Xcfe 163 by aneuploid analysis 
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96-wells-plate, a volume of 20 μL containing 80 ng of template DNA, 200 µM of each 

dNTP, 0.4 unit of Taq polymerase (Qiagen) with 1X of its appropriate buffer (1.5 mM 

MgCl2, 10 mM Tris-HCl (pH 9.0) and 50 mM KCl), 500 nM of each M13-labeled (6-FAM, 

HEX, VIC, PET or NED) and reverse primer, 50 nM of the forward M13-tailed primer, 

was added into each well. For the 384-well-plate, PCR reactions were carried out in a final 

volume of 6.5 µL with the same concentrations as above except that only 25 ng of template 

DNA and 0.2 U of Taq polymerase (Qiagen) were used. PCR amplifications were 

conducted using the following procedure: 5 min 95°C, followeb by 20 cycles (30 sec 94°C, 

30 sec 60°C, 30 sec 72°C) and 5 min 72°C. Fluorescent amplification products were then 

mixed with de-ionized formamide and an internal size standard (Genescan 400 or 

500–TAMRA, Applied Biosystems) in a 1:12:0.5 volume ratio. After a 5 min denaturation 

at 95°C, amplification products were visualized using an ABI PRISM®3100 Genetic 

Analyzer (Applied Biosystems). Fragment sizes were calculated using GENESCAN and 

GENOTYPER softwares (Applied Biosystems), where different alleles are represented by 

different amplification sizes for tandem repeats. 
3 Data analysis 

3.1 Genetic and cytogenetic mapping of EST-SSRs 

3.1.1 Chromosomal assignment 

Those primer pairs that yielded products were used for amplification on the 19 

nulli-tetrasomic (NT) and three ditelosomic (DT) lines derived from Chinese Spring (Fig 

2-2). EST-SSRs loci were assigned to the chromosomes corresponding to the 

nullisomic-tetrasomic lines for which no amplification product was obtained, following 

confirmation that all other nullisomic-tetrasomic lines amplification products were in order. 

An example of chromosomal assignment for Xcfe163 is shown in Figure 2-2. 

3.1.2 Genetic mapping 

The polymorphic EST-SSRs were genotyped on either the ITMI or the CtCS segregating 

populations according to the polymorphism revealed. The data were integrated into an 

existing framework map. For all loci, goodness of fit to a 1:1 segregation ratio was tested 

using a chi-square analysis. Linkage maps were previously constructed with 

MAPMAKER/exp 3.06 (Lander et al. 1987) for loci showing no segregation distortion 

(Sourdille et al. 2003 and unpublished results). Linkage groups were established by 
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calculating recombination frequencies with identical conditions (maximum recombination 

fraction = 0.35 and minimum LOD score = 3.0). The Kosambi mapping function (Kosambi 

1944) was applied to transform recombination frequencies into additive distances in 

centiMorgans. In our case, the new EST-SSR loci were attributed to and placed within the 

framework of the chromosomes using respectively the “assign” and “place” commands of 

Mapmaker. 

3.2 Transferability of the EST-SSRs to wheat related species 

Transferability of the wheat EST-SSRs to the related species was computed as the 

percentage of markers giving an amplification product on at least one of the accessions 

from a given species or sub-species. As an estimate of the genetic diversity within each 

species or sub-species, the number of bands per locus and per individuals (NB) was 

computed as follows: NB = (N x 100)/(116 x Transferability (%) x Number of individuals) 

where N is the total number of bands observed for each species, 116 is the total number of 

EST-SSRs tested and Transferability is the percentage of EST-SSRs that give an 

amplification product on related species. 

3.3 In silico analysis of EST-SSRs 

To assign putative functions to EST bearing SSRs, the sequences were compared to the 

SwissProt and TrEMBL protein databases using BLASTx algorithms (Altschul et al. 1990), 

with expected value of 1 e-5 as a significant homology threshold. Putative functions were 

attributed according to the definitions given at 

http://www.godatabase.org/cgi-bin/amigo/go.cgi. Three different classes of function are 

proposed: (1) biological process, which means phenomena, marked by changes that lead to 

a particular result, mediated by one or more gene products, such as light-inducible protein 

CPRF-2. (2) Cellular components including gene products that are parts of macromolecular 

complexes, such as Actin. (3) Molecular function which means elemental activities, such 

as catalysis or binding, presenting the actions of a gene product at the molecular level. For 

example, sulfite reductase (Ferredoxin) involves in oxidoreductase reaction in catalytic 

activity. tBLASTx searches were also performed against rice and barley NCBI unigene sets 

(http://www.ncbi.nlm.nih.gov/) to study the degree of conservation of the repeated motif 

between the three species. In addition, the EST sequences were compared to the rice 

pseudo-molecules (http://www.tigr.org/tdb/e2k1/osa1/, version V01) using tBLASTx and 

BLASTn to identify putative orthologues on rice chromosomes. E-values of less than 1 e-5, 
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1 e-10, 1 e-25, 1 e-50 and 1 e-100, were selected. 

3.4 Distribution of EST-SSRs on the rice genome 

Potential bias in the distribution of wheat EST orthologs on rice pseudomolecules was 

investigated using the relative error (Er). This value was computed as follows: the rice 

gene proportion for each chromosome was calculated as the ratio between the number of 

genes on the rice chromosome and the total number of genes on the rice genome (values at 

http://www.tigr.org/tdb/e2k1/osa1/). Then the expected number of hits was evaluated as the 

product of the number of wheat EST blasted (251) by the rice gene proportion. Observed 

hit values were compared to the expected values using a classical binomial test from Splus 

and only significant values at the 0.05 or 0.01 thresholds were retained. 

3.5 Determination of Polymorphism Information Content (PIC) values 

For each EST-SSR, the numbers and the frequencies of alleles were computed. Two alleles 

are considered as identical when they show the same fragment size. The polymorphism 

information content (PIC) value (Nei 1973) was then computed for each marker using the 

following formula: 

PIC= 1-∑ (Pi)2 

where Pi is the proportion of the population carrying the ith allele, calculated for each SSR 

locus. This value provides an estimate of the discriminating power of a locus by taking into 

account not only the number of alleles that are expressed but also their relative frequencies. 

PIC values were only computed for T. aestivum, T. durum and Triticale species because 

larger numbers of accessions were used. 

3.6 Determination of the Jaccard similarity coefficient (1908) 

For phylogenetic studies, the binary matrix was generated as followed: presence of an 

amplified product of a given size was scored as “1” while the absence of the same 

amplification product was scored as “0”. The binary data were used to compute the 

distance matrix as 1 – the Jaccard’s similiraty coefficient (1908). This latter coefficient (sij) 

measures the asymmetric information on binary variables and is computed according to the 

following formula:  

 
Where  p = number of bands present in both individuals (i and j)  
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q = number of bands present in i and absent in j  

r = number of bands present j and absent in i   

Because transferability was not complete, null alleles were not considered and were quoted 

as missing data since there was a higher probability that the lack of amplification was due to 

the presence of numerous mutations in the flanking sequences which are obviously different 

between the species rather than to a deletion of the genes which could have been considered 

as similar events. This also justifies the choice of the Jaccard distance index, which does not 

consider as informative a shared absence of a given trait (here an amplification product). 

3.7 Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 

There are numerous methods for constructing phylogenetic trees from molecular data 

(Felsenstein 1988; Miyamoto and Cracraft 1991). In the present study, a phylogenetic tree 

was constructed by the Unweighted Pair Group Method with Arithmetic Mean (UPGMA, 

Phylip software (Felsenstein et al. 1993)), which is the simplest, and the most intuitive 

method for tree construction. As all the species studied belong to the Triticeae tribe, the 

assumption of a molecular clock was acceptable. Therefore, the trees obtained by the 

UPGMA clustering method can be considered as phylogenetic inferences. The reliability 

and goodness of fit of dendrograms obtained from EST-SSRs data were tested through 

bootstrapping based on 100 samples (Felsenstein, 1985). This led to 100 phylogenetic trees 

summarized in a consensus tree which indicated the proportion of bootstrapped trees 

showing that same clade. 
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Figure 3-1: Distribution of the different types of SSRs in wheat EST-SSRs. 
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Figure 3-2: Frequency of the motifs according to their respective length. a: 

dinucleotide motifs; b: trinucleotide motifs; c tetranucleotides motifs; d: 

pentanucleotide motifs; e: hexanucleotide motifs. 
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Chapter III: Results and discussion 

1 Analysis of the wheat ESTs 

All of the CFE forward and reverse primers designed within this study are listed in Annex 

3. 

1.1 Characteristics of EST-derived SSRs 

Among the 301 wheat EST-derived SSRs selected, five different classes of repeated motif 

length occurred (di- to hexanucleotides). The trinucleotide repeats were the most common 

in our wheat ESTs (77%), followed by dinucleotide and tetranuleotide motifs accounting 

respectively for 10.33% and 9%. The hexanuleotide motifs were the least common, 

accounting for only 1.3% (Figure 3-1). Almost all EST-SSRs (99.3%) except two (Xcfe58 

(TTA), Xcfe197 (TAA)) contained either a G or a C in the motif, whereas only 48% of 

genomic SSRs did so (Wang et al. 1994). 

Concerning dinucleotide repeats, only three occurred: (TG)n, (TC)n and (GC)n with 

frequencies of 51.6%, 41.9% and 6.5% respectively (Fig 3-2a). No (TA)n motif was 

observed in our case. For trinucleotide repeats, (GCC)n motif was the most abundant, 

representing 36% followed by the (GAG), (CAG), (TGC), (TGG), (TTC), (ATC), (ATG), 

(GAA) and (TAA) (Fig 3-2b). Frequency for tetranucleotide repeats are illustrated in 

Figure 3-2c. Fifteen among the 33 possible classes of tetranucleotide repeats occurred in 

this study, (GCGG) being the most frequent followed by (TACC). Only seven different 

pentanucleotide repeats were found (AGGCG, GATCT, CTAGG, CATGG, GGAGG, 

AAGGG, TCTCC) and only three hexanucleotide repeats (GAACCC, GGCGGT, 

GGGGGC). Results are shown in Figure 3-2d and 3-2e. 

The frequency of the number of repeats (n) was also surveyed (Figure 3-3). SSRs with 

large numbers of repeats were less frequent than those with low numbers of repeats. Motifs 

with four repeats occurred the most frequently in wheat EST-SSRs, accounting for 37.4% 

of the n values. Most of the markers showed repeat unit numbers lower than 10 and 

contributed 94.5% to the total number of EST-SSRs.  
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Figure 3-3: Distribution of the SSRs according to the number of repeats 
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1.2 Amplification and polymorphism of EST-SSRs 

The 301 primer pairs were tested on eight reference cultivars in order to detect 

polymorphism. For each primer pair, quality of the amplification, real size of the PCR 

product, and polymorphism between the parents of four mapping populations are shown in 

Annex 4. About 80% (240) of the primer pairs led to an amplification product. Some 

differences were observed between the expected and the observed size of the amplification 

product. Among the 240 primer pairs, 51 (21.3%) gave an amplification product either 

larger, suggesting the possible simultaneous amplification of an intron during the PCR, or 

smaller than expected, suggesting (1) the occurrence of deletions within the genomic 

sequences, (2) a lack of specificity of some primer pairs which may have amplified a 

different copy belonging to the same multigenic family, or (3) a slight variation between 

the amplified copy and the consensus sequence. 

In general, EST-SSRs markers produced high quality patterns compared to those from 

genomic SSRs (Fig. 3-4). In our study, 192 markers produced strong and clear bands, 

representing about 80% of markers giving amplification (240). 

Among all the cultivars tested, for all of EST-SSR markers, dinucleotide repeats displayed 

higher level of polymorphism (Tab 3-1, 90.5%) than trinucleotide repeats (80%), while 

tetranucleotide repeats showed the lowest level (57%). At the same time, 139 (58%) of the 

240 markers giving an amplification product showed polymorphism on at least one of the 

eight wheat cultivars used. The combination W7984 x Opata (37.5%) was the most 

polymorphic (Figure 3-5) followed by Courtot x Chinese Spring with 25.4%, whereas 

Eurêka x Renan and Arche x Récital gave the lowest level of polymorphism with 20.8% 

and 20% respectively. The average level of polymorphism was 25.4% for the four 

populations. 

Overall, 223 out of the 240 primer pairs that amplified distinguishable bands in wheat 

cultivars gave clear and readable patterns and were used to survey the number of bands 

produced. Most of them (96%, Figure 3-6) gave less than four amplification products. 

About 19.7% gave three bands probably corresponding to the three homoeologous 

chromosomes while 54 % gave only one band suggesting that these latter were specific of 

one of the three copies or that the three copies had identical sizes or that these SSRs were 

located within unique genes. 



Figure 3-4: Comparison patterns produced by g-SSRs with those by EST-SSRs 
a. Patterns produced by g-SSRs Xgwm383 (L) and Xgwm118 (R) 
 

 
 
b: Patterns produced by  EST-SSRs Xcfe190 (L) and Xcfe257 (R) 
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1.3 Genetic mapping of the EST-SSRs 

According to the survey of polymorphism, 90 out of the 240 EST-SSRs showed 

polymorphism between the two parental lines of the ITMI population, Synthetic W7984 

and Opata 85. Only 71 markers gave useful genotyping in the segregating population 

because: i) some makers gave too weak bands to accurately distinguish the parental alleles; 

ii) some that exhibited polymorphism between the parents were no more polymorphic 

within the population. Among these 71 markers, 65 gave clear segregations and generated 

75 loci which were tentatively integrated into the ITMI map. The remaining six were 

excluded because of too complex patterns. Finally, 62 loci were directly integrated to the 

map (Annex 5) while the remaining 13 loci were found to be unlinked to any of the other 

markers. Eighteen additional markers that did not show any polymorphism in the ITMI 

population were polymorphic between Courtot and Chinese Spring and could therefore be 

mapped on the CtCS population. These markers gave rise to 22 loci among which, 19 were 

added to the CTCS map (Annex 5), three remaining unlinked to any linkage group. Results 

of the assignment to the different chromosomes are summarized in Tab 3-2. While no 

significant differences were observed concerning the chromosomal assignment of the 

wheat EST-SSRs to the wheat chromosomes (see further details in Zhang et al. 2005 

below), more loci mapped to the B genome (40) compared to the A (31) and especially to 

the D (10) genomes confirming that the former exhibits more polymorphism than the other 

two. Similarly, only three loci mapped to group 5 chromosomes suggesting a better 

conservation and less polymorphism within the genes from these chromosomes compare to 

the others. For the map position (Annex 5), most of the loci were located in the distal 

regions of wheat chromosomes, and only 13 loci were localized close to the centromeres. 

However, the proximal genetic location does not involve that these markers are physically 

located close to the centromere since genetic to physical distance relationships may vary a 

lot along the chromosome (Sourdille et al. 2004). 
1.4 Discussion 

Recent studies on several plant genomes have demonstrated that SSRs were predominantly 

located in ESTs compare to genomic DNA (Morgante et al. 2002). We thus investigated the 

frequency of different classes and types of SSRs in wheat ESTs. Tricluneotide repeats were 

the most frequent (~77%). This was expected since these SSRs only change the number of 

amino acids in the protein but do not modify the reading frame if one or more motifs are 



 

Table 3-1. Level of polymorphism displayed by the different types of SSR repeats. 

 

Repeated motif N. of amplification N. of polymorphism Percentage 

Dinucleotides 21 19 90.5% 

Trinucleotides 129 103 80% 

Tetranucleotides 21 12 57% 

 
Figure 3-5: Level of polymorphism observed for each of the four segregating 
populations available for mapping in the laboratory. W-Op: W7984 x Opata (ITMI 
population); Eu-Re: Eurêka x Renan; Ar-Réc: Arche x Récital; Ct-Cs: Courtot x 
Chinese Spring; Average: average level of polymorphism for the four mapping 
populations. 
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Fig 3-6 Distribution of number of bands amplified by wheat EST-SSRs in 8 wheat 

cultivars 
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added or deleted. This was also consistent with the results reported earlier (Morgante et al. 

2002; Varshney et al. 2002; Nicot et al. 2004). Within EST-SSRs, the abundance of 

trinucleotide repeats is attributed to the suppression of specific selection against the frame 

shift mutation in coding region resulting from length changes in nontriplet repeats 

(Metzgar et al. 2000) 

For trinucleotide motifs, (CCG)n was very abundant in wheat EST sequences although 

Kantety et al. (2002) found that in wheat, the most abundant trinucleotide motifs were 

AAC/TTG. However, this was consistent with the results of Morgante et al. (2002) and of 

Murray et al. (1989) who found a high GC% level in the monocotyledonous genes. Among 

the ESTs analysed, 21% were issued from seed tissues. In seeds, the most frequent 

amino-acids are Proline (Pro) and Glutamine (Gln) (Feillet, 1965). Pro is coded by CCG 

and Gln by CAA and CAG. These three motifs represent 60% of all the trinucleotide 

microsatellites we found in wheat ESTs. The difference observed with Kantety et al. (2002) 

was probably due to the tissues used for EST production. The two motifs ATT/TAA and 

CTA/TAG were less represented (0.54% and 1.36% respectively) presumably because they 

constitute stop codons. 

We found only two EST-SSRs without any C or G. Wang et al. (1994) demonstrated that 

the majority of SSRs in coding region contained G+C base pairs, contrarily to A+T base 

pairs, and also found that all of 8 (ATT)n, (TTA)n repeats were in non-coding region. Our 

results were in agreement with those of Wang et al. (1994). The presence of “CpG islands” 

upstream of many genes can be used to explain this phenomenon. Besides, due to the 

stronger linkage between G and C than between A and T, this ensures a correct replication 

(Carels et al. 2000). In addition, that TAA is a stop codon can also partially account for this 

phenomenon. 

Most wheat EST-SSRs were shorter than 10 repeat units and four units were the most 

frequently encountered in our research. Lot of studies using both in silico analysis and 

experimental designs showed that this feature is common to many species (Kantety et al. 

2002; Thiel et al. 2003; Barrett et al. 2004; Varshney et al. 2002). Maybe this explains that 

the polymorphism is lower for EST-SSRs than for genomic SSRs since longer SSRs are 

more polymorphic (Thuillet et al. 2004). Conversely the selection pressure is probably very 

strong and prevents the EST-SSRs from being too long and too polymorphic in order to 

keep them functional. 

About 25% of the EST-SSRs exhibited polymorphism which was similar to the results 



Table 3-2: Distribution of EST-SSR loci on the genetic maps (in brackets number of 
loci on ITMI and CtCS maps respectively) according to their assignment to wheat 
chromosomes and homoeologous groups  
 

Homoeologous Group 1 2 3 4 5 6 7 Total 

Chromosome A 5 (0/5) 1 (1/0) 1 (1/0) 10 (10/0) 2 (1/1) 6 (4/2) 6 (4/2) 31 (21/10)

Chromosome B 9 (7/2) 5 (4/1) 9 (8/1) 2 (2/0) 0 4 (0/4) 11 (11/0) 40 (32/8) 

Chromosome D 3 (3/0) 1 (1/0) 2 (2/0) 1 (1/0) 1 (0/1) 2 (2/0) 0 10 (9/1) 

Total 17 (10/7) 7 (6/1) 12 (11/1) 13 (13/0) 3 (1/2) 12 (6/6) 17 (15/2) 81 (62/19)
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described earlier (Eujayl et al. 2001, Gupta et al. 2003, Thiel et al. 2003, Gao et al. 2004, 

Nicot et al. 2004), and was much lower than that observed for genomic SSRs (53%, Eujayl 

et al. 2001). The characteristics of EST-SSRs, i. e. the existence in the coding region where 

the mutation was restrained and a lower number of repeat units, probably accounted for 

this lower percentage of polymorphism. We also found that dinucleotide repeat displayed a 

higher level of polymorphism than that of trinucleotide repeat, which was consistent with 

the results of Nicot et al. (2004). 

Eighty one new EST-SSR loci were integrated to the two reference genetic maps currently 

used in the lab (62 and 19 on ITMI and 1 CtCS maps respectively). More loci mapped to 

the B genome which was expected since this genome is always reported as being more 

polymorphic than the other two. We noticed few discrepancies between cytogenetical 

assignment to chromosomes or chromosome arms using NT/DT lines and genetic mapping 

which could be attributed to the difficulty in clearly assigning the polymorphic locus or in 

a wrong placement on the genetic map. The EST-SSR loci were mainly distributed on the 

distal ends of the chromosomes which was consistent with what is observed in our in silico 

maps. Similar results were also reported in tomato (Areshchenkova and Ganal 2002) in rye 

(Khlestkina et al 2004) and in wheat (Gao et al. 2004). 

As a conclusion, wheat EST-SSRs markers exhibited some interesting features, different 

from those of genomic SSRs. This makes them highly valuable as a source for marker 

development as well as other applications. 
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2 Transferability of the wheat EST-SSRs to grass species 

This part was the subject of two manuscripts which were respectively published in 

Theoretical and Applied Genetics (111: 677-687) and accepted for publication in Plant 

Breeding. These papers deal with two of the scientific questions which were asked at the 

beginning of the project and which concern the transferability of wheat EST-SSRs to 

related species and the potential of these markers to serve as genomic tools for orphan 

species and to reveal the diversity existing within these species. 

2.1 High transferability of bread wheat EST-derived SSRs to other cereals 

(2005, Theor Appl Genet 111: 677-687) 



 



Results and Discussion - Transferability 

 - 51 -



 



Results and Discussion - Transferability 

 - 52 -



 



Results and Discussion - Transferability 

 - 53 -



 



Results and Discussion - Transferability 

 - 54 -



 



Results and Discussion - Transferability 

 - 55 -



 



Results and Discussion - Transferability 

 - 56 -



 



Results and Discussion - Transferability 

 - 57 -



 



Results and Discussion - Transferability 

 - 58 -



 



Results and Discussion - Transferability 

 - 59 -



 



Results and Discussion - Transferability 

 - 60 -

 



 



Results and Discussion - Transferability 

 - 61 -

 



 



Results and Discussion  
- Grass species can be a reservoir of new alleles for wheat improvement 

 - 62 -

2.2 Wheat EST-SSRs for tracing chromosome segments from a wide 
range of grass specie (Plant Breeding, accepted) 
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Abstract 
Transferability of 116 common wheat EST-SSR markers was investigated on 158 

accessions representing 18 grass species to identify new alleles useful for wheat 

improvement. Transferability among the Triticeae ranged from 73.7% for Ae. longissima to 

100% for wheat sub species (T. compactum) but was also good for less related species such 

as rye (72.8%) or maize (40.4%). On average, the number of alleles/locus detected by 

EST-SSR markers was 3.1 on hexaploid wheat. The PIC values simultaneously estimated 

for T. aestivum and T. durum were similar for the two species (0.40 and 0.39 respectively). 

The allelic diversity within allogamous species was higher (0.352-0.423) compare to that 

of T. aestivum and T. durum (0.108 and 0.093 respectively). T. aestivum and T. durum 

shared the largest number of alleles (74.6%) while among the three ancestral diploid 

species of bread wheat, Ae. tauschii had the highest percentage of common alleles with T. 

aestivum (57.4%). These results indicate that grasses orphan species can be studied using 

wheat EST-SSRs and can serve as a source of new alleles for wheat genetic improvement. 

 

Key words 
Triticum – microsatellites – bread wheat – genetic diversity – markers – relatives 
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Introduction 
Significant advances in the understanding of the plant biology as well as in the 

management and exploitation of genetic resources must be achieved to face increasing 

human needs. Concerning genetic resources, genetic variability in grasses and especially in 

wheat (Triticum aestivum L.) is extremely extended but remains largely underexploited. 

This is primarily due to the poor knowledge of the capacities of these resources in terms of 

biotic and abiotic resistances as well as their potential for quality or yield performances. 

They are also bearing many traits of low agronomical interest such as large plant height, 

lodging sensitivity, free threshing and hulled kernels which make the breeders reluctant to 

use them because of the linkage drag of these negative traits. Moreover, these species are 

often difficult to cross with wheat because of the presence of Kr genes (Lein 1943; Snape 

et al. 1979; Falk and Kasha 1981). Only few recombinations are established between wheat 

and alien chromosomes and it is almost impossible to evaluate the quantity of foreign DNA 

introduced. We can suspect that the bad crossability and the low recombination will soon 

be overcome with the positional cloning of the genes involved in these processes (Ph1, Kr, 

SKr; G Moore, personal communication; M Bernard and C Feuillet, unpublished results). 

However, the linkage drag and the evaluation of the sizes of the introgressions still remain 

a problem since these phenomena depends on the power of the evaluation of these latter 

and thus of the genotyping capacities available. It was demonstrated that cytogenetically 

controlled introgressions of alien fragments of chromosomes in wheat may have a positive 

effect on resistance to various traits as well as for yield or bread making quality (Jarwal et 

al. 1996; Singh et al. 1998; Villareal et al. 1995, 1998; Hoisington et al. 1999; Kim et al. 

2003; Reynolds et al. 2001, 2005). 

At the present time, low attentions have been paid on the study of wheat related species 

especially in genomic areas while genomics has exploded in wheat in the last five years 

leading to better marker-assisted selection and to the positional cloning of a number of 

genes of agronomic interest. The genomic efforts should primarily seek on the 

development of molecular markers because they are easy to produce and to use and 

because they are involved in all the further analyses including QTL detection, positional 

cloning and diversity studies. In polyploid wheats, microsatellites also referred to as 

Simple Tandem Repeats (SSRs) constitute the marker of choice because of their 

co-dominant inheritance, their even distribution along the genome, their high 

polymorphism level, their good reproducibility and their genome specificity (Plaschke et 
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al.1995; Röder et al. 1995, 1998; Bryan et al. 1997; Guyomarc’h et al. 2002a, b; Nicot et al. 

2004). However, they are expensive to develop because it is needed to create and screen 

enriched libraries, to sequence a lot of clones and to test numerous pairs of primers prior to 

have a useful marker. In addition, because of their genome specificity, genomic SSRs 

developed from wheat cannot be used on related species (Sourdille et al. 2001). 

A new type of SSRs was recently developed from the large wheat EST collections 

(599,989 ESTs; http://www.ncbi.nlm.nih.gov/dbEST; EST-SSRs) which were developed in 

the past five years. Compared to the genomic SSRs derived from enriched genomic DNA 

libraries (g-SSRs), EST-SSRs give better profiles (Holton et al. 2002; Gupta et al. 2003) 

and recently, Zhang et al. (2005a) demonstrated that bread wheat EST-SSRs showed a high 

level of transferability to close and wild relatives of wheat because they are mainly derived 

from conserved coding regions. They can thus be used as a starting point for further 

genomic studies on wheat-related orphan species such as Aegilops, Agropyron, Enhardia, 

Elymus, Thynopyron or other Triticum species. Some of these species can be used to 

derived synthetic wheats which have already been shown to possess a high genetic 

diversity (Lage et al, 2003; Zhang et al, 2005b) as well as favorable qualitative (Kema et al, 

1995; Ma et al. 1995; Lage et al, 2001; Mujeeb-Kazi et al. 2001) and quantitative traits 

(Villareal et al. 2001). 

In this paper, we report the results of the genetic study of 168 accessions from 18 different 

species from the grass family representing 17 different genomes using a set of 116 

EST-SSRs that we recently developed (Zhang et al., 2005a). The objectives of this study 

were: (1) to evaluate the transferability of the EST-SSRs to these species; (2) to 

characterize the allelic diversity on a set of accessions for each species; and (3) estimate 

the EST-SSR PIC values within T. aestivum and T. durum species. 

 

Materials and Methods 
 

Plant Material 
A total of 168 accessions, representing 18 grass species and 17 genomes of the Triticeae 

tribe were used (see electronically supplementary data). This included diploid and 

polyploid species and autogamous as well as allogamous species. Between two and six 

accessions for each species were randomly chosen among our collection except for T. 

aestivum and T. durum where respectively 22 and 25 varieties were selected. Seeds were 



 



Results and Discussion  
- Grass species can be a reservoir of new alleles for wheat improvement 

 - 67 -

mainly obtained from the Centre of Biological Resources on Cereal Crops 

(INRA-Clermont-Ferrand), and from Jacques David (INRA Montpellier, tetraploid and 

Aegilops species), and Philippe Barre (INRA Lusignan, Lolium species). For each species, 

between five and ten seeds from self pollinated ears (when available or possible) were 

sown for further DNA extraction. 
 

DNA extraction, PCR amplification and SSR detection 
DNA was extracted from fresh leaves ground in liquid nitrogen using a CTAB protocol as 

previously described (Tixier et al. 1998). A set of 116 EST-SSRs (Zhang et al., 2005a) was 

selected (see electronically supplementary data) according to their ability to be transferable 

to the studied species. PCR reactions using the M13 protocol were carried out as described 

in Nicot et al. (2004) with an annealing temperature of 60°C for 30 cycles (30 sec 94°C, 30 

sec 60°C, 30 sec 72°C) and 56°C for 8 cycles. Amplification products were visualized 

using an ABI PRISM®3100 Genetic Analyzer (Applied Biosystems). Finally, fragment 

sizes were calculated using GENESCAN and GENOTYPER softwares (Applied Biosystems), 

where different alleles are represented by different amplification sizes for tandem repeats. 

Two alleles are considered as identical when they show the same fragment size. 

 

Estimation of PIC values and phylogenetic relationships 
Allelic polymorphism information content (PIC) values were calculated in each case using 

the formula PIC= 1-∑ (Pi)2 , where Pi is the proportion of the population carrying the ith 

allele, calculated for each SSR locus (Botstein et al. 1980). As an estimate of the genetic 

diversity, the number of bands per locus and per individuals (NB) was computed as follows: 

NB = (N x 100)/(116 x Transferability (%) x Number of individuals) where N is the total number 

of bands observed for each species, 116 is the total number of EST-SSRs tested and 

Transferability is the percentage of EST-SSRs that give an amplification product on related 

species. 
 

Results 
Because EST-SSRs are derived from coding sequences, they frequently amplified several 

copies of the same gene in polyploid wheats resulting in the detection of multiple fragments. 

In this study, 53% of the 116 EST-SSRs amplified more than one band in T. aestivum and T. 

durum suggesting either the detection of homoeologous copies or duplication of the genes in 



Table 1: Transferability of EST-SSRs from T.aestivum to related species. Transferability is 

computed as the percentage of EST-SSRs giving an amplification product on at least one of the 

accessions tested. 

 

Species  Sub-species Genome N of accessions Transferability 

 aestivum AABBDD 22 100% 

 spelta AABBDD 5 99.1% 

 compactum AABBDD 5 100% 

T. aestivum sphaerococcum AABBDD 5 99.1% 

 macha AABBDD 5 99.1% 

 vavilovi AABBDD 5 99.1% 

 petropavlovskyi AABBDD 3 100% 

 carthlicum AABB 5 93.0% 

 dicoccum AABB 5 94.0% 

T. turgidum dicoccoides AABB 5 94.7% 

 durum AABB 25 96.5% 

 polonicum AABB 5 87.7% 

 turgidum AABB 5 90.4% 

 monococcum AmAm 5 83.3% 

T. monococcum boeoticum AbAb 5 83.3% 

 urartu AuAu 5 85.1% 

Ae. speltoides   SS 4 79.0% 

Ae. searsii  SsSs 2 74.6% 

Ae. bicornis  SbSb 2 80.0% 

Ae. longissima  SlSl 3 73.7% 

Ae. tauschii  DD 5 76.3% 

Ae. umbellulata  UU 2 77.2% 

Ae. peregrina  UUSvSv 2 78.1% 

Ae. comosa subven  MM 3 76.3% 

Ae. ventricosa    DDMvMv 3 82.5% 

Hordeum vulgare  HH 5 62.3% 

Secale cereale  RR 5 72.8% 

Lolium perenne   6 43.0% 

Avena sativa   5 58.8% 

Zea mays   5 40.4% 

Oryza sativa   5 30.1% 

Brachypodium   2 43.9% 
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the genome. Among these, 70% revealed only one band in the diploid species indicating that 

most of the fragments originated from homoeologous copies. When several bands were 

detected in diploid species, this could be due either to the presence of several copies of the 

genes or to a DNA mixture of heterogeneous varieties or to residual heterozygosity which 

can be frequent, especially in allogamous species. For these latter species, 69.3% (79) of the 

116 EST-SSRs gave more than one band and among these, 32.5% (37) gave only one band in 

polyploid species. Only thorough sequence analyses of the different fragments and genetic 

mapping could allow concluding about the different hypothesis. Concerning the 47% of the 

EST-SSRs that amplified only one fragment in polyploid wheats, this suggests either that 

they were specific of one copy or that they amplified different copies but of the same size. 

 

Characterization of the transferability of wheat EST-SSRs on a large set of 

species 
We studied the transferability of these EST-SSRs to the different species. Transferability 

was considered as positive when an amplification product was detected on at least one of the 

different accessions used for each species. Considering this set of markers, transferability 

was complete (100%) for T. aestivum sub-species compactum and petropavlovskyi, and 

almost complete (99.1%) for sub-species spelta, sphaerococcum, macha and vavilovi (Table 

1). Similarly, an average of 92.7% of transferability was observed for the six tetraploid 

subspecies. The highest value was observed for T. durum (96.5%) which was expected 

since this species is closely related to T. aestivum. Similar values were observed for T. 

carthlicum, T. dicoccum and T. dicoccoides (respectively 93%, 94% and 94.7%) suggesting 

also close relationships. Lower values were noticed for T. turgidum (90.4%) and T. 

polonicum (87.7%) indicating a larger divergence between these two species and bread 

wheat. 

For the ancestral diploid species of hexaploid wheat, the transferability ranged from 76.3% 

for Ae. tauschii (DD) to 85.1.3% for T. urartu (AuAu), with an average of 83.9% (Table 1). 

A higher value was expected for Ae. tauschii since this species is known to be the donor of 

the D genome of hexaploid wheat, an event which occurred only recently (8,000 years ago). 

Thus, sequences should have diverged only weakly. For the species bearing the S genome 

which is supposed to be close to the B genome of bread wheat, transferability varied from 

73.7% for Ae. longissima to 80% for Ae. bicornis. Ae. speltoides also exhibited a high 

value (79%) confirming that it can be considered as a good candidate for B genome donor 



Table 2: Distribution of common bands between hexaploid wheat (T. aestivum) and other species. 

N is the number of different bands for each species. NB represents the number of bands per locus 

and per individual and is computed according to the number of accessions tested (see Table 1), the 

number of EST-SSRs tested (116) and their transferability to the species (see Table 1). 

 

Species NB* N T. 
aestivumaest 

%CB§ 

T. aestivumaest 0.108 295 - - 
T. durum 0.093 237 177 74.7 
T. monococcummono 0.304 143 68 47.6 
Ae. speltoidesspelt 0.423 159 65 40.9 
Ae. tauschiitauschi 0.269 122 70 57.4 
H. vulgareordeum 0.280 119 50 42.0 
S. cerealeecale 0.292 140 54 38.6 
L. perenneolium 0.388 155 39 25.2 
A. sativavena 0.256 100 61 61.0 
Z. maysMaize 0.352 102 34 33.3 

Rice 0.232 44 6 13.6 

*NB: Number of bands/locus/individual = (N x 100)/(116 x TransferabilityTranferability (%) x 
Number of individuals) 
§ percentage% of common bands with hexaploidbread wheat 
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species. For the A genome species, transferability was similar between the three sub 

species (T. monococcum 83.3%; T. boeoticum, 83.3%; T. urartu 85.1%) but was the highest 

for T. urartu indicating that this sub species was closer to T. aestivum. The transferability to 

other wild relatives of common wheat was also high ranging from 76.3% for Ae. comosa to 

82.5% for Ae. ventricosa. This indicates that EST-SSRs can be very useful to study these 

species for which no genomic tools were previously developed. 

We also analyzed the transferability to less related grass species but which are more or 

even largely studied (Table 1). It was found to be good with rye (Secale cereale, 72.8%), 

barley (Hordeum vulgare, 62.3%) and oat (Avena sativa, 58.8%). For rye-grass (Lolium 

perenne) and maize (Zea mays), transferability was respectively of 43% and 40.4%. For 

Brachypodium, about 44% of the EST-SSRs were transferable which confirmed that this 

species can be used as a model, especially for marker development (G. Moore, personal 

communication). 

Globaly, we can conclude that transferability of EST-SSRs across a wide range of grass 

species was good indicating that they can be used either as genomic tools for orphan 

species or for comparative studies for cultivated crops. 

 

Analysis of the allelic diversity within species 
Polymorphism information content (PIC) values which provide an estimate of the 

discriminatory power of each EST-SSR locus were computed for T. aestivum and T. durum 

using respectively 60 and 52 EST-SSRs. For each species, EST-SSRs were chosen 

according to their ability of revealing polymorphism and to the absence of missing data. 

For T. aestivum, PIC values ranged from 0.08 to 0.80 (average 0.40 ± 0.20) which was 

similar to what was observed for T. durum (0.09 to 0.80; average 0.39 ± 0.19). For these 

two species, 355 bands were detected from the 116 amplified EST-SSRs (average 3.1 

bands/locus). The primer pair CFE300 detected the largest number of bands (13) while the 

primer pair CFE264 detected the lowest number (2). We can conclude from this that 

EST-SSRs are polymorphic enough to serve as molecular markers in wheat. 

 

The total number of bands was computed for 11 species, including T. aestivum and T. 

durum, the three ancestral diploid species of bread wheat and six members of the grass 

family (Table 2). For each of these species, we calculated the mean number of bands per 

locus and per accession (NB) which can be considered as representative of the genetic 
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diversity of the species. This value was corrected according to the transferability of the 

EST-SSRs for each species to take into account only markers giving amplification products 

(see M&Ms). Ae. speltoides showed the highest NB value (0.423) followed by Lolium, 

maize and T. monococcum species (respectively 0.388, 0.352 and 0.304) suggesting a high 

level of genetic diversity within these species. For the three formers, this can be explained 

by the fact that these are allogamous species. On the contrary, T. aestivum and T. durum 

exhibited the lowest values (0.108 and 0.093 respectively) indicating lower genetic 

diversity. As expected and except for maize, widely cultivated species (wheat and barley) 

exhibited lower genetic diversity compare to wild species such as Ae. speltoides, T. 

monococcum and Ae. tauschii. This confirmed that breeding contributed to the reduction of 

the diversity within cultivated species. 

 

The percentages of common bands between species were also investigated (Table 2). T. 

aestivum and T. durum shared the highest percentage of common bands (74.6%) indicating 

a recent common ancestral origin. Among the three ancestral diploid species of bread 

wheat, Ae. tauschii had the highest percentage of common bands with T. aestivum (57.4%), 

followed by T. monococcum (47.6%) and Ae. speltoides (40.9%). This suggests that the A 

and D genome donors showed a better conservation with the corresponding genomes of 

common wheat while the B genome of wheat was less related to the B genome of Ae. 

speltoides. Among the other grass species, T. aestivum showed almost the same percentage 

of common bands with rye, oat and rye-grass (average 39%) while the percentages were 

higher for barley (43.5%) and lower for maize (33%) confirming that this latter species is 

less related to wheat. These results clearly suggest that the wild related species can serve as 

a source of new alleles for cultivated species such as wheat providing that they can easily 

be crossed with wheat and that recombination can occur between homologous 

chromosomes which is the case with T. monococcum, Ae. speltoides and Ae. tauschii. 

 

Discussion  
Bread wheat EST-SSRs were tested to evaluate their transferability on a larger set of grass 

species (18) compared to our previous work (eight; Zhang et al., 2005a) and to characterize 

their allelic diversity. We expected the transferability to be complete for all T. aestivum sub 

species while it was very high but not complete for T. spelta, sphaerococcum, macha and 

vavilovi. In each case, one SSR did not give any amplification product on the five accessions 
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tested. This was surprising since T. spelta and sphaerococcum are supposed to differ from T. 

aestivum by only recessive alleles at the respective loci Q (Miller, 1987) and S1 (Rao, 1977). 

Those two genes are located on chromosome 5A (Q, Galiba et al., 1995) and 3D (S1, Rao, 

1977). However, the two EST-SSRs that did not amplify on these species were located 

respectively on chromosomes 5B (CFE229) and 4A (CFE228) indicating that they were not 

involved (or associated to) in the expression of the speltoid spike and spherical kernel and 

that more than one gene explained the difference between T. aestivum, T. spelta and T. 

sphaerococcum sub species. 

Our results confirmed that wheat EST-SSR markers are highly transferable across closely 

related genera (Eujayl et al. 2002; Gupta et al. 2003; Thiel et al. 2003; Yu et al. 2004a, b; 

Zhang et al. 2005a). These results contrast with those observed with genomic SSRs which 

are more genome specific and thus less transferable to related species (Röder et al. 1995; 

Sourdille et al. 2001; Kuleung et al. 2003). This is probably due to the fact that EST-SSRs 

originate from the coding regions which have a higher level of sequence conservation than 

intergenic regions. 

On average, the number of alleles per locus computed on 22 hexaploid and 25 tetraploid 

wheats using our set of 116 EST-SSR markers was 3.1. This is lower than the average 

number observed using genomic SSRs (9.4, Balfourier, unpublished results). In our study, 

the mean of PIC values for EST-SSRs was 0.395 which is lower compared to the PIC values 

observed for genomic SSRs (Röder et al. 1995; Roussel et al. 2004). However, this is in 

agreement with other studies on EST-SSRs (Eujayl et al. 2002; Gupta et al. 2003; Nicot et 

al. 2004; Peng et al. 2005) and this is also higher than the values observed for RFLPs (0.30, 

Anderson et al. 1993). This suggests that EST-SSRs can constitute a good source of 

markers for genetic mapping. The lower level of the PIC values of the EST-SSRs compare 

to g-SSRs can be explained by the lower number of motifs present in EST-SSRs (in our set 

range 3-25, mean 6.15) while it was demonstrated that SSRs showing high number of 

repeats were more polymorphic (Guyomarc’h et al. 2002a; Thuillet et al. 2004). 

Accordingly, we should pay more attention to this point when considering polymorphisms 

of EST-SSRs in the future application. 

Highest genetic diversity was observed in wild diploid species (Ae. speltoides, T. 

monococcum) but also in maize and oat while T. aestivum and T. durum exhibited the 

lowest values. This confirmed that the level of molecular polymorphism is low in these 

two latter species (Chao et al., 1989 ; Blanco et al. 1998). In addition, T. aestivum and T. 
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durum shared a high number of bands while the three ancestral diploid species of bread 

wheat (T. monococcum, Ae. speltoides, Ae. tauschii) had on average less than one half of 

common bands with these two species. In addition, allogamous species such as Ae. 

speltoides, rye-grass and maize showed highest diversity compare to autogamous species. 

Similar results were observed by Wang et al. (2005) who noticed that the level of 

polymorphism was significantly higher among species than within species and was related 

to the degree of out-crossing for each species. Polymorphism ranged from 57% for 

self-incompatible species to 20% for self-pollinated species. Our results suggest that the 

wild ancestral species may serve as sources of new alleles for cultivated wheats. This can 

be done by creating new synthetic wheats which can be used in breeding programs to 

develop new progenitors with enhanced capacities for stress tolerance useful in the view of 

a more sustainable agriculture. Previous studies of synthetic derived wheats have already 

revealed an increased diversity in the synthetics using AFLP (Lage et al, 2003) and SSR 

markers (Zhang et al, 2005b). It has also been proven that these synthetic wheats possess 

favorable qualitative (Kema et al, 1995; Ma et al. 1995; Lage et al, 2001; Mujeeb-Kazi et 

al. 2001) as well as quantitative traits (Villareal et al. 2001). However, they also carry a 

large number of unfavorable alleles and they thus need to be backcrossed to elite cultivars 

to produce agronomically acceptable progenitors. 

As a conclusion, common wheat EST-SSRs showed a high level of transferability to 

numerous grass species including Pooideae species (oats, barley, wheats, rye) as well as 

Panicoideae species (maize). They can thus be used as a starting point for genomic studies 

of orphan wild wheat-related species in order to exploit these latter as reservoir of new 

alleles for wheat genetic improvement. 
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2.3 Comments and perspectives 

This work allows proposing some conclusions concerning the transferability of the wheat 

EST-SSRs and their exploitation for genomic studies in orphan species. First, this type of 

marker was proven highly transferable to wild wheat relatives. Second, these species are 

only poorly studied while we demonstrated that they might constitute a huge source of new 

variability for bread wheat improvement. It would be now interesting to try to introduce 

some new alleles at relevant genes such as biotic as well as abiotic resistance genes issued 

from these species within the elite wheat germplasm and look if this leads to an 

improvement of the introgressed lines. Introgressions would be easily followed and 

reduced using EST-SSRs. 
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3 Transferability of EST-SSRs between rice and wheat 

3.1  Transferability from bread wheat to rice 
In the first study (Zhang et al. 2005), the transferability of wheat EST-SSRs to rice was 

estimated to be 28.3%. However, when five accessions of rice are tested, the transferability 

is increased and reached 30.1% of wheat EST-SSRs that are transferable to at least one rice 

accession. Among these latter, 60% gave an amplification product on at least two rice 

accessions. In order to investigate the syntenic relationships between wheat and rice 

chromosomes, the EST-SSRs were first assigned to wheat chromosomes and we surveyed 

their location on rice chromosome by blasting wheat EST bearing SSRs against the 12 rice 

pseudo-molecules. Our results were consistent with the known structural relationships 

between wheat and rice genomes as revealed by previous studies (Devos and Gale. 1997; 

Sorrells et al. 2003). For example, wheat ESTs bearing SSRs matching sequences on rice 

chromosome 1 (R1) were largely from wheat homoeologous group 3, whereas R2 and R3 

were generally related to wheat homoeologous groups 6 and 4, respectively. 

As a conclusion, wheat EST-SSRs show quite a high level of transferability to rice. Wheat 

ESTs containing SSRs also demonstrated the structural relationships between wheat and 

rice genomes. Therefore, SSRs derived from bread wheat can be used in comparative 

genomics involving rice and wheat. 

3.2  Transferability from rice to bread wheat 
The recent sequencing of the rice (Oryza sativa) genome (IRGSP, 2005; 

http://rgp.dna.affrc.go.jp/IRGSP/) has provided thousands of potentially new markers in 

order to increase the grass map densities. However, not all the markers can be easily 

transferred from rice to wheat and only genes are well conserved between the two species. 

The markers should thus be derived from low-copy sequences, which are unfortunately 

less polymorphic than the others. This is why rice EST-SSRs can be of main interest to 

saturate wheat genetic maps. At the UMR INRA-UBP, we recently decided to focus our 

efforts on the establishment of the physical map of chromosome 3B (Safar et al. 2004, 

Feuillet et al. unpublished results). This chromosome bears numerous genes involved in a 

lot of important traits such as grain yield and seed weight (Berke et al. 1992a,b), kernel 

color (Sears 1944; Metzger and Silbaugh 1970; Nelson et al. 1995), chromosome pairing 

(Sears 1982; Dong et al. 2002), seed dormancy (Osa et al. 2003), numerous resistance 

genes (Mcintosh et al. 1977; Hare and Mcintosh 1979; Ma and Hughes 1995; Liu and 

Anderson et al, 2003) and isozymes (Hart et al. 1993; Mcintosh et al. 1998). In order to 
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anchor accurately the physical map to the genetic map, we thus need to develop more 

molecular markers. Despite the fact that it is the largest among the wheat chromosomes 

(Dvorak et al. 1984; Gill et al. 1991), comparisons with chromosomes related to wheat 

group 3 from other species such as chromosome 1 from rice indicated that this group is the 

best conserved in gene content and order (Gale and Devos 1998; Sorrells et al. 2003; La 

Rota and Sorrells 2004). 

Therefore, the purposes of this part were (a) to investigate the characteristics and the 

diversity of the SSRs issued from genes located on rice chromosome 1; (b) to develop rice 

EST-SSR markers from the distal region of the long arm of rice chromosome 1 and to 

study their transferability to wheat and its close and wild relatives; (c) to assign amplifying 

primer pairs to chromosomes by using nulli-tetrasomic (NT) lines to confirm the syntenic 

relationships with wheat homoeologous group 3 and to investigate their potential for 

comparative mapping. 

3.3 Analysis of rice EST-SSRs 

3.3.1 Characteristics of SSRs in genes on rice chromosome 1 

In the study of rice EST-SSRs, 12,078 perfect and imperfect SSRs were identified from 

4,100 genes containing SSRs on rice chromosome 1. Like in wheat ESTs, the trinucleotide 

repeats were the most common (60%) in rice chromosome 1 genes in CDS as well as in 

introns, (CCG)n motif being the most abundant. Concerning the other types of motifs, AC 

dinucleotide was the most frequent in whole genes and in introns, while CG was more 

abundant in CDS. In addition, four-repeat motifs occurred as frequently in the whole genes, 

CDS and introns.  

3.3.2 Amplification of rice EST-SSRs on rice 

Among the 4,100 genes containing SSRs, 200 were randomly selected in two well 

conserved regions between rice chromosome 1 and homoeologous group 3 of wheat. A 

total of 332 SSRs were found among which 170 were located in CDS and 162 in introns. 

From the CDS sequences with SSRs, primers were designed for 106 EST-SSRs among 

which 102 gave an amplification product on rice (96%). 

On rice, some differences were observed between the expected and the observed size of the 

amplification product. Among the 102 primer pairs, four (3.9 %) gave an amplification 

product smaller than expected, suggesting (1) the occurrence of deletions within the 



Table 3-3: Chromosomal assignment on wheat NT lines for 18 EST-SSRs derived 
from rice chromosome 1 
 

Marker Motif Repeat Forward primer Reserve primer Chromosome 

cfr5 cctccg 4.2 GGTCGGGATGTACCAGCA TGAACGCCTCGAACAGCC 1B, 6B 

cfr17 cag + cag 4+4 TCGCAGTCAGTCGGGAGC GCCTGGCTTGTAGCTGTAATC 3D 

cfr20 gcc 7 GACAGGAAGGTGTCGTGC GGATGGTTATCGACTCCG 3B, 3D 

cfr22 cggcga 4 GCGGTGCTCTGGGTGAGG GACGGCGTCTCCTCGATC 1B, 3A 

cfr35 cgc 6 CTCGCCGTGTTCCTCCAC CGCCCTGTACGTCTCGCT 7A, 7B 

cfr37 gcg 4 CGGAGCAGATGAGGGAGATC CACCGCTCGACGACGAG 1D 

cfr39 ggc 4 CCACAAGCTCCTCCCGTT CGAACACGCACTGGAAGTAC 3A, 3B 

cfr46 gtc 4 CCTCATCGACGCCACGTAC CGAAGACGCACGACTTGC 3B, 3D 

cfr52 gtc 4 ATGGACGTGGAGAAGGTGG CAGAAGAAAGACAGGCAGGG 2AL, 6B, 7B 

cfr60 gaa+agc 4+5 GGATCAGGCTCCTCCTCG CAGCCGCAGCTCCTTCAT 3A, 3B 

cfr68 cca 4 GAGTCCCTCCCCTTCTCCCT CGAATGCGAATGCGGATG 3D 

cfr75 tga 4 GGTGCTTTCGATGGTGTTC ATCCCAAGGCTCCATAAG 5B, 7A 

cfr79 cga 4 CGACCAGGAAATGTGGCG CGATGTCCACGAGGCTCC 3A, 3B 

cfr88 aga 3 GCAGGTAGAGGAGAGGATGATG ATGAGCGGCTCCGACATG 1D, 4A, 4B 

cfr93 acg 4 GGAGCAGCGGATGAACAG GGACTCCATCAGCCACCG 1A 

cfr97 gccgac 4 CCCACCAACGACTTCAAC AAGGAGCAGACGAAGTGC 1A, 1B 

cfr11 gcg 5 GAGCCAAAGCCAAAGCCC GCTACCGCACCCAGTCCT not assigned 

cfr36 acg 5 CTCTCGGTGACCCGCTGT GAGCCACGCCAAGCACTC too complex 
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genomic sequences; (2) a lack of specificity of some primer pairs which may have 

amplified a different copy belonging to the same multigenic family; (3) a slight variation 

between the amplified copy and the consensus sequence. Only one primer pair (CFR35) 

yielded two products: one band was consistent with expected product length while the 

other was larger, suggesting the possible simultaneous amplification of a different copy of 

the same gene during the PCR. 

3.3.3 Transferability of rice EST-SSRs 

The transferability was investigated from rice to T. aestivum (eight common wheat 

varieties), T. durum, T. monococcum, Ae. speltoides, Ae. tauschii, Secale cereale, Hordeum 

vulgare, and Agropyrum elongatum. Concerning the eight common wheat lines, 45 (44%) 

out of 102 primer pairs gave one product in at least one cultivar and 29 (28.4%) amplified 

in at least two cultivars. Eighteen (17.6%) amplified in all eight cultivars among which, 15 

were trinucleotide repeats, while the remaining three were hexanucleotide repeats. For 

transferability from rice to other species, similar results were observed for T. durum 

(AABB), T. monococcum (AA) and Ae. speltoides (BB) where transferability on most of 

the cultivars tested account for about 18%. For the other species, 13.7% and 14.7% of rice 

EST-SSRs were transferable to Ae. tauschii (DD) and rye (RR) respectively while lower 

levels of transferability were found for barley (8.8%) and Agroprum elongatum (6.9%). 

3.3.4 Assignment to wheat chromosomes 

The 18 primer pairs that yielded products in almost all common wheat cultivars were used 

to test on Chinese Spring aneuploid lines. Overall, 16 markers were assigned to wheat 

chromosomes. The two remainings were not assigned because: one gave too complex 

profiles to be properly assigned; another amplified a product in all NT and DT lines 

suggesting different products of the same size on at least two of the three homoeologous 

chromosomes. Among the 16 markers, four were assigned to a single locus while the 12 

others were assigned to a maximum of three loci. Most of them (8) were found at loci 

located on the same homoeologous group (Table 3-3). The 29 EST-SSR loci were assigned 

to wheat chromosomes, 10, 14 and 5 loci being placed on the A, B and D genomes 

respectively. No locus was found on chromosomes 2B, 2D, 4D, 5A, 5D, 6A, 6D and 7D. 

The distribution on other chromosomes ranged from 1 locus on chromosome 2A, 4A, 4B, 

and 5B to 5 loci on chromosome 3B. According to the syntenic relationships between 



Table 3-4: Distribution of rice EST-SSR loci according to their assignment to wheat 
chromosomes and homoeologous groups  

 

 

Homoeologue  group  1 2 3 4 5 6 7 Total 

chromosome A 2 1 4 1 0 0 2 10 

chromosome B 3 0 5 1 1 2 2 14 

chromosome D 1 0 4 0 0 0 0 5 

Total 6 1 13 2 1 2 4 29 
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wheat homoeologuous group 3 and rice chromosome 1, the marker derived from rice 

chromosome 1 should have been assigned to group 3 chromosomes of wheat. In our study, 

8 out of 16 assigned rice markers were located on wheat chromosomes 3A, 3B, and 3D and 

overall, 13 loci were found on wheat homoeologuous group 3 chromosomes with no 

significant bias observed, 4, 5 and 4 loci being located on wheat chromosomes 3A, 3B, and 

3D respectively (Table 3-4). In addition, six loci were assigned to wheat homoeologous 

group 1 where a well known duplication exists with homoeologous group 3 (Salse J. 

personal communication)  

As a conclusion, the SSRs derived from coding DNA sequence on rice chromosome 1 also 

showed quite a high level of transferability across its distant relative (Triticeae) and thus 

may be successfully used for comparative genomics studies such as genome analysis, 

localization of expressed genes, survey of orthologous relationship, and fine mapping of 

regions of interest. 

3.4 Discussion, comments and perspectives 

In this part, 96.2% of the primer pairs successfully amplified products in rice species, and 

about 80% of them produced strong and clear profiles. About 96% of the primer pairs 

yielded fragments of the expected size contrary to genomic SSRs, where only 36% did in 

common wheat, with many of them resulting in a smear (Röder et al. 1995). For 18 primer 

pairs that amplified in almost of the lines tested, 16.7% (3/18) exhibited polymorphism 

among the eight wheat cultivars. This was much lower than the results described in 

previous studies (about 25%, Eujayl et al. 2001; Gupta et al. 2003; Thiel et al. 2003; Gao et 

al. 2004; Nicot et al. 2004), and than that observed for genomic SSRs (53%, Eujayl et al. 

2001). Two reasons can explain this fact: 1) these rice primer pairs that amplify in common 

wheat, most likely reside in well conserved regions between two species; 2) the 

characteristics of EST-SSRs, i. e. a lower number of repeat units, can also account for this 

lower percentage of polymorphism. Three polymorphic primers were screened in two 

mapping populations (ITMI and Courtot X Chinese Spring segregating populations), for 

genetic mapping in common wheat. But they failed to be mapped because very complex 

profiles were yielded. 

SSRs derived from ESTs are especially valuable as molecular markers because they are 

derived from gene transcript and are more likely to be conserved among species. Therefore 

these markers may be more transferable than genomic SSRs (Gao et al. 2003; Yu et al. 
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2004b; Gupta et al. 2003; Zhang et al. 2005). However, because rice is very distant relative 

to wheat, a lower level of transferability noticed on at least one line was observed for rice 

EST-SSRs toward wheat and its close and wild relatives: T. aestivum (44%), T. durum 

(18.6%), T. monococcum (17.6%), Ae. speltoides (17.6%), T. tauschii (13.7%), rye (14.7%), 

barley (8.8%) and Agroprum elongatum (6.9%). The similar transferability from common 

wheat to rice was reported in previous study (45%, Yu et al. 2004a). Considering those 

amplifying in at least two lines, the transferable rate was 28.4% from common wheat to 

rice which was consistent with the transferability from wheat to rice in our previous study 

(28.3%, Zhang et al. 2005). When primers amplifying in all cultivars were investigated, 

only 17.6% (18) of transferability was detected. This suggested that DNA sequence was 

well conserved for 18 primers through 65 million years’ divergence, while several bases in 

the flanking regions were subjected to mutate for the other primers. 

In order to evaluate the utility of EST-SSRs as anchor markers we assigned these 18 

markers to wheat chromosomes by using Chinese Spring NT and DT lines. Sixteen 

markers were assigned to wheat chromosomes. Because these markers were developed 

from rice chromosome 1, as expected, most of them (50%) were located on wheat 

homoeologous group 3, according the orthologous relationship between rice and wheat 

while the others were on the other groups. Similar results are mentioned by Munkvold et al 

(2004) who found that 59% of wheat group 3 mapped–EST unigenes showed homology to 

rice 1 when constructing group 3 chromosome bin map of wheat. Our results supported the 

structural relationships between wheat and rice reported in previous comparative maps at 

the macro level. In our study, 12 among the 16 markers were assigned to a maximum of 

three loci. Sixty seven percent of them were found at loci located on the same 

homoeologous group. Likewise, 70% of markers detected multiple loci in the study for 

assessing the efficiency of EST-SSRs in comparative mapping (Yu et al. 2004b). For 

instance, CFR22 amplified two fragments but only one was assigned to wheat chromosome 

3A while the other was located on wheat chromosome 1B. This can be explained by the 

fact that these markers developed from expressed genes were frequently duplicated in the 

genome. Moreover, most of the additional loci mapped to wheat homoeologous group 1. A 

duplication between wheat homoeologous groups 3 and 1 was already evidenced (Salse J 

personal communication). Our results are thus consistent with what was previously 

described. 

Even in the most conserved region, all wheat chromosome deletion bins containing only 
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sequences from one rice chromosome were rare (Sorrells et al. 2003). Most blocks of 

conserved order span regions of rice chromosome 1 matched to wheat ESTs mapped to 

other homoeologous groups (Munkvold et al. 2004). The similar case was observed in our 

study; half of 16 markers were assigned elsewhere in the wheat genome, such as wheat 

group 1, 4 and 7 etc. As reported by Liu and Anderson (2003), among 68 STS markers 

developed from rice chromosome 1S in order to target a wheat QTL for Fusarium head 

blight resistance, 28 were assigned to chromosome 3BS. Likewise, one third of the ESTs 

from wheat group 3S identified orthologs on rice chromosome 1 by in silico analysis 

(Francki et al. 2004). These results suggest that there has been an abundance of 

rearrangements, insertions, deletions, and duplications during cereal evolution that will 

complicate the utilization of many regions of the rice genome for cross-species transfer of 

information. It is also expected that this disruption in the colinearity of genes will greatly 

complicate map-based cloning and selection of linked markers. 

In summary, it is concluded that the SSRs derived from the functional portion of the 

genome of rice showed a good level of transferability across its distant relatives (Triticeae) 

and thus may be successfully used for comparative genomics studies such as genome 

analysis, localization of expressed genes and survey of orthologous relationship. 

 

The investigation for reciprocal transferability of EST-SSRs between wheat and rice 

showed very similar results with 28.3 % of transferability from wheat to rice and 28.4% 

from rice to wheat. This means that quite a high proportion of expressed sequences, even 

those bearing SSRs have remained well conserved after the divergence between the 

Bambusoideae and the Pooideae during several million years. Amplification products 

yielded by EST-SSRs assigned on the wheat homoeologous groups 3 chromosomes should 

be sequenced in order to obtain more information to explore the evolution mechanisms of 

SSRs in orthologous region in grass genomes. 
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4 Phylogenetic studies of Triticeae using wheat EST-SSRs 

Since wheat EST-SSRs are transferable to a large number of wheat related species. It was 

expected that they could be used for studying the relationships within the Triticeae species. 

This part was the subject of the third manuscript which was accepted for publication in 

Theoretical and Applied Genetics. This paper discusses the relationships among the 

polyploid wheat species and also the relations between ancestral diploid species and 

polyploid species. 

 

4.1 Transferable bread wheat EST-SSRs can be useful for phylogenetic 

studies among the Triticeae species (Theor Appl Genet, DOI 

10.1007/s00122-006-0304-4) 
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Figure 3-7: Dendrogram of 22 T. aesticum genotypes based on UPGMA method using 39 SSRs 

polymorphisms.  
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4.2 Comparison of the classification of T. aestivum lines obtained using 

g-SSRs and EST-SSRs 

We decided to compare phylogenetic trees of 22 bread wheat cultivars reconstructed using 

39 g-SSRs distributed on all of the 21 chromosomes of bread wheat (Roussel et al, 2002), 

and a similar set of 42 EST-SSRs. 

For the 39 g-SSRs, 368 informative fragments were obtained and the Jaccard (1908) 

genetic distance coefficients ranged from 0.7884 between cvs Ornicar and Apache to 

0.9863 between cvs Chortandinka and M708g. For the 42 EST-SSRs, 206 informative 

fragments were obtained and the coefficients ranged from 0.2571 between cvs A4 and 

Np120 to 0.6024 between cvs Chyamtang and Ornicar. These results clearly show that the 

g-SSRs are able to reveal a larger diversity compare to EST-SSRs, which are obviously 

less polymorphic because located in coding sequences. 

In the following section, in each case the consensus dendrograms summarized 100 

phylogenetic UPGMA-trees obtained from bootstrapped data. 

In the dendrogram reconstructed from g-SSR data (Fig 3-7), no clear clustering was 

obtained and most of the bootstrap values were lower than 60%. However, there is a trend 

in forming five groups. The first one is made of only two lines from India (NP120) and the 

Netherlands (Opal). The second one contains five European lines (Ornicar, Apache, Mocho, 

Balkan, Gobolloi) together with a Canadian line (Glenlea) and a Brasilian line (Cotipora). 

The third group can be divided into two sub-groups, one with European lines 

(Chortandinka, Zanda, Hopea) and the other with Asian lines (A4, Aifeng, Aurore). Three 

Asian cultivars (Chyamtang, Seuseun, Nyuday) formed the fourth group while three 

Middle Eastern cultivars (Miskaagani, M708G, Coppadra) and the Mexican line (Pitic) 

clustered together to form the fifth group. Globally, the lines from the same geographic 

region tend to cluster together suggesting a spatial organization. 

Similarly, no clear clustering was identified in the tree reconstructed from EST-SSR data 

(Fig 3-8). A large group contains all the lines except Nyuday (Japan) and Chyamtang 

(Nepal). Within the large group, sub-groups were obtained but they gathered lines from 

different origins except the one with Ornicar, Apache (Fra), Opal (Netherlands) and Hopea 

(Finland) which included only European lines. 

We combined the data collected from g-SSRs and EST-SSRs to make a new dendrogram. 

Overall, 574 informative fragments were used to calculate Jaccard (1908) genetic distance 



 

Figure3-8: Dendrogram of 22 T. aesticum genotypes based on UPGMA method using 42 EST-

SSRs polymorphisms.  
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coefficients which ranged from 0.4596 between cvs Ornicar and Apache to 0.7482 between 

cvs A4 and Pitic. By pooling data from the two types of SSRs, a new dendrogram was 

rebuilt for the 22 accessions of T. aestivum (Fig 3-9). Like for the two other trees, no clear 

clustering was obtained. Similarly as for EST-SSRs, a large group containing most of lines 

was obtained, only Nyuday (Japan) and Chyamtang (Nepal) being excluded. Within the 

large group, French cultivars (Apache, Ornicar) were separated and grouped together. 

Cultivars Aifeng (China) and A4 (Afghanistan) were associated as well as the cvs Cotipora 

(Brasil) and Mocho (Portugal). The other lines with possible common origins were 

distributed in all the other sub-groups. 

Comparing the two trees obtained using g- and EST-SSRs, the values of genetic distance 

(GD) were considerably different. The GD values obtained with EST-SSRs were lower 

(mean GD of 0.43) than those with g-SSRs (mean GD of 0.89) probably because the 

regions detected by EST-SSRs are well conserved among species. Concerning the tree 

reconstructed based on pooled data, GD values were a mean of those for EST- and g-SSRs 

(mean GD of 0.6), and new relationships were observed. The three dendrograms were 

significantly different and no clear conclusion on a better capacity of one or the other type 

of marker to discriminate between the lines was drawn. 

 

4.3 Genetic diversity of Triticale species 
The genetic diversity of eight Triticale varieties was also investigated by using wheat 

EST-SSRs. Polymorphism information content (PIC) values which provide an estimate of 

the discriminatory power of each EST-SSR locus were computed using 47 EST-SSRs. In 

this case, EST-SSRs were chosen according to their ability to reveal polymorphism and to 

the absence of missing data. PIC values ranged from 0.23 to 0.77 (average 0.41 ± 0.17) 

which was similar to those obtained for T. aestivum (average 0.40 ± 0.20) and for T. durum 

(average 0.39 ± 0.19). This value was lower than that of g-SSRs (mean value of 0.54), 

reported by Tams et al. (2004). 

For the 47 EST-SSRs, 185 informative fragments were obtained. The Jaccard genetic 

distance coefficients were calculated using these data and ranged from 0.25 between cvs 

Trimaran and Tricolor to 0.65 between cvs Lamberto and Bienvenu. The consensus 

dendrogram was reconstructed by using UPGMA method (Fig. 3-10). In this tree, the 

varieties were clustered according to their geographic origin (France and Poland). Within 

the French cultivars, two groups were formed, one where four accessions were clustered 



 

Figure 3-9: Integrated dendrogram of 22 T. aesticum genotypes based on UPGMA method pooled 

data from 42 EST-SSRs and 39 g-SSRs polymorphisms. 
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together (Zeus, Ampiac, Bienvenu and Matinal), the other with the remaining three 

(Trimaran, Tricolor and Carnac). All these results were consistent with the known pedigree 

of the lines (A Bouguennec, personnal communication). Our result demonstrated thus that 

common wheat EST-SSRs can be successfully used for diversity estimation in relatives of 

wheat.  

4.4 Phylogenetic relationship for species with the D genome 

In order to confirm the relationship between Ae. tauschii and polyploid wheats, one set of 

ten markers evenly distributed on the D genome of hexaploid wheat (Zhang et al. 2005) 

was selected to investigate the relationships between this genome of hexaploid, tetraploid 

and Ae. tauschii species. 

In this case, 169 informative fragments obtained from 10 EST-SSRs assigned to the D 

genome of bread wheat were used. The Jaccard genetic distance coefficients (1908) were 

calculated using these data and ranged from 0.2105 between T. aestivum cvs NP120 and 

Chyamtang to 0.9615 between Ae. tauschii accession 33 and T. durum cv Peru1. The 

consensus dendrogram which summarized 100 phylogenetic UPGMA-trees obtained from 

bootstrapped data is shown in Fig. 3-11.  

Two distinct groups were formed. Hexaploid wheats (ABD) and Ae. tauschii (D) species 

were clustered together and formed one large group because both have a D genome 

originating from a common ancestor. All Ae. tauschii accessions were grouped together, 

accession 42 being slightly isolated from all the other accessions. A close relationship was 

shown between accessions 13 and 32, and between accessions 15 and 33. Since tetraploid 

species (AB) have no D genome, they clustered together to form another group. 

4.5 Phylogenetic relationships between all the species 

In order to examine the phylogenetic relationships among all the 32 species or sub-species, 

the most informative accession (with as fewer missing data as possible) of each group 

among all those tested was selected. They are indicated in annex 2. A set of 73 EST-SSRs 

was selected and the Jaccard genetic distance coefficients were calculated based on the 867 

informative fragments. The GD coefficients ranged from 0.224 between T. 

sphaerocococcum and T. petropavlovskyi to 1.00 between T. polonicum and Oryza sativa. A 

dendrogram was reconstructed, which summarized 100 phylogenetic UPGMA-trees 

obtained from bootstrapped data (Figure 3-12). In this phylogenetic tree, all the subspecies 

with the same genome were clustered together without ambiguity. The hexaploid 



 

 

 
Figure 3-10 Dendrogram of 8 Tritical genotypes based on UPGMA method using data based on 47 

EST-SSRs. 
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(AABBDD) and tetraploid wheat (AABB) were grouped together with the boostrapped 

values of 100. Ae. tauschii, the D genome donor of bread wheat was related to Ae. 

ventricosa (DDMvMv) which also carries a D genome. Among the diploid ancestral species, 

Ae. tauschii was the most closely relative to hexaploid wheats followed by the A- (T. 

urartu and further T. monococcum and T. boeoticum) and the B-genome (Ae. speltoides and 

Ae. searsii and further Ae. bicornis and Ae. longissima) donors respectively. When more 

distant species are considered, Avena sativa and Hordeum vulgare were closer to hexaploid 

wheat whereas Oryza sativa and Lolium perenne appeared to be the most distant species. 

In the hexaploid group, T. sphaerococcum, T. petropavlovskyi, T. vavilovi and T. spelta 

were clustered together while T. compactum, T. macha and T. aestivum were separated 

from this group and from each other. In the tetraploid species, T. durum, T. polonicum and 

T. turgidum were clustered together, and the remaining species (T. carthlicum, T. dicoccum) 

were separated from each other. Triticale was clustered into the tetraploid group which was 

consistent with the fact that the cultivars tested were all hexaploids and only had the A and 

B genomes of polyploid wheats. The S genome species were split into two groups, one 

with Ae. bicornis (SbSb) and Ae. longissima (SlSl) and the other with Ae. speltoides (SS) 

and Ae. searsii (SsSs). Ae. umbellulata (UU) and Ae. peregrina (UUSvSv) were clustered 

with the S-genome species indicating close relationships between the U and S genomes. 

4.6 Discussion 

As expected, EST-SSRs revealed a lower number of alleles compare to gSSRs. This is 

because they arise from coding regions, which are known to evolve slower compare to 

non-coding regions. Similarly, the tree obtained using g-SSRs gave a better representation 

of the relationships between the lines compared to the one issued from EST-SSRs. Because 

g-SSRs are random genomic DNA markers, most of them detect polymorphism located in 

the non-coding regions of the genome (Brown et al. 2001). They are thus less constrained 

by selection, can exhibit a higher number of alleles and are thus more informative (Roussel 

et al. 2004, 2005). This suggests that more EST-SSRs are needed to achieve the same 

resolution than the g-SSRs. Gupta et al. (2003) reported similar results on wheat. They 

assessed the degree of genetic diversity among 52 elite wheat genotypes by using 78 wheat 

EST-SSRs. They recommended the use of one or more of the other available marker 

systems (for example g-SSRs) together with EST-SSRs. Thereby, the genetic diversity, 

based on data pooled by combining EST-SSRs and g-SSRs, will give more reliable patterns, 



 
Figure 3-11 Dendrogram for 58 accessions (22 T. aestivum, 23 T. durum, 5 Ae. tauschii,) 

reconstructed using the UPGMA method based on data of a set of 10 EST-SSRs assigned to the D 

genome. 
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since these will be based on a relatively much larger proportion of the entire genome.  

Triticale (xTriticosecal Wittm), an amphiploid species derived from the intergeneric hybrid 

between wheat and rye, has gained considerable importance in recent years as a cattle feed 

grain, due to its favorable amino acid composition and performance in less productive 

environments. From our investigations, we found that the seven French cultivars we 

analysed were split into two groups. This can be explained by the origins of these cultivars. 

Varieties Trimaran, Carnac and Tricolor were breeded by Florimond-Desprez, and have a 

common ancestor in their pedigree which explain the clustering of these three lines (A 

Bouguennec, personnal communication). Similarly the other four varieties have also 

common ancestors. The results are thus consistent with the known pedigree of the lines. 

Our study also gave evidence that Ae. tauschii was the D-genome donor of hexaploid 

wheat. Dvorak et al. (1998) used the variation at 27 RFLP loci to determine the genetic 

distance between wheat and Aegilops and found 16 alleles shared by the two species. Data 

presented in their studies pointed to subsp. strangulate as the source of the wheat D 

genome. This finding supports previous investigation using isozymes, and HMW glutenin 

subunits (Nakai 1978; Lagudah et al. 1991). However, using microsatellites, Lelley et al. 

(2000) did not support this hypothesis and the problem of which specific genotype of Ae. 

tauschii was the major source of the wheat genome still remains unresolved. 

Concerning the tree constructed for all species, hexaploid, tetraploid, Triticale and 

D-genome donor species were grouped with a better consistency compared to the 

remaining species (the A and B genome donors, and wild relatives of common wheat). This 

may be attributed to the method used for selecting the samples and the low number of data 

points (867) used. However, in this tree, the hexaploid and tetraploid species showed a 

very close relationship that was consistent with the phylogeny of the polyploid wheats. 

They also appeared to be closer to the D- (Ae. tauschii) and A-genome donor species than 

to the B-genome donor species. This result agreed with those reported by Buchner et al. 

(2004) and Galili et al. (2000) based on RFLP analysis and with those from Zhang et al. 

(2002) based on DNA sequence analysis. 

Early cytogenetic studies suggested that the A genome of common wheat was contributed 

by T. monococcum (Sax 1922; Lilienfeld and Kihara 1934). More recent studies showed 

that T. urartu contributed the A genome to hexaploid wheat (Dvorak et al 1993; Huang et 

al 2002). In our phylogenetic trees, T. urartu also showed a closer relationship with 

hexaploid wheat within the three possible A genome donors. Our results thus confirmed the 



 

Figure 3-12 Dendrograms for 32 representatives from 32 species reconstructed by UPGMA 

method. Numbers on the branche indicate the bootstrap values for 100 replicates. Values greater 

than 60% are shown   
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known phylogenetic relationship among common wheat and its ancestral species, Ae. 

tauschii was the likely progenitor of the D genome and T. urartu the one of the A genome. 

Some discrepancies were observed with phylogenetic trees reconstructed based on 

cytoplasmic genomes which allows to trace the female donor of present cytoplasm (Ishii et 

al. 2001; Wang et al. 1997) suggesting that the evolution was not parallel between the 

cytoplasmic and the nuclear genomes in Aegilops (Sasanuma et al. 2004). 

4.7 Comments and perspectives 

As a conclusion, bread wheat EST-SSRs showed that they can be useful for estimating 

intraspecific genetic diversity. However, they give better results when they are combined 

with g-SSRs. A fair comparison might have been to estimate the relationships either within 

or between species on a given set of lines starting from many EST-SSRs as well as g-SSRs. 

Then an estimate of the efficient number of SSRs (in each case) needed to achieve a given 

precision of the GD/GS would have been obtained by resampling the data. 

EST-SSRs are also proved useful for taxonomic and phylogenetic studies even between 

distant species such as rice, maize, rye, barley and wheat. Trully speaking, we did not 

assess the genetic diversity but only the relative classification of the accessions. However, 

better information would be obtained if sequences of the amplification products were 

analyzed. We would then access to the SSR itself and to the variations in terms of type of 

motif, number of repeats, point mutation within and outside the SSR. 
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General Conclusion 

 

1. Analysis of the wheat ESTs 

1.1 Main results 

Among the 301 wheat EST-derived SSRs selected, the trinucleotide repeats were the most 

common (77%), (GCC)n motif being the most abundant and SSRs with four repeats 

occurring the most frequently.  

About 80% of the primer pairs gave an amplification product with some differences 

between their expected and observed sizes. In general, EST-SSRs markers produced high 

quality patterns compare to g-SSRs. Dinucleotide repeats displayed higher level of 

polymorphism than trinucleotide repeats. The combination W7984 x Opata (37.5%) was 

the most polymorphic, the average level of polymorphism being 25.4% for the four 

populations. Most of the EST-SSRs gave less than five amplification products using our 

sample, one third giving three bands probably corresponding to the three homoeologous 

chromosomes while 50 % gave only one band suggesting that these latter were specific of 

one of the three copies or that the three copies had identical sizes or that these SSRs were 

located within unique genes. 

Overall, 81 (62 on ITMI reference map and 19 on the CtCS map) new loci were added to 

the wheat genetic maps. More loci mapped to the B genome compared to the A and D 

genomes confirming that the former exhibits more polymorphism than the other two. Only 

few loci mapped to group 5 chromosomes suggesting a better conservation and less 

polymorphism within the genes from these chromosomes compared to the others. Most of 

the loci located in the distal regions of chromosomes, which was consistent with the known 

location of genes in wheat. 

1.2 Perspectives 

According to our results, developing new markers from ESTs can be a good way to 

improve rapidly the wheat genetic map with non anonymous markers. However, we must 

be aware that (1) the primers should be designed accurately in order to avoid to be at a 

junction between or on two different exons. In this case, no useful amplification will occur. 



 



General Conclusion 

 - 103 -

One way to overcome this would be to use the rice sequence since there is a good 

conservation of the splicing junction between the two species; (2) the level of 

polymorphism will be low which will make them difficult to map. This problem can be 

overcome by combining both SSR length and sequence variation using SSCP analysis that 

is able to discriminate between two strands differing by only a limited number of base pair 

changes or other methods. Since SSRs are known to evolve faster than other type of 

sequences, it is likely that they show higher levels of mutations, even within coding 

sequences; (3) the markers that are going to be developed will be located in the distal ends 

of the chromosomes. However, this is maybe not a problem since markers are mainly 

developed to identify and follow genes of agronomical interest. Most of these genes are 

also located distally on the chromosomes. Therefore, developing markers in these regions 

will be helpful for identifying linkage with QTLs and for further positional cloning of the 

genes underlying these QTLs. 

In order to answer the questions concerning the various numbers of bands, it would be 

interesting to confirm the presence of the three homoeologous copies by doing some 

hybridization using the EST as a probe when only one amplification product is observed. 

For those giving several bands, we could also sequence the different copies in order to 

compare the sequences and study the differences concerning the SSR between them. 

 

2. Transferability of the wheat EST-SSRs 

2.1 Main results 

Transferability to closely related Triticeae species ranged from 73.7% for Ae. longissima to 

100% for some wheat sub species (T. compactum) and was lower for less close relatives 

such as barley (50.4%) or rice (28.3%). BLAST analysis of the EST sequences against the 

twelve rice pseudo-molecules showed that the EST-SSRs are mainly located in the 

telomeric regions, and that the wheat ESTs have highest similarity to genes on rice 

chromosomes 2, 3 and 5. Interestingly, most of the SSRs giving an amplification product 

on barley or rice had a similar repeated motif as the one found in wheat suggesting a 

common ancestral origin. 

On average, the number of alleles per locus detected by EST-SSR markers was 3.1 on our 

sample of hexaploid wheats. The PIC values simultaneously estimated for T. aestivum and 
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T. durum were similar for the two species (0.40 and 0.39 respectively). The allelic diversity 

within species revealed that allogamous species such as Ae. speltoides, Lolium perenne and 

maize showed the highest values (respectively 0.423, 0.388 and 0.352) suggesting higher 

level of genetic diversity within these species compare to T. aestivum and T. durum which 

exhibited the lowest values (0.108 and 0.093 respectively). T. aestivum and T. durum 

shared the largest number of alleles (74.6%) while among the three ancestral diploid 

species of bread wheat, Ae. tauschii had the highest percentage of common alleles with T. 

aestivum (57.4%), followed by T. monococcum (47.6%) and Ae. speltoides (40.9%). 

2.2 Perspectives 

Our results indicate that wheat EST-SSRs have a good potential for genetic map 

elaboration in orphan species. Despite the fact that these latter have a great interest for 

numerous traits they are only poorly studied because they carry many undesirable 

characters. If favorable alleles can be identified in these genotypes, existence of linked 

molecular markers will be necessary to trail their introgression within elite germplasm. 

However, because no genomic tools have been developed for these species and especially 

molecular markers, such a marker assisted selection was not possible. EST-SSRs that are 

transferable across the species will allow overcoming of this drawback. Introgressions 

could thus be reduced to a minimum, avoiding the linkage drag of large fragments of alien 

chromosomes bearing numerous undesired genes (forward and backward selection). 

Moreover, because of the large genetic diversity existing in wild species, there could be a 

simultaneous improvement of the bread wheat genetic diversity that has tended to decrease 

dramatically since the last 40 years. 

3. Phylogenetic studies 

3.1 Main results 

When diploid species only are concerned, all the accessions bearing the same genome were 

clustered together without ambiguity while the separation between the different 

sub-species of tetraploid as well as hexaploid wheats was less clear. Phylogenetic trees 

reconstructed based on data of 16 EST-SSRs mapping on the A genome showed that T. 

aestivum and T. durum had closer relationships with T. urartu than with T. monococcum 

and T. boeoticum, confirming that T. urartu is the A genome ancestor of polyploid wheats. 

Similarly, another tree reconstructed from data of 10 EST-SSRs mapping on the B genome 
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showed that Ae. speltoides had a closest relationship with T. aestivum and T. durum, 

suggesting that it was the main contributor of the B genome of polyploid wheats. 

No clear clustering of the hexaploid varieties was identified in the tree reconstructed from 

EST-SSR data and the results were better using g-SSRs. It was not possible to compare the 

two trees because they were too different from each other. Result was better with Triticale 

where varieties could be separated according to their origin. Similarly, studying the 

hexaploid and tetraploid species together with Ae. tauschii species using D-genome 

EST-SSRs made easier the separation in different groups. Moreover, when all the 32 

species or sub-species are analyzed together, the clustering is much better and the 

phylogeny between all the species seems to appear more clearly. 

3.2 Perspectives 

In this study, we used only a limited number of markers (16 and 10 for A and B genome 

analyses respectively) which make our classification not highly statistically significant. 

However, we showed that EST-SSRs constitute a good tool for phylogenetic studies within 

the Grass family. We have some evidence that when amplification occurs in different 

species, the microsatellite motif is often present in all the species and sometimes similar 

between the species even if the number of repeats is not the same. However, a better study 

would consist in amplifying in as many species as possible a significant number of 

EST-SSRs and sequencing the amplification products. Then, we could do a more 

significant phylogenetic study of the relationships between all the species by comparing 

homologous sequences of the same gene. It would then be possible to draw a scheme of the 

molecular evolution of all these species on a sufficient number of sequences and reconsider 

or confirm the classification within the Grass family. 

4. Transferability of rice EST-SSRs 

4.1 Main results 

Rice as a model for grass species has been largely studied to understand other 

agronomically important grass genomes. Here, the diversity of SSRs on rice chromosome 1 

was surveyed, and primer pairs were developed to explore the colinearity between rice and 

wheat, and to investigate their potential for comparative genomics. A total of 12,078 

perfect as well as imperfect SSRs were identified from 4,100 genes containing SSRs on 
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rice chromosome 1. Like in wheat, the trinucleotide repeats were the most common in rice 

chromosome 1 genes (whole genes, CDS and introns) (CCG)n motif being the most 

abundant in the three cases. (AC)n dinucleotide motif was most abundant in whole gene 

and in intron while CG was more frequent in CDS. 106 EST-SSRs were developed from 

CDS from 200 genes. 96% (102) of the primer pairs led to an amplification product in rice 

among which 96% (98) yielded a product with an expected size. The level of transferability 

from rice to eight related species of wheat (T. aestivum, T. durum, T. monococcum, Ae. 

speltoides, Ae. tauschii, rye (Secale cereale), barley (Hordeum vulgare L.), Agropyron 

elongatum) ranged from 28.4% (T. aestivum ) to 6.9% (Agroprum elongatum). Sixteen 

markers were assigned to wheat chromosomes using NT and DT lines among which half of 

them were located on the wheat homoeologous group 3 suggesting that micro-colinearity is 

quite well conserved between wheat and rice in this region. 

4.2 Perspectives 

Our results show that due to their conservation and high transferability to the related 

species, rice EST–SSRs will be useful for comparative genomics studies. However, 

because the transferable EST-SSRs are better conserved, they are less prone to detect 

polymorphism and can thus be difficultly mapped. This problem can be hurdled by 

combining both SSR length and sequence variation using SSCP analysis. Though the 

structural syntenic relationships between wheat and rice at the macro level were 

demonstrated, the fact that only half of markers were assigned to wheat homoeologous 

group 3 suggests the complexity of micro-colinearity between rice and Triticeae. However, 

available rice genomic sequences can serve as excellent resources for the saturation 

mapping of the target region containing agronomically important genes with gene-based 

markers (such as EST-SSRs, etc), and finally may facilitate synteny-based positional 

cloning of gene from large genome cereal species 

5. Conclusion 

As a conclusion, we can say that it should be worth continuing the development of 

EST-SSRs in wheat which will be helpful for numerous genetic studies as well as the 

identification and cloning of genes of agronomical interest. Based on syntenic relationships 

between Triticeae and rice, the rice genome sequence can also serve as excellent resources 

for the saturation mapping of the target regions containing agronomically important genes 
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through a comparative approach, and finally may facilitate synteny-based positional 

cloning of genes within large genomes of cereal species, such as bread wheat. EST-SSRs 

can exhibit perfect marker-trait association, and can remarkably increase selection 

efficiency in application of marker-assisted selection (MAS), particularly for traits with 

low heritability. In addition, these markers will greatly help the exploration and 

exploitation of the genetic diversity existing among the Triticeae. They will probably 

constitute a breakthrough in wheat breeding by bringing a new vision of the way to 

increase the diversity and the sustainability of the crop which will lead to a better 

management of the natural resources such as water and a lower utilization of intrans. 

Moreover, numerous questions remain to be answered: 

- Despite the huge number of EST sequences, it has still not been evidenced a 

clear correlation between certain classes of genes and the presence of the SSR. 

Especially, the multicopy families have never been studied and it could be 

interesting to evaluate the different copies in order to see if all of them have the 

same SSR and if it has evolved differently between the copies. 

- How can the SSRs be maintained or supressed in the different homoeologous 

copies? Is this randomly done or does this depend on the place of the SSR within 

the sequence? 

- When the SSR is common to different species, this is because it has a 

common ancestral origin. However, we have no idea if newly synthetized SSR can 

occur, which are the mechanisms of this occurrence, are they genome or species 

specific, etc. 

It was generally admitted that because of the low transferability, SSRs cannot be used for 

comparative genomics and synteny. However, EST-SSRs have proven the contrary. 

Studying the evolution of the SSRs (motif, number of repeats, point mutations…) within 

the grass family will probably lead to modify and reconsider the classification made on 

phenotypic traits. This will also probably contribute to understand the origin of the B 

genome of the bread wheat which still remains unexplained. Probably its polyphyletic 

origin would be confirmed by identifying the various species that may have contributed to 

its elaboration. 
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Annex 1 

Fifteen international agriculture Research centres:  

Africa Rice Center (WARDA) 

CIAT - Centro Internacional de Agricultura Tropical 

CIFOR – Center for International Forestry Research 

CIMMYT – Centro Internacional de Mejoramiento de Maiz y Trigo 

CIP – Centro Internacional de la Papa 

ICARDA – International Center for Agricultural Research in the Dry Areas 

ICRISAT – International Crops Research Institute for the Semi-Arid Tropics 

IFPRI – International Food Policy Research Institute 

IITA – International Institute of Tropical Agriculture 

ILRI – International Livestock Research Institute 

IPGRI – International Plant Genetic Resources Institute 

IRRI – International RICE Research Institute 

IWMI – International Water Management Institute 

World Agroforestry Centre (ICRAF) 

World Fish Venter 
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Annex 2

phylogenetic analyses

Species Sub-species Genome Accession Country Code

A 4 AFG TAE-A4

AIFENG NO 4 CHN TAE-AIFENG

APACHE FRA TAE-APACHE

AURORE AUS TAE-AUTORE

BALKAN YUG TAE-BALKAN

CHINESE SPRING CHN TAE-CHINESE

CHORTANDINKA RUS TAE-CHORTA

CHYAMTANG NPL TAE-CHYAMT

COPPADRA TUR TAE-COPPAD

COTIPORA BRA TAE-COTIPO

GLEANLEA CAN TAE-GLENLE

GOBOLLOI 15 HUN TAE-GOBOLL

HOPEA FIN TAE-HOPEA

M708/G25/N163 ISR TAE-M708/G

MISKAAGANI LBN TAE-MISKAA

MOCHO DE ESPIGA BRANCA PRT TAE-MOCHO

NP 120 IND TAE-NP120

NYU DAY JPN TAE-NYUDAY

OPAL DEU TAE-OPAL

ORNICAR FRA TAE-ORNICA

PITIC 62 MEX TAE-PITIC

SEUSEUN 27 KOR TAE-SEUSEU

ZANDA BEL TAE-ZANDA

EPEAUTRE BLANC FRA TSP-BLANC

EPEAUTRE BLOND OU DORE FRA TSP-BLOND

EPEAUTRE DE L’AVEYRON FRA TSP-AVEYRO

EPEAUTRE NAIN BEL TSP-NAIN

EPEAUTRE NOIR VELU FRA TSP-NOIR

CANUTO GBR TCO-CANUTO

MIDEA ITA TCO-MIDEA

RYMAR USA TCO-RYMAR

KUBBWEISEN SWE TCO-KUBBWE

LO TO MAI CHN TCO-LOTOMA

TSPHAEROCOCCUM FRA TSH-SPHAER

LANDRACE 1 IND TSH-LAND01

LANDRACE 2 IND TSH-LAND02

LANDRACE 3 PAK TSH-LAND03

81128 AFG TSH-81128

TMACHA FRA TMA-MACHA

LANDRACE 4 GEO TMA-LAND04

LANDRACE 5 GEO TMA-LAND05

List of the accessions used for transferability assessment and 

AABBDD

T. aestivum

aestivum AABBDD

spelta AABBDD

compactum AABBDD

sphaerococcum AABBDD

macha
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LANDRACE 6 GEO TMA-LAND06

102 V SUN TMA-102V

LANDRACE 7 ARM TVA-LAND07

LANDRACE 8 ARM TVA-LAND08

247 V ? TVA-247V

479 V ? TVA-479V

7110 BV ? TVA-7110BV

MAIK CHN TPE-MAIK

LANDRACE 9 CHN TPE-LAND09

LANDRACE 10 CHN TPE-LAND10

94750 GEO TCA-94750

94753 GEO TCA-94753

94755 GEO TCA-94755

251914 TUR TCA-251914

532479 GEO TCA-532479

45239 ITA TDM-45239

45351 IRA TDM-45351

45354 RUS TDM-45354

45383 BUR TDM-45383

352365 GER TDM-352365

45963 JOR TDS-45963

46253 TUR TDS-46253

46470 SYR TDS-46470

113302 IRA TDS-113302

467014 ISR TDS-467014

82715 TUR TDU-82715

82697 TUR TDU-82697

82726 TUR TDU-82726

84866 SYR TDU-84866

95920 SYR TDU-95920

AMIDONIER BLANC BARBU FRA TDU-AMIDON

ARTMET 910 FRA TDU-ARTMET

B6RTCHIR BUL TDU-B6RTCH

BRUMAIRE FRA TDU-BRUMAI

DURENTAL FRA TDU-DURENT

GLOIRE DE MONTGOLFIE ALG TDU-GLOIRE

IXOS 9442 FRA TDU-IXOS

JAIRAJ PER TDU-JAIRAJ

KUBANKA RUS TDU-KUBANK

LLOYD 945 FRA TDU-LLOYD

NEODUR 91 FRA TDU-NEODUR

PERU 1 FRA TDU-PERU

PETANIELLE BLANCHE FRA TDU-PETANI

POLOGNE BARBU FRA TDU-POLOGN

POULARD BEAUCE BARBU FRA TDU-BEAUCE

POULARD BLEU CONIQUE FRA TDU-BLEU

PRIMADUR FRA TDU-PRIMAD

T. turgidum

carthlicum AABB

dicoccum AABB

dicoccoides AABB

durum AABB

vavilovi AABBDD

petropavlovskyi AABBDD
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VILLEMUR FRA TDU-VILLEM

14140 ? TPO-14140

45274 TUR TPO-45274

68405 ? TPO-68405

330554 CHY TPO-330554

384266 ETH TPO-384266

7786 ETH TTU-7786

134952 POR TTU-134952

191104 SPA TTU-191104

341300 TUR TTU-341300

387456 ETH TTU-387456

68191 ? TMO-68191

68206 ? TMO-68206

68212 ? TMO-68212

74036 ? TMO-74036

81051 ? TMO-81051

68182 ? TBE-68182

68183 ? TBE-68183

68184 ? TBE-68184

68185 ? TBE-68185

68186 ? TBE-68186

77089 ? TUR-77089

77090 ? TUR-77090

78092 ? TUR-78092

78096 ? TUR-78096

78097 ? TUR-78097

8 ? AESPEL-8

25 ? AESPEL-25

37 ? AESPEL-37

38 ? AESPEL-38

3 ? AESEAR-3

4 ? AESEAR-4

CLAE 70 ? AEBIC-70

CLAE 47 1323 ? AEBIC-47

CLAE PI 330486 ? AEBIC-330

1 ? AELON-1

PI 604110 AEG-280-37 ? AELON-604

13 ? AETAU-13

15 ? AETAU-15

32 ? AETAU-32

33 ? AETAU-33

42 ? AETAU-42

CLAE 6614 A ? AEUMB-6614

PI 222762 1823 ? AEUMB-222

PI 487202 SY20160 ? APE-487202

PI 487278 SY20240 ? APE-487278

PI 54217684 TK 157008 ? ACO-542176

Ae. peregrina UUSvSv

Ae. tauschii DD

Ae. umbellulata UU

Ae. bicornis SbSb

Ae. longissima SlSl

Ae. speltoides SS

Ae. searsii SsSs

AABB

turgidum AABB

T. monococcum

monococcum AmAm

boeoticum AbAb

urartu AuAu

polonicum
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PI 551039 JM 3738 ? ACO-551039

PI 551047 JM 3856 ? ACO-551047

10 ? AEVEN-10

11 ? AEVEN-11

17 ? AEVEN-17

ALEXIS ? HVU-ALEXIS

CFL 86 126 ? HVU-CFL86

MOREX ? HVU-MOREX

PLAISANT ? HVU-PLAISA

STEPTOE ? HVU-STEPTO

APART ? SCE-APART

DANKOWSKYNOWE ? SCE-DANKOW

MERKATOR ? SCE-MERKAT

PROTECTOR ? SCE-PROTEC

SCW 3 ? SCE-SCW3

Ampiac FRA TRITI-AMPI

Bienvenu FRA TRITI-BIEN

Matinal FRA TRITI-MATI

Tricolor FRA TRITI-TRIC

Lamberto POL TRITI-LAMB

Zeus FRA TRITI-ZEUS

Trimaran FRA TRITI-MATRA

Carnac FRA TRITI-CAMA

Clerpin FRA LOLIUM-CLE

Clerpin Pature FRA LOLIUM-PAT

Herbie NL LOLIUM-HER

Kerval FRA LOLIUM-KER

Magella NL LOLIUM-MAG

Ohio NL LOLIUM-OHI

Kassandra GRC AVENA-KASS

Pol SWE AVENA-POL

Revisor DEU AVENA-REVI

Rhea FRA AVENA-RHEA

Tomba DEU AVENA-TOMB

Pa91 ? ZEA-PA91

B73 ? ZEA-B73

F2 ? ZEA-F2

Mo4 ? ZEA-MO4

A188 ? ZEA-A188

AZUCENA ? ORYZA-AZU

KASACATM ? ORYZA-KASA

NIPPONBARE ? ORYZA-NIPP

KONL ? ORYZA-KONL

IR64 ? ORYZA-IR64

sylvaticum ? BRACH-SYLV

distachyum ? BRACH-DIST

Avena sativa

Zea mays

Oryza sativa

Ae. ventricosa  DDMvMv

Hordeum vulgare HH

Brachypodium

Secale cereale RR

Tritical

Lolium perenne

Ae. comosa subven MM

- 4 -



 



List of EST-SSRs developed from common 
wheat



 



Annex3

Marker Forward primer( G ) Reverser  primer ( D ) GC%
5' → 3' 5' → 3'

cfe1 CGTGACGAGCATGAGCAC GACAGGAGGGGGAAGAAATC 57,89%
cfe2 CTTCGCCGACAAGAAGAAGT CGGCACGTACTCCACCTC 57,89%
cfe3 TGCTACTTTTGGTTACCGGC GTCAGGTGTTTCCACGCC  55,26%
cfe4 AAGCGGACGTAGCAGGTG  CGACCATGACTCCCCAAG 61,11%
cfe5 TTTCTCGCCAGTATGTATGGG AAACCCTAGCCACCCTCG 53,84%
cfe6 CTTCCCAAATGGCGACAC ACAGCAAGAGGAACCACACC 55,26%
cfe7 TCCGACCGCTTCCACTAC TGTCATAGTTTTCAGCCCACC 53,84%
cfe8 ACGATAAGATGGAAGGCGTG CTGCACCTCACCAAATCAGA 50%
cfe9 TTCCTTCCAGTATCGTTGGC AGGACTGCGGGTTGATTTC 51,28%
cfe10 TCGCGTAGTCCATGCAGTC ATGGCTATCTATAAACACCGGC 51,21%
cfe11 GGAATCCTTGCCCTGGTC GCTCTCCACGGTTCGTTC 61,11%
cfe12 TTTCGCTTGTCGAACGGT TGCACTTGTTAGAGGAGAATCC 47,5%
cfe13 AAATCCAAGATGTGCCAAGG TCGCCGCCAACTACTACC 52,63%
cfe14 CGTCCTTGGGCTGGTAGTAG CCGCAGAGCACTCCACTT 60,52%
cfe15 AAGTCCTCTCCAGCATCGG ATTTGGCAGAATCAAATCCG 48,71%
cfe16 GAAACACTGACAGCAGGAAGG AGAAGGCGAGGACGATGAC 55%
cfe17 CGCCATCTTCACCATCATC ATCAAATCCGAGACTGTGCC 51,28%
cfe18 CAGGGGATATAAGAAGGAGCG  CGAGACGACGAACGAGGT 56,41%
cfe19 AAGGTGTCGCCGTAGTTCAC  CAGTTGGAGCAGCAGGTGTA 55%
cfe20 GGTTGGGAGACCATTGAGAA GGACGCGAAGATCCATTG 52,63%
cfe21  GCCAGACACAATCCCAGG  ATCGGAATCATAGTGGTCGC 55,26%
cfe22 AGGACGTGAAGATCCATTGC GGTGGCTGGGAGACTATTGA 52,5%
cfe23 TGCGTCACCACCTTCTACC GAAGACTAACCAGAGCAGGCA  55%
cfe24 AAAAGCCGAATCATGGACAC AGCTGGTACTTGCGGACG 52,63%
cfe25 GGGCTCTCCACTCTCTTGC TCCGTTCCTATGGGTGACAT 56,41%
cfe26 ATGACCCTAGAAGGCGGTG ATGCTCAAGCCGAGGAAGTA 53,84%
cfe27 GTTGAACATGATGCTGGGTG TCAAATCCAATGAGTCAAGCC 46,34%
cfe28 ACTATTCACTCCGCCCTCCT GCATTCTTTCCAGAGCAACC 52,5%
cfe29 CAGACTCCAGAGAGCGCC GACGAGGTTGTGGTTCGC 63,88%
cfe30 GATCGAGGAGTGAGTGAGGC TATACAAATGGCTTGCAGTACG 50%
cfe31 TGGATTTCCTCCATCTCCAC CGATGATGGTCACGTTTTGA 47,5%
cfe32 AGATCCTCTCCACCATCGC CCACACTGAGCATTCCTGC 57,89%
cfe33 CAACATCCTGGGCATCAAC CATGCGAGCTGGTGTACG 56,75%
cfe34 ACAGCAGGCATCCACTATACG GCCTAGTTCGATGACAAGCA 51,21%
cfe35 GCACACCCCCAGCTTCAG GAGGCGGATCAGGAGGAG 66,66%
cfe36 GATCTGGAGGAGGCGGTAG CTTCAGCGTGTCGATGGG 62,16%
cfe37 TCCTCGTCAACTACTGCGG GGATGGATTGTAGATCATGCG 52,5%
cfe38 GCTCTTCTTCACCTTCGCC CATTGAGGTTGATGCCCAG  55,26%
cfe39 GTGGAAATGGAGGACGCTTA AGCTTCAAGGGGGCTGTC 55,26%
cfe40 CTGCCCCTTTTCTCCGTC TCGCGTGATGATGCTGAT 55,55%
cfe41 CCGGAGAAGAGCACCTAGC TACGAAAACCTGACCGCC 59,45%
cfe42 CAGCTTCTCCTCCTCGGAC AGAAGGGAGTGTCGATGGTG 58,97%
cfe43 AGAAAGGGGTGTCGATGATG AGCAGACGATGTGGTACGC 53,84%
cfe44 AGCTGGAGAAGGAGAACAAGG CACATAGATCGTGTCGCGTT 51,21%
cfe45 GTGCTGGTGCTGGTGATG GAGTTCACCCCCCGATCC 63,88%
cfe46 TCACAGCATTGAACTGGCTC TGTAGCACATGAACACCAAGC 48,78%
cfe47 GGCTGCTCTTCTCCTGTGAC TGCACCGATCAACACCAG 57,89%
cfe48 GAAGAGCCTCCCGGTGTC GGTTTCATCCATCGTCCG 61,11%
cfe49 CCAGCGCCTCAAACAAAG CTTGTCCCCGTAGCCTTG 58,33%
cfe50 ACCTTCCCCTTGTAGGTGCT TCGTCTGCTCTTCCTCCG 57,89%
cfe51 TCTTGCTTCCTCCATCAACC ATCGCGGAGCCCTTCTAC 55,26%
cfe52 TGTCGTAGAAGGGCTCCG AAACCCTACCTCCTAGCTCCC 58,97%
cfe53 TGGACCGCAGAGACTTCG GTCCGCCCAAACCCTACC 63,88%
cfe54 GAAGCCCATGTCATCATCG CCTGGAGAAGAGGAGCGTC 57,89%
cfe55 GGAGATCGTCGTCATCCG TCCTTGCTGTGGAGGGTAAC 57,89%
cfe56 TGCTATCCTCGTCGCCTC GTGGCCTGGGTAGCCTCC 66,66%
cfe57 TGAACAAACTCAGGCCAAGA CACCTCCTCCACCGTGTC 55,26%
cfe58 CTGATCCGTCCGTCCATTC TCCATAGGAACCGGATATACAA 48,78%

List of EST-SSRs developed from common wheat 
Annex 3
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cfe59 CAGTGGGTGTACTGGGTCG CATGGTGATGGCAAGGAAG 57,89%
cfe60 ACCTCTCTCCACTCCGGC CCACCTCGTACACCTCACG 64,86%
cfe61 CTCCCCAAATTCCACCCTAT GACCGGGAACCTGTCCTC 57,89%
cfe62 GAGCGAGATCCAGTCCAGAG AACCAGCCTTGACCATTCC 56,41%
cfe63 AAGAGGTCGGGGAACAGG GTGATGAGGAGCTTGGTGC 59,45%
cfe64 CACTTACCAAACTCCGGCTC ACGCCTTCGACACCGAAT 55,26%
cfe65 TGTCCTCACACTCGCTCATC CACCTTGTAGCCGATGACG 56,41%
cfe66 ACTGGATCTTCTGGGTCGG ACAGAGAGGACACTGAACGACA 53,65%
cfe67 CATCCATCCATCCATCAGAG ATGGCCCGGTAGAAGGAC 55,26%
cfe68 CGCCGTCATCTACAACAAGA CATGCACAGACACTGAACGA 50%
cfe69 TGCAACTTCTCCTCCTTCGT CGCTGGTTTTAGAGGACTGG 52,5%
cfe70 TTACTCACCGCGCTCCTC CGTCTTGGTCAGGAACGG 61,11%
cfe71 ACGACACCGCGACTTCTC GCATGTGCCCTCTCCATC 61,11%
cfe72 GACGGCCTCGATCTCCTT CACCTCACCTCATCTCACCA 57,89%
cfe73 ATCCCACTCGATCATCTTGC GAGTCCTTCACCCGCCAC 57,89%
cfe74 AGGCCGTAGGGACCATTC TCTAAAAGCACCGGACGC 58,33%
cfe75 GGGAATACGTGCGTGAGATT GAACCGGAGGAGTCCGTG 57,89%
cfe76 CCGGTCTAGTCTCAAGTGTGG TTGAAGAGCAGCGACTTGC 55%
cfe77 AGCTCTCGGCTCACCTCTC CAGTGTCACCGGCTCGTC 64,86%
cfe78 TGGATCACGAAGTTGTGGAA ATCGAGGAGGAGGGGCTC 55,26%
cfe79 CTCCTTCATCCAGGGGCT AGAACCACTCCAAGACGGC 59,45%
cfe80 TTCAGACTGGCCTCCGTC GTACAGCATCGGCAAGGAC 59,45%
cfe81 CGTCCGATCAACTCGACC ACGCTTGCACCTCAGTCC 61,11%
cfe82 AGGCTGAGCGTGAACACC CAAGAGCACGACGAATTTAGC 53,84%
cfe83 CCTCGATGAAGAACCCGTC TTTCGGAGTTCCCACGTC 56,75%
cfe84 CAACCTCCGACGAGGAGTC GAGCGACGGGTTCTTCATC 60,52%
cfe85 ACCTTGAAGCAACAGCCG CCGTAGGGTTTTGGGATTTT 50%
cfe86 CGTCAGTTCAAATGGCTGC TCCAGGAATGGGTTTACTGC 51,28%
cfe87 GAGGTTCTTGTGGAGCATCG CAACTCCTTCGACACCTTCC 55%
cfe88 GCTTACACAGAAGGGCGATT GGTCCTGGTTGTCCGTTG 55,26%
cfe89 TGGGAATAACACATAGCAGTGG TGCTTTTCAGTCAGTCACCG 47,61%
cfe90 TGCTCCCTCATGTACTGGC CAGAAGACGCACACACGC 59,45%
cfe91 CAAGCGAAACCAACGGAG CCACTACTCAAGAGGCGGAG 57,89%
cfe92 CAGCCAGCCTTTCTTCTCC TTGGGGACCAACTGGAATAA 51,28%
cfe93 CTAGGGTTAGGTCAGTTTCCCC GCTCTCCACCTGCGTGAT 57,5%
cfe94 ATGACCTTCACCCGCAAG TATCGCGCTGTTGATTTCC 51,35%
cfe95 GAACCATGAACCAGATTTGACA ATACATTCGAGCCACCCTTG 45,23%
cfe96 CATTGGTCTGTTTGACAACTGC ATCCTGATTCGGACTTTCCC 47,61%
cfe97 GCTTCAATCAAGGACAGGATG TCCATTTGGGTAACACGGAT 46,34%
cfe98 AACAACCGCTGAGATCGG GATTCATGGCGAGGTCGG 58,33%
cfe99 CAGGCAGACACGCAACAG CACAGTCAACTCCTTTGTACGC 55%
cfe100 GCAGTTCTTCCAGTTCAGAGG AGGGACAACAGTTACGTGGC 53,65%
cfe101 GAACATGCAAGACACGAGTAGC TACTTCAGCCAGGGCCAG 55%
cfe102 AGAACAGGAGCACGAGCAG GACGGAGGAGGGTACTTCG 60,52%
cfe103 TCGCACCAGCTACAACACTC CCATGATTTGTCCGCTTCTT 50%
cfe104 TTGCAGCCTAGCGAGCAG CCGGTGTGCTGTCAGATGT 59,45%
cfe105 GATGCCGTGGAGCAGTCT GATGAGCCACATGAATGCC 56,75%
cfe106 CGTCGATCCTATACTACGGAGG GGTACAAGCCCTGCTCGAC 58,53%
cfe107 TAGATCCGTTTAGCGCCG GGCACACGGGTACAATCTCT 55,26%
cfe108 AGCGCCAATACTTATCCCCT GTCCTCTAAGTCCATCAGCCC 53,65%
cfe109 CTCATCGAAGGGGTTGCG ACAGGCGAGGGAGAAACC 61,11%
cfe110 AGAGCCGAAATAGTCTCGCA TGCCACCATCCTGAGCTAC 53,84%
cfe111 TACGGCTCCAAGAACGAGAT CTGCCCACTGCATGTCTG 55,26%
cfe112 GACTACATGCGGGCCATC GACAGGAGCAGCATCGACC 62,16%
cfe113 CAGAAGTGAGAATGAATGAGCG AACACAGCCACAGCACTGAC 50%
cfe114 AGGGCAAGAGCATGACG ACCAAAGCGTTCACCGATAC 54,05%
cfe115 GATGACCAAGAGACCAGGGA ACATACAATGCTTCCGCACA 50%
cfe116 CGAGTCCTTCACCTCGGTC CTGCCCTTGCTCACCTTG 62,16%
cfe117 ATATCGCTCGCGCATCTAAT AGATTCCTCTGAACTAGCCCG 48,78%
cfe118 GAACGCCTCCATCAGCTC ATCCGCATTCATCTCCTTTG 52,63%
cfe119 CAAACGCCAACCTCCTCC GGTGTTGAGCACACGCAG 61,11%
cfe120 CACGTCCTGCTTGTGGTAGA CGAGACACACGCTGGTTG 57,89%
cfe121 TGTGCTGGAACTCCTCACC AACGCACCTCCTCCCTTC 59,45%
cfe122 GCGATCTTGCAGGTCATGTA AGAGAGGGCAAAGTAAGCTCG 51,21%
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cfe123 CTCGTCAGGAAACCGTCG CGTCGAAGCAACACAATTACA 51,28%
cfe124 TCTCCAGCAGCAATAACGG TTACAGAGTCGCAAACGGC 52,63%
cfe125 AGGACTTGGCCCTAACGC AACGATGGAACAAGGAAACG 52,63%
cfe126 GCAGGCCAACACATCCTTAT AGACCCTCCTGACCGACC 57,89%
cfe127 CGAGTACAGCCCCAGCCT GACCAAGGACAACCGCAC 63,88%
cfe128 GGCATCCATGTCCTTCTCTC TCTGTCTCCTTAGCTTTCCCC 53,65%
cfe129 TAGCGATTTGTTGGTTGTTCG ACGTATCTACAAGCACACGGG 47,61%
cfe130 GACCCAAAACCAACACCG CGATGGTAGATCGGAGGC 58,33%
cfe131 CGTCTGGGGGTGAGATAATG ATGCTTCAGGTGTGGCTTCA 52,5%
cfe132 ATATGTCGAGCTTCGGCG GGATTGAAACTGGCAAAGGA 50%
cfe134 CGGGTGATGGAGGAGAGG TTCCATTCTACTCAACGCAAA 51,28%
cfe135 TAGGAGGGTAAACAAGGAGCC TGGATTGGAGGAAGGAACTG 51,21%
cfe136 TGGAGACAGAGCCCACAAG CCTCGATCTGCATGGTCC 59,45%
cfe137 GAGAAATAAGCGGTGCTTGC GGAACTTCTTGGCGAGATCA 50%
cfe138 CATCGTGCTGCGTCAAAG CATTATCTTCAGCATAGCCGC 51,28%
cfe139 AGAAGAAGGTGAGAGATGGAGG CAGGGGAGGTAGAACTCGG 56,09%
cfe140 CCAGTGGCACCTCAACCTC CTCAAGCTGTAGTCGTTGTTGC 56,09%
cfe141 CACCGTCAAACCAACAACAG AGGAACTACGCCGTGCTG 55,26%
cfe142 GTACCTCCTGTCAAAGCCCA GTTCGACGACATCGGAAACT 52,5%
cfe143 CGACTAACGACCAAAGCACA CATCCACACCCACAAGGAG 53,84%
cfe144 AGCATTGCCCAAGAGCAC CGTGGGAGAGAACACACGC 59,45%
cfe145 TTGGAGGGGAAGGAGGAC CAGAGAGAACACACGCAAGG 57,89%
cfe146 CCGAGGCTCTTCACATCG TCAGAACGACCAAGCAGATG 55,26%
cfe147 GCGTCCGAGGCTCTTCAC ACTGTCCAGGCGATGCTC 63,88%
cfe148 CGGGCTTTATTGAAACCTCA  GTGTCACGTTGGGCATTAGA   47,5%
cfe149 CTGATTACGCGAGCCCAG CGCAGAAAGGGCAGTAAGAC 57,89%
cfe150 ACGCACGCACCTGTCTATC AAGAGCAACCCTGGTAACACA 52,5%
cfe151 CAGATGGGCACTCCCTTG ACCGTGATGGAGATCGAGAC 57,89%
cfe152 CTTCTTCCGCGACTACCTCA GCATGTCCTGGTCGTCCTC 58,97%
cfe153 GGTGTGTCCTTCCCATGC TAATGTCAGCGGAAGAGCCT 55,26%
cfe154 AGAACTTGAACTCTGGGAGCC TCAACCTCCTCATCGGATTC 51,21%
cfe155 GGCACGAGCTTCCTTCTAGG GGCTTGACCGTCGTGTACTT 57,5%
cfe156 TGTGCGCCATCTGCTACTC CTCCTAGATCCCGCGTCTC 60,52%
cfe157 ACGAACTCGGAAGTCTAGCG CATGATCGCCTCCACCTC 57,89%
cfe158 CGTGGTAGTGTCCGTGACC CACATGGGCTATGGAGGC 62,16%
cfe159 GAGGATGATGGACGTGCTG  GAGGTCGGCGTAGCTCTG 62,16%
cfe160 TTCCCTTCCCCCTCACTC TCGACATGGAGAGCATCG 58,33%
cfe161 GTCTGAATATGGGGAGGAGATG  AAAACACCGGCAAGAATCAG 47,61%
cfe162 GCTATTCTGCCCGTTCCTC ACCATTACCAGGTGAACCCA 53,84%
cfe163 CTTCCCGTCCCCTCTCTC GCTTGCCCTTGAACTTGC 61,11%
cfe164 GGAACCCAGGCGAGGTAG AGCCTAGCAGCATAGCATCC 60,52%
cfe165 TCCTAATCCCCCGACCTC AAACAATTTCTGCTCCCACG 52,63%
cfe166 ACCAGCTCAACAAAATGCG  CACGTTCCACGCTACTACCA 51,28%
cfe167 GCCTTCTTCACCTCGCTG ACCGCATCTTGTTGAGCTG  56,75%
cfe168 ATGCTCTGAAGTCTAAGGTCGC  CAGAAACCAGAAACAAGCAGC 48,83%
cfe169 AGGAAGAGGAAGGTGAGATGG GGAACTTCTCCAGCGACG 56,41%
cfe170 ATGAAGTTCGTCGCCGTC    TAGCAGAAGAGGTAACCGAAGG 52,5%
cfe171 AAGATCCGGTACGAGGTGC ACGTGGTGAGGTTTCTGCTC 56,41%
cfe172 GCCATGCAGAACTGGCTC TGCCATCCATCGACACTAAC 55,26%
cfe173 GCTGGAGTAGAGCGTGCG TCGTCCTTCTCCTCGGTG 63,88%
cfe174 CCTCTCCATTCCGTGTGG AGAAGGGGGACTCGATGG 61,11%
cfe175 GTCCTTGGCCGTCTCCTT AAGCCTCTCCCAAACCCTC 59,45%
cfe176 GATTGTGCTACGACGGTGC TCCTTGTCGAGATTCCGC 56,75%
cfe177 GTCGATCCGTGGTGATCTG CGCCCAACTAGGTCGAATC 57,89%
cfe178 AGCTTGCTATCCATGTCCTCA GTGCAAGGAGCACTGCGA 53,84%
cfe179 CCAAACACAGTGCAAGCG TGCTGCCTATCGTACTCGTG 55,26%
cfe180 GCCTGTTCAAAATGCAGGAT AGTGCTGGGAGGTAATGGTG  50%
cfe181 AAGCCACTCTTTAATCCAGCC GTGTAGAAGGTGAGCAGGGC 53,65%
cfe182 CTGACGCAGAAGAAGCACTG TTGCCGTAGAAGGGGTAGG 56,41%
cfe183 TCCGGTGAGAGCATAGCAG TCCGACCGTGTCTACAAGC 57,89%
cfe184 GCGTCCGCTCACGAGACT ACCTGTGGCTCCGTTGTG 63,88%
cfe185 AAGCGCGACCAGAAGTACAG CAGCAACTACGAAACAAAGTGC 50%
cfe186 CAACTGCGACGGACCCTT GCTGGCTAGTGGTGATACGG 60,52%
cfe187 GCTGACCACCACAGAGACAG CGGGCTGAAGATGACCAG 60,52%
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cfe188 ATCTTCGTAGCATTGGCAGG GCAAAGAGCTTCTGGAATGG 50%
cfe189 ATACAGAACCGGACACGAGG CACCAAGGACAACACCACC 56,41%
cfe190 GAGGCTGCCAAGCAGAAG AGCAAATCAAGCGCGAAC 55,55%
cfe191 GAGGGGCGTGCTTAGCCT TCTGCAAGGACCCCGAGT 63,88%
cfe192 AGAAGAAGCCCAAGGAGGAG TCTTTCCCTTCACAACCACC 52,5%
cfe193 TTCAAAGGTGTGAGCGTGAG ACACTCTTGTCGCCCCAC  55,26%
cfe194 TCGAGAGCCGGAAACCTC AATTCGGCACGAGCACAG 58,33%
cfe195 CCACAAGTAGATGGATCACCG GCTGGAGAAATACCCTGCAA 51,21%
cfe196 AATCCATACAACGGTGCCAT AACTGGAAAGAAGCGCAGAA 45%
cfe197 GCCCAACTTCACCATTTCAT GTGTGGAGACCATGCGAAC 51,28%
cfe198 CGTCCGGTAACACCAACAG ACGTCCCGGCAGTAGAAGTA  56,41%
cfe199 ATCATCGTCTGTGGTTTCGC CGGGACATTGAAACATCAAG 47,5%
cfe200 CAGCACTGGAAATAGCTCAGG GCGCAAGCAGAACAAGAAG 52,5%
cfe201 CCAGGAACCACCAACGAC CTTCCTCCCCACTTGTTCC 59,45%
cfe202 CGCGAACTTCCTGGACTC AAACGAGAAAGGCTCACCGT 55,26%
cfe203 TTCAGAGACAAGAGAATGGCG TTGCACTTCCAGTTGCCTC 50%
cfe204 CAGAACCAGTGGGAGCAGTT CGTGTGACGTGTGCCTTC 57,89%
cfe205 TTACCATCGCTCCAGACTCC GACCTACATCTTCAAGCACGC 53,65%
cfe206 ACGAATTGGACATCGAGAGG CATCATCCTTGGTGTTCGC 51,28%
cfe207 CCAACATCGTACTCCGGC CCGTAGTCAATCACCACACG 57,89%
cfe208 CCGACCAGAAAGACGAGAAG TGGATGGTTGATGACATGCT 50%
cfe209 GAGTCAGGCGATGTACGATG GCACTACCAACACAGCCAGA 55%
cfe210 TGCAGGTCCTTGGAGTCG GTCGGAGAGAGGCGATGG 63,88%
cfe211 CCAATGACAAGAAGGGTGCT GCTCCTTGGACTGGAGGTC 56,41%
cfe212 CCCATGACGACCTTGCTATT GAAAACCTCGCAGGCAAC 52,63%
cfe213 AGAGGATGGTGTGGCCTG TCGTGAACGTGGTGATGC 58,33%
cfe214 CGATACCACCTACCCCGTC GACCTCCATCTCGTCCCG 64,86%
cfe215 TGGCATCTGTAGAGGAGTTGG GGAGTCCATGACCTTGTCGT 53,65%
cfe216 CTCCTCTGAGCAAATGGTCC GGATAGGTAGTGGTTCTCGGC 56,09%
cfe217 TTCTCCAACCATACGATCAGG ACACCGGCGGATATGGAG 53,84%
cfe218 GGATCGAGAGCGAGGACAT CTCCACTCCCGTCAGCTC 62,16%
cfe219 AAGCTCACCCTCATCGCC AGGAACAGATGCGCCAAG 58,33%
cfe220 GCCATTGCTGCTGAGCTT ATATGTCGCCTCGGAATGAG 52,63%
cfe221 CTACTGGAGGTACGCCGAC TCCAGCCATCTCTTGTCCTC 58,97%
cfe222 CCGACGATGATGTCAATAACC CAAACCTCTTCCTCTCACGC 51,21%
cfe223 CGCGTCCGTTCTCTTCATTA GCTTGGCTGCTCTCTGTAGG 55%
cfe224 TCTCCGACAAGCTCTGCTG GTACGGCACCTCCACGAC 62,16%
cfe225 GCACGTCCTTGCACACTG CTCCATCCTCATGGCGAC 61,11%
cfe226 CTCGCTCTCGCCTACTCG TCAGAATAATGGTGTGCCTCC 56,41%
cfe227 CTCCTTGAACTGCACGATGA GCTCACCAAGAAACTACGCC 52,5%
cfe228 CACACCACCACTGTCCTCC GAACTCGTGCATCCCGTC 62,16%
cfe229 TCACAGGGATGACGACGAT GAGCGACGAGGAGCTGAG 59,45%
cfe230 CACGAGAGCTAGGGGAACTG TTGTGAGAGATATGCCAAGCC 53,65%
cfe231 GGCGACTGCTCTTCTCGG CAGAAGGGAAAGTTTGCAGC 57,89%
cfe232 TTCTGGTTGTGAGCGAGTTG ATTGACGGCGAGGTGAAG 52,63%
cfe233 GAGGAAGGGAAGGGAGGAG GTTGCCGTGGAGGTTGTC 62,16%
cfe234 CCTCCTGCTGCTAATCTTGG TCTTGGAGATGATGTCGGC 53,84%
cfe235 CGAGGACGACTCTTCTCCAC TGCAGGGTAGCAGCGATAG 58,97%
cfe236 TAGAGTTCGACGCAGGGC GCAACTGATGAGCACACGAT 55,26%
cfe237 GAATGCGTGATCTTGGTGG GCGCCATAGCCTCCTCTAC 57,89%
cfe238 CGATGACAGCGAATGGTG GCGGCAATGTCCTTCAAC 55,55%
cfe239 GAAGAGGCTGCGGTACAAAG AATCTTGGAATCGCCGAAC 51,28%
cfe240 GAGGGAGTCGAAGCGGTC GACGTGGAGTTCGTGGACTA 60,52%
cfe241 GAAGCTGGTCACGTTTACAGG TTAATCAAGCCACACGCCTT 48,78%
cfe242 GAGTTCCTGCCGAGGTTG CTCTCCTCTCCCACACAAGC 60,52%
cfe243 CCTCGCAAAGCATAGGTAGC CTAAAGTTCCTCGGCACGAC 55%
cfe244 CGTCAGGTCAGCATCAACAG GGTCGAGTCGTATGGCAGC 58,97%
cfe245 GGCACCATGTCCCTTAGTGT AGCTGGCTTTCTTCCTTGGT 52,5%
cfe246 AGAAACCCAGCCCCAGAC CGCTTCCTGTCATCTCCTTC 57,89%
cfe247 AGCTTGACGAGCCACGAC AGTGACAGCAACAATGACCG  55,26%
cfe248 CATCCTCTCCACCAAGCG GACGAGTAGGACACCCCGTA 60,52%
cfe249 CGTTGCACTTGTCGTTGC ACCATTTCAGAGCGCGAG 55,55%
cfe250 TCATCATCGCCTCCATCTC CAACCGCAAGAAACCAGG 54,05%
cfe251 TCGTCGATAGCGTCTCCTG ACAACCGCACAAGCGAAC 56,75%
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cfe252 GTACTCGCTGCCGCTCTC TGTCCTTCGTGCTCCGTC 63,88%
cfe253 CACCCAGGTCAAGGAGGTC TCCATCAGAGACAGCAGACG 58,97%
cfe254 CGCTCCTCTTGCTTCCAG ACTGACCCCCACCTGCTAC 62,16%
cfe255 TCGTACCTGTCATGCCTGC GATGGAGGTGATGGTGGC 59,45%
cfe256 GGGCATTCACTGGGAAGTTA CTGCTTTCAGGGTTAGCTGC 52,5%
cfe257 AGCAGGAGGATCAGAAAGAGG TCGACTCCAGGGTGGTAGAC 56,09%
cfe258 TCAGCTAACTCCTCGGCG AGGGAAGCAATCCATCTCG 56,75%
cfe259 CACCTCTGCTCCCTGCTAAC GAGCACTACGACGCGCTG 63,15%
cfe260 GAAGCCTCCGCTGCTAAAC TGGAAACTGATACAAGGCAGC 52,5%
cfe261 AAGCAGCTCCAAACACCAAG CTCAGTGACAAGGACGACGA  52,5%
cfe262 AGGGACTGCTCGGTCAAC ACGAGAGGTATTTAGGCGCA 55,26%
cfe263 GAGGAGGTAGAAGCCGCC CCGCCCAAGATGTACCAG 63,88%
cfe264 GATTCCCATCCCGTCACC CAGCCTGTCCGAGATGAAG 59,45%
cfe265 GGCTCTGCTCGCATCTTC CTGCCCTCTGCTACTGGAAC 60,52%
cfe266 GCCCACATCACACATCAAAC GACATGGACAAGGTGCAGG 53,84%
cfe267 GACGTAGACCTTGACCGCC CATTCCATCTCGAACCCATT 53,84%
cfe268 AACTTGAGCAGCATCGCC AAGAGGGAGACCGATGGC 58,33%
cfe269 GCTTCTCTTCCAGCATCCAC GCCACCAACATCTTCATCG 53,84%
cfe270 CCCGTAGAAATGGTACTGGTG GGCATGGGCTCGCACTAC 58,97%
cfe271 ATCCACTTGTAGACCCGGC ACTCTGCTTCCGCCACTG 59,45%
cfe272 GAGCCTCTCGTCTCCCATC GCACTTCACGCCGATCAC 62,16%
cfe273 AGACCTGGCCTTTCCTCG AGGACGCAAACGTACTCTCG 57,89%
cfe274 GACACACTTGCCGTGGAAC GAAGATCACGAGGACGAAGC 56,41%
cfe275 CCTTCTTCGGCTGCTAACC CATGCGCCTTACTTAGCCTC 56,41%
cfe276 GCCTGGTTGCTTCCTGTC GCCCTGCTCCACCTTCTC 63,88%
cfe277 TTCGACTACGGCTTCATGC GATCTGGCGAGGGAACTC 56,75%
cfe278 ATGCAAGCGAGGTTCGTC GAGTGAGGCTGCTCGACAC 59,45%
cfe279 AGGAGAGGACGAACTTGGC GCACACCAACAACCAGAGC 57,89%
cfe280 GACAAGAACCGGATGGCTC GTTGGAGGTGTTGCGACC 59,45%
cfe281 AACAGATTGGTTGGTCACACA TGGAACCACTTCCTCTACGC 48,78%
cfe282 GCGGTGTATGGTCTGGAGTT TTGACATCGTACTCGTCATCG 51,21%
cfe283 AAGCGAAGCCGAGGAAACT GAAGCGGGAGAAGAACTCG 55,26%
cfe284 CCCACTAGCCAGCCACTC TGCGGTACTATTCCACGACA 57,89%
cfe285 TGGGTTCACAGTCCATAGCA AGCAAATCACCTGGGCTG 52,63%
cfe286 ACCACCACATCAAGTGAAAGC AGGACGAGGAGCTGATGCTA 51,21%
cfe287 ATTTCCTCGCCAACCTGTC CATACCATTACCGACCCGAC 53,84%
cfe288 TCCCTTCGTCCATGCCTC GTGGTCCGATCCCGTCAC 63,88%
cfe289 TCGGAGGAGATGAATGGC CCATTTGAAACAGGCTCCAT 50%
cfe290 AGCAGCAGTATCAGTCCGGT CGTTTCCTACATACACACTGCG 52,38%
cfe291 CTCTTCCGGCCATCATTACT TTTCCATTGACAACCTTCACC 46,34%
cfe292 GAGACACCCACATTGGCAC GAGGAGGACGATGCCGAC  62,16%
cfe293 CCAAATCAGTCATCCGCC CTCGTCCAGGCTCAATGC 58,33%
cfe294 CTCACCACAGCAGGAGCC CTTCTACCCTCCGCCCAC 66,66%
cfe295 AATCACAGAAGCAGAGAGGAGG GGACGACGGTGAGAATGC  55%
cfe296 ATCTCGTCATCGACCAAAGG AAGTCCAGCGTCAGGCTCT 53,84%
cfe297 TCCCTCGCTCGCTATGATT GAAGTAGGAGCACACCTCGC 56,41%
cfe298 ACACGATCAGCAGAGGCAG TTGAAGCCGGAGAGGTTG 56,75%
cfe299 TTCCAGAAGCTCGACGCC AGGTGGTCGGAGAAGATGC 59,45%
cfe300 GCTGCCATTCATCCACATC GTGTTCCGTCACGTATGGTG 53,84%
cfe301 CACGCCGTCACTACATGC CAGGGTCTGAATCGGGTAGA 57,89%
cfe302 TCGTCAACGTCGTCCGAG CACCGAGAAGGTCTCCTTGA 57,89%
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Td Tm As At Sc Hv B Os

AB A B D R H

cfe1* 4 150 165 + A - - - - + - - - - 3D

cfe2* CGC 4 175 271, 270 + A + + + + + + + + + + + + 6A, 6B, 6D

cfe3 GAG 4 289 143-150 + C + + + + + + - - - - - 2AL, 2D, 5A

cfe4* GAG 6 217 222, 228, 236 + A + + + + + + + + + - 3B, 4B

cfe5 GGA 6 245 -
cfe6 CGT 7 239 300 + B + + + + + + + + + + 2AL, 2B, 2D

cfe7 GGC 4 313 -
cfe8* CG 6 277 291 + B + + + + + - - - - - - - 4BS

cfe9 TA 22 185 197-209 + C + + + + + - - - - - - - -

cfe10 AGG 8 324 315, 326, 341 + B - + + + + + + + + 7A, 7B,7D

cfe11* CGG 8 224 240 + A - + + - - + - - - 4A

cfe12 ATC 8+4 247 -
cfe13* CGG 5 227 379, 382 + A - + + + + - - - - 2AL, 2D

cfe14 TC 4 242 255 + B + + + - + - - - - - 2B

cfe15* TCA 4 135 151 + A - + + - - - - - - 5A

cfe16 CAT 4 221 238 + B + + + + + + + - - - 5D

cfe17* TCA 4 247 265 + A - + + + + - - - - -

cfe18* GTCA 3 257 273-277 + A + + + + + - + + - - - -

cfe19 TGC 4 266 281, 291 + B - + + + - - - + - 7A, 7B

cfe20* AGG 4 186 142, 155 + A - + + + + + - + - 7D

cfe21 ATG 5 267 -
cfe22* TTC 4 141 158, 161 + A + + + + + + + + + + + + 4A

cfe23 CGA 5 231 235 + B + + + + + + + + + + 1B

cfe24 CGC 5 239 333, 244 + C + + + + - + + - - - -
cfe25* ATC 4 110 124 + A + + + + + + + + + + + 1B

cfe26* CAG 8 187 191, 195 + A + + + + + - + - + - 1A, 1B

cfe27 CTG 8 252 262-268 + B + + + + + + + + + + 5A, 5B, 5D

cfe28 AGC 7 202 -
cfe29* GA 7 201 213, 219 + A - + + + + + + + - 3D

cfe30* TGTA 8 194 210 + A - + + - - - - - - 3A

cfe31 GCC 4 246 -
cfe32* CCG 5 119 134 + A - + + + + + - - - 6B

cfe33* TACG 3 185 201 + A - + + + - + - - - -

cfe34* TG 8 235 224, 257 + B + + + + - + + - + - 4BL, 5A, 5B

cfe35 CCG 4 119  + B + + + + + + + + + + + 6A

cfe36 GCG 4 131 143, 147 + B + + + + + + - - + + 4D

cfe37* TACG 3 150 161, 165 + A - + + + + + + + - 5A, 5B

cfe38 GCG 5+4 271 -
cfe39 TG 7 259 -
cfe40 CGC 5 180 364 + B + + + + - - - + - - 6A

cfe41 GCGG 5 195 213 + B + + + + + - - + + + - - - 1D

cfe42 GGA 6 221 229 + C + + + + + + + - - + - 7D

cfe43 CCT 4 261 272 + A + + + + - + + - + + -

cfe44* AGC 4 219 234 + A - + + + + + - + - -

cfe45* TGG 6 105 124 + A - - + + + + + + + + -

cfe46 GGC 6 197 -
cfe47* GAA 4 132 148, 157 + A + + + + + + + + + + + 1A, 1D

cfe48 TGC 5 259 268 + B - + - + - + + - - -

cfe49 GAG 5 151 -
cfe50 GGC 4 247 237 + C - - - - - - - - - -

cfe51 GGC 7 178 -
cfe52* TC 16 160 159-182 + A + + + + - - - - - - - 2B

cfe53* TC 10 104 120 + A + + + + - - - + - - 2AL

cfe54 CAG 5 172 -
cfe55 CTT 7 218 67 + c - + - - - - - - - 2AL, 2D, 3D

cfe56 CGG 8+4 156 237,275,304 + B + + + + + + + + + + - -

Ampli-
fication
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cfe57 GGC 16 182 114,130,135 + C - + + + + + - - - 2AL, 2D

cfe58* TTA 4 202 222 + A + + + + + + + + + - - + - 4A, 4D

cfe59 CCGT 3 223 213.236 + B + + + + + + + - + + 4A

cfe60* TCT 4 136 151 + A - + + + + + + + + -

cfe61 AGG 8 126 136 + D - + - + + - - - - -

cfe62 CAA 5 247 252 + D - + - - - - - - - 4A, 6A

cfe63* GGC 4 149 150.28 + A - + + + + + + + + 7B

cfe64 AGGCG 5 139 155-160 + A + + + + + + + + - + 2B, 5A, 7D

cfe65 AG 9 284 294.3 + B + + + + + + - + - + 7D

cfe66* GGC 4 223 239 + A + + + + + + + - + - 2D

cfe67 AG 11 175 186, 222 + A + + + + + + + + + - + 2D

cfe68* GGC 4 260 382 + A - + + + + + + - +
cfe69 CGA 4 178 -
cfe70 GCA 4 251 -
cfe71 GCC 6 143 245, 251 + B - + + + + + - - - 3B, 3D

cfe72 CTT 5 235 247, 250, 265 + B + + + + + + + + + + - + - 4BL, 4D

cfe73 TCC 4 150 -
cfe74* TCGC 5 233 248 + A - - - + + - - - - 6D

cfe75* CTC 7+4 135 149 + A - - + + + + + + - 7B

cfe76* GGC 4 136 152 + A - + - + + + + + + 1B

cfe77 GGC 6 146 160 + B - + + + + - + - - 1A

cfe78* CGT 4 218 328, 335 + A + + + + + - + - 1D

cfe79 GGA 4 220 233 + B + + + + + + + + + -

cfe80 CA 8 198 200-213 + B + + + + + + + + + + - 6A, 6B, 6D

cfe81 GCG 7 201 -
cfe82* GCG 4 254 270 + A + + + + - + + + + + + - -

cfe83 GA 14 244 -
cfe84 CCT 4 128 -
cfe85 GGC 6 290 -
cfe86* CAG 5 133 148, 154 + A + + + + + + + + + + + 1B

cfe87* GAG 6 143 146, 159 + A + + + + + + + + + + + + + 6D

cfe88 CCG 6 227 121 + D - - - - - - - - - -

cfe89 GAA 6 241 247-257 + B - + + + + - - - - 4A, 4BL

cfe90* CTG 6 159 174 + A - + + + + + + + + 4D

cfe91 CGC 3 297 -
cfe92 CGC 6 189 -
cfe93 CGG 6 238 -
cfe94 CCAT 6 105 119 + B - + + + + - - - - 6D

cfe95 CAT 7 247 259, 266 + B + + + + - + + - - - 6D

cfe96 CAA 10 135 150, 154 + B - + + + + + + - - 2B

cfe97 AGCC 3 150 380 + C + + - + + - - - - -

cfe98 GTC 7 139 148 + A - + + + + - + - - -

cfe99 CCGC 3 234 -
cfe100 TG 6 234 249, 254, 271 + B + + + + + + + + + - 7A, 7B, 7D

cfe101 CAG 4 286 135, 175 + D - - + + + - + - - -

cfe102 GCG 5 169 181 + B - + + + + + + + - 7D

cfe103* GAAG 3 104 119, 255 + A + + + + + + + + + + 1A

cfe104 GCC 5 101 115 + C + + + + + + + - - - -

cfe105* CAT 6 198 350 + A + + + + + + + + + + -

cfe106 TG 6 157 -
cfe107 CGA 5 157 166, 175 + B + + + - + + + + - - - 3B, 3D

cfe108 CGG 5+5 278 -
cfe109 CTC 7 138 150 + D - - - - - - - - - -

cfe110* AC 7 363 420-460 + A - - - - - - - - - 4A, 4BL

cfe111 TCT 8 228 245 + c - - - - + - - - - 3D

cfe112 GCG 4 134 148 + B + + + + + + + + + + + -

cfe113 GAG 4 329 124 + A - - + + - - - - - - 2

cfe114 AGT 5 174 193 + B - + + + + + + - - - 5A

cfe115 CTA 4 171 153, 188 + C - - + + - - - - - - 4BL

cfe116 CCT 6 248 -
cfe117 GAG 4 121 137 + B - + + - + + + - - 3D

cfe118 GGA 4 308 130, 415 + B + + + + + + - - - - -

cfe119* GCC 4 130 212, 226 + A + + + + + + + + + + + + + 2B, 7B
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cfe120 CTG 6 204 -
cfe121 CGG 9 107 135, 196, 215 + B + + + + + + - - + - 5A

cfe122 AGC 4 140 96 + D - + - - - - - - - -

cfe123 CTC 4 212 263 + D - - - - - + + - - -

cfe124* GAACCC 3 263 269, 279 + A + + + + + + + + + - 6B, 6D

cfe125* CAG 6 235 254, 260 + A + + + + + + - + + - - 6A, 6B

cfe126* TCT 10 224 134, 420 + A + + + + + + + + + + + - - 2B

cfe127 TGC 8 142 158 + C - - - + + - - + - 3B

cfe128 TTC 10 124 -
cfe129 GAT 5 128 146 + B - - + - + - - - - 3B, 3D

cfe130 CGA 4 168 178 + B - + + - - - + - - -

cfe131 AGC 6 137 152 + B - + + + + + - - - 3A, 3B, 3D

cfe132* GGC+GGC 4 145 159, 165 + A - + + + + + + + - 6A

cfe134* GATCT 4 228 135 + C - + + + + + + + + 3A

cfe135* ACAG 4 197 212 + A + + + + + + + + + + 7D

cfe136* AG 7 160 140,145,149 + A + + + + + + + + + + + - 1B, 1D

cfe137* AG 20 267 136,143,145 + A - + + + + + + + - -

cfe138* GC 7 234 219.249 + A - + - + + - - - - 4A, 7D

cfe139* GGC 6 185 233 + A + + + + + + + + + + -

cfe140 CAG 4+5 117 125,131,137 + C - + + + + + + + + 2B

cfe141* ATC 4+5 311 327 + A - - - - - - - - - -

cfe142* GAT 5+5 137 154 + A + + + + - + + - + - 4A

cfe143 CAGG 4 150 166 + - + + + + + + + - 5D

cfe144 CCT+  GGC 4+9 159 -
cfe145 GGC 6+5 248 -
cfe146 AGA 4 307 -
cfe147 CGG 4 227 265 + C - + + - - - - - - -

cfe148 TATG 4 152 145.169 + B + + + + + + + + - - - 4A, 4D

cfe149 TCC 7 240 -
cfe150* CGT 6 118 132 + A + + + + + + + - + - 1A, 1B, 1D

cfe151* CAC 4 150 165 + A - + + + + + + + + -

cfe152* CGA 5 150 263 + A + + + + + + + + + + - 6A, 6B, 7A

cfe153 AAC 4 238 -
cfe154* CGC 4 141 158.162 + A + + + + + + + + + + + 3A, 3D

cfe155 CTAGG 5 249 -
cfe156 GGAC 6 288 286.298 + C - - + + + + + + + 5D, 6A, 6B

cfe157 GAG 6 323 -
cfe158* GCC 4 130 147 + A - + + + + + + - - -

cfe159* CAG 6 163 183.194 + A - + + + + + + + + 5A, 5D

cfe160 CGC 7 109 123 + C - + + + + - - + - 4A

cfe161* CATGG 3 135 153 + A - + + - - - - - - 3A

cfe162 GGCGGT 3 232 247.252 + B + + + + + + + - - - - 5B, 5D

cfe163 CCG 8 102 111-117 + B - + + + + + - + - 3A, 3B, 3D

cfe164 GCG 5 134 148 + B + + + + + + + + + + - 6A, 6B, 6D

cfe165 GTGC 4 303 -
cfe166 CGT 7 131 142.148 + A + + + + + + + + + + - 7A, 7B, 7D

cfe167* GGC 4 187 202 + A + + + + - + + + + - - 1A

cfe168* CAG 4 153 171 + A + + + + + + + + + + 6A

cfe169* CGG 4 150 165 + A - + + + + - + + + 2B, 2D, 6A

cfe170 CGC 4 158 351-383 + B + + + + + + + + - + + -

cfe171 ATGC 5 310 213 + A + + + + + + + + + + -

cfe172* TG 8 123 192.211 + A + + + + + + + + - - - 3D

cfe173 CGC 6 131 142 + C + + + + + - + + - - - 3A, 3B, 3D

cfe174 GAC 4 254 249 + A - - + + + + - - - -

cfe175* GGC 6 216 198 + A - + + + + + + + + 2AL

cfe176 GCG 4 100 126-150 + D + + + - + + + - - - - -

cfe177 GGA 4 138 417 + D + + + + + + + - - - + - - -

cfe178 GCC 4 120 135 + D + + - - - - - - - - -

cfe179 AGG 5 315 327 + C + + + + + + - + - - - - 6A

cfe180 GCA 8 118 90,123,156 + B + + + + + + + + + - 5A, 5B, 5D

cfe181 TC 8 218 234.249 + B + + + + + + + + + + - 4D

cfe182 AAC 4 238 -
cfe183 AG 14 215 229-240 + B + + + + + + + + + + + 2B
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cfe184 CGG 4 100 115 + C + + + + - + + - - - -

cfe185 TG 10 281 292-294 + B - + + + + + - - - 1A, 3A, 3B, 3D

cfe186* TG 7 200 218 + A + + + + + + - - - - - 5A

cfe187* GGC 4 249 257 + A + + + + + + + + - + -

cfe188* TGC 5 244 229, 262 + A + + + + + + + + + + 4BL

cfe189* TGG 5 221 211, 239, + A + + + + + - + - - - 1A

cfe190* CAC 6 266 270, 279 + A + + + + + + + - + - 1B,1D

cfe191 CCG 6 132 128-144 + B + + + + + + + + + + 1B

cfe192 CGC 6 309 236- + D + + + + + + + + + + + -

cfe193* GGC 4 270 283 + A + + + + + + - - + - - - - 1A

cfe194 GT 22 156 177 + D - + + + + - - - - -

cfe195* GAA 4 143 387, 396 + A + + + + + + + + + + + + 3A

cfe196 GGTT 5 110 118,122,127 + B - + + + + + + + - 6A, 6B, 6D

cfe197* TAA 4 293 305.309 + A - + - + + - - - - 4BL, 4D

cfe198 AGC 6 196 204.212 + B + + + + + + + + - - -

cfe199* TGC 9 209 218-227 + A + + + + + + + - - - -

cfe200 GCT 4 213 274 + D -

cfe201 GGAGG 4 126 -
cfe202* CGC 6 262 361 + A - + + + + - - + - 7A, 7B

cfe203 CAC 4 191 133 + C + + + - - - - - - - -

cfe204 CCTT 4 192 195,201,204 + B + + + + + + + + - + - 4A, 5B, 5D

cfe205* CAG 5 129 135.144 + A - + + + + + - + - 4D

cfe206 CGC 5 169 -
cfe207 GCG 7 139 -
cfe208* AGG 4 249 262 + A + + + + + + + + + + + 5A

cfe209 CAG 6 217 228-259 + B - + + + + + + + - 2B, 2D

cfe210 CCG 5 121 134 + B - + + + + + + + + -

cfe211 GGC 5 156 120,158,161 + B + + + + + + + + + + 3B, 5B, 5D

cfe212 CGG 7 207 213,217,222 + B - + + + + + + + + 2B, 2D

cfe213 CGC 7 288 302 + B + + + + + + + - - - 4D, 7A, 7B

cfe214 CCG 6 107 122 + B + + + + + + + + + - 6B

cfe215 GAG 6 200 -
cfe216 CCT 6 319 -
cfe217 CGC 5 246 -
cfe218 GGGGGC 4 181 193 + B - - - + + + - + -  4D

cfe219* CCG 4 208 340 + A - + + + + + + + - -

cfe220 CTG 5+4 246 239.262 + B + + + + + + - + + - 2AL, 3B, 3A

cfe221 CAG 6 250 -
cfe222 GAT 4 238 258 + C + + + + + + + - - - 6A, 6D

cfe223* ATAC+TCCT 5+7 157 164-173 + A + + + + + - - + - + + 7B

cfe224 GCC 7+4 275 185-219 + D + + + + + + + + + + + + - -

cfe225* ACG 5 349 359 + A - + + - + - + + - 3D

cfe226* TCTCC 4 170 143 + D - + + - + - - - + -

cfe227* CGC 5 161 177 + A + + + + + + + + - + - 2D

cfe228* CTG 13 207 214 + A + + + + + + - - + + + - 4A

cfe229* ACA 4 298 315 + A - + + + + + + + - 5B

cfe230 CTC 8 317 334 + B + + + + + - - - - - 5B

cfe231 CGG 4 335 360 + D - - - - - - - - - -

cfe232 GTG 4 245 131 + B + + + + - + - - - - - -

cfe233 CGG 4 186 201 + C + + + - + - - - - - -

cfe234* GTCC 6 237 251-571 + A - + + + + + + + - 4A, 4D

cfe235 CGC 4 186 145-258 + D - + + + + + + - + -

cfe236 CGTA 4 110 120-127 + B + + + - - - - - + - - 2B

cfe237 GGT 5+4 274 -
cfe238* GAG 6 141 157 + A + + + + + + + + + + - -

cfe239 GGT 6 262 277, 285 + B - + + + + + + + - 5B, 5D

cfe240 TCC 5 213 209-227 + B + + + + + + + + + + 3A, 5A, 5B, 7D

cfe241 TG 8 168 186 + B + + + + - - - - - - - 5B

cfe242 GGC 5 218 293-360 + B + + + + + - - - - + - 1A, 1B

cfe243 (CCA)CC(CCA) 4+4 303 339-289 + D - + - - - - - + - -

cfe244 CAC 4 170 184 + B + + - - - + - - - - 4D

cfe245* AC 12 239 464 + A - + - + - - - - - 6B

cfe246 GAA 5 300 -
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Annex4

cfe247 GCG 6 126 132, 136 + B + + + + + + + + + + 4D, 5A, 5D

cfe248 CCA 4 202 184, 215 + B - + + + + + + + - 7A

cfe249 GCT 7 271 490 + C - - - - - - - - - -

cfe250* CCG 5 127 141 + A - + + - - - - + - 4A

cfe251 GCC 6 201 -
cfe252 GGA 5 131 144, 147 + B + + + + + + - - - - 7B, 7D

cfe253 ACG 6 147 278 + C + + + + + + + + + - + - 7A, 7B, 7D

cfe254 GTA 7 259 279-292 + C + + + + + + + - - - - - 1B, 4A

cfe255* CCA 4 146 157, 159 + A - + + + + + + + - 1B, 1D

cfe256 CA 12 285 -
cfe257* AGC 7 265 272, 274, 280 + A + + + + + + + + + + + - 1A, 1B, 1D

cfe258* AAG 4 144 161 + A + + + + + + - + - + - 3A, 3B

cfe259 TC 25 142 -
cfe260* CCT 7 149 252-258 + A + + + + + + + + + + + - 7A, 7B, 7D

cfe261 TC 11 248 252-259 + A + + + + + + + + + + + + 7A, 7B, 7D

cfe262 CGG 5+6+4 367 -
cfe263* AGC 5 174 186 + A + + + + + + - - + - 1A

cfe264* CCT 4 254 254-259 + A + + + + + + + - + - - - -

cfe265 AAGGG 4 304 339 + B + + + + - + + - - - -

cfe266* ACC 4 251 266 + A - + + + + + + + + 1B

cfe267* GGA 6 172 128, 133 + A + + + + + + + + + + 1A

cfe268 CCT 5 207 -
cfe269 GCT 4 229 -
cfe270* GTG 7 126 141-145 + A - + + + + + + + - 4D, 5A, 5B

cfe271* CGG 5 139 154 + A - + + - - + - - - 1B

cfe272* GCA 4 132 147 + A - + + + + + + + + -

cfe273* GGC 6 111 334 + A + + + + + + + - + - - - 6A

cfe274* CCA 5 180 195-197 + A + + + + + + + - + - 4BL

cfe275 GGA 4 180 -
cfe276* AGG 6 125 137, 143 + A - + + + - + + + - 1A, 1B

cfe277* ACA 4 202 208-216 + A + + + + + + + + + + + - 6D

cfe278* CA 12 178 195-212 + A + + + + + + + + + + - 3B, 7D

cfe279* CTT 4 246 264 + A - + + + - + + + - 6B

cfe280 CGC 4 167 -
cfe281* ACG 5 215 228 + A - + - + + - - - - 2D, 5D

cfe282* GAC 7 149 156, 163, 172 + A + + + + + + + + + + + + 3A, 3B, 3D

cfe283 CCCG 4 247 186 + C + + + + + + + + + + 2AL, 2B

cfe284* AATC 4 240 114, 258 + A - + + + + - - + - 7A

cfe285* TGC 7 114 130 + A - + + + + - + + - -

cfe286 AGG 15 187 201 + B + + + + + + + + + + + - 2B, 3A, 3D

cfe287 GGC 7 234 224 + C - - + - - - - - - 3A

cfe288* CTC 5 210 320-327 + A + + + + + + + + + + + 6B

cfe289 CAG 12+4 191 -
cfe290 CGC 4 132 -
cfe291 AATC 6 118 134 + C + + + + + + + - - - - 4D

cfe292 AAC 4 316 -
cfe293 CCT 4 227 224 + B + + - - + - - - - - -

cfe294* AGC 4 250 260 + A + + + + + + + + + -  3D

cfe295 CAG 7 179 174, 184, 194, + B + + + + + + - - + - 3A, 3D, 5D

cfe296 CGC 4 244 -
cfe297* CGG 4 150 286, 291 + A - + + + + + + + + 6A, 6B

cfe298 GAC 7 200

cfe299 GGA 4 113 249-253 + B + + + + + + + + + + 4A, 5A, 5D

cfe300* AC 13 249 265 + A + + + + + + + + + + + 4A

cfe301 AC 15 177 188-194 + B + + + + + + + + + + + + + 5D

cfe302* GCA 6 283 295-303 + A + + + + + - + - - - - 3B

“+” means either polymorphism or amplification. “–” means absence of either polymorphism or amplification. 

Td: T. durum; Tm: T. monococcum; As: Ae. speltoides; At: Ae. tauschii; Sc: Secale cereale (rye); Hv: Hordeum vulgare
(barley); B: Brachypodium ; Os: Oryza sativa  (rice).

The PCR product qualities were represented by letters A, B, C and D. A means that the amplification product is strong and
clear; B means strong but no clear band; C means weak, but able to be scored and D means too weak to be scored.
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Plant DNA extraction using CTAB protocol 
 

This protocol can be applied to triticineae species as well as other species such as 

maize, Arabidopsis, sunflower, barley, rapeseed, tomato, etc. The DNA yield for the 

triticineae is about 150-200 µg of DNA by gram of fresh material. DNA is of good 

quality and can be easily measurable through spectro-photometry and digestible by 

restriction enzymes. Composition of the buffers and solutions are given at the end of 

the protocol. 

 

Between 0.5 and 3g of young fresh leaves or etiolated coleoptiles are harvested and 

freezed in liquid nitrogen. At this step, samples can be either stored in deep freezers 

(-80°C) or directly ground in liquid nitrogen using a mortar and a pestle. The 

powdered samples are then transferred into individual tubes where 7.5 mL of 

preheated (65°C) extraction buffer (CTAB 2X) are added. After homogenization, the 

samples are incubated at 65°C for 30 min with two homogenizations during 

incubation. Seven mL of either chloroform or dichloromethane supplemented with 

isoamyl alcohol (24/1) are added and gently mixed for few minutes. The tubes are 

then centrifuged 15 min (7,500 rpm at 4°C) and the supernatant recovered in a new 

tube. About 0.1 volume of preheated (65°C) CTAB 10X buffer are then added and 

mixed before addition of 7 mL of either chloroform or dichloromethane supplemented 

with isoamyl alcohol (24/1). After homogenization, the tubes are centrifuged 10 min 

(7,500 rpm at 4°C) and the supernatant recovered in a new tube. Two volumes of 

precipitation buffer (CTAB P) are then added and mixed gently until a DNA pellet 

appears. The tubes are then centrifuged 20 min (9,000 rpm, 4°C) and the supernatant 

discarded. The pellet is dissolved in 3 mL of preheated buffer (TE high). DNA is then 

precipitated by adding two volumes of cold (-20°C) ethanol, recovered using a glass 

hook and after a quick rinse in 70% cold ethanol, let dissolve one night at 4°C in 500 

µL of 0.1X TE. 
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After complete re-suspension, DNA is purified by adding 100 µg of RNAse A and 

incubating 30 min at 37°C. One volume of a solution of phenol/chloroform/isoamyl 

alcohol (25/24/1) is then added and mixed gently for 2 min. After centrifugation (10 

min, 12,000 rpm, room temperature) the supernatant is recovered in a new tube 

containing one volume of chloroform/isoamyl alcohol (24/1) and gently mixed for 2 

min. The tubes are then centrifuged (10 min, 12,000 rpm, room temperature) and the 

supernatant is recovered in a new tube containing 50 µmoles of sodium chloride. 

DNA is then precipitated by adding two volumes of cold (-20°C) ethanol, recovered 

using a glass hook and after a quick rinse in 70% cold ethanol, let dissolve one night 

at 4°C in 250 µL of 0.1X TE. 

DNA concentration can then be measured using a spectro-photometer and adjusted at 

the desired concentration. Quality of the DNA is checked on a 0.8% agarose gel in 

TAE 1X buffer. 
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Buffers and solutions used in the CTAB protocol 
 

 Chloroform/Isoamyl alcohol (24:1) 

 - chloroform         96% 

 - isoamyl alcohol (also methyl-3, butanol-1) 4% 

 

 CTAB 10%: 

- CTAB  10 % 

 - NaCl  0.7 M 

 

 Extraction buffer (CTAB 2X):  

- CTAB  2 % 

- Tris  100 mM 

- EDTA  20 mM 

- NaCl  1.4 M 

- PVP 40  1 % 

 

 Precipitation buffer (CTAB-P): 

- CTAB  1 % 

- Tris  0.7 M 

- EDTA  10mM 

 

 TE 1X (pH 8.0): 

- Tris  10 mM 

- EDTA  1 mM 

For TE 0.1X, dilute ten times. 

 

 TE High (pH 8.0) 

- Tris  10mM 
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- EDTA  50mM 

- NaCl  500mM 

 

 Phenol/chloroforme/isoamyl alcohol (25/24/1) 

- Phenol 50% 

- Chloroform 48% 

- Isoamyl alcohol 2% 

 RNAse A: 

- Dissolution buffer (pH 7.5): 

- Tris  10 mM 

- NaCl  15 mM 

Add RNAse A at the appropriate concentration and boil 15 min at 100 °C. Store at 

-20°C 

 

 TAE 50X (pH 8.0): 

- Tris  2 M 

- EDTA  50 mM 

- Acetic acid 1 M 



 



Résumé 
 
Bien que la génomique du blé tendre (T. aestivum L.) a connu un essor important ces cinq 
dernières années, peu d’efforts ont été faits dans le domaine de la génomique des espèces 
sauvages apparentées au blé. 
Le premier objectif de cette thèse a été de développer de nouveaux marqueurs moléculaires 
utilisables sur le blé et transférables vers un nombre important d’espèces cultivées ou 
sauvages de graminées. Pour cela, nous nous sommes intéressés aux microsatellites localisés 
dans des séquences de gènes exprimés (EST) afin d’exploiter le nombre important d’EST de 
blé présentes dans les bases de données et parce que les gènes sont les régions du génome les 
mieux conservées entre les différentes espèces. A partir d’environ 1 000 contigs d’EST portant 
un microsatellite nous avons constaté que les motifs tri nucléotidiques étaient les plus 
fréquents (~80%). Nous avons développé 301 couples d’amorces (EST-SSR) que nous avons 
testés sur huit variétés de blé tendre et huit espèces apparentées. Environ 80% d’entre eux ont 
donné un produit d’amplification chez le blé, celui-ci étant en général de grande qualité et 
polymorphe dans 25,4% des cas (nombre moyen d’allèles = 3,1/locus, valeur PIC moyenne = 
0,40). Sur les 240 EST-SSR amplifiables, 177 ont été assignés aux chromosomes de blé grâce 
aux lignées aneuploïdes et 81 nouveaux locus ont été intégrés aux cartes génétiques de 
référence. La portabilité des EST-SSR vers les autres espèces apparentées est excellente pour 
les sous espèces de blé (100% pour T. aestivum ssp compactum) et diminue avec 
l’éloignement phylogénétique pour atteindre encore 28% avec le riz. D’un point de vue 
évolutif, la projection des séquences d’EST sélectionnées sur la séquence du génome de riz 
montre une localisation préférentielle près des télomères et une meilleure similarité entre ces 
deux espèces au niveau des chromosomes 2, 3 et 5 de riz. De même, lorsque l’on s’intéresse 
aux microsatellites donnant un produit d’amplification à la fois chez le blé, l’orge et le riz, 
nous remarquons que le motif existe et est fréquemment similaire chez les trois espèces, ce 
qui suggère une origine commune. D’un point de vue de la diversité allélique des EST-SSR 
chez les espèces apparentées, nous montrons qu’elle est plus importante chez les espèces 
allogames telles que Ae. speltoides, le ray-grass ou le maïs (respectivement 0,423, 0,388 et 
0,352) alors que les espèces autogames comme le blé tendre ou dur montrent des valeurs plus 
faibles (respectivement 0,108 et 0,093). Le développement réciproque d’une centaine (106) 
d’EST-SSR à partir de gènes du chromosome 1 de riz donne des résultats de portabilité vers le 
blé tendre similaires aux précédents (28,5%) et confirme les relations de colinéarité connues 
entre le chromosome 1 de riz et les chromosomes du groupe d’homéologie 3 du blé. 
Le deuxième objectif de cette thèse était d’exploiter les EST-SSR montrant une bonne 
portabilité pour valider leur capacité dans le cadre d’analyses phylogénétiques chez les 
Triticées et les graminées. Les résultats indiquent que ces marqueurs permettent de classer les 
lignées et les espèces conformément aux connaissances concernant la phylogénie et les 
pedigrees. Ils confirment également que les espèces T. monococcum ssp urartu, Ae. speltoides 
et Ae. tauschii sont respectivement apparentées aux donneurs des génomes A, B et D du blé 
tendre. 
Nous pouvons donc conclure que les EST-SSR sont des marqueurs intéressants et puissants 
pour étudier les espèces sauvages orphelines et pour faire des analyses de génomique 
comparative au sein de la tribu des Triticées et plus généralement de la famille des graminées. 
 



 



Abstract 
 
Despite recent progress in wheat (T. aestivum L.) genomics, only few efforts have been made 
in the genomics of wild and closely related wheat species. 
The first aim of this PhD was to develop new molecular markers useful on wheat and 
transferable to other cultivated as well as wild grass species. We focused our work on 
microsatellites (SSRs) located in expressed gene sequences (ESTs) to exploit the large number 
of wheat ESTs present in the databases and also because the genes are the best conserved 
regions of the genome between the different species. From about 1,000 EST contigs bearing a 
microsatellite, we observed that the trinucleotide motifs were the most frequent (~80%). We 
developed 301 primer pairs (EST-SSRs) that were evaluated on a set of eight wheat cultivars 
and eight related species. About 80% of the primer pairs gave an amplification product on 
wheat. Most of the time, we had high quality patterns. The level of polymorphism was 
estimated to be 25.4% on wheat (mean of 3.1 allele/locus and PIC value of 0.40). Among the 
240 EST-SSRs that gave an amplification product on wheat, 177 were assigned to wheat 
chromosomes using aneuploid lines and 81 new loci were added and integrated to the 
reference wheat genetic maps. Transferability of wheat EST-SSRs to related species was very 
good for wheat subspecies (100% for T. aestivum ssp compactum) and decreased while the 
phylogenetic distance increased. However, transferability reached 28% with rice. The 
alignment of the selected wheat EST-SSRs on the rice genome sequence showed a preferential 
localisation in the telomeric regions and a better similarity of wheat ESTs on rice 
chromosomes 2, 3 and 5. Moreover, a thorough study of the EST-SSRs giving an 
amplification product in wheat, rice and barley indicates that the motif is present and is 
frequently similar in the three species suggesting a common ancestral origin. The allelic 
diversity of the EST-SSRs among the wheat related species was higher in allogamous species 
such as Ae. speltoides, Lolium perenne and maize (respectively 0.423, 0.388 and 0.352) while 
autogamous species such as bread and durum wheats showed lower values (respectively 0.108 
et 0.093). Reciprocal development of 106 rice EST-SSRs originating from genes of the rice 
chromosome 1 gave similar results concerning the transferability to wheat (28.5%) as those 
observed for wheat EST-SSRs and confirmed the known syntenic relationships between rice 
chromosome 1 and wheat homoeologous group 3. 
The second aim of the PhD was the exploitation of the EST-SSRs showing a good 
transferability to validate their capacities for phylogenetic analyses among the Triticeae and 
the grasses. The results indicate that these markers are able to properly classify the lines and 
the species according to the known data about their phylogeny and their pedigrees. The results 
also confirmed that T. monococcum ssp urartu, Ae. speltoides and Ae. tauschii species are 
closely related to the ancestral donors of the A, B and D genomes of bread wheat respectively. 
Thus, we can conclude that wheat EST-SSRs are interesting and powerful markers to study 
wheat related orphan species and to make phylogenetic and comparative genomics analyses 
among the Triticeae tribe and more generally among the grass family. 
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